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1. Introduction

Quantum physics is one of the most fascinating research topics that mankind ever initi-
ated. We not only know that its implications define a large part of nature, e.g., how matter,
chemistry, and biology emerge from elementary particles, but we also utilise it every day
in (classical) computers for instance which rely on thousands of field effect transistors.
Despite that, we only have very little intuition for the variety of quantum phenomena
such as superposition and quantum entanglement since they are not directly observable
in everyday life. It seems as if there is still an entire universe filled with open questions
and sometimes the answer to just one of them can yield an incredible improvement for
society. For example, the discovery of superconductivity by Heike Kamerlingh Onnes in
1911 [43] provides us with the capability to save lives worldwide everyday using magnetic
resonance imaging. The applicability of a superconducting state lies in the fact that it
is a macroscopic quantum state which is robust in a sense and can therefore be used to
construct actual devices.
The key to the quantum world is that classical variables such as position and momentum

can fluctuate on small scales and can hence not be determined with arbitrary precision.
This effect is suppressed in our classical experience by too large thermal fluctuations on one
hand which render the quantum fluctuations irrelevant and by permanent measurement on
the other hand which naturally occurs if multiple interactions are present. In order to find
novel quantum phenomena with possible applications, many physicists thus investigate
systems at low temperatures, typically solid states. If most of their atomic constituents
are then somehow confined into a crystalline structure, an effective model of only a few
interacting quantum particles may accurately describe the system and one might have a
chance of finding the desired macroscopic quantum states.
One natural candidate for such quantum systems are Mott insulators [17, 131]. At low

temperatures, their nuclei and most of their electrons are bound in some atomic lattice
which acts as an effective potential for the remaining unbound valence electrons. Mott
insulators have exactly one valence electron per lattice site and are hence no band insula-
tors. Instead, the electronic orbitals between adjacent lattice sites have little overlap and
the valence electrons are unlikely to tunnel from one atom to a different one. The effec-
tive model which reliably characterises the properties of Mott insulators is the Hubbard
model [77–82]. It incorporates a hopping t of the valence electrons between different atoms
and a Coulomb repulsion U that energetically penalises two electrons at the same site. This
model shows a transition from a conducting phase for small U to an insulating Mott phase
if U � t. In the latter scenario, the valence electrons are very unlikely to tunnel through
their potential barriers from the beginning and the large repulsion term then drastically
suppresses electronic transport. At half filling which is accurate for Mott insulators, the
Hubbard model for the localised valence electrons in the large-U limit effectively turns via
direct exchanges and superexchanges into the Heisenberg model which is described by the
Hamiltonian

Ĥ =
∑
(i,j)

JijŜi · Ŝj . (1.1)
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Here, the brackets (i, j) denote that the sum runs over pairs of lattice sites and the coupling

constant is given by Jij =
4t2ij
U .

Even though the Heisenberg model only deals with a small percentage of the underlying
system’s intrinsic degrees of freedom, finding a solution for it is, especially in the quan-
tum spin-1

2 limit, a notoriously difficult task because there are merely interaction terms
present. For a lattice of N spins, the required diagonalisation of a 2N × 2N matrix is
feasible for the best computers currently available only up to N ≈ 40 depending on the
concrete symmetries. Since macroscopic systems contain a number of atoms that is to the
order of N ≈ 1023, these computational limitations seem quite unfortunate. Nevertheless,
already in 1973 Philip Warren Anderson proposed the so-called resonating valence bond
(RVB) state as a possible ground state for the antiferromagnetic (Jij > 0) spin-1

2 Heisen-
berg model on the triangular lattice [6]. Anderson realised that there might be a dense
manifold of states which cover a frustrated lattice with spin singlets on short-ranged bonds
in different ways. Instead of selecting one of these energetically very similar states, the
system could then fluctuate between different singlet covers in the presence of thermal or
quantum fluctuations. This behaviour inspired the name of the RVB state. Meanwhile, it
is believed that RVB states are closely related to the formation of cooper pairs in high-Tc

superconductors. The prime examples for such materials like the copper oxide La2CuO4

are doped Mott insulators and it has been proposed that the superconductivity at high
temperatures is strongly connected to a RVB state in the parent Heisenberg model [7].

In the same context, it was realised that a resonating cover of the lattice with spin
singlets does neither break any symmetry of the underlying Heisenberg Hamiltonian, nor
does it exhibit magnetic long-range order. Hence, the RVB state matches two of the three
possible definitions of a quantum spin liquid (QSL). The third potential definition demands
the existence of fractionalised excitations in the considered spin model [126]. Since spin
singlets are S = 0 states, the fundamental excitations in the RVB picture are spin triplets
which carry the spin quantum number S = 1. Due to the degenerate and fluctuating
nature of the RVB state though, these spin-1 excitations can fractionalise in some cases
into a pair of deconfined spin-1

2 excitations called spinons [51, 65–67]. If those spinons
are spatially separated, they leave a trace of rearranged spin singlets behind. By mapping
a RVB ground state of a two-dimensional spin system onto a torus, one can show that
the process of creating two spinons, propagating them around the torus’ circumference,
and recombining them afterwards into a S = 0 singlet will transform the RVB ground
state into yet another RVB ground state. The initial and the final state can then not
be discriminated in terms of local observables because all spin expectation values vanish.
The only distinction between the states before and after spinon creation, propagation, and
recombination is the arrangement of spin singlets along the path that the spinons took
around the torus. This singlet structure is a non-local observable. As a result, one calls
initial and final state topologically degenerate [181, 183, 184, 187] which is a necessary
condition for the existence of fractional excitations such as spinons [136].
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1. Introduction

In addition to being excellent models for understanding the principles behind high-Tc

superconductivity, quantum spin liquids might also be utilised in the aspiring field of
quantum computation. In 2006, Alexei Kitaev proposed a spin-1

2 model with Ising-like
interactions coupling the three spin components Ŝx, Ŝy, and Ŝz separately along the three
different nearest-neighbour bonds of a honeycomb lattice. Due to its somewhat artificial
construction, this model is exactly solvable and features a spin liquid ground state with
non-Abelian quasiparticles called anyons as excitations [101]. Though it is challenging to
realise this model in a laboratory and one already knows that the spin liquid phase is quite
unstable with respect to perturbations in the Hamiltonian, Kitaev’s idea for making use
of these anyons as decoherence-protected quantum memory has attracted a large interest
in spin liquids also for feasible applications in quantum information technology.
One of the fundamental ingredients in order to observe a QSL as the true ground state

of a Heisenberg model is the frustration of spins, i.e., there are different terms in the
Hamiltonian which cannot be minimised simultaneously. This can, for instance, occur
if there are finite antiferromagnetic Heisenberg interactions on different types of bonds
or if the lattice consists of corner-sharing triangles. Furthermore, quantum fluctuations
which are largest if S = 1

2 are a necessity as well since they can prevent the emergence of
magnetic long-range order. Due to the complexity of the consequential models, there are
still very few techniques available for their unbiased analysis. As explained above, exact
diagonalisation suffers from finite size effects which prohibits a true investigation of the
thermodynamic limit. The same statement holds for the density-matrix renormalisation
group (DMRG) method in two dimensions because it has to map the system onto a torus
with finite circumference.
For example, the J1-J2 Heisenberg model on the square lattice is highly debated to this

day. Here, J1 (J2) denotes the Heisenberg coupling on the nearest-neighbour (second-
neighbour) bonds. In the classical limit, this model exhibits a phase transition from an
antiferromagnetic Néel state into a collinearly ordered state at a coupling ratio of J2/J1 =

0.5 [144]. However, for the quantum spin-1
2 model, the situation is not that clear. From

early quantum Monte Carlo studies, it is known that the magnetisation of the Néel or the
collinear state in the respective non-frustrated limit (J1 = 0 or J2 = 0) is diminished by
roughly 40% from the saturation value due to quantum fluctuations [142]. In addition,
these fluctuations lift the collinear state’s classical continuous degeneracy into a two-fold
degeneracy [31] by means of a process which is often referred to as order by disorder [74].
There is a more or less general agreement between various studies that the Néel-ordered
phase persists up to a coupling ratio of J2/J1 . 0.4 and that the collinear phase appears
at around J2/J1 & 0.6 in the quantum model [42, 48, 61, 64, 91, 96, 161, 167, 172, 180].
The concrete values of the phase boundaries depend slightly on the specific method or the
implemented cluster sizes. Also, it is known from spin-wave theory for almost precisely
thirty years now that the intermediate coupling regime houses a paramagnetic phase around
J2/J1 ≈ 0.5 [32, 46] which immediately triggered a debate about whether that phase was
rather characterised by a valence bond crystal (VBS) [41, 141] or a QSL [32]. Since then,
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this topic has been addressed in numerous works including exact diagonalisation [21, 25, 48,
114, 161], field theories [141, 171], coupled cluster methods [16, 42], series expansions [59,
167, 169, 172], quantum Monte Carlo approaches [25, 26], and DMRG [61, 64, 96, 180],
but there is hitherto no consensus amongst them. The system might realise a VBS, a QSL,
or in fact both [61, 180] and there are different predictions for the type of QSL as well. It
could be gapped, gapless, or even topological.
A new method which was shown to being capable of describing the thermodynamic limit

of a spin system is the functional renormalisation group (FRG). Since its first application by
Johannes Reuther to the spin-1

2 square lattice Heisenberg model in 2010 [147], it was used to
accurately map out magnetic phase diagrams for various types of spin couplings in two and
three dimensions. As confirmed by FRG, the J1-J2 square lattice model around J2/J1 = 0.5

and the nearest-neighbour kagome lattice model are promising candidates for finding a QSL
due to their lack of magnetic long-range order. However, this method can only cope with
diagonal spin interactions so far and it provides the system’s spin susceptibility as a result.
This spin-spin correlator is related to the experimentally measurable spin structure factor
and thereby to the spinon dispersion, and it gives information about whether a certain
system tends to order magnetically or not. Nevertheless, until now the FRG does neither
provide any knowledge about the precise nature of a model’s excitations, nor can it deal
with off-diagonal spin interactions. This is why, in this thesis, we not only show the path
how to extend this powerful method to more realistic models by implementing it including
the Dzyaloshinsky-Moriya interaction, but we also develop a method that can characterise
the effective low-energy spinon theories for quantum spin models from the results of a FRG
analysis.
During the entire thesis, we represent the spin-1

2 operators in a pseudo-fermion rep-
resentation developed in 1965 by Alexei Alexeyevich Abrikosov in order to describe the
resistivity of a metal with paramagnetic impurities and the Kondo effect [1, 2]. If f̂ (†)

i,↑

annihilates (creates) a spin-up fermion at lattice site i and f̂
(†)
i,↓ does precisely the same

with a spin-down fermion, a spin operator at site i can be expressed as

Ŝµi =
1

2

∑
α,β

f̂ †i,ασ
µ
αβ f̂i,β , (1.2)

where µ ∈ {x, y, z}, and σx, σy, σz are the three standard Pauli matrices. This representa-
tion enables us to utilise standard Feynman diagrammatic techniques (invented by Richard
Phillips Feynman [53–55]) which is very convenient for large quantum-many-body systems.
Unfortunately, every coin has two sides and the decomposition into pseudo fermions yields
a Heisenberg Hamiltonian that is purely quartic in the fermionic operators, i.e.,

Ĥ =
∑
〈i,j〉

∑
µ

∑
α,β,γ,δ

Jij
4
f̂ †i,ασ

µ
αβ f̂i,β f̂

†
j,γσ

µ
γδf̂j,δ . (1.3)

As we shall notice soon, such a Hamiltonian is very hard to investigate due to its lack
of quadratic terms and the fact that the Hilbert space of a system containing N spin-1

2
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1. Introduction

particles is enlarged by a factor of 2N is also not beneficial. Because we are going to extend
the existing method in a rather elaborate fashion, we want to dedicate the first part of this
work to the mathematical framework on which the PFFRG is built.
This thesis is structured as follows. In the next chapter, we properly introduce all entities

that are necessary for the further investigation of quantum spin models. After a brief sum-
mary of the results needed from statistical physics, we show how experimental observables
are related to Green’s functions and how to efficiently calculate them using the so-called
functional integral formalism. The FRG method is then developed in Chap. 3 where we
derive flow equations for bosonic or fermionic one- and two-particle vertex functions in
phases with particle-number conservation. This technique is applied to two different spin
models afterwards. We study the spin-1

2 kagome model with nearest-neighbour Heisen-
berg and Dzyaloshinsky-Moriya, and second-nearest-neighbour Heisenberg interactions in
Chap. 4. Here, we extend the existing PFFRG to spin systems with off-diagonal spin inter-
actions for the first time. The investigated model is motivated by the recently synthesised
mineral herbertsmithite which shows no magnetic order down to lowest temperatures and
therefore seems to be an ideal candidate for finding a QSL in reality [68, 69]. Chap. 5
focuses on another probable QSL material which is the spin-1 A-site spinel NiRh2O4 [30].
For this nickel compound, we utilise the arbitrary-S generalisation of the PFFRG devel-
oped by Maria Laura Baez in 2017 [9]. The flow equations for the relevant XXZ model
directly follow from those in the chapter before and only need to be implemented for the
diamond lattice that A-site spinels form. For both models considered in Chaps. 4 and
5, we map out phase diagrams of their magnetic ordering tendencies depending on the
involved coupling strengths. This is achieved by examining the spin-spin susceptibility
which can be computed from the PFFRG vertex functions. In Chap. 6, we change per-
spective and ask ourselves how to gain even more insight on quantum spin models from
the method employed so far. For that purpose, we use a classification scheme for QSLs
invented by Xiao-Gang Wen which is called the projective symmetry group (PSG) and
which determines all possible effective free spinon models that are consistent with a cer-
tain spin Hamiltonian [182]. The different conceivable spinon hopping and pairing ansätze
that follow from this classification are then probed by investigating the systems propen-
sity to develop them with a newly designed self-consistent Fock-like mean-field method
including FRG vertex functions.
Before turning to spin models though, we introduce the Green’s and vertex functions

which are later frequently used and derive relations for them in a bosonic and a fermionic
language, respectively. Readers who are familiar with Green’s functions and the functional
integral formalism may skip Chap. 2. Also the third chapter is redundant for readers who
know the FRG procedure by heart. Therefore, the well-experienced audience is referred
to Chap. 4 as a good point to continue reading this thesis and to perhaps consult the
definitions in Chaps. 2 and 3 once in a while if necessary. A reader who does not yet have
this kind of background in theoretical physics and perhaps even wants to use and extend
the described methods is sincerely invited to peruse the entire work from cover to cover.
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Especially in the next sections, we try to provide a brief but complete overview of the
motivations and techniques behind all following analyses.
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2. Theoretical concepts

2.1. Reminders on quantum-many-body theory

Since we want to derive general formalisms for spin systems, it will be of great benefit for
readers who try to reproduce or extend our calculations to know the precise nature of all
utilised symbols and approaches. We will therefore start in this chapter with some general
reminders on quantum physics.

2.1.1. Thermodynamic ensembles, partition function, and grand-canonical
potential

There are three very important thermodynamic ensembles used in quantum physics, i.e.,
the micro-canonical, the canonical, and the grand-canonical ensemble. The former de-
scribes an isolated system which can neither exchange energy nor particles with its sur-
rounding. If a system is at energy E and there are n(E) possible states at this energy,
the probability to find the system in a particular state of energy E′ in the micro-canonical
ensemble is

pmc(E
′) =

{
0 if E′ 6= E ,

1/n(E′) if E′ = E .
(2.1)

In the canonical ensemble, the system is allowed to exchange energy with a heat bath
that is kept at a constant temperature T . Now, if considered by itself, the system does not
have a fixed but only an average energy which is controlled by T . The probability to find
it at energy E is now

pc(E) = e
− E
kBT , (2.2)

where kB is the Boltzmann constant.
If we also want to allow the system to exchange particles with its environment, we have

to utilise the grand-canonical ensemble in which, in addition to the heat bath from before,
the average particle number of the system is controlled by the chemical potential µ of a
particle reservoir connected to it. In this ensemble, the probability to find the system at
energy E and particle number N is

pgc(E,N) = e
−E−µN

kBT . (2.3)

Usually, we are interested in properties for the thermodynamic limit. This is obtained
by simultaneously sending the system’s volume V and particle number N to infinity while
keeping the particle density ρ = N/V constant. In this limit, the particular choice of the
thermodynamic ensemble does not make a difference for most systems and it will often be
convenient to use the grand-canonical ensemble. However, in a Bose Einstein condensate
for instance, the particle number in the grand-canonical ensemble diverges and one needs
to employ the canonical ensemble instead. For our convenience, we will use the grand-
canonical ensemble from now on if we do not note otherwise. The expectation value of a

10



2.1. Reminders on quantum-many-body theory

quantum many-body operator Ô is then given by

〈
Ô
〉

=

∑
α
〈γα|e−β(Ĥ−µN̂)Ô|γα〉∑

α
〈γα|e−β(Ĥ−µN̂)|γα〉

, (2.4)

where β = (kBT )−1 and {|γα〉} is an orthonormal basis of the fermionic (bosonic) Fock
space F (B) [confer Sec. 2.2.1].
Since the above sums only run over diagonal elements of our operators, we use the short-

hand notation of the trace of an operator tr
(
Ô
)

=
∑

α 〈γα|Ô|γα〉 together with the density
matrix ρ̂ and the partition function Z to derive the well-known result〈

Ô
〉

=
1

Z
tr
(
ρ̂ Ô
)
, (2.5)

ρ̂ = e−β(Ĥ−µN̂), (2.6)

Z = tr (ρ̂) . (2.7)

In order to calculate the expectation value of the operator Ô, we therefore need to compute
the partition function Z. This entity also defines the thermodynamic grand-canonical
potential Ω(µ, V, T ) via the relation

Z = e−βΩ ⇐⇒ Ω = − 1

β
ln (Z) . (2.8)

Hence, if we know the precise form of the partition function Z, we also know the grand-
canonical potential which in turn directly yields the thermodynamic quantities pressure P ,
entropy S, particle number N , and the internal energy U via

P = −∂Ω

∂V
, (2.9a)

S = −∂Ω

∂T
, (2.9b)

N = −∂Ω

∂µ
, (2.9c)

U = TS − PV + µN . (2.9d)

Of course, using an appropriate Lengendre transform, Ω will yield any desired thermo-
dynamic potential and we will derive a formalism to efficiently compute Z and Ω for a
quantum many-body systems in the next section.

2.1.2. Green’s functions

Theoretical physics aims at describing systems based on their most fundamental con-
stituents and interactions. However, if a theory wants to relate to questions from realistic
experiments, it needs to make predictions about actually measurable quantities. In an ex-
periment, one usually measures the response of a system due to an external excitation and

11



2. Theoretical concepts

the theoretical description of such a process is based on the respective response function
or Green’s function.
Let us consider a system that is prepared in an eigenstate |γα(ti)〉 of the Hamiltonian Ĥ

at time ti. It then evolves in the Schrödinger picture under a new Hamiltonian

ĤX(t) = Ĥ +X(t)Ô1 , (2.10)

where an external field X(t) couples to the system via an operator Ô1 which has to be
hermitian. The time-evolution operator Û(t, ti) for which |γα(t)〉 = Û(t, ti)|γα(ti)〉 then
needs to satisfy

i~
∂

∂t
Û(t, ti) = ĤX(t)Û(t, ti) , (2.11a)

Û(ti, ti) = 1 . (2.11b)

This directly implies

Û(t, ti) = Tt

[
e
− i

~
∫ t
ti

dt′ ĤX(t′)
]
, (2.12)

where the time-ordering operator Tt is defined via

Tt

[
Ô1(t1)Ô2(t2) . . . Ôn(tn)

]
= ζP ÔP (1)

(
tP (1)

)
ÔP (2)

(
tP (2)

)
. . . ÔP (n)

(
tP (n)

)
, (2.13a)

ζ =

{
+1 for bosons ,

−1 for fermions .
(2.13b)

Here, P denotes a permutation arranging the operators such that tP (1) ≥ tP (2) ≥ . . . ≥
tP (n) and ensuring that creation operators are on the left side of annihilation operators
at identical times. ζP will from now on denote the sign of the permutation, i.e., ζP = 1

(ζP = ζ) if an even (odd) number of permutations was performed. The time-ordered
exponential can be interpreted in two analogous ways, i.e., its Taylor series

Tt

[
e−
∫ tf
ti

dt Â(t)
]

=

∞∑
n=0

−1n

n!

tf∫
ti

dt1 dt2 . . . dtn Tt

[
Â(t1)Â(t1) . . . Â(tn)

]
(2.14)

or the m→∞ limit of an m-step time discretisation

Tt

[
e−
∫ tf
ti

dt Â(t)
]

= lim
m→∞

e−∆Â(tm)e−∆Â(tm−1) . . . e−∆Â(t1)e−∆Â(t0) , (2.15a)

∆ =
tf − ti
m

, (2.15b)

tn = ti + n∆ . (2.15c)

12



2.1. Reminders on quantum-many-body theory

The response of a state |γα(t)〉 that is caused by an infinitesimal perturbation due to the
external field U(t1) acting at t1 ∈ (ti, t) is hence given by a functional derivative

δ|γα(t)〉 =

t∫
ti

dt1 δU(t1)
δÛ(t, ti)

δU(t1)

∣∣∣∣∣
U=0

|γα(ti)〉

= − i
~

t∫
ti

dt1 δU(t1)e−
i
~ ĤtÔ

(H)
1 (t1)|γ(H)

α 〉 . (2.16)

Here, we considered the discrete version of the time-ordered exponential in order to derive
that

δÛ(t, ti)

δU(t1)
= Tt

[
e
−i
∫ t
t1

dt′ ĤX(t′)
](
− i
~
Ô1

)
Tt

[
e−i

∫ t1
ti

dt′ ĤX(t′)
]
, (2.17)

and, for short-hand notation, used the Heisenberg picture [denoted with superscript (H)]

Ô(H)(t) = e
i
~ ĤtÔe−

i
~ Ĥt , (2.18a)

|γ(H)〉 = e
i
~ Ĥt|γ(t)〉 . (2.18b)

We now want to determine that part of the expectation value of another operator Ô2 at
time t2 in state |γα(t2)〉 that is induced due to external field X(t) and find

δ 〈γα(t2)|Ô2|γα(t2)〉 = (δ〈γα(t2)|) Ô2|γα(t2)〉+ 〈γα(t2)|Ô2 (δ|γα(t2)〉)

=
i

~

〈γ(H)
α |

t2∫
ti

dt1 δU(t1)Ô
†(H)
1 (t1)e

i
~ Ĥt2

 Ô2|γα(t2)〉

− i

~
〈γα(t2)|Ô2

 t2∫
ti

dt1 δU(t1)e−
i
~ Ĥt2Ô

(H)
1 (t1)|γ(H)

α 〉


=
i

~

〈γ(H)
α |

t2∫
ti

dt1 δU(t1)Ô
†(H)
1 (t1)e

i
~ Ĥt2

 Ô2e
− i

~ Ĥt2 |γ(H)
α 〉

− i

~

(
〈γ(H)
α |e

i
~ Ĥt2

)
Ô2

 t2∫
ti

dt1 δU(t1)e−
i
~ Ĥt2Ô

(H)
1 (t1)|γ(H)

α 〉


=− i

~

t2∫
ti

dt1 δU(t1)〈γ(H)
α |

[
Ô

(H)
2 (t2), Ô

(H)
1 (t1)

]
−
|γ(H)
α 〉 , (2.19)

where we utilised the hermiticity of Ô1 in the last line and the brackets
[
Â, B̂

]
−

= ÂB̂−B̂Â
denote a commutator. This equation can now be weighted with the appropriate prefactor
of 1
Z and then summed over α. Also, sending the initial time ti to minus infinity and

13



2. Theoretical concepts

including the upper bound of the integral into a Heaviside function, we can extend the
integral to

∫∞
−∞ dt1 yielding

δ
〈
Ô2(t2)

〉
δU(t1)

= − i
~
θ(t2 − t1)

〈[
Ô

(H)
2 (t2), Ô

(H)
1 (t1)

]
−

〉
. (2.20)

Hence, the desired response function is characterised by expectation values of time-ordered
products of operators like −iθ(t2− t1)

〈
Ô

(H)
2 (t2)Ô

(H)
1 (t1)

〉
. This is precisely the definition

of a retarded Green’s function. From the previously derived result one can relate dissipation
in the investigated system describing with the fluctuations of the corresponding operators
which are represented in form of the Green’s functions here. This concept is also known
as the fluctuation-dissipation theorem. The two examples to be named here are, on one
hand, spins coupling to a magnetic field whose behaviour can be expressed in terms of the
spin-spin correlation function (magnetic susceptibility) and, on the other hand, charged
particles coupling to an electric field which is described by the current-current correlator
(conductivity).
As it turns out, the precise evaluation of a retarded Green’s function is rather unfeasible.

A common way of circumventing this problem is to compute the imaginary-time ordered
Green’s function instead which is crucially easier to obtain. The remaining challenge
lies then in an analytic continuation back to real times which, unfortunately, will not be
performed during this thesis. For the majority of the following chapters, we investigate
the imaginary-time ordered spin susceptibility

χµνij (τ) =
〈
Tτ Ŝ

µ
i (τ)Ŝνj (0)

〉
, with τ > 0 , (2.21)

where Tτ acts on imaginary-time operators as Tt acts on real-time operators, see Eq. (2.13).
Using the Abrikosov decomposition into fermionic operators (denoted by f̂ (†) for the mo-
ment) from Eq. (1.2), the susceptibility is given by

χµνij (τ) =
∑
α,β,γ,δ

σµαβσ
ν
γδ

〈
Tτ f̂

†
i,α(τ)f̂i,β(τ)f̂ †j,γ(0)f̂j,δ(0)

〉
. (2.22)

Hence, we are looking for a systematic approach to determine imaginary-time ordered ex-
pectation values of fermionic and (in general) bosonic creation and annihilation operators.
So far, we can only deal with small perturbations in Ĥ (linear response). However, also

for strong perturbations, the concept of Green’s functions is often employed and can be
very meaningful as we shall see later on. Let us provide the generic definition of a real-time
ordered n-particle Green’s function here, i.e.,

G(n)(1, 2, . . . , n|1′, 2′, . . . , n′) = G(n)(α1, . . . , αn; t1, . . . , tn|α1′ , . . . , αn′ ; t1′ , . . . , tn′)

= (−i)n
〈
Tt

[
aα1(t1)aα2(t2) . . . aαn(tn)a†αn′ (tn′) . . . a

†
α2′

(t2′)a
†
α1′

(t1′)
]〉

, (2.23)
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2.1. Reminders on quantum-many-body theory

where the combined indices 1, 2, . . . , n = {α1, t1}, {α2, t2}, . . . , {αn, tn} and 1′, 2′, . . . , n′ =

{α1′ , t1′}, {α2′ , t2′}, . . . , {αn′ , tn′} now label quantum numbers and real times. The opera-
tors aαi(ti) and a†αi(ti) denote fermionic or bosonic annihilation and creation operators of
a particle in state αi at time ti in the Heisenberg picture. We omitted the superscript (H)

and will always use the Heisenberg picture in the following [see Eqs. (2.18)] if operators
depend on time and we do not note otherwise. Please note that the above definition does
not include an additional factor of ζn which is commonly used in a different convention for
the n-particle Green’s function.
As already mentioned, instead of the above real-time function, we rather investigate the

imaginary-time Green’s function

G(n)(1, 2, . . . , n|1′, 2′, . . . , n′) = G(n)(α1, . . . , αn; τ1, . . . , τn|α1′ , . . . , αn′ ; τ1′ , . . . , τn′)

=
〈
Tτ

[
aα1(τ1)aα2(τ2) . . . aαn(τn)a†αn′ (τn′) . . . a

†
α2′

(τ2′)a
†
α1′

(τ1′)
]〉

. (2.24)

It is easier to compute since the imaginary time and energy are treated on equal footings,
but one has to be aware of the fact that a†αi(τi) is not the hermitian conjugate of aαi(τi).
With this definition, we can recast Eq. (2.22) in terms of the imaginary-time ordered
Green’s functions. The desired spin susceptibility can be obtained from

χµνij (τ) =
∑
α,β,γ,δ

σµαβσ
ν
γδG

(2) ({j, δ}, {i, β}; 0, τ |{j, γ}, {i, α}; 0, τ) , (2.25)

where the complete sets of quantum numbers are characterised by a lattice site and a spin
index per fermionic operator.

2.1.3. Feynman path integrals

As we already know, the time-evolution operator plays an important role in the calculation
of response functions. The Feynman path integral is simply defined as its matrix element
of some particle governed by the Hamiltonian H(p̂, x̂)1 in an initial position at xi at time
ti and a final position xf at time tf , i.e.,

U(xf , tf |xi, ti) = 〈xf |e−
i
~H(p̂,x̂)(tf−ti)|xi〉 . (2.26)

Due to the, in general, cumbersome evaluation of the occurring exponential, this entity
can only be computed for infinitesimally small time differences at arbitrary precision. We
therefore rewrite

U(xf , tf |xi, ti) = 〈xf |
(
e−

i
~H(p̂,x̂)ε

)M
|xi〉

=

∞∫
−∞

M−1∏
j=1

(dxj)

M∏
k=1

(
〈xk|e−

i
~H(p̂,x̂)ε|xk−1〉

)
, (2.27)

1We consider the Hamiltonian to be a function of single-particle position and momentum operators for
now.
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2. Theoretical concepts

where we renamed xi = x0 and xf = xM , discretised our real time according to

tn = ti + nε ε =
tf − ti
M

, (2.28)

and utilised the completeness relation of the position eigenstates (M − 1) times.

We now need to find a credible approximation for the infinitesimal evolution-operator
matrix element 〈xn|e−

i
~H(p̂,x̂)ε|xn−1〉. The two criteria that this approximation needs to

fulfill are that, in the limit ε→ 0, the correct time evolution of the wave function as well as
the proper action on position and momentum eigenstates |x〉 and |p〉 need to be guaranteed.
Without giving a detailed proof (the interested reader is, for instance, encouraged to go
through the according paragraphs in reference [135]), this can be achieved using normal-
ordered operators. The normal order of some function of operators O(p̂, x̂) is denoted as
: O(p̂, x̂) : and simply sorts all momentum operators on the left-hand side of all position
operators. For instance, any Hamiltonian consisting of a kinetic term and a potential that
is only a function of the position operator is automatically normal ordered

HU (p̂, x̂) =
p̂2

2m
+ U(x̂) =: HU (p̂, x̂) : . (2.29)

Using the normal order for the exponential of the desired matrix element yields

〈xn| : e−
i
~H(p̂,x̂)ε : |xn−1〉 =

∞∫
−∞

dpn 〈xn|pn〉 〈pn| : e−
i
~H(p̂,x̂)ε : |xn−1〉

=

∞∫
−∞

dpn
2π~

e
i
~pnxn 〈pn|e−

i
~H(pn,xn−1)ε|xn−1〉

=

∞∫
−∞

dpn
2π~

e
i
~pn(xn−xn−1)e−

i
~H(pn,xn−1)ε . (2.30)

The key benefit of using the normal ordered approximation of our exponential is that it
yields convergent momentum integrals in real time as well as in imaginary time due to an

overall factor of e−
iε
~
p2

2m or e−
ε
~
p2

2m from the kinetic part of the Hamiltonian which guarantees
convergence for physical systems. We evaluate the infinitesimal evolution operator using
the identity

∞∫
−∞

dp eap−bp
2

=

√
π√
b
e
a2

4b . (2.31)
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2.1. Reminders on quantum-many-body theory

This yields that

〈xn| : e−
i
~HU (p̂,x̂)ε : |xn−1〉 =

∞∫
−∞

dpn
2π~

e
i
~pn(xn−xn−1)− i

~

(
p2n
2m

+U(xn−1)

)
ε

=

√
π

2π~

√
2~m
iε

e
im
2~ε (xn−xn−1)2− i

~U(xn−1)ε

=

√
m√

2π~iε
e
i
~(m2ε (xn−xn−1)2−U(xn−1)ε) . (2.32)

It is important to note that Eq. (2.31) mathematically only holds if Re[b] > 0 which is
technically not the case in the current real-time formalism. Nevertheless, we are able to use
the resulting expressions as a formal result. The reason behind this is that the momentum
integrals are limited in actual physical systems due to, for instance, relativistic effects. A
similar argument would also hold for real-space integrals due to the limitation of space.
In the end, such an integration cutoff has the same effect as a finite positive Re[b] and we
will not need to revisit this issue because of the prospective imaginary-time formalism.
Inserting Eq. (2.32) into Eq. (2.27) and taking the limit ε→ 0 or M →∞, correspond-

ingly, we find for the Feynman path integral

U(xf , tf |xi, ti) = lim
M→∞

∞∫
−∞

M−1∏
j=1

(dxj)
( m

2π~iε

)M
2
e
iε
~

M∑
n=1

(
m
2

(
xn−xn−1

ε

)2
−U(xn−1)

)
. (2.33)

This result is holds for a single particle in one dimension. The extension to three dimensions
is trivial and produces

U(rf , tf |ri, ti) = lim
M→∞

∞∫
−∞

M−1∏
j=1

(
d3rj

) ( m

2π~iε

) 3M
2
e
iε
~

M∑
n=1

(
m
2

(
rn−rn−1

ε

)2
−U(rn−1)

)
, (2.34)

where we defined the volume element as d3rj = dxj dyj dzj .
The set of points {x0, x1, . . . , xM} marks a trajectory x(t) with discrete time steps

x(tn) = xn which does neither need to be continuous nor differentiable, not even in the
limit ε→ 0. Nevertheless, we formally rewrite for this limit

xn − xn−1

ε
−→ ∂x

∂t
, (2.35a)

ε
M∑
n=1

m

2

(
xn − xn−1

ε

)
−→

tf∫
ti

dt
m

2

(
∂x

∂t

)2

, (2.35b)

ε

M∑
n=1

V (xn−1) −→

tf∫
ti

dt V [x(t)] . (2.35c)
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2. Theoretical concepts

It is crucial to remember that this is only a formal representation in which the rectangular
brackets denote that V is now a functional depending on the possible trajectories x(t).
Any calculation now needs to be performed on the basis of discrete time steps, taking their
number to infinity afterwards. Using this short-hand notation, we find for the Feynman
path integral in one dimension

U(xf , tf |xi, ti) =

xf ,tf∫
xi,ti

D [x(t)] e
i
~S[x(t)] , (2.36)

where the action is defined as the time integral of the Lagrangian L [x(t)]

S [x(t)] =

tf∫
ti

dt L [x(t)] =

tf∫
ti

dt

(
m

2

(
∂x

∂t

)2

− V [x(t)]

)
(2.37)

and the functional integral needs to be understood as its discrete version that integrates
over all possible trajectories starting at (xi, ti) and ceasing at (xf , tf )

xf ,tf∫
xi,ti

D [x(t)] = lim
M→∞

∞∫
−∞

M−1∏
j=1

(dxj)
( m

2π~iε

)M
2
. (2.38)

The three-dimensional expression is completely analogue. Only the exponent (M/2) →
(3M/2) changes and the integrations run over entire real spaces R3. For completeness, we
also write down the corresponding equations

U(rf , tf |ri, ti) =

rf ,tf∫
ri,ti

D [r(t)] e
i
~S[r(t)] , (2.39a)

S [r(t)] =

tf∫
ti

dt

(
m

2

(
∂r

∂t

)2

− V [r(t)]

)
, (2.39b)

rf ,tf∫
ri,ti

D [r(t)] = lim
M→∞

∞∫
−∞

M−1∏
j=1

(
d3rj

) ( m

2π~iε

) 3M
2
. (2.39c)

In this form, the Feynman path integral representation of the time-evolution operator
has a clear physical interpretation, i.e., the sum running over all paths p starting from
(xi, ti) ending at (xf , tf ) of the corresponding e

i
~S[p] where S[p] is the action acquired

along the path p. This explicit notation called the Lagrangian form of the path integral,
however, is only valid if the Hamiltonian is of the type HU (p̂, x̂) = p̂2

2m + U(x̂). For a
general Hamiltonian H(p̂, x̂), we are not able to perform the momentum integration from
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2.1. Reminders on quantum-many-body theory

Eq. (2.30). In this case, we have to evaluate the Hamiltonian form of the path integral
which is more general but also requires greater care handling the integrations. It reads

U(xf , tf |xi, ti) =

xf ,tf∫
xi,ti

D [x(t)] D [p(t)] e

i
~

∞∫
−∞

dt
[
p(t)

∂x(t)
∂t
−H[p(t),x(t)]

]
, (2.40a)

xf ,tf∫
xi,ti

D [x(t)] D [p(t)] = lim
M→∞

∞∫
−∞

M−1∏
j=1

(dxj)
M∏
k=1

(
dpk
2π~

)
, (2.40b)

where the real-space coordinates fulfill the same boundary conditions as before and the
moment coordinates have none thereof. This, again, is only a formal expression and the
M →∞ limit of the discretised-time version needs to be considered for a concrete evalua-
tion.
In both forms, Lagrangian and Hamiltonian, the path integral representation of the evo-

lution operator includes the two fundamental phenomena of quantum mechanics. Interfer-
ence is already included due to the summation over all possible paths and the superposition
principle directly follows from the mathematical identity

U(xf , tf |xi, ti) =

∫
dxU(xf , tf |x, t)U(x, t|xi, ti) (2.41)

at any time t ∈ (ti, tf ). One natural approximation of the path integral is the so-called
stationary phase approximation. Here, the limit in which ~ is very small is considered
and it turns out that only paths surrounding the classical trajectory will contribute to the
transmission amplitude.
The great benefit of the path integral formalism is that it automatically generates time-

ordered products. In the Hamiltonian form, for instance, it turns out that for any two
operators O1(x̂, t1) and O2(x̂, t2) acting at times t1 ≥ t2, the expectation value

〈xf |TtO1(x̂, t1)O2(x̂, t2)e
− i

~

tf∫
ti

dt Ĥ(t)

|xi〉 =

xf ,tf∫
xi,ti

D [x(t)] D [p(t)] O1(x(t1))O2(x(t2))

× e
i
~

∞∫
−∞

dt
[
p(t)

∂x(t)
∂t
−H[p(t),x(t)]

]
(2.42)

or equivalently, in the Lagrangian form

〈xf |TtO1(x̂, t1)O2(x̂, t2)e
− i

~

tf∫
ti

dt Ĥ(t)

|xi〉 =

xf ,tf∫
xi,ti

D [x(t)] O1(x(t1))O2(x(t2))e

i
~

∞∫
−∞

dt L[x(t)]

.

(2.43)

Note that, on the right-hand-side of both equations, there is no time-ordering operator
anymore since the discretised time in the path integrals and the normal order of our
Hamiltonian automatically guarantee the correct time order.
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So far, we know how to compute time-ordered products of operators using Feynman’s
path integral for the evolution operator. As we saw in the previous section, for any kind
of statistical analysis of a quantum mechanical system, we have to calculate its partition
function. This will be possible in an imaginary-time version of the path integral.

2.1.4. Imaginary-time path integral

Let us at this point consider the single-particle partition function

Z = tr e−βĤ =

∫
dx 〈x|e−βĤ |x〉 , (2.44)

which can trivially be rewritten using the imaginary-time evolution operator

Z =

∫
dxU(x; τf |x; τi) , (2.45a)

U(x; τf |x; τi) = 〈x|e−
1
~ Ĥ(τf−τi)|x〉 =

(x;τf )∫
(x;τi)

D [x(τ)] e−
1
~
∫ β~
0 dτ H[x(τ)] , (2.45b)

where we defined τf − τi = β~. This, as indicated by the integration variables, is the
imaginary-time equivalent of the Lagrangian path integral. The appearance of the Hamil-
tonian in this form is caused by the Wick rotation

t = −iτ , (2.46a)
∂x

∂t
= i

∂x

∂τ
, (2.46b)

i

~

tf∫
ti

dt

(
m

2

(
∂x

∂t

)2

− V (x(t))

)
= −1

~

τf∫
τi

dτ

(
m

2

(
∂x

∂τ

)2

+ V (x(τ))

)
. (2.46c)

The integration measure appearing is also mathematically rigorous in imaginary time [135]
and follows from identical considerations as for real times. This enables us to find a
surprisingly compact way of writing down the partition function

Z =

∫
dx

x(β~)=x∫
x(0)=x

D[x(τ)] e
− 1

~

β~∫
0

dτ H[x(τ)]
. (2.47)

Finally, we should also denote the partition function of an N -particle system at this point.
Using a many-body Hamiltonian of the type

Ĥ =
N∑
j=1

p2
j

2m
+

1

2

N∑
j 6=k

V (x̂j − x̂k) , (2.48)
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2.2. Functional integral

we find that

ZN =
1

N !

∑
P

ζP
∫ N∏

j=1

(dxj) 〈xP (1), xP (2), . . . , xP (N)|e−βĤ |x1, x2, . . . , xN 〉

=
1

N !

∑
P

ζP
∫

x1(~β) = xP (1)(0)

.

.

.
xN (~β) = xP (N)(0)

N∏
k=1

(D [xk(τ)]) e
− 1

~

β~∫
0

dτ

[
N∑
j=1

1
2m

(
∂xj(τ)

∂τ

)2

+ 1
2

N∑
j 6=k

V (xj(τ)−xk(τ))

]

(2.49)

where {|x1, x2, . . . , xN 〉} is an orthonormal basis of the N-particle Hilbert space and the
prefactor

∑
P

ζP guarantees their correct symmetrisation for bosons (ζ = 1) or anti sym-

metrisation for fermions (ζ = −1).
This concludes our preliminaries and we continue in the next section with developing

an efficient technique of calculating Green’s functions based on the functional integral
formalism. There are different ways that could be chosen this point. The functional
integral, however, is closely related to the functional renormalisation group upon which we
will build our theory later on.

2.2. Functional integral

Up to now, we calculated a quantum many-body system’s partition function in the Feyn-
man path integral representation of the imaginary-time evolution operator using real-space
and momentum eigenstates. However, often it is desired to write the Hamiltonian of a
many-body problem in terms of creation and annihilation operators as we shall see later
on for our spin systems. In this case, it is convenient to rewrite the theory in the basis of
coherent states. The path integral then turns into what is called a functional integral. In
order to provide the largest amount of clarity for the following chapters of this thesis, we
start this section by presenting the general properties of this special representation.

2.2.1. Coherent states

The coherent states are a non-orthonormal basis of the fermionic or bosonic Fock space.
They are eigenstates of all single-particle annihilation operators which, in contrast to eigen-
states of creation operators, is a meaningful concept because any state in Fock space has a
contribution with a minimal but not necessarily with a maximal occupation number. Since
a creation operator always increases the minimal occupation number by one, it cannot have
eigenstates. For the annihilation operators, this is not the case.
Let us consider a general vector in Fock space denoted by

|γ〉 =
∞∑
n=0

∑
α1,...,αn

γα1...αn |α1 . . . αn〉 , (2.50)
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2. Theoretical concepts

where {|α1 . . . αn〉} is an orthonormal set of eigenstates of the anti symmetrised (sym-
metrised) n-particle Hilbert space Fn = AHn (Bn = SHn). Here, A (S) projects onto the
fully anti symmetric (symmetric) subspace of Hn, and

Hn =


|0〉, for n = 0 ,

H, for n = 1 ,
n⊗
k=1

H, for n ≥ 2 ,

(2.51)

where H is the single-particle Hilbert space. The fermionic (bosonic) Fock space F (B) is
defined as the direct sum of all anti-symmetrised (symmetrised) n-particle Hilbert space

F =

∞⊕
n=0

Fn , (2.52a)

B =
∞⊕
n=0

Bn . (2.52b)

Now, we require for the state |γ〉 to be an eigenstate of the annihilation operator aαj

aαj |γ〉 = γαj |γ〉 (2.53)

which automatically implies that due to the commutation relation of the bosonic and the
anti-commutation relation of the fermionic operators[

γαj , γαk
]
−ζ = γαjγαk − ζγαkγαj = 0 , (2.54)

i.e., the coefficients γαj are complex numbers for a bosonic theory and Graßmann numbers
for a fermionic theory. Even though, up to keeping track of ζ, the final results of this
section do not differ for both cases, it is still useful to separate them in the beginning.

Bosonic coherent states

The bosonic coherent state from above can be written down in an easy fashion

|γ〉 = e
∑
αj
γαja

†
αj |0〉 , =⇒ aαj |γ〉 = γαj |γ〉 , a†αj |γ〉 =

∂

∂γαj
|γ〉 , (2.55a)

〈γ| = 〈0|e
∑
αj
γ∗αjaαj , =⇒ 〈γ|a†αj = 〈γ|γ∗αj , 〈γ|aαj =

∂

∂γ∗αj
〈γ| . (2.55b)

where all the γαj denote complex numbers. From these expressions, it is easy to derive

that the overlap between two coherent states is 〈γ|γ′〉 = e

∑
αj

γ∗αj γ
′
αj

which means that they
are not orthonormal. Despite this, they form an over-complete basis of the Fock space
which is denoted in the closure relation∫ ∏

αj

dγ∗αjdγαj

2πi
e
−
∑
αj

γ∗αj γαj
|γ〉〈γ| = 1 , (2.56)
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2.2. Functional integral

where 1 denotes the unit operator in Fock space and the integral measure extends over all
values for the real and imaginary part of the complex γαj

dγ∗αjdγαj

2πi
=

dRe(γαj ) dIm(γαj )

π
. (2.57)

Let us now consider our system to be in some state |φ〉. The coefficient to find it in the
coherent state |γ〉 upon measurement is then given by 〈γ|φ〉 = φ(γ∗) which is by definition
of the bra 〈γ| from Eq. (2.55b) a function of the complex conjugated parameters γ∗. It is
then clear from the previous considerations that

〈γ|aαj |φ〉 =
∂

∂γ∗αj
φ(γ∗) , (2.58a)

〈γ|a†αj |φ〉 = γ∗αjφ(γ∗) . (2.58b)

Therefore, we formally rewrite aαj = ∂
∂γ∗αj

and a†αj = γ∗αj with the corresponding commu-

tation relations[
∂

∂γαj
,
∂

∂γαk

]
−

=

[
∂

∂γ∗αj
,
∂

∂γ∗αk

]
−

= 0 (2.59a)

[
γαj , γαk

]
− =

[
γ∗αj , γ

∗
αk

]
−

= 0 , (2.59b)[
∂

∂γαj
, γαk

]
−

=

[
∂

∂γ∗αj
, γ∗αk

]
−

= δαj ,αk . (2.59c)

Finally, we provide a formula for calculating the trace of an operator in the basis of bosonic
coherent states, i.e.,

tr
(
Â
)

=

∫ ∏
αj

dγ∗αjdγαj

2πi
e
−
∑
αj

γ∗αj γαj
〈γ|Â|γ〉 . (2.60)

Coherent states have a true physical correspondence in the bosonic scenario. They
naturally occur when we take the classical limit of a field theory, so if the commutators
of the field operators χ̂†(x) =

∑
αj

〈αj |x〉 a†αj and χ̂(x) =
∑
αj

〈x|αj〉 aαj are sent to zero.

Then, the definition of a classical field γc(x) is identical to considering the coherent state
|γc〉 = e

∫
dx γc(x)χ̂†(x)|0〉.

Fermionic coherent states

Let us now repeat the thoughts from the previous section for fermions. For this, we
need to define a Graßmann algebra using the set of its generators denoted by {γαj}, for
j = 1, 2, . . . , n and n not being further specified at the moment. The generators fulfill the
anti-commutation relation [

γαj , γαk
]
+

= γαjγαk + γαkγαj = 0 . (2.61)
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2. Theoretical concepts

This automatically implies that γ2
αj ≡ 0 and all Graßmann numbers of this algebra are

now defined as the possible linear combinations from the set of all distinct products of the
generators {1, γα1 , γα1γα2 , . . . , γα1γα2 . . . γαn} with complex coefficients.
If we have an algebra at hand with an even number of generators, e.g., n = 2p, p ∈ N,

we can associate p of them as the complex conjugate of the remaining p and one has to
note that the complex conjugation acts on any product of Graßmann generators as

(γα1γα2 . . . γαn)∗ = γ∗αn . . . γ
∗
α2
γ∗α1

, (2.62)

whereas
(
cγαj

)∗
= c∗γ∗αj , c ∈ C. Since now any conjugate pair γαj and γ∗αj fulfills

Eq. (2.61), it directly follows that ∂
∂γαj

(
γ∗αjγαj

)
= −γ∗αj . Hence, also the partial deriva-

tives anti commute [
∂

∂γαj
,
∂

∂γ∗αj

]
+

= 0 . (2.63)

Because there is no analogue of Riemann’s integral for Graßmann generators, we have
to define a meaningful Graßmann integral. This is provided by∫

dγαj 1 =

∫
dγ∗αj 1 = 0 , (2.64a)∫

dγαj γαj =

∫
dγ∗αj γ

∗
αj = 1 , (2.64b)

which implies that the Graßmann integration is identical to the Graßmann differentiation.
Also, one should note that the differentials appearing in the integrals are no Graßmann

numbers, and that, according to
(
γ

(∗)
αx

)2
= 0, any functionA depending only on a particular

γαx or any function B depending on both, γαx and γ∗αx for a fixed x, can be written as

A(γαx) = A0 +A1γαx , (2.65a)

B(γαx , γ
∗
αx) = B00 +B01γαx +B10γ

∗
αx +B11γ

∗
αxγαx . (2.65b)

In order to construct fermionic coherent states, we now need to define a generalised
Fock space containing any linear combination of states from the fermionic Fock space
with coefficients from a Graßmann algebra generated by {γ∗α1

, γα1 , γ
∗
α2
, γα2 , . . . , γ

∗
αn , γαn},

so one generator each for all creation and annihilation operators a†αj and aαj from the
fermion system. We require that the Graßmann generators and the fermionic operators
anti commute amongst each other [

γ(∗)
αj , a

(†)
αk

]
+

= 0 , (2.66)

and that the hermitian conjugation therefore acts on their products according to(
γαjaαk

)†
= a†αkγ

∗
αj . (2.67)
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2.2. Functional integral

Then we are able to give an expression for the fermionic coherent states

|γ〉 = e
−
∑
αj

γαja
†
αj

|0〉 =
∏
αj

(
1− γαja†αj

)
|0〉 , (2.68)

where the second identity holds because of
(
γαja

†
αj

)2
= 0. The adjoint equation is

〈γ| = 〈0|e
−
∑
αj

aαj γ
∗
αj

(2.69)

and the Graßmann derivatives can be expressed via

a†αj |γ〉 = − ∂

∂γαj
|γ〉 , (2.70a)

〈γ|aαj =
∂

∂γ∗αj
〈γ| . (2.70b)

This, again, encourages us to formally recast the operators according to their action in the
coherent state basis for fermions

aαj =
∂

∂γ∗αj
, a†αj = γ∗αj , (2.71)

with the corresponding anti-commutation relations[
∂

∂γαj
,
∂

∂γαk

]
+

=

[
∂

∂γ∗αj
,
∂

∂γ∗αk

]
+

= 0 (2.72a)

[
γαj , γαk

]
+

=
[
γ∗αj , γ

∗
αk

]
+

= 0 , (2.72b)[
∂

∂γαj
, γαk

]
+

=

[
∂

∂γ∗αj
, γ∗αk

]
+

= δαj ,αk . (2.72c)

One of the great benefits when coherent states are used is that formally very identical
equations arise for fermions and bosons. For instance, the overlap of two coherent states
again is

〈γ|γ′〉 = e

∑
αj

γ∗αj γ
′
αj

. (2.73)

Due to the coherent state’s over completeness in the fermionic (not the generalised! ) Fock
space ∫ ∏

αj

dγ∗αjdγαj e
−
∑
αj

γ∗αj γαj
|γ〉〈γ| = 1 , (2.74)

we are able to expand every physical fermionic state in terms of the coherent states as well.
The trace in the fermionic Fock space can be evaluated as

tr
(
Â
)

=

∫ ∏
αj

dγ∗αjdγαj e
−
∑
αj

γ∗αj γαj
〈−γ|Â|γ〉 . (2.75)

25



2. Theoretical concepts

Despite the fact that every physical fermionic state can be expressed in terms of the
coherent states, unlike in the bosonic case, there are no physical fermionic coherent states
since they are not part of the physical Fock space. Since we already saw that coherent
states emerge by taking the classical limit, this can be well understood by considering that
there are indeed no classical fermions.
Due to the similar expressions for fermions and bosons, we are now able to write down

the path integral from Sec. 2.1.3 in the basis of coherent states. This expression is then
known as the functional integral.

