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Zusammenfassung 

Ziel: In früheren Studien wurde die Effektivität von Vertigoheel® gegen Schwindel belegt. Diese 

Erkrankung geht mit einer beeinträchtigten mikrovaskulären Perfusion des vertebrobasilaren 

Systems im Bereich des Innenohrs einher. Darüber hinaus wurde eine vasorelaxierende Wirkung 

von Vertigoheel® gezeigt, welche im Zusammenhang mit der synergistischen Stimulation der 

zyklischen Nukleotid-Signalwege steht. Daraus erwächst die Annahme, dass Vertigoheel® einen 

positiven Effekt auf weitere Krankheiten wie vaskuläre Demenz (VaD) haben könnte, die mit 

einer beeinträchtigten mikrovaskulären Perfusion und/oder Dysfunktion der Gefäßwand 

assoziiert sind. In dieser Arbeit wird die Hypothese aufgestellt, dass Vertigoheel® eine 

vasorelaxierende Wirkung auf die zerebrale Mikrozirkulation bei spontan hypertensiven Ratten 

(SHR) hat. Das Ziel dieser Arbeit war die Bestätigung der vasorelaxierenden Wirkung von 

Vertigoheel® auf die zerebrale Mikrozirkulation von SHR, sowie die Bestimmung der daran 

möglicherweise beteiligten Mechanismen. 

Methoden: Die mikrovaskuläre Reaktivität der Haut auf Acetylcholin (ACh) und Natrium-

Nitroprussid (SNP) wurde mittels Laser-Doppler-Flowmetrie (LDF) in der Rückenhaut von 16 

Wochen alten SHR und Wistar Kyoto Ratten (WKY) bestimmt. Anschließend wurde je eine 

Gruppe von SHR und WKY Ratten mit Vertigoheel® intraperitoneal (2 ml • kg-1 • d-1) dreimal 

pro Woche über acht Wochen behandelt, Je eine Gruppe von SHR und WKY Ratten diente als 

unbehandelte Kontrolle. Nach acht Wochen wurde die mikrovaskuläre Reaktivität der Haut 

erneut bestimmt, gefolgt von einer zerebralen mikrovaskulären LDF-Antwort auf moderate 

Hyperkapnie (5% CO2). Die Expression der endothelialen Stickoxidsynthase (eNOS), der 

Phosphodiesterase 5 (PDE5) und der Phosphodiesterase 4 (PDE4) im zerebralen Gewebe wurde 

mittels Western Blotting ermittelt. Die zerebrale Konzentration von zyklischem 

Adenosinmonophosphat (cAMP) und zyklischem Guanosinmonophosphat (cGMP) wurde 

mittels ELISA gemessen. 

Ergebnisse: Die primäre Beurteilung der mikrovaskulären Reaktivität der Haut zeigte 

Relaxationsstörungen bei SHR im Vergleich zu WKY Ratten sowohl nach ACh und SNP 

Applikation. Nach achtwöchiger Verabreichung von Vertigoheel® ergab die mikrovaskuläre 

Reaktivitätsneubewertung keinen Unterschied zwischen der SHR-Vertigoheel-Gruppe (SHR-V) 

und der SHR-Kontrollgruppe (SHR-C). Die Differenz in der mikrovaskulären Reaktivität 

zwischen SHR und WKY konnte nicht mehr nachgewiesen werden. Die zerebrale 

mikrovaskuläre Antwort auf Hyperknapie dagegen fiel bei SHR-V signifikant höher aus als bei 

SHR-C. Es zeigte sich kein signifikanter Unterschied zwischen der Wistar Kyoto- Vertigoheel®-
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Gruppe (WKY-V) und der Wistar Kyoto-Kontrollgruppe (WKY-C). In den Western-Blots ergab 

sich eine signifikant höhere eNOS-Expression bei SHR-V als bei SHR-C Tieren. Es wurde kein 

Unterschied zwischen WKY-V und WKY-C beobachtet. Es wurden keine Unterschiede in der 

PDE5 oder PDE4 Expression und in den Gewebekonzentrationen von cAMP oder cGMP bei 

SHR-V im Vergleich zu SHR-C Ratten oder zwischen WKY-V und WKY-C Tieren 

nachgewiesen. 

Schlussfolgerung: Vertigoheel® hat eine vasorelaxierende Wirkung auf die zerebrale 

Mikrozirkulation von SHR-V nach einer Applikationsdauer von acht Wochen. Dieser Effekt 

könnte mit einer gesteigerten Expression der eNOS assoziiert sein. 
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Abstract 

Objective: Earlier studies have demonstrated that Vertigoheel® increased perfusion in a skin 

area considered as proxy to the inner ear of vertigo patients. Furthermore, the vasorelaxant effect 

has been shown to be related to the synergistic stimulation of cyclic nucleotide signalling 

pathways. We speculated that Vertigoheel® might provide a beneficial effect for further diseases 

that are associated with impaired microvascular perfusion and/or dysfunction of the vessel wall, 

such as vascular dementia (VaD). In this study we hypothesized that Vertigoheel® would have a 

vasorelaxant effect on cerebral microcirculation in spontaneously hypertensive rats (SHR). 

Therefore, the aim of this study was to investigate whether Vertigoheel® has a vasorelaxant 

effect on the cerebral microcirculation of SHR and to assess the putative mechanisms of this 

effect. 

Methods: Baseline skin microvascular vasodilatory responses to acetylcholine (ACh) and 

sodium nitroprusside (SNP) were assessed with laser-Doppler flowmetry (LDF) in the dorsal 

skin of 16-week-old SHR and Wistar Kyoto rats (WKY). Vertigoheel® was administered 

intraperitoneally (2 ml • kg-1 • d-1), three times per week for 8 weeks. After 8 weeks, skin 

microvascular reactivity was reassessed, followed by LDF cerebral microvascular assessment of 

the perfusion response to mild hypercapnia (5% CO2). Expressions of endothelial nitric oxide 

synthase (eNOS), phosphodiesterase 5 (PDE5), and phosphodiesterase 4 (PDE4) in cerebral 

tissue were assessd using Western blotting. Cerebral cyclic adenosine monophosphate (cAMP) 

and cyclic guanosine monophosphate (cGMP) tissue concentrations were measured with ELISA. 

Results: Baseline skin microvascular reactivity assessment showed relaxation disturbance in 

SHR compared to WKY in response to both, ACh and SNP. After 8 weeks of Vertigoheel® 

administration, skin microvascular reactivity reassessment showed no difference between SHR 

Vertigoheel® treatment (SHR-V) and the SHR control group (SHR-C). The baseline 

vasorelaxation difference between SHR and WKY was not found any more in the second 

assessment of skin microvascular reactivity. However, the cerebral microvascular response was 

significantly greater in SHR-V than SHR-C. No significant difference between Wistar Kyoto 

Vertigoheel® treatment (WKY-V) and Wistar Kyoto control group (WKY-C) was detected. 

Western blotting result showed significantly higher eNOS expression in the SHR-V than in the 

SHR-C. No such difference was observed between the WKY-V and WKY-C. No differences 

were detected in PDE5 and PDE4 expression, cAMP, or cGMP in SHR-V compared with SHR-

C, nor in WKY-V compared with WKY-C. 



8 

 

Conclusion: Vertigoheel® has a vasorelaxant effect on the cerebral microcirculation of SHR-V 

after 8 weeks administration. This effect might be associated with increased eNOS expression in 

SHR cerebral tissue. 
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1 Introduction 

Improvements in health care, health knowledge, nutrition, and hygiene lead to increased 

life expectancy (1). Accordingly, data from the United Nations shows that the elderly population 

is increasing in developed and developing countries (2). Based on these data, the number of 

people aged >65 years old will increase from 600 million to 2 billion, and the number of people 

over the age of 80 will increase from 105 million to 400 million (2). The increased prevalence of 

older people in the population increases the incidence of non-communicable diseases (2). 

Dementia, a syndrome characterized by progressive deterioration of cognitive functions, 

is one of these non-communicable diseases and one of the main causes of disability in the elderly 

(3). The global incidence of dementia is appraised to be 35.6 million people in 2010 (4). Due to 

the increasing elderly population, it is predicted that the total number of patients with dementia 

worldwide will double every 20 years. It will be 65.7 million people in 2030 and 115.4 million 

people in 2050 (4). The total cost of dementia worldwide is estimated at 604 million US $ in 

2010 (4) and is estimated to increase markedly with the expected higher number of dementia 

patients in the future. Furthermore, behavioral and psychological changes due to dementia not 

only directly impact the patients but also affect the medical, psychological, and emotional 

wellbeing of the family and the caregivers. (5).  

Vascular dementia (VaD) is the second most common form of dementia in the elderly 

after Alzheimer’s disease (AD). Yet, with the prediction of a higher incidence of stroke in the 

near future (6), one of the risk factors for VaD, it is possible that VaD will become the most 

common form of dementia in the elderly (7). Despite being one of the main causes of disability 

in the elderly and has severe impact on individuals’ lives and society in general, the treatment 

options for and research on VaD are still very limited and there are no effective approved 

pharmacological treatments available for VaD (8). The use of anti-platelet and anticoagulant 

drugs that are usually used for stroke treatment show unsatisfying results and also have major 

side effects such as major bleeding (9;10). Anti-hypertension drugs have been shown to inhibit 

the progression of VaD in the elderly. However, the use of anti-hypertension medication in 

patients with normal blood pressure could cause excessive hypotension leading to cerebral 

infarction (11;12). Cholinesterase inhibitors and memantine, drugs that modulate 

neurotransmission abnormality, produced only small benefits in VaD (13) and the effect size of 

the drug is limited (14). Thus, it can be concluded that further innovations in therapy for VaD are 

required.  
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The pathogenesis of VaD involves disturbance of the cerebral microvasculature. 

Disturbances in the microvasculature contribute to the formation of white matter lesions in 

cerebral tissue (15). One of the risk factors that can cause microangiopathy in cerebral tissue is 

hypertension. Epidemiological studies have consistently shown that hypertension, diabetes, 

obesity, hypercholesterolemia, smoking, and lack of physical activity increase the risk of 

dementia and cognitive impairment (16). Hypertension in mid-life can increase the risk for VaD 

at older age (17). Continuous exposure to high blood pressure has been shown to damage the 

cerebral microvasculature (18). Exposure of the cerebral microvasculature to high blood pressure 

can also lead to lipohyalinosis and vascular remodelling, which may induce luminal narrowing in 

the arteries and arterioles that penetrate into cerebral white matter. Due to the primary functions 

of the microvasculature to optimize the supply of oxygen and nutrient to the tissues and to keep 

constant hydrostatic pressure in the capillary vessels, this can lead to damage of the white matter 

and of cortical connections (7) Based on this pathogenetic relationship between the 

microcirculation and VaD the microvasculature may be a therapeutic target for prevention or 

treatment of VaD. 

