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Abstract: Protein homeostasis (proteostasis) is crucial to the maintenance of neuronal integrity
and function. As the contact sites between neurons, synapses rely heavily on precisely regulated
protein-protein interactions to support synaptic transmission and plasticity processes. Autophagy
is an effective degradative pathway that can digest cellular components and maintain cellular
proteostasis. Perturbations of autophagy have been implicated in aging and neurodegeneration
due to a failure to remove damaged proteins and defective organelles. Recent evidence has
demonstrated that autophagosome formation is prominent at synaptic terminals and neuronal
autophagy is regulated in a compartment-specific fashion. Moreover, synaptic components including
synaptic proteins and vesicles, postsynaptic receptors and synaptic mitochondria are known to be
degraded by autophagy, thereby contributing to the remodeling of synapses. Indeed, emerging
studies indicate that modulation of autophagy may be required for different forms of synaptic
plasticity and memory formation. In this review, I will discuss our current understanding of the
important role of neuronal/synaptic autophagy in maintaining neuronal function by degrading
synaptic components and try to propose a conceptual framework of how the degradation of synaptic
components via autophagy might impact synaptic function and contribute to synaptic plasticity.
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1. Introduction

Neurons are connected at specialized contact sites called synapses. These synaptic connections
generate precise neural circuits and, thus, form the fundamental basis for various neuronal activities
and brain functions including sensory perception, motor action, sleep, memory and emotion. Neural
plasticity is mainly executed by structural and functional modification of synapses, whose plasticity
requires tightly regulated protein synthesis and degradation in a spatial and temporal manner.
Indeed, the proteome of the presynaptic and postsynaptic neurons functions in a highly dynamic
and coordinated fashion to control neurotransmitter release. Quantitative proteomics combined
with super-resolution imaging techniques have revealed that the synapse is extremely packed with
proteins [1–3].

Neurons communicate by firing electrical impulses and must sustain this intense activity for
a lifetime. Besides, neurons are post-mitotic cells with rare neurogenesis restricted to only certain
neuronal populations and brain areas [4–7]. Furthermore, neurons are highly complex and polarized
cells with extended axonal and dendritic processes, which adds another layer of complexity to the
trafficking of proteins and organelles between the cell body and synaptic specializations. The extreme
longevity of neurons throughout a lifetime of the individual [8,9] in the absence of pathogenic
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conditions undoubtedly poses a serious threat to preserve diverse molecular events including DNA
repair and maintenance of protein, lipids and organelle homeostasis over time.

Naturally, one might ask how neurons and their synapses cope with these unfavorable
circumstances while concurrently allowing for fine-tuned plasticity processes to preserve their
functional stabilities and complexities. Clearly, neurons have evolved and adapted a sophisticated
proteostasis network (PN) to accommodate their morphological complexities, high metabolic activities
and longevity. Remodeling of the neuronal and synaptic proteome is accomplished by molecular
chaperones, protein disaggregases and proteolytic pathways consisting of the ubiquitin-proteasome
system (UPS) and autophagy-lysosome pathway (ALP). While it should be noted that there is an
emerging paradigm of crosstalk between the UPS and ALP [10–12], ALP will be focused in this special
issue in the context of autophagy as an emerging regulator of synaptic components and plasticity.

Autophagy, or ‘self-eating’ was termed by Nobel laureate Christian de Duve based on his
observations of autophagic vacuole formation in the 1960s. Autophagy is an evolutionarily conserved
bulk degradation process that sequesters cytoplasmic proteins, lipids, nucleic acids, polysaccharides
and even organelles into double-membrane phagophores termed autophagosomes for subsequent
lysosomal degradation. There are three distinct types of autophagy: chaperone-mediated autophagy
(CMA), microautophagy, and macroautophagy (hereafter referred to as autophagy) [13–15].

Appreciation of the role of autophagy in both physiological and pathological brains continues
to expand, as a plethora of evidence points out that appropriate regulation of autophagy is
pivotal for neural integrity and central nervous system (CNS) development. Perturbations in the
autophagy pathway are associated with neurodevelopmental and neurodegenerative diseases [16–22].
In recent years, evidence has been presented for the occurrence and requirement of autophagy at
synapses [23–26], hinting at the potential regulation of synaptogenesis and refinement of synaptic
connections via autophagy.

