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2  Abstract 

The ventral nucleus of the lateral lemniscus (VNLL) is a monaural brainstem nucleus of the 

ascending auditory pathway that may play a critical role in the analysis of temporal sound patterns. 

Its underlying intrinsic and synaptic properties have not been systematically studied in a 

ventrodorsal orientation in mice. 

Using in vitro electrophysiological recordings from acute brain slices of mice and 

immunohistochemistry, we aimed to discover the margins of the VNLL and the neuronal and 

synaptic characteristics of the neurons lying within. We demonstrate that the biophysical membrane 

properties and excitatory input characteristics differ between dorsal and ventral VNLL neurons. 

Neurons in the ventral VNLL displayed an onset-type firing pattern and little hyperpolarization-

activated current (Ih), and, in the ventrolateral VNLL (vVNLL), received calyx-like inputs that were 

similar to calyx of Held synapses in the medial nucleus of the trapezoid body (MNTB). Neurons of 

the dorsal part received several and weak input fibers that were slower than in the vVNLL, while 

displaying either onset- or sustained-type firing patterns with large Ih. Using a mouse model that 

expresses channelrhodopsin under the promotor of the vesicular GABA transporter (VGAT) 

suggests that dorsal and ventral neurons are inhibitory, since they were all depolarized by light 

stimulation. The diverse membrane and input properties in dorsal and ventral VNLL neurons 

suggest differential roles of these neurons in sound processing.  

Furthermore, we were interested in discovering when the excitatory calyx-like inputs in the vVNLL 

develop. Before hearing onset, neurons of the vVNLL received generally more than one excitatory 

input, which refined shortly after hearing onset. Additionally, NMDA receptor-mediated currents 

were almost completely reduced after hearing onset, resulting in fast and large postsynaptic current 

responses mediated by AMPA receptors. Next, we wanted to elucidate whether sound-evoked 

activity is essential for the observed synaptic refinement. Therefore, we used a congenitally deaf 

mouse that lacks otoferlin and compared it with young and mature hearing mice. Otoferlin is found 

in inner hair cells, among other places, and mediates exocytosis of neurotransmitters. We 

demonstrate that KO mice have an impaired firing behavior. While neurons displayed either an 

onset-type or sustained-type firing in KO and young WT animals, mature WT mice had only onset-

firing neurons. Additionally, synaptic refinement was also altered and showed great similarities to 

young WT mice. Neurons of mature WT mice received on average one large calyx-like synapse, 

whereas neurons of KO and young WT mice received up to five excitatory inputs. Fiber stimulations 

of the inputs in KO mice evoked smaller and slower postsynaptic currents than in mature WT mice. 

However, establishment of the readily releasable pool was unaffected by deafness. Our results 

suggest that sensory experience is necessary for a typical maturation of biophysical properties and 

the calyx-like input to the vVNLL. Consequently, our results encourage the use of cochlear implants 

in patients with an otoferlin-related deafness, since it may be possible that the synaptic and 

biophysical impairment can be reduced by providing sound-evoked activity to the auditory 

brainstem.  
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3  Zusammenfassung 

Der ventrale Nukleus des lateralen Lemniskus‘ (VNLL) ist ein monauraler Hirnstammkern der 

aufsteigenden auditorischen Hörbahn, welcher eine entscheidende Rolle bei der Analyse zeitlicher 

Schallmuster spielen könnte. Seine zugrundeliegenden intrinsischen und synaptischen 

Eigenschaften wurden bisher nicht systematisch in ventrodorsaler Orientierung untersucht.  

Mittels elektrophysiologischer in vitro Untersuchungen an akuten Hirnschnitten von Mäusen und 

Immunhistochemie sollten die Grenzen des VNLL und seine neuronalen und synaptischen 

Eigenschaften untersucht werden. Wir zeigen, dass die biophysikalischen Membraneigenschaften 

und die exzitatorischen Eingangscharakteristiken zwischen dorsalen und ventralen VNLL 

Neuronen unterschiedlich sind. Neurone im ventralen VNLL zeigten ein Feuermuster vom Onset-

Typ (ein Aktionspotential zu Beginn), kleine hyperpolarisationsaktivierte Ströme (Ih) und, im 

ventrolateralen VNLL (vVNLL), Kalyx-ähnliche Eingänge, die den Kalyx von Held-Synapsen im 

medialen Nukleus des trapezoiden Körpers (engl. MNTB) ähnelten. Neurone des dorsalen Teils 

wurden von mehreren und schwächeren Eingängen innerviert, die langsamer als im vVNLL waren, 

und eines von zwei Feuermustern zeigten, ein Aktionspotential zu Beginn oder anhaltende 

Aktionspotentiale über die gesamte Dauer mit jeweils großem Ih. Die Verwendung eines 

Mausmodells, das Channelrhodopsin unter dem Promotor des vesikulären GABA-Transporters 

(VGAT) exprimiert, zeigte, dass dorsale und ventrale Neurone inhibitorisch sind, da sie alle durch 

Licht-Stimulation depolarisiert wurden. Die unterschiedlichen Membran- und 

Eingangseigenschaften in dorsalen und ventralen VNLL-Neuronen lassen unterschiedliche Rollen 

dieser Neurone für die Schallverarbeitung vermuten. 

Darüber hinaus waren wir daran interessiert, wann sich die exzitatorischen Kalyx-ähnlichen 

Eingänge im vVNLL entwickeln. Vor Hörbeginn erhielten diese Neuronen des vVNLL im 

Allgemeinen mehr als einen exzitatorischen Eingang, die kurz nach Hörbeginn reduziert wurden. 

Zusätzlich wurden die NMDA Rezeptor-vermittelten Ströme nach Hörbeginn fast vollständig 

reduziert, was zu schnellen und großen postsynaptischen Stromantworten führte, die durch AMPA 

Rezeptoren vermittelt wurden. Als nächstes wollten wir herausfinden, ob Hörerfahrung essentiell 

für die Reduktion synaptischer Eingänge ist. Dafür verwendeten wir eine kongenitale taube Maus, 

die einen Mangel an Otoferlin hat, und verglichen sie mit jungen und reifen hörenden Mäusen. 

Otoferlin wird u.a. in inneren Haarzellen gefunden und vermittelt die Exozytose von 

Neurotransmitter. Wir zeigen, dass KO Mäuse ein verändertes Feuerverhalten hatten. Während eine 

Strominjektion bei Neuronen von KO- und jungen WT-Tieren entweder ein oder mehrere 

Aktionspotentiale hervorriefen, hatten reife WT-Mäuse nur Neuronen, die zu Beginn ein 

Aktionspotential feuern. Zusätzlich wurde auch die synaptische Entwicklung verändert und zeigte 

große Ähnlichkeiten zu jungen WT Mäusen. Neurone von reifen WT-Mäusen erhielten 

durchschnittlich eine große Kalyx-ähnliche Synapse, während Neurone von KO- und jungen WT-

Mäusen bis zu fünf exzitatorische Eingänge bekamen. Faserstimulationen dieser Eingänge riefen 

im Vergleich zu reifen WT-Mäusen kleinere und langsamere postsynaptische Ströme in KO-

Mäusen hervor. Die Größe des readily releasable pool (sofort bereitgestelltes Reservoir an 

transmittergefüllten Vesikeln) wurde jedoch durch Taubheit nicht beeinflusst. Unsere Ergebnisse 
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weisen darauf, dass sensorische Erfahrung für eine typische Reifung biophysikalischer 

Eigenschaften und Entwicklung Kalyx-ähnlicher Eingänge im vVNLL notwendig ist. Folglich 

bestärken unsere Ergebnisse die Verwendung von Cochlea-Implantaten bei Patienten mit einer 

Otoferlin-bedingten Taubheit, da es möglich wäre, dass die synaptischen und biophysikalischen 

Beeinträchtigungen durch die Bereitstellung von akustisch evozierter Aktivität an den auditorischen 

Hirnstamm reduziert werden können. 

 

(Popoli et al. 2011; Pangršič et al. 2012; Betts et al. 2013) 
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4  Introduction 

Hearing is the physiological ability to perceive and localize the origins of sounds for 

navigation, communication, finding food and avoiding predators (Schacter et al. 2011). 

Hence, through evolution, hearing has become immensely important for individuals to 

survive.  

Most invertebrates, apart from arthropods (Schwartzkopff 1977) and cephalopods (Samson 

et al. 2016), live a mute life, whereas vertebrates usually have well-developed hearing. The 

first acoustic organs developed during the Devonian period 380 million years ago (Manley 

and Köppl 1998). Humans perceive sound frequencies from 20 Hz to 20 kHz (Moore 2012), 

whereas elephants are capable of perceiving infrasonics (Payne et al. 1986; Poole et al. 

1988), and mice and bats, for example, can perceive ultrasonics (Griffin and Galambos 

1941). 

Some mammals, like echolocating bats for instance, use their acoustic system not only for 

spatial orientation but also for finding prey. The animal emits a high-frequency sound that 

is reflected – echoed – by an obstacle or prey back to the ear to be analyzed. Echolocation 

is extremely useful and replaces the bats’ poor vision at night (Schnitzler et al. 2003). 

Auditory systems of vertebrates have evolved to cope with two different environmental 

media – water and air. The impedance of tissues of aquatic animals and of water are very 

similar (Hemilä et al. 2010). Therefore, incoming sound waves can travel directly from the 

water to the hair cells of the inner ear. Terrestrial vertebrates, on the other hand, face an 

impedance difference between air and tissue. Because of this impedance difference, 99.9% 

of the acoustic energy would be reflected and lost at the junction of air and tissue (Purves 

et al. 2001). As a consequence, the evolution of a tympanic middle ear was necessary to 

enable hearing in a terrestrial environment. The tympanic middle ear converts sound 

pressure in air to particle motion in the fluid of the inner ear. The mammalian ear is 

generally divided into three sections: the outer, middle, and inner ear (Neuweiler and 

Heldmaier, 2003; see Figure 1).  
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4.1  The outer ear 

The outer ear consists of the pinna, or auricle, and the ear canal (external auditory meatus). 

The pinna catches surrounding sound waves and bundles them into the ear canal. Some 

species can move their pinnae to use them as sound antennae, while others (such as humans) 

do not have this ability. The very different shapes and sizes of pinnae throughout the animal 

kingdom lead to a peripheral filtering of frequencies and an amplification of certain 

frequency bands (Zenner 1994).  

 

4.2  The middle ear 

The middle ear consists of an air-filled bulla with an airborne sound detector – the tympanic 

membrane. The tympanic membrane is connected to three bones that in turn are linked to 

the oval window of the inner ear. Early reptilian ancestors had only one acoustic ossicle 

(columella) (Crompton and Parker 1978). The two additional auditory ossicles are 

autapomorphic for mammalians and have evolved from bones (articular and quadrate) of 

the mandibular joint of their reptilian ancestors (Pickles 2008). In mammals, these acoustic 

ossicles are called the stapes, incus, and malleus. 

The acoustic ossicles form a chain that transfers airborne sound energy from the tympanic 

membrane to the oval window. Additionally, the acoustic ossicles serve as pressure 

amplifiers. For example, during the process where the sound energy absorbed by the area 

of the tympanic membrane is transferred to the smaller oval window, the pressure is 

enhanced and amplified because the same force is applied to a smaller area. Instead of 

losing 99.9% of the acoustic energy, at least 65% is transmitted from the outer to the inner 

ear (Purves et al. 2001).  

 

4.3  The inner ear 

The inner ear of mammals is a masterpiece when it comes to the ability to analyze 

frequencies of sound waves (Neuweiler and Heldmaier 2003). The inner ear, or cochlea, is 
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a spiral structure composed of three fluid-filled chambers that are embedded in an osseous 

capsule of the head. The peripheral scala vestibuli and scala tympani are filled with 

perilymph, which is a liquid containing a low concentration of potassium and a high 

concentration of sodium. In between, the scala media contains a high potassium fluid – the 

endolymph. This unequal distribution of ions results in the endocochlear potential. The 

different compartments are connected by tight junctions, creating a permeability barrier and 

regulating the flux of ions (Madara 1998).  

Both scala vestibuli and scala tympani merge at the tip of the cochlea, the so-called 

helicotrema. Incoming sound waves are transmitted via the three acoustic ossicles to the 

oval window and the scala vestibuli. Sound waves can only produce a vibration of fluids 

when the transmitting fluid is versatile. The round window of the scala tympani is a flexible 

membrane that functions as a balancer of this fluid motion and alone makes the deflection 

in the sensory organ possible (Pickles 2008). 

The scala media contains the actual sensory organ and is separated from the scala tympani 

by the basilar membrane. The basilar membrane incorporates one row of inner hair cells 

(IHCs) and three rows of outer hair cells (OHCs), forming the organ of Corti. Bundles of 

cilia of the OHCs are embedded in the tectorial membrane. At the outside of the scala media 

lies the stria vascularis, from which potassium is actively transported into the scala media 

to set the endocochlear potential to approximately +70 mV (Nobili et al. 1998). The 

Reißner’s membrane separates the scala media from the scala vestibuli.  

When a sound wave arrives at the oval window, a pressure difference between the scala 

vestibuli and scala tympani is produced. As a consequence, a traveling wave across the 

basilar membrane and scala media is triggered and moves along the endolymph to the apex 

of the cochlea. During this process, the bundles of cilia of the OHCs are deflected, leading 

to an opening of channels and a depolarization of the OHCs. The OHC response is 

correlated with the amplitude of the deflection of the basilar membrane. The cilia of the 

IHCs are deflected by the motion of the endolymph, and the strength of response is 

correlated with the oscillation speed of the basilar membrane. Depolarization of IHCs 

triggers the release of neurotransmitters at the ribbon synapses with their spiral ganglion 

neurons (Bear et al. 2007). Indeed, auditory information conveyed from the environment 

to the central auditory processing regions of the brain is encoded by the IHCs, whereas 

OHCs serve as amplifiers of the specific frequency. The width of the basilar membrane 
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increases and stiffness decreases from the basal to the apical end, resulting in a gradient 

where the traveling wave elicited by high frequencies reaches its maximal amplitudes at 

the basal end and low frequencies closer to the apical end of the cochlea (Bekesy 1960; see 

Figure 1). This resolution of topographic representation of frequencies is called tonotopy 

and is maintained throughout almost the entire ascending auditory pathway. 

 

 

 

Figure 1: The outer, middle, and inner ear of humans. The inner ear with the cochlea and the 

three auditory ossicles is enlarged in the inset (top). For a clearly arranged overview, the cochlea 

with its basilar membrane is artificially expanded (bottom). The basal part of the basilar membrane 

(proximal to the oval window) is narrow and stiff. It is deflected by high-frequency stimulations. The 

width of the basilar membrane increases while the stiffness decreases on its way to the apical part 

where low frequencies are detected. Tonotopic frequency detection starts already in the inner ear. 

(From Betts et al. 2013) 
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4.4 The central auditory pathway 

Sound information transduced by IHCs activates neurotransmitter release at ribbon 

synapses, and sound information is transformed into action potentials (APs) in spiral 

ganglion neurons, which project as the  auditory nerve to the cochlear nucleus (CN) (Bear 

et al. 2007). The CN is subdivided into the ventral cochlear nucleus (VCN) and dorsal 

cochlear nucleus (DCN). The VCN can be further divided into the anterior and posterior 

ventral cochlear nucleus (AVCN and PVCN; Cant and Benson 2003). Tonotopic 

organization from the cochlea is maintained within the AVCN, PVCN, and DCN (Covey 

and Casseday 1995). These three subdivisions contain many different neuronal types with 

specific characteristics, such as octopus cells in the PVCN (Covey and Casseday 1986; 

Friauf and Ostwald 1988; Adams 1997; Schofield and Cant 1997) and spherical and bushy 

cells in the AVCN (Cant and Benson 2003), which leads to a diverse processing of auditory 

information. Neurons in the CN ascend to several pathways described below (for overview 

see Figure 2). 

The ability to localize sound is important for the survival of individuals. Humans, for 

instance, use two different mechanisms for sound localization: determination of interaural 

time differences (ITDs) and interaural intensity differences (IIDs) (Grothe et al. 2010). 

Sound sources with frequencies below 3 kHz are analyzed with ITDs in the medial superior 

olive (MSO). The MSO is a binaural auditory nucleus that is innervated by excitatory 

projections from the ipsi- and contralateral AVCN (Goldberg and Brown 1969; Cant and 

Casseday 1986; Smith et al. 1993) and by inhibitory projections from the medial and lateral 

nuclei of the trapezoid body (Clark 1969; Perkins 1973; Cant and Hyson 1992; Kuwabara 

and Zook 1992; Grothe and Sanes 1994). The typical MSO neuron is bipolar with a laterally 

and medially oriented dendrite (Ollo and Schwartz 1979; Smith 1995; Smith et al. 2000; 

Scott et al. 2005; Rautenberg et al. 2009). The lateral dendrites are innervated by the 

ipsilateral CN, whereas the medial dendrites receive inputs from the contralateral CN. The 

MSO neurons work as coincidence detectors, meaning that they only respond when both 

binaural excitatory signals arrive at the same time. These neurons are sensitive to a specific 

ITD.  

Frequencies above 3 kHz are analyzed by the lateral superior olive (LSO) and medial 

nucleus of the trapezoid body (MNTB) to localize sound sources. High-frequency sounds 
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cannot be localized via ITDs, since the phase-lock information of the sound wave is 

equivocal at high frequencies (Palmer and Russell 1986). Instead, high-frequency sound 

waves that arrive at the near ear leave an acoustic shadow that is produced by the head of 

the individual, which will result in an attenuation of the sound intensity at the far ear. 

Therefore, the brain processes IIDs to analyze high-frequency sounds. The LSO is a 

binaural auditory brainstem nucleus that receives excitatory inputs from the ipsilateral 

AVCN (Cant and Casseday 1986) but also inhibitory inputs from the MNTB, which is 

innervated by axons emerging from the globular bushy cells of the contralateral AVCN. 

These form the calyx of Held synapses in the MNTB (Moore and Caspary 1983; Kuwabara 

et al. 1991). Resulting from these projections, the LSO on the side of the sound source 

receives a net excitation. The inhibition of the LSO by the MNTB will increase when the 

sound source moves from the ipsilateral ear to the midline. If the sound source is located 

directly lateral to the ear, inhibition will be minimal (Moore and Caspary 1983).  

Binaural pathways are essential for sound localization. Nevertheless, localizing sounds is 

not the only cue that sound perception involves. The ventral nucleus of the lateral lemniscus 

(VNLL), a monaural brain stem nucleus of the ascending auditory pathway, may play a 

critical role in the analysis of temporal sound patterns (Aitkin et al. 1970; Covey and 

Casseday 1991; Recio-Spinoso and Joris 2014). A more detailed description of the VNLL 

follows in the next Section 4.5.  

The intermediate nucleus of the lateral lemniscus (INLL) receives contralateral inputs from 

the VCN – like the VNLL – but also receives inputs from the contralateral superior olivary 

complex (SOC), as the dorsal nucleus of the lateral lemniscus (DNLL) does. In contrast to 

its similarities with the VNLL and DNLL, the INLL receives projections from the 

ipsilateral MNTB and minor projections from the LNTB (Glendenning et al. 1981). 

Therefore, at least in some mammals, the intermediate nucleus of the lateral lemniscus 

forms a distinct nucleus within in the lateral lemniscus (Glendenning et al. 1981; Schofield 

and Cant 1997). 

The DNLL receives bilateral inputs from the brainstem and is involved in binaural 

processing of auditory information. It is located dorsally to the INLL and ventrally to the 

inferior colliculus (IC). It receives its main excitatory inputs from the ipsilateral MSO and 

contralateral LSO (Adams 1979; Glendenning et al. 1981; Zook and Casseday 1982a; 

Shneiderman et al. 1988). Additionally, inhibitory inputs are sent from the ipsilateral LSO 
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and are glycinergic (Brunso-Bechtold et al. 1981; Glendenning et al. 1981). The DNLL 

gives output to the contralateral DNLL and the ipsi- and contralateral IC (Adams 1979; 

Glendenning et al. 1981; Shneiderman et al. 1988; Kelly et al. 2009) and is almost entirely 

GABAergic (Adams and Mugnaini 1984; Moore and Moore 1987; Saint Marie et al. 1997). 

The nuclei of the lateral lemniscus consist of multiple parallel pathways which are further 

processed in the auditory midbrain and higher auditory brain regions. The inferior 

colliculus is part of the midbrain and takes a central position in the auditory circuitry, where 

ascending fibers of lower auditory centers converge on their way up the auditory cortex via 

the medial geniculate body.  

 

Figure 2: Schematic of the mammalian 

auditory pathway. Depicted are the major nuclei 

of the auditory brainstem and midbrain. A 

simplified presentation of the cochlea with a 

single hair cell shows the origin of transmission of 

auditory information. Excitatory projections are 

displayed in blue and inhibitory in red. One fiber 

of the auditory nerve leaves the hair cell and 

projects to the cochlear nucleus, which is 

subdivided into the ventral and dorsal cochlear 

nucleus (VCN and DCN). The VCN is further 

divided into the anteroventral and posteroventral 

cochlear nucleus (AVCN and PVCN, 

respectively). Neurons in the AVCN send 

excitatory projections to the medial nucleus of the 

trapezoid body (MNTB) on the contralateral side, 

while neurons of the ventral nucleus of the lateral 

lemniscus (VNLL) receive inputs from the octopus 

cell region of the PVCN. The MNTB, however, 

inhibits neurons of the VNLL on the ipsilateral 

side. The VNLL is a major inhibitory source to the 

inferior colliculus (IC). Only one side of 

projections is shown for clarity, and other auditory 

nuclei are shown for orientation. 

AVCN: anteroventral cochlear nucleus; PVCN: 

posteroventral cochlear nucleus; DCN: dorsal 

cochlear nucleus; MNTB: medial nucleus of the 

trapezoid body; MSO: medial nucleus of the 

superior olive; LSO: lateral nucleus of the superior 

olive; VNLL: ventral nucleus of the lateral 

lemniscus; INLL: intermediate nucleus of the 

lateral lemniscus; DNLL: dorsal nucleus of the 

lateral lemniscus; IC: inferior colliculus. 

By Harald Oehlerking ©. 
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 4.5  Ventral nucleus of the lateral lemniscus 

The ventral nucleus of the lateral lemniscus (VNLL) is a monaural brainstem nucleus of 

the ascending auditory pathway. Previous research has suggested that it may have a critical 

role to play in the analysis of temporal sound patterns (Aitkin et al. 1970; Covey and 

Casseday 1991; Recio-Spinoso and Joris 2014). For instance, speech perception is a 

temporally dynamic process that requires robust mechanisms to reliably process 

information from the environment to the auditory cortex (Prather 2013). Neurons in the 

VNLL receive glutamatergic excitatory inputs from several neuron types of the 

contralateral VCN and a major glycinergic inhibitory input from the ipsilateral MNTB 

(Glendenning et al. 1981; Schofield and Cant 1997; Irfan et al. 2005; Kelly et al. 2009; see 

Figure 2 for overview). Projections from the octopus cell region in the PVCN innervate the 

VNLL with calyx-like inputs (Covey and Casseday 1986; Friauf and Ostwald 1988; Adams 

1997; Schofield and Cant 1997; Felix Ii et al. 2017) that mediate information with high 

temporal fidelity (Berger et al. 2014). Response patterns of octopus cells make them 

especially useful for extracting features of speech due to their broad frequency tuning 

(Golding et al. 1995), their phase-locked responses to amplitude-modulated tones (Rhode 

and Greenberg 1994), and their precise responses to speech containing formant sounds 

(Rhode 1998). Therefore, octopus cells are well suited to extract and convey information 

for analyzing speech components (Oertel 2005).  

Most VNLL neurons are immunopositive for glycine and/or GABA and send inhibitory 

projections to the ipsilateral inferior colliculus (IC) (Saint Marie et al. 1997; Riquelme et 

al. 2001; Zhang and Kelly 2006). Because of the large number of glycinergic and 

GABAergic neurons in the VNLL, this nucleus represents a prominent inhibitory source 

for the IC (Saint Marie and Baker 1990; Pollak et al. 2011). Neurons of the VNLL that are 

innervated by large calyx-like synapses are well suited to a fast onset inhibition in the IC. 

It is postulated that this robust onset inhibition regulates incoming excitatory inputs 

(Nayagam et al. 2005). Several theories have been proposed to explain how this onset 

inhibition influences further signal transmission. One theory maintains that the first spikes 

in a neuron population are inhibited, and the following spikes become temporally aligned 

with the responses of other neurons (Paolini et al. 2004). The second theory involves a 

temporal coincidence of abated inhibition and an excitatory event. That is, only if the 

rebound after the inhibition and an excitatory input occur at the same time a spike will be 
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elicited (Chase and Young 2007; Nayagam et al. 2005). Furthermore, a third theory holds 

that the onset inhibition regulates the responsive behavior of neurons. For instance, neurons 

that respond to long-lasting tones only fire when the excitatory input still persists after the 

inhibition has ended (Spencer et al. 2015). Last but not least, spectral splatter that is usually 

produced at the onset of sound emission is suppressed by onset inhibition to focus on the 

analysis of the actual temporal information laid within, for example, speech (Spencer et al. 

2015). 

The VNLL has been extensively studied in echo-locating bats (Covey and Casseday 1986, 

1991; Metzner and Radtke-Schuller 1987; Vater et al. 1997). In bats, the VNLL can be 

subdivided into two regions – a columnar (VNLLc) and a multipolar (VNLLm) region. 

This subdivision was made due to the regions’ physiological, morphological, and 

synaptical properties (Covey and Casseday 1986, 1991; Huffman and Covey 1995; Vater 

et al. 1997). Neurons in the VNLL show diverse responses to sounds in terms of temporal 

response patterns and binaurality (Batra and Fitzpatrick 1997, 2002; Nayagam et al. 2006; 

Zhang and Kelly 2006; Recio-Spinoso and Joris 2014). Studies on brain slices have 

revealed various firing patterns in response to depolarizing current injections (Wu 1999; 

Zhao and Wu 2001; Irfan et al. 2005) that resemble firing patterns of VNLL neurons in 

vivo (Zhang and Kelly 2006), such as sustained, onset burst and onset firing. Furthermore, 

although different firing patterns were recognized, a preference for onset firing was 

identified (Rhode et al. 1983; Covey and Casseday 1991; Smith et al. 2005; Zhang and 

Kelly 2006). 

 

4.6  Large calyx-like synapses in the auditory brainstem 

It has been demonstrated that large somatic synapses in the auditory circuitry are suitable 

for carrying auditory information with high temporal precision (Trussell 1999). In 

mammals, at least three large auditory synapses have been identified (see Figure 3). First 

are the endbulbs of Held that terminate on bushy cells in the AVCN and arise from auditory 

nerve fibers (Liberman 1991; Ryugo and Sento 1991). Second are the calyces of Held – the 

largest known synapses thus far – which terminate to neurons of the MNTB and ascend 

from globular bushy cells of the AVCN (Friauf and Ostwald 1988; Smith et al. 1991). 

Lastly, anatomical studies suggest that some VNLL neurons receive a major excitatory 
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input sent from the octopus cell area of the contralateral PVCN (Adams 1997; Schofield 

and Cant 1997; Felix Ii et al. 2017).  

Calyx-like synapses are truly distinctive from other synapses because they are large, single 

axosomatic synapses that reliably mediate a fast transmission of temporal information 

(Schneggenburger and Forsythe 2006; Baydyuk et al. 2016). Furthermore, calyces like the 

calyx of Held contain several hundred active zones (Sätzler et al. 2002; Taschenberger et 

al. 2002) where a synchronous release of glutamate causes large postsynaptic responses 

that are well suited for preserving temporal information of auditory signals (von Gersdorff 

and Borst 2002). These nerve terminals, and other synapses of the central nervous system, 

contain a vesicle fusion machinery that is composed of a SNARE (soluble N-

ethylmaleimide-sensitive-factor attachment receptor) complex that is associated with 

calcium-sensor proteins, such as synaptotagmin I and II (Syt1 and Syt2), to trigger a fast 

and temporally precise transmitter release into the synaptic cleft (Goda and Stevens 1994; 

Sabatini and Regehr 1999; Südhof 2013; Schneggenburger and Rosenmund 2015). 

Postsynaptic responses of neurons innervated with large, calyx-like synapses are, at least 

in mature animals, mediated almost exclusively by AMPA receptors (Futai et al. 2001). 

Additionally, large amounts of calcium-binding proteins such as calretinin and 

parvalbumin are found in these synapses, enhancing the buffering capacity and leading to 

a shortening of effective calcium currents and, consequently, increasing the temporal 

resolution to distinguish between different consecutive auditory signals (von Gersdorff and 

Borst 2002). 

