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Abstract

Shape resonances are a ubiquitous phenomenon in electron–molecule scattering, in which
the impinging electron is resonantly captured in a pseudo-bound state that is supported by
the molecular potential. To study the electron scattering dynamics, we use time- and angle-
resolved photoelectron spectroscopy here. With this technique, the transient evolution of the
photoelectron angular distributions (PADs) from the ionization of an excited-state species
can be measured. In the PADs, the electron–molecular-ion scattering dynamics are contained
because the photoelectron necessarily interacts with the potential of the parent molecule
as it escapes. The aim of this thesis is to investigate to what extent molecular dynamics,
which are triggered by a pump laser pulse, are reflected in the PADs of the photoelectron
spectra generated by an ionizing probe pulse, and how these effects can be rationalized in a
photoelectron-scattering picture.
Three experimental studies are covered in this thesis: In the first experiment, CF3I molecules

are impulsively aligned in space by a short near-infrared pulse, which creates a rotational
wave packet. During the revival of the rotational wave packet, PADs are measured for different
molecular-axes distributions by photoionization with an ultrashort XUV pulse generated
through high-order harmonic generation (HHG). Comparing the PADs thus obtained to the
results of quantum-scattering calculations carried out with the ePolyScat suite of programs,
we show that the alignment-dependent change in the PADs can be largely explained by
two prominent shape resonances that contribute to the PADs in a distinctly different way
geometrically.
In the second experiment, we investigate the laser-assisted photoelectron recollisions

that occur in strong-field ionization of atoms and molecules. We show how the differential
scattering cross sections (DCSs) for the electron–molecular-ion collision process can be
extracted from the resulting photoelectron spectrum. Then, we apply this approach to the
investigation of the excited-state dynamics of I2 molecules that are prepared in the � or �
state, leading to photodissociation and the creation of a vibrational wave packet, respectively.
Again, by comparing to calculations carried out with ePolyScat, we conclude that the observed
modulations in the DCSs of the rescattered electrons can be very well explained by considering
two prominent shape resonances involved, the : = 6 resonance of the diatomic molecular ion
and the : = 3 resonance of the free iodine atomic ion.
In the third study, the time-resolved core-shell photoionization of dissociating halomethane

molecules, namely CH3I and CH2ICl, is investigated employing ultrashort soft x-ray pulses
provided by the free-electron laser FLASH in Hamburg, which are able to ionize the 43 shell
of iodine close to the well-known “giant” photoionization resonance (again related to the
: = 3 shape resonance). We find that the dissociation clearly manifests as a shift of the 43
core-level binding energy, and that the time scale and temporal onset of this effect is distinctly
different from that of the photoion measurements, which are commonly exploited to quantify
the dissociation dynamics.
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Zusammenfassung

In der Elektronenstreuung an Molekülen sind Formresonanzen ein allgegenwärtiges Phä-
nomen, in dem das einschlagende Elektron resonant in einem pseudogebundenen Zustand
eingefangen wird, den das Molekülpotential ermöglicht. Um die Dynamik der Elektronen-
streuung zu untersuchen, bedienen wir uns der zeit- und winkelaufgelösten Photoelektronen-
spektroskopie. Mit dieser Technik kann die transiente Entwicklung der Photoelektronenwin-
kelverteilungen (engl. photoelectron angular distributions, PADs), die in der Photoionisation
angeregter Molekülspezies auftritt, untersucht werden. In den PADs ist die Streudynamik
der Elektron–Molekülionen-Wechselwirkung enthalten, weil das Photoelektron beim Verlas-
sen des Moleküls notwendigerweise an dessen Rumpfpotential gestreut wird. Das Ziel der
vorliegenden Arbeit ist es zu untersuchen, inwieweit Moleküldynamiken, die durch einen
Anregungslaserpuls ausgelöst werden, die PADs der Photoelektronenspektren prägen, die
durch einen abfragenden Ionisationspuls erzeugt werden, und wie die beobachteten Effekte
im Modell der Photoelektronenstreuung verstanden werden können.
Die vorliegende Arbeit trägt die Ergebnisse dreier Experimente zusammen: Im ersten Ex-

periment werden CF3I-Moleküle durch einen kurzen Laserpuls im Nahinfrarot impulsiv im
Raum ausgerichtet. Das heißt, dass ein Rotationswellenpaket präpariert wird und während des
Wiederauflebens dieses Wellenpakets werden die PADs für verschiedene Molekülachsenvertei-
lungen durch einen XUV-Laserpuls vermessen, der durch Höhere-Harmonischenerzeugung
(HHG) gewonnen wurde. Durch den Vergleich der gemessenen PADs mit den Ergebnissen
von Quantenstreuungsrechnungen, die mit dem ePolyScat-Programmpaket durchgeführt
wurden, können wir zeigen, dass die ausrichtungsabhängigen Veränderungen der PADs im
Wesentlichen durch zwei ausgeprägte Formresonanzen erklärt werden können, die ihrerseits
räumlich auf signifikant unterschiedliche Weise zu den PADs beitragen.
Im zweiten Experiment untersuchen wir die laservermittelten Elektronenrekollisionen,

die in der Starkfeldionisation von Atomen und Molekülen auftreten. Wir zeigen, wie sich
die differentiellen Wirkungsquerschnitte für die Elektronen–Molekülionenstreuung aus den
gewonnenen Photoelektronenspektren extrahieren lassen. Dann wenden wir diesen Ansatz
auf die Untersuchung von angeregten I2-Molekülen an, die entweder in ihrem �- oder �-
Zustand präpariert wurden, was im einen Fall zur Photodissoziation und im andern zu einem
Vibrationswellenpaket führt. Durch den Vergleich mit Rechnungen, die wieder mit ePolyScat
durchgeführt wurden, können wir zeigen, dass sich die zeitabhängigen Veränderungen der
Wirkungsquerschnitte durch die Beteiligung einer molekularen (: = 6) und einer atomaren
(: = 3) Formresonanz erklären lassen.

In der dritten Studie wird die zeitaufgelöste Kernschalenphotoionisation in den Halo-
methanen CH3I und CH2ICl durch kurze Laserpulse im Bereich weicher Röntgenstrahlung
untersucht, die durch den Freie-Elektronenlaser FLASH in Hamburg bereitgestellt wurden.
Mit Licht dieser Wellenlänge kann die 43-Schale von Iod im Bereich der gut untersuchten
“gigantischen” Photoionisationsresonanz, die eng mit der (: = 3)-Resonanz verwandt ist,
ionisiert werden. Wir können zeigen, dass sich die Photodissoziation in einer Verschiebung
der Kernschalenbindungsenergie manifestiert, und zwar auf Zeitskalen und mit zeitlichen
Verzögerungen, die sich signifikant von denen unterscheiden, die in den ionischen Fragmenten
beobachtet werden, die ihrerseits gewöhnlich genutzt werden, um die Dissoziationsdynamik
zu charakterisieren.
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Introduction

At the heart of molecular physics lies the question of what constitutes a chemical bond, or,
more explicitly, what laws govern the diverse phenomena of electronic structure and molecular
dynamics, that show an extraordinarily rich and intricate structure, even for the most simple of
molecular systems like diatomics.1 The understanding of chemical bonding is of such central
importance, that it can hardly be overstated: Not only does the chemical bond form the basis
of the structure and properties of all stable matter that surrounds us, but, obviously, it is also
key to all reactivity, the formation and dissolution of bonds and the molecular rearrangements
that go along with them. What drives chemical reactions and determines their outcome
among various reaction paths is the delicate balance between the energetic stabilization of
the chemical products that are formed and the kinetic favor of such a path, which can be
understood as the facility of a rearrangement. Many systems of practical interest, like the
catalysis that happens in the active centers of enzymes or man-made catalytic materials, but
in particular reactions that are initiated by light, like photosynthesis and the spatial motion of
photoswitches, can only be described to a satisfactory degree on a quantum-mechanical level,
as these processes often involve exotic, highly excited species and energy transfer through
non-adiabatic processes. It is here that the toolbox of modern molecular physics is applied to
unveil the details of the underlying elementary processes.
To characterize and elucidate the microscopic structure of matter in an experiment, we

expose a sample of it to an external stimulus and carefully observe its response. Without
doubt, the most prolific source of what we know about atoms and molecules is their interaction
with electromagnetic radiation. In fact, there are numerous ways radiation can interact with
the bound electrons in an atom or molecule, giving rise to an entire array of spectroscopic
techniques. For instance, the light could be scattered off, but it could also be absorbed, which
would either trigger a photochemical reaction or lead to the re-emission of light at a different
wavelength. This thesis is entirely devoted to photoelectron spectroscopy, a technique in which
the absorption of a photon causes the ejection of an electron, and it is this photoelectron that
is in the end measured and whose properties reveal all the details about the circumstances of
its birth.
Historically,2 it was Heinrich Hertz who, in 1887, first observed that metals emit electrons

when ultraviolet radiation (UV) is shining on them. This phenomenon was called photoelectric
effect, but there remained some confusion about the correct explanation of it, in particular
with respect to its dependence on the light’s intensity. Hertz and his contemporaries expected
that increasing the intensity of the light would accelerate the electrons, as if the beam of light
was hitting the bulk material like water from a hose: When the water pressure is increased,
the electron will be pushed out more vigorously. What they found, instead, was that it
only increased the number of electrons that were emitted per time interval, but that all of
them had the same, well-defined velocity. In 1905, Albert Einstein was able to describe this
finding correctly: He proposed that one should picture the light as a stream of particles, the
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2 Introduction

photons, and that increasing the intensity corresponds to increasing the density of particles
in the photon stream. Every photon carries a characteristic photon energy and only if that
energy exceeds the energy required to remove an electron entirely from the irradiated sample,
emission can occur, and the emitted electron will fly away with exactly the amount of energy
it had in excess. When considering molecules, not only one, but several ionic final states of the
molecule may be accessible that are excited in the electronic, vibrational and rotational degrees
of freedom. As every of these states has a well-defined total energy, which is independent of
the probing radiation, the photoelectrons are emitted at a series of discrete energies, each
of which can be related to a final state through energy conservation. This constitutes what
Carlson3 calls the “beauty of photoelectron spectroscopy”. If for the moment we consider
an independent-particle picture, in which the electrons move in shell-like, spatially and
energetically well-defined orbitals, the incident radiation can create a hole in one of the
orbitals that it can energetically access, and therefore the resulting photoelectron spectrum
immediately reflects the electronic structure of the system under investigation.
In traditional photoelectron spectroscopy, the main observables of interest were the total

photoionization cross section and the partial cross sections for the different ionization channels,
and their dependence on the incident radiation’s wavelength. This rather rudimentary
information already can reveal insight into the potential that the leaving electron interacts
with. Among the phenomena that can be observed and studied this way are potential-
barrier trapping of the photoelectron, closely related to the frequently encountered “shape
resonances”, and inflection of the dipole matrix elements, the so-called Cooper minimum.4

Ideally, this requires a light source that is tunable over a wide wavelength range above the
ionization potential of the target systems. For a long time, however, elemental photoemission
lines were the only sources of narrow-band vacuum ultraviolet and x-ray radiation. Especially
the emission lines of helium, He I at 21.2 eV and He II at 40.8 eV were a popular (and suitable)
choice to characterize the valence band structure of many molecules,5 but clearly they come
with the drawback of not being tunable. This situation changed drastically when synchrotrons
were set up as tunable photon sources. Throughout the seventies, the literature on wavelength-
dependent photoelectron spectroscopy in atoms and molecules grew enormously, and the
state of the field is covered in some comprehensive monographs from the second half of that
decade.3,4

Forty years later, research in photoelectron spectroscopy is still a thriving field owing to
the progress in the development of new light sources and detection schemes that constantly
push the boundaries of what experiments are feasible and at what level of detail electronic
structure can be investigated. In this regard, the thrust of this thesis is twofold: First, with
pulsed light sources in the extreme ultraviolet (XUV, which we define here as covering a
photon-energy range of roughly 10 to 100 eV) and soft x-ray (from approx. 100 to 5000 eV)
regime not only molecules in the ground state, but also excited-state species and their nuclear
and electronic relaxation can be investigated. This is achieved by pumping the molecule first
with a short light pulse, e. g., in the visible or ultraviolet region, into an excited state and
probing it after some well-defined time delay by a pulse of ionizing radiation. To this end,
both table-top sources that are based on high-order harmonic generation in gases as well as
free-electron lasers, that generate XUV and soft x-ray pulses with pulse durations of a few
tens of femtoseconds – which is what is required to resolve the nuclear motion of molecules
– have been applied during the course of this thesis work. The second direction in modern
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photoelectron spectroscopy we are following is the application of spectrometers that not only
resolve the absolute velocity of a charged particle, but also its direction of emission. Most
notable here is the construction of the so-called velocity-map-imaging spectrometer (VMI)
by Eppink and Parker6 in 1997 that is designed to project the three-dimensional velocity
distribution of the escaping electrons onto a two-dimensional plane where it is recorded
with a position-sensitive detector. This allows not only to record the photoelectron spectrum
itself, but also the angular probability distribution for every photoemission line, the so-called
photoelectron angular distribution (PAD).
What, maybe, sets this thesis apart from others in this field is that it is not focused on a

single technique or a specific system that is explored in great depth, but instead it rather
orbits around a central concept, that is, measuring and rationalizing photoelectron angular
distributions to elucidate molecular dynamics, to which end a variety of techniques, sources
and physical phenomena were employed. In total, three different experimental studies are
covered in the thesis, each of which makes use of photoionization of a different flavor: valence-
shell ionization, core-shell ionization, and electron rescattering after strong-field ionization.
What all of them have in common is that they can be considered essentially instantaneous
ionization events, at least on the time scale of molecular motion. Actually, photoionization is
always implied to be sudden when proposing an experiment in time-resolved photoelectron
spectroscopy, where the aim is to interrogate the evolution of an excited state by an immediate
response of some sort.a

Let us first turn to the crucial question what additional information can be retrieved from
measuring the photoelectron angular distributions? As the electron leaves the molecule, it
scatters off the molecular potential and this encounter, in turn, is imprinted on the leaving
electron’s wave function as an angular intensity modulation. These angular distributions show
an intricate richness and vary widely as the wavelength of the incident radiation is tuned.
This was observed already in the earliest studies carried out by Dill, Siegel, and Dehmer.7

Even though it might be tempting, the angular distributions cannot be directly identified
with the shape of the orbital or the chemical surrounding they are originating from, and a
great deal of modeling is typically involved in their interpretation. This is not to say that the
photoionization process cannot be rationalized in any way. We like to think of it as being
composed of three contributing factors that are deeply interrelated, but can conceptually be
separated: First, there is the overlap between the initial (neutral) and final (ionic) states’
wave functions of the molecule, which accounts for the electronic relaxation in the charged
species and captures phenomena that can only be explained through electron correlation,
like shake-up transitions, in which not only one electron is ejected, but a second one is
promoted into an unoccupied orbital. Second, as already mentioned, electron scattering plays
a crucial role in shaping the angular distribution. In particular, shape resonances, which are a
commonly encountered phenomenon in scattering experiments, can also be observed through
photoionization. In a shape resonance, the impinging electron – instead of being deflected
right away – is transiently captured by the molecular potential where it forms a pseudo-bound
state. It turns out that these resonances are extremely sensitive to the smallest distortions
in the shape of the molecular potential (hence the name), which can be exploited to trace
the motion of the nuclei in the molecule. The third ingredient is the dipole selection rule in

a It is, however, not necessarily always justified; when, for example, bound states in the continuum are excited,
as in autoionization, they can be considerably long-lived.4
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single-photon ionization that, together with the shape of the orbital, acts as a kind of spatial
filter that selects only a small part of the continuum. The consequences of this filtering are
often hard to predict: sometimes it hides underlying photoelectron dynamics and sometimes
it strongly enhances them.
This thesis is organized as follows: after an introductory chapter on the theory of photoe-

mission and photoelectron angular distributions, Chapter 1, the results of three experimental
studies are presented that were carried out in the course of this thesis. In Chapter 2, the
XUV ionization of CF3I molecules, which are spatially aligned by a laser-induced alignment
technique is investigated. The problem that is addressed here is the following: what is pecu-
liar about molecules is the fact that, in contrast to atoms, they are obviously not spherically
symmetric, and, what is more, in gas-phase experiments they tumble in space freely. As a
consequence, many details of the photoelectron angular distributions are washed out, but not
all. In the photoionization of atoms, the angular distribution is related to the interference of
the outgoing photoelectron’s partial-wave components. In rotating molecules these relations
are much more complicated. By aligning the molecules in some way, additional details can be
extracted, and we will, in particular, show how two shape resonances that are obfuscated
in the ionization of the randomly oriented molecule, can be clearly identified in the aligned
ensemble.
The investigation of aligned molecules is still considered a static experiment because

no electronic excitations are involved. In Chapter 3 we extend our approach of studying
photoelectron scattering dynamics to experiments that involve excited-state I2 molecules
undergoing nuclear rearrangements. However, the experimental concept of Chapter 3 seems
very different at first: instead of working with ionizing radiation, the molecules are ionized
by a strong mid-infrared laser field. As will be shown, closer inspection of the strong-field
photoionization process reveals that some of the photoelectrons that are driven forth and back
in the oscillating laser field recollide with the parent molecule. Based on a semiclassical model,
the electron-scattering angular distributions can be extracted from the experimental data
(which can be seen as the “unfiltered” form of the PAD, with respect to the third ingredient
in the intuitive picture outlined above). We will demonstrate that along the stretching of
the molecular bond, a prominent molecular shape resonance is detuned and a well-known
atomic shape resonance appears, which can be seen as an immediate probe of the molecular
potential evolving into an atomic one.
In Chapter 4, we will try to go even one step further: photoelectron scattering at low energies

(say, <20 eV) can typically only be modeled and understood on a quantum-mechanical level
of treatment. At higher photoelectron kinetic energies, when the de-Broglie wavelengthb

of the electrons becomes as small as the interatomic dimensions, a much simpler picture
can be used to interpret the PADs. This is particularly true when photoionization occurs in
a core shell, where the bound electrons are highly localized at an atomic site: then, this
specific atom can be pictured as a point emitter of an outgoing photoelectron wave, and the
photoelectron scattering reduces to spherical scattering at the positions of the other atoms,
so that in total a classical wave-interference model can be used to predict the PADs. To
reach the photon energies required for this so-called time-resolved core-shell photoelectron
spectroscopy (>100 eV) we make use of the soft x-ray radiation from a free-electron laser. With

b The de-Broglie wavelength _ is the wavelength of the matter wave that is associated with a moving particle. It
is defined as _ = ℎ/>, where ℎ is the Planck constant and > is the particle’s momentum.
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this radiation the excited-state dynamics of two halomethanes are investigated in Chapter 4.
It turns out that the electronic relaxation manifests on significantly different time scales for
photoelectrons as opposed to -ions, which emphasizes the great potential that time-resolved
core-shell photoelectron spectroscopy shows for investigating ultrafast dynamics in molecules.
Overall, we will show in Chapters 2 and 3 that shape resonances largely determine the

photoelectron scattering dynamics at low photoelectron energies, and that these resonances,
properly taken into account, can reveal a lot of insight into the shape of the molecular potential.
In Chapter 4, we will demonstrate what progress has been made in bringing together time-
resolved photoelectron spectroscopy with core-shell photoionization, both of which are well
established fields of research in their own rights, after which we will give a perspective upon
what remains to be done.
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Chapter 1

Fundamentals

In this chapter, the central concepts and quantities are introduced that are necessary to follow
the discussion of angle-resolved photoionization experiments, here and in the literature. In
the first section on photoelectron spectroscopy with ionizing radiation, Section 1.1, we follow
Berkowitz1 in his presentation of the material, who certainly has to be credited with giving one
of the most comprehensive treatments of the subject. We then continue by presenting a very
brief introduction to scattering theory, Section 1.2, which is a key ingredient to interpreting
the angular distributions of photoelectrons. When dealing with molecules as opposed to
single atoms, another such ingredient is the relation between the photoemission from a
molecule that is fixed in space (which is the most natural way to think about this process)
to that in an ensemble of molecules that rotate in space (which is what they always do).
As soon as this relation is established at the end of Section 1.3, most of what is required
to rationalize the angular distributions of photoelectrons in the single-photon ionization of
molecules is covered. When, instead, an atom or a molecule is exposed to a slowly varying,
intense laser field, single-photon ionization is impossible as the radiation frequency is too
low, but photoionization can still proceed through multi-photon ionization, which leads to
a number of features in the photoelectron spectra unknown in single-photon ionization. By
taking into account the electron–laser-field interactions explicitly, characteristic features in
the photoelectron spectra from this so-called strong-field ionization can be understood. The
two central processes that lead to these features, above-threshold ionization and the presence
of high-energy, elastically rescattered electrons, are discussed in Section 1.4.

1.1 Photoelectron spectroscopy

As a starting point, we introduce photoelectron spectroscopy as the photoionization of a
gaseous sample by ionizing vacuum UV or x-ray radiation, where the absorption of a single
photon at a time dominates, which is the simplest case conceptually. In such a photoionization
experiment, two observables are of fundamental importance: the kinetic energies of the
ejected photoelectrons, which encode the energy-level structure of the ionized target, and the
photoionization cross sections associated with these energy levels. Formally, we can write
such a single-photon photoionization event as

M
~l
−−−→ M 5

+ + e− (n5 ) , (1.1)

where " denotes the molecule in some initial, neutral state and ~l is the photon energy
of light with angular frequency l. Through the ionization, the molecule can – in principle
– end up in any of the molecular ionic states Mf

+ that are energetically accessible, ejecting

7



8 Fundamentals

a photoelectron with kinetic energy n5 . In direct photoemission,a the photoelectron kinetic
energy n5 is simply determined through conservation of energy as the difference between the
binding energy of the bound electron +5 and the photon energy, i. e.,

n5 = ~l − +5 . (1.2)

Here we use the terms “binding energy” and “ionization potential” interchangeably. Strictly, +5
is the difference between the total energies of the final (ionic) and the initial (neutral) states.
If, however, the final state can be reasonably well described by only eliminating one electron
from one of the molecular orbitals, +5 can be identified with the energy that is required to
remove an electron from that orbital, namely the binding energy. This simplified way of
conceiving photoionization is referred to as the single-particle picture, and we will describe
photoionization processes in terms of this picture wherever possible. From Eq. (1.2) it is also
clear that, for a final state to be energetically accessible for photoionization, its associated +5
must be smaller than the photon energy.
To see the significance of the cross section, consider an attenuation experiment, in which a

beam of monochromatic light with angular frequency l and incoming intensity �0 propagates
through an isotropic, gaseous medium along the H axis. Within every infinitely thin slice dH
along the propagation, the impinging intensity � is reduced through absorption by a fraction
d� that is proportional to �, i. e.,

− d� = ftot(l) #0 � dH , (1.3)

where #0 is the number density of atoms or molecules per volume and fB=B(l) is the total cross
section at frequency l. Solving the above differential equation readily yields the celebrated
Lambert–Beer formula,

�(H) = �0 e−ftot(l) #0 H , (1.4)

which states that the intensity of the penetrating light beam decays exponentially with
penetration depth. From Eq. (1.4) it is also clear that the units in the exponent need to cancel
each other to equate an intensity on the left with an intensity on the right-hand side. As H has
the dimension of a length and #0 the dimension of an inverse volume, the cross section must
be an area. It is common to report photoionization cross sections in units of “barn”, where
1 b = 1 × 10−24 cm2. Typical valence-shell cross sections are on the order of a few megabarn.

Even though the above derivations were made for a continuous light source, they are still
valid when working with ultrashort XUV pulses. For such a pulse, we first assume that the
spatio-temporal shape of its electric-field component E(x, B) along the laser propagation vector
k! can be written as2

E(x, B) = �0 n̂ �(lB − k!·x) cos(lB − k!·x + q) , (1.5)

where l is now referred to as the carrier angular frequency, n̂ is the polarization vector of the
electric field, x =

(
F G H

)
is a position vector, and �(lB − k!·x) is a non-negative envelope

function whose maximum value is normalized to unity, so that �0 is the peak electric field
strength. The additional phase q is referred to as the carrier-envelope phase (CEP) that plays

a As opposed to sequential multi-electron emission processes, like Auger ionization, in which a second photoelec-
tron is emitted from the highly excited core-hole state that is formed in direct photoemission.



1.1 Photoelectron spectroscopy 9

an important role when working with few-cycle laser pulses. As we have not employed such
short pulses, we typically ignore the CEP. Note that a pulse of the form in Eq. (1.5) is spatially
uniform in the plane perpendicular to the laser propagation axis. Then, the cycle-averaged
intensity profile �(x, B) of E(x, B) along the propagation direction is given by3

�(x, B) =
1
2
2 Y0 �

2
0 �

2(lB − kL · x) , (1.6)

where 2 is the speed of light and Y0 is the vacuum permittivity. Introducing a function �(x)
that describes the beam profile of the laser pulse, the total pulse energy is given by

, =

∫∞
−∞

∫
%

�(x) �(x, B) dx dB , (1.7)

where the spatial integration is carried out over a cross-sectional plane % perpendicular to the
propagation direction.
If the spectrum of the pulse is sufficiently monochromatic, the number of photons in a

laser pulse is just the pulse energy, divided by ~l (when it is not monochromatic, as in a
higher-harmonics comb, which is introduced in Section 1.4, we have to determine the fraction
of spectral energy in a narrow wavelength band first). Further, if the intensity �(x, B) is low
enough to only enable light–matter interactions that are linear in �, then, in Eq. (1.4), �0 and
� can be replaced by the incident and transmitted number of photons, respectively. When
we assume that one photon absorbed leads to one electron emitted, the difference between
incoming and transmitted photons is the number of photoelectrons generated from a single
pulse, and the photoelectron count rate is that number times the repetition rate.
Strictly, the total cross section ftot is the sum of a number of partial cross sections f 5 , i. e.,

ftot(l) =
∑
5

f 5 (l) , (1.8)

where the sum runs over all final states that are accessible at the given photon energy, as
discussed above. At the same time, the partial cross sections determine the count rates of
each of the discrete photoemission transitions at the energies n5 in the same way as shown
above, which is how the photoelectron spectrum takes its shape.
Microscopically, the partial cross section is proportional to the absolute square of the dipole

transition matrix element between the #-electron initial state |7〉 and the total final state�� 5 n5 〉, which is the product of the (# − 1)-electron ion state and the wave function of the
electron escaping with kinetic energy n5 , i. e.,

f 5 (l) =
4π242l

2

#∑
8=1

�� 〈 5 n5 ��n̂ · x8��7〉��2 , (1.9)

where 4 is the elementary charge. Further, x8 =
(
F 8 G8 H 8

)
is the position of the 8-th electron,

and the sum runs over all # electrons in the molecule. The derivation of Eq. (1.9) is a little
involved and we only want to give a very brief account of it here as it may help in understanding
the generalization from the single-photon to the multi-photon ionization regime, which is
introduced later in Section 1.4. For details, we refer the interested reader to the literature.4,5

Consider an electron at position x moving with momentum p. In the absence of any radiation
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field, its kinetic energy is just ) = p2/2;4, where ;4 is the electron mass. If the radiation
can be described by a plane wave with wave vector k! and frequency l, the electron is
accelerated in the electric field, and this acceleration can be described by the instantaneous
vector potential A(x, B) = �0 n̂ ei(k! ·x−lB) of the wave, which is defined such that E = −dA

dB .
Consequently, in the expression for the kinetic energy, the canonical momentum p has to be
replaced with the kinematic (or kinetic) momentum 0 = p+ |4 |

2
A,b so that, in the presence of

an electromagnetic field, the kinetic energy reads

) =
02

2;4

=
1

2;4

[
p2 +

2|4|
2

A · p +
( 4
2
A
)2

]
=  + �int . (1.10)

The first term in Eq. (1.10) is just the field-free (and, hence, interaction-free) kinetic energy,
which we denote from here on as  = p2/2;4. The other two terms together are referred to
as the interaction Hamiltonian �int. The third term is of second order in A, which means that
– in the weak-field, single-photon regime – we can safely neglect it (which will not be the
case in the strong-field regime). Consequently, the interaction between the initial and final
states must be governed by the second term. Now – according to first-order, time-dependent
perturbation theory – the transition rate between the two states turns out to be independent of
time and to be proportional to

�� 〈 5 n5 ��p · n̂ �0 ei(k! ·x)
��7〉��2. Now, in the last – and maybe most

important step – ei(k! ·x) is expanded around x =
(
0 0 0

)
, which yields the series

ei(k! ·x) = 1 + i(k!·x) −
1
2
(k!·x)2 . . . , (1.11)

which shows that, as long as k!·x � 1, the exponential term can be replaced by unity.
This is known as the dipole approximation, and the resulting interaction matrix element�� 〈 5 n5 ��p · n̂��7〉��2 is said to contain only electric dipole (E1) transitions. For the photoionization
of molecules with XUV and soft x-ray radiation, applying the dipole approximation is typically
well justified, and, throughout this thesis, we will always assume that it does hold. To support
this, note that, for the valence-shell molecular orbital of a small molecule, x will be, at most,
on the order of a few Ångstrom, whereas the wave vector of an 100 eV photon, for instance,
is roughly 0.05Å

−1
. If, however, x becomes very large (as in Rydberg states) or k! increases

(as with photons in the keV range), the dipole approximation breaks down, and then electric
quadrupole (E2) and magnetic dipole (M1) transitions may contribute significantly, which
are contained in the k!·x term of Eq. (1.11).
Eventually, applying the derivation outlined above properly to an #-electron system, we

obtain an expression for the partial cross section f 5 , which is

f 5 (l) =
4π242

;2
4 2l

#∑
8=1

�� 〈 5 n5 ��n̂ · p8��7〉��2 . (1.12)

Note the difference between the above equation and Eq. (1.9): one contains the matrix element
of the position operator x8 and the other one that of the canonical momentum p8. These

b The difference between the canonical and kinematic momentum is that the latter describes the instantaneous
momentum of the electron, whereas the former is a conserved quantity in the electron–laser interaction because
the time integral of A(x, B) over an integer number of optical cycles is zero.
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forms are referred to as length gauge (LG) and velocity gauge (VG), respectively. Formally,
one can prove that the cross sections in the length and velocity form are identical,6 given
that the initial and final state wave functions are exact eigenfunctions of an exact molecular
Hamiltonian; then, the cross sections in these two gauges take the same value. Practically,
however, one will have to resort to various approximations for both the Hamiltonians as well
as their respective eigenfunctions. Under these circumstances, the results in the two gauges
will typically (but not always!)5 differ, and the magnitude of the difference can be seen as an
estimate of the minimum error in a photoionization calculation.7

What is rather formidable about the expressions for the partial cross sections, Eq. (1.9)
and Eq. (1.12), is that they involve all # electrons. There is, however, a straightforward way
to approximate the dipole transition of an electron into the continuum through an effective
single-electron expression,8 using the generalized overlap amplitude between the initial and
final state 6(x), which is also known as a Dyson orbital, i. e.,

6(x) =
√
#

∫
dx2 . . . dxN Ψ#−1(x2, . . . xN)∗Ψ#(x1, x2, . . . xN) , (1.13)

where Ψ#−1 and Ψ# denote the wave functions of the ionic and neutral states, respectively.
In this approximation, the partial cross section is given by a one-electron integral, namely

f@ ∝ | 〈kk(x)|n̂ · x|6(x)〉|2 , (1.14)

where the superscript @ denotes the length gauge,c but the velocity gauge could have been
used, as well. The other single-particle wave function, kk(x), is the solution for an electron
moving in the potential of the (# −1)-electron ion with (canonical) momentum 9 =

√
2;n5/~.

This is where the connection between photoionization and electron scattering is revealed
because, unless kk(x) is just assumed to be a plane wave, the Schrödinger equation for an
electron scattering off the parent ion has to be solved in some way, which will be the subject
of the next section.
The most straightforward way to obtain an approximation to the Dyson orbital 6(x) is

the so-called frozen-orbital approximation, which we will always use in this thesis. If the
same orbitals are used for the neutral and ionic states, 6(x) is just identical to the orbital
that the electron is ejected from, which establishes the correspondence between the intuitive,
single-particle picture of photoionization introduced above and the most straightforward
theoretical description of it.
The observables that have been introduced up to this point are all angle-integrated quantities.

A closer look at Eq. (1.14) reveals that, depending on the exact shape of the outgoing
photoelectron’s wave function kk(x), we can – in general – not expect the cross section f
to be spherically isotropic, which means that it depends on the emission direction of the
photoelectron. Furthermore, an important difference between molecules and atoms is that, in
molecules, also 6(x) is typically not spherically symmetric, so that fmust also explicitly depend
on the angle between the polarization axis n̂ and the principal molecular axis. To be able to
describe the shape of kk(x), we will introduce some basic concepts from scattering theory in
the next section, before we return to the problem of photoelectron angular distributions in
molecules in Section 1.3.

c Here, @ stands for radius because later the cross sections will be rewritten in terms of radial integrals.
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1.2 Elements of scattering theory

Here, we try to give a very brief account of the central concepts of scattering theory that are
key to understanding the most prominent phenomena in (photo-)electron scattering, like
shape resonances. As a first step, consider the prototypical, text-book scattering experiment
where a particle scatters off a short-range potential +(x) that is located at the origin of the
coordinate system. Formally, a potential is defined as being short-ranged if it falls off faster
than 1/@ at infinity, with @ being the radial distance from the origin. The conceptually simplest
scattering event is the totally elastic collision, in which only the direction, but not the absolute
value of the scattered particle’s momentum changes, and we will restrict the discussion to
this case, only. In a classical picture of (elastic) scattering, the impinging particle flies in
from the negative H direction with momentum 9 and is deflected through the interaction
with the potential +(x), after which it flies away under some angle, but still with momentum
9. Now, in the quantum-mechanical treatment, it is not a discrete particle that collides, but
an incoming matter wave, and one has to find the wave function kk(x) that satisfies the
Schrödinger equation of the scattered particle (setting ~ = 1 from here on),[

−
Δ

2;
+ +(x)

]
kk(x) = n kk(x) , (1.15)

where Δ is the Laplace operator and 9 =
√

2;n. It turns out that one can find a stationary
solution9 for kk(x), which asymptotically behaves like

kk(x) ∼
@→∞

ei k ·x + 5 (\,q)
ei 9 @

@
, (1.16)

with \ and q being the polar and the azimuthal angles of the polar coordinate system, whose
polar axis we conveniently define to be parallel to the Cartesian H axis and, therefore, also
to be parallel to k. The asymptotic form shown in Eq. (1.16) has an appealing, intuitive
interpretation: asymptotically, kk(x) is just the sum of a plane wave, which is incoming and
outgoing, plus an outgoing spherical wave, which results from the scattering process and
which is modulated in its angular distribution by the so-called scattering amplitude 5 (\,q).
What is most important is that 5 (\,q) entirely determines the probability for an incoming
particle to be scattered into the solid angle dΩ = dq sin \ d\, and this probability is referred
to as the differential cross section df /dΩ = | 5 (\,q)|2, often abbreviated as DCS.d

Certainly, the most common and most powerful way to solve the Schrödinger equation
Eq. (1.15) is to rewrite it in spherical coordinates, which, in general, yields a set of coupled
differential equations. The reasoning behind this is that kk(x) can always be expanded in a
series of functions, which are themselves products of a radial function 5;

:
(@) and an angular

function .;
:
(\,q), i. e.,

kk(x) =
∞∑
:=0

:∑
;=−:

0;: 5
;
: (@).

;
: (\,q) , (1.17)

d Note that the scattering cross section is different from the photoionization cross section, even when both are
typically denoted as f. We found this convention too iconic to break with it, and hope that, the way the material
is organized, the two can never be confused.
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an approach that is known as the partial-wave expansion of the scattering wave function. The
functions .;

:
(\,q) in Eq. (1.17) are the so-called spherical harmonics that form a complete

set of orthonormal functions, which means that they can be used to expand an arbitrary
function of \ and q as

�(\,q) =
∞∑
:=0

:∑
;=−:

5:;.
;
: (\,q) , (1.18)

where both : and ; take integer values and for every : there are (2: + 1) allowed values
for ;, running from −: to +:. Formally, the spherical harmonics are defined as the product
of a \-dependent, associated Legendre polynomial %;

:
(cos \) and a q-dependent complex

exponential term,10 like

.;: (\,q) = (−1);
√
(2: + 1)

4π
(: − ;)!
(: + ;)!

%;: (cos \) eiq; . (1.19)

The associated Legendre polynomials %;
:
(F), in turn, are derived from the ordinary Legendre

polynomials %:(F) (for details, we refer to the monograph by Edmonds10). Here, we only want
to point out that the ordinary Legendre polynomials %:(cos \) themselves from a complete set
of orthonormal functions, a property that we will use later several times. In that sense, the
spherical harmonics can be understood as a generalization of the Legendre series from one
into two angles, or – more generally – two degrees of freedom. When a problem is studied
that is of rotational symmetry around the principal axis of the spherical coordinate system,
all terms with ; , 0 vanish on the right-hand side of Eq. (1.18), which then collapses to an
ordinary Legendre expansion because %0

:
(F) = %:(F).

Coming back to the partial-wave expansion of the Schrödinger equation for the scattered
electron, let us first consider the free solution, where +(x) = 0. The set of equations for the
radial functions G:,9(@) then reads9[

d2

d@2 −
:(: + 1)
@2 + 92

]
G:,9(@) = 0 , (1.20)

for any integer : ≥ 0 and again 9 =
√

2;n. The second, :-dependent term is referred to as the
centrifugal potential for an angular momentum of :. It can be shown11 that the Riccati–Bessel
functions 8̂:(9 @) are solutions of Eq. (1.20). Not very surprisingly, the complete solution
of the free partial-wave Schrödinger equation is just a partial-wave expansion similar to
Eq. (1.17) of a plane wave (which is a solution of the same Schrödinger equation in Cartesian
coordinates),9 √

2
π

1
9 @

∞∑
:=0

:∑
;=−:

i : 8̂:(9 @).;: (k̂)
∗ .;: (x̂) = eik ·x , (1.21)

where k̂ and x̂ denote the directions of k and x, respectively. While the exact form of the
functions 8̂:(9 @) is not so important for our purpose, it is important to see how they behave
asymptotically. From Eq. (1.20) it is clear that the centrifugal term vanishes for large @, so
that the function must then behave like an ordinary sine wave. In fact, one finds that9

8̂:(9 @) ∼
@→∞

sin
(
9 @ −

1
2
: π

)
. (1.22)
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In the next step, consider an electron scattering off a central potential, which is one that is
spherically symmetric, so that the potential can be written as +(@). For a central potential,
the radial equations are still decoupled, which makes their treatment a lot easier. Then, the
radial Schrödinger equation becomes[

d2

d@2 −
:(: + 1)
@2 − 2;+(@) + 92

]
k:,9(@) = 0 . (1.23)

The radial eigenfunctions k:,9(@) that solve the above equation will, again, take the form of a
sine wave at large radii because +(@) quickly vanishes (which is what we demanded, in the
first place). More precisely, it can be shown that their asymptotic form is11

k:,9(@) ∼
@→∞

0: sin
(
9 @ −

1
2
: π + X:(9)

)
, (1.24)

where 0: is some constant. The striking difference between Eq. (1.22) and Eq. (1.24) is
the additional phase shift X:(9). One can intuitively picture the action of the potential from
the sign of the phase shift: a (net) repulsive potential pushes the partial wave out, which
corresponds to a negative phase shift, and a (net) attractive potential sucks the partial wave
in, which corresponds to a positive phase shift. What is most striking about the phase shifts
X:(9) is that the scattering amplitude 5 (\,q) that was introduced above can be obtained from
these phase shifts alone, as will be shown below.
In the example of a central potential, the scattering amplitude is cylindrically symmetric

and – for simplicity – we denote it as 5 (\), which is given by9

5 (\) =
∑
:

(2: + 1) 5:(9) %:(cos \) (1.25)

where 5:(9) is the so-called partial-wave amplitude that is defined as

5:(9) =
eiX:(9) sin X:(9)

9
. (1.26)

What is striking about 5:(9) is that it is entirely determined by the phase shift X:(9) and that
the amplitude 0: from Eq. (1.24) does not seem to appear in the definition of the partial-wave
amplitude. To understand this, recall that in the formal description of the stationary scattering
process, according to Eq. (1.16), the incoming and transmitted matter wave of the scattering
particle is written as a plane wave. The partial-wave components of this plane wave are
defined according to Eq. (1.21), by which also its partial-wave amplitudes are determined.
Through the scattering process a fraction of this amplitude (or, at most, all of it) is transferred
into the scattered spherical wave, and it is the phase shift between the transmitted and the
scattered wave that determines this fraction.
From the partial-wave amplitude, one readily obtains the angle-integrated partial-wave

cross section, f:, which is just

f:(9) = 4 π (2: + 1)
sin2 X:(9)

92 , (1.27)

from which it is clear that f:(9) reaches its maximum value for values of 9 that are half-integer
multiples of π. In other words, for X: = 0± < π (with integer <), the partial wave is completely
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transmitted, and for X: = 1
2π ± < π, it is completely scattered. Finally, the total cross section is

just the sum of the partial-wave cross sections,

ftot(9) =
∑
:

f:(9) . (1.28)

In the beginning of this section, we have introduced a short-range potential as one that
falls off faster than 1/@ at infinity. Now, it is an unfortunate fact of life that this condition
does not hold for any of the problems that are to be discussed in this thesis because both
in photoionization and laser-assisted electron recollisions the electrons interact with the
parent ion, which means that a net charge is involved, and the Coulomb potential that this
charge creates falls off just as 1/@. This means that, instead of Eq. (1.23), we have to find the
solution to the equivalent Schrödinger equation, in which +(@) can be written as the sum of a
short-range potential +A@(@) and the Coulomb potential //@ for an integer net charge /.
The solution to this problem is to define the scattering phase shifts not relative to the

partial-wave expansion of a plane wave, but relative to that of a so-called Coulomb wave,
which is the continuum wave function for an electron moving in the presence of a point charge
with charge /. Introducing the strength parameter W = −(/ 42 ;)/9, the corresponding
partial-wave expansion is12

k2 =

√
2
π

1
9 @

∞∑
:=0

:∑
;=−:

i : ei[:�:(W, 9 @).;: (k̂)
∗ .;: (x̂) , (1.29)

which differs from Eq. (1.21) only by the radial functions, which are the so-called Coulomb
functions �:(W, 9 @), and the phase factor containing [:, which is the Coulomb phase shift. This
phase shift is defined as

[:(9) = arg Γ(: + 1 + iW) (1.30)

where Γ(F) is the gamma function and arg(H) denotes the argument of a complex number.
The asymptotic form of the Coulomb functions is now

�:(W, 9 @) ∼
@→∞

sin
(
9 @ − W ln 29 @ −

1
2
: π + [:

)
, (1.31)

which emphasizes that these functions never stop to accumulate phase through the logarithmic
term, which is a consequence of the fact that the Coulomb potential does not vanish at infinity.
Now, when an additional short range potential is introduced, an additional phase shift a:(9)
appears in the asymptotic form of the radial solution function, completely analogous to the
case without a net charge that was discussed above. Just as the potential +(@) is decomposed
in the Coulomb-plus-short-range case, so is the scattering amplitude, which can be written
as the sum of the scattering amplitude for the short-range potential, 5sr, and the Coulomb
amplitude, 52. The former is given as9

5sr(\) =
1

2i9

∑
:

(2: + 1) e2i[: (e2ia: − 1) %:(cos \) , (1.32)

from which it is clear that the Coulomb phase shift always has to be taken into account when
dealing with the scattering on charged targets. The differential cross section for electron–ion
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scattering is consequently determined by the coherent sum of 5A@ and 52, i. e.,

df
dΩ
= | 52 + 5sr |

2 , (1.33)

where

52 =
2/;

(29 sin \
2 )

2
exp

[
2i

(
[0 − W ln sin

\

2

)]
, (1.34)

and [0 is the Coulomb phase shift for an Awave. Note that, the way 52 is written, the summation
over : was carried out analytically, rendering 52 independent of :. What is remarkable about
Eq. (1.34) is that the associated Coulomb-only cross section, given by

| 52 |
2 =

;2/2

494 sin4 \
2

, (1.35)

is identical to the Rutherford formula, which is the result for classical scattering of two charged
particles.
We now continue this section with a short introduction to one of the most prominent

resonance phenomena in scattering, the so-called shape resonances, which we will discuss
in several contexts in this thesis. In a shape resonance, the scattering electron is thought
to be transiently captured by the potential in an intermediate state that is not a real bound
state, but that has a finite lifetime, during which the captured electron gradually escapes.
Such a pseudo-bound state is, under certain circumstances, supported by the scattering
target through the delicate interplay of an attractive short-range potential and the centrifugal
potential :(: + 1)/@2. For a specific value of :, it may happen that an inner potential well is
formed behind an angular-momentum barrier. To see his, consider the prototypical example
of a square well potential,

+(@) =

{
−+0 if @ ≤ 0
0 if @ > 0

. (1.36)

For the parameterse 0 = 2 00 and +0 = 3 �h it is known that the resulting square-well potential
+(@) supports a shape resonance in the : = 3 channel at a resonance energy of �' ≈ 18 eV.9

In Fig. 1.1a, the effective potential, which is the sum of +(@) and the centrifugal potential,
is shown for the four lowest possible values for :. Note how the angular-momentum barrier
builds up at @ = 0 with increasing :.
To illustrate the barrier-penetration mechanism, we show the radial wave functionf in

Fig. 1.1b, for three different energies in the : = 3 channel: below, right at, and above the
resonance energy �'. Clearly, for n = �', the wave-function value is strongly increased inside
the inner potential well, whereas at lower energies, the wave function cannot penetrate the
angular-momentum barrier, and at energies higher than �', the wave-function value inside
the well is just as high as outside of it.

e To simplify the notation, we work in atomic units from here on, in which ;4 = 4 = ~ = 00 = 1. Here, 00 is the
so-called Bohr radius, which corresponds to the radius of the electron orbit in the ground state of hydrogen
according to the classical Bohr model of the atom. In atomic units, energy is measured in Hartrees, with
1 Ha = 1 �h = 27.2114 eV.
f The results of this section were obtained with a modified version of the potential scattering code written by
Bartschat,13 which is distributed with every copy of this text book.
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Figure 1.1 Potential scattering at a square-well potential. a) Effective, :-dependent potential for the
square-well +(@). b) Radial wave functions for : = 3 and three different energies: One below (blue),
one closely at (orange), and one above (red) the resonance energy �'. The effective potential for : = 3
is shown in light gray, as well. Note that the abscissas of a and b are scaled differently.

