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Abstract
The resource theory of quantum coherence studies the off-diagonal elements of a densitymatrix in a
distinguished basis, whereas the resource theory of purity studies all deviations from themaximally
mixed state.We establish a direct connection between the two resource theories, by identifying purity
as themaximal coherencewhich is achievable by unitary operations. The states that saturate this
maximum identify a universal family ofmaximally coherentmixed states. These states are optimal
resources undermaximally incoherent operations, and thus independent of theway coherence is
quantified. For all distance-based coherence quantifiers themaximal coherence can be evaluated
exactly, and is shown to coincide with the corresponding distance-based purity quantifier.We further
show that purity bounds themaximal amount of entanglement and discord that can be generated by
unitary operations, thus demonstrating that purity is themost elementary resource for quantum
information processing.

1. Introduction

Anumber of different quantum features are considered as important resources for applications of quantum
information theory. Entanglement [1–4], quantumdiscord [5–10], and quantum coherence [11–16] have been
identified as necessary ingredients for the successful implementation of tasks, such as quantum cryptography
[17], quantumalgorithms [17, 18] and quantummetrology [19–23]. Quantum resources can be formally
classified in the framework of resource theories [24, 25], where the state space is divided into free states and
resource states.Moreover, a set of free operations, which cannot turn a free state into a resource state, is
identified9. The possibility of conversion between two resource states via free operations is a central issuewithin
a resource theory, as it introduces a natural order of the resource states. A suitablemeasure for the resourcemust
be non-increasing under free operations. Equippedwith suitablemeasures, one is able to quantify the resource
in any given quantum state.

States thatmaximize suchmeasures are called extremal resource states10. Every quantum state can then be
characterized by theminimal rate of extremal resource states needed to create it (resource cost), or themaximal
rate for creating an extremal resource state from it (distillable resource), using the free operations11. A number of
different resource theories have been developed in the context of quantum information theory [24, 25],
prominent examples being entanglement [1–4] and coherence [11–16].
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Throughout this paper, a quantumoperation (or just ‘operation’) is used as a synonym for a completely positive trace-preservingmap.

10
Here, the term ‘extremal’ is not synonymous to extremal elements of convex sets.
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This has to be understood in the asymptotic setting, where ‘rate’means the asymptotic fraction of required (distilled) resource states per

copy of the desired (given) quantum state ρ.Widely used examples for such asymptotic rates are entanglement cost and distillable
entanglement, we refer to [3] for their formal definition.
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While the concept of coherence is basis-dependent by its very definition, both entanglement and quantum
discord are locally basis-independent. However, entanglement and discord usually change if a global unitary is
applied. It is clear, however, that the unitary activation of these resourcesmust be limited in terms of some basis-
independent quantity of the initial quantum state. Aswewill show in rigorous quantitative terms, this
fundamental quantity is identified as purity. Specifically, we showhowpurity can be used to establish quantum
coherence by a unitary operation. This further provides direct bounds on the amount of entanglement and
discord that can be reached by unitary operations, since these quantities can be traced back to coherences in a
specificmany-body basis. These results hold for all suitable distance-based quantifiers.

A resource theory of purity was introduced in [26] for the asymptotic limit of infinitelymany copies of the
quantum state. Thefinite-copy scenariowas consideredmore recently [27]. Our results relate both of these
approaches directly to the resource theory of coherence. In general, purity can be interpreted as themaximal
coherence,maximized over all unitaries. Depending on the chosen coherencemonotone, we recover either the
asymptotic or thefinite-copy resource theory of purity, bymaximizing over unitary operations, or evenmore
generally, over all unital operations. As one of ourmain results, we are able to identify the states thatmaximize
any given coherencemonotone for afixed spectrumof the densitymatrix. These states define a universal set of
maximally coherentmixed states. The coherence of these states can be evaluated exactly for any distance-based
coherencemonotone, and is shown to coincide with its distance-based purity.

2. Resource theory of quantumcoherence

In the following, we recall the resource theory of coherence [11–16] and then identify the family ofmaximally
coherentmixed states. The free states of this resource theory are called incoherent states, these are states which are
diagonal in afixed basis iñ{∣ }, i.e.,

p i i . 1
i

iås = ñá∣ ∣ ( )

The set of all incoherent states will be denoted by  . The definition of free operations is not unique, and several
approaches have been presented in the literature [15, 16].

The historically first andmost general approachwas suggested in [11], where the set ofmaximally incoherent
operations (MIO)was considered. These are all operations which cannot create coherence, i.e.,

2MIO sL Î[ ] ( )

for any incoherent state s Î . Another important family is the set of incoherent operations (IO) [12]. These are
operationswhich admit a Kraus decomposition

K K 3
i

i iIO år rL =[ ] ( )†

with incoherent Kraus operatorsKi, i.e., K m ni ñ ~ ñ∣ ∣ , where the states mñ∣ and nñ∣ belong to the incoherent
basis.We also note that IO is a strict subset ofMIO [14, 28, 29]

IO MIO, 4Ì ( )

and the inclusion is strict even for single-qubit states [30].While wewill focus on the setsMIO and IO in this
work, other relevant sets of operations have been discussed in recent literature, based on physical or
mathematical considerations [13–15, 28–33]. An extension of quantum coherence tomultipartite systems has
also been presented [34, 35], whichmade it possible to investigate the resource theory of coherence in distributed
scenarios [36–41]. A review over alternative frameworks of coherence and their interpretation can be found
in [16].

