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Abstract

The resource theory of quantum coherence studies the off-diagonal elements of a density matrixina
distinguished basis, whereas the resource theory of purity studies all deviations from the maximally
mixed state. We establish a direct connection between the two resource theories, by identifying purity
as the maximal coherence which is achievable by unitary operations. The states that saturate this
maximum identify a universal family of maximally coherent mixed states. These states are optimal
resources under maximally incoherent operations, and thus independent of the way coherence is
quantified. For all distance-based coherence quantifiers the maximal coherence can be evaluated
exactly, and is shown to coincide with the corresponding distance-based purity quantifier. We further
show that purity bounds the maximal amount of entanglement and discord that can be generated by
unitary operations, thus demonstrating that purity is the most elementary resource for quantum
information processing.

1. Introduction

A number of different quantum features are considered as important resources for applications of quantum
information theory. Entanglement [ 1-4], quantum discord [5-10], and quantum coherence [11-16] have been
identified as necessary ingredients for the successful implementation of tasks, such as quantum cryptography
[17], quantum algorithms [17, 18] and quantum metrology [19-23]. Quantum resources can be formally
classified in the framework of resource theories [24, 25], where the state space is divided into free states and
resource states. Moreover, a set of free operations, which cannot turn a free state into a resource state, is
identified”. The possibility of conversion between two resource states via free operations is a central issue within
aresource theory, as it introduces a natural order of the resource states. A suitable measure for the resource must
be non-increasing under free operations. Equipped with suitable measures, one is able to quantify the resource
in any given quantum state.

. . 10
States that maximize such measures are called extremal resource states

. Every quantum state can then be
characterized by the minimal rate of extremal resource states needed to create it (resource cost), or the maximal
rate for creating an extremal resource state from it (distillable resource), using the free operations''. A number of
different resource theories have been developed in the context of quantum information theory [24, 25],
prominent examples being entanglement [ 1-4] and coherence [11-16].

9 . . A C oy - .
Throughout this paper, a quantum operation (or just ‘operation’) is used as a synonym for a completely positive trace-preserving map.
10 c >
Here, the term ‘extremal’ is not synonymous to extremal elements of convex sets.

11 . . . . B 5 . . . C .

This has to be understood in the asymptotic setting, where ‘rate’ means the asymptotic fraction of required (distilled) resource states per
copy of the desired (given) quantum state p. Widely used examples for such asymptotic rates are entanglement cost and distillable
entanglement, we refer to [3] for their formal definition.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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While the concept of coherence is basis-dependent by its very definition, both entanglement and quantum
discord are locally basis-independent. However, entanglement and discord usually change if a global unitary is
applied. Itis clear, however, that the unitary activation of these resources must be limited in terms of some basis-
independent quantity of the initial quantum state. As we will show in rigorous quantitative terms, this
fundamental quantity is identified as purity. Specifically, we show how purity can be used to establish quantum
coherence by a unitary operation. This further provides direct bounds on the amount of entanglement and
discord that can be reached by unitary operations, since these quantities can be traced back to coherences in a
specific many-body basis. These results hold for all suitable distance-based quantifiers.

Aresource theory of purity was introduced in [26] for the asymptotic limit of infinitely many copies of the
quantum state. The finite-copy scenario was considered more recently [27]. Our results relate both of these
approaches directly to the resource theory of coherence. In general, purity can be interpreted as the maximal
coherence, maximized over all unitaries. Depending on the chosen coherence monotone, we recover either the
asymptotic or the finite-copy resource theory of purity, by maximizing over unitary operations, or even more
generally, over all unital operations. As one of our main results, we are able to identify the states that maximize
any given coherence monotone for a fixed spectrum of the density matrix. These states define a universal set of
maximally coherent mixed states. The coherence of these states can be evaluated exactly for any distance-based
coherence monotone, and is shown to coincide with its distance-based purity.

2. Resource theory of quantum coherence

In the following, we recall the resource theory of coherence [11-16] and then identify the family of maximally
coherent mixed states. The free states of this resource theory are called incoherent states, these are states which are
diagonal in a fixed basis {|i) }, i.e.,

o =3 pli)il M

The set of all incoherent states will be denoted by 7. The definition of free operations is not unique, and several
approaches have been presented in the literature [15, 16].

The historically first and most general approach was suggested in [11], where the set of maximally incoherent
operations (MIO) was considered. These are all operations which cannot create coherence, i.e.,

AMIO [cle T @)

for any incoherent state 0 € Z. Another important family is the set of incoherent operations (10) [12]. These are
operations which admit a Kraus decomposition

Aolpl = 3 KipK] 3)

with incoherent Kraus operators K, i.e., Kj|m) ~ |n), where the states |m) and | n) belong to the incoherent
basis. We also note that IO is a strict subset of MIO [14, 28, 29]

10 ¢ MIO, 4

and the inclusion is strict even for single-qubit states [30]. While we will focus on the sets MIO and 10 in this
work, other relevant sets of operations have been discussed in recent literature, based on physical or
mathematical considerations [13—15, 28-33]. An extension of quantum coherence to multipartite systems has
also been presented [34, 35], which made it possible to investigate the resource theory of coherence in distributed
scenarios [36—41]. A review over alternative frameworks of coherence and their interpretation can be found
in[16].

The amount of coherence in a given state can be quantified via coherence monotones. These are nonnegative
functions C which do not increase under the corresponding set of free operations, i.e., for a MIO monotone we
have C(Amiolp]) < C(p). Since MIO is the most general set of free operations for any resource theory of
coherence, a MIO monotone is also a monotone in any other coherence theory. An important example are
distance-based coherence monotones:

C(p) = inf D(p, o), (5)
o€l

where D is a suitable distance on the space of quantum states. Such quantifiers were studied in [11, 12], the most
prominent example being the relative entropy of coherence
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Ci(p) = minS(pl|o) (6)
el

with the quantum relative entropy S(p||o) = Tr[plog, p] — Tr[plog, o]"*. Remarkably, this quantity admits a
closed expression [12] and coincides with the distillable coherence under MIO and IO and also with the
coherence cost under MIO [14]:

Ci(p) = S(A[pD) — S(p). @)

Here, S(p) = —Tr[plog, p]is the von Neumann entropy and A[p] = >(i|pli) |i) (i| denotes dephasing in the
incoherent basis.