Vertigoheel® is a low dose combination preparation that is commonly used to treat 

vertigo. In a clinical double-blinded, controlled study for vertigo related to atherosclerosis, 

Vertigoheel® has been shown to have the same effect as Ginkgo biloba, the standard drug for 

vertigo in Europe (19). One of the causes of vertigo is microvascular perfusion disturbance in the 

inner ear (20). An intravital microscopy study in vestibular vertigo patients has shown that 

Vertigoheel® can improve the microcirculation in a skin area behind the ear lobe regarded as 

proxy to the inner ear (21). A study from Heinle et al demonstrated that Vertigoheel® has a 

vasorelaxing effect in the isolated rat carotid artery. Another observation in this study was that 

the mechanism of Vertigoheel® might involve the synergistic effects from cyclic nucleotide 

pathways in vascular smooth muscle cells. Additionally, Vertigoheel® also increased the 

production of nitric oxide (NO) (22). It can be concluded from these findings that Vertigoheel® 

has a potential effect of microvascular vasodilation.  

Taken together, protective effects of Vertigoheel® on the microcirculation could be 

applied not only to treat vertigo, but also to other diseases related to disturbances of 

microvascular perfusion or to vascular dysfunction, such as in VaD. In this study we tested the 

effect of Vertigoheel® in Spontaneously Hypertensive Rats (SHR) which has been shown to have 

microvascular dysfunction. The SHR also have cerebrovascular disturbance characteristics 

similar to those in hypertensive humans. In SHR, reductions in the external diameter and 

increases in the media-to-lumen ratio of cerebral arterioles have been reported (23). Blood 



Introduction 

14 

 

pressure increasing with age, brain hypotrophy, loss of neuronal cells, and glial reactions are 

some phenomena that occur in brains of hypertensive patients that also occur in SHR (24). This 

study hypothesizes that Vertigoheel® may improve cerebral microvascular perfusion in SHR. 

The aims of this study are to investigate whether Vertigoheel® will increase cerebral 

microvascular perfusion in SHR and to determine the underlying mechanisms of this improved 

microvascular function.   
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2 Literature Review 

2.1 Vascular Dementia 

Vascular dementia (VaD) is a loss of cognitive function that has effects on activities of 

daily live. It is caused by cerebrovascular disease due to ischemia or haemorrhage, 

cardiovascular disease, or circulatory disturbances that affect the brain regions responsible for 

memory, cognition, or behaviour (25). The risk factors for VaD are divided into four major 

groups: demographic, atherosclerotic, genetic, and stroke-related. Demographic risk factors 

include age, male sex, and lower educational level. The major atherosclerotic risk factors are a 

history of hypertension, cigarette smoking, myocardial infarction, diabetes mellitus, and 

hyperlipidemia. The genetic risk factors include familial vascular encephalopathies such as 

cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy 

(CADASIL). The stroke-related risk factors are the volume of cerebral tissue loss, evidence of 

bilateral cerebral infarction, strategic infarction, and white-matter disease (26).  

Pathologically, there are two causes of VaD. The first involves disturbances in large or 

medium vessels, and the second disturbances in small vessels. The most common cause of VaD 

is a disturbance in the cerebral microcirculation (cerebral small vessel disease (SVD)) (27). 

Disturbances in small vessels can cause lesions in the white-matter which are related to focal 

cerebral ischemia (28). From a study using arterial spin-labelling magnetic resonance imaging, 

damage in sub cortical vessels was related to decrease cerebral blood flow (CBF) to the cortex 

(29). Hypertension is the number one risk factor for SVD and is a leading cause of cognitive 

decline and dementia (30). Chronic hypertension in middle age can produce cognitive 

impairment through its effects on the microvasculature and subsequent ischemic and anatomic 

damage (31). Hypertension will cause lipohyalinosis and vascular remodelling, which will 

decrease cerebral perfusion (28;30). Additionally, chronic hypertension can also reduce CBF by 

disturbing the mechanisms that regulate the CBF (30).  

 

2.1.1 Pathophysiology of Vascular Dementia 

Dysfunction of the neurovascular unit and mechanisms regulating cerebral blood flow are 

likely to be important components of the pathophysiological processes underlying VaD (32). 

This dysfunction is associated with disturbances in the cerebral microvasculature. Structural and 

functional changes in cerebral microvessels play a role in the disturbance of cerebral 

microvasculature (33). In VaD, the cerebral microvessels undergo basal membrane thickening, 
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become tortuous or twisted, and show rarefaction (34). Another study has also shown that 

arteriole wall structure in VaD presents like an onion skin due to hyaline degeneration 

(lipohyalinosis) (33). This structural change will lead to narrow lumina and occlusion in small 

arteries, arterioles, and capillaries that go deep into the white matter. The stenosis of these 

vessels will impair tissue perfusion and cause acute or chronic ischemia. The impact of acute and 

chronic ischemia in the brain is damage of the neurovascular unit that could blunt the functional 

hyperaemia response (30). 

One of the causes of the damage in the neurovascular unit is increased permeability of the 

blood-brain barrier (BBB). The changes in brain microvasculature in response to chronic 

hypertension, such as lipohyalinosis and fibrosis, will lead to ischemia that may induce BBB 

failure, which further contributes to lacunar strokes and dementia. One study has shown that 

chronic hypertension induced alteration of the BBB by modulating the protein expression level 

(35). Alterations of the BBB will cause increased BBB permeability or even BBB failure that 

will lead to neurovascular unit damage (36). Leakage of fluid and macromolecules from the 

microvessels can cause cerebral perivascular inflammation and demyelination of axons in the 

white-matter which will ultimately slow the saltatory neuronal conduction (32). Another study 

also proposed that endothelial injuries will produce BBB leakage, leading to vessel ruptures and 

microbleeding, which will finally result in cystic infarction of the surrounding parenchyma (37). 

 Both the structural changes and increased permeability of cerebral microvessels occur 

because of cerebral endothelial dysfunction as the underlying mechanism. Endothelium, after the 

discovery of nitric oxide (NO), turned out to be a major regulator in blood vessels including 

cerebral vessels (38). In normal endothelial function, NO plays a crucial role in maintaining 

vascular homeostasis, including modulation of vascular dilator tone. It also has anti-

atherosclerotic properties, such as regulation of local cell growth, and protection of the vessel 

from injurious consequences of platelets and leukocytes circulating in the blood (39). 

Hypertension causes vascular remodelling in the entire systemic vasculature including the 

cerebral vessels. Chronic hypertension is associated with adaptive and degenerative structural 

changes in cerebral resistance vessels and plays a major role in endothelial dysfunction (31). In 

recent years, it has become apparent that hypertension can increase vascular oxidative stress. 

Increased vascular oxidative stress will lead to endothelial dysfunction. The result of increased 

oxidative stress is a decrease in NO bioavailability and uncoupling of the eNOS resulting in 

production of reactive oxygen species (ROS) instead of NO. ROS can sequester NO by forming 

peroxynitrite, a very potent radical species, thus reducing circulating NO. Oxidation of 

tetrahydrobiopterin (BH4) leads to the uncoupling of eNOS from NO production and 
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subsequently superoxide can be formed (40). Endothelial dysfunction induced by vascular 

oxidative stress can induce the release of vascular endothelial growth factor and prostanoids, 

which promote vascular leakage, protein extravasation, and cytokine production (32). Oxidative 

stress is also correlated with VaD. Several studies found that oxidative stress status is altered in 

VaD. Alterations of oxidative stress status in VaD were shown as reduced vitamin C levels in 

plasma, reduced α-tocopherol, increased malonaldehyde (MDA), and increased oxidative DNA 

damage repair in cerebrospinal fluid (CSF) and urine (41). These microvascular changes caused 

by hypertension occurred systemically. Skin microcirculation changes can be detected non-

invasively using Laser Doppler Flowmetry (LDF). One such study showed that disturbance in 

skin microcirculation correlates with the occurrence of VaD (42)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Schematic diagram of VaD pathophysiology. Modified from Iadecola C., et al. (30;32) 

 

2.2 Microcirculation 

The microcirculation, based on anatomical definition, includes blood vessels with 

diameters <150 µm. According to this definition the microcirculation will cover the arterioles, 
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capillaries, and venules. Physiologically, the microcirculation is defined to include all the vessels 

in which the lumen diameter decreases or the vascular smooth muscle constricts in response to 

an increase in blood pressure (23).  

Functionally, the microvascular bed can be divided into resistance, exchange, and 

capacitance vessels (43): 

Resistance vessels (Small Arteries and Arterioles): The diameters of resistance vessels range 

from 10-200 µm. Arterioles form the final branch of arterial systems and mark the beginning of 

the microcirculation. Arterioles present with a large number of smooth muscle cells to control 

vascular resistance in the microcirculation. 

Exchange vessels (Capillaries): The diameter of capillaries is 5-9 µm. Capillaries consist of a 

single layer of endothelium and no smooth muscle cells but occasional pericytes. The structure is 

optimized to maintain their primary function as exchange vessels. 

Capacitance vessels (Venules): The diameter of venules is greater than 10 µm and with 

increasing size they start to acquire smooth muscle cells. Venules belong to the capacitance 

vessels which hold 70% of the total circulating blood volume and, due to their high compliance, 

can easily adapt to blood volume changes. 

Hence, in addition to their tasks of fulfilling nutritional and oxygen demand in tissues, the 

microcirculation also plays a crucial role in determining total peripheral resistance and in blood 

pressure regulation (23).  

 

2.2.1 Anatomy of Cerebral Circulation  

The brain is an organ that requires continuous perfusion. A disturbance in cerebral 

perfusion may lead to dysfunction or even death (32). A complicated cerebrovascular control 

mechanism is required to maintain CBF supply to meet the brain’s demand (44). Blood supply to 

the brain comes from two internal carotid arteries and two vertebral arteries. The internal carotid 

arteries branch to form two major cerebral arteries, the anterior and middle cerebral arteries. The 

right and left vertebral arteries form the midline basilar artery. The basilar artery anastomoses 

with the arteries from the internal carotids in an arterial ring at the base of the brain (in the 

vicinity of the hypothalamus and cerebral peduncles) called the circle of Willis. The posterior 

cerebral arteries arise at this confluence, as do two small bridging arteries: the anterior and 

posterior communicating arteries. From the base of the brain, these arteries branch into the 

leptomeningeal or pial arteries. The pial artery branches perpendicularly to the brain parenchyma 

into penetrating intracerebral arteries and arterioles (20-90 μm diameters in the human brain). 

http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2275/
http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2535/
http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2339/
http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2359/
http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2768/
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The penetrating arteries branch into the arterioles and capillaries. The diameter of these latter 

vessels is 6-10 μm in the human brain (45). The arterial vessels in the brain are comprised of 

three layers, the tunica intima (endothelium and sub-endothelial tissue), the tunica media 

(vascular smooth muscle cells), and the tunica adventitia (connective tissue with collagen, 

fibroblasts, neurons, and vasa vasorum) (46) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Structure of the brain with vasculature and the neurovascular unit (according to Iadecola C., et al) (47) 

 

 

2.2.2 Cerebral Microcirculation Physiology 

2.2.2.1 Neurovascular Unit 

 The physiological balance in the cerebral micro-environment is coordinated by the 

neurovascular unit. The neurovascular unit is comprised of monolayered endothelial cells, 

integral neighboring cells, and foot processes from astrocytes that cover the vascular wall and 

neuronal terminals (32). The function of the neurovascular unit is to control the exchange of 

molecules across the BBB, regulate CBF, contribute to cerebral immunity, and provide trophic 

support in brain cells (48) 
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2.2.2.2 Blood-Brain Barrier 

Three cellular elements of the brain microvasculature compose the BBB: endothelial cells 

as the primary barrier, pericytes, and astrocyte end-feet (49). The process of molecular exchange 

in the microcirculation of the brain is stricter than in other parts of the body. This is caused by 

the structure of the endothelium in the brain, which is quite different from the endothelium in 

other parts of the body. The monolayered endothelium in the cerebral microcirculation is 

connected with tight junctions. These tight junctions will restrict the diffusion flow of charged 

molecules and water-soluble molecules across the BBB (50). The cerebral endothelium also 

contains selective specific transport barriers to select substances from crossing from the vascular 

lumen into the tissue (51). To protect the brain tissue, the BBB also contains a metabolic barrier 

that is run by a combination of extracellular and intracellular enzymes (52). Another difference is 

that the BBB contains fewer transport vesicles compared to other vessels in the human body 

(53). In performing their role, endothelial cells work together with basal lamina, pericytes, and 

astrocyte end-feet in the neurovascular unit. This collaboration regulates the permeability of the 

BBB (54).  

