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Abelian Chern-Simons theory for the fractional quantum Hall effect in graphene
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We develop a theory for the pseudorelativistic fractional quantum Hall effect in graphene, which is based on
a multicomponent Abelian Chern-Simons theory in the fermionic functional integral approach. Calculations are
performed in the Keldysh formalism, directly giving access to real-time correlation functions at finite temperature.
We obtain an exact effective action for the Chern-Simons gauge fields, which is expanded to second order in the
gauge field fluctuations around the mean-field solution. The one-loop fermionic polarization tensor as well as
the electromagnetic response tensor in random phase approximation are derived, from which we obtain the Hall
conductivities for various FQH states, lying symmetrically around charge neutrality.
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I. INTRODUCTION

The integer quantum Hall effect (IQHE) is a remarkable
experimental discovery of the early 1980s, since it proves
quantum mechanics at work on macroscopic scales [1]. In
a nonrelativistic two-dimensional electron gas (2DEG) at
low temperatures and in high external magnetic fields, the
Hall conductivity shows a plateau structure as a function of
the magnetic field or chemical potential occurring at integer
multiples of the “conductance quantum” e/ h. Remarkably,
the existence of these plateaus can already be understood in
simple noninteracting models by the formation of discrete,
equidistant energy levels, the Landau levels (LLs) [2].

In sharp contrast to an ordinary 2DEG with its parabolic
band structure, in the vicinity of the charge neutrality point,
the band structure of graphene mimics the energy-momentum
dispersion of massless, relativistic Dirac particles [3—7]. When
subjected to strong magnetic fields such a pseudorelativistic
dispersion relation has profound consequences on the LLs,
which, in turn, influences the measurable Hall conductivity
[6,8]. In theoretical studies one finds an anomalous quantiza-
tion, where each of the four fermionic flavors in graphene con-
tributes a half-integer, n + 1/2, to the total Hall conductivity
[8-10]
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The additional fraction of 1/2 can be traced back to the
existence of a half-filled Landau level located directly at the
charge neutrality point, which has only half the degeneracy
of the other levels (the spectral anomaly), while the factor of
four is a direct consequence of the four independent SU(4)
symmetric flavors of charge carriers in the low-energy Dirac
model. With the recent success of graphene’s experimental
isolation, these theoretical predictions became experimentally
accessible and could indeed be verified [11,12].

Shortly after the IQHE was discovered in nonrelativistic
semiconducting devices, measurements on high quality sam-
ples revealed the occurrence of additional plateaus at certain
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fractional fillings [13,14], and more recently this effect has
also been observed in graphene [15-17]. For this fractional
quantum Hall effect (FQHE), electron-electron interactions
are an essential ingredient in the theoretical treatment to gain
further understanding of the underlying physics. The main
difficulty here is that the noninteracting Landau levels, forming
the basis of the analysis, are macroscopically degenerate. As a
consequence, conventional perturbative approaches inevitably
fail, making the FQH system a prime example for strongly
correlated matter, which has to be analyzed by truly nonper-
turbative methods.

Based on the seminal work of Laughlin [18], Jain introduced
the idea that physical electrons/holes and magnetic flux quanta,
or vortices, form bound states, so-called “composite fermions”
[19]. Due to the process of flux nucleation, the magnetic field
is reduced, leading to a new set of effective Landau levels that
are occupied by the composite fermions. The integer fillings
of those effective LLs map to the fractional fillings observed
in the experiments. Thus, the fractional QHE of ordinary
fermions can be understood as an integer QHE of composite
fermions [2,20]. This intuitive, albeit rather unconventional
picture led to a vast body of theoretical predictions, which
could be verified experimentally to a large extent [21-36].
Applying these ideas to the Dirac electrons in graphene leads
to the notion of “composite Dirac fermions.” Accordingly,
one might expect that their pseudorelativistic spectrum, which
leads to the anomalous quantization of the Hall conductivity
in the noninteracting case, leaves its marks in the FQHE.

In the theoretical treatment of the FQHE, there are several
slightly different approaches to realize Jain’s idea of flux-
binding. Within the trial wave function approach, vortices are
attached in the form of Jastrow factors multiplying the many-
body wave function of noninteracting fermions in an IQH state
[2,20]. To make use of this strategy in graphene, one considers
a completely empty or completely filled lowest LL—usually
the one at the charge neutrality point—as the vacuum state
and attaches flux quanta to the physical electrons/holes that
partially fill/deplete this energy level. Thereby it is assumed
that the effective LLs and their associated single-particle wave
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functions, which make up the IQH state, are not of the Dirac
type, but coincide with the nonrelativistic Schrodinger type
ones [8,37,38]. This assumption is justified by the fact that
the quenched Hamiltonian of graphene projected to the lowest
LL is identical to the Hamiltonian encountered in systems
with a nonrelativistic parabolic dispersion [8,37-39]. Loosely
speaking, graphene electrons confined to the lowest LL lose
their identity as Dirac fermions upon projection, such that the
only impact of graphene’s unconventional band structure is the
SU(4) symmetry of the ansatz wave function, which derives
from the SU(4) symmetry of the individual fermionic flavors.
This construction leads to the conventional Jain sequence
and wave functions. Straightforward generalizations of this
approach are given by Halperin wave functions [8,40—44],
which potentially break the SU(4) symmetry down to SU(2)®?
or even U(1)®*.

Despite its indisputable successes, the trial wave function
approach has several drawbacks, two of which we want to
comment on further. First, it crucially depends on projected
Hamiltonians, which typically neglect LL mixing. While
for nonrelativistic systems for the most part this is only a
minor issue, since at large magnetic fields LL. mixing is
suppressed as 1/+/B [45], in graphene, it is a substantially
more severe problem. Here, LL mixing is controlled by the
fine structure constant ¢, which is independent of the magnetic
field and—more importantly—genuinely large (o =~ 2.2 in
suspended graphene), making LL mixing a nonperturbative
problem already on the level of the Hamiltonian [46,47].
Hence, although the kinetic energy may be quenched within a
partially filled LL, the electrons in graphene still feel their Dirac
heritage. Yet, if LL mixing is taken into account, at least per-
turbatively, Refs. [46,47] reported—quite surprisingly—that it
has practically no effect on the wave functions in the zeroth
LL. Not entirely decoupled from the above, the second main
problem is concerned with particle-hole symmetry, or rather
its strong breaking inherent in the construction of trial wave
functions. The origin of paticle-hole symmetry is different
for nonrelativistic and relativistic systems. For the former,
it is only an emergent symmetry of the lowest LL projected
Hamiltonian, but for the latter, it is an exact symmetry of
the unprojected Hamiltonian (and, hence, is a good symmetry
even if LL mixing is taken into account). The construction
of particle-hole conjugated wave functions is still possible,
but the explicit symmetry breaking is not only unsatisfying
but also comes with its own complications, see, for example,
Refs. [48,49] for a more elaborate discussion.

A complementary approach to the construction of explicit
wave functions is the Chern-Simons field theory, which does
not rely on a projection to the lowest LL. Here, magnetic
flux tubes—which should be distinguished from the vortices
of the wave-function approach—are attached to the fermionic
degrees of freedom either via a singular gauge transformation
[20,50], or equivalently via a minimal coupling of a Chern-
Simons gauge field to the kinetic action in addition to a
kinetic Chern-Simons term [51-55]. (See also Ref. [56] for
a similar treatment involving bosons.) In the process, ordinary
fermions are transformed into composite fermions, whose
nature—Schrodinger or Dirac—is determined by the structure
of the kinetic action. Hence, as opposed to the picture drawn in

Ref. [37], the Chern-Simons composite fermions in graphene
are actual Dirac-type particles. Accordingly, one might expect
that the spectral anomaly of the composite Dirac fermions (the
half-integer quantization of the filling fractions) enters the an-
alytical formulas for the total filling fraction/Hall conductivity
of the electronic system. However, the graphene Chern-Simons
theories proposed in Refs. [57,58] attach flux to the physical
electrons/holes with respect to the bottom/top of the lowest LL,
which eliminates the spectral anomaly and yields predictions
for the total filling fraction that are in accordance with the
wave-function approach. Concerning LL mixing, the Chern-
Simons approaches reside on the other side of the spectrum,
meaning there is a large amount of LL mixing [59], which is a
result of the Chern-Simons transformation and the absence of
projection. Regarding the nonperturbative nature of LL mixing
in graphene, this feature should not necessarily be considered a
flaw, but the question, if the Chern-Simons induced LL mixing
describes the physical reality accurately, remains.

Although the non-Dirac nature of the composite fermions
in graphene’s lowest LL appears to be fully established
by the results of Ref. [47], the conclusion that theoretical
frameworks that employ Dirac-type composite fermions,
such as the aforementioned pseudorelativistic Chern-Simons
theories of Refs. [57,58], lose their viability would be too hasty
as Son’s work, Ref. [49], impressively shows. Focussing on
the conventional nonrelativistic FQH system, Son proposed
a manifestly particle-hole symmetric, pseudorelativistic
effective model, which declares Jain’s composite fermion to
be a Dirac particle by nature. Specifically, the v = 1/2 state is
described by a charge neutral Dirac particle interacting with
an emergent gauge field (not of the Chern-Simons type) that
forms a Fermi liquid, while Jain’s principal sequence around
half-filling can be explained as the IQHE of those Dirac
quasiparticles, fully incorporating the particle-hole symmetry
of the lowest Landau level.

In contrast to Son’s effective model, in the present paper, we
employ a rather standard microscopic Chern-Simons theory,
similar to Refs. [57,58]. The crucial difference to those works
is the reference point at which we implement Chern-Simons
flux-attachment, namely the particle-hole symmetric Dirac
point at charge neutrality. This shift in the reference point
should not be underestimated as a mere shift in the total filling
fraction, since it allows for a flux-attachment scheme that is
distinctively different from the aforementioned approaches.
Instead of attaching flux to the physical electrons/holes, it
is possible to attach flux to the charge carrier density, that
is, electron- or hole-like quasiparticles measured from the
charge neutrality point. In particular, we obtain a mean-field
equation which involves the charge carrier density, instead of
the electron/hole density, and within the calculation of Gaus-
sian fluctuations, we naturally encounter pseudorelativistic
propagators experiencing an effective magnetic field, which
incorporate the spectral anomaly. Our central result is the
electromagnetic polarization tensor in linear response to an
external perturbation, which—among others—gives access
to the Hall conductivity of the multicomponent fractional
quantum Hall system:
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Here, o , , is the Hall conductivity of a noninteracting, single
flavour o, which is half-integer quantized at low temperatures,
due to the Dirac nature of the composite fermions, 6 ,, is a
diagonal matrix containing these single flavour conductivities,
and K is an integer-valued symmetric matrix accounting for
the flux-attachment [60].