For a general distance-based coherence quantifier as given in equation (5) one usually considers nonnegative
distances D which are contractive under any quantum operation A:

D(Alpl, Ale]) < D(p, o). ®)

Any such distance gives rise to a MIO monotone [12, 16]. Examples for such distances are the relative Rényi
entropy

1
D, (pl|o) = — log, Tr[p“c! ] 9)
and the quantum relative Rényi entropy
1 1-a 1-a
Dipllo) = ———log, Trl(o = poa ). (10)

While D, is contractive for o € [0, 2], the function DJ is contractive in the range o € [%, o0][42,43]. We can
now define a family of coherence monotones in the following way:

inf,c7 D, for0 < a < 1,
Ca(p):{m ez Dy (pllo) for 0 < a

11
inf,e7 D3(pl|lo) fora > 1. (1D

This quantity is a MIO monotone in the range a € [0, oo]. In thelimit & — 1both functions D, (p||o) and
D (pl|o) coincide with the relative entropy S(p||o). Coherence quantifiers of this type were studied in
[28,29,44]. A related approach based on Tsallis relative entropies has also been investigated [45].

Several MIO monotones have additional desirable properties such as strong monotonicity under 10 and
convexity [12, 16]. This is in particular the case for the relative entropy of coherence [12]. While any MIO
monotone is also an IO monotone, the other direction is less clear. In particular, the I;-norm of coherence

Ci(p) = > lpy (12)
i=j
is known to be an IO monotone [12], but violates monotonicity under MIO [46]. Another IO monotone which is
not a MIO monotone is the coherence of formation

Ct(p) = min ZPiS(A[lllfi) (i, (13)

where the minimum is taken over all pure state decompositions { D> |1;) } of the state p[14,47, 48].
We also note that coherence of formation is equal to coherence cost under IO [14], and /;-norm of coherence
is related to the path information in multi-path interferometer [49, 50].

3. Maximally coherent mixed states

Since coherence is a basis-dependent concept, a unitary operation will in general change the amount of
coherence in a given state. In the following, we will focus on the question: which unitary maximizes the
coherence of a given state p? The corresponding figure of merit is given as follows:

Cinax(p) 3= sup C(UpU'Y). (14)
U

If the supremum in equation (14) is realized for the unitary V, the corresponding state p, .. = VpV T will be
called maximally coherent mixed state. This definition is in full analogy to maximally entangled mixed states
investigated in [51-54]. Maximally coherent mixed states were first introduced for specific measures of
coherence in [55], and studied further more recently in [56].

While the relative entropy of coherence admits a closed formula, the evaluation of general coherence
monotones is considered as a hard problem [16]. It is thus reasonable to believe that the maximization in
equation (14) is out of reach. Quite surprisingly, we will now show that the supremum in equation (14) can be

12 . . . . . . .
We note that the quantum relative entropy is not a distance in the mathematical sense, as it is not symmetric and does not fulfill the
triangle inequality.
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evaluated in alarge number of relevant scenarios. In particular, we will see that there exists a universal maximally
coherent mixed state, which does not depend on the particular choice of coherence monotone. These results will
alsolead us to a closed expression of Cp,, for all distance-based coherence monotones.

Theorem 1. Among all states p with a fixed spectrum {p,, }, the state

d
pmax = an|n+><n+| (15)

n=1
is a maximally coherent mixed state with respect to any MIO monotone. Here, {|n..)} denotes a mutually unbiased
basis with respect to the incoherent basis {|i) }, i.e., | {iln,) |* = %, where d is the dimension of the Hilbert space.

Proof. We will actually prove an even stronger statement. In particular, we will show that for any unitary U, the
transformation p,,,. — Up,,,, U canbe achieved via MIO, i.e.,

AMIO [pmax] = Upmax UT’ (16)
The proof of the theorem then follows by using monotonicity of C under MIO:
C(UPpax UM = C(AMIO o)) < CPpa)- (17)

The operation Ayyo which achieves this transformation has Kraus operators K, = U|n. ) (n |. Note that bases
{|n)}and {|i)} are mutually unbiased, which implies that 3°, K,, oK, = 1/d for any incoherent state 0. This
means that the operation Ayiol[p] = 3, K, 0K, is indeed maximally incoherent. In the final step, note that

3 Ko K = Up,, U, and the proofis complete. O

This theorem has several important implications. First, it implies that the state p_ .. is a resource with respect
to all states with the same spectrum. Second, this theorem provides an alternative simple proof for the fact that
I;-norm of coherence can increase under MIO [46]. This can be seen by combining theorem 1 with the fact that
the state in equation (15) is not a maximally coherent mixed state for the [, -norm of coherence [56]. Moreover, a
unitary Vfor an arbitrary state p which achieves the supremum in equation (14) for any MIO monotone is given
byV = Z’izll ny) (1, |, where {|1),) } are the eigenstates of p.

We will now go one step further and give an explicit expression for Cp,ax for any distance-based coherence
monotone.

Theorem 2. For any distance-based coherence monotone as given in equation (5) with a contractive distance D the
following equality holds:

Crnax(P) = ClPrmay) = D(ps 1/d). (18)
We refer to appendix A for the proof. Note that theorem 2 also holds for all coherence quantifiers

Cp = min||p — U”p (19)
oel

based on Schatten p-norms ||[M||, = (Tr[(M'M YP/2L/P forallp > 1. Equipped with these results, we will
show below in this paper that the resource theory of coherence is closely related to the resource theory of purity.
Before we present these results, we review the main properties of the resource theory of purity in the following.

4. Resource theory of purity

We will now review resource theories of purity based on different sets of free operations. The discussion
summarizes results previously presented in [27]. There exists a hierarchy of quantum operations which
generalize classical bistochastic (purity non-increasing) maps. We distinguish three types of quantum
operations:

+ Mixture of unitary operations:

Awulpl =32 p UipUj, (20)

with p; > 0, >, p, = 1, and unitary operations Us.
* Noisy operations:
Axolpl = Trg[U (p @ 15/d) U], 2D

with a unitary operation U.
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+ Unital operations:
Ayll/d] =1/4d, (22)

i.e., operations which preserve the maximally mixed state.