2.2.2. Coherent state path integral

Let us consider our system to be in the initial coherent state |γi〉 with components γαj ,i
and we are again interested in its transition amplitude with some final state 〈γf | with
components γ∗αj ,f after evolving in time under some Hamiltonian H

(
a†αj , aαj

)
which has

normal form, i.e., all creation operators occur on the left side of all annihilation operators
in the second quantisation language. The coherent states can now be fermionic or bosonic,
and the coefficients are Graßmann or complex numbers, respectively. We utilise the same
time discretisation as before and denote

γαj ,0 = γαj ,i , γ∗αj ,M = γ∗αj ,f , (2.76)

ε =
tf − ti
M

. (2.77)

The matrix element of the evolution operator is then given by

U(γ∗αj ,f , tf |γαj ,i, ti) = 〈γf |e
− i

~H
(
a†αj ,aαj

)
(tf−ti)|γi〉

= lim
M→∞

∫ M−1∏
k=1

∏
αj

dγαj ,k dγ∗αj ,k

N
e
−
M−1∑
k=1

∑
αj

γ∗αj,k
γαj,k

× e
−
M−1∑
k=1

(∑
αj

γ∗αj,k
γαj,k−1− i

~H(γ∗αj,k
,γαj,k−1)

)
, (2.78)

where we now defined

N =

{
2πi , for bosons

1 , for fermions ,
(2.79)

in order to arrive at the same formula for both types of fundamental quantum particles.
Continuing in the usual fashion of introducing the trajectory γαj (t) which is described by
the time-discretised set {γαj ,0, γαj ,1, . . . , γαj ,M}, we are again able to formally rewrite for
the limit M →∞

γ∗αj ,k
γαj ,k − γαj ,k−1

ε
=⇒ γ∗αj (t)

∂γαj (t)

∂t
, (2.80a)

H
(
γ∗αj ,k, γαj ,k−1

)
=⇒ H

[
γ∗αj (t), γαj (t)

]
. (2.80b)
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2.2. Functional integral

Once more, the rectangular brackets denote the functional dependence on γ∗αj (t) and γαj (t).
Introducing the Schrödinger-Lagrange operator L = i~ ∂

∂t −H, we reformulate the above
result as

U(γ∗αj ,f , tf |γαj ,i, ti) =

γ∗αj (tf )=γ∗αj,f∫
γαj (ti)=γαj,i

D[γ∗αj (t)γαj (t)] e

∑
αj

(
γ∗αj (tf )γαj (tf )

)
+ i

~

tf∫
ti

dt L
[
γ∗αj (t),γαj (t)

]
(2.81a)

L
[
γ∗αj (t), γαj (t)

]
=
∑
αj

(
i~γ∗αj (t)

∂γαj (t)

∂t

)
−H

[
γ∗αj (t), γαj (t)

]
, (2.81b)

∫
D[γ∗αj (t)γαj (t)] = lim

M→∞

∫ M−1∏
k=1

∏
αj

dγαj ,k dγ∗αj ,k

N
, (2.81c)

where the boundaries are now defined by the values of γ∗αj ,f and γαj ,i. All remaining
variables are integrated over including γαj ,f and γ∗αj ,i. The left-over term in the exponent,

i.e.,
∑
αj

(
γ∗αj (tf )γαj (tf )

)
, is caused by the definition of the time derivatives. One could also

derive an alternative form with a dependence on
∑
αj

(
γ∗αj (ti)γαj (ti)

)
. If this causes any

issues during a specific calculation, an average of both expressions should be considered.
As we briefly mentioned in Sec. 2.1.3, the Feynman path integral provides the classical

limit if ~ → 0. Due to its dependence via an overall prefactor ~−1 in the exponent as
well as in the Schrödinger Lagrange operator, the ~ → 0 limit of the functional integral,
however, is not the classical one.

2.2.3. Functional integral form of partition function

Let us now compute a quantum many-body system’s partition function for the grand-
canonical ensemble in the coherent-state functional-integral formalism. For both, fermions
and bosons, it can formally be written as

Z = tr
(
e−β(Ĥ−µN̂)

)
=

∫ ∏
αj

dγ∗αjdγαj e
−
∑
αj

γ∗αj γαj
〈ζγ|e−β(Ĥ−µN̂)|γ〉 . (2.82)

Inserting the evolution operator’s matrix element from Eqs. (2.81) and using the trajectory
notation of the imaginary-time discretisation, we find that

Z =

∫
γαj (β)=ζγαj (0)

D[γ∗αj (τ)γαj (τ)] e
−
β∫
0

dτ

{∑
αj

(
γ∗αj (τ)( ∂

∂τ
−µ)γαj (τ)

)
+H

[
γ∗αj (τ),γαj (τ)

]}
, (2.83)

where we rescaled τ → τ
~ , and the trace imposes periodic boundary conditions on the

complex variables for bosons and anti-periodic boundary conditions on the Graßmann
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variables for fermions [135]. Of course, an analytic evaluation of this functional integral
is usually not possible. One, for instance, has to expand it in a small parameter which
is typically the interaction between particles. Nevertheless, the imaginary-time-ordered
Green’s functions can be represented in a convenient form using the functional integral
language. If we remind ourselves of the fact that we replaced the creation and annihilation
operators by the coherent state variables, we can simply write down that

G
(
1, 2, . . . , n|1′,2′, . . . , n′

)
= Z−1

∫
γαj (β)=ζγαj (0)

D[γ∗αj (τ)γαj (τ)]

[
e
−
β∫
0

dτ

{∑
αj

[
γ∗αj (τ)( ∂

∂τ
−µ)γαj (τ)

]
+H

[
γ∗αj (τ),γαj (τ)

]}

× γα1(τ1)γα2(τ2) . . . γαn(τn)γ∗αn′ (τn′) . . . γ
∗
α2′

(τ2′)γ
∗
α1′

(τ1′)

]
. (2.84)

Before explaining how to proceed for a general Hamiltonian, we show how to compute the
partition function and the imaginary-time-ordered Green’s function in this representation
for the simplest possible example, i.e., a non-interacting Hamiltonian.

2.2.4. Partition function and Green’s function for non-interacting
Hamiltonian

Let us consider a non-interacting Hamiltonian which, in general, is diagonal in some basis

Ĥ0 =
∑
αj

εαja
†
αjaαj . (2.85)

Plugging this Hamiltonian as a functional of the coherent state variables into Eq. (2.83)
for the partition function yields

Z0 =

∫
γαj (β)=ζγαj (0)

D[γ∗αj (τ)γαj (τ)] e
−
β∫
0

dτ

{∑
αj

[
γ∗αj (τ)( ∂

∂τ
+εαj−µ)γαj (τ)

]}
. (2.86)

This can now be computed using the time-discretised version of our variables. For the
detailed calculation, we refer the reader to Ref. [135] and simply provide its result here.
One finds

Z0 =
∏
αj

(
1− ζe−β(εαj−µ)

)−ζ
. (2.87)

In a similar fashion, we can now also determine the non-interacting single-particle Green’s
function in imaginary time. Using the short-hand notation

nαj =
(
eβ(εαj−µ) − ζ

)−1
(2.88)
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for the Fermi (ζ = −1) and Bose (ζ = 1) distribution, it is straightforward to derive that

G
(1)
0

(
1|1′
)

= 〈Tτaα1(τ1)a†α1′
(τ1′)〉

= δα1,α1′gα1′ (τ1 − τ1′) (2.89a)

gα1′ (τ1 − τ1′) = e−(εα1′−µ)(τ1−τ1′ )
[
θ(τ1 − τ1′ − η)(1 + ζnα1′ ) + θ(τ1′ − τ1 + η)ζnα1′

]
,

(2.89b)

where the infinitesimal η > 0 ensures the correct behaviour at equal times. Again, please
note that an additional factor of ζ can occur if a different convention for the single-particle
Green’s function is used (confer Sec. 2.1.2). With the non-interacting partition and Green’s
functions from above, we are able to perturbatively include the interacting part of the
Hamiltonian into the theory.

2.3. Perturbation theory

While treating non-interacting quantum systems might be helpful to understand the un-
derlying theory’s fundamental mathematical properties, the physically interesting, though
mathematically challenging phenomena arise due to interactions. We can write a general
Hamiltonian Ĥ into a sum of its non-interacting part Ĥ0 and an interacting part V̂ which
can contain any number of n-particle interactions, but has to be normal ordered for our
purposes.

Ĥ = Ĥ0 + V̂ =
∑
αj

(
εαja

†
αjaαj

)
+ V

(
a†αj , aαj

)
(2.90)

The concept behind perturbation theory is to at least pretend that the interacting part is
small compared to Ĥ0. Therefore, one might first solve the non-interacting part separately
and then investigate the small corrections to this solution arising from interactions. If
interactions in the corresponding physical system are indeed (coincidentally) small, that
might already suffice. If not, one might still be lucky in finding an infinite, but converging
series that accounts for all relevant effects of V̂ .
Later, it will turn out that in quantum spin models we are not that fortunate. How-

ever, this common technique of perturbation theory can familiarise us with some essential
ingredients for the subsequent functional renormalisation group method.
In the functional integral language, we can rewrite the partition function as

Z =

∫
γαj (β)=ζγαj (0)

D[γ∗αj (τ)γαj (τ)] e
−
β∫
0

dτ

{∑
αj

[
γ∗αj (τ)( ∂

∂τ
+εαj−µ)γαj (τ)

]
+V
[
γ∗αj (τ),γαj (τ)

]}
,

= Z0

〈
e
−
β∫
0

dτ V
[
γ∗αj (τ),γαj (τ)

]〉
0
, (2.91)
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where the non-interacting partition function was already calculated in Eq. (2.87) and the
non-interacting expectation value 〈. . . 〉0 of any functional of the coherent state variables
F
[
γ∗αj (τ), γαj (τ)

]
is given by

〈
F
[
γ∗αj (τ), γαj (τ)

] 〉
0

= Z−1
0

∫
γαj (β)=ζγαj (0)

D[γ∗αj (τ)γαj (τ)] e
−
β∫
0

dτ
∑
αj

[
γ∗αj (τ)( ∂

∂τ
+εαj−µ)γαj (τ)

]

× F
[
γ∗αj (τ), γαj (τ)

]
(2.92)

Note again that, in the functional integral language, the correct time order of the coherent
state variables is automatically guaranteed.
We now want to expand the exponent from Eq. (2.91) in thermal averages with respect

to Ĥ0

Z
Z0

=
∞∑
n=0

(−1)n

n!

∫
dτ1 . . . dτn

〈
V
[
γ∗αj (τ), γαj (τ)

]
. . . V

[
γ∗αj (τ), γαj (τ)

] 〉
0
. (2.93)

For that purpose, we need to employ Wick’s theorem.

2.3.1. Wick’s theorem

Wick’s theorem corresponds to the following integral identity for polynomial times Gaus-
sian functions of complex or Graßmann numbers

∫
D[γ∗kγl] γ1 . . . γnγ

∗
n′ . . . γ

∗
1′e
−
∑
k,l
γ∗kMklγl

∫
D[γ∗kγl] e

−
∑
k,l
γ∗kMklγl

=
∑
P

ζPM−1
P (n)n . . .M

−1
P (1)1 , (2.94)

whereM is an invertible matrix and k, l denote now both time label and quantum number.
Therefore, the sum

∑
k

=
∑

αk

∫ β
0 dτk needs to be interpreted as a sum over the quantum

number αk and an integral over τk, and D[γ∗kγl] = D[γ∗αk(τk)γαl(τl)] is the measure corre-
sponding to our variables. This identity is proven in the same way as the single-particle
Green’s function from Eq. (2.89) was calculated an we, again, refer the reader to Ref. [135]
for more details. We will, however, encounter this technique later in Sec. 2.4.1. One
needs to utilise the (2n)-th partial derivative of a generating functional with respect to its
included so-called source terms.
If we replace the matrix Mkl from Eq. (2.94) with the operator

(
∂τ + Ĥ0 − µ

)
in the

basis of the coherent state variables, an element of M−1 can be identified with a non-
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2.3. Perturbation theory

interacting single-particle Green’s function.

G
(1)
0 (1|1′) =

∫
D[γ∗αj (τ)γαj (τ)] γα1(τ1)γ∗α1′

(τ1′)e
−
β∫
0

dτ
∑
αj

γ∗αj (τ)(∂τ+εαj−µ)γαj (τ)

∫
D[γ∗αj (τ)γαj (τ)] e

−
β∫
0

dτ
∑
αj

γ∗αj (τ)(∂τ+εαj−µ)γαj (τ)

=
(
∂τ + εαj − µ

)−1
∣∣∣
(α1;τ1|α1′ ;τ1′ )

(2.95a)

= δα1,α1′gα1′ (τ1 − τ1′) (2.95b)

The precise form of gα1(τ1 − τ1′) is given in Eq. (2.89b). In this particular setup, Wick’s
theorem corresponds to the statement that an n-particle non-interacting Green’s function
is comprised of all possible permutations of products of n single-particle Green’s functions

G
(n)
0 (1, . . . , n|1′, . . . , n′) =

∑
P

ζP
n∏
k=1

G
(1)
0 (P (k)|k′) (2.96a)

=
∑
P

ζP
n∏
k=1

δαP (k),αk′gαk′ (τP (k) − τk′) . (2.96b)

Sometimes, one refers to the right-hand side of this equation as the sum over all complete
sets of contractions, where a contraction corresponds to taking the expectation value of a
product of two operators or the corresponding coherent state variable.
Any product of two creation operators 〈a†αja

†
αk〉0 or annihilation operators 〈aαjaαk〉0 as

well as the expectation values of their corresponding coherent state variables 〈γ∗αjγ
∗
αk
〉0 and

〈γαjγαk〉0 vanish in phases with conserved particle numbers. This implies that the number
of possible contractions in such a phase reduces to only those where a creation operator is
combined with an annihilation operator or every γ∗αj is contracted with a γαk . Furthermore,
this also suggests that any Green’s function including n annihilation operators and m 6= n

creation operators has to vanish as well.
Even though Eqs (2.96) suffice for our purposes, one important remark is that Wick’s

theorem also holds for a basis in which Ĥ0 is not diagonal. Finally, using Wick’s theorem,
we are now able to resolve the power series of ZZ0

in terms of all possible ways to connect
products of interactions V with single-particle Green’s functions.

2.3.2. Labeled Feynman diagrams

Since we are now ready to explore the effects of interactions using the functional integral
form of the many-particle partition function, we want to develop a technique to keep track
of all possible contractions of Green’s functions in connection to the interaction potentials.
For simplicity, let us consider a general type of an instantaneous two-body interaction

V
[
γ∗αj (τ), γαj (τ)

]
=

1

2

∑
α1,β1,α1′ ,β1′

〈α1β1|V̂ |α1′β1′〉 γ∗α1
(τ)γ∗β1

(τ)γβ1′ (τ)γα1′ (τ) , (2.97)

31



2. Theoretical concepts

Figure 2.1.: Definitions of the two constituents for the labeled Feynman diagrams: The
directed and dashed line represents a bare single-particle Green’s function G(1)

0 (1|1′). The
dashed index at its starting point labels the coherent state variable for the fermionic or
bosonic creation operator whereas the non-dashed index at its end is associated with an
annihilation operator. The undirected wiggly line stands for an interaction vertex where
now the ingoing legs with dashed indices represent annihilation processes and the outgoing
legs with non-dashed indices denote creation processes. Note that the bare interaction ver-
tex carries only one imaginary-time argument being valid for all four connected operators.

where 〈α1β1|V̂ |α1′β1′〉 denotes a matrix element of the interaction potential in the consid-
ered basis. Using this simple type of interaction, we are immediately able to write down
the term proportional to the nth power of V̂ in our expansion for ZZ0

, i.e.,

(
Z
Z0

)
(n)

=
(−1)n

n! 2n

n∏
k=1

 ∑
αk,βk,αk′ ,βk′

〈αkβk|V̂ |αk′βk′〉
β∫

0

dτk


×
〈
γ∗α1

(τ1)γ∗β1
(τ1)γβ1′ (τ1)γα1′ (τ1) . . . γ∗αn(τn)γ∗βn(τn)γβn′ (τn)γαn′ (τn)

〉
0
, (2.98)

where the time ordering is again automatically provided by the thermal average in the
functional integral formalism.

Now, we need to perform any contraction of all γ∗ with all the γ. Every bare Green’s
function G

(1)
0 (1|1′) = δα1,α1′gα1′ (τ1 − τ1′), also called bare propagator, is for that reason

represented by a solid, directed line starting from γ∗α1′
(τ1′) and terminating at γα1(τ1).

Any interaction potential, often referred to as a vertex function, is denoted by a dashed
and undirected line with two ingoing legs that correspond to γαj′ (τj) and γβj′ (τj) and
two outgoing legs representing γ∗αj (τj) and γ∗βj (τj). The constriction that all legs of the
vertex must have identical time arguments can also be incorporated into a concrete time
dependence proportional to a δ distributions of the vertex function itself.

The definitions of the two types of constituents for the labeled Feynman diagrams are
shown in Fig. 2.1 and the two distinct diagrams contributing to first order in V̂ to the
expansion of ZZ0

can be seen in Fig. 2.2. Those diagrams are the direct diagram and the
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2.3. Perturbation theory

Figure 2.2.: The two distinct diagrams for the expansion of ZZ0
to first order in V̂ : To first

order in the interaction, there are only two possible ways of contracting coherent state
variables, i.e., the upper exchange diagram D1

exchange which connects both sides of the
vertex function with each other via propagators, and the lower direct diagram D1

direct which
contracts them separately. Where D1

direct features two closed loops yielding a prefactor of
ζ2 = 1, D1

exchange consists only of one loop and one has to keep track of the arising ζ.

exchange diagram(
Z
Z0

)
(1)

= D1
direct +D1

exchange , (2.99a)

D1
direct = −1

2
ζ2

β∫
0

dτ
∑
α1,β1

gα1(0)gβ1(0) 〈α1β1|V̂ |α1β1〉 , (2.99b)

D1
exchange = −1

2
ζ

β∫
0

dτ
∑
α1,β1

gα1(0)gβ1(0) 〈β1α1|V̂ |α1β1〉 . (2.99c)

Due to the fact that the formation of a single closed loop of propagators involves precisely
one permutation of coherent state variables in Eq. (2.98), any diagram which includes n
closed loops acquires a prefactor of ζn. We also have to integrate over one imaginary-time
variable and sum over four quantum number indices for each interaction vertex. The bare
propagator though is chosen diagonal in the quantum numbers rendering 2n summations
in an nth-order diagram trivial. This is why, in the above equation, only 2 summations
appear in the first-order diagrams. Plugging in the previously derived result for the non-
interacting Green’s function, we find for our partition-function expansion up to first order
in V̂

Z
Z0
' 1− β

2

∑
α1,β1

nα1nβ1

[
〈α1β1|V̂ |α1β1〉+ ζ 〈β1α1|V̂ |α1β1〉

]
, (2.100)

where nα1 is the Fermi or Bose distribution from Eq. (2.88).
This summarises the Feynman rules for labeling and computing diagrams. Continuing

like this, we would encounter a vastly increasing number of diagrams for higher orders in
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Figure 2.3.: Hugenholtz diagrams for two-body interaction: The Hugenholtz diagram is
the sum of two vertex functions, namely, the direct and the exchange vertex. With its
definition given in Eq. (2.103), it is invariant under the exchange of the two incoming or
outgoing legs which might be convenient during calculations.

the interaction, namely (2n)! diagrams for the nth order in V̂ . Hence, there is still some
work to be done.

2.3.3. Unlabeled Feynman diagrams

So far, we are still concerned with calculating the ratio Z
Z0

. As mentioned before, for
that we need to contract 2n coherent state variables representing creation operators with
2n variables associated with annihilation operators yielding (2n)! diagrams to compute.
However, since

〈α1β1|V̂ |α1′β1′〉 = 〈β1α1|V̂ |β1′α1′〉 (2.101)

for both fermions and bosons, there are 2n diagrams contributing the same value due to
two-particle exchange. Also, any permutation of imaginary-time variables over which we
integrate yields identical results leading to another factor of n! diagrams equaling each
other. Those two different transformations which leave a labeled Feynman diagram invari-
ant, mathematically speaking, amount to the exchange of two internal integration variables
or summation indices. Sometimes, they yield an identical diagram and sometimes a distinct
one and the task of this section is to determine the correct number of distinct diagrams
with the same value.
All transformations together build a group G with 2nn! elements and we are looking for

that particular subgroup GD which map a labeled Feynman diagram D onto itself. We
denote the number of elements of GD with SD and refer to it as the symmetry factor of
the diagram D. If now a distinct diagram D′ is generated from D through an element of
G, all elements of GD also leave D′ invariant. This implies that there must be exactly 2nn!

SD
groups of SD diagrams diagrams yielding the same result. Hence, there actually are also
2nn!
SD

distinct diagrams to nth order in the interaction with equal contributions. In the end,
it therefore suffices to calculate one of the distinct diagrams and multiply its result with
the factor of 2nn!

SD
.

Unlabeled Feynman diagrams D̃ are now obtained by omitting all quantum numbers
and time labels of the labeled diagrams. Accordingly, only the diagram’s topology and the
directions of the bare propagators matter. The contribution of all distinct labeled diagrams

34



2.3. Perturbation theory

now equals the value of all distinct unlabeled diagrams times 2nn!
SD

. Therefore, we need to
calculate one distinct unlabeled Feynman diagram each an determine its symmetry factor.
For instance, to first order in V̂ , the symmetry factor is SD = 2. To second order and
depending on the diagram D̃, it can be SD =∈ {4, 2, 1}. In general, determining SD of
all unlabeled Feynman diagram can be quite challenging. However, since we know that we
must arrive at a total number of diagrams (2n)! =

∑̃
D

2nn!
SD

, we find that

∑
D̃

1

SD
= (2n− 1)!! = (2n− 1)(2n− 3)(2n− 5) . . . 5 · 3 · 1 . (2.102)

This provides an easy check whether the determined symmetry factors can be correct or
not.
We would like to spend one last comment on the so-called Hugenholtz diagrams. They

are the sum of the direct and the exchange interaction

V
[
γ∗αj (τ), γαj (τ)

]
=

1

2

∑
α1,β1,α1′ ,β1′

〈α1β1|V̂ |α1′β1′〉 γ∗α1
(τ)γ∗β1

(τ)γβ1′ (τ)γα1′ (τ)

=
1

4

∑
α1,β1,α1′ ,β1′

[
〈α1β1|V̂ |α1′β1′〉+ ζ 〈α1β1|V̂ |β1′α1′〉

]
γ∗α1

(τ)γ∗β1
(τ)γβ1′ (τ)γα1′ (τ) .

(2.103)

If we regroup the interactions like this and treat the two terms in brackets in the second
line as one vertex function (confer Fig. 2.3), this vertex function is invariant under the
exchange of two incoming and outgoing legs separately.
In principle, this theory can be extended to more general types of interactions like

single-body or m-body interactions. During this thesis though, we do not encounter such
phenomena and continue without providing details on them.

2.3.4. Frequency and momentum space representations

One of the most powerful tools to analytically treat interacting systems is the Fourier
transform (FT). Mathematically speaking, it amounts to a basis transform in completely
periodic or anti-periodic functions, i.e., sine and cosine, and it is always helpful if the
investigated system has some intrinsic translation invariance.
Let us briefly consider a one-dimensional system of length L with a translation invariance

along the sole spatial x axis and periodic boundary conditions. This implies that any
function depending on two coordinates can in fact only depend on their difference

f(x1, x2) = f(x1 − x2, 0) , (2.104a)

f(x1, x2) = f(x1 + L, x2) = f(x1, x2 + L) = f(x1 + L, x2 + L) . (2.104b)
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As we saw already for the Feynman diagrams, including interactions requires the summa-
tion or integration over internal indices which can, for instance, be of a spatial type

f(x1, x2) =

L∫
0

dx g(x1, x)h(x, x2) , (2.105)

where the functions f , g, and k could be Green’s functions for example. We can properly2

define a Fourier transform with respect to the two (coherent state) variables x1 and x2

according to

f̃(k1, k2) =

L∫
0

dx1 dx2 e
i(k1x1−k2x2)f(x1, x2), (2.106a)

f(x1, x2) =
1

L2

∞∑
k1,k2=−∞

e−i(k1x1−k2x2)f̃(k1, k2) . (2.106b)

Due to the periodic boundary conditions3 from Eq. (2.104b), the values of k1 and k2 in the
second line now become discretised via the condition that k1 = 2n1π

L and k2 = 2n2π
L where

n1, n2 ∈ Z. This implies a summation rather than an integration over k. The normalisation
constant L−1 per k summation is obtained by computing the Fourier transform of 1

L∫
0

dx1 e
i(k1x1) · 1 =

{
L , if k1 = 0

0 , else

= Lδk1,0 , (2.107a)

=⇒ 1

L

∞∑
k1=−∞

Lδk1,0 = 1 . (2.107b)

For periodic functions, this basis transformation is an expansion in cos(k), whereas, for anti-
periodic functions, the expansion is in sin(k). One often refers to the spatial representation
f(x) as the function in real space and the k-space representation f(k) as the function in
momentum space.

The translation invariance [cf. Eq. (2.104a)] can now be used to simplify convolution

2The different signs in the exponent for the two different spatial variables ensure that the coherent state
variables of a Green’s function are still the correct adjoints of each other after the Fourier transform.

3Anti-periodic boundary conditions would simply imply that ki = (2ni+1)π
L

.
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integrals. Since we can write for the functions f , g, and h that

f̃(k1, k2) =

L∫
0

dx1 dx2 e
i(k1x1−k2x2)f(x1 − x2, 0)

=

L∫
0

dx1 dx2 e
i(k1(x1−x2)−(k2−k1)x2)f(x1 − x2, 0)

= Lδk1,k2

L∫
0

dx eik1xf(x, 0)

= Lδk1,k2 f̃(k1) , (2.108)

we find for Eq. (2.105)

Lδk1,k2 f̃(k1) =

L∫
0

dx1 dx2 e
i(k1x1−k2x2)

L∫
0

dx g(x1, x)h(x, x2)

=

L∫
0

dx1 dx2 dxL−4
∞∑

k3,k4,k5,k6=−∞
ei((k1−k3)x1+(k6−k2)x2+(k4−k5)x)g̃(k3, k4)h̃(k5, k6)

= L
∞∑

k3,k4,k5,k6=−∞
δk1,k3δk4,k5δk6,k2δk3,k4δk5,k6 g̃(k3)h̃(k5)

= Lδk1,k2 g(k1)h(k1) . (2.109)

Hence, convolutions of translation invariant entities Fourier transform as

f(x1, x2) =

L∫
0

dx g(x1, x)h(x, x2)
FT←−−→ f̃(k1) = g̃(k1)h̃(k1) (2.110)

which can save a tremendous amount of computational time. It should be obvious that the
functions f(x) and f̃(k) do not have identical dependences on x and k. However, we do
not want to litter this script with tilde symbols, but rather clearly separate both pictures
such that the correct functions can always be identified in the following.
In practice, if our system is translation invariant, we need to perform a FT with respect

to its spatial coordinates. Each vertex and each propagator then conserves momentum,
meaning that, if the momenta k1,k2, . . . ,kn go into a diagrammatic constituent with the
outgoing momenta k1′ ,k2′ , . . . ,kn′ , we find that

n∑
i=1

ki =
n′∑

i′=1′

ki′ . (2.111)
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There is a very important observation to make here. Let us consider taking the continuum
limit where the system’s volume V = LxLyLz →∞ and the discrete points in momentum
space become dense. Therefore, we have to rewrite

∞∑
kx,ky ,kz=−∞

=
∑
k

V→∞−−−−→ V

(2π)3

π∫
−π

dkx dky dkz =
V

(2π)3

∫
dk . (2.112)

Any two-particle interaction’s matrix element in momentum space has to be calculated
using two somehow normalised states which have to be ∝ V −1 each. Therefore, the matrix
element becomes ∝ V −2 but due the translation invariance there is an additional factor of
V yielding an overall matrix element of the interaction being ∝ V −1 [confer Eq. (2.108)].
Thus, any diagram to nth order in the two-particle interaction is ∝ V −n which brings the
concept of diagrammatic connectedness in our focus. A Feynman diagram is called con-
nected if and only if a continuous sequence of propagators connects all vertices contributing
to the diagram. Of course, every Feynman diagram can be viewed as the product of some
number of connected diagrams. Every diagram to nth order in V̂ involves 2n propagators
providing us with 2n momentum variables to be integrated over. If a diagram is connected,
the momentum conservation at each vertex provides us with n− 1 constraints on the mo-
mentum integrations. Therefore, we have n + 1 independent momenta to integrate over
yielding another factor of V n+1. Combined with the factor of V −n from the interaction’s
matrix elements, we find that every connected diagram is ∝ V . So if an nth-order diagram
is composed of m connected parts, it contributes with a factor V m. Hence, only the fully
connected diagrams with m = 1 contribute extensively to Z

Z0
.

Besides a translation invariance in real space, our system is also invariant under shifts of
the imaginary time. Because of their mathematical properties, it is highly recommendable
to perform an additional Fourier transform of the utilised Green’s functions with respect
to τ into what is called the Matsubara space. The bare propagator transforms according
to

G
(1)
0 (α1;ω1|α1′ ;ω1′) =

β∫
0

dτ1

β∫
0

dτ1′ e
i(ω1τ1−ω1′τ1′ )G

(1)
0 (α1; τ1|α1′ ; τ1′) , (2.113a)

G
(1)
0 (α1; τ1|α1′ ; τ1′) =

1

β

∞∑
1=−∞

1

β

∞∑
1′=−∞

e−i(ω1τ1−ω1′τ1′ )G
(1)
0 (α1, ω1|α1′ , ω1′) , (2.113b)

and takes the form

G
(1)
0 (1|1′) = βG

(1)
0 (1)δα1,α1′ δ(ω1 − ω1′) =

1

(εα1 − µ)− iω1
βδα1,α1′ δ(ω1 − ω1′) , (2.114)

where 1 = {α1, ω1} and 1′ = {α1′ , ω1′} again are combined labels for quantum numbers
and now Matsubara frequencies. In imaginary time, every bosonic (fermionic) Green’s
function is (anti)symmetric and (anti)periodic with period ~β. Therefore, they are only
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computed in the interval −~β < τ ≤ ~β and the Matsubara frequencies are discretised
with n ∈ Z according to

ωn =

{
2nπT

~ , for bosons ,
(2n+1)πT

~ , for fermions .
(2.115)

One significant remark on the Green’s functions in Matsubara space is that, in order to
obey imaginary-time ordering, we have to replace

G
(1)
0 (1)→ eiω1ηG

(1)
0 (1) , η > 0 , (2.116)

if the propagator starts and ends at the same vertex.
Similar to the aforementioned momentum conservation, if the system is time-translation

invariant, we find that the vertices and Green’s functions do now conserve frequency, e.g.,

n∑
i=1

ωi =

n′∑
i′=1′

ωi′ . (2.117)

Now, the 2n propagators contribute β−2n to any nth order diagram, but every interaction
vertex comes with an extra factor of β yielding a net result ∝ β−n for every diagram involv-
ing n interaction lines. If applied to the right system, the transformations into momentum
and Matsubara space are highly beneficial when it comes to the computational effort. Also,
the connectedness of our diagrams tells us whether they are extensive quantities or not.
We shall turn to that during the next section.

2.3.5. Linked cluster theorem

We now know that the interaction corrections to the partition function Z contain all powers
of the system’s volume V . However, in our introduction to thermodynamics, we saw that
it is related to the grand potential which is an extensive quantity

Ω = − 1

β
ln(Z) = −PV , (2.118)

confer Eqs. (2.8) and (2.9a). This shows that ln(Z) must be ∝ V and is therefore extensive
as well.
The linked cluster theorem now states that ln

(
Z
Z0

)
is precisely comprised as the sum

over all fully connected diagrams. It is usually proven using the replica trick which takes
m identical copies of our system and computes(

Z
Z0

)m
= e

m ln
(
Z
Z0

)
= 1 +m ln

(
Z
Z0

)
+
∞∑
k=2

[
m ln

(
Z
Z0

)]k
. (2.119)

Evaluating the path integral on the left-hand side, one quickly finds that each connected
diagram is then ∝ m and every disconnected diagram being a product of p connected ones
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are hence ∝ mp. This shows that indeed

Ω− Ω0 = − 1

β

∑
all connected diagrams , (2.120a)

Ω0 =
ζ

β

∑
αj

ln
(

1− ζe−β(εαj−µ)
)
, (2.120b)

where the grand potential of the non-interacting system Ω0 was calculated from Eq. (2.87).

2.4. Observables and Green’s functions

Let us consider any n-body operator Ô of which we desire its expectation value with respect
to some Hamiltonian Ĥ. For that purpose, we start by replacing

Ĥ −→ Ĥ(λ) = Ĥ + λÔ . (2.121)

The operator’s expectation value is now computed from the respective grand potential
Ω(λ) as

〈Ô〉 =
∂

∂λ
Ω(λ)

∣∣∣∣
λ=0

=
∂

∂λ

(
− 1

β
lnZ(λ)

)∣∣∣∣
λ=0

= − 1

βZ

(
∂Z(λ)

∂λ

)∣∣∣∣
λ=0

. (2.122)

Alternatively, we could again employ the replica trick which would show us that only the
fully connected diagrams contribute to the expectation value 〈Ô〉 (see Ref. [135] for more
details).

For a two-particle operator, this implies that the diagrammatic symmetry factors SD are
reduced to values of 1 or 2. There are no more possible time permutations within closed
loops and only if on the sub diagrams on the two sides of the operator are identical, we
can make a deformation of the diagram onto itself by exchanging all time labels and all
extremities of the vertex functions yielding SD = 2. In general, the symmetry factor is
maximally n! for an n-body operator. If one calculates Green’s functions, the symmetry
factor is even further reduced to SD = 1 for all diagrams since now all external legs are
already determined by the Green’s function and therefore, in turn, are fixing the internal
labels. Now, we only need to evaluate each distinct diagram’s prefactor.
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Figure 2.4.: Relation between connected (solid) and disconnected (dashed) Green’s func-
tions up to two-particle propagators: For the single-particle propagators, the connected
Green’s function equals the disconnected one [see Eq. (2.127a)]. The two-particle connected
Green’s function involves both, the single-body and the two-body disconnected propaga-
tors [confer Eq. (2.127b)]. To avoid confusion between two-particle Green’s function and
two crossed single-particle propagators, we use bent and straight lines respectively as in
the first and the last diagram of the second equation.

2.4.1. Generating functionals for Green’s functions

In complete analogy to the trick using the grand potential for calculating the expectation
value of an operator, we define the generating functional for the Green’s functions as

G
[
ξ∗αj (τ), ξαj (τ)

]
= Z−1

∫
γαj (β)=ζγαj (0)

D[γ∗αj (τ)γαj (τ)]

× e
−
β∫
0

dτ

{∑
αj

(
γ∗αj (τ)( ∂

∂τ
−µ)γαj (τ)+ξ∗αj (τ)γαj (τ)+γ∗αj (τ)ξαj (τ)

)
+H

[
γ∗αj (τ),γαj (τ)

]}
,

(2.123)

where H
[
γ∗αj (τ), γαj (τ)

]
is not further specified at the moment, and the partition function

Z is found in Eq. (2.91) such that G(0, 0) = 1.
Using the expression for the expectation value in the functional integral representation

[see Eq. (2.92)], but this time with respect to the full interacting Hamiltonian, we can
rewrite this generating functional as

G
[
ξ∗αj (τ), ξαj (τ)

]
=
〈
e
−
β∫
0

dτ
∑
αj

(
ξ∗αj (τ)γαj (τ)+γ∗αj (τ)ξαj (τ)

)〉
. (2.124)

The newly introduced ξ∗ and ξ are the so-called source terms which have to be complex or
Graßmann variables in accordance to the bosonic or fermionic coherent state variables γ∗

and γ. With this definition, we are ready to calculate the n-particle Green’s function as

G(n)(1, . . . , n|1′, . . . , n′) = ζn
δ2nG

[
ξ∗αj (τ), ξαj (τ)

]
δξ∗1 . . . δξ

∗
nδξn′ . . . δξ1′

∣∣∣∣∣∣
ξ∗=ξ=0

, (2.125)

where we made again use of the combined quantum-number and imaginary-time labels and
δ/δξ(∗) now denotes a functional derivative.
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2. Theoretical concepts

The Green’s functions that are obtained like this consist of connected and disconnected
parts. If we are only concerned about the connected diagrams, which, as explained before,
is the case for the calculation of expectation values of operators, we have to utilise the
generating functional for the connected n-particle Green’s functions G(n)

c . It is obtained
by employing the replica trick one last time yielding

W
[
ξ∗αj (τ), ξαj (τ)

]
= ln

[
G
[
ξ∗αj (τ), ξαj (τ)

]]
, (2.126a)

G(n)c(1, . . . , n|1′, . . . , n′) = ζn
δ2nW

[
ξ∗αj (τ), ξαj (τ)

]
δξ∗1 . . . δξ

∗
nδξn′ . . . δξ1′

∣∣∣∣∣∣
ξ∗=ξ=0

. (2.126b)

Evaluating this expression in the language of Eq. (2.124) is straightforward. In a phase
with fixed particle number, i.e., all expectation values with unequal numbers of creation
and annihilation processes are zero, we find the following relations between connected and
disconnected Green’s functions (up to n = 2)

G(1)c(1|1′) = G(1)(1|1′) , (2.127a)

G(2)c(1, 2|1′, 2′) = G(2)(1, 2|1′, 2′)−G(1)(1|1′)G(1)(2|2′)− ζG(1)(1|2′)G(1)(2|1′) . (2.127b)

The diagrammatic representation of these equations is shown in Fig. 2.4.

2.4.2. Effective potential

Even though we proved that we can compute every physical property of interest using
Green’s functions, in practice, this might be mathematically challenging since the Green’s
functions can be hard to approximate, for instance, for our spin systems. A common tool
in physics and mathematics to circumvent this issue is a Lengendre transform.
We start by realising that, once the sources ξ∗αj (τ), ξαj (τ) 6= 0 are included, the operators

a†αj (τ) and aαj (τ) develop non-zero expectation values which we denote with

ψαj (τ) = 〈aαj (τ)〉ξ∗,ξ = 〈γαj (τ)〉ξ∗,ξ = − δ

δξ∗αj (τ)
W
[
ξ∗αj (τ), ξαj (τ)

]
, (2.128a)

ψ∗αj (τ) = 〈a†αj (τ)〉ξ∗,ξ = 〈γ∗αj (τ)〉ξ∗,ξ = −ζ δ

δξαj (τ)
W
[
ξ∗αj (τ), ξαj (τ)

]
. (2.128b)

A Legendre transform of the generating functional for the connected Green’s functions
W
[
ξ∗αj (τ), ξαj (τ)

]
with respect to the new fields ψ∗αj (τ) and ψαj (τ) then provides us with

the so-called effective potential or effective action

Γ
[
ψ∗αj (τ), ψαj (τ)

]
= −W

[
ξ∗αj (τ), ξαj (τ)

]
−

β∫
0

dτ ′
∑
αk

(
ψ∗αk(τ ′)ξαk(τ ′) + ξ∗αk(τ ′)ψαk(τ ′)

)
.

(2.129)
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Now, we can use the above definitions to reobtain the sources from W as

ξαj (τ) = − δ

δψ∗αj (τ)
Γ
[
ψ∗αj (τ), ψαj (τ)

]
, (2.130a)

ξ∗αj (τ) = −ζ δ

δψαj (τ)
Γ
[
ψ∗αj (τ), ψαj (τ)

]
. (2.130b)

This expresses the old sources and hence also W in terms of the new variables ψ∗αj (τ) and

ψαj (τ). Taking 2n partial derivatives with respect to the new variables of Γ
[
ψ∗αj (τ), ψαj (τ)

]
provides us with the n-particle vertex function

Γ(n)(1, . . . , n|1′, . . . , n′) =
δ2nΓ

[
ψ∗αj (τ), ψαj (τ)

]
δψ∗1 . . . δψ

∗
nδψn′ . . . δψ1′

∣∣∣∣∣∣
ξ∗=ξ=0

, (2.131)

where setting the sources ξ∗ = ξ = 0 amounts to an evaluation with respect to stationary
ψ

(∗)
αj (τ), i.e., δ

ψ
(∗)
αj

(τ)
Γ
[
ψ∗αj (τ), ψαj (τ)

]
= 0.

Vertex functions are one-particle irreducible. This means that all contributing diagrams
cannot be cut in two parts by removing a single propagator. Connected Green’s functions
are built from vertex functions with a tree expansion, which means that those expansions
do strictly not contain loops anymore. This simultaneously implies that all the contributing
loops must be contained in the vertices. The great benefit of using them is caused by the
fact that diagrammatic divergences usually arise in loops. Therefore, the vertex functions
now contain all divergences and are extremely useful for building up a renormalisation
theory which tries to sum up diagrams in a non-diverging way yielding (hopefully) correct
physical results. This work is essential for us. If we are not capable of reformulating our
quantum theory in terms of analytically somehow controllable entities, we are left clueless
about its predictions. Using vertex functions and functional renormalisation group methods
in the next chapter is one of only a few possibilities enabling us to investigate the desired
spin models.

2.4.3. Self energy and Dyson equation

Let us study the single-particle vertex Γ(1)(1|1′). Using the chain rule for functional deriva-
tives, we find that

∫
d2

(
δ2W
δξ∗3δξ2

ζ δ2W
δξ∗3δξ

∗
2

ζ δ2W
δξ3δξ2

δ2W
δξ3δξ∗2

)(
δ2Γ

δψ∗2δψ1

δ2Γ
δψ∗2δψ

∗
1

δ2Γ
δψ2δψ1

δ2Γ
δψ2δψ∗1

)
=

(
δ3,1 0

0 δ3,1

)
, (2.132)

where again combined indices 1 = {α1; τ1} and 1′ = {α1′ ; τ1′} are used, and therefore
the delta function δ3,1 = δα3,α1δ(τ3 − τ1) as well as the integral

∫
d2 =

∫ β
0 dτ2

∑
α2
. If we

consider the above equation as a matrix multiplication in the space of all possible quantum
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2. Theoretical concepts

Figure 2.5.: Diagrammatic representation of Dyson’s equation [Eq. (2.135b)]: While a single
directed line stands for the bare connected single-particle propagator, a double directed line
represents the full Green’s function calculated with respect to the interacting Hamiltonian.
The self energy Σ(1|1′), defined in Eq. (2.134), is denoted by a circle.

numbers and imaginary times, we straightforwardly write down the famous Dyson equation
in its most abstract way(

δ2Γ
δψ∗δψ

δ2Γ
δψ∗δψ∗

δ2Γ
δψδψ

δ2Γ
δψδψ∗

)
= ζ

(
〈γγ∗〉 〈γγ〉
〈γ∗γ∗〉 〈γ∗γ〉

)−1

. (2.133)

After setting the source fields ξ(∗) to zero, this means that the matrix which is comprised
of our vertex functions is the inverse of the matrix of connected4 Green’s functions.
If we are again in a phase with conserved particle number, the expectation values 〈γγ〉 =

〈γ∗γ∗〉 = 0. Then, we define the self energy according to

ζΣ(1|1′) = Γ(1)(1|1′)− Γ
(1)
0 (1|1′), (2.134)

where the bare vertex Γ
(1)
0 (1|1′) is computed with respect to the non-interacting Hamilto-

nian Ĥ0. Using this definition yields the probably more familiar form of the Dyson equation

(
G(1)c

)−1
=
(
G

(1)c
0

)−1
+ Σ , (2.135a)

=⇒ G(1)c = G
(1)c
0 −G(1)c

0 ΣG(1)c , (2.135b)

where the propagators and the self energy should be understood as being matrices in their
former indices. A diagrammatic representation of this equation can be seen in Fig. 2.5.
In addition to connectedness and one-particle irreducibility, we need to define one further

property for Feynman diagrams: A diagram is called amputated, if all external legs do not
carry any propagators. This means that every external point is directly connected to a
vertex function. From how we regrouped our expansion into connected Green’s functions
and vertices, it should be clear that −Σ(1|1′) therefore consists of the sum over all distinct

4For the single-body propagator, connected and disconnected Green’s function are the same (confer
Eq. (2.127a)).
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2.4. Observables and Green’s functions

Figure 2.6.: Particle-number conserving diagrams for the derivation of the higher-order
propagators [confer Eqs. (2.137) and (2.139)]: The diagrammatic expressions for the higher-
order Dyson equations are given up to third order. Only vertices and propagators with
equal numbers of incoming and outgoing legs are considered.

unlabeled Feynman diagrams connecting state 1 with 1′, which are one-particle irreducible
and amputated.
The reason why one calls Σ the self energy to begin with can be well understood by

considering the fact that the inverse single-particle Green’s function can be written as(
G(1)c

)−1
(1|1′) =

(
δα1,α1′ (

∂

∂τ1
− µ) + 〈α1|Ĥ0|α1′〉

)
δ(τ1 − τ1′) + Σ(1|1′) , (2.136)

which means that it plays the role of an effective single-particle potential due to virtual
interaction processes with itself. To first order in the interaction, we immediately obtain
the Hartree-Fock mean field equations which will become important in Chap. 6 when
we turn to the projective symmetry group. We end this chapter though specifying the
diagrammatic rules for arbitrary numbers of particles.

2.4.4. Higher-order vertices and propagators

We can continue the scheme that we previously employed for the self energy: We regroup
the diagrams into n-particle vertices which contain all the amputated loop diagrams and
obtain the connected n-particle propagators from tree expansions as in the Dyson equation.
We constrict ourselves, however, to phases with conserved particle number, e.g., only to
vertices with equal number of incoming and outgoing legs.
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2. Theoretical concepts

Figure 2.7.: Tree expansion for the n-particle Green’s function up to n = 3: Each propa-
gator consists of all possible combinations of vertices of order up to n connected by prop-
agators of order up to n − 1. Again, we only consider diagrams which conserve particle
number within each constituent.

By differentiation of the generating functionals W (Γ) with respect to the sources ξ∗

and ξ (the fields ψ∗ and ψ), we increase the number of incoming and outgoing legs of the
generated connected Green’s function (vertex function) by one. Utilising the chain rule for
functional derivatives and Eqs. (2.130), we find that

δ

δψ
=
δξ

δψ

δ

δξ
+
δξ∗

δψ

δ

δξ∗
= − δ2Γ

δψδψ∗
δ

δξ
− ζ δ2Γ

δψδψ

δ

δξ∗
, (2.137a)

δ

δψ∗
=
δξ∗

δψ∗
δ

δξ∗
+

δξ

δψ∗
δ

δξ
= −ζ δ2Γ

δψ∗δψ

δ

δξ∗
− δ2Γ

δψ∗δψ∗
δ

δξ
. (2.137b)

Diagrammatically, this implies that if we take the ψ(∗) derivative of the n-particle propa-
gator, we have to increase the numbers of its incoming or outgoing legs by one and attach
an appropriate two-particle vertex at each added leg. One has to be aware though that
each derivative of the propagator now contributes two terms, one with a particle-number
conserving vertex and an anomalous one [confer last terms in Eqs. (2.137)]. This is very
practical and we utilised this trick already once when deriving the previous Dyson equation,
which in quantum-label matrix language is simply

δψ∗

δψ∗
= 1 =

δ2Γ

δψ∗δψ

δ2W
δξ∗δξ

+ ζ
δ2Γ

δψ∗δψ∗
δ2W
δξδξ

. (2.138)

If we are interested in phases with particle number conservation only, the second term
vanishes yielding 1 = Γ(1)G(1)c. Applying ψ and ψ∗ derivatives to all four terms from
Eq. (2.138) then gives us the defining relations between two-particle Green’s functions and
vertices

0 =
δ2

δψ∗δψ

[
δ2Γ

δψ∗δψ

δ2W
δξ∗δξ

+
δ2Γ

δψ∗δψ∗
δ2W
δξδξ

]
=

δ2

δψ∗δψ

(
δ2Γ

δψ∗δψ

)
δ2W
δξ∗δξ

+
δ2Γ

δψ∗δψ

δ2Γ

δψ∗δψ

δ2Γ

δψ∗δψ

δ2

δξ∗δξ

(
δ2W
δξ∗δξ

)
. (2.139)
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2.4. Observables and Green’s functions

Here, we should still be aware of the structure of incoming and outgoing legs, but in
principle this procedure can be used to relate all orders of vertices and Green’s functions.
We obtain the n-particle connected propagator by multiplying the corresponding equation
with 2n− 1 inverse single-particle vertices which are, of course, the dressed and connected
single-particle propagators

(
Γ(1)

)−1
= G(1)c. Up to n = 3, the resulting diagrammatic

expressions are summarised in Fig. 2.7 as well as the ones corresponding to the above
equations in Fig. 2.6. Note that we only show the contributions from particle-number
conserving vertices and propagators in both figures. For the correct derivation of higher-
order equations, also the anomalous diagrams have to be considered up to a certain point.
Fig. 2.7 shows that the two-particle vertex Γ(2) has to be the sum over all one-particle
irreducible, amputated diagrams with two incoming and two outgoing legs, and plays the
role of an effective two-particle interaction due to the virtual processes in the quantum
many-body system. From it, we find G(2)c via a simple tree expansion using all Γ(m) with
m ≤ 2, where the self energy is contained in the full propagator. The same statement is
true for all n-particle Green’s functions and m-particle vertices with m ≤ n.

Finally, we are able to determine the imaginary-time ordered Green’s functions which are
required for the computation of the spin susceptibility from Sec. 2.1.2. In the last section
of this introduction, we present how to obtain it from the basic diagrammatic building
blocks that were already defined.