We show that Eq. (2) leads to particle-hole symmetric Hall
plateaus around charge neutrality, if positive flux-attachment
to electronlike and negative flux-attachment to hole-like quasi-
particles is considered. This observation enables us to construct
manifestly particle-hole symmetric filling fractions as func-
tions of the chemical potential. This result seems surprising,
since the Chern-Simons term explicitly breaks particle-hole
symmetry—which is why Son discarded such a term in
his effective theory [49]—irrespective of the reference point
where the Chern-Simons flux is attached. Since this symmetry
cannot be generated dynamically, particle-hole symmetric Hall
plateaus are not expected to occur in such a symmetry broken
theory. The puzzle is resolved as follows. The standard def-
inition of the particle-hole transformation involves fermionic
and bosonic fields only, but leaves the Chern-Simons coupling
untouched. By allowing the coupling to depend on the sign of
the carrier density, we have altered the flux-attachment pre-
scription in such a way to make it consistent with the standard
particle-hole symmetry transformation. One may also interpret
it the other way around: we use the standard flux-attachment
but change the symmetry transformation to involve a sign
flip of the Chern-Simons coupling. Thus, one may argue that
the Chern-Simons term only breaks particle-hole symmetry
in a weak sense, since it can be circumvented altogether by
sufficiently modifying the symmetry transformation or the
flux-attachment prescription, alleviating the seeming incom-
patibility of particle-hole symmetry and Chern-Simons theory.
Furthermore, we show that the above formula reproduces the
Hall conductivities proposed in Refs. [61,62] as special cases,
as well as several other filling fractions that have been obtained
in the wave-function approach.

In this paper, we employ the real-time Keldysh formal-
ism, which offers several technical advantages in comparison
to the conventional real-time ground-state formalism. This
formulation will allow for a natural regularization of the
otherwise ill-defined mean-field equations, upon which the
flux-attachment interpretation is based, and it additionally
yields results that are valid at finite temperature, which come
without further calculational costs. Our exposition is inspired
by the original work of Refs. [51,53], where the fermion
Chern-Simons theory for the FQHE of nonrelativistic matter
has been introduced. Since there are several subtle differences
due to the Dirac nature of the quasiparticles and the Keldysh
formulation, we will present the theory in a self-contained
manner. The outline of the article is as follows. In Sec. II,
we describe the field theory of interacting Dirac fermions
coupled to statistical Chern-Simons fields with the Abelian
gauge group U(1)®*. In the subsequent section, we derive an
exact effective action for the statistical gauge fields and discuss
its Gaussian approximation around the mean-field solution of
the quantum Hall liquid. Section IV contains our main results.
We address the topic of gauge fixing and calculate the full elec-
tromagnetic response tensor together with Hall conductivities
for a selected set of states. We conclude in the final section.

Further technical details of the computation are given in two
appendices.

II. ABELIAN CHERN-SIMONS THEORY

The starting point of our considerations is the second quan-
tized low-energy Hamiltonian for interacting Dirac electrons
in monolayer graphene (i = 1),

H = [\IJT()?)QD\II(E)+%ﬁd8n(E)V()? —»én(y), 3)
X X,y
with 8n(X) = WI(X)W(X) — 7i(x). The fermionic field opera-
tors U and W' are, in fact, eight-component spinors ¥ =
Wy W), with W, = (ax, VYsk, Vsk. Vax ).
The indices A/B, K4, and 1, | represent sublattice, valley,
and spin degrees of freedom, respectively.

The first term—the Dirac part of the Hamiltonian—
describes the dynamics of the four flavors of Dirac electrons
o= (K1, K_1,K.|,K_ ). Within the basis chosen above,
the single-particle Hamiltonian #{, assumes a diagonal form
in flavor space,

Hp = diag(Hp k1. Hpx 1 Hpx, - Hox ), (@)
where the Hamiltonian for each individual flavor reads
Hpo = —KyivFo - v. 5

Here, k, = *£1 distinguishes between the two valleys K, and
vr is the Fermi velocity with the numerical value vy = ¢/300.
Note that we indicated the 4 x 4 matrix structure of the flavor
space in Eq. (4) with a hat symbol explicitly, while the 2 x 2
matrix structure of the sublattice space is implicit.

The second term of Eq. (3) describes two-particle interac-
tions between the Dirac fermions. The interaction amplitude
is given by the instantaneous, U(4) symmetric Coulomb inter-
action

2
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The term 7i(X) = ), iq(X) in the definition of the bosonic
operator 8n(x) is a background density. In general, it is space-
and possibly even time-dependent, but for our purposes, how-
ever, will be constant. It acts as a counterterm, that cancels the
zero momentum singularity of the bare Coulomb interaction.
Furthermore, € is the dielectric constant of the medium (being
unity in vacuum), which describes the influence of a substrate
on the bare Coulomb interaction.

In this paper, we employ the Keldysh formalism to formu-
late a real-time theory at finite temperature and density for the
four interacting flavors of Dirac particles in graphene, that are
subject to an external magnetic field and coupled to four sta-
tistical U(1) gauge fields. Within the Keldysh formulation, the
dynamical degrees of freedom of the theory are defined on the
Schwinger-Keldysh contour, which is a closed contour in the
complex time plane [63,64]. The time arguments of the field op-
erators are elevated to contour-time and correlation functions
are derived as the expectation value of their “path ordered”
products. As shown in Fig. 1, the time contour starts at a refer-
ence time fp—at which the initial density matrix is specified—
extends into the infinite future along the real axis and returns to
the reference time eventually. Here, we are mainly interested in
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FIG. 1. Schwinger-Keldysh closed time contour in the complex
time plane with forward (C) and backward time branch (C_). Here,
1y is areference time, where an initial density matrix enters the theory.
Since we are only interested in the system’s linear response properties
close to thermal equilibrium, we send the reference time to the remote
past (o = —oo) outright.

the thermal equilibrium state in linear response to an external
electromagnetic perturbation. Therefore we send the reference
time #y to the infinite past, which erases all the information
about possible nontrivial initial correlations and transient
regimes [65,66]. As a consequence, the quantum kinetic
equations are of no further concern, since they can be trivially
solved by the well-known thermal distribution functions [64].

Before we discuss the field theoretic model in its action
formulation, a few remarks concerning notational conventions
are in order. First, to a large extent, we will work within the
abstract contour-time representation, and only switch to a
physical real-time representation at the end of Sec. III when we
discuss Gaussian fluctuations of the bosonic effective action
around the mean-field solution of the fractional quantum Hall
liquid. The major advantage of the contour-time representation
is that it allows for a compact and concise notation, resembling
the zero temperature vacuum (or ground state) theory, yet
encoding the full information of thermal fluctuations [63].
Furthermore, we employ a covariant notation, where upper
and lower case greek letters u, v, and A denote contra-
and covariant components of a Minkowski three-vector,
respectively. As usual, a repeated index implies summation
according to the Finstein summation convention. This
summation rule is lifted if a repeated index is bracketed. [This
statement will only apply for repeated flavor space indices
o and B, see Eq. (13) for instance.] The convention for the
flat Minkowski metric is chosen to be 1, = diag(1,—1,—1),
and natural units (i = ¢ = 1) are used throughout the article.
Lastly, space-time integrations will be denoted by

/ = / dt / d’r, (7)
C,x C

where C indicates that the time integration is performed along
the Schwinger-Keldysh contour, and x = x* = (¢,7) labels
(contour-)time and spatial variables. After introducing these
general notational conventions, we proceed to describe the
details of the model.

The entire physical content of the theory is summarized by
the coherent state functional integral [63,64,67]

Z[eAM _,_Az] — /prl/ﬁpa o St Al 8)

which is a generating functional of correlation functions. The
action S in the exponential can be written as a sum of three
terms:

S[v.eA, + A%.al] = Sp[v.eA, + A5 + a |
+ Scoull¥] + Scs[af]. ©

where the first two terms, involving the fermionic fields, are
readily obtained from the Heisenberg picture Hamiltonian
H (1) by the definition

Spl¥] + Scoul /] = /c ( f wf(x)ia,wx)—ﬂ(r)). (10)

The bosonic fields within the Dirac part of the action,
Ay, AZ, and al"j, are introduced via the minimal coupling pre-
scription. They represent an external electromagnetic potential,
local two-particle source fields, and the statistical gauge fields,
respectively. The source fields will later be used to generate
the desired correlation functions. The Dirac action can be
written compactly as a quadratic form of an eight-component
Grassmann spinor W [5,9]

SolWeA, + A% +a%] = / W06y ()W), (1)

C,xy

The matrix Ga !is the inverse contour-time propagator, which
inherits the flavor diagonal structure from the single-particle
Hamiltonian (4):

Gy' = diag(Gakm,G(;}M,G(;IM,G(;}H). (12)

According to Eq. (5), the dynamics of each flavor is governed
by the pseudorelativistic, massless Weyl operator

Gob(x,y) = 8c(x — y)(iof D' + ug). (13)

Here, 8c(x — y) = 8¢(xo — y0)8(X — ¥) involves the contour-
time delta function [63] and ¢/' = (00,kqVFO1,kqVF0O2) 1S
three-vector of Pauli matrices, acting in sublattice space. The
gauge covariant derivative

DZ‘ =0, +ieA,(x")+ i.Afi(x“) + iafj(x") (14)

contains the aforementioned covariant vector potentials
Ay, A%, and aj;. For the external potential A, we choose the
Landau gauge, A, (x*) = (0,Bx2,0) = (0,By,0), to describe
a uniform and static magnetic field B perpendicular to the
graphene plane. Note that it does not depend on the flavor
index «, so that all flavors universally couple to the same
field. The source fields A7, and the statistical gauge fields
af;, on the other hand, do carry a flavor index and, thus,
couple to each fermionic flavor individually. Such a coupling
breaks the global U(4) symmetry of the theory without Chern-
Simons fields down to a local U(1)®* symmetry. Finally, we
introduced a flavor dependent chemical potential 1, allowing
for independent doping of the individual flavors. Physically,
this flavor dependence may be thought of as originating from
a generalized Zeeman term [8].