 

 

 

 

 

Figure 3: Three large mammalian auditory synapses. A. A horseradish peroxidase 

(HRP) labeled endbulb of Held from an adult cat. (Adapted from Ryugo and Spirou, 

2009). B. Calyx of Held from an adult mouse filled with biotinylated dextran amine 

(BDA). (Adapted from Wang & Augustine, 2014) C. Calyx-like synapse in the 

ventrolateral part of the VNLL filled with tetramethylrhodamine-labeled dextran 

(microRuby). (Franziska Caspari & Ursula Koch, unpublished data) 

Scale bar: 5 µm.  
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4.7  Development of intrinsic neuronal properties in the 

auditory brainstem 

During the development of auditory brainstem nuclei, a maturation of intrinsic passive and 

active neuronal properties takes place, such as resting potential, input resistance, membrane 

time constants, and ionic channel distributions. The reduction of overall cell size including 

soma shrinking and decline of dendritic arborization leads to a decrease in cell capacitance 

resulting in faster charging of the membrane (Rautenberg et al. 2009; Franzen et al. 2015; 

Baumann and Koch 2017). Furthermore, some authors have described a decrease in input 

resistance during the development of auditory brainstem neurons (Magnusson et al. 2005; 

Scott et al. 2005; Hoffpauir et al. 2010; Rusu and Borst 2011; Walcher et al. 2011; Ammer 

et al. 2012; Franzen et al. 2015), which also reduces the integration time in these neurons. 

As a consequence, faster charging speed influences the ability to fire action potentials. 

Additionally, action potential firing properties of auditory brainstem neurons undergo 

developmental changes due to a rearrangement of voltage-gated potassium currents (Scott 

et al. 2005; Franzen et al. 2015). Recent studies on the VNLL of gerbils demonstrate that 

neurons with calyx-like inputs undergo a developmental change from a sustained to an 

onset-type firing pattern within the first week after hearing onset (Berger et al. 2014; 

Franzen et al. 2015). Moreover, MNTB principal neurons also undergo a similar 

developmental pattern. While at prenatal day E17 almost two thirds of the neurons show a 

sustained firing, 95% of the neurons exhibit an onset-type firing at postnatal day P6 

(Hoffpauir et al. 2010). Taken together, these neuronal modifications lead to a faster 

generation of action potentials that, in turn, result in a fast and precise transmission of 

auditory signaling (Wu and Oertel 1987; Kandler and Friauf 1995; Ahuja and Wu 2000; 

Kuba et al. 2002; Scott et al. 2005; Ammer et al. 2012). It has been demonstrated that 

auditory-evoked activity is essential for a typical development of intrinsic neuronal 

properties. Auditory-evoked activity leads to a higher expression of low-voltage-activated 

potassium channels that then influence the firing behavior of neurons (Leao et al. 2004a). 

Pharmacological blockage of low-voltage-activated potassium currents leads to an 

augmented firing of action potentials (Leao et al. 2004a).  
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4.8  Synaptic development in the auditory brainstem 

It is not only the intrinsic neuronal properties of auditory brainstem nuclei that undergo 

change during development, but also their synaptic inputs, leading to a change in the 

transmission of auditory signals. (Ryugo and Spirou, 2009; Wang and Augus tine, 201 4 

The calyx of Held is one of the most thoroughly investigated synapses in the central nervous 

system and is therefore well suited for demonstrating the time course of synaptic 

development (Iwasaki and Takahashi 1998; Taschenberger et al. 2002; von Gersdorff and 

Borst 2002; Hoffpauir et al. 2006, 2010; Rodriguez-Contreras et al. 2008; Borst and Soria 

van Hoeve 2012; Xiao et al. 2013). Principal neurons of the MNTB that are innervated by 

the large glutamatergic calyces of Held already show their mature one (synapse) – to – one 

(neuron) innervation pattern at P2 (see Figure 4) (Hoffpauir et al. 2006). One pre-calyceal 

synapse that is found among a few innervating excitatory synapses at P1 develops quickly 

into a calyx synapse, while the remaining synapses are eliminated (Hoffpauir et al. 2006; 

Rodriguez-Contreras et al. 2008; Xiao et al. 2013; Kochubey et al. 2016). Before hearing 

onset, which occurs at around P12 in rodents (Akil et al. 2016), the calyx of Held has a 

spoon-shaped structure that subsequently is fenestrated to a finger-like, soma-encircling 

terminal in the first week after hearing onset (Kandler and Friauf 1993; Wimmer et al. 2006; 

Ford et al. 2009). In the time course of this morphological change, a drastic increase in the 

number of active zones occurs (Taschenberger et al. 2002), accompanied by a 

developmental decrease of NMDA receptors (Taschenberger and von Gersdorff 2000; 

Futai et al. 2001; Joshi and Wang 2002) and a speeding of AMPA receptor-mediated 

currents (Taschenberger and von Gersdorff 2000; Joshi et al. 2004). It has been proposed 

that these morphological and biophysical adaptations within the first three postnatal weeks 

are crucial for a fast and precise transmission of temporal information (Borst and Soria van 

Hoeve 2012).  

Interestingly, calyx formation in the MNTB occurs with neither spontaneous nor auditory 

nerve activity (Youssoufian et al. 2005), but rather is regulated by intrinsic factors 

(Hoffpauir et al. 2006, 2010; Erazo-Fischer et al. 2007; Rodriguez-Contreras et al. 2008; 

Youssoufian et al. 2008). Although synaptic refinement in the MNTB is independent from 

neuronal activity, the precise tonotopic formation of neurons within the MNTB and further 

morphological modulations of the calyx shape require spontaneous activity (Leao et al. 

2006; Ford et al. 2009). In addition to morphological adjustments of the calyx of Held that 
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occur during development, adaptations of calcium currents (Yang and Wang 2006) and 

calcium channel subtypes (Iwasaki and Takahashi 1998) also take place that lead to changes 

in presynaptic transmitter release and to a shortening of the presynaptic action potential 

waveform (Taschenberger and von Gersdorff 2000). 

The interplay of the different intrinsic active and passive properties together with 

refinement of synaptic inputs generates the basis for the fast and precise voltage signaling 

that is required for sound analysis. 

4.9  Biophysical background of electrophysiological 

measurements 

4.9.1 Passive membrane properties 

The ion concentration inside and outside neurons is very different. The inside is rich in 

potassium and low in sodium, while the ion distribution of the outside is the opposite 

(Höber 1905; Bernstein 1912; Hodgkin 1951; Egri and Ruben 2012). Due to a selective 

permeability of ions through ion channels, the resting membrane potential is set to a certain 

value (Höber 1905; Bernstein 1912; Hodgkin 1951). At rest, the dominant permeability for 

potassium ions results in a membrane potential of approximately -60 mV, which is a 

relative inside-to-outside value (Purves 2001). The resting membrane potential can be 

determined by the Goldman-Hodgkin-Katz equation (formula 1) which takes into 

consideration the different internal and external concentrations of sodium, potassium, and 

chloride together with their specific permeability (Bowman and Baglioni 1984). 

Figure 4: Developmental refinement of the calyx of Held in the MNTB. At P1 several 

excitatory terminals are found in MNTB neurons (left). Growth of one input and 

elimination of redundant inputs occur at P2 (middle). In postnatal week three, 

fenestration of the calyx of Held modifies the shape (right). (Adapted and modified from 

Kochubey et al. 2016) 

 



4 Introduction 

 

28 

 

𝑈𝑚 =
𝑅𝑇

𝐹
∙ 𝑙𝑛

𝑃𝑁𝑎∙[𝑁𝑎+]𝑜+𝑃𝐾∙[𝐾+]𝑜+𝑃𝐶𝑙∙[𝐶𝑙−]𝑖

𝑃𝑁𝑎∙[𝑁𝑎+]𝑖+𝑃𝐾∙[𝐾+]𝑖+𝑃𝐶𝑙∙[𝐶𝑙−]𝑜
  (formula 1) 

Um membrane potential 

R universal gas constant (8.314 J/(mol∙K) 

T  absolute temperature in Kelvin 

F Faraday constant (96485.33 C/mol) 

P specific permeability 

Na sodium  

K potassium 

Cl chloride 

o outside 

i inside 

 

Cell membranes function as capacitors and resistors (Newman 2008). The lipid double 

layer is a capacitor that can store charge, while the number of embedded ion channels 

defines the degree of resistance – that is, the fewer channels activated, the higher the 

resistance (Newman 2008). Changing the membrane voltage requires a charging and 

discharging of the membrane capacitance (Newman 2008). In general, the size of neurons 

determines their capacitance: the larger the neuron, the larger the capacitance, and vice 

versa (Golowasch et al. 2009).  

The relationship can be described by Ohm’s law 

𝑅 =
𝑈

𝐼
→ 𝑈 = 𝑅 ∙ 𝐼.          (formula 2) 

R resistance 

U voltage 

I  current 

 

To change the membrane voltage, a redistribution of internal and external ions through an 

activation of ion channels needs to take place (Lodish et al. 2000). Since an activation of 

ion channels leads to an increase of conduction, it is also common to speak of conductance 

(Bezanilla 2008). 
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𝑔 =  
1

𝑅
  (formula 3) 

g conductance 

R resistance 

 

The more channels that are open in the membrane, the larger the overall conductance is 

(Tour et al. 1998), described by 

𝑔𝑡𝑜𝑡 = 𝑔1 + 𝑔2 + ⋯ + 𝑔𝑛   (formula 4)  

gn conductance 

Furthermore, input resistance is defined as a degree of open channels at a membrane 

potential close to the resting potential (Rin small: many channels open; Rin larger: many 

channels not activated) (Dabrowski et al. 2013).  

Moreover, the time (τ) it takes to change the membrane potential is the product of the 

membrane capacitance and input resistance (Newman 2008). 

𝜏 = 𝐶𝑚 ∙ 𝑅𝑖𝑛  (formula 5)  

τ is called the membrane time constant and affects the speed with which the membrane 

potential rises or falls in response to synaptic input or current injection (Koch et al. 1996). 

In addition to a theoretical approach, τ can be estimated experimentally by plotting an 

exponential fit to a passive voltage response, since it has been demonstrated that small 

hyperpolarizing voltage responses are most suitable for extracting τ (Spruston and Johnston 

1992). 

 

4.9.2  Active membrane properties 

Electrical potentials across membranes may be affected by the activation of ion channels 

(Alberts et al. 2002). Voltage-gated ion channels open (activate) in response to changes in 

membrane potential and further change the conductance across the membrane due to a 

selective permeability to certain ions such as sodium and potassium (Alberts et al. 2002). 

Action potentials, for instance, are initiated by the activation of voltage-gated sodium 

channels, resulting in a fast inward sodium current (Hodgkin and Katz 1949). The action 
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potential threshold is reached when the inward sodium current is larger than the outward 

potassium current (Hodgkin and Huxley 1952). So far, there are nine voltage-gated sodium 

channels known (Nav1.1-Nav1.9), all with different activation and inactivation rates and, 

therefore, properties (Bagal et al. 2015). Finally, the action potential initiation is terminated 

by an inactivation of sodium channels (Bagal et al. 2015) and/or an activation of potassium 

channels (Egri and Ruben 2012). As a result, a repolarization of the membrane is achieved 

(Egri and Ruben 2012). The particular combination of ion channels in the membrane 

determines the action potential threshold, waveform, and spiking pattern (Platkiewicz and 

Brette 2010). The large variety of potassium channels in particular adds diversity to 

neuronal responses (Gittelman and Tempel 2006; Chi and Nicol 2007; Guan et al. 2007; 

Kole et al. 2007; Shu et al. 2007; Goldberg et al. 2008). For instance, a large number of 

slowly inactivating or non-inactivating voltage-gated potassium channels are known: 

Kv1.1, Kv1.2, Kv1.3, Kv1.5, Kv1.6, Kv1.7, Kv1.8, Kv2.1, Kv2.2, Kv3.1, Kv3.2, Kv7.1, Kv7.2, 

Kv7.3, Kv7.4, Kv7.5, Kv10.1 (DeCoursey et al. 1985; Christie et al. 1989; Stühmer et al. 

1989; Snyders et al. 1993; Bertoli et al. 1994; Sprunger et al. 1996; Spencer et al. 1997; 

Kupper 1998; D’Adamo et al. 1999; Klemic et al. 2001; Sankaranarayanan et al. 2005; 

Jensen et al. 2007; Johnston et al. 2008; Tripathi et al. 2011; Kinoshita et al. 2012). 

However, a few rapidly inactivating voltage-gated potassium channels have also been 

identified: Kv1.4, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv4.3 (Fernandez et al. 2003; Gebauer et al. 

2004; Tomczak et al. 2017). In addition to their inactivation rate, the rate of activation and 

voltage dependence defines their individual characteristics.  

 

4.9.3  Ih – HCN-channel mediated current 

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated 

cation channels that are involved in rhythmic activity in the brain and heart (DiFrancesco 

1993; Pape 1996). Four different subtypes are known (HCN1–4), all with different voltage 

dependences and activation/inactivation kinetics (Ludwig et al. 1998; Santoro et al. 1998; 

Ishii et al. 1999; Seifert et al. 1999). When a hyperpolarization occurs  after the 

repolarization phase of an action potential (afterhyperpolarization – AHP), HCN-channels, 

if present, become activated and lead to an inward current of sodium ions, which results in 

a depolarization (Pape 1996). Therefore, Ih plays a significant role in determining the 

resting membrane potential (Pape 1996; Robinson and Siegelbaum 2003). It also greatly 
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influences the integration time of inhibitory inputs by depolarizing the membrane and 

thereby shortening the inhibitory response (Atherton et al. 2010). 

 

4.9.4  AMPA and NMDA receptors 

The large majority of excitatory synaptic transmission in the central nervous system is  

mediated either by ionotropic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid) or NMDA (N-methyl-D-aspartic acid) receptors (Dingledine et al. 1999). While both 

are glutamatergic, they exhibit different sets of subunits with, therefore, different 

physiological properties. The AMPA receptors consist of four subunits (GluR1–4) 

(Collingridge et al. 2009). Subunit GluR2 in particular is responsible for the 

characterization of AMPA receptor physiological properties (Isaac et al. 2007). Therefore, 

absence or presence of this subunit is a determining factor. For example, AMPA receptors 

containing GluR2 are impermeable for calcium and show a linear rectification pattern 

(linear current-voltage relation), whereas AMPA receptors lacking this subunit are 

permeable for calcium and display a strong inward-rectification current for positive 

membrane potentials (Adesnik and Nicoll 2007; Derkach et al. 2007).  

The NMDA receptors consist of NR1 and NR2 subunits, of which NR2 determines NMDA 

receptor properties with its biophysical features such as ion conductance and synaptic 

plasticity (Bliss and Collingridge 1993; Lau and Zukin 2007). Moreover, NR2 itself 

consists of two parts, NR2A and NR2B. The former is known for faster kinetics and a 

higher channel open probability than the latter (Parsons et al. 1998; Lau and Zukin 2007). 

The NMDA receptors are voltage dependent and are blocked by either extracellular 

magnesium or zinc during resting potential (Nowak et al. 1984; Peters et al. 1987). A 

depolarization of the cell leads to a detachment of magnesium or zinc and a channel opening 

with sodium and calcium moving inward and potassium outward (Dingledine et al. 1999; 

Liu and Zhang 2000; Cull-Candy et al. 2001; Paoletti and Neyton 2007). The kinetics of 

NMDA receptors are much slower than those of AMPA receptors (Traynelis et al. 2010), 

and it has been proposed that NMDA receptor-mediated currents are indispensable for the 

formation of neuronal networks during development (Collingridge et al. 2013). Since 

NMDA receptors are blocked at resting potential, AMPA receptors are responsible for basic 

glutamatergic neurotransmission.  
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4.9.5  Presynaptic and postsynaptic properties 

Synaptic transmission is the essential process for communication between neurons and can 

be either excitatory, inhibitory, or a mix of both (Niciu et al. 2012). Excitatory 

neurotransmission is usually triggered by glutamate, whereas inhibitory postsynaptic 

responses are generally mediated by neurotransmitters GABA (γ-aminobutyric acid) and 

glycine (Purves 2001). Glutamate is removed from the synaptic cleft and transported into 

the cytosol against its concentration gradient by the excitatory amino acid transporters 

(EAATs), of which five have been identified so far (O’Shea 2002).  

The neurotransmitter GABA is synthesized from cytosolic glutamate via the glutamate 

decarboxylase (GAD), and glycine is transported from the extracellular medium via glycine 

transporters (GlyT1-2) (Guastella et al. 1992; Liu et al. 1993; Bak et al. 2006). In excitatory 

synapses, on the one hand, cytosolic glutamate penetrates the vesicular membrane through 

vesicular glutamate transporters (VGluT1-3) (Takamori 2006), whereas GABA and glycine 

are transported into vesicles via vesicular inhibitory amino acid transporters (VIAATs) 

(McIntire et al. 1997; Sagné et al. 1997; Gasnier 2004). Action potentials that are initiated 

in the axon initial segment lead to voltage changes of the presynaptic membrane in the 

terminal that, in turn, cause an opening of voltage-gated calcium channels and a subsequent 

calcium influx into the cell (Llinás et al. 1982). The SNARE complexes that contain 

calcium detector proteins such as synaptotagmin I and II are located in the vicinity of these 

calcium channels and mediate a calcium-dependent exocytosis of neurotransmitter into the 

synaptic cleft (Schneggenburger and Neher 2005; Südhof and Rothman 2009; Pang and 

Südhof 2010). This in turn has effects on postsynaptic receptors (see Figure 5). Glutamate 

receptors can be divided into ionotropic and metabotropic receptors (Niciu et al. 2012). 

While ionotropic receptors are ion channels for calcium and sodium that evoke an 

immediate postsynaptic response, metabotropic receptors are G-protein coupled receptors 

that cause interactions with second messengers (Niciu et al. 2012). Fast glutamatergic 

synaptic transmission is mediated by ionotropic glutamate receptors, of which three groups 

are known in the brain: AMPA, NMDA, and kainate receptors (Dingledine et al. 1999). 

Binding of glutamate to the receptors generates postsynaptic responses. An AMPA-

mediated current generates a fast rise and decay of current through the membrane, while an 

NMDA receptor-mediated current provides a prolonged period of depolarization (Traynelis 

et al. 2010). 
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The GABAA and glycinergic receptors are ligand-gated ion channels that permit the influx 

of chloride and hyperpolarize the membrane potential in neurons of mature animals 

(Lüscher and Keller 2004), while GABAB receptors are G-protein coupled and function as 

second messengers (Legendre 2001). Iontropic GABAA and glycine receptor-mediated 

currents decrease the excitability of membranes by moving the potential further away from 

the threshold that is required to fire action potentials (Jacob et al. 2008).  

The reversal potential of an ion type in relation to the threshold potential determines 

whether an input is excitatory or inhibitory (Purves 2001). Generally speaking, an 

excitatory effect occurs if ions have a more positive reversal potential than the threshold 

potential, and an inhibitory effect if the reversal potential is more negative (Purves 2001). 

Figure 5. Glutamatergic synaptic transmission in the central nervous system. Glutamate is 

synthesized from glutamine and filled into vesicles via vesicular glutamate transporters (VGluT). 

Action potentials transduced in the axon initial segment depolarize the presynaptic membrane 

and activate voltage-gated calcium channels that mediate calcium influx. Calcium interacts with 

the SNARE complex that triggers vesicle fusion with the presynaptic membrane. Glutamate is 

released into the synaptic cleft and binds on postsynaptic AMPA or NMDA receptors. An 

activation of AMPA and NMDA receptors depolarizes the postsynaptic membrane and processes 

auditory information, for example. (Adapted and modified from Popoli et al. 2011) 

Gln: glutamine; Glu: glutamate; VGluT: vesicular glutamate transporter; mGluR: metabotropic 

glutamate transporter; CaR: calcium-receptor; Ca2+: calcium ion; NMDAR: NMDA receptor; 

AMPAR: AMPA receptor; Na+: sodium ion; EAAT: excitatory amino acid transporter 
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The postsynaptic neuron may receive both excitatory and inhibitory inputs. The resulting 

inhibitory and excitatory voltage changes are summed, and the net response of both defines 

an excitatory or inhibitory postsynaptic effect (Carvalho and Buonomano 2009). The shape 

of the postsynaptic response is influenced by pre- and postsynaptic factors (Regehr 2012) 

and can be estimated with train stimulations during short-term plasticity experiments. 

Presynaptic factors that influence postsynaptic responses are (1) calcium current 

modulation, (2) depletion of the readily releasable pool (RRP), and (3) replenishment of 

the RRP. As mentioned above, calcium plays a major role in neurotransmitter release and 

release probability (Burnashev and Rozov 2005; Neher and Sakaba 2008; de Jong and 

Verhage 2009). The amount of transmitter released is largely dependent on the cytosolic 

calcium concentration, since it triggers vesicle fusion with the presynaptic membrane (Jahn 

et al. 2003; Schneggenburger and Neher 2005; Südhof and Rothman 2009). The internal 

calcium concentration can be regulated by calcium-binding proteins in the presynaptic 

terminal (Roberts 1993; Neher 1998; Matveev et al. 2004). The affinity of calcium-binding 

proteins for binding calcium determines the release probability of vesicles containing 

neurotransmitter through the removal of effective calcium from the presynase (Roberts, 

1993). The amount of residual calcium in the cytosol influences a postsynaptic depression 

or facilitation. A high concentration of residual calcium causes a higher probability of 

neurotransmitter release, potentially resulting in a postsynaptic facilitation, whereas a low 

calcium concentration decreases the release probability, leading to a postsynaptic 

depression (Regehr, 2012). In summary, the closing of calcium channels and the buffering 

affinities of calcium-binding proteins determine the duration of transmitter release from the 

presynaptic terminal (Fogelson and Zucker 1985; Simon and Llinás 1985).  

Depletion of the RRP is another factor determining the responsive abilities of postsynaptic 

receptors. During repetitive fiber stimulation, a depletion of vesicles occurs (Purves et al. 

2001). There are usually hundreds of vesicles available within each active zone (Legendre 

2001). Vesicles that are immediately available after presynaptic stimulation and are located 

in close vicinity of voltage-gated calcium channels belong to the RRP (Legendre 2001). 

Furthermore, it has been proposed that postsynaptic depression after repetitive stimulations 

is caused by a depletion of RRP vesicles, since the replenishment of these vesicles requires 

seconds (Hori and Takahashi 2012). The rate of vesicle pool replenishment depends on the 

time of neurotransmitter uptake from the synaptic cleft, vesicle endocytosis, and vesicle 

filling (Gandhi and Stevens 2003).  
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Postsynaptic responses are influenced not only by presynaptic but also by postsynaptic 

factors (Regehr, 2012). Postsynaptic factors include (1) receptor kinetics, (2) receptor 

saturation, and (3) receptor desensitization. The following paragraph explains the influence 

of postsynaptic factors on glutamatergic synapses. Receptor kinetics of AMPA and NMDA 

receptors differ due to different binding and gating properties (Jahr and Lester 1992), since 

a colocalization of both AMPA and NMDA exposes them to the same concentration of 

glutamate (Clements 1996). The AMPA receptor-mediated currents rise within 

microseconds and decay within a few micro- to milliseconds, whereas NMDA receptors 

display slow kinetics (Colquhoun et al. 1992; Hestrin 1992; Silver et al. 1992). 

Furthermore, saturation of postsynaptic receptors with glutamate may constrain the 

postsynaptic response, especially when a large amount of neurotransmitter is released into 

the synaptic cleft (Wadiche and Jahr 2001; Foster et al. 2002). As a result, the postsynaptic 

response may reflect an underestimation of the presynaptic release (Regehr, 2012). Last 

but not least, receptor desensitization resulting in an unavailability of receptor activation 

by glutamate may occur after repetitive stimulations with this neurotransmitter. This 

desensitization leads in turn to a decrease of the postsynaptic response and an 

overestimation of postsynaptic depression (Trussell et al. 1993; Chen et al. 2002; Xu-

Friedman and Regehr 2004). Though AMPA receptor desensitization can be prevented 

pharmacologically (Francotte et al. 2006), during measurements of short-term plasticity 

presynaptic mechanisms may be influenced by desensitization and saturation of 

postsynaptic glutamatergic receptors (Regehr, 2012).  

Postsynaptic depression as a response to repeated stimulations, on the one hand, is thought 

to play a role in sensory adaptation by responding to a novel stimulation with an increased 

postsynaptic amplitude (Chung et al. 2002). Furthermore, depression can be applied to 

enable cells to respond to relative changes and not absolute changes of stimuli (Regehr, 

2012). Postsynaptic facilitation, on the other hand, increases the postsynaptic response to 

repeated stimuli resulting in a functional strengthening of stimuli that are important for 

memory forming (Goldman-Rakic 1995). As result, the expression of, for example, AMPA 

receptors is enhanced, and the postsynaptic receptor density increases (Willard and 

Koochekpour 2013). 
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4.10  Deafness 

Hearing loss is a common sensory loss in humans and leads to deafness if the degree of 

loss is so severe that a subject is unable to perceive sounds even with amplification (Raviv 

et al., 2010; Elzouki, A.Y, 2012). The causes of hearing loss are diverse, including both 

hereditary causes and environmental factors. Environmental factors that can cause hearing 

loss are exposure to loud noises over a significant amount of time, trauma, and infections 

(Yorgason et al. 2006). As a result, by age 70, about 60% of people have suffered hearing 

loss of at least 25 dB (Gratton and Vázquez 2003). However, only 30% of acquired hearing 

loss is caused by an environmental influence, while 70% has a genetic origin (Raviv et al. 

2010). Today, more than 100 genes have been identified that are involved in hereditary 

hearing loss (Nishio et al. 2015).  

 

4.11  Deaf mouse models and the impact of deafness on 

central auditory structures 

Deaf mouse models for deafness are created to imitate different origins of hearing loss in 

humans and help to understand underlying mechanisms and the effects on auditory 

processing in the central nervous system. There are different approaches to creating new 

mouse models. Usually, deafness can be induced by spontaneous mutations, mutagens, or 

specific targeting of genes (Brown et al. 2008). The following paragraphs introduce some 

deaf mouse models that are relevant for this study. 

 

4.11.1  Deafwaddler 

Deafwaddler (dfw) is originally a spontaneous mutation that leads to deafness and a 

waddling walk in mice (Penheiter et al. 2001), and in 1998 it was first discovered that a 

mutation of the gene encoding the plasma membrane calcium ATPase 2 (PMCA) occurred 

(Street et al. 1998). In mice this gene is located on chromosome 6 (Street et al. 1995) and 

is homologous to the human gene 3p25-26 (Penheiter et al. 2001). The deafwaddler mutant 

results from a substitution of a nucleotide (glycine to serine) at a highly conserved amino-

acid position (Penheiter et al. 2001).The protein PMCA2 is expressed in stereocilia of 
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auditory and vestibular hair cells and in neurons of the spiral ganglion and is very important 

for a proper inner ear development (Penheiter et al. 2001). Although deafwaddler mice are 

deaf and have poor balance, PMCA2-knock-out (KO) mice display a more severe 

phenotype (Kozel et al. 1998). It is known that PMCA2 contributes to the removal of 

calcium from cells (Tucker and Fettiplace 1995) and from stereocilia (Lumpkin and 

Hudspeth 1998; Yamoah et al. 1998). 

Neurons of the MNTB in dfw mice show an increase in miniature excitatory postsynaptic 

current (mEPSC) amplitude, suggesting larger presynaptic transmitter release 

(Weatherstone et al. 2017). Furthermore, MNTB neurons are tonotopically organized, and 

neurons responding to high-frequency sounds are located closer to the midline (Sonntag et 

al. 2009). Interestingly, cell size in the MNTB also differs from medial to lateral 

(Weatherstone et al. 2017). Neuronal cell capacitances of hearing mice display a gradual 

decrease from low to high frequencies (Weatherstone et al. 2017). In a recent study, 

Weatherstone et al. (2017) have suggested that hearing loss caused by a lack of calcium 

removal has large effects on the proper development of MNTB neurons. Furthermore, a 

loss of auditory-evoked activity also influences potassium channel expression in MNTB 

neurons (Leão et al. 2010). 

 

4.11.2  DFN 

Currently, there are 159 identified genomic loci that are involved in deafness. These loci 

are presented on the website www.genenames.org, where they are named after their 

location on the chromosome, whether it is recessive or dominant, and its consecutive 

number (DFN: deafness; A: autosomal dominant; B: autosomal recessive, X: X-

chromosome linked, Y: Y-chromosome linked, “#”: number of discovery). The following 

paragraphs describe some of these loci, since they help to understand the mechanisms 

described in this thesis.  