2.4.5. Spin susceptibility from Green’s and vertex functions

In Chaps. 4 and 5, we investigate the spin susceptibility χµνij (τ) which is defined in
Eq. (2.21). As shown in Eq. (2.25), this response function is related to the disconnected
fermionic two-particle Green’s functions and we now want to express it in terms of the two
particle vertex and single-particle connected Green’s functions since these are the objects
of our further analysis. For this purpose, we first plug Eqs. (2.127) into Eq. (2.25) yielding

χµνij (τ) =
1

4

∑
α,β,γ,δ

σµαβσ
ν
γδ

{
G(2)c ({j, δ}, {i, β}; 0, τ |{j, γ}, {i, α}; 0, τ)

+G(1)c ({j, δ}; 0|{j, γ}; 0)G(1)c ({i, β}; τ |{i, α}; τ)

+ ζG(1)c ({j, δ}; 0|{i, α}; τ)G(1)c ({i, β}; τ |{j, γ}; 0)
}
. (2.140)

The connected two-particle Green’s function can be calculated from the two-particle vertex
and the connected single-particle Green’s function, confer Eq. (2.139). Using this result,
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Figure 2.8.: Diagrammatic representation for the spin susceptibility: Black circles denote
Pauli matrices 1

2σ
µ and 1

2σ
ν , respectively. Closed loops contribute a factor of ζ and one

needs to sum or integrate over all internal indices. For corresponding equations, confer
Eqs. (2.146) and (2.142).

we find for the susceptibility that

χµνij (τ) =
1

4

∑
α,β,γ,δ

σµαβσ
ν
γδ

{
G(1)c ({j, δ}; 0|{j, γ}; 0)G(1)c ({i, β}; τ |{i, α}; τ)

+ ζG(1)c ({j, δ}; 0|{i, α}; τ)G(1)c ({i, β}; τ |{j, γ}; 0)
}

−1

4

∑
α,β,γ,δ

σµαβσ
ν
γδ

∑
1′,2′,1,2

Γ(2)(1′, 2′|1, 2)G(1)c
(
{j, δ}; 0|1′

)
G(1)c

(
{i, β}; τ |2′

)
×G(1)c (1|{j, γ}; 0)G(1)c (2|{i, α}; τ) , (2.141)

where 1, 1′, 2, and 2′ are combined indices of lattice site, spin index, and imaginary time.
The according sums have to be understood as a combination of the appropriate sums and
a time integration. The Green’s functions only depend on the imaginary time differences
since we always perform our calculations in thermal equilibrium. Without spoiling too
many upcoming results, we also note at this point that the propagators are entirely local
and diagonal in spin space except for the mean-field analysis in Chap. 6 where we do not
compute the susceptibility any longer. Hence, we can employ the diagonal structure of
G(1)c yielding

χµνij (τ) =
ζ

4

∑
α1,α2

σµα1α2
σνα2α1

G(1)
α1

(−τ)G(1)
α2

(τ) δij −
1

4

∑
1′,2′,1,2

σµα1α1′
σνα2α2′

Γ(2)(1′, 2′|1, 2)

×G(1)
α1′

(τ − τ1′)G
(1)
α2′

(−τ2′)G
(1)
α2

(τ2)G(1)
α1

(τ1 − τ) . (2.142)

The first term in Eq. (2.141) vanishes due to its special spin structure. We also utilised that
G(1) = G(1)c is independent of its real space coordinates for the subsequently investigated
systems of equivalent lattice sites. This enabled us to carry out the real-space sums yielding
that i1 = i1′ = i and i2 = i2′ = j for the vertex function. Furthermore, the Green’s
functions now only depend on a single imaginary-time and a spin index and the sums over
the combined indices represent spin sums and time integrations accordingly.
Since we are going to deal with Green’s and vertex functions in Matsubara space in

the following FRG analysis (confer Sec. 2.3.4), let us already calculate the Matsubara
transformed spin susceptibility here. It is defined as

χµνij (iΩ) =

∫ ∞
0

dτ eiΩτ
〈
TτS

µ
i (τ)Sνj (0)

〉
. (2.143)
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The Matsubara Green’s function in thermal equilibrium are given by

G(1)(ωn) =

β∫
0

dτ eiωnτG(1)(τ) , G(1)(τ) =
1

β

∑
ωn

e−iωnτG(1)(ωn) , (2.144)

see Eqs. (2.113). In complete analogy, the transformed two-particle vertex should be
computed via

Γ(2)(ω1′ , ω2′ |ω1, ω2) =

∫ ∞
0

dτ1′ dτ2′ dτ1 dτ2 e
i(ω1′τ1′+ω2′τ2′−ω1τ1−ω2τ2)Γ(2)(τ1′ , τ2′ |τ1, τ2) ,

(2.145a)

Γ(2)(τ1′ , τ2′ |τ1, τ2) =
1

β4

∑
ω1′ ,ω2′ ,ω1,ω2

e−i(ω1′τ1′+ω2′τ2′−ω1τ1−ω2τ2)Γ(2)(ω1′ , ω2′ |ω1, ω2) .

(2.145b)

Plugging Eqs. (2.142), (2.144), and (2.145) into Eq. (2.143), one can ultimately relate the
desired susceptibility to the diagrammatic constituents of the next chapters. It reads

χµνij (iΩ) =
1

4

∑
α1′ ,α2′ ,α1,α2

σµα1α1′
σνα2α2′

{
ζ

β

∑
ω1

G(1)
α1

(ω1)G(1)
α2

(ω1 + Ω) δα1′α2δα2′α1δij

− 1

β2

∑
ω1,ω2

Γ(2)(1′, 2′|1, 2)G(1)
α1′

(ω1 + Ω)G(1)
α2′

(ω2)G(1)
α2

(ω2 + Ω)G(1)
α1

(ω1)

}
,

(2.146)

where the combined indices are 1′ = {i, α1′ , ω1 + Ω}, 2′ = {j, α2′ , ω2}, 1 = {i, α1, ω1}, and
2 = {j, α2, ω2 + Ω} for the two-particle vertex. A diagrammatic illustration for the spin
susceptibility is shown in Fig. 2.8.

2.5. Summary

So far, we motivated that the so-called Green’s functions or response functions provide
answers to most of the physically relevant questions one can ask about a given quantum
many-body system. Because Green’s functions are in general not easy to obtain, we dedi-
cated most of this chapter to show how all of their contributions that exist on a quantum
level, e.g., interference, superposition, virtual paths, etc., are generically incorporated in
the functional integral formalism. We now have a powerful scheme at our disposal which
enables us to investigate arbitrary quantum systems and to gain insights on their proper-
ties. Depending on the precise nature of the considered model, one might already be able
to make rather accurate predictions about experimental outcomes with the methods intro-
duced until now. This is achieved by calculating self-energy and all necessary m-particle
vertices up to a given order in the interacting part of the Hamiltonian. As it turns out
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however, such a perturbation series always yields an uncontrolled approximation in the
sense that one has a priori no knowledge about up to which order and up to which inter-
action strength the results are trustworthy, unless of course an exact solution is already
known.
For quantum spin models, we derived how to relate the spin susceptibility to Green’s

functions which in turn can efficiently be computed from one-particle-irreducible vertices.
In addition to its common difficulties, perturbation theory is unable to accurately de-
scribe the corresponding physics of such systems due to the absence of kinetic terms in
the Hamiltonian, as briefly mentioned in the introduction. Fortunately though, the func-
tional integral language remains valid for such models which is why we introduced it quite
thoroughly. Within this formalism, we want to apply a method that goes beyond pertur-
bation theory instead and thereby circumvents the mentioned issues. A prime candidate
for this objective is the so-called functional renormalisation group analysis. It caught large
attraction in the quantum spin physics community in recent years since it has shown to
provide reliable results for Heisenberg models [11, 18, 87, 147, 168, 173] and anisotropic,
but diagonal spin interactions [146, 168] regardless of their underlying lattices in two and
three dimensions. Furthermore, unlike other currently available methods, e.g., exact diag-
onalisation and density matrix renormalisation group [21, 25, 48, 61, 96, 114, 161, 180],
this approach does not suffer from finite size effects. Later on, we will extend the existing
method for diagonal spin interactions in order to investigate the effects of Dzyaloshinsky-
Moriya interactions (Chap. 4) as well as different spin anisotropies (Chap. 5) and will
eventually utilise the resulting vertex functions in order to self-consistently determine ef-
fective low-energy theories for the considered spin models (Chap. 6). Before doing so, we
properly introduce the functional renormalisation group method in the following.
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As we know from the previous chapter, the standard procedure to obtain response func-
tions like the spin susceptibility of a quantum many-body system is based on the com-
putation of Feynman diagrams for the vertex functions. The Feynman diagrams consist
of interaction vertices and Green’s functions whose internal indices such as spin, time or
frequency are summed up or integrated over, respectively. In a Heisenberg model however
[see Eq. (1.1)], this yields non-converging results for our purposes. The reason behind
this is that only spin-spin interactions are present in such a Hamiltonian which completely
lacks any kind of terms being quadratic in the fermionic operators. This implies that all
single-particle energies vanish yielding for the bare Matsubara Green’s function

G
(1)
0 (1|1′) = βG

(1)
0 (1)δα1,α1′ δ(ω1 − ω1′) =

−1

iω1
βδα1,α1′ δ(ω1 − ω1′) (3.1)

in the canonical ensemble (confer Eq. (2.114) and Sec. 2.1.1). In this fermionic model,
our Green’s function acquires an extra minus sign if compared to a different convention
that is used frequently by other authors. Nevertheless, we retain the definition given in
Sec. 2.1.2 because the resulting equations are often more compact. Since we try to identify
quantum spin liquids that show no sign of magnetic order down to lowest temperatures, we
are interested in the T → 0 limit where Matsubara frequencies become dense. Hence, the
appropriate integral over an internal Matsubara frequency of a given Feynman diagram
can easily diverge around ω ≈ 0. For instance, the first term in Eq. (2.146) for the
spin susceptibility contributes to zeroth order in the interaction via a product of two bare
propagators [Eq. (3.1)]. In this case as well as for any other Feynman diagram that consists
of a loop with two bare propagators, we are not able to perform the frequency integration
in the T → 0 limit.
Of course, the systems that we are investigating are typically Mott insulators at very

low temperatures and do not tend to diverge in any observable way. The fact that per-
turbation theory breaks down in our case is related to the fact that we are only dealing
with interactions which completely determine the relevant energy scale. Thus, there is no
small parameter which one could meaningfully treat as a perturbation. Instead one would
literally perturb the system around nothing.
The mathematical difficulties for quantum spin models arise at low frequencies as dis-

cussed above. Traditionally such challenges frequently occur in high-energy physics and,
despite the difference in the responsible phenomena, one approach that was originally de-
veloped to study high-temperature phase transitions in particle physics [186] has proven
itself to be a powerful tool for the investigation of low-energy spin systems as well. This is
why we want to introduce this so-called functional renormalisation group (FRG) formal-
ism in the current chapter which is based on a script by Volker Meden [117]. The FRG
was mainly developed in Refs. [50, 72, 125, 155, 186] and has ever since been successfully
applied to Luttinger liquids [4, 5, 124], the Anderson-Holstein model [105], correlated quan-
tum dots [97, 98], and the Kondo dot model [39, 40, 159] for instance. In 2010, the method
was then applied to the spin-1

2 square lattice Heisenberg model for the first time [147]
which inspired a plethora of works on related systems.
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3.1. Introducing an infrared cutoff

3.1. Introducing an infrared cutoff

The functional renormalisation group uses four main ingredients in order to prevent the
breakdown of an effective theory at low energies. They are:

1. replace the single-particle propagator1

G0(ω) =
−1

iω
−→ GΛ

0 (ω) =
−θ(|ω| − Λ)

iω
, (3.2)

2. redefine the generating functional for the vertex functions from Eq. (2.129) to be

ΓΛ [{ψ∗} , {ψ}] = −WΛ [{ξ∗} , {ξ}]− (ψ∗, ξ)− (ξ∗, ψ)−
(
ψ∗,
[
GΛ

0

]−1
ψ
)
, (3.3)

3. derive integro-differential equations for the vertex functions with respect to the in-
frared cutoff Λ,

4. choose proper initial values for the vertices for an infinite cutoff Λ→∞.

Note that we do not display the superscript (1) for the single-particle Green’s function any
longer since only this propagator is used from now on. Further, the short-hand notation
with scalar and matrix products should be understood as

(ψ∗, ξ) =
∑
ωj

∑
αj

ψ∗αj (ωj)ξαj (ωj) , (3.4a)

(ψ∗, Aψ) =
∑
ωj ,ωk

∑
αj ,αk

ψ∗αj (ωj)Aαjαk(ωj , ωk)ψαk(ωk) . (3.4b)

Using these constituents, one has to solve the resulting initial value problem for Λ→ 0.
If everything could be carried out correctly, one would obtain the correct vertex functions
of the original system since GΛ → G in this limit. As it turns out, however, this is an
impossible task. The integro-differential equations couple all orders of vertices with each
other, resulting in a stew of infinitely many coupled terms to keep track of. There is no
known way for analysing such systems of equations exactly and all solutions that we present
in the following chapters will thus be obtained in an appropriate approximation. Before
discussing how to delicately carve a finite number of coupled equations off the infinite set
(see in Sec. 4.2.1), we derive the so-called flow equations for the vertex functions in the
remainder of this chapter.

3.2. Derivation of FRG flow equations

Next to the replacement of our bare single-particle Green’s function with its regularised
version from Eq. (3.2), we have to acknowledge how this change in the propagator translates

1We note at this point that the regularisation procedure can also be performed with functions other than
the Heaviside function [125].
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to the generating functionals for the connected Green’s functions and the vertices. Let
us start by realising that, using Eq. (2.123), Eq. (2.126a), and the short-hand notations
from above, we can rewrite the generating functional for the connected Matsubara Green’s
functions W in the following way

WΛ [{ξ∗} , {ξ}] = ln
[
GΛ [{ξ∗} , {ξ}]

]
= ln

[
1

ZΛ
0

∫
D[{γ∗} , {γ}] e−

(
γ∗,[GΛ

0 ]
−1
γ
)
−(ξ∗,γ)−(γ∗ξ)−V [{γ∗},{γ}]

]
, (3.5)

where we utilised that
(
iωj − εαj + µ

)
= − [G0]−1 (confer Eq. (2.114)), but this time

inserted the renormalised propagator GΛ
0 , and replaced Z by ZΛ

0 in the denominator. In
this case, G(0)c = WΛ=0 [{ξ∗} , {ξ}]

∣∣
ξ∗=ξ=0

= ln
[
Z
Z0

]
is no longer zero. However, for any

higher-order vertices and Green’s functions, this redefinition of the generating functional
has no effect. Note that when rewriting the generating functionals in Matsubara space,
the general structure of the equations is held up and the boundary conditions for the path
integral are automatically fulfilled. We only have to consider the correct prefactors of β
and the diagonal structure in frequencies for our diagrammatic constituents.
We stop denoting the arguments of our functionals from now on for brevity and proceed

in the derivation of the flow equations by taking their scale derivatives with respect to Λ.
For W, we find

ẆΛ =
1

GΛ

∫
D[{γ∗} , {γ}] d

dΛ

[
1

ZΛ
0

e
−
(
γ∗,[GΛ

0 ]
−1
γ
)]
e−(ξ∗,γ)−(γ∗ξ)−V [{γ∗},{γ}] . (3.6)

Denoting the full Λ derivative with a dot, we find for the left-over term from above

d

dΛ

[
1

ZΛ
0

e
−
(
γ∗,[GΛ

0 ]
−1
γ
)]

=
−1

ZΛ
0

(
γ∗,

˙[
GΛ

0

]−1
γ

)
e
−
(
γ∗,[GΛ

0 ]
−1
γ
)

+

{(
1

ZΛ
0

)2

e
−
(
γ∗,[GΛ

0 ]
−1
γ
)

×
∫
D[{γ̃∗} , {γ̃}]

(
γ̃∗,

˙[
GΛ

0

]−1
γ̃

)
e
−
(
γ̃∗,[GΛ

0 ]
−1
γ̃
)}

=
1

ZΛ
0

e
−
(
γ∗,[GΛ

0 ]
−1
γ
){

ζ Tr

[
˙[

GΛ
0

]−1
GΛ

0

]
−
(
γ∗,

˙[
GΛ

0

]−1
γ

)}
,

(3.7)

where we employed integration by parts in the last line. Inserting this result into the
original equation, making use of the definition of GΛ including its sources and that Ẇ = 1

G Ġ,
one can show that

ĠΛ = ζ Tr

[
˙[

GΛ
0

]−1
GΛ

0

]
GΛ − ζ

(
δξ,

˙[
GΛ

0

]−1
δξ∗

)
GΛ. (3.8)

This is the differential equation for the generating functional of the disconnected Green’s
functions. If we want to derive such an equation for the connected Green’s functions, we
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3.2. Derivation of FRG flow equations

have to use

e−W
Λ

(
δξ,

˙[
GΛ

0

]−1
δξ∗

)
eW

Λ
=e−W

Λ

{(
δξ,

˙[
GΛ

0

]−1
δξ∗WΛ

)
eW

Λ

}
=e−W

Λ

(
δξWΛ,

˙[
GΛ

0

]−1
δξ∗WΛ

)
eW

Λ

+ e−W
Λ

{(
δξ,

˙[
GΛ

0

]−1
δξ∗

)
WΛ

}
eW

Λ

=

(
δξWΛ,

˙[
GΛ

0

]−1
δξ∗WΛ

)
+

(
δξ,

˙[
GΛ

0

]−1
δξ∗

)
WΛ , (3.9)

where the derivatives only act within curly brackets in this notation. The term including
second derivatives yet can be reformulated.(

δξ,
˙[

GΛ
0

]−1
δξ∗

)
WΛ = Tr

[(
˙[

GΛ
0

]−1
)T δ2WΛ

δξδξ∗

]
= ζ Tr

[
δ2WΛ

δξ∗δξ

˙[
GΛ

0

]−1
]

(3.10)

Plugging these results into Eq. (3.6) and using the invariance of the trace under cyclic
permutations, we finally arrive at the differential equation for the generating functional of
connected Green’s functions

ẆΛ = ζ Tr

[
˙[

GΛ
0

]−1
GΛ

0

]
− ζ

(
δξWΛ ,

˙[
GΛ

0

]−1
δξ∗WΛ

)
− Tr

[
˙[

GΛ
0

]−1 δ2WΛ

δξ∗δξ

]
. (3.11)

Our goal is to start the flow of the differential equations at Λ → ∞. From thereon,
we want to integrate out the high-energy degrees of freedom by successively lowering the
cutoff. However, we do not develop the FRG with respect to Green’s functions because
it turns out that the method is ill-defined with the initial conditions that GΛ→∞

0 = 0

(see [117] for more details). Fortunately, this issue is circumvented by employing Eq. (3.3)
because it turns out that the flow equations for the vertex functions ultimately are well
defined. Before being able to calculate the Λ derivative of the generating functional ΓΛ,
we have to consider that since we are introducing new fundamental variables ψ and ψ∗ the
old variables ξ and ξ∗ still being defined via Eqs. (2.130) now become cutoff dependent
due to the additional term in Eq. (3.3). Also, the Dyson equation [Eq. (2.138)] changes
for the same reason.
Computing ξ and ξ∗ from the new generating functional ΓΛ yields that

ξΛ
αj (ωj) = − δ

δψ∗αj (ωj)
ΓΛ
[
ψ∗αj (ωj), ψαj (ωj)

]
−
∑
ωk

∑
αk

[
GΛ

0

]−1

αjαk
(ωj , ωk)ψαk(ωk) , (3.12a)

ξΛ ∗
αj (ωj) = −ζ δ

δψαj (ωj)
ΓΛ
[
ψ∗αj (ωj), ψαj (ωj)

]
−
∑
ωk

∑
αk

ψ∗αk(ωk)
[
GΛ

0

]−1

αkαj
(ωk, ωj) .

(3.12b)

For modifying the Dyson equation, we need to include those parts of δξ(∗) Λ/δψ(∗) that
occur due to the second terms in the equations above. A straightforward calculation shows
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that our new relation between Γ and W reads in the former matrix language δ2Γ
δψ∗δψ + ζ

[
GΛ

0

]−1 δ2Γ
δψ∗δψ∗

δ2Γ
δψδψ

δ2Γ
δψδψ∗ +

[[
GΛ

0

]−1
]T
( δ2WΛ

δξ∗δξ ζ δ
2WΛ

δξ∗δξ∗

ζ δ
2WΛ

δξδξ
δ2WΛ

δξδξ∗

)
=

(
1 0

0 1

)
.

(3.13)
After setting the source fields to zero on both sides, this result can be compared to the
Dyson equation

[
GΛ
]−1

=
[
GΛ

0

]−1
+ ΣΛ (confer Eq. 2.135a) yielding that

ΣΛ = ζΓ(1) Λ (3.14)

in a phase with particle-number conservation.
Using these considerations, we compute the scale derivative of ΓΛ from Eq. (3.3) yielding

Γ̇Λ [{ψ∗} , {ψ}] =− d

dΛ
WΛ

[{
ξΛ ∗} ,{ξΛ

}]
−
(
ψ∗, ˙ξΛ

)
−
(

˙ξΛ ∗, ψ
)
−
(
ψ∗,

˙[
GΛ

0

]−1
ψ

)
=−

(
˙ξΛ ∗, δξΛ ∗WΛ

)
−
(

˙ξΛ, δξΛWΛ
)
− ẆΛ

[{
ξΛ ∗} ,{ξΛ

}]
−
(
ψ∗, ˙ξΛ

)
−
(

˙ξΛ ∗, ψ
)
−
(
ψ∗,

˙[
GΛ

0

]−1
ψ

)
=− ẆΛ

[{
ξΛ ∗} ,{ξΛ

}]
− ζ

(
δξΛWΛ,

˙[
GΛ

0

]−1
δξΛ ∗WΛ

)
, (3.15)

where we employed the definitions of our fields ψ(∗) from Eq. (2.128) in the last line.
Inserting Eq. (3.11), we find that

Γ̇Λ [{ψ∗} , {ψ}] =− ζ Tr

[
˙[

GΛ
0

]−1
GΛ

0

]
+ Tr

[
˙[

GΛ
0

]−1 δ2WΛ

δξ∗δξ

]
=− ζ Tr

[
˙[

GΛ
0

]−1
GΛ

0

]
+ Tr

[
˙[

GΛ
0

]−1
XΛ
ψ∗,ψ

∣∣
1,1

]
, (3.16)

where XΛ
ψ∗,ψ

∣∣∣
1,1

is defined according to Eq. (3.13) as the top left element of the matrix

XΛ
ψ∗,ψ =

 δ2Γ
δψ∗δψ + ζ

[
GΛ

0

]−1 δ2Γ
δψ∗δψ∗

δ2Γ
δψδψ

δ2Γ
δψδψ∗ +

[[
GΛ

0

]−1
]T
−1

. (3.17)

Now, we want to expand XΛ
ψ∗,ψ

∣∣∣
1,1

in the full propagator GΛ and therefore rewrite

δ2ΓΛ

δψ∗δψ
+ ζ

[
GΛ

0

]−1
= Γ(1) Λ + ∆ψ∗,ψ + ζ

[
GΛ

0

]−1

= ζΣΛ + ∆ψ∗,ψ + ζ
[
GΛ

0

]−1

= ζ
[
GΛ
]−1

+ ∆ψ∗,ψ , (3.18)
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confer Eq. (3.14). Here, we defined

∆ψ∗,ψ =
δ2ΓΛ

δψ∗δψ
− Γ(1) Λ

=
δ2ΓΛ

δψ∗δψ
− δ2ΓΛ

δψ∗δψ

∣∣∣∣
ξ∗=ξ=0

. (3.19)

Plugging Eqs. (3.18) and (3.19) into Eq. (3.17) provides us with the relation

XΛ
ψ∗,ψ =

 ζ
[
GΛ
]−1

0

0
[[
GΛ
]−1
]T
+

(
∆ψ∗,ψ

δ2Γ
δψ∗δψ∗

δ2Γ
δψδψ ζ∆T

ψ∗,ψ

)−1

=

[(
1 0

0 1

)
+

(
ζGΛ 0

0
[
GΛ
]T
)(

∆ψ∗,ψ
δ2Γ

δψ∗δψ∗

δ2Γ
δψδψ ζ∆T

ψ∗,ψ

)]−1(
ζGΛ 0

0
[
GΛ
]T
)
.

(3.20)

This enables us to give the desired expansion for the upper left element of this matrix, i.e.,

XΛ
ψ∗,ψ

∣∣
1,1
' ζGΛ −GΛ∆ψ∗,ψG

Λ + ζGΛ∆ψ∗,ψG
Λ∆ψ∗,ψG

Λ

+GΛ δ2Γ

δψ∗δψ∗
[
GΛ
]T δ2Γ

δψδψ
GΛ − . . . . (3.21)

According to the definition of the vertex functions from Eq. (2.131), we can expand their
generating functional as follows

ΓΛ [{ψ∗} , {ψ}] =
∞∑
k=0

ζk

(k!)2

∑
1′,...,k′

∑
1,...,k

Γ(k) Λ(1′, . . . , k′|1, . . . , k)× ψ∗1′ . . . ψ∗k′ψk . . . ψ1 .

(3.22)
This expansion can now be plugged into both sides of Eq. (3.16) which, after a comparison
of powers in the fields ψ(∗), provides us with a hierarchy of coupled equations for the
Λ-derivatives of our vertex functions on the left-hand and with products of vertices and
Green’s functions on the right-hand side. Here, one should note that ∆ψ∗,ψ is at least
quadratic in ψ(∗).
For the zeroth-order term, we hence find that

˙Γ(0) Λ = −ζ Tr

[
˙[

GΛ
0

]−1
GΛ

0

]
+ ζ Tr

[
GΛ ˙[

GΛ
0

]−1
]
, (3.23)

which couples Γ(0) Λ to Γ(1) Λ via GΛ the Dyson equation. Therefore, we also need to
determine the single-particle vertex for which we need to compute the part of ∆ψ∗,ψ that
is quadratic in the fields ψ(∗). From Eq. (3.19), we see that only the second derivative of
the generating functional but not the single-particle vertex contributes to this via the term
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∝ Γ(2) Λ in the expansion of Eq. (3.22).

δ2

δψ∗k′δψk

ζ2

(2!)2

∑
1′,2′

∑
1,2

Γ(2) Λ(1′, 2′|1, 2)× ψ∗1′ψ∗2′ψ2ψ1

=
1

(2!)2

∑
1′

∑
1

[
Γ(2) Λ(k′, 1′|1, k)× ψ∗1′ψ1 + ζΓ(2) Λ(1′, k′|1, k)× ψ∗1′ψ1

+ Γ(2) Λ(1′, k′|k, 1)× ψ∗1′ψ1 + ζΓ(2) Λ(k′, 1′|k, 1)× ψ∗1′ψ1

]
= ζ

∑
1′

∑
1

Γ(2) Λ(1′, k′|1, k)× ψ∗1′ψ1 (3.24)

Using this result, we can compare the coefficients of the quadratic terms from left and
right-hand side of Eq. (3.16) yielding that

˙Γ(1) Λ(1′|1) = −Tr
[
SΛΓ(2) Λ(1′, l′|1, k)

]
, (3.25)

where now the matrix product and the trace act on the labels l′ and k from the two-particle
vertex. Here, we already introduced the single-scale propagator

SΛ = GΛ ˙[
GΛ

0

]−1
GΛ . (3.26)

Eqs. (3.25) and (3.26) show that the single-particle vertex now couples to Γ(2) Λ and to
itself due to the full propagator GΛ.
For the two-particle vertex, we need to be aware of the fact that there are contributions

due to the second and the third term in Eq. (3.21) which are proportional to Γ(3) Λ and
Γ(2) Λ, respectively. Thus, we still need to compute

δ2

δψ∗l′δψk

ζ3

(3!)2

∑
1′,2′,3′

∑
1,2,3

Γ(3) Λ(1′, 2′, 3′|1, 2, 3)× ψ∗1′ψ∗2′ψ∗3′ψ3ψ2ψ1

=
9

(3!)2

∑
1′,2′

∑
1,2

Γ(3) Λ(1′, 2′, l′|1, 2, k)× ψ∗1′ψ∗2′ψ2ψ1 . (3.27)

An additional contribution due to the fourth term in Eq. (3.21) arises from the anomalous
derivatives

δ2

δψ∗k′δψ
∗
l′

ζ2

(2!)2

∑
1′,2′

∑
1,2

Γ(2) Λ(1′, 2′|1, 2)× ψ∗1′ψ∗2′ψ2ψ1 =
ζ

2

∑
1,2

Γ(2) Λ(k′, l′|1, 2)× ψ2ψ1 ,

(3.28)

δ2

δψkδψl

ζ2

(2!)2

∑
1′,2′

∑
1,2

Γ(2) Λ(1′, 2′|1, 2)× ψ∗1′ψ∗2′ψ2ψ1 =
1

2

∑
1′,2′

Γ(2) Λ(1′, 2′|k, l)× ψ∗1′ψ∗2′ .

(3.29)
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Combining all considerations finally yields the flow equation for the two-particle vertex

˙Γ(2) Λ(1′, 2′|1, 2) =− Tr
[
SΛΓ(3) Λ(1′, 2′, l′|1, 2, k)

]
+ ζ Tr

[
SΛΓ(2) Λ(l′, k′|1, 2)

[
GΛ
]T

Γ(2) Λ(1′, 2′|k, l)
]

+ ζ Tr
[
SΛΓ(2) Λ(1′, l′|1, k)GΛΓ(2) Λ(2′, k′|2, l)

]
+ ζ Tr

[
SΛΓ(2) Λ(2′, l′|2, k)GΛΓ(2) Λ(1′, k′|1, l)

]
+ Tr

[
SΛΓ(2) Λ(1′, l′|2, k)GΛΓ(2) Λ(2′, k′|1, l)

]
+ Tr

[
SΛΓ(2) Λ(2′, l′|1, k)GΛΓ(2) Λ(1′, k′|2, l)

]
(3.30)

Again, we see that the two-particle vertex couples to all Γ(m) Λ with m ≤ 3. This leads
to an infinite hierarchy of coupled equations that we are not able to solve. Therefore we
need to truncate the system at a certain point. Within this thesis, we do not compute the
three-particle vertex directly and therefore stop at this point.
The last step now is to derive the initial conditions for Λ → ∞ of our generating func-

tional ΓΛ. Considering that GΛ
0 = 0 in this case, one can realise that the sole remaining

diagrammatic constituent of our vertex functions is the bare interaction from the Hamil-
tonian, i.e.,

ΓΛ→∞ [{ψ∗} , {ψ}] = V [{ψ∗} , {ψ}] . (3.31)

Here, V is the interacting part of the Hamiltonian H = H0 + V which is not already
incorporated in the non-interacting single-particle eigenenergies εαj [see Eqs. (2.90) and
(2.97)]. This important initial condition can also be derived in a mathematically rigorous
fashion. We refer the interested reader again to Ref. [117] for more details. For our spin
Hamiltonian in terms of Abrikosov fermions, this means that only the two-particle vertex
has a non-vanishing initial value

Γ(n) Λ→∞(1′, 2′, . . . , n′|1, 2, . . . , n) =

{
V (1′, 2′|1, 2) , if n = 2 ,

0 , else .
(3.32)

For this notation, we defined V (1′, 2′|1, 2) according to the Hugenholtz diagram from
Eq. (2.103)

V (1′, 2′|1, 2) = (〈α1′α2′ |V |α1α2〉+ ζ 〈α1′α2′ |V |α2α1〉) δ (τ1′ − τ2′) δ (τ2′ − τ1) δ (τ1 − τ2) ,

(3.33)
such that the original interaction term in the coherent-state picture can be parameterised
as

V [{ψ∗} , {ψ}] =
1

4

∑
1′,2′

∑
1,2

V (1′, 2′|1, 2)× ψ∗1′ψ∗2′ψ2ψ1 . (3.34)

This concludes the derivation of the flow equations for single and two-particle vertex
functions of bosonic or fermionic quantum-many-body systems. We truncate the infinite
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hierarchy of coupled integro-differential equations after Γ(2) Λ for two main reasons. Firstly,
as one can extrapolate from the equations for ˙Γ(1) Λ and ˙Γ(2) Λ respectively, the mere com-
plexity of all contributing terms that will occur for ˙Γ(3) Λ is so vast that it, unfortunately,
is beyond the scope of this thesis. Secondly, the increasing numerical effort would prob-
ably require a reduction of frequency-mesh points and real-space cluster sizes. Since the
results that we obtain for the considered models crucially rely on a sufficient numerical res-
olution, this still seems unfeasible with the currently available computing resources. The
three-particle vertex characterises interactions which involve three spins simultaneously.
One physical reason why its contributions might actually be negligible for our considered
systems is that there are no terms in the Hamiltonian containing products of three spin
operators. For example, in models with a finite chiral spin interaction ∝ Si · (Sj × Sk)
where i 6= j 6= k are different lattice sites, a flow without Γ(3) Λ does not capture the effects
of the chiral interaction and is thus also not justified.
Despite all this, certain corrections from the flow of Γ(3) Λ will have to be incorporated

into the theory. In the following chapters, this will be achieved by employing the so-called
Katanin truncation scheme [99, 156]. The scheme replaces the single-scale propagator by
the full derivative of the dressed propagator

SΛ −→ −ĠΛ = SΛ +GΛΣ̇ΛGΛ (3.35)

in the flow equation for the two-particle vertex. Due to the Λ derivative of the self energy
which is effectively given by Eq. (3.25), this substitution for SΛ yields additional terms in
Eq. (3.30). They appear due to the insertion of a two-particle vertex which is connected to
Green’s functions on two of its legs and contracted on the other two legs via a single-scale
propagator. The resulting diagrams in the flow of Γ(2) Λ then involve products of three
two-particle vertices. Such terms would otherwise only occur if contributions from the
three-particle vertex were included explicitly. In this way, we consider those contributions
from Γ(3) Λ that are needed for a complete feedback of ΣΛ into Γ(2) Λ [147].
If applied to Heisenberg models, the FRG amounts to a mean-field analysis which treats

the channels responsible for long-range order and spin fluctuations on equal footings and
therefore was already proven to be exact in the large-S (spin length) and the large-N
(symmetry group) limit [9, 19, 150]. Using the resulting vertices, we are able to compute
the spin susceptibility as seen in Sec. 2.4.5. We continue in the next chapter with the
first implementation of this method for spin systems with anisotropic and off-diagonal spin
interactions, i.e., the spin-1

2 kagome lattice model with Heisenberg and Dzyaloshinsky-
Moriya interactions.
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In this chapter, we apply the previously derived functional renormalization group method
to our prime system of interest, i.e., the highly frustrated, interacting spin-1

2 model on the
kagome lattice. The main reason why this model caught huge attraction among physicists
in the past years is that already on a nearest-neighbour Heisenberg interaction level it
realises a paramagnetic phase with a possible spin-liquid state [83, 88, 95, 103, 109, 111,
118, 120, 140, 152, 173, 190]. Spin liquids are strongly correlated on short range but
lack any kind of magnetic long-range order. They are proposed states for finding high-Tc
superconductors [6–8] and decoherence-protected quantum memory [101]. The necessary
spin frustrations can arise due to a strong competition between interactions (J1-J2 models),
the lattice geometry (corner sharing triangles), and quantum fluctuations (spin-1

2).
So far, the FRG has been successfully applied to various spin systems with Heisenberg

interactions [11, 18, 87, 147, 168, 173] and anisotropic, but diagonal spin interactions [146,
168]. A large benefit of this method is that, if applied sensibly, it treats the diagrammatic
channels responsible for long-range correlations as well as quantum fluctuations on equal
footings enabling it to reliably identify magnetically ordered as well as disordered phases
on arbitrary lattice geometries in 2D and 3D. However, novel materials are often found to
be influenced or even dominated by rather exotic and anisotropic spin interactions. For
instance, rare-earth iridates like Na2IrO3 and Li2IrO3 as well as α-RuCl3 show signifi-
cant anisotropic and diagonal Kitaev interactions on the honeycomb lattice [28, 92, 138,
189] whereas the mineral herbertsmithite (ZnCu3(OH)6Cl2) is influenced by a reasonably-
sized Dzyaloshinsky-Moriya (DM) interaction on nearest-neighbour bonds of the underlying
kagome lattice [149, 166, 192]. The reason for this is that these materials exhibit relatively
large spin-orbit couplings (SOC) which can lead to Kitaev-like interactions if the magnetic
ions are heavy (high atomic number Z) [58, 100, 137], or to DM interactions if the center
of a bond is not an inversion center of the lattice [47, 129]. The effects of a sizable SOC
can hence have quite drastic effects. The analytically solvable Kitaev honeycomb model,
for instance, features a paramagnetic spin liquid phase with non-Abelian Majorana exci-
tations [101]. In contrast, the DM interaction favours non-collinear magnetic order and
possibly selects spiral order or skyrmions [132, 133].
While an extension of the spin FRG towards diagonal anisotropies like XXZ or Kitaev

interactions is relatively straightforward [20, 146], implementing more general and off-
diagonal terms like the DM interaction is mathematically and numerically much more
involved. Therefore, we show, on one hand, that it is possible to go towards the most
general spin interactions using FRG and, on the other hand, how finite DM terms affect
the so far well studied Heisenberg model on the kagome lattice. Since unlike in the Kitaev
model the DM interaction favours magnetic order of non-collinear types, studies have so
far predicted that the paramagnetic phase is driven into a q = 0 Néel state [27, 151,
162]. This state is conventionally ordered with a spin alignment that can be seen in
Fig. 4.2(b). We want to investigate how the full J1-J2 kagome phase diagram is changed
by a nearest-neighbour DM interaction and compare our findings to the previous studies
and experimental data for herbertsmithite [68, 69] which is one of the most promising
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Figure 4.1.: (a) Kagome lattice and sign structure of DM interaction: The arrows on the
bonds show the orientation of the DM term Dij · (Si × Sj) starting at site i and ending
at site j. The DM vector Dij is pointing out of (into) the x-y plane for up (down)
triangles, respectively. (b) Classical phase diagram of the J1-J2 Heisenberg kagome model:
There are four different magnetically ordered phases, i.e., the q = 0 Néel, the cuboc, the
ferromagnetic, and the

√
3×
√

3 Néel phase. All transitions between these phases coincide
with the J1 or J2 axes, except for the one from the cuboc ordered into the ferromagnetic
phase occurring at J2 = −J1/3 with J1 < 0 [45].

candidates for finding a spin liquid at the moment [73, 119, 165, 177].

4.1. Phenomenological model

During the entire chapter, we investigate the J1-J2-D model on the kagome lattice. The
Hamiltonian is

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj +
∑
〈i,j〉

Dij · (Si × Sj) , (4.1)

where 〈i, j〉 denotes that the sum is carried out over nearest-neighbour lattice sites and
〈〈i, j〉〉 is the equivalent for second neighbours. Further, we omit the hat notation for
operators from now on for a better readability. The Heisenberg terms in this model are
due to the scalar product of spins invariant under global spin rotations (see App. E.2
for details) and exchanges of the two spins rendering them the most general bilinear and
symmetric spin interactions. On the other hand, the DM term Dij · (Si × Sj) is the
most general antisymmetric bilinear spin interaction. If the center of the bond linking the
two involved spins is not an inversion center of the lattice, a non-magnetic ion can for
instance be the cause for this type of interaction via an anisotropic superexchange [129].
Nevertheless, the combined Heisenberg and DM interactions are still not the most general
bilinear spin interaction, e.g., the quite important off-diagonal Γ term ∝ Sµi S

ν
j + Sνi S

µ
j is

not accounted for in our model.
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Figure 4.2.: Real space representations for the four types of magnetic order which occur
on the kagome lattice in the classical J1-J2 phase diagram [see Fig. 4.1(b)]: The top row
indicates the colour-coded spin directions whereas the bottom row shows their distribution
on the lattice. The respective unit cell boundaries are depicted by a green rhombus. (a)
The ferromagnetic order features spins which are aligned parallelly. (b) q = 0 Néel order
is characterised by three different spin orientations within one plane and an angle of 120◦

between them. (c) The
√

3×
√

3 Néel state has a spin alignment similar to the q = 0 state.
However, the unit cell is now increased from 3 to 9 lattice sites. (d) A spin arrangement
in cuboc order needs the largest unit cell which contains 12 sites. The spins are aligned
as if they would point from the center of a cuboctahedron into its corners. The k-space
positions of the dominant susceptibility components for all four types of order can be seen
in Fig. 4.5(a). Figure adapted from Ref. [121].

According to the Moriya’s rules, the vector Dij has to be aligned perpendicularly to
the system’s mirror plane which in our case requires that Dij = ±Dez. This assumption
implies a global U(1) spin-rotation symmetry around the z axis as compared to the SU(2)

symmetry of a pure Heisenberg system which yields a much higher numerical effort for
the model at hand, confer App. E.2. Furthermore, Dij‖ez is a good approximation for
herbertsmithite in which Dij is only slightly tilted towards the kagome plane [192]. Due to
the antisymmetry of the DM interaction, the relation Dij = −Dji must hold and one needs
to take care of the correct sign structure for those terms on the entire lattice. Changing the
signs of all DM terms simultaneously only amounts to a global spin rotation by an angle
of π in the x-z plane. This leaves all those physical quantities invariant which, like the
susceptibility, depend on an even number of spin operators. However, the chirality of a spin
pattern for example switches sign after such a transformation because it involves three spin
operators. For a detailed discussion on spin rotations please also confer App. E.2. In the
following, we restrict ourselves to a single convention with D ≥ 0 as shown in Fig. 4.1(a).

Previous studies have shown that the classical J1-J2 Heisenberg model on the kagome
lattice features four different magnetically ordered phases, namely, the q = 0 and the√

3×
√

3 Néel phases, a cuboc ordered, and a ferromagnetic phase. Here, all phases except
for the ferromagnetic one show a non-collinear spin alignment. Their spin structures in real
space are illustrated in Fig. 4.2 and the corresponding momentum space positions where
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the maximal susceptibility for each type of order is expected can be seen in Fig. 4.5(a).
Fig. 4.1(b) provides the classical phase diagram which is already known from Ref. [45].

In the quantum spin-1
2 limit, paramagnetic phases around the points (J1, J2) = (1, 0)

and (J1, J2) = (0, 1) appear [18, 60, 90, 103, 173]. Especially the paramagnetic phase
around (J1, J2) = (1, 0) has gathered a lot of attention in recent years for the sake of
(hopefully) finding a quantum spin liquid (QSL) in this regime. The J1-D model has so
far been studied by Cépas et al. [27] using exact diagonalisation. They have shown that the
magnetically disordered phase of the nearest-neighbour model is driven into a magnetically
ordered phase at a critical DM interaction strength of D/J1 & 0.1. This was afterwards
confirmed by a study of Seman et al. [162] investigating the antiferromagnetic J1-J2-D
model with J2 < J1. In its paramagnetic regime, they predict a gapped (gapless) QSL
for a modest J2 (D) coupling. We are now going to enhance these preceding works by
studying the full model also allowing for ferromagnetic interactions.

4.2. Functional renormalization group for spin systems

The pseudo-fermion functional-renormalisation group (PFFRG) method [125, 147] has so
far been successfully applied to various Heisenberg and diagonal anisotropic models in dif-
ferent 2D and 3D lattices [11, 18, 20, 89, 145, 146, 173]. Also, the J1-J2 Heisenberg kagome
model has been investigated using PFFRG [18, 90, 173]. One of the FRG’s strengths lies in
the fact that it can describe magnetically ordered as well as disordered phases independent
of the number of competing interactions, the lattice geometry, and dimensionality. In this
section, we lay the foundation of all later work by deriving the PFFRG flow equations
for spin-1

2 systems with interactions of Heisenberg and DM type. Throughout this thesis,
we frequently utilise the numerically resulting vertex functions as the main subject for
all the following physical interpretations, regardless of the actual model. Hence, we start
by introducing the general details on how to implement the method that was derived in
Chap. 3 for spin systems before turning to the concrete examples of Heisenberg and DM
interactions.

4.2.1. General PFFRG approach

As already mentioned in the introduction to this thesis, the starting point of our deriva-
tions and what makes this FRG approach being called pseudo-fermion is the Abrikosov
decomposition of our local spin operators into

Sµi =
1

2

∑
α,β

f †i,ασ
µ
αβfi,β . (4.2)
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Figure 4.3.: Diagrammatic representation of FRG flow equations: Circles, squares, and
hexagons represent 1-, 2-, and 3-particle vertices, respectively. Regular (slashed) arrows

denote the fully dressed Green’s function GΛ (single-scale propagator SΛ = GΛ ˙[
GΛ

0

]−1
GΛ).

Again, it shows that all m-particle vertices couple to all n-particle vertices with n ≤ m+ 1

leading to an infinite hierarchy of equations. Note that we do not display the flow equations
for m-particle vertices with m > 2. The order of terms corresponds to Eqs. (3.25) and
(3.30).

Here, the second quantisation operators f †i,α (fi,α)1 create (annihilate) a spin-1
2 fermion

at lattice site i and the index α ∈ {↑, ↓} labels the orientation of their spin. σµ with
µ ∈ {x, y, z} are the standard Pauli matrices. If written like this, we are able to employ
the standard fermionic Feynman diagram techniques from the previous chapters for our
spin Hamiltonian. One issue though arises from representing the spins with Abrikosov
fermions, namely, where our physical model has a single spin-1

2 degree of freedom (with its
only choice being whether to point up or down) we now have four possible states per site
with the possible occupations

|ni,↑, ni,↓〉 =


|0, 0〉i , Qi = 0, Si = 0 ,

|1, 0〉i , Qi = 1, Si = 1/2 ,

|0, 1〉i , Qi = 1, Si = 1/2 ,

|1, 1〉i , Qi = 2, Si = 0 .

(4.3)

Obviously, the S = 0 states span an unphysical sector of our artificially enlarged Hilbert
space. Technically speaking, we would have to enforce the occupation number constraint

Qi ≡ f †i,↑fi,↑ + f †i,↓fi,↓ = 1 (4.4)

on every lattice site independently and simultaneously increasing the numerical effort sig-
nificantly. In the following, we only enforce the average constraint 〈Qi〉 = 1 which in our
particle-hole symmetric and translation invariant models is equivalent to half filling or to

1Note that, in contrast to the bosonic or fermionic operators a and a† of Chap. 2, we now use f and f†

to explicitly note the fermionic structure.
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4.2. Functional renormalization group for spin systems

setting the chemical potential µ = 0. This method has been shown to be a suitable ap-
proximation at T = 0 due to a strong suppression of the unphysical occupation numbers
Qi = 0, 2 [9].
The decomposition of one spin into two fermions yields a Hamiltonian that is purely

quartic in the fermionic operators [cf. Eq. (4.1)]. Due to the lack of kinetic terms, per-
turbation theory breaks down and we have to employ the FRG method in order to obtain
faithful results. According to Chap. 3, the bare Green’s function for this system is

G0(ω) =
−1

iω
. (4.5)

We note again that this definition of the propagator differs by a factor of −1 in comparison
to an alternative convention that is frequently used, confer Sec. 2.1.2. G0 is regularised
using a Heaviside function

GΛ
0 (ω) = θ (|ω| − Λ)G0(ω) , (4.6)

confer Eq. (3.2). Here, ω denotes a fermionic Matsubara frequency and the cutoff or RG
scale Λ determines those low-energy degrees of freedom that are neglected (GΛ

0 (ω) = 0

if |ω| < Λ). Furthermore, the bare Green’s function [Eq. (3.1)] is local in real space
and diagonal in spin space because of the special type of purely interacting Hamiltonian.
These properties remain intact during the entire flow due to a strictly local and diagonal
self energy (see next section).
The flow Eqs. (3.25) and (3.30) from the previous chapter together with their initial

conditions [Eqs. (3.32) and (3.34)] and the regularised bare propagator are the starting
point for the FRG procedure. A diagrammatic expression of these equations can be seen
in Fig. 4.3. Here, we represent the single-scale propagator SΛ from Eq. (3.26) with a
slashed arrow while GΛ is denoted by a regular arrow. For the correct signs in the second
equation, we utilised that

[
GΛ
]T

= GΛ and the antisymmetry of the two-particle vertex
with respect to an exchange of its two incoming or two outgoing arguments. Let us briefly
consider the real-space structure of Γ(2) Λ. Because of the propagators’ locality during the
flow, the vertex function effectively only depends on two lattice sites, confer next section.
Its antisymmetry upon a single fermionic exchange implies that it can be parameterised
as

Γ(2) Λ
(
1′, 2′|1, 2

)
= Γ

(2) Λ
= i1i2

(
1′, 2′|1, 2

)
δi1′ i1δi2′ i2 − Γ

(2) Λ
× i1i2

(
1′, 2′|1, 2

)
δi1′ i2δi2′ i1 , (4.7a)

Γ
(2) Λ
= i1i2

(
1′, 2′|1, 2

)
= Γ

(2) Λ
× i2i1

(
1′, 2′|2, 1

)
, (4.7b)

where Γ
(2) Λ
= and Γ

(2) Λ
× depend on four combined spin and frequency arguments as well as

two real-space indices. With this notation, we are able to provide a physical interpretation
for the diagrammatic representation of our FRG equations in Fig. 4.3. In the flow equation
for the self energy, the term ∝ Γ

(2) Λ
=

(
∝ Γ

(2) Λ
×

)
corresponds to Hartree-like (Fock-like)

diagrams. For the flow of the two-particle vertex, we can split the contributions into
one equation for Γ

(2) Λ
= and one for Γ

(2) Λ
× , respectively. Both equations contain the same
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information due to Eq. (4.7b). Considering the flow of Γ
(2) Λ
= , the first term in the lower line

of Fig. 4.3 represents corrections from the three-particle vertex. The second term in this
line contributes the particle-particle channel with ladder diagrams containing propagators
pointing in the same direction. Third and fourth (fifth and sixth) term amount to the direct
(crossed) particle-hole channel. The crossed particle-hole channel features ladder diagrams
with propagators pointing in opposite directions. Very important contributions from the
direct particle-hole channel are RPA-like diagrams. Only these diagrams comprise internal
fermionic loops where a summation over internal lattice sites is required. In this way,
only the RPA-like diagrams can induce long-range correlations and are thereby responsible
for magnetic order. All other diagrams couple a vertex with given real-space coordinates
to itself and to the onsite vertex. Hence, they are unable to characterise magnetic long-
range order. For the flow of Γ

(2) Λ
× , the diagrammatic representations of direct and crossed

particle-hole channels are simply exchanged.
The FRG builds up an infinite hierarchy of coupled differential-integro equations which,

in order to be exact, would have to be solved as a complete set. However, that seems to be
quite an impossible task and there is the need for a clever truncation scheme allowing us to
solve the flow equations approximately. For the entire thesis, this is achieved by truncating
the set of equations after the two-particle vertex and employing the Katanin scheme from
Eq. (3.35). This is, in a sense, a minimalistic approach since only the two-particle vertex
contributes to the initial conditions [cf. Eq. (3.32)] and a truncation already on this level
would imply vanishing vertex functions throughout the entire flow. Nevertheless, if one
solves the flow equations without the Katanin scheme and thereby neglects all contributions
from the flow of the three-particle vertex, one always finds magnetic order as it has been
shown in Ref. [147] which is the fundamental article for this quantum-many-body method.
Hence, the Katanin truncation is necessary in order to identify paramagnetic phases.