Figure 1.2 Scattering phase shifts X: (a) and cross sections f: (b) for scattering on the effective
potentials of Fig. 1.1a, as a function of scattering kinetic energy.

To verify the presence of a shape resonance, one has to investigate the energy dependence
of the scattering phase shifts. It turns out that such a resonance always manifests itself as a
sudden energy-dependent, positiveg phase jump of ≈ π. This is exactly what is found for X3,
as can be seen from Fig. 1.2a, where the energy dependence of the scattering phase shifts is
shown for the angular momenta 0 through 3.
From the fact that the partial-wave cross sections in Eq. (1.27) exhibit a periodicity of πwith

respect to variations in 9, one can derive that, at the resonance, the cross section must vary
rapidly. The exact shape depends on the interference of the resonance with the background
phase shift,9 which is the scattering phase shift that one would obtain if the resonance was
absent. From Fig. 1.2a it is clear that X3 is essentially zero before the phase jump, which is
why the resonance shows up as a pronounced maximum in the scattering cross section, which

g This must be the case because the inner potential well is an attractive potential that sucks the partial wave in,
which, in turn, leads to a positive phase shift, as discussed above.
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can also be clearly distinguished in the total cross section, as demonstrated in Fig. 1.2b.
Concluding this section, we want to briefly outline what happens, when one is faced with

treating the scattering of electrons on actual molecules as opposed to spherically symmetric
model potentials: the biggest difference is that the Schrödinger equations of Eq. (1.23) are
not decoupled anymore, so that the angular momentum : is not conserved during scattering.
We note, however, that this angular-momentum coupling is not completely arbitrary and that,
if the target is of high symmetry, which is often the case with small molecules, a symmetry-
adapted basis set can be devised, in which only partial waves of like symmetry couple.14 As a
consequence of this coupling, the scattering phase shifts X: alone are not sufficient to describe
the scattering amplitude and hence the cross section. Instead, the scattering ( matrix is
introduced, which connects the incoming partial waves of angular momentum : to all outgoing
partial waves of angular momentum :′. In that sense, the ( matrix for the scattering on a
central potential just takes a special form: it becomes diagonal, with diagonal entries9

A:(9) = e2iX:(9) . (1.37)

Shape resonances can be observed in molecules as well,15 but from the ( matrix itself
it is not clear, how they can be uniquely identified. To achieve this, the ( matrix is first
diagonalized,

S = Ue2i%̃ U† (1.38)

where U is a unitary matrix, and %̃ is the diagonal matrix with matrix elements X̃:, which
are referred to as eigenphases. Now, while the individual eigenphases tend to show a very
complicated behavior,16 the eigenphase sum, i. e., the sum of eigenphases associated with the
same continuum symmetry, often reveals a phase jump similar to the one shown in Fig. 1.2a,
a fact that we will make use of later.
A powerful way to rationalize what shape resonances are and how they can be characterized,

is to see how they can be described as poles of the ( matrix in the complex energy plane. In
general, the ( matrix is clearly a function of the scattering energy �, and when one allows
� to take complex values, ( may go to infinity at certain points in the lower imaginary half
plane.9 These points can be written as �' − iΓ/2, where �' is again the resonance position on
the real energy axis and Γ is the width of the resonance. To see how such a pole affects the
behavior of the phase along the real energy axis, consider the phase portrait arg 5 (�) of the
function 5 (�) = 1/(�−(�' − iΓ/2)), shown in Fig. 1.3a, with the shape-resonance parameters
of the above square-well example.h According to Cauchy’s integral formula, a total phase of
2π is accumulated on a closed line that contains the pole. Qualitatively speaking, going from
−∞ to∞ on the real energy axis, only half a circle surrounds the pole, which corresponds to
half the phase accumulated, which is just π. This is the reason for the characteristic phase
shift of ≈ π observed at shape resonances. Furthermore, once the exact pole position of the
resonance is found, the scattering wave function can be evaluated at that complex-valued
energy, which is the pure resonance wave function without interference with the background
phase shift. This can be helpful in analyzing the effect that the shape resonance may have on
the (photo-)electron angular distributions.

h For 5 (�) this particular form is chosen because it represents the simplest function that has a single, simple pole
at the complex-valued resonance energy �' − iΓ/2.
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Figure 1.3 Illustration of a pole of the ( matrix in the complex energy plane. a) Phase portrait of
the function with a simple pole, 5 (�) = 1/(� − (�' − iΓ/2)), where �' = 18 eV and Γ = 4.6 eV.
The shading that is superimposed onto the color scale is intended to emphasize the circular phase
accumulation that the pole introduces. In particular, it helps illustrating that the phase jump as seen
from the real energy axis is the steeper, the closer the pole is located to this axis (and, hence, the
smaller Γ is). b Effect of the pole on the phase behavior along the real energy axis.

1.3 Photoelectron angular distributions in molecules

After the discussion of the scattering angular distributions in the previous section, it would be
very surprising if the differential cross sections for photoionization, which are often called
photoelectron angular distributions (PADs), were always isotropic. Experimentally, one
observes that the PADs always exhibit cylindrical symmetry when linearly polarized light is
used, and therefore the differential cross sections for photoionization are written in terms of
the Legendre series of the so-called beta parameters V:,

df
d\
=
f 5

4π

(
1 +

∑
:

V: %:(cos \)

)
. (1.39)

What is remarkable about the single-photon ionization of atoms is that all V: vanish except
for : = 2 (which is why V2 is commonly referred to as the beta parameter, only). What is
even more remarkable – and not at all obvious – is that this is also true for molecules that are
randomly oriented in the gas phase.
To explain and generalize this finding, we proceed in two steps: First, consider again the

dipole matrix element for photoionization,

〈kk(x)|d|6(x)〉 , (1.40)

where kk is the continuum wave function for the electron–molecular-ion scattering problem
discussed above,i d is a dipole operator (in length or velocity gauge) and 6(x) is some overlap

i We note that, strictly, the continuumwave functions in electron–ion scattering on one side, and in photoionization
on the other, have different asymptotic boundary conditions,17 a technical detail that need not worry us here.
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amplitude or Dyson orbital that the photoelectron is ejected from. To systematically treat
the spectroscopic observables of rotating molecules, we need to distinguish two frames of
reference: the molecular frame (MF) and the laboratory frame (LF). The molecular (or
body-fixed) frame is defined such that all observables, like the PAD, are given with respect
to a coordinate system that has a fixed relation to the internal coordinates of the molecule,
and this frame of reference does not need to coincide with the laboratory (or space-fixed)
frame, in which the photoelectron is detected. To distinguish these two frames, we will use
primed variables to denote quantities in the LF and unprimed variables for the MF from here
on. Moreover, we follow the convention to take the Cartesian H axis in the MF to be aligned
along the principal molecular axis.
In the previous section, we have introduced the partial-wave decomposition of the continuum

wave function, and now we can proceed to decompose the photoionization dipole matrix
element in just the same way.18 Writing the usual photoionization dipole matrix elements as

�@ =
√
9 〈kk(x)|n̂ · x|6(x)〉 (1.41a)

and

�∇ =

√
9

l
〈kk(x)|n̂ · p|6(x)〉 (1.41b)

with the superscripts @ and ∇ denoting the length and velocity form, respectively, and l
being the radiation frequency, the partial-wave decomposition is just

�@,∇ =

√
4π
3

∑
:;`

�
@,∇
:;`

.;: (k̂)
∗ .

`

1 (n̂)
∗ . (1.42)

In this equation, k̂ is the direction of the emitted photoelectron and n̂ is the orientation of the
polarization axis in the molecular frame. The partial-wave photoionization matrix elements
�
@,∇
:;`

are then given by18

�@:;` =
√
9
〈
k:;,k

��r`��6〉 (1.43a)

and

�∇:;` =

√
9

l

〈
k:;,k

��∇`��6〉 (1.43b)

both of which are now radial integrals between the partial-wave radial functions of the
continuum and the bound-state wave functions (where the latter has to be expanded into
such a representation first, of course), and the r` as well as the ∇` are so-called vector
spherical harmonics,10 which are used to represent the (Cartesian) dipole operator in spherical
coordinates. The index ` denotes the Cartesian axis that is projected, where ` = 0 represents
the dipole along the H axis, and ` = +1,−1 correspond to the F and G axes, respectively (all
in the MF).
Now that we know how the photoionization process is formally described in the molecular

frame, the question remains what happens, when the molecule is being rotated with respect
to the laboratory frame (LF) in which we measure the emitted photoelectron,j which is the

j The laboratory frame is also referred to as the photon frame19 because the polarization axis is defined in the
laboratory frame.
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Figure 1.4 Rotations of a molecule under the Euler angles to realize any possible orientation of it in the
laboratory frame. First, the molecule is rotated around the space-fixed polar axis by the angle U (a).
Then this polar axis is tilted by the angle V (b). Third, the molecule is rotated around the body-fixed
polar axis by the angle W (c).

second step. In general, a non-linear molecule has three degrees of rotational freedom: the
two external rotations around the polar and azimuthal angles in the LF, and the internal
rotation around its principal molecular axis. (A linear molecule only has two such degrees of
freedom because there is no internal rotation possible.)
Consequently, we need to define three angles to describe any possible orientation of the

molecule in the LF. These angles are called the Euler angles, and we denote them as R =(
U V W

)
. In Cartesian coordinates, rotations under the Euler angles are expressed by the

threefold application of the rotation matrices around the Cartesian axes H—F ′—H′′ (see
Fig. 1.4), written as10

©­«
cos W − sin W 0
sin W cos W 0

0 0 1

ª®¬ ©­«
1 0 0
0 cos V − sin V
0 sin V cos V

ª®¬ ©­«
cosU − sinU 0
sinU cosU 0

0 0 1

ª®¬ ©­«
F

G

H

ª®¬ = D(0 0 W)D(0 V 0)D(U 0 0) x

= D(R) x = x′ . (1.44)

The application of these matrices transfers a point x =
(
F G H

)
to the point x′ =

(
F ′ G ′ H′

)
within a coordinate system rotated by the Euler angles. Moreover, we can use the rotation
matrices to express the rotation of spherical harmonics between different coordinate systems.
To this end, we need the matrix elements of the rotation operator D(R) in the angular
momentum basis,10

〈:;|D(R)|:;′〉 = D:
;′;(R) , (1.45)

where |:;〉 is the spherical harmonic .;
:
(\,q) in the more general vector-space notation,

and D:
;′;
(R) is a matrix element of the so-called Wigner � matrix. We find the following

interpretation of the Wigner � matrix most intuitive: Just as the spherical harmonics can be
understood as a generalization of Legendre series from one into two dimensions, the Wigner
� matrix can be seen as a generalization of the spherical harmonics from two into three
dimensions, namely the three Euler angles. As mentioned above, the Wigner � matrix can
be used to express the rotation of the spherical harmonic of angular momentum : as a linear
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combination of the (2: + 1) spherical harmonics of like : and all allowed values for ;, as19

.;: (x̂
′) =

∑
;′

D:
;′;(R).

;′

: (x̂) , (1.46)

where x̂′ and x̂ denote again the directions of x′ and x.
Finally, to be able to average over all possible orientations of a molecule in the LF we need

to know how to integrate over these rotations. Analytically, this can be done with the help of
the so-called vector-coupling coefficients, for which there are – unfortunately – numerous
definitions and conventions10 in the literature. The two most commonly encountered coupling
coefficients are the Clebsch–Gordan coefficients and the Wigner 38 symbols, which are related
to each other through a phase factor and a normalization constant. Here we will work with
the 38 symbols, which are written as (

:1 :2 !

;1 ;2 "

)
, which suggests that the sum of two angular momenta, |:1;1〉 and |:2;2〉, is expressed
in the basis of a total angular momentum, namely |!"〉. An intuitive way to understand
the meaning of the coupling coefficients is to see that they arise as integrals between three
Wigner � matrices,10∫ 2π

0

∫ π

0

∫ 2π

0
D
:1
;′1;1
(R) D:2

;′2;2
(R) D:3

;′3;3
(R) dU sin V dV dW

= 8π2
(
:1 :2 :3
;′1 ;′2 ;′3

) (
:1 :2 :3
;1 ;2 ;3

)
. (1.47)

Equivalently, the vector-coupling coefficients can be used to re-express the product of two
Wigner � matrices in a coupled angular-momentum basis (hence the name), which is, for
example, vital to describe the interaction between a space-fixed polarization axis and the
rotating molecular axis in the LF. This re-expansion is then

D
:1
;′1;1
(R) D:2

;′2;2
(R) =

∑
!"′"

(2! + 1)
(
:1 :2 !

;′1 ;′2 " ′

)
D!∗
"′"(R)

(
:1 :2 !

;1 ;2 "

)
. (1.48)

To be able to draw some conclusion from the formidable vector-coupling equations that one
encounters in the literature, one has to know the conditions for which the angular-momentum
coupling coefficients can be nonzero. The first one is known as the triangular condition,

|:1 − :2 | ≤ ! ≤ :1 + :2 . (1.49)

Second, the projection onto the H axis must be conserved, which implies,

;1 + ;2 = −" . (1.50)

A third condition, which only applies to the special case ;1 = ;2 = " = 0, is that the sum
:1 + :2 + ! be even for the coefficient not to vanish. Clearly, all three conditions have to be met
(the third one only if it applies), for a 38 symbol to be possibly nonzero.
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With all this in mind, we can now turn to the expressions for the photoelectron angular
distributions. First, we consider photoemission from a molecule that is fixed in space. In this
case, the differential cross section is actually doubly differential because it is parametrized
by R, which describes the relative orientation between the polarization axis and the (fixed)
principal molecular axis in terms of the Euler angles. The respective PAD can be written – and
that should be not surprising – as a series of spherical harmonics,19 i. e.,

df(R)
dΩ

=
4π2l

2

2:∑
!=0

!∑
"=−!

�!"(R)."! (Ω) (1.51a)

where
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∑
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×
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(2!` + 1)
(

1 1 !`
−;` ;′` 0

) (
1 1 !`
−` `′ ` − `′

)
D
!`
`−`′,0(R) . (1.51b)

What can be seen from Eq. (1.51) is that the highest-order partial wave that can contribute
to the PAD is that of ! = 2: (with the limiting coefficients being those on the second line of
the expression for �!"(R)). This is, in turn, a consequence of condition (1.49), and a fact
that already Dill20 has discussed.
Now, by integrating Eq. (1.51a) over all molecular orientations R analytically, one arrives

at the following expression

df
d\′
=

πl

32

∑
!

�! %!(cos \′) (1.52a)

with
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, (1.52b)

where \′ denotes the polar angle in the laboratory frame. Here, right from the first 38 symbol,
together with conditions (1.49) and (1.50), it is clear that the only values of ! for which
�! does not vanish are zero and two. In other words, it is the angular momentum of the
photon (: = 1) that is coupled with itself (through the square) to the LF, which gives rise to
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the observation that the PAD for a randomly oriented ensemble is completely characterized
by f ∝ �0 and V2 = �2/�0.
Underwood & Reid21 have investigated the situation where the molecular axis distribution

%MA(R) is not uniform, which is the case when the molecules are aligned or oriented by
some technique. The straightforward approach to dealing with this situation is to integrate
df(R) /dΩ numerically over %MA(R).k However, from the equations that Underwood & Reid21

have derived, one can estimate what the maximum : is that one would expect to be sensitive
to when measuring the PADs for an aligned ensemble. If we assume that the internal rotation
of the molecule (related to the angle W in Fig. 1.4) is unconstrained, the molecular axis
distribution %MA can be expanded in spherical harmonics, just like in Eq. (1.18), i. e.,

%MA(U, V) =
∞∑
 =0

 ∑
&=− 

� &.
&
 (U, V) , (1.53)

and then, if  ;0F is the highest coefficient that gives a significant contribution to the above
expansion (what “significant” in this context means certainly depends on the sensitivity of the
experiment, but say � ;0F& ≈ 1), the maximum V: that can in principle be observed is V +2.

1.4 Photoionization in strong laser fields

Up to this point we have only discussed photoionization with a single photon of ionizing
radiation. However, atoms and molecules can also be ionized by radiation in the visible and
infrared region if the intensities are high enough, which becomes possible with ultrashort laser
pulses. Then the linear regime of light–matter interactions that was introduced in Eq. (1.3)
is completely overthrown and #-photon processes dominate. In general, two pictures are
commonly used to think about these multiphoton processes: in a photon picture, where the
laser pulse is viewed as a packed bunch of photons, a high intensity corresponds to a high
photon flux which implies a high spatial density of photons. Consequently, the probability
for “finding more than one photon” at a molecule at the same time increases with intensity,
making the interactions with more than one photon possible. Now, if the sum of photon
energies absorbed exceeds the ionization potential, multiphoton ionization can occur. When,
instead, the light pulse is pictured as an electromagnetic wave, the peak electric field strength
of this wave increases with intensity to a point, where it becomes comparable to the electric
fields that hold together electrons and nuclei. In this field picture, the atomic potential is
distorted by the radiation to a point where electrons can escape by tunneling through – or
passing directly over – the barrier. To get an estimate of what intensities are required to
impose such vigorous conditions, consider the electric field that an electron in a hydrogen
atom experiences at the first Bohr radius 00, namely2

�0 =
4

4 π n0 0
2
0
≈ 5.1 × 109 V cm−1 , (1.54)

k Which is what we do later in this thesis. Note however that, in order to do so, one more rotation has to be
applied to Eq. (1.51) such that the polarization axis is fixed in space and that it is the molecule that rotates
under R.
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where n0 is the vacuum permittivity. Calculating the intensity that corresponds to such a field
strength, it turns out that this “atomic intensity” is

�0 =
1
2
n0 2 �

2
0 ≈ 3.5 × 1016 W/cm2 . (1.55)

Practically, one will find that multiphoton ionization sets in already a few orders of magnitude
below �0, typically around 1011 to 1012 W/cm2, depending on the ionization potential of the
target.
In the strong-field ionization of matter, many new phenomena can be observed that have

no correspondence in single-photon ionization. Among these, the three most prominent
are above-threshold ionization (ATI), laser-assisted electron recollisions, and high-order
harmonic generation (HHG), all of which will play a role at some point in this thesis. Another
striking difference between single- and multiphoton processes is that, in the former, the
electromagnetic radiation is thought to interact only with the bound electrons and not at all
with the photoelectron after its liberation. In strong-field processes, this situation is reversed:
here, often the interactions between the light field and the photoelectron are the dominant
effects. One quantity that is particularly important in this context is the ponderomotive
potential,

*> =
42�2

0

4;l2 (1.56)

where �0 is the peak electric field strength. The ponderomotive potential is an effective quiver
energy that the photoelectron gains during its periodic acceleration in the light field.
Above-threshold ionization is the name for the observation that in strong-field ionization

with light of the frequency l typically not a single photoelectron line appears, but rather a
series of lines that are spaced by ~l. Then, the equation for the photoelectron kinetic energy,
Eq. (1.2), has to be generalized, such that now22

n
(A)

5
= (<0 + A) · ~l − +5 − *> , (1.57)

where <0 is the minimum number of photons that are required to overcome +5 and A is the
number of photons absorbed “above threshold”. The reason that *> appears in Eq. (1.57)
can be qualitatively understood as follows: In the presence of the oscillating laser field, the
energy levels of the Rydberg and continuum states of an atom or molecule are increased by
the Stark shift, which is approximately equal to *>. As the electronic ground state is much
less affected by the Stark shift, the effective ionization potential of the atom (or molecule)
becomes +5 + *>, which is accounted for in Eq. (1.57).
Over the years, many approaches were developed to treat the photoionization of atoms and

molecules in strong laser fields. The most obvious, but often computationally prohibitive, idea
is to solve the time-dependent Schrödinger equation for the electron–laser-field interaction
numerically. Especially when wavelengths in the infrared region are considered, the quasi-
static tunneling-rate equations, known as the ADK theory after Ammosov, Delone & Krainov,23

and the strong-field approximation (SFA) are particularly popular. In Chapter 3 we will work
with the SFA as developed by Faisal24 and Reiss25 because it has the especially attractive
property that the expressions for the photoionization cross sections can be solved analytically.
The central idea behind the SFA is that the interactions between the photoelectron and the
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parent ion are either neglected completely or incorporated perturbatively, so that only the
photoelectron–laser-electric-field problem has to be solved. Also, the SFA can be applied to
molecules in a straightforward fashion, a variant known as molecular-orbital SFA, from which
the complete, angle-resolved photoelectron spectrum and differential ionization rates can be
obtained as a function of the angle between the laser polarization and the principal molecular
axis.
To see how this works, we first need to consider the most formal way to describe the

properties of a photoelectron spectrum, that is by viewing it as a spectrum of transition
probabilities % 5 7 for the projection of an electron bound in the initial state |k7(B)〉 onto a
final state

��k 5 (B)
〉
of the free electron through the action of the time-dependent laser field.

For simplicity, we introduce the single active electron (SAE) approximation, in which only a
single electron moving in the potential + of the parent molecular ion is taken into account.
Then |k7(B)〉 and

��k 5 (B)
〉
are just solutions of the time-dependent Schrödinger equation in the

absence of the laser field, which reads

i
d
dB
k = �0k , (1.58)

where �0 = ) + + is the laser-field-free Hamiltonian. As �0 is not time-dependent, |k7(B)〉

and
��k 5 (B)

〉
can be written as products of stationary solutions of �0 times a time-dependent

phase factor, namely
��k7, 5 (B)

〉
=

��q7, 5 〉 exp
{
−in7, 5 B

}
, where |n7 | = +7 is just the ionization

potential of the bound electron and n5 is the final kinetic energy of the free electron. Formally,
the transition probability for such a process is

% 5 7 =
��)5 7��2 , (1.59)

where the transition amplitude )5 7 is given by,2

)5 7 =
〈
k 5 (B)

��*(B, B0)��k7(B0)
〉
. (1.60)

Here, *(B, B0) is a so-called time-evolution operator that propagates the system from B0 to B,
which is now also including the interaction with the laser field. In principle, the evolution
operator is a solution of the equation

i
d
dB
*(B, B0) = �tot*(B, B0) , (1.61)

where the total Hamiltonian is now �tot = �0+�int. We recall that the interaction Hamiltonian
�int is obtained by taking into account that, in the presence of an electromagnetic wave,
the electrons are accelerated by the instantaneous vector potential A(x, B). Using the same
arguments that we presented for the single-photon case above in Section 1.1, we now – again
– assume that the dipole approximation holds, which implies that the vector potential is
independent of the position x. Just as in Eq. (1.10) (but now in atomic units) the kinetic
energy associated with the kinematic momentum 0 = p + A(B) is given by,2

02

2
=

p2

2
+ A(B)·p + A2(B)

2
=  + �int(B) = ��(B) , (1.62)

where �� denotes the “field Hamiltonian”, i. e., the one that only takes into account the
motion of a free electron in the presence of the laser field, and  is the kinetic energy of the
photoelectron in the absence of the laser field.
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In general, one cannot hope to find an explicit solution for the time-evolution operator
*(B, B0) of the total Hamiltonian, and this is why a perturbative treatment is introduced. In
the standard perturbation approach, �int would be treated as the small perturbation to refine
the (known) eigenfunctions of �0 (as was done in Section 1.1 with single-photon ionization).
The SFA, however, is based on the idea that the laser–electron interactions are much stronger
than the influence of the molecular potential + on the electron, so that solutions for the field
Hamiltonian �� are sought, and + is introduced as the perturbation (if at all).
This means that in the first step we have to find the wave functions jk(x, B) that solve the

time-dependent Schrödinger equation for the field Hamiltonian, i. e.,

i
d
dB
jk(x, B) = ��(B)jk(x, B) . (1.63)

The solutions of this equation are explicitly time-dependent because ��(B) is a time-dependent
quantity, and are formally found to be2

jk(x, B) = (2π)−3/2 exp
{
ik·

[
x −

∫ B

−∞

A(g) dg
]
− in9 B −

i
2

∫ B

−∞

A2(g) dg
}
. (1.64)

These time-dependent solutions, which can be understood as plane waves that are distorted
by the vector potential, are known as Gordon–Volkov states. In particular, when A is zero, the
Gordon–Volkov states collapse to ordinary plane waves (up to a phase factor). Using these
Gordon–Volkov states, we can now write the time-evolution operator *�(B, B0) for an electron
moving in an oscillating laser field,2 i. e.,

*�(B, B0) =
∫

dk |jk(B)〉 〈jk(B0)| . (1.65)

Starting from *�(B, B0), the time-evolution operator of the total Hamiltonian *(B, B0), can
formally be obtained by solving the integral equation

*(B, B′) = *�(B, B′) − i
∫ B

B′
*(B, g)+ *�(g, B′) dg . (1.66)

Without going into the details of the derivation, we just want to remark that an integral
equation like Eq. (1.66) can always be solved by developing *(B, B0) into an infinite series
of perturbation terms C(<)(B, B′), each of which contains < times an interaction with +. In
particular, C(0)(B, B′) = *�(B, B0), so that a qualitative way of understanding these terms is
that C(0)(B, B′) describes only the direct photoionization, whereas for < ≥ 1, the electron has
rescattered < times on the molecular potential.
In the most basic formulation of the SFA (which is the one that we adopt), all terms with

< ≥ 1 are ignored, and the photoionization amplitude is written as2

)SFA
50 = −i

∫ B1

B0

〈
q5 (B1)

��*�(B1, g) �int(g)
��q7(g)〉 dg

= −i
∫ B1

B0

〈jk(g)|�int(g)|q7(g)〉 dg , (1.67)
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where B0 and B1 are the times corresponding to the beginning and the end of the laser pulse,
respectively. To find an analytical expression for the matrix elements in Eq. (1.67) we need to
know that the overlap between the initial state |k7(B)〉 and the Gordon–Volkov state |jk(B)〉 is
given by2

〈jk(B)|k7(B)〉 = exp
{
i((k 5 , B, B0)

} 〈
k 5

��q7〉 , (1.68)

where
〈
k 5

��q7〉 is just the momentum-space representation of the molecular orbital q7 and
((k 5 , B, B0) is the so-called modified action, defined as

((k 5 , B, B0) =
1
2

∫ B

B0

[
0(k 5 , g)

]2 dg + +7(B − B0) , (1.69)

where we recall that +7 is the ionization potential of the bound electron. In the next step, we
make a drastically simplifying assumption about the shape of the laser pulse: we assume that
the field envelope is square and that it encompasses exactly # laser cycles, so that the total
duration of the laser pulse is g> = 2π#/l = # ) . After some algebraic manipulations, one
arrives at the central expression for the photoionization probability,

%SFA(k 5 ) = 9 5
��" 50

��2 sin2(#(2/2)
sin2((2/2)

dk̂ 5 , (1.70)

where " 50 is an angle-dependent photoionization amplitude that we will come back to in
a moment, and (2 = ((k 5 ,), 0) is the modified action per cycle (which is identical for every
cycle due to the periodicity of the field and the square shape of the pulse), and which can
be given explicitly2 as (2 = (n5 + *> + +7)(2π/l). The fraction of the sin2 terms in Eq. (1.70)
is peaked around values of (2/2 that are integer multiples of π, and as # grows larger (and
with it the pulse duration), these peaks become infinitely narrow. From the expression for (2,
one can derive that these peaks occur when

n< = <l − +7 − *> , (1.71)

which is just the position of the ATI peaks introduced in Eq. (1.57).
The angular dependence of the photoionization probability is introduced through the

amplitude " 50 in Eq. (1.70), which is given by

" 50 = i
〈
k 5

��q7〉 (
n5 + +7

) ∫ )

0
exp

{
i((k 5 , g, 0)

}
dg . (1.72)

The only unknown quantity that is left is the integral involving themodified action in Eq. (1.72).
Reiss25 has shown that it can be solved analytically in terms of a series of Bessel functions
�:(F), namely ∫ )

0
exp

{
i((k 5 , g, 0)

}
dg = (−1)< )

∞∑
:=−∞

�2:+<

(
k 5 ·A0

l

)
�:

(
*>

2l

)

= �−<

(
k 5 ·A0

l
,
*>

2l

)
, (1.73)
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Figure 1.5 Illustration of the three-step model. a) In the presence of the laser field, the atomic (or
molecular) potential is distorted such that a valence electron can escape by tunnel ionization. b, c)
The liberated electron is accelerated in the laser field, first away from the parent ion (b) and then back
to it (c). d) Upon recollision, the electron either recombines with the parent ion, as in d1, under the
emission of XUV radiation, or the electron scatters off the parent ion, as in d2. (Adapted from Fig. 1 in
the paper of Eikema26).

in which �<(0, 1) is referred to as a “generalized Bessel function” by Reiss,25 and A0 is the
peak vector potential.
Even though we have found a way to rationalize and predict the direct photoionization in

strong laser fields, many of the fascinating phenomena in strong-field ionization can only
be understood in terms of electron recollisions after photoionization. To see this, a classical
picture of the electron propagating in the field is most intuitive, which has become known as
the three-step model.
In this model, a photoelectron is born via tunnel ionization close to the peak of the electric

field with a zero (or very small) initial kinetic energy (Fig. 1.5a). From that point on, again,
only the acceleration of the electron in the laser field is considered. In this classical picture,
the electron is accelerated away from the parent ion, until the electric field changes sign
(Fig. 1.5b). Then, under a field with an opposite sign, the electron is driven back to the
parent ion (Fig. 1.5c), where the two collide. This collision can have two possible outcomes:
firstly, the electron may recombine with the parent ion to form the neutral species, a process
during which the excess kinetic energy that the electron has gained during acceleration in the
field is emitted as a burst of XUV light (Fig. 1.5d1). In principle, this burst is of attosecond
duration and it has a broad frequency spectrum that extends well into the XUV.l When laser

l As a rule of thumb, the maximum photon energy is ~l = +7 + 3*>.
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pulses are used that encompass many optical cycles, a train of these attosecond pulses is
formed, and they interfere with each other in the frequency domain, which gives rise to
a characteristic comb of higher-order harmonics, at frequencies lℎ = (2ℎ + 1)l, with l
being the driving laser’s frequency and integer ℎ ≥ 1. Therefore this process is referred to
as high-order harmonic generation (HHG). The observation that only odd harmonics are
generated can be explained by the fact that two attosecond bursts are emitted per cycle, which
gives rise to half the frequency of the intensity modulation in the spectral domain.
Second, another outcome of the recollision could be that the electron scatters off the parent

ion and is deflected under some angle (Fig. 1.5d2). Although, in principle, the scattering can
occur elastically and inelastically – the latter of which is accompanied by an excitation or even
ionization of the molecular ion – we consider only the totally elastic scattering as discussed in
Section 1.2, as it is the dominant process at low scattering energies (say, < 20 eV). The details
of how the rescattered electron can be extracted from the photoelectron spectra and how
the connection to the differential cross sections of scattering theory is made, are discussed in
Chapter 3 in connection with the actual experimental data.

An important difference between – on the one hand – the electron rescattering just described
and the rotational averaging of photoelectron angular distributions described in Section 1.3,
and – on the other hand – the high-order harmonic generation process introduced above is
that, for the former, the observables can always be generalized from the single-molecule level
to the molecular ensemble by an incoherent summation, which means that the response of the
individual molecule is directly reflected (after averaging over all possible realizations) in the
measurement of the target sample. In HHG, understanding the single-molecule response alone
is not sufficient. Only if the radiation bursts of all the individual emitters add up coherently,
a net emission of radiation is produced. The tuning of the experimental conditions, like
gas pressure and focus geometry, such as to enforce a constructive interference between the
emission events is referred to as “phase matching”.

1.5 Connection to the experimental chapters

The material presented in this chapter will be applied in various contexts to the analysis of the
experimental results that follow. In Chapter 2, we will present results on the XUV ionization of
spatially aligned CF3I molecules. The ionizing XUV radiation is generated in the HHG process
just described at the end of Section 1.4. To interpret the measured photoelectron spectra,
we make extensive use of the independent-particle picture of photoionization introduced in
Section 1.1, by which we connect the observed photoionization transitions to the valence-shell
electronic structure of CF3I.
In Sections 1.1 and 1.2, it was stressed that, in order to predict the PADs, the continuumwave

functions for the photoelectron would have to be obtained in some way. To this end, we use the
ePolyScat suite programs that was written by Lucchese, Sanna, Natalense, and Gianturco27,28

here. With ePolyScat, the general, elastic electron-scattering problem for polyatomic molecules
is solved in the static–exchange approximation. This means that, based on a Hartree–Fock
reference wave function that is precomputed for themolecule in a given geometry by a standard
electronic-structure program (like “GAMESS” or “Gaussian”), the electrostatic repulsion and
exchange interaction between the impinging electron and the bound molecular electrons are
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treated exactly for a single electronic state of the molecule, which is referred to as a single-
channel calculation. The quantitative treatment of correlation and polarization effects would
require the expansion of the target state into a series of electronically excited states (the so-
called close-coupling expansion), which is beyond the scope of the solution method employed
by ePolyScat. Therefore, correlation and polarization effects are accounted for by model
potentials that parametrically depend on the electron density and the polarizability tensor of
the target molecule, respectively. As soon as the continuum wave function is calculated, its
dipole overlap with respect to the ionized molecular orbital is calculated in the frozen-core
approximation introduced in Section 1.1. The photoionization dipole matrix elements are
reported in both length and velocity gauge in the form of the partial-wave expansion shown
in Eq. (1.42). Based on this representation, the effect of molecular alignment on the resulting
photoelectron angular distributions can be studied by the theoretical framework presented in
Section 1.3.
Besides calculating photoionization dipole matrix elements, one can also investigate the

results of scattering calculations in their own right to characterize the underlying photoelec-
tron scattering dynamics. Based on the eigenphase sums and the structure of the ( matrix
as function of a complex-valued scattering energy, which were introduced at the end of Sec-
tion 1.2, shape resonances can be identified and their associated resonance wave functions
can be calculated.
The experimental concept of Chapter 3 seems very different at first: Instead of working

with ionizing radiation, the molecules are ionized in a strong, slowly varying laser field.
However, as we have discussed in Section 1.4, the electrons that leave the molecule do not
immediately leave the interaction region, but are accelerated forth and back in the oscillating
laser field. During this propagation, they can recollide with the parent molecular ion, as shown
in Fig. 1.5d2. To find a way to rationalize the angular distributions of the photoelectrons that
have undergone such a recollision it is particularly helpful if the frequency of the laser field is
low, as this leads to a large excursion length of the electrons. In the so-called quantitative
rescattering approximation (QRS),29,30 it is assumed that the propagation over this excursion
length washes out the details of the photoelectron wave packet, so that, when it returns, it can
be reasonably well approximated by an incoming plane wave. According to Eq. (1.16), this
situation then corresponds to a prototypical electron-scattering experiment, and therefore
the differential scattering cross sections (DCSs) for this process must be imprinted onto the
angular distributions of the photoelectrons. In Chapter 3, we will demonstrate how the DCSs
can be extracted from the photoelectron spectra, which we then compare again to calculations
carried out with ePolyScat, this time working with the continuum wave functions directly
without the dipole transition. Of course, the same analysis of the involved shape resonances
in terms of the eigenphase sums and the poles of the ( matrix in the complex energy plane
can be applied that was introduced above.
With the work that is presented in Chapter 4, we will try to go beyond what has been

covered up to this point, in that we intend to overcome the need for involved quantum-
scattering calculations by using ionizing radiation it the soft x-ray regime. If the photoelectron
kinetic energies are high enough (at least >50 eV), photoelectron scattering can be treated
classically, which would offer a particularly intuitive interpretation of the experimental
findings. Therefore, only a fraction of the theoretical apparatus presented in this chapter is
needed for rationalizing experiments such as the ones discussed in Chapter 4, namely only
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the fundamental equations of photoelectron spectroscopy from Section 1.1.
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Chapter 2

Photoelectron Angular Distributions from XUV
Ionization of Aligned CF3I Molecules

2.1 Introduction

Photoelectron spectroscopy is a powerful technique to investigate the electronic structure of
quantum-mechanical systems, be it of solids, of atoms and molecules in the gas phase, or
even in solution. In particular, when dealing with molecules, much can be learned from the
ionization of the valence levels in a photon energy range from the first ionization potential
of the system (typically >10 eV) up to ∼40 eV above the ionization threshold, which we will
refer to as valence-shell photoelectron spectroscopy. The investigation of the valence electronic
structure is particularly insightful since the valence electrons directly participate in chemical
bonding, so that the key observables, such as binding energies and partial cross sections,
are very sensitive to changes in bond strength and the shape of the molecular potential. In
particular, the photoelectron angular distributions and their wavelength dependence show a
different behavior for every final state of the ion, which is a manifestation of the different
shapes and symmetries of the molecular orbitals.1 In general, the angular distributions will
contain the maximum amount of information when they are observed in a frame of reference,
in which both the molecule and the polarization vector of the light are fixed in space, which
we will call the molecular frame (MF).2

However, for gas-phase molecules that rotate freely in space, most of the information
content of the molecular-frame photoemission is washed out. There are only few techniques
to experimentally access the molecular-frame photoelectron angular distribution (MF-PAD).
Certainly the most successful approach is to detect photoelectrons and -ions in coincidence and
then to correlate the emission direction of a photoelectron to the flight direction of a molecular
fragment ion. In doing so, the photoelectron angular distribution with respect to the recoil
axis of the dissociation can be recovered, which is referred to as the recoil-frame (RF-)PAD.
Most notably, this concept is put to work in a technique known as “cold target recoil ion
momentum spectroscopy” (COLTRIMS).3 However, a necessary condition for COLTRIMS is that
the molecule does dissociate after ionization and that this dissociation is fast compared to the
molecular vibration and rotation, which is limiting the general applicability of this technique.
In contrast, experimental schemes, in which the gas-phase molecular ensemble is spatially
aligned by a laser pulse, can be applied more universally.a Fundamentally, the alignment is
caused by the induced dipole moments that the oscillating laser electric field creates, mediated

a Here we restrict the discussion to laser-based techniques. Note, however, that molecules can also be aligned
or oriented along strong, static electric fields,4 by molecular-beam techniques,5 and through adsorption onto
surfaces.6

35



36 XUV Ionization of Aligned CF3I Molecules

by the polarizability of the molecule. The torque that results from the interaction of the
induced dipole moment with the laser field forces the molecules to align themselves along the
laser polarization axis. Laser-induced alignment is generally divided into adiabatic and non-
adiabatic (also field-free or impulsive) alignment. In both cases, intense infrared light pulses
are used that are tuned off-resonance with respect to any vibrational or electronic transitions.
The essential difference between the two is the pulse length employed: If the pulse duration
is larger than the rotational period of the molecule, the degree of alignment will adiabatically
follow the intensity envelope of the pulse, hence the name “adiabatic alignment”. Therefore,
the alignment can only be exploited while the alignment laser is present, which may interfere
with the photoionization process one wants to characterize. In contrast, for a pulse duration
that is significantly shorter than the rotational period of the molecule, a rotational wave packet
is prepared by the laser pulse, i. e., a coherent superposition of molecules in rotationally excited
states. After the pulse has ended, this wave packet evolves freely and revives periodically
at well-defined time intervals. At a revival, the probability distribution of the molecular
axes rapidly alternates between a distribution that is peaked along the polarization axis of
the laser pulse and one that is concentrated in the equatorial plane perpendicular to the
laser polarization axis, which is often referred to as planar delocalization or anti-alignment.
Consequently, the molecules can be probed in various alignment distributions, given that the
probe pulse duration is significantly shorter than that of the alignment dynamics.
There are numerous examples of photoionization studies in aligned molecules aiming to

uncover details about the photoionization dynamics itself. Among them, one major research
direction is to quantify the molecular axis distribution7 and the differential photoionization
yield as a function of the angle between the molecular axis and the laser polarization, which
are – in such a measurement – intimately related.8,9 Beyond that, different groups have
attempted to extract the photoionization dipole matrix elements by studying the ionization
behavior of molecules with varying degrees of alignment, either directly through resonantly
enhanced multiphoton ionization (REMPI)10 or indirectly through the radiative recombination
in high-order harmonic generation (HHG).11,12

As discussed in Section 1.4, high-order harmonic generation is one of many phenomena
that can occur in the strong-field ionization of matter by intense infrared pulses, and is
typically rationalized in the celebrated three-step model:13 We recall that, in this model, the
generation of XUV light in strong laser fields is explained by the recombination of high-energy
photoelectrons with the parent ion. This process is repeated at every half cycle of the laser
field, so that, when a multi-cycle pulse is employed, an attosecond pulse train (APT) is formed.
In the frequency domain, this repetitive sequence in time structures the broad spectrum into
a comb of discrete harmonics, all of which are of odd order and are thus separated by 2l,
with l being the driving laser frequency.