 

4.11.2.1 dn/dn 

Another deaf mouse model with a different origin of deafness is the dn/dn deaf mouse, with 

the deafness-related name DFNA36. These mice are congenitally deaf  with neuroepithelial 

degeneration of the cochlea, while no other physical defects are known (Bock et al. 1982; 
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Keats and Berlin 1999). The dn/dn model is a natural mutation of the transmembrane 

cochlear-expressed gene 1 (tmc1; Kurima et al. 2002), located on the human chromosome 

9q21.13. Expression of this protein is found exclusively in the cochlea. Furthermore, a 

mutation of tmc1 leads to a loss of auditory nerve activity from early on (Leao et al. 2004a; 

Youssoufian et al. 2008). However, it has been demonstrated that spontaneous auditory 

nerve activity during the early postnatal days is crucial for the development of some 

mammalian brainstem nuclei (Pasic and Rubel 1989; Rubel and Fritzsch 2002). Previous 

studies have found enhanced excitatory postsynaptic currents in the cochlea nucleus 

(Oleskevich and Walmsley 2002) and altered inhibitory postsynaptic currents in the MNTB 

(Leao et al. 2004b). Moreover, cell excitability of MNTB neurons is also enhanced in these 

mice, indicated by a reduced current threshold and an elicitation of an augmented spike 

number (Leao et al. 2004a). The dn/dn mice display a reduced expression of low-voltage-

activated potassium channels (Kv1; Leao et al. 2004a), leading to the conclusion that both 

synaptic and intrinsic conductances are under activity-dependent control. 

 

4.11.2.2 DFNB9 

While these previously mentioned forms of genetic hearing disorders result from 

impairment of inner hair cell development, degeneration of those inner hair cells, or defects 

in proper cochlea compartmentalization, deafness can also result from impaired signal 

transmission from the cochlea to the brain (Dror and Avraham 2010). 

Otoferlin has been found to play a crucial role for vesicle exocytosis at ribbon synapses, 

since it is thought to be an important calcium sensor and mediator for vesicle fusion (Roux 

et al. 2006). Mutations of otoferlin are found in humans on chromosome 2p22-23, while 

the mice homologue is located on chromosome 5. The human hearing disorder with a 

mutation in otoferlin is autosomal recessive and is catalogued under DFNB9 (Yasunaga et 

al. 1999). The auditory system is extremely fast and dependent on a precise temporal signal 

transmission from the inner hair cell ribbon synapse to ascending auditory nuclei. Analysis 

of sound information includes pitch detection, sound localization, and speech perception 

(Schnupp et al. 2011). Inner hair cell stimulation leads to exocytosis of transmitter at the 

ribbon synapse within micro- to milliseconds (Glowatzki and Fuchs 2002; Goutman 2012; 

Li et al. 2014). Active zones of synapses in the basolateral region of inner hair cells are 

organized in a ribbon shape, hence their name, ribbon synapse. Furthermore, approximately 

10 to 30 active zones contain a large pool of immediately available vesicles for maintaining 



4 Introduction 

 

 

39 

 

a fast and precise transmission of auditory signaling (von Gersdorff and Matthews 1997; 

Lenzi et al. 1999; Moser and Beutner 2000). Usually, synapses of the central nervous 

system contain certain proteins, namely synaptogmin I and II (Syt1 and Syt2), that are 

required for vesicle fusion with the presynaptic 

membrane and function as calcium sensors 

(Südhof 2013). In inner hair cells, however, these 

proteins Syt1 and Syt2 are absent (Safieddine and 

Wenthold 1999; Beurg et al. 2010). Instead, 

synapses of inner hair cells contain otoferlin as a 

calcium sensor and trigger for vesicle fusion with 

the presynaptic membrane (Roux et al., 2006; see 

Figure 6). Otoferlin is a calcium-binding 

membrane protein of the ferlin family and 

consists of six C2 domains (C2A-C2F) and two 

Fer domains (Yasunaga et al. 1999; Roux et al. 

2006; Lek et al. 2010). Otoferlin mutants 

(OTOF(-/-)) showed no synaptic exocytosis in 

response to calcium influx, in spite of typical 

calcium currents and no apparent morphological 

changes (Roux et al. 2006). Due to a lack of 

transmitter release, otoferlin mutants are deaf 

(Roux et al. 2006). 

  

Moreover, loss of afferent activity can result in many alterations in the circuitry, such as 

changes in potassium currents, loss of tonotopicity as a consequence of changes in 

potassium currents, and alterations in expressions of calcium-binding proteins (Caicedo et 

al. 1997). 

 

 

Figure 6: Inner hair cell of the cochlea 
and its functional composition of the 
ribbon synapse. Otoferlin functions as a 
calcium sensor and trigger for vesicle 
fusion with the presynaptic membrane. 
(From Pangrsic et al. 2012) 
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4.12  Hypothesis 

Based on earlier research on the calyx development in the MNTB of deaf mice, we suspect 

a developmental synaptic maturation in the VNNL of mice that is independent of auditory-

evoked activity. Furthermore, deafness has been found to affect potassium channel 

expression and we therefore assume that neuronal intrinsic properties such as the firing 

behavior are greatly influenced by the lack of sensory experience. 

 

4.13  Aim of this study 

Currently, the intrinsic and synaptic properties of VNLL neurons and their spatial 

distribution within the VNLL have not been systematically studied in animals when 

neuronal properties are considered to be mature (Khurana et al. 2012). To identify whether 

different neuron types are systematically distributed within the VNLL, as has been found 

for echo-locating bats (Vater and Feng 1990; Huffman and Covey 1995), in Part 1 of this 

thesis I, together with my colleagues, characterized the intrinsic and synaptic properties of 

VNLL neurons in acute brain slices of young adult mice relative to their location within 

the VNLL.  

In Part 2 of this thesis, I focused on the ventral part of the VNLL and studied the 

development of the calyx-like synapse that has been described in other studies (Adams 

1997; Schofield and Cant 1997; Berger et al. 2014) and in the first part of this thesis. To 

identify when during development neurons of the ventral part of the VNLL develop their 

specific synaptic properties, I performed experiments on acute brain slices of P10, P13, and 

P22 mice. 

The refinement of synaptic inputs and the development of neurons with only an onset firing 

pattern occurs after hearing onset, as indicated by the experiments performed in Part 2 of 

this thesis. Therefore, I was interested in evaluating intrinsic or environmental influences 

that lead to the development of these specific neuronal characteristics in the ventral part of 

the VNLL. In order to identify whether or not these developmental changes are activity 

evoked, I used a deafness mouse model, where the protein otoferlin is dysfunctional     

OTOF(-/-)-KO), resulting in the loss of transmitter release in the IHCs of the cochlea (Roux 
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et al. 2006) and, consequently, deafness. Littermates with a functioning protein (OTOF(+/+)-

wild type (WT)) were used as controls. Prior to these experiments, I studied the 

developmental changes in WT animals between P10 and P22 in order to identify changes 

in this strain and relate my results to the subsequent WT-KO comparisons. 

(Békésy 1960) 

4.14  Scientific relevance 

Functional understanding of sound localization has been intensively studied in the past 

decades and is well understood. Nevertheless, the processing and analysis of speech at the 

level of the auditory brainstem is still quite unclear. In these studies, we aim to help unravel 

the neuronal mechanisms involved in speech detection. Furthermore, we hope to reveal 

whether auditory-evoked activity is necessary for proper neuronal development in the 

VNLL and to examine how these result affect research in human hearing loss. 
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5 Material and methods 

5.1  Animals 

All experiments and animal breeding followed EU ethical guidelines and were carried out 

in accordance with protocols approved by the German federal authorities (Landesamt für 

Gesundheit und Soziales, State of Berlin). 

Mice used for experiments were bred either in the animal facility located at the Institute of 

Biology, AG Neurophysiology (AG Prof. Ursula Koch), Freie Universität Berlin or at the 

FEM (Forschungseinrichtungen für experimentelle Medizin) associated with the Charité 

Berlin. 

Animals were kept on a 12h:12h light:dark circle and had ad libitum access to standard 

laboratory food pellets and drinking water. The temperature was held steady at 

approximately 22°C, and humidity in the room was maintained at 50%. In order to keep 

the animals content, cage enrichments such as shelters and toys were provided. 

 

5.2  Breeding 

5.2.1  C57Bl/6 

Type C57Bl/6 mice were obtained from the FEM Berlin and further bred in the in-house 

mouse breeding facility. Most electrophysiological experiments of Parts 1 and 2 were 

performed on brain slices of C57Bl/6J mice at the ages of postnatal days 10–11 (P10–11), 

P13–14 and P22–23. Additionally, immunostainings were performed in mice of these ages 

ages and 20–25-week-old animals. Littermates of both sexes were used for experiments. 

 

5.2.1 VGAT 

One series of electrophysiological experiments of Part 1 of this thesis was performed at 

P22–23 on VGAT-ChR2-YFP+ [B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J; The 

Jackson Laboratory] mice to determine inhibitory regions within the lateral lemniscus, as 

channelrhodopsin-associated yellow fluorescent protein (YFP) is only expressed in 
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vesicular GABA transporter (VGAT)-expressing neurons, hence GABAergic or 

glycinergic neurons (Zhao et al. 2011). Animals were bred in the in-house animal facility. 

At P2-3 expression of the mhChR2::EYFP construct was visually determined by directing 

a blue light beam (460-495 nm) with a specialized lamp (FS/ULS-02B2, BLS-Ltd, 

Hungary) to the mice. A yellow/green shimmer through the skull confirmed the expression 

of EYFP in the brain. The YFP+ littermates were tattooed for subsequent identification. 

Littermates of both sexes were used for experiments. 

 

5.2.3  OTOF 

Heterozygous (OTOF(+/-)) and homozygous KO (OTOF(-/-)) were obtained from Nicola 

Stenzke’s lab in Göttingen. Animals were kept and cross-bred in the in-house animal 

breeding facility in order to perform in vitro electrophysiological and 

immunohistochemical experiments on homozygous KO and wild type (OTOF(+/+)) mice. 

Results of this experimental work are presented in Part 3 of this thesis. 

Animals were created by Ellen Reisinger et al. (2011). These mice have a C57Bl/6 

background and were genetically modified. A targeting construct that consisted of a loxP-

flanked neomycin cassette was inserted in the genome and replaced exons 14 and 15 of a 

9.2 kb genomic DNA fragment of the otoferlin gene. The otoferlin gene of mice consists 

of 50 exons that contain the coding DNA. A thymidine kinase (TK) cassette for negative 

selection was added after the 5.3 kb long arm. This targeting construct was electroporated 

into 129ola embryonic stem cells. A subsequent positive selection was followed by the 

neomycin resistant cassette. A selective antibiotic G418 was added to the cell culture, and 

only cells with an inserted neomycin resistance survived. An additional negative selection 

was carried out by the activity of the inserted thymidin kinase from the herpes simplex 

virus 1. Thymidin kinase is also coded on the targeting construct but outside of loxP-

flanked homologue sequence. Therefore, it is not included in the genome after homologue 

recombination, so an application of ganciclovir kills all cells with the thymidine kinase. 

This procedure ensures that cells are only picked where the gene was correctly modified 

(Reisinger et al. 2011). 

Heterozygous (OTOF(+/-)) mice were bred to obtain litters containing both homozygous KO 

(OTOF(-/-)) and WT (OTOF(+/+)) mice. A tail cut of all littermates was taken between P3 

and P5 and used for genotyping. Littermates were tattooed and documented. For further 
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experiments, young mice (P10–11 and P22–23) were chosen blindly to exclude bias by the 

experimenter. A repeated genotyping of the chosen mouse confirmed the genotype 

retrospectively. 

 

5.3  Genotyping 

Prior to experiments, genotyping of otoferlin mice was performed to identify all three 

genotypes born in this litter, but only homozygous KO and WT animals were used for 

experiments.  

Tail cuts of all littermates were kept separately overnight in polyethylene glycol at room 

temperature for extracting DNA from the tissue. A master mix for the polymerase chain 

reaction (PCR) procedure was prepared, containing following chemicals: 10x Taq buffer 

B, 2.5 mM MgCl2, 0.15 mM 4dNTP, 0.375 µm primer otof sense 1 (wt), 0.375 µm primer 

otof sense 2 (ko), 0.375 µm primer otof antisense, 5 U/µl Taq polymerase water (all 

chemicals from Bio&Sell, Feucht, Germany). The protocol for the PCR program and 

master mix recipe were kindly provided to us by Nicola Strenzke. 

An agarose gel was prepared, containing following chemicals: 1x TBE buffer (8.9515 mM 

TRIS base, 8.954 mM boric acid, 2.533 mM EDTA [all chemicals from Carl Roth, 

Karslruhe, Germany]), 2% agarose (Bio&Sell, Feucht, Germany), and 1% Ethidium 

bromide (Carl Roth, Karlsruhe, Germany). The DNA containing probes together with 6x 

loading dye (Fermentas, Thermo Fisher Scientific, Waltham, MA, USA) were loaded onto 

the gel and run for approximately 40 minutes at 120 V. Electrophoresis was stopped when 

bands were clearly separated (see Figure 7). 

 

 

 

Figure 7: Representative genotyping result. DNA products were 

amplified with WT primers (239 bp) and KO primers (396 bp). 

Heterozygous mice showed both DNA bands (239 and 396 bp). 

GL: gene ladder; H20: water, no DNA; bp: base pairs 
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5.4  Solutions 

The following solutions were used for electrophysiological experiments.  

The slicing solution contained (in mM): 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4*H2O, 6 

MgCl2, 0.5 CaCl2, 25 glucose, and 200 sucrose. 

The recording solution – artificial cerebrospinal fluid (ACSF) contained (in mM): 125 

NaCl, 2.5 KCl, 1.25 NaH2PO4*H2O, 2.6 NaHCO3, 6 MgCl2, 0.5 CaCl2, and 25 glucose. 

The ACSF solution for Ih isolation was prepared according to Baumann et al. 2013 and 

contained (in mM): 1 3,4-diaminopyridine, 10 TEA-Cl, 0.2 BaCl2, 0.001 TTX, 0.05 NiCl2, 

0.1 CdCl2, 0.01 DNQX, 0.025 DL-AP5, and 0.001 strychnine. NaCl concentration was 

reduced to maintain isoosmolarity. 

The potassium gluconate solution for current clamp recordings and Ih measurements 

contained (in mM): 125 K-gluconate, 5 KCl, 10 HEPES, 1 EGTA, 2 Na2ATP, 2 MgATP, 

0.3 Na2GTP, and 10 Na-phosphocreatinine. The pH was set to 7.25. 

The CsCl solution for recordings of synaptic currents contained (in mM): 41 CsCl, 99 Cs-

methylsulfonate, 10 HEPES, 10 Cs-EGTA, 2 Na2ATP, 2 MgATP, 0.3 Na2GTP, 

1 CaCl2, 5 TEA-Cl, and 5 QX 314. The pH was set to 7.25. 

To block AMPA and NMDA receptor-mediated currents, DNQX and DL-AP5 were added 

to the ACSF. Strychnine and SR95531 were added to the bath to block glycine and GABAA 

receptor-mediated currents. 

All agents were purchased from Sigma-Aldrich (Seelze, Germany) and Biotrend (Köln, 

Germany). 

 

5.4  Brain Slice preparation 

Prior to the brain removal, slicing and recording solutions were prepared. The slicing 

solution was also put on ice water and bubbled with carbogen (95% O2 and 5% CO2).  

Animals were anesthetized with isoflurane (AbbVie, Ludwigshafen, Germany) and quickly 

decapitated. Brains were gently removed, glued to the platform of the slicing chamber and 
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put into the vibratome (VT1200S, Leica, Germany). Ice-cold and carbogenated slicing 

solution was added to the chamber to cover the brain. 180 µm thick slices were cut at a 

slow pace of 0.02 mm/s. Slices were collected and transferred to an incubation chamber 

with ACSF at 32°C. They were kept at 32°C for approximately 20 minutes and were cooled 

down to room temperature until they were used for recordings. 

 

5.5  Patch-clamp electrophysiology and data acquisition 

Whole-cell patch-clamp recordings were made from visually identified VNLL neurons 

using a Multiclamp 700 A amplifier (Axon Instruments, CA, USA) and a Digidata1440A 

(Molecular Devices, CA, USA). Patch pipettes were pulled from borosilicate glass 

capillaries (BioMedical Instruments, Germany, 0.86 mm inner diameter and 1.5 mm outer 

diameter) on a DMZ Universal Puller (Zeitz Instruments, Germany) and filled with either 

potassium gluconate solution (for current clamp and Ih measurements) or cesium chloride 

solution (for voltage-clamp measurements; see above). All experiments were performed at 

32°C. Patch pipettes had resistances of 2–4 MΩ. 

To study the intrinsic membrane properties with respect to their location within the VNLL, 

the VNLL was subdivided into three regions – dorsal, middle, and ventral – based on the 

nomenclature proposed for gerbils by Benson and Cant, 2008. For Part 1 of this thesis we 

recorded from dorsal and ventral regions, whereas for Parts 2 and 3 we made recordings 

only of neurons in the ventrolateral part of the VNLL. The ventral VNLL was considered 

as the ventral end of the fiber bundle of the lateral lemniscus, and the dorsal VNLL was 

determined with respect to the dorsal nucleus of the lateral lemniscus (DNLL). Neuronal 

locations were determined in the acute slice preparation by anatomical landmarks and 

delineated in a sketch of the VNLL. In some experiments, Alexa 555 was added to the 

internal solution in order to later verify the visually determined location of a neuron within 

the VNLL (data not shown). 
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5.6  Data acquisition 

Bridge balance was adjusted for current-clamp recordings. During voltage-clamp 

recordings, series resistance (<10 MΩ) was compensated to a residual resistance of 2–2.5 

MΩ and was not allowed to change more than 20% during the recording. For measuring 

passive and active membrane properties, 1000 ms long hyperpolarizing and depolarizing 

current steps from -300 pA to 1000 pA were injected.  

Channelrhodopsin was activated with a 5–10 ms light pulse of an arc lamp which yields 

similar depolarization amplitudes of VGAT-positive neurons as a 26.3 mW/mm2 blue LED 

(Zhao et al. 2011). 

The HCN currents were activated by applying depolarizing and hyperpolarizing voltage 

steps from -40.5 to 120.5 mV. Tail currents were measured at the holding potential of              

-100.5 mV that followed each voltage step. Current densities were obtained by estimating 

cell surface size from the capacitance of the amplifier. 

Synaptic currents were evoked by stimulating the ascending fibers approximately 50 µm 

ventral to the recorded neuron with a glass electrode filled with 2 M NaCl. Stimuli consisted 

of brief biphasic pulses (200 ms, intensities 3-80 V) triggered by an analog stimulus 

isolation unit (BSI-950, Dagan Corporation, USA). The threshold for synaptic responses 

was usually between 5 and 20 V. For determination of AMPA and NMDA receptor-

mediated currents, a minimal stimulation paradigm was applied. The AMPA receptor-

mediated currents were measured at a holding potential of -60 mV, while for the NMDA 

component, 10 µM DNQX were added to the bath, and a holding potential of +40 mV was 

provided. For the analysis of the input number, the stimulation intensity was gradually 

increased in increments of 2 to 10 V. Inhibitory (glycinergic and GABAergic) or excitatory 

(AMPA and NMDA) postsynaptic currents were isolated by applying 1 µM strychnine and 

10 mM SR95531 or 10 mM DNQX and 25 mM DL-AP5 to the bath, respectively. 

The mEPSCs were measured in a gap-free paradigm for at least three minutes, while 

inhibitory currents and voltage-gated sodium channels were pharmacologically blocked 

with 1 µM strychnine, 10 mM SR95531 and 1 µM TTX, respectively. Cells were voltage-

clamped to -70 mV to increase the driving force and to obtain a better signal-to-noise ratio. 
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Short-term plasticity was determined using trains of stimuli at different frequencies (1, 10, 

50, 100, 200, and 300 Hz; 15 pulse; 10 repetitions). For Part 1 a minimal stimulation 

paradigm was applied, whereas in Part 3 a maximal stimulation paradigm was used in order 

to subsequently determine the RRP and its properties. 

For all electrophysiological measurements, stimulus generation and recordings were 

acquired using pCLAMP (Axon Instruments, USA). Currents and voltage signals were 

low-pass filtered at 10 kHz with a Bessel filter, sampled at a rate of 20-100 kHz, and 

analyzed using Clampfit 10.0 (Axon Instruments, USA) and customized macros in IGOR 

Pro (Wavemetrics, USA). 

 

5.7  Data analysis 

5.7.1  Membrane properties 

A junction potential of -10.5 mV was subtracted for recordings using a K-Gluconate 

solution. The resting membrane potential was calculated as the mean value of the first 80 

ms before hyperpolarizing or depolarizing steps were applied. Membrane time constant and 

input resistances were evaluated from the voltage response to a current injection of -100 

pA. Membrane time constants were calculated by fitting single-exponential functions to the 

voltage traces. Input resistances were measured at peak and at steady state shortly before 

the hyperpolarizing step ended, according to Ohm’s law. Amplitude values at peak and 

steady state were used to calculate the Ih component as follows: 

𝐼ℎ =
𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝑝𝑒𝑎𝑘−𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒
∙ 100. 

For analyzing the active membrane properties, the action potential or the train of action 

potentials elicited by the lowest current injection was used to measure current threshold, 

voltage threshold, action potential half-width, and amplitude. The current threshold equals 

the injected current step that elicited the first action potential or train of action potential. 

Furthermore, the precise voltage threshold was determined as the maximal value of the 

third derivative located at the point where the action potential starts to rise suddenly (Lu et 

al. 2012). Half-width was measured at the half-maximal amplitude of the action potential, 
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while the action potential amplitude was measured as net voltage between resting potential 

and the peak of the action potential. 

 

5.7.2  Ih measurements 

The Ih amplitude of Ih currents was calculated 1 ms before the offset of the voltage step. 

Half-maximal activation of Ih was computed from tail currents. Tail current amplitudes 

were measured 20 ms after the termination of the hyperpolarizing voltage steps. These 

amplitudes were normalized to the maximal amplitude of each neuron. Values were fitted 

to a Boltzmann function to obtain the half-maximal voltage V1/2. 

 

5.7.3  Postsynaptic currents after single stimulations 

During synaptic stimulation experiments, the number of input fibers was determined by 

visually identifying groups of similar excitatory postsynaptic current (EPSC) and inhibitory 

postsynaptic current (IPSC) amplitudes while stimulation intensities were gradually 

increased from 3 to 80 V. Each group presumably reflects the activation of an individual 

input fiber (Kim and Kandler 2003; Walcher et al. 2011). A 10–90% rise time and tau decay 

(fitting of a single-exponential function) of synaptic currents were assessed from responses 

evoked by minimal stimulation. The minimal stimulation strength is defined as stimulation 

strength where a stepwise increase of 2 V results in the first measurable postsynaptic 

current (PSC). 

 

5.7.4  Miniature EPSCs 

For each cell, an individual template to identify all real miniature events was created using 

Clampfit 10.0. The miniature EPSCs were counted, and the frequency was determined by 

this value and the duration of the measurement. Furthermore, mEPSCs were averaged, and 

amplitudes, charges, and time constants were calculated. Charges were calculated as an 

integral of the event using Clampfit 10.0. Time constants were determined as described for 

postsynaptic currents (see Section 5.7.3). 
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5.7.5  Short-term plasticity 

To estimate short-term plastic changes of excitatory and inhibitory inputs to repetitive 

stimulations (1–300 Hz, 15 pulses, 10 repetitions), PSC amplitudes of the trains were 

normalized to the first amplitude. For calculating net amplitudes at high frequencies, a 

decay function was fitted to the preceding current pulse and set as a new baseline. The 

amplitude of the respective pulse was measured as a subtraction of the maximum and the 

new baseline. From these normalized depression curves, steady-state depression was 

obtained by the mean of the last three PSC amplitudes.  

To analyze presynaptic properties such as the RRP, release at the maximal response, and 

the ratio of these two, an Elmquist-Quastel plot (EQ plot; see Figure 8) was calculated. 

There, the individual release is plotted as a function of the cumulated release throughout 

the train stimulation. The individual release was calculated as the amplitude of the 

respective EPSC divided by the average mEPSC amplitude of the particular age and/or 

genotype. The cumulated release was determined by a stepwise cumulation. A linear 

regression was inserted in the plot to the first three data points of cumulated release and 

was extrapolated to the x-intercept. This value theoretically resembles the RRP and was 

used for further calculations. The release at the maximal response is the number of vesicles 

released at the EPSC with the largest amplitude among the train stimulation. The ratio was 

determined by dividing the release at the maximal response by the RRP. 

  

 

Figure 8: Elmquist-Quastel 

plot of a representative WT 

animal. The individual release is 

plotted as a function of the 

cumulated release. A linear 

regression is calculated for the 

first three individual releases and 

extrapolated to the x-intercept. 

This value represents the 

theoretical readily releasable 

pool. 
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5.8  Statistics 

Results are given as mean ± standard error of the mean (SEM). Data were first analyzed 

for homogeneity of variance and normality, and according to the result statistical 

significance was determined using unpaired student’s t-test, a single-factor ANOVA 

followed by a Scheffé’s post hoc test, or a two-factor ANOVA followed by a Dunn’s post 

hoc test for data that qualified for parametric distributions. Non-parametric distributions 

were statistically analyzed using either a Mann-Whitney test or a Kruskal-Wallis test 

followed by a Games-Howell or Tukey’s post hoc test. Statistical thresholds were * P<0.05, 

** P<0.01, and *** P<0.001. Programs used for statistical analysis were Microsoft Excel 

(Microsoft, Redmond, WA, USA), RealStatistics as add-in for Microsoft Excel, GraphPad 

Prism 6 (GraphPad Software, San Diego, USA), and IgorPro (Wavemetrics, Portland, OR, 

USA). 

 

5.9  Immunohistochemistry 

Eighteen animals (12 C57Bl/6 and 6 otoferlin WT and KO) were anesthetized by an 

intraperitoneal injection of Fentanyl (Janssen-Cilag), Medetomidin (Ratiopharm) and 

Metformin (Pfizer). They were perfused transcardially with 0.1 M phosphate buffer (PB; 

7.4) for 3 minutes followed by paraformaldehyde (Carl Roth, Karlsruhe, Germany; PFA; 

4% in 0.1 M pB; pH 7.4) for 15 minutes. Immediately after perfusion, brains were removed 

and post-fixed overnight in 4% PFA at 4°C. Brains were thoroughly washed at room 

temperature with 0.1 M phosphate buffer saline (PBS; pH 7.4). Coronal brain sections of 

50 µm were obtained using a vibratome (VT1200, Leica, Germany). Sections containing 

the VNLL were collected. Unspecific binding was blocked by incubating the sections in 

solution containing 10% normal donkey serum (NDS; GeneTex, USA), 0.2% Triton-X-

100 (Carl Roth, Karlsruhe, Germany), and 0.1 M PBS for an hour at room temperature. 

Slices were subsequently incubated overnight in the primary antibody solution containing 

mouse anti-HCN1 (NeuroMab; dilution 1:1000), and/or goat anti-calretinin (Millipore; 

dilution 1:4000), and/or rabbit anti-VGluT1 (SynapticSystems; dilution 1:500), and/or 

chicken anti-MAP2 (Neuromics; dilution 1:1000), 3% NDS, and 0.2 Triton-X-100 in 0.1 

M PBS. Slices were thoroughly washed in PBS for half an hour and incubated in the 
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secondary antibody solution containing Alexa 488 donkey anti-mouse (Life Technologies; 

dilution 1:250), and/or Cy3 donkey anti-goat (Dianova; dilution 1:300), and/or DyLight405 

donkey anti-rabbit (Dianova; dilution 1:300), and/or Alexa 647 donkey anti-chicken 

(Dianova; dilution 1:300), 3% NDS, and 0.2% Triton-X-100 in 0.2 M PBS. An overview 

of all antibodies used is provided in Table 1. Negative controls were obtained by omitting 

the primary antibody. Sections were washed several times in 0.1 M PBS, mounted, and 

covered with homemade anti-fading mounting media (Indig et al. 1997). 

 

 

 

Primary antibodies 

 
Antibody against Host Dilution Company 

 
HCN1 Mouse 1:1000 Neuromab 

 
Calretinin Goat 1:4000 Millipore 

 
VGluT1 Rabbit 1:500 SynapticSystems 

 
MAP2 Chicken 1:1000 Neuromics 

    

Secondary antibodies 

Host: Donkey 

 
Antibody against Fluorophore Fluorophore Company 

 
Mouse Alexa488 1:250 Life Technologies 

 
Goat Cy3 1:300 Dianova 

 
Rabbit DyLight405 1:300 Dianova 

 
Chicken Alexa647 1:300 Dianova 

 

 

 

Table 1 |  List of primary and secondary antibodies used in the experiments. 
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5.10  Confocal microscopy 

All sections were analyzed with a Leica SP8 confocal laser scanning microscope (TSC SP8, 

Leica Microsystems). The microscope was equipped with a 5x HCX PL FLUOTAR 

objective (NA 0.15), a 20x HC PL APO Imm Corr objective (0.75 NA) and a 63x HCX PL 

APO immersion oil objective (1.4 NA). The pinhole was set to 1 Airy unit for each channel. 