Note that in contrast to the discussion in [27], we only consider operations which preserve the dimension of the
Hilbert space. It turns out that these operations form a subset hierarchy

{Amu} C {Ano} C {Au), (23)

see, e.g., lemma 51in [27].

We call two resource theories equivalent if their respective sets of free states, as well as their sets of all states
coincide, and additionally if for each A; with A;(p) = o there existsa A,, such that A,(p) = o, where A; (A,)isa
free operation of resource theory 1 (2). Due to lemma 10 in [27] the state conversion abilities are equivalent for
the three cases Ay, Ano, and Ay. It follows that any resource theory which only deviates in the type of
operations as defined above will be equivalent. If not stated otherwise, we will consider the resource theory of
purity based on unital operations Ay in the following.

Within the resource theory of purity, the state conversion possibilities follow from the classical theory of
bistochastic maps [27, 57], using the concept of majorization. A state p majorizes another state o, i.e., p > o, if
their spectra are in majorization order:

k k
PIPHOED PP (24)
i=1 j=1

forallk > 1.Here, )\} (p) denotes the eigenvalues of p in non-increasing order. The aforementioned relation to
the resource theory of purity is established via the following Lemma.

Lemma 3. Given two states p and o of the same dimension, p can be converted into o via some unital operation Ay if
and only if p majorizes 0:

Aylpl =0 & p = 0. (25)

For the proof of this lemma we refer to theorem 4.1.1 in [58] (see also [59]). Due to the arguments mentioned
above, it follows that the majorization relation is necessary and sufficient for state conversion via any set of
operations presented above.

Fundamental questions in any resource theory address the number of extremal resource states that can be
distilled from a state p. In the case of purity this poses the question, how many copies of a pure single-qubit state
|1)), can one extract via unital operations? We will call the corresponding figure of merit single-shot distillable
purity. Its formal definition can be given as follows':

1 1
Pl(p) = maxym: Ay, st. Ay|p®@ —|=¢5" @ —¢, (26)
d2 dl
where Ay is a unital operation, 1, = |1) (1|, is a pure single-qubit state, and 1/d; is a maximally mixed state of
dimension d;. Correspondingly, we define the single-shot purity cost as the minimal number of pure single-qubit
states which are required to create the state p via unital operations:

. 1 1
Plp) = min{m: Ay, st. Ag|Y5" @ —|[=p @ —¢. 27)
dl d2
Similar quantities were first studied in the asymptotic limit in [26], allowing for infinitely many copies of a
quantum state and a finite error margin that only vanishes in this limit. It was found that in the asymptotic case,
the distillable purity and the purity cost coincide, and are both equal to the relative entropy of purity

R(p) = log,d — S(p). (28)

The single-copy scenario was considered in [27], under the label of ‘nonuniformity’. There the Rényi c-purities
were identified as figures of merit using an approach based on Lorentz curves. We will discuss these results in
more detail in the following, with particular focus on the resource theory of coherence.

13 Note that the dimensions d; and d, in equation (26) are arbitrary finite numbers, up to the requirement that d x d, = 2™ X d,. This
guarantees that the unital operation preserves the dimension of the Hilbert space. As we show in appendix C, the optimal choiceisd; = d
and d, = 211°82/)]  where ris the rank of p. This only applies if log,(d/r) > 1,as single-shot purity distillation does not work otherwise. By
similar considerations, the optimal choice of dimensions in equation (27)isd; = dand d, = 21084 max)] where Aoy is the maximal
eigenvalue of p, see appendix D for more details.
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5. Relation between the resource theories of purity and coherence

Following established notions from the resource theories of entanglement [1-4] and coherence [11-16], we will
now introduce a framework for purity quantification. In particular, we distinguish between purity monotones
and purity measures. Any purity monotone P should fulfill the following two requirements.

Nonnegativity: P is nonnegative and vanishes for the state 1/d.

Monotonicity: P does not increase under unital operations, i.e., P(Ay[p]) < P(p) for any unital operation Ay.

Similar as in the resource theories of entanglement and coherence, we regard these two properties as the most
fundamental for any quantity which aims to capture the performance of some purity based task. Purity measures
will be monotones with the following additional properties.

Additivity: P(p ® o) = P(p) + P(o) for any two states pand o.

Normalization: P(|1)q) = log, d for all pure states |1)); of dimension d.

A purity monotone/measure P is further convex ifit fulfills 3=, p. P(p;) > P(; p; p;).- We note that purity
monotones have also been previously studied in [27].
We can now introduce a family of coherence-based purity monotones as follows:

Pe(p) = sup C(Aylpl), (29)
A

where the supremum is taken over all unital operations Ay and C is an arbitrary MIO monotone. Clearly, 7 is
nonnegative, vanishes for 1/d, and does not increase under unital operations, i.e., it fulfills the requirements P1
and P2 for a purity monotone. Remarkably, as we show in appendix B, for any MIO monotone C the
corresponding purity monotone can be written as

PC(p) = C(pmax) (30)

with the maximally coherent mixed state p, .. If C is a distance-based coherence monotone with a contractive
distance D, we can apply theorem 2 to write the corresponding purity monotone explicitly as

Po(p) = D(p, 1/d). (31)

Equation (31) represents a general distance-based purity quantifier, in direct analogy to similar approaches for
entanglement [1-4], coherence [12, 16], and quantum discord [7-10, 60]. In contrast to these theories, a
minimization over free states in equation (3 1) is not necessary due to the uniqueness of the free state in the
resource theory of purity. For a single qubit the relation between coherence and purity can be visualized on the
Bloch ball if coherence and purity are quantified via the trace norm, see figure 1.