 

2.2.2.3 Regulation of Cerebral Blood Flow 

 The regulation of CBF is maintained by the cerebral auto regulation, cerebral metabolic 

flow regulation, and cerebral neurogenic regulation. In the neurovascular unit, endothelium and 

astrocytes work together to achieve CBF regulation (55). 

 

2.2.2.3.1 Cerebral Auto Regulation 

 The CBF is maintained at a constant flow even when the driving force for perfusion, the 

mean arterial pressure (MAP), changes. In healthy individuals the CBF remains rather constant 

between MAP values of 60 to 140 mmHg. This capability of the cerebral resistance vessels is 

defined as cerebral auto regulation (50;55). Cerebral auto regulation will shift to the right, to 

higher MAP values, in chronic hypertension. This condition is related to vascular remodelling 

and structural changes of the cerebral resistance vessel. Low blood pressure that would be 

tolerated by healthy individuals may cause ischemia in this situation (56).  

The underlying mechanism of cerebral autoregulation is named myogenic control or 

Bayliss effect. Increased transmural pressure induces passive distension of the vessel wall which 

is sensed by vascular smooth muscle cells which respond by active constriction to diameters 
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below the baseline diameter prior to pressure increase. Thus vascular resistance increases to a 

degree that equalizes the increased blood pressure and perfusion remains unchanged (55). 

Another mechano-sensory mechanism of perfusion regulation is wall shear stress mediated 

regulation where increased perfusion induces dilation of resistance vessels (55). In bigger 

arterioles and small arteries, the neurogenic regulation through sympathetic perivascular nerves 

in the tunica adventitia contributes to the regulation of vessel diameters (57). 

  

2.2.2.3.2 Metabolic Control  

Increased activity from any part of the brain will increase the blood flow to that part. This 

phenomenon is called functional hyperemia or metabolic coupling of perfusion (45). There are 

some molecules that are under investigation and expected to mediate the relation between 

neuronal activity and regulation of CBF. The tissue concentration of these molecules increases 

with synaptic transmission, either because they are involved in the process itself, or because 

there production and release increase with increased cellular metabolism (50). The best 

investigated molecules and ions that contribute to metabolic control of perfusion include 

adenosine, hydrogen ions (H+), potassium ions (K+), and carbon dioxide (CO2). An increased 

tissue concentration of these molecules and ions will result in vasodilatation (50;55).  

 

2.2.2.3.3 Neurogenic Control 

 Neurogenic regulation also plays a role in maintaining the CBF. There are two types of 

neural regulation: extrinsic and intrinsic. Extrinsic innervation refers to vessel innervation 

outside the brain parenchyma. The three main sources of perivascular innervation are the 

trigeminal ganglion for sensory, the superior cervical ganglion for sympathetic, and the 

sphenopalatine ganglion for parasympathetic innervation. The sympathetic nerves innervate the 

large cerebral vessels, and it has been hypothesized that the main role of the sympathetic nervous 

system is to increase tone, in order to maintain blood pressure below the upper limit of the 

autoregulatory mechanism. The parasympathetic system has been proposed to play a role in 

pathological states (50;55;57). After the blood vessels enter the brain parenchyma the 

innervation changes from extrinsic into intrinsic. In intrinsic pathways, the nerves are not 

attached directly to the microvessels, but instead they connect to astrocyte foot processes. The 

nucleus basalis, locus coeruleus, and raphe nucleus have all been described as a source of 

innervation of the cerebral microvasculature (55;58). 
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2.2.2.3.4 Endothelial Control 

 The endothelium makes a major contribution to the regulation of CBF. Endothelium in 

cerebral vessels, like other endothelia in other vessels in the body, bridges the communication 

between vessel lumen and vascular smooth muscle cells. Some vasoactive mediators that are 

produced by the endothelium are: nitric oxide (NO), endothelium-derived hyperpolarizing factor 

(EDHF), prostacyclin (PGI2), prostaglandin (PGE2), and endothelin (50;55). NO, EDHF, PGI2, or 

PGE2 can induce vasodilatation in cerebral vessels. On the other hand, vasoconstriction results 

from various mechanisms including decreased NO bioavailability or release of endothelin 

(30;50;55).  

The endothelial cells play a role in maintaining the basal tone of the cerebral arteries and 

arterioles by constantly releasing NO (38). NO diffuses from the endothelium to the vascular 

smooth muscle cells, where it binds to and activates soluble guanylate cyclase (sGC). This 

enzyme converts guanosine triphosphate (GTP) into cyclic guanosine monophosphate (cGMP). 

Increased intracellular levels of cGMP will activate cGMP-dependent protein kinase (PKG). 

PKG mediates vascular smooth muscle relaxation by a  number of mechanisms, including 

lowering of intracellular free Ca2+ levels and phosphorylation of myosin light chain phosphatase,  

desensitizing the contractile apparatus to Ca2+ (59). Phosphodiesterase (PDE) will control the 

development of smooth muscle relaxation by degrading cGMP. The phosphodiesterases that 

specifically hydrolyze cGMP are phosphodiesterase 5 (PDE5), 6 (PDE6), and 9 (PDE9). These 

PDEs will degrade cGMP by hydrolyzing cGMP into 5'-GMP (30;38;50;55).  

Nitric oxide synthase (NOS) is the enzyme that catalyzes NO production from L-arginine 

and molecular oxygen. There are three isoforms of NOS, neuronal NOS (nNOS or NOS1), 

inducible NOS (iNOS or NOS2), and endothelial NOS (eNOS or NOS3). Under normal 

conditions, neurons express nNOS and cerebral vessels express eNOS. Neurons and cerebral 

vessels can express iNOS under pathological conditions such as hypertension or 

lipopolysaccharide exposure (60). 

 Although vasodilatation is the best known and most studied effect of endothelial NO, 

many other functions have been identified in studies on animals and in vitro. NO has been 

described to suppress platelet aggregation, leucocyte adhesion to the endothelium and 

emigration, to attenuate vascular smooth muscle cell proliferation and migration. Furthermore, 

NO can inhibit activation and expression of certain endothelial adhesion molecules, and 

influence production of superoxide anions. Loss of endothelium-derived NO would be expected 

to promote a vascular phenotype more prone to atherogenesis (38). Decreased NO activity is 
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related to an imbalance between ROS and the antioxidant scavenger system. An increase in ROS 

will decrease NO bioavailability (30;61). 

 A second important vasodilator produced by endothelial cells is prostacyclin (PGI2). PGI2 

is a metabolite from arachidonic acid produced via the cyclooxygenase (COX) pathway. 

Arachidonic acid is metabolized to a number of products that are collectively called eicosanoids 

(62). Some eicosanoids are dilators while others are constrictors. The metabolic pathway of 

arachidonic acid starts with the liberation of arachidonic acid from the phospholipid membrane, 

primarily by phospholipase A2. After being liberated, arachidonic acid is metabolized by COX, 

lipoxygenase, epoxygenase, or Ω hydroxylase. Dilator products of the COX pathway include 

prostacyclin (PGI2), prostaglandin E2, and prostaglandin D2. Constrictor products include 

prostaglandin F2α and thromboxane A2 (TXA2). The release of PGI2 by cerebral endothelial cells 

activates G-protein-coupled receptors on vascular smooth muscle cells which activate adenylyl 

cyclase. Adenylyl cyclase transforms adenosine triphosphate (ATP) into cyclic adenosine 

monophosphate (cAMP). The intracellular cAMP will activate cAMP-dependent protein kinase 

(PKA). Activation of PKA opens K+ channels and causes hyperpolarization of the smooth 

muscle cell. Voltage-sensitive Ca2+ channels close, resulting in decreased intracellular Ca2+ 

concentration and vasodilatation (63). cAMP also has other functions beside relaxation of 

smooth muscle, such as inhibiting proliferation of smooth muscle cells. Once cAMP is 

generated, the only way to inactivate it is to degrade it to 5’-AMP, through phosphodiesterase 

(PDE) action. The PDE that specifically hydrolyzes cAMP is PDE 4 (30;38;50;55).   

 The third mechanism of endothelial cells that induces vasodilatation in cerebral micro-

vessels is through EDHF. The hallmark of the EDHF pathway is insensitivity to agents that 

block the production of NO or PGI2, but it is blocked by the combination of charybdotoxin and 

apamin. It has been shown that there is involvement of intermediate-conductance Ca2+-activated 

K+ channels (IKca) and small-conductance Ca2+-activated K+ channels (SKca). The term EDHF 

refers to a factor released by the endothelial cells. This factor involves the opening of a 

potassium channel. The release of EDHF requires an increase in endothelial intracellular calcium 

concentration which will open calcium activated potassium channels. Hyperpolarization of 

endothelial cells initiates the formation of EDHF, which is then transferred to the vascular 

smooth muscle cells (VSMC) via myoendothelial gap junctions or evokes the release of a 

hyperpolarizing factor that acts directly on smooth muscle cells (63).  

 Vasoconstriction of cerebral microvessels is mediated by endothelin. The endothelin 

system is composed of two receptors (ETA and ETB) and three ligands (ET-1, ET-2, and ET-3). 