The Coulomb interaction part requires no further discussion
as it is directly obtained from the interaction part of the
Hamiltonian (3),

1
Scoul¥] = —5/ Sn(x)V(x —y)dn(y),  (15)

C,xy
with V(x — y) = V(X — y)dc(x0 — yo)-

The third term in the action (9) is the kinetic term for the
four statistical gauge fields, which is given by a generalized
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Chern-Simons action [51,53,54,59]

1 .
Scs[al] = E(’Cfl)aﬂfcx S“Mafj(x)avaf(x). (16)

Herein e#"* is the total antisymmetric Levi-Civita tensor (we
use the convention £°12 = 1), and K is a regular, i.e., invertible,
symmetric 4 x 4 matrix,

2ky  mp  ny ny
. 2k

mi 2 ns ng ’ (17)
ni ns 2k3 nop

nyp ny my 2k4

with integers k;,m;,n;. For those configurations of integers
where K happens to be singular, Eq. (16) needs to be regu-
larized. This may be achieved by adding a diagonal matrix
R = 2ndiag(+in,—in, +in,—in) to Eq. (17), where n is
an infinitesimal (the signs therein are purely conventional).
The physical meaning of the X matrix is to attach statistical
magnetic flux to the fermions. This feature will become more
clear in the next section when we discuss the stationary phase
approximation.

The theory we described above possesses a local U(1)®*
symmetry, in comparison to the symmetry of the original
model of interacting electrons in graphene, being a global
U(4) flavor symmetry (U(2) x U(2), respectively, if one takes
into account a Zeeman term [5]). It has to be emphasized that
the symmetry is broken explicitly by considering the flavor
dependent chemical potential in addition to the U(1)®* sym-
metric gauge field coupling. As pointed out by the authors of
Ref. [54], who studied the FQHE for nonrelativistic fermions in
bilayers, as well as SU(2) symmetric monolayers, the original
U(4) symmetry may only be generated dynamically (once the
flavor dependence of the chemical potential is neglected [54]).
Therefore it is expected that some of the fractional quantum
Hall states we obtain in this work—after certain necessary
approximations have been made—may not be realized in the
exact theory, as they could be destabilized by higher-order
fluctuations. A manifestly U(4) [respectively, U(2) x U(2)]
symmetric theory, on the other hand, could be constructed
in analogy to Refs. [52,54], by considering an appropriate
non-Abelian generalization of Eq. (16), with a corresponding
set of non-Abelian statistical gauge fields, coupling gauge
covariantly to holon and spinon fields; see Sec. V for a brief
discussion. Clearly, such a non-Abelian gauge theory is in
many aspects significantly more complex than the Abelian
theory of the present article and we leave its construction and
analysis for future work.

As afinal remark we want to stress that the partition function
(8) as it stands is not well-defined. Since the Chern-Simons
fields a;; are gauge fields, the functional integral contains an
infinite summation over all, physically equivalent orbits of
pure gauge, leading to a strong divergence. In order to extract
physically meaningful information from the partition function,
the gauge equivalent orbits have to be removed, such that each
gauge field configuration in the functional integral uniquely
corresponds to a physical field configuration. To this end,
we employ the well-known Fadeev-Popov procedure [68], but
we postpone the details of the discussion to Sec. IV. For now

we work with Egs. (8) and (9) as they are, but keep in mind
that they need to be modified.

III. EFFECTIVE BOSONIC ACTION, MEAN-FIELD
THEORY, AND GAUSSIAN FLUCTUATIONS

In this section, we derive an exact expression for the
effective action of the gauge fields aj, following Ref. [51].
Subsequently, the nonpolynomial action we obtain will be
expanded to second order in the fluctuations around its mean-
field solution, resulting in an exactly solvable Gaussian model.
The quadratic action will be stated in its real-time form in
Keldysh basis.

Due to the Coulomb interaction being quartic in the
fermionic fields, an integration of these microscopic degrees
of freedom is not readily possible. For this reason, we rewrite
the problematic interaction term by means of a Hubbard-
Stratonovich transformation in the density-density channel
[64], which introduces an auxiliary boson ¢:

Smlv] — /D¢ ot Sus[@1+iSin [, 61 (18)

The quadratic action of the Hubbard-Stratonovich boson is
given by

PV x = »P(y), 19)

C,xy

1
Susle] = 3

with the inverse Coulomb interaction V!, which, of course,
has to be understood in the distributional sense. The second
term contains a trilinear Yukawa-type interaction and a linear
term, describing the interaction of the auxiliary boson with the
background density 7i:

Sin[¥.0] = _/c P ()W (x) — ii(x)). (20)

Note that the fluctuating Bose field ¢ in the Yukawa interaction
appears on the same footing as the zero component of the
external gauge potential A, coupling to all flavors identically,
see Eqs. (11)—(14). As a consequence of the above manip-
ulation, the Grassmann fields i appear only quadratically,
such that the fermionic integral can be performed exactly. Our
intermediate result for the effective action now only contains
bosonic degrees of freedom:
See[eAn + A% .al.¢]

"
= —itrlnGy'[eA, + Al +ay + PSo,.
+ Susl¢] + ¢ + Scs[al]. (21

Remarkably, the Hubbard-Stratonovich boson ¢ can be
integrated exactly after shifting the statistical gauge fields as
follows: al‘j — al‘j — @do, [51,54]. The result is the desired
effective action of the Chern-Simons gauge fields in the
presence of the two-particle source fields .Afi:

Serr[eA, + A%.at] = —itrInGy'[eA, + A% +a ]
+ Sv[ai] + Scs[a]- (22)
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The term Sy[aj;] is a quadratic functional of the gauge fields
that is generated by the ¢ integration:

2
x Ve (x — y)((leil)azﬂzg()mvz aﬂzafzz - flaz)(}’)~
(23)

Here we have defined V**(x — y) = V(x — y), where the ad-
ditional flavor-space indices keep track of the correct summa-
tion. Note that Eq. (23) is nothing but the Coulomb interaction
term (15), in which the density of flavor «, \I/(Ta)(x)\ll(a)(x), is

1 ~
Sy [ClZ] Y /ny ((K_l)mﬂ]somvl aﬂlafll - ﬁal)(x)

substituted by (KX ~"),5£%"8,,a? (x). In the above derivation, no
approximations were involved. Yet, due to the nonpolynomial
tracelog term, the residual functional integral over the gauge
fields cannot be performed exactly. A common strategy to deal
with this problem, which we adopt here as well, is to find
the field configuration in which the effective action becomes
stationary and, subsequently, expand in powers of fluctuations
around the mean.

The variation of Eq. (22) in the absence of two-particle
sources Aj yields

8 Sef ” c—1 Py B
= —ji@) + (K )epeh0,a} (z
5a%(2) Jo @)+ (K7 agp 5 (2)

— / (K™ )a %19, 88 85180 (x — 2))
C,xy

x Voo (y — Y)((léil)azﬂzgomvza/tzaiz B ﬁ‘h)(y)‘
(24)

Here, j/ is the particle 3-current density per flavor « in the
presence of an external gauge potential A, and the Chern-
Simons fields a;:

Jlx) = —i trinGy'leA, +al]. (25)

(Safj(x)
We have to stress at this point that Eqgs. (24) and (25) have
to be treated with special care as they demand a proper
regularization. First, in the infinite system, the particle current
is not well defined, since its «© = 0 component—being the
particle density—diverges. This fact is a direct consequence
of the Dirac approximation of the tight-binding graphene
spectrum. Another issue is related to the fact that the definition
of the particle current involves the average of a (contour-)time
ordered product of two fermionic fields evaluated at the same
time. However, these problems are immediately resolved once
the theory is mapped to the physical real-time representation
in Keldysh basis. Hereto, one splits the Schwinger-Keldysh
contour into a forward and backward branch and defines a
doubled set of fields, ¥4 and (ai)ﬁ7 which are associated to
the respective branch [63,64]. In a next step, one performs a
rotation from = basis to Keldysh basis by defining “classical”
and “quantum” fields, indexed by ¢ and ¢, respectively, as
symmetric and antisymmetric linear combinations of the £
fields [63,64]. The net result is that the derivative in Eq. (24)
is performed with respect to the quantum components of the
gauge fields, the particle 3-current densities are replaced by

the well-defined charge carrier 3-current densities j;(x), see

Eq. (A12), and the gauge fields on the right-hand side are
replaced by their classical components [69].

The requirement of a vanishing first variation defines the
mean-field equations for the Chern-Simons fields. As pointed
out by the authors of Refs. [51,54], these mean-field equa-
tions allow for several physically different scenarios such as
Wigner crystals and solitonic field configurations. Following
Refs. [51,54], we here concentrate on those solutions, which
lead to a vanishing charge carrier current and a uniform
and time independent charge carrier density 7i,, describing
a quantum Hall liquid. In that case, Eq. (24) reduces to the
relation

fig = (K™ ape? 8,8 = —e(K™")apb?. (26)

Here, the second equality defines the (uniform) Chern-Simons
magnetic field b*, experienced by the flavor « charge carriers,
in terms of the expectation value of the Chern-Simons fields
Ezfj = ((ac)l‘j). Inverting the above relation yields the statistical
magnetic fields b* as functions of the densities 7, :

1
b* = ——Kiig. (27)
e

Writing the mean-field equation in this form reveals the
physical meaning of the C-matrix, as it defines the precise
flux-attachment procedure of the multicomponent quantum
Hall system. Each flavor 8 of charge carriers, contributes to the
statistical magnetic field for the flavor « with a magnetic flux
K*®ii 4. Hence the component K represents the contribu-
tion to the statistical flux per flavor g as seen by flavor «. Thus
Eq. (27) may be interpreted as a “flux-binding” relation, which
transforms ordinary Dirac fermions into “composite Dirac
fermions.” Furthermore, it is important to notice that Eq. (27)
is well-defined even for singular U matrices, in contrast to
Eq. (26). Such singular configurations should not be discarded,
however, as the following discussion shows. Consider, for
example, the special case, where all components of K equal
the same constant 2k. In that case, the four equations (27)
reduce to a single one, yielding a unique statistical field b
associated to the density of charge carriers 7 = ) 71,. This
scenario corresponds to a Chern-Simons theory, where only
a single dynamical gauge field, a, = ), a,, is present that
couples to the different flavors identically [57]. The other three
eigenvectors one obtains by diagonalizing Eq. (17) span a triply
degenerate subspace with eigenvalue zero, and thus decouple.
Likewise, for other singular KC-matrix configurations, one
would obtain a theory with only two or three dynamical gauge
fields and a correspondingly reduced parameter space. (In the
extreme case where K is identically zero, all gauge fields would
decouple and no flux binding could occur, which leads back to
the integer quantum Hall regime.) With this physical picture
in mind we now continue our discussion.