The amount of coherence in a given state can be quantified via coherencemonotones. These are nonnegative
functions  which do not increase under the corresponding set of free operations, i.e., for aMIOmonotonewe
have MIO r rL( [ ]) ( ). SinceMIO is themost general set of free operations for any resource theory of
coherence, aMIOmonotone is also amonotone in any other coherence theory. An important example are
distance-based coherencemonotones:

Dinf , , 5


r r s=
sÎ

( ) ( ) ( )

whereD is a suitable distance on the space of quantum states. Such quantifiers were studied in [11, 12], themost
prominent example being the relative entropy of coherence

2
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Smin 6r


r r s=
sÎ

( ) ( ∣∣ ) ( )

with the quantum relative entropy S Tr log Tr log2 2r s r r r s= -( ∣∣ ) [ ] [ ]12. Remarkably, this quantity admits a
closed expression [12] and coincides with the distillable coherence underMIO and IO and alsowith the
coherence cost underMIO [14]:

S S . 7r r r r= D -( ) ( [ ]) ( ) ( )

Here, S Tr log2r r r= -( ) [ ] is the vonNeumann entropy and i i i iir rD = å á ñ ñá[ ] ∣ ∣ ∣ ∣denotes dephasing in the
incoherent basis.

For a general distance-based coherence quantifier as given in equation (5) one usually considers nonnegative
distancesDwhich are contractive under any quantumoperationΛ:

D D, , . 8r s r sL L( [ ] [ ]) ( ) ( )

Any such distance gives rise to aMIOmonotone [12, 16]. Examples for such distances are the relative Rényi
entropy

D
1

1
log Tr 92

1r s
a

r s=
-

a
a a-( ∣∣ ) [ ] ( )

and the quantum relative Rényi entropy

D
1

1
log Tr . 10q

2
1

2
1

2r s
a

s rs=
-a

aa
a

a
a

- -( ∣∣ ) [( ) ] ( )

WhileDα is contractive for 0, 2a Î [ ], the function Dq
a is contractive in the range ,1

2
a Î ¥[ ] [42, 43].We can

nowdefine a family of coherencemonotones in the followingway:

D

D

inf for 0 1,

inf for 1.
11q




r

r s a
r s a

=
< <
>a

s a

s a

Î

Î

⎧⎨⎩( )
( ∣∣ )
( ∣∣ )

( )

This quantity is aMIOmonotone in the range 0,a Î ¥[ ]. In the limit 1a  both functions D r sa ( ∣∣ ) and
Dq r sa ( ∣∣ ) coincidewith the relative entropy S r s( ∣∣ ). Coherence quantifiers of this typewere studied in
[28, 29, 44]. A related approach based onTsallis relative entropies has also been investigated [45].

SeveralMIOmonotones have additional desirable properties such as strongmonotonicity under IO and
convexity [12, 16]. This is in particular the case for the relative entropy of coherence [12].While anyMIO
monotone is also an IOmonotone, the other direction is less clear. In particular, the l1-normof coherence

12l
i j

ij1 år r=
¹

( ) ∣ ∣ ( )

is known to be an IOmonotone [12], but violatesmonotonicity underMIO [46]. Another IOmonotonewhich is
not aMIOmonotone is the coherence of formation

p Smin , 13
i

i i if år y y= D ñá( ) ( [∣ ∣]) ( )

where theminimum is taken over all pure state decompositions p ,i iy ñ{ ∣ }of the state ρ [14, 47, 48].
We also note that coherence of formation is equal to coherence cost under IO [14], and l1-normof coherence

is related to the path information inmulti-path interferometer [49, 50].

3.Maximally coherentmixed states

Since coherence is a basis-dependent concept, a unitary operationwill in general change the amount of
coherence in a given state. In the following, wewill focus on the question: which unitarymaximizes the
coherence of a given state ρ? The corresponding figure ofmerit is given as follows:

U Usup . 14
U

max r r( ) ≔ ( ) ( )†

If the supremum in equation (14) is realized for the unitaryV, the corresponding state V Vmaxr r= † will be
calledmaximally coherentmixed state. This definition is in full analogy tomaximally entangledmixed states
investigated in [51–54].Maximally coherentmixed states were first introduced for specificmeasures of
coherence in [55], and studied furthermore recently in [56].

While the relative entropy of coherence admits a closed formula, the evaluation of general coherence
monotones is considered as a hard problem [16]. It is thus reasonable to believe that themaximization in
equation (14) is out of reach.Quite surprisingly, wewill now show that the supremum in equation (14) can be

12
Wenote that the quantum relative entropy is not a distance in themathematical sense, as it is not symmetric and does not fulfill the

triangle inequality.
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evaluated in a large number of relevant scenarios. In particular, wewill see that there exists a universalmaximally
coherentmixed state, which does not depend on the particular choice of coherencemonotone. These results will
also lead us to a closed expression of max for all distance-based coherencemonotones.