4.2.2. PFFRG for Heisenberg systems

We now summarise the already known implications for the FRG of Heisenberg systems.
Due to the high degree of symmetry in this model, the self energy can be parameterised as

ΣΛ(1′|1) = −Γ(1) Λ(1′|1) = −iγΛ
d (ω1)δi1′ i1δα1′α1δ(ω1′ − ω1) , (4.8)

where the numbers 1 = {i1, α1, ω1} label complete sets of quantum numbers with a real-
space coordinate, a spin index and a Matsubara frequency each. The diagonal structure
in Matsubara (spin) space is caused by the energy (spin) conservation in the language of
Feynman diagrams (cf. Sec. 2.3.4) and the locality of propagators induces the proportion-
ality to δi1′ i1 . Because of the SU(2) rotation invariance of our Heisenberg model, the self
energy cannot depend on the spin value and it is purely imaginary (ImγΛ

d (ω) = 0) and
antisymmetric in its frequency argument [γΛ

d (ω) = −γΛ
d (−ω)]. γΛ

d can therefore be inter-
preted as a finite lifetime of our pseudo fermions. For lattices consisting only of equivalent
sites, ΣΛ(1′|1) does also not depend on its real space coordinates. The Dyson equation
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[Eq. (2.135a)] yields for the dressed Green’s function that

GΛ(ω) =
−θ(|ω| − Λ)

iω + iγΛ
d (ω)

. (4.9)

To evaluate the single-scale propagator, we have to consider that its definition in Eq. (3.26)
includes a Λ derivative of

[
GΛ

0

]−1 which needs to be treated with caution. Employing the

Dyson equation GΛ =
[(
GΛ

0

)−1
+ ΣΛ

]−1
and that ˙(A−1) = −A−1ȦA−1 for an arbitrary

invertible matrix A, we can derive the general relation

SΛ = −
[(
GΛ

0

)−1
+ ΣΛ

]−1 (
GΛ

0

)−1
ĠΛ

0

(
GΛ

0

)−1
[(
GΛ

0

)−1
+ ΣΛ

]−1

= −
[
1+ ΣΛGΛ

0

]−1
ĠΛ

0

[
1+GΛ

0 ΣΛ
]−1

. (4.10)

Here, we used the matrix language from the previous chapter. Inserting the regularised
bare and dressed Green’s functions from Eqs. (4.6) and (4.9), a product of Heaviside and
Dirac delta distributions occurs due to the Λ derivative. Mathematically, this is not well
defined. We resolve the issue by using the identity

lim
ε→0

δε(x)f (θε(x)) = δ(x)

1∫
0

dt f(t) (4.11)

for broadened distributions δε, θε and an arbitrary continuous function f [130]. With this
equation, we arrive at the final expression

SΛ(ω) = −δ(|ω| − Λ)

iω

1∫
0

dt

[
1 +

iγΛ
d (ω)

iω
t

]−2

=
−δ(|ω| − Λ)

iω + iγΛ
d (ω)

(4.12)

for the single-scale propagator. The delta distribution turns out to be very convenient
for us because it renders one frequency integral trivial in each flow equation and thereby
decreases the numerical effort considerably.
Turning to the interaction vertex, we can deduce from the SU(2) symmetry that there

are exactly two terms that are allowed to contribute, i.e., a spin channel ΓΛ
s and a density

channel ΓΛ
d

ΓΛ
(
1′,2′|1, 2

)
≡ Γ(2) Λ

(
1′, 2′|1, 2

)
=

[
ΓΛ

s i1i2

(
ω′1, ω

′
2|ω1, ω2

)∑
µ

σµα1′α1
σµα2′α2

+ ΓΛ
d i1i2

(
ω′1, ω

′
2|ω1, ω2

)
δα1′α1δα2′α2

]
× δ(ω1 + ω2 − ω1′ − ω2′)δi1′ i1δi2′ i2 − (ω1 ↔ ω2, α1 ↔ α2, i1 ↔ i2) , (4.13)
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where the second term ensures the vertex’ antisymmetry with respect to an exchange of
two fermions, confer also Eqs. (4.7). The locality of the propagators again implies the
special real space structure and energy conservation makes it sufficient to only consider
the transfer frequencies s = ω1′ + ω2′ , t = ω1′ − ω1, and u = ω1′ − ω2 such that we only
consider

ΓΛ
s/d i1i2

(
ω′1, ω

′
2|ω1, ω2

)
−→ ΓΛ

s/d i1i2 (s, t, u) . (4.14)

One can show that the two remaining functions ΓΛ
s/d fulfill the following (anti)symmetries

in Matsubara space [147]

ΓΛ
s/d i1i2 (s, t, u) = ΓΛ

s/d i2i1 (−s, t, u) , (4.15a)

ΓΛ
s/d i1i2 (s, t, u) = ΓΛ

s/d i1i2 (s,−t, u) , (4.15b)

ΓΛ
s/d i1i2 (s, t, u) = ΓΛ

s/d i2i1 (s, t,−u) , (4.15c)

ΓΛ
s/d i1i2 (s, t, u) = ±ΓΛ

s/d i1i2 (u, t, s) , (4.15d)

where the (anti)symmetry holds for the (density) spin channel in the last line. Hence, we
only need to determine the positive frequency sectors of our vertex functions [Eqs. (4.15a–
4.15c)] with u ≤ s [Eq. (4.15d)] what reduces our numerical effort by a factor of 16.
Inserting our parameterisations for ΣΛ and ΓΛ into the FRG flow Eqs. (3.25) and (3.30),

we can derive a set of coupled integro-differential equations for γΛ
d , ΓΛ

s , and ΓΛ
d . They are

provided in App. A and solved using the initial conditions

γΛ→∞
d (ω) = 0 , (4.16a)

ΓΛ→∞
d i1i2 (s, t, u) = 0 , (4.16b)

ΓΛ→∞
s i1i2 (s, t, u) =

Ji1i2
4

, (4.16c)

where the factor of 1
4 in the last line remains from Abrikosov decomposition of the spins

(confer Eq. (4.2)). For the numerical evaluation, we discretise the three Matsubara fre-
quencies s, t, and u which, in the T → 0 limit, are continuous using 50 discrete points in
a combined linear and logarithmic mesh in order to resolve low frequencies appropriately
and to enable a sufficiently high initial cutoff value. With the computational power cur-
rently available to us, a much higher number of frequency points can be realised if only
Heisenberg interactions [18, 173] or anisotropic but diagonal [20] couplings are considered,
see also Chaps. 5 and 6. However, due to the much higher complexity of the following
equations including DM interactions, we have to limit ourselves to 50 frequency points for
comparability also in this section. Even though the FRG, in principle, deals with an infinite
and translation invariant lattice, we can only account for correlations of finite cluster sizes.
Therefore, we restrict ourselves to a hexagonal plaquette of the kagome lattice reaching
7 nearest-neighbour distances into all high-symmetry directions, e.g., it consists of 125

lattice sites. Since we expect the QSL phases that we are interested in to lack any kind of
long-range correlations, this approach seems to be justified. The resulting set of equations
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for the real-space-truncated and frequency-discretised vertices is then numerically solved
using the Euler method.
We evaluate our vertex functions by computing the Matsubara transformed imaginary-

time spin susceptibility χµνij (iΩ) as defined in Eq. (2.143). This quantity is related to our
vertex and Green’s functions via

χµν,Λij (iΩ) =− 1

4

1

2π

∞∫
−∞

dω1

∑
α1α2

GΛ
α1

(ω1)GΛ
α2

(ω1 + Ω)σµα1α2
σνα2α1

δij

−1

4

1

(2π)2

∞∫
−∞

dω1

∞∫
−∞

dω2

∑
α1,α1′ ,α2,α2′

ΓΛ
(
1′, 2′|1, 2

)
σµα1α1′

σνα2α2′

×GΛ
α1′

(ω1 + Ω)GΛ
α2′

(ω2)GΛ
α1

(ω1)GΛ
α2

(ω2 + Ω) , (4.17)

confer Eq. (2.146). For the above representation, we already took the T → 0 limit in
which 2π

β

∑
ωm
→
∫∞
−∞ dν. We also accounted for the possible spin dependence2 of the

propagators which occurs in the next section and the combined indices are 1′ = {i, α1′ , ω1+

Ω}, 2′ = {j, α2′ , ω2}, 1 = {i, α1, ω1}, and 2 = {j, α2, ω2 + Ω}. The static component of
the Fourier-transformed susceptibility χµν,Λ(k) ≡ χµν,Λ(k, iΩ = 0) as a function of the
cutoff Λ is the key quantity for our further investigation. Inserting the defined indices and
the parameterisations from Eqs. (4.9), (4.13), and (4.14) into Eq. (4.17), we find that the
diagonal static spin susceptibility with χxx,Λij = χyy,Λij = χzz,Λij is given by

χxx,Λij (iΩ = 0) =
1

4π

∞∫
−∞

dω1
θ(|ω1| − Λ)(
ω1 + γΛ

d (ω1)
)2 δij

− 1

8π2

∞∫
−∞

dω1

∞∫
−∞

dω2
θ(|ω1| − Λ)(
ω1 + γΛ

d (ω1)
)2 θ(|ω2| − Λ)(

ω2 + γΛ
d (ω2)

)2{2ΓΛ
s ij
(
ω+, 0, ω−

)
−
[
ΓΛ

d ii
(
ω+, ω−, 0

)
− ΓΛ

s ii
(
ω+, ω−, 0

)]
δij

}
, (4.18)

where ω± = ω1 ± ω2. All details concerning the Fourier transform of this quantity on the
kagome lattice are provided in App. D.
As mentioned before, we are mainly interested in finding paramagnetic spin liquids. Since

they do not show any magnetic order and therefore also no spontaneous symmetry breaking
down to lowest temperatures, such states obey all symmetries of the initial Hamiltonian.
In the case of a Heisenberg Hamiltonian (D = 0), the parameterisation of self energy and
two-particle vertex from above stays accurate as the FRG flow smoothly reaches the limit
Λ → 0. If this is the case, the points in momentum space with the largest susceptibility
denote those wave vectors at which dominant short-range spin-spin correlations are found.
In contrast, if our system exhibits magnetic order, the spin-rotation symmetry of the initial

2In a bare Heisenberg model, the propagators are proportional to unity in spin space.
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Hamiltonian is broken spontaneously and, for instance, a certain spin direction is preferred.
In that scenario, the SU(2) invariant parameterisations from Eqs. (4.8) and (4.13) become
inaccurate and we cannot draw any conclusions for the magnetically ordered state because
the flow of the vertex functions breaks down at a finite cutoff Λcrit > 0. However, before
this breakdown, we can see signs of a diverging susceptibility that is regularised due to
finite correlation lengths and the frequency discretisation. This behaviour manifests itself
as a kink at Λcrit of the susceptibility at the dominant wave vectors indicating the type of
magnetic order.

4.2.3. Modifications of the PFFRG for finite DM interactions

In this paragraph, we summarise the main part of our original work which is the generali-
sation of the flow equations from App. A that were already derived in Ref. [147] towards
systems with finite DM interactions. We still limit ourselves to Eq. (4.1) with a DM term
Dij = ±Dez and the given sign structure from Fig. 4.1(a). As already pointed out, the
global SU(2) spin rotation symmetry of the bare Heisenberg model is then broken down
to U(1) rotations around the z axis which has severe consequences.

Let us start by re-parameterising the self energy. Our previous considerations regarding
real and Matsubara spaces (locality and energy conservation) remain correct. The only
changes occur in spin space where ΣΛ(1′|1) before had to be invariant under all spin
rotations yielding a proportionality to δα1′α1 [cf. Eq. (4.8)]. Now, only rotations around
the z axis have to leave the self energy invariant such that it can also depend on the z
component of the spin. Hence, we need to account for a spin channel γΛ

s and find

ΣΛ(1′|1) =
(
−iγΛ

d (ω1)δα1′α1 + γΛ
s (ω1)σzα1′α1

)
δi1′ i1δ(ω1′ − ω1′) , (4.19)

where in addition to the previous considerations for γΛ
d also the spin channel is real

(ImγΛ
s (ω) = 0) and antisymmetric in its frequency argument [γΛ

s (ω) = −γΛ
s (−ω)]. There-

fore, the extra term does not break the time-reversal symmetry of our system unlike, for
instance, a magnetic field. It is also directly related to the DM interaction and cannot
be generated by diagonal couplings like in the XXZ model, see Chap. 5. Due to γΛ

s , our
Green’s function now acquires a spin sector in addition to its regular density sector

GΛ
α(ω) = GΛ

d (ω) +GΛ
s (ω)σzαα , (4.20a)

GΛ
d (ω) = θ(|ω| − Λ)

iω + iγΛ
d (ω)

(γΛ
s (ω))2 +

(
ω + γΛ

d (ω)
)2 , (4.20b)

GΛ
s (ω) = θ(|ω| − Λ)

γΛ
s (ω)

(γΛ
s (ω))2 +

(
ω + γΛ

d (ω)
)2 . (4.20c)
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The same also holds for the single-scale propagator

SΛ
α (ω) = SΛ

d (ω) + SΛ
s (ω)σzαα , (4.21a)

SΛ
d (ω) = δ(|ω| − Λ)

iω + iγΛ
d (ω)

(γΛ
s (ω))2 +

(
ω + γΛ

d (ω)
)2 , (4.21b)

SΛ
s (ω) = δ(|ω| − Λ)

γΛ
s (ω)

(γΛ
s (ω))2 +

(
ω + γΛ

d (ω)
)2 , (4.21c)

where we again employed Eq. (4.11) for the derivation of SΛ
α (ω).

For the two-particle vertex, the situation is even more complex since we are now dealing
with simultaneous rotations of two spins around the z axis. There are six out of the
possible sixteen spin-spin interaction channels which are invariant under such rotations.
As discussed in the next chapter for the XXZ model, the spin channel ΓΛ

s splits up into
a contribution along the z axis ΓΛ

zz and an in-plane component with ΓΛ
xx = ΓΛ

yy. Of
course, the density channel ΓΛ

d as well as the DM term ΓΛ
DM with its spin-space structure

being σxα1′α1
σyα2′α2 −σ

y
α1′α1σ

x
α2′α2

remain invariant under the appropriate rotations as well.
Furthermore, two new terms denoted by ΓΛ

zd and ΓΛ
dz which couple the z component of one

particle’s spin with the spin density of another particle are now allowed and induced by
the DM interaction. At this point, we again refer the reader to App. E.2 for a detailed
discussion on global spin rotations and their consequences. Combining all of these results,
our updated vertex parameterisation reads

ΓΛ
(
1′, 2′|1, 2

)
=

[
ΓΛ

xx i1i2 (s, t, u)
(
σxα1′α1

σxα2′α2
+ σyα1′α1

σyα2′α2

)
+ΓΛ

zz i1i2 (s, t, u)σzα1′α1
σzα2′α2

+ ΓΛ
d i1i2 (s, t, u) δα1′α1δα2′α2

+ΓΛ
DM i1i2 (s, t, u)

(
σxα1′α1

σyα2′α2
− σyα1′α1

σxα2′α2

)
+ΓΛ

zd i1i2 (s, t, u)σzα1′α1
δα2′α2 + ΓΛ

dz i1i2 (s, t, u) δα1′α1σ
z
α2′α2

]
×δ(ω1 + ω2 − ω1′ − ω2′)δi1′ i1δi2′ i2 − (ω1 ↔ ω2, α1 ↔ α2, i1 ↔ i2) .

(4.22)

The new FRG flow equations couple these six interaction channels with the four dif-
ferent sectors from the propagators and are thus much more complex as compared to the
Heisenberg or the XXZ model. We display them in App. B. Additionally, the frequency
symmetries of the vertices from Eqs. (4.15) are reduced by the DM interaction such that
now only

ΓΛ
xx/zz/d i1i2 (s, t, u) = ΓΛ

xx/zz/d i2i1 (−s, t, u) , (4.23a)

ΓΛ
DM i1i2 (s, t, u) = −ΓΛ

DM i2i1 (−s, t, u) , (4.23b)

ΓΛ
zd/dz i1i2 (s, t, u) = ΓΛ

dz/zd i2i1 (−s, t, u) , (4.23c)
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and the two-particle exchange

ΓΛ
xx/zz/d i1i2 (s, t, u) = ΓΛ

xx/zz/d i2i1 (s,−t,−u) , (4.24a)

ΓΛ
DM i1i2 (s, t, u) = −ΓΛ

DM i2i1 (s,−t,−u) , (4.24b)

ΓΛ
zd/dz i1i2 (s, t, u) = ΓΛ

dz/zd i2i1 (s,−t,−u) , (4.24c)

can be utilised for minimising the numerical effort. In Eqs. (4.23c) and (4.24c) one needs
to pay attention that the spin-density vertices ΓΛ

dz and ΓΛ
zd interchange their roles if the

respective symmetry is applied. The two-particle exchange simply amounts to an exchange
of the two incoming and the two outgoing indices simultaneously which leaves the entire
vertex ΓΛ (1′, 2′|1, 2) from Eq. (4.22) invariant. Finally, the initial conditions for our vertex
functions in the J1-J2-D model are (cf. Sec 3.2)

γΛ→∞
d (ω) = γΛ→∞

s (ω) = 0 , (4.25a)

ΓΛ→∞
d i1i2 (s, t, u) = ΓΛ→∞

zd i1i2(s, t, u) = ΓΛ→∞
dz i1i2(s, t, u) = 0 , (4.25b)

ΓΛ→∞
xx i1i2(s, t, u) = ΓΛ→∞

zz i1i2(s, t, u) =
Ji1i2

4
, (4.25c)

ΓΛ→∞
DM i1i2(s, t, u) =

Di1i2

4
. (4.25d)

Using this as an input, we solve the flow equations from App. B as explained in Sec. 4.2.2.
The diagonal static spin susceptibility again has to be extracted from the vertex functions.
Due to the more complex vertex and self-energy structures as compared to the Heisenberg
scenario, it splits into an in-plane and into an out-of-plane component in accordance with
our physical system. The biggest impact of the DM interaction is however expected for the
in-plane susceptibility because it energetically favours an in-plane alignment of the spins.
We therefore only consider the quantity

χxx,Λij (0) =
1

4π

∞∫
−∞

dω1
θ(|ω1| − Λ)

(γΛ
s (ω1))2 +

(
ω1 + γΛ

d (ω1)
)2 δij

− 1

8π2

∞∫
−∞

dω1

∞∫
−∞

dω2
θ(|ω1| − Λ)

(γΛ
s (ω1))2 +

(
ω1 + γΛ

d (ω1)
)2 θ(|ω2| − Λ)

(γΛ
s (ω2))2 +

(
ω2 + γΛ

d (ω2)
)2

×
{

2ΓΛ
xx ij

(
ω+, 0, ω−

)
−
[
ΓΛ

d ii
(
ω+, ω−, 0

)
− ΓΛ

zz ii
(
ω+, ω−, 0

)]
δij

}
, (4.26)

with ω± = ω1±ω2. Note that the formula for χzz,Λij is much more complex than the above
due to a split-up of the Green’s functions’ different spin sectors.
This completes the derivation of our new method. We are now ready to investigate the

resulting spin susceptibilities for various couplings on the kagome lattice.
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Figure 4.4.: RPA susceptibilities for the J1-D model at different wave vectors: Blue circles
(green squares) represent the susceptibilities for

√
3 ×
√

3 order (q = 0 order). Upper
panel: In a pure Heisenberg antiferromagnet (D = 0), the maximal susceptibility is found
at the

√
3 ×
√

3 wave vector. Lower panel: For D = 0.01 J1, q = 0 order is preferred
which indicates a phase transition for infinitesimal DM interactions within the accuracy
of our FRG procedure. Dashed red lines show the cutoff value at which the flow breaks
down. The momentum space coordinates of the corresponding wave vectors are shown in
Fig. 4.5(a).

4.3. J1-D model on the kagome lattice

In this section, we discuss our findings for the nearest-neighbour spin-1
2 model with antifer-

romagnetic Heisenberg and DM interactions. This J1-D model featuring the Hamiltonian
from Eq. (4.1) with J1 > 0, J2 = 0, and D ≥ 0 was already studied by Cépas et al.
using exact diagonalisation [27]. Therefore, it seems to be the perfect starting point to
benchmark the validity of our method.

4.3.1. PFFRG in the RPA channel

Before we turn to the results of the full PFFRG, we discuss an approximative scheme
which treats our vertex functions solely in the direct particle-hole or RPA channel, i.e.,
only the terms with internal fermionic loops contribute, confer discussion in Sec. 4.2.1.
Within this scheme, we neglect all contributions to the flow arising from the self energy
which remains zero in the course of this section. Furthermore, all frequency components
of the two-particle vertices decouple and we hence only focus on the static vertices at
s = t = u = 0.
Due to its special structure, the RPA channel is the only term responsible for long-range

correlations between spins. In this way, the current approximation amounts to a classical
treatment of the system. During the flow, the classical approach manifests itself because of
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the vanishing self-energy which amounts to an infinite pseudo-fermion lifetime. Similar to a
truncation scheme without the Katanin corrections (cf. Sec. 4.2.1), this always implies the
formation of magnetic order in our simulations. However, due to the quite basic structure
of the resulting equations, we are capable of finding an analytic solution for them.
Using the initial conditions from Eq. (4.25), one easily verifies that all density-related

vertices ΓΛ
d i1i2 = ΓΛ

zd i1i2 = ΓΛ
dz i1i2 = 0 vanish during the flow (cf. App. B). The flow

equations for the remaining static spin and DM channels simplify to

d

dΛ
ΓΛ

xx i1i2 =
2

πΛ2

∑
j

(
ΓΛ

xx i1jΓ
Λ
xx ji2 − ΓΛ

DM i1jΓ
Λ
DM ji2

)
, (4.27a)

d

dΛ
ΓΛ

DM i1i2 =
2

πΛ2

∑
j

(
ΓΛ

DM i1jΓ
Λ
xx ji2 + ΓΛ

xx i1jΓ
Λ
DM ji2

)
, (4.27b)

d

dΛ
ΓΛ

zz i1i2 =
2

πΛ2

∑
j

ΓΛ
zz i1jΓ

Λ
zz ji2 . (4.27c)

This immediately shows that the DM interaction only affects the in-plane spin vertex
whereas the out-of-plane vertex behaves identically to the Heisenberg scenario. In general,
we find a larger in-plane vertex for any finite DM interaction. We proceed by decoupling
the upper equations using a Fourier transform with respect to the triangular Bravais lattice
while keeping the sublattice space encoded in a 3× 3 matrix structure.

ΓΛ
xx/zz/DM a(i)b(j)(k) =

∑
∆R=Ri−Rj

e−ik(Ri−Rj)ΓΛ
xx/zz/DM ij (4.28)

Here, a(i) = A,B, C (Ri) labels the sublattice (unit cell) of site i and the same holds for
b(j) (Rj) and site j. For details on our lattice geometry conventions, please confer App. D.
The additional transformation

ΓΛ
±(k) = ΓΛ

xx(k)± iΓΛ
DM(k) , (4.29)

further decouples the two flow equations for the (in-plane) spin and DM vertices such that
a remarkably simple set of equations can be obtained, i.e.,

d

dΛ
ΓΛ
±(k) =

2

πΛ2
ΓΛ
±(k)ΓΛ

±(k) , (4.30)

were the vertex functions are now 3 × 3 matrices in sublattice space and the product on
the right-hand side denotes a standard matrix product. A plain separation of variables
straightforwardly yields

ΓΛ
±(k) = πΛ

[
2 + πΛ

(
ΓΛ→∞
± (k)

)−1
]−1

. (4.31)
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We transform back to the spin and DM vertices which ultimately yield our desired suscep-
tibility.

ΓΛ
xx(k) =

1

2

[
πΛ

2 + πΛ
(
ΓΛ→∞

xx (k) + iΓΛ→∞
DM (k)

)−1 +
πΛ

2 + πΛ
(
ΓΛ→∞

xx (k)− iΓΛ→∞
DM (k)

)−1

]
(4.32a)

ΓΛ
DM(k) =

1

2

[
πΛ

2 + πΛ
(
ΓΛ→∞

xx (k) + iΓΛ→∞
DM (k)

)−1 −
πΛ

2 + πΛ
(
ΓΛ→∞

xx (k)− iΓΛ→∞
DM (k)

)−1

]
(4.32b)

ΓΛ
zz(k) =

πΛ

2 + πΛ (ΓΛ→∞
xx (k))−1 (4.32c)

For the frequency integrals in Eq. (4.26), we replace the finite-frequency components
of our vertex functions by their static values at s = t = u = 0. Since our self energies
vanish and the propagators hence only acquire finite density sectors, our static in-plane
susceptibility simplifies to

χxx,Λij (iΩ = 0) =
1

2πΛ
δij −

1

2 (πΛ)2

[
2ΓΛ

xx ij − ΓΛ
zz iiδij

]
. (4.33)

We are only interested in the behaviour of the momentum resolved susceptibility. For this,
the local terms (∝ δij) do not play an important role because they only yield a constant
contribution in k space. This is why we can safely neglect the out-of-plane vertex and
therefore find χxx,Λ(k) from the different matrix elements of ΓΛ

xx(k) multiplied by phase
factors which correspond to their sublattice vectors.
Plotting the susceptibility as a function of the cutoff shows that it always diverges at

finite Λ indicating a magnetically ordered system as expected. However, the wave vector
for which this occurs at the highest Λ value changes for different initial couplings as shown
in Fig. 4.4. At vanishing DM coupling, the

√
3×
√

3 Néel order is dominant which coincides
with the findings of the semi-classical large-S studies in Refs. [36–38]. For any small but
finite D & 0, the 120◦ antiferromagnetic q = 0 Néel order is preferred and prevails up to
D →∞. That matches precisely the classical result of Elhajal et al. [49].
Even though the RPA approach has been used in the context of our PFFRG before, the

solution in Eqs. (4.32) was missing so far. Since its discovery, it was already proven to
be very useful for the interpretation and further extension of our method. As Baez et al.
show [9], the large-S limit of the PFFRG is dominated by the RPA channel. The fact that
only magnetic order can be found with this method is directly related to our spin system
effectively being classical, although this correspondence is not exact due to the breakdown
of the flow at Λ > 0. The dominant wave vectors that are derived from our analytical
solutions are identical to those selected as so-called eigenmodes by the Luttinger-Tisza
method [9]. This approach minimises the classical spin system’s energy with respect to a
weak constraint

∑N
i=1 |Si|2 = NS2 [112, 113]. A superposition of the obtained eigenmodes
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Figure 4.5.: (a) Peak positions for classical types of order in the J1-J2 model:
√

3 ×
√

3

(blue circles), q = 0 (green squares), and cuboc order (orange crosses) [ferromagnetic order
(purple triangle)] show susceptibility maxima residing within the extended [first] Brillouin
zone marked by a black [grey] hexagon. (b) Competing susceptibilities at q = 0 (green
squares) and

√
3×
√

3 (blue circles) wave vectors as function of D at finite Λ ≈ 0.19: Small
icons denote that the values were obtained after the critical flow breakdown and hence only
provide a guide to the eye. (c)-(f) Static spin susceptibility χxx,Λ(k) for different values
of D: The extended Brillouin zone (cf. App. D) is again marked by a black hexagon. In
(c), the susceptibility is obtained for the cutoff-free theory at Λ = 0. Otherwise, the plots
are shown for a cutoff value just before the breakdown of the flow (see arrows in Fig. 4.6).

can then yield a classically exact result if it also fulfills the strong constraint |Si|2 = S2, ∀ i
which is always possible for Bravais lattices. Therefore, we now know that the PFFRG
yields quite reliable results in the large-S limit.
With this simplified version of our method, we showed that the q = 0 Néel phase is

correctly determined for finite DM interactions. Its appearance for already infinitesimally
small values of D as well as the lack of any paramagnetic phase is an artefact of this
classical approximation. Hence, we will investigate the effects of quantum fluctuations
using our full PFFRG in the next section.

4.3.2. Full PFFRG calculation

Our next benchmark is the critical DM interaction strength at which the q = 0 Néel
order occurs in a nearest-neighbour spin-1

2 J1-D model. Cépas et al. determined a value
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Figure 4.6.: Plot of the k-space-resolved maximal susceptibilities as functions of Λ for the
nearest-neighbour J1-D model: Crosses (circles) denote that the maximal value was found
at the

√
3 ×
√

3 (q = 0) wave vectors. If the flow enters a symmetry-broken phase at a
critical Λ, our formalism cannot access the underlying physics which is indicated by dashed
lines. The critical cutoff values are indicated by arrows.

of D = 0.1 J1 using exact diagonalisation [27]. We now employ the full FRG equations
from App. B and solve them with the initial conditions J1 > 0, J2 = 0, and D ≥ 0 [cf.
Eq. (4.25)]. Again, the DM interaction favours a spin orientation in the x-y plane and we
therefore study the momentum space resolved in-plane susceptibility χxx,Λ(k) for different
values of D.

For the bare Heisenberg antiferromagnet (D = 0), we reproduce the data that was
previously obtained via PFFRG in Ref. [173]. The susceptibility flows smoothly down
to the lowest Λ values (see Fig. 4.6) indicating a magnetically disordered phase and the
strongest short-range correlations are almost homogeneously spread along the edges of
the extended Brillouin zone, see Fig. 4.5 (c). Small maxima are found at the

√
3 ×
√

3

wave vectors which is in agreement with recent DMRG studies [44]. Exact diagonalisation
methods on small cluster sizes agree with the homogeneously spread susceptibility profile,
but find dominant q = 0 correlations at T = 0 [106, 164] in contrast to our findings.

Turning on the DM interaction, the wave vectors with maximal susceptibility shift to-
wards the q = 0 points. At D = 0.2 J1, a strong signal along the edges of the extended
Brillouin zone remains [Fig. 4.5 (d)] and the q = 0 peaks become only more prominent
and separated if the DM coupling is further increased, i.e., if D & 0.4 J1 [see Figs. 4.5
(e),(f)]. The corresponding flow of the largest susceptibility as function of Λ can be seen in
Fig. 4.6. For interaction strengths D ≥ 0.2 J1, a kink being marked by an arrow is clearly
visible indicating the breakdown of our SU(2) spin-rotation invariant flow equations and
therefore the onset of magnetic order (see discussion in Sec. 4.2.2).

To further resolve the transition from the paramagnetic phase with dominant
√

3×
√

3
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I II

(a) (b)

Figure 4.7.: (Color online) (a) Approximation scheme for the Λ-dependent susceptibility:
We divide a certain interval into two sectors, I and II, which lie between two adjacent
pairs of susceptibility peaks (or susceptibility upturns). Within each sector, χxx,Λ(k) is
approximated by a tangent connecting neighboring peaks. While the angle between both
tangents is negligible for D/J1 = 0, we find a finite value for D/J1 = 0.2 indicating that
both curves belong to different phases. A more quantitative measure for the size of the
kink is obtained by considering tangents between additional pairs of adjacent peaks in a
fixed Λ interval and calculating the average angle ε̄. (b) Averaged angle ε̄ as a function
of D/J1. While ε̄ is almost constant for D/J1 < 0.1, there is a pronounced increase for
higher values. Based on this behavior, we estimate the phase transition of the J1-D model
to be at D = (0.12± 0.02) J1 (blue shaded area).

correlations and the 120◦ antiferromagnetically ordered q = 0 Néel phase, we show the
values of their respective susceptibility at fixed Λ ≈ 0.19 as a function of D in Fig. 4.5 (b).
It can be seen that the coupling from which on the maximal susceptibility is found at the
q = 0 positions is given by D = 0.11 J1. In this plot, one has to be aware of the fact that
some of the values provided in this plot are obtained in a symmetry-broken phase.
The shift of the peak positions in momentum space is one effect of the DM interaction

but not a clear signature for the onset of magnetic order as explained in Sec. 4.2.2. For
this subject, we have to resolve a breakdown of the susceptibility flow. Because of the
relatively rough discretisation of Matsubara frequencies and small cluster sizes caused by
the complexity of our FRG equations, this is a delicate task if some precision is required.
For that reason, we developed a method dealing with the issue systematically in the next
section.

4.3.3. Detection of magnetic instabilities

This is where we present our method of detecting a magnetic instability in the RG flow. The
expected diverging susceptibility signaling the onset of spontaneous symmetry breaking at
a critical scale Λ is regularised by two numerical approximations of the PFFRG method,
i.e., the finite lattice size and the discretised frequencies. Both approximations reduce the
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divergence to a finite maximum or to a kink-like feature. Furthermore, the discretisation
of the frequencies induces oscillations in the susceptibility. Here, we propose a scheme to
detect instabilities in the RG flow even in the presence of pronounced frequency oscillations
and when the magnetisation is small. As an example, we focus on the phase transition
from the paramagnetic into the q = 0 Néel-ordered phase of the J1-D model (see Sec.
4.3.2). The same procedure can also be applied to other phase boundaries.
A regularised divergence generally manifests as a change of the slope of the flowing

susceptibility if Λ is decreased. A difficulty in defining the slope arises because, as a
result of the frequency discretisation, the RG-flow is overlaid by oscillations. We therefore
measure the slope in a way that averages out these oscillations. Each discrete frequency
grid point leads to a small peak or upturn of the susceptibility. We connect two adjacent
peaks by a straight line which represents a tangent of the susceptibility and approximates
χxx,Λ(k) between the peaks. A kink during the RG-flow now appears as an angle (i.e., a
change of the slope) between two neighboring tangents, as illustrated in Fig. 4.7(a). To
find a magnetic instability at an unknown value of Λ, we take the average ε̄ of the absolute
values of such angles within a certain Λ interval. The angle ε̄ then serves as a measure
of how much the slope changes within this interval, e.g., how pronounced the kink is. To
locate the phase transition, we plot ε̄ as a function of the interaction strength D/J1, see
Fig. 4.7(b). For D/J1 < 0.1, we observe a small and constant value of ε̄ ≈ 5◦, followed
by a sudden increase at D/J1 ≈ 0.11 indicating a phase transition. Note that the critical
Λ slightly changes as a function of D/J1. If it coincides with a discrete frequency grid
point, this can cause an anomaly in ε̄ such as the dip in Fig. 4.7(b) at D/J1 ≈ 0.16.
Taking into account possible errors due to suchlike effects, a conservative estimate for the
critical interaction strength at which the transition from the paramagnetic phase with
dominant

√
3 ×
√

3 short-range correlations into the q = 0 Néel-ordered phase occurs is
D = (0.12± 0.02) J1 [blue shaded area in Fig. 4.7(b)]. This is in good agreement with the
result from Ref. [27].
We conclude that, besides the correct selection of the q = 0 order for finite DM interac-

tions, our method also provides results that are quantitatively reliable. Thus, we continue
by investigating the full J1-J2-D model which could not yet be accessed via other methods.

4.4. J1-J2-D model on the kagome lattice

4.4.1. Phase diagram

In this section, we study the entire spin-1
2 model on the kagome lattice governed by the

Hamiltonian in Eq. (4.1) with both ferromagnetic and antiferromagnetic couplings J1 and
J2 as well as D ≥ 0. This model is motivated by the promising spin liquid candidate
herbertsmithite for which J1 � D > J2 > 0. For a clear parameterisation across the whole
interaction range, we express our Heisenberg couplings using an overall strength J and an
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(a) (c)(b)

Figure 4.8.: J1-J2-D phase diagrams using the angular parameterisation from Eqs. (4.34)
and various values of D: The magnetically ordered phases are represented by the colours
of their classical analogues from Fig. 4.1(b). White areas indicate a paramagnetic flow
behaviour and the numerical uncertainties regarding the boundaries between ordered and
disordered phases are indicated by light colours. The precise positions of the phase bound-
aries are presented in Table 4.1.

angle θ ranging from 0◦ to 360◦.

J1 = J cos θ (4.34a)

J2 = J sin θ (4.34b)

For D = 0, our model has already been studied in Refs. [18, 173] using the FRG for-
malism. In agreement with these studies, we can identify the four types of classical order
along with additional coupling regimes around (J1, J2) = (1, 0) and (0, 1) in which the
maximal susceptibility flows smoothly towards the limit Λ → 0 signaling a paramagnetic
phase. Our findings also admit the existence of a small third paramagnetic phase between
the cuboc and the ferromagnetic order. However, due to the relatively small clusters of
considered spin correlations and the coarse frequency grid, our numerical implementation
might underestimate magnetically ordered phases since magnetic instabilities are less pro-
nounced as compared to the previous study in Ref. [18]. The full phase diagram is depicted
in Fig. 4.8(a).
As one would expect through the preceding sections, a finite DM coupling has its largest

effect on the q = 0 Néel phase which is strongly enlarged as D increases. While this type
of order only occurred for both finite and antiferromagnetic J1, J2 > 0 at D = 0, it already
touches the positive J1 axis at D = 0.2 J [see Fig. 4.8(b)]. Increasing the DM interaction
even further eventually leads to a q = 0 phase which even allows for either a slightly
ferromagnetic nearest-neighbour (J1 & 0) or next-nearest-neighbour (J2 & 0) Heisenberg
interaction. Also, the other two types of non-collinearly ordered phases, i.e., the cuboc and
the
√

3×
√

3 phase, are augmented by a finite D > 0. As a consequence, the non-magnetic
phase around (J1, J2) = (1, 0) in which also herbertsmithite resides has vanished entirely
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order type q = 0 cuboc ferro
√

3×
√

3

D = 0.0 [27, 59] [122, 153] [171, 270] [270, 347]

D = 0.2 [0, 81] [122, 158] [171, 270] [270, 347]

D = 0.4 [−6, 95] [117, 162] [171, 270] [270, 353]

Table 4.1.: Phase boundaries of the differently ordered phases in the J1-J2-D model: The
Heisenberg interactions can be derived from Eqs. (4.34) and the corresponding θ intervals
are given in angular degrees with an accuracy of about ±5◦.

for D = 0.4J , confer Fig. 4.8(c). The only phase transition retaining its D = 0 position
in the entire parameter range studied here is the one between the ferromagnetic and the√

3 ×
√

3 Néel phase at the negative J2 axis (θ = 270◦). The precise values for the phase
boundaries of the magnetically ordered phases are summarised in Tab. 4.1.
In general, a finite DM interaction leads to a shift of the phase boundaries between

paramagnetic and non-collinearly ordered phases in favour of the magnetic phases. This
tendency can be understood from the fact that a system of three spins on a triangle
with only Heisenberg interactions is more frustrated than its analogue containing only
DM couplings, e.g., the differences between the energy levels of this three-site model are
larger for the DM interaction. Further, at finite D, a spin system can gain energy for
an alignment of two adjacent spins with an angle that is (close to) π

2 . This maximises
the magnitude of the cross product in the DM interaction and a proper orientation of the
(almost) perpendicular spins then lowers the system’s energy. A parallel spin arrangement,
on the other hand, is not affected by the DM coupling since the cross product and thereby
the DM term itself vanish in this case. Hence, the three magnetic types of order with
non-collinear spin patterns, i.e., the q = 0, the

√
3×
√

3, and the cuboc order, are found in
enlarged parameter spaces for D > 0 while the ferromagnetic order remains uninfluenced.
Our results also suggest that magnetically disordered phases might disappear entirely in
the J1-J2-D model for large enough DM terms.

4.4.2. Implications for herbertsmithite

One of the primary motivations for our study of the spin-1
2 kagome J1-J2-D model is

to explore its predictions for the mineral herbertsmithite (ZnCu3(OH)6Cl2). Experimen-
tally, it exhibits no sign of magnetic long-range order down to very low temperatures until
50mK [73, 119, 165] and a broad, featureless spin structure factor with its strongest sig-
nal along the edges of the extended Brillouin zone [69] and small maxima at the q = 0

positions [68]. Considering these finding, herbertsmithite appears to be one of the most
promising candidates for a QSL with possible spinon excitations, confer Chap. 1. The
neutron-scattering data shows a strong correspondence to the momentum-resolved suscep-
tibility profiles for the paramagnetic phase that was earlier found in the antiferromagnetic
nearest-neighbour Heisenberg model, confer Fig. 4.5(c). In fact, this seems to be the rel-

83



4. Functional-renormalization-group analysis of Dzyaloshinsky-Moriya and Heisenberg
spin interactions on the kagome lattice

Figure 4.9.: (a) Phase diagram in the parameter range for herbertsmithite: The momentum-
space position of the maximal susceptibility is denoted by green squares (blue circles) for the
q = 0 (

√
3×
√

3) wave vectors. Red triangles show that incommensurate spin correlations,
which do not correspond to any of the classical ordering types, are dominant. Large icons
indicate that the system magnetically orders. On the other hand, small icons show a
possible spin liquid behaviour. For the parameters with black circles, we cannot reliably
determine the magnetic characteristics due to numerical imprecisions. (b) Susceptibility
flow for (J1, J2, D) = (1, 0.02, 0.1) [see red circle in (a)]: Circles and crosses denote that
the largest spin correlations are found at the q = 0 and

√
3 ×
√

3 positions, respectively.
The arrow marks a breakdown of the flow signaling the onset of magnetic order. The inset
provides the susceptibility profile at the corresponding Λ value with maxima at the q = 0

positions (highlighted by white crosses) in agreement with Ref. [68].

evant model for herbertsmithite and subleading terms were already estimated by DFT
simulations yielding an also antiferromagnetic second-neighbour Heisenberg interaction
with J2/J1 = 0.019 [93]. ESR measurements, susceptibility fittings, and the difference
in entropy as compared to a bare Heisenberg model determine a nearest-neighbour DM
coupling reaching from D/J1 ∼ 0.08 to 0.1 [149, 166, 192].

We apply our PFFRG method in a parameter range surrounding those predicted interac-
tion strengths and investigate the resulting susceptibility flows as well as the momentum-
space profiles, see Fig. 4.9(a). As one can see, there is a strong competition between a
magnetically ordered q = 0 Néel phase (large icons) and paramagnetic phase (small icons)
with different types of dominant spin correlations (q = 0,

√
3 ×
√

3, incommensurate).
Due to the challenging numerical implementation, the phase boundary is hard to identify
exactly and therefore estimated by the area of numerical uncertainty which is marked by
black circles. For our considered couplings, the phase boundary is approximately given
by the straight line connecting the points (D/J1, J2/J1) = (0.04, 0.08) and (0.12, 0). It
therefore lies in close proximity to the predicted values for herbertsmithite. At the point
(D/J1, J2/J1) = (0.1, 0.02), which presumably seems to be the experimentally relevant
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situation, we find a susceptibility profile showing a strong resemblance to the neutron-
scattering data of Ref. [68] with the strongest signal almost continuously spread over the
edges of the extended Brillouin zone and small maxima at the q = 0 positions, see inset
of Fig. 4.9(b). However, as the major plot shows, the FRG flow features a small magnetic
instability suggesting the onset of magnetic order, in contrast to the experimental find-
ings. Increasing the number of discrete Matsubara frequencies or enlarging the considered
spin-correlation cluster size would expectably amplify the instability feature.
Therefore, we conclude that the J1-J2-D model is yet insufficient to completely charac-

terise the magnetic properties of herbertsmithite. If the so far predicted values for D/J1 are
too large and D < 0.1 J1, we find paramagnetic behaviour but we also sacrifice the q = 0

maxima for a dominant
√

3 ×
√

3 response in that case. This would require additional
spin interactions shifting the peaks in order to reproduce the experimental data. Also, if
(D/J1, J2/J1) ≈ (0.1, 0.02) accurately describes the investigated mineral, further sources
of frustration are needed to suppress its ordering tendencies. In fact, ab-initio calculations
predict a plethora of further inter-layer Heisenberg couplings with a magnitude of up to
0.035 J1 [93]. Together with magnetic impurities which are caused by copper ions at zinc
lattice sites in the actual material, this might easily increase in-plane fluctuations and
thereby destroy the magnetic long-range order.

4.5. Summary, conclusion, and outlook

In this chapter, we extended the well-known PFFRG method in order to investigate spin-1
2

models with Heisenberg and DM interactions. The main modifications caused by the ad-
ditional off-diagonal and anisotropic DM coupling were summarised in Sec. 4.2. Refs. [27,
162] already studied our model of interest and we could benchmark the utilised procedure
by confirming their results, i.e., a destabilisation of the paramagnetic phase in the anti-
ferromagnetic J1-J2-D model and transition into the q = 0 order at D ≥ (0.12± 0.02) J1

for the nearest-neighbour model. In Sec. 4.4, we applied our numerical simulations to
the full model also allowing for ferromagnetic nearest and second-neighbour Heisenberg
interactions. As the phase diagrams in Fig. 4.8 show, a finite DM interaction enlarges all
non-collinearly ordered phases (q = 0,

√
3×
√

3, and cuboc orders) while, simultaneously,
all surrounding non-magnetic phases are diminished. In particular, the very important
paramagnetic phase around (J1, J2) = (1, 0) in which the spin-liquid candidate herbert-
smithite resides completely disappears for a sufficiently strong D & 0.4 J . We also find
that this mineral lies in the vicinity of a quantum critical point where we are able to obtain
susceptibilities that strongly resemble the experimental spin structure factors from Ref. [68]
for certain parameter regions. Nevertheless, we argue that, due to signs of weak magnetic
order in our simulations, the J1-J2-D model is probably insufficient to accurately charac-
terise the magnetic properties of herbertsmithite and additional sources of frustration like
inter-layer couplings and magnetic impurities might be important for a QSL behaviour.
To conclude, we have shown that the PFFRG for spin systems can be applied to models
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with finite DM interactions. The anisotropic and off-diagonal structure of this particu-
lar spin coupling with its intrinsically lower degree of symmetry as compared to a bare
Heisenberg model complicates the analysis by a non-negligible amount. Considering the
complexity of the resulting flow equations, we certainly demonstrated how important it is
in theoretical physics to utilise all symmetries that are available. Nevertheless, we could
also confirm that an implementation of the PFFRG for systems with reduced symmetries
is in general possible.
The anisotropic nature of the DM interaction is caused by spin-orbit coupling which

becomes the more important the heavier the magnetic ions are. In addition to the DM
interaction which can only occur for lattices with broken inversion symmetry at the center
of a bond, Kitaev and XXZ models are also possible consequences of this effect. For many
of the currently investigated magnetic materials, these effects are quite sizable and therefore
a large number of future applications for even more generalised or stripped-down versions
of the PFFRG are conceivable. We will not derive flow equations that are more complex
than the ones shown in App. B. Instead, we continue by simply changing their initial
conditions in the next chapter. In this way, we can apply our PFFRG implementation to
arbitrary XXZ models with a considerable numerical speed-up.
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Figure 5.1.: Diamond lattice with tetragonal distortion: The diamond lattice is bipartite
and consists of two face-centered cubic lattices stacked into another. Spin frustrations
arise due to a combination of nearest (J1) and next-nearest (J2) neighbour interactions,
the latter of which get split up into eight J⊥2 and four J−2 contributions by a tetragonal
distortion as in the case of NiRh2O4. Cartesian unit vectors are depicted green. Figure
adapted from Ref. [20].

Now that we proved ourselves being able to investigate frustrated quantum spin models
with anisotropic types of interactions, we want to study the just recently synthesised spin-
1 A-site spinel NiRh2O4 which has experimentally shown to exhibit no signs of magnetic
order down to T = 0.1K [30] making it another promising candidate for finding a quantum
spin liquid. The chemical formula for spinels AB2X4 distinguishes between the real space
coordination of three kinds of ions. In general, chalcogens like oxygen, sulfur, and selenium
are found at the X positions and the remaining ions characterise the two distinct types of
spinels.
The so-called B-site spinels are characterised by magnetic ions that reside on the B

sites of the crystal, such as, for instance, ACr2O4 and AV2O4. Here, the non-magnetic
ions are found at the A sites (A = Mg, Zn, Cd) and the magnetic ones form a pyrochlore
lattice with antiferromagnetic Heisenberg interactions. Depending on the spin length of
the magnetic ions, these materials are well known to establish spin liquid behaviour [10,
157] in the classical (S → ∞) [127, 128] as well as in the quantum (S = 1

2) [22, 23]
limits and are thus prime examples for finding these desired states in three dimensions.
On the other hand, if the positions of magnetic and non-magnetic ions are swapped, one
faces A-site spinels with an effective diamond lattice structure for the magnetic moments.
For example, the materials MnSc2S4 [56], FeSc2S4 [56], and CoAl2O4 [174, 175] caught
large attraction since, despite the non-frustrated nature of the diamond lattice, they also
show a strong suppression of their ordering temperature as compared to the Curie-Weiss
temperature. This counterintuitive phenomenon was understood shortly after by realising
that the frustrations necessary for such a behaviour can be induced by finite second-
neighbour interactions [13].
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A good starting point for the investigation of our A-site nickel spinel is therefore the
Hamiltonian

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj , (5.1)

on the diamond lattice from Fig. 5.1. In the classical limit, this model shows the formation
of spin-spiral surfaces in the momentum-resolved susceptibilities if J2 > |J1|/8 [13]. The
largest spin correlations are found at degenerate sets of incommensurate wave vectors
forming a surface in the three-dimensional Brillouin zone. If there is no ordering mechanism
present, the system can vary continuously between the energetically most favourable spin
spirals with different wave vectors. Such a phase is often denoted as a spiral spin liquid.
However, spin-spiral surfaces are unlike Fermi surfaces highly unstable with respect to small
perturbations to the Hamiltonian and thermal or quantum fluctuations drive them into an
order-by-disorder transition selecting finite sets of ordering wave vectors in k space [13,
14].
While a classical treatment of the model has proven to be sufficient for understanding the

magnetic properties of large-S A-site spinels with magnetic Mn (S = 5
2) and Co (S = 3

2)
ions [57, 108, 158], the behaviour of FeSc2S4 is dominated by spin-orbit coupling effects [34,
35] which are not captured in Eq. (5.1). Furthermore, the absence of any type of magnetic
order in the compound NiRh2O4 down to lowest temperatures is also not captured by the
classical model (confer discussion in previous chapter). This motivated our collaborators
from Cologne to study the J1-J2 model on the diamond lattice using a generalised version
of the FRG flow equations in App. A for arbitrary spin lengths S. It has been shown in
Ref. [9] that an extension of the previously derived equations for spin-1

2 particles, in essence,
amounts to multiplying all diagrams where a sum over real-space coordinates appears with
the factor M = 2S. Employing these remarkably elegant modifications to the equations
for the self energy and the two-particle vertex, a phase diagram for different coupling ratios
J2/J1 and spin lengths was mapped out which is not part of the original work from this
thesis. Its main result is that, beyond an ordered Néel state at J1 = 1 and 0 ≤ J2 ≤ 1/8

for all spin lengths, a sequence of dominant susceptibility wave vectors is found depending
on the precise value of J2/J1 where magnetic order occurs for S ≥ 2 and a paramagnetic
state (possibly a quantum spiral liquid) is found if S = 1

2 , 1 [20]. A classical to quantum
transition occurs precisely at S = 3

2 where for 0.2 . J2/J1 . 0.4 the system still resides
in the fluctuation dominated quantum regime with no onset of magnetic order during the
flow, and with classical magnetic order for larger J2 as well as in the Néel phase.
However, the recently synthesised spin liquid candidate NiRh2O4 undergoes a struc-

tural transition at T = 440K [30] which induces a tetragonal distortion on the dia-
mond lattice such that the second-neighbour couplings are split up into eight out-of-plane
contributions J⊥2 and four in-plane contributions J−2 , see Fig. 5.1. An arxiv preprint
version of a manuscript by Chamorro et al. presents a DFT study yielding the values
(J1, J

−
2 , J

⊥
2 ) = (1, 0.73,−0.91) [29]. We therefore consider antiferromagnetic J1 = 1 and

J−2 = 0.73 with a tetragonal distortion determined by the parameter J⊥2 /J
−
2 . Using
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Luttinger-Tisza and PFFRG methods with these values, our collaborators found that al-
ready for very small second-neighbour splittings the spin liquid phase vanishes giving way
to a magnetically ordered Néel phase for all spin lengths S. Since a recent study proposed
that an additional single-ion anisotropy drives the system into a trivial quantum paramag-
net [33], our goal is now to include this term in the PFFRG framework and to investigate
its effects on the modified spin-1 diamond lattice model.

5.1. XXZ model on spin-1 diamond lattice

According to Refs [29] and [33], we investigate the spin-1 Heisenberg model with tetragonal
distortion and local single-ion anisotropy. It is governed by the Hamiltonian

H = J1

∑
〈i,j〉

Si ·Sj +J⊥2
∑
〈〈i,j〉〉⊥

Si ·Sj +J−2
∑
〈〈i,j〉〉−

Si ·Sj +D
∑
i

Szi S
z
i −A

∑
i

SiSi . (5.2)

For our purposes of a spin length S = 1, it is shown in Ref. [9] that we have to encode our
spin operators by

Si =

2S∑
κ=1

Si κ , (5.3)

where now there are two different spin-1
2 flavours (Si 1 and Si 2) residing at site i which

are in turn expressed with the help of the auxiliary fermions from Eq. (4.2). As already
mentioned above, in our diagrammatic language that is dealing with vertex functions, this
modification of the spins amounts to additional factors ofM = 2S for every real-space sum
carried-out in the flow equations for ΣΛ and ΓΛ. Furthermore, the anisotropy term ∝ D

causes a splitting of the spin-spin interaction channel such that our two-particle vertex
function is parameterised by

ΓΛ (s, t, u) =

[
ΓΛ

xx i1i2 (s, t, u)
(
σxα1′α1

σxα2′α2
+ σyα1′α1

σyα2′α2

)
+ ΓΛ

zz i1i2 (s, t, u)σzα1′α1
σzα2′α2

+ ΓΛ
d i1i2 (s, t, u) δα1′α1δα2′α2

]
δ(ω1 + ω2 − ω1′ − ω2′)δi1′ i1δi2′ i2

− (ω1 ↔ ω2, α1 ↔ α2, i1 ↔ i2) . (5.4)

Similar to the scenario with Dzyaloshinsky-Moriya interactions from the previous chap-
ter, a global U(1) spin-rotation symmetry around the z axis is present in this model (cf.
App. E.2). Since no off-diagonal interactions are present, the self energy remains finite only
in the density channel and the propagators are identical to those from the bare Heisenberg
case, confer Sec. 4.2.2. The last term ∝ A in Eq. (5.2) is an artificially included level
repulsion term. This ensures that the S = 0, 1

2 sectors of our now drastically enlarged
Hilbert space are energetically penalised and therefore suppressed during the FRG flow.
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The single-ion anisotropy would favour these unphysical spin lengths and the value of A
has to be determined empirically, depending on D.
The initial conditions from the Hamiltonian characterising our A-site spinel are hence

given by

γΛ→∞
d (ω) = 0 , (5.5a)

ΓΛ→∞
d i1i2 (s, t, u) = 0 , (5.5b)

ΓΛ→∞
xx i1i2(s, t, u) =

Ji1i2
4
− Ai1i2

4
, (5.5c)

ΓΛ→∞
zz i1i2(s, t, u) =

Ji1i2
4

+
Di1i2 −Ai1i2

4
, (5.5d)

where Di1i2 = Dδi1i2 and Ai1i2 = Aδi1i2 . The flow equations for this XXZ model with
arbitrary spin length (represented by the factor M = 2S) are given in App. C. Due to
the broken SU(2) spin-rotation symmetry, we distinguish the in-plane and out-of-plane
susceptibilities

χxx,Λij (0) =
1

4π

∞∫
−∞

dω1M
θ(|ω1| − Λ)(
ω1 + γΛ

d (ω1)
)2 δij

− 1

8π2

∞∫
−∞

dω1

∞∫
−∞

dω2
θ(|ω1| − Λ)(
ω1 + γΛ

d (ω1)
)2 θ(|ω2| − Λ)(

ω2 + γΛ
d (ω2)

)2{2M2ΓΛ
xx ij

(
ω+, 0, ω−

)
−M

[
ΓΛ

d ii
(
ω+, ω−, 0

)
− ΓΛ

zz ii
(
ω+, ω−, 0

)]
δij

}
, (5.6a)

χzz,Λij (0) =
1

4π

∞∫
−∞

dω1M
θ(|ω1| − Λ)(
ω1 + γΛ

d (ω1)
)2 δij

− 1

8π2

∞∫
−∞

dω1

∞∫
−∞

dω2
θ(|ω1| − Λ)(
ω1 + γΛ

d (ω1)
)2 θ(|ω2| − Λ)(

ω2 + γΛ
d (ω2)

)2{2M2ΓΛ
zz ij

(
ω+, 0, ω−

)
−M

[
ΓΛ

zz ii
(
ω+, ω−, 0

)
− 2ΓΛ

xx ii
(
ω+, ω−, 0

)
+ ΓΛ

d ii
(
ω+, ω−, 0

)]
δij

}
, (5.6b)

where we defined that ω± = ω1±ω2 and the additional prefactors of M and M2 arise due
to one or two spin flavour summations within the loop diagrams that contribute to the
susceptibilities.

