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Abstract

Decadal climate predictions have the objective to predict the development of the
climate for the following years to decades. Numerical Earth system models are
initialized with observational values, similar to the methodology applied in weather
forecasting. Additionally, they are forced by boundary conditions, like greenhouse
gas scenarios, to project the long term development. This thesis investigates decadal
climate predictions with Earth system models and their further improvement.

A decadal prediction system is evaluated and investigated for sources of potential
skill. Hence a systematic evaluation strategy is developed. It contains the assessment
of accuracy of the ensemble mean and the ensemble spread, and compares decadal
experiments with climatology, observations, and climate projections. This initialized
reference system leads to good predictive skill in temperature and precipitation
forecasts. The evaluation shows that the decadal prediction is scientifically sound,
but it also has potential for improvement. The initialization with observed ocean
data and the prediction with the ensemble mean of a larger ensemble size turn out to
be sources of skill for decadal predictions. The entire assessment is performed within
a novel evaluation system called Freva. This system is designed to complement
climate modeling by a systematic and efficient assessment. Freva serves as a resource-
efficient process framework between the data generation and its evaluation, to detect
decadal climate prediction potential.

A new prediction technique called ’Ensemble Dispersion Filter’ is developed. It
exploits two important climate prediction paradigms: the ocean’s heat capacity and
the advantage of the ensemble mean. The Ensemble Dispersion Filter averages
the ocean temperatures of the ensemble members every three months, uses this
ensemble mean as a restart condition for each member, and further executes the pre-
diction. The evaluation by the new verification framework shows that the Ensemble
Dispersion Filter results in a significant improvement in the predictive skill compared
to the unfiltered reference system. Even in comparison with prediction systems of a
larger ensemble size and higher resolution, the Ensemble Dispersion Filter system
performs better. In particular, the prediction of the global average temperature of
the forecast years 2 to 5 shows a significant skill improvement. Compared to the
observational climatology forecast, the Ensemble Dispersion Filter experiment has
a Mean Squared Error Skill Score of 0.83, while the unfiltered reference system
exceeds only 0.68. With major improvements over the Pacific and North Atlantic,
the regional distribution of the Ensemble Dispersion Filter experiment is more accu-
rate than the reference. In precipitation forecasts, improvements are seen over the
continents. The prediction of the cyclone frequencies improves over the key region
of the North Atlantic. Consequently, the thesis demonstrates a substantial advance
in research on decadal climate predictions.






Zusammenfassung

Dekadische Klimavorhersagen haben das Ziel, die Entwicklung des Klimas in den
kommenden Jahren und Jahrzehnten vorherzusagen. Hierfiir werden numerische
Erdsystemmodelle mit Beobachtungsdaten dhnlich zur Methodik der Wettervorher-
sagen initialisiert. Zusitzlich werden die Modelle fiir die langfristige Entwicklung wie
bei Klimaprojektionen mit Randbedingungen wie Treibhausgasen angetrieben. Diese
Dissertation untersucht dekadische Klimavorhersagen mittels Erdsystemmodellen
und deren weitere Verbesserung.

Ein dekadisches Vorhersagesystem wird ausgewertet und auf Quellen der Vorher-
sagegiite hin untersucht. Hierfiir wird eine Auswertestrategie entwickelt. Diese
beinhaltet die Genauigkeit des Ensemblemittels und die Ensemblestreuung, und
vergleicht dekadische Experimente mit Klimatologien, Beobachtungen und Klimapro-
jektionen. Das initialisierte Referenz-Vorhersagesystem besitzt eine Vorhersagegiite
in Temperatur- und Niederschlagsvorhersagen. Die dekadische Vorhersage funk-
tioniert bereits, weist jedoch noch Verbesserungspotenzial auf. Die Initialisierung
mit Ozeandaten und eine Vorhersage mit dem Ensemblemittel erweisen sich als
Quellen der Vorhersagegiite. Die gesamte Analyse findet in dem eigens entwickelten
Evaluierungssystem Freva statt. Es wurde zur Erweiterung der Klimamodellierung
mittels systematischer Verifikation konzipiert. Freva dient als ressourceneffiziente
Schaltzentrale zwischen den Modelldaten und den Auswerteverfahren, um Poten-
ziale der dekadischen Klimavorhersage zu erkennen.

Eine neue Vorhersagemethode namens 'Ensemble-Dispersionsfilter’ wird entwickelt.
Diese nutzt zwei Klimavorhersage-Paradigmen: die Warmekapazitdt des Ozeans
und den Vorteil des Ensemblemittels. Der Ensemble-Dispersionsfilter mittelt nach
jeweils drei Monaten die Ozeantemperaturen des Ensembles und benutzt dieses
Ensemblemittel als Neustartbedingung fiir jedes Ensemblemitglied. Die Auswertung
mit dem neuen Evaluierungssystem zeigt eine signifikante Verbesserung, verglichen
mit dem ungefilterten Referenzsystem. Das Ensemble-Dispersionsfilter Experiment
ist sogar besser als Systeme mit hoherer Auflosung oder mehr Ensemblemitgliedern.
Verglichen mit der Vorhersage der Klimatologie, erreicht die Vorhersagegiite der
globalen Mitteltemperatur in den Vorhersagejahren 2 bis 5 im Giitemal} der mittleren
quadratischen Abweichung 0.83 beim Ensemble Dispersionsfilter, das ungefilterte
Referenzvorhersagesystem hingegen nur 0.63. Mit Verbesserungen iiber dem Zentral-
Pazifik und Nord-Atlantik zeigt das Ensemble-Dispersionsfilter Experiment auch im
regionalen Vergleich die bessere Giite. Beim Niederschlag zeigen sich regionale
Verbesserungen vor allem iiber den Kontinenten. In der Vorhersage der Zyklonen-
héufigkeit ist ein signifikanter Fortschritt {iber der entscheidenden Nord-Atlantik
Region zu verzeichnen. Folglich zeigt diese Arbeit eine substantielle Weiterentwick-
lung fiir die Forschung der dekadischen Klimavorhersagen.
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Introduction and Research Agenda

The paradigm of physics - with its interplay of
data, theory, and prediction - is the most
powerful in science.

— Geoffrey West
(Physicist)

The prediction of the atmospheric development has always been important for many
sectors of society, industry, and economy. The weather prediction on the scale of
several days, as well as the climate projection on the scale of centuries are common
tools used in management and planning. In the recent decades, the attention of
scientists has been focused on the development of multi-model systems for seasonal
forecasts. In the recent years, the extension to a seamless prediction from scales of
seasons to one hundred years has become the ultimate goal.

The 'Decadal Climate Prediction’ is still a young branch within climate science. For
this forecast horizon, there is a growing demand for a broad range of accurate climate
information for medium-term planning activities like the design of power stations, or
water management. The evolution of the climate in the near term is the combination
of climate variability and climate change (Figure 1.1). Changes in natural variability
are large enough to temporarily reduce or intensify climate trends (Easterling
and Wehner, 2009). Research aims to combine short-term forecasts (initial value)
and long-term projection (boundary condition) approaches as described in the
following.

The long-term climate projections up to centuries ahead pose a boundary condition
problem (Figure 1.1 - right) —e.g. the increase of greenhouse gases— and exam-
ine the long-term climate development (Meehl et al., 2009; Mehta et al., 2011).
Therefore, the climate model needs external information like the concentration of
greenhouse gases and volcanic aerosols, or solar radiation. These boundary condi-
tions influence the development of the climate system. Climate projections extent to
a century ahead and represent the mean path of the anthropogenic forced climate
evolution within an envelope of uncertainty. For boundary conditions of the past,
observations can be used for hindcasts or historical simulations. For simulations
which extend into the future, projected boundary conditions are applied. Repre-
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sentative Concentration Pathways (RCPs) show scenarios for the future evolution
(Vuuren et al., 2011). For the Intergovernmental Panel on Climate Change (rpcch
four RCPs were selected and defined by their total radiative forcing pathway and
level by the year 2100. The RCPs were chosen to represent a broad range of climate
outcomes. Each RCP could result from different combinations of economic, techno-
logical, demographic, policy, and institutional futures. Decadal climate predictions
also need the RCPs scenarios for their forecast ability. For decadal climate predictions
usually the RCP4.5 scenario is chosen for its future boundary condition. The RCP4.5
scenario represents the stabilization without overshoot pathway to 4.5 W/m2 at
stabilization after 2100'. However, these climate projections alone do rarely account
for the actual, initial state-dependent evolution of climate in the near term.

Short to medium-range weather forecasts represent an initial value problem at the
beginning of a forecast (Figure 1.1 - left). The more we know about the current
atmospheric state, the better the initialized forecast becomes. For a perfect forecast
one would have an observed value for all its grid-boxes and all its variables at the
start of a simulation. However, observations do not exist for each point in time and
on Earth, so that initial conditions usually consist of a blend of mean observational
values and coupled model simulations such as (re-)analyses. Dynamical processes
of the climate system act on different time-scales. Especially the atmosphere has a
short-term memory of only a few weeks (Meehl et al., 2009), which is important
for weather forecasts. The longer the forecasts lasts - from months, over seasons, to
several years - the more important the role of the ocean gets. Large scale changes in
the ocean not only have an influence on the atmosphere for a couple of days, but
possibly over several years. This multi-year 'memory’ of the climate system can be
used for better predictions beyond the short-term.

For the time of seasons to decades, there is a need for the prediction of the combined
impact of externally forced and internally generated variability. Addressing this
need can only be achieved by predictions initialized with the current climate state.
Initialization is the key-word for decadal predictions which developed out of climate
projections, which are uninitialized free simulations with forcing parameters. The
variability of these simulations are not in phase with the actual climate state of
the real world. Therefore, the climate model needs the information as starting
parameters - it needs to be initialized. The weather forecasts using and developing
these initialization and assimilation strategies within the last decades for their
atmosphere models. As stated already, the decadal time scale is dominated by
the inertia of the oceans (Meehl et al., 2009). Therefore, a usable numerical
decadal prediction is only possible through the coupling of atmospheric and oceanic
numerical models (Figure 1.1 - top and bottom).

www.ipcc.ch
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Fig. 1.1: Scheme of climatic predictions on different scales with different challenges from
initial value problems with daily weather forecasts at one end, and century projec-
tions as a forced boundary condition problem at the other, with decadal prediction
in between. The importance of atmospheric-ocean (model) interaction is high-
lighted as well. Adapted from Meehl et al., 2009.

This was achieved with designing modern fully coupled Earth system models within
the last decade. Still, there was the need to develop strategies for the ocean model
initialization to start the model system with the correct climate state [Smith et al.,
2007, Keenlyside et al., 2008, Pohlmann et al., 2009]. Additionally, initialization
strategies with observational data [e.g. Matei et al., 2012, Smith et al., 2013b, Meehl
et al., 2014] have been adopted for these coupled models. The observations or
reanalyses usually get nudged or assimilated into one model simulation. Hereby,
specific and selected observational variables are adjusted or exchanged with the
model values. The selection of variables takes their impact on the decadal scale into
account. Therefore, oceanic variables (e.g. temperatures, salinity, currents, etc.)
and atmospheric variables which drive the ocean (e.g. wind-stress, 2m temperature,
pressure, etc.) are typically involved. However, the strategies on initialization
variables differ between research institutions.

The same is valid for the two main methods exchanging the variables: Full-field and
anomaly. The full-field initialization uses observational or reanalysis data as it is. As
there is no correction applied, the model forecast is close to the actual and absolute
values of the applied observations or reanalysis in the first few months. However, the
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longer the forecast lasts, the more the climate model starts to adjust the values to
the models own climate. This results in potential drifts within the model, reacting to
the so called initial-shock (Pohlmann et al., 2017). Potential bias or drift correction
methods can correct the results to a certain level [e.g. Kruschke et al., 2015, Smith
et al., 2013b, Ferro, 2007]. For the anomaly initialization the observational values
are corrected before their application. Anomalies of the observational values are
calculated and added to the model values regarding the climate model’s climatology.
The anomaly method does not have a strong shift away from the model’s climate.
The danger of a potential drift of the model system is much smaller. However,
with the anomaly initialization the model only produces correct absolute values, if
the model bias is small compared to the observation. This is usually not the case.
Therefore, only anomaly forecasts are possible with the anomaly initialization. As
climate predictions are anomaly forecasts with respect to a certain climate period, it
is neither a argument against or for the technique.

Beside the main research on developments of initialization techniques, the science
community focused its research on the increase of spatial resolution [e.g. Pohlmann
et al., 2013, Menary et al., 2015, Shaffrey et al., 2017] and the generation of en-
semble forecasts [e.g. Goddard et al., 2013, Boer et al., 2016, Sienz et al., 2016].
Both procedures showed promising results and encouraged the decadal science
communities to consider these development strategies. To evaluate the skill of the
prediction of the future climate states, one performs retrospective predictions of
the past - so-called hindcasts. At present, hindcasts are set up annually to produce
sufficient data for a meaningful statistical evaluation (Boer et al., 2016). With all
these requirements (coupling of atmosphere and ocean, initialization and assim-
iliation techniques, high resolution models, large number of ensembles, annually
launched hindcast sets, etc.) even modern high-performance computers rapidly
reach their limits when calculating and evaluating decadal predictions. This leads
to a demand for new and more efficient prediction and evaluation methods that
provide improvements of the forecasts without the need for additional computer
resources.

Concepts for carrying out decadal prediction experiments have been developed
by the World Climate Research Programme (WCRP) within the framework of the
fifth phase of the Coupled Model Intercomparison Project [CMIP? - CMIP5 (e.g.
Taylor et al., 2012)] and have entered the recent IPCC3 report. Many research
groups around the world are developing decadal prediction capabilities. The UK Met
Office has taken on the task to coordinate the exchange of near-real time decadal
predictions presenting actual forecasts of several climate models, which is intended
to facilitate research and collaboration on this topic (Smith et al., 2013). Within

Zwww.werp-climate.org/wgem-cmip
3www.ipce.ch
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CMIP6, (Eyring et al., 2016) the Decadal Climate Prediction Project (DCPP - Boer
et al., 2016) has its own Model Intercomparison Project (MIP). DCPP coordinates
the international comparison, which includes experiment designs and evaluation
strategies. The World Climate Research Programme (WCRP) defined the rules for the
DCPP. It categorizes 'Near-Term Climate Prediction’ as one of its ‘Grand Challenges’.
It coordinates the international research and development to improve multi-year
to decadal climate predictions and their application by stake holders and decision
makers. The climate predictions ranging from several years to decades require a
much higher technical effort then e.g. climate projections (50 model years for each
ensemble member for a projection from 1960 to 2010), because hindcast sets consist
of decadal predictions annually setup over the last five decades (500 model years
for each ensemble for a prediction set from 1960 to 2010). Decadal predictions
also not have reached a production level yet, which is necessary for an operational
application.

Thesis Structure and Research Tasks

At present, the decadal prediction research is rapidly developing and remain a lot of
potential to improve the predictions. The following three research tasks (RT) are
open for further investigation:

RT1) Develop and implement an evaluation system for Earth system modeling
and decadal climate prediction to verify enhancements of skill in different
development stages, with the full flexibility of model and observational data
comparison in a sophisticated, reproducible, and efficient way.

RT2) Formulate and incorporate a systematic and comprehensible statistical frame-
work for decadal climate prediction into the evaluation system and fully assess
a prediction system to reveal scientific plausibility, prediction skill, and sources
of potential skill.

RT3) Having a fully assessed and skillful decadal prediction system at hand, exploit
detected sources of potential skill to further improve the decadal prediction
system.

This thesis addresses these research tasks and aims at scientific improvements of
decadal climate prediction and evaluation systems. The study focuses on the devel-
opment of a novel forecast technique as well as the establishment of a systematic
evaluation strategy to verify the new method. The new forecast technique com-
bines the research of the open tasks to reveal and apply left potential of decadal
predictions:

1.1 Thesis Structure and Research Tasks
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In Chapter 2 the base for the next Chapters starts with a root cause analysis in
the data-driven climate science and introduces the development of a new scientific
evaluation software system for Earth system models to allow efficient qualitative
and quantitative validations in decadal climate research.

In Chapter 3 a verification framework to determine accuracy and ensemble spread
of hindcasts is developed and implemented into the evaluation system of Chapter 2,
delivers a comprehensive skill assessment of a reference decadal prediction system,
and detects sources of potential skill.

In Chapter 4 the newly developed Ensemble Dispersion Filter (EDF) forecast tech-
nique is derived from fundamental climate science paradigms: the memory of the
ocean heat capacity and the advantage of the ensemble mean. The EDF is introduced
and applied within the reference decadal prediction system, and evaluated with the
verification framework and evaluation system of the earlier Chapters.

In Chapter 5 the thesis closes with an overall summary, a discussion of results, an
outlook for follow-on studies, and a unifying and interpreting conclusion.

Each of the Chapters 2 to 4 was published or submitted as an article within/to an
ISI-index journal. The papers of Chapters 3 and 4 were published in peer-reviewed
international open access journals. Chapter 2 is under review as a publication,
which will be published open-access in an international journal after the peer-review
is completed. More information is available within the Chapters. The thesis is
embedded within the "Mittelfristige Klimaprognosen’ (MiKlip*) project in Germany.
MiKlip develops a decadal climate prediction and evaluation system that will be
transferred to the German meteorological service DWD for operational use (Marotzke
et al., 2016).

*www.fona-miklip.de
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Freva - Free Evaluation System
Framework for Earth System
Modeling

Abstract

In this study, we present the Free Evaluation System Framework (Freva). Freva
is an all-in-one solution to efficiently handle evaluation and validation systems of
research projects, institutes or universities in the Earth system and climate modeling
community. It is a scientific software framework for high performance computing
and provides all available features in both, the shell and web environment. The
main system design is equipped with the common and standardized model database,
programming interface, and history of evaluations. Freva’s interface to the model
database satisfies the international data standards provided by the Earth System
Grid Federation and the World Climate Research Programme. Therefore, Freva
indexes different data projects into one common search environment by storing the
meta data information of the model, reanalysis and observational data sets in a
database. This implemented meta data system with its advanced but easy-to-handle
search tool supports scientists and their plugins to retrieve the required information
of the database. A generic application programming interface allows scientific
developers to connect their analysis tools with the evaluation system independently
of the programming language. Users of the evaluation techniques benefit from the
common interface of the evaluation system without any need to understand the
different scripting languages. The history and configuration sub-system stores every
analysis performed with the evaluation system in a database. Configurations and
results of the tools can be shared among scientists via shell or web system. Research
groups benefit from scientific transparency and reproducibility. Furthermore, if saved
configurations match while starting an evaluation plugin, the system suggests to
use results already produced by other users — saving CPU/h, 1/0, disk space and
time. Freva’s efficient interaction between different technologies improves the Earth
system modeling science.
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The following chapter (pre-print) consists of the publication submitted to the Journal
of Open Research Software (JORS). This paper will be published after the review
process.

Kadow, C., S. Illing, O. Kunst, T. Schartner, J. Grieger, M. Schuster, A. Richling, I.
Kirchner, H.W. Rust, U. Cubasch, and U. Ulbrich, Freva - Free Evaluation System
Framework for Earth System Modeling, Journal of Open Research Software (JORS),
E-ISSN: 2049-9647 (2018, in review)

Freva is published as open source software and accessible for the Earth system
modeling community via GitHub: https://github.com/FREVA-CLINT and citable:

Kadow, C. and S. Illing. (2018, August 1). FREVA-CLINT/Freva v1.0-beta (Version
v1.0-beta). Zenodo. http://doi.org/10.5281/zenodo.1325148

Chapter 2 Freva - Free Evaluation System Framework for Earth System Modeling



2.1

Introduction

State of the Art Challenge in Earth System Modeling

The Earth system modeling community nowadays uses information technology, data,
and software as an indispensable support for science. Scientists use climate models
as their main tools to simulate and research the past, present, and future climate.
The Intergovernmental Panel on Climate Change (IPCC!) urges that it is crucial
therefore to evaluate the performance of these models’. A growing variety of research
software and the increase in computer power allows scientists to study a steadily
increasing amount of data. The ongoing production of data and model development
stages need to be evaluated in a sustainable way. Therefore, scientists develop
evaluation and verification software with the code of best practice in mind. However,
usually scientists are not software engineers. Scientists have to invest a lot of time in
their software development skills. It is also common, that scientists develop software
routines about topics, which were developed already many times by other scientists
- probably unintended, because they are unaware of existing ones. This leads to a
huge amount of partly redundant results and software development history.

It is difficult to accomplish reproducible, transparent, and efficient scientific results.
Thus, there is a demand of software and community frameworks supporting sci-
entists to overcome technical hurdles and concentrate on the research. With the
growing amount of research data there is also a risk of losing track of research possi-
bilities. Several model intercomparison projects (MIPs) were started in recent past
to make climate modeling activities comparable. This was only achievable by using
common international data standards and granting international data availability
through the Earth System Grid Federation (ESGF?). These projects facilitated data
standardization, validation, model comparisons, and multi-model assessment.