Illumination and detection pathways were separated for each fluorophore, and individual 

color channels were sequentially acquired to avoid bleed-through artifacts. The acquisition 

settings were adjusted to cover the entire dynamic range of detectors and remained 

unchanged during the course of the imaging process. Four laser lines were used for 

visualization. DyLight 405, Alexa 488, Cy3 and Alexa 647 were excited by an UV laser 

line, an Ar-Ion-Laser line of 488 nm, the single DPSS 561 nm laser line, and HeNe single 

laser line of 633 nm, respectively. Z-stacks of confocal images were obtained, and maximal 

projections of 4 to 6 single optical sections were used for high magnification figures. Stacks 

of confocal images were analyzed and processed using ImageJ (NIH, USA). 
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6  Results 

Statement of involvement 

The results are divided into three individual projects. Not all data were obtained by me, 

Franziska Caspari. Therefore, a statement of involvement of which experiments I 

performed is given here. 

Part 1: Characterization of the VNLL 

I performed all electrophysiological experiments in the dVNLL and some in the vVNLL. 

The remaining electrophysiological data were obtained by Dr. Veronika Baumann, and 

immunostainings were done by Dr. Elisabet Garcia-Pino. I performed the analysis of all 

data that I obtained. 

Part 2: Development of the calyx-like synapse in the VNLL 

I performed all experiments and analyses in this part. 

Part 3: The impact of deafness on intrinsic and neuronal development in the VNLL 

I performed all experiments and analyses in this part. 
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6.1  Part 1 – Characterization of the VNLL  

We are interested in investigating the VNLL because it may play an important role in the 

analysis of acoustic temporal features found in speech (Aitkin et al. 1970; Covey and 

Casseday 1991; Recio-Spinoso and Joris 2014). In the first part of this thesis, we 

characterize the VNLL along its ventrodorsal axis, since this has not been systematically 

achieved in previous studies. We aim to identify similarities and differences in intrinsic and 

synaptic properties of the VNLL. Furthermore, the margins of the VNLL – especially of 

the dorsal VNLL – are still unclear, and we wish to define them through an 

electrophysiological approach.  

 

6.1.1  Intrinsic properties differ between neurons of the dorsal and the 

ventral parts of the VNLL 

Neuron types are largely determined by their biophysical membrane properties, which are 

dependent on the composition of ion channels in the membranes. To find out whether there 

is a systematic distribution of neuronal cell types across the VNLL, we analyzed intrinsic 

membrane properties with respect to their location within the VNLL in a brain slice 

preparation of young adult mice (P22–23). 

The VNLL is an elongated structure with ventral and dorsal areas that are enriched with 

neurons (Figure 9A). In ventral VNLL (vVNLL) neurons, depolarizing current injections 

elicited an onset-type firing pattern in 34 out of 37 samples (Figure 9B). In the remaining 

three neurons, depolarization induced an onset-burst firing pattern (data not shown). In all 

vVNLL neurons, a negative current injection led to a large hyperpolarization followed by 

a slowly depolarizing voltage sag. In the dorsal part of the VNLL (dVNLL), positive 

current injections induced either an onset-type firing pattern (n=19) or a sustained firing 

pattern (n=9; Figure 9C). In onset-type firing neurons, negative current injections induced 

a small hyperpolarization which repolarized rapidly. In sustained-firing neurons, the 

hyperpolarization was more pronounced with a prominent voltage sag. Onset-type firing 

neurons of the vVNLL and dVNLL significantly differed in their resting membrane 

potential, their membrane time constant, and their input resistance (Figure 9D–F; Table 2). 

Onset-type firing neurons of the dVNLL were fastest and exhibited the smallest peak input 
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resistance, suggesting different subpopulations of onset-type firing neurons in the vVNLL 

and dVNLL. 

 

Figure 9: Intrinsic properties differ between vVNLL and dVNLL neurons. A. Low-power 

image with VGluT1-labeling illustrates the relative location of the VNLL within the auditory 

brainstem. The dorsal and ventral parts of the VNLL (dVNLL and vVNLL, respectively) are 

marked with a dashed line to show the respective recording sites. Scale bar: 200 µm. B. 

Representative voltage responses to hyperpolarizing and depolarizing current injections 

recorded from vVNLL neurons. Depolarizing current injections elicited an onset-type firing 

pattern in vVNLL neurons. C. Depolarizing current injections elicited different types of firing 

patterns in dVNLL neurons: onset-type (left) and sustained (right) firing pattern. D. Resting 

potential is significantly different between all neuronal subtypes. Ventral onset: n=34; dorsal 

onset: n=19; dorsal sustained: n=9. E. Membrane time constant is significantly different between 

onset-firing neurons and between dorsal neurons. A single-exponential function is fitted to the 

first few milliseconds of the voltage response to a current injection of -100 pA; tau is extracted. 

F. Input resistance is significantly different between onset firing ventral and dorsal neurons.  

All data sets were tested for normality and homogeneity of variance, and according to the result, 

statistical significance was determined by a non-parametric Kruskal-Wallis test followed by either 

a Tukey’s or Games-Howell post hoc test.  

Significant differences are labeled with * (P<0.05), ** (P<0.01), and *** (P<0.001). 
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Figure 10: Heterogenous firing properties differ between neurons of the dVNLL and 

vVNLL. A. Representative expanded voltage traces recorded from a vVNLL neuron (left) and 

from dVNLL neurons (middle: onset; right: sustained) during the first suprathreshold depolarizing 

current injection. B. Overlap of all first suprathreshold action potentials shown in A. C. Schematic 

diagram illustrating the analysis of the active membrane properties. The first action potential (AP) 

elicited by the lowest current injection was used for analysis. D. Current threshold eliciting the 

first action potential for vVNLL and dVNLL neurons. Significant differences are given for onset-

firing neurons between ventral and dorsal parts and between onset- and sustained-firing neurons 

of the dorsal part. E. Voltage threshold is significantly different between onset-firing neurons of 

vVNLL and dVNLL neurons. F. AP amplitude is significantly different in sustained-firing neurons 

compared to onset-firing subtypes of both the vVNLL and dVNLL. G. AP half-width of the first 

elicited AP for vVNLL and dVNLL neurons.  

vVNLL onset-type neurons: n=34; dVNLL onset-type neurons: n=19; and dVNLL sustained: n=9. 

All data sets were tested for normality and homogeneity of variance, and according to the result, 

statistical significance was determined by a non-parametric Kruskal-Wallis test followed by either 

a Tukey’s or Games-Howell post hoc test.  

Significant differences are labeled with * (P < 0.05), ** (P < 0.01), or *** (P < 0.001).  
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We next analyzed active membrane properties of the different VNLL cell types at the first 

suprathreshold response (Figure 10A). Onset-firing neurons of the ventral and the dorsal 

regions differed significantly in current and voltage threshold, whereas sustained-firing 

neurons of the dorsal part displayed differences from onset-type firing neurons of both 

regions regarding AP amplitude (Figure 10D-F; Table 2). Sustained-firing neurons of the 

dVNLL had the lowest current threshold and largest AP amplitudes, while onset-type firing 

cells of the same region had the highest current threshold of all neurons measured (Figure 

10D–F; Table 2). The AP half-width did not differ between vVNLL and dVNLL neurons 

(Figure 10G; Table 2). 

We conclude that the dVNLL consists of two different subpopulations of neurons with 

distinct intrinsic membrane properties. The population of vVNLL neurons, however, seems 

to be fairly uniform in its intrinsic properties.  

 

Table 2 |  Summary of membrane properties of dVNLL and vVNLL neurons  

Values are mean ± SEM. The level of significance between ventral and dorsal was 

determined using Scheffé’s post hoc test following a single-factor ANOVA test (* P< 0.05, 

** P<0.01, *** P<0.001).  

a: significant differences between dVNLL onset-type and dVNLL sustained-firing neurons 

b: significant differences between dVNLL sustained-firing and vVNLL neurons  

c: significant differences between vVNLL and dVNLL onset-type firing neurons 

n.s.: not significant 

 Ventral  Dorsal P 
 onset  

(n=34) 
 onset  

(n=19) 
sustained  

(n=9) 
 

Passive membrane properties       

resting potential (mV) -64.5 ± 0.4  -60.6 ± 0.9 -62.1 ± 1.4 *a;*b;***c
 

input resistance (MΩ) 151.7 ± 43.8  43.8 ± 6.3 111.4 ± 19.4 ***c  

membrane time constant (ms) 5.36 ± 0.51  2.41 ± 0.29 7.31 ± 1.30 ***a; **c  

Active membrane properties 
     

current threshold (pA) 
376.5 ± 19.4  500.0 ± 33.3 266.7 ± 50.0 ***a; *c

 

voltage threshold (mV) -36.7 ± 0.6  -33.5 ± 1.2 -34.5 ± 1.1 *c 

AP amplitude (mV) 58.7 ± 0.9  56.6 ± 2.0 66.7 ± 2.6 **a; *b
 

AP half-width (ms) 0.47 ± 0.03  0.46 ± 0.03 0.39 ± 0.02 n.s 

 



6 Results 

 

60 

 

6.1.2   VNLL neurons have large hyperpolarization-activated currents 

(Ih) compared to ventral VNLL neurons 

Differences in the resting membrane potential and the dorsal voltage sag induced by 

hyperpolarization in dorsal and ventral VNLL neurons indicate a differential distribution 

of HCN channels between the two parts. Our electrophysiological measurements of Ih in 

different parts of the VNLL revealed only small Ih amplitudes in the vVNLL (Figure 11A, 

left), whereas Ih amplitudes were large in dVNLL neurons (Figure 11A, right). 

Consequently, Ih density was significantly larger in dVNLL neurons compared with 

vVNLL neurons (at -110.5 mV vVNLL: -24.0 ± 3.4 pA/pF, n=13; dVNLL: -84.3 ± 12.9 

pA/pF, n=12; student’s unpaired t-test, P=0.0006: Figure 11B, C). Half-maximal activation 

voltage for HCN channels in the dVNLL was -88.3 ± 3.0 mV (n=10, Figure 11D), while 

tail currents evoked in vVNLL neurons were too small to be reliably analyzed. 

Consistently, immunostainings against the HCN1 subunit revealed that this subunit is 

strongly expressed in the dVNLL, whereas neurons in the vVNLL are mostly HCN1 

negative (Figure 11E1–3), indicating that HCN1 channels are the predominant isoform in 

dVNLL neurons. 

Neurons in the vVNLL all have onset-type firing patterns, little Ih, and relatively large input 

resistance during hyperpolarization. By contrast, all dVNLL neurons have large Ih currents 

and small input resistance, which results in short membrane time constants during 

hyperpolarization. 

 

6.1.3  Lateral vVNLL neurons have extremely large excitatory 

postsynaptic currents 

We were further interested in discovering to what extent the excitatory and inhibitory input 

properties differ between the two regions. Inputs were stimulated in the fiber bundle about 

50 µm ventral to the recorded neuron, and EPSCs were isolated pharmacologically. 

Stimulation intensity was systematically increased to estimate the number of input fibers 

(=step number; see Chapter 5 “Material and methods”). During these experiments, we 

noticed that the vVNLL can be subdivided into two neuronal populations based on the 

estimated number and peak amplitude of excitatory inputs the neurons received. A large 

population of  vVNLL  neurons  located in a cluster lateral to the fiber bundle all exhibited  
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Figure 11: Dorsal VNLL neurons have larger hyperpolarization-activated currents (Ih) and 

stronger HCN1 immunoreactivity. A. Representative current traces recorded from vVNLL (left) 

and dVNLL (right) neurons to voltage steps ranging from -40 to -120 mV in 5 mV step increments. 

Each voltage step lasted for 1 s and was followed by a voltage step to -100 mV for 0.5 s to elicit 

the tail current to determine the voltage dependence of Ih activation. Holding potential was set to 

-70 mV. B. Current density-voltage relationship for dVNLL and vVNLL neurons. Current 

amplitudes were measured at steady-state (indicated by the asterisk in A). Rectangular labeling 

exemplified in C. C. Current density at -110 mV for vVNLL and dVNLL neurons is significantly 

different. vVNLL: n=12; dVNLL: n=13. D. The voltage-dependence of Ih-activation was 

determined from the tail current 20 ms after the end of the voltage steps (indicated by the arrow 

in A). Values were fitted with a Boltzmann function. Half-maximal activation voltage for dVNLL 

neurons was at around -88 mV (n=10). Half-maximal voltage of vVNLL neurons is not shown 

because almost no current is present. Data are obtained from eight C57/Bl6J mice. E. Confocal 

images of HCN1 immunostaining in the VNLL. E1. Overview illustrating a gradient of HCN1 

staining in the VNLL. E2. High magnification of a region within the vVNLL reveals that HCN1 

staining is almost absent. E3. High magnification of a region within the dVNLL shows strong 

HCN1 staining confined to the membrane. Same scale as in E2. Scale bar: E1 (200 µm); E2 (20 

µm). (Continued on page 62) 

All data sets were tested for normality and homogeneity of variance, and according to the result, 

statistical significance was determined by an unpaired student’s t-test. 

Significant differences are labeled with *** (P < 0.001). 

 

 

-100

-80

-60

-40

-20

0

 c
u

rr
e

n
t 

d
e

n
s

it
y

 (
p

A
)

ventral dorsal

1.0

0.8

0.6

0.4

0.2

0.0

 (
I-

Im
in

)/
(I

m
a

x
-I

m
in

)

-100 -80 -60 -40

 voltage (mV)

200ms

1
n

A

A

DB C

vVNLL dVNLL

***

200ms

1
n

A

-70 mV -70 mV

-100 mV

-150

-100

-50

0

50

 c
u

rr
e

n
t 

d
e

n
s

it
y

 (
p

A
)

-100 -80 -60 -40

 voltage (mV)

ventral 

dorsal 

HCN1

dVNLL

vVNLL

F1 E3E2

E2

E3

E1

*

c
u

rr
e

n
t 

d
e

n
s

it
y
 (

p
A

/p
F

) 

c
u

rr
e

n
t 

d
e

n
s

it
y
 (

p
A

/p
F

) 

-110     -90     -70     -50 

          voltage (mV) 

 

-110     -90     -70     -50 

          voltage (mV) 

 



6 Results 

 

62 

 

 

Figure 11 continued:  

All data sets were tested for normality and homogeneity of variance, and according to the result, 

statistical significance was determined by an unpaired student’s t-test.  

Significant differences are labeled with *** (P < 0.001).  
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Figure 12: Excitatory postsynaptic currents are larger and the excitatory inputs are 

stronger in vVNLL neurons. A1. Representative EPSC traces of ventrolateral (left) and 

ventromedial (right) VNLL neurons. Responses were evoked by increasing stimulation 

strength. One strong input was found in most ventrolateral neurons, whereas medial neurons 

(Continued on page 63)  
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an all-or-none EPSC response with extremely large amplitudes irrespective of stimulation 

strength (Figure 12A1–A2; left). This was different in the ventromedial part of the VNLL, 

where neurons are scattered within the fiber bundle. There, the EPSC amplitude gradually 

increased with rising stimulation strength, which indicates a convergence of several input 

fibers (Figure 12A1–A2; right). Step number and maximally evoked EPSC amplitude 

differed significantly between ventrolateral and ventromedial VNLL neurons (Figure 12C, 

D; Table 3). Excitatory input properties of neurons in the dVNLL very much resembled 

those found in the medial neurons of the vVNLL (Figure 12B1–B2; Table 3). Moreover, 

10–90% rise time and tau decay time of EPSCs were much faster in ventrolateral than in 

ventromedial and dorsal neurons (Figure 12E; Table 3). We reanalyzed membrane 

properties according to their mediolateral location in the vVNLL. Nevertheless, membrane 

properties were very similar in medial and lateral VNLL neurons, despite the profound 

differences in excitatory input characteristics (resting membrane potential: ventrolateral       

-64.4 ± 0.4 mV, n=29; ventromedial -65.2 ± 0.8 mV, n=5; input resistance: ventrolateral     

-150.0 ± 17.3 MΩ; ventromedial -158.8 ± MΩ; membrane time constant: ventrolateral 5.30 

± 0.58 ms; ventromedial 5.71 ± 1.11 ms; data not shown). These physiological findings 

were corroborated by a differential distribution of VGluT1 and calretinin-positive 

presynaptic structures in different parts of the VNLL. Whereas in the ventrolateral VNLL 

 Figure 12 continued: showed multiple inputs. All traces represent the average of at least 

three consecutive recordings to the same stimulus strength. A2. EPSC amplitude as a function 

of stimulus number recorded from ventrolateral and ventromedial vVNLL neurons shown in A1. 

B1. Representative EPSC traces of dVNLL neurons. Responses were evoked with increasing 

stimulation strength. This neuron shows seven distinct current steps. Note the considerably 

smaller maximal amplitude compared with ventrolateral VNLL neurons. All traces represent the 

average of at least three consecutive recordings to the same stimulus strength. B2. EPSC 

amplitude as a function of stimulus number recorded from the dVNLL neuron shown in B1. C. 

Number of EPSC steps evoked by increasing stimulation strength in vVNLL and dVNLL 

neurons. Ventrolateral VNLL neurons generally receive one, maximally two excitatory inputs, 

whereas ventromedial and dVNLL neurons receive one to seven inputs. vVNLL: lateral n=8, 

medial n=8; dVNLL n=7. D. Maximal EPSC amplitude is significantly larger in ventrolateral 

vVNLL neurons. E. Rise time (left) and tau decay time (right) were measured in vVNLL and 

dVNLL neurons applying a minimal stimulation paradigm. Ventrolateral neurons are 

significantly faster than dVNLL neurons. F. Confocal images depicting VGlut1, calretinin (CR), 

and MAP-2 immunofluorescence in the lateral vVNLL (F1), the medial vVNLL (F2), and the 

dVNLL(F3). Note a VGluT1 and calretinin-positive ring found only around lateral vVNLL 

neurons (F1: long arrow), whereas punctate VGluT1-staining in the neuropil is widely distributed 

along the VNLL (F1–F3). Scale bar: 10 µm. 

All data sets were tested for normality and homogeneity of variance, and according to the result, 

statistical significance was determined by a single-factor ANOVA test followed by a Scheffé’s 

post hoc test. Significant differences are labeled with * (P < 0.05), ** (P < 0.01), or *** (P < 

0.001).  
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a distinct perisomatic VGluT1-positive ring, colocalized with calretinin, was detected 

around the somata (Figure 12F1), in both the ventromedial VNLL and the dorsal VNLL 

VGluT1-staining appeared scattered in the neuropil, presumably representing dendritic 

inputs (Figure 12F2–F3). This implies that neurons in the ventrolateral VNLL receive one 

large excitatory synapse with calyx-like properties similar to MNTB neurons. In contrast, 

medioventral and dorsal VNLL neurons integrate several excitatory inputs with smaller 

amplitudes that terminate predominantly on the dendrites. 

 

6.1.4  Inhibitory postsynaptic currents are similar in all vVNLL neurons 

We were also interested in whether inhibitory input characteristics differ between the 

various subregions of the VNLL (Figure 13A1, A2, B1, and B2). In all three regions of the 

VNLL, the number of inhibitory inputs was very similar (Figure 13C; Table 3). In 

accordance with the excitatory input strength, maximal inhibitory input amplitude was 

larger in ventrolateral neurons compared with other VNLL areas (Figure 13D; Table 3), 
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but values did not reach the level of significance. The temporal characteristics of inhibitory 

inputs were very similar in all parts of the VNLL (Figure 13E; Table 3). 

Taken together, we determine that VNLL neurons exhibit similar inhibitory synaptic 

responses, suggesting a common origin of these inputs. 

 

6.1.5  Synaptic short-term plasticity of excitatory and inhibitory inputs is 

similar in vVNLL and dVNLL neurons 

We further characterized short-term plasticity (STP) of excitatory and inhibitory synapses 

in vVNLL and dVNLL neurons (15 stimuli at 1, 50, 100, 200, and 300 Hz). All excitatory 

and inhibitory inputs to VNLL neurons showed pronounced synaptic short-term depression 

that depended on the stimulation frequency (Figure 14A–B and D–E). In order to compare 

synaptic short-term depression of vVNLL and dVNLL neurons, the steady-state depression 

as a function of stimulus frequency is illustrated in Figure 14C and F. For both EPSCs and 

IPSCs, steady-state depression did not differ between vVNLL and dVNLL neurons for 

almost any stimulus frequency. Only for stimulation frequencies of 100 Hz steady-state 

depression of EPSCs was significantly smaller for vVNLL compared to dVNLL neurons 

(vVNLL: 50 ± 7%; dVNLL: 68 ± 5%, *P<0.05, unpaired student’s t-test). This is a further 

indication that excitatory inputs differ between the ventrolateral region and the other 

regions of the VNLL, whereas inhibitory input properties are very similar amongst neurons 

in the entire VNLL. 

 

 

 Figure 13: Inhibitory inputs are similar in vVNLL and dVNLL neurons. A1. Representative 

IPSC traces of ventrolateral (left) and ventromedial (right) VNLL neurons. Responses were 

evoked by increasing stimulation strength. Multiple inputs were found in both ventrolateral and 

ventromedial neurons. All traces represent the average of at least three consecutive recordings 

to the same stimulus strength. A2. IPSC amplitude as a function of stimulus number recorded 

from the ventrolateral and ventromedial vVNLL neurons shown in A1. B1. Representative IPSC 

traces of dVNLL neurons. Responses were evoked by increasing stimulation strength. This 

neuron shows four distinct current steps. All traces represent the average of at least three 

consecutive recordings to the same stimulus strength. B2. IPSC amplitude as a function of 

stimulus number recorded from the dVNLL neuron shown in B1. Multiple current steps can be 

seen. C. Number of IPSC steps evoked by increasing stimulation strength in vVNLL and dVNLL 

neurons. VNLL neurons receive two to three inputs. vVNLL: lateral n=10, medial n=8; dVNLL 

n=12. D. Maximal IPSC amplitude is similar in all VNLL regions. E. Rise time (left) and tau decay 

time (left) were measured in vVNLL and dVNLL neurons, applying a minimal stimulation 

paradigm. vVNLL: lateral: n=16; medial: n=10; dVNLL: n=14.  
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Figure 14: Synaptic short-term plasticity of excitatory and inhibitory inputs is similar 
in vVNLL and dVNLL neurons. A. Representative EPSC traces in response to 15 
stimulations at 100 Hz, illustrating short-term plasticity in ventrolateral (top) and dorsal 
(bottom) VNLL neurons. Net amplitudes at high frequencies were calculated by fitting a 
decay function (red trace in D) to the preceding current pulse, which was used to set a 
new baseline. The amplitude of the respective pulse was measured as a subtraction of the 
maximum and the new baseline (illustrated as red arrow in D). Same procedure was used 
for excitatory and inhibitory trains. B. Normalized EPSC amplitudes for 100 Hz stimulus in 
ventrolateral and dorsal VNLL neurons. C. Steady-state depression of EPSCs in 
ventrolateral and dorsal VNLL neurons. Steady-state depression is significantly different 
between vVNLL and dVNLL neurons for 100 Hz. D. Representative IPSC traces in 
response to 15 stimulations at 100 Hz ,illustrating short-term plasticity in ventrolateral (top) 
and dorsal (bottom) VNLL neurons. E. Normalized IPSC amplitudes for 100 Hz stimulus in 
ventrolateral and dorsal VNLL neurons. F. Steady-state depression of IPSCs in 
ventrolateral and dorsal VNLL neurons. 
EPSCs: vVNLL: n=9, dVNLL: n=9; IPSCs: vVNLL: n=11, dVNLL: n=12. 

 
All data sets were tested for normality and homogeneity of variance, and according to the 
result, statistical significance was determined by an unpaired student’s t-test. Significance 
is labeled with * (P<0.05). 
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Table 3 |  Summary of synaptic properties of dVNLL and vVNLL neurons of 

C57Bl/6J mice 

Values are mean ± SEM. The level of significance between ventral and dorsal was 

determined using Scheffé’s post hoc test following a single-factor ANOVA test or Games 

Howell post hoc test following Kruskal-Wallis for non-parametric distributions (* P<0.05, ** 

P<0.01, *** P<0.001).  

a: significant differences between lateral and medial neurons of the VNLL 

b: significant differences between dVNLL and lateral vVNLL neurons 

n.s.: not significant 

  Ventral  Dorsal  

  Lateral Medial   P 

 Excitatory postsynaptic currents     

 Estimated fiber # 1.13 ± 0.13 (8) 3.00 ± 0.46 (8)  3.85 ± 0.63 (7) *a; **b
 

 Maximal current (nA) 11.47 ± 1.48 (8) 2.39 ± 0.45 (8)  1.66 ± 0.76 (7) ***a; ***b 

 10–90% rise time (ms) 0.18 ± 0.01 (9) 0.40 ± 0.08 (8)  0.44 ± 0.04 14) *a; **b 

 Tau decay (ms) 0.31 ± 0.01 (9) 1.24 ± 0.37 (8)  1.63 ± 0.24 (14) **b 

       

 Inhibitory postsynaptic currents     

 Estimated fiber # 2.70 ± 0.26 (10)  2.38 ± 0.26 (8)  2.58 ± 0.36 (12) n.s. 

 Maximal current (nA) 5.95 ± 1.03 (10) 2.80 ± 1.08 (8)  2.80 ± 0.81 (12) n.s. 

 10–90% rise time (ms) 0.37 ± 0.02 (16) 0.49 ± 0.07 (10)  0.48 ± 0.07 (14) n.s. 

 Tau decay (ms) 2.47 ± 0.17 (16) 1.88 ± 0.11 (10)  3.06 ± 0.68 (14) n.s. 

 

6.1.6  Neurons in the dorsal and ventral VNLL are all inhibitory 

To test whether the neurons we recorded from were inhibitory and therefore part of the 

VNLL, we recorded from neurons of VGAT-ChR2-YFP+ mice. We tested the transmitter 

phenotype of neurons in both the vVNLL and dVNLL by applying short pulses of white 

light onto the slice while recording the membrane potential. All VNLL neurons, in both the 

dorsal and ventral parts, showed a pronounced depolarization in response to the light 

stimulus (Figure 15A, B, and D). The amplitude of the depolarization varied depending on 

the input resistance of the neuron (vVNLL: 3.8 ± 0.8 mV, n=6; dVNLL: onset-type 2.2 ± 

0.4 mV, n=9, sustained 8.8 ± 2.3 mV, n=6; INLL: -1.4 ± 0.4 mV, n=8; Figure 15D). A 

population of small neurons in between our region of interest (dVNLL) and the DNLL did 

not depolarize during light application (Figure 15C and D). We therefore consider this 
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population to be glutamatergic and, according to Ito et al. (2011), to be INLL neurons, 

whereas our sample of neurons exhibits an inhibitory neurotransmitter type and thus is 

located within the VNLL. 

Figure 15: Both vVNLL and dVNLL 
neurons are inhibitory. A. 
Representative voltage trace of a vVNLL 
neuron to light stimulation (indicated by 
the black bar). The neuron depolarizes in 
response to the light pulse. The inset 
depicts the corresponding firing pattern 
of the neuron. B. Representative voltage 
traces of an onset-type and a sustained-
firing dVNLL neuron to light stimulation 
(indicated by the black bar). Both 
neurons depolarize in response to the 
light pulse. The insets illustrate the 
corresponding firing patterns of the 
respective dVNLL neuron. C. 
Representative voltage trace of an INLL 
neuron to light stimulation (indicated by 
the black bar). The inset depicts a 
representative IV curve for INLL neurons. 
D. Voltage deflection in response to light 
stimulation in VNLL and INLL neurons 
(vVNLL: n=6, dVNLL: sustained n=6, 
onset-type n=9; INLL: n=8). Scale bar 
insets: 200ms, 20mV. 
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6.2  Part 2 – Development of the calyx-like synapse in the 

VNLL 

In Part 1 of this thesis, we found that the VNLL consists of three distinct regions differing 

in their firing patterns and synaptic inputs. The ventrolateral part in particular, from now 

on referred to as vVNLL, showed some very unique features such as neurons that fire 

exclusively in an onset-type manner and, moreover, have an interesting excitatory synaptic 

innervation. Neurons located in this ventrolateral cluster receive large calyx-like inputs that 

are comparable to MNTB innervation patterns (Borst et al. 1995; von Gersdorff and Borst 

2002). Although previous studies demonstrated that VNLL neurons receive these large 

inputs ascending from the octopus cell region in the PVCN (Adams 1997; Schofield and 

Cant 1997; Felix Ii et al. 2017), it was novel that, at least in mice, these neurons are 

organized in a cluster located in the ventrolateral part and that the dorsal VNLL and 

medioventral VNLL neurons showed especially distinct neuronal properties. Part 2 of this 

thesis focuses on the development of the calyx-like synapse in the vVNLL. We were 

interested in investigating when these neuronal particularities advance during development. 

 

6.2.1  NMDA-current components of vVNLL neurons undergo a 

significant reduction during development 

 

We were interested how AMPA and NMDA receptors are involved in neurotransmission 

during development and how the different current components change during the formation 

of mature synaptic properties. 