ETA receptors are found predominantly in vascular smooth muscle cells, are stimulated by ET-1 
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and ET-2, and mediate vasoconstriction. ETB receptors are found predominantly within the 

endothelium, are stimulated by all three ligands, and mediate vasodilatation (50).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Schematic diagram of vasodilatory mechanism (63-65) 

 

2.3 Spontaneously Hypertensive Rats (SHR) 

SHR are an animal model for essential or primary hypertension in humans. Like 

hypertension in humans, hypertension in SHR also occurs gradually with age and the cause is not 

known. SHR have normal blood pressure when they are born, and their blood pressure increases 

during age 2-4 months. At the age of 6 months, the hypertension in SHR already sustains. The 

development of the SHR strain was begun in the 1950s by Okamoto and colleagues by breeding 

male Wistar-Kyoto rats (WKY) with mild hypertension (systolic pressure 145-175 mmHg) with 

female WKY with relatively high blood pressure (systolic pressure 130-140 mmHg). After 

selecting offspring who were hypertensive by repeatedly checking their blood pressure, Okamoto 
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and colleagues were able to establish a colony of rats developing hypertension and reported them 

as SHR in 1963 (24). In experiments, usually normotensive WKY serve as controls for SHR 

(66).  

Hypertension in SHR as well as in humans can also result in end-organ damage. Several 

studies have proposed that the cerebral changes in SHR are associated with vascular remodelling 

and endothelial dysfunction caused by hypertension (24;67;68). Peripheral resistance vessels in 

SHR as well as in hypertensive humans undergo vascular remodelling, that is structural changes 

in the vascular wall. These changes can be observed as narrowed lumen, decrease in number of 

microvessels, and greater malformation of the vessel (67). Reductions in the external diameter 

and increases in the media-to-lumen ratio of cerebral arterioles have been reported (23). An 

immunohistochemistry study on 12-weeks-old SHR found that the microvasculature in the 

cerebrum and striated muscle decreased in density (“rarefaction”) (69). Additionally, another 

study also found that cerebral arterioles from SHR undergo eutrophy and hypertrophy on the 

inner side. Blood vessels in the frontal cortex of 24-week-old SHR showed wall hypertrophy and 

luminal narrowing (70).  

 

2.4 Vertigoheel® 

Vertigoheel® is a low dose combination preparation containing Ambra grisea D6, 

Anamirta cocculus D4, Conium maculatum D3, and petroleum rectificatum D8, whereby D6, 

D4, D3, and D8 denote the potentiation of the various ingredients of the homeopathic 

preparation (19). Vertigoheel® has long been available over-the-counter in several countries with 

an established record of general use for vertigo treatment (71). It has been demonstrated that 

Vertigoheel® has the same efficacy as Ginkgo biloba. G. biloba itself is already registered as a 

drug in Germany and several other European countries and has been shown to have a superior 

efficacy and good tolerability compared with placebo in studies of vestibular and nonvestibular 

vertigo. In a double-blind, randomized, controlled study, Vertigoheel® was shown to have the 

same efficacy as Ginkgo biloba in reducing the severity, duration, and frequency of vertigo. In 

this study, 170 patients, ages 60–80 years, with atherosclerosis-related vertigo received treatment 

with Vertigoheel® or Ginkgo biloba. The result showed that Vertigoheel® is not inferior to 

Ginkgo biloba in improving vertigo. This study also showed excellent tolerability for 

Vertigoheel® by patients (72). A meta-analysis has also confirmed that Vertigoheel® has an 

effectiveness equal to other established anti-vertiginous drugs (71). 
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Despite the popularity of Vertigoheel®, the exact mechanism of this drug has not been 

conclusively studied. One of the causes of vertigo is disturbance of the microvascular perfusion 

in the inner ear or vertebrobasilar system (73). Thus there is a possibility that the improvement of 

vertigo in the patients of the study just mentioned is due to Vertigoheel® enhancing 

microvascular perfusion. This hypothesis is supported by the intra-vital microscopy study in 

vertigo patients that demonstrated increased perfusion in skin regarded as proxy to the inner ear. 

After 12 weeks of treatment, patients treated with Vertigoheel® showed an increased number of 

nodal points, increased flow rate of erythrocytes in arterioles and venules, increased vasomotion, 

and a slight reduction in local hematocrit compared to baseline. These changes in Vertigoheel® 

treated patients were not observed in the control group and the differences between the treatment 

and control groups were statistically significant. The microcirculatory changes were associated 

with a reduction in the severity of vertigo in the treated patients, both as assessed by the treating 

physician and as reported by the patients themselves (21).  

Based on the hypothesis that Vertigoheel® may exert beneficial vascular effects, Heinle et 

al. proposed that the vasorelaxant effect of Vertigoheel is produced by stimulating the adenylate 

and/-or guanylate cyclase pathways. In their in vitro study, they confirmed their hypothesis by 

demonstrating an inhibitory effect on PDE5 by Conium maculatum, one ingredient of 

Vertigoheel®. They also observed that increasing the dosage of Anamirta cocculus stimulated the 

activation of the adenylate cyclase. This effect was not seen with other ingredients of 

Vertigoheel®. Vertigoheel® also induced a significant vasorelaxant effect in isolated pre-

contracted rat carotid arteries in a vessel myography experiment (22). This finding confirmed the 

previous study of Vertigoheel®, which had also demonstrated a vasodilatory effect of 

Vertigoheel® (21). Combining the findings from these studies one may conclude that 

Vertigoheel® could have the general potential to protect the microcirculation. This opens the 

possibility that Vertigoheel® could be used to treat other diseases, besides vertigo, that are also 

caused by perfusion disturbances. 
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3 Materials and Methods 

3.1 Materials 

3.1.1 Experimental Animals 

Experiments were performed on 16 weeks old (body weight 350 ± 50 gr) SHR and 

WKY. They were obtained from Charles River (Charles River Laboratories, Research Models 

and Services GmbH, Freiburg, Germany). The animals were housed in standard cages in a 

temperature-controlled room (22-25°C) with a 12 h dark-light cycle. They received standard 

laboratory chow (Altromin, Lage, Germany) and water ad libitum.  

All animals received care in accordance with the Guide for the Care and Use of 

Laboratory animals. All procedures and protocols for animal experiments had been approved by 

the respective local authorities (Berliner Landesamt für Gesundheit und Soziales, project number 

G0446/09).  

 

3.1.2 Substances and Chemicals 

 

Table 1: Overview of substances and suppliers for skin microvascular assessment 

Substances Dosage Supplier 

Acetylcholine 2% Sigma-Aldrich, Taufkirchen, 

Germany 

Sodium Nitroprusside 2% Schwarz Pharma, Monheim am 

Rhein, Germany 

Vertigoheel® 0.2 ml/kg Biologische Heilmittel Heel GmbH, 

Baden-Baden, Germany 

 

Buffers and chemical solutions for Western Blot 

 Electrophoresis Buffer: Tris-Glycine SDS Buffer 

 Immunoblotting Buffer: Tris-Glycine containing 20% methanol 

 PBS Buffer: Phosphate-Buffered Saline containing NaCl 137 mM, KCl 2.7 mM, 

Na2HPO4 10 mM, KH2PO4 1.8 mM (pH 7.4). 

 PBST Buffer: Phosphate-Buffered Saline containing NaCl 137 mM, KCl 2.7 mM, 

Na2HPO4  10 mM, KH2PO4 1.8 mM and 0.2% Tween 20. 
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 Laemmli Buffer: containing 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% 

bromphenol blue, in 0.125 M Tris HCl. 

 Separating gel 8%: containing ProSieve 50 Gel solution (Lonza, Cologne, Germany) 3.2 

ml, 1.5 M Tris-HCL ph 8.8 5 ml, 10% SDS Solution 0.2 ml, 10% Ammonium Persulfate 

(APS) (Sigma-Aldrich, Taufkirchen, Germany) 200 µl, Temed (Sigma-Aldrich, 

Taufkirchen, Germany) 8 µl. 

 Collecting gel 5%: ProSieve 50 Gel solution 1 ml, 1 M Tris-HCL ph 6.8 1.3 ml, 10% 

SDS solution 100 µl, 10% APS 100 µl, and Temed 10 µl. 

 Extraction Buffer: 1 tablette protease inhibitor cocktail (complete, Mini Protease Inhibitor 

Cocktail, Basel, Switzerland), PBS Dulbecco (Biochrom GmbH, Berlin, Germany) 9.4 

ml, PMSF (Sigma.Aldrich, Taufkirchen, Germany) 100 µl, and Triton X (Sigma-Aldrich, 

Taufkirchen, Germany) 500 µl. 

 peqGold Prestained Protein-Marker VII (Peqlab, Erlangen, Germany) 

 

Antibodies 

Table 2: Overview of antibodies for Immunoblotting 

Primary Antibodies Dilution Secondary Antibodies Supplier 

Rabbit anti-rat eNOS 1:500 Goat anti-rabbit IgG  Santa Cruz 

Biotechnology, Dallas, 

Texas, United States 

Rabbit anti-rat PDE5A 1:2000 Goat anti-rabbit IgG Santa Cruz 

Biotechnology, Dallas, 

Texas, United States 

Rabbit anti-rat PDE4 1:1000 Goat anti-rabbit IgG Abcam 

Biotechnology, 

Cambridge, United 

Kingdom 

 

ELISA  

 Parameter cAMP assay kit KGE002B, R&D system, Minneapolis, Minnesota, United 

States 

 Parameter cGMP assay kit KGE003, R&D system, Minneapolis, Minnesota, United 

States 
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Equipment 

 Laser-Doppler Flowmetry Periflux PF3 from Perimed, Stockholm, Sweden 

 Laser-Doppler Flowmetry probe 408 from Perimed, Stockholm, Sweden 

 Laser-Doppler Flowmetry probe 308 from Perimed, Stockholm, Sweden 

 Double-sided adhesive discs from 3M health care, Neuss, Germany 

 Multitool Drill from Dremel 300 series, Breda, Netherland 

 Micromanipulator 

 Animal respirator advanced 4601-1 from TSE System GmbH, Bad Homburg, Germany 

 Gas mixture 5% CO2, 21% O2, rest N2 Linde, Munich, Germany 

 Transducer BD DTX PlusTM from Becton Dickinson critical care system, Singapore 

 Electrophoresis system Mini-PROTEAN® Tetra Cell for Mini Precast Gels from Bio-rad 

Laboratories GmbH, Munich, Germany 

 Blotting system Trans-Blot® SD Semi-Dry Transfer Cell, Bio-rad Laboratories GmbH, 

Munich, Germany 

 Homogenizer T10 basic Ultra Turrax, IKA GmbH, Staufen, Germany 

 

3.2 Methods 

 
Fig. 4: The steps of the experimental procedure  
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3.2.1 Skin Microvascular Reactivity Assessment 

Before the administration of Vertigoheel®, we assessed the skin microvascular function 

by measuring the cutaneous blood flow of the rats with laser-Doppler flowmetry (LDF) (Periflux 

PF3 Perimed, Stockholm, Sweden). To expose the skin, we shaved the hair from the back of the 

rats with an electric clipper (Moser, Unterkirnach, Germany) one day before the measurement. 

On the next day the animals were sedated with an intraperitoneal injection of Ketamine (0,12 

ml/100gr) (Ketavet, Pharmacia GmbH, Erlangen, Germany) and Xylazine (0,06 ml/100gr) 

(Bayer Vital GmbH, Leverkusen, Germany) and placed in a prone position on a heating pad. 