5.2. Spin anisotropy versus level repulsion

The spin anisotropy term ∝ D in the Hamiltonian from Eq. (5.2) suppresses the out-
of-plane susceptibility χxx,Λij because it favours a spin alignment within the x-y plane.
Nevertheless, we cannot exclude the occupation of unphysical spin sectors with S < 1

which is why we also include the level-repulsion term ∝ A. In essence, we now need
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Figure 5.2.: Susceptibility components for different values of A/D in the effective single-
ion model: For this decoupled spin-1 system, the vertices show a smooth flow down to
zero cutoff at which we calculate the maximal in-plane and out-of-plane susceptibility
components in momentum space. As expected, the out-of-plane component χzz,Λ(k) is
strongly suppresses as compared to χxx,Λ(k) but remains finite for all values of A/D
because of quantum fluctuations. A flat plateau for both curves appears if 3 . A/D . 10

indicating an occupation of the physical sector of the Hilbert space within that range.
Figure adapted from Ref. [20].

to balance three independent effects. The antiferromagnetic Heisenberg interaction should
favour antiparallel spin alignments with maximal and thus physical spin lengths S = 1, but
due to its sometimes frustrated nature it could locally support an unphysical occupation
as well. In addition, the single-ion anisotropy wants to minimise Sz which can also lead
to reduced spin lengths. The level-repulsion term, on the other hand, raises the energy
of unphysical states and therefore acts as a counterweight for the anisotropy in particular
since there are reasons to believe that the PFFRG for bare Heisenberg models already
selects the correct spin sectors without the level repulsion [9]. Because the repulsion term
is an artificial parameter that is needed in order to overcome certain difficulties of our
method, we have to analyse its effect in detail. We want to determine a reliable value for
the ratio A/D at which a physical occupation of our augmented Hilbert space is realised.
This is, for instance, achieved if the results obtained from PFFRG do not change upon
further increasing A. If this is the case, the maximal spin length is already enforced on
each site and only the total energy of the systems is lowered if A becomes even larger.

Let us investigate the effectively decoupled single-ion model where J1 = J⊥2 = J−2 = 0

in this section. Considering the initial conditions in Eqs. (5.5), it should be clear that at
least for values A/D > 1 a suppression of the unphysical spin sector sets in because the
isolated ion minimises its energy by maximising all of its spin components. If A/D < 1, the
in-plane spin component is maximised whereas the out-of-plane component is minimised.
Depending on the precise ratio, this might or might not lead to an unphysical occupa-
tion. However, the numerical implementation of our flow equations has to utilise a finite
frequency mesh and is hence limited to a finite resolution with respect to the initial condi-
tions of the vertices. If we set D = 1, this implies that we are not able to gain insights for
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A� D since the flow breaks down in this case due to an insufficient amount of considered
large frequencies. In contrast, by setting A = 1 and sending D → 0 in order to investigate
the same limit, we are not able to observe the anisotropy’s effects any longer because the
low frequencies in our numerics have a finite spacing. Hence, we keep D = 1 and look for
an intermediate range with A/D & 1 where unphysical occupations are avoided and the
effects of the single-ion anisotropy are still noticeable.
We compare the values of χxx,Λ(k) and χzz,Λ(k) in the decoupled single-ion model as

a function of A/D, see Fig. 5.2. The different spin sites are independent of each other
and therefore add up to a trivial paramagnet with a susceptibility that is completely
constant within the Brillouin zone. We directly investigate the results for Λ → 0 and
see that in a certain parameter range, i.e., 3 . A/D . 10, our results are independent
of the precise value of A/D. Any different behaviour suggests that unphysical states are
occupied for smaller values and that the numerical PFFRG implementation breaks down
for even higher values. We thus determine an intermediate value of A/D = 4 for our
further calculations. The behaviour of both susceptibility components during the flow for
this choice of parameters can be seen in the right-most panel of Fig. 5.3.

5.3. Antiferromagnetic XXZ model without tetragonal
splitting

We first investigate the effect of the single-ion anisotropy on the antiferromagnetic XXZ
model from Eq. (5.2) without the tetragonal distortion, i.e., J⊥2 = J⊥2 = 0.73 J1. The
flow of the maximal susceptibility values in k space can be seen in Fig 5.3. Without the
XXZ splitting due to the anisotropy (D = 0), the remaining bare Heisenberg system
does not discriminate the susceptibility components χxx,Λ(k) and χzz,Λ(k). In this case,
the functions flow smoothly towards Λ = 0 showing no signs of long-range order and a
formation of spiral surfaces in momentum space can be observed for this quantum spiral
liquid regime (confer introduction to this chapter). Contrarily, in the D → ∞ limit, our
spin system effectively decouples into isolated spins with a favoured orientation in the x-y
plane. This implies a maximal suppression of χzz,Λ(k) which is as well as the in-plane
response χxx,Λ(k) constant inside the entire Brillouin zone. Interestingly, the out-of-plane
susceptibility does not vanish completely, implying a finite expectation value of (Szi )2 due
to quantum fluctuations. The ratio between both susceptibility components is given by
χxx

χzz ' 4 for the trivial paramagnet in the Λ→∞ limit. We expect that both this ratio and
the pronounced increase of the in-plane susceptibility for low Λ values are upheld within
that phase, confer right-most panel of Fig. 5.3. From our plots, we estimate that the
crossover between trivial and quantum paramagnet occurs around D/J1 ≈ 2 (see middle
panel of Fig. 5.3) which is in good agreement with the mean-field result from Ref. [33].
At this point, the RG flows of χxx,Λ and χzz,Λ are qualitatively similar to the ones in
the D → ∞ limit and their ratio has the same maximal value for Λ → ∞ as the trivial
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Figure 5.3.: Spin susceptibilities for XXZ model on the diamond lattice without tetragonal
distortion (J⊥2 = J⊥2 = 0.73 J1) and different values of D: Without the anisotropy (D = 0),
both components are identical [χxx,Λ(k) = χzz,Λ(k)]. The trivial paramagnet is found in
theD →∞ limit where now the out-of-plane component χzz,Λ(k) is maximally suppressed,
but not zero. In all plots, the level repulsion is kept at A/D = 4. Figure adapted from
Ref. [20].

paramagnet. For the quantum spiral liquid, we show the momentum resolved susceptibility
for the high-symmetry (h, l, 0) and (h, h, l) planes in the top panel of Fig. 5.5. The spiral
surfaces are found in the (h, l, 0) and (0, h, l) planes which are identical through lattice
symmetries. The spin correlations are almost constant on these surfaces indicating a strong
competition between different possible spin arrangements suppressing magnetic long-range
order up to the smallest numerically achieved cutoff values. In the other limit of D →∞,
the susceptibility is constant in k space signaling nothing but effectively decoupled lattice
sites. We do not plot the susceptibility for this scenario.

5.4. Antiferromagnetic XXZ model with tetragonal splitting

Let us finally turn to the effects of the tetragonal distortion which occurs for NiRh2O4 at
T = 440K [30]. As explained in the introduction, the suggested coupling ratios from DFT
being (J1, J

−
2 , J

⊥
2 ) = (1, 0.73,−0.91) [29] lead to a formation of a Néel antiferromagnet in

our PFFRG simulations. If we include these coupling parameters together with a single-
ion anisotropy while keeping the level repulsion term such that A/D = 4 (confer Sec. 5.2),
the out-of-plane spin correlations are again suppressed as in the previous chapter, see
Fig. 5.4. However, we rigorously find Néel order state for all considered values of D ≤ 8,
see bottom panel of Fig. 5.5 for an exemplary illustration. Only in the D → ∞ limit,
the trivial paramagnet is recovered (right-most panel in Fig. 5.3). The trivial paramagnet
of decoupled spins though is of no great interest for finding novel physical phenomena
and we are also not seduced to believe that our nickel spinel is entirely dominated by the
anisotropy term.
The arxiv preprint manuscript Ref. [29] is the only available source for possible cou-

pling strengths in NiRh2O4 obtained from ab-initio calculations. Because we do not find
any paramagnetic behaviour with these values, not even with an additional single-ion
anisotropy, we now map out a phase diagram where we take the Hamiltonian from Eq. (5.2)
and vary the distortion J⊥2 /J

−
2 as well as the anisotropy D. As before, we fix the level
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Figure 5.4.: Effects of tetragonal splitting: Shown are identical calculations as in Fig. 5.3,
but now with the tetragonal splitting (J1, J

−
2 , J

⊥
2 ) = (1, 0.73,−0.91) from Ref. [29]. We

observe the onset of magnetic order for all values of the single-ion anisotropy up to D = 8

in contrast to the experimental findings for NiRh2O4. Only in the D →∞ limit, the plot
from the right-most panel in Fig. 5.3 is reobtained. Figure adapted from Ref. [20].

repulsion to A/D = 4. Since different ordered and disordered states can manifest them-
selves in this model, our main focus is on whether or not the system shows magnetic order.
For that reason, in Fig. 5.6, we only show the critical cutoff value Λc for which magnetic
long-range order is found to set in. If Λc = 0 (white panels in Fig. 5.6), the susceptibility
grows smoothly until the end of the flow signaling a paramagnetic and hence possible spin
liquid phase. Indeed, we find an extended regime without magnetic long-range order which
spans over finite tetragonal distortions J⊥2 /J

−
2 from −0.5 to 1.25 at an anisotropy value

of D/J1 = 5. The susceptibility flows along horizontal cuts can be seen for J⊥2 /J
−
2 = 1

and J⊥2 /J
−
2 = −1.25 in Fig 5.3 and Fig 5.4, respectively. These results are published in

Ref. [20] and interpreted therein in the way that some reduction of the tetragonal splitting
in combination with a reasonably sized single-ion anisotropy could well explain the experi-
mental observations for NiRh2O4. A more detailed DFT analysis including the anisotropy
term would shine more light onto this situation.
Meanwhile, we take notice though that, in the published version of the aforementioned

online preprint, the DFT analysis is completely replaced by a different model where the
coupling parameters are determined by fitting linear spin-wave simulations to inelastic
neutron-scattering data [30]. This seems to be a bit ambiguous because the spin-wave
theory is based on an ordered state and cannot access the presumed spin liquid phase. The
reason for this modification in the publication is not known to us. Since our previous anal-
ysis is based on the work of this group, we also analyse the Hamiltonian that is estimated
in the published article, i.e.,

H = J1

∑
〈i,j〉

(
σxi σ

x
j + σyi σ

y
j + ∆σzi σ

z
j

)
+ J⊥2

∑
〈〈i,j〉〉⊥

Si · Sj + J−2
∑
〈〈i,j〉〉−

Si · Sj . (5.7)

This is also an effective XXZ model which, due to the lack of the single-ion anisotropy,
does not necessarily require the involvement of a level repulsion term because the PFFRG
has shown to automatically select the correct sector of the Hilbert space in related Heisen-
berg models [9]. Despite the conceptual issues of linear spin-wave theory for our spinel
material, the neutron-scattering data can allegedly be relatively well reconstructed from
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Figure 5.5.: Comparison between XXZ models with and without tetragonal splitting: In
the top (J⊥2 /J

−
2 = 1) and bottom (J⊥2 /J

−
2 = −1.37) panels, we compare susceptibility

flow and cuts through the Brillouin zone (black lines) from PFFRG calculations for the
Hamiltonian in Eq. (5.2) with D = A = 0. Without the splitting, we find a quantum spiral
liquid whereas the tetragonal distortion from Ref. [29] induces long-range Néel order. Slight
differences to the left panels in Figs. 5.3 and 5.4 are caused by a coarser frequency resolution
and different splitting sizes (only bottom panel).

the Hamiltonian in Eq. (5.7) if (J1, J
−
2 , J

⊥
2 ) = (1,−0.3, 0.12) and ∆ = 1.1 what consid-

erably differs from the previous analysis. These couplings are easily implemented via the
initial conditions

γΛ→∞
d (ω) = 0 , (5.8a)

ΓΛ→∞
d i1i2 (s, t, u) = 0 , (5.8b)

ΓΛ→∞
xx i1i2(s, t, u) =

Ji1i2
4

, (5.8c)

ΓΛ→∞
zz i1i2(s, t, u) =

∆i1i2Ji1i2
4

. (5.8d)

Unfortunately, we still find a conventionally ordered Néel state for this model. The resulting
susceptibility flow and k-space plots do not differ substantially from those of the previous
one, confer bottom panel of Fig. 5.5.

5.5. Summary and conclusion

In this chapter, we employed PFFRG formalism with anisotropic, but diagonal spin inter-
actions for the XXZ model with arbitrary spin length S. For the first time, we included
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Figure 5.6.: Phase diagram for tetragonal splitting J⊥2 /J
−
2 and single-ion anisotropy D/J1:

The colour scale represents the critical cutoff value Λc. Orange, beige, and brown shades
indicate the RG scale for the onset of magnetic order. White panels represent a smooth
flow with Λc = 0 denoting a paramagnetic regime. The in-plane second-neighbour coupling
is kept constant at J−2 = 0.73 J1 for this plot. Figure adapted from Ref. [20].

a single-ion anisotropy in such a calculation and investigated how to add a level repulsion
term in order to avoid the occupation of unphysical spin sectors. The motivation behind
all this is that the previously suggested Heisenberg model with tetragonal distortion [29]
for the spin-1 A-site spinel NiRh2O4 failed to explain the experimental observation of no
magnetic long-range order in this material down to lowest temperatures. Therefore, we
also added a single-ion anisotropy as supposed in Ref. [33], which can drive the system
into a trivial paramagnet, and the hence required level-repulsion term to that model, see
Eq. (5.2).

Even though we are able to confirm the existence of an extended paramagnetic regime
once a finite-sized anisotropy is present, we can only identify magnetic order at splitting
values as high as J⊥2 /J

−
2 = −1.25 for all considered anisotropy strengths. Unfortunately,

also the second considered model from Ref. [30] is unable to describe the physics of NiRh2O4

[confer Eq. (5.7)]. For all coupling parameters that do not reside within the white area
of Fig. 5.6, the PFFRG detects conventional antiferromagnetic Néel order as depicted in
the bottom panel of Fig. 5.5. This is in strong contrast with the experimental findings for
NiRh2O4 and we therefore conclude once more that precise ab-initio calculations which
include all symmetry-allowed spin interactions are needed for a further analysis of this
remarkable material.

This ends the part of this thesis where we derive new results following solely from the
PFFRG. One of the fundamental observations which should be repeated once more at this
point is that an efficient evaluation of the flow equations is only possible if certain symme-
tries remain, especially in three dimensional systems. Otherwise there are trade-offs in the
achievable frequency resolution and cluster size. Additionally, it seems rather impossible
to us to manually implement the most generally conceivable spin-spin interaction. In such
a scenario, some automated script should translate the flow equations into code in order
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to avoid mistakes and to save a tremendous amount of time. In the following Chap. 6, we
develop a method that uses the vertex functions from a PFFRG analysis for the computa-
tion of effective free spinon models for the considered systems. This method is based on a
FRG enhanced Fock mean-field equation and self-consistently determines spinon hopping
and pairing amplitudes which follow from Xiao-Gang Wen’s projective symmetry group
considerations [182]. In this way, we hope to acquire fundamental knowledge about the
properties of the possibly realised spin liquid states such as their spinon band structure
and their stability against the in a PSG classification neglected gauge fluctuations.
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In the previous chapters, we have developed methods of implementing the PFFRG for-
malism for various types of spin interactions on different lattices. The key motivation
to this was always the identification of possible spin liquid phases which were recognised
by their lack of long-range order. Even though this particular method has proven itself
to be an in general well-behaved tool for identifying the phase boundaries between dif-
ferent magnetically ordered and paramagnetic systems for plenty of Hamiltonians, this
method is not capable of providing insight into some of physically most relevant properties
like excitation spectra, exchange statistics, and topology of the realised state. Instead,
it yields imaginary-timed static spin susceptibilities which show resemblance of experi-
mentally obtained neutron-scattering structure factors which are per se real-timed entities
corresponding to, e.g., the excitation of two spinons at finite frequency.
On the other hand, there is a classification scheme for spin liquids called the projective

symmetry group (PSG) developed by X. G. Wen, see Ref. [182]. This method is based on
the same Abrikosov decomposition of spin operators into fermions as the PFFRG and iden-
tifies the possible spin liquid states that obey all symmetries of lattice and Hamiltonian.
The PSG yields effective low-energy theories by providing certain hopping and pairing pat-
terns for spinons on the corresponding lattice which can then be, for instance, compared
by a mean-field self-consistency analysis. One downside of a bare mean-field treatment
though is that it neglects most contributions from quantum fluctuations and might there-
fore miss important details of the considered model like spinon-spinon interactions and
vison excitations, see Sec. 6.2 for details.
In this chapter, we develop a technique connecting these two pseudo-fermion perspec-

tives by including quantum fluctuations into a PSG mean-field analysis via an insertion
of renormalised vertex functions into the self-consistency equations. Such an approach of
coalesced FRG mean-field study has so far only been considered for the two-dimensional
Hubbard model [143, 179] which is why we try to be thorough in this part of the thesis
for the sake of reproducibility. We do not perform any spin liquid classification using the
PSG but instead take their results for the considered J1-J2 square lattice [182] and the
nearest-neighbour kagome lattice [111] Heisenberg models from the existing literature. But
before we explain the details of our new method and, at least, introduce the concept of the
PSG, we start with laying a solid mathematical foundation for all further considerations.

6.1. Preliminaries

This section is dedicated to the derivation of a mean-field decoupling for Heisenberg Hamil-
tonians. Even though the finial results can be found in many standard textbooks and
well-known publications, we want to extend this theory in Sec. 6.4 by incorporating renor-
malised Green’s and vertex functions. Since the two-particle vertices that follow from a
PFFRG analysis are more spread-out in real space as compared to the bare Heisenberg
interactions and they additionally are also depending on frequency, our main focus lies on
obtaining the correct structures in real space and imaginary time for our self-consistency
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equations. Initially, this might appear somewhat unnecessary to the more advanced reader.
Some aspects of the basic computations become quite relevant though in the following and,
since they are often elegantly neglected, this seems like an appropriate place to define and
derive all constituents of our further investigations properly.

6.1.1. Preface to non-interacting fermionic system

We shall start with a non-interacting Hamiltonian H0 that is diagonal in some fermionic
creation and annihilation operators f †l and fl with a set of quantum numbers denoted by l

H0 =
∑
l

ωl f
†
l fl , (6.1)

where the single-particle energy is ωl. In the imaginary-time Heisenberg picture, the time
evolution of our operators is determined by the Heisenberg differential equation

∂

∂τ
fl(τ) =

[
H0, fl

]
−

=
∑
k

{
ωk f

†
kfkfl − ωk flf

†
kfk

}
=
∑
k

{
ωk f

†
kfkfl − ωk

(
δkl − f †kfl

)
fk

}
= −ωlfl , (6.2a)

∂

∂τ
f †l (τ) =

[
H0, f

†
l

]
−

=
∑
k

{
ωk f

†
kfkf

†
l − ωk f

†
l f
†
kfk

}
=
∑
k

{
ωk f

†
kfkf

†
l + ωk f

†
k

(
δkl − fkf †l

)}
= +ωlf

†
l , (6.2b)

where the brackets [A,B]− = AB−BA denote a standard commutator. Note that different
signs appear for creation and annihilation operator. This is the reason why the well-known
time evolution

fl(τ) = e−ωlτfl and f †l (τ) = eωlτf †l (6.3)

should be used which implies that f †l (τ) 6= [fl(τ)]†.
Let us now trace the effect of this different time evolutions during the calculation of a

normal Green’s function, i.e., the expectation value of equal numbers of fermionic creation
and annihilation operators (cf. Sec. 2.1.2). Even though one can employ standard notations
for them, a clear definition is imperative for extending our language towards so-called
anomalous Green’s functions which do not conserve particle number in the following.

6.1.2. Normal Green’s function

Here, we provide the known facts about the non-interacting system for H0 = 0. In our
systems of interest, as in the previous chapters, the full set of quantum numbers for any
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fermionic operator is labeled by a lattice site i, a spin index α ∈ {↑, ↓}, and an imaginary
time τ . The bare, imaginary-time-ordered Green’s function from Eq. (2.24) is then given
by

G0
αβ(i, τ |j, τ ′) =

〈
Tτfα(i, τ)f †β(j, τ ′)

〉
0
, (6.4)

where 〈. . . 〉0 denotes that the average is taken with respect to H0. Please note once more
that our convention for the fermionic single-particle propagators differs by a factor of −1

from another possible definition which is also frequently used, see Sec. 2.1.2. As explained
above, if H0 6= 0, one obtains a time evolution of the fermionic creation and annihilation
operators fα(i, τ) = e−ωi,ατfα(i, 0) = e−ωi,ατfi,α and f †α(i, τ) = eωi,ατf †α(i, 0) = eωi,ατf †i,α.
For our scenario with no single-particle energies, we have to send ωi,α → 0 for all i and
α. This step will be performed in the end of our calculation in order to keep track of the
correct frequency structure. For the regular Green’s function, we thus find

G0
αβ(i, τ |j, τ ′) =

〈
Tτfα(i, τ)f †β(j, τ ′)

〉
0

= θ(τ − τ ′)
〈
fα(i, τ)f †β(j, τ ′)

〉
0
− θ(τ ′ − τ)

〈
f †β(j, τ ′)fα(i, τ)

〉
0

= θ(τ − τ ′)
〈
eωj,βτ

′−ωi,ατfi,αf
†
j,β

〉
0
− θ(τ ′ − τ)

〈
eωj,βτ

′−ωi,ατf †j,βfi,α

〉
0
.

(6.5)

Considering the fact that all the frequencies vanish and that, in the non-interacting sce-
nario, the system is in a product state of the decoupled states on all individual lattice sites
i, e.g., |0, 0〉i , |0, 1〉i , |1, 0〉i , and |1, 1〉i [see Eq. (4.3)], we easily verify that

G0
αβ(i, τ |j, τ ′) = θ(τ − τ ′)

〈
fi,αf

†
j,β

〉
0
− θ(τ ′ − τ)

〈
f †j,βfi,α

〉
0

= θ(τ − τ ′)
〈
fi,αf

†
i,α

〉
0
δαβδij − θ(τ ′ − τ)

〈
f †i,αfi,α

〉
0
δαβδij

= θ(τ − τ ′)1

2
δαβδij − θ(τ ′ − τ)

1

2
δαβδij . (6.6)

This proves that G0 only depends on the difference of the two imaginary-time arguments
τ − τ ′ as it is required for a time-translation invariant system.
Now, we want to transform this result into the fermionic Matsubara space with ωn =

(2n+1)π
β

G0
αβ(i, j|iωn) =

β∫
0

dτ eiωnτG0
αβ(i, τ |j, 0) =

β∫
0

dτ eiωnτ
1

2
δαβδij

=
1

iωn

(
eiπ − e0

) 1

2
δαβδij

= − 1

iωn
δαβδij . (6.7)
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We utilised this result already plenty of times before. It should, however, be noted that
the Fourier transform was effectively performed with respect to the time argument of fi,α.
Going back to the description with two time arguments, we have to define that

fα(i, iωn) =

β∫
0

dτ eiωnτfα(i, τ) , fα(i, τ) =
1

β

∑
n

e−iωnτfα(i, iωn) , (6.8a)

f †α(i, iωn) =

β∫
0

dτ e−iωnτf †α(i, τ) , f †α(i, τ) =
1

β

∑
n

eiωnτf †α(i, iωn) , (6.8b)

where again the phase factors for creation and annihilation operators have opposite signs.
For our normal propagator, this implies

G0
αβ(i, iωn|j, iωm) =

β∫
0

dτ

β∫
0

dτ ′ eiωnτe−iωmτ
′
G0
αβ(i, τ − τ ′|j, 0)

=

β∫
0

dτ

β∫
0

dτ ′ eiωnτe−iωmτ
′ 1

β

∑
l

e−iωl(τ−τ
′)G0

αβ(i, j|ωl)

= β G0
αβ(i, j|iωn)δnm , (6.9)

where G0
αβ(i, j|iωn) is given in Eq. (6.7). This summarises the known properties of our nor-

mal Green’s functions. We can hence continue by applying the same thoughts to anomalous
propagators which do not preserve our system’s particle number.

6.1.3. Propagators in Nambu space

Not only in solid-state physics, there is a strong correspondence between particles and
holes which can often be considered as dual perspectives for describing the same concepts.
In phases with particle-number conservation, it is sufficient to consider only one of these
two possible points of view. Both of them yield identical results. However, we try to
characterise quantum spin liquids (QSLs) which might be related to superconductors as
argued in Chap. 1. For these systems, particle number is in general not conserved due
to the creation of spinon pairs or Cooper pairs, respectively. This requires an analysis in
a combined representation of particle and hole channels coupling via pairing terms. In
the language of propagators, this can be achieved by introducing the so-called Nambu
space [134]. The Nambu spinors are defined as

ai(τ) =

(
fi↑(τ)

f †i↓(τ)

)
, a†i (τ) =

(
f †i↑(τ) , fi↓(τ)

)
. (6.10)
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They are used to construct a matrix Green’s function via their imaginary-time-ordered
expectation value

G(i, τ |j, τ ′) =
〈
Tτai(τ)a†j(τ

′)
〉

=

 〈
Tτfi↑(τ)f †j↑(τ

′)
〉 〈

Tτfi↑(τ)fj↓(τ
′)
〉〈

Tτf
†
i↓(τ)f †j↑(τ

′)
〉 〈

Tτf
†
i↓(τ)fj↓(τ

′)
〉  . (6.11)

In this representation, the propagators for particles 〈ff †〉 and holes 〈f †f〉 couple to each
other via the pairing amplitudes 〈ff〉 and 〈f †f †〉 which vanish in phases with conserved
particle number. We can identify the above matrix elements in accordance to the last
section as

G↑↑(i, τ |j, τ ′) =
〈
Tτfi↑(τ)f †j↑(τ

′)
〉
, (6.12a)

F↑↓(i, τ |j, τ ′) =
〈
Tτfi↑(τ)fj↓(τ

′)
〉
. (6.12b)

Here, G is the normal Green’s function whereas F is named anomalous Green’s function or
propagator. We will now derive some important relations for the anomalous off-diagonal
elements of G and define their appropriate Matsubara transforms for completeness.
The following calculations are performed in equilibrium. Hence, all functions only depend

on the differences of the appearing imaginary-time arguments. In the Heisenberg and the
interaction picture (H0 = 0), operators evolve in time as

f
(†)
iα (τ) = eHτf

(†)
iα e

−Hτ , (6.13)

which directly implies that
(fiα(τ))† = f †iα(−τ) . (6.14)

Using Eq. (6.14), we can derive for the second off-diagonal term in Eq. (6.11) that〈
Tτf

†
i↓(τ)f †j↑(τ

′)
〉

= θ(τ − τ ′)
〈
f †i↓(τ)f †j↑(τ

′)
〉
− θ(τ ′ − τ)

〈
f †j↑(τ

′)f †i↓(τ)
〉

= θ(τ − τ ′)
〈
fj↑(−τ ′)fi↓(−τ)

〉†
− θ(τ ′ − τ)

〈
fi↓(−τ)fj↑(−τ ′)

〉†
=
〈
Tτfj↑(−τ ′)fi↓(−τ)

〉†
= −

〈
Tτfi↓(−τ)fj↑(−τ ′)

〉†
= −F †↓↑(i,−τ |j,−τ

′) = F †↑↓(i,−τ |j,−τ
′)

= F †↑↓(i, τ
′|j, τ) , (6.15)

where we utilised the appropriate spin-rotation (around the x or y axis) in the second
to last line (see App. E.2) and time-translation invariance in the last one. For the other
normal Green’s function, we find〈

Tτf
†
i↓(τ)fj↓(τ

′)
〉

= −
〈
Tτfj↓(τ

′)f †i↓(τ)
〉

= −G↓↓(j, τ ′|i, τ) = −G↑↑(j, τ ′|i, τ) . (6.16)
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Again, a proper spin rotation was used. In this way, we showed that

G(i, τ |j, τ ′) =

(
Gij(τ |τ ′) Fij(τ |τ ′)
F †ij(τ

′|τ) −Gji(τ ′|τ)

)
. (6.17)

We dropped the spin index since it should be clear from the respective definitions.
In Matsubara space, the previously derived relations still hold for the normal Green’s

functions and especially also Eq. (6.9) translates to

Gij(iωn|iωm) = β Gij(iωn)δnm (6.18)

for the full propagator. However, for the anomalous Green’s function, the situation is quite
different. Similar thoughts to the previous ones imply for them that

Fij(iωn|iωm) =

β∫
0

dτ

β∫
0

dτ ′ e−iωnτe−iωmτ
′
Fij(τ |τ ′)

=

β∫
0

dτ

β∫
0

dτ ′ e−iωn(τ−τ ′)e−i(ωm+ωn)τ ′Fij(τ − τ ′|0)

= β Fij(iωn)δn−m , (6.19a)

F †ij(iωn|iωm) =

β∫
0

dτ

β∫
0

dτ ′ eiωnτeiωmτ
′
F †ij(τ |τ

′)

=

β∫
0

dτ

β∫
0

dτ ′ eiωn(τ−τ ′)ei(ωm+ωn)τ ′F †ij(τ − τ
′|0)

= β F †ij(iωn)δn−m . (6.19b)

This sets the framework for everything forthcoming. In the next section, we will show how
to decouple our Hamiltonian in a mean-field manner for further evaluation.

6.1.4. Mean-field Hamiltonian

A mean-field decoupling of an interacting Hamiltonian amounts to the neglection of certain
quantum fluctuations. For spin systems, such an approximation is typically justified if the
spins interact with many of their neighbours in which case the fluctuating fields of all
individual neighbouring spins can be averaged to their combined mean field. In this way,
the spin degrees of freedom decouple and a solution can usually be obtained from a self-
consistency equation. The mean-field approach of our following analysis yields effectively
free and spinful particles with finite hopping and pairing amplitudes on particular bonds,
i.e., spinon hoppings and pairings.
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Even though the results of this section are well known [12], we want to explicitly present
the derivation of the mean-field Hamiltonian being utilised by Xiao-Gang Wen [182] and
Yuan-Ming Lu [111] for a PSG analysis of possible spin liquid states on the square and the
kagome lattice, respectively. Since our new theory is based on the same decoupling scheme
and we have to include the additional density-density interaction channel from FRG later
on, a solid foundation is indispensable in this regard.
We again replace the spin operators with the usual Abrikosov fermions [see Eq. (1.2) or

(4.2)] which goes hand in hand with an enlargement of the Hilbert space into a physical
and an unphysical sector (confer Sec. 4.2.1). It is worth mentioning at this point that the
Abrikosov decomposition of a single spin operator into two fermionic operators directly
corresponds to the fractionalisation of spin-1 excitations into spin-1

2 spinons, see Chap. 1
for details. Indeed, one could actually refer to the new operators as spinon operators
because they create or annihilate spinons. A Heisenberg Hamiltonian can be rewritten in
terms of the spinon operators as

H =
∑
(i,j)

JijSi · Sj =
∑
i,j

∑
α,β,γ,δ

∑
µ

Jij
8
f †iασ

µ
αβfiβf

†
jγσ

µ
γδfjδ

=
∑
i,j

∑
α,β,γ,δ

Jij
8
f †iαfiβf

†
jγfjδ (2δαδδβγ − δαβδγδ)

=
∑
i,j

∑
α,β

−Jij
4

(
f †iαfjαf

†
jβfiβ +

1

2
f †iαfiαf

†
jβfjβ

)
+ const. , (6.20)

where the sum over site pairs (i, j) was transformed into a sum over lattice sites i and
j yielding a factor of 1

2 . The constant term in the last line is purely quadratic in the
fermionic operators and only amounts to a shift of the considered system’s zero energy at
least in the physical Hilbert space. Hence, this term has no physical consequences and we
neglect it in the following. We now perform our mean-field decoupling according to

ηijεαβ = −2
〈
fiαfjβ

〉
, ηij = ηji , (6.21a)

η†ijεαβ = −2
〈
f †jβf

†
iα

〉
, η†ij = η†ji , (6.21b)

χijδαβ = 2
〈
f †iαfjβ

〉
, χij = χ†ji , (6.21c)

χ†ijδαβ = 2
〈
f †jβfiα

〉
, χ†ij = χji . (6.21d)

The completely antisymmetric tensor is defined via ε↑↓ = −ε↓↑ = 1 and ε↑↑ = ε↓↓ = 0.
Keeping in mind that F (†)

ji (τ ′|τ) = F
(†)
ij (τ |τ ′) = F

(†)
ij (τ−τ ′|0) and G†ji(τ |τ ′) = G†ji(−τ ′|−τ)

= Gij(τ |τ ′) = Gij(τ − τ ′|0), for our later derivations, we already note here that this
substitution can be rewritten as

ηij = − lim
λ→0

2Fij(0|λ) , η†ij = − lim
λ→0

2F †ij(0|λ) , (6.22a)

χij = − lim
λ→0

2Gji(0|λ) , χ†ij = − lim
λ→0

2Gij(0|λ) . (6.22b)
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Now, we replace the Hamiltonian with its mean-field version by contracting all four possible
non-local amplitudes of each of the two terms in Eq. (6.20).

HMF =
∑
i,j

∑
α,β

−Jij
4

(
1

2
χijf

†
jβfiβδαα +

1

2
χjif

†
iαfjαδββ +

1

2
η†jifjαfiβεβα +

1

2
ηjif

†
iαf
†
jβεαβ

+
1

4
χijfiαf

†
jβδαβ +

1

4
χjifjβf

†
iαδαβ +

1

4
η†jifiαfjβεβα +

1

4
ηijf

†
iαf
†
jβεαβ

)
=
∑
i,j

∑
α

−Jij
4

(
χijf

†
jαfiα + χ†ijf

†
iαfjα +

1

4
χijfiαf

†
jα +

1

4
χ†ijfjαf

†
iα

+
∑
β

εαβ

[
1

2
η†ijfiβfjα +

1

2
ηijf

†
iαf
†
jβ +

1

4
η†ijfiβfjα +

1

4
ηijf

†
iαf
†
jβ

])

=
∑
i,j

∑
α

− 3

16
Jij

χijf †jαfiα + χ†ijf
†
iαfjα +

∑
β

εαβ

[
η†ijfiβfjα + ηijf

†
iαf
†
jβ

]
=
∑
i,j

− 3

16
Jij

(
χijf

†
j↑fi↑ + χ†ijf

†
i↑fj↑ + χijf

†
j↓fi↓ + χ†ijf

†
i↓fj↓

+η†ijfj↓fi↑ + ηijf
†
i↑f
†
j↓ + η†ijfi↓fj↑ + ηijf

†
j↑f
†
i↓

)
(6.23)

In the second and in the last step, we used that Jij = Jji which always holds for Heisenberg
interactions. In order to rewrite HMF in terms of the Nambu spinors ai and a†i from
Eq. (6.10), we note that

∑
i,j

a†i

(
U11
ij U12

ij

U21
ij U22

ij

)
aj =

∑
i,j

U11
ij f
†
i↑fj↑ + U12

ij f
†
i↑f
†
j↓ + U21

ij fi↓fj↑ + U22
ij fi↓f

†
j↓ . (6.24)

Comparing the coefficients of the last two equations, we derive the final form of our Hamil-
tonian

HMF =
∑
i,j

− 3

16
Jij

[
a†i

(
χ†ij ηij

η†ij −χij

)
aj + a†j

(
χij ηij

η†ij −χ†ij

)
ai

]
, (6.25)

which is hermitian as expected. Employing the so-called Fock approximation, we are
ready to explore its implications for the Dyson-Schwinger equations of the matrix Green’s
function. Before further pursuing this issue in Sec. 6.3, we introduce the concept behind
Xiao-Gang Wen’s projective symmetry group in the following. This classification scheme
for spin liquids provides the necessary mean-field ansätze for the real-space patterns of the
χij and ηij in Nambu space which are the basis of our upcoming investigations.
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6.2. Gauge fluctuations and projective symmetries

Most of the following work relies on the fundamental articles by Xiao-Gang Wen [182] for
the square lattice and by Yuan-Ming Lu [111] for the kagome lattice. Even though there
are no novel results derived from the projective symmetry group scheme in this thesis,
we at least present a brief introduction for the reader to be able to grasp the important
concepts behind this method. Furthermore, we also provide a coherent characterisation of
all gauge-inequivalent nearest-neighbour Z2 spin liquids on the square and kagome lattices
with great help from Yasir Iqbal and Jonas Sonnenschein.
In the decoupled form of Eq. (6.25), the mean-field Hamiltonian denotes an effective

low-energy theory for our system with hopping and pairing amplitudes between spins at
different sites, e.g., χij (ηij) is a so-called spinon hopping (spinon singlet-pairing) term.
The Abrikosov representation from Eqs. (1.2) or (4.2) expresses the local spin operators in
terms of pseudo fermions. These fermions can be associated with creation and annihilation
operators for spinons as explained in the previous section. We have already notoriously
repeated that this decomposition augments the Hilbert space by two unphysical states per
site (cf. Sec. 4.2.1). At this point, the Nambu space comes in quite handy because here
any type of time-dependent and local SU(2) rotation

ai(τ) −→Wi(τ)ai(τ) , a†i (τ) −→ a†i (τ)W †i (τ) (6.26)

leaves the physical subspace invariant. Such transformations correspond to local gauge de-
grees of freedom and can have no effect on physical observables as long as the computation
is carried out correctly, see App. E.1 for details. Here, all Wi(τ) are SU(2) matrices with

Wi(τ) = αi 0(τ)1+ i [αi x(τ)σx + αi y(τ)σy + αi z(τ)σz] , (6.27a)

1 =

√
(αi 0(τ))2 + (αi x(τ))2 + (αi y(τ))2 + (αi z(τ))2 , (6.27b)

where 1 denotes a 2 × 2 unit matrix, the σµ with µ ∈ {x, y, z} are the standard Pauli
matrices, and the prefactors αi ∈ R such that

W †i (τ)Wi(τ) = 1 , (6.28a)

detWi(τ) = 1 . (6.28b)

For compatibility to the notation used in the standard literature of the topic, we rewrite
Eq. (6.25) once more into

HMF =
∑
(i,j)

a†iuijaj , (6.29a)

uij = −3

4
Jij

(
χ†ij ηij

η†ij −χij

)
, (6.29b)
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where we utilised the symmetry relations χ†ij = χji and ηij = ηji as well as the common
notation of a sum over pairs of sites [denoted by (i, j)] in order to obtain the correct
prefactor for the matrix uij .
Unlike the original Heisenberg Hamiltonian of our model from Eq. (6.20), this non-

interacting mean-field Hamiltonian is not invariant under local SU(2) transformations if
the amplitudes χ and η are treated as constants (confer App. E.1). In comparison to the
mean-field approach from Eqs. (6.29), a Hubbard-Stratonovich transformation would treat
the hopping and pairing amplitudes as locally and temporally fluctuating quantities. In
this case, the matrix from Eq. (6.29b) would transform under Eqs. (6.26) as uij(τ) −→
Wi(τ)uij (τ)W †j (τ). This implies that the Hamiltonian in Eq. (6.29a) would, like the
original spin Hamiltonian, not depend on the specific choice of local gauges. Therefore,
the Hubbard-Stratonovich transform is mathematically exact and also as challenging as
solving the precise interacting model from the start. Nevertheless, we proceed with the
initially quite ambiguous assumption of constant uij . If the solutions obtained from our
simplified approach are then robust with respect to local gauge fluctuations, they are
expected to describe the effective low-energy theory of the considered system well. We will
discuss when this is the case in Sec. 6.2.2.

6.2.1. Projective Symmetry Group

In the current mean-field representation, the physical properties of our system are only
characterised by the hopping and pairing amplitudes χij and ηij . Our effective low-energy
Hamiltonian [Eq. (6.29a)] transforms under local, but now time-independent gauge trans-
formations as

HMF −→
∑
(i,j)

a†iW
†
i uijWjaj . (6.30)

Hence, every transformation of the type uij −→ Wi uijW
†
j that is acting on a considered

mean-field state should leave the physical state of our original quantum spin model invari-
ant after a so-called Gutzwiller projection [62, 63] onto the appropriate one-particle-per-site
subspace.
Apart from local gauge transformations, there are of course other invariances which a

projected state has to obey, namely, the system’s physical (anti)symmetries (denoted by
S), e.g., lattice translations, rotations, mirror symmetries, and time reversal. If we would
operate within the physical sector of the Hilbert space only, each of these transformations
would have to leave the matrices S(uij) ≡ uij unaltered. In our case however, every real
symmetry can only be defined up to a local gauge transformation S(uij) ≡ WiuijW

†
j .

Therefore, one defines a projective symmetry as the composition of a physical symmetry
and its associated local gauge transformation that leaves all matrices uij unchanged. Since
S and the set of all local gauge transformations are groups, the projective symmetries
likewise form a group. At a first glance, this seems to aggravate calculations even further,
but one can classify all possible Gutzwiller-projected states that can result from our mean-
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field treatment of a system with given symmetry operations by determining all its distinct
groups of allowed projective symmetries. A projective symmetry group (PSG) classification
is then based on two important concepts which are the invariant gauge group (IGG) and
symmetry relations.
The IGG consists of those (global) gauge transformations being associated with the

identity operation which is also a legitimate symmetry in S. Hence, the IGG is given by
a group of matrices G that fulfills WiuijW

†
j = uij ∀ i, j with Wi ∈ G. If one denotes a

PSG with P and its respective symmetry group (IGG) by S (G), the symmetry group can
formally be expressed as the quotient of PSG with IGG

S = P/G . (6.31)

In practice, the Wi ∈ G can depend on the site index but once one of them is fixed, the
others follow automatically from WiuijW

†
j = uij . Depending on the precise structure of

the uij , the IGG can either be {−1,1} for Z2 spin liquids, eiθnσ with n being a fixed
but possibly site-dependent unit vector, σ = (σx, σy, σz)T and θ ∈ [0, 2π) for U(1) spin
liquids, or an arbitrary SU(2) matrix as defined in Eqs. (6.27) for SU(2) spin liquids. Once
the IGG is fixed, one can constrain the effects that two symmetry operations S1, S2 ∈ S
have on the u matrices if there is a sequence of them that should map all amplitudes back
onto themselves. In the PSG scheme, this sequence then has to be an element of the IGG.
Let, for instance, S1 and S2 be the mirror symmetries with respect to the coordinate axes
on the square lattice. In this case, their symmetry relation could formally be denoted by
S−1

2 S−1
1 S2S1 ∈ G. A PSG classification is finally based on the constraints from all possible

relations within the system’s symmetry group.

6.2.2. IGG and stability of mean-field ansatz

The IGG is peculiarly important within the PSG classification. The reason for this is its
close connection to the aforementioned gauge fluctuations. Without providing rigorous
proofs, we try to summarise the general arguments for the IGG’s importance along the
lines of Ref. [126].
Our bare mean-field Hamiltonian neglects the effects of gauge fluctuations as explained

in Sec. 6.2. In this way, the previously interacting Hamiltonian is decoupled and now only
consists of free spinons that can propagate throughout the considered lattice. Quite ob-
viously, such a decoupling neglects potentially attractive spinon-spinon interactions which
could confine the spinons and thereby render our theory invalid a posteriori. In terms of a
mathematically exact Hubbard-Stratonovich transformation, those interactions are a part
of the gauge fluctuations which are acquired by two1 spinons along the path of their spatial
separation. In addition to the mediated spinon interactions, also flux excitations, the so-
called visons [163] are neglected in a model without gauge fluctuations. Visons correspond

1Spinons have to be created in pairs in the physical system due to the one-particle-per-site constraint.
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in our formalism to a local excitation that sends uij → −uij on some bond in the case of
Z2 spin liquids.

There are basically only two possible scenarios now, namely that a mean-field state
determined from Eqs. (6.29) with a certain set of matrices uij is or is not stable upon
introducing the neglected gauge fluctuations. It can, however, be shown that particular
spin liquid states are stable with respect to gauge fluctuations [126] and the IGG is very
important for that purpose. A Z2 spin liquid has gapped gauge fluctuations which, in
principle, can be seen by formally integrating out the spinon degrees of freedom to arrive
at an effective theory for the gauge modes [102]. The more hand-waving argument which
can also be used is that, if the gauge modes would not be gapped, they would most probably
obey a higher degree of symmetry like, e.g., Dirac cones obey Lorentz invariance. So if the
gauge fluctuations would not be gapped, and a Z2 IGG would not be possible any longer
because the entire spin system would have to be in a larger symmetry group. If all gauge
modes are gapped though, the low-energy effective theory for the spinons is unaffected
by them since to some point they occur within that gap. Results being derived from the
mean-field Hamiltonian can be interpreted with some confidence in this case. A similar
statement also holds for chiral spin liquids which break time-reversal symmetry and can
therefore be protected by the now allowed Chern-Simons terms which are also able to
gap the gauge fluctuations [185]. On the other hand, stability with respect to the gauge
fluctuations seems rather to be an exception for U(1) and SU(2) spin liquids, see Ref. [126]
for a discussion.

We therefore focus on Z2 and chiral spin liquids in our following investigations, but
might still detect U(1) or SU(2) states, for instance, if allowed hopping or pairing terms
vanish or are equal in size. On the other hand, a spin liquid might appear to have a U(1)

or SU(2) IGG on nearest-neighbour bonds, but a Z2 structure is realised on longer-ranged
bonds due to, e.g., the presence of a finite-sized pairing term.

In general, we note that the IGG of a certain mean-field ansatz can be determined from
computing all different products of u matrices along the possible closed loops C of a chosen
lattice. The resulting so-called plaquette operators

PC = uijujk . . . uqi (6.32)

by definition then have to commute with all elements of the IGG. If they are proportional
to 1, the IGG is SU(2). If, for instance, only one of the Pauli matrices appears, a U(1)

spin liquid is found. For arbitrary terms that only commute with the unit matrix, the IGG
is Z2. In this way, it is not difficult to realise that a bare hopping ansatz (the matrices
uij are all diagonal) will always describe a spin liquid with U(1) or even SU(2) gauge
structure. Solely, the appearance of an additional pairing term can change this gauge
structure. Therefore, Z2 spin liquids can only occur if both finite hoppings and finite
pairings exist in the mean-field ansatz.
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6.2.3. Classification scheme

As already mentioned, once the IGG is defined, one needs to constrain the effects that
two symmetry operations from S have on the hopping and pairing terms if a sequence of
these symmetries maps, up to elements of the IGG, all matrices uij back onto themselves.
Gathering the constraints from all possible symmetry relations, one can then classify the
different possible projective symmetry operations and their according action on the uij .
Once these representations are known, one simply fixes the local gauge freedom by defining
one of the uij from which all remaining hopping and pairing amplitudes can be calculated
in the respective PSG.
Unfortunately, we have to refer the interested reader to Refs. [182], [111], and [170] for

the precise details of this method. Instead, we state one of its most important results which
can already be concluded with our current knowledge. The precise pattern of hoppings
and pairings in real space is not well defined in the PSG classification scheme due to
their local gauge freedom. Therefore, some apparently very different ansätze turn out to
yield the same state after projection. However, the traces of the plaquette operators from
Eq. (6.32) remain invariant under any local gauge transformation due to W †i Wi = 1 and
the invariance of the trace under cyclic permutations

trPC −→ tr
(
Wi uijW

†
j Wj ujkW

†
k . . . Wq uqiW

†
i

)
= trPC . (6.33)

We now summarise the results of a PSG classification on the square and the kagome
lattice for Z2 spin liquids on a nearest-neighbour level. For the subsequent investigation
of certain models, we also take on-site and longer-ranged terms into account. If not stated
otherwise, they are either not generated within our formalism or their influence is marginal.
We therefore do not provide a complete classification of them.

6.2.4. PSG on the square lattice

Let us consider the Hamiltonian from Eq. (6.29a) on a square lattice with uij 6= 0 only for
nearest-neighbour sites i and j. In that case, the plaquette operators are solely non-zero
for an even number of u matrices. They always take the form

PC = uijujk . . . upquqi =

(
φ∗ ψ

−ψ∗ φ

)
(6.34)

and their trace is hence given by

trPC = φ∗ + φ = 2Re [φ] , (6.35)

where φ is in general a non-vanishing complex number. We only consider time-reversal
symmetric spin liquids that also obey all projective lattice symmetries, i.e., the magnitudes
of all nearest-neighbour hopping amplitudes χ are identical independent of the connected
lattice sites and the same statement holds for the pairings η separately. In this instance,
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Figure 6.1.: Ansätze for the four time-reversal symmetric, nearest-neighbour Z2 spin liquids
on the kagome lattice: We choose a gauge in which all hopping (pairing) amplitudes χ (η)
are real and have the same magnitude on each bond. A black line indicates both positive χ
and positive η on a particular bond, whereas red lines or blue dots represent a negative χ
or a negative η, respectively. The unit cell of an ansatz is circumscribed by a grey dashed
line and a label π denotes a non-vanishing flux through the respective plaquette in the
parent U(1) state (confer main text). Figure created by Johannes Reuther.

there are only two distinct Z2 spin liquids, dubbed Z2Azz13 and Z2Bzz13, with the trace
of a plaquette operator PC(�) around an elementary square loop taking the value

trPC(�) =

{
2
(
χ2 − η2

)2 − 8χ2η2 , Z2Azz13 ,

−2
(
χ2 − η2

)2
+ 8χ2η2 , Z2Bzz13 .