In addition to being the subject of scientific investigations, high-order harmonic generation
has matured over the last three decades into an attractive light source for ultrashort pulses in
the XUV14,15,16 and soft x-ray17,18 regime. In particular, such a source can be used to investigate
the valence electronic structure of molecules by photoelectron spectroscopy. Compared to
synchrotron radiation, it comes with the advantage that it can be employed in pump–probe
studies because it is a pulsed light source. Combined with an alignment laser excitation, for
instance, PADs for the single-photon ionization of an aligned ensemble can be measured. This
approach has recently been applied in our group to the first valence-shell photoionization
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experiments in impulsively aligned, linear molecules.19,20 In these studies, the entire high-
harmonic comb was used, ionizing molecules at a series of photon energies simultaneously,
which bears the risk of having photoelectrons originating from different orbitals (and produced
by different harmonics) overlap on the detector. For the investigated molecules, like N2 and
CO2, the accessible final ion states are, however, few in number and widely spaced in energy,
so that the different contributions to the photoelectron spectra could still be disentangled. In
this first study, the shape and symmetry of the ionized orbitals could be assigned based on
the change in photoelectron angular distributions with molecular alignment, supported by
involved photoionization calculations.
In the experiments presented in this chapter, we have applied this technique to a more

complex molecular target, namely CF3I, which is a polyatomic, symmetric-top molecule
containing a heavy atom, and which displays a richer and more dense valence level structure.
Ultimately, this choice was motivated by the work of Bisgaard et al.,21 in which the authors
not only impulsively aligned CS2 molecules, but, in addition, triggered a photochemical
dissociation reaction with a second pump pulse at the alignment peak. In this regard, CF3I
is appealing because it is known to undergo photodissociation when excited into the �

band, which can be accessed by single-photon transitions in a range from 220 to 320 nm.22

This investigation, therefore, is the first step towards resolving the electronic structure of
dissociating CF3I in a time-resolved MF-PAD experiment.
By comparing the MF-PAD recorded in CF3I to extensive photoionization calculations

performed using the ePolyScat package that allows to predict the change in the angular
distributions of the emitted photoelectrons, we are able to relate observed modulations in
the PADs to the interplay between the shapes of the involved molecular orbitals and two
prominent shape resonances in the photoelectron scattering process.

2.2 Electronic Structure of CF3I

The valence-shell photoionization dynamics of CF3I has been the subject of several studies.
Sutcliffe & Walsh23 have investigated a series of Rydberg states converging to the ionization
continuum of the ionic ground state by vacuum ultraviolet absorption. From the extrapolation
of this series, they obtained an ionization potential (IP) of 10.41 eV. The entire set of
valence-shell ion states were first studied with He I (21.2 eV) and He II (40.8 eV) radiation
by Cvitaš et al.,24 who found an IP of 10.45 eV and assigned most of the ion states to
removal of a photoelectron from specific molecular orbitals, based on an independent-particle
picture. These findings were later confirmed and extended by Yates et al.,25 who recorded
photoelectron spectra with synchrotron radiation, varying the photon energy between 21
and 100 eV. This remains the most comprehensive collection of photoionization data on this
molecule to date. Comparing the branching ratios of the experimentally observed ion states to
multiple-scattering calculations, the authors made a definitive assignment of these ion states
to the molecular orbitals of CF3I. We briefly review the shapes and bonding characters of these
molecular orbitals, which are presented in Fig. 2.1 together with the experimental binding
energies, as we will refer to these orbitals several times throughout this chapter. In doing so,
we anticipate the results of a Hartree–Fock calculation for CF3I that is not introduced until
Section 2.5.2, and that confirms and complements the results of Yates et al.25 with respect
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Figure 2.1 Overview of the electronic structure of CF3I. The binding energies and molecular-orbital
assignments are taken from Yates et al.25 The visualized wave functions are the Hartree–Fock orbitals
from the corresponding calculations described in detail in Section 2.5.2, shown as isocontour surfaces
at a wave function value of ±0.1 0−3/2

0 .

to the orbitals’ shape and ordering, which is why we present it at this point as “established
knowledge”.
The highest occupied molecular orbital (HOMO) of CF3I is the degenerate 44 set, which

is essentially made up of the >F and >G orbitals of iodine, making it a lone-pair orbital.
Consequently, it exhibits photoionization dynamics that closely resemble that of the 5>
valence shell of atomic iodine; also, similar to the iodine atom, the ionic ground state of
CF3I is spin-orbit split by 0.73 eV. The 401 orbital mainly constitutes the C– I bond through
constructive overlap of the >H orbitals of carbon and iodine, but also carbon 2A and fluorine
>H orbitals are involved. Next is a group of three states that are closely spaced in energy: the
102, 34 and 24 states. All of them can be considered fluorine 2> lone pair orbitals. The 102
state, in particular, is exclusively made up of fluorine >F and >G orbitals, which is required by
point group symmetry. According to Yates et al.25, the 301 and 201 orbitals are the result
of a mixing of the iodine 5A with the 2> orbitals of fluorine. We find, however, that they
also contain a significant contribution from the iodine >H orbitals, and that the 201 has a
strong C–F bonding character, similar to the 14 and 101 orbitals. The binding energy of the
deepest inner-valence orbital, the 101 level, amounts to 23.8 eV, although the authors caution
that the assignment of a discrete binding energy is problematic because the independent-
particle picture breaks down for the inner-valence levels and satellite states make a significant
contribution to photoionization, which can only be described by the additional excitation of
an electron (other than the photoelectron) in the molecular ion.
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Figure 2.2 Sketch of the experimental setup. BS: beam splitter; BB: beam block; FM: focusing mirror;
DS: opto-mechanical delay stage; FW: filter wheel; TM: toroidal mirror; HM: drilled mirror; HHG:
high-order harmonic generation; VMIS: velocity map imaging spectrometer; MCP/PH: multi-channel
plate–phosphor screen assembly; CCD: charge-coupled device; ELV: Even-Lavie valve.

2.3 Experiment

As discussed above, the valence-shell binding energies of CF3I range from 10.45 to 23.8 eV.
To generate photon energies in this range and beyond, we make use of the HHG process. The
setup that was used for the present experiments is introduced in the following section. We
then proceed to give details on the characterization of both the XUV and NIR light pulses in
the sections that follow.

2.3.1 Setup

The experimental setup used for this experiment is shown in Fig. 2.2. The experiment was
performed using a two-stage Ti:Sa laser amplifier. In the first stage, the output of a Ti:Sa
laser oscillator (“Griffith”, KMLabs) was amplified by a commercial multi-pass laser amplifier
(“Dragon”, KMLabs) delivering 3 mJ, 25 fs pulses, centered at 785 nm at a 1.5 kHz repetition
rate. Pulses were then picked at a repetition rate of 50 Hz with a pulse picker to seed a
home-built, butterfly multi-pass amplifier,26 delivering up to 35 mJ, 35 fs pulses after pulse
compression.
The output energy was split into two arms: Up to 3 mJ of pulse energy were used to

impulsively align the molecules, whereas up to 6 mJ were used to generate an XUV pulse
using the well-known high-order harmonic process in a gas cell containing argon, maintaining
a constant pressure of 80 mbar. A high-order harmonic comb was generated in argon by
directly focusing the NIR laser pulses inside the gas cell with a 75 cm focusing mirror. An
aperture was installed in the beam path to adjust the NIR intensity for maximum HHG
conversion efficiency. A 200 nm thick Al foil was used to filter out the intense fundamental
from the XUV pulse. Using a 40 cm focal distance toroidal mirror, the XUV pulse was focused
onto a molecular beam of CF3I inside a velocity map imaging spectrometer27 (VMI). The
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molecular beam was obtained by expanding neat CF3I, maintained at a pressure of 1 bar,
through an Even–Lavie valve mounted at the side opposite to the detector of the VMI.
The 785 nm alignment pulse was stretched to ∼2 ps with a 10 cm long piece of SF11 glass

before it was recombined with the XUV pulse using a drilled mirror. The intensity envelope of
the stretched IR pulse was characterized by monitoring the appearance of sidebands in the
XUV ionization of helium in the presence of the IR field, which is discussed in Section 2.3.2.
The polarization axes of both the alignment and the XUV pulse were aligned parallel to the
detector plane.b At the center of the velocity map imaging spectrometer, charged particles,
created upon ionization by the XUV pulse, were accelerated towards a field-free flight tube
terminated by a double stack microchannel plate and phosphor screen assembly (MCP/PH).
The luminescence light from the phosphor screen was recorded with a charge-coupled device
(CCD) camera. The delay between the 785 nm and XUV pulses was controlled by a motorized
delay stage. Additionally, a voltage gate in the form of a 200 ns square pulse was applied to
the MCP/PH assembly to selectively detect ions with specific mass-over-charge ratios.
Fundamentally, when a gaseous target is photoionized, the photoelectrons and -ions are

ejected as an expanding particle cloud with a specific distribution of (radial) velocities and an-
gular probabilities into all solid angles. Therefore, the photoionization outcome is completely
characterized by capturing this three-dimensional (3D) velocity distribution, an example of
which is shown in the central panel of Fig. 2.3 for a single photoionization transition. Clearly,
what is a narrow line in the angle-integrated photoelectron spectrum becomes a thin spherical
shell in the 3D momentum distribution. Furthermore, if the 3D distribution is cylindrically
symmetric, it can be completely characterized by only considering a slice through it that
contains the cylindrical symmetry axis, as shown in Fig. 2.3a.

Figure 2.3 Illustration of the 3D momentum distribution of a photoionization event (b), its Abel
projection (a) and Abel inversion (c).

With a VMI, the 3D velocity distribution is translated into a two-dimensional (2D) spatial

b This guarantees that the resulting photoelectron or -ion momentum distribution is cylindrically symmetric with
respect to an axis parallel to the detector plane, which is a necessary requirement for the recorded detector
distributions to correspond to the Abel projection of that momentum distribution, as explained in Appendix A.
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distribution, by focusing particles with the same velocity components parallel to the detector
plane, even with different positions of birth within the interaction volume, onto the same
spot on the position-sensitive detector. However, the image that is recorded on the detector is
a “projection” of the original velocity distribution in that the information about the velocity
component perpendicular to the detector plane is lost, which is illustrated in Fig. 2.3c.c For
the special case of a cylindrically symmetric velocity distribution, this projection is called
an Abel projection, and a special inversion routine is necessary to recover the slice through
the momentum distribution – the Abel inversion – because only from the inverted data the
observables of the angle-resolved photoelectron spectrum can be extracted.d If we express the
slice through the momentum distribution in polar coordinates as 5 (D, \), where D is the radial
coordinate that is proportional to the particle’s momentum and \ is the angle between the
polarization axis and the direction of the momentum, we can rewrite 5 (D, \) in terms of the key
observables of the angle-resolved photoelectron spectrum, which are the (angle-integrated)
radial intensity distribution &0(D) and the radial distributions of the beta parameters V:(D) –
in complete analogy to Eq. (1.39) – as

5 (D, \) =
&0(D)

D2

(
1 +

!∑
:=1

V:(D) %:(cos \)

)
, (2.1)

The details of the Abel-inversion routine and the treatment of the VMI data are discussed in
Appendix A. In essence, the inverted image that the Abel-inversion routine yields, and that
corresponds to the aforementioned slice through the 3D velocity distribution, is transformed
into polar coordinates, and an angular integration is carried out to obtain the radial intensity
distribution &0(D). If the image in polar coordinates is multiplied with one of the %:(cos \)
before the angular integration, each of the radial distributions of the higher angular moments,
which we call &:(D), can be recovered. Then the beta parameters of Eq. (2.1) are given by
V:(D) = &:(D)/&0(D).

2.3.2 Higher-order harmonics spectra and characterization

To calibrate the detector and characterize the harmonics spectrum, photoelectron spectra
were recorded in helium. In the photon energy range considered here, only one final state
is accessible, i. e., the 2S ground state of the ion. However, due to helium’s high ionization
potential of 24.587 eV,29 only harmonics of order 17 and above are able to photoionize the
atom.
A typical, two-dimensional (2D) detector distribution recorded upon photoionization of

helium with the 785 nm harmonics comb is displayed in the left half of Fig. 2.4a, in which the
high-order harmonics spectrum manifests as a series of concentric rings. To recover the three-
dimensional momentum distribution of the photoelectrons, the MEM Abel-inversion routine
(see Appendix A was applied to the detector image and the slice through that distribution
is shown in the right half of Fig. 2.4a. From this slice, the radial intensity distribution was
extracted as described in Appendix A, which was used for the detector calibration.

c This is strictly true for the standard setup with a CCD camera. If a detector is employed that records the time of
impact for every particle as well, this projection can be avoided, e. g., by so-called “slicing” techniques.28

d This becomes immediately clear, when one imagines a momentum distribution with more than one photoline
because then the one with lower absolute momentum will overlap with the projection of the other line.
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Figure 2.4 Characterization of the 785 nm harmonics by photoelectron spectroscopy in helium. Here
and throughout, the labels H# indicate the harmonic order # of the driving laser frequency. a) Raw
image (left half) and slice through the 3D momentum distribution (right half) of photoelectrons
recorded upon photoionization of helium with 785 nm harmonics generated in argon, filtered by
the Al foil. b) Angle-integrated photoelectron spectrum obtained from the Abel-inverted momentum
distribution after energy calibration. The inset shows the calibration curve according to Eq. (2.2).

In the HHG process, the harmonics are spaced by 2~l, which is a consequence of the
half-cycle symmetry of the harmonic-generation process. Practically, one often finds that
the spacing does not scale exactly with l, but rather with an effective frequency leff . If, for
instance, the laser pulse is slightly chirped, its wavelength differs between the leading and
the trailing part of the pulse, and, depending on the details of the phase matching, only a
specific part of the pulse may contribute to harmonic generation, efficiently, which results
in an apparent detuning of the fundamental. Keeping this in mind, the energy scale can be
calibrated by fitting the photoelectron kinetic energy spectrum according to

'2
# = 2 (# · ~leff − IPHe) , (2.2)

where '# is the radius of the photoelectron line’s maximum in pixels, 2 is the calibration
constant, and # is the harmonic order. From Eq. (2.2), it is clear that the squared radii of the
photolines should all fall onto a straight line. We find however, that this is rigorously true only
for the photolines corresponding to harmonics 17 through 21, after which the spacing between
the peaks decreases monotonically by 5 to 10 %. For the calibration, we have therefore fitted
the expression of Eq. (2.2) to squared radii of the first three photolines only, treating both
2 and leff as free parameters, and using the well-known IP of helium, IPHe = 24.587 eV.29

As a result of this procedure, we retrieve a calibration constant of 2 = (1050 ± 20) pix 2/eV,
corresponding to an uncertainty of roughly ±2 % in the energy scale calibration (see inset of
Fig. 2.4), and an effective photon energy ~leff = (1.59 ± 0.01) eV, which corresponds to a
wavelength of 780 nm.
To fully characterize the spectrum of the harmonics, we need to retrieve their spectral

width and relative intensities. The spectral width of the harmonics can, however, not be
directly inferred from the photoelectron lines because of the finite energy resolution of the
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Figure 2.5 Reconstruction of the harmonics spectrum using the photoionization cross sections of helium
reported by Samson & Stolte.30 a) Absolute, total photoionization cross sections of helium in the
photon energy range from the IP to ∼55 eV (squares). A power-law fit for that energy range, yielding a
photon-energy dependence of (~l)−1.8 is shown as well (solid line). b) High-order harmonics spectrum
determined by dividing the photoelectron peak areas of Fig. 2.4b by the interpolated cross sections of
a.

VMIS, which is, moreover, not uniform across the detector. The relative intensities of the
harmonics, on the other hand, can be recovered if the photoionization cross section is taken
into account.e Here we make use of the absolute photoionization cross sections reported by
Samson & Stolte,30 shown in Fig. 2.5a. The photoionization cross section drops by a factor
of 4 over the energy range between harmonics 17 to 31 and follows a power law given by
(~l)−1.8. Assuming that the cross section is approximately constant over the bandwidth of a
harmonic, the high-order harmonic spectrum can be recovered by dividing the peak area of
every photoelectron line by the photoionization cross section at the central photon energy
of the corresponding harmonic, giving rise to the reconstructed HHG spectrum shown in
Fig. 2.5b.

2.3.3 Characterization of the pump–probe setup

When describing the experimental setup in Section 2.3.1, it was stated that the alignment
pulses were stretched by sending them through a piece of SF11 glass to add dispersion.
Stretching the pulsef is advantageous because the limiting factor in impulsive alignment is
the peak field strength, which is adjusted such that the rate of field ionization is kept at a
minimum. As – in first approximation — the strength of the alignment effect depends only on
the area under the field envelope, increasing the pulse width – while keeping the peak field
strength close to the threshold of strong-field ionization – is a common strategy to optimize
the degree of alignment in the ensemble.

e We further have to assume that the detection efficiency is uniform across the detector, which is a condition
always implicit to any Abel-inversion routine.

f Note that this pulse stretching is limited by the requirement that the pulse duration be short compared to
the rotational period of the molecule. In the present experiment, the laser pulses are roughly four orders of
magnitude shorter than the rotational period before stretching, and still two order of magnitude shorter after
stretching, as will be shown later in this section.
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To characterize the precise shape of the laser envelope, we have repeated the photoionization
experiment of Section 2.3.2 in a time-resolved fashion, temporally and spatially overlapping the
XUV pulse and the stretched NIR pulse. Having extracted the angle-integrated photoelectron
spectrum for each delay, the time dependence of the photoelectron signal can be cast into a
2D map, shown in Fig. 2.6a. When the two pulses overlap, additional features appear in the
photoelectron spectrum in the form of fringes between the photolines, which are referred to
as “sidebands”.31,32 Formally, these are photoelectrons that have absorbed or emitted one NIR
photon. As the high-order harmonics are of odd order only, as explained in Section 2.1, the
sidebands resemble photoelectron peaks of “quasi-even” order, appearing exactly between
the photolines of two adjacent harmonics.

Figure 2.6 Appearance of sidebands in the XUV photoionization of helium in the presence of the NIR
field. a) Time-dependent photoelectron spectra recorded in helium, varying the time delay around the
temporal overlap of the two pulses. All spectra were normalized to the overall maximum signal of this
sequence of measurements. The dashed lines indicate the integration region for the sideband between
harmonics 17 and 19. The integrated yield of this region is displayed in b, together with the result of
fitting a Gaussian function to it.

Within second-order perturbation theory, the intensity of the sidebands scales linearly with
the (cycle-averaged) intensity of the NIR light.32 Therefore, the shape of the pulse envelope
can be measured by monitoring the integrated yield of a sideband contribution as a function
of pump–probe delay.g The problem that is apparent from Fig. 2.6a is, however, that, close
to time zero, most of the sidebands are comparable to the harmonic peaks in terms of their
intensity, under which condition second-order perturbation theory does not apply. To obtain
an estimate of the NIR pulse duration, we have chosen to monitor the time-dependent intensity
of the sideband between harmonics 17 and 19, as for this feature the requirement that it be
less intense than the surrounding photolines is approximately fulfilled. In Fig. 2.6b, the yield
of this sideband – integrated over its peak width – is displayed, and we find that the outline
of this trace can be reasonably well approximated by fitting a Gaussian function to it, which
is shown as well. From optimum fit parameters thus obtained, we recover a pulse duration
(FWHM) of (1.9 ± 0.1) ps. We note that this pulse duration is still significantly shorter than
the rotational period of CF3I (g ≈ 300 ps), which means that the molecular alignment will
still proceed in the non-adiabatic regime.

g Strictly, what is measured is the cross correlation between the envelopes of the XUV and NIR pulses. As the
NIR pulse, however, is stretched in duration by almost two orders of magnitude, the finite width of the XUV
pulse is neglected here.
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2.4 Characterization of themolecular alignment

One way to characterize the evolving molecular axis distribution of an impulsively aligned
molecular ensemble is to measure the change of the angular distribution of the charged
fragments that result from ionization of the aligned molecules by the XUV pulse. In the axial
recoil approximation, i. e., if the dissociation of the molecular ion is fast with respect to the
vibrational and rotational motion,33 the molecular axis distribution of the molecule at the
time of ionization is directly imprinted onto the angular distribution of the charged fragments.
Then, the ion momentum distribution �(>, \), which is a function of the ionic fragment’s drift
momentum > and the angle \ between the polarization axis of the incident radiation and the
direction the drift momentum, p̂, can be written as

�(>, \) = %MA(\) · %ion(>, \) , (2.3)

where %MA(\) is the molecular axis distribution before ionization and %ion(>, \) is the dif-
ferential ion yield for a given ionization channel.h The influence of the last factor can, in
principle, be strongly suppressed by turning the polarization axis of the ionizing probe pulse
such that it is perpendicular to both that of the alignment pulse and to the detector plane, a
technique that was introduced by Stapelfeldt and co-workers.34 For the setup that was used
for this experiment this was, however, not possible because turning the polarization of the
XUV pulse would result in severe losses on the toroidal mirror whose reflectivity is optimized
for > polarization. Therefore, we will make use of Eq. (2.3) to extract the evolving molecular
axis distribution of the impulsively aligned CF3I molecules in the following sections.
To this end, we first discuss the photofragmentation dynamics of CF3I based on static

photoion measurements in the next section, before we present the results of the alignment
experiments, which we then try to model with alignment simulations to unambiguously
recover the molecular axis distribution %MA(\).

2.4.1 Static photoion spectroscopy

In the photon energy range between 10 and 25 eV, the photoionization of CF3I leads to the
formation of CF3I+, I+, CF3+, and CF2I+,35 the latter of which is formed through C–F bond
fission upon ionization of a fluorine 2> lone-pair orbital. Of these fragments, we would expect
that in particular the I+ fragments can be used to characterize the molecular alignment since
previous experiments36 have demonstrated that I+ is formed through prompt dissociation
of the molecule via a strongly repulsive, excited state of the parent molecular ion, and this
dissociation likely occurs along the principal molecular axis.

h Note that Eq. (2.3) takes a particularly simple form because all three distributions are written as functions of
the angle \. In general, this is not possible because the polar angles in %ion, %MA are distinctly different. In
writing Eq. (2.3), two assumptions are made: First, the distributions %ion and %MA are only depending on the
angle between the laser polarization and the principal molecular axis, and these distributions are translated
into photoion directions by a mapping transformation. Zare33 has shown, however, that in the axial recoil
approximation this mapping takes the form of a delta function, so that there is a one-to-one correspondence
between the orientation of the molecule and the direction of the photoion. Second, %ion and %MA are measured
relative to the XUV and NIR pulses’ polarization axes, respectively. Only when the polarization axes of the two
pulses are aligned parallel to each other, these two frames of reference coincide.



46 XUV Ionization of Aligned CF3I Molecules

Figure 2.7 Static photoion spectroscopy of the I+ fragment upon ionization of CF3I with 785 nm high-
order harmonics. a) Normalized VMI detector image of the I+ signal. The polarization axis is oriented
parallel to the vertical axis of the image. A: Fragments resulting from the dissociation of low-lying
ionic states of CF3I+; B: Fragments associated with the dissociation of highly excited states of CF3I+;
C: Coulomb explosion fragments from the dissociation of CF3I2+ into CF3+ + I+ b) Corresponding
kinetic energy distribution of the I+ fragments. The shaded regions correspond to the features as
labeled in a. The top scale indicates the total kinetic energy release corresponding to the dissociation
into CF3 + I+.

A typical 2D I+ momentum distribution that results from ionization of CF3I by the XUV pulse,
generated by the 785 nm laser, is shown in Fig. 2.7a. Several features are apparent: an intense,
peaked feature in the center of the distribution (labeled A in Fig. 2.7a) that lies on top of a
broad rim that falls off slowly (B), and a faint, concentric ring (C) at a momentum of ∼0.4 a. u.
After Abel-inversion and extraction of the radial velocity distribution, the fragment kinetic
energy spectrum is recovered using the calibration obtained in the previous section.i The
dominant feature in this spectrum, shown in Fig. 2.7b, is a broad distribution of fragments with
low kinetic energies, ranging from 0.1 to 1.0 eV. According to previous work by Powis et al.35

on dissociative photoionization of CF3I at a photon energy of 21.2 eV, this contribution can be
further divided into the peaked region A with a mean fragment kinetic energy of 0.15 eV and
a high energy tail, B, with a mean fragment kinetic energy of 0.47 eV. By virtue of momentum
conservation, these fragment kinetic energies correspond to total kinetic energy releases of
0.43 and 1.33 eV, respectively. In the work of Powis et al., the I+ fragment distribution with a
mean KER of 0.4 eV was assigned to dissociative photoionization of CF3I through the �̃ state,
which corresponds to ionization from the 401 orbital. We therefore assign region A in our
measurement to this state, as well. The next state that leads to formation of I+ is the �̃ band,
which is associated with ionization from the 301 orbital at a binding energy of ∼19 eV. Low,
Hampton & Powis36 and Powis et al.35 reported an average KER of 0.6 eV and 0.69 eV for this
channel, respectively, which is certainly lower than what we observe in region B. Considering
that the ions in the �̃ state have, depending on the dissociation limit, up to 7 eV of total energy
in excess, and assuming that only 25 % of this excess energy is converted into translational

i The magnification of the VMI only depends on the charge, not on the particle’s mass. Therefore, the same
calibration applies to electrons and singly-charged ions alike.
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energy, which is what is typically found for other dissociation channels,36 the kinetic energy
release could be as high as 1.7 eV. We therefore assign contribution B in our measurement to
dominantly originate from the dissociative ionization of the molecule through the �̃ state of
the molecular ion. Still, it appears that there is a large discrepancy between the literature
values cited above and our findings. We speculate that one reason for this discrepancy could
be that, in these publications, not the entire fragment kinetic energy distributions, but only
single, average values are reported for measurements with monochromatized radiation. As
we are measuring here the sum of – probably overlapping – contributions from the ionization
by several harmonics, it is not straightforward to disentangle the different fragmentation
channels in order to determine their average fragment energies.
In the fragment kinetic energy distribution shown in Fig. 2.7b, also a weaker contribu-

tion, labeled C, with a mean kinetic energy of 2.2 eV is observed. By virtue of momentum
conservation, the fragment kinetic energy we observe corresponds to a total kinetic energy
release of 6.3 eV, or 93 % of the Coulomb energy. The kinetic energy of these fragments is
close to the Coulomb repulsion energy �� = (?1 ?2)/'4 = 6.72 eV of two point charges with
charge ?1 = ?2 = +1, separated by the equilibrium C– I bond length of CF3I, '4 = 2.144 Å.
Comparing our results to the work of Eland, Feifel & Hochlaf,37 who investigated the double
photoionization of CF3I in the XUV regime, we find that the photon energies of the high
harmonics comb in the present experiment exceed the double ionization threshold those
authors report for CF3I at 28.89 eV,38 as well as the appearance threshold for the CF3+ + I+

channel, estimated to be at 31 eV,37 which supports our observation and assignment of the
Coulomb channel.

2.4.2 Time-resolved photoion spectroscopy

As previously stated, the alignment dynamics that is induced by the short NIR pulse can be
extracted from the change of the angular distribution of the I+ fragments as a function of
the delay between the NIR and the XUV pulse. It is well known that the rotational wave
packet that is formed by the NIR laser excitation revives at integer and half-integer multiples
of the rotational period g of the molecule, which are referred to as full and half revivals,
respectively. The rotational period is related to the rotational constant of the molecule �
as g = 1/2�. For CF3I, whose rotational constant, � = 1523 MHz, is known with great
precision from microwave spectroscopy,39 this implies a rotational period of g = 328 ps.
In our measurement, 2D I+ momentum distributions were recorded as a function of the
pump–probe time delay around the first half revival at 164 ps, where the maximum degree
of alignment was expected.40 For each time delay, the recorded images were subjected to
the Abel-inversion routine to reconstruct a slice through the 3D ion momentum distribution,
�(>, \), which we already introduced above. Here, the polar angle \ is defined with respect to
the polarization axis of the ionizing radiation and > represents the absolute momentum.
Examples of 2D momentum distributions recorded at 162.5 ps and 165.5 ps are shown in

Fig. 2.8a and b, respectively. A clear modification of the angular distribution is observed for
all detected fragmentation channels. At 162.5 ps, the momentum distribution is peaked along
the laser polarization, whereas at 165.5 ps, the angular distribution is peaked in the direction
perpendicular to the laser polarization axis. To describe the changing fragment ion angular
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distribution by a single figure, the cos2 \ moment, or expectation value, given by

〈
cos2 \

〉
ion (>) =

∫π

0 �(>, \) cos2 \ sin \ d\∫π

0 �(>, \) sin \ d\
, (2.4)

is evaluated at each time delay by numerical integration. Then
〈
cos2 \

〉
ion (>), which is a

continuous function of the momentum >, is averaged over the regions shown as shaded areas
in Fig. 2.7b to obtain a single, average value for each of the three fragmentation channels.

Figure 2.8 Effect of molecular alignment on the I+-fragment momentum distributions. a, b) Detector
momentum distributions taken at the alignment peak (a) and the planar-delocalization peak (b). The
labels A–C are identical to those in Fig. 2.7. The double-headed arrow indicates the orientation of
the polarization axis in the images a and b. c) Evolution of the expectation value

〈
cos2 \

〉
ion of the

reconstructed, three-dimensional ion momentum distributions as a function of the pump–probe delay.
The three traces are obtained by averaging

〈
cos2 \

〉
ion (>) over the respective regions indicated in

Fig. 2.7b.

The resulting time-dependent evolutions are displayed in Fig. 2.8c. Overall, the three traces
show the same revival structure, going through a maximum around 162.5 ps and a minimum
around 165.5 ps. However, the modulation depth is different for the three channels and the
traces are vertically offset by different amounts.
As we have discussed above, a breakdown of the axial recoil approximation will weaken the

correspondence between the molecular axis distribution and the fragment ion distribution. We
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therefore assume that the fragments that show the greatest modulation depth (which is region
B here) should reflect the change in molecular axis distribution closest and have decided to
take region B as the reference for making the comparison to the alignment simulations.

2.4.3 Extraction of themolecular axis distributions

Basically, our strategy to retrieve the molecular axis distribution %MA is to perform numerical
simulations of the laser-induced molecular alignments that are described below to model the
dynamics of the rotational wave packet and, using Eq. (2.3) and Eq. (2.4), to predict the
time-dependent evolution of

〈
cos2 \

〉
ion. To this end, also a particular form for %ion has to be

proposed, which will be introduced in the beginning of Section 2.4.3. Then, the parameters
that go into the simulation, namely the rotational temperature of the ensemble ) and the
peak electric field strength of the laser pulse �0, and the parameter that describes the shape
of the differential photofragmentation yield 0diss are varied until the best agreement with the
experiment is achieved in a least-squares sense.

Molecular alignment simulation

To predict the evolution of the molecular axis distribution, the time-dependent Schrödinger
equation (TDSE) is solved for the rotational wave function Ψ,

i~
∂

∂B
Ψ(B) = �tot(B)Ψ(B) , (2.5)

of a symmetric top rotor in the presence of a non-perturbative field interaction. The total
Hamiltonian �tot can be approximately written as the sum �tot(B) = �rot + �ind(B). Here,
�rot is the field-free rotational Hamiltonian of the molecule, that is independent of time and
whose eigenfunctions correspond to the rotational states of the molecule, which we denote
|� "〉, with associated eigenenergies E� , according to the Schrödinger equation

�rot |� "〉 = E� |� "〉 . (2.6)

It can be shown41 that, if the molecular rotations are parametrized by the set of Euler angles
R (as introduced in Section 1.3), the rotational eigenfunctions of the symmetric top (those
that solve Eq. (2.6)) are – up to a normalization constant – the Wigner � matrices (also
introduced in Section 1.3), i. e.,

〈R|� "〉 =

√
2 � + 1

8π2 D�∗
" (R) . (2.7)

On the other hand, the induced Hamiltonian, �ind, describes the interaction between the
instantaneous electric field envelope of the laser pulse, �(B) at time B, and the anisotropy
of the dipole polarizability, ΔU, of the molecule, as a function of the angle \ between the
principal molecular axis and the polarization vector of the light, given by

�ind = −
1
4
�2(B)ΔU cos2 \ . (2.8)
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The anisotropy of the polarizability, ΔU, is simply defined as the difference between U‖ and
U⊥, which are the polarizabilities parallel and perpendicular to the principal molecular axis,
respectively.
We assume the field envelope �(B) to be of sine-squared shape, that is for a pulse of a

duration gFWHM, full-width half-maximum,

�(B) = �0

(
sin

πB

2gFWHM

)2

. (2.9)

For every |� "〉 state of the symmetric top, the TDSE is propagated for the duration of the
alignment laser pulse, using a simple first-order integration scheme for partial differential
equations, commonly known as Crank–Nicolson method.42

After the passing of the pulse, the superposition of rotational states that was created through
rotational excitation evolves freely, as

|Ψ(B)〉 =
∑
� "

�� " e−
i
~ E� B |� "〉 , (2.10)

where �� " are the complex-valued state-vector coefficients at the time the field interaction
vanishes.
Eventually, a weighted average of the wave-packet evolution, starting from every initially

populated |� "〉 state, is formed with weighting factors E� , reflecting the thermal popula-
tion of the states at temperature ) , according to the Boltzmann distribution,

E� = (2� + 1)
e−E� /9)∑
� e−E� /9)

. (2.11)

where 9 is the Boltzmann constant and the factor 2� + 1 accounts for the degeneracy of rota-
tional states in the quantum number ". From this weighted average all required observables,
like the probability distribution of the molecular axes, %MA(B) = |〈R|Ψ(B)〉|2, and its cos2 \

expectation value
〈
cos2 \

〉
MA (B) = 〈Ψ(B)|cos2 \|Ψ(B)〉 are calculated.

Fitting procedure and comparison to the experiment

To establish the connection to the experiment according to Eq. (2.3), we still have to propose
a form for the differential photofragmentation yield, %ion(>, \). For single-photon ionization it
is well known that the angular distribution of the photofragmentation yield can be described
by a single parameter, similar to the famous V parameter in photoelectron spectroscopy. In a
way that is entirely equivalent to introducing the V parameter,41 but somewhat more intuitive,
and that avoids confusion with the photoelectron angular distributions, we describe the
normalized angular distribution of the fragmentation yield as the sum of a cosine-squared
and a sine-squared component,

%0
diss

ion (\) =
3
2

(
0diss cos2 \ +

1 − 0diss

2
sin2 \

)
. (2.12)

Obviously, the limiting cases are 0diss = 1, which corresponds to a parallel transition, and
0diss = 0, describing a perpendicular one. As we do not know 0diss for all the involved ion
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Table 2.1 Molecular constants of CF3I required for the alignment simulations.
U‖ and U⊥ are the polarizabilities parallel and perpendicular to the principal
molecular axis, respectively.

Rotational constantsa Static polarizabilityb

� � �� �� U‖ U⊥

5750 MHz 1523 MHz 0.164 kHz 0.992 kHz 9.04Å
3

6.67Å
3

a From Walters & Whiffen.43
b This work. See Appendix B.

channels in the experiment and we further have to assume that we are measuring a weighted
average of different dissociation channels due to the wide range of photon energies, we treat
0diss as a free parameter in the least-squares fitting procedure. Note that 0diss is a single
parameter (and not a continuous distribution) because we fit the simulation only to the
average photoion angular distribution of region B in Fig. 2.7.
The other two free parameters that we have to determine are the peak field strength �0

and the ensemble rotational temperature, ) . Strictly speaking, also the pulse duration gFWHM
could be varied, but here we make use of the fact that – in first approximation – it is the
area under the field envelope alone that determines the strength of the alignment effect.
Consequently, we have to explore a three-dimensional parameter space, which for the field
strength and temperature we did by scanning a range of values on an equidistant grid.
For this series of simulations, we assumed a pulse duration of gFWHM = 1.9 ps and integrated

the TDSE with a time step of ΔB = 6.7 fs. The rotational constants of CF3I were taken from the
microwave spectroscopy results of Cox et al.,39 and Walters & Whiffen43 which are summa-
rized in Table 2.1. For completeness, we have also included the effect of centrifugal distortion
to first order, even though it probably has a negligible effect at the first half revival. To the best
of our knowledge, no values for the anisotropy of the dipole polarizability, ΔU, are reported
for CF3I in the literature. Therefore, we obtained the polarizability tensor from an ab initio
calculation, the details of which are given in Appendix B. The maximum rotational quantum
number included was �;0F = 50, which should support ensemble rotational temperatures up
to 30 K.
For every distinct set of (), �0) values, the complete evolution of the molecular axis distri-

bution, %MA, was calculated at the same pump–probe delay values as those in the experiment.
Then the ion distribution parameter 0diss was tuned – for every one of the (), �0) pairs indi-
vidually – to give the minimum sum of squared residuals,

∑
7 4

2
7
, where the residual 47 is just

the differences between the measured and the calculated value for
〈
cos2 \

〉
ion at data point 7.

In Fig. 2.9a, the dependence of
∑
7 4

2
7
on the parameter sets [), �0, 0diss

=>B (), �0)] is shown,
which resembles a two-dimensional minimum surface through the three-dimensional pa-
rameter space. The global optimum was obtained by fitting a two-dimensional polynomial
to this surface, containing orders of );�<0, with max(; + <) = 3, and determining the
minimum of that function. The uncertainties in the parameters were then estimated by
standard methods of nonlinear regression. Eventually, the retrieved optimum parameters
were )=>B = (19.2 ± 0.5)K, �=>B corresponding to an intensity of (2.3 ± 0.1) × 1012 W/cm2,
and 037AA=>B = 0.546 ± 0.006.
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Figure 2.9 Simulation of alignment dynamics and fitting procedure to retrieve the experimental condi-
tions. a) Residual sum-of-squares measure between the measured and the simulated evolution of the
cos2 \ expectation value of the ion distribution,

〈
cos2 \

〉
ion, shown as a function of temperature and

peak electric field strength, �0. For every set of (), �0) parameters, the anisotropy parameter 0diss was
optimized individually. b) Evolution of

〈
cos2 \

〉
ion for the optimum set of parameters (), �0, 0diss)opt

(solid line), obtained from the least-squares optimization procedure shown in a. The experimental
points (open circles) correspond to an average over the integration region B in Fig. 2.7. c, d) Evolution
of the fragment ion angular distribution through the revival of the rotational wave packet for the exper-
iment (c) and the simulation with the optimum parameters (d). e, f) Photoion angular distributions,
extracted at the indicated pump–probe delays. Note that, for the experimental data, the inverted ion
angular distribution is obtained for only a single, averaged quadrant of the VMI image, corresponding
to a 90° range (see Appendix A). For the visualization in c, e, and f, the data were mirrored. In e and
f, the data were further re-binned into groups of three and the mean of these bins is shown.
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What the least-squares surface of Fig. 2.9a emphasizes is that the global optimum in the
experimental parameters is – even after introducing the phenomenologically motivated 037AA

– sharply defined so that we do not find ourselves in a situation, where a broad range of
experimental parameters could be made plausible by adjusting 037AA. The comparison of the
experimentally obtained and the calculated evolution of

〈
cos2 \

〉
ion in Fig. 2.9b reveals that a

very good agreement is achieved. Furthermore, we present the complete extracted photoion
angular distribution, integrated over region B in Fig. 2.9c together with the simulated one in
panel d of that figure, where again we observe an excellent agreement.
At an even closer look, comparing the photoion angular distributions extracted from both the

experiment and the simulation for the pump–probe delay of maximum alignment (Fig. 2.9e),
we still find a very good agreement. The same analysis for the pump–probe delay of maximum
planar delocalization (Fig. 2.9f) reveals what seems to be a mismatch in amplitude between
theory and experiment, although the overall shape of the angular distribution is very similar.
As %MA is always normalized to unity, we can at this point only speculate that the functional
form we have chosen for %ion cannot fully capture the details of the photofragmentation
process, which leads to the observed small deviations.