Body temperature was always maintained at 37 ± 0.5°C. The LDF probe (LDF probe 408 

Perimed, Stockholm, Sweden) was placed directly on the skin on the back of the rats. During 

positioning of the probe, areas with visible vessels were avoided and position was secured with 

adhesive tape (double-sided adhesive discs 3M Health Care, Neuss, Germany). As a baseline 

measurement, cutaneous blood flow was recorded for 5 minutes followed by 0.05 ml 

subcutaneous injection of 2% solutions of Acetylcholine (Sigma Aldrich, Taufkirchen, 

Germany) or Sodium Nitroprusside (Nipruss, Schwarz Pharma, Monheim am Rhein, Germany) 

with a 26 G needle (Braun Melsungen AG, Melsungen, Germany) exactly beneath the LDF 

probe. The cutaneous blood flow was recorded with Scope software (Scope version 2.2.0.30© 

2000 Data Translation Inc, Bietiheim-Bissingen, Germany) until the peak or a plateau had been 

reached. We performed the cutaneous blood flow measurement with acetylcholine (ACh) as 

endothelium dependent vasodilator and sodium nitroprusside (SNP), an NO donor, as 

endothelium independent vasodilator. Each ACh or SNP measurement was performed using the 

same procedure on either the left or right side of the back. ACh or SNP were dissolved in saline 

0.9% (Fresenius Kabi, Bad Homburg, Germany) to produce a 2% solution. Data was analyzed 

with Chart5 for Windows software (ADInstruments, Oxford, United Kingdom).  

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 5: Schematic diagram of the skin microvascular reactivity measurement 
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3.2.2 Vertigoheel® Administration 

The animals were divided into 4 groups: SHR treated with Vertigoheel® (Biologische 

Heilmittel Heel GmbH, Baden-Baden, Germany) (SHR-V n=16), SHR as controls (SHR-C 

 

 

B 

A 

Fig. 6: Examples of skin microvascular reactivity assessment by stimulation with either ACh (A, top) or SNP 

(B, bottom). Skin perfusion was measured by LDF.  
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n=15), WKY treated with Vertigoheel® (WKY-V n=16), and WKY as controls (WKY-C n=15). 

In the Vertigoheel® groups, the animals were treated with Vertigoheel® 3 times per week for 8 

weeks. The drug was injected intraperitoneally, and the dosage was 2ml/kg. In the control groups 

the animals received no special treatment or placebo.  

 

3.2.3 Cerebral Microvascular Reactivity Assessment 

After 8 weeks of therapy with Vertigoheel®, we repeated the cutaneous blood flow 

measurement using the same procedure. Then the animals were deeply anesthetized by 

intraperitoneal injection of an anesthetic mixture containing: Fentanyl (0.03 mg/100gr) (Janssen 

Cilag GmbH, Neuss, Germany), Medetomidine hydrochloride (Domitor vet, 0.01 mg/100gr) 

(Orion corp., Espoo, Finland), and Midazolam (0.5mg/100gr) (Ratiopharm GmbH, Ulm, 

Germany). The animals were tracheotomized and artificially ventilated (Animal Respirator 

Advanced 4601-1, TSE systems GmbH, Bad Homburg, Germany) with room air. The ventilator 

settings were adjusted until normal arterial blood gas values (pO2 90 to 105 mmHg; pCO2 30 to 

38 mmHg; pH 7.4) were obtained from the blood sample. Catheters were inserted into the left 

carotid artery and the left external jugular vein for the measurement of arterial blood pressure, 

blood gases, and pH and for the infusion of drugs, respectively. Body temperature was 

maintained at 37 ± 0.5°C with a heating pad. The animals were placed in the prone position. A 

closed cranial window technique was used, as previously described in detail (74). Briefly, the 

parietal skull was exposed via a midline incision, after removing the scalp, connective tissue, and 

muscle. A 3 mm diameter hole was drilled with a multitool drill (Dremel 300 series, Breda, 

Netherland) in the right anterior parietal bone, 4 mm lateral and 2 mm caudal to the bregma. 

During the drilling process the skull was continuously cooled with saline to prevent heat damage. 

Skull bleeding was controlled by the use of bone wax (Serag Wiessner, Germany). The skull was 

thinned to translucency. Bone that was already thin enough was removed with a forceps and the 

dura mater was exposed but left intact. The LDF probe (Probe 308, Perimed, Stockholm, 

Sweden) was positioned above the hole and lowered with a micromanipulator without touching 

the dura mater. It was positioned thus that visible larger pial vessels were avoided. Saline at 

37.5oC was instilled between the probe and the hole, to prevent drying of the dura mater and to 

improve the optic coupling of the LDF. Cerebral blood flow (CBF) was recorded for 5 minutes 

as baseline. After the baseline period a blood sample for blood gas analysis was drawn, 

respiratory hypercapnia was induced by streaming a gas mixture with 5% CO2 gas through the 

ventilator. CBF was recorded for 30 minutes, using Scope software (Scope version 2.2.0.30© 
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2000 Data Translation Inc, Bietiheim-Bissingen, Germany). When the CBF reached its peak, 

another blood sample was drawn for blood gas analysis. After the measurement of CBF, the 

animals were euthanized under anesthesia, and the brain was collected and immediately put in 

liquid nitrogen and stored at -80oC until measurements. Data was analyzed with Chart5 for 

windows software (ADInstruments, Oxford, United Kingdom). The CBF increase from 

normocapnia to hypercapnia was determined. The cerebral microvascular reactivity (CMVR) 

was calculated as the percent increase of normocapnic to hypercapnic CBF normalized by the 

change in pCO2. The cerebrovascular resistance (CVR) was calculated by mean arterial pressure 

divided by CBF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Schematic diagram of the cerebral blood flow measurement 
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3.2.4 Western Blot  

The Western blot method was used, as previously described in detail (75). Briefly, brain 

tissues were homogenised in a 1:1 (weight:volume) ratio of Extraction Buffer (1 tablet protease 

inhibitor cocktail complete (Roche, Basel, Switzerland), PBS 9.4 ml, 100 μl PMSF (Sigma-

Aldrich, Taufkirchen, Germany), 500 μl Triton X (Sigma-Aldrich, Taufkirchen, Germany)). The 

homogenate underwent a freeze-thaw cycle three times then centrifugation at 14,000 rpm for 10 

min at 4oC, and the supernatant was recovered. The supernatants were frozen in liquid nitrogen 

and stored at -80oC until used. Protein concentrations were measured with BCA protein assay 

(Pierce® BCA protein assay kit, Thermo Fisher Scientific GmbH, Darmstadt, Germany). 

Aliquots of the samples, containing equal amounts of proteins (100 µg for eNOS and PDE4D, 10 

µg for PDE5A), were suspended in reducing SDS-PAGE sample buffer and heated to 95 °C for 3 

minutes. Proteins were loaded to 8% SDS-PAGE gels and separations were carried out with an 

electrophoresis system (Bio-rad Laboratories GmbH, Munich, Germany). The gels were 

transferred with a semi-dry transfer system (Bio-rad Laboratories GmbH, Munich, Germany) to 

a nitrocellulose membrane (Protran BA83, GE Healthcare Life Sciences, Freiburg, Germany) 

 

 

 
Fig. 8: Example of CBF assessment measured by LDF during hypercapnia 
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and then blocked with 5% nonfat dry milk in PBST (Phosphate buffer saline and 0.1% Tween 

20) for 2 h. The membrane was then incubated overnight at 4oC with rabbit IgG polyclonal 

primary antibody at dilutions of 1:500 for eNOS (sc-8311, Santa Cruz Biotechnology, Dallas, 

Texas, United States), 1:2000 for PDE5A (sc 32884, Santa Cruz Biotechnology, Dallas, Texas, 

United States), and 1:1000 for PDE4 (ab 14628, Abcam Biotechnology, Cambridge, United 

Kingdom) subsequently washed with PBST 3 x 5 minutes. The membrane was then incubated 

with goat anti-rabbit IgG horseradish peroxidase-conjugated secondary antibody (1:10000 for 

eNOS, 1:20000 for PDE5A; sc 2004, and 1:20000 for PDE4; ab 97051) for 45 minutes. The 

membrane was developed using a chemiluminescent system (Amersham ECL plus™ Western 

Blotting Detection Reagent, GE Health Care Life Sciences, Freiburg, Germany) after being 

washed 5 x 5 minutes with PBST. The optical density for each band was scanned and quantified 

using ImageJ 1.48v (Wayne Rasband, National Institutes of Health, Bethesda, United States).  

 

3.2.5 ELISA  

 

Brain tissues were homogenized in a 1:1 (weight:volume) ratio of Extraction Buffer (1 tablet 

protease inhibitor cocktail complete (Roche, Basel, Switzerland), PBS 9,4 ml, 100 μl PMSF 

(Sigma-Aldrich, Taufkirchen, Germany), 500 μl Triton X (Sigma-Aldrich, Taufkirchen, 

Germany)). The homogenate underwent a freeze-thaw cycle three times followed by 

centrifugation at 14,000 rpm for 10 min at 4oC, and the supernatant was recovered. The 

supernatants were frozen in liquid nitrogen and stored at -80oC until used. Intracellular cAMP & 

cGMP levels were measured using a commercial ELISA kit (Parameter cAMP assay KGE002B, 

Parameter cGMP assay KGE003, R&D Systems, Minneapolis, Minnesota, United States) 

according to the manufacturer’s instructions. The samples were diluted 10 times for cAMP and 

used undiluted for cGMP. The results were calculated with Sigma Plot (Sigma Plot 11.0, Systat 

Software GmbH, Erkrath, Germany).  

 

3.2.6 Statistical Analyses 

 

 For assessment of skin microvascular reactivity, the fold increase between baseline and 

peak perfusion induced by drug application was evaluated. For the CBF increase assessment, the 

percent increase of CBF between baseline and peak induced by hypercapnia was used. Optical 

density data from Western blots were normalized to the GAPDH optical density as a loading 

control. Data were analyzed with Mann-Whitney U-test for comparison between two groups and 
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ANOVA on ranks followed by Dunn’s or Tukey’s tests for comparison among four groups 

(Sigma Plot 11.0, Systat Software GmbH, Erkrath, Germany). Correlations were analyzed by 

Spearman rank order test (Sigma Plot 11.0, Systat Software GmbH, Erkrath, Germany). Data are 

expressed as means ± SE. P-values less than 0.05 were considered to indicate statistically 

significant differences. 
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4 Results 

4.1 Skin Microvascular Reactivity Assessment 

The data obtained at the beginning of the study are summarized in table 3. The baseline 

body weights in all groups were ± 300 gr. To confirm the endothelial and vessel wall dysfunction 

in SHR, we assessed the reactivity of the skin microvascular response to ACh and SNP. All 

groups showed responses to ACh and SNP in the skin microvascular reactivity assessment. Yet, 

the response to both ACh and SNP in the SHR groups was significantly smaller than in the WKY 

groups (Fig. 9, 10). 