Compelling evidence has determined the spatial compartmentalized regulation of autophagy
in neuronal sub-compartments [27,28]. Surprisingly, in addition to carrying degradative materials
to the neuronal cell body for lysosomal degradation, autophagosomes also appear as conduits to
relay neuronal signaling to the soma to promote neuronal functional complexities [29]. Furthermore,
emerging studies have implicated the essential role of autophagy in neuronal homeostasis through the
turnover of growing lists of disparately synaptic cargoes including synaptic vesicles, synaptic scaffold
proteins and synaptic organelles [30–33]. That said, the regulation of autophagy might modulate
synaptic structure, plasticity and function by changing the abundance of selective synaptic proteins
in a spatiotemporal fashion, though its systemic role in the regulation of synaptic function has yet to
be elucidated.

The purpose of this review is to recapitulate how autophagy is regulated at different sub-neuronal
compartments to facilitate neuron-specific signaling, adaptations and functions, elucidate described
and emerging synaptic components of autophagy, and highlight recent advances and emerging
principles of how the regulation of autophagy might contribute to synaptic proteostasis and
synaptic plasticity.

2. Compartment-Specific Regulation of Autophagy in Neurons: A Non-Canonical Role for
Autophagosomes in Mediating Neuronal Signaling

To reiterate, neurons are unequivocally compartmentalized into the soma, dendrite, axon, pre- and
post-synaptic regions. Accordingly, neuronal signaling is also highly compartmentalized, requiring
sophisticated transport machineries to transmit and integrate information within and between
sub-neuronal compartments [34]. Intuitively, to establish and maintain distinct neuronal domains,
molecules and proteins must be generated and delivered in the right place at the right time. Active
neuronal trafficking is crucial to ensure accurate distribution of numerous cellular cargoes [35]. Thus,
the question arises whether and how the dynamics of autophagy are tailored in specific neuronal
subdomains to facilitate compartment-specific demands and functions [36].
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The dynamics, formation and maturation of autophagosomes in neurons have been worked
out recently [27,28]. A seminal study using live-cell imaging of isolated dorsal root ganglion (DRG)
neurons demonstrated that autophagosome biogenesis initiates distally at presynaptic terminals.
Autophagosomes then undergo maturation during their retrograde transport to the cell soma, and form
autolysosomes proximally [27]. Shedding more light on this issue, their follow-up work firmly
established a compartment-specific mechanism of constitutive autophagy in hippocampal neurons,
hinting at a possibly conserved machinery underlying autophagosome maturation along the axon in
different neuronal subtypes [28]. However, it remains largely unknown how the spatial restriction
of autophagosome biogenesis in distal axons is achieved. Together, this suggests autophagosome
maturation state and motility may be differentially regulated in distinct sub-neuronal domains to meet
their unique demands of cargo degradation.

While the commonalities and divergence of synaptic autophagy and autophagy in other
sub-neuronal compartments deserve to be investigated in detail and in various contexts,
an exciting new twist on unanticipated ‘active signaling’ via autophagosomes has been discovered.
While autophagosomes are retrogradely transported along the axon to the soma, they are found
to simultaneously carry brain-derived neurotrophic factor (BDNF)-TrkB signaling (Figure 1),
in effect, mediating neuronal complexities and preventing neurodegeneration [29]. Along these lines,
the non-canonical role of autophagosomes as signaling organelles in stress and disease paradigms
should be further investigated. Taken together, these ‘signaling’ autophagosomes represent a new
paradigm distinct from their canonical role in degradation process. However, it could not be ruled out
that there may exist multiple populations of autophagosomes ‘assigned’ with different tasks. To better
discern this possibility, it may be necessary to continue efforts to characterize the membrane sources
for autophagosome formation and track the differences of autophagosomes deriving from different
neuronal sub-compartments.

Notably, biogenesis of autophagosomes and the initiation of their retrograde trafficking were
also shown to be regulated by presynaptic activity [37,38]. It would be tempting to speculate that
autophagosome biogenesis may also take place in other neuronal subdomains upon neuronal activity,
though further investigations are needed. Recently, modulation of autophagy at the synapse and the
rationale behind their interactions have attracted the most scrutiny [39,40]. The question arises as to
what cargoes are degraded by autophagy at synaptic specializations.