2.5 Photoelectron spectroscopy with an HHG comb

2.5.1 Experimental data

Right before recording the photoelectron spectra of the aligned molecules, the pump–probe
delays for the maximum and minimum of

〈
cos2 \

〉
ion were determined in a photoion mea-

surement, akin to the one shown in Fig. 2.8. Then, VMI images of the electrons were acquired
by reversing the voltages applied to the VMI electrodes and alternating between the corre-
sponding two time delays, recording an image every time. To obtain high-quality data, every
image was accumulated over 10 000 laser shots and in total six images were recorded for each
delay. Every image was subjected to the usual Abel-inversion routine and radial-distribution
extraction individually, and statistical properties of a specific observable, like its mean and
standard deviation, were always calculated in the very last step. For brevity, we denote all
observables that are associated with the measurement at the alignment peak with a “

	

”, and
for the planar-delocalization peak with a “	”.
The resulting, averaged raw and inverted velocity maps are displayed in Fig. 2.10a and b,

at the delays corresponding to the alignment and planar delocalization, respectively. Despite
being recorded for molecules with distinctly different molecular axis distributions, there is
– to the eye – no difference between the two measurements. In both cases, we obtain a
congested, weakly structured spectrum that extends to ∼1.5 a. u. of electron momentum and
that is overall divided into a low-energy and a high-energy region by a signal minimum at
∼0.6 a. u. The Abel-inverted images (right halves of Fig. 2.10a and b) reveal that the angular
distributions in the low-energy region are more richly structured than those in the high-energy
region, which, overall, show a slight asymmetry in form of a preferential ionization along
polarization axis.
That the two measurements do, in fact, differ only becomes evident when the normalized
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Figure 2.10 2D detector images (left halves) and slices through the 3D velocity distributions (right
halves) for the photoionization of pure CF3I with the whole harmonic comb. a, b) Comparison between
data recorded at the alignment peak (a, B = 162.5 ps) and the maximum planar delocalization (b,
B = 165.5 ps). c) Normalized difference between a and b, according to Eq. (2.13). For the visualization,
the quadrants were mirrored vertically in c.

difference
Δ#- =

Δ-

-

	

+ - 	
, (2.13)

with
Δ- = -

	

− - 	 (2.14)

is considered. The normalized differences between the two data sets of Fig. 2.10a and b are
shown in panel c of that figure. Here, a clear modulation of the signal intensity by ±5 % on
average is revealed. As before, this modulation is best seen in the inverted data, but it is
undeniably present in the normalized difference of the raw data, as well, which rules out the
possibility of inversion artifacts alone causing this signal difference. Overall, the difference
image is structured in two ways: First, there is a concentric ring pattern which must be caused
by the various molecular orbitals that contribute with their distinct angular distributions to
the overall signal, as well as the fact that several harmonics are involved, which leads to
the observed, repetitive ring sequence. Second, a gradual change of the differential angular
distributions with increasing absolute photoelectron momentum is observed. The gradual
change is most obvious when comparing electrons with > = 0.8 a. u., for which emission
perpendicular to the polarization direction is suppressed in the normalized-difference image,
to those with > = 1.3 a. u., for which it is enhanced. Furthermore, the positive lobes in the
intermediate-energy region form a characteristic “X shape”, which suggest the presence of
higher-order angular-momentum contributions to the angular distributions in the normalized-
difference image.
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Figure 2.11 Angle-integrated photoelectron spectra. a) Radial intensity distributions extracted from
the images taken at the alignment peak (blue) and the planar-delocalization peak (orange). The
scales at the top indicate the theoretical peak positions for the photoelectron lines, originating from
the three indicated orbitals. Small vertical dashes are intended to serve as a guide to the eye. In
the inset b, the region below 5 eV is expanded, in which multiphoton ionization from the alignment
pulse is dominating. Vertical bars indicate the expected peak positions of the <-photon transitions for
the lowest spin-orbit ground (�3/2) and excited (�1/2) states of CF3I+, respectively. c) Normalized
difference between the radial intensity distributions, according to Eq. (2.14). Error bars mark the
95 % confidence interval. Note that the ordinates of a and c are not to scale with respect to each other.

To quantify the features just described, we first present the angle-integrated photoelectron
spectra for the two measurements in Fig. 2.11a. Ideally, one would want to assign the different
photolines to the various contributing orbitals. Considering, however, that all harmonics of
order 17 and above are able to ionize all of the nine valence levels, there are many more
contributions than one can hope to disentangle with the present energy resolution. A closer
look at the branching ratios reported by Yates et al.,25 however, reveals that in the photon-
energy range of the present experiment, >60 % of the photoelectrons must stem from only
three orbitals, namely the group of fluorine 2> lone-pair orbitals: 102, 34, 24 (see Fig. 2.1),
whereas the other 40 % are coming from the remaining six valence levels. In Fig. 2.11a, we
have therefore indicated the expected peak positions for these three states, assuming the
photon energies obtained in Section 2.3.2 (harmonic 15 was approximated as 15 · leff). As it
turns out, many of the protruded features in the photoelectron spectra coincide with these
state assignments: in the region from 5 to 20 eV it is the 24 orbital that matches well with the
observed peak positions, and from 20 to 30 eV, this is true for the 34 orbital.
For the region below 5 eV, however, we suspect that the photoelectrons are not only

generated by single-photon ionization because here the angular distributions exhibit more
than one angular node and hardly change with the alignment distribution. Instead, this
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observation can be explained by multiphoton ionization by the NIR alignment pulse. If this
was true, it would result in a series of above-threshold-ionization (ATI) peaks, whose kinetic
energies, n(<)

5
, are given by44

n
(<)

5
= < · ~l − IP 5 − *> , (2.15)

where IP 5 is the ionization potential for ionization into the final state 5 and *> = �2
0/

(
4l2)

is the ponderomotive energy of the photoelectron in the oscillating light field with peak
electric field strength �0. As the probability for above-threshold ionization – to a first ap-
proximation – scales exponentially inverse with the ionization potential, we take into account
as final states 5 only the two lowest states of CF3I+, i. e., the spin-orbit ground and ex-
cited state of the non-relativistic ground state, �3/2 and �1/2, with ionization potentials
IP�3/2 = 10.45 eV and IP�1/2 = 11.18 eV. Then, by adjusting *> guided by visual inspection,
an acceptable agreement with the features in the experimental photoelectron spectrum can
be achieved for *> � 180 meV, which is shown in Fig. 2.11b. This ponderomotive potential
corresponds to a laser intensity of ∼3.1 × 1012 W/cm2, which agrees with the result from
Section 2.4.3 (2.3 ± 0.1) × 1012 W/cm2 to within 50 %. This is expected since ionization will
mainly proceed at the peak of the laser intensity, whereas the molecular alignment that we
have characterized above was averaged over the spatial distribution of the NIR pulse that is
probed by the XUV pulse. Therefore, we expect that the ATI peaks will be mainly sensitive to
the peak intensity, which is, for a Gaussian pulse, 1.88 times higher than the average intensity
in the focus. To summarize, we have to assume that ATI is making a significant contribution
to the photoelectron spectrum for <-photon transitions up to order 9 or maybe even 10. As
we have to assume that the angular distributions that we measure in this region are strongly
affected by ATI photoelectrons, we neglect this part of the spectrum in the following discussion.
To see to what extent the difference between the radial distributions for aligned and planarly

delocalized molecules is statistically significant, the normalized difference Δ#&0 of the radial
intensity distribution &0 (introduced in Eq. (2.1)) is displayed in Fig. 2.11c, together with the
point-to-point confidence intervals at the 95 % level. The confidence intervals were calculated
from Eq. (2.13) by standard methods of error propagation, this time assuming, for simplicity,
that the uncertainties in the measurement follow a Gaussian distribution, which we justify by
the fact that the images were accumulated over a large number of laser shots. The confidence
interval then spans

CI0.95(Δ#&0) = Δ#&0 ± 1.96

√
f2
Δ

;
, (2.16a)
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In these equations, the overscore denotes the mean, f

	

and f	 are the standard deviations
of &

	

0 and &	0 , respectively, and ; = 6 is the number of measurements on either side.
From Fig. 2.11c it can be seen that the differences between the measurements are, in the
region from 10 to 25 eV, significantly different from zero. On the other hand, the maxima
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and minima of what seems to be a periodic intensity modulation in this region cannot be
unambiguously assigned to any of the three fluorine lone-pair states. We suspect that the
exact shape of the difference signal can only be reproduced by averaging over several – maybe
all – the involved states.
It turns out that the same observation is true for the extracted radial distributions of the

V: parameters, displayed in Fig. 2.12, which is why have decided not to label any state
assignments. Here, we restrict the discussion to V2 and V4 because the changes in V6 and
higher are too small to be detected in the present experiment. The general difference between
V2 and V4 is that, for the randomly oriented molecule, the latter is always zero, whereas
the former is generally not. This also becomes evident when comparing panels a and c of
Fig. 2.12: as an overall trend, V2 increases from almost zero at 7 eV to a value of roughly 0.9 at
15 eV, a level on which it remains up to 30 eV. In contrast, the V4 distributions for molecules
in alignment and planar delocalization oscillate around zero in opposite direction for kinetic
energies above 7 eV, although the effect is much stronger in alignment than it is in planer
delocalization. Only for photoelectrons with lower kinetic energies do the two V4 distributions
converge into one, non-zero distribution, which is again indicative of multiphoton ionization
as discussed above.

Figure 2.12 Radial distributions of the V: parameters. a) Dependence of V2 on the electrons’ kinetic
energy for the data taken at the alignment peak (blue) and the planar-delocalization peak (orange).
b) Absolute difference, ΔV2, between the two traces shown in a. c, d) Same as a and b for the V4
parameter. Error bars correspond to confidence intervals of 95 % .

Looking at the difference ΔV2, we find an overall downward trend from roughly +0.1 at
11 eV to a little less than −0.1 at 27 eV, on top of which a faster oscillation appears, as we
have observed qualitatively in Fig. 2.10c. In comparison, for ΔV4 we observe only a very weak
downward trend, if any, but the same pronounced oscillations as a function of kinetic energy,
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with an amplitude of ∼ ±0.1.

2.5.2 Computational model

To model the experimental findings from the previous section, the ePolyScat suite of programs
was used, in which the electronic structure of the photoionized molecule is treated at the
Hartree–Fock (HF) level of theory. As an input, an HF wave function has to be provided,
which we did by performing calculations with the GAMESS (US) code. As the calculations
with ePolyScat are restricted to the Hartree–Fock level, we decided to employ the largest basis
set possible to approach the exact Hartree–Fock limit as well as possible. In the first step of an
ePolyScat calculation, the basis set and the orbital coefficients are read in, and the orbital
wave functions are re-expanded onto a spherical grid by a single-center expansion into a
basis set of spherical harmonics. Compared to the actual photoelectron-scattering calculation,
this step is fast and therefore increasing the basis-set size does not impose a computational
penalty. For all atoms, we took the respective all-electron basis sets of augmented quadruple-Z
quality from the Sapporo family45,46 of correlation-consistent Gaussian basis sets.j

Iodine is a heavy atom and therefore relativistic effects become non-negligible. Common
strategies to account for heavy-atom effects are scalar-relativistic correction terms or model-
core potentials, in which explicit treatment of the (relativistic) core electrons is avoided by
replacing them with an effective potential. However, ePolyScat can neither handle model-core
potentials (although scattering codes with this capability have been developed47) nor does it
incorporate relativistic corrections in the scattering equations. Therefore, all calculations were
performed at the non-relativistic (NR) all-electron level, accepting that common relativistic
effects, e. g., the uncontraction of the 3 shell, are not correctly reflected in the input wave
function.
As is common in photoionization calculations, we assume for the molecular structure of CF3I

its experimental equilibrium geometry. This equilibrium structure is known from microwave-
spectroscopy experiments with great precision,39 and has recently also been reproduced by
elaborate electronic-structure calculations.22 To estimate how much strain is built up in the
molecule by not choosing the NR-HF equilibrium structure, we have relaxed the molecule
at the HF level to the minimum-energy configuration and report the deviations in Table 2.2
together with the experimental geometry from Cox et al..39 Probably the most important
parameter to control the convergence of the photoionization calculation is the maximum
angular momentum :;0F , up to which the molecular orbitals are expanded in the basis set of
spherical harmonics. At the same time, :;0F governs the default expansion sizes for various
other variables, e. g., the maximum : in the calculation of the exchange potential and the size
of the final scattering matrix. The computation time, however, grows at least quadratically
with :;0F . To determine an acceptable trade-off, photoionization calculations were performed
for CF3I with :;0F values ranging from 30 to 90 in steps of 10. As the expansion center,
typically the center of gravity of the molecule’s electron density is chosen. For our CF3I model,
this point is located between the carbon and the iodine atom, at a distance of 1.175Å away
from the carbon. For this point, however, the convergence of the molecular-orbital expansion

j In principle, the Sapporo basis sets are also provided in quintuple-Z quality, but they contain additional 7
functions (: = 6), whereas the parsing routines of ePolyScat can only handle polarizing functions up to : = 5,
the ℎ functions.
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is very slow because the dense core orbitals of iodine cannot be sufficiently described from
this distance. Therefore we have chosen the point at 1.8Å away from the carbon (or 0.314Å
from iodine), which led to a faster convergence. The two figures of merit for this convergence
are the normalization integrals of the re-expanded molecular orbitals and the change in the
differential cross section. For the latter, we chose the photoionization of the 44 (HOMO)
orbital, ejecting photoelectron with a kinetic energy of 5 eV.

Table 2.2 Experimental and calculated equilibrium geometries of
CF3I and corresponding total energies at the HF/AQZP level of
theory. Numbers in parentheses are the experimental standard
errors.

Geometry

Expt.a HF opt.b

C– I [Å] 2.1438(27) 2.1480
C–F [Å] 1.3285(23) 1.3024
∠F−C−F [°] 108.42(23) 108.34
�HF [�h] −7254.184 068 −7254.186 213
a From Cox et al..39
b This work.

Ideally, the normalization integral should be 1 after the expansion (as before) and we
take its absolute difference from 1 as a measure for the expansion error. In Fig. 2.13a, the
expansion error, averaged over all 30 molecular-orbital groups of CF3I, is plotted against
:;0F . Over the given range, the average expansion error falls from ∼4 % to ∼0.2 %. As an
illustration of how the photoelectron angular distributions are affected by the quality of the
expansion, we have calculated the photoionization from the 44 HOMO orbital for electrons
with 5 eV of kinetic energy in the exact-static–exchange (ESE) approximation. For every value
of :;0F , the differential cross section (DCS) for molecules perfectly oriented along the ionizing
radiation’s polarization axis was calculated, which is displayed in Fig. 2.13b as a function of
the angle \ between the polarization axis and the emission direction. We find that the DCSs
quickly converge for :;0F > 60. In view of the large number of photoionization transitions
that have to be calculated for the experiment with the whole harmonic comb (86 in total),
we eventually decided to work with :;0F = 70. For this value, the average expansion error is
about 0.5 % and for all valence levels the error is <0.1 %. Judging from Fig. 2.13, we have to
accept a convergence error for the DCS that is on the order of 5 % in the perfectly oriented
case. Upon averaging over all possible orientations of the molecule, convergence is even faster,
so that for the total cross section and the V2 parameter for the randomly oriented molecule,
we find a convergence error <2 %. In relation to the expected fidelity of our computational
model, we consider this degree of convergence appropriate.
For the actual calculation, all allowed continuum transitions from the 9 molecular valence

orbitals by the harmonics 13 through 31 were evaluated with the full exact-static–exchange-
plus-model-correlation–polarization model (ESECP). The photon energies of the harmonics
17 through 31 were taken from the reconstructed spectrum, Fig. 2.5b, and for the harmonics
below that, they were estimated as # · ~leff . For the construction of the model polarization
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Figure 2.13 Dependence of the average expansion error (a) and the differential cross section for the
photoionization of the 44 (HOMO) orbital, (b) on the maximum angular momentum :;0F in the
spherical-harmonics basis employed by ePolyScat. For the details of the calculations in b, see the main
text.

potential, the polarizability tensor of the molecule has to be provided, for which the same
values as in Section 2.4.3 were used (see there and Appendix B for details). For the model
correlation potential, the Padial–Norcross functional48 was employed, which was specifically
developed for describing the electron correlation in electron–molecule collisions.
For each orbital, every symmetry-allowed bound–continuum transition is computed in-

dividually and afterwards the corresponding matrix elements are collected to evaluate the
ionization observables. To understand what transitions are allowed by symmetry, we recall
that a dipole-transition integral can be non-zero only if the direct product of the irreducible
representations of the initial state, Γ7, of the final state, Γ 5 , and of the dipole operator, Γ3

– along one of the Cartesian axes 3 = F, G, H – contains the totally symmetric irreducible
representation of the point group to which the molecule belongs. In its equilibrium geometry,
CF3I is of �3D symmetry, and therefore we can write

〈7|3 | 5 〉 , 0 if Γ7 × Γ3 × Γ 5 ⊃ Γ�1 . (2.17)

For completeness, we give the character table and the product table for the �3D point group
in Table 2.3. From the character table, it is clear that the dipole operator along the H axis
transforms like �1, and along the F and G axes like the doubly degenerate � set. Looking at
the product table, one finds that for the ionization out of orbitals of �1 and �2 symmetry, a
dipole transition along any Cartesian axis couples uniquely to a single symmetry component
of the continuum: If the polarization axis is aligned parallel to the principal molecular axis,
ionization out of an orbital of �9 (9 = 1, 2) symmetry can only proceed through the �9
component of the continuum, and if it is aligned perpendicular to the principal axis, the
photoelectron wave function will be of pure � symmetry. The photoionization of a degenerate
orbital group of � symmetry, however, is a little more involved. For the parallel case, only
ionization into the � component of the continuum is symmetry-allowed. In the situation where
the polarization axis is aligned perpendicular to the principal molecular axis, however, dipole
transitions into all three components of the continuum can make non-vanishing contributions,
which can be seen from the product Γ� × Γ� in the product table.

To benchmark the fidelity of our photoionization calculations, we ideally want to compare
them to published data for the randomly oriented molecule. To the best of our knowledge,
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Table 2.3 Character table (left) and product table (right) for the �3D point group. The
symmetry operations in the head of the character table are the identity operation �, rotations
around the threefold axis of symmetry, �3, and mirroring through the three vertical mirror
planes, fD.

� 2�3 3fD linear fncts. & rotations

�1 1 1 0 H

�2 1 1 −1 'H
� 2 −1 0 (F, G), ('F , 'G)

�1 �2 �

�1 �1 �2 �

�2 �2 �1 �

� � � �1 + �2 + �

the only photon-energy dependent, quantitative survey of the photoionization dynamics of
CF3I is the synchrotron study by Yates et al.25 in which only branching ratios are reported
instead of absolute photoionization cross sections and which does not provide data on the
asymmetry parameter, V2. We recall that the branching ratio, BRB, for ionization into a final
state B at a photon energy ~l is defined as

BRB =
fB(~l)∑
5 f 5 (~l)

, (2.18)

where f7 is the partial cross section for the final state 7 and the sum runs over all channels 5
that are open at the photon energy ~l. Limited by their spectral resolution, Yates et al.,25

were not able to resolve all single-particle states individually, so that in some cases only the
BR for the sum of two closely spaced states is reported. From the results of the present
calculations, the BRs were formed accordingly from the partial cross sections both in length
and velocity gauge, which are displayed together with the experimental values in Fig. 2.14.
Overall, we find a very satisfying agreement between the theory and the experiment of

Yates et al..25 However, we also observe two pronounced differences between the experimental
BRs and our simulation: First, for photon energies right above threshold, the calculated BRs
for the states (34 + 102), 24, and (201 + 14) are significantly overestimated (panels b, d,
and f in Fig. 2.14). Apparently, the ESECP model predicts a strong one-electron resonance
for photoelectrons with ∼1 eV of kinetic energy that appears in different channels and that
is not observed in the experiment.k At the same time, this is the kinetic-energy region
where bound states in the continuum, which decay through autoionization, can dominate
photoabsorption.49 This process can only be described through multi-electron resonances,
which require the explicit treatment of electron correlation, and is therefore beyond the scope
of the applied method. Second, considering the results for the HOMO 44 orbital (panel a
of Fig. 2.14) we find that – while the general trend is correctly reproduced – the calculated
BR is systematically underestimated by almost a factor of two. To some extent, this can
possibly explained by the low-energy resonance phenomenon discussed before, which can
only become visible at the expense of some other state’s contribution being underestimated at
the same photon energy (because the BR is a relative measure). It could, on the other hand,
also be indicative of a relativistic effect: The fact that the cross section is falling monotonically

k We caution, however, that we do not have reference data for the exact same photon energies as in the present
experiment, so that there is in principle a chance that these narrow resonances are simply not covered by the
choice of synchrotron wavelengths.
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Figure 2.14 Branching ratios for the valence-shell photoionization of CF3I. Vertical bars show the
results from the ePolyScat calculations in length gauge (darker shading) and velocity gauge (lighter
shading), respectively. For comparison, experimental values from Yates et al.25 (open squares) are
shown together with their reported experimental uncertainty. To emphasize the relative strength of
the contributions, all panels are to scale with respect to each other. The point marked as ? certainly is
off due to a misprint in the original publication because the BRs add up to only 90 % at that photon
energy, but to the expected 100 % at all others.

suggests that the interaction of the photoelectron with the molecular parent ion is small
(which is in line with the notion that the 44 orbital has an essentially atomic, outer-valence
character) and therefore the cross section is dictated by the dipole overlap between the
bound-state and the – essentially unperturbed – continuum wave functions.49 Now, it is in
particular the relativistic shielding of the core electrons and the spin-orbit coupling that
affects the radial distribution of the bound electrons. As we neglect relativistic effects in the
calculations altogether, and in particular the fact that the ionic state that is associated with
the removal of a 44 electron is spin-orbit split, we suspect that this leads to the systematic
discrepancy between the calculated and the measured BRs.

2.5.3 Connection to the experimental PADs

To be able to compare the results of the photoionization calculations from the previous section
to the experimental results presented in Section 2.5.1, we need to simulate photoelectron
spectra from the photoionization observables, which requires knowledge of the relative
intensities of the harmonics, �(#), the width of each photoline, and its differential cross section,
df /d\, for a given molecular axis distribution, %MA. The relative intensities of the harmonics
17 through 31 are directly taken from the reconstructed spectrum presented in Section 2.3.2.
From that spectrum, however, we could not recover the intensities of the harmonics 13 and
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15, which are presumably present in this experiment because their photon energies exceed
the aluminum filter edge of ∼20 eV. Therefore, we use a least-squares fitting procedure, in
which they appear as additional fit parameters, to obtain an estimate for them.
The widths of the photolines, on the other hand, are determined by the bandwidth of the

individual harmonics, the lifetime of the ionizing species, and the instrumental function of
the spectrometer. For a VMI, the instrumental function can take a complicated form and it
ideally has to be characterized explicitly for every set of spectrometer voltages. For simplicity,
we assume that the resolution of the spectrum is not limited by the spectrometer, but by
the bandwidth of the harmonics, an approximation that is well justified in our experimental
configuration. Further, we assume that all harmonics are of Gaussian shape and that they
have the same width, ^, which we treat as a free parameter in the fitting procedure, and
which therefore represents the average photoline width. Using a single, constant value for the
photoline widths may seem like an oversimplification, but it introduces only one additional
parameter into the fitting procedure, which makes it more robust.
Now we can write the angle-resolved photoelectron spectrum �(n9, \) as a function of the

continuous photoelectron kinetic energy n9, i. e.,

�(n9, \) =
∑
#

∑
5

(
df 5 (n

(#)

5
) /d\

) �(#)
^

exp
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−

[
n9 − n

(#)

5

]2

2^2

 , (2.19)

where the sums run over all final states 5 , for which n(#)
5

is positive, and over all harmonics of
order #. To calculate the differential cross section, df /d\, a convolution has to be carried
out between the photoemission of a molecule which is fixed in space, and the molecular axis
distribution, %MA, of the molecular ensemble. In principle, this can be done analytically by
re-expanding %MA in spherical harmonics and applying vector coupling algebra to calculate
the product of %MA with the partial-wave dipole matrix elements for photoionization,50 as
was presented in Section 1.3. Here, we have applied the more straightforward, but entirely
equivalent approach of integrating the laboratory-frame photoemission numerically over all
molecular orientations, weighted by %MA. For a non-linear molecule like CF3I, this requires an
integration over all three rotational degrees of freedom, which we denote by the Euler angles
R =

(
U V W

)
(see Section 1.3 for their meaning). The integration over the rotation around

the principal molecular axis through the angle W can, however, be avoided by not working
with the differential cross section in the molecular frame, but in the recoil frame. In the latter,
a cylindrical averaging around the recoil axis is already implied and we simply require that
the recoil axis is identical to the principal molecular axis.
The last bit of complication arises from the fact that in the experiment the emission of

the outgoing photoelectron into the solid angle dΩ = dq sin \ d\ of the laboratory frame of
reference is measured, in which the polarization axis is fixed while the molecule rotates around
it, a problem that was already touched upon at the end of Section 1.3. When calculating
differential cross sections in the recoil frame, however, it is conventional to define the direction
of photoemission, dΩ′, relative to the space-fixed recoil axis. When performing the averaging,
the differential cross sections therefore have to be rotated back by the current set of Euler
angles to make the polarization axes coincide, which we refer to as the photon frame. This
frame transformation is carried out simply by applying the Euler rotation matrices introduced
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in Eq. (1.44), which let us write

df(R)
dΩ

= D(−U,−V, W = 0)
df(R)
dΩ′

. (2.20)

Then, the differential cross section in the laboratory frame is obtained by integrating the
(rotated) recoil-frame PAD over all Euler angles, according to

df 5 (n
(#)

5
) /dΩ =

∫ π

0

∫ 2π

0
%MA(V)

df(R)
dΩ

dU dV . (2.21)

As %MA is, in the present experiment, always cylindrically symmetric, this symmetry is im-
printed onto df /dΩ, which renders the differential cross section independent of the azimuthal
angle q. This is why we simply use df /d\ = 1

2π df /dΩ in Eq. (2.19). Eventually, from
�(n9, \) all angular-distribution parameters were calculated in the same way as for the experi-
mental data, which is discussed at the end of Section 2.3.1.
Practically, Eq. (2.21) was integrated on an equidistant grid of 65 points along U and 65

points along the V direction. The parameters were chosen such that when the molecular axis
distribution of the randomly oriented ensemble, %7A=MA =

1
2 , was used, the absolute difference

between the numerically obtained value of V2 and the analytical one was always smaller than
5 × 10−3.
With all quantities of Eq. (2.19) defined, a fitting procedure was used to determine four

free parameters: the intensities �(11), �(13), and �(15), and ^. Here, we have included �(11)

and all corresponding photoionization transitions, even though we expect the intensity of
this harmonic to be very weak after the aluminum filter, as a kind of “sanity check” of our
approach.

2.5.4 Comparison between experiment and theory

The fitting procedure was carried out using the PADs recorded at the alignment peak. The
distributions of %MA were taken directly from the simulations presented in Section 2.4.3. It may
appear most natural to match the simulations to the experiment through the angle-integrated
photoelectron spectrum. In Section 2.5.2, however, we have found a good agreement between
the calculated and the measured branching ratios only, and this does not necessarily imply that
the photon-energy dependence of the absolute cross section is correctly reproduced. Therefore,
the actual optimization was carried out with the radial distribution of the asymmetry parameter,
V2, the results of which are displayed in Fig. 2.15.
Concerning the angle-integrated intensity distribution (Fig. 2.15a), we find that the overall

structure of the experimental data is correctly reproduced, but that there is a systematic
trend that overestimates the total cross section with increasing photoelectron kinetic energy,
which leads to the observation that in the spectra, which are normalized to maximum peak
height, the calculated photoelectron spectrum is weaker than the measured one below the
normalization point, and more intense above it. For the average asymmetry parameter V2 that
is displayed in Fig. 2.15b, however, which is by definition independent of the intensity, we
find an almost quantitative agreement between the experimental and the calculated radial V2
distribution in an kinetic-energy region between 15 and 30 eV. Below this region, the general
trend is correctly reproduced, but the detailed structure is washed out in the simulation,
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Figure 2.15 Comparison between the experimental photoelectron spectrum (open circles) obtained
with the entire harmonics comb and the simulated one (solid line) taking into account the experi-
mentally obtained harmonics spectrum. a) Angle-integrated, radial intensity distribution. For the
experimental data, the photoelectron data at the alignment peak were used. The simulated spectrum
was obtained from Eq. (2.19) after the least-squares fitting procedure described in the main text.
A decomposition into the individual contributions is shown as a stick spectrum. The inset shows
the complete harmonics spectrum, distinguishing between the harmonics that were obtained from
the fit (orange) and those that were obtained from the photoelectron spectrum in helium (blue, see
Section 2.3.2). b) Same as a for the asymmetry parameter V2.
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Figure 2.16 Normalized difference of the angle-resolved photoelectron spectrum, Δ#�(n9, \), from the
experiment (top) and the simulation (bottom).

which we attribute to the fact that an equal, average peak width was assumed. Above 30 eV,
the asymmetry parameter quickly drops to zero in the experiment because in this region the
intensity of the photoelectron signal is comparable to (isotropic) background contributions.
In the inset of Fig. 2.15a, the relative intensities of the entire harmonics comb are shown,
and it appears that the strengths of the fitted harmonics smoothly match the outline of the
reconstructed spectrum. In particular, �(11) is estimated to be zero, which seems reasonable
from what was said above.
To assess the agreement between the alignment effects in the experimental spectra and the

photoionization calculations in a qualitative way, we compare the normalized differences in
the angle-resolved spectra Δ#�(n9, \) in Fig. 2.16. Overall, considering the number of approx-
imations and simplifications made, we find that the measurement is very well reproduced by
the simulation. In particular, the characteristic, repetitive angular pattern between 15 and
30 eV is almost quantitatively matched, even if in the calculation the strength of the alignment
effect is predicted to be stronger than observed in the experiment.

2.5.5 Discussion

Clearly, when facing such a convoluted spectrum as in the present experiment, the appealing
advantage of having a simulation that can reproduce the findings to a satisfying degree is that,
in the calculation, we can decompose the spectrum into its individual contributions hoping to
rationalize the photoionization dynamics. This is done in Fig. 2.17, where the changes in the
photoelectron angular distributions between the aligned and planarly delocalized molecules
are shown as absolute differences. As expected, the orbital groups that have the highest
branching ratios – we recall that this is the group of fluorine 2> lone pair orbitals, 102, 34, and
24 – are also the ones that dominate the difference spectrum, especially in the region between
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15 and 30 eV (panels c, d, and e of Fig. 2.17). Also, for many states, the angular-distribution
difference is varying smoothly as a function of photoelectron kinetic energy, for example in
panels a, f, and h of Fig. 2.17. What is more striking is that for certain states, at certain
energies, the angular distributions change qualitatively. This can be seen for the 401 state
(panel b), where a transient dip at small angles appears around ∼25 eV, and for the 34 state
(panel d), for which the angular-distribution difference is fundamentally different below and
above of what appears to be an “inflection point” at ∼15 eV.
We tentatively propose that such drastic changes in the angular-distribution differences

are indicative of an underlying one-particle resonance, typically referred to as a “shape
resonance”. The following qualitative argument shall serve to illustrate this assumption: If no
scattering resonance is involved, the photoelectron angular distribution changes smoothly
with photoelectron kinetic energy, mostly governed by the energy-dependent Coulomb-phase
shift, and this change will be comparable for molecules in all ionization geometries. Therefore,
the PAD difference, as shown in Fig. 2.17 should show only a weak dependence on the kinetic
energy. With every resonance, on the other hand, a unique resonance continuumwave function
is associated that will most likely be highly anisotropic, simply because the potential of the
molecule – that causes the transient trapping – is highly anisotropic. Now, if at the resonance
position the contribution of this resonance wave function to the overall photoionization
dominates, it modulates the PAD of either the aligned, or the planarly delocalized molecule
in a characteristic way. This, in turn, will then express itself as a pronounced variation of the
angular-distribution difference.
In general, as discussed at the end of Section 1.2, a shape resonance manifests as a sudden

jump in the eigenphase sum for the electron scattering off the target ion. In Fig. 2.18a the
eigenphase for the 34 channel is shown over the energy region of interest, calculated at the
ESECP level of theory as above. Notably, not only one, but two steep rises are observed,
at energies of ∼10 eV and ∼20 eV, respectively. To quantify them, the eigenphase sum is
approximately written as the sum of a constant background phase, X0, and the resonance
phase shifts, which are represented by arctangent functions, i. e.,

X(�) = X0 +
�1

π
arctan

� − �1

Γ1/2
+
�2

π
arctan

� − �2

Γ2/2
, (2.22)

where �7 (7 = 1, 2) is the center of the phase jump, Γ7 its width, and �7 its step height. Even
with this drastically simplified functional form, in which the background phase shift is assumed
to be constant, the energy dependence of the eigenphase sum can be reproduced very closely,
which is shown in Fig. 2.18a, as well. The obtained resonance parameters are summarized in
Table 2.4. What is surprising is that the fact that two resonances seem to be involved is not
directly apparent from the (calculated) partial cross section nor the asymmetry parameter
V2 for the randomly oriented molecule, which are shown in Fig. 2.18b and c, respectively.
Typically, it is these two observables which are considered when identifying a resonance
experimentally because they vary drastically in its proximity.49

To characterize the exact shapes of the resonance wave functions and hence their possible
impact on the photoelectron angular distributions, they need to be separated from the
background scattering wave function, as follows: Formally, shape resonances are defined as
poles of the scattering ( matrix when its energy dependence is analytically extended into
the complex plane.51,52 To prove that indeed shape resonances are involved, we have carried
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Figure 2.17 Calculated absolute differences of the photoelectron angular distributions Δ� 5 (n9, \), de-
composed into the final states 5 that are indicated in the top right of every panel. The displayed
intensity differences are all to scale with respect to each other to emphasize the relative magnitude of
the contribution that they make to the difference spectrum shown in the bottom panel of Fig. 2.16.
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Figure 2.18 Eigenphase sum and photoionization observables for the 34 channel of CF3I. a) Eigenphase
sum for the electron scattering off CF3I+, in which an electron was removed from the 34 orbital (dots)
and a fit with the function of Eq. (2.22) (solid line). b, c) Partial cross section (b) and asymmetry
parameter (c) for the photoionization out of the 34 orbital in the randomly oriented molecule.

out pole searches in the complex scattering-energy plane with the algorithm developed by
Stratmann & Lucchese53. When a resonance is found, the associated scattering wave function
can be evaluated at the complex-valued energy which is then equal to the “pure” resonance
wave function.

For the resonance search, a simplified, static potential with model exchange is used, which
is energy independent, in contrast to the more sophisticated ESECP model introduced above.
As its outcome, the algorithm returns a list of extrapolated pole positions at complex-valued
energies � = �@4A − iΓ/2, where �@4A is the resonance energy and Γ is the associated resonance
width.
Carrying out the resonance search, we were able to identify two poles that correspond

closely in energy and width to the phase jumps observed in Fig. 2.18. When more than one
pole was found in the corresponding energy region, the one with the smallest imaginary part
was chosen because it is this on that has the greatest impact on the eigenphase sum.

The corresponding resonance wave functions are displayed in Fig. 2.19 a through d. From
the real-valued wave function (a and b) one can see, how the resonances can be understood in
terms of anti-bonding orbitals: In both cases, an 5 orbital of iodine is involved, that overlaps
with what seems to a carbon > orbital in the case of the low-energy resonance, and a 3
orbital in the other case. From the anti-bonding orbital alone, however, one cannot predict
the asymptotic shape of the resonance wave function. It turns out that this shape differs
significantly for the two resonances: for the lower one, probability density is concentrated in
the direction of the iodine atom. For the higher one, scattering occurs predominantly in the
plane perpendicular to the C–I axis.
In the next step we need to verify that these resonances make a significant contribution to

the molecular-frame photoelectron angular distribution because, after all, also the background
scattering and the dipole selection from the molecular orbital contribute to the final MF-PAD.
To this end, we compare the MF-PAD at harmonic 19 (13.5 eV, Fig. 2.19e) and 25 (22.9 eV,
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Table 2.4 Resonance positions and widths of the shape resonances in the photoionization of
the 34 orbital group, obtained from the fitting of step functions to the eigenphase sum and
from the pole-searching algorithm.

From eigenphase sum From pole search

�'[eV] Γ[eV] ΔΦ[rad] �'[eV] Γ[eV] Character

Res. 1 12.04 7.62 1.9 11.13 5.30 5 on I and > on C
Res. 2 23.42 7.07 2.7 23.06 6.34 5 on I and 3 on C

Fig. 2.19f), which are closest to the determined resonance positions, to the asymptotic shapes
of the resonance wave functions. Clearly, there is a striking similarity between the MF-PAD
and the retrieved resonance wave functions, which makes us confident that – within the
computational results – the two identified resonances do modulate the photoelectron angular
distributions significantly.
With the data presented so far, we cannot unambiguously prove that it must be these

two shape resonances that determine the PADs in the observed way. What we can do, how-
ever, is to support this interpretation with an indirect argument: while we cannot simply
turn off the existence of shape resonances alone in the simulations, we can turn off the
photoelectron–molecular-ion interaction altogether by simply using the Coulomb wave, in-
troduced in Eq. (1.29), instead of the calculated continuum wave functions. To simplify the
model further, we come back to the idea once more that the PADs are largely determined by
the three most intense contributions, which are associated with the orbitals 102, 34, and 24.
In what follows, the angular-distribution parameters calculated with the full model (Fig. 2.20)
and with the Coulomb waves only (Fig. 2.21) are compared to the experimental results
individually to gauge what effect the explicit treatment of photoelectron scattering has on the
resulting PADs.
Looking at the comparison between theory and experiment in Fig. 2.20,a pretty good

agreement is observed. In particular, qualitatively, the experimental radial distributions
are still well reproduced with the 3-state model. Note, however, that the effect size in the
individual contributions is up to a factor 3 larger than what is eventually observed after
averaging over all contributions.
When the same comparison is made using Coulomb waves instead of the full ePolyScat

model, as shown in Fig. 2.21, two striking observations can be made: First, the overall trends
in ΔV2 and ΔV4 are not correctly reproduced anymore. In particular, the slow decline and
change of sign in ΔV2 is not correctly captured. Second, the rapidly oscillating modulations
are still matching the experimental findings very well.
From the above analysis, we conclude that the rapid oscillations are completely determined

by the shape of the molecular orbitals: all three orbitals of the 3-state model are fluorine lone-
pair orbitals, which are different linear combinations of the fluorine > orbitals. In particular,
the spatial filtering that the orbitals cause in the photoionization seems to be exactly opposite
for the 24 and the 102 orbitals, whereas ionization from the 34 orbital results in a more
isotropic PAD.
The overall trends, however, especially that in ΔV2, can only be described to a satisfactory

degree when the two shape resonances discussed above are brought in because the precise
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Figure 2.19 Resonance wave functions in the 34 → 94 photoionization of CF3I. a, b) Real part of
the resonance wave functions at � = (11.1 − 2.7i) eV (a) and � = (23.1 − 3.2i) eV (b), shown as cut
through the Cartesian F − H plane that contains the iodine, carbon and one fluorine atom, positions of
which are marked by crosses. c, d) Same as a and b but as absolute wave-function value to emphasize
the asymptotic behavior of the resonance wave function. e, f) Molecular-frame photoelectron angular
distributions (in Mb sr−1) for photoionization with harmonic 19, close to the resonance of a and c,
and for harmonic 25, close to the resonance of b and d.
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Figure 2.20 Comparison between experimental and theoretical radial distributions of ΔV:. a, b)
Comparison between experiment (dots) and the full ePolyScat model (solid lines). c, d) Same as a, b,
but only taking into account the three strongest contributing orbitals (note the different ordinates).
The vertical bars indicate the individual contributions from the orbitals that are color-coded according
to the legend in d.

Figure 2.21 Same as Fig. 2.20, but for the calculation with Coulomb waves instead of the full model.
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shape of the resonance wave functions is imprinted onto all channels in which these resonances
occur.