Cases of particular interest can be derived from the coherence monotones introduced in equation (11). In
these cases, equation (29) leads to the Rényi a-purity

Pu(p) = log,d — Sa(p) (32)

with the Rényi a-entropy S, (p) = ﬁ log,(Tr [p“]). This quantity was studied in [27], and it admits an

operational interpretation in the resource theories of purity. In particular, the single-shot distillable purity P},
which was introduced in equation (26), can be expressed in terms of 7, as follows:

Plip) = [gg}) mp)J — |log,(d/n)], (33)

where ris the rank and d is the dimension of p. Also the single-shot purity cost ., introduced in equation (27),
can be written in terms of P, as follows:

Plip) = [lﬁl Pa(m] ~ log,(dAma)], (34)

with the maximum eigenvalue A, of p. These results for single-shot purity distillation and dilution were first
found in [27]; we present alternative proofs in appendices C and D. Finally,

FRp) = liinIPu(p) = log,d — S(p) (35)

is the relative entropy of purity. It coincides with both the distillable purity and the purity cost in the asymptotic
limit, where the resource theory of purity becomes reversible [26].

As is summarized in appendix E, P, is a purity measure forall @ > 0, i.e., it fulfills all requirements P1-P4,
anditis convex for0 < a < 1. We further note that 72,(p) > Ps(p) for o > (3, since the Rényi entropy S,, is

6
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1)l

DNV

Figure 1. Coherence and purity for a single-qubit. The Bloch ball of all single-qubit states contains the incoherent axis (line connecting
|0) (0] and |1) (1]) and the maximally coherent (equatorial) plane. If for a state p coherence and purity are quantified via the distance-
based approach with the trace norm ||M||; = Tr v MM, the corresponding amount of coherence C (red dashed lines) and purity P
(black dashed line) can be interpreted as the Euclidean distance to the incoherent axis and the center of the Bloch ball, respectively. The
maximally coherent mixed state p, .. can be obtained from p via a rotation onto the maximally coherent plane.

non-increasing in o [61]. Aside from the cases discussed before, another case of interest is the Rényi 2-purity
Py(p) = log,(dTr [p?]), asimple function of the linear purity Tr [p?]'*, which can be directly measured by
letting two copies of the state p interfere with each other [62, 63]. In this way, the purity of a composite system of
ultracold bosonic atoms in an optical lattice, as well as the purity of its subsystems, have been determined
experimentally [64].

6. Relation to entanglement and quantum discord

Of particular interest for quantum information theory are non-classical properties of correlated quantum states
in multipartite systems [4, 18]. Our results about purity have immediate consequences for quantities such as
entanglement and discord. Certain relations between entanglement and purity have already been reported.
Bipartite entangled states, e.g., must have a linear purity above a threshold value of Tr [p?] = 1/(d — 1), with
total dimension d, due to the existence of a finite-volume set of separable states around the maximally mixed
state [65—67]. Furthermore, a bound for entanglement can be provided by comparing the purity of the
composite system to the one of its subsystems [64, 68]. Similar investigations have also been performed for
multipartite quantum systems [69, 70].

In the following we focus on distance-based quantifiers for discord D and entanglement &£, in analogy to
equations (5) and (31). In a multipartite system these can be defined as [1, 60]

D(p) = inf D(p, 0), (36)
ceZ

&(p) = inf D(p, 0), (37)
oces

where Z and S denote the sets of zero-discord and separable states, respectively. The latter contains all convex
combinations of arbitrary product states p,® --- ®py,, whereas the set of zero-discord states can either be defined
with respect to a particular subsystem, or symmetrically with respect to all subsystems. Here, we consider the
symmetrical set Z [7], encompassing all convex combinations of pure, locally orthonormal product states

lop) (@R -~ By} (@yl- With this choice, D(p) provides an upper bound for the non-symmetric definitions of
discord.

14 Notice that Tr[p?] — 1/d corresponds to the purity monotone obtained from the squared Schatten 2-norm ||p — 1/d| ;.

7
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Figure 2. Schematic representation of purity P (black dashed line), coherence C (red dashed lines), discord D (green dashed lines),
and entanglement £ (blue dashed lines) for distance-based quantifiers of the corresponding framework. Zero-discord states Z area
nonconvex measure-zero subset of separable states S. Incoherent states Zy are a convex subset of Z. All sets contain the maximally
mixed state 1/d. The maximally coherent mixed state p, . is obtained from p via unitary rotation (dotted circle).

Our general distance-based approach leads to the following natural ordering of resources:
P(p) = Cn(p) = D(p) = E(p). (38)

Here, Cy(p) = inf,c7, D(p, o) denotes a coherence monotone with respect to an N-partite incoherent product
basis, where Zy is the set of N-partite incoherent states [34, 35]. This hierarchy holds true if purity, coherence,
discord, and entanglement are defined via the same distance D. In this case, the statement follows directly by
notingthat 1/d € Iy C Z C S, seealso figure 2. Based on the same argument, this hierarchy can be easily
extended beyond entanglement to include the concepts of steering and non-locality [9, 71]. It holds that

D(p) = infy,, Cy(Uy pUJ;) with product unitary Uy; this was pointed out for the relative entropy in [72], but
holds for general distance-based quantifiers.

A change of the global basis, or equivalently, application of a collective unitary operation can generate
entanglement and discord. As we will see below, the maximal achievable amount is again directly bounded by
the purity. For this we introduce D« (p) = sup,, D( UpUT) and similarly Epax(p) = supy, &( UpU™),in
analogy to equation (14). As we prove in appendix F, these quantities obey the following relation

p(ﬂ) = Cmax(p) = Dmax(p) > gmax(p)> (39)

which is visualized in figure 2. States related to Dp,y and &y have been studied for the two-qubit case. For
instance, the set of maximally entangled mixed states, i.e., states which maximize entanglement for a fixed
spectrum, as well as states that maximize entanglement at a fixed value of purity, have been characterized for
various quantifiers of entanglement and purity [51-54]. States satisfying £,,.x(p) = 0 are also known as
absolutely separable states, and have been studied in [73—75]. Similar studies were performed for discord
[76,77], based on the original definition [5]. We also note that the relative entropy of purity P, coincides with the
maximal mutual information Iy, (p) = maxy I(UpUT), where I(p) = S(p?) + S(p®) — S(p) is the mutual
information and both subsystems A and B have the same dimension Jd [78]. As adirect consequence of
theorem 2, purity further bounds the accessible entanglement under IO. This is discussed in more detail in
appendix G.