The AMPA receptor-mediated currents were measured by pharmacological blockage of 

inhibitory current components (GABAergic and glycinergic currents) with SR95531 and 

strychnine in the ACSF. Neurons were voltage-clamped to -60 mV to avoid the opening of 

NMDA-receptors. A glass electrode was placed approximately 50 µm ventral to the 

recording site to electrically stimulate vVNLL neurons. In order to measure NMDA 

receptor-mediated currents, AMPA receptors were also pharmacologically blocked by 

DNQX, and the neuron was clamped to +40 mV.  
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Figure 16: AMPA and NMDA components of vVNLL neurons in Bl6 mice at P10, P13, and 
P22 undergo significant changes in size and time constants during development. A. AMPA 
and NMDA receptor-mediated currents of a representative P10 (left), P13 (middle), and P22 (right) 
animal. B. Normalized AMPA components of neurons shown in A. C. Normalized NMDA 
component of neurons shown in A. D. Charge ratios of NMDAR/AMPAR-mediated currents of all 
measured neurons (P10: n=11, P13: n=12, P22: n=11). Significant differences are found between 
all age groups. E. AMPA-component rise time of all measured neurons. Rise times are significantly 
different between all age groups. F. NMDA-component rise time of all measured neurons. G. 
AMPA-component tau decay in all measured neurons. Tau decay times of P10 animals are 
significantly slower than in both older age groups. H. NMDA-component tau decay in all measured 
neurons. Tau decay times of P10 animals are significantly slower than in P23. 

 
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by a non-parametric Kruskal-Wallis test followed by either 
a Tukey’s or Games-Howell post hoc test. Significant differences are labeled with * (P < 0.05), ** 
(P < 0.01), or *** (P < 0.001).  
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Figure 16A displays representative current traces of AMPA and NMDA receptor-mediated 

currents of P10, P13, and P22 animals. The P10 animals exhibited a much larger NMDA 

component, while their AMPA component was smaller than in P13 and P22 animals. The 

NMDA component was dramatically reduced less than two weeks after hearing onset. The 

normalized AMPA (Figure 16B) and NMDA (Figure 16C) receptor-mediated current traces 

of all age groups illustrate the different receptor kinetics analyzed in Figure 16E–H. 

Furthermore, we wished to compare the charge that is transmitted by these two current 

components, since NMDA receptors exhibited slow receptor kinetics, whereas AMPA 

receptors had much faster kinetics (Figure 16E–H; Table 4), and the charge resembled a 

clearer view on the actual current flux through the receptors. Therefore, we calculated the 

charge transmitted by NMDA and AMPA receptors and related them by determining the 

ratio of both charges. The results are depicted in Figure 16D (see also Table 4). Here, all 

age groups were significantly different from one another. A gradual decrease of the NMDA 

component is clear. In addition, rise times of the AMPA receptor-mediated current 

component decreased significantly after hearing onset and remained similar afterwards 

(Figure 16E), while the NMDA receptor rise times sped up only later in development 

(Figure 16F; Table 4). Furthermore, tau decays of AMPA receptors developed faster 

kinetics at P22 compared with both younger age groups (Figure 16G; Table 4). Tau decays 

of the NMDA component, however, decreased gradually during development, creating a 

significant difference only between P10 and P22 animals (Figure 16H; Table 4). 

Altogether, a drastic change of AMPA and NMDA components takes place during 

development. Not only does the size of the NMDA receptor-mediated current decrease 

significantly while the AMPA receptor-mediated component increases, but receptor 

kinetics also undergo developmental reduction and become significantly faster. 
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Table 4 |  Summary of AMPAR- and NMDAR-mediated currents of vVNLL 

neurons of P10, P13, and P22 Bl6 mice 

Values are mean ± SEM. The level of significance between groups was calculated with a 

Kruskal-Wallis test followed by Games-Howell or Tukey’s post hoc tests (* P<0.05, ** 

P<0.01, *** P<0.001).  

a: significant differences between P10 and P13 animals 

b: significant differences between P10 and P22 animals 

c: significant differences between P13 and P22 animals 

n.s.: not significant 

  P10 P13  P22  

  n=11 n=12 n=11 P 

 Ratio chNMDA/chAMPA 8.43 ± 1.75 4.77 ± 0.94 1.79 ± 0.41 *a; ***b; *c 

      

 AMPA     

 Rise time (ms) 0.33 ± 0.03 0.21 ± 0.01 0.19 ± 0.01 ***a; ***b; *c 

 Tau decay (ms) 0.89 ± 0.08 0.46 ± 0.04 0.31 ± 0.01 **a; ***b  

      

 NMDA     

 Rise time (ms) 3.57 ± 0.46 3.29 ± 0.23 2.69 ± 0.34 n.s. 

 Tau decay (ms) 51.8 ± 8.8 45.1 ± 5.9 26.3 ± 4.1 *b 

 

6.2.2  Calyx-like excitatory inputs develop in the vVNLL around hearing 

onset in mice 

We were further interested in how the development of excitatory postsynaptic currents in 

Bl6 animals progresses and whether synapse refinement is comparable to the early 

emergence found in calyx of Held synapses in the MNTB (Hoffpauir et al. 2006; Nakamura 

and Cramer 2011). The calyx of Held is already formed at P2, and only the shape is 

differentiated after that. To measure the strength of synaptic inputs and calculate receptor 

rise and decay times, we stimulated in the fiber bundle about 50 µm ventral to the recorded 

neuron, and EPSCs were isolated pharmacologically. To estimate the number of fiber 

inputs, the stimulation intensity was gradually increased. We assume that each stepwise 

increase of EPSC amplitude as a response to a stimulation increment reflects the activation 

of additional synaptic inputs. Figure 17A1 illustrates a P10 example. In this example, three 

distinct EPSC current steps to a gradual increase of stimulation strength were found. This 

indicates the existence of three excitatory synaptic inputs to this specific vVNLL neuron. 
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Neurons of the vVNLL of P10 animals were innervated by one to seven fibers (Figure 

17A1–A2 and E; Table 5). More than 80% of the recorded neurons exhibited more than 

one input (Figure 17E; Table 5). In neurons of P13 animals, however, a maximum of 

presumably two excitatory inputs was found (Figure 17B1–B2 and E; Table 5). The 

innervation pattern of neurons of P22 animals was similar compared with animals at P13, 

suggesting that synapse refinement takes place shortly after hearing onset (Figure 17C1–

C2 and E; Table 5). Normalized EPSCs of the representative neurons of P10, P13, and P22 

animals illustrated in Figure 17A, B, and C are displayed in Figure 17D. The differences in 

time constants between the age groups are especially clear. Significantly fewer neurons had 

two excitatory inputs in P13 and P22 animals compared with P10 animals (Figure 17E; 

Table 5). In addition, the maximally evoked postsynaptic current was significantly smaller 

in P10 animals (Figure 17F; Table 5). Furthermore, reduction of 10–90% rise times and tau 

decay times of EPSCs occurred still after P13, although the refinement of synaptic inputs 

was already completed, resulting in a significant difference between all age groups (Figure 

17G; Table 5).  

We conclude that during the development of the vVNLL, only neurons with one or 

maximally two excitatory synaptic inputs remain, and the duration of the postsynaptic 

response is significantly shortened due to an acceleration of postsynaptic AMPA receptors. 

Table 5 |  Summary of excitatory postsynaptic currents (EPSCs) of vVNLL 

neurons of P10, P13, and P22 Bl6 mice 

Values are mean ± SEM. The level of significance between groups was calculated with a 

Kruskal-Wallis test followed by Games-Howell or Tukey’s post hoc tests (* P<0.05, ** 

P<0.01, *** P<0.001).  

a: significant differences between P10 and P13 animals 

b: significant differences between P10 and P22 animals 

c: significant differences between P13 and P22 animals 

  P10 P13  P22  

  n=21 n=14 n=16 P 

 Estimated fiber # 3.38 ± 0.41 1.07 ± 0.07 1.19 ± 0.10 ***a; ***b
 

 Maximal current (nA) 4.66 ± 0.84 7.28 ± 0.66 9.65 ± 1.20 *a; ***b 

 Average step size (nA) 2.37 ± 0.71 6.81 ± 0.68 8.20 ± 1.04 **a; ***b 

 10–90% rise time (ms) 0.42 ± 0.04 0.21 ± 0.01 0.18 ± 0.00 **a; **b; **c 

 Tau decay (ms) 0.93 ± 0.13 0.43 ± 0.03 0.30 ± 0.01 **a; ***b; **c 
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Figure 17: Excitatory postsynaptic currents (EPSC) of vVNLL neurons in Bl6 mice at P10, 
P13, and P22 reduce the number of synaptic inputs while increasing synaptic strength in 
combination with faster time constants during development. A1. Average evoked current 
responses to increasing stimulation strengths of a representative P10 vVNLL neuron. All traces 
represent the average of at least five consecutive recordings to the same stimulation strength. 
Three distinct current steps are visible (arrows). A2. EPSC amplitude as a function of stimulus 
number recorded from a P10 vVNLL neuron shown in A1. The respective stimulation strength 
is color coded. B1. Average evoked current responses to increasing stimulation strengths of a 
representative P13 vVNLL neuron. All traces represent the average of at least five consecutive 
recordings to the same stimulation strength. One distinct current step is visible. B2. EPSC 
amplitude as a function of stimulus number recorded from a P13 vVNLL neuron shown in B1. 
The respective stimulation strength is color coded. C1. Average evoked current responses to 
increasing stimulation strengths of a representative P22 vVNLL neuron. All traces represent the 
average of at least five consecutive recordings to the same stimulation strength. One distinct 
current step is visible. C2. EPSC amplitude as a function of stimulus number recorded from a 
P22 vVNLL neuron shown in C1. The respective stimulation strength is color coded. D. 
Normalized maximal EPSC traces from P10 (light gray), P13 (dark gray), and P22 (black) as 
shown in A, B, and C. E. Estimated number of EPSC steps evoked by an increasing stimulation 
strength in vVNLL neurons of P10, P13, and P22 animals is significantly larger in P10 animals 
compared with both older age groups. P10: n=21, P13: n=14, P22: n=16. F. EPSC maximal 
amplitude of all recorded vVNLL neurons. Amplitudes in P10 animals are significantly smaller 
than in either older age group. G. EPSC 10–90% rise time (left) and tau decay time (right) of all 
recorded vVNLL neurons. Rise and decay times were significantly different between all age 
groups. For calculating tau decay, a single exponential function was fitted to the decay of the 
current response.  
 
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by a non-parametric Kruskal-Wallis test followed by a 
Games-Howell post hoc test. Significant differences are labeled with * (P < 0.05), ** (P < 0.01), 
or *** (P < 0.001).  
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6.3  Part 3 – The impact of deafness on the intrinsic and 

neuronal development in the VNLL 

The first two parts of this thesis examined the characterization of the VNLL and the specific 

development of the ventrolateral part of the VNLL (vVNLL). In this part, we were 

interested in whether biophysical and synaptic changes depend on auditory-evoked activity. 

Therefore, we used a deaf mouse model. Otoferlin is a protein found in inner hair cells of 

the cochlea that is necessary for detecting calcium and vesicle fusion with the presynaptic 

membrane (Roux et al. 2006). A lack of otoferlin results in deafness due to an absent 

transmitter release in the ribbon synapse. Homozygous otoferlin KO (OTOF(-/-)) are born 

deaf, whereas their homozygous otoferlin WT (OTOF(+/+)) siblings hear normally. Our 

actual interest lay in the mature neuronal and synaptic properties of these mice, but in order 

to identify developmental delays or immature conditions in KO mice, we first performed 

experiments on P10 WT and compared the results with those from P22 WT and KO mice. 

6.3.1  Spiking patterns of vVNLL neurons change to an exclusive onset-

type firing late during development 

 

In Part 1 of this thesis, we demonstrated that vVNLL neurons of P22 animals display an 

onset firing pattern. Since we were then interested in how these biophysical neuronal 

properties are designed before hearing onset in the otoferlin mouse strain, we analyzed 

intrinsic membrane properties in WT animals before hearing onset (P10) and after hearing 

onset (P22). Injection of depolarizing currents resulted in either onset firing (n=20) or 

sustained firing patterns (n=7) in P10 animals, whereas P22 neurons elicited only onset-

firing action potentials (Figure 18A).  

For further analysis, P10 vVNLL neurons were pooled. Resting membrane potentials 

differed significantly between P10 and P22 animals (Figure 18B; see also Table 6). Input 

resistances were measured at peak and steady state for hyperpolarizing current injections 

of -100 pA (Figure 18C; Table 6). Values for peak and steady-state input resistances 

remained similar during development. Additionally, both values were used to extract the Ih 

component (voltage change mediated by hyperpolarization-activated cyclic nucleotide-

gated  channels;  see  Chapter  5 “Material  and  methods”) of the respective neuron (Figure  



6 Results 

 

76 

 

 

A

DB

**

C

200 ms

20
 m

V

20
 m

V

10
 m

V

200 ms
200 ms

P10 P22

E

P10

onset: 74% onset: 100%sustained: 26%

*100

80

60

40

20

0

Ih
-c

o
m

p
o

n
e
n
t
(%

)

P10 P22

50

40

30

20

10

0

M
e

m
b

ra
n

e
 T

im
e

 C
o

n
s
ta

n
t 
(m

s
)

P10 P22

-100

-80

-60

-40

-20

R
e

s
ti
n

g
M

e
m

b
ra

n
e

 P
o

te
n
ti
a
l (

m
V

) P10 P22
500

400

300

200

100

0

P
e

a
k
 I
n

p
u

t 
R

e
s
is

ta
n

c
e
 (
M

Ω
)

P10 P22

500

400

300

200

100

0

S
te

a
d
y
 S

ta
te

 In
p

u
t R

e
s
is

ta
n

c
e
 (M

Ω
)

P10P22

Figure 18: vVNLL neurons in P10 and P22 OTOF
(+/+)

 (WT) animals have different sets 
of firing patterns and passive intrinsic membrane properties. A. Representative voltage 
responses to hyperpolarizing and depolarizing current injections recorded in P10 (left and 
middle) and P22 (right) animals. Depolarizing current injections elicited either onset-type 
(n=20) or sustained (n=7) firing patterns in P10 and only onset (n=30) firing patterns in P22 
animals. B. Resting membrane potential is significantly different between P10 and P22 WT 
animals. Values of sustained firing neurons found in P10 animals are shifted to the right for 
discrimination (also applied in C, D, and E). C. Peak input resistance (left) and steady-state 
input resistance (right) are measured at the peak and at steady state, respectively, of the 
voltage response to a current injection of -100 pA. No significant differences. D. Ih-
component is significantly larger in P10 animals. E. Membrane time constant shows no 
significant difference. A single-exponential function is fitted to the first few milliseconds of 
the voltage response to a current injection of -100 pA; tau is extracted.  

 
All data sets were tested for normality and homogeneity of variance, and according to the 
result, statistical significance was determined by a non-parametric Kruskal-Wallis test 
followed by either a Tukey’s or Games-Howell post hoc test. Significant differences are 
labeled with * (P < 0.05) or ** (P < 0.01). 
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18D; Table 6). This Ih component was significantly larger in P10 animals, possibly 

explaining the more depolarized resting membrane potential in these mice. Membrane time 

constants were similar in both age groups, although time constants of sustained firing 

neurons were generally slower (Figure 18F, points shifted to the right; Table 6). 

Figure 19: Active firing properties differ between P10 and P22 WT animals in their action 
potential, current threshold, amplitude, and half-width. A. Representative first-
suprathreshold voltage traces of onset and sustained-firing neurons of P10 (left and middle) and 
P22 (right) animals. B. Overlap of onset-firing neurons of P10 and P22 animals shown in A. The 
sustained-firing example is excluded due to a late first AP. C. Schematic diagram illustrating the 
analysis of the active membrane properties. The first action potential (AP) elicited by the lowest 
positive current injection is used for analysis. D. AP current threshold eliciting the first action 
potential or train of action potentials, respectively. Values of sustained-firing neurons found in 
P10 animals are shifted to the right for discrimination (also applied in E, F, and G). E. AP voltage 
threshold. F. AP amplitude. G. AP half-width.  

 
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by a non-parametric Kruskal-Wallis test followed by 
either a Tukey’s or Games-Howell post hoc test. Significant differences are labeled with * (P < 
0.05) or *** (P < 0.001).  
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In the next step of the analysis, active intrinsic membrane properties were calculated at the 

first-suprathreshold voltage response trace (Figure 19A and B). The depolarizing current 

necessary to elicit an action potential was significantly smaller in P10 animals (current 

threshold; Figure 19C; Table 6). Sustained-firing neurons had the smallest current 

thresholds. Furthermore, voltage thresholds were similar (Figure 19D; Table 6), whereas 

action potential amplitudes were significantly larger in P10 animals (Figure 19E; Table 6). 

Moreover, action potential half-widths were significantly longer in animals at hearing onset 

(Figure 19F; Table 6).  

We conclude that the vVNLL of P10 animals consists of two subpopulations with different 

firing patterns. During development, however, intrinsic membrane properties change, and 

only onset-firing neurons exist in P22 animals. 

Table 6 |  Summary of membrane properties of vVNLL neurons of P10 and P22 

OTOF(+/+) (WT) and P22 OTOF(-/-) (KO) mice 

Values are mean ± SEM. The level of significance between groups was calculated with a 

Kruskal-Wallis test followed by Games-Howell or Tukey’s post hoc tests (* P<0.05, ** 

P<0.01, *** P<0.001). 

a: significant differences between P10 and P22 WT animals 

b: significant differences between P10 WT and P22 KO animals 

c: significant differences between P22 WT and P22 KO animals 

n.s.: no significant difference 

  
P10  

OTOF(+/+) 
P22 

OTOF(+/+) 
P22  

OTOF(-/-) 
 

  n=27 n=30 n=27 P 

Passive membrane properties     

 Resting potential (mV) -62.7 ± 1.5 -67.0 ± 0.9 -63.8 ± 1.8 **a; **c
 

 Peak input resistance (MΩ) 154.3 ± 19.0 153.7 ± 12.3 154.6 ± 17.1 n.s. 

 Steady-state input resistance (MΩ) 96.1 ± 11.3 109.8 ± 8.1 107.8 ± 11.8 n.s. 

 Ih-component at -100 pA (%) 34.0 ± 3.0 27.3 ± 1.6 26.6 ± 2.8 *a; *b 

 Membrane time constant (ms) 9.62 ± 1.96 5.83 ± 0.41 6.45 ± 1.02 n.s. 

 
Active membrane properties 

    

 Current threshold (pA) 300 ± 31 393 ± 35 270 ± 27 *a; **c 

 Voltage threshold (mV) -41.5 ± 1.3 -42.4 ± 1.2 -38.1 ± 1.4 **b; **c 

 AP amplitude (mV) 60.1 ± 3.6 52.1 ± 1.6 54.4 ± 2.8 *a; *b 

 AP half-width (ms) 0.96 ± 0.07 0.66 ± 0.05 0.73 ± 0.07 ***a; ***b 
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6.3.2  Otoferlin WT mice undergo the same developmental reduction of 

excitatory synaptic inputs as found in C57Bl/6 animals 

In Part 2 of this thesis, we determined that the number of excitatory synaptic inputs is 

reduced during later development. Interestingly, the formation of the calyx of Held occurs 

much earlier, at P2 (Hoffpauir et al. 2006; Nakamura and Cramer 2011). The aim of Part 3 

of this thesis is to investigate the influence of congenital deafness on the development of 

biophysical and synaptic formation. Since WT animals served as controls, we repeated this 

set of experiments in otoferlin WT animals. To measure the strength of synaptic inputs and 

calculate receptor rise and decay times, we stimulated in the fiber bundle about 50 µm 

ventral to the recorded neuron, and EPSCs were isolated pharmacologically. To estimate 

the number of fiber inputs, the stimulation intensity was gradually increased. We assume 

that each stepwise increase of EPSC amplitude as a response to a stimulation increment 

reflects the activation of additional synaptic inputs. Figure 20A1 illustrates a P10 example. 

In this example, two distinct EPSC current steps to a gradual increase of stimulation 

strength were found. This indicates the existence of two excitatory synaptic inputs to this 

specific vVNLL neuron. Neurons of the vVNLL of P10 animals were innervated by one to 

five fibers (Figure 20A1–A2 and D; Table 7). More than 50% of the recorded neurons 

exhibited an all-or-none response with large amplitudes independent of the stimulation 

strength (Figure 20E; Table 7). In neurons of P22 animals, however, a maximum of 

presumably two excitatory inputs was found (Figure 20B1–B2 and D; Table 7). 

Significantly fewer neurons with more than one input were found in P22 than in P10 

animals (Figure 20D; Table 7), though the maximally evoked postsynaptic current was 

similar (Figure 20E; Table 7). Moreover, 10–90% rise times and tau decay times of EPSCs 

were significantly larger in P10 than in P22 animals (Figure 20F and G; Table 7). 

We conclude that during the development of the vVNLL in mice of different strains, only 

a subpopulation of neurons with one or two excitatory synaptic inputs remains, and most 

inputs in vVNLL neurons of mature mice receive one large excitatory synapse with calyx-

like properties.  
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Figure 20: Excitatory postsynaptic currents (EPSC) of vVNLL neurons rise and decay 

faster in P22 OTOF
(+/+) 

(WT) than in P10 animals. A1. Average evoked current responses 
to increasing stimulation strengths of a representative P10 vVNLL neuron. All traces 
represent the average of at least five consecutive recordings to the same stimulation strength. 
Two distinct current steps are visible. A2. EPSC amplitude as a function of stimulus number 
recorded from a P10 vVNLL neuron shown in A1. The respective stimulation strength is color 
coded. B1. Average evoked current responses to increasing stimulation strengths of a 
representative P22 vVNLL neuron. All traces represent the average of at least five 
consecutive recordings to the same stimulation strength. One distinct current step is visible. 
B2. EPSC amplitude as a function of stimulus number recorded from a P22 vVNLL neuron 
shown in B1. The respective stimulation strength is color coded. C. Normalized maximal 
EPSC traces from P10 (gray) and P22 (black) as shown in A and B. D. Estimated number of 
EPSC steps evoked by an increasing stimulation strength in vVNLL neurons of P10 and P22 
animals shows a significant difference; P10: n=13; P22: n=16. E. Maximal EPSC amplitude 
shows no significant difference. Values referring to an estimated fiber number of three, four, 
and five are shifted slightly to the right to demonstrate their correlation with F and G. F. 10–
90% rise time is measured by applying a minimal stimulation paradigm. P22 vVNLL neurons 
rise significantly faster than P10 vVNLL neurons. G. Tau decay is measured by applying a 
minimal stimulation paradigm. A single-exponential function is fitted to the decay of the 
current response; tau is extracted. P22 vVNLL neurons decay significantly faster than P10 
vVNLL neurons. 

 
All data sets were tested for normality and homogeneity of variance, and according to the 
result, statistical significance was determined by a non-parametric Kruskal-Wallis test 
followed by a Games-Howell post hoc test. Significant differences are labeled with * (P < 
0.05), ** (P < 0.01), or *** (P < 0.001).  
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Table 7 |  Summary of excitatory postsynaptic currents (EPSCs) of vVNLL 

neurons of P10 and P22 OTOF(+/+) (WT) and P22 OTOF(-/-) (KO) mice 

Values are mean ± SEM. The level of significance between groups was calculated with a 

Kruskal-Wallis test followed by Games-Howell or Tukey’s post hoc tests (* P<0.05, ** 

P<0.01, *** P<0.001).  

a: significant differences between P10 and P22 WT animals 

b: significant differences between P10 WT and P22 KO animals 

c: significant differences between P22 WT and P22 KO animals 

n.s.: not significant 

  
P10  

OTOF(+/+) 
P22  

OTOF(+/+) 
P22  

OTOF(-/-) 
 

  n=13 n=16 n=16 P 

 Estimated fiber # 2.15 ± 0.44 1.25 ± 0.11 1.94 ± 0.30 *a; *c
 

 Maximal current (nA) 6.39 ± 1.56 5.50 ± 0.70 3.45 ± 0.43 *c 

 Average step size (nA) 4.75 ± 1.63 4.20 ± 0.66 2.29 ± 0.50 **c 

 10–90% rise time (ms) 0.33 ± 0.04 0.22 ± 0.01 0.33 ± 0.04 **a; *c 

 Tau decay (ms) 0.72 ± 0.08 0.41 ± 0.03 0.70 ± 0.15 ***a 

 

6.3.3  mEPSC become significantly briefer during development 

The shape of the postsynaptic response is influenced by pre- and postsynaptic factors 

(Regehr 2012) and can be estimated with train stimulations during short-term plasticity 

experiments. For the analysis of short-term plasticity experiments, data on presynaptic 

vesicle properties are necessary. In the next steps of our analysis, we aimed to dissect the 

characteristics of the spontaneous vesicle release and subsequently use these data for the 

examination of the RRP. 

While inhibitory receptors and voltage-gated sodium channels were pharmacologically 

blocked, mEPSCs were recorded for at least three minutes. Representative mEPSC 

recordings of P10 and P22 animals are illustrated in Figure 21A and B (top). Recordings 

of P10 animals generally showed more noise, whereas stable measurements were obtained 

from neurons at P22. The enlargements in Figure 21 (A and B, bottom) give an impression 

of typical mEPSCs found in these animals. The mEPSC amplitudes and frequencies were 

similar in both age groups (Figure 21D and F; Table 8). A normalization of averaged 

mEPSCs found in examples of Figure 21A and B demonstrates their different time 

constants and the resulting differences in charge (Figure 21C). The mEPSC charge of P10 
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animals, however, was significantly larger than that of P22 animals (Figure 21E; Table 8) 

caused by significant differences in mEPSC rise and tau decay times (Figure 21F and G; 

Table 8). 

We conclude that postsynaptic glutamate receptors develop faster kinetics that influence 

the shape of mEPSCs while release frequencies remain similar, suggesting stable 

presynaptic but altered postsynaptic conditions during development.  

 

 

 

 

 

 

Figure 21: Miniature excitatory postsynaptic currents (mEPSC) of vVNLL neurons 

rise and decay faster in P22 than in P10 OTOF
(+/+) 

(WT) animals. A. Recording of a 
representative mEPSC of a P10 vVNLL neuron (top). Enlargement of four single mEPSCs 
(bottom). B. Recording of a representative mEPSC of a P22 vVNLL neuron (top). 
Enlargement of three single mEPSCs (bottom). C. Normalized average mEPSC examples 
shown in A and B. D. Average mEPSC amplitudes of each neuron (P10: n=15; P22: n=13) 
are depicted as single circles. E. mEPSC charges are significantly larger in P10 vVNLL 
neurons. F. mEPSC frequency. G. mEPSC 10–90% rise time of P22 vVNLL neurons rise 
significantly faster than in P10 vVNLL neurons. H. mEPSC tau decay is measured by fitting 
a single-exponential function to the decay of the current response; tau is extracted. P22 
vVNLL neurons decay significantly faster than P10 vVNLL neurons. 

 
All data sets were tested for normality and homogeneity of variance, and according to the 
result, statistical significance was determined by a non-parametric Kruskal-Wallis test 
followed by either a Games-Howell or Tukey’s post hoc test. Significant difference is 
labeled with * (P < 0.05). 
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Table 8 |  Summary of miniature excitatory postsynaptic currents (mEPSCs) of 

vVNLL neurons of P10 and P22 OTOF(+/+) (WT) and P22 OTOF(-/-) (KO) 

mice 

Values are mean ± SEM. The level of significance between groups was calculated with a 

Kruskal-Wallis test followed by Games-Howell or Tukey’s post hoc tests (* P<0.05, ** 

P<0.01, *** P<0.001).  

a: significant differences between P10 and P22 WT animals 

b: significant differences between P10 WT and P22 KO animals 

c: significant differences between P22 WT and P22 KO animals 

n.s.: no significant difference 

  
P10  

OTOF(+/+) 
P22  

OTOF(+/+) 
P22  

OTOF(-/-) 
 

  n=15 n=13 n=14 P 

 Amplitude (pA) 58.7 ± 6.9 55.9 ± 4.5 59.0 ± 6.1 n.s. 