2.6 Conclusion

In this chapter, we have investigated the effects that molecular alignment has on the pho-
toelectron angular distributions (PADs) in XUV ionization. First, we have quantitatively
reconstructed the molecular-axes distribution of the aligned ensemble during the revival of the
rotational wave packet. Based on the extracted molecular-axes distributions, the connection
between the measured PADs and the calculated ones, which are expressed in the molecular
frame, was successfully established through a rotational-averaging procedure. In comparing
theory and experiment, we found a convincing agreement within the known limitations of the
theoretical model. Furthermore, the detailed analysis of the alignment-dependent changes in
the PADs gave strong evidence that these changes can – to a large extent – be understood
when considering the contributions from two prominent shape resonances that are not directly
apparent in the photoelectron spectra of the randomly aligned ensemble. This interpretation
was supported by the observation that the measured trends in the energy dependence of the
angular-distribution parameters cannot be reproduced when the photoelectron scattering is
turned off completely, which, of course, also eliminates the shape resonances.
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Chapter 3

Imaging Nuclear Wave Packets through
Laser-assisted Electron Recollisions in Excited I2
Molecules

3.1 Introduction

When atoms or molecules are exposed to strong, slowly oscillating laser fields, a great number
of fascinating phenomena can be observed. Among them, probably the most notable is the
generation of high-order harmonics, a process that was used itself to devise an XUV light source
in Chapter 2. We quickly recall that, in the three-step model that is often used to rationalize
the high-order harmonic generation (HHG), a valence electron of the atom or molecule is
first ionized close to the electric-field peak of the laser field. The liberated electron is then
accelerated in the laser field that drives electron away from the parent ion and then back to it,
where it recollides with the ion. Now, in HHG, radiative recombination is expected to occur,
but the electron could also scatter (either elastically or inelastically) off the parent ion. The
experimental technique, in which these rescattered electrons are investigated is referred to as
laser-induced electron diffraction (LIED). What is remarkable about the elastic-scattering case
is that, if the deflection angle is large, the scattered electron will end up with an asymptotic
velocity that is much larger than what it could have gained by acceleration in the field only.
Therefore, in the strong-field photoelectron spectrum, the high-energy, backscattering region
can typically be cleanly separated and investigated independently.
What is even more appealing is that, under certain circumstances, this rescattering phe-

nomenon can be even further rationalized, using what has become known as the quantitative
rescattering (QRS) theory. In this approximation, the returning electron wave packet is ap-
proximated as being a plane wave. Consequently, with the help of some side assumptions, the
differential scattering cross section (DCS) for the electron–molecular-ion scattering process
can be extracted from the measurement and compared to electron-scattering simulations or
available experimental data.
Electron scattering experiments are a well-established technique to elucidate the equilibrium

structure of molecules.1 What they require, however, are electrons with de-Broglie wavelengths
smaller than the internuclear separations inside the molecule. In particular, for electrons in
the keV range, the constituent atoms can be treated as point scatterers, an approximation
that is used in the all-classical independent-atom model.2 Now, in an LIED experiment, the
maximum recollision energy (and with it the minimum de-Broglie wavelength), scales linearly
with the ponderomotive potential *> = �2

0/
(
4l2) of the driving laser, where �0 is the peak

field strength and l is fundamental laser frequency. Obviously, increasing the field strength
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will increase *>, but does not come without risks: if the laser field strength is too high, many
other competing processes can occur, like over-the-barrier ionization, which compromise the
validity of the QRS approximation. Instead, to reach recollision energies that come close to
a regime where the recollisions can be treated classically, increasing the laser wavelength
is the more attractive option. Here, we have used optical parametric amplification (OPA) to
generate mid-IR pulses at 1.3`m from a standard 800 nm Ti:Sa laser.
A lot of work has been done to establish and verify the validity of the QRS model, predom-

inantly in noble gas atoms.3 A notable publication on molecules is the study by Okunishi
et al.4 on the N2 and O2 molecules, showing that in the extracted DCS, one- and two-particle
resonances can be identified, which are in excellent agreement with multi-channel electron-
scattering calculations. Recently, Pullen et al.5 have demonstrated that, even in a static
LIED measurement, nuclear dynamics in the molecular ion can be revealed by relating the
photoelectron spectrum to sub-cycle timing information that was inferred from sophisticated
models.
What we propose here goes one step further: As the LIED process is extremely fast, it

should be possible to image the evolving nuclear structure of a molecule that is e. g., pumped
into a dissociative excited state, by comparing the changing signal of the rescattered electrons
to scattering calculations in different molecular geometries. As the target system we have
chosen the iodine molecule, I2, for two reasons in particular: First, it exhibits a number of
low-lying excited states that can be accessed in the visible region of electromagnetic radiation,
and which can be used to prepare dissociating and vibrational wave packets. Second, the
total scattering cross section scales with the number of electrons in the target and is therefore
much higher for heavy atoms than it is for light ones.
What is more, in two recent experiments it was demonstrated that the evolving nuclear

structure of dissociating I2 molecules could be imaged with ultrafast electron diffraction6 and
x-ray diffraction7. In this chapter, we want to investigate to what extent time-resolved LIED
experiments can compete with these diffraction techniques or whether LIED experiments can
provide complementary insight based on the information that can be extracted from it.
To cover a large range of internuclear distances at which the LIED is sampled, we have, in

fact, carried out two experiments: one, in which I2 is excited into the A state, which leads to
photodissociation, and one, in which it is excited into the B state, in which a vibrational wave
packet is created that bounces forth and back inside the binding potential well. All important,
involved neutral and ion states are given in the scheme Fig. 3.1.a The choice of excitation
energies was guided by the extensive work of Tellinghuisen9 on the photoabsorption on
I2 in the visible and infrared region. Based on the transition strengths that he reported for
transitions into the �, �, and �′′ states, 710 nm and 555 nm were chosen for the excitation
into the � and � state, respectively. In the case of the � state, this wavelength corresponds
to the absorption maximum. For the � state, however, the chosen excitation wavelength is
red-shifted with respect to the state’s absorption maximum to suppress excitation into the
dissociative �′′ state, absorption of which is strongest at 490 nm.
In this chapter, we proceed with an approach similar to that of the previous ones: With the

photoion measurements, the (typically well understood) wave-packet dynamics are quantified
by Coulomb-explosion imaging and the internuclear distance is extracted as a function of

a For a comprehensive overview of the electronic structure of I2 and I2+, we refer to the work of Jong, Visscher
& Nieuwpoort,8 which we consider an invaluable source.
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Figure 3.1 Potential energy curves of I2 and I2+ that are relevant for the present set of experiments. All
energies are given relative to the 2P3/2+ 2P3/2 dissociation threshold. Inside the boxes, valence-electron
configurations are given in terms of a non-relativistic, single-electron picture to illustrate the leading
configurations of the indicated term symbols, according to Jong, Visscher & Nieuwpoort8 (HOMO:
highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital). The dissociative
�′′ state (gray) is also accessible at 555 nm and population transfer into this state cannot be entirely
avoided.

pump–probe delay. Based on these distances, scattering calculations are carried out for I2+ in
several geometries and the results are compared to the experimental DCS extracted from the
time-dependent photoelectron spectra. We find that the observed dynamics can be explained
almost completely by considering two strong shape resonances that are involved: the : = 6
resonance in I2 at the equilibrium internuclear distance and the well-known : = 3 (or 5 -wave)
resonance in atomic iodine.

3.2 Experimental Setup

For this experiment, laser pulses were generated in a commercial Ti:Sa laser system (Spectra
Physics) that provides pulses of 3 mJ pulse energy, 30 fs (FWHM) pulse width centered at
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800 nm, at a repetition rate of 1 kHz. Two commercial optical parametric amplifiers (Light
Conversion “TOPAS C”), each of which was pumped with 1 mJ of the 800 nm laser output,
were operated in parallel to generate the mid-IR and visible light pulses. For the mid-IR
arm, pulses of 130 µJ, centered at 1300 nm were generated, which were attenuated with
a neutral-density (ND) filter to ∼30µJ. For the �-state experiment, 1420 nm pulses were
generated in the second OPA, which were then frequency-doubled to give 20 µJ, 710 nm
pulses. For the �-state experiment, the second OPA was tuned to yield 90 µJ of laser light
centered at 555 nm. Reflective ND filters were used to attenuate the visible pump pulses for
both the �- and �-state experiments to ∼4µJ. A remote-controlled shutter was inserted into
the beam path to automate the acquisition of probe-only reference data when performing
long-running, repetitive delay scans.
Using a 1 : 2 telescope, the beam size of the mid-IR beam was expanded to ensure that

the focus size of the (ionizing) mid-IR beam was smaller than that of the visible (pump)
beam. The two beams were collinearly overlapped with a dichroic mirror and the combined
beams were then focused with a 250 mm focusing lens into the center of a velocity map
imaging spectrometer (VMI). The telescope was adjusted to compensate for the difference
in divergence of the two beams to overlap the focal spots along the propagation axis. The
polarization axes of both beams were adjusted such that they were parallel to each other and
parallel to the detector plane to ensure that the recorded images be Abel-invertible.
To prepare a molecular beam, solid I2 was kept inside a pulsed, heatable Even–Lavie valve.

A mixture of I2 in helium was expanded into vacuum by heating the valve to 45 ◦C and
operating it with 10 bar of helium pressure at a repetition rate of 250 Hz. After a 1 mm
skimmer, 20 cm downstream from the valve’s nozzle, the molecular beam entered the VMI
chamber, where it was crossed with the two laser beams. The charged particles created in the
strong-field ionization were projected onto a chevron-paired micro-channel-plate/phosphor-
screen assembly (MCP/PH), illumination of which is recorded with a charge-coupled device
(CCD) camera. Square-shaped gate pulses were applied to the MCP to select specific iodine-ion
charge states for the photoion spectroscopy, and to suppress background electrons when
recording photoelectron data.
Typically, a photoion image is accumulated over 2.5 × 103 laser shots, a typical photoelec-

tron image over 1 × 104 laser shots. The VMI images were treated as described in Appendix A,
including application of the usual maximum-entropy Abel inversion routine,10 and extraction
of the radial intensity and angular distributions.
The spectrometer was calibrated with a series of ATI peaks recorded in I2, assuming a

spacing of ~l = 0.95 eV. The peak intensity of the 1.3µm pulse was gauged by estimating
the 2*> cutoff in the angle-integrated photoelectron spectrum of I2 (see Section 3.4.1 for
the significance of the 2*> cutoff). As this cutoff is not sharply defined in the experimental
spectrum, but rather appears as a soft knee, we make use of the well-known fact that the
power laws with which the photoelectron yield scales before and after that cutoff are distinctly
different.11 Fitting linear functions to the logarithm of the radial intensity distribution in
an energy region clearly below and one clearly above the 2*> cutoff, an estimate for 2*>
is obtained as the intersection point between these two lines, which is shown in Fig. 3.2.
Applying this procedure to the data presented in this chapter, we always obtain a value of
5.2 eV for 1*>, which corresponds to a peak intensity of 3.0 × 1013 W/cm2.
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Figure 3.2 Estimation of the experimental laser peak intensity. The 2*> cutoff is obtained from the
intersection of straight lines fitted to the logarithm of the angle-integrated photoelectron spectrum
as explained in the main text. The spectrum shown was obtained from strong-field ionization of
ground-state I2 molecules with the 1.3µm laser pulse.

3.3 Coulomb-explosion imaging of nuclear wave packets

3.3.1 Static I+ photoion spectroscopy

When the gas mixture in the molecular beam is irradiated with the 1.3µm pulse, only I2+

and In+ fragments are observed in the time-of-flight (TOF) spectrum because the ionization
potential of helium (25.59 eV) is almost three times as large as that of I2 (9.31 eV). The
pulse energy was attenuated such that the TOF spectrum is dominated by the parent ion
and I+ because, eventually, we want to rationalize the photoelectron spectra in terms of
the laser-assisted electron recollisions with the singly-charged molecular ion, and a high
abundance of higher charge states indicates that more than one electron was removed from the
molecule by direct photoionization during the duration of the laser pulse. (Although, to some
extent, higher charge states can also be created through impact ionization by the recolliding
photoelectrons. Under the present experimental conditions, however, the recollision energies
are rather low (<20 eV), which is why we assume that impact ionization does not make a
strong contribution.)
In the next step, I+ fragments were selected for monitoring the molecular dynamics induced

by the visible-light pump pulses with the VMI. As a starting point, we first have a look at the
static photoion spectra: A typical, static I+ photoion spectrum for the strong-field ionization
with the 1.3µm pulse is displayed in Fig. 3.3. Overall, the spectrum is composed of four,
partially resolved features that are labeled according to their proposed dissociation channels
in Fig. 3.3a and b, and which we are going to discuss from highest to lowest fragment kinetic
energy. The assignment of the Coulomb channels In+ + Im+ with ;, < > 0 is based on a
comparison to the Coulomb repulsion energy of two point charges of charge ; and < at the
I2 equilibrium internuclear distance of 2.666Å, which amounts to �� = 1

2;< 5.4 eV. Here,
the factor 1

2 arises from the fact that, because I2 is a homonuclear diatomic, every iodine
fragment carries exactly half the total kinetic energy released.
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Figure 3.3 Static photoion spectroscopy of I+ fragments upon irradiation of I2 with the 1.3µm pulse
only a) Projected detector momentum distribution (left half) and slice through the Abel-inverted,
three-dimensional ion momentum distribution (right half). b) Angle-integrated photoion spectrum
with the proposed assignment of its features. The substructure in the peaks is explained by the
possibility that one or both of the iodine fragments ends up in a spin-orbit excited state (1 SOE and 2
SOE).

Therefore, the peak at ∼4.6 eV can be identified with the I+ + I2+ Coulomb channel, as
its fragment energy corresponds to 85 % of the pure Coulomb repulsion energy. The band
labeled I+ + I+ in Fig. 3.3b is actually composed of a large main component at 2.4 eV, which
agrees closely to the Coulomb repulsion energy of 2.7 eV and two smaller shoulders at 2.0
and 1.7 eV. We explain this finding by the fact that either one or both of the dissociating
I+ fragments ends up in a spin-orbit excited state (labeled 1 SOE and 2SOE in Fig. 3.3b,
respectively). The energy difference between the ground state of I+ (3P2) and the two closely
spaced, spin-orbit excited states, 3P0 and 3P1, amounts to 0.799 and 0.878 eV, respectively.
Hence, spin-orbit excitation should give rise to an energy loss of ∼0.4 eV in the fragment
kinetic energy, which agrees very well with our observation.
The substructure of the band that stretches from 0.1 to 1.0 eV must be made up of contribu-

tions from the dissociation of I2+ molecules. Two rings that are peaked under an angle of ≈40°
with respect to the laser polarization axis can be identified in Fig. 3.3a. From Fig. 3.3b, one
can see that these features occur at 0.9 and 0.6 eV, respectively. The 0.3 eV spacing between
the two may indicate that a spin-orbit excitation is involved again, which is supported by the
fact that the spin-orbit splitting in the neutral iodine atom (0.94 eV) is comparable to that
in the atomic ion. A feature that relates to the 2 SOE channel can barely be identified in the
Abel-inverted momentum distribution (Fig. 3.3a) and is therefore only tentatively indicated in
the photoion spectrum (Fig. 3.3b). Instead, where this channel would be expected to appear, a
strong contribution from a channel whose photoion angular distribution is distinctly different,
namely peaked along the laser polarization axis, is present in the spectrum. This channel is
marked as ? in both panels of Fig. 3.3a, as we were unfortunately not able to assign it.
The most likely origin of the very intense, zero-kinetic energy feature is the formation of

stable I22+ ions, which clearly have no kinetic energy (at least not in the plane of the detector)
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and can, therefore, not be distinguished from I+ ions with the VMI, as the mass-over-charge
ratios of these two species are identical.

3.3.2 Photodissociation dynamics (A state)

In a delay scan between the 710 nm and the 1.3µm pulses, I+ ion VMI images were recorded
in time steps of ΔB = 45 fs over the range from −1 to 10 ps. After inversion and extraction
of the radial intensity distribution, the mid-IR-only spectrum of Fig. 3.3b was subtracted
to emphasize the new contributions that originate from the fragmentation of the excited
species, resulting in the two-dimensional map displayed in Fig. 3.4a. In it, the most prominent
feature is the curve labeled - → � that appears at time zero with a kinetic energy of 2.5 eV
and then quickly drops in kinetic energy with increasing pump–probe delay, converging ever
closer to the low-kinetic energy feature at roughly 0.1 eV that is also assigned to the - → �

transitions. These two features only differ in the final state that the dissociating wave packet
is projected onto, leading to Coulomb explosion in the former and dissociative ionization (or
simple atomic ionization at large internuclear separations) in the latter. Asymptotically, the
Coulomb-repulsion energy will become so small that the fragment kinetic energies for both
states converge to the asymptotic kinetic energy of the �-state photodissociation.
Two similar pairs of converging curves are observed with asymptotic kinetic energies of

0.6 and 1.0 eV. For a single-photon transition at 710 nm there are, however, no states that
could lead to these dissociation energies. Instead, we propose that two-photon transitions
are involved. By energy conservation, the excess energy between two photons of 710 nm
(1.75 eV) and the I3/2 + I3/2 dissociation limit is 1.95 eV, and between two photons and the
I1/2 + I3/2 dissociation limit it is 1.01 eV. Recalling that the measured fragment energy is
exactly half the total kinetic energy release, the agreement between this estimation and the
observed asymptotic energies is striking. Still, we refrain from making a definitive assignment
of the involved states because there are many, closely spaced excited states of I2 in this region.8

At negative pump–probe delays, where the roles of the pump and probe pulses are reversed,
the picture changes completely. We follow here the interpretation of Fang & Gibson12 who
have reported their findings for a very similar experiment in I2. Through strong-field ionization
of the mid-IR pulse, vibrational wave packets are prepared in the two lowest ion states of I2+,
X3/2 and X1/2, which are bound and whose equilibrium internuclear distances are slightly
shorter than that of the neutral ground state. The fast oscillations of these vibrational wave
packets are then probed by the 710 nm pulse that projects them onto dissociative states.
As the transition probability in the latter step depends on the internuclear separation, an
intensity modulation is observed that oscillates with the period of the wave packets.
To quantify the Coulomb-explosion dynamics of the - → � transition, a Gaussian function

was fitted to the associated spectral feature at each time delay. To make this procedure more
robust, the first fit is carried out at B = +10 ps, and then the delay points are treated in reverse
order, updating the guess for the central energy after every successful fit.
To predict the fragment kinetic energy as a function of time, we make two simple assump-

tions: First, the dissociating wave packet is launched on the � state at time zero at the
equilibrium internuclear distance, '4? = 2.666 Å, and is then moving at a constant velocity
that is identical to the asymptotic velocity D0. We justify this assumption by the fact that,
on the timescale on which the dissociation is observed, the acceleration of the nuclear wave
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Figure 3.4 Coulomb-explosion imaging of the photodissociation dynamics of I2 induced by 710 nm
excitation. a) Time-dependent evolution of the 1.3µm-only-subtracted I+ fragment kinetic-energy
spectrum. For the - → � transition, both the I+ + I+ Coulomb channel and the dissociative pho-
toionization channel are observed that converge to the same asymptotic kinetic energy. Also, two
weaker contributions from dissociative states are observed, that must have been populated through
two-photon absorption. At negative pump–probe delays, the mid-IR pulse precedes the visible pulse,
so that a vibrational wave packet is formed in each of the two lowest states of I2+, which is then
probed by the 710 nm pulse. The broad, noisy feature around 2.5 eV of kinetic energy stems from
incomplete subtraction of the mid-IR-only signal. b) Comparison between the extracted fragment
kinetic energies for the - → � Coulomb channel of a and the kinetic energies predicted by the simple
model of Eq. (3.2). For clarity, only every third data point is shown for delays >0.5 ps.

packet is fast. Second, the potential energy curve of the Coulomb state that leads to the
dissociation into the Im+ + In+ fragments can be described by a shielded Coulomb potential of
the form (cast into convenient units)

�
(;,<)
� (') = 0;,<;<

14.4 eV Å
'

, (3.1)

where ' is the internuclear distance and 0;,< is a phenomenological shielding constant that
is adjusted as a free parameter in a least-squares fitting procedure. Introducing the shielding
constant seems to be problematic because asymptotically, �(;,<)

� (') does not converge to
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an unshielded Coulomb potential. We note, however, that the Coulomb energy scales with
1/', so that the absolute error that is introduced through the shielding constant quickly
vanishes. If we, third, assume that the projection from the excited neutral state to the final
ionic state occurs instantaneously and that no other, intermediate states are involved, the
total kinetic energy can be written as the sum of two terms: the asymptotic kinetic energy of
the dissociation, �0 =

1
2;@43 D

2
0 (where ;@43 is the reduced mass of the system, which, for a

homonuclear diatomic is just half the atom mass), and the Coulomb repulsion energy at the
internuclear distance ' = D0 B + '4?,

� �'(B) = �
(;,<)
� (' = D0 B + '4?) + �0 . (3.2)

Again, keeping in mind that the fragment energy is just � 5 @06 = 1
2� �', the model function

of Eq. (3.2) can be fitted to the time-dependent peak positions, extracted from the data of
Fig. 3.4 a, by adjusting only two free parameters, D0 and 01,1. Carrying out this fit results in
excellent agreement between the model and the experimental data, as is shown in Fig. 3.4b.
In fact, even with our simplistic assumptions, the relative error between the model and the
data is never larger than ±2 %. For the shielding constant we obtain a value of 01,1 = 0.86,
which is in very good agreement with the value of 0.80 that Gibson, Coffee & Fang13 have
obtained for modeling their photofragmentation experiments in I2. The retrieved optimum
asymptotic velocity is D0 = 8.0 Å ps−1, which is close to the results from a quantum-mechanical
wave-packet propagation along the � state potential energy curve carried out by Ritze,14 who
finds a terminal velocity of 8.2Å ps−1. This implies that already within 1 ps the iodine bond
length stretches by a factor of 4, whereas a bond is typically considered broken when the
bond length is doubled. Therefore, the interesting dynamics in the LIED are expected to occur
within a few hundred femtoseconds of pump–probe delay.

3.3.3 Vibrational wave-packet dynamics (B state)

To populate the � state, the I2 molecules were pumped with a 555 nm pulse and, again,
photoionized with the 1.3µm pulse. The data processing was carried out as described in the
previous section on the photodissociation experiment, except that for the time-dependent
kinetic-energy spectrum presented in Fig. 3.5a, images were taken in delay steps of ΔB =
30 fs over the range from B = −0.6 ps up to +19 ps. For positive pump–probe delays, two
fundamentally different dynamics are observed: On one hand, as in the previous experiment,
photodissociation manifests as a pair of curves – one of which corresponds to the I+ + I+

Coulomb explosion channel and one to dissociative photoionization – that converge to a
common limit at ∼0.45 eV. These two curves can unambiguously be assigned to the - → �′′

transition that was already characterized by Tellinghuisen.9 Based on the vertical excitation
energy of 2.49 eV into that state and the energy of the I3/2+I3/2 dissociation limit, 1.556 eV, an
asymptotic fragment kinetic energy of 0.47 eV is predicted, which corroborates our assignment.
Still, it seems surprising that an excitation at 2.49 eV is possible when the employed laser
wavelength corresponds to a photon energy of only 2.24 eV. We note however that the
transition at 2.49 eV is covered by the laser bandwidth Δ = 60 m eV, so that we expect the
excitation to occur predominantly in the blue part of the laser spectrum.
On the other hand, what is dominating the time-dependent kinetic-energy spectrum are

three features with rapidly oscillating fragment kinetic energies, centered at 0.5, 2.0 and
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Figure 3.5 Coulomb-explosion imaging of the vibrational wave packet prepared in the � state of I2
induced by 555 nm excitation. a) Time-dependent I+ kinetic-energy spectrum. At each time delay,
the static spectrum of Fig. 3.3b was subtracted. At negative time delays, vibrational dynamics of the
ground and spin-orbit excited states of I2+ are observed, similar to what was observed in Fig. 3.3a. b)
Zoom into the region of the half wave-packet revival, where the wave packet passes through the inner
and outer turning points (TPs) can be clearly identified.

3.8 eV, which correspond to the dissociation channels I++I0,I++I+, and I++I2+, respectively.
All three features are related to the vibrational wave packet prepared in the � state. The wave
packet’s oscillations can be clearly distinguished from time overlap of the two pulses up to a
pump–probe delay of ∼3.0 ps, where the wave packet dephases. At certain delays it rephases,
which is most prominently seen at the half revival (B = ∼16 ps), and less so at the quarter
revival (B = ∼8 ps).
In Fig. 3.5b, the region at the half revival is enlarged to emphasize the precise wave-packet

motion. Here, the inner and outer turning points can clearly be identified. From the kinetic
energies at the inner turning pointsb the associated Coulomb and dissociative-photoionization

b Note that the inner turning point is that of highest kinetic energy because, again, the Coulomb repulsion scales
with 1/'.
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channels can be easily assigned by comparing them to the corresponding channels in the
static spectrum of Fig. 3.3b. We note that, in the two Coulomb channels, the signal intensity
is significantly increased at the outer turning point compared to the inner one. This finding is
probably related to the phenomenon termed “enhanced ionization”, which has been observed
in several strong-field ionization experiments in I2 before.15,16,17

To predict the evolution of the vibrational wave packet, we need to resort to a more elaborate
description of the dynamics compared to our simple model from the previous section. Formally,
a vibrational wave packet is defined as the coherent superposition of the vibrational states,
|a4〉, of some electronic state 4 of the molecule, with vibrational quantum number a and an
associated eigenenergy na. In the present experiment, this wave packet is prepared by an
electric dipole transition from the electronic ground state into the � state. Therefore, the
time-dependent, field-free evolution of the nuclear wave function |j〉 – after the passing of
the laser pulse – can be written as

|j(B)〉 =
∑
a

2ae−
i
~ naB |a�〉 , (3.3)

where the (real-valued) factors 2a contain the relative amplitudes of the populated vibrational
states. For simplicity, we make use of the Franck–Condon principle to calculate these factors.
This implies that the transition probability between a vibrational level of the ground state,��a′0〉, and the final state, |a�〉, is given by the overlap integral

〈
a′0

��a�〉. Then, the factors 2a
are simply obtained from the product of the Franck–Condon factors and the relative electric
field strength of the laser pulse � (in the frequency domain) as

2a =
〈
a′0

��a�〉 �(na/~)
�0

, (3.4)

where �0 is the peak electric field strength.
To calculate the required quantities of Eq. (3.3), we have used the FORTRAN code of

Fischer et al.18 In it, the electronic states are read in on an equidistant grid and Cooley’s
method19 is used to iteratively calculate the vibrational eigenvalues and eigenfunctions. To
this end, potential energy curves were obtained from the semiclassical Rydberg–Klein–Rees
(RKR) procedure, a method that is used to calculate the classical inner and outer turning
point of every vibrational level from experimentally determined vibrational and rotational
transition energies. The calculations were carried out with the RKR1 program written by
Le Roy,20 which was supplied with high-quality spectroscopic constants for the - and � states
of I2 reported by Gerstenkorn & Luc.21 The potential energy curves were evaluated on an
equidistant grid of 1000 points between 2 and 7Å.
For the excitation, the electric field envelope was taken to be of Gaussian shape with a flat

phase, centered at 2.23 eV with a spectral bandwidth of 60 meV (FWHM), which corresponds
to the minimum bandwidth to support a Gaussian 30 fs pulse. From the results of the
calculation, the vibrational wave packet is evaluated according to Eq. (3.3). To compare
its evolution to the experiment, first the expectation values of the internuclear distance
〈'〉 (B) = 〈j(B)|' |j(B)〉 and of the momentum 〈>〉 (B) = 〈j(B)|−i~ d

d' |j(B)〉 are calculated.
Making, again, use of the shielded Coulomb potential of Eq. (3.1), the theoretical kinetic
energy release is given by

� �'(B) = �
(;,<)
� (〈'〉 (B)) +

〈>〉2 (B)

2;@43

. (3.5)
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From the time-resolved kinetic-energy spectrum the precise time-dependence of the frag-
ment kinetic energies was extracted by fitting a Gaussian function to each of the two Coulomb
channels at each time delay. In Fig. 3.6a, we compare the results of this fitting for the I+ +
I+ channel to the predicted time-dependent behavior according to Eq. (3.5). We find that,
while the oscillation period is correctly reproduced, the envelope of the full revival is – in
the simulation – significantly shifted by 1 ps to longer time delays. In general, the oscillation
period and the revival time are closely related to each other, as they are determined by the
first and second derivative of na with respect to a. Therefore, it seems implausible that the
period can match when the revival time does not, especially when spectroscopic data are
used as a reference that were determined with great precision. Instead, the assumptions that
we made about the excitation step must have been incorrect. In particular, we have assumed
that the spectral phase of the excitation pulse was flat. Practically, in the OPA process, a
significant, positive group delay dispersion (GDD), which is defined as the second derivative
of the spectral phase, �2 =

d2q

dl2 , may have been introduced. In fact, we have not attempted to
recompress the pulses after the OPA stage. To account for the GDD, we have multiplied the
electric field envelope in the frequency domain with a phase term exp{−i q(l)}, where the
phase q is given by q(l) = �2(l −l0)

2, with the central frequency l0. By adjusting �2 as a
free parameter we can obtain a convincing agreement between theory and experiment for a
value of �2 = 700 fs2, both for the I+ + I+ and the I+ + I2+ channels, which is demonstrated
in Fig. 3.6b and c, respectively. With this much of chirp the minimum pulse duration increases
from 30 fs to roughly 60 fs.

3.4 Photoelectron spectroscopy

3.4.1 Extraction of the rescattered electrons

All photoelectron spectra were recorded under the same experimental conditions as for the
photoion spectra presented in the previous section, having reversed the electrode voltages
of the VMI. To capture the weak rescattering signal with sufficient statistics, photoelectron
detector images were accumulated over at least 1 × 104 laser shots. In Fig. 3.7a, a represen-
tative 1.3µm-only VMI detector image is displayed on a logarithmic intensity scale. Based on
our estimation of the ponderomotive potential (see Section 3.2), the angle-resolved spectrum
can generally be divided into three kinetic-energy regions, which are indicated by the dashed
circles in Fig. 3.7a: In a purely classical picture of above-threshold ionization (ATI), 2*> rep-
resents the hard limit for the maximum kinetic energy that direct photoelectrons can acquire.
When ATI is treated at a quantum-mechanical level, e. g., by solving the time-dependent
Schrödinger equation for the photoelectron in the laser field, one finds that this hard limit is
slightly softened due to the wave nature of the solution and the fact that electrons are allowed
to have a finite initial momentum at the time of birth. As the intensity of the rescattered
electrons is roughly two orders of magnitude weaker than that of the direct electrons, this
soft cutoff seems to extend well beyond 2*>, which can be seen from Fig. 3.7a. Here, we
arbitrarily define a limit of 4*> to make sure that all electrons faster than that have undergone
a recollision with the parent ion, being deflected under large angles.
In the quantitative rescattering (QRS) approximation, the electron recollision is rationalized

by a classical model. Here, we follow the explications of Spanner et al.,22 using atomic units
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Figure 3.6 Comparison between the fragment kinetic energies of the two Coulomb explosion channels,
extracted from the data of Fig. 3.5b and the simulated kinetic energy, according to Eq. (3.5), evaluated
by a wave-packet simulation for 555 nm excitation of I2 into the � state. a) I+ + I+ channel, assuming
a flat phase of the 555 nm pulse. b) Same as a, including a GDD of 700 fs2. c) Same as b for the I+ +
I2+ channel.

throughout. In the presence of a linearly polarized electric field �(B) = �0 cos(lB) that is
oscillating with frequency l and where �0 is the peak electric field strength, photoelectrons
can in principle be born at any time B through tunnel ionization (with some probability),
which we refer to as the time of birth, B0. A unique electron trajectory for the propagation
in the laser field is associated with every B0. The electron velocity at any time is given by
D(B) = D0(sinlB0 − sinlB), where D0 is the velocity connected to the peak vector potential
�0 = D0 = �0/l. To know with what velocity the electron recollides, the relation between the
returning time B@ and the time of birth B0 has to be considered. This means that the equation
F(B@) = 0 has to be solved, which leads to

l(B@ − B0) sinl B0 + (cosl B@ − cosl B0) = 0 , (3.6)

Solving Eq. (3.6) for every B@ yields the time of birth as a function of the returning time,
B0(B@), from which the recollision velocity D@(B@) is calculated. What is measured with the VMI,
however, is the absolute velocity and after the recollision the photoelectron gains additional
momentum parallel to the electric field, equal to the instantaneous vector potential at the
returning time, �@ = −

�0
l

sinl B@. Therefore, elastically scattered electrons with recollision
momentum >7 are found in the experimental momentum map on a circle that is shifted away
from the origin by the instantaneous vector potential �@. This is illustrated in Fig. 3.7a for the
maximum recollision energy (∼ 3.2*>), the circle of which is shifted by

√
2 · 2*>. According to
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Figure 3.7 Static photoelectron spectrum from the strong-field ionization of I2 by a 1.3µm pulse with a
peak intensity of 3.0 × 1013 W/cm2 a) Slice through the Abel-inverted, three-dimensional momentum
distribution, shown on a logarithmic intensity scale. The dashed circles indicate absolute electron
kinetic energies of 2, 4, and 10 *>. The solid circle represents electrons that have elastically scattered
with incoming momentum >7 into the scattering angle \@. This circle is shifted by the instantaneous
vector potential at the time of recollision, �@. Note that the image is created from a single, Abel-
inverted quadrant through horizontal and vertical mirroring. b) Extracted intensity distribution of the
rescattered electrons according to Eq. (3.7), as a function of recollision momentum, >@, and scattering
angle \@.
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the classical recollision model, a maximum kinetic energy, corresponding to 10*>, is reached
for a scattering angle \@ of 180°.
Furthermore, we have included a first-order correction to the simple recollision model:

Implicit to Eq. (3.6) is the assumption that the position of birth of the electron is zero. To
account for a finite birth position, the recollision energy D@(B@)2/2 is replaced by the expression
D@(B@)

2/−IP dB0 /dB@,23 where IP is the ionization potential of the molecule. Consequently, the
F and H components of the final (detector) electron momentum (where we take the direction
of the electric field to be parallel to the H direction) are given by22

(DH − D0 sinlB@)2 + D2
F = D

2
0(sinlB0 − sinlB@)2 − 2 IP

dB0
dB@

. (3.7)

Determining DF and DH according to Eq. (3.7) for all B0(B@) then yields the mapping between
the (detector) photoelectron momentum distribution and the angular distributions of the
rescattered electrons as a function of the (corrected) recollision energy.
To extract the differential cross sections (DCSs) of the rescattered electrons, we have

calculated B0(B@) for 1.3µm radiation assuming an intensity of 3 × 1013 W/cm2 (*> = 5.2 eV).
The mapping between the recollision momentum and the detector momentum was evaluated
from Eq. (3.7), using the IP=9.3 eV for I2. We find that, under these conditions, the maximum
recollision energy is 3.77*> (19.6 eV), which shifts the energy cutoff of the photoelectron
spectrum to ∼ 10.5*>. So, while the extension of the cutoff seems very large in the recollision
momentum, the maximum photoelectron kinetic energy is only slightly increased and this
increase seems to be well supported by the data shown in Fig. 3.7a, in which the photoelectron
spectrum extends well beyond the 10*> cutoff. The result of the coordinate transformation
from the detector momentum to the recollision momentum is shown in Fig. 3.7b for a single
quadrant of the whole image. In the same figure, we also indicate what we will consider the
region where the QRS is most appropriate because there is essentially no overlap with the
4*> line, and which we will restrict the discussion to when we extract the differential cross
sections from the experiment.

3.4.2 Time-resolved photoelectron spectra

For measuring the time-resolved photoelectron spectra, a small set of pump–probe delays was
selected at either excitation wavelength, based on the results from the photoion experiments
presented in Section 3.3. For the photodissociation, nine delays between 100 and 700 fs were
chosen. Smaller time delays were neglected because at those the two pulses still overlap
significantly with each other. The vibrational wave packet, on the other hand, was monitored
at ten time delays, distributed over ∼ 1.5 oscillation periods in the very center of the half-
revival envelope. We note that, in principle, similar dynamics could be observed close to time
zero, but here the dissociation of the �′′ state might interfere.
In either experiment, the set of delays was scanned in 30 to 50 cycles. A single cycle is

made up of one forward and one backward scan, acquiring images over 1 × 104 laser shots at
each delay. At the beginning of each cycle, the remote-controlled shutter was closed to obtain
a probe-only reference image, which is used to monitor long-term drifts in the laser power or
molecular-beam quality.
To assess, whether the molecular dynamics lead to a modulation of the total signal intensity,

and to what extent this modulation is different for the rescattered electrons, we used the
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following approach: Every image was divided into two regions, one for electrons with kinetic
energies lower than 4*> and one for electrons with energies between 4 and 10*>. Every
region was integrated over all angles and energies to obtain its total intensity. Now, within
every cycle, the intensities of the images for which both pulses were present were normalized
to those of the respective reference images where only the probe pulse was present. We
describe the resulting distributions of the relative yields thus obtained by their median and
their interquartile range, all of which is displayed in Fig. 3.8 for the �-state (photodissociation)
experiment.
In general, we observe a clear signature of the excited-state dynamics in these two relative-

yield observables. For the photodissociation experiment, looking at the direct electrons (blue
squares in Fig. 3.8a), we find that the relative yield is increased by roughly 35 % at the
first delay point. This excess quickly decreases with increasing pump–probe delay and the
difference with respect to the probe-only signal becomes insignificant around B = 400 fs,
which is consistent with the result that the I2 bond length is doubled within ∼330 fs. In panels
b through g of Fig. 3.8, normalized differences between the raw VMI data at data points
that are indicated by the Roman numerals in panel a are displayed, where a label A − B
suggests a normalized difference of the form (A − B)/(A + B). In particular, in the first five
normalized-difference images, the time evolution of the excited state is traced by always
forming the normalized difference with respect to the probe-only data (i. e., [A − 0]/[A + 0]).
Two remarkable observations can be made: in the first two panels, b and c, the probe-only
signal is clearly imprinted in the normalized difference of the direct electrons (< 4*>) as a
negative contribution that is narrowly peaked along the laser polarization axis, which, in turn,
means that the photoelectron spectrum of the excited-state species must be concentrated more
perpendicular to the polarization axis. Then, going from panel d to e, the situation changes
qualitatively, in that the imprint of the probe-only signal is split into to two negative bands
that are aligned parallel to the laser polarization axis, having an offset with respect to this
axis of >F ' ±0.15 a. u.. We conclude from this observation that the photoelectron spectrum
of the excited-state species becomes increasingly peaked along the laser polarization axis. In
the last panel, g, the normalized difference is formed between the first and last data point
of the pump–probe scan, which emphasizes the change in the preferential photoionization
direction from perpendicular to parallel even more.
When looking at the rescattered electrons (> 4*>), again going from panel b to f, it appears

that there is at first a strong depression at ≈2 a. u. along the laser polarization axis, which
later, in panels e and f, corresponding to the completely dissociated iodine molecule, actually
turns into a positive contribution. Again, this trend is most obvious from panel g, where
the difference between the first and the last data point reveals a strong modulation in the
backscattering region
Turning to the �-state experiment, we find that the relative-yield measure in the vibrational

wave packet (Fig. 3.9a) is at all sampled pump–probe delays enhanced by at least 20 %.
Also, the yield reflects the vibrational motion, and reaches its peak at the outer turning point
at B = 15.8 ps, as was already observed in the I+ fragment signal (see Fig. 3.5b). What is
surprising about these results is that the increase in yield of the rescattered electrons is – at
all data points and in both experiments – larger than that of the direct electrons, even when
the molecule is definitely dissociated. From this we conclude that the rescattering process
must be more efficient in the excited state species as well as in the atomic iodine compared to
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Figure 3.8 Time-resolved photoelectron spectra for the �-state (photodissociation) experiment. a)
Time-dependence of the total intensity relative to that of the 1.3µm-only measurement, divided
approximately into the regions of direct electrons (blue) and rescattered electrons (orange). The
error bars mark the interquartile ranges of the intensity distributions collected over all acquisition
cycles. For clarity, the data-point pairs are horizontally offset with respect to each other. The Roman
numerals mark individual data points, from which the normalized differences in b–g are formed,
where 0 corresponds to the 1.3µm-only data (represented by the horizontal gray line in a).
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Figure 3.9 Same as Fig. 3.8, but for the �-state experiment.

the neutral ground-state molecule.
Again, we have formed the normalized differences for various data points as indicated by the

Roman numerals in Fig. 3.9a, this time using point VI as the reference point, which corresponds
to one of the inner turning points, i. e., differences of the form (A − VI)/(A + VI). What makes
us confident that the observed changes in the photoelectron spectra are actually related to the
proposed wave-packet dynamics is that, when the differences between data taken at or close
to two different inner turning points is formed, these differences vanish or become very small,
as shown in panels b, c, and g. The greatest contrast is observed for the normalized difference
between the inner and outer turning points, as in panel e. Looking at the direct electrons in
panel e (< 4*>), it appears that the photoelectron distribution is more perpendicular at the
outer turning point than at the inner turning point. The rescattered electron (> 4*>) show a
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characteristic intensity modulation with increasing absolute photoelectron momentum. As the
molecular bond is stretched, at first – that is, over the first Ångstrom, or so, of increasing bond
length – there is a depletion in the backscattering region around ≈2 a. u., which is indicated
by the results of Fig. 3.9e as well as that of Fig. 3.8b.c After that, when the bond is stretched
further until the molecule is completely dissociated, a weak, but clearly distinguishable overall
increase of the signal in that same region is found with respect to the ground-state molecules,
which is what Fig. 3.8e and f suggest. This finding appears puzzling because – naively – one
would expect that observables in the photoelectron spectrum develop monotonically along
the dissociation coordinate in one direction or the other, growing stronger or weaker, but
not that its behavior changes at some point during dissociation. As we will see below, this
finding can be explained by considering the scattering dynamics that are directly related to
the dissociation.