7. Experimental relevance

In well-controllable quantum systems, quantum states with nearly maximal purity are usually easy to initialize
but hard to maintain. Especially large quantum systems suffer immensely from purity losses due to noise. For
example the linear purity Tr [p?] of the Greenberger—Horne—Zeilinger state decreases exponentially in time
under global phase noise with a decay proportional to the number of particles squared [79]. A principal
challenge of single photon experiments is the creation of the temporal purity, which is necessary for coherent
interaction between photons of two independent sources [80].

In contrast to measures of entanglement, discord, or coherence, purity measures are rather easily accessible
in experiments [62—64]. For example the Rényi a-purities (32) are essentially functions of the eigenvalue
distribution { p;} of p. Any von Neumann measurement of p immediately provides alower bound for this
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distribution: if such a measurement is performed in a basis {|¢,) }, the measurement outcomes are distributed
according to the probabilities p’; = ()| ple;). Any purity monotone that is evaluated on the basis of the { p;} isa
lower bound for the true purity of p'°. The most easily accessible basis in experiments is the energy eigenbasis. In
this case the measured bound coincides with the purity for all thermal states. By virtue of theorem 2, the
measured purity also naturally provides an experimental bound on the amount of coherence, entanglement, and

quantum discord.

8. Conclusions

As we have proven in this work, the resource theories of coherence and purity are closely connected. This
connection was established by showing that any amount of purity can be converted into coherence by means of a
suitable unitary operation. We further provided a closed expression for the optimal unitary operation, as well as
the quantum states that achieve the maximal coherence. Remarkably, this set of maximally coherent mixed
states is universal, i.e., these states maximize all coherence monotones for a fixed spectrum. For any distance-
based coherence monotone the maximal coherence achievable via unitary operations can be evaluated exactly,
and is shown to coincide with the corresponding distance-based purity monotone.

Based on these results, we defined a new family of coherence-based purity monotones which admit a closed
expression and an operational interpretation in several relevant scenarios. We further proposed a general
framework for quantifying purity, following related approaches for entanglement and coherence. This approach
also provides quantitative bounds on the required amount of purity to achieve certain levels of entanglement
and discord. Lower bounds for a large variety of purity measures are easily accessible in experiments.
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Appendix A. Proof of theorem 2

Here we will prove that

Cimax(p) = sup C(UpU™) = maxC(UpU™) = D(p, 1/d) (AL)
U U

holds true for any distance-based coherence monotone C(p) = inf,c7 D(p, o) with a contractive distance D,
ie.,

D(Alpl, Alo]) < D(p, o) (A2)

for any quantum operation A.
Our proof will consist of two steps. In the first step, we will prove the inequality

Cmax(p) < D(p, 1/d). (A3)

This follows by noting that the maximally mixed state 1/d is incoherent, and thus gives an upper bound for any
distance-based coherence monotone: C(p) < D(p, 1/d). By contractivity (A2) the distance D must be invariant
under unitaries, which implies that C(UpU") < D(p, 1/d) for any unitary U. This completes the proof of
equation (A3).

To complete the proof of the theorem, we will now show the converse inequality

Cmax(p) = D(p, 1/4d). (A4)

For this, we introduce the unitary Vwith the property that ., = VpV',where g, = >, p,|n}) (ni]isa
maximally coherent mixed state. By definition of Cy,x, it must be that Crox(p) = C(VpV ). We further define
A, as the dephasing operation in the maximally coherent basis:

ALlp] = Z<n+|P|”+> [ny) (nl. (A5)

n

15 .. . . . .
This is a direct consequence of the fact that nonselective von Neumann measurements are unital operations.
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Itis important to note that the application of A, to any incoherent state o € 7 leads to the maximally mixed
state: A [o] = 1/d. If we further define 7 € Z to be the closest incoherent state to p,., we arrive at the
following result:

Cinax(P) Z ClPmax) = D(Prmas ) Z D(Ailpiae)s AT = D (e 1/d) = D(p, 1/4). (A6)

In the second line we used contractivity (A2) and in the last equality we used unitary invariance of the distance D.
This completes the proof of the theorem.

We note that the same proof also applies for all coherence quantifiers C, based on Schatten p-norms for
p = 1.This can be seen by using the same arguments as above, together with the fact that Schatten p-norms are
contractive under unital operations forallp > 1[81].

Appendix B. Proof of equation (30)

Here, we will show that any MIO monotone C fulfills the following inequality:

sup C(Ay[p]) = max C(AulpD) = C(Ppax)s (B1)
Ay U

where g = >, p,In:) (n|is a maximally coherent mixed state, {p, } is the spectrum of p, and the supremum
is taken over all unital operations Ay.

In the first step of the proof, we recall that unital operations are equivalent to mixtures of unitaries with
respect to state transformations, see lemma 10 in [27]. By using similar arguments as in appendix A, we will now
show that for any mixture of unitaries Ayulp] = X2, q;U; pr there exists a MIO Ao such that

Amulpmad = Aol Pmaxl- (B2)
The desired MIO will be given by Aviolp] = 32; Kin K,Tn with Kraus operators K; ,, = J4: Ul ny){ny| Itis

straightforward to verify that ", K; ,0K;', = 1/d holds for any incoherent state o, which means that the
operation is indeed maximally incoherent. Moreover, it holds that

Z Ki,npmaxKiTn - Z 4q; []ipmax UiT’ (B3)
i,n i

which completes the proof of equation (B2).

Together with lemma 10 in [27], this result implies that for any unital operation Ay there exists a MIO Apo
such that Ay[p,,,. ] = AmiolPmayl- To complete the proof of equation (B1), recall that the states pand p,,, are
related via a unitary, i.e., p = Upp,,, U'. This immediately implies that C(p,,,) < sup, C(Ay[p]). On the other
hand, the results presented above imply the converse inequality:

Comay) = Sll\lp CAU[ppax]) = Sjl\lp C(AulpD, (B4)
U U

where the last equality follows from the fact that pand p,,, are related via a unitary. This completes the proof.