Theorem1.Among all states ρwith a fixed spectrum{pn}, the state

p n n 15
n

d

nmax
1

år = ñá
=

+ +∣ ∣ ( )

is amaximally coherentmixed state with respect to anyMIOmonotone. Here, n ñ+{∣ }denotes amutually unbiased

basis with respect to the incoherent basis iñ{∣ }, i.e., i n
d

2 1á ñ =+∣ ∣ ∣ , where d is the dimension of theHilbert space.

Proof.Wewill actually prove an even stronger statement. In particular, wewill show that for any unitaryU, the
transformation U Umax maxr r † can be achieved viaMIO, i.e.,

U U . 16MIO max maxr rL =[ ] ( )†

The proof of the theorem then follows by usingmonotonicity of  underMIO:

U U . 17max MIO max max  r r r= L( ) ( [ ]) ( ) ( )†

The operationΛMIOwhich achieves this transformation has Kraus operators K U n nn = ñá+ +∣ ∣. Note that bases
n ñ+{∣ }and iñ{∣ }aremutually unbiased, which implies that K K dn n n så =† for any incoherent stateσ. This

means that the operation K Kn n nMIO r rL = å[ ] † is indeedmaximally incoherent. In the final step, note that
K K U Un n nmax maxr rå =† †, and the proof is complete. ,

This theoremhas several important implications. First, it implies that the state maxr is a resourcewith respect
to all states with the same spectrum. Second, this theoremprovides an alternative simple proof for the fact that
l1-normof coherence can increase underMIO [46]. This can be seen by combining theorem1with the fact that
the state in equation (15) is not amaximally coherentmixed state for the l1-normof coherence [56].Moreover, a
unitaryV for an arbitrary state ρwhich achieves the supremum in equation (14) for anyMIOmonotone is given
byV nn

d
n1 y= å ñá= +∣ ∣, where ny ñ{∣ }are the eigenstates of ρ.

Wewill now go one step further and give an explicit expression for max for any distance-based coherence
monotone.

Theorem2. For any distance-based coherencemonotone as given in equation (5) with a contractive distanceD the
following equality holds:

D d, . 18max max  r r r= =( ) ( ) ( ) ( )

We refer to appendix A for the proof. Note that theorem2 also holds for all coherence quantifiers

min 19p p


r s= -
sÎ

∣∣ ∣∣ ( )

based on Schatten p-norms M M MTrp
p p2 1=∣∣ ∣∣ ( [( ) ])† for all p�1. Equippedwith these results, wewill

showbelow in this paper that the resource theory of coherence is closely related to the resource theory of purity.
Before we present these results, we review themain properties of the resource theory of purity in the following.

4. Resource theory of purity

Wewill now review resource theories of purity based on different sets of free operations. The discussion
summarizes results previously presented in [27]. There exists a hierarchy of quantumoperationswhich
generalize classical bistochastic (purity non-increasing)maps.We distinguish three types of quantum
operations:

• Mixture of unitary operations:

p U U , 20
i

i i iMU år rL =[ ] ( )†

with pi�0, p 1i iå = , and unitary operationsUi.

• Noisy operations:

U d UTr , 21E ENO r rL = Ä[ ] [ ( ) ] ( )†

with a unitary operationU.

4
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• Unital operations:

d d, 22U  L =[ ] ( )

i.e., operationswhich preserve themaximallymixed state.

Note that in contrast to the discussion in [27], we only consider operationswhich preserve the dimension of the
Hilbert space. It turns out that these operations form a subset hierarchy

, 23MU NO UL Ì L Ì L{ } { } { } ( )

see, e.g., lemma 5 in [27].
We call two resource theories equivalent if their respective sets of free states, as well as their sets of all states

coincide, and additionally if for each 1L withΛ1(ρ)=σ there exists aΛ2, such thatΛ2(ρ)=σ, whereΛ1 (Λ2) is a
free operation of resource theory 1 (2). Due to lemma 10 in [27] the state conversion abilities are equivalent for
the three casesΛMU,ΛNO, andΛU. It follows that any resource theory which only deviates in the type of
operations as defined abovewill be equivalent. If not stated otherwise, wewill consider the resource theory of
purity based on unital operationsΛU in the following.

Within the resource theory of purity, the state conversion possibilities follow from the classical theory of
bistochasticmaps [27, 57], using the concept ofmajorization. A state ρmajorizes another stateσ, i.e., r s , if
their spectra are inmajorization order:

24
i

k

i
j

k

j
1 1

å ål r l s
=



=

( ) ( ) ( )

for all k�1.Here, il r( ) denotes the eigenvalues of ρ in non-increasing order. The aforementioned relation to
the resource theory of purity is established via the following Lemma.

Lemma3.Given two states r and s of the same dimension, r can be converted into s via some unital operationΛU if
and only if rmajorizes s:

. 25U r s r sL =  [ ] ( )

For the proof of this lemmawe refer to theorem4.1.1 in [58] (see also [59]). Due to the argumentsmentioned
above, it follows that themajorization relation is necessary and sufficient for state conversion via any set of
operations presented above.