The ESGF database is a huge collection of Earth system modeling data. However,
scientists still need to find ways of detecting and incorporating these amount of data
in their science. There is also the need to incorporate other sets of observations,
reanalysis, or model data, because research gets turnarounds during evaluation.
Flexibility and efficiency are therefore important in data relevant research. With
that being said, there is a growing need for common scientific infrastructures in the
Earth system modeling community.

lwww.ipce.ch
2https://esgf.linl.gov

2.1 Introduction
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Origin

The Free Evaluation System Framework (Freva®) has been developed for climate
modeling research of decadal climate prediction within the "Mittelfristige Klimaprog-
nosen’ (MiKlip) major project funded by the Federal Ministry of Education and
Research in Germany (BMBF). Within MiKlip, the Freva framework hosts the MiKlip
Central Evaluation System (CES) (Marotzke et al., 2016) on a high performance
computer (HPC) at the German Climate Computing Centre (DKRZ?).

Exemplary Research Group

Marotzke et al., 2016 state: 'The MiKlip hub furthermore provides a central evaluation
system. The evaluation system, the necessary observational data, and the entire set of
MiKlip prediction results conform to the CMIP5 data standards (Taylor et al. 2012)
and reside on a dedicated data server. The MiKlip server makes the prediction results
and evaluation system immediately accessible to the entire MiKlip community, thereby
providing a crucial interface between production on the one hand and research and
evaluation on the other hand. [...] The central evaluation system is constantly ex-
panded with contributions from the MiKlip evaluation module and, together with its
reference data pool for verification, resides on the same data server as the entire MiKlip
prediction output. The analyses are collected into a database ensuring reproducibility
and transparency. Providing the central evaluation system to the entire MiKlip project
is also an effective training tool, especially for those researchers who have only recently
joined the rapidly expanding field of decadal prediction.’

Target Group

Freva is a research software environment, hosting verification routines and obser-
vational, reanalysis, and model data in customized central evaluation systems of
research groups like described in the MiKlip project. The potential user of Freva
can be an institute, university, research center, project (like MiKlip), or simply an
individual scientist. To address potential user classes with one term, we call it
research group hereafter. Freva gives full control of the scientific tool development
and improves science through efficient tool application, distinct data access, and
integration into a central system. This combination requires a fluent interplay and
user guides - which will be in addition to this paper. Freva as a framework is de-
signed for three different user groups who will be addressed in this study and in their

*Developed at the Freie Universitit Berlin, Freva’s naming is a wordplay of a free software and the
German name ’Freie’, which means ’free and independent’.
“https://www-miklip.dkrz.de
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individual user guides. All three groups are scientists in the field of Earth system
modeling. First, there are the users of the research group’s evaluation system that
look for help in the basic user guide (BUG). The second group are plugin developers
who fill Freva with scientific applications and retrieve documentation by using the
basic developer guide (BDG). Of course, the developers are users as well. Last but
not least, the admins of the research group host the Freva instance as a scientific
infrastructure for users and developers. The admins may resort to the basic admin
guide (BAG).

Research Agenda

In this study, we present the system design of Freva, its main features, and its
combination of different software technologies (Fig. 2.1). Freva is a combination of
a well-defined software plugin management, Earth system model data retrieval, and
a backup of all analyses within a portal including a web and a shell front end on a
high performance computer (HPC). The system offers a balance between usability
and flexibility but being presupposed by transparency and reproducibility (Sect. 2.2).
The main use and features of Freva offer a single program solution (Sect. 2.3). We
then discuss the advantages of a hybrid evaluation system making use of big data
HPCs in climate science and Earth system modeling (Sect. 2.4).

As a picture is worth a thousand words, hands on a software is way more intuitive,
then reading about it in a paper. Readers are invited to go to freva.met.fu-berlin.de,
click on ’Guest?’, login, and compare the following sections with the live evaluation
system while getting inside views.

Framework System Design - General Concept

Freva is an evaluation system framework for scientific validation data and software,
and it runs as a hybrid system in the web and shell (Fig. 2.1). In this section the
concept is explained addressing the general purpose of the system. Freva’s integrated
front ends fulfill an optimum usage and well-defined interaction between the users
and the evaluation system (Sect. 2.2.1). The System Core of Freva consists of
software components, the wrapping of the plugin interface, the history database,
and the model data browser (Sect. 2.2.2). The combination of different open source
technologies into the main framework allows the evaluation system to be generated
by one software solution - details of the general software lineup of Freva can be
found in the Appendix (Sect. 2.5).

2.2 Framework System Design - General Concept
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:-§ module load freva

FUB Evaluation System by Freva successfully loaded.

If you are using bash, try the auto complete feature for freva
and freva --databrowser by hitting tab as usual.

For more help/information check: freva.met.fu-berlin.de

Freva
Available commands:
A

vides access to the configuration history
+ Find data in the system
~-crawl_my_data: Use this command to update your projectdata
~esgf  :Browse ESGF data and create wget script

Usage: freva --COMMAND [OPTIONS]
To get help for the individual commands use
freva -COMMAND --help

bash 4.x auto-completion script successfully loaded

- Research Tool
- User Tool
- MoviePlotter
- MurCSS
- etc.

o'
S System Core
w

Back End

- Research Data
- User Data

- ESGF (CMIP5)
- Observations

Data

Fig. 2.1: Freva - The Free Evaluation System Framework and its design combining several
following technologies into one common software solution. The System Core
contains the plugin API handling tools, the history saving configurations, the
data-browser where to find data. The scheme represents the basic structure of this

study including its subsections.

Front ends of Freva - Usability and Flexibility

The front ends of Freva give users and plugin developers access to the resources of
the System Core and the back end databases. Both web and shell front ends connect

the scientists with the application system as they represent the interface of the core
commands plugin (Sect. 2.2.2), history (Sect. 2.2.2), and databrowser (Sect. 2.2.2).
The two interfaces connect the scientists with the application system. The scientists
can decide, which degree of freedom they like in using the shell and web by starting,

Chapter 2 Freva - Free Evaluation System Framework for Earth System Modeling



kadow@tux08: ~$

kadow@tux08: ~$

kadow@tux08:~$ freva --plugin

BINGO_DECO: Produces input data for Hydrological Models in the BINGO
project (Documentation: <http://users.met.fu-
berlin.de/~HenningRust/BINGO/DECO_docu.pdf>)

Blocking: Calculates the Instantaneous Blocked Longitude (IBL)

Blocking_2D: Calculates various 2D-Blocking Indices of the Northern

Freie Umvers!(él#{L
<

by

Plugins  History  Data-Browser  Shell  Help  Contact logout (kadow)

Hemisphere B
Compo: COMPO - Building Composites Plugins
CWT: Calculate Circulation Weather Type by mean sea level

pressure.

DSI: Calculates the Dynamic State Index (DSI).
Eady: Calculates the Eady Growth Rate for analyses.

MET_ensemble: EnsembleStat from MET BINGO_DECO
MET_grid: Gridstat from MET Produces input data for Hydrological Models in the BINGO project (Documentation: <http://users.met fu-berlin. de/~F
MET_series: Series Analysis from MET BINGO/DE docu.pdf>)
MoviePlotter: Plots 2D lon/lat movies in GIF format
Murcss: Calculates the MSSS, Correlation, ConditionalBias, and the Blocking
CRPSS like Goddard et al. (2013) Calculates the Instantaneous Blocked Longitude (1BL)
PCA: Principal Component Analysis
PERCENTILE: Calculates multiple percentiles for analyses. Blocking_2D
QFLUX_DECOMP: Decomposition of meridional moisture transport. Calculates various 20-Blocking Indices of the Northern Hemisphere
RelDiag: Tool to plot reliability diagrams. N
Stormtrack: Calculates Stormtrack for analyses. Compo
WTRACK: Wind tracking algorithm for the MiKlip database.
ZYKPAK: Cyclone tracking and identification package. variable2track COMPO - Building Composites
-> psl
kadow@tux08: ~$ cwT
kadow@tux08: ~$ Calculate Circulation Weather Type by mean sea level pressure.
kadow@tux08: ~$
Ak VAR . & nai

Fig. 2.2: The plugin list in the shell and web interface (snapshot).

adjusting, and operationalizing evaluation procedures as described in the following.

Shell Interface

The shell interface is the most useful when accessing an HPC environment in climate
science. The command-line approach allows the development of adjustable Unix-
based routines. It grants fast and flexible data access using efficient climate data
processing tools. The opportunity to write code within the software applications
running within Freva for example with regular expression and basic bash commands
improves software and data handling. In that way Freva can for example be started
and monitored regularly by Cron jobs. Even big evaluation routines by Freva can be
started within Bash loops.

In the following list, we explain the three main features (see Sect. 2.2.2 for details)
of the shell interface applying Freva’s core-commands:

The --plugin (Fig. 2.2) section holds all plugged-in tools and helps the user to start
one. When the user forgets a mandatory option of a --plugin, Freva gives the name
of the name of the missing option. When the user mistypes an option of a plugin,
Freva suggests the right one (see also Fig. 2.6

The --history (Fig. 2.3) command gives direct access to all analysis and their result
directories. Distinct IDs are utilized to sort all results and show their respective
history entries. Furthermore, the history holds all configurations and starting com-
mands, which are editable and restartable.

The --databrowser (Fig. 2.4) interface efficiently searches the model database. The
integrated bash-completion automatically fills the data browser search facets by
simply tabbing, thus leading the user easily to the needed dataset or given overview
of the database.

2.2 Framework System Design - General Concept
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kadow@tux08: ~§

kadow@tux08: ~$

kadow@tux08:~$ freva --history

9653) percentﬂe [2016 11-18 14:35:06] 'fln].shad {"product": “eur-44", "dr
yrun": false, "ntasks": 4, “percentile’

9570) exampleplugxn [20 -12 14 19: 14] f1nxshed {"product": "bla", "dr
yrun": true, "institute": ", “cache": "/

7578) murcss [2015 09 12 09:40] flnlshed { months null, “"model2": "m
pi-esm-1r", "modell": "mpi-esm-1r", "b. Hist
7577) murcss [2016-09- 12 18:07:47] hmshed {"months": null, “model2": "m Istory

pi-esm-1r", "modell”: "mpi-esm-1r", Show [10[%] enties Search: Clear
7247) pca [2016 08-31 1 16] broken { "‘eofs": 10, “"shiftlats": false, "

latname": "lat", "pcafile": " Id User Plugin Caption Timestamp Status Info

7246) pca [zo1e 08-31 18:
latname": "lat", “pcafile”: "ol » )

7245) pca [2016-08-31 18:31:32] broken {"eofs": 10, "shiftlats": false, " O 5 kaow  porcontie Emety (CLLICIL S bned

Freie Universita

Plugins  History  Data-Browser  Shell  Help  Contact logout (kadow)

371 ®broken {"eofs": 10, "shiftlats": false, "
bs

latname": "lat", "pcafile”: "obs F - |
7120) zykpak [2016-08-23 17:12:15] f1n1shed {"namelist": "default", "prod

uct": "testcourse”, “dryrun": false | O w0 adow xamplsplugin  Emply 1211161419 finish -""'
7013) som [2016 B7 28 15:01:46] f1n1shed {"product": "reanalysis", "lasty Edit Config

ear": 1980, "dryrun": false, "level.

7aos) exanpleplugin [2016- 07-27 17 36: 47] finished {"product": "outputl®,
"dryrun®: true, "institute": "mpi-m", "cache. O 7678 kadow  murcss Emply 120916 1809 finished

kadow@tux08: ~$ e |

kadow@tux08: ~¢

kadow@tux08: ~$

EditConfig

: O 7577 kadow murcss Empty 209.16 1807 finishi
kadow@tux08: ~$ m
kadowatux08: ~$

Fig. 2.3: The history in the shell and web interface (snapshot).

Beside these main options, there are assisting side commands only available in
the shell:

The --help always gives detailed information about Freva, its subcommands, and
plugins.

The --esgf helps users to download data from the ESGF, establishes a connection to
the ESGF and generates the necessary WGET script using the standardized attributes
and facets.

The --crawl_my data subcommand offers the opportunity to implement additional
standardized datasets. Users can compare their data sets against the ones of the
research group, the ESGF projects, or data from other users.

Web Interface

The web interface works similar to the shell interface (Sect. 2.2.1). However, it
advances Freva’s usability. Usually on HPC environments there is no comfortable
way to find or process data and even view results. The web interface introduces
easy entrance points for beginners and experts. The three main features (see Sect.
2.2.2 for details) stay the same - plugin, history, databrowser. In the following the
advantages of these three features in the web interface are explained.

The Plugin section (Fig. 2.2) gives access to plugins, an overview of their options,
and assists the user during the individual starting procedure with pre-filled facets.
When a user forgets to set a mandatory option, the web interface points to the
missing plugin option. There are two ways of accessing the HPCs database. It is
possible to point to a specific file by browsing the user’s main directories of the user
or project, or even use the databrowser to search for some file to analyze. Plugins
can apply the more advanced CMOR options to search the whole database of the
research project or a virtual ESGF project - option by option (e.g. project, experiment,
variable, etc.). This built-in databrowser search is increasing efficiency by decreasing
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kadow@tux08: ~$ P
kadow@tux08: ~$ freie niversiat ML ertn
kadow@tux08: ~$ K&;«g
kadow@tux08: ~$ =
kadow@tux08:~$ freva --databrowser

cmor_table= experiment= product= time_frequency=
data_type= institute= project= variable=
ensemble= model= realm=

kadow@tux08:~$ freva --databrowser project=cmip5 experiment=
decadall959 decadall97l decadallS3 decadallsss  decadal2007 Data-Browser
decadall960 decadall972 decadall984 decadall996 decadal2008
decadall96l decadall973 decadall985 decadall997 decadal2009
decadall962 decadall974 decadall98é decadall998 decadal2010
decadall963 decadall975 decadall987 decadall999 decadal201l
decadall964 decadall976 decadall988 decadal2000 decadal2012
decadall965 decadall977 decadall989 decadal2001 historical ect : cmipS®
decadall966 decadall978 decadall990 decadal2002 past1000
decadall967 decadall979 decadall99l decadal2003 picontrol t : outputl
decadall968 decadall980 decadall992 decadal2004 rcp45
decadall969 decadall98l decadall993 decadal2005
decadall970 decadall982 decadall994 decadal2006
kadow@tux08: ~$

kadow@tux08: ~$

kadow@tux08: ~$

kadow@tux08: ~$

kadow@tux08: ~$

kadow@tux08: ~$

kadow@tux08: ~$

kadow@tux08: ~$ jecadal
kadow@tux08: ~$ []

by

Plugins  History  Data-Browser  Shell  Help

Fig. 2.4: The databrowser in the shell and web interface (snapshot).

the number of CMOR facets with every selection made and only showing remaining
possible combinations.

The History (Fig. 2.3) shows the completed, scheduled, or running evaluations.
All configurations, including the GIT (Hamano, Torvalds, et al., 2015) versioning
information, can be retrieved. It is also possible to restart a finished evaluation
(Edit Configuration). To organize their results, the user is allowed to set a caption
or delete them from the history section. The Search bar allows to search within the
configurations started with Freva and filter for used options and e.g. CMOR options.
The Data-Browser (Fig. 2.4) gives a convenient way of finding data in the database
of the research group. By just clicking through the given standardized (DRS, CMOR,
CORDEX, ANA4MIPS, etc. - see ESGF?) facets, the user finds data sets and data
directories. The web front end provides even more meta information of the search
facets, like variable, model, or institute, to explain the meaning of the abbreviations
and help to find the right data sets or see what is available. Furthermore, the web
part allows to stream the meta data of a specific file by starting ncdump from the
NetCDF package.

Besides the main options, there are some extras on the web:

The Help section hosts information about the evaluation system build with Freva.
A web tour explains the usage of the web page. The scientists find documentation
of the research project and developed plugins. Guidelines are also available in the
Help section.

The Shell section within the web interface also allows the command-line access to
the high performance computer of the research group. Applying the shell-in-a-box
enables the users to directly start Freva from the bash through the web.

>https://esgf.linl.gov

2.2 Framework System Design - General Concept
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System Core including Backend

The System Core is the main part of every evaluation system build with Freva
(Fig. 2.1). It is an efficient combination of the following technologies and their
communication before, during, and after the analysis of the evaluation system. Its
plugin interface manages the incorporation of software tools and their common
application in the front end (See Plugin - Application Programming Interface Sect.
2.2.2). All configurations and information of the executed plugins and analyzed data
sets are saved to satisfy the commitment to transparency and reproducibility (see
History - Transparency and Reproducibility Sect. 2.2.2). In order to keep track and
to overview the database, Freva can implement standardized interfaces to model,
reanalysis, and observational data sets or even data incorporated by the users (see
Databrowser - Standardized Model Data Access Sect. 2.2.2).

Plugin - Application Programming Interface

The expertise of scientific evaluation in Earth system modeling usually resides
with experts of the field. These experts also take care of the translation of their
research field into scientific software. Not every scientist is also an expert in software
development. Freva serves as a development interface to assist scientists to fulfill the
code of best practice in terms of developing scientific software. The next paragraph
will give some insight in the technical details.

The plugin framework of Freva handles the connectivity of stand-alone tools to
the evaluation system of the research group through an application programming
interface (API). The plugin API, written in Python, is well structured to assist tool
developers during the process of plugging-in a tool. Every tool gets an api.py wrapper
to realize the exchange of options between the Freva system and the plugin. The
API transmits all necessary options to Freva and to the tool. The following minimum
code requirements guide the plugin developer to structure the tool by providing
meta information of the plugin.

A simple implementation of a plugin is shown in Figure 2.5 with an example of the
MoviePlotter plugin. The class is derived from the PluginAbstract base class and
implements some mandatory meta information like tool developer, short_description,
long description, and the plugin version. The parameters section automatically
collects the tool options by name and the corresponding default, mandatory and
help information by ParameterType and defines the plugin interface to the user. The
arguments get parsed from the plugin, retrieving not only the options set by the
user but also the default values if parameters are unset. The plugin transforms the
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import os, sys
from evaluation_system.api import plugin, parameters
from evaluation_system.misc import config

class MoviePlotter(plugin.PluginAbstract):

tool_developer = {'name':'Christopher Kadow', 'email':’'christopher.kadow@met.fu-berlin.de'}
__short_description__ = "Plots 2D lon/lat movies in GIF format"
__version__ = (1,0,0)
__parameters__ = parameters.ParameterDictionary(
parameters.File(name="input', max_items=9, item_separator=',',\

mandatory=True, help='NetCDF file(s) to be plotted'),
parameters.Directory(name='outputdir', default='$USER OUTPUT_DIR', \
mandatory=True, help='The default output directory'),
# SHORTENED OPTIONS

def runTool(self, config_dict=None):
input = config_dict['input']
outputdir = config_dict['outputdir']

result= self.call('bash %s/movie_plotter.sh %s %s' % (self.getClassBaseDir(),input,outputdir))
print result[0]
return self.prepareOutput(config_dict['outputdir'])

Fig. 2.5: The basic plugin.py as example of the MoviePlotter plugin, with condensed option
list for display reasons.

incoming strings into Freva options, and the parameter classes validate them by
type (e.g. string, integer, bool). Next to these ordinary string, integer or bool fields,
the data-browser fields in the plugin API communicates with Freva’s Solr server (see
Sec. 2.2.2) and can be interpreted by the web interface. The plugin API offers some
system variables set up by the admin in the configuration of Freva. System variables
are for example the default user output directory, plot directory, or cache directory,
which can be used for a clear organization of the plugin results.

Software developments need flexibility without interferences between the groups
- users want to use plugins; developers want to design or re-design plugins. The
publicly available plugins are defined in the main configuration file of Freva, and
the actual loading is handled by the PluginManager. The PluginManager controls
the upload into the evaluation system and gives access to the plugins as a central
registration. Freva offers developers the possibility to connect their new plugins
or temporarily redirect the link to the plugin used by Freva to their own version -
independently of the main systems plugins. The overwritten plugin is only applicable
by the developer. The system tells the user which version, i.e. the one from the
main system or their own linked version is used when the plugin is started. This
is especially useful during development stages because developers can test new
features or completely new software without disturbing the production system. The
PluginManager is parsing the incoming command and generates a configuration
as configDict each time a plugin is started. The PluginManager is able to start the
plugged-in tool using the runTool interactively in shell or via the available batch
mode.

2.2 Framework System Design - General Concept
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History - Transparency and Reproducibility

Transparency and reproducibility are important qualities in science. For a scientist
it is significant work to take care of the traceability of his research. In that sense,
Freva also serves as research recording clerk. The scientific development stages are
recorded, easily reviewable, and restartable. The next paragraph will give some
insight in the technical details.