(6.36)

The nomenclature of these cases is taken from Ref. [182] and their real space representations
for a particular gauge can be seen in the inset of Fig. 6.9. The ratio η/χ is very important
since both spin liquids yield the same trace if (χ, η) = (c, 0) or (0, c) for the Z2Bzz13 state
and if χ = η = c/

√
2 for the Z2Azz13 state. In that scenario, both of these states are

gauge equivalent to the so-called SU(2) π-flux state introduced in Refs. [3, 115], i.e., they
are identical to it after some local gauge transformation. The π-flux state only consists of
equal spinon hopping terms with an enlarged unit cell of two sites. Here, Eq. (6.36) yields
the value −2c4 denoting that a spinon picks up a minus sign which is tantamount to a
phase of π upon propagating around the elementary square loop. Hence the state’s name.
On the nearest-neighbour level for Z2 spin liquids, this exhausts all possibilities on the

square lattice. Since we are now familiar with the PSG concept, we can turn to the more
interesting case of the kagome lattice.

6.2.5. PSG on the kagome lattice

For the kagome lattice, there are four distinct Z2 QSLs on a nearest-neighbour level which
are derived in Ref. [111]. Since there are now two distinct elementary triangle loops (up
and down triangles) and one elementary hexagonal loop, we do not display all of their
plaquette operator traces here. Instead, we provide the corresponding real space patterns
of all gauge-inequivalent hopping and pairing amplitudes in Fig. 6.1. The Z2[0, π]α and
the Z2[π, 0]A states feature an increased unit cell including six lattice sites, whereas the
Z2[0, 0]B and the Z2[π, π]A states have the same three-atomic basis as the kagome lattice
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Figure 6.2.: Three selected chiral spin liquids on the kagome lattice: All nearest-neighbour
bonds only include hopping terms which can be real (black lines) or imaginary. In the latter
case, a red arrow from site j to site i denotes a hopping term iχijfif

†
j with χ > 0. The

hermitian conjugate of this term now acquires a minus sign and the direction matters. As in
Fig. 6.1, the labels ±π

2 and π denote all non-zero fluxes that are acquired upon propagation
around the elementary loops and grey dashed lines show the respective ansatz’ unit cells.
Figure created by Johannes Reuther.

itself. The names of these different spin liquids arise from their parent U(1) states that
are obtained by setting all pairing amplitudes to zero. Then, the IGG is trivially given
by a complex exponent rather then just ±1. For these U(1) hopping models, the flux of
an elementary loop is defined as the sign of the product of hopping amplitudes along that
loop. If the product is positive, the spinons do not pick up additional minus signs after a
propagation around the loop and its flux is 0. If the product is negative though as for the
π-flux state on the square lattice, a minus sign occurs which is identical to a flux of π. The
first (second) number in the square brackets of the above nomenclature identifies the flux
through down triangles (hexagons) for the respective U(1) parent states, confer Fig. 6.1.

In addition to the time-reversal symmetric spin liquids considered so far, we are also
interested in chiral states on the kagome lattice. As predicted by variational Monte Carlo
(VMC) studies, some of these chiral states are energetically very compatible to the most
promising Z2 candidates [140]. They break time-reversal symmetry which, in our language,
is denoted by plaquette fluxes that are fractions of π implying the pick-up of a complex
phase upon propagation around elementary loops. In Sec. 6.5.4, we investigate those three
chiral spin liquids that posses the lowest variational energies in VMC calculations. In
correspondence to the Z2 states, they are called Chiral-[π2 , 0], Chiral-[±π

2 , 0], and Chiral-
[π2 , π] respectively and are shown together with their flux patterns in Fig. 6.2.

This concludes our section about the PSG. Again, for more important details on the
precise computations, the reader is referred to the essential articles in this topic [111,
182]. We now continue by deriving a method that aims at self-consistently calculating the
low-energy effective theory in Eqs. (6.29) from FRG vertex functions.
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Figure 6.3.: Diagrammatic representation of the normal and the anomalous Green’s func-
tions G and F in imaginary time and real space: Ingoing arrows represent annihilation
operators, whereas outgoing ones denote creation operators.

6.3. Dyson-Schwinger equations in Fock approximation

Our entire approach for this chapter is based on the self-consistent Dyson-Schwinger equa-
tion which is deduced from an approximation of the propagators to first order in the
Hamiltonian. This approximation corresponds to a self-consistent mean-field scheme in
order to determine the hopping and pairing amplitudes of Eq. (6.29b). We compute the
Dyson-Schwinger equations for the normal and the anomalous Green’s functions in the so
far utilised imaginary-time and real-space formalism first.

6.3.1. Imaginary-time and real-space formalism

Let us start by reminding ourselves how to actually compute an imaginary-time ordered
Green’s function. In the interaction picture where operators evolve with respect to the
non-interacting Hamiltonian, it is given by

GAB(τ1|τ2) =
〈
TτA(τ1)B(τ2)

〉
=

〈
Tτe
−
∫ β
0 dτ H(τ)A(τ1)B(τ2)

〉
0〈

Tτe
−
∫ β
0 dτ H(τ)

〉
0

=
1

Z

〈
Tτe
−
∫ β
0 dτ H(τ)A(τ1)B(τ2)

〉
0
. (6.37)

The operators A and B do not need to be specified here and ~ = 1. For our mean-field
Hamiltonian from Eq. (6.25), we expand e−

∫ β
0 dτ H(τ) ' 1−

∫ β
0 dτ H(τ) in numerator and

denominator separately. This first-order perturbation amounts to a Fock approximation of
the self energy. Higher-order terms are later included by replacing bare propagators with
dressed ones in the final set of equations. This will also render our scheme self-consistent
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in the end. For the partition function, we hence find

Z =
〈
Tτe
−
∫ β
0 dτ HMF(τ)

〉
0

'
〈
Tτ1
〉

0
−

β∫
0

dτ
〈
TτHMF(τ)

〉
0

= 1 +
3

16

∑
i,j

β∫
0

dτ Jij

〈
Tτ

(
χijf

†
j↑(τ)fi↑(τ) + χ†ijf

†
i↑(τ)fj↑(τ)

+ χijf
†
j↓(τ)fi↓(τ) + χ†ijf

†
i↓(τ)fj↓(τ) + η†ijfj↓(τ)fi↑(τ)

+ ηijf
†
i↑(τ)f †j↓(τ) + η†ijfi↓(τ)fj↑(τ) + ηijf

†
j↑(τ)f †i↓(τ)

)〉
0

= 1− 3

8

∑
i,j

β∫
0

dτ Jij

(
χijG

0
ij(τ, τ) + χ†ijG

0
ji(τ, τ) + η†ijF

0
ij(τ, τ) + ηijF

† 0
ji (τ, τ)

)
.

(6.38)

It should be clear that F 0 ≡ F † 0 ≡ 0. We keep those terms for now in order to derive
the correct Dyson equation. In the next steps, we have to proceed analogously for the
numerators of the different propagators while utilising Wick’s theorem. We begin with the
normal Green’s function.

ZGij(τ1|τ2) =
〈
Tτe
−
∫ β
0 dτ HMF(τ)fi↑(τ1)f †j↑(τ2)

〉
0

'
〈
Tτ

1−
β∫

0

dτ HMF(τ)

 fi↑(τ1)f †j↑(τ2)
〉

0

= G0
ij(τ1|τ2) +

3

16

∑
k,l

β∫
0

dτ Jkl

〈
Tτ

(
χklf

†
l↑(τ)fk↑(τ) + χ†klf

†
k↑(τ)fl↑(τ)

+ χklf
†
l↓(τ)fk↓(τ) + χ†klf

†
k↓(τ)fl↓(τ) + η†klfl↓(τ)fk↑(τ)

+ ηklf
†
k↑(τ)f †l↓(τ) + η†klfk↓(τ)fl↑(τ) + ηklf

†
l↑(τ)f †k↓(τ)

)
fi↑(τ1)f †j↑(τ2)

〉
0

= G0
ij(τ1|τ2) +

3

16

∑
k,l

β∫
0

dτ Jkl

[(
χklG

0
kl(τ |τ) + χ†klG

0
lk(τ |τ)

+η†klF
0
kl(τ |τ) + ηklF

† 0
lk (τ |τ)

)
(−2)G0

ij(τ1|τ2) +
(
χklG

0
il(τ1|τ)G0

kj(τ |τ2)

+ χ†klG
0
ik(τ1|τ)G0

lj(τ |τ2) + η†klF
0
il(τ1|τ)G0

kj(τ |τ2) + ηklG
0
ik(τ1|τ)F † 0

lj (τ2|τ)

+ η†klF
0
ik(τ1|τ)G0

lj(τ |τ2) + ηklG
0
il(τ1|τ)F † 0

kj (τ2|τ)
)

− χklF † 0
lj (τ2|τ)F 0

ik(τ1|τ)− χ†klF
† 0
kj (τ2|τ)F 0

il(τ1|τ)

]
(6.39)
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Using that 1/(1 + x) ' 1 − x, we see that dividing by the partition function precisely
cancels the disconnected diagrams. Hence, we find up to first order in our interaction that

Gij(τ1|τ2) ' G0
ij(τ1|τ2) +

3

16

∑
k,l

β∫
0

dτ Jkl

[
χklG

0
il(τ1|τ)G0

kj(τ |τ2) + χ†klG
0
ik(τ1|τ)G0

lj(τ |τ2)

+ η†klF
0
il(τ1|τ)G0

kj(τ |τ2) + ηklG
0
ik(τ1|τ)F † 0

lj (τ2|τ) + η†klF
0
ik(τ1|τ)G0

lj(τ |τ2)

+ ηklG
0
il(τ1|τ)F † 0

kj (τ2|τ)− χklF † 0
lj (τ2|τ)F 0

ik(τ1|τ)− χ†klF
† 0
kj (τ2|τ)F 0

il(τ1|τ)

]
.

(6.40)

Together with the previously derived symmetries for χ and η [Eqs. (6.21)], and the fact
that Jkl = Jlk for the considered Heisenberg system, we can finally show that

Gij(τ1|τ2) ' G0
ij(τ1|τ2) +

3

8

∑
k,l

β∫
0

dτ Jkl

(
χ†klG

0
ik(τ1|τ)G0

lj(τ |τ2) + η†klF
0
ik(τ1|τ)G0

lj(τ |τ2)

+ ηklG
0
ik(τ1|τ)F † 0

lj (τ2|τ)− χklF 0
ik(τ1|τ)F † 0

lj (τ2|τ)
)
. (6.41)

Concerning the matrix Green’s function, this already suffices in order to calculate the
diagonal elements. For the off-diagonals, we now continue by deriving the Dyson-Schwinger
equations for both anomalous Green’s function.

ZFij(τ1|τ2) =
〈
Tτe
−
∫ β
0 dτ HMF(τ)fi↑(τ1)fj↓(τ2)

〉
0

' F 0
ij(τ1|τ2) +

3

16

∑
k,l

β∫
0

dτ Jkl

[(
χklG

0
kl(τ |τ) + χ†klG

0
lk(τ |τ)

+η†klF
0
kl(τ |τ) + ηklF

† 0
lk (τ |τ)

)
(−2)F 0

ij(τ1|τ2) + χklG
0
il(τ1|τ)F 0

kj(τ |τ2)

+ χ†klG
0
ik(τ1|τ)F 0

lj(τ |τ2) + η†klF
0
il(τ1|τ)F 0

kj(τ |τ2)− ηklG0
ik(τ1|τ)G0

jl(τ2|τ)

+ η†klF
0
ik(τ1|τ)F 0

lj(τ |τ1)− ηklG0
il(τ1|τ)G0

jk(τ2|τ)

+ χklG
0
jl(τ2|τ)F 0

ik(τ1|τ) + χ†klG
0
jk(τ2|τ)F 0

il(τ1, τ)

]
(6.42)

Again, our partition function cancels the disconnected diagrams and employing the usual
symmetries yields that

Fij(τ1|τ2) ' F 0
ij(τ1|τ2) +

3

8

∑
k,l

β∫
0

dτ Jkl

(
χ†klG

0
ik(τ1|τ)F 0

lj(τ |τ2) + η†klF
0
ik(τ1|τ)F 0

lj(τ |τ2)

− ηklG0
ik(τ1|τ)G0

jl(τ2|τ) + χklF
0
ik(τ1|τ)G0

jl(τ2|τ)
)
. (6.43)
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For the other off-diagonal element, we find

ZF † 0
ij (τ2|τ1) =

〈
Tτe
−
∫ β
0 dτ HMF(τ)f †i↓(τ1)f †j↑(τ2)

〉
0

' F † 0
ij (τ1|τ2) +

3

16

∑
k,l

β∫
0

dτ Jkl

[(
χklG

0
kl(τ |τ) + χ†klG

0
lk(τ |τ)

+η†klF
0
kl(τ |τ) + ηklF

† 0
lk (τ |τ)

)
(−2)F † 0

ij (τ2|τ1) + χklF
† 0
il (τ |τ1)G0

kj(τ |τ2)

+ χ†klF
† 0
ik (τ |τ1)G0

lj(τ |τ2)− η†klG
0
li(τ |τ1)G0

kj(τ |τ2) + ηklF
† 0
ik (τ |τ1)F † 0

lj (τ2|τ)

− η†klG
0
ki(τ |τ1)G0

lj(τ |τ2) + ηklF
† 0
il (τ |τ1)F † 0

kj (τ2|τ)

+ χklF
† 0
lj (τ2|τ)G0

ki(τ |τ1) + χ†klF
† 0
kj (τ2|τ)G0

li(τ |τ1)

]
. (6.44)

Inserting Eqs. (6.21) and Eq. (6.38), the last missing equation reads

F †ij(τ2|τ1) ' F † 0
ij (τ2|τ1) +

3

8

∑
k,l

β∫
0

dτ Jkl

(
χ†klF

† 0
ik (τ |τ1)G0

lj(τ |τ2)− η†klG
0
ki(τ |τ1)G0

lj(τ |τ2)

+ ηklF
† 0
ik (τ |τ1)F † 0

lj (τ2|τ) + χklG
0
ki(τ |τ1)F † 0

lj (τ2|τ)
)
. (6.45)

It is straightforward to derive the last missing, however symmetry-related Green’s function
from Eq. (6.41).

−Gji(τ2|τ1) ' −G0
ji(τ2|τ1)− 3

8

∑
k,l

β∫
0

dτ Jkl

(
χklG

0
jl(τ2|τ)G0

ki(τ |τ1) + η†klF
0
jl(τ2|τ)G0

ki(τ |τ1)

+ ηklG
0
jl(τ2|τ)F † 0

ki (τ1|τ)− χ†klF
0
jl(τ2|τ)F † 0

ki (τ1|τ)
)

= −G0
ji(τ2|τ1)− 3

8

∑
k,l

β∫
0

dτ Jkl

(
χklG

0
ki(τ |τ1)G0

jl(τ2|τ) + η†klG
0
ki(τ |τ1)F 0

lj(τ |τ2)

+ ηklF
† 0
ik (τ |τ1)G0

jl(τ2|τ)− χ†klF
† 0
ik (τ |τ1)F 0

lj(τ |τ2)
)

(6.46)

In the second line, we employed that F (†)
ji (τ ′|τ) = F

(†)
ij (τ |τ ′).

This finally enables us to write down all approximations for our propagators in the single
matrix equation

Gij(τ1|τ2) = G0
ij(τ1|τ2) +

3

8

∑
k,l

β∫
0

dτ JklG
0
ik(τ1|τ)

(
χ†kl ηkl
η†kl −χkl

)
G0
lj(τ |τ2) (6.47a)

= G0
ij(τ1|τ2)−

∑
(k,l)

β∫
0

dτ G0
ik(τ1|τ)uklG

0
lj(τ |τ2) , (6.47b)
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where we have inserted the definition from Eq. (6.29b) and made use of the sum notation
for pairs of sites (k, l) in the second line. The last remaining step is to plug in the original
Green’s function representation of our hopping and pairing amplitudes from Eqs. (6.22)
into Eq. (6.47a).

Gij(τ1|τ2) = G0
ij(τ1|τ2)− lim

λ→0

3

4

∑
k,l

∫ β

0
dτ JklG

0
ik(τ1|τ)Gλkl(τ |τ)G0

lj(τ |τ2) (6.48a)

Gλij(τ |τ) =

(
Gij(τ |τ + λ) Fij(τ |τ + λ)

F †ij(τ |τ + λ) −Gji(τ |τ + λ)

)
(6.48b)

Here, the infinitesimal imaginary time λ has to be inserted for the correct order of spinon
operators in the equal-time Green’s functions of Eqs. (6.22). The according Dyson-Schwinger
equation can now be generated by omitting the zero superscript of the right-most propa-
gator and thereby replacing it with the dressed propagator G.

Gij(τ1|τ2) = G0
ij(τ1|τ2)− lim

λ→0

3

4

∑
k,l

∫ β

0
dτ JklG

0
ik(τ1|τ)Gλkl(τ |τ)Glj(τ |τ2) (6.49)

Diagrammatically, we represent our propagators according to Fig. 6.3. The Dyson-
Schwinger equation can be visualised for each component individually (see Fig. 6.4).
Due to its special real-space structure, this self-consistency equation has a very important

property. The matrix ukl in Eq. (6.47b) transforms under local and time-independent
gauge transformations as ukl −→ Wk uklW

†
l . Therefore, to first order in u, the dressed

propagator transforms as

Gij(τ1|τ2) −→ G0
ij(τ1|τ2)−

∑
(k,l)

β∫
0

dτ G0
ik(τ1|τ)Wk uklW

†
l G

0
lj(τ |τ2)

=Wi

G0
ij(τ1|τ2)−

∑
(k,l)

β∫
0

dτ G0
ik(τ1|τ)uklG

0
lj(τ |τ2)

W †j

=WiGij(τ1|τ2)W †j . (6.50)

In the second line, we employed that G0
ij ∝ δij and that WiW

†
i = 1. Considering the

self-consistency Eq. (6.49), one can now verify that also in general

Gij −→WiGijW
†
j (6.51)

must hold. To first order in u, this is shown in Eq. (6.50). To second order in u, we
have to insert the first-order result into the right-hand side of Eq. (6.49) and repeat the
same calculation as in Eq. (6.50) once more. In this way, Eq. (6.51) can be proven via
mathematical induction. For Eq. (6.49), it implies that both left-hand and right-hand
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0 0

0 0

0 0

0

0

0

0

Figure 6.4.: Dyson equations for G and F in imaginary time and real space: The double line
corresponds to a dressed Green’s function and a single line denotes the bare propagator.
All minus signs are correctly incorporated in the definitions of our propagators. A sum
or, respectively, an integral needs to be performed over all internal times and lattice sites.
Note that the crossed-out terms equal zero because the bare anomalous Green’s functions
vanishes.
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side transform under local and time-independent gauge transformations as demanded by
Eq. (6.51).

WiGij(τ1|τ2)W †j

= G0
ij(τ1|τ2)− lim

λ→0

3

4

∑
k,l

∫ β

0
dτ JklG

0
ik(τ1|τ)WkG

λ
kl(τ |τ)W †l WlGlj(τ |τ2)W †j

= WiG
0
ij(τ1|τ2)W †j − lim

λ→0

3

4

∑
k,l

∫ β

0
dτ JklWiG

0
ik(τ1|τ)Gλkl(τ |τ)Glj(τ |τ2)W †j

= Wi

G0
ij(τ1|τ2)− lim

λ→0

3

4

∑
k,l

∫ β

0
dτ JklG

0
ik(τ1|τ)Gλkl(τ |τ)Glj(τ |τ2)

W †j (6.52)

This form invariance of the defining equation implies that a specific choice of local gauges
is preserved within our mean-field approach. All gauge-invariant and therefore physical
quantities of a particular PSG are computed irrespective of the chosen hopping and pairing
pattern which is not uniquely defined, confer Sec. 6.2.1.

6.3.2. Transforming into Matsubara space

Due to the internal sums and the convolution integral, the different channels of our matrix
propagator in Eq. (6.49) can be decoupled by means of Fourier transforms for temporally
and spatially translation invariant systems. For the models considered during this chapter,
these symmetry assumptions (mostly) hold and we discuss the necessary modifications to
our equations once they are needed.
There is no meaningful way of defining the Fourier transforms identically for all entries

of G. The reason for this is that a true constituent of a diagrammatic expansion should
conserve energy and later also momentum. Furthermore, our matrices should all obey the
same hermitian structure as their original definitions. With the definitions from Secs. 6.1.2
and 6.1.3, one can, however, transform the four components of Eq. (6.49) separately into
Matsubara space. In so doing, one recognises that a new matrix structure can be realised
by rewriting the resulting equations in terms of Gij(ωn), −Gji(−ωn), Fij(ωn), and F †ij(ωn).
A rather elaborate but otherwise elementary calculation then shows that

Gij(ωn) =

(
Gij(ωn) Fij(ωn)

F †ij(ωn) −Gji(−ωn)

)
= G0

ij(ωn)− lim
λ→0

3

4β

∑
k,l

∑
ωm

JklG
0
ik(ωn)Gλkl(ωm)Glj(ωn) , (6.53)

where we defined

Gλkl(ωm) =

(
Gkl(ωm)eiωmλ Fkl(ωm)eiωmλ

F †kl(ωm)e−iωmλ −Gkl(−ωm)e−iωmλ

)
= eiωmλσ

z
Gkl(ωm) . (6.54)

An analogous transformation has now to be performed for the real-space coordinates.
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Figure 6.5.: Normal and anomalous Green’s functions in Matsubara and momentum space:
The diagrammatic representation corresponds to the one in Fig. 6.3. Please note, however,
the different indices that are involved for the two spinon operators of each propagator.

6.3.3. Fourier transform of real space

Let us, at the moment, consider a spin system on a two-dimensional Bravais lattice and
extend the derived theory later in Sec. 6.3.4 for lattices with poly-atomic unit cells. In
a translational invariant Bravais lattice, all entities can only depend on coordinate differ-
ences. In analogy to the Matsubara transform, we define

fα(ri) =
1

V

∑
k

e−ikrifα(k) , f †α(ri) =
1

V

∑
k

eikrif †α(k) , (6.55a)

fα(k) =
∑
ri

eikrifα(ri) , f †α(k) =
∑
ri

e−ikrif †α(ri) . (6.55b)

The according diagrammatic building blocks in Matsubara and momentum space are shown
in Fig. 6.5. With them, we find for the Green’s functions

G(k|k′) =
∑
ri,rj

ei(kri−k
′rj)G(ri|rj) =

∑
ri,rj

ei(k(ri−rj)−(k′−k)rj)G(ri − rj |0)

= V G(k)δk,k′ , (6.56a)

F †(k|k′) =
∑
ri,rj

e−i(kri+k
′rj)F †(ri|rj) =

∑
ri,rj

e−i(k(ri−rj)+(k′+k)rj)F †(ri − rj |0)

= V F †(k)δk,−k′ , (6.56b)

F (k′|k) =
∑
ri,rj

ei(kri+k
′rj)F (ri|rj) =

∑
ri,rj

ei(k(ri−rj)+(k′+k)rj)F (ri − rj |0)

= V F (k)δk,−k′ , (6.56c)

where we explicitly kept the spatial coordinates as an argument and not as an index for
clarity. The interaction Jij transforms like Gij . In complete analogy to the Matsubara
transform from before, Eq. (6.53) can be rewritten as

Gk(ωn) =

(
Gk(ωn) Fk(ωn)

F †−k(ωn) −G−k(−ωn)

)
= G0

k(ωn)− lim
λ→0

3

4βV

∑
q

∑
ωm

Jk−q G
0
k(ωn)Gλq(ωm)Gk(ωn) . (6.57)
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0 0

0 0

0 0

0 0

0

0

Figure 6.6.: Dyson equations for G and F in Matsubara and momentum space: The dia-
grammatic conventions are identical to those in Fig. 6.4. Again, the crossed-out diagrams
vanish due to F (†) = 0.
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One should be aware at this point that, due to F 0
k(ωn) = F † 0

k (ωn) = 0, the bare matrix
Green’s function is given by

G0
k(ωn) = − 1

iωn
1. (6.58)

Using this last piece of information, we are able to derive our final self-consistent mean-field
equation

Gk(ωn) = −
(
iωn1+ Σ̄k

)−1
, (6.59a)

Σ̄k = − lim
λ→0

3

4βV

∑
q

∑
ωm

Jk−qG
λ
q(ωm) , (6.59b)

Gλq(ωm) = eiωmλσ
z
Gq(ωm) . (6.59c)

We note for the last time that the equations presented here can be rewritten for an alter-
native definition of the fermionic single-particle propagators by sending G −→ −G, confer
Sec. 2.1.2. A diagrammatic representation of all four equations can be seen in Fig. 6.6.
Half of the diagrams do not contribute due to the vanishing bare anomalous Green’s func-
tions. The occurring Matsubara sum for the matrix self energy Σ̄k can be evaluate for bare
Heisenberg couplings using the residue theorem. Later on in Sec. 6.4 for the renormalised
vertices, we have to perform a continuous integral for T → 0 as we do it anyway for the
momentum space limit V −1 → 0.

6.3.4. Extensions for non-Bravais lattices or translation invariance breaking
amplitudes

So far, we assumed that our Heisenberg Hamiltonian from Eq. (6.25) sums over Bravais-
lattice sites and that the mean-field ansatz from the considered PSG does not break any
translation invariance of this model. Even if the assumption that all considered entities only
depend on coordinate differences is broken by the fact that we are no longer dealing with a
Bravais lattice or by the fact that our hopping and pairing amplitudes are not necessarily
translation invariant [111, 182], we can solve the resulting self-consistency equation by
employing an extended matrix structure. There are no changes in our previous Dyson
equation for real and Matsubara space [see Eq. (6.53)]. The only remaining challenge is
the Fourier transform into k space which is a bit more cumbersome due to the (presumably)
lost symmetry. However, Eqs. (6.59) can be formally restored by defining a more complex
matrix structure for our Green’s function which also incorporates a sublattice index.

Conceptually, we assume that our system can be understood as a problem on a Bravais
lattice by introducing the distinct sublattices A, B, C, . . . (for the kagome lattice, please
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also confer Sec. 4.3.1 and App. D). We rewrite our matrix Green’s function as

G(i|j) =



GAA(i|j) GAB(i|j) · · · FAA(i|j) FAB(i|j) · · ·
GBA(i|j) GBB(i|j) · · · FBA(i|j) FBB(i|j) · · ·

...
...

. . .
...

...
. . .

F †AA(i|j) F †AB(i|j) · · · −GAA(j|i) −GBA(j|i) · · ·
F †BA(i|j) F †BB(i|j) · · · −GAB(j|i) −GBB(j|i) · · ·

...
...

. . .
...

...
. . .


, (6.60)

and the matrix self energy

Σ̄(i|j) =



χ†AA(i|j) χ†AB(i|j) · · · ηAA(i|j) ηAB(i|j) · · ·
χ†BA(i|j) χ†BB(i|j) · · · ηBA(i|j) ηBB(i|j) · · ·

...
...

. . .
...

...
. . .

η†AA(i|j) η†AB(i|j) · · · −χAA(i|j) −χAB(i|j) · · ·
η†BA(i|j) η†BB(i|j) · · · −χBA(i|j) −χBB(i|j) · · ·

...
...

. . .
...

...
. . .


, (6.61)

where the indices i and j each now only label a unit cell of the system. One has to
pay attention at this point to the exchanged sublattice indices in the lower-right sector
of G(i|j). Green’s function and self energy are again translation invariant, meaning that
they only depend on the coordinate differences between the unit cells labeled by i and j.
Using these definitions, one derives completely identical equations as compared to Eqs.
(6.59). Only the matrix structure of self energy and Green’s function has changed from
2× 2 to 2n× 2n if n is the number of atoms within one unit cell. This has the effect that
the necessary matrix inversion increases our numerical effort by a factor of ' n3. On the
other hand, the Brillouin zone is diminished in its size by a factor of n which also reduces
the number of discrete k-space points for the momentum integral in the self-consistency
equation yielding a total increase of computational time by a factor of ' n2.
All statements from this section are also valid if the FRG vertex functions are incor-

porated into our theory, see Sec. 6.4. In the next section, we describe how to solve the
self-consistency equations analytically for spin systems on a Bravais lattice without renor-
malisation effects.

6.3.5. Mean-field solution for bare interaction

We now present the analytical solution for a minimal example of Eqs. (6.59), meaning that
we consider a spin-1

2 Heisenberg Bravais-lattice model with translation invariant pairing
and hopping amplitudes. This has the effect that our equations keep their 2 × 2 matrix
structure and can therefore still be inverted in a decently visualisable way. Furthermore, we
suppose that the hoppings and pairings are instantaneous in imaginary time, i.e., χij , ηij ∝
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δ(τ − τ ′). This renders the self energy, which is the key quantity of our investigation,
constant in Matsubara space and we rely on that assumption for the rest of this chapter.
The set of equations from above is self-consistent in the self energy. It can be computed

via

Σ̄k = lim
λ→0

3

4βV

∑
q

∑
ωm

Jk−qe
iωmλσz

(
iωm1+ Σ̄q

)−1 (6.62)

and carries the units of J . We therefore replace the propagator’s hopping and pairing
amplitudes as Jijχij → χij and Jijηij → ηij . Then we can rewrite the self energy in terms
of the different mean-field ansätze which are provided by X.-G. Wen [182] via

Σ̄ij =

(
Jijχ

†
ij Jijηij

Jijη
†
ij −Jijχij

)
−→

(
χ†ij ηij

η†ij −χij

)
. (6.63)

Substituting this into Eq. (6.62), inverting the matrix structure and taking the limit
1
V

∑
q
→

∫
B.Z.

dq
(2π)2 , we find that

(
χ†k ηk
η†−k −χ−k

)
= lim

λ→0

3

16π2β

∫
B.Z.

dq
∑
ωm

Jk−qe
iωmλσz

(
iωm + χ†q ηq

η†−q iωm − χ−q

)−1

= lim
λ→0

3

16π2β

∫
B.Z.

dq
∑
ωm

Jk−q
1

(iωm)2 − χ†qχ−q − η†−qηq

× eiωmλσz
(
iωm − χ−q −ηq
−η†−q iωm + χ†q

)
, (6.64)

where we already used that χ†k = χ−k holds due to χ†ij = χji and, in the same way, also

η
(†)
k = η

(†)
−k. The denominator in this equation has iωm poles at ±Aq = ±

√
χ†qχ−q + η†−qηq

and we are thus able to rewrite the Matsubara sum according to

1

β

∑
m

F (iωm) =
∑
n

Res
[
F (z)f±(z)

] ∣∣∣
z=zn

, (6.65a)

f±(z) = ± 1

e±βz + 1
. (6.65b)

Here, Res [g(z)]
∣∣∣
z=zn

denotes the residue of the complex function g(z) at its pole zn and

z1, 2 = Aq, −Aq in our case. For the evaluation of the residue, the function f+(z) (f−(z))
has to be used when the σz term yields +1 (−1) in the exponent of Eq. (6.64). The only
remaining step is to rewrite the denominator from above as

1

(iωm)2 − (Aq)
2 =

1

2Aq

(
1

(iωm −Aq)
− 1

(iωm +Aq)

)
. (6.66)
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Combining all this, we are able to write down a formal expression for our self energy,
i.e.,(

χ†k ηk
η†−k −χ−k

)
=

3

8

∫
B.Z.

dq

(2π)2

Jk−q
Aq

{(
f+(Aq) 0

0 f−(Aq)

)(
Aq − χ−q −ηq
−η†−q Aq + χ†q

)

+

(
f+(−Aq) 0

0 f−(−Aq)

)(
Aq + χ−q ηq

η†−q Aq − χ†q

)}
,

(6.67)

where we already performed the limit λ → 0. Technically, one should be careful about
the fact that, if η = 0, the pole structure is slightly different. It turns out, however, that
the terms which should vanish due to this circumstance also vanish in the final result in
Eq. (6.67). Because of the Fermi function, the k-space integral depends not only on the
chosen PSG but also on temperature. It should be evaluated numerically and features
all necessary momentum-space and gauge symmetries. The results for different mean-field
ansätze on the square lattice are provided in Sec. 6.5.

6.4. Including renormalised vertex functions from FRG

The previous pure mean-field description is known for more than three decades and has
been applied to several related systems in the past [3, 12, 104, 176, 181, 182], even though
it is usually not formulated in a diagrammatic way like presented above. As we explained
in Sec. 6.2, this approach neglects the important effects of gauge fluctuations which are
responsible for spinon-spinon interactions as well as vison excitations. We will now incorpo-
rate these effects implicitly by inserting the renormalised Green’s and vertex functions from
a PFFRG analysis into the self-consistency equations. In this way, we go beyond mean-
field theory because consider additional Feynman diagrams as summarised in Sec. 4.2.1.
In the current equations, we can replace the former coupling constant Jij/4 with its FRG
analogue ΓΛ

s ij . This is, however, a frequency-dependent entity and we need to select the
correct modes for our calculations which is one of the reasons for the extensive previous
considerations. Additionally, in the FRG scheme, there is an effective density-density in-
teraction ΓΛ

d ij appearing during the flow (confer Sec. 4.2.2) for which we do not yet know
how it contributes to the self-consistency equations. To that end, we consider the Feynman
diagrams for the self energy once more, see Fig. 6.7.

6.4.1. Mean-field decoupled density-density interaction

Using the Abrikosov fermions from before, we should rewrite a spin-density operator as

ni =
1

2

∑
α,β

f †iαδαβfiβ =
1

2

∑
α

f †iαfiα . (6.68)
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It yields the same absolute value as an Sz operator but with a positive sign regardless of
the spin’s orientation for any physical state. A (fictitious) density-density Hamiltonian can
then be represented by

Hd =
∑
(i,j)

Dijninj =
∑
i,j

Dij

2
ninj

=
∑
i,j

∑
α,β

Dij

8
f †iαfiαf

†
jβfjβ . (6.69)

How such a term decouples in a mean-field treatment is already known from Sec. 6.1.4.
We proceed by contracting all four possible non-local amplitudes of this Hamiltonian.

Hd
MF =

∑
i,j

∑
α,β

Dij

8

(
1

2
χijfiαf

†
jβδαβ +

1

2
χjifjβf

†
iαδαβ +

1

2
η†jifiαfjβεβα +

1

2
ηijf

†
iαf
†
jβεαβ

)

=
∑
i,j

∑
α

Dij

8

1

2
χijfiαf

†
jα +

1

2
χ†ijfjαf

†
iα +

∑
β

εαβ

[
1

2
η†ijfiβfjα +

1

2
ηijf

†
iαf
†
jβ

]
=
∑
i,j

∑
α

− 1

16
Dij

χijf †jαfiα + χ†ijf
†
iαfjα −

∑
β

εαβ

[
η†ijfiβfjα + ηijf

†
iαf
†
jβ

]
=
∑
i,j

− 1

16
Dij

(
χijf

†
j↑fi↑ + χ†ijf

†
i↑fj↑ + χijf

†
j↓fi↓ + χ†ijf

†
i↓fj↓

−η†ijfj↓fi↑ − ηijf
†
i↑f
†
j↓ − η

†
ijfi↓fj↑ − ηijf

†
j↑f
†
i↓

)
(6.70)

In the second and in the last step, we used that Dij = Dji. Rewriting this in the known
matrix form [cf. Eq. (6.25)], we find that

Hd
MF = − 1

16

∑
i,j

Dij

[
a†i

(
χ†ij −ηij
−η†ij −χij

)
aj + a†j

(
χij −ηij
−η†ij −χ

†
ij

)
ai

]
. (6.71)

This Hamiltonian is hermitian. In comparison to the one presented in Eq. (6.25), an
additional minus sign appears in its off-diagonal elements. Soon, we will see that this
is in fact not a mistake but a rather important result. It actually enables us to include
the density vertex from PFFRG into our self-consistency equations without losing the
necessary property that these equations preserve a specific choice of gauge as discussed in
the end of Sec. 6.3.1.

6.4.2. Incorporating the FRG vertices

We now want to insert the renormalised Green’s function as well as the spin and density
vertex resulting from a PFFRG analysis of our Heisenberg system (confer Sec. 4.2.2) into
Eqs. (6.59). Therefor, we replace the bare propagator G0 by its regularised version GΛ

0
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6.4. Including renormalised vertex functions from FRG

Figure 6.7.: Replacement scheme for the Fock self-energy diagram to obtain correct fre-
quency structure of the FRG renormalised vertex functions: The first frequency argument
s of ΓΛ is the out-going frequency on the left side plus the out-going one on the right.
Out-going on the left minus in-going on the left frequency equals the second argument t.
The third frequency u is the out-going frequency on the left minus the in-going one on the
right side. A white box corresponds to the spin-spin interaction channel, whereas a grey
box complies with the density-density interaction.

from Eq. (4.6), add the pseudo-fermion lifetime γΛ
d from Eq. (4.8) to the self energy,

and substitute the bare Heisenberg interaction in the self-consistency equations with the
frequency-dependent vertices ΓΛ

s and ΓΛ
d . The FRG formalism implies that we are now

investigating the T → 0 limit and that our equations have to be formulated in terms of
the RG scale Λ which can be seen as an effective temperature.

Let us start by considering the replacement scheme for the Heisenberg interaction. As
seen in the previous section, we not only have to replace 3

4Jij by 3ΓΛ
s ij , but we must also add

an additional density term ±ΓΛ
d ij . The + (−) sign has to be used for the (off-)diagonal

elements of the self energy. In order to identify the correct real-space and frequency
structures of the renormalised vertex functions, it is now sufficient to read off the respective
entries from the propagators being connected to the Fock-like self-energy diagrams (see Fig.
6.7). This is only possible due to the preliminary work in this chapter. In Fig. 6.7, one
immediately realises that spin and momentum-space are unaffected by this procedure. On
the other hand, summarising the diagrammatically achieved frequency structures, we spot
seemingly different contributions to the four self-energy components. These components
can, however, be rewritten for a Heisenberg system using the symmetries for the transfer
frequencies s, t, and u from Eqs. (4.15). In real space, these symmetries include exchanges
of the two real-space coordinates i ↔ j which, in momentum space, corresponds to the
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inversion k ↔ −k. Nevertheless, for the Bravais lattices considered exclusively so far,
the entire system has to be symmetric with respect to this transformation and therefore
ΓΛ

s/dk = ΓΛ
s/d−k. We are thus able to rewrite the vertex contributions from the replacement

scheme in Fig. 6.7 as follows.

ΓΛ
sk−q(ωm + ωn, ωm − ωn, 0) = ΓΛ

sk−q(ωm + ωn, ωm − ωn, 0) (6.72a)

ΓΛ
sk−q(0, ωm − ωn, ωm + ωn) = ΓΛ

sk−q(ωm + ωn, ωm − ωn, 0) (6.72b)

ΓΛ
sk−q(0, ωm − ωn,−ωm − ωn) = ΓΛ

sk−q(ωm + ωn, ωm − ωn, 0) (6.72c)

ΓΛ
sk−q(−ωm − ωn, ωm − ωn, 0) = ΓΛ

sk−q(ωm + ωn, ωm − ωn, 0) (6.72d)

ΓΛ
dk−q(ωm + ωn, ωm − ωn, 0) = ΓΛ

dk−q(ωm + ωn, ωm − ωn, 0) (6.73a)

−ΓΛ
dk−q(0, ωm − ωn, ωm + ωn) = ΓΛ

dk−q(ωm + ωn, ωm − ωn, 0) (6.73b)

−ΓΛ
dk−q(0, ωm − ωn,−ωm − ωn) = ΓΛ

dk−q(ωm + ωn, ωm − ωn, 0) (6.73c)

ΓΛ
dk−q(−ωm − ωn, ωm − ωn, 0) = ΓΛ

dk−q(ωm + ωn, ωm − ωn, 0) (6.73d)

Now, we can see how important the minus signs in the off-diagonal elements from Eq. (6.71)
are. They precisely cancel the signs that appear because of the density vertices’ antisym-
metry with respect to the frequency exchange s↔ u, see Eq. (4.15d). Therefore, we do not
obtain an extra matrix structure from including the renormalised vertices and can simply
replace

3

4
Jk−q −→ 3ΓΛ

sk−q(ωm + ωn, ωm − ωn, 0) + ΓΛ
dk−q(ωm + ωn, ωm − ωn, 0) (6.74)

in Eqs. (6.59).
To also account for the finite lifetime γΛ

d of our pseudo fermions from Sec. 4.2.2, we
have to add it to the self energy contributions for the normal Green’s functions. This
finally enables us to provide a set of self-consistent equations for the self-energy which
incorporates all considered FRG vertices, i.e.,

GΛ
k(ωn) =− θ(|ω| − Λ)

(
i(ωn + γΛ

d (ωn))1+ Σ̄k(ωn)
)−1

, (6.75a)

Σ̄Λ
k(ωn) =− 1

βV

∑
q

∑
ωm

(
3ΓΛ

sk−q(ωm + ωn, ωm − ωn, 0)

+ ΓΛ
dk−q(ωm + ωn, ωm − ωn, 0)

)
GΛ
q (ωm) . (6.75b)

Our last step for solving the above equation is to require again that all hoppings and
pairings are instantaneous in imaginary time which results in a self energy being constant in
Matsubara space (Σ̄Λ

k(ωn) ≡ Σ̄Λ
k). Employing this assumption, we can rearrange Eqs. (6.75)
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Figure 6.8.: Dependence of (a) critical temperature and (b) maximal amplitude for isotropic
nearest (second-nearest) neighbour hopping on J1 (J2): On the square lattice, the results
for an isotropic nearest-neighbour hopping and second-neighbour hopping model are identi-
cal if considered as functions of J1 and J2, respectively. The temperature at which the first
non-vanishing amplitude is found Tcrit as well as the amplitude in the zero-temperature
limit ξT→0 depend linearly on the coupling strength, see Eqs. (6.79).

as

GΛ
k(ν) = −θ(|ν| − Λ)

(
i(ν + γΛ

d (ν))1+ Σ̄k
)−1

, (6.76a)

Σ̄Λ
k = − 1

8π3

∞∫
−∞

dν

∫
B.Z.

dq
(
3ΓΛ

sk−q(ν, ν, 0) + ΓΛ
dk−q(ν, ν, 0)

)
GΛ
q (ν) , (6.76b)

where we already performed the T → 0,
(

2π
β

∑
ωm
→

∫∞
−∞ dν

)
and the V → ∞,(

4π2

V

∑
q →

∫
B.Z. dq

)
limits in accordance to the FRG formalism.

The most general definitions from Eqs. (6.60) and (6.61) together with Eqs. (6.59) or
(6.76) now define our new functional-renormalisation and projective-symmetry-group Fock-
like self-consistency scheme. In principle, we only need to plug in the appropriate mean-field
ansätze, investigate and interpret the obtained results. This will be performed in the next
sections.

6.5. J1-J2 Heisenberg model on the square lattice

We now turn to the results for the J1-J2 Heisenberg model on the square lattice. In order to
get an intuition for the mathematical details of our method and to verify its applicability,
we first investigate the system with bare couplings in which case our results should agree
with the mean-field treatment from Ref. [182]. As explained for this scenario in Sec. 6.3.5,
we need to solve Eq. (6.67) for a given mean-field ansatz with a numerical evaluation of
the occurring k-space integral.
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Before we discuss the results for those Z2 spin liquids, let us acquire some fundamental
understanding by examining the model for real isotropic hopping amplitudes on either
nearest or second-neighbour bonds. If treated separately, they are gauge equivalent to
isotropic pairings and we hence only consider the gauge-invariant quantity

ξij =
√
|χij |2 + |ηij |2 (6.77)

as a measure of the combined hopping and pairing strength on a considered bond type in
the following.

6.5.1. Results for isotropic hoppings or pairings

The two simplest mean-field ansätze on a square lattice are a real and isotropic hopping
uij = χijσ

z on all nearest or all second-nearest neighbour bonds. The according functions
that have to be plugged into Eq. (6.67) for those ansätze are(

χ1k, η1k

)
=
(
2ξ1 (cos(kx) + cos(ky)) , 0

)
, (6.78a)(

χ2k, η2k

)
=
(
4ξ2 cos(kx) cos(ky), 0

)
, (6.78b)

where we set the lattice constant a = 1. After solving the self-consistency equations
for those ansätze, we determine how the critical temperature Tcrit at which a non-zero
amplitude occurs first and the maximal amplitude in the T → 0 limit ξT→0 depend on the
coupling strengths J1 and J2. An immediate observation is that the plots for ξ1 and ξ2 are
identical if treated as a function of J1 and J2, respectively. The opposite coupling does not
affect these quantities on the other hand, see Fig. 6.8. Such results are not surprising if one
considers that the self-energy Σ̄ij ∝ Jij [cf. Eqs. (6.49)] and that a bare second-neighbour
model decouples into two identical nearest-neighbour square lattice models. We fit the
plots from above with linear functions and find for isotropic hoppings on the square lattice

Tcrit = 0.1875 J , (6.79a)

ξT→0 = 0.1520 J , (6.79b)

independent of the specific bond type. Note again that ~ = 1 and kB = 1.
The ansätze from above both have a SU(2) gauge structure because they are bare hop-

ping models and all constructible plaquette operators contain even numbers of u matrices,
confer Eq. (6.32) and the discussion in Sec. 6.2.2. This is why they are unlikely to be stable
upon introducing gauge fluctuations. However, these simple first observations can guide us
throughout the following sections. In whichever considered model, we start with the spin
system at a finite temperature above all existing Tcrit and ask ourselves what happens to it
if we cool it down. At the largest Tcrit, the system develops a finite corresponding hopping
or pairing amplitude and thereby lower its own energy. In the typical mean-field procedure,
this amplitude then only increases if one further lowers the temperature. Any additional
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Figure 6.9.: Results for nearest-neighbour Z2 spin liquids on the square lattice from bare
mean-field approach [Eqs. (6.59)]: The coupling ratio J2/J1 = 0.55 ensures maximal frus-
tration and we plot the overall amplitude ξij from Eq. (6.77) for the Z2Azz13 and the
Z2Bzz13 state [182]. Additionally, we plot the time-reversal-breaking second-neighbour
pairing that is found for the Z2Azz13 state (see Sec. 6.5.3). The inset shows ansätze for
both spin liquids in a certain gauge. Here, black lines denote both positive χ and η, whereas
red lines (blue) dots illustrate negative hoppings (pairings). Figure created by Johannes
Reuther.

amplitudes are then generated on top of the first one and we present an according hierarchy
of critical temperatures if necessary. The system’s PSG and band structure can then be
extracted from the corresponding χij and ηij in the T → 0 limit. In addition, we are only
interested in phases without the occurrence of magnetic order because the concept of de-
confined spinons is not suitable otherwise. For the spin-1

2 Heisenberg square-lattice model,
a paramagnetic phase exists around J2/J1 ' 0.5 implying that the amplitude occurring
at the highest temperature is of nearest-neighbour type. A similar statement is true for
the kagome lattice at J2/J1 ≈ 0. Hence, we always initiate our analysis by discussing the
different scenarios for nearest-neighbour Z2 spin liquids.

6.5.2. Nearest-neighbour amplitudes

Let us proceed with nearest-neighbour hopping and pairing amplitudes on the square
lattice that follow from a bare mean-field treatment [Eqs. (6.59)]. The objective now
is to determine which of the gauge-inequivalent Z2 ansätze is preferably realised by the
system. The two possible Z2 states found by Ref. [182] are characterised in Sec. 6.2.4
and shown in the inset of Fig. 6.9. Here, the Z2Azz13 state features a real and isotropic
(s-wave) hopping and real d-wave pairing on nearest-neighbour bonds. For the Z2Bzz13

state on the other hand, translation invariance is broken in terms of one lattice (not the
projective) symmetry and we have to extend the unit cell as described in Sec. 6.3.4. Their

133



6. Characterisation of quantum spin liquids and their spinon band structure via
functional renormalisation

momentum-space representations are given by(
χAk, ηAk

)
=
(
2χA (cos(kx) + cos(ky)) , 2ηA (cos(kx)− cos(ky))

)
(6.80)

for the Z2Azz13 state, and by(
χABk, η

A
Bk
)

=
(
2χB (cos(kx)− cos(ky)) , 2ηB (cos(kx) + cos(ky))

)
(6.81a)(

χBBk, η
B
Bk
)

=
(
2χB (cos(kx) + cos(ky)) , 2ηB (cos(kx)− cos(ky))

)
(6.81b)

for the Z2Bzz13 state where the square lattice is now split into two sublattices A and B
due to the staggered nature of this mean-field ansatz.
Our results for the maximally frustrated regime at J2/J1 = 0.55 are shown in Fig. 6.9

where we again plot the overall amplitude ξ as defined in Eq. (6.77) for the nearest-
neighbour bonds as a function of temperature T . We find that for both states non-vanishing
amplitudes solve Eqs. (6.59) if T . 0.1875 J1 as it is the case for an isotropic hopping
ansatz. Quite remarkably, this result is independent of the considered state and therefore
the critical temperature Tcrit is not sufficient in order to characterise the preferred state of
the system. Also, hopping and pairing amplitudes are equal in size χ = η = ξ/

√
2 for both

cases. Fortunately though, this is where the similarities between the Z2Azz13 and the
Z2Bzz13 state end. For temperatures below Tcrit, the Z2Azz13 state (ξT→0 ' 0.18 J1) is
clearly dominant and develops a significantly higher amplitude ξ compared to the Z2Bzz13
state (ξT→0 ' 0.15 J1) as can be seen in Fig. 6.9.
Therefore, we conclude that on a bare mean-field level the system prefers the formation

of an effective low-energy theory with spinon hopping and pairing terms characterised by
Eq. (6.80) where χA = ηA. However, since nearest-neighbour hopping and pairing are equal
in size, the Z2Azz13 is in fact gauge equivalent to the aforementioned SU(2) π-flux state
which is labeled SU2Bn0 in Ref. [182] (also confer Sec. 6.2.4). A similar statement holds
for the Z2Bzz13 state and the isotropic hopping model from Eq. (6.78a). As discussed
in the previous section, these results do not depend on the value of the second-neighbour
Heisenberg coupling J2. Even though we identify a possibly unstable SU(2) spin liquid in
this simple nearest-neighbour model, it has been argued that the predicted π-flux state can
withstand gauge fluctuations, at least in the large-N limit for SU(N) spins [75]. Hence,
we continue by analysing all possible second-neighbour hopping and pairing terms that can
coexist with the Z2Azz13 state in a PSG classification.

6.5.3. Including second-neighbour amplitudes

As previously seen, finite next-nearest-neighbour mean-field amplitudes occur at temper-
atures T ≤ 0.19 J2 if treated solitarily. Again, the critical temperature and the maximal
amplitude in the T → 0 limit ξT→0 ' 0.15 J2 are independent of the real space patterns
for non-staggered ansätze, i.e., those that do not break the translation invariance of the
lattice. There are only two possible second-neighbour terms that are allowed by the PSG

134



6.5. J1-J2 Heisenberg model on the square lattice

Figure 6.10.: Band structure of the chiral spin liquid [Eq. (6.83)] found for J2/J1 = 0.55 in
the T → 0 limit: There are two spinon bands, one below and one above zero energy. These
bands are completely gapped due to the finite second-neighbour pairing. The respective
mean-field amplitudes correspond to those in Fig. 6.9.

of the state Z2Azz13. For our nearest-neighbour ansatz from Eq. (6.80), they are either
given by real s-wave or by p-wave hoppings

(χAsk, ηAk) = (χAk + 4χ2 cos(kx) cos(ky), ηAk) , (6.82a)

(χApk, ηAk) = (χAk + 4χ2 sin(kx) sin(ky), ηAk) . (6.82b)

At J2/J1 = 0.55 however, both of them are not induced within the mean-field formalism
down to zero temperature in the presence of nearest-neighbour amplitudes with higher
Tcrit. This difference to the results from Sec. 6.5.1 shows that they must be suppressed by
the existence of the shorter-ranged amplitudes.
In fact only because χA = ηA = ξA/

√
2, the sole PSG-allowed second-neighbour ampli-

tude that we can find to coexist with the state from Eq. (6.80) is an imaginary p-wave
pairing, yielding a total state of

(χAk, ηAck) = (χAk, ηAk + 4iηc sin(kx) sin(ky)) . (6.83)

This ansatz breaks time-reversal invariance and therefore represents a chiral spin liquid.
We show the corresponding amplitudes for J2/J1 = 0.55 in Fig 6.9 and the corresponding
zero-temperature band structure in Fig. 6.10. In contrast to the band structure of the
π-flux state [see Fig. 6.12(a)], all spinons of the chiral spin liquid are gapped due to the
finite second-neighbour pairing term. Unlike χA and ηA, the magnitude of ηc strongly
depends on J2. It vanishes if J2 ≤ 0.45 J1 and then only increases within the regime that
is believed by most theories to house a paramagnetic phase, e.g., 0.4 . J2/J1 . 0.65 [61,
64, 96, 114, 147, 160, 161].
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Figure 6.11.: Overall amplitudes ξij =
√
|χij |2 + |ηij |2 from FRG [see Eqs. (6.76)] for Z2

spin liquids on the square lattice with J2/J1 = 0.55: The system favours the Z2Azz13 state
in comparison to the Z2Bzz13 state which is expressed by a larger ξ during the Λ flow.
How the maximal amplitudes ξ in the Λ → 0 limit change as a function of the coupling
ratio J2/J1 is presented in the inset (confer main text for interpretations). Figure created
by Johannes Reuther.