Appendix C. Proof of equation (33)

For proving the statement, let 71 be an integer such that

1 1
Aulp® —|=¢i" @ — (C1)
U['O d, ] 0
holds true for some unital operation Ay and some integers d; and d,. Since we require that the unital operation
does not change the dimension of the system, we have the additional constraint

d d

a2 (C2)

d, 2"
From lemma 3, it follows that the rank of a state cannot decrease under unital operations. Thus, equation (C1)
implies

LIPS

Z 1 C3
2, (C3)
where ris the rank of p. The inequality (C3) implies the majorization relation
1 1
® — =Y ® —, C4
Pe L ¥ 0 (C4)
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as can be seen by recalling that the maximally mixed state is majorized by any other state of the same dimension.
Thus, by lemma 3, equations (C2) and (C3) are necessary and sufficient conditions for the transformation in
equation (C1).

Equations (C2) and (C3) further imply the inequality

m < log,(d/r), (C5)
which proves that single-shot distillable purity is bounded above by | log,(d/r) |. Moreover, it is straightforward

to check that equations (C2) and (C3) hold true if we choose m = |log,(d/r)],d, = d,andd, = 2™. This
completes the proof.

Appendix D. Proof of equation (34)

In the first step of the proof, let m be an integer such that m copies of a pure single-qubit state ), can be
transformed into the desired state p via some unital operation Ay, i.e.,

: 1 1
Ayl @ —|=p — D1
U[ 2 d1:| P 5 (D1)

with some integers d; and d,. Since we require that Ay preserves the dimension of the Hilbert space, it must be
that

d d
A== (D2)
d, 2"
A necessary requirement for the existence of the unital operation in equation (D1) is that due to lemma 3 the
maximal eigenvalue of p ® 1/d)—which is A,y /dr—1is smaller or equal than the maximal eigenvalue of the
resource state 15" ® 1/dy,i.e.

Jmax <, (D3)

Itis now crucial to note that due to the special form of the resource state, equation (D3) directly implies the

majorization relation
1 1
® — <P ® —. D4
P 5 Y, a (D4)

Thus, by lemma 3, equations (D2) and (D3) are necessary and sufficient for the transformation in equation (D1).
In the next step, we note that equations (D2) and (D3) imply the following inequality:

m = log,(dAmax), (D5)

which means that the single-shot purity cost is bounded below by [ log,(d Amax) |- In the last step, it is
straightforward to check that equations (D2) and (D3) hold true if we choose 1 = [log,(dAmax) ], d1 = d, and
d, = 2. This completes the proof.

Appendix E. Properties of Rényi av-purities

Here we will prove that the Rényi a-purity
Falp) = log,d — Sa(p) (ED

is a purity measure, i.e., it fulfills the requirements P1-P4 stated in the main text. For this, we will use the fact that
the Rényi entropy is Schur concave for all « > 0[82]:

p = 0= Sa(p) < Sal0). (E2)
We will now prove each of the conditions P1-P4.

P.(1/d) = 0 follows immediately from S, (1/d) = log, d for all .. Furthermore equation (E2) and the fact that
the maximally mixed state 1/d is majorized by any other state of the same dimension imply nonnegativity:

Fulp) = Ra(1/d) = 0. (E3)

Due tolemma 3, we have p > Ay[p]for any unital operation Ay. Equation (E2) then implies
that Pa(p) 2 Pa(AU [P])

11
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The Rényi entropy is additive: S, (p ® o) = Su(p) + S (o). This directly implies additivity of F,.
Pu(|¥)a) = log,d,since S, (|1))q) = 0 forall a.

The Rényi a-purity is convex for 0 < a < 1,since S, is concave in this region [61]. For & > 1 the Rényi entropy
S, is neither concave nor convex [83].

Appendix F. Proof of equation (39)

Let us denote with U the unitary operation that provides the maximum for &,,,,x(p). We find
Emax(p) = E(Ug pUE) < D(Ug pUf) < sup D(UpUT) = Diax(p). (F1)
U

Similarly, let Up be the unitary thatleads to Dy,.<(p). We obtain
Dinax(p) = D(Up pUp) < Cn(UppUp) < sup Cn(UpU™) = sup C(UpU™) = P(p), (F2)
U U

where we used theorem 2 as well as the fact that any two bases can be mapped onto each other by a unitary
operation.

Appendix G. Purity bounds on entanglement by IO

The amount of entanglement which can be generated by an optimal 10 is bounded by the coherence [35]:

Cip™) = lim {Sup EXB(Ailp* ® [0) <0|B])}, G1)
dg— o0 A
where the supremum is performed over all bipartite IO A;[35] and C, and &, are the relative entropy of
coherence and entanglement respectively. Our results from theorem 2 allow us to further connect these results
to the relative entropy of purity: using a unitary to rotate p** into a maximally coherent basis followed by the
application of the optimal 10, the generated entanglement amounts to

p— 00

R(p?) = sup dlirn {sup EXBN[UpAUT @ |0) <0|B])} (G2)
U A

with the relative entropy of purity 7,.

A similar result can be established for the geometric entanglement £;(p) = 1 — max,csF(p, 0)and the
geometric coherence Cg(p) = 1 — max,c7 F(p, o), recalling that equation (G1) also holds true for these
quantities [35]. If we introduce the geometric purityas By (p) = 1 — F(p, 1/d) = 1 — i(Tr JP)we
immediately obtain the following result:

Pu(p?) = sup lim {sup EFPNIUpAUT @ 10) <0IB])}- (G3)
U A,

p— OC
In [84] a CNOT-gate (Ucnor) is used to create entanglement out of the two-qubit input state
pin = p* @ 10) (0 (G4)

with system A being the control qubit system and B being the target qubit, i.e. ., = Ucnor pi, Udnor- I this
two-qubit scenario the entanglement of the state p,, can be measured by the negativity M(p) = 3| \;| where
A; are the negative eigenvalues of the partial transpose of p [65, 85-87]. The negativity of pq. is closely related to
the [;-norm of coherence of the state pA [88]:

C A
Npo) = 1] = fl(zp ), (GS)

with pg; being the off-diagonal element of the chosen qubit basis.
For a single-qubit there is a direct relation between C and the geometric coherence [35]:

Csq = /1 — (1 — 2C,)*. Using theorem 2 to bound the geometric coherence by the geometric purity, we
obtain the following bound for the negativity

Npo) < J1— (1 - 2B)2, (G6)

where equality holds if the eigenstates of p** form a maximally coherent basis.