All information about performed analyses with Freva is saved in a MySQL database.
When a plugin is started, the System Core sets certain information through the
PluginManager. Each evaluation receives a unique identification number (ID), which
is then combined with the user’s ID, the plugin name, a time stamp, and status. The
configuration parameters of the plugin, including possible data retrieval options (e.g.,
Solr fields), are stored in MySQL. Furthermore, Freva is saving all GIT versioning
information, including repository directory and internal version number of the plugin
and the Freva version itself, for each analysis. Thus, Freva is flexible enough to
guarantee a full recovery of the whole system or just one particular plugin whenever
it may be necessary to reproduce old evaluations. In most cases, it is not necessary
to set back the system or plugin. Usually it is enough to browse the history of the
respective experiment, retrieve the plugin command via shell or web, and rerun the
plugin possibly after slight modification, e.g. outputdir, time ranges, etc. To provide
a better overview to the user and help them find old configurations and results,
they have the opportunity to entitle each analysis with a caption. The history also
contains the plugin’s interactive standard output. The history class of the System
Core establishes several statuses, permissions, and result types of each analysis,
which can be retrieved by the front ends (Sect. 2.2.1).

The history-database in MySQL gets monitored for all evaluations done by Freva.
Admins of the research group evaluation system have the possibility to view these.
Freva saves the status of the started plugins, for example, finished or broken. This
is an advantage over stand-alone tools and decentralized usage. Because, this
monitoring helps to reveal data discrepancies and software bugs, as users are not
always reporting problems. Freva helps to inform so that users can adjust their
broken analysis and inform them about how to proceed. If users keep utilizing the
system and do not step away after some failed attempts the evaluation system and
the research around it improves.

Databrowser - Standardized Model Data Access

The data browser of Freva is more than a search engine. It is a joint commitment to
a common Earth system model data output standard within in a research group. It
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was a step change in development when the climate communities first agreed on a
specific data structure for model intercomparison projects (MIPs). As a consequence,
nowadays, there are many opportunities to evaluate different models e.g. by the
same tool. This meant, that software no longer needed to be adjusted to the model
data to be analyzed. The next paragraph will give some insight in the technical
details.

Freva’s main data standard is the Data Reference Syntax (DRS) of CMIP5 which
is publicly available at the ESGF. The DRS has distinct meta data requirements,
including the Climate and Forecast (CF) meta data convention which uses NetCDF
and the even more restrictive Climate Model Output Rewriter (CMOR) guidelines
to bring meta data information into the directory structure of the model output
database. This basic approach of using the CMOR options allows to set up a common
and easy to understand model database for a research group. This database can be
easily extended at later stage e.g. by model data of upcoming development stages
of the research group or even the model data of users. Due to the fact that in the
ESGF several data standards exist, Freva even gives the possibility to set up several
different databases with different data standards, e.g. obs4mips, ana4mips, CORDEX,
etc. at the same time. However, for a distinct plugin development, using these meta
data directories as options to retrieve data sets, it is recommended to use just one
standard or at least imbedded standards like DRS or CMOR. Therefore, Freva also
ships with some example scripts to standardize and re-standardize datasets. These
scripts also help users to bring their own model results into the required standard
format to ultimately incorporate the data into the system.

Freva indexes these output directory structures (model, reanalyzes, observations,
etc.) of the research group and saves this meta data information in a Solr database.
Solr has a faceting component which is part of the standard request handler which
allows a faceted navigation. Therefore, Freva applies the Solr faceted search on
the data directories and datasets using, for example, the DRS. All files of a chosen
directory get registered or 'crawled’, and thereafter all model datasets and their
locations get ingested into the Solr server. The stand-alone Solr server is started
via Java (see Sect. 2.5) and allows http requests. The System Core of Freva has a
python class called solr core to encapsulate these requests to the Solr server. This
way Freva retrieves the locations of the ingested model data sets via its meta data.
This allows the assignment of the datasets to multiple categories. The scientific
developer benefit from these categories to precisely different model data sets and
exchange them easily. Plugins can use the databrowser to identify the model data
needed for evaluation. The plugin interface of the System Core allows developers
to clearly define which options in the Solr fields will be set by the users and which
are pre-set by default values. If the data base contains a versioning of the database
like e.g. DRS of CMIP5 does - which is recommended - Freva helps to keep track

2.2 Framework System Design - General Concept
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:$ freva <ENTER>

Freva

Available commands:
--plugin : Applies some analysis to the given data.
--history : provides access to the configuration history
--databrowser : Find data in the system
~-crawl_my_data: Use this command to update your projectdata.
-—-esgf : Browse ESGF data and create wget script

This is the main tool for the evaluation system.

Usage: freva --COMMAND [OPTIONS]

To get help for the individual commands use
freva --COMMAND --help

:$ freva --plugin <ENTER>
MoviePlotter: Plots 2D lon/lat movies in GIF format

:$ freva —plugin ovieplotter
ERROR: No plugin named: ovieplotter

Hurricane Katrina
Variable: ps|
Sea Level Pressure Pa

101334
101097
100861
100624
100387
100151
1 99914
99677
99441

Did you mean this?
movieplotter
99204
98967
98731
98494
98257
98021

:$ freva --plugin movieplotter <ENTER> 25N
ERROR: Error found when parsing parameters. Missing mandatory parameters: input

:$ freva --plugin movieplotter input=psl_6hrPlev_reanalysis_ERAINT_rlilpl_2005010100-2005123118.nc
latlon=20,35,-95,-80 title="Hurricane Katrina' seldate=2005-08-29T06:00,2005-08-29T06:00 <ENTER>
CHECK OPTIONS AND START PREPROCESSING

DONE -- CHECK OPTIONS AND START PREPROCESSING
START PLOTTING

PLOTTING THE TIMESTEPS 1 FOR FILE NUMBER 1
DONE PLOTTING

START MAKING THE MOVIE(S)

DONE -- MAKING THE MOVIE(S)

Movie(s) ready to show! -> /scratch/U! ion_

W 8!
06Z 29 AUG 2005

YYYYMMDD_hhmmss

Fig. 2.6: The basic usage of Freva in the shell environment including help, listing of plugins,
user mistypings and missing informations, and Freva suggestions to guide the user
to the final result (on the right). Applying a plugin named MoviePlotter for a quick
view at the sea level pressure in Pascal of ERA-Interim reanalysis around New
Orleans (USA) while hurricane Katrina was hitting its coast.

with the newest versions without unnecessary extra options. Per default the data
browser lists the latest published data of an updated experiment set, but the search
can be extended by all accessible versions. This is especially useful for reproduction
of research results.

The Virtual ESGF (see Fig. 2.1) is an add-on to the Databrowser. However it is still
under development. Therefore, its description can be found in the Appendix (2.5).

Scientific Application of Freva

Earth system models are important tools for climate science. While the models
underwent major computational development stages in the last decades, verification
systems are behind the state-of-the-art technologies. However, evaluation system
frameworks for the verification equations can be what Earth system model frame-
works are for the primitive equations: A systematic computationally efficient tool to
research the climate. We examine the importance of on state-of-the-art evaluation
system application and address its scientific development for Earth system modeling
with the example application of decadal climate prediction.

Based on the corresponding plugin API in Figure 2.5, a simple sample application of
the usage is shown in Figure 2.6. It shows an easy way of plugging a stand-alone
tool into Freva. The automatic help during the progress supports its application. The
MoviePlotter applies the parameters.File in the plugin directing the software to one
file: The reanalysis of the mean sea level pressure of the ERA Interim (Dee et al.,
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2011). The figure shows a quick analysis of Hurricane Katrina in the Gulf of Mexico.
The application can be efficiently changed to a different variable, different reanalysis,
different time range, etc. But with the basic idea of a very simple application,
which only needs one input parameter to be used by other plugins for their plotting
procedures, the MoviePlotter is just the first step in the evaluation complexity in
decadal climate prediction science.

A more complex approach, using the CMOR facets directly in the plugin, is shown by
the MurCSS tool from Illing et al. (2014) for decadal climate prediction research.
They include two independent CMOR option parts communicating with the Solr
server (see Sec. 2.2.2). Thereafter, it is possible to compare two different model
versions (e.g. Pohlmann et al., 2013) or even two different experiment setups (e.g.
Kadow et al., 2016) against observations or reanalysis data. The development of
this efficient basic validation tool for decadal evaluation in MiKlip (see Sect. 2.1 and
Marotzke et al., 2016) framed by Freva, which ensures usability and reproducibility
is a huge step forward in climate data verification. The research group may detect
improvements in the research field ’decadal prediction’ much faster and is able to
share this knowledge between scientists. Freva was applied in decadal prediction
research for example in the assessment of a future volcano eruption on forecasts
(Illing et al., 2018), the development of novel forecast techniques (Kadow et al.,
2017), the investigation of the East Asian Monsoon (Huang et al., 2018), the
assessment of the initial shock (Kroger et al., 2017), the vertical skill evaluation
compared to radiosondes (Pattantyﬂs—Abrahém et al., 2016), the effect of a wind-
stress initialization method (Thoma et al., 2015), the decadal skill due to volcano
eruptions (Timmreck et al., 2015), the re-calibration of decadal predictions using
observations (Pasternack et al., 2018), and the general research of the development
stages in MiKlip (Marotzke et al., 2016) - to name a few. Many plugins® with
different expertise have been developed and shared by Freva within the MiKlip
research group.

Hosting an evaluation system of a research group via Freva rather than using stand-
alone tools has even more advantages. It is not only scientific developers that can
share knowledge by usable plugins; users can also share configurations or even
results. This can be done actively via saving the configuration in the shell or by
share results in the web with colleagues of the research group. But this could be also
done passively using big data approaches by Freva. While filling out the web form
of a plugin, Freva automatically scans the history database and looks for similar
configurations. Even before the plugin is started, the web interface suggests to use
results of previously performed experiments, maybe even by other users. This is
possible, because Freva is an open system, and all results are accessible by the entire
research group. On the research side, this improves the research group’s connectivity

Swww-miklip.dkrz.de/plugins
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and saves time for the users. New ideas can be developed as researches can be more
productive. From the HPCs point of view, this saves CPU/h, 1/0, disk space, and
energy.

Evaluation systems framed by Freva can be found at the Freie Universitit Berlin’
for research and teaching, at the DKRZ for the MiKlip® project for decadal climate
prediction research and CMIP6° project for scientific applications and evaluations
done by the ESMVal (Eyring et al., 2016), at the Research Applications Laboratory
(RAL) of the National Center for Atmospheric Research (NCAR) for MET tools
applications'®, and at the German Weather Service (DWD) for interdisciplinary

meteorological analysis and visualizations!?.

Discussion and Conclusion

This paper introduced a complex and efficient framework for the evaluation of data
in the context of Earth system modeling, the Freva system. The simple yet powerful
concept of the collective commitment to a common data standard (CMOR) and
the applicable provision of knowledge on Earth system model science offers the
potential to improve the efficiency of research groups. Freva as a host respects the
fact that scientists need their scope for development to detect scientific findings.
Freva emphasizes transparency and reproducibility of open science in a research
project. Plugged-in tools and experiments are reviewable, editable, and repeatable.
Although it is desirable to exclusively use the most efficient programming language
as the common language in a project, Freva allows to plugin stand-alone tools in a
variety of programming languages. Freva enables the utilization of a multitude of
software plugins by acquainting only one common framework. The combination of
the easy use with the flexibility of incorporating user specific data sets in agreement
with research group’s standardization of model data, reanalysis, observations, or
even ESGF data, is a huge advantage.

Furthermore, Freva supports research groups in terms of sustainability. The full
control of a constructed evaluation system by including user specific data and
plugging-in individual interfaces and the group’s version control is mandatory for
a software system in science. Due to the commitment of a research group to work
together in a central system like Freva, there is a need for an efficient and convenient
communication. For the growth and quality of the system it is also important to
invite and convince scientists to be part of the common framework. Therefore, Freva

’freva.met.fu-berlin.de
Swww-miklip.dkrz.de
°cmip-eval.dkrz.de
Ofreva.rap.ucar.edu - behind firewall
"mavis.dwd.de - behind firewall
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addresses three types of clients: The User, the Developer, and the Admin. All of them
are usually scientists with different research aims. Because of the comprehensible
web platform, users usually get started right away. Over time the user’s requirements
getting more and more complex. After that, users sometimes jump to cloning,
adapting, and re-plugin of a versioned plugin. Freva is at its most impressive when
users become developers, and scientists start to cooperate on scientific tasks. Freva
guides scientists over technical hurdles and allows them to concentrate on science
itself. Another well known issue in science is the fluctuation of scientists in research
groups. A clear infrastructure set up with Freva can help to sustain and pass on
the knowledge and keep experience in the research group - even when developing
scientists leave the field.

A central system can host Earth system model data for the whole research group. By
handing out example standardization scripts to the users allows them to complement
missing data, standardize them, and file them in the users’ data archive or let the
admins archive them in the main data structure of their research project. The better
the users understand the interfaces, the better the system becomes.

A major issue of the data structure is the change of standards from time to time,
e.g. the progression from CMIP5 to CMIP6. Freva tackles this challenge easily, as it
is fully adjustable in terms of data standards, and new standards can be included
anytime. However, for one plugin it is difficult to deal with different data standards
having different attributes. Setting one common data standard and re-standardizing
other data sets according to it is the most efficient way for the plugins. Freva is
flexible enough, that the data standard could be also set to a completely independent
version of the research group - aside from standards in the ESGF.

An automatic application of the CMOR data standard interface to the output of
plugins is the next step in the evolution of evaluation systems. The ability to
link or register data results to the database of the user will allow its immediate
evaluation by, e.g. statistical approaches. Furthermore, developers are able to
connect different plugins with each other to pre- or post-process data - from plugin
to plugin. This facilitates a common development of a multitude of basic plugins
for a kit of evaluations without the necessity to 're-invent the wheel’ every time. In
addition, the facilitation of the provision and scientific usage of software and climate
data automatically increases the number of scientists working with the data sets and
identifying discrepancies.

A publication of a software package like this one is always just a snapshot of what
has been developed up to that very moment. The software design may have changed
over time but the main system framework idea has remained the same ever since
we started the development of Freva in 2011. Clear interfaces in terms of tools and

2.4 Discussion and Conclusion

23



2.5

24

data have been established. A well-structured and stable model database was set
up, which is flexible to adapt to the research group’s needs. Freva offers automated
reproducibility and transparency while increasing the usability of tools by different
programming languages in shell and web on a HPC. The share of knowledge can
be advanced by developing plugins together and by providing Earth system model
data. In addition it is possible to produce, share and discuss results of the evaluation
system within the research group. Retrospectively, the MiKlip project and Freva have
been mutually beneficial for one another. Many plugins have been developed and
shared, and a huge model database has been produced within the MiKlip Central
Evaluation System for decadal climate prediction as seen in Section 2.3. The MiKlip
project is a perfect example of a nationwide project with a special focus and plenty
of scientists jointly working on one HPC. Freva, as a central infrastructure, organized
MiKlip’s tool development and data retrieval. The efficient interaction between
different technologies and the increased efficiency of evaluation frameworks next to
modeling frameworks improves the Earth system modeling research.

Code and data availability

Freva is open source and accessible for the Earth system modeling community via
GitHub: https://github.com/FREVA-CLINT citable through

Kadow, C. and S. Illing. (2018, August 1). FREVA-CLINT/Freva v1.0-beta (Version
v1.0-beta). Zenodo. http://doi.org/10.5281/zenodo.1325148
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Appendices to Chapter 2

General Software Lineup - Technical Details

Freva is designed to be implemented on IT platforms like Linux (GNU/Linux Com-
munity, 2015) for scientists in a research group including user account, compute
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resources, and storage. The main framework, including shell executables and the
web-interface, is written in Python (Python Software Foundation, 2015) using sev-
eral third party packages. The whole system including the plugged-in tools are
version controlled with GIT (Hamano, Torvalds, et al., 2015). In the shell front end,
Freva is meant to be loaded by Modules (Environment Modules Project, 2015) or
sourced using preferably Bourne-again shell (BASH, Fox and GNU Project, 2015),
thus allowing users to stay in the general work environment of, for example, an HPC.
In the web front end, which is built using Django (Django Software Foundation,
2015), the users can log in via existing user accounts. Per default Freva is sourcing
all user information via Lightweight Directory Access Protocol (LDAP, Carter, 2003),
granting/not granting access via group permissions. Therefore, it is not necessary to
build an extra user database.

All communications between the web front end and the HPC are realized via Secure
Shell (SSH, OpenSSH project, 2015) using the user account. Started plugins via web
are handled by the Freva batch mode using a job scheduler, the Simple Linux Utility
for Resource Management (SLURM, Slurm Commercial Support and Development,
2015). The database of all produced results is accounted to the user in a structure
that is configurable and reachable from all processing hardware. Only the central
databases stay within the central evaluation system, e.g. like the plot preview section
for the web page. This add-on keeps the preview graphics for the web small and
available for the research project. These previews are produced by ImageMagick’s
convert (ImageMagick Studio LLC, 2015) command. The results in the preview
section are connected to the research results and plugin configurations of the history
section and are stored in a database like MySQL (Oracle Corporation, 2015b).

The processed standardized Earth system model data can be found using the faceted
search via the indexing Solr (Apache, 2015) server running in Java (Oracle Corpo-
ration, 2015a) as described in Section 2.2.2. Due to the fact that the Earth system
model community, including the ESGF, mainly uses NetCDF data format, helpful
accessory software are NetCDF libraries (University Corporation for Atmospheric
Research, 2015), NetCDF Operators (NCO, The NCO project, 2015), and Climate
Data Operators (CDO, Max-Planck-Institute for Meteorology, 2015). Thus, ncdump
of NetCDF is used to retrieve meta data for the web application. The virtual database
of the ESGF is hosted by the Filesystem in Userspace (FUSE, Szeredi, 2015), taking
care of the bridge between incoming dataset requests, their download, and virtual
database caching.

All software setups are described in one configuration file of Freva, coordinating the
combination of necessary programs, ports, and communicators.

2.5 Appendices to Chapter 2
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Virtual ESGF - Evaluation Data Extension

Nowadays, most of the computational data handling can be done via the internet.
Cloud and Grid computing services offer fast IT solutions. However, Earth system
modeling is still on the edge of possible or practical ways for scientists. Network
processing of aggregated data (like yearly global means) is easily possible but an
analysis based on high spatial and temporal resolution data is extremely computa-
tionally expensive and time consuming. A long term hosting of several terabytes
of external model data as explained in Section 2.2.2 is not a practical solution. A
database of a research project is usually increasing with time, e.g. the data amount
of CMIP6 is estimated to be 20 times larger than that of CMIP5 (Eyring et al., 2016).
Therefore, Freva offers a beta-version of a virtual database especially designed for
the integration of ESGF projects into the databrowser.The next paragraph will give
some insight in the technical details.

The virtual ESGF maps a project like CMIP5 onto the respective data structure of
the research project using (FUSE, Szeredi, 2015) as described in the following. For
this purpose, we use Freva’s ESGF API which addresses the ESGF via attributes and
search facets. A listener script is running on the IT platform waiting for requests.
Whenever a user or a plugin of Freva asks to access virtual datasets through the
databrowser, only these are downloaded into a temporary cache. This cache is
adjustable in a way that, for example, one month old unused data will be deleted
automatically. During this time frame, the downloaded data is physically reachable.
The virtual ESGF allows flexible adjustments while streaming them into the data
browser. It is possible to map an ESGF project from the available standard into the
research group’s chosen standard. In addition, the research group can manipulate
the data via NCO or CDO when known issues of data sets of the ESGF, e.g. wrong
missing values need to be fixed.

The increased data resources through the virtual ESGF extend the evaluation pos-
sibilities for the research group without a restriction in the usability. The virtual
ESGF can map several ESGF projects like CMIP5, CORDEX, obs4MIPs, etc. into
Freva. An external dependency - the ESGF itself - is restricting the data accessibility
and therefore the stability of Freva which needs to be communicated inside the
research group when using this powerful feature. Due to ESGF network availability,
we recommend a clear separation of these virtual data sets from the local ones,
customizable through the databrowser.

The topic 'virtual datasets’ is still work in progress. While the design of the virtual

ESGF is already fully developed, the practical implementation suffers from sporadic
connectivity gaps to the ESGF.
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Related Software Developments

There is a growing need for common scientific infrastructures in the Earth system
modeling community. However, several big geoscientific software communities
arguing about their preferred programming language and their history of software
development. Thus, the attempt to migrate to one common software in a research
project can be challenging in practice. Several research groups developed and
provided their own software packages during the last decades (e.g. PCMDI metrics
package!?, Global Marine'3, RCMES tool'#, ESMVal'®). In the majority of cases,
these packages focus on one specific research topic without aiming to be open
for a broader audience. Usually, these software packages are provided as scripts
which need to be adapted in the programming language they are written in. While
this way of providing tools is very flexible because it is possible to adapt the tool
completely to one’s own project needs, these scripting formats lack usability. In
order to improve usability, a few research centers in the recent years have developed
websites which present some pre-calculated research galleries (e.g. the Decadal
Predictability Working Group'®). Even less research centers also provide a dynamic
calculation of results depending on the chosen options (e.g. Climate Explorer!’,
BirdHouse'®). Often these sites do not offer the possibility to adapt the tool or to
use own software and datasets. With this restriction of flexibility, but interactive
production of graphics by the users, it is at least possible for users to produce pre-
defined evaluations. Furthermore, these platforms provide no opportunities to build
specific portals needed by research groups that want to work within a self-contained
environment.