 

Table 3: Baseline general data 

 SHR-V 

(n=16) 

SHR-C 

(n=15) 

WKY-V  

(n=16) 

WKY-C  

(n=15) 

 

Body  

weight 

 

312.13 ± 2.41* 

 

 

324.53 ± 2.97§ 

 

358 ± 5.24 

 

 

365.93 ± 3 

     

Skin perfusion 

fold increase 

(ACh) 

 

3.7 ± 0.7* 

 

 

3.8 ± 0.3§ 5.5 ± 0.6 5.6 ± 0.7 

Skin perfusion 

fold increase 

(SNP) 

5.0 ± 0.7* 4.1 ± 0.4§ 8.0 ± 0.7 10.5 ± 3.3 

  

 

 

 

 

 

 

 

 

SHR-V, Spontaneously Hypertensive Rat Vertigoheel® treated group; SHR-C, Spontaneously Hypertensive Rat 

control group; WKY-V, Wistar- Kyoto Vertigoheel® treated group; WKY-C, Wistar-Kyoto control group; Ach, 

Acetylcholine; SNP, Sodium nitroprusside. Data are mean ± SE. *p<0.05 vs WKY-V, §p<0.05 vs WKY-C 
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A 

Fig.9: First skin microvascular assessment with Acetylcholine (ACh) stimulation before Vertigoheel® treatment. 

A. Representative examples of laser-Doppler flowmetry (LDF) 2% ACh stimulation. B. Quantification of LDF 

shows that skin perfusion increase is significantly reduced in Spontaneously Hypertensive Rats Control (SHR-

C) and Vertigoheel® (SHR-V) groups compared to Wistar Kyoto Rat Control (WKY-C) and Vertigoheel® 

(WKY-V) groups. (n=15 SHR-V, n=15 SHR-C, n=16 WKY-V, n=15 WKY-C. *p˂0.05 vs WKY-C, **p˂0.005 

vs WKY-V). 
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A 

B 

Fig. 10: First skin microvascular assessment with Sodium Nitroprusside (SNP) stimulation before Vertigoheel® 

treatment. A. Representative examples of laser-Doppler flowmetry (LDF) with 2% SNP stimulation. B. 

Quantification of LDF shows that skin perfusion is significantly reduced in Spontaneously Hypertensive Rats 

Control (SHR-C) and Vertigoheel® (SHR-V) groups compared to Wistar Kyoto Rat Control (WKY-C) and 

Vertigoheel® (WKY-V) groups. (n=15 WKY-C, n=16 WKY-V, n=15 SHR-C, n=15 SHR-V. **p˂0.005 vs 

WKY-V, ***p˂0.001 vs WKY-C). 
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After 8 weeks of treatment with Vertigoheel® we reassessed the baseline data as 

summarized in table 4. The body weight of the WKY groups at the end of the experiment was 

significantly higher compared to SHR groups. In the skin microvascular reactivity assessment, 

we observed that there was no significant difference found between SHR and WKY or either 

between SHR-V and SHR-C or WKY-V and WKY-C in response to ACh (Fig. 11). However, 

we observed a higher response of SNP induced skin microvascular vasodilation in WKY-V 

compared to WKY-C which was not seen between SHR-V and SHR-C (Fig. 12).  

 

Table 4: General data after 8 weeks treatment procedure  

 SHR-V 

(n=16) 

SHR-C 

(n=15) 

WKY-V 

 (n=16) 

WKY-C 

(n=15) 

 

Body 

weight 

 

368.5 ± 3.84* 

 

378.4  ± 4.26§ 

 

441.81±6.84 

 

435.8 ± 4.31 

Skin perfusion 

fold increase 

(Ach) 

4.1 ± 0.4 4.8 ± 0.6 4.4 ± 0.5 5.3 ± 0.7 

Skin perfusion 

fold increase 

(SNP) 

5.5 ± 0.4* 7.0 ± 0.7 8.5 ± 0.7 6.6 ± 0.6 

 

 

 

 

 

 

 

 

 

 

 

SHR-V, Spontaneously Hypertensive Rat Vertigoheel® treated group; SHR-C, Spontaneously Hypertensive Rat 

control group; WKY-V, Wistar- Kyoto Vertigoheel® treated group; WKY-C, Wistar-Kyoto control group; Ach, 

Acetylcholine; SNP, Sodium nitroprusside. Data are mean ± SE. *p <0.05 vs WKY-V, §p <0.05 vs WKY-C. 
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Fig. 11: Second skin microvascular assessment with Acetylcholine (ACh) stimulation after 8 weeks Vertigoheel® 

treatment. A. Representative examples of laser-Doppler flowmetry (LDF) with 2% ACh stimulation. B. 

Quantification of LDF shows no significant differences in skin perfusion responses of Wistar Kyoto Rats Control 

(WKY-C), Wistar Kyoto Rats Vertigoheel® treated (WKY-V), Spontaneously Hypertensive Rats Control (SHR-

C), or  Spontaneously Hypertensive Rats Vertigoheel® treated (SHR-V) groups. (n=15 SHR-V, n=15 SHR-C, 

n=16 WKY-V, n=15 WKY-C).  

 

 

A 

B 
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Fig. 12: Second skin microvascular assessment with Sodium Nitroprusside (SNP) stimulation after 8 weeks 

Vertigoheel® treatment. A. Representative examples of laser-Doppler flowmetry (LDF) with 2% SNP stimulation. B. 

Quantification of LDF shows no significant difference in skin perfusion between Spontaneously Hypertensive Rats 

Control (SHR-C) and Spontaneously Hypertensive Rats Vertigoheel® treated (SHR-V) group. Wistar Kyoto Rats 

Vertigoheel® treated (WKY-V) group shows moderately increased perfusion response compared to Wistar Kyoto 

Rats Control (WKY-C) group and Spontaneously Hypertensive Rats Vertigoheel® treated (SHR-V) group. (n=15 

SHR-V, n=15 SHR-C, n=16 WKY-V, n=15 WKY-C). *p˂0.05 vs SHR-V  
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4.2 Cerebral Microvascular Reactivity Assessment 

To assess the effect of Vertigoheel® on the cerebral microvascular function, we measured 

the CMVR to hypercapnia with LDF. Hypercapnia-induced cerebral microvascular vasodilation 

increased cerebral microvascular perfusion in all groups (Fig. 13). Increase in cerebral 

microvascular perfusion typically occurred after 15 minutes of mild hypercapnic ventilation. In 

the WKY groups and the SHR-V group the peak perfusion increase was about 50% compared to 

baseline. Interestingly, the increase of cerebral microvascular perfusion in the SHR-C group was 

only 20% compared to baseline. The increase in cerebral microvascular perfusion in SHR-V was 

significantly greater compared to SHR-C. There was no significance difference between WKY-

V and WKY-C (Fig. 14). 
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Fig. 13: Representative picture from cerebral microvascular reactivity assessment with mild hypercapnia 

stimulation measured by laser-Doppler flowmetry (LDF) in perfusion unit (PU) after 8 weeks Vertigoheel® 

treatment. 
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Table 5 shows the parameters that were assessed in cerebral microvascular reactivity 

assessment and the absolute numbers of CBF in perfusion units. Under normocapnia condition 

the pH was 7.39±0.02 – 7.40±0.02. This pH condition was decreased to 7.22±0.01 – 7.23±0.02 

following the mild hypercapnia ventilation. Under normocapnia condition, the pCO2 was 

34.6±1.5 – 38.3±0.7 and it was increased to 57.2±2.3 – 65.5±2.1 when the ventilation changed 

into mild hypercapnia. The pO2 in normocapnia and mild hypercapnia condition was relatively 

stable. The pO2 was 90±4 - 107±7 and 92±5 - 117±9 under normocapnia and mild hypercapnia 

condition, respectively. The MAP and cerebrovascular resistance index (RI) in SHR-C were 

significantly higher compared to WKY-C in normocapnia and hypercapnia condition suggesting 

higher baseline blood pressure and increases peripheral resistance in SHR. Interestingly, the 

percent increase of CBF was significantly lower in SHR-C compared to SHR-V. Furthermore, 

the CMVR response to hypercapnia in SHR-C was significantly lower compared to SHR-V and 

WKY-C. 
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 Fig. 14: Quantification of LDF shows that cerebral perfusion response to hypercapnia is significantly reduced in 

Spontaneously Hypertensive Rats Control (SHR-C) compared to the Spontaneously Hypertensive Rats 

Vertigoheel® treated (SHR-V) group. (n=13 SHR-V, n=11 SHR-C, n=9 WKY-V, n=14 WKY-C. *p˂0.05 vs 

SHR-V). 
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Table 5: Cerebral microvascular reactivity parameter 

  SHR-V 

(n=13) 

SHR-C 

(n=11) 

WKY-V 

(n=9) 

WKY-C 

(n=14) 

pH Normocapnia 7.40 ± 0.02 7.40 ± 0.01 7.38 ± 0.01 7.39 ± 0.02 

Hypercapnia 7.23 ± 0.02 7.22 ± 0.01 7.23 ± 0.02 7.22 ± 0.01 

pCO2 

[mmHg] 

Normocapnia 38 ± 1 38 ± 1 35 ± 1 35 ± 2 

Hypercapnia 61 ± 2 66 ± 2 57 ± 2 57 ± 2 

pO2 

[mmHg] 

Normocapnia 93 ± 4 107 ± 7 100 ± 6 90 ± 4 

Hypercapnia 101 ± 5 117 ± 9 104 ± 8 92 ± 5 

MAP 

[mmHg] 

Normocapnia 92 ± 7 107 ± 7§ 70 ± 7 51 ± 2 

Hypercapnia 91 ± 8 89 ± 3§ 72 ± 7 60 ± 4 

RI Normocapnia 0.6± 0.06 0.7± 0.08§ 0.5± 0.08 0.3± 0.02 

Hypercapnia 0.4± 0.03 0.4± 0.05§ 0.3± 0.03 0.3± 0.02 

CBF 

[PU] 

Normocapnia 158 ± 12 176 ± 17 165 ± 14 160 ± 11 

Hypercapnia 241 ± 15 221 ± 21 237 ± 20 226 ± 15 

Difference 
     

Delta % CBF  60 ± 13 27 ± 8* 48 ± 16 44 ± 8 

Delta pCO2  23 ± 2 27 ± 2 22 ± 2 23 ± 1 

CMVR 

(%/mmHg) 

 2.8 ± 0.6 1.0 ± 0.3*§ 2.0 ± 1 2.2 ± 0.4 

SHR-V= Spontaneously Hypertensive Rats Vertigoheel® treated group; SHR-C= Spontaneously 

Hypertensive Rats control group; WKY-V= Wistar-Kyoto Vertigoheel® treated group; WKY-C= Wistar-

Kyoto control group; pH= Activity of Hydrogen ion; pO2= arterial oxygen tension; pCO2= arterial carbon 

dioxyde tension; MAP= mean arterial pressure; CBF= cerebral blood flow in perfusion units; RI= 

cerebrovascular resistance index, CMVR= cerebral microvascular reactivity.*p<0.05 vs SHR-V, §p<0.05 vs 

WKY-C. 
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4.3 Western Blot 

To investigate the putative mechanism by which Vertigoheel® may increase CMVR, the 

expression of eNOS, PDE5, and PDE4 in tissue homogenate was determined. The Western blot 

results in this study showed downregulation of eNOS protein expression in cerebral tissue in 