3. Described and Emerging Synaptic Components of Autophagy

Synaptic cargo trafficking is vital for synapse formation, function and plasticity [41,42]. Previously
recognized as a non-selective process, autophagy is now known to recognize and recruit specific cargoes
via autophagy receptors for subsequent lysosomal degradation [43]. The degradation of selected
cargoes at the synapse must follow a time- and space-dependent fashion to allow for specialized
synaptic and neuronal function. Although what is engulfed in autophagosomes at synapses remains
largely elusive, some well-defined and emerging cargoes at the synapse that are degraded by autophagy
have been explored, including synaptic proteins and vesicles, postsynaptic receptors and organelles
(including mitochondria) [44] (Figure 1).
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Figure 1. Emerging concepts and functions of how autophagy might regulate synaptic components 
and synaptic plasticity. Synaptic components (in red, outlined in the white rectangle within the 
presynapse) including synaptic proteins (PSD-95, PICK1 and SHANK3), synaptic vesicles, 
postsynaptic receptors (GABAA receptors and AMPA receptors following endocytic removal from 
the plasma membrane) and mitochondria are known to be degraded (straight line) by autophagy (in 
green), thereby potentially contributing to different forms synaptic plasticity (in purple, outlined in 
an oval-shaped frame) such as long-term potentiation (LDP), long-term depression (LTD) and 
memory formation. Ubiquitin-proteasome system (in blue) and endosomal-lysosomal system (in 
blue) also degrade (dotted lines) certain synaptic components and, thus contribute to synaptic 
plasticity and memory. 

Postsynaptic receptors, namely GABAA receptors and AMPA receptors, have been shown to be 
degraded by autophagy [45,46] (Figure 1). An implication of these findings suggests autophagy may 
serve as a candidate mechanism to regulate neuronal excitation-inhibition balance, which is 
important for synaptic plasticity and brain function. 

Moreover, presynaptic autophagy has also been shown to modulate synaptic vesicle numbers 
and neurotransmission [47] (Figure 1), thereby potentially contributing to synaptic plasticity. 
Recently, Rab26, a protein on the surface of vesicles near synapses, has been shown to direct synaptic 
vesicles (SVs) to the autophagic program [48], although further work elucidating how this novel 
pathway is regulated remains to be scrutinized. 

Notably, mitophagy (selective autophagy targeting mitochondria for degradation) (Figure 1) as 
a mitochondrial quality control mechanism at the synapse may be of vital importance because 
synaptic activities, such as axonal growth and branching, neurotransmission and long-distance cargo 
transport are energy-demanding and require proper calcium buffering capacity from mitochondria 

Figure 1. Emerging concepts and functions of how autophagy might regulate synaptic components
and synaptic plasticity. Synaptic components (in red, outlined in the white rectangle within the
presynapse) including synaptic proteins (PSD-95, PICK1 and SHANK3), synaptic vesicles, postsynaptic
receptors (GABAA receptors and AMPA receptors following endocytic removal from the plasma
membrane) and mitochondria are known to be degraded (straight line) by autophagy (in green), thereby
potentially contributing to different forms synaptic plasticity (in purple, outlined in an oval-shaped
frame) such as long-term potentiation (LDP), long-term depression (LTD) and memory formation.
Ubiquitin-proteasome system (in blue) and endosomal-lysosomal system (in blue) also degrade (dotted
lines) certain synaptic components and, thus contribute to synaptic plasticity and memory.

Postsynaptic receptors, namely GABAA receptors and AMPA receptors, have been shown to be
degraded by autophagy [45,46] (Figure 1). An implication of these findings suggests autophagy may
serve as a candidate mechanism to regulate neuronal excitation-inhibition balance, which is important
for synaptic plasticity and brain function.

Moreover, presynaptic autophagy has also been shown to modulate synaptic vesicle numbers
and neurotransmission [47] (Figure 1), thereby potentially contributing to synaptic plasticity. Recently,
Rab26, a protein on the surface of vesicles near synapses, has been shown to direct synaptic vesicles
(SVs) to the autophagic program [48], although further work elucidating how this novel pathway is
regulated remains to be scrutinized.