By virtue of the gauge covariant derivative (14), each one of
the statistical magnetic fields (27) adds to the external magnetic
field B individually, resulting in a flavor-dependent effective
magnetic field [70]

1
B% = B+b* =B — -K*ig. (28)
e

It is this effective magnetic field, rather than the external field
B alone, which enters the fermionic propagators, such that
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Egs. (27) and (28), in fact, represent self-consistency equations.
A straightforward calculation of the free propagator for Dirac
fermions moving in the effective magnetic field Bg; yields
the charge carrier density for the flavor « as a function of the
chemical potential 1, the effective magnetic field B, and
temperature T (see Appendix A for details):

ﬁa (HfaaBeaffvT) = U(OZ)(I“LOUBett’T) (29)

2
2m e,
Here, we have introduced the magnetic length £, = 1/,/|e Bl
and the filling fraction per flavor [9,10],

by = %(tanh——l—z Yo nhw_‘“ +““), (30)

n=1 A==%1

where ¢ = V2v /£, denotes the pseudorelativistic cyclotron
frequency. The charge carrier density as a function of an
effective magnetic field BZ; at constant chemical potential 1ty
and the filling fraction as a function of the chemical potential
at constant field are shown in Fig. 2. At large magnetic fields
and low temperatures, the filling fraction shows the typical
plateau structure that is characteristic for the (anomalous)
integer quantum Hall effect. This issue will be discussed in
more detail at the end of this section, once we have obtained
the Gaussian approximation to the exact action (22).

|

Seri[ A%, Aa%] = / ((Aa) + (A <Aaq>z+(Aq>z)(x)(
xy

+ f ((Aay: (Aaq);z)(x)(
xy

()

From the above mean-field equation, one may calculate the
possible fractional fillings at which the spectrum is gapped,
leading to a plateau structure for the “interacting Hall con-
ductivity,” which is the hallmark of the fractional quantum
Hall effect. However, we prefer to extract the filling fractions
directly from the interacting Hall conductivity, which will be
derived in the next section. To continue, we only need to
know that the mean-field equation has a nontrivial solution,
which depends on the K matrix, the external magnetic field,
temperature, and chemical potential. Furthermore, observe that
the effective magnetic field is invariant upon changing the sign
of Kep and 7, simultaneously. This is a first hint, how to
construct manifestly particle-hole symmetric filling fractions
in the presence of a Chern-Simons term.

The stationary field configuration we found above serves as
areference point around which one should expand the effective
action (22) in powers of field fluctuations. To this end, one
writes a,, = a, + Aay, and expands the effective action to the
desired order in the fluctuation Aaj; and the source A7. As
mentioned before, here we are only interested in an expansion
up to second order. Terms linear in the fluctuation vanish since
the effective action is evaluated at the saddle point, whereas
linear source terms do not vanish. However, since the latter only
couple to the above mean-field 3-currents, their contribution
is not interesting for the further analysis and will be omitted.
We state the result in the physical real-time representation in
Keldysh basis:

AT <<Aac>€ + (Ac)€> )
@Ry @@L )T\ + (A)
ch,

5 (Aa,)?
,;)m )<<Aaq>€)(y )

(c,

z/ [(Aaf + A%)TOIL (x.y) (Al + AL)(») + Al (x)Cli(x.y)Adl (). 31

Asdiscussed in the paragraph following Eq. (24), the additional
degrees of freedom are a consequence of the mapping from
abstract contour to physical real time. The second line defines
a compact notation, where the Keldysh degrees of freedom
are indicated by bold symbols. While Aaf, and A are two-
dimensional vectors in Keldysh space with “classical” and
“quantum” components, IT;; and Cl are triangular 2 x 2
matrices with retarded, advanced, and Keldysh components.
The latter contain the statistical information of the theory.
Since in this article we are only interested in the linear response
regime at finite temperatures, the Keldysh components (IT%); ;
and (CX),; both obey the bosonic fluctuation-dissipation
theorem [64,71].

InEq. (31), I V(x y) is the one-loop fermionic polarization
tensor

2
l A—1
—————trinG, |eA, +a® ,
2 §al(y)das(x) o ledwrail]

(32)

I, (x,y) =

(

in which (A;S 1 [eA, + a}] is the inverse fermionic propagator
(12) mapped to Keldysh space. Referring to Appendix B for
details, we calculated this tensor at nonvanishing temperatures.
Since the free propagators are diagonal in the flavor index, we
find that the polarization tensor is diagonal in flavor space as
well, Hzﬁ = II{,,8a)s- However, this may need not be the case
at higher orders, so for now we keep both indices. The tensor
C.;(x,y), which we refer to as Chern-Simons—Coulomb
tensor, is the integral kernel of Scs[Aaz] + Sy [&Z + AaZ].
Its real space representation reads

(CR s (x,y)

MR
— 3 %R g

= (K™ "ape" 8(x —
Ve (x—y)K g 5™ 80,
(33)

where the arrows above the partial derivatives indicate the
direction in which they operate.
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FIG. 2. (a) Charge carrier density at constant chemical potential as a function of the effective magnetic field BS; at T = 10 K (blue). The
straight dotted lines (orange) indicate the first few Landau levels. At vanishing magnetic field, the charge carrier density scales quadratically
with the chemical potential [5,10]. (Without loss of generality the sign of the chemical is assumed to be positive). Upon increasing (the absolute
value of) the effective magnetic field BS—while keeping the chemical potential fixed—the carrier density shows oscillations in the regime
¢ < [y, Whereas for ¢ > u, it grows linearly as a function of the magnetic field. This behavior is readily explained by the formation of
Landau levels, and the dependence of their degeneracy and relative energetic separation on the magnetic field. (b) Filling fraction per flavor
v, at constant effective magnetic field B = 15 T and temperature 7 = 10 K as a function of the chemical potential. The plateaus occur at
half-integer filling fractions v, = %(n, 4+ 1/2). The transitions between the plateaus are smeared out due to temperature. (c) Derivative of
v, with respect to the chemical potential as a measure for temperature-induced Landau level broadening at B = 15 T for the temperatures
T =5,25,50, and 75 K. Increasing the temperature clearly leads to a broadening of the discrete energy levels. Since the relativistic Landau
levels are not equidistant in energy space, the level broadening causes the Landau levels to overlap significantly away from the charge neutrality

point. The Landau level located directly at the charge neutrality point, however, remains well-defined up to rather large temperatures.

Both the fermionic polarization tensor HZE , as well as the
Chern-Simons—Coulomb tensor Cf;;, are transverse, which

may be expressed by the identities

3, =0, MY 3,=0, (34a)

3,C =0, C45,=0. (34b)

As is well-known, this property is a consequence of gauge
invariance [68]. Furthermore, for the polarization tensor, it is
possible to factorize its tensorial structure and expand it into
three distinct scalar kernels IT? 5 1 ;ﬁ, and Hiﬁ [51,54]. Trans-
forming to Fourier space, the 2 4+ 1-dimensional representation
of this expansion, where timelike (u,v = 0) and spacelike

(u,v =1i,j = 1,2) indices are separated, reads

N%(0,5) = 3 1%(0,3), (352)

I (0.§) = —0g' My(.) + 6% q; My (w.§), (35b)

(@.9) = —oq' Moy(@,§) — ie" q;M(o,§), (35¢)

My(,§) = =08 M 4(0,9) + is® o}y (©,9)
+(7¢” - q'qHM5(@,9).

One can readily check that the above expansion fulfills the
transversality condition (34a).

We close this section by a short discussion about the
(anomalous) integer quantum Hall effect in graphene. Al-
though the electromagnetic response of the interacting system
to an external perturbation is encoded in the electromagnetic
response tensor to be derived in the next section, the response
properties of the noninteracting system are already contained in
the fermionic polarization tensor 1'[5; . In fact, it is established
that the essential physics of the integer quantum Hall effect
can largely be understood within a noninteracting model and
interactions only play a minor role [72]. We therefore only need

(35d)

to consider HZ;, in particular its retarded component. The dc
conductivity tensor per fermionic flavor o can be obtained as
the limit [9]
.. ez ..
(00)y = lim lim —(IT*)J(w,§), (36)
w—>0g—-0 Iw

where i,j are the aforementioned spacelike indices (i,j =
1,2). Recall that to one-loop order the polarization tensor
is diagonal in flavor space, hence we dropped the second
flavor index. Furthermore, we here concentrate on the off-

diagonal Hall conductivity, which reduces Eq. (36) to the
kernel (I"IR);((O,O),

2

(02), = A(TTF)(0,0) = sign(eBg‘“)Ze—ﬂva.
The second equality follows after a lengthy, but straightforward
calculation. As we mentioned earlier in this section, at large
magnetic fields and zero temperatures, the filling fraction v,
is quantized into plateaus located at +(ny, + %), with n, =
0,1,2, ..., see Eq. (30) and Fig. 2. Consequently, Eq. (37)
describes the anomalous integer quantum Hall effect of the
single fermionic flavor . A summation of the remaining flavor
index then yields the Hall conductivity of the entire system of
Dirac particles. For simplicity, we may assume the absence
of Zeeman terms and flux-binding for the moment by setting
e = 1 and B = B. In that case, the contributions from the
individual flavors are identical, giving rise to the well-known
factor of four after summing over all flavors. Restoring 7 we,
thus, obtain the anomalous integer quantization of the Hall
conductivity in graphene [9,10]:

(37

2 1
0y = isign(eB)ij—hét(n + 5), n=01.2,.... (38

A finite temperature leads to a smearing of these plateaus, due
to the thermal broadening of the Landau levels. However, since
the Landau levels are not equidistant in energy because of the
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linear Dirac spectrum, even a small temperature eventually
washes out the plateau structure at large fillings. Only the
lowest levels are relatively robust against the thermal smearing.
Taking into account the rather large value of the relativistic
cyclotron frequency w, it is possible to observe the quantum
Hall effect experimentally at room temperature [12]. By now,
this is a well-known fact, but still it is insofar astonishing, as
the quantum Hall effect for ordinary, nonrelativistic fermions
can only be observed at low temperatures, close to absolute
Zero.

IV. ELECTROMAGNETIC RESPONSE TENSOR
AND HALL CONDUCTANCE

In order to obtain the electromagnetic polarization tensor,
we need to perform the residual functional integration over
the statistical gauge fields, which—according to the rules
of Gaussian integration—involves the inverse of (IT 4 C),,;.