Information

Information about the candidate’s and co-authors’ work on that paper:

The candidate developed the scientific idea of the paper -namely the evaluation sys-
tem framework Freva; the software design of the shell and web work space including
standardized data and tool solutions; the data embedding, software engineering of
the framework for high-performance computer as well as climate research software;

2http://doi.org/10.5281/zenodo.809463
Bhttps://www.nceas.ucsb.edu/globalmarine
4https://rcmes.jpl.nasa.gov
Shttps://www.esmvaltool.org/
®http://clivar-dpwg.iri.columbia.edu
https://climexp.knmi.nl
8https://github.com/bird-house
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analyzed and discussed the results; drafted the paper.

The co-authors provided software engineering development, re-development, and
enhancements of the Freva framework in shell and web; developed climate research
software in terms of plugins; helped to improve the text of the paper by numerous
comments and took care of the funding.
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Evaluation of Forecasts by Accuracy
and Spread in the MiKlip Decadal
Climate Prediction System

Abstract

We present the evaluation of temperature and precipitation forecasts obtained with
the MiKlip decadal climate prediction system. These decadal hindcast experiments
are verified with respect to the accuracy of the ensemble mean and the ensemble
spread as a representative for the forecast uncertainty. The skill assessment fol-
lows the verification framework already used by the decadal prediction community,
but enhanced with additional evaluation techniques like the logarithmic ensemble
spread score. The core of the MiKlip system is the coupled Max Planck Institute
Earth System Model. An ensemble of 10 members is initialized annually with ocean
and atmosphere reanalyses of the European Centre for Medium-Range Weather Fore-
casts. For assessing the effect of the initialization, we compare these predictions to
uninitialized climate projections with the same model system. Initialization improves
the accuracy of temperature and precipitation forecasts in year 1, particularly in the
Pacific region. The ensemble spread well represents the forecast uncertainty in lead
year 1, except in the tropics. This estimate of prediction skill creates confidence in
the respective 2014 forecasts, which depict less precipitation in the tropics and a
warming almost everywhere. However, large cooling patterns appear in the North-
ern Hemisphere, the Pacific South America and the Southern Ocean. Forecasts for
2015 to 2022 show even warmer temperatures than for 2014, especially over the
continents. The evaluation of lead years 2 to 9 for temperature shows skill globally
with the exception of the eastern Pacific. The ensemble spread can again be used
as an estimate of the forecast uncertainty in many regions: It improves over the
tropics compared to lead year 1. Due to a reduction of the conditional bias, the
decadal predictions of the initialized system gain skill in the accuracy compared to
the uninitialized simulations in the lead years 2 to 9. Furthermore, we show that
increasing the ensemble size improves the MiKlip decadal climate prediction system
for all lead years.
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The following chapter consists of the main publication and the supporting informa-
tion published in the open access journal Meteorologische Zeitschrift (MetZ) an inter-
national journal of the meteorological societies of Germany, Austria, and Switzerland
(Schweizerbart Science Publishers). This paper is part of the Special issue: Verification

and process oriented validation of the MiKlip decadal prediction system.

Kadow, C., S. Illing, O. Kunst, H. W. Rust, H. Pohlmann, W. A. Miiller, and U. Cubasch
(2016), Evaluation of forecasts by accuracy and spread in the MiKlip decadal climate
prediction system, Meteorologische Zeitschrift, 25, 631-643,
https://doi.org/10.1127/metz/2015/0639.
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3.1

3.2

Introduction

Decadal climate prediction research gains progressively more attention in climate
science as well as in society, industry and economy. The research aims to close the
gap between short term forecasts and long term projections. Numerical weather
predictions focus on an initial value problem in the beginning of a forecast. On
the other hand, climate projections as a boundary condition problem examine the
long-term development (Meehl et al., 2009) , Mehta2011. In order to accommodate
the demand for reliable informations on near-term climate variability on the crucial
timescales of a year up to a decade, different national and international initiatives
have been launched. The Coupled Model Intercomparison Project Phase 5 (CMIP5,
Taylor et al., 2012) offers a platform to approach decadal predictions on a common
basis via hindcast experiments in the ’observation’ period from 1960 to 2010.

The 'Mittelfristige Klimaprognosen’ (MiKlip) project (Marotzke et al., 2016), funded
by the Federal Ministry of Education and Research in Germany (BMBF), is based
on CMIP5 and currently develops a decadal forecast system using the Max Planck
Institute Earth System Model (MPI-ESM). With the improvements made through
initialization techniques using ocean and atmosphere reanalyses in a coupled initial-
ization (Pohlmann et al., 2013), the MiKlip model version outperforms the CMIP5
complement (Miiller et al., 2012), especially in the tropics.

In this study we present the forecasts and the skill assessment of the MiKlip decadal
climate prediction system following the verification framework for interannual-to-
decadal prediction experiments recommended by Goddard et al. (2013). For this
purpose, we employ the decadal evaluation tool 'MurCSS’ (Illing et al., 2014) as part
of the MiKlip Central Evaluation System (see Marotzke et al., 2016). We point out
the importance of a detailed evaluation by combining initialized decadal climate
predictions with their prediction skill using the MiKlip system. In section 2 we
present the statistical methods used to evaluate the accuracy and the spread of the
ensemble hindcast experiment. We present decadal forecasts and their prediction
skill for near surface air temperature and precipitation for lead year 1 and lead years
2 to 9, as well as the improvement due to increased ensemble size in section 3. In
section 4, we discuss the combination of predictions and the prediction skill of the
MiKlip system.

Data and Methods

The MiKlip decadal forecasts and hindcasts (Baselinel, see also Pohlmann et al.,
2013) used in this study were conducted with the earth system model from the
Mazx-Planck-Institute in the low resolution version (MPI-ESM-LR). It is a coupled
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atmosphere-ocean system triggered by two different initialization techniques. The
ocean component MPI-OM (Jungclaus et al., 2013) with the resolution of 1.50/L40
was initialized with temperature and salinity anomaly fields from the European
Centre for Medium-Range Weather Forecasts (ECMWF) ocean reanalysis system 4
(ORAS4 - Balmaseda et al., 2013). The atmospheric component ECHAMS6 (Stevens
et al., 2013) with the resolution of T63L47 was obtained by a full-field initialization
with ECMWF atmosphere reanalyses, including fields of temperature, vorticity,
divergence, and surface pressure (ERA40 in 1960-1989 and ERA-Interim in 1990-
2013, Uppala et al. (2005) and Dee et al. (2011) respectively). The simulations
were started annually for the period 1961 to 2013, each initialization simulating a
decade and consisting of 10 ensemble members.

Uninitialized runs with the same model configuration and in the same time period
serve as references (Goddard et al., 2013; Matei et al., 2012), disclosing the effect of
the initialization and its potential gain of skill. The uninitialized simulations equate
to the ’historical’ experiment performed during CMIP5 using observed external
forcings. Due to the fact that the ’historical’ experiment ends in 2005, the reference
run was extended by the CMIP5 ’rcp45’ experiment consisting of the projected
RCP4.5 scenario (Taylor et al., 2012). A 10 member experiment of uninitialized runs
was conducted to have an equivalent ensemble size to the initialized runs.

We compare near surface air temperature to the HadCRUT3v (Brohan et al., 2006)
dataset from the Hadley Centre and Climatic Research Unit for the period 1961 to
2012. This commonly used anomaly data set is chosen to maintain the comparability
to other decadal prediction studies (Pohlmann et al., 2013; Goddard et al., 2013;
Matei et al., 2012). To enable a global comparison of precipitation with observation
over land and ocean, a shorter time period was selected, focussing on the era of
satellite data. The Global Precipitation Climatology Project Satellite-Gauge (GPCP-
SG) dataset (Adler et al., 2003) was used for the period from 1979 to 2012. However,
for full comparability with the decadal prediction community and the evaluation
over the longer timescale, we also present the evaluation of precipitation with the
Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis Version 6
dataset (Schneider et al., 2011; Becker et al., 2013) over land in the supplementary
material of this publication. For both evaluated variables, anomalies are considered
for comparison with the model data to ensure that no general bias is influencing the
results like differences in the height of model and observation.

The anomaly real-time forecasts for temperature and precipitation are available for
the year 2014 and the time period of the years 2015 to 2022. The reference period
is 1981 to 2010. The uninitialized simulations are used as reference datasets for the
anomaly calculations.

Chapter 3 Evaluation of Forecasts by Accuracy and Spread in the MiKlip Decadal Climate



3.2.1

The following skill assessment — based on the decadal climate prediction verification
framework (Goddard et al., 2013) - includes spatial averaging on a 5x5 degree grid,
temporal aggregation and lead-time dependent bias adjustment in a cross validated
manner (ICPO, 2011). The lead year 1 hindcast continues the observed initial
conditions in the first prediction year. For the lead years 2 to 9, the representation of
the decadal-scale climate predictions excludes the skill of lead year 1. Significance
of the verification scores was estimated using a non-parametric bootstrap approach
(Wilks, 2011; Mason and Mimmack, 1992) taking auto-correlation into account
(Goddard et al., 2013). First, we investigate the gain of accuracy in the ensemble
mean due to the initial conditions compared to uninitialized climate change projec-
tions. In a second step, we analyze whether the ensemble spread is an appropriate
representation of the forecast uncertainty on average.

Accuracy of the ensemble mean

The mean squared error skill score (MSESS) compares the accuracy of two pre-
dictions (Murphy, 1988) of the past, so called hindcasts. The initialized hindcasts
H;; consist of their ensemble members i=1,...,m and the start times j=1,...,n.
The mean squared error (MSE) between the hindcast ensemble mean H; and the
observations O; over j=1,...,n start times can be expressed as

%Z (H; - 0;)?. (3.1)
j=1

MSEg =

Compared to some reference prediction, such as the climatological forecast M SE5 =

1 T (O — 0;)?, the skill can be determined by the

MSE
MSEg5 "

MSESS(H,0,0) =1 — (3.2)

Applying the Murphy-Epstein decomposition and using anomalies, the MSESS for
the climatological forecast can be written as:

SH 2
rHO — — 3.3)

MSESS(H, 0, 0) = 1% — ,
o

with 7o being the sample correlation coefficient between the hindcasts and the
observations, and the sample variance of the hindcasts s%, and observations 520 (Mur-
phy, 1988; Murphy and Epstein, 1989). This decomposition allows to differentiate
between the correlation coefficient and the conditional prediction bias (second term
on the right hand side of Eq. 3.3). When comparing the initialized hindcasts H with
the uninitialized reference R, the MSESS can be written as
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MSESS;; — MSE
MSESS(H, R, 0) = 5 1S_S§SESSSRSSR (3.4)

to assess the change of skill from the uninitialized to the initialized prediction

system.

The MSESS represents the improvement in the accuracy of the hindcasts H over
the climatology O or a reference forecast R with respect to the observations O,
where - co < MSESS < 1. A positive value suggests an improved accuracy of the
hindcast ensemble mean compared to the reference, and a negative value indicates
the opposite.

The correlation coefficient —1 < r < 1 as the potential skill of a prediction system
represents the linear relationship between a hindcast and the observation. For
assessing the change in the correlation coefficient of the hindcast against a reference
prediction, the difference of o and rro is presented, with values ranging from -2
to 2.

The conditional bias —oco < rgo — i—g < oo is the difference of the correlation and
the ratio of standard deviation from a prediction and observation - it is zero at its
best. The gain of the conditional bias against a reference prediction is calculated by
subtracting the absolute values |rro — z—g| —|rgo — ‘Z—g| Positive values represent a
decrease of bias or, in the sense of the MSESS, a gain of skill and vice versa.

Ensemble spread as forecast uncertainty

The spread of an ensemble forecast (ensemble variance) is meant to be an estimate
of the forecast uncertainty due to uncertainty in the initial conditions. If the mean
squared deviation of the observations from the ensemble mean (MSE) corresponds
to the ensemble variance, the latter is a good estimate of the forecast uncertainty.
Is the ensemble variance smaller than the MSE the ensemble is said to be under-
dispersive (overconfident); an ensemble variance larger than the MSE indicates
an over-dispersive (underconfident) ensemble. This answers the question, if the
ensemble spread can be used as reference for the forecast uncertainty. Following
Goddard et al. (2013), the ensemble spread is compared to the forecast uncertainty
using a particular version of the continuous ranked probability skill score (CRPSS).
The CRPSS is based on the continuous ranked probability score (Matheson and
Winkler, 1976)

CRPS(H35,0;) = | (Fir,(y) ~ Hy — 0;)*dy, 3.5)

Chapter 3 Evaluation of Forecasts by Accuracy and Spread in the MiKlip Decadal Climate



o |
o
o‘ -
|
AN
S 4
|
()
)
™
2 3 -
o
o
a
S -
|
) ensemble size
71— 3
— 10
© — 30
ol- -4 —— 100

I I I I I
0.5 1.0 2.0 5.0 10.0

Ensemble spread / MSE

Fig. 3.1: The CRPSSgs as function of the ratio between ensemble spread (g) and MSE

(a%z) for different ensemble sizes. When the given ratio is one, the CRPSSgs
reaches its maximum value of zero.

which integrates the squared difference between the probability distribution Fy,
of the ensemble forecast and the observation for a given instance j = 1,...,n in
probability space over the predictand y. The Heaviside function #(y — O;) is the
associate cumulative distribution function for the single observation. Gneiting and
Raftery (2007) suggested to use a normal distribution with mean H; and variance
oy for the forecast probability density function Fy; = N'(Hj, 0% ). The CRPS can be
expressed with the standard normal probability density and cumulative distribution
function ¢ and ¢, respectively

_0i—H; <2¢ (Oj - HJ‘) - 1)] . (3.6)
OH; OH;

To quantify the ensemble spread against the standard error, we use the average
ensemble spread
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Z Z (3.7)

with the ensemble members H,; and the ensemble mean H; corrected for mean and
conditional bias. The reference prediction has the same mean, but its variance is
replaced by the MSE

1 &
0% = n_2Z(Hj—Oj)2. (3.8)

J=1

Using these hindcast and reference distributions in the continuous ranked probability
skill score for the assessment of the ensemble spread, the resulting CRPSSgg reads

o2 O'
D0 gy

>; CRPSp (N (Hj,
CRPSSgs = 1 — ~
>; CRPSg(N (Hj,

The reference CRPSy using the MSE represents the forecast uncertainty and thus
defines the desired value for the CRPSy, therefore CRPSSgs < 0. The optimum
CRPSSgs = 0 is attained for % = 0%, and % # 0% leads to a negative CRPSSgs.
The respective simulation study with varying ensemble size is utilized in Fig. 3.1.
This behavior does not allow to determine whether the ensemble spread is over- or
underestimating the forecast uncertainty (MSE). To add this missing information,
we consider the spread score (see Palmer et al., 2006; Keller et al., 2008), with a
log-transform to obtain the logarithmic ensemble spread score

OR

o2
LESS=In [ 2 ]. (3.10)

The LESS shows negative (positive) values for under-dispersive (over-dispersive)
forecasts. A meaningful combination of the CRPSSgs and the LESS depicts the
skill and the sign of dispersion. This addresses the question whether the ensemble
spread is an adequate representation of the forecast uncertainty on average posed
by Goddard et al. (2013). In this study, we define a skill score based on the LESS to
compare model development stages. Different sized ensembles of the model system
can be evaluated with respect to spread development.

LESS2 4
LESSS =1 — ——P% € (—o0,1] (3.11)
LESSZ;
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3.3.1

The LESSS answers the question if the prediction system improves this ratio between
the average ensemble spread and the mean squared error compared to the reference
prediction.

Results

Forecasts and skill assessment of temperature

In general, the anomaly forecast of near surface air temperature for the year 2014
with the MiKlip system shows rather warming than cooling signals in the different
regions of the world (Fig. 3.2a). However, there are regions with strong negative
and positive signals. The North-East Pacific, the western part of North America
including Alaska, Central and Southern Africa as well as Russia show distinct hot
spots with anomalies over 1.5K. There are cooling patterns as well, mainly over the
north-eastern North-America, India and southern China, the Antarctic Circumpolar
Current and the northern North Atlantic. The forecast for the eastern Pacific points
to a cooling in the ENSO region and positive anomalies in the surrounding. Over
Europe, the forecast shows a warming of around 0.75K. The climate forecast for the
years 2015 to 2022 predicts a clear warming signal on the Northern Hemisphere
from 60°N northwards with values over 1.5K, beside the cooling spot in the northern
North-Atlantic (Fig. 3.3a). The forecast shows also a cooling area in the Pacific-
Antarctic Basin, e.g. over the Amundsen Sea. All continents show a warming signal
of around 1K, as do the equatorial eastern Pacific, the eastern Atlantic, and the
western Indian Ocean.

The analysis of the near surface air temperature in lead year 1 indicates an improve-
ment from the uninitialized projections to the initialized hindcasts (Fig. 3.2g,h,i).
Combining the effect of increased correlation and reduced conditional bias, the
MSESS exhibits significant positive values over the ocean, most likely due to the
ocean initialization. The North Pacific in particular benefits from the initialization
(Fig. 3.2g). The North Atlantic provides a contrast: while there is at least some
improvement in correlation compared to the uninitialized runs (Fig. 3.2h), it is
accompanied by a decrease in the conditional bias (Fig. 3.2i). The initialized hind-
cast experiments (Fig. 3.2) of lead year 1 add confidence to the forecast of surface
temperature in Figure 3.2a.

For lead years 2 to 9 (see Fig. 3.3), the initialized and uninitialized experiments
perform similarly. Due to catching the long-term trend of the climate system, the
correlation coefficients for surface temperature are significantly high. Apart from the
ENSO-related tropical Pacific, this is comparable to Goddard et al. (2013) and Miiller
et al. (2012). Little correlation is lost almost over the whole globe in the initialized
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Fig.

3.2: Anomaly forecast of the MiKlip decadal prediction system for near surface air
temperature in Kelvin for the year 2014 (a). Anomalies are calculated relative to
the years 1981 to 2010 from the uninitialized (historical and rcp45) simulations
and interpolated on the 5x5 grid for skill assessment. The evaluation of the
ensemble spread is to the right of the forecast with the continous ranked probability
skill score of the ensemble spread vs the reference error (CRPSSgs in b) and the
logarithmic ensemble spread score (LESS in c¢). The ensemble mean hindcast
skill is shown in the middle and bottom row - mean squared error skill score
(MSESS - left column) and its decomposition in correlation (middle column) and
conditional bias (right column) of near surface air temperature averaged over
the first prediction year against observation from HadCRUT3v over the period
1961-2012. It shows the skill of the initialized decadal experiments against a
climatological forecast (middle row) including the MSESS (d), correlation (e)
and the conditional bias (f). The lower row uses the uninitialized simulations
(historical, extended with rcp45 to year 2012) as the reference prediction in the
MSESS (g), the correlation differences (h) and depicting the change in magnitude
of the conditional bias (i). Colorbars in the accuracy section are scaled to -1 to
1. Crosses denote values significantly different from zero exceeding at a 5% level
applying 1000 bootstraps. Gray areas mark missing values with less than 90%
data consistency in the observation.

runs compared to the historical runs (Fig. 3.3h). However, small areas of positive

gain in correlation can be found in the North Atlantic (Fig. 3.3h). The conditional

bias (Fig. 3.3f) improved in the initialized runs, leading to an overall positive skill

(Fig. 3.3i). The MSESS in the initialized runs against uninitialized hindcast for the

surface temperature increases significantly in the tropics (Fig. 3.3g). It decreases

over areas such as northern Asia and suffers from an increased conditional bias and

negative correlation.

The CRPSSgs in Fig. 3.2b, 3.3b shows that the ensemble spread can represent
forecast uncertainty in various regions. This is not the case in the central Pacific for
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Fig. 3.3: As in Figure 3.2 but for the forecast of 2015-2022 and evaluation of lead years 2
to 9 over the period 1962-2012.

lead year 1 (Fig. 3.2b). The LESS in Figure 3.2c reveals that the spread is too small
in the tropics and the Southern Hemisphere; this improves slightly for years 2 to 9
(Fig. 3.3c). Variabilities around the North Atlantic as well as the North Pacific in
lead year 1 (Fig. 3.2c) show patterns with over- and under-dispersive spreads next
to each other. The ensemble is over-dispersive for North America, the North Atlantic,
Europe as well as around the Kuroshio, which means the ensemble spread is too
large compared to the reference error (Fig. 3.2c, 3.3c).