 Charge (fC) 49.4 ± 5.5 30.2 ± 1.5 34.1 ± 2.1 **a; *b 

 Frequency (Hz) 3.38 ± 0.67 2.94 ± 0.74 6.00 ± 1.42 *c 

 10–90% rise time (ms) 0.26 ± 0.03 0.17 ± 0.02 0.22 ± 0.03 *a 

 Tau decay (ms) 0.65 ± 0.11 0.36 ± 0.04 0.58 ± 0.06 *a; *c 

 

6.3.4  Degree of short-term depression is reduced during development 

We were also interested in other possible presynaptic developmental changes in otoferlin 

mice, such as depletion and replenishment of the RRP and its effects on the postsynaptic 

response strength to stimulation trains. Therefore, we investigated the short-term plasticity 

(STP) of excitatory inputs in P10 and P22 animals (15 stimuli at 100 Hz). All recorded 

neurons of both age groups showed a substantial degree of short-term depression (Figure 

22A–E). The overall depression from stimulus 2 to stimulus 15 was significantly larger in 

P10 animals, ranging from 80% in P10 to a 60% depression rate in P22 animals (Figure 

22C; Table 9). Steady-state depression also was analyzed (Figure 22D; Table 9) by 

calculating the average of the last three amplitudes and dividing it by the EPSC amplitude 

of the first stimulus. Here, the difference between P10 and P22 animals was even more 

substantial (Figure 22D; Table 9). Additionally, almost all recorded neurons showed a 

paired-pulse depression in their first two EPSC amplitudes. Only one neuron in a P22 

animal exhibited paired-pulse facilitation (Figure 22E; Table 9). Nonetheless, the degree 

of depression was significantly larger in P10 animals already at the second stimulus (Figure 
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22E; Table 9). Next, we were interested in whether these changes are reflected in the size 

of the RRP and its depletion (Figure 22F–I; Table 9). For calculations of the size of the 

RRP, we used the train stimulation data to calculate an Elmquist-Quastel plot, where the 

individual release (the amplitude of the respective stimulus divided by the amplitude of the 

average mEPSC obtained from Figure 21D) is plotted against the cumulated release of the 

train stimulation data (Figure 22F). It is worth noting that a cumulation of transmitted EPSC 

charges would have been more accurate in measurements with similar EPSC shapes, but 

since they significantly narrow during development, a reliable calculation of the RRP and 

its derived properties would have been impossible. Additionally, desensitization during 

repeated stimulation is a relevant factor (Neher 2015). Furthermore, it has been suggested 

by Neher (2015) that during train stimulations, a mixture of RRP and newly replenished 

vesicles are discharged and, during steady state, discharges of vesicles do not necessarily 

resemble the only newly replenished vesicles. Therefore, we used the first three amplitudes 
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of the train stimulations to avoid errors. A linear regression is applied to the first three 

amplitudes and extrapolated to the x-intercept, which theoretically resembles the RRP 

(Figure 22F, dashed line). From these calculations, we concluded that the RRP was similar 

among P10 and P22 animals (Figure 22G; Table 9). Furthermore, the release of the 

maximal response and the ratio of the release at the maximal response and the RRP also 

remained alike during development (Figure 22H, I; Table 9). 

Taken together, our data suggest that both pre- and postsynaptic adjustments occur during 

development. Presynaptic differences are found in the reduction of the number of synaptic 

inputs, while vesicle properties remain similar. Postsynaptic modifications include a 

reduction of time constants and, thus, briefer mEPSCs that indicate a maturation to a faster 

and more precise processing of synaptic inputs. Reductions in the postsynaptic response 

strength caused by desensitization cannot be ruled out. 

  

 

 

 

 Figure 22: Synaptic short-term plasticity of excitatory inputs of vVNLL of P10 OTOF +/+ 
(WT) animals exhibits a higher degree of depression and a smaller paired pulse, but a 
larger readily releasable pool than P22 WT animals. A. Representative EPSC traces in 
response to 15 stimulations at 100 Hz illustrating short-term plasticity in vVNLL neurons of P10 
animals. B. Representative EPSC traces in response to 15 stimulations at 100 Hz illustrating 
short-term plasticity in vVNLL neurons of P22 animals. C. Normalized EPSC depression curve 
for all recorded vVNLL neurons in P10 and P22 animals (P10: n=10; P22: n=16). An overall 
significant difference from the second stimulus on was found during development. D. Steady-
state depression is determined as the average of the last three amplitudes of the 100 Hz EPSC 
train divided by the first amplitude. E. Paired pulse is calculated as the second amplitude divided 
by first amplitude of the 100 Hz EPSC train. F. Elmquist-Quastel plot (EQ plot) - exemplary EQ 
plot to calculate the RRP from train stimulation data. Individual release of each current amplitude 
to each stimulus is calculated with the mEPSC amplitude from Figure 21D. Cumulated release 
is calculated as cumulation of individual releases up to that specific stimulus. A linear regression 
is applied to the first three cumulative steps and extrapolated to the x-intercept. The x-intercept 
theoretically matches the RRP. G. RRP of all recorded vVNLL neurons in P10 and P22 animals. 
H. Release of the maximal response is determined by a maximal stimulation paradigm and 
calculated as the amplitude of the largest current response to a 100 Hz stimulation pulse divided 
by the amplitude of the average mEPSC (shown in Figure. 3.18D). I. Ratio of the readily 
releasable pool (RRP)/release of maximal response (RMR) is calculated from G and H. 

 
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by either a two-factor ANOVA followed by Dunn’s post 
hoc test, a single-factor ANOVA followed by a Scheffé’s post hoc test, or a non-parametric 
Kruskal-Wallis test followed by a Games-Howell post hoc test. Significant differences are labeled 
with * (P < 0.05), ** (P < 0.01), or *** (P < 0.001).  
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Table 9 |  Summary of short-term plasticity of excitatory postsynaptic currents 

(EPSCs) of vVNLL neurons of P10 and P22 OTOF(+/+) (WT) and P22            

OTOF(-/-) (KO) mice 

Values are means ± SEM. The level of significance between groups was calculated using 

either a two-way ANOVA followed by a Dunn’s post hoc test, a one-way ANOVA followed 

by a Scheffé’s post hoc test, or a non-parametrical Kruskal-Wallis test followed by a post 

hoc Tukey’s or Games-Howell test (* P<0.05, ** P<0.01, *** P<0.001).  

a: significant differences between P10 and P22 WT animals 

b: significant differences between P10 WT and P22 KO animals 

c: significant differences between P22 WT and P22 KO animals 

n.s.: no significant difference 

 
P10 

OTOF(+/+) 
P22 

OTOF(+/+) 
P22  

OTOF(-/-) 
  

 n=11 n=16 n=14 P  

Overall depression course    **a; *b 

Steady-state depression 0.22 ± 0.03 0.38 ± 0.02 0.32 ± 0.04 ***a; *b 

Paired pulse 0.55 ± 0.07 0.79 ± 0.03 0.69 ± 0.04 *a 

Readily releasable pool RRP (ves) 237 ± 44 292 ± 44 218 ± 26 n.s. 

Release max. response RMR (ves) 81 ± 21 61 ± 10 61 ± 11 n.s. 

Ratio RMR/RRP 0.36 ± 0.06 0.21 ± 0.02 0.26 ± 0.03 n.s. 

 

6.3.5  VGluT1 is a consistent vesicular glutamate transporter in synapses 

innervating vVNLL neurons 

These electrophysiological findings were analyzed under an immunohistochemical view in 

terms of their VGluT1 and calretinin distribution (Figure 23). Presynaptic factors that 

greatly determine the postsynaptic response are calcium currents and the presynaptic 

calcium concentration. Calretinin, on the one hand, is a calcium-binding protein that is 

found in some presynaptic terminals and is important in reducing the internal calcium 

concentration and, therefore, terminating vesicle release (Schwaller et al. 2002). On the 

other hand, VGluT1 is a vesicular glutamate transporter protein found in excitatory 

synapses of the VNLL (Caspari et al. 2015), where it is associated with membranes of 

synaptic vesicles carrying glutamate. Glutamate is the neurotransmitter for AMPA and 

NMDA receptors mediating EPSCs in the VNLL. Calretinin is located in the cytosol and 

may display the extent of the presynaptic compartment, and a colocalization with VGluT1 

enables an unambiguous classification of excitatory synapses. In the vVNLL of P10 
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animals, a distinct perisomatic VGluT1-positive staining was found (Figure 23A). On the 

other hand, the expression of calretinin was not as evolved during these early stages of 

development (Figure 23B). Brain slices of P22 animals containing the vVNLL showed a 

similar distribution pattern of perisomatic VGluT1-postive rings around numerous neurons 

(Figure 23D). During development, shortly after hearing onset (data not shown) and several 

days after hearing onset, calretinin is found in presynaptic terminals and preterminal axons 

of neurons of the auditory brainstem (Figure 23E; Felmy and Schneggenburger, 2004; 

Hruskova et al., 2012). Altogether, these data suggest the presence of large and strong 

excitatory inputs in P22 animals (Figure 23F), while the extent of the synaptic cytosol of 

P10 animals, by contrast, remains unclear (Figure 23C).  

 

 

 

 

 

 

 

Figure 23: Immunolabelings to visualize excitatory inputs to vVNLL neurons in 

P10 and P22 OTOF
(+/+)

 (WT) animals with antibodies against VGluT1 and 
Calretinin (CR). A. A VGluT1-positive perisomatic staining of six neurons (asterisks) 
of a maximal projection of the vVNLL of a P10 animal. N=2. B. Calretinin labeling of a 
maximal projection of the vVNLL of the P10 animal shown in A. Arrowheads point to 
CR-positive staining of synaptic inputs to three neurons shown in A. C. Merged image 
of A and B. Colocalization of VGluT1 and CR appears white. D. A VGluT1-positive 
perisomatic staining of nine neurons (asterisks) of a maximal projection of the vVNLL 
of a P22 animal. N=2. E. Calretinin labeling of a maximal projection of the vVNLL of 
the P22 animal shown in A. Arrowheads point to CR-positive staining of synaptic 
inputs to eight neurons shown in A. F. Merged image of D and E. Colocalization of 
VGluT1 and CR appears white. Eight out of nine neurons with a perisomatic VGluT1 
labeling have CR in their synaptic inputs. 
Scale bar: 10 µm. 
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We conclude that it remains uncertain whether these ring-like structures emerge from one 

or several excitatory inputs. Our electrophysiological data together with these perisomatic 

rings of VGluT1 indicate, at least in P22 animals, large and possibly calyx-like synaptic 

inputs in many vVNLL neurons. Furthermore, a developmental modification of calcium-

binding proteins to calretinin can be observed. 

 

6.3.6  Does congenital deafness affect the proper development of vVNLL 

neurons? 

One type of deafness in humans is DNFB9, an autosomal recessive form of deafness caused 

by a lack of otoferlin, a vesicle-associated protein in the ribbon synapse of inner hair cells 

in the cochlea (Roux et al. 2006). Deafness as a result of a malfunction in signal 

transmission in the inner hair cells while the auditory nerve remains intact raises the 

question of whether central auditory synapses and intrinsic neuronal properties develop 

normally in congenitally deaf animals in the absence of experience-dependent activity. To 

investigate this question, mice with a lack of otoferlin (KO) and WT mice were bred in our 

animal facility. Experiments were performed on siblings of both genotypes. 

 

6.3.7  Deafness impairs the typical development of spiking patterns and 

intrinsic neuronal properties 

To discover whether the vVNLL of hearing and deaf mice develop the same biophysical 

properties, we analyzed passive and active intrinsic membrane properties in P22 WT and 

KO animals. Injection of depolarizing currents resulted in either onset firing (n=19) or 

sustained firing patterns (n=8) in KO animals whereas P22 WT neurons elicited only onset-

firing action potentials (Figure 24A). 

For further analysis, KO vVNLL neurons were pooled regardless of the firing pattern. 

Resting membrane potentials differed significantly between WT and KO animals (Figure 

24B) but were similar in P10 WT and P22 KO mice (see Table 6 for results and statistics). 

Furthermore, neither input resistances nor Ih components were different in WT and KO 

animals (Figure 24C and D; Table 6). Additionally, membrane time constants were also 

similar in both genotypes (Figure 24F; Table 6), although time constants of sustained-firing 

neurons were generally slower. Despite time constants being statistically similar in both 
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age groups and genotypes, the mean value of KO animals lay in between P10 and P22 WT 

animals, suggesting a transitional state.  
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Figure 24: vVNLL neurons between P22 OTOF
(+/+)

 (WT) and OTOF
(-/-)

 (KO) animals have 
different sets of firing patterns and resting membrane potentials. A. Representative voltage 
responses to hyperpolarizing and depolarizing current injections recorded in P22 WT (left) and 
KO (middle and right) animals. Depolarizing current injections elicited only onset-type (n=30) firing 
patterns in WT animals, whereas neurons in KO mice showed either onset (n=19) or sustained 
(n=8) firing patterns. B. Resting potential is significantly different between WT and KO animals. 
Values of sustained-firing neurons found in KO animals are shifted to the right for discrimination 
(also applied in C, D, and E). C. Peak (left) and steady-state (right) input resistance are measured 
at the peak and at steady state, respectively, of the voltage response to a current injection of -
100 pA. No significant differences. D. Ih component. E. Membrane time constant shows no 
significant difference. A single-exponential function is fitted to the first few milliseconds of the 
voltage response to a current injection of -100 pA; tau is extracted.  

 
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by a non-parametric Kruskal-Wallis test followed by either 
a Tukey’s or Games-Howell post hoc test. Significant difference is labeled with ** (P < 0.01). 
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Again, active intrinsic membrane properties were calculated at the first-suprathreshold 

voltage response trace (Figure 25A and B). The depolarizing current needed to elicit an 

action potential was significantly smaller in KO animals (current threshold; Figure 25C; 

Table 6) with sustained-firing neurons having the smallest current thresholds. Furthermore, 

voltage thresholds were significantly more depolarized in KO animals (Figure 25D; Table 

6), suggesting a reduced excitability. In addition, the voltage threshold in KO animals 

behaved differently from those in P10 animals, leading to the assumption that the loss of 

otoferlin in the inner hair cells has an effect on the expression of voltage-gated ion channels 

that regulate firing behavior and biophysical characteristics in the vVNLL of KO mice. 

Additionally, action potential amplitudes and half-widths were similar in both genotypes 

(Figure 25E and F; Table 6). The correct development of these two properties in KO 

animals in comparison to P10 animals (see Table 6) suggests an independent developmental 

process from auditory-evoked activity. 
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We conclude that vVNLL neurons of KO animals remain immature in terms of their firing 

patterns, as seen in P10 WT animals. Furthermore, a more depolarized voltage threshold 

leads to the assumption that vVNLL neurons of KO animals are less excitable.  

 

6.3.8  Deafness impairs synaptic refinement  

In the first section of Part 3 we demonstrated that the number of excitatory synaptic inputs 

is reduced during later development and that calyx-like inputs are found in the vVNLL. It 

has elsewhere been determined that the formation of the calyx of Held already occurs at P2 

without sensory experience (Hoffpauir et al. 2006). We were interested in whether this 

reduction in the number of synaptic inputs and development of a calyx-like synapse 

depends on auditory-evoked activity. We therefore investigated the influence of congenital 

deafness on the development of synaptic formation. To measure the strength of synaptic 

inputs and calculate receptor rise and decay times, we stimulated in the fiber bundle about 

50 µm ventral to the recorded neuron, and EPSCs were isolated pharmacologically. To 

estimate the number of fiber inputs, the stimulation intensity was gradually increased. We 

assume that each stepwise increase of EPSC amplitude as a response to a stimulation 

increment reflects the activation of additional synaptic inputs. Neurons of the vVNLL of 

KO animals were innervated by an estimated number of one to five fibers (Figure 26B1–

B2 and D; Table 7), whereas WT animals had, according to their stepwise current 

responses, a maximum of estimated two excitatory inputs (Figure 26A1–A2 and D; Table 

7). However, more than 50% of the recorded neurons in KO mice exhibited an all-or-none 

response with different maximal amplitudes ranging from 1 to 8 nA (Figure 26E; Table 7), 

while the remaining neurons displayed a stepwise increase of postsynaptic current with 

rising stimulation strengths. Additionally, the maximally evoked postsynaptic current was 

also significantly different in the two age groups, with KO animals having even smaller 

 Figure 25: Active firing properties differ between P22 OTOF
(+/+)

 (WT) and OTOF
(-/-)

 (KO) 
animals in their action potential current and voltage threshold. A. Representative first-
suprathreshold voltage traces recorded in neurons of P22 WT (left) and KO (middle and right) 
animals. B. Overlap of action potentials shown in A. C. Schematic diagram illustrating the analysis 
of the active membrane properties. The first action potential (AP) elicited by the lowest positive 
current injection is used for analysis. D. AP current threshold eliciting the first action potential or 
train of action potentials, respectively. Values of sustained firing neurons found in KO animals are 
shifted to the right for discrimination (also applied in E, F and G). E. AP voltage threshold. F. AP 
amplitude. G. AP half-width.  
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by a non-parametric Kruskal-Wallis test followed by either 
a Tukey’s or Games-Howell post hoc test. Significant difference is labeled with ** (P < 0.01). 
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maximal amplitudes than P10 WT animals (Figure 26E; Table 7). Moreover, 10–90% rise 

times but not tau decay times of EPSCs were significantly longer in KO than in WT animals 

(Figure 26F and G; Table 7), resembling P10 WT values.  

Figure 26: Excitatory postsynaptic currents (EPSC) of vVNLL neurons are larger and faster 

in P22 OTOF
(+/+) 

(WT) than in P22 OTOF
(-/-)

 (KO) animals. A1. Average evoked current 
responses to increasing stimulation strengths of a representative P22 WT vVNLL neuron. All 
traces represent the average of at least five consecutive recordings to the same stimulation 
strength. One distinct current step is visible. A2. EPSC amplitude as a function of stimulus number 
recorded from a P22 WT vVNLL neuron shown in A1. The respective stimulation strength is color 
coded. B1. Average evoked current responses to increasing stimulation strengths of a 
representative P22 KO vVNLL neuron. All traces represent the average of at least five 
consecutive recordings to the same stimulation strength. Two distinct current steps are visible. 
B2. EPSC amplitude as a function of stimulus number recorded from a P22 KO vVNLL neuron 
shown in B1. The respective stimulation strength is color coded. C. Normalized maximal EPSC 
traces from P22 WT (light gray) and P22 KO (dark gray) as shown in A and B. D. Estimated 
number of EPSC steps evoked by an increasing stimulation strength in vVNLL neurons of P22 
WT and KO animals. KO animals have significantly more current steps. P22 WT: n=16; P22 KO: 
n=16. E. Maximal EPSC amplitude is significantly larger in P22 WT animals. Values referring to 
an estimated fiber number of three, four, and five are shifted slightly to the right to demonstrate 
their correlation with F and G. F. 10–90% rise time is measured by applying a minimal stimulation 
paradigm. P22 WT vVNLL neurons rise significantly faster than P22 KO vVNLL neurons. G. Tau 
decay is measured by applying a minimal stimulation paradigm. A single-exponential function is 
fitted to the decay of the current response; tau is extracted. 
  
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by a non-parametric Kruskal-Wallis test followed by a 
Games-Howell post hoc test. Significant differences are labeled with * (P < 0.05).  
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Neurons of KO animals exhibited a rather immature profile of synaptic EPSC 

characteristics, as seen P10 WT animals. Congenital deafness due to the loss of otoferlin 

apparently leads to an impairment of the typical development of synaptic refinement and 

synaptic strength. 

 

6.3.9  Hyperactivity of vVNLL synapses in deaf mice 

In the next steps of our analysis, we wanted to further dissect pre- and postsynaptic 

properties that are influenced by congenital deafness in mice. Therefore, we studied the 

spontaneous vesicle release and used these results for the analysis of short-term plasticity 

experiments.  

While inhibitory receptors and voltage-gated sodium channels were pharmacologically 

blocked, mEPSCs were recorded for at least three minutes. Recordings of KO animals were 

generally shaky, reflected by a greater noise level, whereas in P22 animals, stable 

measurements were obtained (Figure 27A and B). All electrophysiological experiments in 

KO animals were affected by an unsteadiness of electrode patches on the membrane that 

might result from biophysical effects of the lack of otoferlin. Unfortunately, this 

phenomenon has not been described in literature. In spite of these experimental difficulties, 

mEPSC amplitudes and charges were similar in both genotypes (Figure 27 C and D; Table 

8). The mEPSC charge reduction was similar in KO and control animals compared with 

P10 WT animals (see Table 8), suggesting a developmental process that is independent of 

auditory-evoked activity. However, the mEPSC frequency of KO animals was significantly 

larger than that of WT animals (Figure 27E; Table 8), leading to the conclusion that a 

controlled release of vesicles is missing. Moreover, 10–90% rise and tau decay times were 

both larger in KO; however, only the increase in decay time was statistically significant 

(Figure 27F and G; Table 8). Both values belonging to KO animals lay in between the 

values of P10 and P22 WT animals (see Table 8). 

These results provide evidence that deafness not only alters postsynaptic receptor kinetics 

but also affects the presynaptic vesicle release. 
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Figure 27: Miniature excitatory postsynaptic currents (mEPSC) of vVNLL neurons have a 

larger frequency and decay more slowly in P22 OTOF
(-/-)

 (KO) than in P22 OTOF
(+/+) 

(WT) 
animals. A. Recording of a representative mEPSC of a P22 WT vVNLL neuron (top). 
Enlargement of three single mEPSCs (bottom). B. Recording of a representative mEPSC of a 
P22 KO vVNLL neuron (top). Enlargement of three single mEPSCs (bottom). C. Normalized 
average mEPSCs shown in A. D. Average mEPSC amplitudes of each neuron (P22 WT: n=13; 
P22 KO: n=14) are depicted as single circles. E. mEPSC charges. F. mEPSC frequency is larger 
in KO animals. G. mEPSC 10–90% rise time. H. mEPSC tau decay is measured by fitting a 
single-exponential function to the decay of the current response; tau is extracted. P22 WT vVNLL 
neurons decay significantly faster than P22 KO vVNLL neurons. 
 
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by a non-parametric Kruskal-Wallis test followed by either 
a Games-Howell or Tukey’s post hoc test. Significant differences are labeled with * (P < 0.05) or 
** (P < 0.01).  
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6.3.10  Depletion of the readily releasable pool remains unaffected in 

vVNLL synapses of deaf mice 

We were also interested in examining other possible presynaptic developmental changes in 

otoferlin mice, such as depletion and replenishment of the RRP and its effects on the 

postsynaptic response strength to stimulation trains. Therefore, we investigated the short-

term plasticity (STP) of excitatory inputs to vVNLL neurons in KO and WT mice (15 

stimuli at 100 Hz).  

All recorded neurons of both genotypes showed a substantial degree of short-term 

depression (Figure 28A–E). No significances were found regarding the overall (Figure 

28C; Table 9), steady-state (Figure 28D; Table 9) or paired-pulse depression (Figure 28E; 

Table 9). Additionally, the overall depression from stimulus 2 to stimulus 15 was around 

60% for both genotypes (Figure 28C; Table 9). Furthermore, all recorded KO neurons 

showed a paired-pulse depression in their first two EPSC amplitudes (Figure 28E; Table 

9), and only one neuron in a P22 animal exhibited paired-pulse facilitation (Figure 28E; 

Table 9). Next, we were interested in how the RRP and its characteristics were shaped in 

mice without auditory nerve activity. Therefore, we applied the same procedure we used in 

the developmental study of otoferlin mice (see above). A representative Elmquist-Quastel 

plot is displayed in Figure 28F (dashed lines represent extrapolated RRPs). From these 

calculations, we concluded that the RRP was similar in WT and KO animals (Figure 28G; 

Table 9). Furthermore, the release of the maximal response was exactly the same, and, 

plausibly, the ratio of the maximal response and the RRP also remained alike in both 

genotypes (Figure 28H and I; Table 9). It is worth noting that a cumulation of transmitted 

charges would have been more accurate in measurements with similar EPSC shapes as we 

found in KO and WT mice. However, since mEPSCs at early developmental stages had 

significantly longer time constants, we decided to also calculate the RRP and its properties 

with EPSC amplitudes for WT and KO mice to enable better comparability with P10 

animals. Still, significances did not change with either method for KO and WT animals 

(results for calculation with EPSC charges not shown). 

Taken together, our data suggest that congenital deafness has a large effect on the typical 

development of pre- and postsynaptic EPSC properties. In particular, the proper refinement 

of excitatory synaptic inputs together with receptor kinetics and the spontaneous release of 
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glutamatergic vesicles is altered in KO animals. However, STP and the RRP seem to 

develop typically in deaf mice. 

Figure 28: Synaptic short-term plasticity of excitatory inputs of vVNLL neurons are 
similar in P22 OTOF(+/+) (WT) and P22 OTOF(-/-) (KO) animals. A. A representative EPSC 
trace in response to 15 stimulations at 100 Hz illustrating short-term plasticity in a vVNLL neuron 
of a P22 WT animal. B. A representative EPSC trace in response to 15 stimulations at 100 Hz 
illustrating short-term plasticity in vVNLL a neuron of a P22 KO animal. C. Normalized EPSC 
depression curve for all recorded vVNLL neurons in P22 WT and KO animals (P22 WT: n=16; 
P22 KO: n=15). D. Steady-state depression is determined as the average of the last three 
amplitudes of the 100 Hz EPSC train divided by the first amplitude. E. Paired pulse is calculated 
as the second amplitude divided by first amplitude of the 100 Hz EPSC train. F. Elmquist-
Quastel plot (EQ plot) - exemplary EQ plot to calculate the RRP from train stimulation data. 
Individual release of each current amplitude to each stimulus is calculated with the mEPSC 
amplitude from Figure 27D. Cumulated release is calculated as the cumulation of individual 
releases up to that specific stimulus. A linear regression is applied to the first three cumulative 
steps and extrapolated to the x-intercept. The x-intercept theoretically matches the RRP. G. 
RRP of all recorded vVNLL neurons in P22 WT and KO animals. H. Release of the maximal 
response is determined by a maximal stimulation paradigm and calculated as the amplitude of 
the largest current response to a 100 Hz stimulation pulse divided by the amplitude of the 
average mEPSC (shown in Figure 27D). I. Ratio of the release at maximal response/readily 
releasable pool (RRP) is calculated from G and H. (Continued on page 97) 
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by either a two-factor ANOVA followed by a Dunn’s post 
hoc test, a single-factor ANOVA followed by a Scheffé’s post hoc test or a non-parametric 
Kruskal-Wallis test followed by a Games-Howell post hoc test.  
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6.3.11  VGluT1 and calretinin distribution is similar in deaf and hearing 

mice 

Our electrophysiological findings indicate impairments of pre- and postsynaptic 

characteristics in congenitally deaf animals. Therefore, we wanted to investigate the 

formation of calretinin in the presynaptic compartment of synapses innervating vVNLL 

neurons. To assure that we examined excitatory synapses, the distribution of VGluT1 was 

also studied (Figure 29). Here, WT animals showed a distribution pattern of perisomatic 

VGluT1-postive rings around numerous neurons (Figure 29A), and calretinin colocalized 

with the VGluT1-positive staining, showing the extents of the excitatory inputs (Figure 

29B and C). Additionally, in the vVNLL of KO animals, a similar distinct perisomatic 

VGluT1-positive staining was found (Figure 29D) together with a similarly developed 

calretinin expression (Figure 29E). Altogether, these data suggest that the expression of the 

calcium-binding protein calretinin is independent of auditory-evoked activity and that large 

excitatory inputs to vVNLL neurons are present in both WT and KO animals (Figure 29C 

and F). However, the precise number of excitatory inputs cannot be derived from our 

immunohistochemical data. 

Congenital deafness caused by a lack of otoferlin in the inner hair cells leads to an 

impairment of the typical development of intrinsic neuronal properties and reduced 

synaptic refinement. Additionally, some of the neuronal characteristics seem to be 

immature and resemble those of animals just around hearing onset. Interestingly, only a 

few neuronal and synaptic aspects seem to be unaffected by the lack of auditory-evoked 

activity. For instance, the activation of HCN channels for small negative current injections 

appears to be unaffected by the lack of sensory experience. Furthermore, the presynaptic 

RRP and its depletion are functionally unimpaired. However, a reduced excitability of 

vVNLL neurons could be found in a more depolarized action potential threshold, whereas 

an increased mEPSC frequency, by contrast, is a sign of an uncontrolled enhanced 

presynaptic activity. Our results indicate that auditory-evoked activity is essential for a 

typical development of spiking patterns and synaptic properties in neurons of the vVNLL 

in mice.  