Fundamental questions in any resource theory address the number of extremal resource states that can be
distilled from a state ρ. In the case of purity this poses the question, howmany copies of a pure single-qubit state

2yñ∣ can one extract via unital operations?Wewill call the corresponding figure ofmerit single-shot distillable
purity. Its formal definition can be given as follows13:

m
d d

max : , s.t. , 26m
d
1

U U
2

2
1

 
 r r y= $L L Ä = ÄÄ

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭( ) ( )

whereΛU is a unital operation, 2 2y y y= ñ á∣ ∣ is a pure single-qubit state, and di is amaximallymixed state of
dimension di. Correspondingly, we define the single-shot purity cost as theminimal number of pure single-qubit
states which are required to create the state ρ via unital operations:

m
d d

min : , s.t. . 27m
c
1

U U 2
1 2

 
 r y r= $L L Ä = ÄÄ

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭( ) ( )

Similar quantities werefirst studied in the asymptotic limit in [26], allowing for infinitelymany copies of a
quantum state and afinite errormargin that only vanishes in this limit. It was found that in the asymptotic case,
the distillable purity and the purity cost coincide, and are both equal to the relative entropy of purity

d Slog . 28r 2 r r= -( ) ( ) ( )

The single-copy scenario was considered in [27], under the label of ‘nonuniformity’. There the Rényiα-purities
were identified asfigures ofmerit using an approach based on Lorentz curves.Wewill discuss these results in
more detail in the following, with particular focus on the resource theory of coherence.

13
Note that the dimensions d1 and d2 in equation (26) are arbitrary finite numbers, up to the requirement that d d d2m

2 1´ = ´ . This
guarantees that the unital operation preserves the dimension of theHilbert space. Aswe show in appendix C, the optimal choice is d1=d
and d 2 d r

2
log2= ⌊ ( )⌋ , where r is the rank of ρ. This only applies if d rlog 12 ( ) , as single-shot purity distillation does not work otherwise. By

similar considerations, the optimal choice of dimensions in equation (27) is d1=d and d 22
log d2 max= l⌈ ( )⌉ , where maxl is themaximal

eigenvalue of ρ, see appendixD formore details.
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5. Relation between the resource theories of purity and coherence

Following established notions from the resource theories of entanglement [1–4] and coherence [11–16], wewill
now introduce a framework for purity quantification. In particular, we distinguish between puritymonotones
and puritymeasures. Any puritymonotone  should fulfill the following two requirements.

Nonnegativity:  is nonnegative and vanishes for the state /d.

Monotonicity:  does not increase under unital operations, i.e., U r rL( [ ]) ( ) for any unital operationΛU.

Similar as in the resource theories of entanglement and coherence, we regard these two properties as themost
fundamental for any quantity which aims to capture the performance of some purity based task. Puritymeasures
will bemonotones with the following additional properties.

Additivity:   r s r sÄ = +( ) ( ) ( ) for any two states ρ andσ.

Normalization: dlogd 2 yñ =(∣ ) for all pure states dyñ∣ of dimension d.

A puritymonotone/measure  is further convex if it fulfills p pi i i i i i r rå å( ) ( ).We note that purity
monotones have also been previously studied in [27].

We can now introduce a family of coherence-based puritymonotones as follows:

sup , 29U

U

  r rL
L

( ) ≔ ( [ ]) ( )

where the supremum is taken over all unital operationsΛU and  is an arbitraryMIOmonotone. Clearly,  is
nonnegative, vanishes for d , and does not increase under unital operations, i.e., it fulfills the requirements P1
and P2 for a puritymonotone. Remarkably, as we show in appendix B, for anyMIOmonotone  the
corresponding puritymonotone can bewritten as

30max  r r=( ) ( ) ( )

with themaximally coherentmixed state maxr . If  is a distance-based coherencemonotonewith a contractive
distanceD, we can apply theorem2 towrite the corresponding puritymonotone explicitly as

D d, . 31D  r r=( ) ( ) ( )

Equation (31) represents a general distance-based purity quantifier, in direct analogy to similar approaches for
entanglement [1–4], coherence [12, 16], and quantumdiscord [7–10, 60]. In contrast to these theories, a
minimization over free states in equation (31) is not necessary due to the uniqueness of the free state in the
resource theory of purity. For a single qubit the relation between coherence and purity can be visualized on the
Bloch ball if coherence and purity are quantified via the trace norm, see figure 1.