Notably, mitophagy (selective autophagy targeting mitochondria for degradation) (Figure 1) as a
mitochondrial quality control mechanism at the synapse may be of vital importance because synaptic
activities, such as axonal growth and branching, neurotransmission and long-distance cargo transport
are energy-demanding and require proper calcium buffering capacity from mitochondria [49,50].
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Burgeoning evidence has shown that degradation of mitochondria can occur in both the cell body
and distal axons close to presynaptic specializations [27,51–56]. That said, although mature lysosomes
with high degradative capacity reside primarily in the cell soma, degradation of cargoes in axonal
domains can also occur locally. Indeed, axonal mitophagy can rapidly provide neuroprotection
upon oxidative stress without arduous retrograde transport of damaged mitochondrial to the soma,
ensuring mitochondrial homeostasis in a timely fashion. Conversely, defects in mitophagy may result
in dysfunctional presynaptic mitochondria, which would impair synaptic homeostasis and, thus,
culminate in neurodegeneration [57].

Recently, the contribution of autophagy to synaptic protein turnover has been deciphered.
The Tavernarakis lab has shown postsynaptic density scaffolds PSD-95, PICK1 and SHANK3 to
constitute autophagosomal cargoes (Figure 1), as these three synaptic proteins are present in purified
autophagosome supernatant fraction in a western blot analysis [58]. Importantly, the exact mechanisms
governing the selective targeting of synaptic proteins by autophagic degradation and whether they
might be dynamically regulated by neuronal activity have yet to be deciphered. That the refinement
of synaptic molecular composition and regulation of synaptic plasticity by autophagy steering the
degradation of synaptic proteins appear possible (Figure 1).

Additionally, the mechanistic underpinnings of autophagy modulation by synaptic proteins have
been shown. Several synaptic proteins have been found to modulate the rate of autophagosome
biogenesis. The presynapse-enriched proteins EndophilinA (EndoA) and Synaptojanin-1 (Synj1) were
found to interact with autophagy-related proteins to promote synaptic autophagy [59–61], independent
of their known function in synaptic vesicle endocytosis [62,63]. Conversely, another presynaptic
active zone (AZ) protein Bassoon sequesters key autophagy machinery Atg5 to inhibit presynaptic
autophagy [64]. Furthermore, loss of Bassoon triggers presynaptic autophagy. The co-existence
of positive and negative local regulators of presynaptic autophagy likely provides one candidate
mechanism for dynamic switches during aging and neurodegenerative diseases. Interdisciplinary
studies combining genetic, molecular and cellular biology approaches, and cutting-edge imaging tools
in different model organisms might help uncover more principles as such [65–69]. Therefore, it is
conceivable that other AZ proteins that interact with autophagy will be unveiled in future. Together,
these AZ proteins might be part of a complex network that can timely modulate autophagy to eliminate
dysfunctional components to allow for optimal synaptic performance, plasticity and maintenance.

4. Intersection of Autophagy and Synaptic Plasticity: Emerging Concepts and Relevance?

The capacity of synapses to undergo lasting morphological and biochemical changes and modify
neural circuits in response to learning and neuromodulators is known as synaptic plasticity [70,71].
Precisely, these lasting changes in synaptic efficacy entail a broad spectrum of molecular modifications
in presynaptic transmitter release, alterations in postsynaptic receptors, neuromodulator actions,
the signal transduction pathways activated, gene activation and new protein synthesis [72]. Notably,
increasingly sophisticated tools and methods have depicted that synapses are extremely plastic
entities in both structure and function as a result of their high diversity in molecular makeup [73,74].
There are different forms of synaptic plasticity, including long-term potentiation and depression
(LTP and LTD, respectively), homeostatic plasticity, metaplasticity, and spike-timing-dependent
plasticity (STDP) [71,73]. Interestingly, functional diversity of synapses, such as the kinetics, strength or
plasticity of synaptic transmission, often seems to mirror protein expression diversity [73]. Intrinsically,
the bioenergetic and biosynthetic materials such as amino acids and other metabolic building blocks
created from autophagic degradation can be used for new protein synthesis, which may be essential
for a local control of synaptic plasticity in dendrites and axons apart from the cell body [75–77].