 Figure 28 continued:  

 
All data sets were tested for normality and homogeneity of variance, and according to the result, 
statistical significance was determined by either a two-factor ANOVA followed by a Dunn’s post 
hoc test, a single-factor ANOVA followed by a Scheffé’s post hoc test or a non-parametric 
Kruskal-Wallis test followed by a Games-Howell post hoc test.  
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Figure 29: Immunolabelings to visualize excitatory inputs to vVNLL neurons in 
P22 OTOF (+/+) (WT) and P22 OTOF(-/-) (KO) animals with antibodies against 
VGluT1 and calretinin (CR). A. A VGluT1-positive perisomatic staining of nine 
neurons (asterisks) of a maximal projection of the vVNLL of a P22 WT animal. N=2. 
B. Calretinin labeling of a maximal projection of the vVNLL of the P22 animal shown 
in A. Arrowheads point to CR-positive staining of synaptic inputs to eight neurons 
shown in A. C. Merged image of A and B. Colocalization of VGluT1 and CR appears 
white. Eight out of nine neurons with a perisomatic VGluT1 labeling have CR in their 
synaptic inputs. D. A VGluT1-positive perisomatic staining of 10 neurons (asterisks) 
of a maximal projection of the vVNLL of a P22 KO animal. N=4. E. Calretinin labeling 
of a maximal projection of the vVNLL of the P22 KO animal shown in D. Arrowheads 
point to CR-positive staining of synaptic inputs to 10 neurons shown in D. F. Merged 
image of D and E. Colocalization of VGluT1 and CR appears white. All 10 neurons 
with a perisomatic VGluT1 labeling have CR in their synaptic inputs. 
Scale bar: 10 µm.  
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7  Discussion 

7.1  Characterization of the VNLL 

We characterized the VNLL of mice in a ventrodorsal orientation, since this has not been 

systematically done in previous studies. Furthermore, the margins of the VNLL were still 

unclear before we did this study, especially of the dorsal part that is argued to form a 

separate nucleus – the INLL (Saint Marie et al. 1997; Ito et al. 2011). We were particularly 

interested in the VNLL because it may play an important role in the analysis of acoustic 

temporal features (Aitkin et al. 1970; Covey and Casseday 1991; Recio-Spinoso and Joris 

2014) and, therefore, speech perception. The first part of this thesis demonstrated several 

distinct subpopulations of neurons in the dorsal and ventral parts of the VNLL. One distinct 

subpopulation of neurons, located in the ventrolateral part of the VNLL, displayed an onset-

type firing pattern and only little Ih. These neurons for the most part received one large 

calyx-like excitatory input and multiple large inhibitory inputs and were densely packed in 

a cluster lateral to the fiber bundle. A second cell type, located in the ventromedial part of 

the VNLL, was scattered within the fiber bundle. Although these neurons exhibited similar 

firing and intrinsic properties compared with ventrolateral neurons, they received several 

and much weaker excitatory inputs.  

In the dVNLL, neurons with two different firing patterns are intermingled. Neurons showed 

either a single spike at the onset of the response or a sustained firing pattern. Moreover, all 

dorsal neurons exhibited large Ih. The onset-type firing neurons in the dorsal part clearly 

differed from the onset-type firing neurons in the ventral part of the VNLL in terms of their 

intrinsic properties. Ventromedial VNLL neurons that were intermingled within the 

lemniscal fiber tract had intrinsic properties similar to the ventrolateral neurons and 

synaptic properties that resembled those of neurons in the dVNLL. All neuron types in the 

dorsal and ventral VNLL depolarized by light stimulation in a VGAT-channelrhodopsin 

mouse model where channelrhodopsin is expressed under the promoter of VGAT (Zhao et 

al. 2011). Since in this mouse model only inhibitory neurons depolarize by light 

stimulation, our sample neurons were inhibitory and were part of the VNLL rather than the 

INLL (Saint Marie et al. 1997; Ito et al. 2011). 



7 Discussion 

 

100 

 

7.1.1  The ventral part of the VNLL contains a cluster of neurons with 

calyx-like synaptic inputs 

Part 1 described a distinct population of neurons in the vVNLL with biophysical membrane 

properties that are very similar to those found in neurons of the MNTB (Brew and Forsythe 

1995; Hassfurth et al. 2009). Both these neuron populations have a typical onset-type 

response pattern, little Ih and a lack of HCN1 immunoreactivity. Previously, similar onset-

type firing neurons have been described in the ventral part of the rat VNLL that were 

correlated with a bushy cell-like morphology (Wu 1999; Zhao and Wu 2001). However, 

only around 25% of the neurons studied belonged to this neuron type. An explanation for 

this relatively low fraction of onset neurons might be the different developmental time 

frames studied, variations in recording sites (dorsal vs. ventral), and the different recording 

techniques employed. A recent study of gerbil VNLL neurons with calyx-like inputs 

demonstrated a developmental change from a sustained to an onset-type firing pattern 

within the first week after hearing onset (Berger et al. 2014; Franzen et al. 2015). However, 

neither the spatial distribution of neurons within the VNLL nor the existence of other cell 

types was discussed in that study. 

Our data indicate that these neurons receive one large calyx-like excitatory input similar in 

amplitude and temporal properties to the calyx of Held synapse in the MNTB (Borst and 

Soria van Hoeve 2012). Moreover, these neurons are surrounded by a VGluT1- and 

calretinin-positive ring, which suggests that this input originates from octopus cells of the 

contralateral VCN (Adams 1997; Schofield and Cant 1997; Felix Ii et al. 2017). Similar 

calyx-like synaptic structures with comparable physiological characteristics were recently 

described in the gerbil VNLL (Berger et al. 2014). However, in that study VNLL neurons 

were usually contacted by two large excitatory synaptic inputs. Whether this is a species-

specific adaptation or whether a further developmental reduction of inputs occurs after P12, 

when these gerbil experiments were performed, remains unexplored. Anatomical studies in 

other mammals have identified a subdivision within the ventral VNLL with densely 

arranged and fairly uniformly shaped neurons (Willard and Ryugo 1983; Vater and Feng 

1990; Adams 1997; Schofield and Cant 1997; Benson and Cant 2008), which suggests that 

this neuron type is commonly found in all mammalian species. In fact, an anatomical study 

suggests that in humans this area is even hypertrophied (Adams 1997), which would 

support the theory that the VNLL is immensely important for the analysis of speech 

containing temporal patterns. Communication is widely spread among species of the animal 
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kingdom, but a controlled and unpredictable use of language is unique to humans. 

Interestingly, neurons in the ventral VNLL that were not located in this cluster but were 

intermingled within the fiber tract of the lateral lemniscus received several excitatory inputs 

with much smaller amplitudes similar to dVNLL neurons, while intrinsic properties were 

indistinguishable from the ventrolateral VNLL neurons. Further experiments are necessary 

to determine whether input origin and response properties of these neurons are more similar 

to ventrolateral or dorsal VNLL neurons. 

 

7.1.2  Neurons in the dorsal part of the VNLL have two different firing 

patterns and large Ih 

Dorsal VNLL neurons responded to depolarizing current injections with two different firing 

patterns. Whereas one population of neurons had the typical onset-type response similar to 

principal cells in the lateral and medial superior olive, with low input resistance and large 

Ih (Mathews et al. 2010; Walcher et al. 2011), the other neuronal population fired 

throughout the depolarizing stimulus and with increasing frequency for stronger 

depolarization. This suggests a differential distribution of potassium channels, especially 

the low-threshold potassium channels of the Kv1 family, that are usually abundant in 

neurons with an onset-type firing pattern (Barnes-Davies et al. 2004; Mathews et al. 2010). 

Morphologically, two different neuron types are present in the dVNLL. The most frequent 

type is the multipolar cells that are densely packed in the most dorsal part of the VNLL in 

most species (Schofield and Cant 1997; Benson and Cant 2008). Another less-frequent type 

is the giant cells (Schofield and Cant 1997; Benson and Cant 2008). Whether this 

morphological cell type corresponds to our onset- or sustained-firing type is unclear but 

could be determined by studying potassium channel distribution in the VNLL. 

In the dVNLL, all neurons had relatively large Ih that was confirmed by an intensive 

immunostaining against the HCN1 channel. Among other HCN subtypes, the HCN1 

subunit is the one with the fastest activation time constant and the most depolarized half-

maximal activation of Ih (Wahl-Schott and Biel 2009). Therefore, neurons with large 

HCN1-mediated currents integrate excitatory and inhibitory inputs with a high temporal 

resolution and little summation (Khurana et al. 2012; Baumann et al. 2013). Consistently, 

most of the neurons received excitatory and inhibitory inputs with fast synaptic time 

constants. These fast synaptic currents together with the rapid membrane time constants 
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suggest that these neurons may contribute to temporal sound pattern analysis by integrating 

their inputs with high temporal precision, as has been suggested for VNLL neurons 

(Nayagam et al. 2005; Yavuzoglu et al. 2011; Recio-Spinoso and Joris 2014). 

 

7.1.3  Dorsal and ventral VNLL neurons are inhibitory 

Several studies have demonstrated that a population of neurons in the most dorsal VNLL 

differs from more ventral VNLL neurons in terms of input projection, binaurality, and 

neurotransmitter type. These dorsal VNLL neurons mostly express excitatory markers, 

whereas most neurons in ventral VNLL are either GABAergic, glycinergic, or co-express 

both inhibitory transmitters (Saint Marie et al. 1997; Riquelme et al. 2001; Ito et al. 2011). 

The very dorsal VNLL neurons also receive prominent projections from binaural nuclei of 

the superior olive (Kelly et al. 2009), which are mostly absent in the ventral VNLL. A 

number of studies have therefore defined this structure in the very dorsal VNLL as a distinct 

nucleus, named the intermediate nucleus of the lateral lemniscus (INLL). Nevertheless, the 

boundaries and extent of this structure are not clearly defined and show large species-

specific differences (Zook and Casseday 1982b; Saint Marie et al. 1997; Kelly et al. 2009; 

Ito et al. 2011). Using a transgenic mouse model, which expresses channelrhodopsin-2 

under the VGAT promoter and thus only in inhibitory, GABergic, or glycinergic neurons 

(Zhao et al. 2011), we demonstrated that all our neurons in the dorsal VNLL are inhibitory 

and therefore presumably not part of the excitatory, binaural INLL structure. We also 

identified a population of small neurons that are located dorsal of our investigated neurons 

and may fulfill these criteria such as responding to binaural inputs and being excitatory. 

 

7.1.4  Functional heterogeneity of VNLL neurons for sound processing 

Part 1 revealed distinct variations in intrinsic and synaptic properties between the different 

populations in the ventral and dorsal VNLL. In vivo several response patterns to sounds, 

including onset, regular, sustained, and chopper cells have been recorded in several species, 

but with no clear correlation between response type and location within the VNLL (Batra 

and Fitzpatrick 1997; Nayagam et al. 2006; Zhang and Kelly 2006). One possible 

explanation for this discrepancy is that the in vivo response patterns are predominantly 

determined by the input properties, whereas the intrinsic and synaptic properties are less 

influential. A similar lack of position with binaural response type of VNLL neurons has 
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been observed in most species examined. In the rat and cat, most VNLL neurons are driven 

by contralateral stimulation, with more pronounced ipsilateral inhibitory inputs in the rat 

but only weak influence by ipsilateral stimulation in the cat (Nayagam et al. 2006; Zhang 

and Kelly 2006; Recio-Spinoso and Joris 2014). A similar weak input from the ipsilateral 

ear is present in the mouse VNLL (unpublished observation). It is therefore unlikely that 

the two different response types in the dVNLL correspond to different groups of 

binaurality. We observed inhibitory, glycinergic inputs with similar characteristics to all 

neuron types in all regions of the VNLL. Whether these inputs all derive from the 

previously characterized input of the ipsilateral MNTB (Kelly et al. 2009) or whether some 

of these inputs originate from other glycinergic nuclei such as, for example, the 

contralateral MNTB or the lateral nucleus of the trapezoid body, remains to be 

demonstrated. 

Finally, human anatomical and physiological observations suggest that the VNLL is 

involved in various forms of temporal processing of sound patterns (Covey and Casseday 

1991; Adams 1997; Oertel 1999; Nayagam et al. 2005). The bushy cell-like neurons in the 

vVNLL that receive calyx-like inputs have received particular attention in this context. In 

the mouse we have identified a cluster of neurons in the ventrolateral part of the VNLL that 

receives a single calyx-like input most likely originating from the octopus cells in the 

PVCN. Octopus cells preferably respond to broadband stimuli with precisely timed 

discharges (Rhode et al. 1983; Rouiller and Ryugo 1984). Similarly, VNLLc neurons in 

bats respond with exceptionally sharply timed spikes to the onset of sounds (Covey and 

Casseday 1991). Likewise, a population of VNLL neurons in other mammals shows 

precisely timed onset responses (Nayagam et al. 2005; Recio-Spinoso and Joris 2014). 

These neurons are monaural and respond with one spike with short latencies precisely 

locked to the stimulus onset, which makes these neurons well suited to accurately encode 

temporal information (Recio-Spinoso and Joris 2014). In accordance with this, 

ventrolateral VNLL neurons exhibit intrinsic properties that secure temporally precise 

information processing (Franzen et al. 2015). A recent model suggests that these neurons 

provide fast onset inhibition to neurons in other parts of the VNLL and the IC, thereby 

suppressing spectral splatter (Spencer et al. 2015). Indeed, a previous study has illustrated 

that a subpopulation of VNLL neurons receives a large preceding inhibition that strongly 

influences first spike latency (Nayagam et al. 2005; Spencer et al. 2015). The fast 

membrane and synaptic properties of the onset-type neurons of the dVNLL would be 
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ideally suited to precisely integrate the fast preceding inhibition with several excitatory 

inputs. Nevertheless, in none of our recordings from the dVNLL neurons were we able to 

detect an extremely large inhibitory input, as proposed in the model study (Spencer et al. 

2015). It is possible that these large inhibitory inputs are received by a special type of 

neuron that is not preserved in the brain slice preparation. Alternatively, our stimulation 

method could be less effective in stimulating these inputs. Using a VGAT-

channelrhodopsin mouse model could provide more information about this intrinsic 

inhibitory circuit. 

We found distinct populations of neurons with different biophysical and synaptic properties 

in the dorsal and ventral parts of the VNLL. One neuron type in the ventrolateral VNLL 

displays onset-type response pattern and calyx-like excitatory input properties very similar 

to MNTB neurons. These properties make these neurons likely candidates for providing 

temporally precise and fast feed-forward inhibition to target cells within the VNLL and to 

the IC. By contrast, onset-type dVNLL neurons with large Ih and short membrane time 

constants might contribute to the analysis of temporal sound patterns by integrating 

excitatory and inhibitory inputs on a fast time scale. 

 

7.2  Development of neuronal and synaptic features in the 

ventrolateral VNLL 

Neurons located in the ventrolateral part of the VNLL receive calyx-like inputs that are 

comparable to the MNTB innervation (von Gersdorff and Borst 2002). Previously 

performed studies on the ventrolateral VNLL of rodents have focused on either intrinsic or 

synaptic specifics, but the developmental aspects of calyx formation and intrinsic properties 

have not been investigated (Berger et al. 2014; Franzen et al. 2015). Studies in the MNTB 

have indicated that calyx formation and refinement of synaptic inputs occur very early 

during development before hearing onset (Hoffpauir et al. 2006, 2010). Therefore, in Part 

2 of this thesis, we aimed to investigate the development of the calyx-like input and intrinsic 

properties in vVNLL neurons based on Part 1 of this thesis to compare it to the 

developmental time course of the calyx of Held. The VNLL can be subdivided into at least 

two distinct regions in terms of their synaptic inputs and intrinsic firing properties. In the 

vVNLL, neurons of mature animals are innervated by one to maximally two excitatory 
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inputs. In order to elucidate the onset of calyx formation, we performed experiments on 

C57Bl/6 mice before, shortly after, and several days after hearing onset (P10, P13, and 

P22). As controls for an activity-dependence investigation we used otoferlin WT mice at 

P10 and P22 to further investigate intrinsic neuronal characteristics, calyx-formation, and 

short-term plasticity. 

 

7.2.1  Neurons of the vVNLL become more homogeneous during 

development 

Synaptic inputs were reduced to an average of one large input at P22. However, the synaptic 

strength of these large calyx-like inputs remained similar during development of OTOF 

WT mice, in contrast to the increase in synaptic strength in Bl6 mice. Along with these 

developments, time constants of AMPA receptors were also reduced substantially during 

that time. Moreover, short-term depression was largest in P10 (~78%) animals and was 

reduced during development to approximately 62%. Properties of the RRP were unchanged 

during development in WT mice. 

Animals before hearing onset (P10) displayed several distinct neuronal subpopulations in 

the ventrolateral part of the VNLL. One distinct subpopulation of neurons displayed an 

onset-type firing pattern that was also found in mature P22 WT mice. A second cell type 

that was only found in immature mice was intermingled with onset-type firing neurons. 

These cells showed a sustained firing pattern and occurred in 26% of all recordings. 

Intrinsic properties remained relatively similar during development; only the resting 

membrane potential of P22 WT animals was shifted to a more hyperpolarized state. Action 

potential properties, however, apparently changed after hearing onset. While neurons of 

P10 animals had a current threshold of approximately 300 pA, neurons of older animals 

displayed an increased threshold of almost 400 pA. In addition, action potential shapes 

became briefer, suggesting a faster progression of action potentials in older animals. 

Intrinsic neuronal properties found in this study accord with findings in literature (Baumann 

and Koch 2017), where authors have recently focused on developmental changes of 

vVNLL neurons under the influence of nicotine and compared their results to untreated 

C57Bl/6 mice. Although these experiments were performed in even younger animals (P8), 

their results resemble those of this study and show the power of reproducibility. Another 

study compared VNLL neurons of gerbils in P9 and P25 animals (Franzen et al. 2015), 

finding decreases in membrane time constants and input resistances and authors claiming 
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these substantial reductions on a significant decrease of cell size. The cell size determines 

the capacitance of a neuron and strongly influences the speed with which the membrane is 

charged (Franzen et al. 2015). Furthermore, a reduction of cell size is caused by a reduction 

of dendritic arborization (Rogowski and Feng 1981; Sanes et al. 1992; Rietzel and Friauf 

1998; Rautenberg et al. 2009). A significant reduction of cell size and thus capacitance has 

not been observed in vVNLL neurons of mice (Baumann and Koch 2017). 

Recent studies on the VNLL of gerbils have demonstrated that neurons with calyx-like 

inputs undergo a developmental change from a sustained to an onset-type firing pattern 

within the first week after hearing onset (Berger et al. 2014; Franzen et al. 2015). Moreover, 

MNTB principal neurons also undergo a similar developmental pattern. At prenatal day 

E17, almost two thirds of the neurons show sustained firing (Hoffpauir et al. 2010). This 

percentage increases until the age P1 (95%), and only after that does a transition from 

sustained to onset occur. Interestingly, this transition in firing patterns happens at the onset 

of calyx growth (Hoffpauir et al. 2010). Long before hearing onset at P6, 95% of the 

neurons exhibit an onset firing pattern (Hoffpauir et al. 2010). It has been demonstrated for 

many auditory brainstem nuclei that a change of passive and active membrane properties 

occurs during development and that a reduction of input resistances and membrane time 

constants leads to a faster generation of action potentials that, in turn, results in the fast and 

precise transmission of auditory signals (Wu and Oertel 1987; Kandler and Friauf 1995; 

Ahuja and Wu 2000; Kuba et al. 2002; Scott et al. 2005; Ammer et al. 2012). Modifications 

in action potential shapes influence the ability to code certain auditory information; for 

example, a neuron with narrower action potentials will be able to follow fast signals, as 

found during auditory processing.  

 

7.2.2  Low-voltage-activated potassium channels might trigger fast and 

precise onset firing 

In addition to passive properties influencing the neuronal ability to generate action 

potentials and follow auditory stimuli with a high temporal precision, the interplay of 

intrinsic passive with active properties also determines the firing behavior and rates of cells 

(Fricker and Miles 2000; Kuba et al. 2002; Axmacher and Miles 2004; Gittelman and 

Tempel 2006; Berntson and Walmsley 2008; Ammer et al. 2012). Moreover, intrinsic 

membrane properties are greatly affected by the biophysical properties of embedded ion 

channels (Fricker and Miles 2000; Gittelman and Tempel 2006; Berntson and Walmsley 
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2008; Johnston et al. 2010) and cell morphology (Mainen and Sejnowski 1996). Potassium 

channels in particular are known for their role in modifying firing patterns and neuronal 

excitability (Garden et al. 2008; Oertel et al. 2008; Hassfurth et al. 2009). Voltage-gated 

potassium channels that are activated around resting potential, such as Kv1, and HCN 

channels influence the resting potential and synaptic integration, especially in the auditory 

brainstem (Garden et al. 2008; Oertel et al. 2008; Hassfurth et al. 2009). Some authors have 

demonstrated that Kv1, Kv4, and Kv7 are low-voltage-activated potassium channels opening 

on small depolarizations around the resting potential and provide a powerful instrument to 

regulate action potential number (Coetzee et al. 1999; Brew et al. 2003, 2007; Brown and 

Passmore 2009). The Kv1 channels are known to contribute to the firing threshold and 

action potential amplitude, and the low-voltage-activated potassium channel Kv1.2 in 

particular determines action potential properties in the auditory brainstem nucleus MNTB 

(Brew and Forsythe 1995; Dodson et al. 2002; Klug and Trussell 2006). Neurons of the 

MNTB fire exclusively with one spike at the onset, although the postsynaptic current is 

large enough to trigger more. According to Dodson et al. (2002), neurons of the MNTB 

show a more depolarized action potential threshold and a smaller peak amplitude in 

recordings with active Kv1.2 channels in comparison with measurements where these 

channels were blocked.  

In accordance with the study of Dodson et al. (2002), other studies on MNTB neurons have 

found a shortening of action potentials under the influence of Kv1.2 channels. A blockage 

of these channels results in a more hyperpolarized resting potential and a growth in action 

potential amplitude (Leao et al. 2004a; Klug and Trussell 2006). It has been argued that a 

lack of Kv1.2 prevents a complete repolarization of action potentials and elicits additional 

firing due to the presence of residual synaptic current from the large excitatory synaptic 

inputs to the MNTB (Leao et al. 2004a). The ventrolateral part of the VNLL is similar to 

neurons of the MNTB in terms of firing patterns, the ability to fire at high rates, action 

potential precision, and inputs. The size of the synaptic input charges the membrane very 

quickly and brings it rapidly to its threshold (Johnston et al. 2009).  

In addition, principal neurons in the LSO show an interesting distribution of Kv1.1 (Barnes-

Davies et al. 2004). There, 70% of the principal neurons located in the lateral LSO exhibit 

an onset firing pattern, whereas for neurons closer to the medial region, more than 90% 

display a sustained firing pattern. Interestingly, a morphological study in the publication 

from Barnes-Davies et al. (2004) shows a correlation with the Kv1.1 distribution. The 
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lateral LSO displays a much larger degree of fluorescent intensity. Furthermore, other 

morphological studies confirm the expression of Kv1.1 and Kv1.2 in other brainstem nuclei 

of mice (Wang et al. 1994; Grigg et al. 2000). Other authors linked the activity of high-

voltage-activated potassium channels such as Kv3 with the rapid action potential 

repolarization and firing of numerous action potentials (Wang et al. 1998a; Rudy and 

McBain 2001).  

These results indicate that mature VNLL neurons may have an enhanced expression of Kv1 

channels, whereas younger animals still exhibit neurons with a larger Kv3 expression. 

Whether this change is evoked by auditory activity is evaluated in Section 7.3 below. 

 

7.2.3  Synaptic refinement of calyx-like inputs in the vVNLL occurs much 

later around hearing onset than of the calyces of Held in the MNTB 

Synaptic activity can be divided into two separate systems – evoked and spontaneous (Lu 

et al. 2007). Here, postsynaptic responses are described that resulted from artificial fiber 

stimulation to imitate either spontaneous or evoked (only in animals after hearing onset) 

action potential transmission. Although the calyx of Held is already formed at P2 

(Hoffpauir et al. 2006), it still undergoes pruning during early development between 

prenatal day E17 and postnatal day P1 (Morest 1968; Kandler and Friauf 1993; Rodriguez-

Contreras et al. 2008; Hoffpauir et al. 2010). Neurons of the vVNLL undergo refinement 

of excitatory synaptic inputs much later than those of the MNTB. At P10, an average of 

3.38 excitatory fibers innervates one vVNLL neuron, whereas only three days later synaptic 

pruning is finished and not further altered. Furthermore, the increase of synaptic strength 

also occurs much earlier in MNTB neurons, between P3 and P4 (Hoffpauir et al. 2010), 

whereas in vVNLL neurons a significant increase is found only after hearing onset. Rise 

and decay times are similarly reduced both in MNTB and vVNLL neurons of mice 

(Hoffpauir et al. 2010).  

A recent study on the VNLL of gerbils implies that VNLL neurons are generally innervated 

by two excitatory inputs (Berger et al. 2014). While in that study experiments were 

performed in gerbils just before hearing onset at P9–11, we examined the developmental 

reduction of VNLL inputs in mice at P10, P13, and P22. Our electrophysiological results 

in mice indicate a synaptic refinement to mainly one large excitatory input in adult mice. 

Whether there is further decrease of excitatory inputs in the gerbil VNLL was not 
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investigated by Berger et al. (2014) and remains unclear. Older studies, though, support the 

assumption of two presynaptic terminals innervating the VNLL (Covey and Casseday 

1986; Vater and Feng 1990; Adams 1997; Schofield and Cant 1997). Berger et al. (2014) 

claim that the activation of both inputs is necessary in order to trigger a postsynaptic 

response (Berger et al. 2014). In the vVNLL of mice, however, it has been demonstrated 

that stimulations of calyx-like inputs generate action potentials at a high precision rate 

(Baumann and Koch 2017). Here, we showed that stimulations of single fibers resulted in 

large postsynaptic responses that accord with the results of the study performed by 

Baumann and Koch (2017). The mechanisms by which these redundant inputs are 

downregulated are still not entirely understood. A theory by Rusu and Borst (2011) 

proposed that a spike-time dependent plasticity influences both the formation of the calyx 

synapse and the postsynaptic area that corresponds to the release sites of the calyx. There, 

the postsynaptic membrane develops a decreased input resistance and accelerated kinetics 

of postsynaptic receptors that in turn strengthen the bond of calyx synapse and postsynaptic 

membrane and may indirectly prime the downregulation of inputs that cause only 

subthreshold responses (Rusu and Borst 2011).  

We conclude that either sound-evoked activity is crucial for calyx formation in the VNLL 

or a coincidental development of synaptic refinement during hearing onset takes place. This 

issue required further investigation with hearing-impaired animals, which I performed in 

Part 3 of this thesis and discuss below. 

 

7.2.4  Strain-specific synaptic refinement of excitatory inputs to the 

vVNLL 

The EPSCs of otoferlin WT animals were slightly different than the those in the EPSC 

developmental study performed in C57Bl/6 mice. Rise and decay times were also slower 

in otoferlin mice, and they also differed from time constants found in mice and rats (Futai 

et al. 2001; Yamashita et al. 2003; Fernández-Chacón et al. 2004). It has been demonstrated 

that different mouse strains may develop a variance of different phenotypes – for example, 

hereditary hearing loss (Ralls 1967; Turner and Willott 1998; Willott et al. 1998; Willott 

and Turner 1999; Zheng et al. 1999; Turner et al. 2005; Rivera and Tessarollo 2008). 

Furthermore, after 20 generations of inbreeding, genetically former relatives develop a 

genetic distance that can result in morphological and physiological differences (Beck et al. 
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2000). We conclude, therefore, that both mouse strains exhibit different morphological and 

physiological peculiarities that result from a genetic distance. Nevertheless, a reduced 

number of synaptic inputs and a decrease of time constants was observed in both mouse 

strains.  

 

7.2.5  Downregulation of NMDA receptor-mediated currents is 

accompanied by postsynaptic AMPA receptor acceleration 

Fast glutamatergic synaptic transmission is mediated by ionotropic glutamate receptors, of 

which three groups are known in the brain – AMPA, NMDA, and kainate receptors 

(Dingledine et al. 1999). The AMPA receptors mediate the majority of the fast 

neurotransmission in the central nervous system and are expressed by nearly all neurons of 

the CNS (Borges and Dingledine 1998; Michaelis 1998), including the auditory VNLL (Wu 

and Kelly 1996).  

In this present study, blocking AMPA and NMDA receptor-mediated currents resulted in a 

baseline with only really small residual currents, indicating that AMPA and NMDA 

receptors were primarily responsible for glutamatergic synaptic transmission in the VNLL. 

Maturation and pruning of synaptic inputs in vVNLL neurons have been observed at P13. 

It has been demonstrated that type, number, and distribution of receptors largely determine 

postsynaptic responses to transmitter release (Rubio et al. 2017). Although synaptic 

refinement is complete by P13, an increase of excitatory postsynaptic current was found in 

P22 animals. The increase of AMPA receptor-mediated currents may be a reflection of 

more vesicle release sites in the presynapse, a change of release probability, or an increase 

of postsynaptic receptor density (Joshi and Wang 2002; Baumann and Koch 2017). The 

kinetics of AMPA receptors also decrease significantly in the MNTB (Futai et al. 2001; 

Joshi and Wang 2002) and the VNLL, and they can be influenced by subunit gating 

kinetics, desensitization (Jones and Westbrook, 1996), and by asynchronous release of 

vesicles from the presynaptic membrane (Chuhma and Ohmori 1998).  

The EPSC decay time at large somatic synapses is largely determined by postsynaptic 

factors (Berger et al. 2014) and accelerates during development (Taschenberger and von 

Gersdorff 2000; Joshi and Wang 2002; Joshi et al. 2004). In accordance with the findings 

of other studies, tau decay is reduced to 0.3 ms in mice and rats at P20 (Futai et al. 2001; 

Yamashita et al. 2003; Fernández-Chacón et al. 2004). In particular, a developmental 
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switch to the GluR4 subunit containing AMPA receptors mediated a fast and precise 

synaptic transmission in rat and chick auditory synapses (Geiger et al. 1995; Otis et al. 