Cases of particular interest can be derived from the coherencemonotones introduced in equation (11). In
these cases, equation (29) leads to theRényiα-purity

d Slog 322 r r= -a a( ) ( ) ( )

with the Rényiα-entropy S log Tr1

1 2r r=a a
a

-
( ) ( [ ]). This quantity was studied in [27], and it admits an

operational interpretation in the resource theories of purity. In particular, the single-shot distillable purity d
1 ,

whichwas introduced in equation (26), can be expressed in terms of a as follows:

d rlim log , 33d
1

0
2 r r= =

a
a



⎢
⎣⎢

⎥
⎦⎥( ) ( ) ⌊ ( )⌋ ( )

where r is the rank and d is the dimension of ρ. Also the single-shot purity cost c
1 , introduced in equation (27),

can bewritten in terms of a as follows:

lim log d , 34c
1

2 max r r l= =
a

a
¥

⎡
⎢⎢

⎤
⎥⎥( ) ( ) ⌈ ( )⌉ ( )

with themaximumeigenvalue maxl of ρ. These results for single-shot purity distillation and dilutionwerefirst
found in [27]; we present alternative proofs in appendices C andD. Finally,

d Slim log 35r
1

2 r r r= = -
a

a


( ) ( ) ( ) ( )

is the relative entropy of purity. It coincides with both the distillable purity and the purity cost in the asymptotic
limit, where the resource theory of purity becomes reversible [26].

As is summarized in appendix E, a is a puritymeasure for allα�0, i.e., it fulfills all requirements P1–P4,
and it is convex for 0�α�1.We further note that  r ra b( ) ( ) forα�β, since the Rényi entropy Sα is

6
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non-increasing inα [61]. Aside from the cases discussed before, another case of interest is the Rényi 2-purity
dlog Tr2 2

2 r r=( ) ( [ ]), a simple function of the linear purity Tr 2r[ ]14, which can be directlymeasured by
letting two copies of the state ρ interfere with each other [62, 63]. In this way, the purity of a composite systemof
ultracold bosonic atoms in an optical lattice, as well as the purity of its subsystems, have been determined
experimentally [64].

6. Relation to entanglement and quantumdiscord

Of particular interest for quantum information theory are non-classical properties of correlated quantum states
inmultipartite systems [4, 18]. Our results about purity have immediate consequences for quantities such as
entanglement and discord. Certain relations between entanglement and purity have already been reported.
Bipartite entangled states, e.g., must have a linear purity above a threshold value of dTr 1 12r = -[ ] ( ), with
total dimension d, due to the existence of afinite-volume set of separable states around themaximallymixed
state [65–67]. Furthermore, a bound for entanglement can be provided by comparing the purity of the
composite system to the one of its subsystems [64, 68]. Similar investigations have also been performed for
multipartite quantum systems [69, 70].

In the followingwe focus on distance-based quantifiers for discord  and entanglement  , in analogy to
equations (5) and(31). In amultipartite system these can be defined as [1, 60]

Dinf , , 36


r r s=
sÎ

( ) ( ) ( )

Dinf , , 37


r r s=
sÎ

( ) ( ) ( )

where  and  denote the sets of zero-discord and separable states, respectively. The latter contains all convex
combinations of arbitrary product states N1r rÄ Ä , whereas the set of zero-discord states can either be defined
with respect to a particular subsystem, or symmetrically with respect to all subsystems.Here, we consider the
symmetrical set  [7], encompassing all convex combinations of pure, locally orthonormal product states

N N1 1j j j jñá Ä Ä ñá∣ ∣ ∣ ∣.With this choice,  r( ) provides an upper bound for the non-symmetric definitions of
discord.

Figure 1.Coherence and purity for a single-qubit. The Bloch ball of all single-qubit states contains the incoherent axis (line connecting
0 0ñá∣ ∣ and 1 1ñá∣ ∣) and themaximally coherent (equatorial)plane. If for a state ρ coherence and purity are quantified via the distance-
based approachwith the trace norm M M MTr1 =∣∣ ∣∣ † , the corresponding amount of coherence  (red dashed lines) and purity 
(black dashed line) can be interpreted as the Euclidean distance to the incoherent axis and the center of the Bloch ball, respectively. The
maximally coherentmixed state maxr can be obtained from ρ via a rotation onto themaximally coherent plane.

14
Notice that dTr 12r -[ ] corresponds to the puritymonotone obtained from the squared Schatten 2-norm d 2

2r -∣∣ ∣∣ .
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Our general distance-based approach leads to the following natural ordering of resources:

. 38N     r r r r( ) ( ) ( ) ( ) ( )

Here, Dinf ,N N
 r r s= sÎ( ) ( ) denotes a coherencemonotonewith respect to anN-partite incoherent product

basis, where N is the set ofN-partite incoherent states [34, 35]. This hierarchy holds true if purity, coherence,
discord, and entanglement are defined via the same distanceD. In this case, the statement follows directly by
noting that d N   Î Ì Ì , see alsofigure 2. Based on the same argument, this hierarchy can be easily
extended beyond entanglement to include the concepts of steering and non-locality [9, 71]. It holds that

U UinfU N N NN
 r r=( ) ( )† with product unitaryUN; this was pointed out for the relative entropy in [72], but
holds for general distance-based quantifiers.