3.4.3 Computational model

Ultimately, the goal of the modeling efforts is to reproduce and rationalize the angular
distributions of the backscattered electrons we have measured as well as the surprising trends
in the normalized differences reported in Figs. 3.8 and 3.9. To this end, we devise a model
that is composed of several components, based on the approximations and factorizations of
the QRS theory. To elaborate on this, we consider first a molecule that is fixed in space. As
usual, let the polarization vector of the electric field be aligned parallel to the Cartesian H axis,
which we also choose to be the principal axis of a spherical coordinate system with polar angle
\ and azimuthal angle q. The orientation of the space-fixed molecule with respect to this axis
is measured by the set of Euler angles, R = (U, V, W = 0),d where W is always zero because
I2 is a linear molecule. Upon tunneling ionization, an electron wave packet is launched in
the −H direction, which returns after some time from that same direction. In principle, the
momentum distribution of the returning wave packet,,(>@,R) could depend on >@ and R.
In the QRS approximation, however, we assume that the imprint of the molecular orbital is
washed out during propagation, and therefore that the returning wave packet can be factored
into two independent contributions,

,(>@,R) = E(>@) %ion(R) , (3.8)

which means that the returning electron wave packet can be written as the product of a
momentum distribution that is independent of R and an R-dependent differential ionization
rate. Then, the rescattered electrons’ momentum distribution, ((>@,Ω,R), for the fixed-in-
space molecule is given by

((>@,Ω,R) = E(>@) %ion(R)
df(>@,R)

dΩ
, (3.9)

where df(>@ ,R)
dΩ is the doubly differential scattering cross section for an electron scattering

off the molecular ion into the solid angle dΩ = dq sin \ d\. To establish the connection

c Note that, in the case of the photodissociation experiment, data point I is not measured at the time overlap of
the two pulses, but rather at ≈100 fs, at which point the bond length has already increased by ≈0.8Å according
to the findings of Section 3.3.2.

d Not to be confused with the internuclear distance '.
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to what is measured in the experiment, ((>@,Ω,R) has to be integrated over all molecular
orientations, possibly taking into account a non-isotropic molecular-axis distribution %MA(R)
if the molecules are aligned in some way,

�(>@,Ω) = E(>@)
∫ π

0

∫ 2π

0
%ion(R) %MA(R)

df(>@,R)
dΩ

dU sin V dV . (3.10)

Furthermore, if both %ion(R) and %MA(R) are cylindrically symmetric around the polarization
axis, which is what we have required the way we devised the experiments, then �(>@,Ω) =
2π �(>@, \).
Clearly, the crucial quantities that have to be provided for evaluating Eq. (3.10) are the

differential scattering cross sections df(>@,R) /dΩ (DCS) and the differential ionization yield
%ion(R). (For now, we ignore the treatment of E(>@) because in Section 3.4.4 we will show
how the explicit treatment of this quantity can be avoided by a normalization procedure.) In
principle there is no restriction on the level of theory with which each of them is treated. For
instance, often the classical independent-atom model is used to predict the DCS, whereas the
differential ionization yield is treated with a tunneling approximation. Here, we calculate
the DCS with ePolyScat, in which the electron–molecule interaction is treated at the non-
relativistic Hartree–Fock (NR-HF) level of theory, and which was already used in Chapter 2 for
predicting photoelectron angular distributions in the XUV ionization of aligned CF3I molecules.
At the same time, the frontier orbitals of the NR-HF wave functions are used to calculate the
differential ionization rate in the molecular-orbital strong-field approximation (MO-SFA).
We deem it necessary to treat the electron scattering explicitly at a quantum-mechanical

level because the recollision energies in our experiment reach only ∼20 eV, an impact energy
at which electron exchange and quantum-scattering effects, in general, cannot be neglected.
We note that, for simplicity, this approach operates in a purely non-relativistic picture, which
certainly is its greatest shortcoming.
As a starting point, a restricted closed-shell Hartree–Fock SCF calculation was performed

for neutral I2 in its equilibrium geometry with the GAMESS (US) package. In it, the basis set
of augmented-triple-Z quality from the Sapporo family of basis sets (that ship with GAMESS)
was used.24 From this calculation, a total energy of �4?HF = −13 835.747 912 �h was obtained.
Then, the internuclear distance was varied both to shorter and longer bond lengths in steps
of Δ' = 0.2 Å. As is well known, the breaking of a bond is never correctly described in the
restricted HF theory.25 Therefore, a minimal complete active space (CAS) was constructed
from four frontier orbitals, the three highest occupied molecular orbitals (HOMO-2, HOMO-1,
HOMO) and the lowest unoccupied molecular orbital (LUMO). In the neutral equilibrium
ground state these are – in a single-electron picture – occupied as f2

6c
4
Cc

4
6f

0
C (see the 1Σ+

state in Fig. 3.1). Consequently, in the CAS all determinants that can be constructed with an
electron occupation of f>6c

?
Cc

@
6f

A
C are included, where > + ? + @ + A = 10 for neutral I2, and

> + ? + @ + A = 9 for I2+.
At every internuclear-distance point, multi-configurational self-consistent field (MC-SCF)

calculations were performed both for I2 and I2+. For the neutral species, we recover a
correlation energy of �2=@@ = −11.389 m�h at the equilibrium internuclear distance. At
infinite distance, the 4 orbitals we have included in the CAS collapse to the degenerate set
of 5> orbitals on each fragment. Therefore, MC-SCF wave functions were obtained for the
atomic iodine species I0 and I+, constructing a CAS over the 3 5> orbitals to recover the
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Figure 3.10 Potential energy curves for the ground and the seven lowest, excited states of I2. a) This
work. b) From Jong, Visscher & Nieuwpoort8 (Fig. 1, left panel).

energy of the dissociation limit. In Fig. 3.10, we compare the potential energy curves for the
neutral I2 thus obtained to those reported by Jong, Visscher & Nieuwpoort8, and observe a
very close correspondence.

Now, to predict the differential strong-field-ionization yield, wemake use of what is known as
the molecular-orbital strong-field approximation (MO-SFA),26,27 which is just an extension of
the SFA method as developed for atoms. In this approximation, the potential of the molecular
ion is neglected completely and strong-field ionization is thought to occur entirely as a series of
<-photon transitions out of a molecular orbital q7(r).e Consequently, the differential ionization
yield is just the sum of these transitions, i. e.,28

%ion(R) = 2π#4
∞∑

<=<0

|%< |
2>< , (3.11)

where #4 is the number of electrons in the MO, >< is the final photoelectron momentum given
by >< =

√
<l − IP7 − *> for an ionization potential IP7 associated with the orbital q7(r).

In general, the SFA can be formulated in both the length and velocity gauge. What is
particularly appealing about the velocity gauge is that the <-photon ionization probabilities,
%<, can be calculated analytically, as28

%< = (*> − <l) q̃7(p<) �−<

(
p<·A0

l
,
*>

2l

)
, (3.12)

where q̃7(p<) is the molecular orbital transformed from position to momentum space, A0 is
the peak vector potential, and �<(0, 1) is a generalized Bessel function that arises from the
analytical integration of the time-dependent equation that leads to Eq. (3.12),29 which was
introduced in Section 1.4.
Applying this method to the neutral ground state of I2 is straightforward because its IP

is well-known. As the ionizing orbital we just use the HOMO (c6). The situation is more

e From here on, we work in atomic units again, unless otherwise noted.
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Figure 3.11 Momentum-space LUMO orbitals. a) Slice through the LUMO momentum-space orbital at
the equilibrium internuclear distance. b) Change of the LUMO orbital with increasing internuclear
distance. At every ', the F–H slice as shown in a was integrated over the >F coordinate. 'eq and 'out
denote the internuclear distances of the inner and outer turning point, respectively.

complicated for the excited state, which is why we propose a reasoning as follows: In a
non-relativistic picture, both the transitions into the � and the � state are described by a
single-electron excitation from the HOMO into the LUMO (see again Fig. 3.1). Clearly, this
promoted electron is the most weakly bound and, as the total ionization probability scales
exponentially (inverse) with the IP, it should dominate the strong-field ionization of the
excited-state species. As HOMO and LUMO are of different shapes, %ion is expected to be
significantly different for the ground and excited state. Now, as the molecule dissociates, this
situation is bound to change: The two orbitals that were the HOMO and LUMO in the ground
state will converge in binding energy to a common limit along the dissociation path, and
eventually become degenerate.f If it is true that the dissociation process can be pictured like
this, we need to obtain the momentum-space orbitals for the HOMO and LUMO as a function
of internuclear distance together with estimates for their binding energies.
From the MC-SCF calculations, presented in Fig. 3.10, natural orbitals were generated

at every bond length, and from these the “natural-orbital” HOMO and LUMO were used
for the subsequent calculations. These orbitals are transformed into momentum space via
Fourier transformation, the result of which is displayed in Fig. 3.11a for the LUMO at '4?.
In panel b of that figure, it is demonstrated how the momentum distribution of the LUMO
along the bond (H) axis changes with increasing bond length. Clearly, an overall decrease of
momentum along this axis can be observed, which is what is expected because the LUMO is
an anti-bonding orbital, and – consequently – its repulsive nature vanishes as the bond breaks.
We also observe a discontinuity for bond lengths longer than 5Å, which is probably due to the
point of high degeneracy where the involved orbitals become indistinguishable, which often
results in unpredictable mixing between equivalent orbitals (which, in turn, changes their
spatial orientation). However, as we are – for the moment – only interested in the dynamics
between the inner and outer turning points, this discontinuity need not worry us here.
To estimate the binding energies, the energy differences between the neutral 3ΠC state and

f In fact, this is strictly true for all four orbitals included in the CAS, but for simplicity we restrict our investigation
to the highest two.
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Figure 3.12 Calculation of the differential photoionization yield %ion(V) by the MO-SFA method in the
velocity gauge. the a) Vertical IPs for ionization from the neutral ground state into the ion ground
and first excited states in the non-relativistic CAS model. b) Total ionization probabilities for the c6
(HOMO) and fC (LUMO) orbitals, using the vertical IPs of a. c) Map of the normalized differential
photoionization yields %ion(V) associated with the results from b, as a function of the internuclear
distance and the polar angle V. 'eq and 'out denote the internuclear distances of the inner and outer
turning point of vibrational wave packet prepared in the � state, respectively (see Fig. 3.5).

the two lowest (non-relativistic!) ion states were formed. Referring again to Fig. 3.1, these
two states are the 2Π6 state, corresponding to ionization out of the fC orbital and the 4Σ−C
state, in which an electron was removed from the c6 orbital.
The calculated binding energies are displayed in Fig. 3.12a. At the equilibrium distance, the

IP is 6.4 eV for the fC (LUMO) orbital and 8.4 eV for the f6 (HOMO) orbital. For comparison,
the experimental ground-state IP is 9.8 eV. As the bond stretches, the binding energies quickly
converge to a common limit at 9.6 eV, whereas the experimental IP of I0 is 10.45 eV. From
this we deduce that the vertical IPs are – on average – systematically underestimated by ∼1 eV,
primarily through the total neglect of relativistic corrections.
Now, we are in the position to calculate %ion from Eq. (3.12), independently for the fC and
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the c6 orbitals. The resulting total photoionization yield, %B=B =
∫π

0

∫2π
0 %ion(Ω) dq sin \ d\, is

displayed in Fig. 3.12b. As expected, the fC orbital dominates photoionization by roughly
one order of magnitude at the equilibrium bond length. However, already when the bond is
stretched by 0.8Å the contributions of the two orbitals become comparable in our model.
Eventually, %ion is obtained by summing the two contributions from the fC and the c6

orbitals, and normalizing the resulting angular distribution to unit sphere. As I2 is a linear
molecule, %ion must be cylindrically symmetric, and therefore it is sufficient to consider
only its dependence on the polar angle V, which is displayed in Fig. 3.12c as a function of
the internuclear distance. In line with intuition, the ionization yield is increased when the
molecule is aligned parallel to the laser polarization axis. When the internuclear distance is
increased, this anisotropy becomes weaker, until it vanishes, which must necessarily be true
because, for an unpolarized atom, there can be no angle dependence.
The last quantities we need to compute are the doubly differential DCSs. To this end, we

have carried out electron scattering calculations with ePolyScat, making use of the full exact-
static–exchange-plus-model-correlation–polarization (ESECP) potential. The Padial–Norcross
potential30 was used as the model-correlation potential and for the atomic polarizability of
iodine a value of 5Å

3
was assumed. The spherical-harmonics basis, in which the molecular

orbitals and the scattering wave functions are expressed, was extended up to :;0F = 100.
The expansion center was always chosen to be located exactly between the two atoms. As
quantum-scattering calculations are computationally demanding, we restricted ourselves to
a choice of three representative scattering targets: I2+ in the equilibrium geometry of the
neutral I2 ('eq, which we refer to as the “inner turning point”, as well), I2+ at the outer
turning point of the vibrational wave packet ('out = 3.72 Å), and the atomic iodine ion, I+.
For these three targets, restricted-open HF calculations were carried out for the singly charged
species to obtain the wave functions, from which the molecular potential is calculated in
ePolyScat. In doing so, we imply that, on one hand, the rescattering process is so fast that the
returning electron finds its parent ion at the same bond length at which it had left, but that,
on the other hand, rescattering is slow enough for the electron density to relax to that of the
charged species. All electron scattering calculations were carried out for collision energies
between 9 and 24 eV in steps of 1 eV.
In the very last step, the doubly differential DCSs are integrated over all molecular orien-

tations according to Eq. (3.10), including the appropriate %ion, either for the ground state
(for comparison to the 1.3µm-only experiment) or the excited state, as shown in Fig. 3.12c.
In addition to that, a molecular-axis distribution %MA(V) = sin2 V was introduced for the
photodissociation experiment because the transition into the � state is known to be a perpen-
dicular one. The results of this averaging process are presented in Fig. 3.13a through c, where
we compare the predicted scattered-electron angular distributions for the different scattering
targets, assuming E(>@) = 1 and including %ion(V) for the excited state at the respective inter-
nuclear distance. For the purpose of comparing the computational results to each other, we
assume for the moment that %MA = 1, which means that we suppress the effect of molecular
alignment. (In Section 3.4.4, we will reintroduce the proper %MA(V) in connection with the
actual experimental data.) To facilitate comparison, all three distributions are shown at the
same intensity scale. Overall, all three calculations look very similar: All show a pronounced
backscattering peak at 180° and a secondary peak at 120°. The backscattering peak is by far
the strongest in the atomic iodine, where it peaks at ∼17 eV. For I2+ at the inner turning
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Figure 3.13 Differential electron–ion scattering cross sections (a–c) and eigenphase sums (d–f) for
the electron–ion scattering processes in I2+ at the equilibrium internuclear distance (a and d), I2+

at the bond length that corresponds to the outer turning point of the vibrational wave packet (b and
e), and I+ (c and f). a–c are shown at the same intensity scale. Note that, while the calculations
in d were carried out in �∞ℎ symmetry, the results of e were obtained in �∞D because the charge is
asymmetrically distributed in the latter case. To facilitate comparison between d and e, continuum
channels of 64@034 and C<64@034 symmetry were added in e. As a consequence, d and e share the
same legend.

point (which we take to be identical to the equilibrium bond length) a similar, but weaker
backscattering signature is observed. The backscattering feature in I2+ at the outer turning
point is shifted to lower energies, and seems to appear between 12 and 15 eV.
In general, features in the angular distributions of quantum-scattering calculations are less

straightforward to rationalize compared to, e. g., classical scattering models, where two-center
interference is encoded in the momentum-transfer cross section and the distance of the two
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scatterers is readily retrieved. Okunishi et al.4 have discussed their DCSs for the LIED
experiments in O2 and CO2 both in terms of a (quantum-scattering) two-center interference
and shape resonances. In I2, electrons with de-Broglie wavelengths that match the distances
of inner and outer turning point, must have kinetic energies of 21 and 11 eV, respectively.
However, in the calculations, we find little evidence for a two-center interference effect that
should manifest as a backscattering peak at these energies. If anything, an energy shift in the
onset of the backscattering signal is observed from 16 eV at the inner turning point to 13 eV
at the outer turning point.
To investigate whether shape resonances are involved in the results of the present scattering

calculations, we looked for sudden jumps in the eigenphase sums of the various scattering
channels that are involved, all of which are displayed in Fig. 3.13d through f.g Clearly, such
a sudden jump can be identified for I2+ at the equilibrium bond length in the % channel,
centered at ∼19 eV, whereas no comparable phase jump is observed at the outer turning
point. In fact, comparing the eigenphase sums of all the other continuum symmetries pairwise
between these two calculations, the disappearance of the phase jump in the % channel is the
most pronounced difference that is observed. For the iodine atom, Fig. 3.13f, most of the
eigenphase-sum curves are rather flat, with the exception of the �C and )2C channels, which
show a steep rise between 9 and 15 eV.
In the next step, the pole-searching algorithm of Stratmann & Lucchese32 was used that

iteratively solves for the positions of poles of the scattering ( matrix in the complex-valued
scattering-energy plane to locate the positions of shape resonances. With it, we were able to
identify two strong poles that are associated with a prominent shape resonance each, one at
�> = (12.0 − 4.0i) eV in the )2C channel of the iodine atom, and one at �> = (16.0 − 0.90i) eV
in the %6 channel of I2+ at the inner turning point. While the resonance energy for the shape
resonance in the iodine atom agrees well with the phase jump observed in Fig. 3.13f, the
position of the resonance for the I2+ molecule is ≈2 eV lower than where it appears in
Fig. 3.13d. However, we have compared the eigenphase sum that is used internally in the
pole-searching algorithm to the one of Fig. 3.13d, and find that it exhibits the same, narrow
phase jump, indeed shifted to lower kinetic energies. We recall that for the pole-searching
algorithm only an energy-independent model-exchange potential is used, in contrast to the
exact treatment of exchange that is accounted for in the results of Fig. 3.13, and attribute
this energy shift to the different treatment of the exchange interaction.
To illustrate the nature of these two shape resonances, we have calculated the resonance

wave functions at the respective, complex-valued energies, and their real parts are shown in
Fig. 3.14. Clearly, the resonance in the iodine atom (panel a) has the shape of an 5 orbital
and, in fact, we find that the amplitude of the resonance wave function is greatest in the
: = 3 component. This resonance is essentially the same as the famous “giant resonance”

g The various scattering channels arise from the fact that in a general, non-spherical potential-scattering problem
not necessarily all partial waves are coupled. Instead, if the scattering target exhibits a high degree of symmetry,
the continuum wave function can be decomposed according to the irreducible representations of the target.31

Then, only partial waves that belong to the same irreducible representation are coupled, and each irreducible
representation gives rise to a unique scattering channel. The total ( matrix therefore becomes block-diagonal,
where every block represents an ( matrix for a specific channel. For every of these ( matrices, the eigenphase
sums are obtained individually based on the procedure described in Section 1.2. Note that the various scattering
channels for the electron–I+ scattering arise from the fact that, inside ePolyScat, atoms are always treated in
icosahedral symmetry.
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Figure 3.14 Shape resonances in atomic iodine ions (a) and I2+ at the equilibrium internuclear distance
of the neutral I2 (b). Shown are the real parts of the resonance scattering wave functions. The atom
positions are located exactly in the centers of the rosetta-shaped features. a) : = 3 ( 5 -wave) resonance
at �' = 12.0 eV, Γ = 8.0 eV. b) : = 6 resonance at �' = 16.0 eV, Γ = 1.8 eV.

in the photoionization of xenon, which is also observed in iodine.33 If we compare this to
the molecular shape resonance (panel b), we find that it can be described by the destructive
combination of two such 5 orbitals, and the resonance therefore appears in the : = 6
component. With respect to the results of Fig. 3.13, we interpret this observation as follows:
The resonance condition for the : = 6 shape resonance, which is met in the kinetic-energy
range under investigation at the inner turning point, is detuned when the bond length is
increased, so that it disappears completely at the outer turning point. However, the two atoms
still polarize each other, so that the atomic shape resonance cannot yet form, for the atomic
potential is still too distorted. When the molecule is completely dissociated, however, the
atomic shape resonance reappears.
To support this interpretation, we have carried out pole searches in the complex-valued

scattering-energy plane for I2+ in various intermediate geometries between the inner and
outer turning points. The obtained eigenphase curves in the % channel are shown in Fig. 3.15a
and corresponding poles in the complex energy plane are displayed in panel b of this figure.
We find that the resonance position �' drops by about 4 eV already within 0.4Å of increasing
bond length, and does not change significantly afterwards (the small deviations that lead
to the clustering of the poles in Fig. 3.15b are probably due to numerical instabilities in
the pole-searching algorithm). Also the width of the resonance is affected, increasing from
Γ ≈ 2.0 eV at 'eq to Γ ≈ 3.2 eV at 'out. If we trust the results of Fig. 3.15, we can conclude
that the position of the molecular shape resonance is very sensitive to small changes of the
internuclear distance close to 'eq. This means that, when the molecule moves from the inner
to the outer turning point, we are in particular sensitive during the first third of this excursion
by means of the relaxation dynamics in the molecular shape resonance, where its resonance
energy is modulated with a slope of ≈10 eV Å

−1
.

Before we turn to the comparison between experiment and theory, we quickly want to
address the question, how the backscattering in the atomic iodine ion, Fig. 3.13c, can look so



104 Laser-assisted Electron Recollisions in Excited I2 Molecules

Figure 3.15 Evolution of the molecular shape resonance as a function of the internuclear distance '. a)
Eigenphase curves for the % channel for I2+ in various geometries ranging from 'eq to 'out. b) Same
as a, but visualized in terms of poles in the complex energy plane of the associated ( matrix.

similar to that of the molecular ion at 'eq, Fig. 3.13a, even though the shape resonance is
shifted by at least 4 eV between these two systems, contradicting the observation that this
shift to lower energies is well manifested in the backscattering of the molecular ion at 'out,
Fig. 3.13b. To give some explanation of how we suspect this comes, recall that the atomic ion
is a spherically symmetric system, in contrast to the diatomic molecule. As explained at the
end of Section 1.2, in the scattering on a spherically symmetric target, there are few partial
waves involved in the continuum wave function, but these few partial waves can interfere with
each other strongly. In molecular scattering, there are many angular-momentum couplings
involved that give rise to many cross terms in the scattering amplitude that may eventually
weaken this strong partial-wave interference. From this we conclude qualitatively that a
shape resonance in molecular scattering is more likely to appear at its actual resonance
energy �' in the backscattering spectrum, whereas in atomic scattering the backscattering
can be significantly shifted through partial-wave interference. To support this idea, we have
calculated the partial-wave scattering amplitudes 5: according to Eq. (1.26) for the electron–I+

scattering and compared the different, individual partial-wave DCS, | 5: |2 to each other and to
different coherent sums of the 5:, all of which is shown in Fig. 3.16. From panels a, b, and
c of this figure, it is clear that the shape resonance manifests in the backscattering region
of the 53, just as one would expect, at the resonance energy of ≈12 eV. When, however, the
interference between >, 3, and 5 waves (: = 1, 2, 3) is taken into account, the maximum in
the backscattering region is shifted up by ≈5 eV as illustrated in Fig. 3.16d. To recover the
full DCS, only 50 and the Coulomb scattering amplitude 5� (see Eq. (1.34)) have to be added,
which does not affect the backscattering region, but which is sufficient to almost perfectly
reproduce the output of ePolyScat (which also incorporates partial waves of order : > 3).
Another insight one can gain from this analysis is that the feature at 120° that is observed in
all calculations of Fig. 3.13, is related to a contribution from the partial waves of : = 3 that is
modulated to some extent by partial-wave interference.

3.4.4 Comparison and discussion

We now come back to the experimental results to see whether we can find evidence of the
scattering dynamics that are predicted by the calculations. For this purpose, we consider
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Figure 3.16 Differential scattering cross section for electron–I+ scattering, decomposed into its partial-
wave contributions. 5: are the partial-wave amplitudes of Eq. (1.26) and 5� is the Coulomb scattering
amplitude according to Eq. (1.34). The full ePolyScat output (f) contains partial waves up to : = 6.

first the results of the 1.3µm-only experiment that were presented in Fig. 3.7. Even though
we have extracted the momentum distribution of the rescattered electrons in panel b of that
figure, we cannot readily compare them to our calculations because the exact shape of the
wave packet in momentum space, E(>@) in Eq. (3.10), is not known and is difficult to predict
reliably.
What Okunishi et al.4 have done to overcome this problem is that they have normalized

their experimental angular distributions to the calculations at a specific angle, for which they
choose one, where the calculated DCS varies the least with kinetic energy. We also apply
this procedure, but normalize instead both the experimental and the theoretical results at
\;7< = 135°. We note that, in principle, any angle could be chosen for this procedure, as long
as the same one is employed both for the experiment and the theory. In Fig. 3.17 the extracted
rescattered-electron angular distributions – normalized at \;7< are compared to the respective
simulation from the previous chapter for I2+ in its ground state. Overall, considering the many
simplifications that we introduced in the model and in extracting the scattered electrons, the
agreement is very good, and it is even more convincing for the Abel-inverted data (Fig. 3.17b).
Here, a clear backscattering peak, centered at 18 eV, can be identified, which we identify
with the molecular shape resonance in I2+ at the equilibrium internuclear distance. Also, the



106 Laser-assisted Electron Recollisions in Excited I2 Molecules

Figure 3.17 Comparison between the experimental and theoretical angular distributions of the
rescattered electrons obtained for 1.3µm ionization of I2 in the ground state using an intensity
of 3 × 1013 W/cm2. a–c) Two-dimensional maps of the extracted rescattered electrons from the raw
detector distribution (a) and the Abel-inverted slices through the 3D momentum distribution (b),
compared to the simulation for strong-field ionization of I2 in its ground state and at the equilibrium
geometry. d–g) Angular distributions extracted from b and c at the indicated electron recollision
energies, all normalized at \;7<, the position of which is indicated in c.

additional structure around an angle of 110° can be identified in the experiment. To show
that we can achieve an almost quantitative correspondence between theory and experiment,
we have extracted angular distributions at four representative kinetic energies and normalized
all traces at \;7<, the result of which is displayed in Fig. 3.17d through g.
After these encouraging results we turn to the time-resolved photoelectron spectra. Here,

the comparison between theory and experiment is less straightforward because what is
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measured is actually always a mixture of ground and excited-state molecules because only
a fraction of the molecules will be excited. What is worse is that, although this fraction is
constant, its relative contribution to the overall signal may very well change with pump–probe
delay, which is what we know from the experiment (Fig. 3.8a and Fig. 3.9a) and also what we
expect from the argument outlined in Section 3.4.3 (even though our calculated results differ
even qualitatively from the results of the measurement). Our approach to still be able to make
a comparison is as follows: For the measurement at each delay, the rescattered electrons are
extracted and normalized to the intensities at \;7<. If we now take the absolute difference of
two such normalized spectra, the contribution of the ground-state molecules should identically
vanish and the difference between the excited-state fractions should be normalized, as well.
We can now compare this difference to the difference between two calculations that were
normalized in the same way, which should result in one-to-one correspondence.
Also, we have to form the differences for data points, which we expect to correspond closely

to the molecular geometries of the scattering targets that were introduced above. For the
photodissociation, we have chosen the very first data point at ∼100 fs (I in Fig. 3.8), and
the very last one at ∼800 fs (V in Fig. 3.8), where the molecule is definitely dissociated,
to form the difference spectrum. At the first delay, the molecular bond will already have
stretched by ∼0.8Å. For the simulation, we have therefore taken – on one side – I2+ in the
outer-turning-point geometry, 'out, and included the sin2 molecular-axis distribution. On the
other side we assume that atomic I+ can represent the essentially dissociated molecule well,
and so the difference is formed between the calculations for I2+ at 'out and the I+ atomic ion.
We note that, in principle, also the neutral iodine species is present, which could contribute to
the scattering signal because the returning wave packet is expected to have a spatial extension
that is on the order of a few nanometer.34 However, the differential scattering cross for the
neutral iodine atom is lower by a factor of 3 on average because the Coulomb scattering is
what makes the largest contribution to the overall cross section. In Fig. 3.18a through c,
we compare the differences thus obtained and observe, again, a very good agreement. The
strong negative contribution at 180°, which agrees closely between theory and experiment,
can be associated with the strong backscattering in I+ that was discussed above. Even the
peak position of 17 eV seems to match. Also, the negative band under an angle of 120° is
observed both in the experiment and the theory, although this feature extends to much lower
energies in the calculation. We explain the strong depression in the backscattering signal as
an imprint of the atomic shape resonance, which was discussed at the end of Section 3.4.3.
For the experiment on the vibrational wave packet, the data points at the inner and outer

turning points were taken and subtracted (data points VI and IV in Fig. 3.9), which is also
what was done for the results of the calculation. Here, the molecular-axis distribution was
taken to be isotropic because the geometric alignment that is induced by the dipole transition
will have long dephased at the full revival of the wave packet.h Again, we compare these
two differences in Fig. 3.19a through c. Unfortunately, the difference signal is, even with the
long-running acquisitions much weaker compared to the photodissociation experiment. Still,
we can clearly identify the positive backscattering peak at ≈18 eV and the negative peak at
≈13 eV, which we relate to the molecular shape resonances at the inner and outer turning
points, respectively, as discussed in Section 3.4.3. What is more, also all features in the DCS

h At an expected rotational temperature of the ensemble of ≈10 K the alignment that is induced through the
dipole transition dephases within ≈2 ps.
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Figure 3.18 Comparison between absolute differences of the rescattered-electron angular distributions
for the photodissociation experiment. For the experiment (a, b), the difference I − V was formed
in terms of the labels given in Fig. 3.8. For the simulation, the difference I2('=CB) − I+ was used
to approximate the experimental situation. d–g) Angular distributions extracted from a–c at the
indicated electron recollision energies, all normalized at \;7<, the position of which is indicated in
c. The experimental distributions were scaled by a common, but otherwise arbitrary factor to match
them to the calculated ones. Note the different abscissas.
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Figure 3.19 Same as Fig. 3.18, but for the �-state experiment. Here the difference between the points
labeled VI and IV in Fig. 3.9 is formed, which is compared to the difference between the DCSs for the
inner and outer turning in the simulations.
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difference for angles < \;7< = 135° are qualitatively in good agreement between theory and
experiment. Looking at the extracted angular distributions, Fig. 3.19 d through g, a very good
agreement is found although the error bars are significantly larger for this experiment.

3.5 Conclusion

The aim of this chapter was to apply the analysis of laser-assisted electron recollisions in the
strong-field ionization of molecules to the excited-state dynamics of I2 molecules pumped
into the � or � state, triggering photodissociation and the preparation of a vibrational wave
packet, respectively. To this end, the molecular dynamics were first quantified by monitoring
the I+ + I+ and I+ + I2+ Coulomb channels in strong-field ionization of I2. Investigating the
associated photoelectron spectra we found a clear modulation in that part of the spectra, to
which only rescattered electrons can contribute. In particular, we found a surprising trend in
the yield of photoelectrons that are backscattered along the laser polarization axis, in which
the intensity first appears to drop with increasing bond length before it increases again.
To understand this, a framework was introduced to extract and rationalize the differen-

tial scattering cross sections for the electron–molecular-ion scattering from the associated
photoelectron spectra. With the help of scattering calculations we were able to prove that
the surprising trend can be explained by the scattering dynamics in the molecule and the
atom, respectively: As the bond stretches, the molecular shape resonance is detuned, which
causes the drop in backscattering intensity. Asymptotically, as the free iodine atoms emerge,
their strong atomic shape resonance dominates the backscattering spectrum, which greatly
enhances the intensity in that energy region again.
What we were not able to show is that the exact bond length of the molecule in motion can

be extracted as a function of pump–probe delay. Very likely our time resolution of ≈90 fs was
simply insufficient to resolve the relaxation of the molecular shape resonance, which occurs
already during the first third of the bond stretching in the vibrational wave packet. In general,
it appears that in the regime of low-energy electron–molecular-ion scattering, an experiment
exploiting laser-assisted electron recollisions is sensitive only to the dynamics of the shape
resonances, which are the features that affect the scattering dynamics the strongest. At the
same time, this apparent limitation is also the greatest strength of this approach because, as
we have shown, shape resonances are extremely sensitive to even the smallest changes in the
molecular potential.
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Chapter 4

Time-Resolved Inner-Shell Photoelectron and
Photoion Spectroscopy of Dissociating Methyl
Halide Molecules

4.1 Introduction

In this chapter, a series of experiments are presented in which the UV-induced photodisso-
ciation of CH3Ia and CH2ICl molecules in the gas phase was investigated by time-resolved
core-shell photoelectron and photoion spectroscopy, in experiments that were carried out at
the free-electron laser facility in Hamburg (FLASH). The key idea of these experiments is to
trace nuclear dynamics in small molecules by ionizing them with soft x-ray photons whose
photon energies are well above a core-shell edge of one of the constituent atoms. This has two
consequences: firstly, the ionization will be element-specific and, if the chemical environments
of like atoms in the molecule differ considerably, also site-specific. Secondly, the atom that is
ionized acts as a localized point emitter of electrons, and if the electrons reach de Broglie
wavelengths as short as the internuclear distances, diffraction patterns can be observed in the
photoelectron angular distributions. In static experiments, e. g., with synchrotron sources,
this photoelectron diffraction effect is well-studied and understood.2,3 The emergence of
ultra-fast soft x-ray sources, like free-electron lasers, now opens up the possibility to extend
this concept to time-resolved experiments, in which nuclear rearrangements in molecules
can be observed by tracing changes in the photoelectron diffraction pattern. Previously, Boll
et al.4 have successfully demonstrated that changes in the photoelectron diffraction pattern of
laser-aligned molecules can be observed in an experiment using FEL radiation. McFarland et
al.5 reported time-resolved measurements of Auger-electron spectra from an FEL experiment.
Here, the authors were able to observe shifts in the Auger lines after the photoexcitation of
thymine molecules. However, so far, time-resolved effects in the direct photoelectrons, which
are the most immediate and direct probe of the ongoing nuclear dynamics, have not been
observed; this chapter is intended to make a step forward in this direction.
The halomethanes are chosen as target molecules for two reasons: On the one hand, the

iodine 43 levels possess a binding energy of roughly 60 eV, which makes them accessible to
investigation by soft x-ray light sources. On the other hand, the UV dissociation dynamics of
the C– I bond, especially in CH3I, is exceptionally well investigated and understood (Alekseyev
et al.6 give an account of more than 80 publications as of 2007), making it an ideal model
system for a large class of dissociation reactions. At wavelengths between 230 and 300 nm,

a Parts of the results of this chapter, namely the analysis of the photoion and -electron data for CH3I were
published in Brauße et al.1
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Figure 4.1 Potential-energy curves for CH3I according to Alekseyev et al.6 The curve labeled -

represents the (electronic) ground state and the three & states are the main contributors to the
excited-state manifold of the � band.

CH3I molecules are excited into an excited state manifold known as the � band. This �
band is composed of three states, called 3&1(�), 3&0+(�1) and 1&(�), where the symbols
in parentheses correspond to the irreducible representations of the �3D point group that
CH3I belongs to. All three states are dissociative, but at 266 nm the transition occurs almost
exclusively to the 3&0+(�1) state that converges asymptotically to the spin-orbit excited state of
iodine, I*(2P1/2). However, depending on the exact excitation wavelength, some of the iodine
atoms are also found ending up in the spin-orbit ground state, which is caused by a conical
intersection that connects the 3&0+(�1) and the 1&(�) states, with the latter converging to the
I(2P3/2) ground state.6 For CH2ICl, the dissociation dynamics are less well investigated, but a
recent comparative study7 between CH3I and CH2ICl, using resonance enhanced multiphoton
ionization (REMPI) as a probing technique, suggests that the mechanism is very similar to
that of CH3I.

4.2 Experimental setup

The experiments described here were carried out on the CFEL-ASG multipurpose (CAMP)8

chamber installed in the focus of beamline BL 1 at the free-electron laser facility in Hamburg
(FLASH).9 This endstation is specifically designed for performing pump–probe experiments in
the gas phase, combining the FEL and an optical laser. A schematic overview over both the
FLASH facility with its main infrastructure and the CAMP endstation are shown in Fig. 4.2.
In this section, following a short introduction of the general FEL operating principle, the
details of the CAMP chamber and the pump–probe setup are described and then an account
of the diagnostics infrastructure installed at FLASH is given that plays an important role in
post-processing the experimental data.



4.2 Experimental setup 115

Figure 4.2 Sketch of the free-electron laser (FEL) and the experimental setup. Optical fiber links are
shown as dark red lines, electronic (RF) links in dark blue. BAM: Beam-arrival monitor; GMD: gas
monitor detector; PImMS camera: Pixel-imaging mass spectrometry camera; DM: drilled mirror; CW
nozzle: continuous gas nozzle; FL: focusing lens; P: prism; THG: third-harmonic generation; BBO:
V-barium borate crystal; WP: waveplate; DS: delay stage; BS: beam splitter. Based on the sketch in
Savelyev et al.10 (Fig. 1).

4.2.1 FLASH free-electron laser

We begin by briefly recalling the operating principle of the FLASH free-electron laser11 to the
extent that it may help understanding the technicalities that will follow: An electron cloud
is created on a photocathode by irradiating it with a picosecond laser pulse. This electron
bunch is then, in three stages, accelerated in super-conducting, linear accelerators and re-
compressed in magnetic chicanes, reaching near-relativistic velocities at the end. Finally, it is
sent through the undulator, an array of oppositely poled, permanent magnets. Forced onto
quivering trajectories, the electrons spontaneously emit bremsstrahlung, which is amplified
in an intricate process, aptly called self-amplification of spontaneous emission (SASE), to
eventually yield coherent, short EUV or x-ray pulses, whose central wavelength can be tuned
by adjusting the electrons’ velocity. Even though SASE FELs have many attractive properties,
like the high peak brilliance and photon flux, their spectral properties suffer from the stochastic
amplification process that is based on spontaneous emission, leading to a randomized profile
in the spectral and temporal domain. Furthermore, it is the SASE process that causes a timing
uncertainty in the FEL pulse because the light is generated inside the electron bunch without
an external reference. In seeded FELs, in contrast, this timing jitter does not occur.12

During the beamtime, FLASH was operated in single-bunch modeb to deliver ultrashort
pulses of soft x-ray radiation at a central wavelength of 11.6 nm, with an average pulse energy
of 115 µJ at a 10 Hz repetition rate. The FEL pulse duration was estimated to be around 120 fs
full width at half maximum (FWHM). To reduce multiphoton interactions with the sample to
a minimum, the FEL was typically attenuated with either a 400 nm silicon filter or an 800 nm
niobium filter, both of which result in a transmission of roughly 3 %.

b As opposed to the multi-bunch mode, in which several closely spaced electron bunches are launched in every
trigger cycle.
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4.2.2 CAMP station at FLASH

Inside the endstation chamber, the FEL pulse was collinearly overlapped, using a drilled mirror,
with a 266 nm pump pulse obtained by third-harmonic generation of the 800 nm output pulse
from the Ti:Sapphire pump–probe laser system13 . A prism compressor installed in the 266 nm
beam path was used to partially compress the UV pulses to 100 fs (FWHM). The pulse energy
of the UV pulses was typically 35 µJ before the drilled mirror. Both the UV and the FEL
pulses were focused and overlapped inside a molecular beam of CH3I or CH2ICl molecules
seeded in 1 bar helium. The molecular beam was obtained from a CW gas nozzle, followed
by two skimmers. Charged fragments created by the interaction of the molecules with the
combined UV and FEL pulses were accelerated towards two position sensitive detectors facing
each other, using a double-sided velocity map imaging spectrometer (see Fig. 4.2). Electron
momentum distributions were recorded using a 75 mm chevron-pair multi-channel plate
detector (MCP) followed by a slow phosphor screen (model P20) and a CCD camera, whereas
the ion momentum distributions were recorded using a 75 mm chevron-pair MCP detector
followed by a fast phosphor screen (model P47) and the Pixel Imaging Mass Spectrometry
(PImMS)14 camera.c The PImMS camera allows recording both the hit position and the arrival
time of the charged particles. It can operate at a maximum repetition rate of 59 Hz and
can store up to 4 impact events per pixel and frame. In the present series of experiments,
however, both the PImMS camera and the electron side’s CCD camera were synchronized to
the repetition rate of the FEL (10Hz), storing the unique 32-bit bunch ID of the FEL alongside
every single frame. Furthermore, we have employed the second, enhanced version of the
PImMS camera, which features a significantly enlarged detector array of 324 × 324 pixels
(compared to 72 × 72 pixels of the first model) with a maximum time resolution of 40 ns.
Using the PImMS camera, the momentum distributions of all charged fragments are imaged
simultaneously. Both electron and ion momentum distributions were recorded in single-shot
acquisition to possibly correct for the inherent shot-to-shot fluctuations of the FEL during
post-processing step, details of which are given below.