12



I0OP Publishing New J. Phys. 20 (2018) 053058 A Streltsov et al

ORCIDiDs

Hermann Kampermann © https: /orcid.org/0000-0002-0659-6699

References

[1] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[2] Bruf3 D 2002 J. Math. Phys. 43 4237
[3] Plenio M B and Virmani S 2007 Quant. Inf. Comput. 7 1
[4] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[5] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[6] Henderson Land Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[7]1 ModiK, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[8] Streltsov A 2015 Quantum Correlations Beyond Entanglement and their Role in Quantum Information Theory (Cham: Springer) (https://
doi.org/10.1007/978-3-319-09656-8)
[9] Adesso G, Bromley T R and Cianciaruso M 2016 J. Phys. A: Math. Theor 49 473001
[10] Adesso G, Cianciaruso M and Bromley T R 2016 arXiv:1611.01959
[11] Aberg] 2006 arXiv:quant-ph/0612146
[12] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[13] Levi Fand Mintert F 2014 New J. Phys. 16 033007
[14] Winter Aand Yang D 2016 Phys. Rev. Lett. 116 120404
[15] Marvian I and Spekkens R W 2016 Phys. Rev. A 94 052324
[16] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[17] GisinN, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[18] Nielsen M A and ChuangI L 2010 Quantum Computation and Quantum Information 10th edn (Cambridge: Cambridge University
Press)
[19] GiovannettiV, Lloyd S and Maccone L 2011 Nat. Photon. 5222
[20] Demkowicz-Dobrzariski R, Kotodyriski J and Gutd M 2012 Nat. Commun. 3 1063
[21] Pezzé L and Smerzi A 2014 Atom Interferometry, Proceedings of the International School of Physics ‘Enrico Fermi’, Course 188, Varenna ed
G M Tino and M A Kasevich (Amsterdam: IOS Press)
[22] T6th G and Apellaniz12014 J. Phys. A: Math. Theor. 47 424006
[23] GirolamiD, Souza A M, Giovannetti V, Tufarelli T, Filgueiras ] G, Sarthour R S, Soares-Pinto D O, Oliveira I S and Adesso G 2014 Phys.
Rev. Lett. 112210401
[24] Horodecki M and Oppenheim J 2013 Int. J. Mod. Phys. B 27 1345019
[25] Coecke B, Fritz T and Spekkens R W 2016 Inf. Comput. 250 59
[26] Horodecki M, Horodecki P and Oppenheim J 2003 Phys. Rev. A 67 062104
[27] Gour G, Miiller M P, Narasimhachar V, Spekkens RW and Halpern N'Y 2015 Phys. Rep. 583 1
[28] Chitambar E and Gour G 2016 Phys. Rev. Lett. 117 030401
[29] Chitambar E and Gour G 2016 Phys. Rev. A 94 052336
[30] Chitambar Eand Gour G 2017 Phys. Rev. A 95019902
[31] Yadin B, Ma]J, Girolami D, Gu M and Vedral V 2016 Phys. Rev. X 6 041028
[32] MarvianI, Spekkens R W and Zanardi P 2016 Phys. Rev. A 93 052331
[33] de Vicente JIand Streltsov A 2017 J. Phys. A: Math. Theor. 50 045301
[34] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114210401
[35] Streltsov A, Singh U, Dhar H'S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[36] ChitambarE, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
[37] MaJ, Yadin B, Girolami D, Vedral V and GuM 2016 Phys. Rev. Lett. 116 160407
[38] Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405
[39] Chitambar E and Hsieh M-H 2016 Phys. Rev. Lett. 117 020402
[40] MateraJ M, Egloft D, Killoran N and Plenio M B 2016 Quantum Sci. Technol. 1 01LT01
[41] Streltsov A, Rana S, Bera M N and Lewenstein M 2017 Phys. Rev. X7 011024
[42] Miiller-Lennert M, Dupuis F, Szehr O, Fehr S and Tomamichel M 2013 J. Math. Phys. 54 122203
[43] Leditzky F2016 arXiv:1611.08802
[44] ShaoL-H,LiY-M, Luo Y and Xi Z-] 2017 Commun. Theor. Phys. 67 631
[45] Rastegin A E 2016 Phys. Rev. A93 032136
[46] BuKand Xiong C 2017 Quant. Inf. Comput. 17 1206
[47] YuanX, ZhouH, Cao Zand Ma X 2015 Phys. Rev. A 92022124
[48] HuX 2016 Phys. Rev. A94 012326
[49] BaganE, Bergou] A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406
[50] BeraM N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A92 012118
[51] Ishizaka S and Hiroshima T 2000 Phys. Rev. A 62022310
[52] Verstraete F, Audenaert K and Moor B De 2001 Phys. Rev. A64 012316
[53] Munro W, James D FV, White A G and Kwiat P G 2001 Phys. Rev. A 64 030302
[54] WeiT-C, Nemoto K, Goldbart P M, Kwiat P G, Munro W J and Verstraete F 2003 Phys. Rev. A 67 022110
[55] Singh U, BeraM N, Dhar H S and Pati AK 2015 Phys. Rev. A91 052115
[56] YaoY,Dong GH, GeL,LiM and Sun C P 2016 Phys. Rev. A 94 062339
[57] Alberti P and Uhlmann A 1982 Stochasticity and Partial Order (Dordecht: Springer)
[58] Nielsen M A 2002 An Introduction to Majorization and its Application to Quantum Mechanics (Lecture Notes) (Brisbane: University of
Queensland)
[59] Uhlmann A 1970 Rep. Math. Phys. 1 147
[60] ModiK, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501