However, since both Hfu; and C"; are transverse, neither thelr
individual inverse nor the inverse of their sum does exist. This
problem is rooted in the gauge invariance of the partition
function (8). As advertised at the end of Sec. II, we here
discuss the issues of the gauge fixing procedure—resorting to
the contour-time representation for the moment—and derive
the electromagnetic response tensor, from which we obtain
the dc Hall conductivity. We emphasize that the technique
described below is not limited to the Gaussian approximation
of the effective action (22).

The problematic gauge equivalent orbits, causing Eq. (8)
to diverge, can be factorized from the nonequivalent physical
field configurations by the well-known Fadeev-Popov gauge
fixing procedure. Referring to Ref. [68] for details, we obtain
the intermediate result

Z[A%] =N/ DAas[G(Aa%)] e/ Sl AiAail, (39)

Here, the divergent integral over pure gauge fields as well as the
so-called Fadeev-Popov determinant have been absorbed into
the formally infinite normalization constant A/. Since it does
not enter any correlation function, this constant may safely
be omitted [77]. The functional delta distribution enforces the
gauge constraint G(Aay,) = 0 within the functional integral,
such that only physically inequivalent field configurations
contribute to the amplitude. The gauge fixing function can be
chosen at will, but for definiteness, we consider the generalized

Lorentz gauge condition,
G(Aa}) = 0, Adl (x) — w(x), (40)

where w(x) is an arbitrary function, in the remainder of this
paper.

In its present form, Eq. (39) can in principle be employed to
calculate the desired correlation functions, yet it is beneficial to
make use of Feynman’s trick of “averaging over gauges” [68].
Hereto one averages the partition function (39) over different
field configurations w(x) with a Gaussian “probability mea-
sure.” This procedure closely resembles a Gaussian disorder
average of the partition function, albeit a disorder potential
would couple in a different manner [63,64,78,79]. The net

result is the gauge fixed partition function

ZGF[ /DAG elSeff[Aa Aag]+iScrlAay, ] 1)
where the additional contribution in the exponent is the gauge
fixing action
Sor[Aa®] = - (BMAafj(x))z
2%

1
= / Aa%(X)Ghy (. y)Aal (x).  (42)
2 C,xy
Here, £ is a real-valued parameter, which may be chosen at
will to simplify calculations. In the end, for any physical—
that is gauge invariant—observable the dependence on & has
to drop out. After mapping this contour-time action to the
physical real-time representation and performing the Keldysh
rotation, the additional gauge fixing term effectively leads to
the substitution C“” — (C + Q)Zg in the effective action (31).
Since g;” is 1nvert1ble soisthe sum (IT + C + Q)Z,‘g} , resulting
in a Well-deﬁned functional integral over the statistical gauge
fields.

For nonvanishing source fields, the residual Gaussian inte-
gration yields the generating functional of connected correla-
tion functions [64,67]

W[A%] = —ilnZee[ A%] = f AL () Kl (x,9)AL ().

(43)

In this expression, K’ (x y) defines the electromagnetic po-
larization tensor. Accordmgly, it represents the linear electro-
magnetic response of the system to an external perturbation.
We state its explicit form in terms of the fermionic polarization
tensor and the Chern-Simons—Coulomb tensor of the preceding
section by employing a condensed matrix notation. For the
moment the hat symbol not only indicates the flavor-space
matrix structure, but also covers the discrete Minkowski
indices w,v and the continuous space-time variables x,y, if
not stated otherwise,

K=f-Tifi+¢+&'M. (44)
In this expression, matrix multiplication is defined naturally
by implying summation over discrete and integration over
continuous degrees of freedom. This tensor has the usual
triangular Keldysh space structure, with retarded, advanced,
and Keldysh components [64]

0 (KM 5(X,Y)
45
(K®)hp(x,y)  (KF)hp(x ,y)> @)

Transforming to frequency-momentum space, these compo-
nents read

Kos(x,y) = (

REM = ﬁj/; A8+ C+ OPN ML (a60)

Here, the frequency and momentum dependence has been
written as an index, flavor and Minkowski indices are still
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covered by the hat symbol. The second equation is just a
manifestation of the bosonic fluctuation-dissipation theorem.

Although the electromagnetic response tensor as given by
Eq. (44) contains the gauge fixing kernel G explicitly, any
reference of it drops out in the final expression for K . In fact, the
electromagnetic response tensor is a physical observable and,
thus, has to be gauge-invariant. We have checked explicitly
for a single flavor that other common choices, such as the
Coulomb and axial gauge, indeed, lead to the same result.
As a consequence of gauge invariance, the electromagnetic
response tensor K is transverse and, hence, admits the very

J

same decomposition as the fermionic polarization tensor II,
see Eqs. (35a)—(35d). The only difference are the kernels
K 0/1/2>» which are now complicated functions of the kernels
M, /1/2, the KC-matrix and the (Fourier transformation of the)
Coulomb interaction matrix \7((}). Recall that the latter is a
4 x 4 matrix in flavor space, with all its components being
equal to the same Coulomb interaction amplitude (6); see also
Eq. (23), the comments thereafter and Eq. (33). Suppressing
frequency and momentum labels (the hat symbol only indicates
flavor space here), we obtain for the retarded kernels

RE =K1 D/ 1K, (47a)
RE= K74 2R [@ 08— (08) 7' NDHT DN (K520 (01F + KA @b

X L o e

R = =K@ VR = ()7 (1 4 RN (R - (A 4+ K1) () )R
+?“1((n§) LV +ADHTHRT, (47¢)

[
with kernel K} to obtain the Hall conductivity. Using Egs. (47b)
DRIA = —(w +i0P A + G (TI5/* —R7'VE) and(48),aswellaslimgaoc?f/(c}):O,weobtain

+ (A R)aFH) @A+ K1) @8)

The advanced kernels are obtained by Hermitian conjugation
just as usual. We have to emphasize at this point, that—in
contrast to the one-loop fermionic polarization tensor —
the electromagnetic polarization tensor K is in general not
diagonal in flavor space, but a symmetric matrix. This fact
derives from the X matrix, which is also not necessarily
diagonal, but symmetric.

The above equations, together with the results for the
fermionic polarization tensor I givenin Appendix B, represent
the main result of this work. Given a particular X-matrix con-
figuration, the electromagnetic polarization tensor K contains
the full information about the system’s response to a weak,
external electromagnetic perturbation. The kernel KX, when
multiplied with —g?, equals the density response function, cf.
Eq. (35a),

K% (0.9) = —G°KS4(w.9), (49)

and as such determines the dynamical screening properties, as
well as the collective modes. The latter can be obtained by the
roots of the denominator matrix ﬁR, Eq. (48). Furthermore, in
the zero temperature and long wavelength limit, it is possible
to calculate the absolute value square of the ground-state
wave function and corrections thereof (as an expansion in
q/B), which was shown in Ref. [80]. The current response
tensor is given by the spatial components, w, v =1, 2, of
the polarization tensor, encoding the information about the
(dynamical) conductivity tensor. In the remainder of this paper,
we focus on the dc Hall conductivity. A further investigation
of the above mentioned quantities will be left for future work.

In close analogy to the noninteracting case, we need to
investigate the zero frequency and momentum limit of the

KR©0,0) = lim hm (K B2(w,q)

=[K+ (ﬁf(o,O))’ 17" (50)

Clearly, if K is identically zero, the kernel K R reduces to the
noninteracting kernel flf , leading back to the integer quantum
Hall regime, Eq. (37). For the most general XC matrix, Eq. (50)
reads

~1

2ky + vil mi ni ny

PR _ RS mi 2ky + ﬁ n3 ny

V' "o n n3 2k3 + 713 my
ny ng my 2ky + U%l

D

Observe that the temperature dependence only enters via the
kernel f[f ,1.e., via the filling fractions v,. A finite temperature
does not modify the X matrix in any way, as it should be.
Only the composite Dirac fermions, filling the effective Landau
levels, are subject to thermal fluctuations, the flux-binding
itself, as described by Eq. (27), is not influenced. Furthermore,
note that we absorbed the sign of the effective magnetic field
into the filling fractions v,. As discussed above, the kernel K 1R
is a nondiagonal but symmetric matrix. In order to obtain the
Hall conductivity, one has to sum over all of its components:

Oy = € Z (kﬁ)aﬂ(o,O). (52)
a.p

This fact becomes clear by taking into account that a physical
electromagnetic fluctuation should couple identically to all
flavors. Therefore one has to neglect the flavor index of the
source fields A“ (x) in Eq. (43), which, in turn, leads to
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TABLE I. Filling fraction vg for three distinct C-matrix configurations, leading to a Hall conductivity o,, =

e vG (h restored). The

examples (2a) and (2b), respectively, (3a) and (3b), correspond to states with the same analytical properties but interchanged spin and valley
degrees of freedom. The temperature dependence, contained within the composite-fermion filling fractions v,, is suppressed. For the singular
K matrices (1), (2a), and 2(b), there exists an equivalent Abelian gauge theory with a reduced set of Chern-Simons fields. The associated gauge

groups are shown in the last column.

JC matrix

Total filling fraction vg

Gauge symmetry

2k 2k 2k 2k
2k 2k 2k 2k
2k 2k 2k 2k
2k 2k 2k 2k

vitvatv3tug
2k(v1+v24v34v4)+1 U(l)

Zkl 2k1 n n
2k  2ky  n n [ (224 7t ) —n
2 N i U(); ® u(l
a noom e 2 Corvopts) Clar ) o) (k) (et
n n 2k2 2k2
2](1 n 2k1 n ( ) (
n 2k n 2k 2k + s ) —n R
2b Lt R U, ® U
2k " Zky " (2k|+v1+m)(2k2+v2+\4) -n? (2kl+v1+\z)(2k2+v2+v4) n? ( )K+ B UMD
n 2](2 n 2k2
mi 2k 000 N ) _ (rg)om o
" 00 2% m Bt G ) e bt T G ) o
0 0 my 2k '
2%k 0 om0 ) )
0 2% 0 m N G N ) o
3b m, 0 2% 0 i1 (2k1+ﬁ)(2k3+%)—m% + 204 (2k2+%)(2k4+”4) e U(D)

0 ny 0 2k4

a summation over all matrix components rather than, e.g.,
taking a trace. Equation (52) is the simplest form of the
Hall conductivity. Alternatively, our result could be written in
terms of the (anomalous) integer quantum Hall conductivities
of the noninteracting system, which may be slightly more
complicated but possibly more appealing in physical terms.
As advertised in the introduction, we get Eq. (2),

1
Oxy = ZGO Xy ZUO xy(O’() Xy + IC )aﬂUO xy*
a.fp

Continuing the parallels with the noninteracting case, the
Hall conductivity should be proportional to some filling factor
v (adopting here the notation of Ref. [8]). This filling factor
can easily be extracted from Eq. (52), using the equality

Oy = %UG. It is a complicated rational function of all the
components of the /U matrix and the filling factors of the
individual composite fermions v,. Clearly, for such a large pa-
rameter space some of its input will be mapped to the exact
same filling fraction vs. In other words, several different FQH
states produce the same filling fraction, respectively, the same
Hall conductivity. Hence the measurement of a Hall plateau
at a particular filling fraction alone does not identify a single
FQH state. In order to distinguish from the theoretical side
which state realizes a certain filling fraction in an actual
experiment, one should estimate the energy associated to all
of the states in question. In principle, this should lead to
a unique lowest energy state, which realizes that particular
FQH plateau. In addition, one could investigate—theoretically
and experimentally—the screening properties and/or collective

modes of the respective states to gain a deeper understanding
and potentially exclude a certain subset of states.