SHR-C compared to WKY-C. After 8 weeks of Vertigoheel® treatment, eNOS protein 

expression showed significant upregulation in SHR-V compared to SHR-C. The level of eNOS 

protein expression in SHR-V was almost the same as in WKY-V and WKY-C. There was no 

significant difference between WKY-C and WKY-V (Fig. 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 15: Effect of Vertigoheel® on eNOS expression. A. Representative blot from eNOS in cerebral homogenate 

from Spontaneously Hypertensive Rats Vertigoheel® treated (SHR-V) (n=3), Spontaneously Hypertensive Rats 

control (SHR-C) (n=3), Wistar Kyoto Rats Vertigoheel® treated (WKY-V) (n=3) and Wistar Kyoto Rats control 

group (WKY-C) (n=3). The molecular mass of eNOS is approximately 130 kDa. GAPDH as protein loading 

control showed equal protein loading. The molecular mass of GAPDH is approximately 37 kDa. B. Ponceau 

protein stain of the transfer membrane showed equal protein loading. C. Quantification of Western blot by 

normalizing eNOS with GAPDH optical density showed that eNOS expression in SHR-C was significantly 

lower compared to SHR-V and WKY-C. No significant difference in SHR-V compared to WKY-V and WKY-

C. Data in mean ± SEM. (n=6 SHR-V, n=6 SHR-C, n=6 WKY-V, n=6 WKY-C. *p˂0.05 vs SHR-V and WKY-

C). 
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Western blot expression for PDE5 showed no significance difference between SHR-V 

and SHR-C. There was also no significance difference between WKY-V and WKY-C (Fig. 16).  
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Fig. 16: Effect of Vertigoheel® on PDE5 expression. A. Representative blot from PDE5A in cerebral homogenate 

from Spontaneously Hypertensive Rats Vertigoheel® treated (SHR-V) (n=3), Spontaneously Hypertensive Rats 

control (SHR-C) (n=3), Wistar Kyoto Rats Vertigoheel® treated (WKY-V) (n=3) and Wistar Kyoto Rats control 

group (WKY-C) (n=3). The molecular mass of PDE5A is approximately 100 kDa. GAPDH as protein loading control 

showed equal protein loading. The molecular mass of GAPDH is approximately 37 kDa. B. Ponceau protein stain of 

the transfer membrane showed equal protein loading. C. Quantification of Western blot by normalizing PDE5A with 

GAPDH optical density showed no significant difference in PDE5A expression among groups. Data in mean ± SEM. 

(n=6 SHR-V, n=6 SHR-C, n=6 WKY-V, n=6 WKY-C). 
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Besides eNOS and PDE5, we also examined cerebral PDE4 expression with Western 

blotting. Cerebral PDE4 expression showed no significant difference between SHR-C and SHR-

V. There was no significant difference between WKY-V and WKY-C (Fig. 17). 
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Fig. 17: Effect of Vertigoheel® on PDE4 expression. A. Representative blot from PDE4D in cerebral 

homogenate from Spontaneously Hypertensive Rats Vertigoheel® treated (SHR-V) (n=3), Spontaneously 

Hypertensive Rats control (SHR-C) (n=3), Wistar Kyoto Rats Vertigoheel® treated (WKY-V) (n=3) and Wistar 

Kyoto Rats control group (WKY-C) (n=3). The molecular mass of PDE4D is approximately 70 kDa. GAPDH as 

protein loading control showed equal protein loading. The molecular mass of GAPDH is approximately 37 kDa. 

B. Ponceau protein stain of the transfer membrane showed equal protein loading. C. Quantification of Western 

blot by normalizing PDE4D with GAPDH optical density showed no significant difference in PDE4D 

expression among groups. Data in mean ± SEM. (n=6 SHR-V, n=6 SHR-C, n=6 WKY-V, n=6 WKY-C). 
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4.4 ELISA  

cAMP and cGMP play a major role as smooth muscle cell second messengers in 

vasodilatory mechanisms. We, therefore, assessed the cAMP and cGMP concentrations in 

cerebral tissue homogenates with ELISA. Table 6 shows absolute cerebral cAMP and cGMP 

concentrations. Regarding cAMP, there was no significant difference between SHR-V and SHR-

C or between WKY-C and WKY-V. cAMP concentration was significantly higher in WKY-C 

compared to SHR-C.  

Regarding cGMP, there was no significant difference between SHR-V and SHR-C. No 

significant difference was also observed in WKY-C compared with WKY-V. A significantly 

higher cerebral cGMP concentration was observed in WKY-V compared to SHR-V. There was 

no significant difference between WKY-C and SHR-C. 

 

Table 6: ELISA cerebral cAMP and cGMP levels 

    
SHR-V 

(n=13) 

SHR-C 

(n=11) 

WKY-V 

(n=9) 

WKY-C 

(n=14) 

cAMP  
pmol/g 

tissue 

 

 
370±55 452±77§ 528±76 742±198 

cGMP  
pmol/g 

tissue 

 

 
67±10* 88±15 112±16 95±19 

 

 

 

 

eNOS plays role in vasodilatory mechanisms. The downstream pathway from eNOS 

involves cGMP as a second messenger in vascular smooth muscle cells. In addition to cGMP, 

cAMP also plays role in vascular smooth muscle relaxation. Furthermore, cGMP and cAMP are 

degraded by PDE5 and PDE4, respectively. We, therefore, tried to correlate the results from 

eNOS and PDE5 with cGMP and of PDE4 with cAMP. In our study we observed no correlation 

between cGMP concentrations and eNOS expression (Fig. 18). There was also no correlation 

found between cGMP concentrations and PDE5 expression (Fig. 19) or between cAMP 

concentrations and PDE4 expression (Fig. 20). 

 

SHR-V= Spontaneously hypertensive rats Vertigoheel® treated group; SHR-C= Spontaneously hypertensive rats 

control group; WKY-V= Wistar Kyoto Vertigoheel® treated group; WKY-C= Wistar kyoto control group. cAMP 

and cGMP  concentrations in pmol/ g tissue. Data is in mean ± SEM. §p˂0.05 vs WKY-C. * p˂0.05 vs WKY-V 
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Fig. 19: Correlation of phosphodiesterase 5 (PDE5) and cyclic guanosine monophosphate (cGMP). 

No correlation between phosphodiesterase 5A (PDE5A) expressions and cGMP concentrations in 

cerebral homogenates.  
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Fig. 18: Correlation of endothelial nitric oxide synthase (eNOS) and cyclic guanosine monophosphate 

(cGMP). No correlation between endothelial nitric oxide synthase (eNOS) expression and cGMP 

concentration in cerebral homogenate.  
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Fig. 20: Correlation of phosphodiesterase 4 (PDE4) and cyclic adenosine monophosphate (cAMP). 

No correlation between phosphodiesterase 4 (PDE4) expressions and cAMP concentration in 

cerebral homogenate.  
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5. Discussion 

5.1 Discussion of Methods 

In the beginning, a causal relationship between hypertension and endothelial dysfunction 

has been assumed (76). On the other side, there are also several studies that hypothesized that the 

endothelial dysfunction precedes the development of hypertension (23). Another theory pointed 

out that the relationship between hypertension and endothelial dysfunction is not a cause and 

effect relationship but a cyclical one (76). At the bottom line, basic and clinical studies 

demonstrated a consistent association between essential hypertension, a major risk for vascular 

dementia, and endothelial cells disturbance (76-79). Several methods to measure the endothelial 

dysfunction are quantitative angiography, venous occlusion plethysmography, micromyography, 

brachial ultra-sound during reactive hyperemia assessing flow-mediated dilation (FMD), 

peripheral artery tonometry, or LDF (76). In our study we used LDF in rat skin and brain to 

assess the microvascular responsiveness to ACh, SNP, or hypercapnia, respectively. LDF is a 

technique to assess microvascular blood flow that can continuously monitor the microcirculation 

in various tissue types and organs in real-time. When used on skin, LDF evaluates blood flow in 

capillaries that are close to the  surface and the flow in the underlying arterioles and venules 

involved in the regulation of tissue temperature (80). When LDF is used for assessing the 

microcirculation of inner organs, surgical preparation is necessary to expose the organ surface. 

The measuring principle of LDF relies on the Doppler phenomenon. When a laser beam 

with at certain wavelength is directed onto the surface of skin or exposed organ tissue, a fraction 

of the light penetrates through the skin and is reflected by both static and moving cells (i.e red 

blood cells). Reflection by a moving red blood cells results in a wavelength or frequency shift 

(the Doppler shift) while light scattered by stationary cells remains unshifted. The backscattered 

light is transmitted back into the instrument and is transformed into an analog signal by 

photomultipliers. Analysis of the backscattered light yields the frequency of the Doppler shift, 

which is proportional to the red cell velocity. The percentage of light energy presenting with 

such a Doppler shift represents the number of moving red blood cells from which light has been 

reflected. The output of the LDF is referred to as “perfusion flux” which is proportional to the 

product of the number of moving blood cells times the mean velocity (81).  
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Fig. 21: Schematic diagram of the measurement principle of laser-Doppler flowmetry (82) 

 

In our study, we combined the LDF technique with the SHR as an animal model for 

cerebral microvascular disturbance. Besides SHR, other animal models for vascular dementia 

usually involve vessel occlusion, stenosis, or embolization, for example bilateral carotid artery 

occlusion or embolic intracerebral artery occlusion (83). Compared to these models, the SHR has 

several advantages. One advantage is that SHR is the rat strain that has been investigated most 

extensively including assessment of hypertensive cerebral end organ damage and treatment of it. 

This allows us to compare the results of the present study with previous studies (84). Another 

advantage of using this animal model for studying vascular cerebral disease is the continuous 

development of hypertension in SHR. The SHR are born with normal blood pressure and 

gradually develop hypertension. At the age of 6 months they have a sustained hypertension. The 

course of this development is similar with essential hypertension in humans, which is the major 

risk factor for vascular dementia in the later life (18). Moreover, like the hypertension in 

humans, hypertension in SHR involves global microvascular disturbance throughout the body 

(67;85). Based on this phenomenon, microvascular measurement in any tissue may be used to 

assess microvascular disturbance or endothelial dysfunction related with hypertension. In our 

experiment we used the skin because it was easily accessible for non-invasive measurements of 

endothelial or generalized microvascular dysfunction related to the hypertension of SHR.  

 

5.2 Discussion of Results 

In the present study we demonstrated the effect of Vertigoheel® on cerebral 

microvascular perfusion of SHR. The main finding of this study is that Vertigoheel® can increase 

cerebral microvascular perfusion response to a physiological vasodilatory stimulus in SHR. The 
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increase in cerebral microvascular perfusion response in this group might be related to an 

increased expression of eNOS compared to the SHR untreated group.  