The model system used in this study also participates in a multi-model comparison
project as accomplished by Smith et al. (2013). However, a different initialization
strategy is applied, when comparing the real-time forecasts. The anomaly initializa-
tion in the ocean was conducted through a NCEP forced assimilation run, so called
MiKlip Baseline0 simulation (see Matei et al., 2012; Miiller et al., 2012). The MiKlip
system as analyzed in this study (Baselinel) is closer to the multi-model average
as shown in Smith et al. (2013) than Baseline0O (not shown). In general a more
uniform warming (less regions with cooling) is predicted with Baselinel compared
to BaselineO on the longer timescales beyond lead year 1.

3.3.2 Forecasts and skill assessment of precipitation

The prediction of precipitation is more challenging, and consequently results are
more dispersive than for temperature. The forecasts feature strong anomalies in the

3.3 Results 39



40

Ly1 Precipitation

Forecast CRPSS

Loy
~

\ﬁ%ﬁ;‘
i
\
"

a) ]
icss

Ini

-1 -0.5 0 0.5 1]-0.5 -0.4 -0.3 -0.2 -0.1 0.0 -1 -0.5 0 0.5

Accura

MSESS Correlation

e

Ini
vs
Clim

Ini

vs
Uni

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 O 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

1

Fig. 3.4: As in Figure 3.2 but for precipitation in mm/day and using the observation from
GPCP-SG over the period 1979-2012 for skill assessment.

tropics and over the oceans (Fig. 3.4a, 3.5a). The anomaly forecast in Figure 3.4a
shows an increase in precipitation for the year 2014 in the northern West Pacific,
East Atlantic and Indian Ocean. Precipitation is decreasing in the southern equatorial
Pacific and Atlantic. The forecasts over Africa and northern South America predict an
overall drying, while Central America and India show a wetter signal. For the next 2
to 9 years (2015 - 2022) precipitation rates decrease over the northern equatorial
Atlantic as well as south of the equator in the Indian Ocean and increase in the
tropical Pacific. The latter shows El Nifio like structures (Fig. 3.5a). In general,
the continents in the northern hemisphere show an increase, whereas the southern
continents including Africa rather indicate a decrease.

The evaluation of lead year 1 shows a significant gain in correlation for the initialized
over the uninitialized experiment (Fig. 3.4h). Significant positive correlation
between the decadal hindcasts and the observations from GPCP-SG (Fig. 3.4e) is
present mainly in the tropical Pacific, but can also be detected in the equatorial
Atlantic and the Indian ocean. Conditional biases for initialized (Fig. 3.4f) and
uninitialized (Fig. 3.4i) simulations are large and negative over the whole globe
compared to GPCP-SG. In the tropics in particular, the model has difficulties to
reproduce precipitation variability. For the initialized run the performance is worse
compared to the climatological forecast. However, the combined MSESS still shows
some skill (Fig. 3.4d, g), which can be traced back to the strong improved correlation
compared to the uninitialized simulations.
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Fig. 3.5: As in Figure 3.4 but for the lead years 2 to 9 over the period 1980-2012.

The various skill scores (Fig. 3.5) become noisy for the lead years 2 to 9. However,
we present these results as well—for consistency and comparability with other
international studies (Goddard et al., 2013; Smith et al., 2013). Some continental
areas like Furope, the Middle East and North-East Asia, as well as the Indian
Ocean, show some positive correlation in the decadal hindcasts compared to the
climatological forecast (Fig. 3.5e). The decadal hindcasts improve over Europe
when compared to the uninitialized simulations (Fig. 3.5h). This comes along with
an improved temperature and therefore energy budget over Europe when compared
to the uninitialized hindcast for the lead years 2 to 9. This gets more obvious, when
the initialized system clearly outperforms the uninitialized system in the detrended
temperature analysis of the MSESS and correlation in the leadyears 2 to 9 (Fig.
3.9). This is because annual precipitation is not that trend related (Kumar et al.,
2013), especially in Europe (Cubasch and Kadow, 2011) and the North Atlantic is
shown to be the source of skill over Europe (Ghosh et al., 2015). But, due to the
loss of correlation for precipitation in most of the other regions by contrast with the
uninitialized runs and the negative conditional bias in the North Atlantic, as well as
the same difficulties as experienced for lead year 1 at the equatorial regions in the
conditional bias (Fig. 3.5f, i), the MSESS comparison from initialization runs versus
uninitialized simulations (Fig. 3.5d, g) shows almost no skill for precipitation.

For lead year 1 the ensemble spread is an adequate estimate for the forecast uncer-

tainty for most regions (Fig. 3.4b). This is no longer valid for lead years 2 to 9 (Fig.
3.5b), with only some small areas left over the ocean with the spread being close
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Fig. 3.6: Comparison of the hindcast skill of different sized ensemble model versions (10
member vs 3 member). MSESS and LESSS for near surface air temperature over
the period 1961-2012 against HadCRUT3v for the lead year 1 (upper row) and
lead years 2 to 9 (lower row). The MSESS shows the improvement made in the
hindcast ensemble mean prediction and the LESSS exhibit the improvement in the
ensemble spread as an adequate representation of the forecast uncertainty. Crosses
denote values significantly different from zero exceeding at a 5% level applying
1000 bootstraps. Gray areas mark missing values with with less than 90% data
consistency in the observation.

to the reference error. The CRPSSgs highlights the areas in the tropical Pacific and
Atlantic showing no skill. The LESS demonstrates the over-dispersion (Fig. 3.4c,
3.5¢) in these regions. Here, the precipitation rates suffer from positive temperature
biases in the ocean in these areas (not shown), which leads to more convective
activity and variability. Furthermore, the LESS reveals that areas of small and large
ensemble spreads are next to each other in the central Pacific and Atlantic. This
points to problems in the correct representation of small scale processes on these
time scales in the spread of the ensemble. Variabilities in convective and large scale
precipitation processes in climate models are difficult to represent. The standard
error of satellite instruments is also relatively high in regions with little precipitation,
especially in the first years of the GPCP-SG dataset (Adler et al., 2003). The short
observational period of the satellite observations is problematic too, when analyzing
the lead years 2 to 9.

Ensemble Size

The CMIP5 (Taylor et al., 2012) decadal experimental design with initializations
every 5 years led to an unreliable skill assessment (Goddard et al., 2013). Since
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then, most of the prediction systems are initialized annually. The small ensemble size
of these experiments is another known issue, particularly for comparing different
prediction systems (Smith et al., 2013). Pohlmann et al. (2013) analyze only 3
ensemble members of the MiKlip system in order to have a clean comparison with the
results of the 3 available members in the CMIP5 system. Kruschke et al. (2014) use
a bias corrected RPSS to compensate for different ensemble sizes. A comprehensive

study on the effect of the ensemble size on decadal prediction is given in Sienz et al.

(2016). To fill the gap between the MiKlip system analyzed in Pohlmann et al. (2013)
and the results shown in this study, we present the change of skill for lead years 1
and 2 to 9 by increasing the ensemble size from 3 to 10 ensemble members.

The MSESS in Figure 3.6 shows a significant gain of prediction skill for surface
temperature. Besides the Central Atlantic, the temperature prediction skill for lead
year 1 increases for the whole globe - not significant everywhere (Fig. 3.6a). But on
the long run, the forecast for the Central Atlantic benefits from the larger ensemble
for lead years 2 to 9 (Fig. 3.6c). The LESSS for temperature shown in Figures 3.6b)
and 3.6d) improves in the tropics where the CRPSSgg reveals significant negative

skill (Fig. 3.2b, 3.3b) and the LESS (Fig. 3.2c, 3.3c) depicts an under-dispersion.

Therefore, the decreasing under-dispersion due to the increased ensemble size

leads to a slightly better representation of the uncertainty by the ensemble spread.

Precipitation shows an improvement in the MSESS in lead years 1 and 2 to 9 (not
shown). The LESSS improves only in local areas in the development of the ensemble
spread as an adequate forecast uncertainty in the comparison of the 10 to the 3
ensemble member system for precipitation (not shown).

Discussion and conclusions

Combining forecasts and detailed evaluation for the MiKlip system for near surface air
temperature and precipitation provides a comprehensive assessment of the decadal
climate predictions. With a strong impact in lead year 1, initialization techniques
improve the prediction system in comparison to an uninitialized system. Both

atmospheric parameters benefit from an initialization with an oceanic reanalysis.

Mainly the Pacific region temperature forecast improves, which causes an improved
convection, triggering precipitation fluxes. The equatorial regions suffer from an
under-dispersive ensemble in temperature and an over-dispersion of precipitation in
regions of western South America over the Pacific and western Central Africa over

the Atlantic. Both variables exhibit a large negative conditional bias in lead year 1.

The largest temperature anomalies for year 2014 are forecasted in areas where the
performance of the model system is less satisfying, e.g. a warming of 3 Kelvin in
West Africa or a cooling of 2 Kelvin in a small region in the North Atlantic. Regions
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with few data for validation like the southern Pacific can not be reliably evaluated
using observational reconstructions.

As the initialized system drifts towards the same state as the uninitialized model,
the lead years 2 to 9 produce similarly performances for the initialized and unini-
tialized experiments. The improvement of the initialized prediction system on these
timescales stems from the decreased conditional bias in combination with an in-
creased ensemble size, at least for temperature. The conditional bias exists, when a
climate model e.g. over-responds to increasing greenhouse gases (Goddard et al.,
2013). This can result in an overestimation of temperature anomalies. In this
respect, the initialized MiKlip prediction system performs better in the MSESS than
the uninitialized due to matching the climate trend much better. But it is difficult
to differentiate between a model drift of the initialized system towards a warmer
state of the uninitialized system and a possible predicted warming after the hiatus
(Meehl et al., 2011; Kosaka and Xie, 2013). Analyzing a decadal prediction system
being between an initial and boundary condition problem leads to several factors
for potential skill. The correct initial condition in the beginning of the forecast
improves the forecast on the seasonal to the interannual timescale. The memory
of the ocean plays a big role on interannual to decadal timescale, when running a
coupled model. But the trend due to increased greenhouse gases has even more
influence on the long-term development. Analyzing the time range of 2 to 9 years
mixes these potentials of skill and the uninitialized system improves on the long
run. Therefore the uninitialized can outperform the initialized system in correlation
like shown in this study. But, filtering the trend in the temperature hindcasts and
observations showed that the initialized system beats the uninitialized simulations
in terms of correlation on these timescales. However, the long-term temperature
trend belongs to the 2 to 9 year forecast. This cannot be adjusted, when presenting
decadal predictions.

The comparison of the 10 ensemble member system against the 3 ensemble member
system (used in Pohlmann et al., 2013), shows clear improvements in the MSESS
over the whole globe. Even for regions of overestimated precipitation, the forecasts
improved for lead years 2 to 9. The analysis of the LESSS also shows a slight
improvement in ensemble spread in the tropics, comparing two different ensemble
sizes. In most of the regions the ensemble spread is an adequate representation for
the uncertainty of this system and it is much closer to the reference error (MSE)
than for other decadal prediction systems (Goddard et al., 2013).

Including the LESS and the LESSS to the set of skill assessment for decadal prediction
allows to distinguish between an over- or under-dispersive ensemble and detect
improvements made when aiming at larger ensemble sizes (Sienz et al., 2016). The
LESSS could also be used to evaluate different ensemble generation methods of the
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same model system to assess their possible improvement. After the development
stages and accomplished improvements (Miiller et al., 2012; Pohlmann et al., 2013;
Kruschke et al., 2014; Stolzenberger et al., 2015; Spangehl et al., 2015), the next
step in the ongoing MiKlip project is to switch from the anomaly initialization in
the ocean with ORAS4 to full-field multi-reanalysis initialization with ORAS4 and
GECCO2 (Kohl, 2014). A first study on these combined predictions is given by
Kruschke et al. (2015). The coming 30 member prediction system will allow a
more robust assessment. It will be possible to involve other scores to this combined
prediction system, e.g. the error spread score (Christensen et al., 2014), which needs
ensemble sizes larger than available in this study.

The decadal skill assessment used in this study is an operational part of the central
evaluation in MiKlip. It is available to the climate science community (Illing et
al., 2014) and is planned to be deployed in the next stages of the MiKlip project
development.
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Variable or Equation

Explanation

i=1,...,m ensemble members

ji=1,...,n start or initialization times of experiments
H;; initialized hindcasts

H; ensemble mean of hindcasts

O; observations

MSEy = + 30, (Hj — 0;)?

mean squared error of the hindcast (against ob-
servation)

MSE, = 1377, (0 - 0;)?

mean squared error of the climatological forecast
(against observation)

_ _A-Arey
SSTef - Ape'rf_A'ref

general expression of a skill score (A value for
accuracy measure, A,.,¢ the value for perfect
prediction and A,.s the value for a reference
forecast system

MSESS(H, 0, 0) = ~2ru 15

mean squared error skill score of the hindcast H

0—MSE, N
=1- Mggg vs the climatological forecast O (with MSE,, s =
0)
MSESS(H, O, O) = %0 Murphy-Epstein decomposition of the MSESS
2
rio — 34|

MSE
MSESS(H, R,0) =1 — }i3u
_ MSESSy — MSESSg

mean squared error skill score of the hindcast H
vs a reference prediction R

= I—MSESSy

THO sample correlation coefficient between hindcasts
(H) and observations (O)

s% and s sample variance of the hindcasts and observa-
tions

THO — ‘;—g conditional bias of hindcasts (H) compared to

observations (O)

Tab. 3.1: Overview table of used variable names and equations.
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Variable or Equation

Explanation

CRPS(H;;,0,) =
J%o (Fr,(y) — Hiy — O;))?dy

continuous ranked probability score

CRPS(N (Hj, a?i]_), 0;) = continuous ranked probability score expressed
- [ 19y, <Oj—Hj) B with the standard normal probability density (¢)
ILvE 7H, and cumulative distribution function (¢)
it (2o (%) 1))
Heaviside function as the associate cumulative
distribution function for the single observation
1, ify >0
H(y — 05) = ,
0, if y < Oj

probability distribution of the ensemble forecast

@ and ¢ standard normal probability density (pdf) and
cumulative distribution function (cdf)

I:Iij and H j ensemble members and ensemble mean cor-
rected for mean and conditional bias

g =Ly | LS (H; — Hj)? | average ensemble spread

0% = L5 30 (H; — 0;)? mean squared error (MSE)

CRPSSEgs = 1 — | continous ranked probability skill score for the

2_; CRPSH (N (I?J’”?fz)’Of) assessment of the ensemble spread

>.; CRPSR(N(H;,0%),05)

LESS =In % logarithmic ensemble spread score

LESSS =1 — LLEESSSS‘?;; € (—o0,1] logarithmic ensemble spread skill score

Tab. 3.2: Overview table of used variable names and equations.
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Fig. 3.7: As in Figure 3.4 but using the observation from GPCC over the period 1961-2012
for skill assessment.
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Fig. 3.8: As in Figure 3.5 but using the observation from GPCC over the period 1962-2012

for skill assessment.
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Fig. 3.9:

Detrended Analysis - Initialized vs Uninitialized
MSESS Anomaly Correlation

Comparison of the detrended analyses from initialized vs uninitialized simulations.

Anomaly correlation and the Mean Squared Error Skill Score (MSESS) for near
surface air temperature over the period 1961-2012 against HadCRUT3v for the lead
year 1 (upper row) and lead years 2 to 9 (lower row). The anomaly correlation and
MSESS shows the added value of the initialization made in the hindcast ensemble
mean prediction when neglecting the linear climate trend. Crosses denote values
significantly different from zero exceeding at a 5% level applying 1000 bootstraps.
Gray areas mark missing values with with less than 90% data consistency in the
observation.

3.5 Appendices to Chapter 3
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Information about the candidate’s and co-authors’ work on that paper:

The candidate developed the scientific idea of the paper -namely the evaluation
strategy for decadal prediction-, which includes the combination of an anomaly
forecast, accuracy (MSESS, correlation, conditional bias) and spread (CRPSS, LESS)
assessment with climatological and uninitialized references; enhancements and
redevelopment of existing methods; development of a novel skill score (LESSS) for
the spread assessment; added assessment of ensemble size; analyzed, combined,
and discussed the results; revealed and confirmed sources of skill, namely the ocean
model initialization and the enlargement of ensemble members; drafted the paper.

The co-authors provided data, software, and manpower to evaluate the results;
added a re-adjustment of the CRPSS; added the logarithmic scale to the Ensemble
Spread Score; and helped to improve the text of the paper by numerous comments
and took care of the funding.
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Decadal climate predictions
improved by ocean ensemble
dispersion filtering

Abstract

Decadal predictions by Earth system models aim to capture the state and phase of the
climate several years in advance. Atmosphere-ocean interaction plays an important
role for such climate forecasts. While short-term weather forecasts represent an ini-
tial value problem and long-term climate projections represent a boundary condition
problem, the decadal climate prediction falls in-between these two timescales. In
recent years, more precise initialization techniques of coupled Earth system models
and increased ensemble sizes have improved decadal predictions. However, climate
models in general start losing the initialized signal and its predictive skill from one
forecast year to the next. Here we show that the climate prediction skill of an Earth
system model can be improved by a shift of the ocean state towards the ensemble
mean of its individual members at seasonal intervals. We found that this procedure,
called ensemble dispersion filter, results in more accurate results than the standard
decadal prediction. Global mean and regional temperature, precipitation, and winter
cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the
novel technique outperforms predictions with larger ensembles and higher resolu-
tion. Our results demonstrate how decadal climate predictions benefit from ocean
ensemble dispersion filtering towards the ensemble mean.
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The following chapter consists of the main publication and the supporting informa-
tion published in the open access Journal of Advances in Modeling Earth Systems
(JAMES) of the American Geophysical Union (AGU). Not subject to U.S. copyright.
This chapter has been published as:

Kadow, C., S. Illing, I. Kroner, U. Ulbrich, and U. Cubasch (2017), Decadal climate
predictions improved by ocean ensemble dispersion filtering, Journal of Advances in
Modeling Earth Systems, 9, 1138-1149, https://doi.org/10.1002/2016MS000787.

In addition, the publication possesses open access data within the World Data Center
PANGAEA for transparency and reproducibility of this study.

Kadow, C., S. Illing, I. Kroner, U. Ulbrich, and U. Cubasch (2017), Earth system
model results by the MPI-ESM-LR of the MiKlip Decadal climate prediction ex-
periment improved by ocean ensemble dispersion filtering, links to NetCDF files,
PANGAEA, https://10.1594/PANGAEA.874231.
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4.1

Introduction

Climate prediction and climate predictability using comprehensive Earth system
models have become an important contribution of the climate science community
(Meehl et al., 2014) to society. The seamless prediction - ranging from weather
forecasts, over seasonal to decadal prediction, to century projections - conducted
with one model system is the ultimate goal. However, the field of decadal prediction
has several challenges. The research aims to bridge the gap between short term
forecasts and long term projections. Short to medium-range weather forecasts focus
on an initial value problem in the beginning of a forecast. On the other side, climate
projections as a boundary condition problem - like greenhouse gases - examine the
long-term climate development (Meehl et al., 2009; Mehta et al., 2011). Climate
change projections are good indicators for the trend of the climate system. The
natural variability of the climate around this trend is the real challenge. Lately,
considerable progress has been made by initializing a decadal prediction system
using ocean reanalyses [e.g. Marotzke et al., 2016]. Fitting the actual state of the
Earth’s climate system into a model allows it to capture the phase of current large
scale variability (Smith et al., 2007). While the atmospheric processes act on a daily
to sub-seasonal scale, the ocean processes dominate the inter-annual to decadal
time scale. As sea surface temperatures of ocean basins are key factors determining
the atmospheric global mean temperature (Meehl et al., 2013; Meehl et al., 2014;
Kosaka and Xie, 2013), predicting the ocean can be considered as the main key to
decadal predictability in our climate system (Keenlyside et al., 2008). As climate
projections do not deal with actual states of the ocean, they cannot be predictors for
multi-annual changes of the climate.

Several techniques including the ocean evolved by setting up retrospective forecasts
or so called hindcasts. Adding or nudging anomalies of atmospheric or ocean
observations into the model system is called anomaly initialization (Keenlyside
et al., 2008; Pohlmann et al., 2009; Matei et al., 2012). Putting the actual state
of the observations or usually of some reanalysis product into the model system is
called full-field initialization (Yeager et al., 2012; Fyfe. et al., 2012). Recent studies
discussed these methods causing errors in the prediction system in terms of drift
and initial shocks (Smith et al., 2013; Kharin et al., 2013; Marotzke et al., 2016).
Within the Coupled Model Intercomparison Project 5 [CMIP5 - Taylor et al., 2012]
the decadal experiments started to be investigated in a community effort. Several
modeling groups were involved. The following Decadal Climate Prediction Project
[DCPP - Boer et al., 2016] within CMIP6 [Eyring et al., 2016] set up a more detailed
protocol. The evaluation strategy of DCPP involves a setup of a common framework
to evaluate and compare their hindcast sets focusing on accuracy and ensemble
spread (Goddard et al., 2013). In recent years, additional efforts investigated in
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probabilistic measurements and forecast reliability [e.g. Weisheimer and Palmer,
2014; Kruschke et al., 2015; Stolzenberger et al., 2015]. The application of an
ensemble approach is essential for a decadal prediction system (Sienz et al., 2016) —
in many ways. Due to non-linear filtering of errors the ensemble average is closer to
the truth (Kumar and Hoerling, 2000; Kalnay et al., 2006). Therefore, the evaluation
of the accuracy of a model system with an ensemble mean is likely to be more skillful
than using any of its individual members (Eade et al., 2014).