1995; Zhou et al. 1995; Wang et al. 1998b; Caicedo and Eybalin 1999; Ravindranathan et 

al. 2000). Receptor subunits, their molecular organization, and pharmacological and 

biophysical characteristics differ and greatly determine their receptor properties through a 

combination of different AMPA receptor subunits (Rubio et al. 2017). Furthermore, it has 

been suggested that the developmental reduction of AMPA receptor kinetics is responsible 

for an increased temporal precision of action potential generation, since the summation of 

synaptic current is reduced (Futai et al. 2001).  

Interestingly, a developmental change in calcium-binding proteins was also observed. 

While mature mice expressed large amounts of calretinin, mice before hearing onset 

showed much less. Calretinin has been shown to have a strong affinity for calcium and 

reduces the time that calcium mediates transmitter release, in turn increasing the temporal 

resolution to follow auditory signaling (Maruyama et al. 1984). Additionally, the 

developmental reduction of AMPA-receptor kinetics has also been observed in MNTB 

neurons and may be caused by a larger density of functional postsynaptic receptors or/and 

a switch of AMPA-receptor subunits (Joshi and Wang 2002). Moreover, Tarusawa et al., 

(2009) have revealed that a higher density of postsynaptic receptors affects the amplitude 

of the postsynaptic response. During the same time that AMPA receptor-mediated currents 

increased, NMDA receptor-mediated currents decreased. This has also been demonstrated 

for the MNTB (Futai et al. 2001; Joshi and Wang 2002). Indeed, NMDA receptor-mediated 

currents increase until ear canal opening, after which they decline rapidly to a point of being 

almost absent (Joshi and Wang 2002). This reverse development of NMDA and AMPA 

receptor-mediated currents has not been observed in other central synapses than the VNLL 

and MNTB synapses.  

The calyx of Held synapse in the MNTB also undergoes drastic changes in the second 

postnatal week after the onset of sensory experience (Kikuchi and Hilding 1965; Mikaelian 

and Ruben 1965). During this time, the calyx of Held reshapes from a spoon to a finger-

like profile and synaptic precision is perfected. It has been demonstrated that an activity-

dependent downregulation of NMDA receptor expression is responsible for these changes 

(Futai et al. 2001; Joshi and Wang 2002). It has been reported that NMDA-receptor kinetics 

speed up during maturation, which has also been confirmed in studies of other synapses 
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due to an alteration of NMDA subunits (Carmignoto and Vicini 1992; Hestrin 1992; 

Takahashi et al. 1996; Flint et al. 1997; Cathala et al. 2000).  

But why are NMDA receptors expressed in the first place? The NMDA receptor-mediated 

currents are particularly important for synaptic plasticity, short- and long-term potentiation, 

and memory formation (Willard and Koochekpour 2013). However, it is unclear whether 

plasticity in the VNLL is activity-dependent of NMDA receptors, since they are 

downregulated early during development. It has been shown that also NMDA receptor-

mediated currents are essential for a proper synaptic formation and synapse migration 

during the very early days of ontogeny (Komuro and Rakic 1993; Farrant et al. 1994; 

Durand et al. 1996) and may, therefore, play a critical role in the formation and refinement 

of calyx-like synapses in the VNLL. Interestingly, a recent study on vVNLL neurons of 

mice has revealed a reduction of nicotinic acetylcholine receptors during the development 

of the calyx-synapse (Baumann and Koch 2017) that may also affect synaptic refinement. 

A deletion of the α9 acetylcholinic subunit impairs synaptic refinement in an auditory 

brainstem projection before hearing onset (Clause et al. 2014). Taken together, both the 

downregulation of NMDA receptor- and actelycholine receptor-mediated currents could 

promote calyx-formation in the VNLL.  

Spontaneous synaptic activity occurs without sound stimulation and can be action 

potential-dependent or independent (Lu et al. 2007). Action potential-independent 

spontaneous activity can be measured after pharmacological blockade of voltage-gated 

sodium channels with TTX (Lu et al., 2007) and are called spontaneous or miniature 

EPSCs. Miniature EPSCs are mostly very small and result from the release of a single 

transmitter-filled vesicle that may be stored in different vesicle pools than vesicles for 

evoked transmitter release (Frerking et al. 1997; Sara et al. 2005). Amplitudes and 

frequencies were not changed after P10 in vVNLL WT neurons, whereas mEPSC shapes 

became significantly briefer, since time constants decreased considerably during 

development. In contrast to the results obtained from our vVNLL experiments, it has been 

demonstrated that the development of mEPSC frequencies is increased in SOC nuclei 

(MNTB: Taschenberger and von Gersdorff, 2000; MSO: Magnusson et al., 2005) and the 

AVCN of mice (Lu et al. 2007). However, our findings accord with a recently published 

vVNLL study in mice (Baumann and Koch 2017). It was proposed that mEPSC frequencies 

change during development when the overall size of synaptic inputs increases and is 

accompanied by a growing number of release sites (Lu et al. 2007). Logically, the more 
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release sites that are available, the higher the probability of spontaneous vesicle release. 

Since our immunohistochemical stainings of the dominant glutamatergic marker VGluT1 

in vVNLL neurons did not show any obvious differences in synaptic extents, we conclude 

that the overall size – not number – of synaptic inputs remains similar. 

 

7.2.6  Short-term depression is reduced in neurons of mature mice 

When presynaptic axons were stimulated at 100 Hz, AMPA receptor-mediated currents 

showed a robust short-term depression in vVNLL neurons of both age groups. However, 

short-term depression exhibited a strong age dependence from ~80% in P10 to ~60% in 

P22 otoferlin WT mice. A repetitive stimulation of the calyx of Held also resulted in a 

robust depression (Borst et al. 1995; von Gersdorff et al. 1997; Wang and Kaczmarek 

1998). Theoretically, short-term depression can be dependent on various pre- and 

postsynaptic factors. These factors include, for instance, depletion of the RRP and 

postsynaptic receptor inactivation and desensitization (von Gersdorff et al. 1997; Forsythe 

et al. 1998; Schneggenburger et al. 1999; Weis et al. 1999). Properties of the RRP remained 

similar with only slight changes during development in WT animals. The size of the RRP 

and its depletion can be calculated based on various assumptions discussed below. 

 

7.2.7  Assumption I: Only presynaptic factors contribute to short-term 

depression 

Older studies on the MNTB synapse have shown that the depletion of the RRP is 

accountable for short-term depression (von Gersdorff et al. 1997; Wang and Kaczmarek 

1998). Only a few studies have calculated the RRP under this assumption and obtained 

values between 600 and 800 in the MNTB (Schneggenburger et al. 1999; Bollmann et al. 

2000), which is quite comparable with the results found in vVNLL neurons in this study. 

The RRP pool is calculated from train stimulation data that are stepwise cumulated. 

Usually, train stimulations reach steady state, and authors using this method assume that 

the amplitudes of the EPSCs at steady state result from vesicles that are exclusively freshly 

replenished, and neither postsynaptic desensitization nor a presynaptic mixture of old and 

new vesicles are depleted (Neher 2015). In the Schneggenburger approach, a linear 

regression is fitted through the last three cumulated amplitudes and is extrapolated 

backwards (Schneggenburger et al. 1999). The hypothetical value this regression reaches 
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theoretically matches the RRP under the assumption of presynaptic predominance. 

Although these data were similar to our findings, we used a different approach, taking pre- 

and postsynaptic factors into account. 

 

7.2.8  Assumption II: Both pre- and postsynaptic factors contribute to 

short-term depression 

Previously it was widely accepted that presynaptic factors determine short-term depression, 

until some authors expressed well-founded doubts about the methodical approach discussed 

in the previous Section 7.2.7. These researchers claim that depression is the result of 

presynaptic pool properties and postsynaptic desensitization (Scheuss et al. 2002; Wong et 

al. 2003). Elmquist and Quastel already in 1965 developed a method to take postsynaptic 

desensitization into account. While the Schneggenburger approach focuses on the last 

amplitudes of a train stimulation, the Elmquist-Quastel approach emphasizes the first 

amplitudes during the first few milliseconds that represent depletion of the RRP, and 

desensitization of postsynaptic receptors is not as crucial (Neher 2015). The individual 

release is plotted as a function of the cumulated release, and a linear regression is fitted 

through the first three amplitudes (Elmquist and Quastel 1965). The x-intercept 

corresponds to the RRP. This approach was used in our analysis. 

A study in the calyx of Held with a prolonged stimulation of the presynaptic terminal 

resulted in large postsynaptic responses of 10 nA. A vesicle release of approximately 3000 

vesicles was estimated (Sakaba and Neher 2001), an amount that strongly exceeds the 

vesicle number found in vVNLL neurons of this study (292 vesicles in P22 animals). One 

reason for such a large difference in vesicle release may lie in the significantly larger size 

of calyces of Held compared with calyces in the VNLL. Morphological reconstructions 

estimate the calyces of Held to be twice as large as calyces in the VNLL (Berger et al. 

2014). Still, this does not fully explain these large differences. 

Other methods that directly measure the RRP are electron microscopy studies (Sätzler et 

al. 2002; Taschenberger et al. 2002) and measurements of capacitance changes of the 

presynaptic membrane during vesicle fusion (Berger et al. 2014; Wölfel and 

Schneggenburger 2003; Wu et al. 2007). Berger et al. (2014) performed experiments on the 

VNLL of gerbils and determined the number of vesicles that were released from the calyx-

like synapse in the VNLL and calyx of Held in the MNTB. In their experiments, they 
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measured presynaptic changes in capacitance during transmitter release as a response to a 

large calcium influx and compared it to the change of capacitance produced by one vesicle 

(Wu et al. 2007). This method produced very large numbers. The mean vesicle release in 

the VNLL amounted to 4076, whereas in the MNTB it was almost double (~7500; Berger 

et al., 2014). However, taking the size differences into account, the calyx of the VNLL is 

simply a scaled-down version of the calyx of Held. A much smaller number was calculated 

for the MNTB with the same methodical approach (4000 vesicles; Wölfel and 

Schneggenburger, 2003). Furthermore, two electron microscopy studies in the MNTB 

estimated a RRP of 1100–2800 vesicles (Sätzler et al. 2002; Taschenberger et al. 2002). 

Unfortunately, data on VNLL synapses are unavailable. Comparison of the presented 

studies illustrates the large diversity of experimental outcomes and complicates relating 

these results to our own findings. Although we applied a different method, we expected a 

similar number in the VNLL of mice. However, a 10-fold decrease of readily releasable 

vesicles in the mouse VNLL is indicated by our data, with only a 2-fold decrease in synapse 

size. Perhaps not only the synaptic extent but also the distribution of release sites that could 

greatly increase the RRP is important.  

Calyx-like synapses in the vVNLL are smaller and transmit smaller postsynaptic responses 

than those found in the MNTB. Synapses of the MNTB contain many active zones with an 

excess supply in vesicles that serve as potential backup for assuring a fast and precise 

synaptic transmission (Berger et al. 2014; Franzen et al. 2015). This functional insurance 

is not developed in VNLL synapses. 

 

7.2.9  AMPA receptor subunit switch might be responsible for reduction of 

short-term depression 

It is recognized that AMPA receptor subunits exist in different conformations – flip and 

flop – both resulting from alternative splicing variants (Mosbacher et al. 1994; Geiger et 

al. 1995; Koike-Tani et al. 2005). Mosbacher et al. (1994) also demonstrated that GluR4 

AMPA receptor subunits spliced in the flop variant displayed a faster desensitization. The 

variety of subunit compositions and its splicing variants result in diverse functional 

characteristics of AMPA receptors (Borges and Dingledine 1998; Wenthold and Roche 

1998). Furthermore, subunit composition is under developmental control (Wenthold et al. 

1996), and the postsynaptic AMPA receptor density is regulated by synaptic activity 
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(Mosbacher et al. 1994). Moreover, neurons of the auditory system undergo a rapid 

desensitization (Raman et al. 1994; Gardner et al. 1999), seen, for instance, in MNTB 

neurons. It has been demonstrated that cyclothiazide only affects synaptic depression of 

MNTB neurons of young animals (Joshi and Wang, 2002). Wang and Kaczmarek (1998) 

also showed that depression is unaffected by desensitization of postsynaptic receptors in 

mice after hearing onset. Thus, the larger depression found in young mice before hearing 

onset may at least partially result from desensitization of postsynaptic AMPA receptors. A 

change of calyx formation may also lead to a reduction of depression in mature animals 

(Taschenberger et al. 2002, 2005), since the fenestration of mature calyces of Held allow a 

faster diffusion of glutamate from the synaptic cleft (Renden et al. 2005). Generally 

speaking, a rapid deactivation and desensitization of receptors is interpreted as an important 

adaptation for fast auditory signaling and essential for the preservation of timing 

information (Trussell 1999). 

To summarize, firing patterns depend largely on the expression of low-voltage-activated 

potassium channel expression, and Kv1.1 and Kv1.2 in particular are strongly expressed 

during late postnatal development, influencing and regulating the onset firing found in the 

vVNLL neurons of mature animals. Furthermore, depletion is likely the main mechanism 

underlying postsynaptic short-term depression in older animals, whereas differences of 

depression in younger animals may result from faster desensitization of postsynaptic 

AMPA receptors. The first three postnatal weeks are a critical period during which synapse 

pruning and formation occur, postsynaptic glutamatergic receptors are modified, and 

hearing onset takes place. The NMDA receptor currents are essential for the proper 

formation of mature synaptic innervation, and its reduction is, in turn, necessary for fast 

and precise synaptic transmission in mature hearing mice.  

 

7.3  Deafness impairs the typical neuronal and synaptic 

development 

The previous chapter revealed that both synaptic refinement and intrinsic neuronal 

properties in vVNLL neurons occur during hearing onset, but it is unclear whether this 

temporal co-development is regulated by sound-evoked activity or rather arises 

coincidently at that time. In order to test the influence of sensory experience, we performed 
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experiments on hearing and deaf mice. Congenitally deaf mice were used where exons 14 

and 15 had been deleted from the otoferlin gene (Roux et al. 2006; Reisinger et al. 2011). 

Otoferlin is a protein necessary for vesicle fusion and therefore exocytosis of 

neurotransmitter in inner hair cells of the cochlea (Roux et al. 2006). While signal 

transmission is interrupted in the inner hair cells, the auditory nerve remains intact (Roux 

et al. 2006). Breeding of heterozygous animals produced hearing (WT: OTOF(+/+)) and deaf 

(KO: OTOF(-/-)) littermates. 

 

7.3.1  Auditory-evoked activity is essential for a typical neuronal and 

synaptic development 

By comparing mature deaf mice with hearing P10 and P22 mice as controls, we attempted 

to elucidate intrinsic or environmental factors that are involved in neuronal and synaptic 

maturation. Intrinsic neuronal properties were in some ways similar to mice before hearing 

onset and in other ways similar to adult mice. For instance, firing patterns of KO mice 

resembled those found in P10 WT mice with almost exactly the same ratio of onset- and 

sustained-firing neurons (P10 WT: onset 74%, sustained 26%; P22 KO: onset 70%, 

sustained 26%). While the resting membrane potentials and current thresholds of deaf mice 

remained similar to P10 WT animals, other properties such as Ih component and action 

potential shapes were unaffected by deafness and developed typically. Although membrane 

time constants were not significantly different between either experimental group, large 

variabilities were generally detected in P10 WT and P22 KO mice. Not only is this 

variability reflected in our results, but experimental difficulties were also observed, 

especially in KO mice. Patching of KO neurons was always very difficult, and stable 

measurements were hard to obtain. This has not been described in the literature.  

However, it has been discussed that otoferlin is expressed not only in the ribbon synapse 

of inner hair cells but also in the brainstem, inferior and superior colliculus, hippocampus, 

and cortex (Schug et al. 2006). In that study of Schug et al. (2006), authors suggest that 

otoferlin not only mediates exocytosis but also plays an important role in membrane 

recycling in the Golgi apparatus and other yet-unknown roles, since it is also found in the 

cytoplasm located in the vicinity of the nucleus. Therefore, a lack of otoferlin leads to 

deafness but may also influence the biochemical construction of the lipid bilayer that, in 



7 Discussion 

 

118 

 

turn, causes difficulties patching. These biochemical effects on the membrane must still be 

unraveled. 

The number of synaptic inputs and time constants of postsynaptic receptors of deaf mice 

are similar to young WT animals. Interestingly, the frequency of spontaneous EPSCs 

(mEPSCs) was increased in KO compared with WT mice, while time constants of 

spontaneous and evoked EPSCs resembled those found in immature mice. Short-term 

plasticity and properties of the RRP were unaffected by congenital hearing loss. 

 

7.3.2  Spontaneous activity is not involved in synaptic refinement of 

vVNLL synapses 

The activity of the cochlea of rodents begins at around P1 and occurs with an increased 

frequency until hearing onset (Tritsch and Bergles 2010). During spontaneous activity, hair 

cells are depolarized by ATP that is released by nearby supporting cells (Tritsch et al. 

2007). The depolarization leads to a calcium influx that mediates exocytosis of transmitter 

into the synaptic cleft (Johnson et al. 2005; Tritsch et al. 2007). Neurons of the MNTB also 

show an increased bursting activity in vivo around P1 (Tritsch et al. 2010). This cochlea 

output may be suited to promoting calyx formation and MNTB maturation (Hoffpauir et 

al. 2010). Mice with hearing disorders and defects in hair cells still develop calyces and 

undergo typical MNTB maturation (Erazo-Fischer et al. 2007; Youssoufian et al. 2008; 

Noh et al. 2010). The development of the calyx of Held occurs before hearing onset, 

whereas a modification of the calyx shape takes place only after hearing onset (Hoffpauir 

et al. 2006; Ford et al. 2009). During this developmental fenestration of the calyx of Held, 

Ford and colleagues (2009) found out that neurons located in the medially oriented part of 

the MNTB that respond to high frequencies develop the calyx fenestration earlier than those 

in the lateral part. Deaf animals without auditory-evoked activity did not develop such a 

temporal developmental gradient (Ford et al., 2009).  

Deaf deafwaddler mice that have a mutation in the plasma membrane calcium ATPase 

(Penheiter et al. 2001) have larger mEPSC and EPSC amplitudes (Weatherstone et al. 

2017), whereas EPSC amplitudes were smaller in the VNLL of KO mice. The decrease of 

excitatory postsynaptic currents may affect the ability to follow firing rates and decrease 

the temporal precision of neurons (Weatherstone et al. 2017). Additionally, the typical 

development of tonotopy in MNTB neurons is altered in these mice (Weatherstone et al. 
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2017). In the absence of auditory-evoked activity, spontaneous cochlear activity could be 

sufficient to induce and regulate calyx formation and neuronal development. Spontaneous 

activity is found in otoferlin KO mice before hearing onset (Beurg et al. 2010). Synaptic 

refinement in the vVNLL, however, takes place around hearing onset after P11 and is 

disturbed in KO mice, indicating that spontaneous activity is not sufficient for a typical 

synaptic development.  

Deafness resulting from cochlea ablation is a different methodical approach than the 

genetic mutations previously presented. Cochleae are destroyed, and transmission of 

sound-evoked activity is prevented (Lu et al. 2007). Postsynaptic responses and 

spontaneous activity are increased in a study of cochlea ablated mice (Sumner et al. 2005). 

These effects may be a result of growing nerve endings and a co-development of more 

release sites, because the frequency of spontaneous EPSCs seems to be correlated with the 

number of auditory inputs (Lu et al. 2007). This could also explain the increase of 

spontaneous EPSCs in otoferlin KO mice, and the lack of sound-evoked activity may have 

generated an increase in release sites as a compensatory mechanism (Lu et al. 2007). The 

increased spontaneous activity of vVNLL synapses in otoferlin KO mice may likely be a 

compensatory mechanism for the lack of sound-evoked activity (Weatherstone et al. 2017). 

In addition, synaptic inputs that have degenerated as a consequence of deafness were 

replaced by either nearby terminals (Gentschev and Sotelo 1973) or synaptogenesis 

(Benson et al. 1997). 

In the previous Section 7.2.5 on the development of calyx-like inputs to the vVNLL, we 

demonstrated that NMDA receptor-mediated currents almost entirely diminish during 

development. This decrease co-occurs with synaptic refinement in the vVNLL. In a study 

where mice had been cochlea-ablated at P7, slice recordings of NMDA receptor-mediated 

currents in the MNTB were performed between P14 and P16 (Futai et al. 2001). The 

NMDA receptor-mediated current amplitudes of deafened mice match recordings done in 

animals before hearing onset. Furthermore, a downregulation of NMDA-receptor 

expression of subunit NR2 is missing, whereas a reduction of subunit NR1 behaves the 

same as in untreated animals (Futai et al. 2001). Both subunits are essential for the activity 

of a functional NMDA receptor, and a developmental loss or decrease of one subunit could 

explain functional loss of the NMDA receptor (Meguro et al. 1992; Boeckman and 

Aizenman 1994; Kutsuwada et al. 1996). A missing downregulation of NMDA-receptor 
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functionality in the postsynaptic membrane may, at least partially, cause a disturbed 

synaptic refinement in vVNLL neurons. 

The MNTB is a nucleus involved in sound localization (Boudreau and Tsuchitani 1968; 

Cant 1984), whereas the VNLL is considered to play a critical role in the analysis of 

temporal sound patterns (Aitkin et al. 1970; Covey and Casseday 1991; Recio-Spinoso and 

Joris 2014). These differing functional fates of the two nuclei could account for their 

diverse requirements for sensory experience, assuming the VNLL requires “language” as a 

promoter for mature synaptic formation. 

 

7.3.3  Sound-evoked experience is necessary for determining firing 

patterns through ion channel modulation 

It has been demonstrated that MNTB neurons of hearing-impaired animals undergo a 

typical developmental reduction of input resistances and modulation to onset firing patterns 

(Noh et al., 2010). However, the reduced cochlea activity in mice with hearing disorders 

affects the tonotopy and expression of voltage-gated ion channels (Leao et al. 2006). 

Furthermore, auditory-evoked activity leads to a higher expression of low-voltage-

activated potassium channels (Leao et al. 2004a). Leao et al. (2004) show that deaf animals 

have smaller low-voltage-activated potassium currents near the resting membrane 

potential, consequently causing neurons to display sustained firing patterns. It has been also 

suggested that, at least in the AVCN, synaptic and intrinsic conductances are under activity-

dependent control (Oleskevich and Walmsley 2002). A study performed on deafwaddler 

mice revealed that sound-evoked activity also greatly affects the ion channel expression in 

MNTB neurons (Leão et al. 2010). Neurons responding to high frequencies display an 

increased expression of the high-voltage-activated potassium channel Kv3.1 (Leão et al. 

2010) that is thought to minimize action potential duration (Wang et al. 1998a).  

Another study on the deaf mouse model dn/dn, with a mutation of the transmembrane 

cochlear expressed gene 1 (Leao et al. 2004a; Youssoufian et al. 2008) that occurs naturally 

in humans (Kurima et al. 2003), indicates that a reduction of low-voltage-activated 

potassium channels leads to an augmented firing of action potentials (Leao et al. 2004a). A 

firing of numerous action potentials disrupts the ability of these cells to precisely follow 

high frequencies (Leao et al., 2004). In addition, deaf animals show smaller low-voltage-

activated potassium currents near the resting potential (Leao et al., 2004). Leao and 
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colleagues (2004) used dendrotoxin to block low-voltage-gated potassium channels in 

order to investigate effects on firing patterns. Interestingly, pharmacological blockade of 

low-voltage-gated potassium channels results in a firing of numerous action potentials 

(Leao et al., 2004). These results may also explain the existence of sustained-firing neurons 

in P10 WT and P22 KO mice in our study. A developmental increase of low-voltage-gated 

potassium channels controlled by auditory-evoked activity downregulates sustained firing 

of neurons in the vVNLL. We conclude that sensory experience is necessary for ion channel 

modulation and regulation. 

 In summary, it can now be stated convincingly that auditory-evoked activity is essential 

for ion channel modulation and expression, which determine the maturation of firing 

patterns in the vVNLL and all other auditory nuclei investigated. 

 

7.4  Concluding remarks and outlook 

As mentioned previously, the VNLL is a nucleus considered to play an important role in 

the analysis of speech and the transmission of speech containing temporal specifics to the 

IC and thence upstream to the cortex. The rapid signal transmission from the auditory nerve 

to octopus cells in the PVCN, then to the VNLL, and from there to higher auditory centers 

provides the fundamental basis for comprehending, for example, sophisticated language 

like that of humans. Synaptic refinement and the development of an exclusively onset firing 

pattern are disturbed in deaf mice lacking the protein otoferlin, indicating that spontaneous 

activity is not sufficient but rather auditory-evoked activity is essential for typically 

functional neuronal development in the VNLL. That, however, is contradictory to our 

expectations that the calyx formation in the VNLL behaves similarly to the formation of 

the calyx of Held. A lack of auditory information leads to the inability of the brain to 

analyze speech components, which, in fact, makes sense. Only auditory experience will 

trigger neuronal modifications in the VNLL that, in turn, reliably and accurately transmit 

relevant temporal information to higher auditory centers.  

These results may contribute to the understanding of deafness-related mutations in humans. 

Indeed, to predict the outcome of treatments of, for instance, cochlear implant patients, it 

is immensely important to understand central auditory pathways and whether deafness has 
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an incurable impact on neuronal structures. Our results imply a meaningful consequence 

for humans with hearing loss, since the lack of sensory experience alters the synaptic and 

biophysical development of the VNLL. The clinical utilization of cochlear implants, 

however, may cure through experience the neuronal defects obtained by this mutation, at 

least in the VNLL, by providing auditory-nerve activity. Consequently, our results 

encourage the use of cochlear implants in patients with an otoferlin-related deafness. 
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9  Abbreviations 

ACSF  artificial cerebrospinal fluid 

AHP  afterhyperpolarization 

AMPA  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

AP  action potential 

AVCN  anteroventral cochlear nucleus 

BDA  Biotinylated dextran amine 

bp  base pairs 

CaR  calcium receptor 

CN  cochlear nucleus 

CR  calretinin 

DCN  dorsal cochlear nucleus  

DFN  deafness 

dfw  deafwaddler 

DNA  deoxyribonucleic acid 

DNLL  dorsal nucleus of the lateral lemniscus 

DNQX  6,7-dinitroquinoxaline-2,3-dione 

dVNLL  dorsal part of the ventral nucleus of the lateral lemniscus 

Ex  prenatal day x 

EAAT  excitatory amino acid transporter 

EDTA  ethylenediaminetetraacetic acid 

EPSC  excitatory postsynaptic current 

EQ  Elmquist-Quastel 

EYFP  enhanced yellow fluorescent protein 

FEM  Forschungseinrichtungen für Experimentelle Medizin 

GABA  γ-aminobutyric acid 

GAD  glutamic acid decarboxylase 

GL  gene ladder 

Gln  glutamine 

Glu  glutamate 

GluR  glutamate receptor 

GlyTx  glycine transporter x  

HCN  Hyperpolarization-activated cyclic nucleotide–gated channel 

HRP  horseradish peroxidase 

IC  inferior colliculus  

Ih  HCN channel-mediated current   

IHC  inner hair cell  

IID  interaural intensity difference 

INLL  intermediate nucleus of the lateral lemniscus 

IPSC  inhibitory postsynaptic current  
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ITD  interaural time difference 

KO  knock-out 

Kvx  voltage-gated potassium channel x 

LNTB  lateral nucleus of the trapezoid body 

LSO  lateral superior olive 

mEPSC  miniature excitatory postsynaptic current 

mGluR  metabotropic glutamate receptor 

MNTB  medial nucleus of the trapezoid body 

MSO  medial superior olive  

Navx  voltage-gated sodium channel x 

NDS  normal donkey serum 

NMDA  N-Methyl-D-aspartic acid 

NMDAR N-Methyl-D-aspartic acid receptor 

NRx  NMDA receptor subunit x 

OHC  outer hair cell 

OTOF(-/-) otoferlin KO 

OTOF(+/-) heterozygous otoferlin expression  

OTOF(+/+) otoferlin WT  

Px  postnatal day x  

PB  phosphate buffer 

PBS  phosphate buffer saline 

PCR  polymerase chain reaction 

PFA  paraformaldehyde 

PMCA  plasma membrane calcium ATPase 

PSC  postsynaptic current 

RRP  readily releasable pool 

SEM  standard error of the mean 

SNARE soluble N-ethylmaleimide-sensitive-factor attachment receptor  

SOC  superior olivary complex 

STP  short-term plasticity 

Syt1/Syt2 synaptotagmin I and II  

PVCN  posteroventral cochlear nucleus 

TBE  TRIS-Borat-EDTA buffer 

tmc1  transmembrane channel-like protein 1 

TRIS  Tris(hydroxymethyl)-aminomethan  

TTX  tetrodotoxin 

VCN  ventral cochlear nucleus 

VGAT  vesicular GABA transporter 

VGluTx vesicular glutamate transporter x 

VNLL  ventral nucleus of the lateral lemniscus 

vVNLL  ventrolateral part of the ventral nucleus of the lateral lemniscus 

WT  wild type 

YFP  yellow fluorescent protein
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