Considering the complexity of the matrix inverse in Eq. (51)
for the most general K-matrix configuration, it becomes clear
that a complete analysis of the full parameter space is highly
involved. For its systematic study, it is advisable to partially
restrict the parameter space and collect the corresponding
KC-matrix configurations into several distinct classes, which
should have some overlap in their restricted parameter space.
In this context, recall our discussion of singular X matrices in
the preceding section. Employing this strategy it is not only
possible to explore the full parameter space eventually, but it
also simplifies the identification of the underlying physics that
is described by a particular class of -matrix configurations
considerably. In the remainder of this paper we outline this
strategy, concentrating on a few special cases. Those K-matrix
configurations we decided to investigate further, together with
their resulting Hall conductivities are listed in Table 1.

We encountered the first of these examples already in
our discussion of singular IC matrices. The states described
by this particular U matrix belong to the simplest possible
class of FQH states, which can be described by a simpler
Chern-Simons gauge theory, where only a single local U(1)
gauge field is present. The structure of the K matrix indicates a
residual global SU(4) flavor symmetry, which is weakly broken
by the Zeeman terms. Once the symmetry breaking terms
are neglected—that is, equating all composite-fermion filling
fractions v, = v—we obtain a hierarchy of states described

by the filling fractions vg = 2k:—:+1’ which have also been
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FIG. 3. Total filling fraction vg = ﬁzﬂ as a function of the ’
chemical potential y at By = 15 Tand T = 10 K fork = +1 (blue) 0.6 (1)
and k = —1 (orange). The finite temperature smears out the transitions 0.4 W—Uﬂj_d’—
from one Hall plateau to another, similar to the noninteracting case, 9 ( [
cf. Fig. 2. Note that the plateaus occur in pairs, lying symmetrically 0. “ “
around the charge neutrality point v = 0. In this simple case, one S 0.0 T L
can construct a manifestly particle-hole symmetric filling fraction by 0.2 { ‘\
considering the regimes ;¢ < 0 and © > 0 and flip the sign of k at o } ‘ J
n = 0, see Fig. 4, which yields the two branches |vg| < |1/2k| and -04 _/__ﬂ_af_ﬂ_d
1/2k|. .
. . . . . -4 -2 0 2 4
obtained in Ref. [62]. This total filling fraction as a function of .
the chemical potential @ is shown in Fig. 3 at the effective w/103[K]

magnetic field Beg = 15 T and temperature 7 = 10 K for
k = +1. We remind the reader that, if one wishes to change
the charge carrier density via the chemical potential, but keep
the effective magnetic field Be¢ to be constant, then, according
to the mean-field equation (28), one has to change the external
magnetic field B as well.

For a fixed flux attachment prescribed by the integer %, it is
obvious that the filling fraction v is not manifestly particle-
hole symmetric. Yet, the Hall plateaus occur in particle-hole
symmetric pairs, when considering & and —k simultaneously.
This observation suggests that one can construct a manifestly
particle-hole symmetric filling fraction by distinguishing the
two regimes u < 0 and u > 0, and flip the sign of k at u = 0,
which yields the two branches

oM et —2 e, 53
¢ = kav+1 o T ka1
4v 4v
phx
= e+ — @), (53b
o T 100 T e p 10w (53

where |v(p;h| < |1/2k| and |vgh*| > |1/2k|. Note that the latter

branch, vgh*, appears to have the wrong overall sign. (Naively,
one would expect the sign of the total filling fraction vg to
coincide with the sign of w.) But recall that we absorbed
the sign of the effective magnetic field into the composite
Dirac fermion filling fractions v,, meaning that this “wrong
sign” should be interpreted as an effective magnetic field
being antiparallel to the external one. In Fig. 4, we show the

branch (53a) for |k| =1, ...,4, as well as a generalization of
Eq. (53a) when a finite spin Zeeman coupling is present, with
Zeeman energies E7 = 0.1,...,0.4 x ho™ for [k| = 1. We

have chosen such large Zeeman energy scales, which vastly
exceed the ones found in a realistic graphene sample [6,8],

FIG. 4. Particle-hole symmetric total filling fractions for v =
%, with vy = v; +v,,v, = v3 + 14, as a function of the
chemical potential p at Begr = 15 Tand 7 = 10 K. (a) Zero Zeeman
splitting, implying vy = v, = 2v, for |k| =1, ... ,4. (b) Finite spin
Zeeman term with Zeeman energies Ez = 0.0,0.1, ...,0.4 x o™
for |k| = 1. The finite Zeeman term leads to the formation of new

plateaus, with the v = 0 plateau being the most dominant one.

for demonstrational purposes to make the additional plateau
structure at vg = 0 visible.

The examples (2) and (3) of Table I are best discussed
comparatively. Each of these examples comes in two varia-
tions, where the flux attachment to spin and valley degrees
of freedom are interchanged. Without loss of generality we
may limit our comparative discussion to the (2a) and (3b)
configuration, simply referring to them as (2) and (3) if not
stated otherwise.

While the (2) configuration is another important example
of a singular KC matrix, and as such can be represented in terms
of a reduced Chern-Simons theory [in this case, a U(1); ®
U(l),1, the (3) configuration is regular. The two K-matrix
configurations represent very different physical scenarios. The
states associated to (2) are the analog of the nonrelativistic
bilayer FQH states found in Ref. [53], where an additional
internal degree of freedom—the valley polarization—in each
“spin-layer” is present. Neglecting the Zeeman couplings in the
valley subspace, that is, equating v; = v, and v3 = vy, restores
the global valley SU(2) symmetry. The states associated to
the (3) configuration on the other hand, can be interpreted as
two independent, decoupled “bilayers,” one for each valley
degree of freedom. Once again, the bilayer structure is formed
by the spin degree of freedom, but the valley now appears
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as an external degree of freedom. [For comparison, the (3a)
configuration would yield a bilayer structure formed by the
valley and the spin would appear as an external degree of
freedom.]

The difference of internal and external valley polarization
is also reflected in the filling fraction itself, as can be seen
from Table I. For simplicity we set all composite fermion
filling fractions equal, v, = v, and, furthermore, we may also
set ky = ko = k for the (2) configuration, and k, = k, m; =
my = m for the (3) configuration. In those cases the C-matrix
configurations (2a) and (2b), respectively, (3a) and (3b) yield
the same filling fraction. If the valley appears as an internal
degree of freedom, we obtain

4v

int: , 54
O T Dkt vt 1 (54

whereas if the valley is an external degree of freedom we get

ext 2])
Vg =2 (55)
Qk+mpv+1
The two filling fractions coincide by setting n = 0 in Eq. (54)
and m = 2k in Eq. (585). It is this special case, which has been
proposed in Ref. [61].

Manifestly particle-hole symmetric total filling fractions
can be constructed for Egs. (54) and (55) in the same way
as was done before, but this time at vG = 0 one has to flip
the sign of k and n, respectively, m, simultaneously. Similarly,
the other filling fractions in Table I also lead to particle-hole
symmetric Hall plateaus. [In general, sending K — —K and
Ve = —V, resultsinvg — —vg, cf. Eqs. (50) and (52).] Hence
it is expected that for those filling fractions a similar, albeit
more involved construction can be performed to present them
in a manifestly particle-hole symmetric form.

As a final example we show how the prominent vg =
+1/3 filling fraction, which has recently been observed in
an experiment [7,15,16], arises in our theory. To produce
such a filling fraction, there are several possible candidates
for the K matrix, the simplest of which is given by the
configuration (1) of Table I upon choosing ), v, = £1 and
k = +1. Note that this JC-matrix configuration also gives rise
to the prominent filling fractions v = £2/3 and vg = £2/5,
which are obtained by setting ), v, = £2 and k = %1, or
k = 2, respectively. Another possible choice for the C matrix
is configuration (2), where n and k, are set to zero (one
may also set k; = 0 instead). In that case, the total filling
fraction simplifies to vg = 2,(1(”'1]”)22) 7 vzt Choosing
the composite fermion filling fractions and the remaining
flux-attachment parameter k; appropriately, that is, v; + v, =
+1,k; = £1 and v3 + v4 = 0, yields vg = +1/3 likewise.

Lastly, configuration (3) can also be employed to yield a
total filling fraction of one third and it seems to us that this is
the analogous configuration of the one discussed in Ref. [43],
which employs the conventional wave-function approach. In
this work, it was argued, that, from the four spin-valley Landau
levels, two are completely filled, one is completely empty, and a
last one is filled to one third. Taking this statement literally, one
can interpret it as follows: while the completely filled (empty)
levels each contribute to the filling fraction with +1(—1),
the last level should be empty to a sixth (—% + % = —é).
Setting m; =my =0, as well as k, = k3 = k4 =0 in the

configuration (3) of Table I, meaning that flux is attached
to one flavor only, we obtain vg = o ‘\’}‘ 7ttt
Clearly, for v = v, = —%, 2, and k1 -2, we
reproduce the above situation vg = —; — 5 + i + % = %
However, the actual wave function proposed in Ref. [43] has
an (mmm)-like structure, meaning the Jastrow factor contains
an “off-diagonal” vortex-attachment accounting for interflavor
correlations between two of the four flavors, which we believe
is not realized by the above simple flux attachment. Although
the precise correspondence between the K matrix and the
electron/hole wave function is not yet clear, since our flux-
attachment scheme refers to the charge carriers rather than
electrons/holes, such off-diagonal correlations between two
flavors are achieved by relaxing the constraint that, say, m
vanishes. Referring to the (3a) configuration for definiteness,
one may set ky =k, =k, ks =ks =0, and vy = v, =v. In
this special case, the total filling fraction becomes vg =
m+\}3+\}4 Ifnowk=—landm=2k—-1=-3
is considered (which resembles a K matrix that is used in the
nonrelativistic Chern-Simons theory to describe a (333) state
[54]), and v = v3 = vy = 1/2, we obtain the desired filling
fraction vg = —-2/3+1=1/3.