A change of the global basis, or equivalently, application of a collective unitary operation can generate
entanglement and discord. Aswewill see below, themaximal achievable amount is again directly bounded by
the purity. For this we introduce U UsupUmax r r=( ) ( )† and similarly U UsupUmax r r=( ) ( )† , in
analogy to equation (14). Aswe prove in appendix F, these quantities obey the following relation

, 39max max max    r r r r=( ) ( ) ( ) ( ) ( )

which is visualized infigure 2. States related to max and max have been studied for the two-qubit case. For
instance, the set ofmaximally entangledmixed states, i.e., states whichmaximize entanglement for afixed
spectrum, as well as states thatmaximize entanglement at afixed value of purity, have been characterized for
various quantifiers of entanglement and purity [51–54]. States satisfying 0max r =( ) are also known as
absolutely separable states, and have been studied in [73–75]. Similar studies were performed for discord
[76, 77], based on the original definition [5].We also note that the relative entropy of purity r coincides with the
maximalmutual information I I U UmaxUmax r r=( ) ( )† , where I S S SA Br r r r= + -( ) ( ) ( ) ( ) is themutual
information and both subsystemsA andB have the same dimension d [78]. As a direct consequence of
theorem2, purity further bounds the accessible entanglement under IO. This is discussed inmore detail in
appendixG.

7. Experimental relevance

Inwell-controllable quantum systems, quantum states with nearlymaximal purity are usually easy to initialize
but hard tomaintain. Especially large quantum systems suffer immensely frompurity losses due to noise. For
example the linear purity Tr 2r[ ]of theGreenberger–Horne–Zeilinger state decreases exponentially in time
under global phase noise with a decay proportional to the number of particles squared [79]. A principal
challenge of single photon experiments is the creation of the temporal purity, which is necessary for coherent
interaction between photons of two independent sources [80].

In contrast tomeasures of entanglement, discord, or coherence, puritymeasures are rather easily accessible
in experiments [62–64]. For example the Rényiα-purities(32) are essentially functions of the eigenvalue
distribution { pi} of ρ. Any vonNeumannmeasurement of ρ immediately provides a lower bound for this

Figure 2. Schematic representation of purity  (black dashed line), coherence  (red dashed lines), discord  (green dashed lines),
and entanglement  (blue dashed lines) for distance-based quantifiers of the corresponding framework. Zero-discord states  are a
nonconvexmeasure-zero subset of separable states  . Incoherent states N are a convex subset of  . All sets contain themaximally
mixed state d . Themaximally coherentmixed state maxr is obtained from ρ via unitary rotation (dotted circle).
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distribution: if such ameasurement is performed in a basis ij ñ{∣ }, themeasurement outcomes are distributed
according to the probabilities p i i ij r j¢ = á ñ∣ ∣ . Any puritymonotone that is evaluated on the basis of the p i¢{ } is a
lower bound for the true purity of ρ15. Themost easily accessible basis in experiments is the energy eigenbasis. In
this case themeasured bound coincides with the purity for all thermal states. By virtue of theorem 2, the
measured purity also naturally provides an experimental bound on the amount of coherence, entanglement, and
quantumdiscord.

8. Conclusions

Aswe have proven in this work, the resource theories of coherence and purity are closely connected. This
connectionwas established by showing that any amount of purity can be converted into coherence bymeans of a
suitable unitary operation.We further provided a closed expression for the optimal unitary operation, as well as
the quantum states that achieve themaximal coherence. Remarkably, this set ofmaximally coherentmixed
states is universal, i.e., these statesmaximize all coherencemonotones for afixed spectrum. For any distance-
based coherencemonotone themaximal coherence achievable via unitary operations can be evaluated exactly,
and is shown to coincide with the corresponding distance-based puritymonotone.

Based on these results, we defined a new family of coherence-based puritymonotones which admit a closed
expression and an operational interpretation in several relevant scenarios.We further proposed a general
framework for quantifying purity, following related approaches for entanglement and coherence. This approach
also provides quantitative bounds on the required amount of purity to achieve certain levels of entanglement
and discord. Lower bounds for a large variety of puritymeasures are easily accessible in experiments.
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AppendixA. Proof of theorem2

Herewewill prove that

U U U U D dsup max , A1
U U

max   r r r r= = =( ) ( ) ( ) ( ) ( )† †

holds true for any distance-based coherencemonotone Dinf , r r s= sÎ( ) ( )with a contractive distanceD,
i.e.,

D D, , A2r s r sL L( [ ] [ ]) ( ) ( )

for any quantumoperationΛ.
Our proof will consist of two steps. In thefirst step, wewill prove the inequality

D d, . A3max  r r( ) ( ) ( )

This follows by noting that themaximallymixed state d is incoherent, and thus gives an upper bound for any
distance-based coherencemonotone: D d,  r r( ) ( ). By contractivity(A2) the distanceDmust be invariant
under unitaries, which implies that U U D d,  r r( ) ( )† for any unitaryU. This completes the proof of
equation (A3).