To date, it is widely accepted that both protein synthesis and protein turnover are required
for synaptic plasticity [78–83]. Put differently, protein degradation is required to counterbalance
protein synthesis, thereby allowing a tight control of local proteome at the neuron and the synapse
to fine-tune synaptic connections during development and synaptic plasticity in adults. Research
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over the years has mainly focused on the proteolytic role of ubiquitin-proteasome system (UPS) and
the endosomal-lysosomal system in neural plasticity and memory [84–87]. Remarkably, the UPS
has been found to regulate presynaptic and postsynaptic proteins critical for neurotransmission
and synaptic plasticity [87–90] (Figure 1), and the endosomal-lysosomal system could sort synaptic
receptors for degradation in an activity-dependent manner [91] (Figure 1). In short, while degradation
of synaptic proteins via the UPS has received considerable attention in the context of synaptic plasticity,
the potential regulation of synaptic plasticity by autophagy is less explored and remains enigmatic.

Indeed, many different forms of long-term synaptic plasticity act together to shape the properties
of neural circuits, but the most well-studied synaptic plasticity is NMDA receptor-dependent long-term
potentiation (LTP) [92]. In contrast to long-term depression (LTD), long-term potentiation (LTP)
represents a persistent increase in synaptic strength. Brain-derived neurotrophic factor (BDNF),
a member of the neurotrophin family proteins, is an important regulator of long-term potentiation (LTP)
in the hippocampus and in other brain regions [93,94]. In the aforementioned scenarios, autophagy
has been found to modulate synaptic organization and plasticity by degrading postsynaptic receptors
(GABAA receptors in a Caenorhabditis elegans study) and synaptic vesicles [23,45–48]. Moreover,
in the Synj1-deficient zebrafish visual mutant nrca14, loss of Synj1 (involved in synaptic vesicle
cycling as mentioned above) leads to abnormal autophagic/endolysosomal activity in photoreceptor
neurons [95,96]. Nikoletopoulou and colleagues further showed that suppression of autophagy
is required for BDNF-induced synaptic plasticity. Interestingly, they discovered regulation of
autophagy by fasting is varied across different brain regions, with induced autophagic activity in
the hypothalamus and suppressed autophagic activity in the forebrain. This may lay a foundation
for profound functional consequences in the brain. Importantly, this change in autophagic activity
is paralleled by changes in BDNF levels. Furthermore, BDNF was found to suppress autophagy by
transcriptionally downregulating key components (Atg12, LC3 and Gabarapl1) of the autophagic
program. They then established that inhibiting autophagy is sufficient to rescue LTP defects imposed
by loss of BDNF. Last, they showed that autophagy may modulate synapses by directly degrading
synaptic proteins PSD-95, PICK1 and SHANK3, mutations in which have been implicated in autism
spectrum disorders (ASD) [58]. Again, this elegant study supports the notion that autophagy may
regulate synaptic plasticity by degrading synaptic components (Figure 1).

It is now widely believed that synaptic plasticity is the cellular mechanism for learning in
mammals and other model organisms including the fruit fly Drosophila melanogaster [87]. Remarkably,
supplementing a body-endogenous substance, called spermidine, was found to extend longevity
across many species [97], and rescued age-related memory impairment (AMI) in Drosophila in an
autophagy-dependent manner [98]. Mechanistically, spermidine blocks an age-associated ramp-up
(synaptic strength reaching a ceiling level) in presynaptic proteins (Bruchpilot, Unc-13) and concomitant
enhanced neurotransmitter release, which are causally related to the occurrence of AMI [99–102].
Despite this, how exactly autophagic regulations intersect with memory formation in Drosophila
and in vertebrate models warrants further investigation. Wdr45 (one of the orthologs of yeast
Atg18) is essential for the formation of autophagosomes. Mutations in Wdr45 cause ß-propeller
protein-associated neurodegeneration (BPAN) characterized by cognitive impairments. Several studies
showed that CNS-specific Wdr45 knockout mice exhibit impaired memory, further supporting the role
of autophagy in memory formation [103–106] (Figure 1).