V3 = V4 =

V. CONCLUSIONS AND OUTLOOK

In the present work, we developed a finite temperature
theory for the pseudorelativistic fractional quantum Hall effect
of monolayer graphene, employing the real-time Keldysh
formalism in the functional integral approach. We considered
a U(1)®* Chern-Simons gauge theory, which is minimally
coupled to the system of interacting Dirac fermions. In this
theory, each fermionic flavor interacts with any other flavor
through Coulomb interactions, in addition to an individual
U(1) gauge field. The latter transforms ordinary into composite
Dirac fermions. After integrating the fermionic degrees of free-
dom, we obtained an exact effective action for the gauge fields
that has been analyzed in the random phase approximation. We
derived the electromagnetic response tensor from which the dc
Hall conductivities have been extracted.

Our research could be extended into several different
directions. One obvious extension concerns a more detailed
analysis of the electromagnetic response tensor for the various
FQH states as presented here. The density-density response,
given by Kaﬂ, allows for an investigation of the dynamical
screening properties of the system together with the spectrum
of collective modes. The current-current response, given by
Kajﬁ’ may be studied beyond the static case, which gives infor-
mation about the optical conductivity o;; (w). In this context, we
also want to mention the straightforward generalizations of the
response tensor, which result from modifications of the linear
and isotropic Dirac spectrum. Here we only considered a non-
vanishing (generalized) Zeeman term implicitly through the
flavor dependent chemical potentials . Other modifications,
such as trigonal warping, anisotropies in strained graphene,
or finite mass terms (gaps), could lead to interesting effects
and can be obtained by adding the respective term to the
noninteracting Dirac action (11). Note that such alterations
do not invalidate our general result given by Egs. (47) and
(48), if the analysis is restricted to the Gaussian approximation,
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but would enter via a modification of the kernels l'[%l/ 2,

[The kernel expansion of K/ is based on gauge invariance
and therefore exact, but a higher-order expansion in gauge
fluctuations prior to integration may not only be manifested
in a modification of the II kernels, but also in the form of the
K kernels, Egs. (47) and (48).] Only minor modifications are
involved to describe spin- or valley-polarized bilayer graphene,
in the limit of weak interlayer coupling.

Once the Gaussian theory and, especially, the associated
collective excitations are fully understood, the next logical
step would be to consider a higher-order expansion in the
fluctuating gauge fields. Such a calculation requires a great
amount of effort and, therefore, needs to be properly mo-
tivated. While the renormalization of the collective modes
in a nonrelativistic system is constrained to some degree
by virtue of Kohn’s theorem [81], this is not the case for
(pseudo)relativistic systems like graphene. Kohn’s theorem
only applies to Galilei invariant systems, stating that in the
long wavelength limit the entire electron system performs
a cyclotron motion with the bare cyclotron frequency w. =
eB/m, where m is the band mass. In other words, in the limit
g — 0, the spectra of the collective modes in the IQH and FQH
system converge to the gap w., which is not renormalized by
Coulomb interactions [51,53,54,80]. The breakdown of Kohn’s
theorem in graphene and the associated renormalization of
cyclotron resonances may be understood intuitively by con-
sidering the renormalization of the spectrum due to Coulomb
interactions in the absence of external magnetic fields. In this
case the Coulomb interaction leads to logarithmic momentum
corrections to the Fermi velocity, which renormalize the
linear spectrum and diverge in the infrared regime at zero
temperature [6,7,82—85]. Such deviations from linearity should
influence the Landau level spectrum when finite magnetic
fields are considered, even for large fields in the IQH regime.
Indeed, perturbative calculations of the self-energy at finite
B lead to similar logarithmic corrections, which, in turn,
renormalize the noninteracting cyclotron resonances [7,73—
76], showing the breakdown of Kohn’s theorem. Since here
the FQHE is viewed as an IQHE of composite Dirac fermions
for which Kohn’s theorem does not hold, it is natural to
expect that self-energy corrections to the composite Dirac
fermions also lead to observational consequences in the FQH
regime.

The analysis of such corrections and their impact on the
electromagnetic response in particular, would require more
elaborate calculations that are going beyond the RPA of the
present paper. Recall that within the RPA the polarization
tensor IT is computed with noninteracting Green functions,
which take into account the finite gauge field expectation values
but neglect exchange self-energy contributions. One way to
include self-energy effects would be to expand the tracelog in
Eq. (22) to higher orders in the fluctuations as stated above.
The resulting effective action (31) would then contain non-
Gaussian contributions, which renormalize the propagator of
gauge fluctuations as well as the electromagnetic response ten-
sor K, Eq. (44). Alternatively, one may reintroduce fermionic
degrees of freedom by writing the exponentiated tracelog in
Eq. (22) as a fermionic functional integral. Such a Fermi-Bose
theory allows for a more systematic approach to study the

mutual effects of gauge fluctuations on the fermionic self-
energy, and, vice versa, self-energy effects on the bosonic
polarization tensor, even beyond perturbation theory [83—85].

Animportant aspect in the study of the integer and fractional
quantum Hall effect constitutes the role of disorder [2]. As is
well-known, scalar potential disorder leads to a broadening of
the noninteracting Landau levels, which enter the calculation
of the fermionic polarization tensor and, in turn, lead to observ-
able consequences in the electromagnetic response spectrum,
such as new kinds of collective modes (typically, diffusion
modes). Apart from the simple scalar potential disorder, there
are other types of disorder potentials, which allow scattering
processes between different flavors, causing the fermionic
propagators to be nondiagonal in flavor space and may even
lead to another set of collective diffusion modes [86—89].
Given the large variety of possible microscopic scattering
channels among the different flavors of Dirac particles and
the mutual interactions between the possible collective modes,
the study of disorder in graphene is a highly nontrivial task.
The Keldysh formulation we employed here has proven to be
an efficient computational tool for these kinds of problems,
as one can perform a disorder average directly on the level of
the partition function, assuming that the disorder potentials are
delta correlated, which results in a fermionic pseudointeraction
[64,78,79]. In contrast to the Matsubara formulation, there
is no need of the replica trick and a subsequent analytical
continuation. The pseudointeraction term may then be ana-
lyzed by standard techniques, such as Hubbard-Stratonovich
bosonization and/or the Wilsonian/functional renormalization
group [64,78,79].

Another particularly interesting research direction concerns
the gauge group of the Chern-Simons field itself. Here we
formulated an Abelian U(1)®* CS theory, where SU(2)®? and
SU(4) invariant states only arise as a subset of all possible
FQH states obtained from the U(1)®* theory. The symmetry
of the exact theory may only be generated as a dynamical
symmetry in a more elaborate calculation, going well beyond
the Gaussian fluctuations around a mean-field solution. An
alternative route, where the non-Abelian SU(2)®2, respec-
tively SU(4) symmetry is manifest, would be to formulate a
corresponding non-Abelian gauge theory in analogy to the
one proposed in Refs. [52,54]. In these works the electron
is regarded as a compound object, consisting of a charge
carrying holon and a charge neutral spinon that carries the
spin degree of freedom, which are bound together by an RV B
(resonating valence bond) gauge field. The holon interacts
with a U(1) Chern-Simons gauge field (in addition to the
charge density—charge density Coulomb interaction) which is
responsible for the actual FQHE and yields the allowed filling
fractions, whereas the spinon interacts with a non-Abelian
SU(2) Chern-Simons gauge field assigning the correct spin
structure to the respective states at each filling fraction. As
a consequence, the states for each filling fraction naturally
form irreducible representations of the non-Abelian gauge
group [90]. It should be possible to apply these ideas also
for graphene and it is expected that analogous features will
arise in this pseudorelativistic framework. The spin sector
of such theories, however, would be much more difficult to
analyze than the corresponding Abelian theory, in particular
beyond a mean-field approximation, due to the additional
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cubic gauge field term required by gauge invariance, and
propagating Fadeev-Popov ghosts, arising from gauge fixing
[68]. Nevertheless, such a model is worth studying as it may
lead to interesting insights in the fractional quantum Hall effect
in graphene.

As alastremark, we want to point out that our Chern-Simons
theory may be of use in the conventional nonrelativistic FQHE.
In this context we remind the reader of Son’s proposal of a
pseudorelativistic theory to explain the physics of a half-filled
Landau level, Ref. [49]. Naively applying our framework for a
single Dirac flavor under the assumption that charge neutrality
of this relativistic model maps to half-filling of the nonrela-
tivistic one, VR = % + kafccﬁ’ we made an interesting ob-
servation: not only this formula reproduces all the particle-hole
symmetric filling fractions of Jain’s primary sequence around
half-filling, but also those filling fractions that are found in the
Haldane-Halperin hierarchy and/or Jains secondary sequence
(such as 5/13, 4/11, and 7/11, for example) [36,92,93], as
long as k is restricted to be an even integer. Of course, it could
very well be the case that this feature is a mere accident, but the
more appealing possibility is that there is a deeper connection
between our Chern-Simons framework and Son’s idea than
expected. In any case, it is worthwhile investigating this issue.
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APPENDIX A: FERMION PROPAGATOR IN EXTERNAL
MAGNETIC FIELD

In this first Appendix, we derive the noninteracting propa-
gator of two-dimensional Dirac particles in graphene, moving
in a homogeneous magnetic field at finite temperature in

J

Wy (6.8) = et

1
eBgy

real-space coordinate, and £, =

is the zero-energy Landau level located at the Dirac point, and W*

( ° ) (x.6) =
poe)) Vet
\I,gykx(x,g):e,-kxx<woés>)’ W () =

where k, is a momentum quantum number, 7 is a positive integer including zero, & =

Keldysh basis. This propagator has already been calculated by
several authors using different methods, see, for example, the
Refs. [94-96], but in order to make the article self-contained,
we present one of those calculations, adapted to our notational
conventions, here again.