 

5.2.1 Skin Microvascular Reactivity Assessment 

 To confirm the endothelial dysfunction related with essential in hypertension in SHR, we 

measured the baseline endothelial function in SHR and WKY rats. At the baseline LDF 

assessment, the skin microvascular perfusion in SHR with a smaller vasodilatory response to 

ACh and SNP compared to WKY, the normotensive control group. This result confirmed the 

presence of microvascular dysfunction in SHR at the age of 16 weeks, probably due to chronic 

hypertension. Microvascular dysfunction in this study affected not only the endothelium but also 

vascular smooth muscle because it was evident not only after stimulation with the endothelium 

dependent vasodilator ACh but also after stimulation with the endothelium independent 

vasodilator SNP. In other studies microvascular dysfunction in SHR was only demonstrated after 

administration of ACh but not SNP (86-89). On the other hand, several studies have 

demonstrated disturbance of microvascular perfusion in SHR in response to both, ACh and SNP 

(90-93). These conflicting results could be the caused by differences in the progression or 

duration of hypertension due to the use of differently aged experimental animals. In the present 

study, progression and duration of hypertension in SHR already affected vascular smooth muscle 

function during baseline measurements.  

After 8 weeks of treatment with Vertigoheel®, the assessment of skin microvascular 

perfusion with LDF was repeated, but no improvement in skin microvascular perfusion response 

was seen in SHR-V compared to SHR-C after stimulation with either ACh or SNP. Interestingly, 

the difference of ACh stimulated skin microvascular reactivity between the SHR and WKY 

groups that had been observed during baseline measurements was no longer present in the 

second measurement. In another study, aging was shown to attenuate the vascular relaxation 

response to ACh in WKY (94). Thus, we might conclude that in the present study aging of the 

WKY group already started to attenuate the endothelium dependent microvascular response to 

ACh during the second assessment of skin microvascular reactivity. Taken together we propose 

that Vertigoheel® was not able to reverse the skin microvascular dysfunction that had already 

been present during baseline measurements in SHR, nor was it able to prevent the aging related 

development of endothelial dysfunction in WKY. However, skin perfusion response to the 

endothelium independent vasodilator SNP was stronger in Vertigoheel® treated WKY-V than in 
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untreated WKY-C. This suggests that aging related deterioration of vascular smooth muscle 

function in WKY was prevented or at least delayed by Vertigoheel® treatment. 

 

5.2.2 Cerebral Microvascular Reactivity Assessment 

  Cerebral microvascular perfusion showed no significant difference among groups at 

baseline during normocapnic ventilation. Mild hypercapnia induced a marked perfusion increase 

in all groups. Increase in cerebral microvascular perfusion occurred about 15 minutes after onset 

of mild hypercapnia. Interestingly, the vasodilatory response was significantly greater in the 

SHR-V group than in SHR-C (p <0, 05). The vasodilatory response to mild hypercapnia in SHR-

V was not significantly different from that in WKY-V and WKY-C. On the other hand, the 

vasodilatory response was smaller in SHR-C compared to WKY-V and WKY-C. This is 

consistent with previous angiographic and MRI studies which have demonstrated a reduced 

cerebrovascular response to hypercapnia in SHR (95). Taken together with the present findings, 

we conclude that Vertigoheel® administration for 8 weeks restored the ameliorated 

cerebrovascular reactivity in SHR-V to the same level as in healthy WKY. This finding is also 

consistent with previous studies that have demonstrated a vasorelaxant effect and increased 

perfusion after Vertigoheel® administration isolated arteries and in humans, respectively (21;22).  

 

5.2.3 Western blot and ELISA 

To determine the mechanisms involved in the improvement of cerebral microvascular 

perfusion by Vertigoheel® in SHR, we also performed biochemical analysis: Western blotting 

and enzymatic assays with ELISA. A previous study showed that Vertigoheel® can induce 

vasorelaxation in isolated rat carotid arteries. This was associated with increased activities of 

adenylate and guanylate cyclases. In addition, administration of Vertigoheel® increased NO 

production in cultured endothelial cells (22). These results indicate that Vertigoheel® induces 

vasodilation involving endothelium mediated mechanisms, namely the NO/cGMP and the 

PGI2/cAMP pathways. We tried to assess involvement of these pathways in the Vertigoheel® 

induced improvement of cerebral microvascular reactivity by assessing eNOS, PDE5, and PDE4 

expression with Western blot and cAMP and cGMP tissue concentrations with ELISA.  
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5.2.3.1 eNOS 

In Western blot assessment, eNOS expression was significantly higher in SHR-V 

compared with SHR-C, but similar to that in both, WKY-V and WKY-C. Also, eNOS expression 

was lower in SHR-C than in WKY-C. This finding is in line with previous studies that showed 

lower expression of eNOS in cerebral microvessels of SHR compared to WKY rats (96). In 

addition, exaggerated production of the superoxide anion (•O2
-) in the SHR vasculature has been 

demonstrated. NO can be scavenged by •O2
- to form peroxynitrite which reduces the 

bioavailability of endothelium derived NO. Thus, diminished NO has been linked to decreased 

eNOS expression and increased •O2- in hypertension and may lead to arterial dysfunction (97). 

After 8 weeks of Vertigoheel® treatment, eNOS expression in SHR-V was normalised to the 

level of healthy WKY rats. This finding suggests that eNOS was either up-regulated in SHR by 

Vertigoheel® treatment or Vertigoheel® prevented downregulation of eNOS during the treatment 

period. Anamirta cocculus and Conium maculatum are two ingredients of Vertigoheel® that have 

been shown to have antioxidant effects (98). Previous studies have shown that antioxidant 

therapy has beneficial effects on endothelial function. Thus, application of vitamin C and E, 

which are well known to have antioxidant effects, improved endothelial function in essential 

hypertension, hyperlipidemia, and coronary heart disease patients (99-101). The underlying 

mechanism may be scavenging of ROS by the antioxidants which would increase bioavailability 

of NO (102). Increased NO bioavailability is associated with increased eNOS expression and 

overall improvement of endothelial function (103).  

In this study, vasodilation in the cerebral microvasculature was induced by hypercapnia. 

Hypercapnia is one of the most potent vasodilating stimuli in the cerebral circulation of 

mammals. Several in vivo studies have suggested that vasodilation in response to increased 

pCO2 may be mediated, at least in part, by NO (104-106). Animal experiment studies have 

suggested that in the brain NO can be produced by endothelial cells, astrocytes and neurons (38). 

These cells form the components of the neurovascular unit that controls cerebrovascular 

metabolic regulation (107). Cerebrovascular reactivity in response to CO2 is impaired in diabetic 

or hypertensive patients with endothelial dysfunction (104), suggesting an important role for 

endothelial cells in modulating the CBF response to CO2 (107). In experimental animals, 

light/dye endothelial injury inhibited the hypercapnia induced cerebrovascular dilatation in 

anesthetized juvenile pigs, which was additionally sensitive to the eNOS inhibitor L-NAME and 

to soluble guanylate cyclase inhibition, indicating that endothelial NO may participate 

significantly in the hypercapnia induced vasodilatation (38). Based on these findings we propose 
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that the stronger hypercapnia induced cerebral microvascular vasodilatory response in SHR-V 

compared to SHR-C might be related to increase NO bioavailability and eNOS expression in 

SHR-V, possibly mediated by antioxidant properties of Vertigoheel®. This conclusion is 

consistent with observations of increased eNOS expression in SHR after antioxidant treatment 

(97;108). One of the ingredients of Vertigoheel, Anamirta cocculus, has also been shown to have 

antioxidant effect in vivo (109). Moreover, Anamirta cocculus contains quartenary alkaloids such 

as berberine (98;110), palmatine (111), or magnoflorine (112) which have also been shown to 

have antioxidant properties. Taken together, the present findings demonstrate that Vertigoheel® 

increases eNOS expression in SHR which might be mediated by antioxidant properties of 

Vertigoheel®. 

 

5.2.3.2 PDE5 

The NO-cGMP vasodilatory pathway in vascular smooth muscle cells involves PDE5. 

PDE5 participates in smooth muscle tone regulation by selectively hydrolysing the second 

messenger cGMP to inactive GMP (65). PDE5 inhibition has been shown to enhance the 

vasodilatory effect of NO (113). The present results show that the increased eNOS expression in 

SHR-V was not associated with a significant alteration in PDE5 expression. The expression of 

PDE5 showed no significant difference in SHR-V compared with SHR-C. There was also no 

significant difference of PDE5 expression between the WKY-V and WKY-C groups. This 

finding is in contrast with a previous in vitro study that has observed an inhibitory effect of 

Conium maculatum, one ingredient of Vertigoheel®, on PDE5 expression (22). This discrepancy 

might be explained by the higher dosage used in the previous in vitro study.  

 

5.2.3.3 PDE4 

Another mechanism involved in hypercapnia induced cerebral vascular vasodilation is 

mediated by the PGI2/cAMP pathway (52). In vascular smooth muscle cells PDE4 specifically 

degrades the second messenger cAMP to inactive AMP (7;114). PDE4 inhibition has been 

shown to increase intracellular cAMP levels and induce vasodilation (115). However, in our 

study we found that Vertigoheel® has no effect on PDE4. There is no significant difference on 

PDE4 expression either between SHR-V and SHR-C group or WKY-V and WKY-C group.  
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5.2.3.4 cAMP and cGMP 

In several vasodilatory signalling pathways cAMP and cGMP act as second messengers 

to mediate relaxation in vascular smooth muscle cells (116). cAMP is synthesized from 

adenosine triphosphate (ATP) by adenylate cyclase (30;38;50;55) and cGMP is synthesized from 

guanosine triphosphate (GTP) by guanylate cyclase (59). The concentrations of cAMP and 

cGMP in smooth muscle cells are controlled not only by the synthesis rates but also by their 

degradation by phosphodiesterases. Some phosphodiesterases can degrade both, cAMP and 

cGMP but PDE4 specifically degrades cAMP, while PDE5 is specific for cGMP (30). Previous 

in vitro study showed that Vertigoheel® stimulated adenylate cyclase activity which was 

replicated with corresponding concentrations of its ingredient Anamirta cocculus. In addition, the 

Vertigoheel® ingredient Conium maculatum dose dependently inhibited PDE5 activity (22). 

While we observed significant differences of eNOS expression between SHR-V and SHR-C, this 

is not associated with corresponding differences in cGMP concentrations. This is also reflected 

by the lack of significant correlations of cGMP with the enzyme expressions. The reasons for 

this discrepancy remain unknown. We can only speculate that in the case of cGMP, endothelial 

eNOS activity is also regulated by posttranslational mechanisms which are not reflected by 

protein expression. Also, the cGMP concentrations were very low, often close to the limit of 

detection of the ELISA test kit. According to general experience measurement errors may be 

particularly large in this low concentration range.  
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6. Conclusion 

In conclusion, we demonstrated that Vertigoheel® can increase cerebral microvascular 

perfusion in SHR. We propose that the mechanisms involved in this effect are associated with 

increased eNOS expression. Further studies should aim at investigating the putative antioxidant 

mechanisms of Vertigoheel® such as effects on NADPH or ROS activities, or on histological 

assessment of the cerebral microvasculature to study microvascular remodelling. 
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