In fact, several studies using rodent disease models have positively associated the upregulation
of autophagy with the alleviation of synaptic plasticity deficits and cognitive impairments at the
cellular and organismal level [107–112]. Despite the facts that these reports clearly suggest a link
between autophagy and memory formation, an important caveat to bear in mind is that they were
performed in the context of various diseases. Potentially relevant to these findings, Shehata and
colleagues showed that in an auditory fear reconsolidation mice model, autophagy contributes to fear
memory destabilization and induction of autophagy can be employed to augment the erasure of a
reconsolidation-resistant auditory fear memory, providing a potential therapeutic opportunity for
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the treatment of anxiety disorders [113]. Taken together, it appears likely that autophagy may have
an important role in certain forms of synaptic plasticity and memory formation (Figure 1), and this
regulation may be conserved in many model organisms.

Although we are just scratching the surface, emerging links between autophagy and synaptic
plasticity and how the deregulation of autophagy might cause synaptic defects and neurological
disorders have been gradually revealed. Thus, future efforts targeting specific types and steps of the
autophagic process may hold therapeutic potential for disease-modifying strategies [114].

5. Conclusions

As mentioned, all these concurrent formidable challenges faced by postmitotic neurons
require various quality control pathways to maintain neuronal function. Autophagy, as a
cellular quality control mechanism, plays an essential role in neuronal development, survival and
homeostasis, as deregulation of autophagy has been implicated in neurodevelopmental disorders and
neurodegeneration. Indeed, the surveillance and repair functions of autophagy are critical to safeguard
neuronal synapses due to their high susceptibility to disturbance of proteostasis.

Convincing evidence has established compartment-specific regulation of autophagy in different
neuronal subdomains, likely facilitating cargo degradation in a spatiotemporal manner. Apart from a
conventional role in degradative pathways, a non-canonical function of autophagosomes in mediating
neuronal signaling has been discovered. Furthermore, what contents are engulfed by autophagosomes
at synapses have been deciphered, including synaptic proteins and vesicles, mitochondria and
postsynaptic receptors. It is tempting to speculate that local degradation of synaptic components at
the synapse and lysosomal degradation in the soma coexist to protect neuronal homeostasis under
conditions of metabolic stress. Undoubtedly, degradation of synaptic components by autophagy plays
a pivotal role in removing damaged synaptic proteins and organelles and, thus confers neuronal and
synaptic proteostasis. Last, emerging evidence indicates that autophagy may be required for certain
forms of synaptic plasticity and memory formation through the turnover of synaptic components in a
spatiotemporal dependent fashion.

6. Future Perspective

The role of autophagy in synapse biology is a relatively new active research field moving forward.
Lessons learnt from the interactions between UPS and synaptic plasticity can be employed to directly
examine more details in the autophagy-synaptic plasticity axis in various contexts. Although many
autophagic cargoes have been uncovered, the synapse-specific substrates for autophagy remain obscure.
Thus, the imminent challenge is to completely characterize and define the synaptic components within
autophagosomes at the presynaptic and postsynaptic sites and determine whether the degradation
of these synaptic components is dynamically regulated by neural activity and/or synaptic plasticity
in a spatiotemporal manner. Another key issue to be addressed would be whether autophagy can
selectively degrade synaptic plasticity-related proteins (PRPs), whose turnover via autophagy controls
synaptic plasticity. Likewise, a systemic elucidation of synaptic defects stemming from compromised
autophagy should be appropriately addressed. Moreover, further investigation is warranted whether
and how autophagy cooperates with other degradative pathways to fine-tune synaptic plasticity in
neurons. Last, emerging concepts and relevance in autophagy and synaptic plasticity could indicate
that harnessing synaptic autophagy might become crucial for protective strategies in the context
of synaptopathies such as cognitive impairments, intellectual disability, autism spectrum disorders
(ASDs), schizophrenia, and epilepsy. Consequently, delineating interactions between autophagy
and synaptic plasticity is a prerequisite that may allow for direct modulation (upregulation or
downregulation) of autophagy specifically at sub-synaptic compartments in future.
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