The innovation discussed in this paper consists in the combination of these two
just mentioned scientific findings leading to an improvement of forecasts: (1)
the ocean and its initialization plays a crucial role on the decadal time-scales of
climate predictions, and (2) the ensemble mean of a forecast is generally more
accurate than any of its individual members. We give detailed information on the
experimental set-up of a new decadal forecast procedure, its evaluation methods,
and the observational data used to validate the hindcast sets (see Sect. 4.2). We
show results of the global mean and regional temperature, precipitation, and winter
cyclone predictions with the new method and its reference (see Sect. 4.3), before
we discuss and conclude this study (see Sect. 4.4).

Modeling, Methods, and Data

Common Base — Model and Prediction System

The decadal prediction system of MiKlip (Marotzke et al., 2016) is based on the
Mazx-Planck-Institute Earth System Model (Stevens et al., 2013; Jungclaus et al.,
2013). The low resolution version (MPI-ESM-LR) of the Max-Planck-Institute Earth
system model is the coupled climate model applied in this study. The atmospheric
component ECHAMG6 (Stevens et al., 2013) has a resolution of T63L47 and the
oceanic component MPI-OM (Jungclaus et al., 2013) has a resolution of 1.5°/140. It
is a high computational effort to produce a yearly initialized decadal hindcast set
in a lead-time-dependent way. In the decadal component of CMIP5 (Taylor et al.,
2012) most of the decadal prediction hindcast sets reached no more than 3 ensemble
members or just initialization every fifth year.

The MiKlip setup (Pohlmann et al., 2013; Kadow et al., 2016) is used as reference
prediction hindcast set, hereafter called MiKlip-REF. The configuration used in this
study follows the protocol of the Decadal Climate Prediction Project [DCPP - Boer
et al., 2016] within the Coupled Model Intercomparison Project (CMIP). Following
the DCPP protocol, the MiKlip-REF system consisting of 5 ensemble members is
initialized every year on the 1st of January. The individual ensemble member of the
full model system is started on different start days following the 1st of January to
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spread the ensemble - called lag day initialization. The set-up covers the decadal
experiments from 1974 to 2012. Each initialization simulated a pentad. This time
range is used to be able to evaluate the lead years (LY) 1 to 5 in the same time
frame from 1979 to 2013 by shifting the experiments (e.g. LY1 uses experiments
initialized in 1978 to 2012, IY2 in 1977 to 2011, and so on) as suggested in the
DCPP protocol. An “assimilation run” was set-up to guide the MPI-ESM-LR model
system towards an observational state. This reanalysis-like model run was used to
start the prediction from. Therefore, the following reanalyses data was used. The
ocean model was anomaly initialized by the Ocean ReAnalysis System 4 (ORAS4)
(Balmaseda et al., 2013) from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Oceanic temperature and salinity anomalies were nudged to
MPI-OM. The atmosphere full-field initialization comes from ECMWF ERA40 (Uppala
et al., 2005) for the period 1974-1989 and from ERA-Interim (Dee et al., 2011)
for 1990-2012. The actual values of temperature, surface pressure, vorticity, and
divergence of the reanalysis replaced the ECHAMG6 values.

MiKlip-REF is the base for the new development explained in the next sub-section
and therefore the most important reference when assessing the skills. However, other
interesting comparisons to different approaches within MiKlip can be done. The
MiKlip-REF-10 is an extension of MiKlip-REF from 5 to 10 ensemble members (Kadow
et al., 2016). This approach stands for the idea of increasing the ensemble size. The
MiKlip-REF-MR uses the mixed resolution version (Pohlmann et al., 2013) of MPI-
ESM. Its data set consists of a higher ocean resolution (0.4°L.40) and more vertical
levels in the atmosphere (T63L95). This reference reflects the idea of increasing
the model resolution. The MiKlip-REF-FF is part of the newer Prototype (Marotzke
et al., 2016) system of MiKlip. It uses full-field initialization, this means actual
values of the oceanic variables by ORAS4 instead of anomalies as used in MiKlip-REF.
Uninitialized runs of the MPI-ESM-LR serve as references as well (Kadow et al.,
2016), which are called MiKlip-REF-UN. This reference is usually taken to determine
the trend and the added value of initialization procedures. MiKlip-REF-UN equates
to a mixture of the ‘historical’ and ‘rcp45’ experiments according to CMIP5 (Taylor
et al., 2012) using observed (historical) and projected (rcp45) external forcing.

Ensemble Dispersion Filter — Setup and Details

In this study, we present a new forecasting technique using and name it an ensemble
dispersion filter (EDF) to retrieve the initialized climate signal more precisely. Pro-
ducing an ensemble for climate predictions is common practice. Small perturbations
of the model system lead to different variations of the models climate system [e.g.
Lorenz, 1963. Using its ensemble mean helps to reduce errors and increase accuracy
of predictions (Kalnay et al., 2006). This is usually done after model runs. In
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a) Decadal predictions using runtime adjustments - MiKlip-EDF
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Fig. 4.1: (a) (top) Schematic decadal climate prediction hindcast experiment setup of
MiKlip-EDF in red. MiKlip-EDF consists of five ensemble members and 5 year
integrations. The first 3 months of every experiment and ensemble member from
MiKlip-EDF and MiKlip-REF are identical (magenta). Time frame of decadal
experiments from 1974 to 2012 to cover analysis years from 1979 to 2013 for
all 5 lead years. (b) (bottom) Global ocean mean sea surface temperature (SST)
analysis of MiKlip-REF in blue and MiKlip-EDF in red. The ensemble mean in dark
colors and the individual members in light colors. Shown is the development of
the root-mean-squared error (RMSE) in comparison to the HadSST3 observation
in differences in Kelvin over lead months in 12 months (yearly) chunks every 3
months. The analysis covers the years from 1979 to 2013.

machine learning Bayesian model averaging or to be more specific Bootstrap Ag-
gregation (Bagging) on unstable procedures smooth out variance and reduce mean
squared error leading to improved predictions (Hastie et al., 2013). If perturbing the
learning set can cause significant changes in the predictor constructed, then Bagging
can improve accuracy (Breiman, 1996). Applying the ensemble mean during the
model run of a perturbed (lag-day initialized) decadal climate prediction could
lead to much more distinct signals of the prediction system. It benefits from the
ensemble within its prediction process applying the EDF. The ensemble dispersion
filter approach in this study uses ocean and surface temperatures of the initialized
decadal prediction system to improve its performance on the first pentad.

We started MiKlip-EDF as MiKlip-REF from the “assimilation” run consisting of a MPI-
ESM-LR model run with observational (reanalyses) information. While MiKlip-REF
simulates the climate for the next years as an independent run after initialization,
MiKlip-EDF was stopped after 3 months. Thereafter, the model’s restart files of the 5
ensemble member were processed with the help of the NetCDF Operators (Zender,
2008). Due to the fact that the sea surface temperature is part of the atmospheric
component of the MPI-ESM, there was the need to modify the MPI-OM and the
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ECHAM. The ensemble mean of the ocean temperatures (MPI-OM code 2 - variable
THO) and the (land and sea) surface temperature fields (ECHAM code 169 — variable
tsurf) were calculated (see also text 4.5). Every level of the ocean temperature was
used to maintain the memory of the deep ocean. The surface temperature was
used to allow an atmosphere-ocean interaction of this forecast technique. We added
some spread for the development of its ocean temperatures by using only 4 of the
5 ensemble members when calculating the ensemble mean. Therefore, we have 5
combinations of 4 members leaving out one member at every step calculating the
ensemble means. These in-run perturbations or leave-one-out cross bootstraps keep
the idea of building ensemble means during the prediction alive. This was done
for every 3 month period until the 5 year forecast of one decadal experiment was
finished. This whole hindcast setup was used for every decadal experiment between
1974 and 2012 (Fig. 4.1a).

Evaluation Strategy for Decadal Climate Predictions

We evaluated the decadal prediction system using the published software package
MurCSS (Illing et al., 2014) applied and developed within the Central Evaluation
System of MiKlip (Marotzke et al., 2016). It follows the evaluation strategy (Goddard
et al., 2013) for decadal prediction systems by analyzing them in a lead-year manner
in terms of accuracy and spread compared to observations. The lead years (LY) are
the forecasted years of all decadal experiments in the hindcast. We combine the
first forecast year of all experiments into a LY1 time series, to verify the skill of the
first year prediction by evaluating the hindcast in its first lead year. Accordingly
this is been done for all lead years. In this study, we focus on the accuracy of the
prediction by evaluating the ensemble mean, but investigating partly into ensemble
spread and forecast reliability. As suggested by the DCPP, we analyze the yearly
initialized experiments in the same time frame for all lead years. Analyzing the time
frame 1979 to 2013 is a typical range in decadal climate prediction, focusing on the
most certain observational period. All methods and formulas are identical to those
applied and written down in its open access predecessor study as given by Kadow
et al., 2016 evaluating the MiKlip system, here the reference system MiKlip-REF.
The mean squared error skill score (c0c < MSESS < 1) compares the accuracy
of two predictions (Murphy, 1988) of the past, so called hindcasts. Applying the
Murphy-Epstein decomposition, the MSESS for the hindcast H vs the observational
climatology O compared to the observation O can be written as:

MSESS(H,0,0) =1- WE}O =THo —

2
S .
THO — SH} — 1 = perfect skill score
o)

4.1)
with r being the sample correlation coefficient between the hindcasts and the obser-

vations, and the sample variance s of the hindcasts and observations (Murphy, 1988;
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Murphy and Epstein, 1989). When comparing the hindcast H with some reference
hindcast set R, the MSESS can be written as

MSESSy — MSESSg
1 — MSESSg

MSESS(H, R,0) = — 1 = perfect skill score 4.2)
to assess for example the change of skill comparing two development steps of a
prediction system. It represents the improvement in the accuracy of the hindcast H
over the climatology O or a reference hindcast R with respect to the observations
O. A positive value suggests an improved accuracy of the hindcast ensemble mean
compared to the reference, and vice versa. The correlation coefficient (-1 < r <
1) as the potential skill of a prediction system represents the linear relationship
between a hindcast and the observation. The evaluation of the ensemble spread
and reliability helps to determine the forecast uncertainty. For ensemble spread
we consider the spread score (see Palmer et al., 2006; Keller et al., 2008, with
a log-transform to obtain the logarithmic ensemble spread score (Kadow et al.,
2016) which is symmetric around zero. To quantify the ensemble spread against the
standard error, we use the average ensemble spread a% and the reference MSEy

2
LESS—ln( i ) (4.3)

MSEy

If the MSE corresponds to the ensemble variance, the latter is a good estimate of the
forecast uncertainty. Is the ensemble variance smaller than the MSE the ensemble
is said to be under-dispersive (overconfident). An ensemble variance larger than
the MSE indicates an over-dispersive (underconfident) ensemble. For the forecast
reliability we parametrize the slope within the reliability diagram (Hsu and Murphy,
1986) with four categories. Reliability diagrams are graphical tools to investigate
the correspondence of forecast probabilities of dichotomous events and the observed
frequency given the forecast (Wilks, 2011). A weighted linear regression of all
forecast probabilities and relative observed frequency pairs results in a reliability
line of which the slope - including its uncertainty range - can be used as indicator of
reliability (Weisheimer and Palmer, 2014; Stolzenberger et al., 2015). Categories
of reliability are defined following Weisheimer and Palmer, 2014 combining their
lowest two:

Reliability Classification: = (perfect | still useful | marginally useful | not useful)
4.4
The binary event is defined as the exceedance of the climatological median at every
grid point. To increase sample size of the estimations the nearest neighbors of
each grid point are taken into account leading to a smoothed field of reliability.
Observational and model data were spatially interpolated into a common 5°x5°
grid, and temporally averaged to yearly anomalies using the evaluation period

Chapter 4 Decadal climate predictions improved by ocean ensemble dispersion filtering



424

for climatology, and a cross-validated and lead-time-dependent bias adjustment
(ICPO, 2011). The lead-time-dependent bias adjustment uses the temporal mean
of a specific lead year to calculate anomalies to account for potential lead-time
dependent drifts of the model system. The cross validation leaves out the year which
is corrected within the temporal mean for bias correction. Annual averaged climate
values are normally distributed or will be at least approximately Gaussian (Wilks,
2011), which is important for the applied statistics (Kadow et al., 2016). Significance
of the verification scores was estimated using a non-parametric bootstrap (1,000
fold) approach (Wilks, 2011) taking auto correlation into account (Goddard et al.,
2013). We focused on the LY2-5 period because it is the typical time frame to look at
in a decadal prediction as suggested by the DCPP.

Observational Data Sets

In this study we will evaluate global mean and regional temperature, precipitation,
and winter cyclone hindcasts to assess the skill of the prediction systems. For the
evaluation of the near-surface temperature we compared the model simulations with
the observational anomaly data set, which technically speaking is the median of
HadCRUT4 (“Quantifying uncertainties in global and regional temperature change
using an ensemble of observational estimates: The HadCRUT4 data set”). Itis a
collaborative product with the ocean component HadSST3 (“Reassessing biases and
other uncertainties in sea surface temperature observations measured in situ since
1850: 2. Biases and homogenization”) of the Met Office Hadley Centre and the land
component CRUTEM4 of the Climatic Research Unit at the University of East Anglia
(“Hemispheric and large-scale land-surface air temperature variations: An extensive
revision and an update to 2010”). The evaluation of precipitation was carried out
using the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis
(V7) (Becker et al., 2013) operated by the German Weather Service (DWD) under
the auspices of the World Meteorological Organization (WMO). We assessed the
cyclone track densities after post-processing mean sea level pressure (PSL) of the
ERA-Interim reanalysis by the ECMWEF. The cyclone tracking uses the Laplacian of
the PSL to identify cyclones, and afterward the track densities are calculated (Pinto
et al., 2005; Murray and Simmonds, 1991). This method was applied to MiKlip-EDF
and MiKlip-REF as well. For a clean assessment of the track density and tracking,
the PSL of ERA-Interim was interpolated onto the grid of the MPI-ESM. We used the
Met Office HadISST (“Global analyses of sea surface temperature, sea ice, and night
marine air temperature since the late nineteenth century”) data set as a reference
in the supplementary information section to evaluate the sea surface temperature
biases of MiKlip-EDF and MiKlip-REF in comparison to the observations.

4.2 Modeling, Methods, and Data

59



Mean Squared Error Skill Score - Near Surface Air Temperature
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Fig. 4.2: (a) Mean squared error skill score (MSESS) of the global mean temperature
ensemble mean of MiKlip-REF (blue) and MiKlip-EDF (red) for LY1 to LY5 and
LY2-5 compared to HadCrut4 with climatology as a reference prediction on the top.
Significant differences of MiKlip- EDF to its reference prediction MiKlip-REF in the
lead year skill are marked by black dashed lines. (b) The corresponding regional
analysis of the LY2-5 MSESS shows the improvement of MiKlip-EDF compared to
its reference prediction MiKlip-REF with observations of HadCrut4 on the bottom.
Crosses denote values significantly different from zero exceeding at a 5% level
applying 1000 bootstraps. Gray areas indicate missing values with less than 90%
data consistency in the observation. The analyses cover the time period from 1979
to 2013.

4.3 Results

The temporal development of the global ocean mean sea surface temperature as
the RMSE in Kelvin compared to observations (“Reassessing biases and other un-
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certainties in sea surface temperature observations measured in situ since 1850: 2.
Biases and homogenization”) already indicates the benefits of the novel technique
(Fig. 4.1Db). First of all it confirms that in MiKlip-REF and MiKlip-EDF, the ensemble
mean is in most cases closer to the observed development of the climate than any of
its individual members. Additionally, the ensemble mean of MiKlip-EDF is closer to
the observation than the ensemble mean of MiKlip-REF. This effect gets even larger
with increasing lead time. There are large differences between individual members
of MiKlip-REF, and they grow with lead time. This effect cannot be found within
MiKlip-EDF. With an improved estimate of the ocean state, we show now that the
resulting atmospheric climate variables are more accurate as well.

The comparison of MiKlip-EDF with its reference system MiKlip-REF with respect to
global surface temperature reveals the benefits of the novel forecasting technique
(Fig. 4.2). Here, the MSESS compares MiKlip-EDF and MiKlip-REF against forecast-
ing the climatological mean (Fig. 4.2a). It confirms that the initialization effect is
strongest in the first lead year (LY1), decreasing thereafter in both hindcast sets.
Differences in the first 3 lead years between MiKlip-EDF and MiKlip-REF are small
and statistically not significant. A significant improvement of MiKlip-EDF is found in
the LY4 and LY5 where it maintains skill longer than MiKlip-REF. This results in a
more accurate and significantly better forecast of the LY2-5 global mean temperature
by MiKlip-EDF in reference to MiKlip-REF as well.

In addition to the improvement in the global mean temperature predictions, an
enhancement of the skill on the regional scale can be seen (Fig. 4.2b). Here the
MSESS of MiKlip-EDF uses MiKlip-REF as a reference in the LY2-5 analysis. The
near-surface temperature prediction reveals large regions of significant improvement.
The strongest effect is located in the North Atlantic and Western Europe. Also the
tropics, including the high impact ENSO region in the Central and North Pacific, as
well as South America, Africa, and Australia show more accurate predictions. A few
regions with a significant loss of skill, like Central Asia, the Central-West Pacific, and
the Mediterranean Sea, can be found as well.

By definition of this new technique, MiKlip-EDF decreases the ensemble spread
in the near surface temperature compared to MiKlip-REF. This can be determined
in Fig. 4.3a and 4.3b. The LESS reveals the obvious small ensemble spread of
MiKlip-EDF compared to the MSE especially over the ocean. Over the continents
the ensemble spread in MiKlip-EDF is closer to the MSE than in MiKlip-REF. This
results in a MiKlip-EDF ensemble spread which is better over continents, but tends
to be overconfident over ocean. However, the forecast reliability analysis next to the
spread evaluation shows no significant difference (Fig. 4.3c, d). In both forecast
systems the reliability patterns over the whole globe are quite similar. Thus, even if
we lose ensemble spread, the EDF is not reducing the forecast reliability compared
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Ensemble Spread and Reliability — Near Surface Air Temperature
MiKlip-EDF
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Fig. 4.3: (top) Logarithmic ensemble spread score and (bottom) forecast reliability for
near-surface air temperature in (left) MiKlip-REF and (right) MiKlip-EDF. Analyses
are done for LY2-5 compared to HadCrut4. Gray areas indicate missing values
with less than 90in the observation. The analyses cover the time period from 1979
to 2013.

to the free reference run. An additional and future approach could be bundling
several independent 5 member EDF systems. The general spread would increase. In
addition we would have a spread of the ensemble means which could be a valuable
information around this technique. Besides determining the spread and reliability, it
is worth analyzing the mean bias of sea surface temperature as well. We note for
example a reduced North Atlantic cold bias (Supplementary Figure 4.6).

For a more comprehensive temperature assessment, we also compared the new
MiKlip-EDF dataset to more recently developed sets of MiKlip experiments (Marotzke
et al., 2016) representing different decadal prediction strategies with the same model
system (see Table 4.1). Figure 4.4 shows the comparison of MiKlip-EDF and MiKlip-
REF to be directly compared with Figure 4.2. MiKlip-EDF outperforms all of them in
the most important time frame of LY2-5. MiKlip-EDF shows significant improvements
in the global mean analysis as well as large regional patterns. MiKlip-REF is worse
than the other more sophisticated systems. However, these results especially in the
global mean LY2-5 are not significant. The comparison against the uninitialized
runs (Fig. 4.4 bottom) is a general way to evaluate the added value of initialized
decadal predictions. Here, MiKlip-EDF shows clear signs of a significant added value
in contrast to MiKlip-REF.
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MSESS - Near Surface Air Temperature
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Fig. 4.4: Mean squared error skill score (MSESS) of the global mean temperature with
climatology as a reference prediction for (left column) IY1 to LY5 and LY2-5 of
MiKlip-REF (blue), MiKlip-EDF (red), and other MiKlip reference data sets (black):
(first row) MiKlip-REF-10 includes 10 instead of 5 ensemble members, (second row)
MiKlip-REF-MR uses the MPI-ESM-MR with higher resolution instead of MPI-ESM-
LR, (third row) MiKlip-REF-FF uses full-field instead of anomaly initialization in
the ocean, and (fourth row) MiKlip-REF-UN is the uninitialized mix of the historical
and rcp45 experiments. (middle column) The corresponding regional analysis of
MiKlip-REF as a reference for the other MiKlip-REF-XX prediction system in the
LY2- 5. (right column) The MiKlip-EDF analysis versus another MiKlip-REF-XX
prediction system as a reference in the LY2-5. Significant differences are marked
(left) by dashed lines or (middle and right) by crosses. Gray areas mark missing
values with less than 90% data consistency in the observation. The analyses cover
the time period from 1979 to 2013. The figures are constructed to be compared
with the main results in Figure 4.2.
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Hindcast Ens. | Eva. Dec. Atmos Ini | Ocean Ini | EDF

System Size | Period | Exp. and Res and Res Freq.