The problem of inverting the operator G(; !in the quadratic
form (11) is simplified by the fact that it is diagonal in flavor
space [see Eq. (12)]. Therefore the propagator itself has to be
flavor diagonal,

G = diag(G41,G_4,G4+,,G_}), (AD)

with G, = (G;l)’l. Thus the problem is reduced to finding
the inverse of G !, which describes the propagation of a single
flavor. Slightly abusing language, we refer to the propagator for
each individual flavor G, as “the propagator” in what follows.
Based on the results of the mean-field approximation, Eqs. (27)
and (28), we assume that each of the flavors is subject to an
individual magnetic field B& = B + b%, and we allow each
flavor to be doped individually. The propagator we obtain here
occurs in the derivation of the one-loop polarization tensor
(32). The latter will be derived in detail in Appendix B. In order
to lighten the notation, a repeated flavor space index does not
imply summation. Furthermore, calculations are performed in
the mixed frequency-position space.

After mapping from contour to physical time and rotating
to Keldysh basis, the propagator obeys the triangular Keldysh
structure

K7 R(7 7/
G, (q r £) G (r, s)). (A2)
GA(F, 7 ,e) 0
As mentioned in the main text, we are only interested in
the linear response regime at finite temperature. Hence the
fluctuation-dissipation theorem can be employed to express
the Keldysh propagator as

G,(F,F'e) = (

GEGF Vo) = tanh( )(G (F.F8) — G4 (F,F ,8)). (A3)

The retarded and advanced propagators will be constructed
from the exact solutions of the stationary Dirac equation.
Working in Landau gauge with the effective vector potential
A%(r) = (— B%y,0)7, these solutions read

A
f x<+fﬁiia(f()s>> b= 0 o

=~ + sign(eB&pk, £, is a dimensionless

is the magnetic length associated to the effective magnetlc field B. The spinor W wk, (X,8)

wkn(X,6) are Landau levels in the conduction (A = +1) and

valence band (A = —1), respectively, whose spectrum is symmetric around the Dirac point. Recall that x,, = %1 in the definition
of the above spinors refers to the valleys K. Furthermore, 1,,(§) are the normalized harmonic oscillator wave functions

%(5) =

with H, (§) being the Hermite polynomial of degree .

1 I
VoA

(AS5)
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In terms of the above exact solution the retarded and advanced propagators admit the following spectral decomposition:

0 / 4
GRAG T g)zif& Wi, (W, () Zi W3 a5V, (6 A6)
o N ] 2n £+ iy £i0 e+ e £i0) — AVn + Tof |

with the cyclotron frequency v = ‘/;”F The momentum integration therein can be performed analytically with the help of the
integral identity (Ref. [97], Eq. 7 377)

/e_szm(y + X)H,(z 4 x) = 2"JamZ" "L (=2yz), m < n. (A7)

X

Here, LX(x) are the associated Laguerre polynomials of degree n. As a result of the momentum integration we find that the
propagators can be written as a product of a translation- and gauge noninvariant phase x,(7,7") = —e f A «(F") - dr"—which is
nothing but a Wilson line—and a translation- and gauge-invariant part Skia (F —Fe),

GRAG 7 ) = @I SRIAG — 7 g). (AB)
Introducing the relative coordinate A¥ = ¥ — 7/, and the projection operators
P = 1(o0 £ sign(eBS")o3), (A9)

the translation- and gauge-invariant part of the propagators can be written compactly as

ex AF? A G- AF AF?
R/A/ A= 4152 Z Z 0 r . AK 1 gR/A
Sa (Ar,e) = 4 52 [P+L <2£2 ) +P_ L <m +l\/§—£7Ln71 202 a)un(g) (A]O)

n=0 A==+1 @
with
1
gR/A
. All
San () = (& + o £ i0) — Ay/no? (ALD)
Here we have defined L°,L! | = 0.
The charge carrier 3-current per flavor, j“, is given by
o . o . . . .
JEFEn = —l—trooll’“Gf(r,t,r,t) =L /tanh(—)troé‘(Gf(r,r,S) — G;‘(r,r,e)). (A12)
2 2 J, 2T
In thermal equilibrium, only its zero component, being the charge carrier density, jO = 7i,, acquires a finite value
fig(F,t) = (A13)

Vg
2 e

Here, v, defines the filling fraction per flavor as a function of the chemical potential 1, the effective magnetic field B, and

temperature 7':
1 Ia Vno? + Jha — /¢ + fha
Va = 5 |:tanh<ﬁ) + ; <tanh( ) + tanh<+ . (Al4)

Near absolute zero temperature the filling fraction is quantized into plateaus of half-integers v, = £(n, + %),na =0,1,2,...,
see Fig. 2. The anomalous additional fraction occurs due to the presence of a Landau level at charge neutrality (u, = 0).

APPENDIX B: FERMIONIC ONE-LOOP POLARIZATION TENSOR

In this second Appendix, we derive the one-loop polarization tensor for Dirac fermions experiencing a homogeneous, flavor-
dependent effective magnetic field B& = B + b®. See also Ref. [98] for a calculation of the polarization function [the 00
component of Eq. (B1)], with which our result coincides. Displaying the Keldysh structure explicitly, Eq. (32) reads

i (3
_'B—trln< R 1 N 1 OA A _1)[6A1L+aﬁ]
28ay(y)das(x)  \(GRY"  —(G§) (GK)(GY)

Recall that @ is the field expectation value of the statistical gauge field, which possesses a classical component only. Performing
the functional derivatives and evaluating the result at the mean-field values of the statistical gauge fields, we obtain the following

2

Mo (x,y) = B

a=a
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retarded, advanced, and Keldysh components:
i
(M4 —y) = ztr(aa’fo/A(x — Mo SK(y —x) + 0l SE(x — oy SR (y — x))dup, (B2a)

M)y (x — y) = —tr( LSRG =)oy Sy — x) + 0l S5 (x — y)oy SRy —x) + 0 SE (x — )0y SE(y — x))84p. (B2b)

The repeated flavor space index o does not imply summation, as was the case in Appendix A. Recall that the Pauli 3-vector therein
is givenby o/ = (00,koVF01,kqVF02). First, observe that the polarization tensor is diagonal in flavor space, Hf; ; = II"" 544, which
is a consequence of the free propagator being diagonal, see Eq. (A1). Second, note that the gauge- and translation-noninvariant
phase x(7,7") drops out, such that the polarization tensor can be expressed solely in terms of the propagators SKIAIK proving its
manifest gauge and translation invariance. In Fourier space, the above equations for the flavor diagonal components I1, become

(MR (9, G) = lz/ el /tr(agsij(A?,s + w)oy SK(—AF,e) + 0 SK(AF,e)a ) SAR(—AF,e — w)),  (B3a)
AF e

(M)%(@.§) = coth( 5 ) (M (@.9) — (M) (@.9)). (B3b)

Equation (B3b) is a manifestation of the (bosonic) fluctuation-dissipation theorem. In order to arrive at this form, one has to
rewrite the first line of Eq. (B2b) according to *S¥ o 'S +orSto "SR o= —o"(SE — SA )o (SR — SA ), which holds true
because of the causality properties of the retarded and advanced propagators cf. Ref. [64] Next one has to employ Eq. (A3) and
finally make use of the identity tanh(x)tanh(y) — 1 = coth(x — y)(tanh(y) — tanh(x)).

By substituting the propagators (A3) and (A10) into Eq. (B3a), the polarization tensor acquires the form

(" w.g) = 32;12 e Z; (0 +i0) — x\/(_T wﬁo:)r PN /A e tr(oy My (AAF)o, My (=)' AF)),  (B4)
with
F(T ) = tanh(%) - tanh(%) (B5)
and
MY(\AF) = P+L°(A;2> +P_L° (A—'ﬁ> + ik—KﬂLg(A_’ﬁ). (B6)
" n\ 2¢ 20, V2e, i\ 2,

Performing the trace for each tensor component and comparing the resulting expressions with the kernel expansion (35), we can
extract the following scalar quantities:

R FHUT 1) 200
(M (w,q) = = "" (1,?_ Q)+ 1 (o) + =1, (Qa))
7 32n2€4 2 ;g(a)im)—x\/ﬁwﬁm/ﬁwg b o «/n_ b
(B7a)
(/) (w.) = — S Vi Y T (Tot) (191 (Qu) = 10, (), (B7b)
o ) 3277,’254 w ~ (a):l:lO) )M/_a)"‘+)»’«/_/ o \n=Ln' o -1 o
- 1 FMUT, 1) 2A0 vF
(MR 4)(@.9) = + 03, I, -1,0-1(Qa) ). (B7c)
7 327T2n2ﬂ,:§(w:i:i0)—k\/_a)“+)\\/_a)“ nn' 52 Q" bl
Here we have defined the integral expressions
AF AF? AF?
Ik , w) = —ig-AF 2[a = L = Lk/ =
e = e () (57 e (57)
n.—n. — (I’l< +k) n.—n n.—n
= 2mle Qe e L T Qo)L 117 (Qa), k= 0,1, (B8a)
71 Gar 20 (AP
— —i§-AF )7 02 =
Inqn,(Qa)_/A;e e zuLn(%g)L <2€2) ZZ (90 (B8b)

m=0m'=0
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where Q, = ‘7; « is a dimensionless momentum variable, and n. = max{n,n’}, n. = min{n,n’}. Note that both I, k o and I ! v are

symmetric in their Landau indices n,n’. Hence, without loss of generahty, we can assume n < n’ in the followmg proof

First, let us show how I ,

of the property L’,‘,+1(X )= oL

(Qy) can be reduced to a sum of 0 (Qg). In order to prove this equality, we only have to make use
o k (x), see Ref. [97], Eq. 8.974.3, and interchange integration and summation. We immediately

arrive at the second line of Eq. (B8b). The proof of Eq. (B8a) is more involved. First of all, one has to work in polar coordinates,
substituting = 3 ZQ , and perform the angle integration, which yields the Bessel function of the first kind Jj:

I¥,(Qu) = 27, / Cdte "1 Jo(2v/Qut)Ly (1)L} (1). (B9)
0

Next, we rewrite L () =(=0" k("<+k)' L’ +k(t) see Ref. [98], resulting in

1¥,(Qu) = 20 2(~ (- + D / dt e Io2y/Qut)LE (VL4 (1).
0

(B10)

The residual integration can be performed by making use of the integral identity (Ref. [97], Eq. 7.422.2)

0

/ dt e Jo(2y/Qut)LE (OL;* (1) = (=1 F"Hhem QL= (Qu) LI T (Qy).

(B11)

After straightforward manipulation of the result, we find Eq. (B8a) eventually.
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