4.2.3 Diagnostics and synchronization

At FLASH, several tools are set up to monitor and characterize the parameters of the FEL
operation on a shot-to-shot basis. Every single shot of the FEL is assigned a unique bunch ID
that is stored together with all obtained parameters in the FLASH data acquisition (DAQ)
stream. Two devices are particularly important: the gas monitor detector15(GMD) and the
bunch arrival-time monitor16 (BAM), both of which are sketched in Fig. 4.2. The GMD is used
to measure the shot-to-shot pulse energy of the FEL and is set up between the undulators and
the FLASH experimental hall. Essentially, it consists of a vacuum chamber filled with krypton
at a pressure of ∼1.6 × 10−6 mbar. This is low enough to allow a transmission >99 % of the
FEL photons, but high enough to create a significant amount of photoelectrons and -ions.
These charged particles are accelerated towards two Faraday cups, where they are collected
and read out. By calibrating the resulting count rates properly, the single shot pulse energy
can be recovered.

c Strictly, this was the second, improved version of the PImMS camera, PImMS2, which is equipped with a
significantly larger detector array compared to the first model. For simplicity, we refer to it only as PImMS
camera.
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The BAM serves a different purpose: A key problem in performing pump–probe experiments
between an optical laser and an FEL is the residual timing jitter between the two that arises
from variations in the exact velocities of the electron bunches in the linear accelerator. At
FLASH, where several stabilizing and feedback-control systems,17 based on RF13 and optical
links18, are set up, this jitter is typically reduced to roughly 100 fs (rms). For observing
ultra-fast dynamics on a timescale of a few tens of femtoseconds, this is still insufficient. To
reduce the timing uncertainty further, different schemes have been proposed. Certainly, the
most proficient attempts involve setting up an x-ray–optical cross-correlator19 behind the
interaction region of the experiment, from which the precise delay between the FEL and the
optical laser can be retrieved for every shot. With these setups, time resolutions down to
6 fs(rms) have been reported.20 The main drawback of this approach is, however, that the
cross-correlator has to be specifically tailored to every experiment, taking into account the
exact geometrical and optical conditions.
Using the BAM, in turn, the timing jitter can be partially corrected without the need for an

additional tool at the experiment. In the BAM, an inductive current created by the passing
electron bunch is amplified and used to cause an electro-optical modulation of samples of
the laser pulses that are generated in the optical master oscillator. The magnitude of this
modulation can be related to the arrival-time difference between the electrons and the laser
pulse. Strictly speaking, there is not one BAM running at FLASH, but there are several, some
of which are part of a feedback loop, that continuously compensates for slow long-term drifts
and large, sudden jumps in the timing. In what follows, the BAM we refer to has a dynamic
range of 4 ps and can be used for single-shot corrections. Sudden changes in the timing that
exceed this range can be identified with a streak camera,17 that is also shown Fig. 4.2. In
contrast to the BAM, the streak camera measures the actual delay between the electron bunch
and the optical laser pulse. Its time resolution, however, is not better than 200 fs, and the
values fed into the DAQ are updated only at a rate of 1 Hz, preventing single-shot corrections
based on its measurements.
Making proper use of the BAM, the uncertainty in the bunch arrival time can be reduced

from ≈100 fs to ≈15 fs, which is the standard error of the BAM instrument itself.16 However,
to estimate the total residual uncertainty in the timing between the FEL and the optical laser,
also the sum of all jitter contributions from all other components in the signal chain have to be
taken into account, which is on the order of ≈20 fs.17 Therefore, the optimum timing precision
that can be achieved with the setup described here, is about 27 fs,10 which is significantly
shorter than the cross correlation between the FEL and UV pulses, which is about 160 fs.

4.3 Data analysis

This section is dedicated to the process of analyzing the single-shot data both for electrons
and ions, which, in many instances, poses unique challenges to the experimentalist. On the
one hand, there is the sheer amount of data that is accumulated when an entire velocity
map image is stored for every single shot. A strategy has to be found to compress these data
sets, which is necessary for an efficient processing and sorting. On the other hand, a careful
investigation of the shot-to-shot FEL parameter fluctuations can guide assessing the sanity and
reproducibility of the experiment, which, in turn, helps to decide on the significance of weak,
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time-dependent effects. Hence, the analysis is carried out in three stages: pre-processing,
synthesis of VMI images after data sorting and selection, and assessment of a time-dependent
series of data in terms of the FEL stability and the statistical error.

4.3.1 Pre-processing

Both the electron data, recorded with the CCD camera, and the ion data, captured by
the PImMS camera, have to be pre-processed to exploit their full potential with respect to
extracting the physically meaningful information content, but in a different fashion and for
different reasons. In the case of the electron data, it is the size of the files that hampers
straightforward handling. Every image is stored as 1000 × 1000 8-bit numbers, which, in a
typical acquisition of 10 000 shots per delay point, amounts to 16 GiB per file. Now, for a typical
pump–probe scan comprising 25 delay points with a ≤100 fs step width, data over at least
2.5 × 105 shots is collected. If the data set for every delay step would be treated individually,
it would be possible to keep and process it entirely in memory of a work station machine.
However, by adding timing-corrections, e. g., through the BAM as shown in Section 4.3.4, the
pump–probe delay becomes a quasi-continuous variable, blurring the lines between data sets
acquired at discrete delays. In that case, efficient processing can only be performed when
the entire time-resolved scan can be held in memory. The best way to achieve this is to run a
hit-detection routine over every image that identifies the number and position of all particle
impacts and returns them in a tabular form. This corresponds to the complete – physical
– information content of the image at the highest degree of data compression, essentially
turning 1 × 106 integers, most of which are zero, into 2 × # floating point numbers (due to
centroiding), where # is the number of particles in the image. The main problem that can
arise in the hit detection of electron data is something that would otherwise be considered a
great advantage of the FEL: The high photon flux leads to a large number of charged particles
created at every shot. As a consequence, the impacts may form densely clustered regions on
the detector, that are not easily disentangled by straightforward routines.
Therefore, a multi-level hit detection was devised to tackle the problem of finding all

particles in two consecutive steps: First, a global object-finding algorithm is applied to the
image as a whole, using standard procedures from digital image processing.21 For rates
up to 100 counts per shot, this is typically sufficient to identify all impacts. If necessary,
a second, local analysis can be carried out for every of the objects found in the first step
to decide whether it is made up of one or more impacts and to segment it accordingly. A
detailed discussion on the implementation and performance of this algorithm is given in
Appendix C. Being able to carry out a hit-finding procedure successfully brings a number of
advantages. Not only is the file size drastically reduced – with the current implementation,
that is not optimized to this end, it decreases by a factor of 30 – but also the inevitable CCD
noise is suppressed. Furthermore, the possibility to count the number of particles explicitly
allows to analyze the experimental data in terms of Poissonian statistics, as will be shown in
Section 4.3.5.
For the PImMS data, in contrast, the situation is different. The data stream that is read out

from the camera already comes in a tabular format. What is reported is a list of the pixels
that were lit since the last external trigger event: their x and y position, the time code relative
to the trigger, and the register that was filled by recording this event. The latter gives the
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Figure 4.3 Result of the PImMS centroiding procedure. a) Comparison between the time-of-flight
spectrum reconstructed from the raw PImMS data (blue) to the time-of-flight spectrum reconstructed
from the results of the centroiding routine b) Zoom on the peak at ≈5µs.

number of times the pixel was hit, with four being the maximum. Here the pre-processing
serves a different purpose. The detector of the PImMS camera is known to suffer from the
problem that whenever an impinging particle is detected at one pixel, the surrounding pixels
are gradually triggered in the shape of an expanding circle. So, in the spatio-temporal domain,
the impact resembles a cone. The problem that this brings is illustrated by the solid blue
line in Fig. 4.3a. In the time-of-flight spectra, obtained by projecting the three-dimensional
PImMS data onto the arrival-time axis, the individual fragment signals take an asymmetric
shape, smeared out towards later arrival times, which, in turn, will unnecessarily deteriorate
the time resolution that can be achieved with the PImMS camera.
The above effect is well-known from previous time-resolved particle imaging experiments,22,23

although the exact reason for it is not understood. To tackle it, the authors of said studies
have proposed different centroiding routines. Here we proceed in a straightforward manner:
The same object-finding routine that is used for the global analysis of the electron detector
images is employed for the PImMS data, but now in three dimensions. This routine identifies
contiguous areas in an <-dimensional image of binary data, that is created by adding the
entries from the PImMS record as truth values, or hits, to a three-dimensional array of zeros
whose axes correspond to the time code, and the x and y position, respectively. Essentially,
two pixels of value B@C4 are considered connected when one of them lies in the 3 × 3 cube of
pixels surrounding the other one. Now, whereas spatially the impacts are always contiguous,
in the time domain that is not necessarily true. That means that the time codes recorded
by adjacent PImMS detector pixels can differ by more than one. To account for this fact,
the time-code axis is rebinned into groups of the same size to restore the connectivity of
the impact events in the above sense, with a group size of three yielding the best results.
For every detected object, all the properties of interest are calculated: the center of mass,
the total range of time-code units it spans, and the time of impact, which is given by the
earliest time code it contains. Consequently, what is considered the actual particle impact



120 Core-Shell Photoelectron Spectroscopy of Dissociating Halomethanes

after processing is the center-of-mass F and G positions at that earliest time code. Coming
back to Fig. 4.3, the advantage of applying the centroiding routine (orange line) becomes
clear, as, in the time-of-flight spectrum, the peaks become narrower and more symmetric,
which can be especially well seen in the zoomed section that is Fig. 4.3b.

4.3.2 Analysis of a single delay point

From the pre-processing with the above hit-detection routines, actual particle count rates
can be extracted from the raw data. A closer inspection of these count rates reveals that the
treatment of the electron data requires special attention because they contain a significant
level of background signal. Here, we compare three experimental conditions that were covered
during the experiment: first, the complete experiment with the molecular beam, plus the FEL
and the UV light (which contains the desired two-color signal); second, experiments with
the molecular beam, but with the UV pulse only, and, third, experiments with only the FEL
pulses, without molecular beam and UV light. As the photon energy of the FEL surpasses the
ionization potential (IP) of every constituent of the background gas, it will create electrons
throughout the chamber, even when it is not focused, so that the third, “FEL-only” signal,
corresponds to the electrons coming from the background gas. Such an ionization is not
possible in the second, “UV-only” case because the 266 nm UV light corresponds to a photon
energy of 4.65 eV, and the IPs of the background gases are all certainly > 10 eV.
The UV photon energy is, however, greater than the work function of aluminum, which

is what the electrodes of the spectrometer are made of, and stray UV photons can therefore
eject electrons from them. In the focus, the intensity of the UV beam is high enough to
cause three-photon ionization of the target molecules, which is not strictly a background
contribution, but also adds to the UV-only signal as the molecular beam is still present.
The reason for this can be seen in the way these data were acquired: While the FEL-only

background signal was recorded in separate acquisitions before or after a pump–probe delay
scan, the UV-only contribution is directly contained in the experimental data stream. During
most of the beam time, a fast shutter was running that chops the FEL beam at every tenth shot
and its status is written to the DAQ stream. Hence, in the analysis step, the shots where the
shutter was closed can be separated based on the shutter status. To prove that this works and
to assess the overall amount of background signal, the count rates of the different conditions
are shown as histograms in Fig. 4.4a. What this shows is that the combined count rates of the
“FEL-only” and the “UV-only” signals are on the order of 150 counts per shot, whereas the
overall signal of the experiment is only about 260 counts per shot, from which we conclude
that only a third of the overall signal can stem from the desired pump–probe photoelectron
signal. In the panel beneath the histograms, the correlation between the count rates and
the pulse energies reported by the GMD are shown. This reveals two pieces of information:
First, there is no correlation between the UV-only signal and the GMD values, which is what
is expected, and tells that the sorting based on the shutter data works correctly.
Second, the FEL-only background and the pump–probe signal distributions exhibit a very

strong correlation with the GMD and an almost linear dependence on it. This indicates that
the bunch IDs for the electron data were correctly recorded and synchronized to the FEL.
After pre-processing, the VMI detector images can be recovered by projecting the F and G

positions onto a Cartesian grid of arbitrary size. We note here that, in principle, the methods
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Figure 4.4 Typical electron count rates obtained after hit detection and centroiding. a) Normalized
histograms of the detected counts per shot for the pump–probe signal (blue, 2.3 × 105 shots), the
ionization from the 266 nm pulse (orange, 2 × 104 shots), and FEL background signal without the
molecular beam (purple, 1 × 104 shots). b) Correlation between the count rates of a and the per-pulse
energies measured by the GMD.

introduced above provide sub-pixel resolution, so, e. g., for electrons, a grid that is denser
than the 1000 × 1000 pixels of the CCD camera could be used. This is in particular true when
Gaussian centroiding is used, as Tremsin et al.24 have shown. Here the limiting factor, however,
is the statistics that can be accumulated in the measurement. For the Abel inversion, that
represents the last step in the image analysis, an average count of 10 hits per pixel is required25

to yield a reconstruction of high fidelity. For the electron data, a grid of 601 × 601 pixels has
proven to give a good balance between resolution and per-pixel statistics, whereas for the
ions the native grid size of 324 × 324 pixels of the PImMS2 camera was not changed.
A serious problem that the background contributions cause is that they may not be “Abel-

invertible”, which deteriorates the outcome of the Abel-inversion process. Therefore, when a
VMI detector image for the total experimental signal, which we may call �EXP and which is
shown in Fig. 4.5a, is recreated from a selection of shots, the said UV and FEL background
contributions, �UV (Fig. 4.5b) and �FEL(Fig. 4.5c), are subtracted from it. Especially, sub-
tracting �FEL is necessary to make the Abel-inversion process more robust, whereas �UV only
contains slow photoelectrons which are not expected to strongly affect the reconstruction of
the high-energy photoline.
To account for the fact that the FEL-only measurement was not carried out in regular

intervals and that its overall signal strength may differ from that during the pump–probe
delay scan, �FEL was scaled by a factor 5BG (close to one) to avoid over-subtracting the
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Figure 4.5 VMI detector images reconstructed from fitted hit positions. a) FEL+UV pump–probe
signal image for a single delay point (shutter open). b) UV-only detector image (shutter closed). c)
FEL background signal without the molecular beam. d) Same as a after scaling and subtraction of b
and c. Left half: raw detector image; right half: after subsequent Abel inversion.

background contribution, which was judged by the number of negative pixels created. Cast
into an equation, the final image �corr is given as

�corr = �EXP −
#EXP

#UV
�UV − 5BG

#EXP

#FEL
�FEL , (4.1)

where #7 is the respective number of shots for the measurement of the contribution 7, which
is one of EXP, UV, and FEL; the outcome of this procedure is shown in the left half of Fig. 4.5d.
Finally, data beyond a certain maximum radius are set to zero. The image is decomposed into
four quadrants, three of which are summed to give the raw data set ready for the Abel inversion
(see Appendix A for details). The fourth quadrant could not be used because a sapphire
crystal mounted on a linear manipulator, that was used to image the overlap between the
FEL and UV beams inside the chamber for alignment purposes, would, even when completely
drawn out, interfere with the static field of the VMI so much that the imaging was heavily
distorted, especially in the photoline that we intended to investigate. After inversion, the
resulting inverted images, and quantities derived from them, like radial distributions, are
normalized to the sum of the GMD pulse energies of all shots that contributed to �EXP. Strictly,
this procedure is correct only if all detected particles have been created in single-photon
processes, for only then the particle yield depends linearly on the FEL intensity.
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To test whether the intensity regime of the present experiments can be considered one
where single-photon ionization dominates, a static FEL electron measurement comprising
20 000 shots was sorted and binned with respect to the GMD pulse energies; when the
analyses of all the bins are collected in the same diagram, they may reveal higher order effects,
such as the appearance of a double-ionization peak as a function of intensity. The bins were
chosen such as to be of equal number of shots and not of equal energy ranges because, in
the wings of the pulse-energy distribution, there may not be enough shots to yield reliable
radial distributions. How the GMD histogram is partitioned into six bins is shown in Fig. 4.6a,
whereas the corresponding, radial distributions, normalized to the GMD sum as explained
above, are displayed in the panel next to it. If the intensity dependence was linear, all these
distributions should now lie on top of each other, and this is generally what we find. Hence, it
seems justified to assume a linear dependence of the particle yield on the intensity.
Only for the lowest bins, the peak height is a little lower than expected, which we can only

explain by the assumption that the noise is dominating over the signal at these low pulse
energies.

4.3.3 Spectrometer calibration

For calibrating the velocity scales in the ion and electron data, different strategies were pursued.
Ideally, one just measures a sample for which the binding energies (for photoelectrons) or
fragment-ion velocities (for photoions) are reported with great precision in the literature. For
the electron side of the spectrometer, helium was measured at full FEL intensity, that is, with
all metal filters withdrawn, the result of which is displayed in Fig. 4.7a. At this intensity, three
discrete peaks are observed, as shown in the adjacent panel, that are assigned to single-photon
ionization leading to He+ in the 2S ground state (binding energy 24.587 eV)26 and, through
a shake-up process,d in the 2P first excited state (binding energy 65.44 eV27), as well as He2+,
that must have been created by a sequential two-photon double ionization, as the observed
kinetic energy of the emitted electrons corresponds very well to the second ionization potential
of helium, which is known to be 54.417 eV.28 For the exact FEL photon energy, the values
written to the DAQ were used as a reference, which, for this experiment, was reported to be
106.5 eV. With this information, the energy scale of the spectrometer is calibrated according
to

'2
7 = 2(~l − IP7) , (4.2)

where '7 is the radius of one of the three photoelectron peaks introduced above, and IP7
is the corresponding ionization potential. Carrying out the linear regression according to
Eq. (4.2), the result of which is shown in the inset of Fig. 4.7b, a calibration constant of
2 = (335 ± 4) pix 2/eV is retrieved, which corresponds to a relative uncertainty of ±1.3 %.
For the ion detector side, no comparable measurement was available. Also, careful investi-

gation of the ion signal of the background gas, primarily made up of molecular nitrogen and
water, did not reveal any discrete features that could be used for calibration. Therefore, we
resorted to calibrating our ion data with respect to the results of Murillo-Sánchez et al.,7 who
report asymptotic fragment kinetic energies for the photodissociation of CH3I and CH2ICl at

d In a shake-up ionization, one electron is ejected and a second one is promoted to a bound orbital of higher
energy at the same time.
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Figure 4.6 Effect of FEL pulse energy sorting and normalization on the photoelectron momentum
distribution. a) Histogram of the GMD pulse energies for a static FEL measurement over 20 000 shots,
binned into six groups with equal numbers of shots. b) Angle-integrated momentum distributions for
the bins shown in a after Abel inversion. The line colors correspond to those given in the legend of a.
The inset shows the photoline peaks in detail.

266 nm, which is a quantity that is also contained in the present data, as we will discuss in
Section 4.4.

4.3.4 Timing diagnostics

As outlined in Section 4.2.3, two devices are used tomonitor the pump–probe timing, the streak
camera and the BAM. In Fig. 4.8a and b, representative records that show no pathological
behavior for an experimental run of 2 × 105 shots are displayed. In the streak-camera data, a
slow oscillatory motion with an amplitude of about 200 fs is observed, but, given the limited
resolution of this device and the fact that these oscillations were present in all data sets
investigated, we assume they can be ignored. The values of the BAM, on the other hand, are
scattered around a central value in what seems to be a Gaussian distribution with a full width



4.3 Data analysis 125

Figure 4.7 Calibration of the electron side of the double-sided spectrometer with helium, irradiated by
the 11.6 nm pulse at full intensity. a) Left half: raw VMI detector image; right half: after Abel inversion.
b) Angle-integrated photoelectron momentum distribution of the Abel-inverted measurement. The
inset shows the calibration curve for the three peaks marked in the main panel.

at half maximum (FWHM) of about 100 fs.
The delays that were set on the opto-mechanical delay stage can now be corrected by the

arrival times reported by the BAM as simple as

Bcorr
7 = BDS

7 − (B
BAM
7 − B̃BAM

1/2 ) , (4.3)

where 7 corresponds to the bunch ID, �( stands for delay stage and B̃��"1/2 is the median of the
whole BAM data set. To illustrate the effect of this correction, in Fig. 4.8 both the set delays
and the corrected values are plotted on top of each other. Clearly, when the step width is on
the order of 100 fs, the corrected delays resemble a quasi-continuous variable, that can now
be rebinned into arbitrary shapes and sizes. Furthermore, it becomes possible to use different
bin sizes depending on the statistics of the data. Therefore, for the ion data typically a finer
binning could be used than for the electrons because the observed time-dependent effects
were much more robust in the ions.

Admittedly, one can argue that the BAM correction will not bring any benefits because the
time resolution of the experiment, that is limited by the cross correlation between the two
laser pulses. Assuming pulse durations (FWHM) of 120 fs for the FEL and 100 fs for the UV
pulses, this cross correlation is on the order of 160 fs (FWHM). Therfore, a jitter of 100 fs will
hardly deteriorate the achievable time resolution. Nevertheless, we consider the a posteriori
delay correction and sorting a good practice to guarantee the maximum consistency and
reproducibility of the experimental findings and have therefore applied it to all data presented
in this chapter.

4.3.5 Sources of systematic and statistical errors

The parameters of the FEL radiation are subject to instabilities both on a short- and a long-
term scale. To detect long-term drifts in the FEL performance, the frequency distributions
of the reported GMD pulse energies and the central wavelength of the FEL were extracted
for each delay and visualized in a so-called violin plot, which shows the smoothed frequency
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Figure 4.8 Timing diagnostics. a) Streak camera measurements and b) BAM (fine) values over 2 × 105

shots. The adjacent panels show the histogram over the whole data set. c) Delays set on the opto-
mechanical delay stage (blue solid line) and corrected delays according to Eq. (4.3) (orange dots) for
the same data as in a and b.
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Figure 4.9 Long-term stability of the FEL parameters, shown as violin plots for the pulse energy (a)
and the central wavelength (b) as a function of the delays set on the delay stage. The “violins” are just
the smoothed, normalized frequency distributions of the respective parameter at these delays. The
fine, broken lines indicate, from bottom to top: the lower quartile, the median, and the upper quartile.

distribution, vertically mirrored, with the lower and upper quartiles and the median indicated
by horizontal lines. Looking at the results for the GMD pulse energies, Fig. 4.9a, no anomalies
are observed that would give rise to concerns for the duration of this scan, which corresponds
to a net acquisition time of roughly 6 hours. At the same time, the data for the photon energy,
Fig. 4.9b, are in terms of the median and the quartiles, perfectly stable, but the distributions
themselves show a strange, multi-modal structure whose origin is unknown.
Regarding the statistical uncertainties inherent in the experimental results, at least two

sources of error have to be considered: First, any particle-detector experiment should follow
Poissonian statistics. To verify that this is actually true, a single delay point of an electron
pump–probe scan was chosen and, instead of casting the particle hits onto a Cartesian grid,
they were binned according to their radial distance from the image center. Now, for every
radial bin, a histogram for the number of counts 9 can be created, which was compared to a
Poisson distribution,

%(_, 9) = e−_
_9

9!
, (4.4)
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in which _ was adjusted as a free parameter. As it turns out, all of these fits show an excellent
agreement, with a typical residual of <1 × 10−3; as an example, two such fits are shown in
the insets of Fig. 4.10a. Therefore, we conclude that the experimental data indeed follow
Poissonian statistics, and consequently the confidence interval of the observed data can be
safely assumed to be that of a Poissonian distribution, which, at a confidence level 1 − U, is
given by

1
2
j2(U/2; 29) ≤ ` ≤

1
2
j2(1 − U/2; 29 + 2) , (4.5)

where j2(F; 7) denotes the quantile function of a chi-squared distribution with 7 degrees of
freedom; 9 is the total frequency after < observations, and ` = <_ its expectation value. The
confidence intervals at the 95 % level are displayed in Fig. 4.10a and are typically on the
order of ±3 %.
A second source of uncertainties are the errors introduced by the Abel-inversion routine, that,

necessarily, always has to be applied to retrieve the physically meaningful information from
the raw detector images. Unfortunately, estimating the error that the Abel inversion introduces
is not straightforward, and it is not obvious how the above errors propagate into the final
inverted results. What can be investigated, however, is the robustness of the inversion routine
against statistical fluctuations of the input data. To this end, a bootstrapping procedure was
applied, which works as follows:29 As an outcome of the inversion, not only the inverted image,
but also the Abel-projected simulation of the raw detector data are obtained. Subtracting this
simulation from the experimental input image gives the pixel-wise residuals. These residuals
are collected and a “noise image” is created by drawing residuals from that distribution with
replacement.e The “noise image” is added to the simulation, that sum is subjected to another
iteration of the inversion, and its result is saved for later analysis. This process of creating
a noise image from the residuals, its addition to the simulation and subsequent inversion
is repeated many times and, eventually, the collected results can be statistically analyzed.
Note that, while this procedure is conceptually simple, it is the hundreds of inversions that
make it computationally demanding. What is shown in Fig. 4.10b is how the interquartile
ranges for the radial intensity distribution, obtained from bootstrapping the data set from
the panel above with # = 400 iterations, evolve as a function of radius. Comparing the
confidence intervals of the raw data, Fig. 4.10a, to the uncertainty that is introduced by the
Abel-inversion routine, one can conclude that the Abel-inversion makes a very similar, but
still small contribution to the overall uncertainty. When the same analysis is carried out for
the sensitivity of the V2 parameter against statistical noise, a much greater response is found.
In particular, only below 50pix. and around the photoline feature at 250 pix., V2 values are
measured that are significantly different from zero, and when we estimate the relative error
at the photoline, to be on the order of 20 %.

e This means that the residuals are only copied, but not used up. In other words, at every drawing, all residuals
are available and the chance of drawing any of them is always the same, namely 1/# for # data points. As a
consequence, a given residual can appear in the “noise image” any number of times (including not at all).
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Figure 4.10 Statistical errors of an electron measurement with the VMI. a) Confidence intervals at the
95 % level for the radial intensity distribution of the raw electron data after centroiding, assuming the
measurement obeys Poissonian statistics. The insets show normalized histograms of the count rates
for two selected radial bins (blue) and a fit with a Poissonian distribution (orange). b, c) Medians
(dots) and interquartile ranges (error bars) for the inversion process obtained from bootstrapping the
inversion routine with # = 400 for the radial intensity distribution (b) and the asymmetry parameter
(c).
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Figure 4.11 Ion time-of-flight spectra recorded in CH3I (a) and CH2ICl (b) upon ionization by an
11.6 nm FEL pulse. In both cases, the spectrum is dominated by In+ and CHx

+ fragments. In b,
additionally, a series of chlorine-containing fragments is observed. The “ghost peaks”, labeled as GP,
eluded assignment.

4.4 Photoion spectroscopy

4.4.1 Time-of-flight spectra

As was outlined in Section 4.3.1, the PImMS camera allows to resolve the particles impinging
on the detector in three dimensions, namely an arrival-time and two spatial dimensions. If
the resulting data set is summed over the two spatial dimensions, the time-of-flight spectrum
of the arriving particles is recovered. Typical time-of-flight spectra for ionization with the
11.6 nm FEL pulse are shown in Fig. 4.11. The mass-over-charge ratios were obtained by
calibrating the arrival times of the In+ (< = 1–3) fragments with the Wiley-McLaren formula.30

For both molecules, the number of parent molecular ions formed is very small and the spectra
are mostly composed of In+ fragments and the respective co-fragments CHxCly+. In the case
of CH2ICl, also a significant amount of CHx

+ and Cl+ fragments are formed, that could either
result from a subsequent fragmentation of the CH2Cl+ fragment or a many-body breakup of
the parent ion. Furthermore, in both spectra a series of smaller peaks accompanying the In+

signals can be observed, that eluded assignment in terms of meaningful fragment formulas
and that are labeled “GP” for “ghost peak” in Fig. 4.11. In his PhD thesis on the technology
and application of the PImMS camera, Slater23 explains the appearance of “ghost peaks” as
resulting from a poor choice of parameters for his hit-detection routine. The artifacts he
describes appear, however, at arrival times longer than the main peaks, whereas we observe
them at shorter arrival times. Furthermore, for the present set of experiments, it was verified
that they exist in the raw PImMS data, as well, so that their exact origin remains unclear.
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The soft x-ray wavelength of 11.6 nm was chosen to be close to the n5 ← 43 giant resonance
in iodine, that is centered at a photon energy of 94 eV31, and whose cross section is roughly 10
times larger than that of the valence orbitals. Hence, a vacancy will be preferably created in the
iodine 43 shell and this core hole relaxes through one or two molecular Auger decays, yielding
doubly and triply charged molecular ions. These ions, in turn, fragment after a fast charge
redistribution that occurs throughout the molecular ion. The appearance of In+ fragments
with charge states higher than three suggests that a small fraction of the ionized species had
also absorbed a second photon during the 120 fs duration of the FEL pulse. We conclude
this from considering the ionization potentials (IPs) of the iodine <+ atomic ions because
no comparable data is available for the molecules under investigation, but we can assume
that the picture is qualitatively similar. According to Fadley et al.,32 the IP for the ionization
of In+ to I(n+1)+ is approximately (< + 1) · 10 eV. The binding energy of the 43 electrons is
58.3 eV,33 which is about 48 eV above the first IP (10.4 eV). In other words, the singly charged
ion has 48 eV of energy in excess. Judging from the approximate IPs, a single Auger decay
(into I2+) requires at least 20 eV of excess energy, and two consecutive decays ≈ 20 + 30 eV.
Therefore, depending on the exact IPs for the molecules, two Auger decays seem to be just
about energetically accessible after (single) photoionization of the 43 shell. If non-sequential
photoionization processes would contribute significantly, of course charge states of up to 4+
could in principle be formed at the given photon energy (10 + 20 + 30 + 40 eV < 107 eV),
but we suspect that the probability for such a mechanism is extremely small. Instead, as
mentioned above, we assume that a second photon is absorbed during the duration of the FEL
pulse. When this happens, the formation of highly charged iodine ions is even more favorable
because the C– I bond tends to stretch after the first ionization step, resulting in a suppression
of the charge redistribution efficiency.34,35

4.4.2 Photoion spectra

With the help of the above time-of-flight spectra, time windows for the reconstruction of the
VMI ion images can be selected. Typically, these windows were chosen to encompass the full
width of the ion peak, touching the baseline at both wings. In this way, it was ensured that both
early and late ions were collected that are necessary to recover the full Abel-projected Newton
sphere. The reconstructed VMI images were subjected to the usual data treatment including
Abel inversion, as explained in Appendix A, without any sort of background subtraction.
Ion momentum spectra for selected mass-over-charge ratios are displayed in Fig. 4.12 as

a function of the pump–probe delay between the 266 nm and the 11.6 nm pulses, together
with the kinetic energy spectra extracted before and after time overlap. We note that the
pump–probe delays are only the “lab book delays”, which are not properly referenced to a
time-overlap signal, which is a problem that we will come back to later in this section. Notably,
the kinetic energy spectrum for the singly ionized iodine ion is almost independent of the
pump–probe delay for both CH3I and CH2ICl, whereas a narrow contribution appears at low
kinetic energies in all In+ with < > 1, when the UV pulse precedes the FEL pulse (labeled as
A in Fig. 4.12).

The yield of this peak increases within a few hundred femtoseconds after time overlap and
remains constant thereafter. This feature must originate from the wave packet launched on
the dissociative state manifold of CH3I (CH2ICl), leading to neutral CH3 (CH2Cl) fragments
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Figure 4.12 Time-dependent In+ ion momentum distributions recorded for CH3I (a) and CH2ICl (c)
as a function of the UV pump–FEL probe delay and corresponding kinetic energy spectra (b and d) for
two delays: B = −1 ps (blue line), i. e., the FEL pulse comes first; B = +1 ps (orange line), i. e., the UV
pulse comes first. Shaded areas highlight the increase (blue) and decrease (red) of the signal after
time overlap.
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and iodine atoms, where the latter are ionized by the FEL pulse. Therefore, this channel’s
kinetic energy must reflect the asymptotic energy that the iodine fragments acquired during
dissociation along the repulsive state potentials. For all In+ fragments, including I+, broad,
high-energy features, labeled B in Fig. 4.12, are observed. These are assigned to the Coulomb
explosion of ground state molecules, following core-shell ionization and molecular Auger
decay. All of these features show a decrease after time overlap, indicating a depletion of the
ground state population.
As discussed above, the delay-dependent channel that appears at low kinetic energies results

from ionization following the UV-induced dissociation into neutral fragments. The maximum
energy available for the I(3P3/2) and I∗(3P1/2) fragments formed by UV-dissociation is given
by

�0D(�) =
;2=5 @06

;;=:

(
~l − �0 − �($(�) − �

;=:
7

)
, (4.6)

where ~l is the photon energy, �0 the dissociation energy (2.41 eV and 2.25 eV for CH3I
and CH2ICl, respectively); �($ is the spin-orbit splitting of 0.946 eV and �;=:

7
the internal

energy of the molecule. The quantity ;2=5 @06 is the mass of the co-fragment formed during
dissociation, i. e., CH3 and CH2Cl for methyl iodide and chloroiodomethane, respectively,
and ;;=: the mass of the parent molecule. The fraction of masses reflects the fact that the
lighter co-fragment carries away most of the released kinetic energy, so that, e. g., in the
case of CH3I, only 10 % of the kinetic energy are transferred to the iodine atom. Accordingly,
the splitting between the two spin-orbit channels is scaled down by the same factor, so that,
given the resolution of our velocity map imaging spectrometer, which we estimate to be about
100 meV below 1 eV, the two dissociative channels of ground and spin-orbit excited iodine
will overlap in the final kinetic energy spectrum and cannot be distinguished. In previous
work,7 a quantum yield for I* formation of 0.75 (0.52) in CH3I (CH2ICl) was reported at an
excitation wavelength of 266 nm.
In Table 4.1, the measured fragment kinetic energies of the delay-dependent, low-energy

channel are compared to values obtained from Eq. (4.6) if the internal energy of the molecules
is neglected. Taking into account both the quantum yields for the formation of the two
iodine species and the limited energy resolution, a rather good agreement is found for the
CH3I molecule, but a large deviation from the calculated values is observed for the fragment
kinetic energy measured in the case of CH2ICl. We assign this difference to a significant
redistribution of the available energy over the rotational and vibrational degrees of freedom
of the co-fragment.7 From our measurement, we can estimate that 36 % of the total available
energy is transferred to the internal energy of the co-fragment.
The time for the appearance of the low kinetic-energy feature can be quantified for both

molecules by extracting the integrated yield of this feature that appears in all In+ (< > 1)
channels as a function of pump–probe delay. This is shown in Fig. 4.13, together with the
result of a fit to a sigmoidal model function of the form

�AB4>(B) =
�0

2

(
1 + erf

( B − `
f

))
+ � , (4.7)

where erf(F) denotes the error function, �0 the height of the step, ` and f its center and
width, respectively, and � is a constant offset that allows for a time-independent baseline.
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Table 4.1 Maximum available energy and measured translational kinetic
energy for CH3I and CH2ICl molecules.

Fragment kinetic energy [eV]

Calc. Expt.

CH3I I(3P3/2) 0.13 0.17
I*(3P1/2) 0.23

CH2ICl I(3P3/2) 0.39 0.34
I*(3P1/2) 0.66

This particular functional form, using the error function or cumulative Gaussian distribution,
is chosen because, if we assume that the appearance is instantaneous, this step-like behavior
is broadened by the cross-correlation of the two laser pulses. Technically, the error function
arises from the convolution of a Heaviside step function with a Gaussian distribution. By
carrying out this convolution analytically, the full width at half-maximum of the Gaussian
component takes the form FWHM = 2

√
ln 2f ≈ 1.67f. The center and width parameters

retrieved from this fitting procedure are listed in Table 4.2. While, for both molecules, the
widths of the step functions are nearly independent of the charge on the iodine, we find a
clear increase of the center position with increasing charge state, as is apparent from both
Fig. 4.13 and Table 4.2. We note here, however, that the absolute zero delay is not known
precisely for these experiments as we were not able to observe a signal corresponding to
the cross-correlation between UV and FEL pulses in any of the recorded fragments. Still,
the trend of increasing appearance times has been observed in previous experiments on
the photodissociation of CH3I molecules ionized at 1.7 nm.36,37 The authors attribute this
charge-state-dependent shift to an intramolecular charge transfer or charge redistribution
process that follows the removal of an iodine core-shell electron: As long as the iodine ion is
in close proximity to the co-fragment, the highly excited system can relax through ionization
of the (chloro-)methyl fragment, which is mediated by the Coulomb attraction of the ion,
and which creates another charge, located on the co-fragment. As the two fragments move
apart, a potential barrier builds up between them and when this barrier reaches the binding
energy of the most weakly bound electrons in the co-fragment, the charge redistribution is
suppressed. From this point on, which is referred to as the critical internuclear distance, 'crit,
the iodine ions undergo atomic Auger decay instead and the additional charge is created in
the iodine atom instead. These atomic ions move with the asymptotic kinetic energy release
of the photodissociation and are detected as the slow ions under investigation. What this
model also implies is that the higher the charge state of the iodine ion, the farther its Coulomb
interaction will reach, leading to a longer critical distance and, hence, a later appearance
time. This model also explains the absence of this channel in the singly ionized iodine atoms:
As the molecule has to carry at least one charge for the charge redistribution to happen,
the suppression of this mechanism at 'crit will yield at least doubly charged iodine ions. In
principle, I+ could also be formed by valence ionization of the neutral iodine fragments after
the dissociation, but probably the cross sections for these channels are so small that, in our
experiment, we are not sensitive enough to observe it.
The critical internuclear distance at which the charge transfer is suppressed can be approxi-
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Figure 4.13 Normalized, integrated yield of the low-energy channel as a function of the delay between
the UV and the FEL pulse for several low charge states of iodine (circles) together with the corresponding
fit according to 4.7 (solid line). Arrows indicate the center positions of the fitted functions. Negative
delays correspond to the situation where the FEL pulse arrives first. a) CH3I; b) CH2ICl.

Table 4.2 Experimental center positions (corrected and uncorrected) and widths
of the fitted sigmoidal functions (all values in fs) from Fig. 4.13, according to
Eq. (4.7). For the sake of comprehensiveness, also the values for the electron
measurements are listed, the discussion of which is deferred to Section 4.5.

CH3I CH2ICl

Center ` `2=@@ Width f Center ` `2=@@ Width f

Fragment ion
I2+ 261± 9 85 243±20 49± 7 126 192± 14
I3+ 290± 7 114 211±15 74± 8 151 177± 15
I4+ 303± 5 127 216±10 123± 7 200 186± 14
I5+ 325±10 149 219±18 182±13 259 207± 25
Photoelectron contribution

Molecule 168±33 -8 109±63 5±70 82 153±124
Atom 195±42 19 125±80 4±75 81 158±132
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mated by a classical over-the-barrier model37 that yields the expression

'crit(>, ?) =
(> + 1) + 2

√
?(> + 1)

+7
, (4.8)

where ? and > are the charge states of the iodine atom and the co-fragment, respectively,
and +7 is the vertical ionization potential of the co-fragment. For the present case, > is set to
zero, and literature values38 for the co-fragment IPs are used: 9.86 eV for CH3 and 8.87 eV
for CH2Cl.
The critical internuclear distance that is obtained from Eq. (4.8) can now be compared

to the internuclear distance that would be expected at the center of the step function. For
the sake of simplicity, we assume that the two fragments travel at a constant velocity that
corresponds to the asymptotic kinetic energy release �97<, neglecting the acceleration at the
beginning of the dissociation. In this case, the internuclear distance as a function of time is
given by

'(B) = '4? + B

√
2�97<
;@43

, (4.9)

where '4? corresponds to the equilibrium internuclear distance and ;@43 =
;� ·;2=5 @06

;�+;2=5 @06
to

the reduced mass, with the iodine atom’s mass ;� . The equilibrium distances used were
2.20Å for CH3I, which equals the C– I bond distance, and 2.86Å for CH2ICl, which is the
distance between the iodine atom and the center of mass of the chloromethyl group.7 The
corresponding asymptotic kinetic energy releases were set to 1.286 eV37 for CH3I and 1.22 eV
for CH2ICl, which corresponds to the energy release associated with the average fragment
kinetic energy measured in this experiment (see Table 4.1).
In Fig. 4.14, the expected internuclear distances according to Eq. (4.9) are compared to the

critical internuclear distances for the respective charge state given by Eq. (4.8), revealing a
large discrepancy. As mentioned above, however, the shown pump–probe delays are essentially
“lab book delays” that may be offset from the actual zero delay by a constant value B0. Hence,
the pump–probe delay B in Eq. (4.9) was replaced with (B − B0), and B0 was adjusted in a
least-squares fitting procedure as a free parameter. Furthermore, this offset B0 can differ
between experiments, as the data sets for the two different molecules were recorded on
different days during the experimental campaign and the exact time overlap between the FEL
and the optical laser is known to be subject to long-term drifts. As can be seen from Fig. 4.14,
good agreement can be achieved using the fitted values of B0 = +176 fs and −77 fs for CH3I
and CH2ICl, respectively. The corrected values of the center positions, `2=@@ = ` − B0, are also
listed in Table 4.2. On the basis of these values, an overall increase of the appearance times is
found for photodissociation of CH2ICl compared to CH3I, which is what is expected given the
significantly heavier mass of the chlorine atom.
The above analysis demonstrates that the suppression of charge redistribution during

the dissociation represents a key ingredient for the appearance of the low kinetic energy
channel, even for the lowest of charge states for which it can be observed, < = 2. Without
doubt, the discussed charge redistribution phenomenon inherently depends on the underlying
dissociation dynamics of the neutral, excited species. Disentangling these two interrelated
processes in a clean way is, however, a tedious task and will not be pursued here. Instead, we
now turn to the investigation of the photoelectrons emitted during the UV dissociation.
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Figure 4.14 Comparison between the critical internuclear distances as a function of the iodine charge
state, according to Eq. (4.8) (solid orange line), and the distances retrieved from the experimentally
determined step function onsets, assuming fragments traveling at constant velocities as in Eq. (4.9)
(filled squares: uncorrected values as in Fig. 4.13; open squares: allowing for an additional time-zero
offset B0 as a free parameter; a) CH3I; b) CH2ICl).