MiKlip-EDF 5 1979- 1974- | FF/T63L49 | AN/1.5°L40 | 3
2013 2012 mon

MiKlip-REF 5 1979- 1974- | FF/T63L49 | AN/1.5°L40 | -
2013 2012

MiKlip-REF-10 | 10 1979- 1974- | FF/T63L49 | AN/1.5°L40 | -
2013 2012

MiKlip-REF-MR | 5 1979- 1974- FF/T63L95 | AN/0.4°L40 | -
2013 2012

MiKlip-REF-FF | 5 1979- 1974- FF/T63L49 | FF/1.5°L40 | -
2013 2012

MiKlip-REF-UN | 5 1979- - -/T63L49 | —/1.5°L40 -
2013

Tab. 4.1: Overview of hindcast systems used in this study. Information about the ensemble
size, the evaluation period, the yearly initialized decadal experiments, the MPI-
ESM atmosphere initialization (Ini) technique and resolution (Res), the MPI-ESM
ocean initialization (Ini) technique and (Res) resolution, and the frequency of
applying the ensemble dispersion filter. Initialization techniques are full-field
(FF) and anomaly (AN). Highlighted in bold are the main differences to the basic
reference system MiKlip-REF.

Forecasting long-term precipitation changes and multi-annual variations of rain is a
challenge in climate science (Goddard et al., 2013). Both, MiKlip-REF and MiKlip-
EDF show rather small, if any, skill (Supplementary Fig. 4.7) in predicting large scale
anomalies on the global scale, which is in line with results of other studies (Kadow
et al., 2016). We focus on the Northern Hemisphere and LY2-5 for a more detailed
analysis of regional precipitation skill (Fig. 4.5a, b). With respect to observations
(Fig. 4.5a), the correlation map of MiKlip-REF shows large and significant positive
patterns over the north of East Asia and the Middle East. The MiKlip-EDF shows
large significant positive patterns over North America, the Middle East, northern
Central Europe, and smaller ones around Iceland and Greenland (Fig. 4.5b). Regions
influenced by the ocean state and by atmospheric wind systems like cyclone tracks
(see next paragraph and Fig. 4.5c, d), like Central Europe, show signs of significant
improvements. This indicates that more accurate sea surface temperatures of the
global prediction system lead to improvements in regional precipitation prediction.
However, the precipitation patterns are far more local than temperature and some
regions show negative developments as well. The evaluation of the ensemble spread
and the forecast reliability shows that there is no appreciable difference between
MiKlip-EDF and MiKlip-REF (Supplementary Fig. 4.8). In fact, the reliability in
MiKlip-EDF is slightly better in most regions like Northwest America in comparison
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to MiKlip-REF. The ensemble dispersion filter applied on ocean temperatures has
no negative effect on precipitation in terms of these ensemble metrics. A more
comprehensive investigation on the prediction of large scale and convective rain as
well as differentiation between seasons is beyond the scope of this study (see also
Supplementary Fig. 4.7).

Prediction of extra-tropical cyclones is another benchmark for decadal climate
forecast systems (Kruschke et al., 2014). We show the correlation of the lead
winter (DJF) 2-5 cyclone track densities of MiKlip-REF and MiKlip-EDF compared
to the ERA-Interim reanalysis in the Northern Hemisphere (Fig. 4.5¢c, d). MiKlip-
REF reveals no significant predictability (Fig. 4.5c). MiKlip-EDF, however, shows
large areas of significant positive correlation, especially over the North Atlantic
and Europe, and along the North Atlantic storm track (Fig. 4.5d). As there is a
strong connection between SST patterns and cyclone track density in climate models
(Zappa et al., 2013) like the MPI-ESM (Kruschke et al., 2014), the improvement in
the SST prediction leads to a significant step forward in predicting winter cyclones
a pentad in advance. The evaluation of the ensemble spread and the forecast
reliability underpins this finding. Besides an improvement in the North Atlantic
Stormtrack region and Europe in the forecast reliability there is no appreciable
difference between MiKlip-EDF and MiKlip-REF (Supplementary Fig. 4.9).

Conclusion

The novel forecast technique presented here improves the multi-annual tempera-
ture, precipitation, and winter cyclone prediction in comparison to the predictions
obtained by the standard forecast technique. This is possible without a considerable
increase of computational power, which would be necessary in the case of increas-
ing the ensemble size or the model resolution. Even experiments with the MiKlip
model system employing larger ensemble size and higher model resolution are
outperformed by MiKlip-EDF as well — especially on the most important LY2-5 time
scale. Skill is preserved much longer in MiKlip-EDF than in MiKlip-REF. This can be
understood from the general forecast rule that the observed state is likely to be closer
to the ensemble mean than to any individual ensemble member. Smoothing out
variance and reducing the error in the perturbed signal of the initialization improves
the forecast close to the ideas of machine or statistical learning. Especially in the
improved North Atlantic region, MiKlip-EDF and its atmospheric model component
responded to a different and more accurate sea surface temperatures. Usually the
model atmosphere is not constrained strongly enough by the relevant drivers of
predictability (Eade et al., 2014). The re-centering of the forecast ensemble improves
skill by reducing the growth rate of model biases as well, by e.g. reducing the North
Atlantic cold bias.
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Fig. 4.5: Correlations of (left) MiKlip-REF and (right) MiKlip-EDF (top) for precipitation
compared to GPCC observations and (bottom) for DJF cyclone track density
compared to ERA-Interim for the LY2-5 hindcasts sets over the period from 1979
to 2013. Significance is marked by black crosses. Gray shading indicates missing
data of (top) GPCC and regions higher than 1 km in the cyclone track density
analysis (bottom).

66 Chapter 4 Decadal climate predictions improved by ocean ensemble dispersion filtering



However, more research on this forecast technique is necessary. For example, other
meteorological variables or other restart time frequencies should be explored within
the ensemble dispersion filter. The reduction in ensemble spread in the applied
method within this study could be problematic for other research scenarios especially
over or within the ocean. ENSO as well the North Atlantic sub-polar gyre state could
lose potential information especially on seasonal time-scales when applying the EDF
every 3 months. Therefore, an increase of the ensemble size should be beneficial
as well. Connecting distinct members and building independent bundles would
add more degrees of freedom to the analysis. This would introduce a new kind
of ensemble spread, which should increase the temperature spread and amend its
forecast uncertainty. The method itself is very much dependent on the initialized
signal, because the EDF strengthen this, no matter if it is a good or bad initialized
signal. In machine learning, it is known that Bagging a good classifier can make it
better, but Bagging a bad classifier can make it worse (Hastie et al., 2013). Therefore,
an investigation of a full-field initialization in the ocean would be an interesting
addition. If the initialized observational signal would stay longer in the model system
in addition to a reduction of the error growth rate, not just decadal prediction, but
seasonal prediction - usually applying full-field - could improve as well. Slowing
down the drift of full-field predictions should get investigated then as well.

A more advanced way of fostering the ensemble memory by using Ensemble Kalman
Filter (Evensen, 2003) instead of simply using ensemble means should be explored as
well. Next to other model development ideas like the ‘Supermodel’ in “Dynamically
combining climate models to “supermodel” the tropical Pacific”, the main ideas of the
EDF could live up in other techniques like combining neural networks with numerical
models. The synchronization of members in terms of information exchange could be
a valuable add-on. In general, the approach should work with all numerical model
systems producing a decadal prediction system. This study opens new possibilities
for other ensemble forecasting disciplines in science and especially Earth system
research, which could benefit from these or similar ‘forecasting from forecasted
mean state’ methods using ensemble dispersion filter.
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Appendices to Chapter 4

The supplementary information consist of additional data sets analyzed, a mean
state analysis of MiKlip-REF and MiKlip-EDF, scientific side aspects, and technical
difficulties during the production process.

Mean State Analysis

Supplementary Figure 4.6 shows the differences between the temporal mean of
the sea surface temperatures of MiKlip-EDF and MiKlip-REF for the period from
1979 to 2013. In general, MiKlip-EDF produces warmer high latitudes and colder
tropics. The most pronounced temperature difference can be found in the Sub-polar
Gyres of the Pacific and Atlantic. MiKlip-EDF is up to 2K warmer in the central
North Atlantic than MiKlip-REF. Earth system models, including the MPI-ESM-LR,
produce too low temperatures in the North Atlantic in comparison to observations.
MiKlip-REF already reduces the so called North Atlantic cold bias in contrast to the
uninitialized runs by up to 0.5K (not shown). The forecasting technique suggested
here leads to an even stronger reduction of this SST cold bias. The cold bias is
not completely eliminated and other biases remain stable. However, this corrected
inner-model shift in the energy budget of the North Atlantic is followed by a more
accurate prediction not only of the near-surface air temperature but also of associated
variables. Experience in numerical weather and seasonal forecasts showed, that skill
can be considerably improved by reducing model systematic error (Keenlyside et al.,
2008), which can be confirmed by this study as well.
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Scientific Side Aspects

Changing just one parameter in a physical consistent model could cause inconsistency.
The differences in the ensemble members are small enough (particularly in the deep
ocean) that the ocean model re-adjusts to temperature shifts, similar, as it does
with nudging or initialization procedures. An assimilation strategy to adjust the
salinity and sea ice cover as well, were computationally too expensive in the current
experimental set-up, but could be considered in future experiments.

Technical difficulties and study adjustments

The ocean component MPI-OM of the MPI-ESM in its current and applied version is
not able to provide output when stopped within a year because of default output of
yearly means. This is causing run-time errors. Therefore, there was a need to switch
off the MPI-OM output. Accordingly, we did not had a chance to analyze ocean data
beyond surface. The focus in the study was the atmospheric climate system driven by
the ocean. In future experiments a new version of the MPI-OM or an experimental
re-design is necessary to analyze the deep ocean behavior as well.

The introduction of the sub-ensemble mean temperature dataset during the ensemble
dispersion filtering of MiKlip-EDF may lead to model instabilities. This happened in
some rare cases (14 out of 3800) of the ensemble mean building and its following
restarts, mainly in the atmospheric component ECHAMS6. As a simple solution the
failing member was not replaced and run for 6 months instead of 3.
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Sea Surface Temperature
MiKlip-EDF - HadISST

Kelvin

Fig. 4.6: Sea surface temperature differences in Kelvin by showing to show the mean bias.
MiKlip-EDF (a) and MiKlip-REF (b) minus HadISST as well as the difference of
MiKlip-EDF and MiKlip-REF. The LY2-5 analysis covers the period from 1979 to
2013 and the HadISST temporal mean of 1979 to 2013 is interpolated onto the

MPI-ESM-LR grid.
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Correlation - Precipitation
F MiKlip-EDF

Fig. 4.7: Correlations of MiKlip-REF (left) and MiKlip-EDF (right) for precipitation com-
pared to GPCC observations for the annual LY2-5 (top — comparable with Figure
4.5a, b), the winter (DJF) LY2-5 (middle), and the summer (JJA) LY2-5 (bottom)
over the period from 1979 to 2013. Significance is marked by black crosses. Grey
shading indicates missing data of GPCC.
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Ensemble Spread and Reliability — Precipitation
MiKlip-REF MiKlip-EDF

LESS

Reliability

. perfect . still useful marginally useful . not useful

Fig. 4.8: Logarithmic Ensemble Spread Score (top) and Forecast Reliability (bottom) for
Precipitation in MiKlip-REF (left) and MiKlip-EDF (right). Analyses are done for
LY2-5 compared to GPCC. Gray areas indicate missing values with less than 90%
data consistency in the observation. The analyses cover the time period from 1979
to 2013.
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Ensemble Spread and Reliability — Cyclone Track Density
MiKlip-REF MiKlip-EDF

LESS

Reliability

perfect . still useful marginally useful . not useful

Fig. 4.9: Logarithmic Ensemble Spread Score (top) and Forecast Reliability (bottom) for
Cyclone Track Density (DJF) in MiKlip-REF (left) and MiKlip-EDF (right). Analyses
are done for LY2-5 compared to ERA-Interim. Gray areas indicate missing values
with less than 90% data consistency in the observation. The analyses cover the

time period from 1979 to 2013.
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5.1

Summary, Discussion, Outlook, and
Conclusion

Summary and General Achievements

The work at hand focused on the analysis, evaluation, and the development of
decadal climate prediction systems in order to contribute to their fundamental
understanding as well as to the improvement of their actual forecast capability.

The research of this thesis started with a development of an efficient computational
and systematic approach in climate science verification shown in Chapter 2. An
evaluation framework called Free Evaluation System Framework for Earth System
Modeling (’Freva’) was designed, developed, and applied. The main system design
of Freva features the common and standardized model database of climate modeling
and in particular decadal prediction hindcast sets. A programming framework for
efficient verification routines, and a history system of evaluations to keep track of
the research was established. Freva constituted the foundation to use the growing
knowledge around decadal prediction in the MiKlip Central Evaluation System to
detect improvements for further developments in combination with the evaluation
strategy of Chapter 3.

The research in Chapter 3 showed that a decadal forecast with the numerical Earth
system model of MiKlip is possible and scientifically sound. There was a need to set

up a statistical framework for this young research branch and the MiKlip project.

The combination of accuracy and spread metrics and the addition of new verification
metrics made precise evaluations of the decadal prediction system possible. The
investigation exposed the system’s sources of potential skill (initial values, boundary
conditions, assimilation strategy, ensemble size, etc.). The importance of the memory
in the ocean (model) was confirmed as well. The investigation also showed the

difference in skill on the short (first year) and long term (up to a decade) prediction.

The prediction skill of the first lead years is much higher than the long term prediction
skill several years ahead. However, the high skill in the first year is promising for the
multi-annual forecast. The ability to synchronize the climate model with observations
confirms the capability of the numerical models, which is evident in the early years
of the decadal forecast. The potential that this synchronization is extendable to
subsequent years was investigated in Chapter 4.
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With the help of the systematic evaluation (Chapter 3) and the efficient application
(Chapter 2), scientific findings around the MiKlip decadal prediction system led to
a novel forecast technique. Two aspects that are important in climate predictions
inspired this approach. [1] The ocean memory due to its heat capacity holds a large
potential of forecast skill - applicable with a fully coupled Earth system model. [2]
Instead of applying one single member prediction, exploiting the whole ensemble
and its ensemble mean, does improve a prediction system. The combination of both
effects forms this new approach - named Ensemble Dispersion Filter (EDF). The
climate prediction skill of the MiKlip ensemble prediction system was improved
by a shift of the model’s ocean state towards the ensemble mean of its individual
members at seasonal intervals. Applied as an add-on to the reference prediction
system MiKlip-REF, the EDF led to even more accurate results. Global mean and
regional temperature, precipitation, and winter cyclone predictions showed increased
skill up to 5 years ahead. Especially the later lead years (LY4 and LY5) benefited
from the EDF. This forecast technique was a new effort to combine sources of skill to
improve a decadal prediction system during model run-time.

In the following sections, each of the research tasks stated in the beginning will
be revisited (Sect. 1.1). The corresponding contributions from Chapters 2, 3, and
4 will be summarized, discussed, and interlinked. Alongside a Discussion (Sect.
5.2) with subsequent research questions regarding the EDF, which provide a deeper
insight into the applied new methodologies, the Outlook section (Sect. 5.3) provides
follow-on ideas. Concluding remarks (Sect. 5.4) set the results into a broader context
and their scientific relevance is highlighted.

Research for scientific efficiency and reproducibility (RT1)

Scientific progress is usually really fast, when research breaks new ground. This was
also true for decadal climate prediction. Within a decade after the first publications
about decadal prediction [Smith et al., 2007, Keenlyside et al., 2008, Pohlmann
et al., 2009], research evolved fast and diverse. Even the MiKlip project investigated
several and different areas of potential improvements and it had several development
stages (Marotzke et al., 2016). Additionally, decadal prediction consists of large and
complex (e.g. lead year) data structures, which was a data challenge on top of the
scientific challenge. There was a fundamental need for an efficient way to keep track
of the scientific developments, implementations of scientific software of statistical
frameworks (see above), organization of research data and its exchangeability, and
scientific reproducibility and traceability. This issue has been addressed by the first
research task:

Development and implementation of an evaluation system for decadal climate prediction
to verify enhancements of skill in different development stages with the full flexibility of
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model and observational data comparison in a sophisticated, reproducible, and efficient
way.

The Chapter 2 showed in combination with Chapter 3 and 4 that the climate modeling
science and as an example decadal prediction research can be enhanced with the
appropriate software to faster detect and accomplish scientific improvements. A
root cause analysis of data-driven climate science showed challenges and potential
solutions for the efficient evaluation in Earth system modeling. The new scientific
software development Freva incorporates several data sets and verification routines
into a common software and data framework. The ingested knowledge and tool-
set overcomes technical hurdles to efficiently test new prediction systems on high
performance computers. It also combines the knowledge of the scientists into one
easily applicable evaluation system to connect the scientists through their work. The
software efficiency on HPCs with web and shell front ends leads to faster and easier
applications and results, which enhances the science by building bridges from HPCs
to the scientists.

In combination with the other Chapters 3 and 4 and other studies which applied
Freva (Sect. 2.3), the publication showed that climate verification benefits from
explicit software designs on HPCs. The times are over, where climate model data
production is performed on modern HPCs and the rest of the work including verifica-
tion takes place on the PC of the scientist (Ranilla et al., 2014). Evaluation systems
filled with scientific routines and framed by Freva can be raised to a similar level as
climate models on HPCs. Modern software engines like Freva give climate scientists
a common and efficient developer’s base.

Statistical framework for decadal scale evaluation (RT2)

Whenever a new research branch - as in this case decadal climate prediction - is born,
there is a fundamental need to evaluate its scientific results. As decadal prediction is
the interface between short-range climate forecasts and long-term century climate
projections, it benefits and suffers from both sides in terms of evaluation. It needs to
take into account that the initialization and its potential obstacles take a major role
in the beginning of the forecasts. The same accounts for the boundary conditions
of the forcing on the later stage of a forecast. As evaluation strategies were already
developed for short and long term, there was a need to combine both evaluation
types for a systematic evaluation strategy for decadal prediction. This is in particular
important to keep track with the decadal prediction developments - to evaluate its
development stages. This issue has been addressed by the second research task:

5.1 Summary and General Achievements
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Formulate and incorporate a systematic and comprehensible statistical framework for
decadal climate prediction into the evaluation system and fully assess a prediction
system to reveal scientific plausibility, prediction skill, and sources of potential skill.

In Chapter 3 a detailed statistical framework for a decadal scale climate prediction
system was set up and applied with the MiKlip prediction system. An actual decadal
forecast is combined with evaluation metrics regarding the forecast system’s hindcast
set. The accuracy assessment of the prediction system is combined with its ensem-
ble spread assessment. The evaluation takes the observed climate development
into account. The decadal prediction system skill is assessed by comparing with
climatological, uninitialized, different sized ensembles, and detrended hindcasts
in different variables. The systematic evaluation of different variables -in terms of
temperature and precipitation forecasts on different lead times- is applied in one
common framework. Therefore it is reaching comparability and comprehensibility
across target values.

While the accuracy assessment of the decadal climate prediction community (God-
dard et al., 2013) is quite robust, the spread assessment turned out to be quite raw
(Sect. 3.2.2). It is shown that the proposed (Goddard et al., 2013) skill measurement
for spread is not satisfying (Fig. 3.1). With the developments of the Logarithmic En-
semble Spread Score (LESS) and Logarhytmic Ensemble Spread Skill Score (LESSS)
in Chapter 3 missing information about the spread behavior could be revealed. Too
large or too small spreads of decadal forecast systems can be detected with the
LESS. If a decadal climate prediction system is for example improving due to a larger
ensemble size, this can be revealed by the skill score of the LESS, namely the LESSS
(Fig. 3.6).

The study showed an actual climate forecast next to the evaluation strategy. This
enabled a regional validation of the forecast - whether it may or may not be trust-
worthy. This new verification framework became the basic evaluation for forecast
verification within the MiKlip project and led to its main forecast evaluation strategy
of the MiKlip project!.