To complete the proof of the theorem,wewill now show the converse inequality

D d, . A4max  r r( ) ( ) ( )

For this, we introduce the unitaryVwith the property that V Vmaxr r= †, where p n nn nmaxr = å ñá+ +∣ ∣ is a
maximally coherentmixed state. By definition of max , itmust be that V Vmax r r( ) ( )† .We further define
Δ+ as the dephasing operation in themaximally coherent basis:

n n n n . A5
n
år rD = á ñ ñá+ + + + +[ ] ∣ ∣ ∣ ∣ ( )

15
This is a direct consequence of the fact that nonselective vonNeumannmeasurements are unital operations.
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It is important to note that the application ofD+ to any incoherent state s Î leads to themaximallymixed
state: dsD =+[ ] . If we further define t Î to be the closest incoherent state to maxr , we arrive at the
following result:

D D D d D d, , , , . A6max max max max max    r r r t r t r r= D D = =+ +( ) ( ) ( ) ( [ ] [ ]) ( ) ( ) ( )

In the second linewe used contractivity(A2) and in the last equality we used unitary invariance of the distanceD.
This completes the proof of the theorem.

Wenote that the same proof also applies for all coherence quantifiers p based on Schatten p-norms for
p�1. This can be seen by using the same arguments as above, together with the fact that Schatten p-norms are
contractive under unital operations for all p�1 [81].

Appendix B. Proof of equation (30)

Here, wewill show that anyMIOmonotone  fulfills the following inequality:

sup max , B1U U max
U U

  r r rL = L =
L L

( [ ]) ( [ ]) ( ) ( )

where p n nn nmaxr = å ñá+ +∣ ∣ is amaximally coherentmixed state, {pn} is the spectrumof ρ, and the supremum
is taken over all unital operationsΛU.

In thefirst step of the proof, we recall that unital operations are equivalent tomixtures of unitaries with
respect to state transformations, see lemma 10 in [27]. By using similar arguments as in appendix A, wewill now
show that for anymixture of unitaries q U Ui i i iMU r rL = å[ ] † there exists aMIOΛMIO such that

. B2MU max MIO maxr rL = L[ ] [ ] ( )

The desiredMIOwill be given by K Ki n i n i nMIO , , ,r rL = å[ ] † withKraus operators K q U n ni n i i, = ñá+ +∣ ∣. It is
straightforward to verify that K K di n i n i n, , , så =† holds for any incoherent stateσ, whichmeans that the
operation is indeedmaximally incoherent.Moreover, it holds that

K K q U U , B3
i n

i n i n
i

i i i
,

, max , maxå år r= ( )† †

which completes the proof of equation (B2).
Together with lemma 10 in [27], this result implies that for any unital operationΛU there exists aMIOΛMIO

such that .U max MIO maxr rL = L[ ] [ ] To complete the proof of equation (B1), recall that the states ρ and maxr are
related via a unitary, i.e., U Umaxr r= †. This immediately implies that supmax UU

 r rLL( ) ( [ ]). On the other
hand, the results presented above imply the converse inequality:

sup sup , B4max U max U

U U

  r r rL = L
L L

( ) ( [ ]) ( [ ]) ( )

where the last equality follows from the fact that ρ and maxr are related via a unitary. This completes the proof.

AppendixC. Proof of equation (33)

For proving the statement, letm be an integer such that

d d
C1m

U
2

2
1

 
r yL Ä = ÄÄ

⎡
⎣⎢

⎤
⎦⎥ ( )

holds true for someunital operationΛU and some integers d1 and d2. Sincewe require that the unital operation
does not change the dimension of the system, we have the additional constraint

d

d

d

2
. C2

m
1

2

= ( )

From lemma 3, it follows that the rank of a state cannot decrease under unital operations. Thus, equation (C1)
implies

d

d
r, C31

2

 ( )

where r is the rank of ρ. The inequality(C3) implies themajorization relation

d d
, C4m

2 1

 
r yÄ ÄÄ ( )
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as can be seen by recalling that themaximallymixed state ismajorized by any other state of the same dimension.
Thus, by lemma 3, equations (C2) and (C3) are necessary and sufficient conditions for the transformation in
equation (C1).

Equations (C2) and (C3) further imply the inequality

m d rlog , C52 ( ) ( )

which proves that single-shot distillable purity is bounded above by d rlog2⌊ ( )⌋.Moreover, it is straightforward
to check that equations (C2) and (C3) hold true if we choose m d rlog2= ⌊ ( )⌋, d1=d, and d2=2m. This
completes the proof.

AppendixD. Proof of equation (34)

In thefirst step of the proof, letm be an integer such thatm copies of a pure single-qubit state 2y can be
transformed into the desired state ρ via some unital operationΛU, i.e.,

d d
D1m

U 2
1 2

 
y rL Ä = ÄÄ

⎡
⎣⎢

⎤
⎦⎥ ( )

with some integers d1 and d2. Sincewe require thatΛU preserves the dimension of theHilbert space, itmust be
that

d

d

d

2
. D2

m
1

2

= ( )

Anecessary requirement for the existence of the unital operation in equation (D1) is that due to lemma 3 the
maximal eigenvalue of d2r Ä —which is dmax 2l —is smaller or equal than themaximal eigenvalue of the
resource state dm

2 1y ÄÄ , i.e.

d d

1
. D3max

2 1

l ( )

It is now crucial to note that due to the special formof the resource state, equation (D3) directly implies the
majorization relation

d d
. D4m

2
2

1

 
r yÄ ÄÄ ( )

Thus, by lemma 3, equations (D2) and (D3) are necessary and sufficient for the transformation in equation (D1).
In the next step, we note that equations (D2) and (D3) imply the following inequality:

m log d , D52 max l( ) ( )

whichmeans that the single-shot purity cost is bounded belowby log d2 maxl⌈ ( )⌉. In the last step, it is
straightforward to check that equations (D2) and (D3) hold true if we choose m log d2 maxl= ⌈ ( )⌉, d1=d, and
d2=2m. This completes the proof.