4.5 Time-resolved photoelectron spectroscopy

Slices through the 3D photoelectron momentum distribution recorded in CH3I and CH2ICl
molecules following soft x-ray ionization are displayed in Fig. 4.15a and b, together with
the raw images from the experiment, and the corresponding angle-integrated kinetic energy
spectra, Fig. 4.15c. At this photon energy, ionization is dominated by the n5 ← 43 resonance
in iodine and therefore the kinetic energy spectra are mainly composed of the 43 photoline
close to 57 eV binding energy (region A in Fig. 4.15c). Additional contributions, labeled
as B and C in Fig. 4.15c, are assigned to distinct regions of Auger and shake-up electrons
which in the case of CH3I have been observed and described before.39 The V2 parameters that
were obtained for the photolines in region A are 0.8 ± 0.2 and 1.2 ± 0.2 for CH3I and CH2ICl,
respectively. Unfortunately, the published reference data by Novak, Benson & Potts40 and
Lindle et al.41, for CH3I and CH2ICl, respectively, is only presented in graphical form and not
as numerical values, but from what we can tell, the agreement seems to be very good.
The resolution of the velocity map imaging spectrometer at this relatively high kinetic

energy is ∼1 eV. Combined with the large bandwidth of the FEL (>1 eV), the spin-orbit 43−1

core hole state cannot be resolved in the present experiment. We can, nevertheless, resolve a
small absolute shift of 0.5 eV in binding energy between CH3I (peak position 57.1 eV) and
CH2ICl (peak position 57.6 eV). These values are in good agreement with the weighted
average of the 433/2 and 435/2 binding energies reported in earlier studies, performed with
synchrotron radiation.33,40

The changes in the photoelectron spectra (PES) following UV excitation are shown as
difference spectra in Fig. 4.16 as a function of pump–probe delay. At each time step, the
photoelectron spectrum recorded at a delay of −1 ps (UV late) is subtracted to highlight the
delay-dependent changes in the spectra of the excited-state molecules. For both molecules
under investigation, the most prominent delay-dependent effect is the appearance of a negative
and a positive contribution, labeled as regions I and II in Fig. 4.16, on either side of the
photoline. To interpret this observation, we need to distinguish two effects that are expected
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Figure 4.15 Static photoelectron spectroscopy at 11.6 nm. a) VMI detector distribution (left half) and
slice through the 3D momentum distribution (right half) obtained from Abel-inverting the former for
the photoionization of CH3I. b) Same as a for CH2ICl. c) Corresponding kinetic energy spectra, shown
as a function of binding energy.

to modulate the binding energies of the core-shell electrons during the time-dependent
evolution of an excited-state molecule: first, the electronic excitation itself, which is pictured
as the promotion of a valence electron into an unoccupied orbital and, second, the so-called
chemical shift in the binding energy of the core-shell electrons, which is a consequence of the
additional electron density that is presented by the neighboring atoms, which means that
the chemical shift is a function of the internuclear separation. As the valence electrons are
delocalized throughout the molecule and, compared to the core-shell electrons, only weakly
bound, we expect that the first effect, the rearrangement of one these electrons, makes only
a small contribution to the time-dependent change in binding energy. Asymptotically, free
iodine atoms are formed, which means that the chemical shift, which we introduced as the
second effect, will go to zero. We therefore assume that in the time-dependent measurement –
to first approximation – the binding energies of the core-shell electrons evolve from the value
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Figure 4.16 Time-dependent photoelectron spectra recorded in CH3I (a) and CH2ICl (b) as a function
of pump-probe delay, having subtracted the photoelectron spectrum at a delay of −1 ps (UV late). The
dashed lines delimit the regions associated with the depletion of ground-state molecules (II) (blue,
negative) and the formation of free iodine atoms (I) (red, positive).

of the neutral ground-state species to the value of the neutral ground-state atom.
In this picture, which one could call the “excitation-agnostic” picture, the sudden variation

of the signal as shown in Fig. 4.16a and b is a direct consequence of the molecules’ dissociation:
As the two fragments move apart, the chemical shift of the iodine 43 levels, which is induced
by the (chloro-)methyl group in the bound molecule, is gradually relieved as the electronic
structure of the free iodine atom emerges. The 43 binding energy of the free iodine atoms is,
in either case, higher than that for the bound molecules. Judging from the weighted average
of the values reported for the 43 core-hole spectroscopy of atomic iodine,42,43 this difference
should amount to 1.0 eV for CH3I33 and 0.6 eV for CH2ICl40. Although the resolution of our
current experiment does not allow us to resolve the individual spin-orbit states, we are able
detect the overall shift of the 43 photoline. The drop of the signal in region II can, therefore, be
assigned to the depletion of excited state molecules as they dissociate, whereas the rise of the
signal in region I is attributed to the ionization of iodine atoms that are formed. Surprisingly,
these two features seem to be separated by more than 3 eV rather than the small differences
given above, but this deceptively large separation is caused by the ∼3 eV width (FWHM) of
the photoline feature: A small displacement will result in a large separation in the difference
signal, as shown in Fig. 4.16, which means that the largest absolute difference appears in the
outermost regions of the peak.
What can also be seen from Fig. 4.16 is that the time-dependent effect is noisy and unstable,

and a simple integration of the two regions, similar to the procedure used for the ion data,
does not help in quantifying the dynamics observed in the PES. Instead, a fitting procedure
is used that works as follows: At each time delay, the broad photoline feature is fitted by a
sum of two Gaussian functions. The first Gaussian function reflects the ionization from the
molecular iodine’s 43 levels (of the molecule in the ground state, according to the picture
introduces above), whereas the second Gaussian function reflects the ionization from the
iodine atom after dissociation. The width of the Gaussian function attached to the molecular
contribution is fixed to 3 eV to account for the limited resolution of the velocity map imaging
spectrometer and the bandwidth of the FEL pulse, whereas the width of the Gaussian function
representing the atomic contribution is used as a free parameter to account for the significant
broadening of the free atom’s 43 photoline due to open-shell couplings.43 In fact, we find that
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Figure 4.17 Composition of the 43 photoline in the photoionization of CH3I at ~l = 90 eV according
to Cutler, Bancroft & Tan33. The capital Greek labels on the small peaks denote the substates of the
spin-orbit split 43−1 core-hole manifold. The label a = 1 denotes a vibrational excitation in the Π1/2
state.

the atomic contribution is typically 0.5 eV broader (FWHM) than the molecular photoline.
The peak positions of the two Gaussians are fixed to the weighted averages of the known
values from synchrotron measurements, i. e., to 57.3 eV for the molecular contribution in
CH3I, 57.7 eV for that in CH2ICl, and 58.3 eV for the atomic iodine. The amplitudes are used
as fitting parameters. Note that this model does not take into account a dynamically shifting
component as a function of pump-probe delay since the measurement does not have sufficient
temporal nor energy resolution to identify this component reliably.
To justify that a single Gaussian is adequate to represent the photoline under the current

experimental conditions, we present the predicted shape of the photoline based on the
detailed decomposition reported by Cutler, Bancroft & Tan33 in Fig. 4.17, convoluted with
the experimental resolution, which we estimate to be ≈2.2 eV. Also, in Fig. 4.17 a single-
Gaussian fit to this broadened photoline is shown together with the experimental data for the
CH3I photoline. While the agreement between the photoline that is reconstructed from the
literature values and the experiment is a little better than that between the experiment and
the single Gaussian, we are still convinced that the single Gaussian used in our analysis is a
good model because it introduces the smallest number of free parameters.
In Fig. 4.18, we present the results of the fitting procedure, namely, the amplitudes of

the above two Gaussian functions (one for the molecular, one for the atomic photoline) as a
function of the pump–probe delay. The time-evolution of these two components is, in turn,
fitted with a Gaussian cumulative distribution function of the form given in Eq. (4.7). For both
molecules, the depletion of the molecular iodine’s 43 contribution has a decay time close to
120 fs. A slightly longer rising time is observed for the appearance of the atomic 43 photoline
(see Table 4.2). The dynamics observed in the photoelectron spectrum is 1.7 times faster than
the dynamics observed in the In+ fragments for CH3I and 1.35 times faster for CH2ICl. This
indicates that the photoelectron emitted from core-shell single-photon ionization is directly
sensitive to the change of the electronic and nuclear structure of the molecule occurring
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Figure 4.18 Decomposition of the time-resolved photoelectron signal. a, b) Illustration of the peak
fitting procedure described in the main text, shown for the case of CH3I at pump-probe delays of
−1 ps (a) and +1 ps (b). c–f) Evolution of the fitted amplitudes of the two Gaussians as a function of
pump-probe delay. For CH3I, the depletion of the molecular photoline is shown in c and the rise of the
atomic contribution in d. e, f) Same as c and d for the case of CH2ICl.

during neutral dissociation and is not affected by the Auger decays and charge redistribution
effects that govern the ion dynamics. Remarkably, we find that the structure of the free atom
is established within the 120 fs pulse duration of the FEL and UV pulses. Within the time
resolution of our experiment, the rise of the atomic contribution is found at (20 ± 40) fs for
CH3I and (+80 ± 80) fs for CH2ICl relative to the zero delay that was inferred from the ion
measurements. Recently, Drescher et al.44 have reported results on the photodissociation of
CH3I at 266 nm investigated by transient absorption. They find that the formation of the free
iodine atom is faster than their time resolution of ≈100 fs, which is essentially what we have
also found.
The difference between the dynamics observed in CH3I and CH2ICl can be partially at-

tributed to the difference of the reaction times for the UV-induced dissociation of the molecules.
For CH3I, the time required to increase the C– I bond distance by a factor of two can be
calculated using two moving fragments at constant velocities (Eq. (4.9)) and is expected
to be around 48 fs, whereas this number increases to 55 fs for the CH2ICl molecule. The
main difference arises from the amount of internal energy that is transferred to the CH3 and
CH2Cl co-fragments during dissociation. While it is negligible in CH3I, the UV-dissociation of
CH2ICl involves large-amplitude rotational motions of the neutral CH2Cl radical. On-the-fly
adiabatic full-dimension classical trajectory calculations at the ab initio complete active space
self-consistent field (CAS-SCF) level of theory, performed by Bañares and co-workers,7 have
shown that, due to the rotational motion of the CH2Cl fragment, the time required to double
the equilibrium distance between the iodine atom and the chlorine atom is about 70 fs. As a
result, the chlorine atom stays in the vicinity of the iodine atom longer than the prompt C– I
bond fission would suggest, which, in turn, affects the dynamics observed in the photoelectron
spectra.
Eventually, we want to turn to the discussion of the photoelectron angular distributions and
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how these distributions are affected by the molecular dynamics. Here, we have to consider
two factors: first, what is the expected amplitude of the change in the angular-distribution
parameters, which we must compare to, second, the uncertainty in determining these pa-
rameters. Based on the findings presented in Fig. 4.10 and the discussion accompanying
it, we have to assume that the relative error in V2 is about five times larger than that in the
radial intensity distribution. This is mostly due to the fact that V2 is obtained from the ratio
&2/&0 (see the discussion at the end of Section 2.3.1 or Appendix A), and it is this division
that amplifies the noise from these two experimentally determined quantities. What we have
not discussed in Section 4.3.5 is the fact that the relative errors of the V: grow quickly with
increasing :, which can be intuitively understood as a consequence of the fact that, with
increasing :, an ever more subtle aspect of the angular distribution is captured. Therefore, we
restrict the discussion to V2 here, which is the angular-distribution parameter we can measure
with the greatest precision.

Looking at the literature values for the ground-state molecules we conclude that, for CH3I,
we would not expect V2 to change at all between the bound and the free iodine atom. In
fact, Lindle et al.41, using the V2 values for the photoionization of xenon (as a function
of photoelectron kinetic energy) as the reference, found an excellent agreement with the
measured V2 values for CH3I. This finding can be interpreted such that the CH3 group
acts as such a weak scatterer that its presence hardly modulates the photoelectron angular
distributions (at least in the randomly orientedmolecule). For CH2ICl, the situation is different:
here the V2 for the molecule is roughly 1.2 at the present photon energy of ≈100 eV,40 so that
the V2 will asymptotically drop during the dissociation to ≈ 0.8, which is an effect size we
could possibly observe. To investigate this, we have extracted the radial distributions of V2 in
the time-resolved photoelectron measurements, as described in Appendix A, together with an
estimate of the errors introduced by the Abel-inversion routine through the bootstrapping
procedure described in Section 4.3.5.
The evolution of the V2 radial distributions for both molecules is shown in the adjacent

panels of Fig. 4.19 as the absolute difference with respect to the V2 radial distributions
recorded at −1 ps. For CH3I, Fig. 4.19a, we can hardly identify any features that are not
noise. In the case of CH2ICl, Fig. 4.19b, we can clearly see a positive contribution rising
at a binding energy of ≈59 eV and also a broad, weaker depletion that accompanies it at
≈55 eV. We tentatively assign these two features to an averaging effect between the molecular
and the atomic photoline: when the atoms are formed with a more isotropic accompanying
photoelectron angular distribution compared to the molecules, the averaging of the two
overlapping photolines should depress V2 at the photoline. In its wings, however, where the
angular distribution becomes isotropic rather quickly, the atomic contribution will increase
the average V2 that is observed.
To quantify this effect, we have averaged Fig. 4.19b and the corresponding uncertainties

from the bootstrapping over the integration regions of Fig. 4.16b, the result of which is shown
in Fig. 4.20. In the atomic contribution we observe a clear step-like behavior. Fitting these
data, using once more the error function of Eq. (4.7) , we obtain a center (uncorrected) of
` = (27 ± 55) fs and a width of f = (70 ± 90) fs. While the width is clearly very unreliable,
the center position is in good agreement with the data for the intensity evolution of the
photolines, collected in Table 4.2. Furthermore, we obtain a step height of 0.11 ± 0.03.
Unfortunately, the same fitting failed for the values extracted from the molecular photoline,
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Figure 4.19 Time-dependent change of the asymmetry parameter V2 as a function of pump–probe
delay for CH3I (a) and CH2ICl (b). At every delay point, the V2 distribution measured at −1 ps (UV
late) was subtracted. The indicated regions are the same as in Fig. 4.16.

Figure 4.20 Extracted time evolution of the (absolute) V2 parameter, averaged over the integration
regions for the molecular (II) and the atomic (I) photoline, as indicated in Fig. 4.16b. The open squares
mark the median values and the error bars the interquartile ranges obtained from the bootstrapping
procedure outlined in Section 4.3.5. To the results for the atomic photoline the Gaussian cumulative
distribution function of Eq. (4.7) was fitted. For the molecular photoline, this fitting failed.

which do not show a clear step-function behavior.
Still, what is remarkable about this time-evolution analysis is that it can be carried out

directly with the experimental data without setting up an additional fitting model, as was
done above. What manifests here, we are convinced, is the fact that the angular distribution
parameters, even when they are extracted with a greater uncertainty than the angle-integrated
photoelectron spectrum as discussed in Section 4.3.5, are less sensitive to statistical fluctuations
during the experiment, because the intensity dependence is divided out when calculating the
angular-distribution parameters.
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4.6 Discussion

First, we want to address the question whether the time-dependent effects presented in this
chapter could also be explained by a different excitation mechanism, namely multiphoton
ionization caused by the UV light. In principle, the observed dissociation could also be caused
by dissociative photoionization, if the molecules end up in a dissociating excited state of the
ion after three-photon ionization. However, ionization would lead to shifts in the binding
energy of the iodine 43 levels that are significantly larger than what is observed (as discussed
in Section 4.4.1). According to Fadley et al.32, the shift should be on the order of 10 eV for
the iodine atoms. Certainly, a shift that large we should be able to identify and distinguish
from the ≈1 eV shift that is observed.
Second, the most striking difference between the ion and electron data is the fact that

the time-dependent effect is much more noisy and less reproducible in the electrons. We
assume that besides the background level, that was discussed in Section 4.3.2, there is a
reason inherent to the spectral properties of the SASE FEL that makes the experiment with
direct photoelectrons more challenging: even when the precise spectrum of the FEL pulse
fluctuates from shot to shot, the molecules will, after ionization, still end up in the same final
electronic states, which will, in turn, hardly affect the kinetics of the subsequent breakup
process. Therefore, the ions are always formed with the same kinetic-energy release and give
rise to a stable signal. In contrast, the variations in the FEL wavelength are directly imprinted
onto the ejected photoelectron; this would also explain why McFarland et al.5 have resorted
to measuring Auger electrons. In an Auger process, the kinetic energy of the ejected electron
is entirely determined by the energy difference between the initial core-hole and the final
valence-hole state. Therefore, the kinetic energy of the Auger electrons is independent of the
ionizing radiation, causing a robustness to spectral fluctuations of the FEL similar to what
we have proposed for the ions. Similarly, the photoelectron angular distributions should be
comparatively insensitive to changes in the spectral shape of the FEL because, by definition,
the angular distributions are independent of the intensity. To some extent that is also what
we found in our analysis, considering that we observed a quite stable pump–probe effect in
the V2 parameter for CH2ICl (see Fig. 4.19b) in spite of the fact that the uncertainty should
be larger in this quantity compared to the radial intensity distribution.
Third, even if the spectrum of the ionizing radiation was perfectly stable, the results

presented in Section 4.5 have revealed the limits of the present experiments in terms of time
and energy resolution. As attractive as core-shell photoelectron spectroscopy is as a technique,
one has to be aware that the changes in binding energy during a chemical reaction are small
compared to the photoelectron energies (in the regime where photoelectron scattering can be
treated classically). Applied to the present experiment, this would require an energy resolution
better than 500 meV or Δ�/� < 1 %. Regarding the spectrometer, this is certainly achievable
with a “traditional”, one-sided VMI. With the double-sided VMI used in this experiment, this
is probably also possible, but note that ions and electrons were measured simultaneously here,
for which compromises have to be made in terms of the image size and particle focusing on
both sides of the spectrometer. However, even with a better spectrometer resolution we would
probably be limited by the bandwidth of the FEL, which we estimate to be about 1 eV. The
time resolution that is required to resolve the molecular dynamics through the evolution of
the binding energies obviously depends on the time scale of these dynamics. Considering the
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cross correlation of 160 fs between the FEL and UV pulses, one cannot hope to resolve the
dissociation dynamics in CH3I, but if it is true that the respective dynamics in CH2ICl happen
on a time scale of 70 fs, they could possibly be disentangled by a deconvolution operation. In
this sense, we think that the energy resolution is the more severely liming factor.

4.7 Conclusion

In this chapter, two things were established: First, a detailed approach was elaborated to treat
the experimental data taken with a double-sided VMI at an FEL facility. In the second step,
this method was applied in investigating the � band photodissociation of CH3I and CH2ICl
molecules, probed using core-shell photoionization spectroscopy above the iodine 43 edge.
It was shown that time-dependent features that are observed in the In+ fragment ions and
the direct photoelectrons, respectively, are mediated by fundamentally different processes:
the suppression of a molecular Auger type of process on one side, and a quasi-instantaneous
photoionization on the other. Unfortunately, we were not able to observe the evolution of the
iodine 43 binding energy directly. Here, the limiting factors were the low energy resolution
of the VMI and the low time resolution due to the relatively long FEL pulses.
The problem that the spectral shape FEL pulses changes from shot to shot is inherent to

the way a SASE FEL operates. However, with the development and increasing availability of
so-called seeded FELs, in which the light amplification process is not initiated statistically, but
seeded by coherent XUV radiation (e. g., from high-order harmonic generation), very stable
spectral properties and, moreover, a negligible timing jitter between the FEL and the optical
laser can be realized. Recently, Squibb et al.45 have reported time-resolved photoelectron
spectroscopy results on the excited state dynamics of acetylacetone, measured with the FERMI
FEL at the Elettra facility. Although the aim of this study was to investigate valence-shell
ionization at ∼20 eV, we note that the FERMI FEL can be tuned to photon energies of up
to 300 eV, which opens an exciting perspective for the future of time-resolved core-shell
photoelectron spectroscopy.
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Summary and Outlook

With the work that is collected in this thesis, a great deal of progress has been made in estab-
lishing the measurement, analysis, and interpretation of photoelectron angular distributions
(PADs) as a powerful technique in time-resolved photoionization experiments to reveal details
about the electron–parent-ion interactions that are elusive when considering only angle-
integrated quantities, paying special attention to the role that shape resonances play in this
context. In order of appearance, the aspects of this progress are threefold: first, in Chapter 2,
we have demonstrated to what extent the amount of information that can be retrieved from the
photoelectron angular distributions can be enhanced by laser-induced molecular alignment
for the case of XUV ionization of CF3I molecules. In particular, we uncovered that the rather
structureless energy dependence of the photoionization observables for randomly oriented
molecules is in fact composed of overlapping contributions from two distinctly different shape
resonances, each of which contributes to the angular-distribution parameters of the aligned
ensemble with essentially opposite sign, which allowed their discrimination and assignment
in the experimental data.
Second, in Chapter 3, we have carried out the analysis of time-dependent PADs for an

experiment, in which actual molecular dynamics are involved, namely photodissociation
and vibrational wave-packet dynamics in I2 molecules, induced by transitions at 710 nm and
555 nm, respectively. Here, instead of single-photon XUV ionization, multi-photon ionization
in an intense mid-IR laser field was used as the probe mechanism, which has the advantage
that, experimentally, such a laser setup operates typically more stable than an HHG source.
The drawback is that the analysis of the electron data is rather involved and this treatment
is based on many side assumptions, whose appropriateness has to be guaranteed. In the
best case, however, from such a measurement the differential scattering cross sections for
the electron–molecular-ion scattering can be extracted which can be directly compared to
calculations and genuine electron-scattering measurements.
The key result of Chapter 3 is that we were able to reproduce changes in the angular

distributions of the rescattered electrons for both the photodissociation and the vibrational
wave-packet experiments quantitatively by electron-scattering calculations. Furthermore, we
developed an interpretation of the observed changes in terms of a molecular shape resonance
that very sensitively depends on the internuclear distance between the iodine atoms and an
atomic shape resonance in I+ that appears when the molecule is completely dissociated. To
the best of our knowledge, the notion that a shape resonance could be extremely sensitive
to small changes in molecular structure has been discussed theoretically,1 but not explored
experimentally so far.
As hinted above, the insight into the photoelectron dynamics, which ultimately enabled the

interpretation of the findings of Chapters 2 and 3, was obtained by the ability to reproduce
and rationalize PADs for electrons with kinetic energies ≤ 30 eV with the help of calculations
carried out with ePolyScat. It is important to stress that, on one hand, this is a kinetic-energy
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region in which classical models of the electron–parent-ion interactions are inappropriate, but,
on the other hand, the application of a quantum-scattering model alone does not guarantee
success. In fact, there are many examples in the literature where the agreement between
experiment and theory is not even qualitatively convincing, but – then again – photoionization
of molecules is notoriously difficult to treat theoretically.
To overcome this complication, the idea behind the experiments presented in Chapter 4

was to use radiation in the soft x-ray regime, both to probe a quasi-atomic core-shell level in
the molecule and to reach photoelectron kinetic energies, where the photoelectron scattering
can be treated classically. Then, these two factors combined would lead to a particularly
simple interpretation of the photoelectron angular distribution in terms of an outgoing
photoelectron wave ejected by a point emitter that rescatters from the other atoms in the
molecule like on point-like scatterers. While we were able to detect the signature of the
molecular photodissociation of CH3I and CH2ICl at 266 nm in the iodine 43 photoline, which
is in itself an important, albeit technical, breakthrough, we could not – even with the most
sophisticated data treatment – determine changes in the PAD of the photoline significant
enough that they would have prompted further analysis and modeling.
Naturally, the amount of progress that a thesis can achieve in its field must always be

incremental, but this progress is at the same time highly specific. So with the results that we
have collected up this point and the insight we have gained, we can envisage some directions,
along which these experimental approaches can be further developed. First, apart from
the remarks that were made regarding the technical limitations of the FEL experiments in
Chapter 4, we want to address once more the expected effect sizes in the change of the
photoelectron angular distributions. In Section 4.5, we have stated that the V2 parameter is
expected not to change when going from the bound molecule to the free atom. This statement,
however, is strictly true only for the randomly oriented molecule. Even if the CH3 group is a
weak scatterer, its presence breaks the spherical symmetry of the molecular potential, which
inevitably changes the partial-wave interference in the outgoing photoelectron wave function,
an effect that was discussed in this thesis in Section 3.4.3 in connection with electron–ion
scattering, but, more specifically, already in relation to the 43 ionization of CH3I by Powis.2

Since we have already demonstrated in Chapter 2 how molecular alignment can bring out
unexpected details of the photoelectron scattering dynamics, we assume that in a measurement
using an aligned ensemble, a greater sensitivity of the PADs to the photodissociation could be
detected.
Second, as we have repeatedly stated, the central message of this thesis is that shape

resonances are ubiquitous in low-energy (photo-)electron scattering and they easily dominate
the electron–parent-ion scattering spectra. While this may hamper an intuitive interpretation
of the scattering dynamics without relying on sophisticated calculations, we have also shown,
in particular in Section 3.4.4, how sensitive the positions and widths of the resonances are
to the exact shape of the molecular potential. This, in turn, means that the rescattering
of photoelectrons should not only be sensitive to the nuclear structure of the molecule, as
developed in Chapter 3, but even to the electronic structure. This becomes important when
electronic states are coupled, as it happens close to conical intersections. In fact, Han &
Yarkony3 have recently developed the theoretical framework to treat electron scattering when
non-adiabatic dynamics are involved. Of course, the transition through a conical intersection
happens on a time scale much faster than anything we have discussed in this thesis, but the
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analysis that we have presented in Section 3.4 can in principle be applied to arbitrarily short,
few-cycle laser pulses.
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Appendix A

VMI Data Processing

In general, a tomographic reconstruction is necessary to retrieve the original 3D velocity
distribution from the “line-of-sight” projection that a VMI causes as illustrated in Fig. 2.3,
which requires sampling the velocity distribution in this way under many angles.1 If, however,
the 3D distribution is cylindrically symmetric around some axis and this axis is aligned parallel
to the detector plane, a single projected image that is captured by the VMI contains all
information necessary for the inversion.
Mathematically, the special case including rotational symmetry can be described by the so-

called Abel transformation. Let %D(D, \,q) denote a 3D velocity distribution that is expressed
in spherical coordinates; here, D is a radial coordinate that is proportional to the particle’s
velocity, \ and q are the polar and azimuthal angle, respectively. As stated above, we
require that the distribution be cylindrically symmetric around the principal axis, which we
let coincide with the H axis. This renders %D(D, \,q) independent of q, and hence we can
simply work with 5 (D, \) = %D(D, \, 0), which corresponds to a two-dimensional (2D) slice
through the 3D distribution. Clearly, we could also express the velocity distribution 5 (D, \) in
cylindrical coordinates as 5 (H, d) by a standard coordinate transformation, where d measures
the perpendicular distance from the H axis.a We now want to express the projection of 5 (H, d)
onto an image �(H, F), which is easily identified with the detector image that is captured by
the camera. This relation is given by2

�(H, F) = 2
∫∞
F

d 5 (H, d)√
d2 − F2

dd . (A.1)

What is remarkable about Eq. (A.1) is that it generates the projection “line-by-line” because
the integration is independent of H. This observation follows directly from the projection–slice
theorem,3 from which one can also derive the finding that the Abel projection can be inverted
by the consecutive application of a Fourier and an inverse Hankel transformation onto a line
of the image. This so-called Fourier–Hankel method probably is the most straightforward
way to perform an Abel inversion, but in practice it suffers from a great sensitivity towards
experimental noise. Therefore, a number of inversion techniques have been developed over
the years to overcome this problem. Among these, certainly the most popular methods now
are those, in which the Abel projection is precomputed for a basis set that is supposed to
represent 5 (H, d) well, and the projected basis set is then fitted to the experimental image.
Applying the fit results to the “original” basis set yields 5 (H, d). These methods are best

a It is an unfortunate fact of life that so many coordinate systems are involved in describing a VMI experiment.
Cartesian and cylindrical coordinates are, however, most natural in describing the image acquisition and Abel
inversion, whereas the physically significant information content is best described in spherical coordinates.
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known under their acronyms like BASEX4 or pBASEX,5, which differ only by the choice of the
employed basis functions. These basis-set based approaches, however, typically perform a
least-squares fitting of the given basis sets to the data, by which the experimental error is
inherently assumed to be Gaussian in nature. For particle-counting experiments carried out
with a VMI, Poissonian statistics have to be assumed for the error term instead. Therefore, we
have used – throughout this thesis – an algorithm based on the so-called maximum-entropy
method (MEM). The MEM approach was developed by Burch, Gull & Skilling6 in the 1980’s
as a general technique for image restorations, but it was only recently that it was incorporated
into an Abel-inversion routine by Dick.2 This routine offers the possibility to choose between
different error terms and has, in the author’s experience, proven to give the most faithful
reconstructions compared to other methods, especially for images with very small total count
numbers.
In any case, the application of an Abel-inversion routine yields, as its central result, the

inverted map 5 (D, \) (possibly after a coordinate transformation of 5 (H, d) if that is what the
employed method returns). As the angular dependence of the velocity map can always be
expanded into a Legendre series, 5 (D, \) can be written as a sum of radial velocity distributions,
&:(D), with increasing angular momentum :, like

5 (D, \) =
1
D2

!∑
:=0

&:(D) %:(cos \) , (A.2)

where %:(F) are the usual Legendre polynomials and ! denotes the highest angular momentum
to include (which can, for example, be predicted by Yang’s theorem7). The &:(D) distributions
are formally obtained from a Legendre expansion as

&:(D) = D
2(2: + 1)

∫ c

0
5 (D, \) %:(cos \) sin \ d\ (A.3)

where the factor D2 is part of the volume element of the spherical coordinate system, which
has to be included for the peak heights and areas to scale correctly. While &0(D) clearly
corresponds to the angle-integrated radial velocity distribution, the beta parameters, V:(D),
from Eq. (1.39) are simply given by

V:(D) =
&:(D)

&0(D)
. (A.4)

Obviously, these V:(D) are smooth functions of the radial coordinate, so that when we discuss
the angular distribution’s properties of a specific feature in the photoelectron or -ion spectrum,
we will indicate a region over which this distribution was integrated.
In practice, treating an experimental VMI image proceeds as follows: First, the image is

interpolated by a fast 2D cubic spline routine. Before evaluating the cubic splines on a square
Cartesian grid, they can be rotated and shifted, to center the image and align its symmetry
axes with the horizontal and vertical axis of the image. When working with linearly polarized
light, the up—down symmetry of the VMI image is not broken, so that all four quadrants of the
image should contain the same information. Therefore, we check the quality of the centering
by extracting the radial intensity distribution of the raw image for all four quadrants and
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tweak the centering offsets in the H and F directions such that all four distributions perfectly
overlap.b

Eventually, the optimized image is evaluated on a # × # Cartesian grid, where # is always
odd and chosen to be close to the original image size. Then, all four quadrants of this
transformed image are summed up to give the maximum signal-to-noise ratio for the inversion
routine, unless the quality of certain quadrants is deteriorated, e. g., due to a detector damage,
in which case they are discarded. This sum-of-quadrants is eventually subjected to the MEM
Abel-inversion routine. The inverted map that this routine returns is then again interpolated
with the 2D cubic spline method, from which it is cast into polar coordinates. For a quadrant
of # × # pixels, we typically choose a polar grid of # radial pixels and " = 1025 polar pixels
for the transformed image P. This image corresponds to a discretized version of the slice
through the momentum distribution, %7 8 = 5 (D7, \8), where 7 and 8 are indices that run over the
# and " radial and polar pixels, respectively. To extract the radial distributions, we do not
integrate Eq. (A.3) numerically, but evaluate the Legendre polynomials in the Vandermonde
matrix, V, with matrix elements +8: = %:(cos \8) and solve the system of linear equations,

VQ = P> (A.5)

for the matrix of radial distributions Q, containing the matrix elements &:7 = &:(D7). From
these, both the radial intensity distribution and the corresponding V:(D7) are extracted as
described above.
Another way that Eq. (A.3) can be read is that the &: distributions up to the maximum

angular momentum ! contain all physically meaningful information of the measurement.
Therefore, we typically present the inverted images in the re-expanded, or Legendre-filtered
form, Eq. (A.3), unless # is very large or convergence of the expansion is slow.
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Appendix B

Calculation of the polarizability tensor of CF3I

The molecular polarizability is required as a parameter in both the simulations of the impulsive
molecular alignment as well as in the the expression for the model correlation-plus-polarization
potential in the ePolyScat calculations. As there seem to be no published data on the polariz-
ability of CF3I in the literature, neither experimental nor theoretical, we made an attempt
to calculate this property ourselves. The static polarizability is one of many properties that
are derived from the response of a molecule to the application of an external, static field
9 =

(
YF YG YH

)
. The total energy of the molecule, �, in the presence of the field can be

expanded in the Taylor series

�(9) = �(0) −
∑
7

`7Y7 −
1
2!

∑
7 8

U7 8Y7Y8 −
1
3!

∑
7 89

V7 89Y7Y8Y9 − . . . , (B.1)

where 7, 8 and 9 refer to one of the Cartesian axes, ` is the permanent dipole moment of the
molecule, U the molecule’s polarizability, and V its (first) hyperpolarizability. If the molecule
is further aligned with its principal axis along one of the Cartesian axes, the off-diagonal
elements of U7 8 vanish.1 Consequently, to predict the response properties of CF3I we carried
out ab initio calculations with the GAMESS (US) package, applying a static field along one of
the Cartesian axes in equidistant steps.
As a starting point, a reference wave function was obtained in a Hartree–Fock calculation

for CF3I in its experimental equilibrium geometry, assuming �3D symmetry and using a model-
core-potential basis set of augmented triple-Z quality.2 In this basis set, the 1A shells of carbon
and fluorine, and all shells of iodine except for the 43, 5A and 5> shells are replaced by model
potentials, removing a total of 44 core electrons and just as many nuclear charges, effectively.
The calculated total energy for these input parameters was �HF = −189.386 904 �h. From
this reference wave function – by means of a coupled-cluster singles-and-doubles calculation
with variational estimation of the triples contribution, commonly known as CCSD(T)3 – a
correlation energy of �corr = −1.113 275 �h was recovered.
This calculation was then repeated, varying a static electric field along one Cartesian axis

at a time, in steps of ΔY7 = 1 × 10−2 a. u. = 5.14 × 107 V cm−1 in both negative and positive
directions. Here we follow the convention of choosing the molecule to be oriented along the H
axis, with the iodine site pointing in the +H direction. Special attention must be paid if the
field is pointing along the F or G axes because, in this case, the field breaks the molecular
symmetry and the calculations are prone to converge slowly or not at all. From seven points the
permanent dipole moment `7 and the polarizability tensor components U77 were approximated
by sixth-order finite difference formulas4 for the first and second derivative, respectively. A
graphical representation of this procedure is displayed in Fig. B.1, whereas the extracted
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Figure B.1 Change of the total energy of CF3I at
the CCSD(T)/MCP-ATZP level of theory with an
electric field applied along the F axis (blue trian-
gles) and the H axis (orange triangles), respectively.
The solid lines correspond to the quadratic approx-
imation.

values are listed in Table B.1. Also in Table B.1, we compare our results to values we were able
to find in the literature. The dipole moment of CF3I is, in fact, known with good precision
from microwave spectroscopy, where it is obtained from Stark-effect measurements, and our
result deviates by only +0.6 % from the measurement of Cox et al.5, which is even within
the range of two standard errors they report for their results. For the polarizability, however,
there are no reliable numbers reported. Marienfeld et al.6 have extrapolated an isotropic
polarizability of 8.9Å

3
from comparing the trends in the series of CH3X and CF3X molecules,

for X = H, F, Cl, Br, I. Morris7 assumes a value of 8.32Å
3
, but does not give any explanation

of its origin, whatsoever.

Table B.1 Values calculated for the components of the dipole moment, `7, and the polariz-
ability tensor, U77.

`H [D] `F [D] UHH [Å
3
] UFF = UGG [Å

3
] 〈U〉 [Å

3
]

This work 1.0540 0.000a 9.04 6.67 7.46
Reference 1.048 ± 0.003b 8.90c

a As required by symmetry.
b Experimental value by Cox et al..5
c Value extrapolated by Marienfeld et al..6 from the series of CF3X molecules, with
X = H, F, Cl, Br, I.
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Appendix C

Multi-Level Hit-Detection Algorithm

In the first step, before the actual hit finding is applied, an attempt is made to normalize the
raw images to account for a varying sensitivity across the detector, which would otherwise
hamper the quality of the hit detection in dimmer areas. Therefore, for every pixel of the
camera, the maximum intensity value observed is determined over an entire data set, as shown
in Fig. C.1b for an electron image set of 10 000 acquisitions. Afterwards, a moving-window
rank filter at the 95 % level and a 70 × 70 window is applied to this maximum-value image to
smooth out bright features, which yields the reference for normalization, that every single-shot
image is normalized to, corresponding to Fig. C.1c.

Figure C.1 Normalization of electron images. a) Typical electron single-shot image. Note the low
overall intensity given as 8-bit integers (max. 255). b) Maximum values of the electron images over
10 000 shots. c) Same as b after application of a moving-window rank filter.

Now that each pixel value falls between zero and one, a sigmoidal histogram-stretching
function is applied to the gray levels, which has the form

�=CB =
(
1 + e−

�7<−V

U

)−1
, (C.1)

where �7< and �=CB are the input and output gray levels, respectively, V is the midpoint of
stretching and U its strength. For the data presented in Section 4.5, V = 0.2 and U = 20 were
found to give good results, in that the contrast of weak hits was considerably increased, as
shown in Fig. C.2b. The last step in the global analysis concerns the selection of the threshold,
above which a pixel in the image is considered belonging to an object. For this purpose,
Otsu’s method1 was employed, which seeks to determine an optimum discrimination value
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between the two distinct gray-level distributions, one of which is that of the objects, scattered
around one, and the other one that of the background, scattered around zero. When all the
gray levels after histogram stretching are sorted into a common, normalized histogram, this
histogram can be partitioned by a trial threshold B into two classes, for each of which the class
probability l0,1(B), which is just the sum of all contained probabilities, and the class variance
f2

0,1(B) can be calculated. Then, the optimum threshold B$BAC is the one that minimizes the
intra-class variance

f2
7<B@0 = l0(B)f

2
0 + l1(B)f

2
1 . (C.2)

The optimized threshold according to this procedure is determined once per data set and
typically has a value of ≈ 0.8. By applying this threshold, a binary image is created from the
grayscale one, that is then subjected to the object identification and labeling routine, that was
also utilized for the PImMS data, as discussed in Section 4.3.1. From Fig. C.2c it can be seen
how the image is partitioned into separate objects and that, in regions with few impacts, the
routine performs well in distinguishing individual hits.

Figure C.2 Global analysis of the electron images. a) Detail of the sample image, Fig. C.1a, around
the center. b) Same as a after normalization with respect to Fig. C.1c and application of the gray-level
stretching. c) Color-coded representation of all objects identified above the threshold calculated by
Otsu’s method.

If, like in Fig. C.2c, it is clear that a single threshold is insufficient to disentangle larger
aggregations of particle hits, the local analysis is applied to every object that was found on the
global level, individually. In it, the normalized values before gray-level stretching are extracted
from the image for a rectangular section that completely encompasses the considered object.
An equidistant scale of gray levels is created and the selected region is thresholded at every
one of those levels. Walking from top to bottom, on every layer, all the contained objects
are identified with the above binary object-detection routine. At every step it is checked if
every detected object entirely covers one and only one such object from the layer above. If it
contains two previously found objects, this means that the two peaks have merged and their
sizes and positions from the previous layer are stored for further analysis. The advantage of
this – rather laborious – procedure is that the complete shape of the peak can be sampled
up to the point where it overlaps with a neighboring one, as can be seen from Fig. C.3a. In
this way, it is ensured that as many values as possible are fed into the subsequent Gaussian
centroiding routine, to make it as robust as possible.
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Figure C.3 Local analysis of the objects identified in the global routine. a) Decomposition of a single
object into four peaks after slicing it in the z-direction along eleven equidistant levels. b, c) Comparison
of the results from the single- and multi-level detection. Orange circles mark the positions of the
identified hits. b) Thresholding at a single level, optimized by hand, and subsequent center-of-mass
centroiding. c) Outcome of the fully automatic multi-level detection routine with Gaussian centroiding.

The centroiding itself is carried out with a standard linear-algebraic approach. The goal is
to find a set of parameters for the product of Gaussian functions,

�(F, G) = �0 e
−

[(
F−`F
fF

)2
+
(
G−`G
fG

)2
]
, (C.3)

that represents the best fit to the measured intensities in a least-squares sense. This model
function contains five independent parameters: the centers and widths, each in x and y
direction, and the overall amplitude; hence, at least five pixel values have to be supplied or
the centroiding routine fails. In particular, as a welcome side effect, it will always fail for CCD
noise and other single-pixel artifacts that are surrounded by zeros because all values must be
non-zero, which will become clear from Eq. (C.4) below.
First, the intensity values 67 of the peak, that was singled out in the previous step, are

re-shaped into a one-dimensional vector and the Vandermonde matrix V is constructed; that
means

g =
©­­­­«
61(F1, G1)

62(F2, G2)
...

6<(F<, G<)

ª®®®®¬
and V =

©­­­­«
1 F1 F2

1 G1 G2
1

1 F2 F2
2 G2 G2

2
...

...
...

...
...

1 F< F2
< G< G2

<

ª®®®®¬
.

Eventually, the system of linear equations for the element-wise logarithm of g,

ln g = Vc , (C.4)

is solved by a standard least-squares solver to yield the vector of coefficients c, from which
the parameters of Eq. (C.3) can be recovered by simple algebra. Compared to the relatively
slow local analysis, the centroiding comes at almost no additional computation time and is
therefore always performed.
In Fig. C.3b and c, hit detection at a single and multiple levels are compared. For the single

threshold, instead of using B$BAC, the threshold was tweaked by hand to give the best possible
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object discrimination, judged upon inspection. In comparison the multi-level method, that
works practically without such intervention, can be seen to give much more accurate results,
especially in the central region of the image. To further assess how faithful the Gaussian
centroiding works, the functions of the form of Eq. (C.3) were re-evaluated with the fitted
parameters on a Cartesian grid of the same size as the original image, and both are displayed
side by side in Fig. C.4.

Figure C.4 Two-dimensional Gaussian centroiding. a) Detail of the sample image as in Fig. C.2a, just
on a different color scale. b) Re-evaluation of the Gaussian peaks fitted in the hit detection step.

In this section, the application of the multi-level hit detection was shown for a sample image
with about 400 particles. The algorithm was, however, also applied to data taken at full FEL
intensity, where it successfully coped with up to 2500 hits per image. As the local analysis
is the limiting factor, the computation time scales roughly linear with the total number of
counts. For the present example of 400 hits, the routine takes pretty much 1 sec per image. As
there is no interdependence between the analysis results of individual images, the process is
trivially parallelized, so that an electron data set of 10 000 shots can be processed on 12 cores
in 15 min. We are convinced that the additional time spent in pre-processing is definitely
compensated for by the savings in the subsequent analysis.
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