13


https://orcid.org/0000-0002-0659-6699
https://orcid.org/0000-0002-0659-6699
https://orcid.org/0000-0002-0659-6699
https://orcid.org/0000-0002-0659-6699
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1063/1.1494474
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1103/RevModPhys.84.1655
https://doi.org/10.1007/978-3-319-09656-8
https://doi.org/10.1007/978-3-319-09656-8
https://doi.org/10.1088/1751-8113/49/47/473001
http://arxiv.org/abs/1611.01959
http://arxiv.org/abs/quant-ph/0612146
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1088/1367-2630/16/3/033007
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/ncomms2067
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1103/PhysRevLett.112.210401
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1103/PhysRevA.67.062104
https://doi.org/10.1016/j.physrep.2015.04.003
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevA.94.052336
https://doi.org/10.1103/PhysRevA.95.019902
https://doi.org/10.1103/PhysRevX.6.041028
https://doi.org/10.1103/PhysRevA.93.052331
https://doi.org/10.1088/1751-8121/50/4/045301
https://doi.org/10.1103/PhysRevLett.114.210401
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevLett.116.070402
https://doi.org/10.1103/PhysRevLett.116.160407
https://doi.org/10.1103/PhysRevLett.116.240405
https://doi.org/10.1103/PhysRevLett.117.020402
https://doi.org/10.1088/2058-9565/1/1/01LT01
https://doi.org/10.1103/PhysRevX.7.011024
https://doi.org/10.1063/1.4838856
http://arxiv.org/abs/1611.08802
https://doi.org/10.1088/0253-6102/67/6/631
https://doi.org/10.1103/PhysRevA.93.032136
https://doi.org/10.1103/PhysRevA.92.022124
https://doi.org/10.1103/PhysRevA.94.012326
https://doi.org/10.1103/PhysRevLett.116.160406
https://doi.org/10.1103/PhysRevA.92.012118
https://doi.org/10.1103/PhysRevA.62.022310
https://doi.org/10.1103/PhysRevA.64.012316
https://doi.org/10.1103/PhysRevA.64.030302
https://doi.org/10.1103/PhysRevA.67.022110
https://doi.org/10.1103/PhysRevA.91.052115
https://doi.org/10.1103/PhysRevA.94.062339
https://doi.org/10.1016/0034-4877(70)90009-1
https://doi.org/10.1103/PhysRevLett.104.080501

10P Publishing

New J. Phys. 20 (2018) 053058 A Streltsov et al

[61] Bengtsson I and Zyczkowski K 2006 Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge: Cambridge
University Press)

[62] Ekert AK, Alves CM, Oi DKL, Horodecki M, Horodecki P and Kwek L C 2002 Phys. Rev. Lett. 88 217901

[63] Pichler H, Bonnes L, Daley A J, Lauchli A M and Zoller P 2013 New J. Phys. 15 063003

[64] Islam R,MaR, Preiss P M, Tai M E, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77

[65] Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883

[66] Gurvits Land Barnum H 2002 Phys. Rev. A 66 062311

[67] Gurvits Land Barnum H 2003 Phys. Rev. A 68 042312

[68] Mintert F and Buchleitner A 2007 Phys. Rev. Lett. 98 140505

[69] Gurvits Land Barnum H 2005 Phys. Rev. A 72032322

[70] Hildebrand R 2007 Phys. Rev. A 75 062330

[71] Wiseman HM, Jones SJ and Doherty A C 2007 Phys. Rev. Lett. 98 140402

[72] YaoY, Xiao X, Ge Land Sun CP 2015 Phys. Rev. A92 022112

[73] Ku$ M and Zyczkowski K 2001 Phys. Rev. A 63 032307

[74] Jivulescu M A, Lupa N, Nechita I and Reeb D 2015 Linear Algebr. Appl. 469 276

[75] Filippov SN, MagadovKY and Jivulescu M A 2017 New J. Phys. 19 083010

[76] GalveF, Giorgi G Land Zambrini R 2011 Phys. Rev. A83 012102

[77] Qasimi A A and James D FV 2011 Phys. Rev. A83 032101

[78] JevticS, Jennings D and Rudolph T 2012 Phys. Rev. Lett. 108 110403

[79] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hinsel W, Hennrich M and Blatt R 2011 Phys. Rev.
Lett. 106 130506

[80] QianP,GuZ,CaoR,WenR,OuZY, Chen]Fand Zhang W 2016 Phys. Rev. Lett. 117 013602

[81] Pérez-Garcia D, Wolf M M, Petz D and Ruskai M B 2006 J. Math. Phys. 47 083506

[82] Marshall AW, Olkin I and Arnold B C 2011 Inequalities: Theory of Majorization and Its Applications 2nd edn (New York: Springer)

[83] Ben-Bassat M and Raviv] 1978 IEEE Trans. Inf. Theory 24 324

[84] Orieux A, Ciampini M A, Mataloni P, Brufl D, Rossi M and Macchiavello C 2015 Phys. Rev. Lett. 115 160503

[85] Peres A 1996 Phys. Rev. Lett. 77 1413

[86] Horodecki P, Horodecki R and Horodecki M 1996 Phys. Lett. A223 1

[87] Vidal G and Werner RF 2002 Phys. Rev. A 65032314

[88] Nakano T, Piani M and Adesso G 2013 Phys. Rev. A88 012117

14


https://doi.org/10.1103/PhysRevLett.88.217901
https://doi.org/10.1088/1367-2630/15/6/063003
https://doi.org/10.1038/nature15750
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.66.062311
https://doi.org/10.1103/PhysRevA.68.042312
https://doi.org/10.1103/PhysRevLett.98.140505
https://doi.org/10.1103/PhysRevA.72.032322
https://doi.org/10.1103/PhysRevA.75.062330
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevA.92.022112
https://doi.org/10.1103/PhysRevA.63.032307
https://doi.org/10.1016/j.laa.2014.11.031
https://doi.org/10.1088/1367-2630/aa7e06
https://doi.org/10.1103/PhysRevA.83.012102
https://doi.org/10.1103/PhysRevA.83.032101
https://doi.org/10.1103/PhysRevLett.108.110403
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.117.013602
https://doi.org/10.1063/1.2218675
https://doi.org/10.1109/TIT.1978.1055890
https://doi.org/10.1103/PhysRevLett.115.160503
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.88.012117

	1. Introduction
	2. Resource theory of quantum coherence
	3. Maximally coherent mixed states
	4. Resource theory of purity
	5. Relation between the resource theories of purity and coherence
	6. Relation to entanglement and quantum discord
	7. Experimental relevance
	8. Conclusions
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	Appendix F.
	Appendix G.
	References