Appendix E. Properties of Rényiα-purities

Herewewill prove that the Rényiα-purity

d Slog E12 r r= -a a( ) ( ) ( )

is a puritymeasure, i.e., it fulfills the requirements P1–P4 stated in themain text. For this, wewill use the fact that
the Rényi entropy is Schur concave for all 0a [82]:

S S . E2r s r s a a ( ) ( ) ( )

Wewill nowprove each of the conditions P1–P4.

d 0 =a( ) follows immediately from S d dlog2 =a ( ) for allα. Furthermore equation (E2) and the fact that
themaximallymixed state d ismajorized by any other state of the same dimension imply nonnegativity:

d 0. E3 r =a a( ) ( ) ( )

Due to lemma 3, we have Ur rL [ ] for any unital operationΛU. Equation (E2) then implies
that U r rLa a( ) ( [ ]).
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TheRényi entropy is additive: S S Sr s r sÄ = +a a a( ) ( ) ( ). This directly implies additivity of a.

dlogd 2 yñ =a(∣ ) , since S 0dyñ =a (∣ ) for allα.

The Rényiα-purity is convex for 0 1 a , since Sα is concave in this region [61]. Forα>1 the Rényi entropy
Sα is neither concave nor convex [83].

Appendix F. Proof of equation (39)

Let us denote withU the unitary operation that provides themaximum for max r( ).Wefind

U U U U U Usup . F1
U

max max        r r r r r= =( ) ( ) ( ) ( ) ( ) ( )† † †

Similarly, letU be the unitary that leads to max r( ).We obtain

U U U U U U U Usup sup , F2N
U

N
U

max         r r r r r r= = =( ) ( ) ( ) ( ) ( ) ( ) ( )† † † †

wherewe used theorem 2 aswell as the fact that any two bases can bemapped onto each other by a unitary
operation.

AppendixG. Purity bounds on entanglement by IO

The amount of entanglement which can be generated by an optimal IO is bounded by the coherence [35]:

lim sup 0 0 , G1A

d

A B A B
r r

:
i

B i

 r r= L Ä ñ á
¥ L

⎧⎨⎩
⎫⎬⎭( ) ( [ ∣ ∣ ]) ( )

where the supremum is performed over all bipartite IOΛi [35] and r and r are the relative entropy of
coherence and entanglement respectively. Our results from theorem2 allow us to further connect these results
to the relative entropy of purity: using a unitary to rotate ρA into amaximally coherent basis followed by the
application of the optimal IO, the generated entanglement amounts to

U Usup lim sup 0 0 G2A

U d

A B A B
r r

:
i

B i

 r r= L Ä ñ á
¥ L

⎧⎨⎩
⎫⎬⎭( ) ( [ ∣ ∣ ]) ( )†

with the relative entropy of purity r .
A similar result can be established for the geometric entanglement F1 max ,g r r s= - sÎ( ) ( ) and the

geometric coherence F1 max ,g r r s= - sÎ( ) ( ), recalling that equation (G1) also holds true for these
quantities [35]. If we introduce the geometric purity as F d1 , 1 Tr

dg
1 2 r r r= - = -( ) ( ) ( ) , we

immediately obtain the following result:

U Usup lim sup 0 0 . G3A

U d

A B A B
g g

:
i

B i

 r r= L Ä ñ á
¥ L

⎧⎨⎩
⎫⎬⎭( ) ( [ ∣ ∣ ]) ( )†

In [84] aCNOT-gate (UCNOT) is used to create entanglement out of the two-qubit input state

0 0 G4A B
inr r= Ä ñ á∣ ∣ ( )

with systemA being the control qubit system andB being the target qubit, i.e. U Uout CNOT in CNOTr r= † . In this
two-qubit scenario the entanglement of the state ρout can bemeasured by the negativity j j r l= å -( ) ∣ ∣where
λj
− are the negative eigenvalues of the partial transpose of ρ [65, 85–87]. The negativity of ρout is closely related to

the l1-normof coherence of the state ρA [88]:

2
, G5A

A

out 01
1


r r

r
= =( ) ∣ ∣

( )
( )ℓ

with ρ01
A being the off-diagonal element of the chosen qubit basis.

For a single-qubit there is a direct relation between
1
ℓ and the geometric coherence [35]:

C C1 1 2 g
2

1
= - -( )ℓ . Using theorem 2 to bound the geometric coherence by the geometric purity, we

obtain the following bound for the negativity

1 1 2 , G6out g
2 r - -( ) ( ) ( )

where equality holds if the eigenstates of ρA form amaximally coherent basis.
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