The gapped chiral spin liquid is the same state that is found by Xiao-Gang Wen for
coupling ratios J2/J1 ≈ 0.5 . . . 1.0 whereas for lower values the gapless π-flux state is
supposedly realised [182]. This exactly2 coincides with our findings and we can therefore
apply our method with some confidence since it yields identical results as a plain mean-field
analysis if bare Heisenberg couplings are used. We continue with the incorporation of the
renormalised vertex functions in the next section.

6.5.4. Results from FRG vertices

So far, we treated our square lattice Heisenberg spin system on the basis of instantaneous
interactions and bare propagators. This technique has shown to agree with the results of
Xiao-Gang Wen who compares the mean-field energies of the respective states but makes
no statement about the magnitudes of hoppings and pairings which we determine self-
consistently. As shown in Sec. 6.4, we are also capable of incorporating the frequency-
renormalised vertex functions (including a density-density vertex) and pseudo-fermion life-
time from a FRG formalism into our theory. This effectively adds more diagrams to the
self-consistency scheme the lower the cutoff value Λ is set. We already saw in Chap. 4 that
those diagrams are required for finding magnetically disordered phases at zero temperature
and hence should be accounted for in an effective low-energy theory for QSLs. Since most
of these contributions were neglected in the previous section, they now account for the

2Ref. [182] does not provide tabulated values of the phase boundaries and the ones given here were
extracted from a plotted phase diagram.
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missing gauge fluctuations up to some point and the effects of spinon-spinon interactions
and vison excitations are implicitly incorporated in our study. Due to the frequency cutoff,
Λ takes in addition the role of an effective temperature and we therefore now look for those
amplitudes first that are induced at the highest Λ values. Despite this, the results for the
physical system should be derived from the cutoff-free theory in the Λ→ 0 limit.
We perform pseudo-fermion FRG calculations on the J1-J2 Heisenberg square lattice

model using clusters of 441 lattice sites and 120 points for the discretisation of the Mat-
subara frequencies. In comparison to the Dzyaloshinsky-Moriya Heisenberg model from
Chap. 4 or the 3D material from Chap. 5, this model is numerically far less challenging
and a higher precision in spatial and frequency resolution can thus be achieved. Using the
obtained, frequency-dependent vertex functions, we are able to solve Eq. (6.76) by means
of a numerical momentum and Matsubara space integration.
In a regime around J2/J1 = 0.55, the first important result is that only nearest-neighbour

amplitudes can exist by themselves. This is in strong contrast to the results obtained with
bare couplings (see Sec. 6.5.1) and indicates that one effect of the FRG procedure is a
reduction of the effective second-neighbour interaction strength. From Sec. 6.5.3, we know
that the induced nearest-neighbour amplitudes suppress the possibility for existence of
second-neighbour hoppings and pairings even further. Hence, there is no evidence for
second-neighbour terms in a FRG analysis of the relevant coupling range.
Comparing the two different Z2 spin liquids from Eqs. (6.80) and (6.81), we observe once

more a self-consistent solution with equal-sized hopping and pairing for both states. This
is a fundamental property of our approach which cannot distinguish between two states
that have identical flux patterns and are therefore gauge-equivalent. If treated solitarily,
the hopping and the pairing patterns from each of the states Z2Azz13 or Z2Bzz13 have the
same PSG and therefore must yield identical results. If considered together, the method
still does not discriminate them and returns identical magnitudes as a consequence. In
Fig. 6.11, we show the according self-consistent solutions for the overall amplitudes ξ [see
Eq. (6.77)] as a function of Λ for J2/J1 = 0.55. Comparing the Λ dependence to the
one on temperature in Fig. 6.9, we see that the curves appear qualitatively similar if
Λ & 0.06 J1 and T & 0.1 J1. Only for smaller Λ, we observe a pronounced increase of both
overall amplitudes obtained from the renormalised vertices. This increase is not present
at low temperatures in the mean-field treatment. Again, the Z2Azz13 state is found to
be dominant due to its larger amplitude in the entire investigated parameter range. We
show how the maximal amplitudes in the limit Λ → 0 of both considered states depend
on J2/J1 in the inset of Fig. 6.11. In addition to the system’s preference of the Z2Azz13
state, one verifies that both states remain stable throughout the paramagnetic regime, i.e.,
0.4 . J2/J1 . 0.6. Outside this range, the maximal amplitudes start to become more
and more suppressed until they vanish if J2/J1 ≤ 0.2 or if J2/J1 ≥ 0.7 which shows that
their existence has to be directly connected to the presence of strong quantum fluctuations
within our approach.
Due to the absence of the time-reversal symmetry breaking second neighbour pairing
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Figure 6.12.: Band structures from self-consistent Fock equations with FRG vertices in the
limit Λ → 0 for (a) J1-J2 Heisenberg model on the square lattice with J2/J1 = 0.55 and
(b) nearest-neighbour Heisenberg model on the kagome lattice: We show the states dubbed
Z2Azz13 for the square lattice and Z2[0, π]α for the kagome lattice which are preferred by
our analysis. Both spectra are by definition particle-hole symmetric. In (b), we only show
the six bands with negative energies to avoid confusion. Here, the first Brillouin zone (of
an ansatz with a six-atomic unit cell) is indicated by a grey area on top of which black
rings mark two small circular Fermi surfaces. Figure created by Johannes Reuther.

from Sec. 6.5.3, we conclude that the prediction of a chiral spin liquid is an artefact of
the previous bare mean-field study. The FRG method yields the familiar SU(2) π-flux
state with four Dirac cones in the spinon dispersion at the wave vectors k = (±π/2,±π/2)

indicating that the opening of a gap is suppressed by gauge fluctuations, see Fig. 6.12(a)
for the corresponding band structure. A comparison to variational Monte Carlo studies
shows a very good agreement on the nearest-neighbour level where the Z2Azz13 state also
yields the best variational energies. On the other hand, for longer-ranged terms differences
arise and VMC does predict an additional d-wave pairing term on fifth-neighbour bonds
where our FRG procedure does not [52, 76]. In a very recent spin cluster perturbation
and VMC study by Yu et al., this result is confirmed in terms of the additional pairings.
The paper however also indicates that nearest-neighbour hoppings and pairings differ in
magnitude [191]. Despite these facts, all approaches so far verified the existence and the
aforementioned positions of four Dirac cones in the frustrated J1-J2 Heisenberg model on
the square lattice.
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6.6. Nearest-neighbour Heisenberg model on the kagome
lattice

Let us conclude this chapter by applying the newly developed FRG plus Fock mean-field
method on the currently intensively discussed nearest-neighbour Heisenberg antiferromag-
net on the kagome lattice which for spin-1

2 particles lies in a magnetically disordered phase,
confer Fig. 4.8(a). While the existence of a paramagnetic phase is widely agreed on for
more than three decades [107, 153, 173], the precise nature of its emergent spinon ex-
citations as well as their associated gauge structure is a topic of ongoing debates until
today. For instance, first DMRG studies predicted a gapped Z2 spin liquid [44, 94, 190],
but rather recently the same method identified a gapless U(1) Dirac spin liquid to be the
realised state [71]. Similarly, tensor network studies do not yield conclusive results [110,
118]. From a third perspective, VMC simulations seem to agree that indeed the U(1) Dirac
spin liquid is realised [83, 85, 86, 140]. However, a strong energetic competition with the
gapped Z2 spin liquid from DMRG is confirmed by this method as well [88].
In Sec. 6.2.5, we have already summarised the four Z2 and the three chiral states that

on one hand can be stable against gauge fluctuations and on the other hand show compat-
ible variational energies [83, 84, 140]. They were previously dubbed Z2[0, 0]B, Z2[π, 0]A,
Z2[0, π]α, Z2[π, π]A, Chiral-[π2 , 0], Chiral-[±π

2 , 0], and Chiral-[π2 , π] and their real-space
representations for specific gauges are shown in Figs. 6.1 and 6.2, respectively. In order
to gain more knowledge about the effects of quantum fluctuations which are captured by
the frequency renormalisation of the FRG vertex functions, we start our analysis of the
kagome Heisenberg antiferromagnet with a stripped-down self-consistency method which
still incorporates the bare interactions.

6.6.1. Bare vertex approximation

Due to the large unit cell of up to six atoms for the Z2[π, 0]A, Z2[0, π]α, and the Chiral-
[π2 , 0] ansätze with a resulting 12× 12 matrix structure in Nambu space, an analytic treat-
ment of the Matsubara sums as in the bare mean-field description of the square-lattice
Heisenberg model in Sec. 6.3.5 is neither feasible nor would it provide any physical in-
tuition for the system. Instead, we apply a reduced version of the final FRG mean-field
formalism from Eqs. (6.76) in which the vertex functions are replaced with their parent
expressions from a bare Heisenberg theory, e.g., the expression 3ΓΛ s

k + ΓΛ d
k is set to 3Jk

4

in all frequency modes and the single-particle vertex γΛ
d (ω) = 0 for the Green’s function.

This amounts to a plain mean-field analysis in the T → 0 limit where an artificial effective
temperature Λ is generated via the propagator’s Heaviside function.
The results of the bare vertex approximation can be seen in Fig. 6.13(a), where the

overall nearest-neighbour amplitudes for the seven Z2 and chiral spin liquids are plotted
as a function of Λ in the top panel. Our first and most important observation which
also holds during the next sections is that, apart from the Z2[0, π]α state, all Z2 ansätze
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do not develop a finite nearest-neighbour pairing η such that their gauge structure is in
fact U(1). For the Z2[0, π]α state, the ratio of nearest-neighbour hopping and pairing
is χ

η ≈ 2.13 in the Λ → 0 limit. Since a plethora of methods identify that state’s U(1)

parent state denoted by U(1)[0, π] as the preferred state for our model, we also compute
the corresponding amplitude by setting η = 0 in the Z2[0, π]α ansatz. The result is also
shown in Fig. 6.13. For a better visibility, we plot the differences in amplitude to the
lowest one found, i.e., the Z2[π, π]A amplitude, in the lower panel of the figure. Here, we
determine the Z2[0, π]α as the preferred state due to its largest amplitude. It is followed by
the Chiral-[π2 , 0] ansatz which interestingly shows a crossover with the U(1)[0, π] and the
Z2[0, 0]B state at finite Λ. However, since Λ is not a temperature, we can only interpret
our results in the Λ → 0 limit for the physical system. They agree with the findings of
Refs. [70, 116] which suggest lower mean-field energies for the Chiral-[π2 , 0] state than for the
U(1)[0, π] state. The sequence of remaining ansätze with descending amplitude is Chiral-
[±π

2 , 0], Chiral-[π2 , π], Z2[π, 0]A, and Z2[π, π]A where the last three lie close together in the
bottom range. How these observations are influenced by the effects of quantum fluctuations
is investigated in the following section.

6.6.2. Results from FRG

We finally apply the PFFRG method on a hexagonal kagome lattice segment containing 251

lattice sites for finding the renormalised and frequency-resolved vertex functions ΓΛ
s and ΓΛ

d .
We use 120 discrete points for modeling the continuous Matsubara frequencies and set the
initial conditions of the vertex functions to

(
ΓΛ→∞

s ,ΓΛ→∞
d

)
=
(

1
4 , 0
)
for nearest neighbours

and
(
ΓΛ→∞

s ,ΓΛ→∞
d

)
= (0, 0) otherwise as described in Sec. 4.2.2. Note that again the

resolution of the FRG numerics can be chosen much higher than in Chap. 4 because of the
pure Heisenberg interaction and the resulting frequency symmetries as well as the reduced
number of vertex functions. We then apply Eqs. (6.76) to the four Z2, the three chiral, and
the sole parent U(1) mean-field ansätze that were previously considered within the bare
vertex approximation. The resulting nearest-neighbour amplitudes (amplitude differences
with respect to Z2[π, π]A) can be seen in the top (bottom) panel of Fig. 6.13(b). A first
comparison to the results from the previous section shows that the amplitudes now lie closer
together indicating that quantum fluctuations lead to an increased competition between
the different possible mean-field states. This is in good agreement with the observation of
a plethora of competing low-energy states in Ref. [139].
Again, only the Z2[0, π]α state develops a finite nearest-neighbour pairing term with a

similar ratio χ
η ≈ 2.48 as before. This ansatz also develops the largest amplitude within

our method such that we identify it as the preferred state of the spin-1
2 kagome Heisenberg

antiferromagnet. Its band structure can be seen in Fig. 6.12(b) where we only plot that part
of the spectrum which has a negative energy in order to avoid confusion. Most remarkably,
the Z2[0, π]α state with the suggested ratio of nearest-neighbour hopping and pairing is
gapless but not Dirac like. Instead, the spectrum shows approximate Dirac cones with
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Figure 6.13.: Self-consistent results for chiral and non-chiral ansätze on the kagome lattice
for (a) the bare vertex approximation and (b) the full FRG Fock mean-field treatment:
In the top panel, we show the overall nearest-neighbour amplitude ξ as a function of Λ.
Due to the very similar magnitudes, we plot the differences to the smallest ξ found for
PSG Z2[π, π]A in the lower panel. The corresponding gauge structures are discussed in
Sec. 6.6.1. The inset shows the variational energies determined by VMC[83, 84, 140]. In
this analysis, the Z2[0, π]α state is absent, confer main text. Inset created by Johannes
Reuther.
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method BVA
[
ξΛ→0

J1

]
FRG

[
ξΛ→0

J1

]
VMC

[
− E
J1N

]
Z2[0, π]α 0.169 0.312 -
U(1)[0, π] 0.167 0.310 0.428

Z2[0, 0]B 0.165 0.308 0.412

Chiral-[π2 , 0] 0.168 0.307 0.401

Chiral-[±π
2 , 0] 0.162 0.301 0.391

Chiral-[π2 , π] 0.150 0.293 0.382

Z2[π, 0]A 0.149 0.292 0.384

Z2[π, π]A 0.148 0.289 0.383

Table 6.1.: Overall amplitudes in the Λ → 0 limit and variational energies for the eight
considered nearest-neighbour PSGs on the kagome lattice: The results are obtained via
the bare vertex approximation (BVA), the full FRG plus Fock mean-field analysis (FRG),
and VMC simulations from Refs. [83, 84, 140], respectively. A very good agreement is
especially found between the FRG and VMC methods. Note that the best variational
energy for the Z2[0, π]α state is achieved if η = 0, i.e., for the U(1)[0, π] state.

rounded tips for energies E . 0.2 J1. Unlike in the π-flux state in Fig. 6.12(a), these
cones do not touch at the Fermi level but rather intersect with it. As a result, we find
two small circular Fermi surfaces within the appropriately reduced Brillouin zone at zero
energy which were not predicted so far by any other method.

The remaining states have a chiral or a U(1) gauge structure and the sequence of de-
scending overall amplitudes remains relatively unchanged as compared to the previous
section. Only the crossover at finite Λ for the Chiral-[π2 , 0] amplitude is now absent and
seems to be an artefact of the bare vertex approximation. This state is now slightly less
favourable than the Z2[0, 0]B state in agreement with VMC results [83, 84, 140]. In fact,
the similarities between the magnitudes of our amplitudes and the variational energies
from VMC are impressive and not expected a priori due to the quite distinct philosophies
behind both methods (see Sec. 6.7 for a detailed discussion). Both methods identify almost
the same hierarchy of states. One minor discrepancy is that VMC identifies the Chiral-
[π2 , π] ansatz as the least probable one. Within our approach, it resides above the two
Z2 ansätze in its close proximity though. More importantly, the PFFRG plus mean-field
analysis determines a finite nearest-neighbour pairing term on top of the U(1)[0, π] Dirac
spin liquid which VMC does not find. This pairing not only yields an increased overall
amplitude in our formalism, but it also limits possible gauge fluctuations to a Z2 type
which might stabilise the according spin liquid (confer Sec. 6.2.2). The overall amplitudes
at Λ ≈ 0 from this and the previous section as well as the according variational energies
per lattice site are summarised in Tab. 6.1.
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6.6.3. Long-range terms on the kagome Heisenberg antiferromagnet

For the PSGs on the kagome lattice considered so far, there are plenty of allowed long-range
and onsite terms [111] which, in principle, can follow from our self-consistency analysis.
Due to the real-space structure of our Fock equations, they all vanish in the bare Heisenberg
model since the Jij are zero on the according lattice bonds. Despite the more spread-out
structure of our FRG vertices, long-range and onsite terms are also not generated once the
renormalised interactions are utilised because of a rapid decay in the interaction strength on
longer-ranged bonds within the FRG. However, finite hoppings are found to be generated
on such bonds in the presence of a finite nearest-neighbour hopping. The same statement
holds separately for pairings as well. Considering our different PSGs, this implies that the
gauge structure cannot be altered by onsite or longer-ranged terms within our approach
since this would require finite pairing terms in a pure hopping model or vice versa. In
addition, the new terms are two orders of magnitude smaller than the nearest-neighbour
amplitudes and their effect on the spinon band structure can therefore be safely neglected.
For completeness, we note that also onsite hoppings (pairings) are found with our method
if allowed by the PSG. In complete analogy to the long-range terms, they are induced by
finite nearest-neighbour hoppings (pairings), cannot alter the gauge structure of an ansatz,
and their impact on the band structure is negligible.

6.7. Summary, discussion, and outlook

In this chapter, we unified two approaches for the investigation of frustrated quantum mag-
nets which are both based on the Abrikosov decomposition of spin operators into pseudo
fermions (spinons). Different Z2 and chiral spin liquid ansätze were obtained from a PSG
classification [111, 182] and we compared their hopping and pairing amplitudes deter-
mined from a Fock-like self-consistency approach based on renormalised Green’s functions
and vertices. The defining Eq. (6.49) is form invariant under local gauge transformations
[cf. Eq. (6.52)] such that all possible ansätze within one PSG yield identical physical re-
sults. This proves that our combined FRG plus Fock mean-field scheme is consistent with
both utilised methods. In contrast to a plain mean-field analysis, the newly developed
technique incorporates the effects of gauge fluctuations implicitly due to certain sets of
Feynman diagrams that are additionally generated during the RG flow, see Sec. 4.2.1.
Therefore, even though we are not directly computing the spinon-spinon interactions or
the vison spectra of our models, these effects may still have an influence on the acquired
results due to the incorporation of the frequency-resolved vertex functions ΓΛ and ΣΛ in
the defining equations.
For the J1-J2 model on the square lattice, we identified the SU(2) π-flux state [Fig. 6.12(a)]

to be preferred over the chiral spin liquid found by the mean-field treatment of Ref. [182].
Therefore, we can conclude that the time-symmetry-breaking pairing term responsible for
the finite spinon gap in Fig. 6.10 is an artefact arising from the negligence of gauge fluctu-
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ations in the bare mean-field approach. Our numerics show that the π-flux state is realised
in the entire paramagnetic regime of the spin-1

2 Heisenberg square lattice model whereas no
finite hopping or pairing terms are found deep in the magnetically ordered phases. Hence,
there seems to be a strong connection between magnetic frustration and quantum fluctu-
ations on one side and effective free spinon models on the other side. A comparison with
VMC studies shows good agreement on the nearest-neighbour level where VMC also finds
the π-flux state to be preferred [76]. However, on longer-ranged bonds, we do strictly not
observe finite amplitudes whereas VMC finds additional pairing terms on fifth-neighbour
bonds [52, 76, 191].
On the kagome lattice, the Z2[0, π]α state with a ratio of χ

η ≈ 2.48 between nearest-
neighbour hopping and pairing is found to be most likely realised. In the considered model,
we also identify finite, but small additional terms on other bonds. Their influence on the
spinon dispersion can be safely neglected though because they are two orders of magnitude
smaller than the nearest-neighbour terms and they are also not capable of altering the IGG
of the respective state. The band structure of the identified Z2[0, π]α state [Fig. 6.12(b)]
features two small circular Fermi surfaces within the Brillouin zone which have not been
reported by any other method so far. A comparison to VMC results shows strong similar-
ities between the hierarchy of variational energies and the sequence of overall amplitudes
derived from our method, confer lower panel of Fig. 6.13(b). This agreement is a priori
unexpected since both methods explore rather distinct quantities. The combined PFFRG
plus mean-field analysis calculates the spinon hoppings and pairings self consistently. This
conceptually amounts to integrating out high-energy degrees of freedom in the FRG fash-
ion and a subsequent determination of a matching low-energy theory for the renormalised
vertex functions. On the other hand, VMC considers all distinct Hamiltonians which arise
from a PSG classification. It then compares the respective ground-state energies after a
Gutzwiller projection whilst optimising them with respect to the ratios of considered am-
plitudes. We do not compute spinon interactions and vison excitations explicitly which is
why the results that are obtained with the new FRG mean-field scheme do not necessar-
ily have competitive variational energies. The overall good agreement with VMC methods
may therefore hint at possibly small corrections induced by gauge fluctuations as one would
expect for Z2 and chiral spin liquids, see Sec. 6.2.2.
Overall, we have shown that the method developed in this chapter is generally a powerful

tool for the characterisation of spinon band structures in magnetically disordered phases.
Due to the fact that the FRG can access a large class of spin models, an extension to
other lattices and interaction types is not only feasible but also desirable. For instance,
a recent mean-field study by Laura Messio et al. suggests the realisation of a gapped
chiral spin liquid in the Heisenberg-DM model on the kagome lattice (cf. Chap. 4) [123].
This work claims to reproduce the spin-structure factor by Han et al. [69] and it would
be interesting to observe if and how this result is modified once renormalised vertices are
included. Furthermore, the J1-J2-J3 model on the square lattice is known to house a large
paramagnetic and thus possible spin liquid phase [148] and there is evidence that a Z2
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spin liquid might be realised for finite J3/J1 [24, 141, 154] instead of the π-flux state that
we identified for the J1-J2 model. Remarkably, also the spin-1

2 J1-J2-J3 Heisenberg model
on the triangular lattice has attracted renewed interest in the seemingly unrelated context
of twisted bilayer graphene [188]. In these systems, there seems to be a strong connection
between spin liquids and superconductivity, and both phenomena might descend from the
same physical principles at different filling factors. There are hence excellent perspectives
for future applications of the combined PFFRG plus mean-field method, especially since
PSG classifications of Z2 and chiral spin liquids already exist for the square, triangular,
and kagome lattices [15, 122, 178, 182]. For frustrated three-dimensional lattices such as
the pyrochlore or the hyper-hyper3-kagome lattice, an extension of the FRG has yet been
accomplished. Unfortunately however, there are currently no PSG analyses available for
these constructs and they might as well be very cumbersome due to the complexity of the
involved loop structures in real space. Nevertheless, the newly derived method therefore
provides us with a large class of interesting and explorable research topics for the near and
also the distant future.

3It is astonishing how far people have made it with these two words in the past.
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We extended the existing PFFRG framework [144, 147] for frustrated quantum spin
systems in two important aspects during this thesis. After an introduction in Chap. 2 to
all theoretical concepts relevant for our purposes, we derived the FRG flow equations for one
and two-particle vertex functions in Chap. 3 which, in combination with a representation
of spin operators in terms of Abrikosov pseudo fermions, are essential for the presented
studies.
The first main part of our original work is the implementation of DM interactions within

PFFRG, see Chap. 4. For the first time, we were able to incorporate off-diagonal spin
couplings into the theory and showed that an extension of this method towards more
realistic spin models is indeed possible. Apart from the resulting flow equations in App. B,
one of the main results from this chapter is that a sizable DM coupling enlarges non-
collinearly ordered phases [in particular the q = 0 phase, cf. Fig. 4.2(b)] while shirking
the paramagnetic phases of the underlying spin-1

2 J1-J2 Heisenberg model on the kagome
lattice, see Fig. 4.8. Especially, the possible quantum spin liquid (QSL) phase of the
nearest-neighbour antiferromagnet vanishes and q = 0 Néel order is found for DM couplings
D & 0.1 J1. On one hand, this study is a proof of principle for the PFFRG’s applicability
to systems with arbitrary spin-spin interactions. On the other hand, the experimental
motivation for this work is the investigation of the mineral herbertsmithite for which we
obtain qualitatively good results by comparing the computed static spin susceptibility
with the experimentally observed spin structure factor. Quantitatively, we find that the
minimal model from Eq. (4.1) is insufficient to accurately describe this material due to the
presence of magnetic impurities and inter-layer couplings. Our simulations suggest that
herbertsmithite is, in fact, in close proximity to a quantum critical point. Furthermore,
the analytic RPA solution from Sec. 4.3.1 has meanwhile provided more insight into the
PFFRG procedure itself. It was shown by Laura Baez et al. that this solution corresponds
to the large-S limit of our theory and that it yields the same results as the Luttinger-Tisza
method which is exact in that limit for Bravais lattices. Together with the observation that
the PFFRG for spin systems is also accurate in the large-N limit [19, 150], there is now
much more evidence for the reliability of this method and also a clearer understanding
of its working principle. Namely, it is based on a simultaneous and relatively unbiased
incorporation of those sets of Feynman diagrams that are mainly responsible for magnetic
long-range correlations and quantum fluctuations.
In Chap. 5, we used a combination of the PFFRG’s arbitrary-S generalisation from

Ref. [9] together with a simplified version of the aforementioned flow equations (confer
App. C) in order to study the spin-1 XXZ model which is relevant for the A-site spinel
NiRh2O4. Similar to herbertsmithite [73, 119, 165], also this substance shows no sign of
magnetic long-range order down to lowest temperatures [30]. Hence, both materials are
amongst the most promising candidates for finding a realistic QSL at the moment. Because
the currently proposed spin couplings for NiRh2O4 are not yet reliably determined, we
investigated two different model Hamiltonians [see Eqs. (5.2) and (5.7)] on the diamond
lattice in order to characterise the paramagnetic phase which is the reason for the above
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mentioned experimental observations. Both considered Hamiltonians amount to effective
XXZ models with tetragonally split-up second-neighbour Heisenberg couplings which are
required due to a lattice distortion at T = 440K [30]. The Hamiltonian in Eq. (5.2)
features an antiferromagnetic nearest-neighbour Heisenberg interaction and a single-ion
anisotropy which has been implemented in this context for the first within PFFRG. For
this model which was inspired by an online preprint of Ref. [30], we do observe an extended
paramagnetic regime for finite, albeit small tetragonal splittings if a significant single-ion
anisotropy is present, see Fig. 5.6. However, for strong splittings such as suggested by the
motivating DFT analysis [29], we can only identify a conventionally Néel ordered state
in the presence of reasonably-sized anisotropies. The same holds for the Hamiltonian
in Eq. (5.7) which does not include single-ion terms and instead has an anisotropic XXZ
interaction on first-neighbour bonds. Here, we did not map out an entire phase diagram and
only considered the coupling strengths from Ref. [30]. Even though, our study confirmed
the existence of a possible QSL phase within a wide parameter range of the spin-1 XXZ
diamond lattice model with tetragonal splitting and single-ion anisotropy, we could not
observe such a behaviour for the couplings that were estimated by the DFT and spin-wave
analyses available momentarily. Therefore, we conclude that a more detailed analysis from
first principles is desired in order to gain more knowledge about the promising properties
of NiRh2O4.

The second main part of this thesis is contained in Chap. 6. Here, we utilised the impor-
tant vertex functions which arise from a PFFRG analysis in order to determine the effective
low-energy theory for the considered quantum spin models. This work is motivated by one
of the most significant articles in the field by Xiao-Gang Wen [182]. Wen’s PSG classifica-
tion scheme which has been summarised in Sec. 6.2 provides different gauge-inequivalent
free spinon models whose so-called IGGs are critical. As explained in Sec. 6.2.2, some of
these effective models can be destabilised by gauge fluctuations which are neglected within
the PSG approach. Only for Z2 and chiral spin liquids that follow from PSG considera-
tions, there seems to be a general consensus about the fact that they are, at low energies,
stable against such gauge fluctuations which are gapped for these models. Therefore, we
developed a Fock-like mean-field method based on renormalised vertices that is capable of
self-consistently computing spinon hopping and pairing amplitudes. Our approach is form
invariant under time-independent local gauge transformations and therefore yields faithful
physical results. The final set of equations can be seen in Eqs. (6.76). It was applied to all
distinguishable Z2 spin liquids and a selection of relevant chiral spin liquids in the J1-J2

Heisenberg model on the square lattice and the nearest-neighbour Heisenberg model on the
kagome lattice. In a simplified version of our method [Eqs. (6.59)], we were able to repro-
duce the results from a bare mean-field study in Ref. [182] for the square lattice model, see
Fig. 6.9. The identified chiral spin liquid is fully gapped (Fig. 6.10), breaks time-reversal
symmetry, and prevails if the antiferromagnetic second-neighbour Heisenberg interaction
J2 > 0.45 J1. The spinon gap and the chirality of this spin liquid are induced by a finite
imaginary second-neighbour pairing. This term is absent in our simulations once the effects
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7. Summary and outlook

of gauge fluctuations are implicitly included by considering the renormalised Green’s and
vertex functions. In this case, the SU(2) π-flux state is preferred for all coupling ratios
and the development of finite spinon hoppings is observed for J2/J1 ∈ (0.2, 0.7). Because
the mean-field amplitudes vanish deep inside the magnetically ordered phases, we are able
to confirm that the existence of finite hoppings and pairings is related to the strong quan-
tum fluctuations in magnetically frustrated systems. However, for a direct investigation
of a confinement-deconfinement transition, spinon-spinon interactions and vison excita-
tions should be considered explicitly. In the nearest-neighbour kagome lattice model, we
found that most likely the Z2[0, π]α state accurately describes the system’s low-energy
properties since it develops the largest overall amplitudes. This state has two Dirac-like
cones in its reduced Brillouin zone at energies E . 0.2 J1. In this range, the dispersion
is almost linear, but the cones do not touch and rather intersect at zero energy which
results in small circular Fermi surfaces at half filling, see Fig. 6.12(b). This has not yet
been reported before. For the kagome lattice model, we observe a certain hierarchy of
the overall amplitudes for different PSGs. Quite interestingly, this hierarchy agrees very
well with the sequence of variational energies determined via VMC, confer bottom panel
of Fig. 6.13(b). In fact, there are apparently only two important differences in the results
obtained from both methods. The first one is that the Chiral-[π2 , π] state, which has the
largest variational energy, occurs as the third-most unlikely state in our approach. The
second significant difference between the PFFRG plus mean-field scheme and VMC lies
in the results for the Z2[0, π]α state. Where our new analysis clearly favours this state
with finite nearest-neighbour hoppings and pairings, VMC finds that its lowest variational
energy is obtained for vanishing pairings in which case the parent state called U(1)[0, π] is
realised. A detailed discussion on the differences of the two methods is given in Sec. 6.7.
Even though the Z2[0, π]α spin liquid has already been classified by Lu et al. [111], we
report, for the first time, that this state with a given ratio between nearest-neighbour hop-
ping and pairing of χη ≈ 2.48 and the resulting band structure in Fig. 6.12(b) is found for
the still debated kagome antiferromagnet. According to its IGG, this particular spin liquid
should be more robust against gauge fluctuations than the U(1)[0, π] spin liquid identified
by VMC or the SU(2) π-flux state of the square lattice model. Thus, we can infer that
the frustrated spin-1

2 kagome antiferromagnet is, to this day, one of the most promising
systems in which a QSL might actually be realised. An extension of the theory to other
lattices as well as to finite DM interactions should be pursued in the near future in order to
characterise even more spin liquids in a, for the moment, fairly unbiased way. Additionally,
one also should investigate how to experimentally verify or falsify the existence of small
(circular) Fermi surfaces in an effective free spinon model and thereby check the validity
of our method.

In total, we have shown that the PFFRG is a very flexible tool for the investigation of
frustrated spin systems and that it also offers plenty of possibilities for further extensions
and applications. With our studies of the spin models which approximately describe the
materials herbertsmithite and NiRh2O4, we hopefully provided a small contribution to
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the understanding of those phenomena that are responsible for a QSL behaviour. In
future, this might be helpful to design more efficient high-Tc superconductors [6, 7] and
quantum memory with higher fidelity [101]. Especially due to our implementation of more
general spin interactions and the formulation of the self-consistency scheme for spinon band
structures, we have given a novel perspective to prospectively seek and identify even more
new states of matter in strongly frustrated quantum magnets.
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A. Flow equations for Heisenberg vertices
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A. Flow equations for Heisenberg vertices

Here, we summarise the PFFRG flow equations for the vertex functions of a bare spin-1
2

Heisenberg Hamiltonian [Eq. (1.1)]. The flow equations are obtained by inserting the pa-
rameterisations from Eqs. (4.8) and (4.13) into Eqs. (3.25) and (3.30), and by subsequently
performing all Matsubara integrals that are trivial due to the proportionality of SΛ to the
Dirac delta distribution, see Eq. (4.12).
Let us start by providing the flow equation for the pseudo-fermion lifetime which deter-

mines the self energy [cf. Eq. (4.8)] and hence the single-particle propagators. It reads

d

dΛ
γΛ

d i1(ω1) = − 1

2π

∑
ω2=±Λ

{∑
j

[
2ΓΛ

d i1j(ω1, ω2;ω1, ω2)

(
1

ω2 + γΛ
d j(ω2)

)]

−
(
ΓΛ

d i1i1(ω1, ω2;ω2, ω1) + 3ΓΛ
s i1i1(ω1, ω2;ω2, ω1)

)( 1

ω2 + γΛ
d i1

(ω2)

)}
.

(A.1)

Note that γΛ
d does not depend on its real-space index because we only consider a lattice of

equivalent sites and i1 can thus be chosen arbitrarily, confer Sec. 4.2.2.
For the flow of the two-particle vertex [Eq. (4.13)], we divide the contributions into spin

and density channel. The following flow equations are more complex than the previous
one, but in principle can still be presented in a rather compact form. For a compatibility
with the equations for Heisenberg and DM interactions in App. B which involve a drasti-
cally increased number of vertex functions, we present a notation that groups all vertices
with identical frequencies and indices into square brackets. The right-hand sides of these
brackets then carry real-space and frequency arguments which are valid for all parenthe-
sised vertex functions ΓΛ

s/d. Please note, that the order of arguments does matter. The

exchanges, e.g.,
[
ω3 ↔ ω2′ + ω3 − ω2

]
, only act on the frequencies of the vertices, not on

those of the propagators.
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For the flow of the two-particle vertex’ spin channel, we find that

d

dΛ
ΓΛ

s i1i2(ω1′ , ω2′ ;ω1, ω2) =
1

2π

∫ ∞
−∞

dω3

{
SΛ(ω1 + ω2 − ω3)GΛ(ω3)

[
ΓΛ

s ΓΛ
d + ΓΛ

d ΓΛ
s − 2ΓΛ

s ΓΛ
s]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+
[
ω3 ↔ ω1 + ω2 − ω3

]
−2
∑
j

SΛ(ω2′ + ω3 − ω2)GΛ(ω3)
[
ΓΛ

s ΓΛ
s]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

−
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

s ΓΛ
d − ΓΛ

s ΓΛ
s]

(i1,i2)(i2,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

d ΓΛ
s − ΓΛ

s ΓΛ
s]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω1′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

s ΓΛ
d + ΓΛ

d ΓΛ
s + 2ΓΛ

s ΓΛ
s]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+
[
ω3 ↔ ω1′ + ω3 − ω2

]}
. (A.2)
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A. Flow equations for Heisenberg vertices

The flow equation of the corresponding density channel reads

d

dΛ
ΓΛ

d i1i2(ω1′ , ω2′ ;ω1, ω2) =
1

2π

∫ ∞
−∞

dω3

{
SΛ(ω1 + ω2 − ω3)GΛ(ω3)

[
ΓΛ

d ΓΛ
d + 3ΓΛ

s ΓΛ
s]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+
[
ω3 ↔ ω1 + ω2 − ω3

]
−2
∑
j

SΛ(ω2′ + ω3 − ω2)GΛ(ω3)
[
ΓΛ

d ΓΛ
d]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

−
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

d
(
ΓΛ

d + 3ΓΛ
s
)]

(i1,i2)(i2,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[ (
ΓΛ

d + 3ΓΛ
s
)

ΓΛ
d]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω1′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

d ΓΛ
d + 3ΓΛ

s ΓΛ
s]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+
[
ω3 ↔ ω1′ + ω3 − ω2

]}
. (A.3)

These equations are already known since 2010 [144, 147]. Their extension to systems with
Heisenberg and DM interactions is given in App. B.
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B. Flow equations for Heisenberg and DM vertices

In this appendix, we provide the flow equations for the two different self-energy channels
and the six vertex functions from the parameterisations in Eqs. (4.19) and (4.22) for a
spin-1

2 model with Heisenberg and DM interactions. These equations are derived in the
same way as the ones in App. A and we stick to the notation that is introduced there. The
FRG equations for the self energy contributions are given by

d

dΛ
γΛ

d i1(ω1) =
1

2π

∑
ω2=±Λ

{∑
j

[
−2ΓΛ

d i1j(ω1, ω2;ω1, ω2)

(
ω2 + γΛ

d j(ω2)

(γΛ
s j(ω2))2 + (ω2 + γΛ

d j(ω2))2

)

+2iΓΛ
dzi1j(ω1, ω2;ω1, ω2)

(
γΛ

s j(ω2)

(γΛ
s j(ω2))2 + (ω2 + γΛ

d j(ω2))2

)]
+
[
ΓΛ

d i1i1(ω1, ω2;ω2, ω1) + 2ΓΛ
xxi1i1(ω1, ω2;ω2, ω1) + ΓΛ

zzi1i1(ω1, ω2;ω2, ω1)
]

×

(
ω2 + γΛ

d i1(ω2)

(γΛ
s i1(ω2))2 + (ω2 + γΛ

d i1
(ω2))2

)
−
[
iΓΛ

zdi1i1(ω1, ω2;ω2, ω1) + iΓΛ
dzi1i1(ω1, ω2;ω2, ω1) + 2ΓΛ

s×i1i1(ω1, ω2;ω2, ω1)
]

×

(
γΛ

s i1(ω2)

(γΛ
s i1(ω2))2 + (ω2 + γΛ

d i1
(ω2))2

)}
, (B.1a)

d

dΛ
γΛ

s i1(ω1) =
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2π

∑
ω2=±Λ

{∑
j

[
2iΓΛ
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(
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d j(ω2))2

)

+2ΓΛ
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−
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iΓΛ
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−
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ΓΛ

d i1i1(ω1, ω2;ω2, ω1)− 2ΓΛ
xxi1i1(ω1, ω2;ω2, ω1) + ΓΛ

zzi1i1(ω1, ω2;ω2, ω1)
]

×

(
γΛ

s i1(ω2)

(γΛ
s i1(ω2))2 + (ω2 + γΛ

d i1
(ω2))2

)}
, (B.1b)

As for a Heisenberg system, γΛ
d and γΛ

s do not depend on the specific choice of i1 for the
considered lattices of equivalent sites.
Due to the two self-energy sectors, the propagators GΛ and SΛ acquire a spin and a

density channel, confer Eqs. (4.20a) and (4.21a). Therefore, the frequency arguments of
the propagators are now gathered on the left-hand side of each square bracket. Here, we
denote the frequencies of SΛ

d/s and GΛ
d/s in that order. As in App. A, the right-hand side

denotes the arguments for the different vertices. Again, one should pay attention to the
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fact that the order matters. The exchanges
[
ω3 ↔ ω2′+ω3−ω2

]
only act on the frequencies

of the vertices and have no effect on the propagators.
The FRG analysis yields for the different vertex functions from (4.22) the following

results (turn page).
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B. Flow equations for Heisenberg and DM vertices
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d + ΓΛ
zz + 2ΓΛ

xx)ΓΛ
zd + (ΓΛ

zd + ΓΛ
dz − 2iΓΛ

DM)ΓΛ
d
)

+SΛ
s G

Λ
s
(
(ΓΛ

d + ΓΛ
zz + 2ΓΛ

xx)ΓΛ
d + (ΓΛ

zd + ΓΛ
dz − 2iΓΛ

DM)ΓΛ
zd
)]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+(ω1′ + ω3 − ω2)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+(ω1′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

]
(i2,i1)(i2,i1)

(ω2′ , ω3;ω1′ + ω3 − ω2, ω1)(ω1′ + ω3 − ω2, ω1′ ;ω2, ω3)

}
(B.2)
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B. Flow equations for Heisenberg and DM vertices

d

dΛ
ΓΛ

zdi1i2(ω1′ , ω2′ ;ω1, ω2) =
1

2π

∫ ∞
−∞

dω3

{
(ω1 + ω2 − ω3)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+(ω1 + ω2 − ω3)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω1 + ω2 − ω3, ω3)(ω1 + ω2 − ω3, ω3;ω1, ω2)

−2
∑
j

(ω2′ + ω3 − ω2)(ω3)
[

SΛ
d

(
GΛ

d
(
ΓΛ

zdΓΛ
d + ΓΛ

zzΓ
Λ
zd
)

+GΛ
s
(
ΓΛ

zdΓΛ
zd + ΓΛ

zzΓ
Λ
d
) )

+SΛ
s

(
GΛ

d
(
ΓΛ

zdΓΛ
zd + ΓΛ

zzΓ
Λ
d
)

+GΛ
s
(
ΓΛ

zdΓΛ
d + ΓΛ

zzΓ
Λ
zd
) )]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

−
[
ω3 ↔ ω2′ + ω3 − ω2

]
+(ω2′ + ω3 − ω2)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

zd(ΓΛ
d + ΓΛ

zz + 2ΓΛ
xx) + ΓΛ

zz(Γ
Λ
zd + ΓΛ

dz + 2iΓΛ
DM)

)
+SΛ

dG
Λ
s
(
ΓΛ

zz(Γ
Λ
d + ΓΛ

zz + 2ΓΛ
xx) + ΓΛ

zd(ΓΛ
zd + ΓΛ

dz + 2iΓΛ
DM)

)
+SΛ

s G
Λ
d
(
ΓΛ

zz(Γ
Λ
d + ΓΛ

zz + 2ΓΛ
xx) + ΓΛ

zd(ΓΛ
zd + ΓΛ

dz + 2iΓΛ
DM)

)
+SΛ

s G
Λ
s
(
ΓΛ

zd(ΓΛ
d + ΓΛ

zz + 2ΓΛ
xx) + ΓΛ

zz(Γ
Λ
zd + ΓΛ

dz + 2iΓΛ
DM)

)]
(i1,i2)(i2,i2)

(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]

162



+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
(ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx)ΓΛ
zd + (ΓΛ

zd + ΓΛ
dz + 2iΓΛ

DM)ΓΛ
d
)

+SΛ
dG

Λ
s
(
(ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx)ΓΛ
d + (ΓΛ

zd + ΓΛ
dz + 2iΓΛ

DM)ΓΛ
zd
)

+SΛ
s G

Λ
d
(
(ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx)ΓΛ
d + (ΓΛ

zd + ΓΛ
dz + 2iΓΛ

DM)ΓΛ
zd
)

+SΛ
s G

Λ
s
(
(ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx)ΓΛ
zd + (ΓΛ

zd + ΓΛ
dz + 2iΓΛ

DM)ΓΛ
d
)]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+(ω1′ + ω3 − ω2)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+(ω1′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

]
(i2,i1)(i2,i1)

(ω2′ , ω3;ω1′ + ω3 − ω2, ω1)(ω1′ + ω3 − ω2, ω1′ ;ω2, ω3)

}
(B.3)
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B. Flow equations for Heisenberg and DM vertices

d

dΛ
ΓΛ

dzi1i2(ω1′ , ω2′ ;ω1, ω2) =
1

2π

∫ ∞
−∞

dω3

{
(ω1 + ω2 − ω3)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+(ω1 + ω2 − ω3)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω1 + ω2 − ω3, ω3)(ω1 + ω2 − ω3, ω3;ω1, ω2)

−2
∑
j

(ω2′ + ω3 − ω2)(ω3)
[

SΛ
d

(
GΛ

d
(
ΓΛ

d ΓΛ
dz + ΓΛ

dzΓ
Λ
zz
)

+GΛ
s
(
ΓΛ

dzΓ
Λ
dz + ΓΛ

d ΓΛ
zz
) )

+SΛ
s

(
GΛ

d
(
ΓΛ

dzΓ
Λ
dz + ΓΛ

d ΓΛ
zz
)

+GΛ
s
(
ΓΛ

d ΓΛ
dz + ΓΛ

dzΓ
Λ
zz
) )]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

−
[
ω3 ↔ ω2′ + ω3 − ω2

]
+(ω2′ + ω3 − ω2)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

dz(Γ
Λ
d + ΓΛ

zz − 2ΓΛ
xx) + ΓΛ

d (ΓΛ
zd + ΓΛ

dz − 2iΓΛ
DM)

)
+SΛ

dG
Λ
s
(
ΓΛ

d (ΓΛ
d + ΓΛ

zz − 2ΓΛ
xx) + ΓΛ

dz(Γ
Λ
zd + ΓΛ

dz − 2iΓΛ
DM)

)
+SΛ

s G
Λ
d
(
ΓΛ

d (ΓΛ
d + ΓΛ

zz − 2ΓΛ
xx) + ΓΛ

dz(Γ
Λ
zd + ΓΛ

dz − 2iΓΛ
DM)

)
+SΛ

s G
Λ
s
(
ΓΛ

dz(Γ
Λ
d + ΓΛ

zz − 2ΓΛ
xx) + ΓΛ

d (ΓΛ
zd + ΓΛ

dz − 2iΓΛ
DM)

)]
(i1,i2)(i2,i2)

(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
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+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
(ΓΛ

d + ΓΛ
zz + 2ΓΛ

xx)ΓΛ
dz + (ΓΛ

zd + ΓΛ
dz − 2iΓΛ

DM)ΓΛ
zz
)

+SΛ
dG

Λ
s
(
(ΓΛ

d + ΓΛ
zz + 2ΓΛ

xx)ΓΛ
zz + (ΓΛ

zd + ΓΛ
dz − 2iΓΛ

DM)ΓΛ
dz
)

+SΛ
s G

Λ
d
(
(ΓΛ

d + ΓΛ
zz + 2ΓΛ

xx)ΓΛ
zz + (ΓΛ

zd + ΓΛ
dz − 2iΓΛ

DM)ΓΛ
dz
)

+SΛ
s G

Λ
s
(
(ΓΛ

d + ΓΛ
zz + 2ΓΛ

xx)ΓΛ
dz + (ΓΛ

zd + ΓΛ
dz − 2iΓΛ

DM)ΓΛ
zz
)]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+(ω1′ + ω3 − ω2)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+(ω1′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

]
(i2,i1)(i2,i1)

(ω2′ , ω3;ω1′ + ω3 − ω2, ω1)(ω1′ + ω3 − ω2, ω1′ ;ω2, ω3)

}
(B.4)
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B. Flow equations for Heisenberg and DM vertices

d

dΛ
ΓΛ

zzi1i2(ω1′ , ω2′ ;ω1, ω2) =
1

2π

∫ ∞
−∞

dω3

{
(ω1 + ω2 − ω3)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+(ω1 + ω2 − ω3)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz − 2ΓΛ

xxΓΛ
xx − 2ΓΛ

DMΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz + 2iΓΛ

DMΓΛ
xx − 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω1 + ω2 − ω3, ω3)(ω1 + ω2 − ω3, ω3;ω1, ω2)

−2
∑
j

(ω2′ + ω3 − ω2)(ω3)
[

SΛ
d

(
GΛ

d
(
ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
zz
)

+GΛ
s
(
ΓΛ

zzΓ
Λ
dz + ΓΛ

zdΓΛ
zz
) )

+SΛ
s

(
GΛ

d
(
ΓΛ

zzΓ
Λ
dz + ΓΛ

zdΓΛ
zz
)

+GΛ
s
(
ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
zz
) )]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

−
[
ω3 ↔ ω2′ + ω3 − ω2

]
+(ω2′ + ω3 − ω2)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

zz(Γ
Λ
d + ΓΛ

zz − 2ΓΛ
xx) + ΓΛ

zd(ΓΛ
zd + ΓΛ

dz − 2iΓΛ
DM)

)
+SΛ

dG
Λ
s
(
ΓΛ

zd(ΓΛ
d + ΓΛ

zz − 2ΓΛ
xx) + ΓΛ

zz(Γ
Λ
zd + ΓΛ

dz − 2iΓΛ
DM)

)
+SΛ

s G
Λ
d
(
ΓΛ

zd(ΓΛ
d + ΓΛ

zz − 2ΓΛ
xx) + ΓΛ

zz(Γ
Λ
zd + ΓΛ

dz − 2iΓΛ
DM)

)
+SΛ

s G
Λ
s
(
ΓΛ

zz(Γ
Λ
d + ΓΛ

zz − 2ΓΛ
xx) + ΓΛ

zd(ΓΛ
zd + ΓΛ

dz − 2iΓΛ
DM)

)]
(i1,i2)(i2,i2)

(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
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+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
(ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx)ΓΛ
zz + (ΓΛ

zd + ΓΛ
dz + 2iΓΛ

DM)ΓΛ
dz
)

+SΛ
dG

Λ
s
(
(ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx)ΓΛ
dz + (ΓΛ

zd + ΓΛ
dz + 2iΓΛ

DM)ΓΛ
zz
)

+SΛ
s G

Λ
d
(
(ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx)ΓΛ
dz + (ΓΛ

zd + ΓΛ
dz + 2iΓΛ

DM)ΓΛ
zz
)

+SΛ
s G

Λ
s
(
(ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx)ΓΛ
zz + (ΓΛ

zd + ΓΛ
dz + 2iΓΛ

DM)ΓΛ
dz
)]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+(ω1′ + ω3 − ω2)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

dzΓ
Λ
d + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+(ω1′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

dzΓ
Λ
zd + ΓΛ

zdΓΛ
dz + ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

zdΓΛ
d + ΓΛ

d ΓΛ
zd + ΓΛ

zzΓ
Λ
dz + ΓΛ

dzΓ
Λ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

d ΓΛ
dz + ΓΛ

d ΓΛ
dz + ΓΛ

zzΓ
Λ
zd + ΓΛ

zdΓΛ
zz − 2iΓΛ

DMΓΛ
xx + 2iΓΛ

xxΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

d ΓΛ
d + ΓΛ

zdΓΛ
zd + ΓΛ

dzΓ
Λ
dz + ΓΛ

zzΓ
Λ
zz + 2ΓΛ

xxΓΛ
xx + 2ΓΛ

DMΓΛ
DM
)

]
(i2,i1)(i2,i1)

(ω2′ , ω3;ω1′ + ω3 − ω2, ω1)(ω1′ + ω3 − ω2, ω1′ ;ω2, ω3)

}
(B.5)
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B. Flow equations for Heisenberg and DM vertices

d

dΛ
ΓΛ

xxi1i2(ω1′ , ω2′ ;ω1, ω2) =
1

2π

∫ ∞
−∞

dω3

{
(ω1 + ω2 − ω3)(ω3)