This statistical framework, developed for decadal predictions, showed that the
MiKlip prediction system improved, compared to the climatological forecast and the
uninitialized climate projections. The applied ocean initialization showed a forecast
enhancement compared to the uninitialized system. The extensive standardized
assessment revealed that the MiKlip reference system and decadal predictions in
general leave room for improvements especially beyond leadyear 1. The skill for the
first year is substantially better than for the subsequent years. This means that the

!www.fona-miklip.de/decadal-forecast
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MiKlip decadal prediction system loses skill pretty fast, which was investigated in
the following research task.

Exploit sources of skill to improve decadal prediction (RT3)

Decadal prediction research already underwent several development stages. The
investigations on how to improve this research is an ongoing process. It is closely
linked to the decadal predictability research focusing on what is possible, what are
the boundaries, and what are sources of potential skill. The research of the prior
Chapters of this thesis helped to identify obstacles and possibilities of the MiKlip
decadal prediction system. In particular, the ocean 'memory’ on the decadal time
scale, as well as the advancement of the prediction using a larger ensemble got
confirmed. This thesis took these two main aspects into further investigation. These
have been addressed by the third research task:

Having a fully assessed and skillful decadal prediction system at hand, exploit detected
sources of potential skill to further improve the decadal prediction system.

The earlier chapters showed that we know, we can identify, and we can confirm
sources of skill for decadal scale prediction of the climate system. In Chapter 4 the
newly developed forecast technique, the EDF, was the first effort to actually combine
and exploit the following sources for a decadal prediction system: the ocean memory
and the ensemble mean. The ensemble mean application on the 3-dimensional ocean
temperature (heat capacity) evolution during the run-time of the model (every 3
months) significantly improved the forecast of the MiKlip prediction system on the
time-scales up to 5 years ahead.

Many standard improvement strategies like initialization techniques, higher reso-
lution, different ensembles sizes, etc. were clearly outperformed by the new EDF
forecast technique (Fig. 4.4). No other MiKlip forecast system, using the same model
system and setup of the MiKlip reference system Baselinel, outperformed Baselinel
like the EDF did in this study. The decadal prediction community within and outside
of the MiKlip project put a lot of effort into an optimization of initialization methods
to exploit observational initial values - another source of potential skill improvement.
New model and prediction systems arose after the publication of the Chapter 4.
As the EDF is an add-on technique being applied during the forecast, the EDF is
not in competition with initialization (e.g. ensemble Kalman filter) or ensemble
generation (e.g. breeding) techniques, which are applied before or at the start of the
forecast. In the future, it is conceivable that a smart combination of methods applied
before, during, and after the forecast will be used in decadal prediction research.
Therefore, many scientific and technical factors will be brought together and are
hard to separate when analyzing the skill. The new and fast methods of the prior
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Chapters 2 and 3 around Freva help to improve the efficiency of the evaluation of
prediction development stages as they did with the evolution of the EDF prediction

system.

The EDF demonstrated that it is worth to study methods which go beyond standard
procedures. It is possible to exploit sources of skill to improve the prediction skill
significantly. Related ideas -similar to the EDF- which exploit sources of skill should be
investigated as well and are discussed in the following Section 5.2.2. New scientific
and technical methods should be developed (see Outlook 5.3), and scientists should
be encouraged to explore novel, unconventional forecast methods.

Discussion

The thesis showed the development of a new forecast technique within decadal
climate science. The Ensemble Dispersion Filter (EDF) improved the prediction of
several climate parameters. However, this method leads to additional questions,
which will be discussed and investigated in the following:

Effect of the Ensemble Dispersion Filter after its first
application

The EDF mainly improved the skill in the later forecast years - lead years 4 to 5 (LY4-5).
Is the decadal prediction of the EDF further along the line (LY4 and LY5) more accurate,
because the EDF already improves the prediction in its early stages maybe even after its
first application?

The main idea behind the EDF is to improve each single ensemble member by making
use of the ensemble mean, and in turn to improve the whole prediction system in the
long run. The analysis of the lead months (LM) 3 and 4 of the ensemble mean and
the single members shows that the EDF already improves the system at the beginning
of the forecast (Fig. 5.1). By design MiKlip-REF and MiKlip-EDF are identical in
LM3 in the ensemble mean and for each member (as in Fig. 4.1a). However, in the
first month after applying the EDF on the ocean temperatures (LM4), it is already
apparent that there is an improvement in the temperature prediction in each single
member compared to its un-filtered counterpart MiKlip-REF (Fig. 5.1d, f, h, j, D).
This finding supports the main idea of improving each member with the common
ensemble to improve the whole ensemble in the long run. The improvement is not
yet seen in the ensemble mean of MiKlip-EDF compared to MiKlip-REF (Fig. 5.1b).
Indeed, the ensemble mean of the atmospheric state in MiKlip-REF in LM4 is still
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Early stage effect of the EDF by improving each Member
Lead Month 3 MSESS Lead Month 4

Ensemblemean
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Fig. 5.1: Early stage effect of the EDF in the first month after application: The MSESS shows
the improvement of MiKlip-EDF compared to its reference prediction MiKlip-REF
with observations of HadCrut4 in the ensemble mean (top row) and each member
before the EDF is applied (LM3 - left) and after (LM4 - right). Figure is constructed
as Fig. 4.2 to be comparable with - established by the common evaluation system.
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very close to the actual development, i.e. the observations. However, this effect gets
lost along the forecast as seen in Chapter 4, which favors the application of the EDF
(Figure 4.1). In the long run it could still be an additional positive effect, that a low
pass filtering reduces noise, through the averaging. This should be investigated in
the future. Therefore it is out of the scope of this thesis.

Effect of regions and forecast developments in predictions

If the early time period is important for the EDF, how important is the early (e.g. first
year’s) development of a forecast for its later stage? Are specific regions important for a
decadal climate prediction?

A larger independent ensemble than the MiKlip-EDF or MiKlip-REF needs to be
applied in order to answer that question. This was tested in the following additional
study set-up. The most comprehensive prediction system currently available is the
MiKlip Prototype system. It consists of 15 members using the same initialization data
sets as MiKlip-REF, but applies full-field initialization in the ocean (MiKlip-REF-FF in
Chapter 4).

Method Assuming we know the development of the climate in the first year, we
select the best (worst) 5 members of MiKlip Prototype which are closest (furthest)
from the sea surface temperature observation by using the root mean squared error
(RMSE) and correlation in the specific field mean of the regions: Global, ENSO,
PDO, SPDO, NA (Figure 5.2 and Table 5.1). With the RMSE-Selection (Fig. 5.3) we
capture the smallest (largest) distance and with the Correlation-Selection (Fig. 5.4)
we capture the most (dis-)similar variability of the investigated regions within the
first prediction year. The evaluation of LY2-5 is performed with Freva from Chapter
2 and its implemented evaluation strategy from Chapter 3.

Result The RMSE selection of the regions Global (Fig. 5.3a) and PDO (Fig. 5.3¢)
show the highest added value in the MSESS, especially in the Pacific region. The
selection of the RMSE in the ENSO region show some added value in the LY2-5
correlation (Fig. 5.3d). The NA region shows some improvement in the ENSO region,
but more importantly an added value over Europe (Fig. 5.3i). The effects on the
SPDO region are negligible in the RMSE-Selection comparison (Fig. 5.3g). However,
the SPDO shows the most promising results in the Correlation-Selection (Fig. 5.4g,
h). The correlation is significantly better in the regions ENSO, SPDO, and eastern
Pacific. The most interesting result can be seen in the NA region correlation selected
LY2-5 analysis (Fig. 5.4i, j). Teleconnection patterns between North Atlantic and
Pacific emerge. Figure 5.4j shows that the ENSO region is much better predicted in
LY2-5, if the evolution of the NA region is better predicted in the first year.
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Fig. 5.2: Schematic experiment setup for the RMSE selection (similar approach for the
Correlation selection). The decadal hindcast experiment 1960 starts in 1961. The
15 member of the MiKlip Prototype system (thin lines) are compared against an
observation (thick black line) in a regional/field (Global, ENSO, PDO, SPDO, NA)
mean. The 5 members with the smallest (green) and biggest (red) RMSE get
selected. Unselected members in gray. This procedure is done for all decadal
experiments between 1960 and 2015. The selected members form two hindcast
sets: Best (Worst) Members in green (red) which represent the hindcast with the
closest (farthest) development compared with observations in the 1st forecast year.
These two hindcast sets get evaluated in the lead years 2 to 5 in terms of MSESS
and Correlation compared to observations.
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Skill of LY2-5 member chosen by comparison with observations
in SST evolution within the LY1

RMSE Selection
MSESS Correlation

Globalmean

ENSO-Region

PDO-Region

SPDO-Region

NA-Region

Fig. 5.3: Skill analysis of the LY2-5 MSESS in special sub-set of the MiKlip Prototype system.
Selection of 5 member being (not) close to the first year evolution (12 month)
to the observations by the (biggest) smallest RMSE in a specific regional field
mean shown in red boxes. Crosses denote values significantly different from zero
exceeding at a 5% level applying 1000 bootstraps. Gray areas indicate missing
values with less than 90% data consistency in the observation. The analyses cover
the time period from 1979 to 2013.
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Skill of LY2-5 member chosen by comparison with observations
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Fig. 5.4: Skill analysis of the LY2-5 MSESS in special sub-set of the MiKlip Prototype system.

Selection of 5 member being (not) close to the first year evolution (12 month)
to the observations by the (lowest) highest correlation in a specific region field
mean shown in red boxes. Crosses denote values significantly different from zero
exceeding at a 5% level applying 1000 bootstraps. Gray areas indicate missing
values with less than 90% data consistency in the observation. The analyses cover
the time period from 1979 to 2013.
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Conclusion The skill in key areas is important within the first year (LY1) of the
prediction, when forecasting several years ahead (LY2-5). However, this relation
needs further investigation. More independent ensemble members are necessary
to clearly distinguish between ‘close’ and ‘not close’ to the observations. The 15
members system (all members of MiKlip Prototype) is still better than the 5 selected
ones which show positive effects (not shown). Also, it is not clear what would be
necessary to transfer this idea to a decadal prediction system, besides the fact that we
need to improve the seasonal system as well. The basic idea and the method shown
here is set in a relation to the EDF technique, and is discussed in the Outlook section
(see also 5.3 - key word Meta-Selection). In particular, the 5 member EDF system
is still significantly better than the best 5 members of MiKlip prototype analyzed in
this section (not shown).

A regional detection experiment, which allows to investigate the effects on the
global scale, is already part of the DCPP as part of CMIP6. The DCPP suggests an
experiment with observed SSTs in key regions in a historical (uninitialized) run as in
Kosaka and Xie, 2013. This would show the effect of a specific region in a numerical
model to the climate development compared with observations. The results shown
in the paragraph support these additional experiments from another standpoint,
especially the teleconnectivity should be explored (Fig. 5.4j). However, these sensi-
tivity experiments are outside the scope of the thesis, but should be considered in
follow-up studies.

Name | Explanation of Region for Field Mean | Region Lon/Lat

Global | Whole Globe 180E 180W / 90S 90N
ENSO ’El Nino Southern Oscillation Index’ Reg | 180W 70W / 20S 20N
PDO "Pacific Decadal Oscillation Index’ Reg 160E 120W / 20N 60N
SPDO (S)mall part of the PDO Region 160W 150W / 15N 25N
NA North Atlantic Region 60W 0 / 50N 65N

Tab. 5.1: Overview table of used region for the field-mean Correlation- and RMSE-Selection
- red boxes in Figures 5.3 and 5.4.

Outlook

The original purpose of the EDF was its application to decadal predictions. Therefore,
the selection of a variable to be filtered by the EDF led to ocean temperatures.
However, other variables could be tested as well. The adaptation of ocean salinity
is an obvious counterpart of ocean temperatures. Also, other variables, e.g. land
variables, sea ice area fraction, or the quasi-biennial oscillation should be examined
to study the seasonal or multi-annual implications of the EDF. Other time intervals
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than the 3-months when applying the EDF, are worthwhile to explore as well.

Monthly as well as yearly iterations will grant more insights to this technique.

Another focus should be on the amount of ensemble members and how they interact
with each other. As mentioned in Chapter 4, the development of independent

ensemble bundles of the EDF (like 5 members each) would be an interesting add-on.

In addition, the mixture of several bundles could open new insights. Such a mixture
setup would use a 10 member bundle A, where only 5 of its members exchange

ensemble mean information with 5 members of a different 10 member bundle B.

This could answer the question, if we could keep a larger ensemble spread in the
EDF experiments.

This thesis analyzed only forecasts with 5 years into the future. What is the effect of
the EDF after 5 years on the second pentad? The research on a longer than the so
far analyzed five years’ time scale as well as the full range of state-of-the-art decadal
prediction systems, from the 1960s onwards, should be investigated with a new
setup of model runs.

The EDF takes the value of each independent member to compute the ensemble
mean. It improves each member itself (Fig. 5.1) and also the whole prediction system
(Fig. 4.2). With the results shown of the first year evolution and the importance of
regions (Fig. 5.3, 5.4), two alternative approaches are closely related to the EDF: (1)
A majority vote of members could get weighted towards the most probable climate
development. (2) A meta-selector could use a meta function to select good and
poor predictors of the climate system. These two methods have the potential to
be transformed into a climate simulation approach similar to the EDF. They are
discussed in the following, not been done in this thesis, but could be seen as ideas
for follow-on studies.

The majority vote idea could be called ’'Ensemble Majority Vote’ (EMV) of members.

It is an interesting approach within a decadal prediction system. An ensemble runs
for one forecast year and then the majority of members is selected, which point into
a certain direction of the climate system. The selection checks the first year similar
to the analysis shown before (Sect. 5.2.2), without comparing it to the observation,
but the ensemble members itself. Next to the analysis shown in temperature, it could
check for other important climate indicators like sea ice, ocean heat content, the
Atlantic overturning circulation, etc. After the selection one ignores the minority
members and restarts only the majority members for the next year(s) and so on.
Applying slightly perturbed versions of the majority members to increase the member
size again to its original size, should be applicable. However, the ensemble size is
still the biggest problem when considering EMV-it is by far too small when thinking
about a majority vote. A size of 100 members is probably the smallest ensemble
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which should be applied, to infer a clear percentage vote from distribution (Wilks,
2005). With increasing computing power in the future, the application of this
methodology to numerical models in the climate prediction research seems feasible
and promising.

The meta selection idea could be called 'Ensemble Meta Selection’ (EMS) of members.
It is similar to EMV, but would use a meta level for a weight function or selection
of members. This meta level selects between ’good’ and ’bad’ members. ’Good’ and
’bad’ needs to be defined beforehand and on a science basis. In climate science, this
would be as the analysis applied before, by selecting the first year’s evolution of
climate indicator regions [see Section 5.2.2]. The alternative would be, that we
use ’last’ year’s forecast to predict the next decade and evaluate the forecast in its
first year. This is possible, but probably inefficient. At present the first forecast year
is always the one with the best skill (Fig. 4.2). The second forecast year needs to
outperform this first forecast year, and the third needs to outperform the second, etc.
Another meta level selection could be the suspension of unusual extremes, which are
clearly disproportionate. Finding the right meta selection for the climate evolution
could be challenging. The weight of members and the decision about which region,
variable, tendency, etc. is the most important and beats the others in a selection
ranking is not straightforward to be made. Already the selection of regions and
selection method (RMSE- and Correlation-Selection in the first year) as described
in Discussion Section 5.2.2 is challenging. At least EMS does not need as many
ensemble members as EMV.

The ideas and methods discussed could get investigated as well. Could the EMV
or EMS outperform the EDF? One advantage of EMV and EMS is due to the fact,
that each ensemble member runs untouched as a ’physical’ solution of the model.
Each of the described methods is worth to be followed-up in subsequent studies.
The application of the EDF approach already shows very promising results. At
present, the EDF approach is the one which is the most feasible to apply. Simply
due to the fact, that it does not need so much computing power as EMV or EMS.
Therefore, the next steps should be the enhanced exploration of the EDF including
more ensemble members, independent bundles, longer time ranges of up to ten
years, etc. in decadal prediction. The three mentioned techniques (EDF, EMV, EMS)
open new ways of establishing forecasts. These techniques are related to approaches
in machine learning (Bagging, Boosting, Stacking - Hastie et al., 2013). It should be
beneficial for climate science and machine learning to learn from each other.

The in-depth evaluation strategy as shown in Chapter 3 should be the base of
evaluations in future studies of decadal climate prediction. However, the evaluation
strategy itself must be evaluated from time to time and maybe extended in the future
by probabilistic and reliability measurements as already indicated in assessment of
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the EDF in Chapter 4. The evaluation system framework Freva as shown in Chapter
2 should be a sustainable add-on to climate studies. Freva could be a beneficial tool
for other applications beyond decadal climate prediction.

Conclusion

To conclude this study, the development of a new forecast technique —namely the
Ensemble Dispersion Filter— improves the decadal climate prediction research. Other
configurations or slightly different ideas close to the EDF have already been dis-
cussed in the outlook, which could potentially even improve the results shown in
this thesis. The advancement of prediction skill in the important climate parameters
temperature, precipitation, and cyclones encourages to conduct further investiga-
tions. Other forecasting disciplines, such as seasonal prediction or even fields outside
of climate research, for example weather or space science, might benefit as well
from this method. Novel forecast techniques highly benefit from efficient evalua-
tion systems. The creation of a verification strategy which includes new metrics in
decadal climate prediction have become an essential element of decadal climate
prediction. The detailed analysis of the MiKlip reference prediction system and its
first scientific decadal forecast provide the base for subsequent development steps.
The development of an efficient evaluation system tool —-namely Freva— for model
data and evaluation procedures enhanced the research around the EDF. As numerical
climate models and verification software are executed on modern high-performance
computers, there is a scientific need for climate research infrastructures like Freva
to conduct evaluations in a reproducible but efficient way. The evaluation strategy
improved the research and was used in many other studies (see Bibliography). In
summary, this thesis showed the synthesis of scientific improvements in decadal
climate predictions, due to enhancements in climate research, climate modeling,
and climate evaluation.

5.4 Conclusion
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Acronyms

Term Explanation

API Application Programming Interface

BMBF Bundesministerium fiir Bildung und Forschung

CMIP Coupled Model Intercomparison Project

CMOR Climate Model Output Rewriter

DCPP Decadal Climate Prediction Project - A MIP within CMIP6

DRS Dara Reference Syntax

DWD Deutscher Wetterdienst - German weather service

ECHAM atmospheric general circulation model, developed at the Max
Planck Institute for Meteorology

ECMWF European Center for Medium-Term Weather Forecasts

EDF Ensemble Dispersion Filter

ENSO El Nino Southern Oscillation

EMS Ensemble Meta Selection

EMV Ensemble Majority Vote

EnKF Ensemble Kalman Filter

ERA40 Atmosphere Reanalyis of the ECMWF

ERA-Interim Atmosphere Reanalyis of the ECMWF

ESGF Earth System Grid Federation

GPCP Global Precipitation Climatology Project

GPCC Global Precipitation Climatology Centre

HPC High Performance Computer

HadCRUT Near-Surface Temperature dataset of the Hadley Centre and Cli-
matic Research Unit

HadSST3 Sea-surface Temperature dataset version 3 of the Hadley Centre

IPCC Intergovernmental Panel on Climate Project

LESS Logarithmic Ensemble Spread Score

LESSS Logarithmic Ensemble Spread Skill Score

LM Lead Month - the months of the forecast independent of actual
months

LY Lead Year - the years of the forecast independent of actual years
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MiKlip Mittelfristige Klimaprognosen - Major project on decadal climate
prediction in Germany

MiKlip-EDF The EDF applied with the MiKlip baseline system

MiKlip-REF The baseline system of MiKlip and the reference for the EDF exper-

iment

MiKlip-REF-FF

The full-field initialization experiment of MiKlip called Prototype

MiKlip-REF-10

The 10 member experiment of MiKlip called Baselinel

MiKlip-REF-MR

The mixed-resolution experiment of MiKlip called Baselinel-MR

MiKlip-REF-UN

The uninitialized experiment as mixture of historical and rcp45

MIP

Model Intercomparison Project

MPI-ESM-LR Max-Planck-Institute Earth System Model in the Low-Resolution
version

MPI-OM Mazx-Planck-Institute Ocean Model

MSESS mean squared error skill score

NA North Atlantic

ORAS4 Ocean Reanalyis System 4 of the ECMWF

PDO Pacific Decadal Oscillation

PR Precipitation

Prototype The full-field initialization experiment of MiKlip - in this stidy called
MiKlip-REF-FF

RCP Representave Concentration Pathway - scenario experiment for
climate projections within CMIP

RMSE root mean squared error - in units of the researched variable

SST Sea Surface Temperature

TAS Near-Surface Air Temperature

WCRP World Climate Research Programme

Tab. 5.2: Overview table of used acronyms.
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