[
SΛ

dG
Λ
d
(
ΓΛ

xx(ΓΛ
d − ΓΛ

zz) + (ΓΛ
d − ΓΛ

zz)Γ
Λ
xx + iΓΛ

DM(ΓΛ
dz − ΓΛ

zd) + i(ΓΛ
zd − ΓΛ

dz)Γ
Λ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

xx(ΓΛ
zd − ΓΛ

dz) + (ΓΛ
zd − ΓΛ

dz)Γ
Λ
xx + iΓΛ

DM(ΓΛ
zz − ΓΛ

d ) + i(ΓΛ
d − ΓΛ

zz)Γ
Λ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

xx(ΓΛ
dz − ΓΛ

zd) + (ΓΛ
dz − ΓΛ

zd)ΓΛ
xx + iΓΛ

DM(ΓΛ
d − ΓΛ

zz) + i(ΓΛ
zz − ΓΛ

d )ΓΛ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

xx(ΓΛ
zz − ΓΛ

d ) + (ΓΛ
zz − ΓΛ

d )ΓΛ
xx + iΓΛ

DM(ΓΛ
zd − ΓΛ

dz) + i(ΓΛ
dz − ΓΛ

zd)ΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+(ω1 + ω2 − ω3)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

xx(ΓΛ
d − ΓΛ

zz) + (ΓΛ
d − ΓΛ

zz)Γ
Λ
xx + iΓΛ

DM(ΓΛ
dz − ΓΛ

zd) + i(ΓΛ
zd − ΓΛ

dz)Γ
Λ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

xx(ΓΛ
dz − ΓΛ

zd) + (ΓΛ
dz − ΓΛ

zd)ΓΛ
xx + iΓΛ

DM(ΓΛ
d − ΓΛ

zz) + i(ΓΛ
zz − ΓΛ

d )ΓΛ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

xx(ΓΛ
zd − ΓΛ

dz) + (ΓΛ
zd − ΓΛ

dz)Γ
Λ
xx + iΓΛ

DM(ΓΛ
zz − ΓΛ

d ) + i(ΓΛ
d − ΓΛ

zz)Γ
Λ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

xx(ΓΛ
zz − ΓΛ

d ) + (ΓΛ
zz − ΓΛ

d )ΓΛ
xx + iΓΛ

DM(ΓΛ
zd − ΓΛ

dz) + i(ΓΛ
dz − ΓΛ

zd)ΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω1 + ω2 − ω3, ω3)(ω1 + ω2 − ω3, ω3;ω1, ω2)

−2
∑
j

(ω2′ + ω3 − ω2)(ω3)
[

SΛ
d

(
GΛ

d
(
ΓΛ

xxΓΛ
xx − ΓΛ

DMΓΛ
DM
)

+ iGΛ
s
(
ΓΛ

DMΓΛ
xx + ΓΛ

xxΓΛ
DM
) )

+SΛ
s

(
− iGΛ

d
(
ΓΛ

DMΓΛ
xx + ΓΛ

xxΓΛ
DM
)

+GΛ
s
(
ΓΛ

DMΓΛ
DM − ΓΛ

xxΓΛ
xx
) )]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

−2
∑
j

(ω2′ + ω3 − ω2)(ω3)
[

SΛ
d

(
GΛ

d
(
ΓΛ

xxΓΛ
xx − ΓΛ

DMΓΛ
DM
)
− iGΛ

s
(
ΓΛ

DMΓΛ
xx + ΓΛ

xxΓΛ
DM
) )

+SΛ
s

(
iGΛ

d
(
ΓΛ

DMΓΛ
xx + ΓΛ

xxΓΛ
DM
)

+GΛ
s
(
ΓΛ

DMΓΛ
DM − ΓΛ

xxΓΛ
xx
) )]

(i1,j)(j,i2)
(ω1′ , ω3;ω1, ω2′ + ω3 − ω2)(ω2′ + ω3 − ω2, ω2′ ;ω3, ω2)

+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

xx(ΓΛ
d − ΓΛ

zz) + iΓΛ
DM(ΓΛ

zd − ΓΛ
dz)
)

+SΛ
dG

Λ
s
(
ΓΛ

xx(ΓΛ
zd − ΓΛ

dz) + iΓΛ
DM(ΓΛ

d − ΓΛ
zz)
)

+SΛ
s G

Λ
d
(
ΓΛ

xx(ΓΛ
dz − ΓΛ

zd)− iΓΛ
DM(ΓΛ

d − ΓΛ
zz)
)

+SΛ
s G

Λ
s
(
ΓΛ

xx(ΓΛ
zz − ΓΛ

d )− iΓΛ
DM(ΓΛ

zd − ΓΛ
dz)
)]

(i1,i2)(i2,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)
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+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

xx(ΓΛ
d − ΓΛ

zz) + iΓΛ
DM(ΓΛ

zd − ΓΛ
dz)
)

+SΛ
dG

Λ
s
(
ΓΛ

xx(ΓΛ
dz − ΓΛ

zd)− iΓΛ
DM(ΓΛ

d − ΓΛ
zz)
)

+SΛ
s G

Λ
d
(
ΓΛ

xx(ΓΛ
zd − ΓΛ

dz) + iΓΛ
DM(ΓΛ

d − ΓΛ
zz)
)

+SΛ
s G

Λ
s
(
ΓΛ

xx(ΓΛ
zz − ΓΛ

d )− iΓΛ
DM(ΓΛ

zd − ΓΛ
dz)
)]

(i1,i2)(i2,i2)
(ω1′ , ω3;ω1, ω2′ + ω3 − ω2)(ω2′ + ω3 − ω2, ω2′ ;ω2, ω3)

+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
(ΓΛ

d − ΓΛ
zz)Γ

Λ
xx + i(ΓΛ

zd − ΓΛ
dz)Γ

Λ
DM
)

+SΛ
dG

Λ
s
(
(ΓΛ

zd − ΓΛ
dz)Γ

Λ
xx + i(ΓΛ

d − ΓΛ
zz)Γ

Λ
DM
)

+SΛ
s G

Λ
d
(
(ΓΛ

dz − ΓΛ
zd)ΓΛ

xx − i(ΓΛ
d − ΓΛ

zz)Γ
Λ
DM
)

+SΛ
s G

Λ
s
(
(ΓΛ

zz − ΓΛ
d )ΓΛ

xx − i(ΓΛ
zd − ΓΛ

dz)Γ
Λ
DM
)]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
(ΓΛ

d − ΓΛ
zz)Γ

Λ
xx + i(ΓΛ

zd − ΓΛ
dz)Γ

Λ
DM
)

+SΛ
dG

Λ
s
(
(ΓΛ

dz − ΓΛ
zd)ΓΛ

xx − i(ΓΛ
d − ΓΛ

zz)Γ
Λ
DM
)

+SΛ
s G

Λ
d
(
(ΓΛ

zd − ΓΛ
dz)Γ

Λ
xx + i(ΓΛ

d − ΓΛ
zz)Γ

Λ
DM
)

+SΛ
s G

Λ
s
(
(ΓΛ

zz − ΓΛ
d )ΓΛ

xx − i(ΓΛ
zd − ΓΛ

dz)Γ
Λ
DM
)]

(i1,i1)(i1,i2)
(ω1′ , ω3;ω2′ + ω3 − ω2, ω1)(ω2′ + ω3 − ω2; , ω2′ ;ω3, ω2)

+(ω1′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
ΓΛ

xx(ΓΛ
d + ΓΛ

zz) + (ΓΛ
d + ΓΛ

zz)Γ
Λ
xx − iΓΛ

DM(ΓΛ
zd + ΓΛ

dz) + i(ΓΛ
zd + ΓΛ

dz)Γ
Λ
DM
)

+SΛ
dG

Λ
s
(
ΓΛ

xx(ΓΛ
zd + ΓΛ

dz) + (ΓΛ
zd + ΓΛ

dz)Γ
Λ
xx − iΓΛ

DM(ΓΛ
d + ΓΛ

zz) + i(ΓΛ
d + ΓΛ

zz)Γ
Λ
DM
)

+SΛ
s G

Λ
d
(
ΓΛ

xx(ΓΛ
zd + ΓΛ

dz) + (ΓΛ
zd + ΓΛ

dz)Γ
Λ
xx − iΓΛ

DM(ΓΛ
d + ΓΛ

zz) + i(ΓΛ
d + ΓΛ

zz)Γ
Λ
DM
)

+SΛ
s G

Λ
s
(
ΓΛ

xx(ΓΛ
d + ΓΛ

zz) + (ΓΛ
d + ΓΛ

zz)Γ
Λ
xx − iΓΛ

DM(ΓΛ
zd + ΓΛ

dz) + i(ΓΛ
zd + ΓΛ

dz)Γ
Λ
DM
)]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+
[
ω3 ↔ ω1′ + ω3 − ω2

]}
(B.6)
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B. Flow equations for Heisenberg and DM vertices

d

dΛ
ΓΛ

DMi1i2
(ω1′ , ω2′ ;ω1, ω2) =

1

2π

∫ ∞
−∞

dω3

{
(ω1 + ω2 − ω3)(ω3)

[
SΛ

dG
Λ
d
(
iΓΛ

xx(ΓΛ
zd − ΓΛ

dz)− i(ΓΛ
zd − ΓΛ

dz)Γ
Λ
xx + ΓΛ

DM(ΓΛ
d − ΓΛ

zz) + (ΓΛ
d − ΓΛ

zz)Γ
Λ
DM
)

+SΛ
dG

Λ
s
(
iΓΛ

xx(ΓΛ
d − ΓΛ

zz)− i(ΓΛ
d − ΓΛ

zz)Γ
Λ
xx + ΓΛ

DM(ΓΛ
zd − ΓΛ

dz) + (ΓΛ
zd − ΓΛ

dz)Γ
Λ
DM
)

+SΛ
s G

Λ
d
(
iΓΛ

xx(ΓΛ
zz − ΓΛ

d ) + i(ΓΛ
d − ΓΛ

zz)Γ
Λ
xx + ΓΛ

DM(ΓΛ
dz − ΓΛ

zd) + (ΓΛ
dz − ΓΛ

zd)ΓΛ
DM
)

+SΛ
s G

Λ
s
(
iΓΛ

xx(ΓΛ
dz − ΓΛ

zd) + i(ΓΛ
zd − ΓΛ

dz)Γ
Λ
xx + ΓΛ

DM(ΓΛ
zz − ΓΛ

d ) + (ΓΛ
zz − ΓΛ

d )ΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+(ω1 + ω2 − ω3)(ω3)
[

SΛ
dG

Λ
d
(
iΓΛ

xx(ΓΛ
zd − ΓΛ

dz) + i(ΓΛ
dz − ΓΛ

zd)ΓΛ
xx + ΓΛ

DM(ΓΛ
d − ΓΛ

zz) + (ΓΛ
d − ΓΛ

zz)Γ
Λ
DM
)

+SΛ
dG

Λ
s
(
iΓΛ

xx(ΓΛ
zz − ΓΛ

d ) + i(ΓΛ
d − ΓΛ

zz)Γ
Λ
xx + ΓΛ

DM(ΓΛ
dz − ΓΛ

zd) + (ΓΛ
dz − ΓΛ

zd)ΓΛ
DM
)

+SΛ
s G

Λ
d
(
iΓΛ

xx(ΓΛ
d − ΓΛ

zz) + i(ΓΛ
zz − ΓΛ

d )ΓΛ
xx + ΓΛ

DM(ΓΛ
zd − ΓΛ

dz) + (ΓΛ
zd − ΓΛ

dz)Γ
Λ
DM
)

+SΛ
s G

Λ
s
(
iΓΛ

xx(ΓΛ
dz − ΓΛ

zd) + i(ΓΛ
zd − ΓΛ

dz)Γ
Λ
xx + ΓΛ

DM(ΓΛ
d − ΓΛ

zz) + (ΓΛ
zz − ΓΛ

d )ΓΛ
DM
)]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω1 + ω2 − ω3, ω3)(ω1 + ω2 − ω3, ω3;ω1, ω2)

−2
∑
j

(ω2′ + ω3 − ω2)(ω3)
[

SΛ
d

(
GΛ

d
(
ΓΛ

DMΓΛ
xx + ΓΛ

xxΓΛ
DM
)

+ iGΛ
s
(
ΓΛ

DMΓΛ
DM − ΓΛ

xxΓΛ
xx
) )

+SΛ
s

(
iGΛ

d
(
ΓΛ

xxΓΛ
xx − ΓΛ

DMΓΛ
DM
)
−GΛ

s
(
ΓΛ

DMΓΛ
xx + ΓΛ

xxΓΛ
DM
) )]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

−2
∑
j

(ω2′ + ω3 − ω2)(ω3)
[

SΛ
d

(
GΛ

d
(
ΓΛ

DMΓΛ
xx + ΓΛ

xxΓΛ
DM
)

+ iGΛ
s
(
ΓΛ

xxΓΛ
xx − ΓΛ

DMΓΛ
DM
) )

+SΛ
s

(
iGΛ

d
(
ΓΛ

DMΓΛ
DM − ΓΛ

xxΓΛ
xx
)
−GΛ

s
(
ΓΛ

DMΓΛ
xx + ΓΛ

xxΓΛ
DM
) )]

(i1,j)(j,i2)
(ω1′ , ω3;ω1, ω2′ + ω3 − ω2)(ω2′ + ω3 − ω2, ω2′ ;ω3, ω2)

+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
iΓΛ

xx(ΓΛ
dz − ΓΛ

zd) + ΓΛ
DM(ΓΛ

d − ΓΛ
zz)
)

+SΛ
dG

Λ
s
(
iΓΛ

xx(ΓΛ
zz − ΓΛ

d ) + ΓΛ
DM(ΓΛ

zd − ΓΛ
dz)
)

+SΛ
s G

Λ
d
(
iΓΛ

xx(ΓΛ
d − ΓΛ

zz) + ΓΛ
DM(ΓΛ

dz − ΓΛ
zd)
)

+SΛ
s G

Λ
s
(
iΓΛ

xx(ΓΛ
zd − ΓΛ

dz) + ΓΛ
DM(ΓΛ

zz − ΓΛ
d )
)]

(i1,i2)(i2,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)
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+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
iΓΛ

xx(ΓΛ
dz − ΓΛ

zd) + ΓΛ
DM(ΓΛ

d − ΓΛ
zz)
)

+SΛ
dG

Λ
s
(
iΓΛ

xx(ΓΛ
d − ΓΛ

zz) + ΓΛ
DM(ΓΛ

dz − ΓΛ
zd)
)

+SΛ
s G

Λ
d
(
iΓΛ

xx(ΓΛ
zz − ΓΛ

d ) + ΓΛ
DM(ΓΛ

zd − ΓΛ
dz)
)

+SΛ
s G

Λ
s
(
iΓΛ

xx(ΓΛ
zd − ΓΛ

dz) + ΓΛ
DM(ΓΛ

zz − ΓΛ
d )
)]

(i1,i2)(i2,i2)
(ω1′ , ω3;ω1, ω2′ + ω3 − ω2)(ω2′ + ω3 − ω2, ω2′ ;ω2, ω3)

+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
i(ΓΛ

dz − ΓΛ
zd)ΓΛ

xx + (ΓΛ
d − ΓΛ

zz)Γ
Λ
DM
)

+SΛ
dG

Λ
s
(
i(ΓΛ

zz − ΓΛ
d )ΓΛ

xx + (ΓΛ
zd − ΓΛ

dz)Γ
Λ
DM
)

+SΛ
s G

Λ
d
(
i(ΓΛ

d − ΓΛ
zz)Γ

Λ
xx + (ΓΛ

dz − ΓΛ
zd)ΓΛ

DM
)

+SΛ
s G

Λ
s
(
i(ΓΛ

zd − ΓΛ
dz)Γ

Λ
xx + (ΓΛ

zz − ΓΛ
d )ΓΛ

DM
)]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+(ω2′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
i(ΓΛ

dz − ΓΛ
zd)ΓΛ

xx + (ΓΛ
d − ΓΛ

zz)Γ
Λ
DM
)

+SΛ
dG

Λ
s
(
i(ΓΛ

d − ΓΛ
zz)Γ

Λ
xx + (ΓΛ

dz − ΓΛ
zd)ΓΛ

DM
)

+SΛ
s G

Λ
d
(
i(ΓΛ

zz − ΓΛ
d )ΓΛ

xx + (ΓΛ
zd − ΓΛ

dz)Γ
Λ
DM
)

+SΛ
s G

Λ
s
(
i(ΓΛ

zd − ΓΛ
dz)Γ

Λ
xx + (ΓΛ

zz − ΓΛ
d )ΓΛ

DM
)]

(i1,i1)(i1,i2)
(ω1′ , ω3;ω2′ + ω3 − ω2, ω1)(ω2′ + ω3 − ω2; , ω2′ ;ω3, ω2)

+(ω1′ + ω3 − ω2)(ω3)
[

SΛ
dG

Λ
d
(
i(ΓΛ

zd + ΓΛ
dz)Γ

Λ
xx − iΓΛ

xx(ΓΛ
zd + ΓΛ

dz)− (ΓΛ
d + ΓΛ

zz)Γ
Λ
DM − ΓΛ

DM(ΓΛ
d + ΓΛ

zz)
)

+SΛ
dG

Λ
s
(
i(ΓΛ

d − ΓΛ
zz)Γ

Λ
xx + iΓΛ

xx(ΓΛ
d + ΓΛ

zz)− (ΓΛ
zd + ΓΛ

dz)Γ
Λ
DM − ΓΛ

DM(ΓΛ
zd + ΓΛ

dz)
)

+SΛ
s G

Λ
d
(
i(ΓΛ

d + ΓΛ
zz)Γ

Λ
xx − iΓΛ

xx(ΓΛ
d + ΓΛ

zz)− (ΓΛ
zd + ΓΛ

dz)Γ
Λ
DM − ΓΛ

DM(ΓΛ
zd + ΓΛ

dz)
)

+SΛ
s G

Λ
s
(
i(ΓΛ

zd + ΓΛ
dz)Γ

Λ
xx − iΓΛ

xx(ΓΛ
zd + ΓΛ

dz)− (ΓΛ
d + ΓΛ

zz)Γ
Λ
DM − ΓΛ

DM(ΓΛ
d + ΓΛ

zz)
)]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+
[
ω3 ↔ ω1′ + ω3 − ω2

]}
(B.7)

These equations are significantly more complex than those of a bare Heisenberg model. For
the utilised numerical solving method, this yields a computational effort that is increased
by a factor of about 80.
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C. Flow equations for XXZ vertices

The last set of employed FRG equations is the one for the arbitrary-S XXZ model from
Chap. 5. Due to the similar vertex structures as for the Heisenberg scenario, we stick to
the notations introduced in App. A. Only the factor of M = 2S has to be included in
comparison to a spin-1

2 model [9] and the spin channel of the two-particle vertex splits up
into an in-plane and an out-of-plane component. For the pseudo-fermion lifetime, we find
that

d

dΛ
γΛ

d i1(ω1) =
1

2π

∑
ω2=±Λ

{∑
j

[
−2MΓΛ

d i1j(ω1, ω2;ω1, ω2)

(
1

ω2 + γΛ
d j(ω2)

)]

+
[
ΓΛ

d i1i1(ω1, ω2;ω2, ω1) + 2ΓΛ
xxi1i1(ω1, ω2;ω2, ω1) + ΓΛ

zzi1i1(ω1, ω2;ω2, ω1)
]

×

(
1

ω2 + γΛ
d i1

(ω2)

)}
. (C.1)
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The flow equation for the density component of the two-particle vertex is given by

d

dΛ
ΓΛ

d i1i2(ω1′ , ω2′ ;ω1, ω2) =
1

2π

∫ ∞
−∞

dω3

{
SΛ(ω1 + ω2 − ω3)GΛ(ω3)

[
ΓΛ

d ΓΛ
d + ΓΛ

zzΓ
Λ
zz + 2ΓΛ

xxΓΛ
xx]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+
[
ω3 ↔ ω1 + ω2 − ω3

]
−2M

∑
j

SΛ(ω2′ + ω3 − ω2)GΛ(ω3)
[
ΓΛ

d ΓΛ
d]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

−
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

d
(
ΓΛ

d + ΓΛ
zz + 2ΓΛ

xx
)]

(i1,i2)(i2,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[ (
ΓΛ

d + ΓΛ
zz + 2ΓΛ

xx
)

ΓΛ
d]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω1′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

d ΓΛ
d + ΓΛ

zzΓ
Λ
zz + 2ΓΛ

xxΓΛ
xx]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+
[
ω3 ↔ ω1′ + ω3 − ω2

]}
. (C.2)
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The out-of-plane spin vertex can be determined from

d

dΛ
ΓΛ

zzi1i2(ω1′ , ω2′ ;ω1, ω2) =
1

2π

∫ ∞
−∞

dω3

{
SΛ(ω1 + ω2 − ω3)GΛ(ω3)

[
ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz − 2ΓΛ

xxΓΛ
xx]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+
[
ω3 ↔ ω1 + ω2 − ω3

]
−2M

∑
j

SΛ(ω2′ + ω3 − ω2)GΛ(ω3)
[
ΓΛ

zzΓ
Λ
zz]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

−
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

zz
(
ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx
)]

(i1,i2)(i2,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[ (
ΓΛ

d + ΓΛ
zz − 2ΓΛ

xx
)

ΓΛ
zz]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω1′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

zzΓ
Λ
d + ΓΛ

d ΓΛ
zz + 2ΓΛ

xxΓΛ
xx]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+
[
ω3 ↔ ω1′ + ω3 − ω2

]}
, (C.3)
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whereas the in-plane component has to fulfill that

d

dΛ
ΓΛ

xxi1i2(ω1′ , ω2′ ;ω1, ω2) =
1

2π

∫ ∞
−∞

dω3

{
SΛ(ω1 + ω2 − ω3)GΛ(ω3)

[
ΓΛ

xx(ΓΛ
d − ΓΛ

zz) + (ΓΛ
d − ΓΛ

zz)Γ
Λ
xx]

(i1,i2)(i1,i2)
(ω1′ , ω2′ ;ω3, ω1 + ω2 − ω3)(ω3, ω1 + ω2 − ω3;ω1, ω2)

+
[
ω3 ↔ ω1 + ω2 − ω3

]
−2M

∑
j

SΛ(ω2′ + ω3 − ω2)GΛ(ω3)
[
ΓΛ

xxΓΛ
xx]

(i1,j)(j,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

xx
(
ΓΛ

d − ΓΛ
zz
)]

(i1,i2)(i2,i2)
(ω1′ , ω2′ + ω3 − ω2;ω1, ω3)(ω3, ω2′ ;ω2, ω2′ + ω3 − ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω2′ + ω3 − ω2)GΛ(ω3)

[ (
ΓΛ

d − ΓΛ
zz
)

ΓΛ
xx]

(i1,i1)(i1,i2)
(ω1′ , ω2′ + ω3 − ω2;ω3, ω1)(ω3, ω2′ ;ω2′ + ω3 − ω2, ω2)

+
[
ω3 ↔ ω2′ + ω3 − ω2

]
+SΛ(ω1′ + ω3 − ω2)GΛ(ω3)

[
ΓΛ

xx(ΓΛ
d + ΓΛ

zz) + (ΓΛ
d + ΓΛ

zz)Γ
Λ
xx]

(i2,i1)(i2,i1)
(ω2′ , ω1′ + ω3 − ω2;ω3, ω1)(ω3, ω1′ ;ω2, ω1′ + ω3 − ω2)

+
[
ω3 ↔ ω1′ + ω3 − ω2

]}
. (C.4)

In comparison to a bare Heisenberg model, the numerical effort is only marginally increased
for XXZ couplings.
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D. Kagome lattice and Fourier transforms

x

y

a1

a2

c1c2

Figure D.1.: Kagome lattice as triangular
Bravais lattice with three-atomic basis: The
primitive lattice vectors a1 and a2 are given
in the main text. Atoms of the different
sublattices A, B, and C are colored green,
red, and blue, respectively. They are trans-
lation invariant if considered separately.

b1

b2

kx

ky

Figure D.2.: Reciprocal lattice: Due to the
triangular Bravais lattice in real space, the
reciprocal lattice is also triangular. Its lat-
tice vectors b1 and b2 can be seen in Eq.
(D.10). The first, second, and third Bril-
louin zones are indicated in dashed blue,
dashed red, and solid green.

In this appendix, we want to summarise the properties of the Kagome lattice and its
Fourier transformed entities such that one can compare our results to the outcomes of
actual experiments.
The Kagome lattice itself is not translation invariant. It can be easiest understood as

a triangular Bravais lattice with a three-atomic basis (confer Fig. D.1). We can label the
three emerging sublattices A, B, and C and denote the nearest-neighbor distance by a.
The primitive lattice vectors are hence given by

a1 = a

(
2

0

)
, a2 = a

(
1√
3

)
. (D.1)

The sublattices B and C are shifted with respect to sublattice A by the vectors c1 =

a(1/2,
√

3/2)T and c2 = a(−1/2,
√

3/2)T , respectively. They are, if considered for them-
selves, translation invariant and can be mapped onto another with π

3 in-plane rotations.
Therefore, every observable that depends on a single point in real space A(r) is the same
for all points in the Kagome lattice and ri can be set to zero, accordingly.
We are, however, rather interested in correlation functions (like the spin susceptibility)

which depend on two real-space coordinates B(ri, rj). Each real-space coordinate can be
written as:

ri = Ri + bα , bα ∈ {0, c1, c2} , (D.2a)

Ri = k · a1 + l · a2 , k, l ∈ Z . (D.2b)

180



We consider three-atomic unit cells (one atom each out of sublattice A, B, and C) and label
them by the corresponding position Ri of the atom in sublattice A. Each lattice point is
then identified by the position of its unit cell and the sublattice it is a part of. For our
correlation function B(ri, rj), this implies that we can store its information in a matrix
that only depends on the lattice vectors Ri and Rj , e.g.,

B(ri, rj) −→

 BA,A(Ri,Rj) BA,B(Ri,Rj) BA,C(Ri,Rj)

BB,A(Ri,Rj) BB,B(Ri,Rj) BB,C(Ri,Rj)

BC,A(Ri,Rj) BC,B(Ri,Rj) BC,C(Ri,Rj)

 = B̄(Ri,Rj) . (D.3)

This matrix is now defined on a translation-invariant, triangular Bravais lattice and there-
fore can only depend on the difference Ri −Rj . Hence, we can set one of the coordinates
to zero and let the unit cell at the origin be the reference site for our convenience. Further,
the mappings of the sublattices onto another by π

3 in-plane rotations yield the following
relations, i.e.,

BA,A(Ri) = BB,B(Rz(Ri,−π/3)) = BC,C(Rz(Ri, π/3)) , (D.4a)

BA,B(Ri) = BB,C(Rz(Ri,−π/3)) = BC,A(Rz(Ri, π/3)) , (D.4b)

BA,C(Ri) = BB,A(Rz(Ri,−π/3)) = BC,B(Rz(Ri, π/3)) . (D.4c)

Finally, it is worth mentioning that the DM interaction (confer Sec. 4.3) breaks the lattice’s
mirror symmetries with respect to the x and y axes. Only the mirror symmetry in the
origin B̄(Ri) = B̄(−Ri) is upheld.
All these symmetries and the translation invariance have consequences in momentum

space. Let us first define the standard transform of the original function B(ri, rj). It is
given by

B̃(k,k′) =
∑
i,j

e−ik·rie−ik
′·rjB(ri, rj) . (D.5)

Making use of Eq. (D.2) and the matrix representation from Eq. (D.3), and rewriting the
difference coordinate Ri −Rj = d, we can derive that

B̃(k,k′) = δ(k + k′)B̃(k) , (D.6a)

B̃(k) =
∑
d

e−ik·d
{
BA,A(d) + eik·c1BA,B(d) + eik·c2BA,C(d)

+ e−ik·c1
[
BB,A(d) + eik·c1BB,B(d) + eik·c2BB,C(d)

]
+ e−ik·c2

[
BC,A(d) + eik·c1BC,B(d) + eik·c2BC,C(d)

]}
. (D.6b)

Defining the quantity

B̃A(k·) =
∑
d

e−ik·d
[
BA,A(d) + eik·c1BA,B(d) + eik·c2BA,C(d)

]
=
∑
i

e−ik·riB(0, ri) ,

(D.7)
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one verifies easily verifies

B̃(k) = B̃A(k) + B̃A(Rz(k, π/3)) + B̃A(Rz(k,−π/3)) . (D.8)

Here, we have used Eq. (D.4) and that the scalar product k · d is invariant under simul-
taneous rotation of both vectors. Finally, we employ the mirror symmetry with respect to
the coordinate origin in order to find

B̃A(k) =
∑
xi,yi

e−i(kxxi+kyyi)B(xi, yi)

= B(0, 0) +
∑
xi>0

2 cos(kxxi)B(xi, 0) +
∑
yi>0

2 cos(kyyi)B(0, yi)

+
∑

xi,yi>0

{2 cos(kxxi + kyyi)B(xi, yi) + 2 cos(kxxi − kyyi)B(−xi, yi)} , (D.9)

where we have omitted all zeros for the first real-space coordinate in B(0, ri) and wrote
explicitly ri = (xi, yi). This proves that B̃A(k) = B̃A(−k). Together with Eq. (D.8), we
obtain a k-space-resolved function B̃(k) which has the typical six-fold rotation symmetry.
In order to derive the correct periodicities in k space, we have a look at the reciprocal

lattice itself. It is also a triangular lattice and its lattice vectors are in correspondence to
the real-space lattice vectors a1 and a2 given by

b1 =
π

a

(
1

−1/
√

3

)
, b2 =

π

a

(
0

2/
√

3

)
. (D.10)

However, the smallest real-space distance that occurs in our correlation functions is pre-
cisely half of the distance which is set by the primitive lattice vectors. All functions in
momentum space hence have to be periodic for any combination of the doubled reciprocal
lattice vectors

B̃(k) = B̃(k + n · 2b1 +m · 2b2) , ∀ n,m ∈ Z , (D.11)

and are, due to the fact that B̃(k) = B̃(−k), symmetric around the edges of the third
Brillouin zone (confer Fig. D.2).
This discussion seems a bit tedious, but in order to understand the outcomes of our

calculations and recent experiments clearly, we consider it to be worth the effort.
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E. Symmetry transformations for Abrikosov fermions

Here, we summarise the frequently utilised properties of local gauge transformations and
global spin rotations in the language of Abrikosov fermions, see Eq. (4.2). Since we write
our spin operators in a second quantisation representation of the spin’s z component, the
relevant terms in the following analysis are

Sxi =
1

2

(
f †i↑fi↓ + f †i↓fi↑

)
, (E.1a)

Syi =
i

2

(
f †i↓fi↑ − f

†
i↑fi↓

)
, (E.1b)

Szi =
1

2

(
f †i↑fi↑ − f

†
i↓fi↓

)
, (E.1c)

Di =
1

2

(
f †i↑fi↑ + f †i↓fi↓

)
, (E.1d)

S+
i = Sxi + iSyi = f †i↑fi↓ , (E.1e)

S−i = Sxi − iS
y
i = f †i↓fi↑ . (E.1f)

In the following, we determine the effect of the possible symmetry transformations on these
operators.

E.1. Local gauge transformations

The Nambu space from Chap. 6 is defined in terms of the pseudo-fermion creation and
annihilation operators as

ai =

(
fi↑
f †i↓

)
, a†i =

(
f †i↑ , fi↓

)
. (E.2)

A local gauge transformation acts on these spinors via

ai −→Wiai , a†i −→ a†iW
†
i , (E.3)

where Wi is an arbitrary SU(2) matrix which we subsequently express as

Wi =

(
xi yi
−y∗i x∗i

)
, detWi = |xi|2 + |yi|2 = 1 . (E.4)

This implies that the four constituents of the operators from Eqs. (E.1) transform according
to

f †i↑fi↑ −→ |xi|
2f †i↑fi↑ − |yi|

2f †i↓fi↓ + x∗i yif
†
i↑f
†
i↓ + xiy

∗
i fi↓fi↑ + |yi|2 , (E.5a)

f †i↓fi↓ −→ |xi|
2f †i↓fi↓ − |yi|

2f †i↑fi↑ + x∗i yif
†
i↑f
†
i↓ + xiy

∗
i fi↓fi↑ + |yi|2 , (E.5b)

f †i↑fi↓ −→ f †i↑fi↓ , (E.5c)

f †i↓fi↑ −→ f †i↓fi↑ , (E.5d)
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E.2. Global spin rotations

where we employed standard anticommutation relations, the relation |xi|2 + |yi|2 = 1, and
the fact that every squared fermionic operator equals zero. Using these relations, one can
verify that all spin operators, i.e., Sxi , S

y
i , S

z
i , S

x
+, and Sx− are trivially unaffected by a

global gauge transformation. For the spin density Di, this is formally not the case. The
reason behind this is that the gauge transformations only act on the unphysical sector of
the Hilbert space. Hence, only the spin density can be altered. If only physically allowed
states can contribute, e.g., the products f †i↑f

†
i↓ and fi↓fi↑ are identical to zero and Di ≡ 1

2 ,
then also the spin density is invariant under local gauge transformations.
This shows that any type of spin Hamiltonian which, in general, can be a function of all

spin and density operators on the entire lattice is unaltered by transformations as defined
in Eq. (E.3). Unless spontaneous symmetry breaking occurs or unphysical states become
occupied, all results obtained by an analysis of such a Hamiltonian via the Abrikosov
decomposition therefore have to be independent of the locally chosen gauges.

E.2. Global spin rotations

According to the more traditional representation of spins via spinors and Pauli matrices, a
spin rotation by an angle θ around the unit vector d = (dx, dy, dz)

T is for spin-1
2 particles

generated by the SU(2) matrix

W = e−i
θ
2
d·σ =

(
cos θ2 − idz sin θ

2 −(idx + dy) sin θ
2

−(idx − dy) sin θ
2 cos θ2 + idz sin θ

2

)
=

(
x y

−y∗ x∗

)
, (E.6)

where σ = (σx, σy, σz)T . In terms of Abrikosov fermions, this can be expressed for the
regular spinors

bi =

(
f †i↑
f †i↓

)
, b†i =

(
fi↑ , fi↓

)
(E.7)

in a similar way as the gauge transformations from above. Let the matrix W again be
given by Eq. (E.4), but now it does not depend on a real space coordinate. Then, a global
spin rotation acts on the spinors as

bi −→Wbi , b†i −→ b†iW
† . (E.8)

Considering the same four products as before, this transformation is characterised by

f †i↑fi↑ −→ |x|
2f †i↑fi↑ + |y|2f †i↓fi↓ + x∗yf †i↓fi↑ + xy∗f †i↑fi↓ , (E.9a)

f †i↓fi↓ −→ |x|
2f †i↓fi↓ + |y|2f †i↑fi↑ − x

∗yf †i↓fi↑ − xy
∗f †i↑fi↓ , (E.9b)

f †i↑fi↓ −→ x2f †i↑fi↓ − y
2f †i↓fi↑ − xyf

†
i↑fi↑ + xyf †i↓fi↓ , (E.9c)

f †i↓fi↑ −→ (x∗)2 f †i↓fi↑ − (y∗)2 f †i↑fi↓ − x
∗y∗f †i↑fi↑ + x∗y∗f †i↓fi↓ . (E.9d)
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E. Symmetry transformations for Abrikosov fermions

The situation is now reversed in comparison to the previous section. A global spin rotation
formally only does not affect the spin density operator whereas all spin-dependent terms
are changed. We span the influenced subspace by using the operators S+

i , S
−
i , and S

z
i in

the following. Under a global spin rotation they are sent to

 S+
i

S−i
Szi

 −→
 x2 −y2 −2xy

− (y∗)2 (x∗)2 −2x∗y∗

xy∗ x∗y
(
|x|2 − |y|2

)

 S+

i

S−i
Szi

 , (E.10)

where we chose a standard vector and matrix notation for convenience.

One might now believe that only Hamiltonians involving spin-density operators are in-
variant under global spin rotations. However, there is one symmetry-allowed term which is
bilinear in spins, namely the scalar product of two spins. This should only depend on the
length of the involved spins and their relative angle to each other. Therefore, a Heisenberg
Hamiltonian is invariant under the transformation in Eqs. (E.10) as we shall see.

E.2.1. Heisenberg Hamiltonian

Any Heisenberg interaction is a linear combination of scalar products between two spins
Si and Sj where i and j can be arbitrary sites. Since the involved lattice sites do not have
to be identical, it should also be clear why we are considering global and not local spin
rotations at this point. The scalar product is given by

Si · Sj = Sxi S
x
j + Syi S

y
j + Szi S

z
j

=
1

4

(
S+
i + S−i

)(
S+
j + S−j

)
− 1

4

(
S+
i − S

−
i

)(
S+
j − S

−
j

)
+ Szi S

z
j

=
1

2

(
S+
i S
−
j + S−i S

+
j

)
+ Szi S

z
j (E.11)

Employing Eqs. (E.10), we find that it transforms under an arbitrary global spin rotation
as

Si · Sj −→
1

2

(
S+
i S
−
j + S−i S

+
j + 2Szi S

z
j

)(
|x|2 + |y|2

)2
= Si · Sj . (E.12)

This proves that any scalar product of two spins is invariant under all transformations
that can be represented by Eq. (E.8). This property is hence passed onto Heisenberg
Hamiltonians which are as well as spin-density-dependent Hamiltonians symmetric under
global SU(2) rotations of the spin system.
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E.2. Global spin rotations

E.2.2. Dzyaloshinsky-Moriya interactions

The DM interaction from Chap. 4 is due to the cross product also bilinear in the considered
spin operators. In our chosen basis of S+, S−, and Sz, it is given by

Si × Sj =


1
2i

[(
S+
i − S

−
i

)
Szj − Szi

(
S+
j − S

−
j

)]
1
2

[
Szi

(
S+
j + S−j

)
−
(
S+
i + S−i

)
Szj

]
1
2i

[
S−i S

+
j − S

+
i S
−
j

]
 , (E.13)

where the vector notation on the right-hand side represents Cartesian coordinates. Ac-
cording to Eqs. (E.8), this transforms under global spin rotations as

Si × Sj →


1
2i

[(
αS+

i − α∗S
−
i

)
Szj − Szi

(
αS+

j − α∗S
−
j

)
− β

(
S−i S

+
j − S

+
i S
−
j

)]
1
2

[
Szi

(
γS+

j + γ∗S−j

)
−
(
γS+

i + γ∗S−i

)
Szj + δ

(
S−i S

+
j − S

+
i S
−
j

)]
1
2i

[(
εS+

i − ε∗S
−
i

)
Szj − Szi

(
εS+

j − ε∗S
−
j

)
+ ζ
(
S−i S

+
j − S

+
i S
−
j

)]
 .

(E.14)
The coefficients are defined as α =

(
(x∗)2 − y2

)
, β =

(
x∗y∗ + xy

)
, γ =

(
(x∗)2 + y2

)
,

δ =
(
x∗y∗ − xy

)
, ε = 2x∗y, and ζ = 2|x|2 − 1. For a global invariance of the DM term

under a global spin rotation, it is hence required that

α = α∗ = 1 , β = 0 , for the x component , (E.15a)

γ = γ∗ = 1 , δ = 0 , for the y component , (E.15b)

ε = ε∗ = 0 , ζ = 1 , for the z component . (E.15c)

These conditions can all be fulfilled simultaneously if and only if x = ±1, y = 0. Using
Eq. (E.6), one verifies that this holds for arbitrary d if θ = 2πn with n ∈ Z. Therefore, the
cross product in Eq. (E.13) is only invariant under 2π spin rotations which also must be
true by the definition of spin operators which transform under such rotations as S → −S.

However, the vector Dij selects certain components of the cross product with corre-
sponding weights which then appear in the Hamiltonian [cf. Eq. (4.1)]. Because of that,
the DM interaction can be invariant under the transformation in Eq. (E.8) for arbitrary
θ if only one component of the cross product contributes. Due to the global SU(2) spin-
rotation invariance of the scalar product, any Hamiltonian as defined in Eq. (4.1) is then
invariant under those U(1) spin rotations which result from Eq. (E.8) with

d =


(1, 0, 0)T , if Dij = (Dij , 0, 0)T ∀ i , j ,
(0, 1, 0)T , if Dij = (0, Dij , 0)T ∀ i , j ,
(0, 0, 1)T , if Dij = (0, 0, Dij)

T ∀ i , j .

(E.16)

Thus, the model considered in Chap. 4 is invariant under global U(1) spin rotations around
the z axis since the Moriya selection rules require that Dij‖ez for the kagome lattice [129].
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E. Symmetry transformations for Abrikosov fermions

It should be noted that also Szi and S
x
i S

x
j +Syi S

y
j are invariant under these rotations (y = 0,

|x|2 = 1) which directly implies the vertex parameterisation from Eqs. (4.19) and (4.22).
Nevertheless, if the vectorDij has two non-vanishing components on a single bond, only

the Z2 invariance with respect to the spin transformation S → −S remains. In such a
case, the FRG equations necessary for describing the system would probably involve all
16 possible spin-spin interaction channels. For our capability to present results as in the
main chapters of this thesis, the remaining U(1) symmetry of the Hamiltonian is vital.
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Abstract

We enhance the pseudo-fermion functional-renormalisation-group (PFFRG) method for
the investigation of highly frustrated quantum spin systems in two significant ways. On
one hand, we generalise the method towards off-diagonal Dzyaloshinsky-Moriya (DM) in-
teractions and single-ion anisotropies. On the other hand, we develop a self-consistent
Fock-like mean-field technique which is based on vertex functions from a PFFRG analysis
and calculates effective free spinon models for the considered systems at low energies.
In Chap. 1, we introduce the fundamental mathematical concepts on which our stud-

ies rely. The so-called flow equations for the PFFRG are then derived in Chap. 3. The
first part of our original work is presented in Chap. 4 where we, for the first time, extend
the PFFRG scheme towards off-diagonal spin interactions and therefore confirm the quite
general applicability of this method. There are two important results from our investiga-
tions of the spin-1

2 Heisenberg-DM model on the kagome lattice in this chapter. One is
that a finite DM interaction enlarges magnetically ordered phases and thereby shrinks the
paramagnetic phases which possibly house spin liquid states. The other important result
is that the mineral herbertsmithite which inspired this project lies in close proximity to a
quantum critical point. We obtain a phase diagram for the considered Hamiltonian and
qualitatively good results in comparison to experimental data for herbertsmithite [68, 69].
Our collaboration with a research group from Cologne is summarised in Chap. 5. Here,

we investigate two different XXZ models with tetragonally split-up second-neighbour
Heisenberg interactions and single-ion anisotropies on the diamond lattice in order to study
the spin-1 A-site spinel NiRh2O4. We are able to confirm the existence of a paramagnetic
phase for one of the considered models. However, such a paramagnetic behaviour cannot
be verified for the Hamiltonians suggested in Refs. [29] and [30].
The second main part of this thesis is contained in Chap. 6. The developed PFFRG plus

mean-field method enables us to characterise the effective low-energy spinon band structure
of the spin-1

2 J1-J2 (nearest-neighbour) Heisenberg model on the square (kagome) lattice.
This is achieved by comparing self-consistently determined overall amplitudes for different
mean-field ansätze which are taken from corresponding PSG classifications in Refs. [182]
and [111]. Our studies imply that the square lattice model realises a SU(2) spin liquid
with π-fluxes through elementary plaquettes and that the spin-1

2 kagome antiferromagnet
is most likely described by a Z2 spin liquid called Z2[0, π]α.
We argue that our analysed models have current experimental relevance and that the de-

veloped techniques show plenty of possibilities for future applications. A detailed summary
and discussion of all methods and results is provided in Chap. 7.
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Kurzfassung

Wir verbessern die Methode der Pseudofermion funktionalen Renormierungsgruppe (PF-
FRG) für die Untersuchung stark frustrierter Quantenspinsysteme auf zwei signifikante
Weisen. Einerseits erweitern wir die Methode auf Dzyaloshinsky-Moriya (DM) Wech-
selwirkungen und Einzelionenanisotropien. Andererseits entwickeln wir eine Fock-artige
mean-field Technik, die auf Vertices von einer PFFRG Analyse beruht und effektive Spinon-
bandstrukturen der betrachteten Systeme berechnet.
In Kap. 1 führen wir die mathematischen Konzepte ein, auf denen unsere Studien

basieren. Die Flussgleichungen der PFFRG werden in Kap. 3 hergeleitet. Der erste Teil
unseres Originalwerks wird in Kap. 4 präsentiert, wo wir erstmals das PFFRG Schema auf
nebendiagonale Spinwechselwirkungen erweitern und damit die sehr breite Anwendbarkeit
dieser Methode bestätigen. Unsere Untersuchung des Spin-1

2 Heisenberg-DM Modells auf
dem Kagomegitter zeigt, dass eine finite DMWechselwirkung magnetisch geordnete Phasen
vergrößert und somit die paramagnetischen (PM) Phasen verkleinert, welche möglicher-
weise Spinflüssigkeiten beherbergen. Zudem zeigen wir, dass sich das Mineral herbert-
smithite, welches dieses Projekt inspirierte, in der Nähe zu einem quantenkritischen Punkt
befindet. Wir erhalten ein Phasendiagramm des betrachteten Hamiltonians und qualitativ
gute Ergebnisse im Vergleich zu den experimentellen Daten für herbertsmithite [68, 69].
Unsere Kollaboration mit Forschern aus Köln ist in Kap. 5 zusammengefasst. Hier un-

tersuchen wir zwei verschieden XXZ Modelle mit tetragonal aufgespaltenen Heisenberg
Wechselwirkungen und Einzelionenanisotropien auf dem Diamantgitter, um das Spinel
NiRh2O4 zu studieren. Wir bestätigen die Existenz einer PM Phase in einem unserer
Modelle. Allerdings verifizieren wir solch ein PM Verhalten nicht für die in den Referen-
zen [29] und [30] vorgeschlagenen Hamiltonians.
Der zweite Hauptteil dieser Dissertation ist in Kap. 6 enthalten. Die dort entwickelte

PFFRG plus mean-field Methode ermöglicht es uns, die effektive Spinonenbandstruktur
des Spin-1

2 J1-J2 (nächste-Nachbar) Heisenberg Modells auf dem Quadratgitter (Kagome-
gitter) zu charakterisieren. Dies wird durch einen Vergleich der Gesamtamplituden für
verschiedene mean-field Ansätze erreicht, welche den PSG Klassifizierungen der Referen-
zen [182] und [111] entstammen. Unsere Studien implizieren, dass das Quadratgitter-
modell eine SU(2) Spinflüssigkeit realisiert, während der Spin-1

2 Kagome-Antiferromagnet
wahrscheinlich durch eine Z2 Spinflüssigkeit beschrieben wird.
Wir argumentieren, dass unsere Modelle aktuelle Relevanz besitzen und die entwickelten

Techniken vielerlei Möglichkeiten für zukünftige Anwendungen bieten. Eine detaillierte
Zusammenfassung und Diskussion aller Methoden und Resultate ist in Kap. 7 bereitgestellt.

207





Acknowledgements

I want to thank all gods in this world for that I am healthy as far as I know. I thank
my parents, my siblings, and my grandparents for my life and their love. I am truly
grateful for having so many friends which support me at all times and costs. This work
would not have been possible without you! Of course, the same applies to those who
taught me physics. Martin Henze inspired my studies with his passion for the subject
and by introducing me to the quantum world. Eros Mariani gave me strength to fight
my enemies one at a time. Piet Brouwer then familiarised me with the weapons I need
for my current struggles and motivated me to exercise. Johannes Reuther deserves special
acknowledgement because he not only shared his fascination for quantum magnets with me,
but he also fed me for the last years which is always a noble gesture. Furthermore, I have
to thank Maria Laura Baez, Elina Locane, Felix “FU-King” von Oppen, Björn Sbierski,
Maximilian Trescher, Max Geier, Christian Fräßdorf, Jonas Sonnenschein, Dominik Kiese,
Finn Lasse Buessen, Yasir Iqbal, and many more for fruitful discussions about physics. An
indispensable contribution to this thesis was also provided by Jörg Behrmann and Jens
Dreger who maintain the computers at the physics institute and keep the moving parts
clean.
I am also incredibly glad and proud to be able to enjoy music, to have it as my spirit

and my balance. In this respect, I thank Fender and Gibson guitars as well as Marshall
amplifiers for the greatest sound on earth, Pitti Piatkowski for teaching me the Rock and
Roll, Steve Vai for his guidance, Rush for the spirit of my radio, the entire LiveKaraoke
band and crew for our legendary gigs at Wacken Open Air, Get Stoned for my satisfaction,
and Mars for the empire. There are many musicians who inspired not only me but also
thousands of others, who gave us strength and peace. We will never forget their thoughts
and melodies. Their names are Prince, David Bowie, Leonard Cohen, George Michael,
B. B. King, Chuck Berry, Malcolm Young, Lemmy Kilmister, Mike Porcaro, Pat Torpey,
Vinnie Paul, Aretha Franklin, and Montserrat Caballé to mention only a few. I am glad
that I could experience tremendous concerts in the past and I sincerely believe that we
should all be united by our love for living our lives rather than torn apart by our history
and religion. Life is precious and comprises millions of chances. Let’s keep it that way!

209


	Affidavit
	Introduction
	Theoretical concepts
	Reminders on quantum-many-body theory
	Thermodynamic ensembles, partition function, and grand-canonical potential
	Green's functions
	Feynman path integrals
	Imaginary-time path integral

	Functional integral
	Coherent states
	Coherent state path integral
	Functional integral form of partition function
	Partition function and Green's function for non-interacting Hamiltonian

	Perturbation theory
	Wick's theorem
	Labeled Feynman diagrams
	Unlabeled Feynman diagrams
	Frequency and momentum space representations
	Linked cluster theorem

	Observables and Green's functions
	Generating functionals for Green's functions
	Effective potential
	Self energy and Dyson equation
	Higher-order vertices and propagators
	Spin susceptibility from Green's and vertex functions

	Summary

	Functional renormalization group
	Introducing an infrared cutoff
	Derivation of FRG flow equations

	Functional-renormalization-group analysis of Dzyaloshinsky-Moriya and Heisenberg spin interactions on the kagome lattice
	Phenomenological model
	Functional renormalization group for spin systems
	General PFFRG approach
	PFFRG for Heisenberg systems
	Modifications of the PFFRG for finite DM interactions

	J1-D model on the kagome lattice
	PFFRG in the RPA channel
	Full PFFRG calculation
	Detection of magnetic instabilities

	J1-J2-D model on the kagome lattice
	Phase diagram
	Implications for herbertsmithite

	Summary, conclusion, and outlook

	XXZ model for spin-1 A-site spinel Ni Rh2 O4
	XXZ model on spin-1 diamond lattice
	Spin anisotropy versus level repulsion
	Antiferromagnetic XXZ model without tetragonal splitting
	Antiferromagnetic XXZ model with tetragonal splitting
	Summary and conclusion

	Characterisation of quantum spin liquids and their spinon band structure via functional renormalisation
	Preliminaries
	Preface to non-interacting fermionic system
	Normal Green's function
	Propagators in Nambu space
	Mean-field Hamiltonian

	Gauge fluctuations and projective symmetries
	Projective Symmetry Group
	IGG and stability of mean-field ansatz
	Classification scheme
	PSG on the square lattice
	PSG on the kagome lattice

	Dyson-Schwinger equations in Fock approximation
	Imaginary-time and real-space formalism
	Transforming into Matsubara space
	Fourier transform of real space
	Extensions for non-Bravais lattices or translation invariance breaking amplitudes
	Mean-field solution for bare interaction

	Including renormalised vertex functions from FRG
	Mean-field decoupled density-density interaction
	Incorporating the FRG vertices

	J1-J2 Heisenberg model on the square lattice
	Results for isotropic hoppings or pairings
	Nearest-neighbour amplitudes
	Including second-neighbour amplitudes
	Results from FRG vertices

	Nearest-neighbour Heisenberg model on the kagome lattice
	Bare vertex approximation
	Results from FRG
	Long-range terms on the kagome Heisenberg antiferromagnet

	Summary, discussion, and outlook

	Summary and outlook
	Flow equations for Heisenberg vertices
	Flow equations for Heisenberg and DM vertices
	Flow equations for XXZ vertices
	Kagome lattice and Fourier transforms
	Symmetry transformations for Abrikosov fermions
	Local gauge transformations
	Global spin rotations
	Heisenberg Hamiltonian
	Dzyaloshinsky-Moriya interactions


	Bibliography
	List of publications
	Abstract
	Kurzfassung
	Acknowledgements

