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Tensor network states, and in particular projected entangled pair states, play an important role in the description
of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation
methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological
order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic
systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce
a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic
components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable
under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground
state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the
fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor
networks carries over to fermionic models.
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I. INTRODUCTION

One of the longstanding questions of theoretical physics is
concerned with the classification of phases of matter in quan-
tum many-body systems [1]. In the recent past, the framework
of tensor network states [2–6] has provided a particularly use-
ful tool allowing a deepened understanding of quantum orders
beyond Landau’s symmetry-breaking paradigm. Notably, the
phase classification of one-dimensional gapped systems has
been essentially completed [7,8] using tensor network states,
in particular matrix-product states (MPS).

In two spatial dimensions and beyond, where the clas-
sification problem is much more intricate, tensor network
states still provide a solid mathematical machinery. Indeed,
beyond their use as variational states in powerful numerical
methods, they constitute a concise framework for capturing
notions of topological order. One reason for their usefulness
is that a tensor network description admits easy access to
the entanglement structure of a state. Entanglement theory
is central to the understanding of topological order. Not
surprisingly, in light of this observation, tensor network states
give rise to a powerful tool in research located between
condensed-matter physics and quantum information theory.

For spin and bosonic systems in two dimensions, an
enormously fruitful approach to classifying quantum phases is
based on a certain type of tensor network states, the projected
entangled pair states (PEPS) [2–6,9–11]. A PEPS is a state
vector,

|�〉 =
∑

i1,...,iN

T [Ai1 . . . AiN ]|i1, . . . ,iN 〉, (1)

defined by tensors A with a physical index ik and several virtual
indices contracted according to a virtual lattice geometry
(denoted by T ). Each PEPS is the exact ground state of a
respective parent Hamiltonian [12]. Hence, the emphasis is
shifted from Hamiltonians to states, but the connection is kept
with Hamiltonian problems by virtue of the parent. A natural
question is to ask if and how phases of matter can be classified
in terms of parent Hamiltonians of PEPS.

A first answer to that is given for so-called injective
PEPS, which exhibit a one-to-one correspondence between
the physical and virtual degrees of freedom [12]. This implies
that they are unique ground states of their parent Hamiltonians
and not yet able to incorporate topological order. After all,
the most obvious topological invariant is a robust ground-state
degeneracy which depends on the genus of the underlying
surface.

However, it turns out that virtual symmetries of the tensor
A provide the key to an understanding of topological order.
One can impose a group symmetry and require that the virtual
and physical levels of any local tensor region are equivalent
up to this group symmetry. This is known as G injectivity [12]
and leads to PEPS describing the topological order of discrete
gauge theories or Kitaev’s quantum double models [13], of
which the famous toric code—the most paradigmatic model
of intrinsic topological order and starting point for topological
quantum memories—is an important example.

G injectivity, however, is not the only mechanism which
leads to topological order in tensor networks (and is not
general enough to capture the models under consideration
here). Indeed, the generalization of G injectivity—matrix-
product operator (MPO) injectivity—constitutes a powerful
framework for the understanding of topological order. A
tensor is called MPO injective if it has a virtual symmetry
given by a matrix-product projector P such that the tensor
viewed as a map from the physical to the virtual space can
be inverted on the virtual symmetry subspace given by P [cf.
Fig. 1(b)]. MPO-injective PEPS [14–16] are able to represent
larger classes of models, in particular they capture the famous
Levin-Wen string-net models. This is remarkable progress:
But all this applies to spin models (or bosonic ones, for that
matter). Fermionic topological order remains unaddressed in
this program, however, to date.

It is the purpose of this work to introduce a framework of
tensor network states capable of capturing topological order
in quantum lattice models having a fermionic component. In
the focus of attention are tensor network states that exhibit
fermionic MPO injectivity. We introduce axioms for matrix-
product injectivity that concisely capture the properties the
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FIG. 1. (a) MPO symmetry, (b) MPO injectivity.

involved tensors must have, and hence provide a framework of
tensor networks allowing one to describe fermionic topological
order. We connect the general approach to a large class of
physical models by discussing fermionic twisted quantum
double models. Much in the focus of attention is the specific
example of the paradigmatic fermionic toric code [17]. In
that, we build upon insights that have been obtained on
fermionic symmetry-protected topological order [18], as well
as on frameworks to capture two-dimensional fermionic and
bosonic topological order [8,19–22]. Notably, the latter body
of work presents significant advances in the study of fermionic
phases of matter, but does not make the connection to tensor
networks yet, which allow for rigorous studies of properties
of the underlying quantum states. This step is laid out in the
present work.

II. FERMIONIC TENSOR NETWORKS

Tensor networks for purely fermionic systems have been
considered without the connection to notions of topological
order in the past [23–30], primarily motivated by numerical
studies. Key to the framework developed here, however, is
that the virtual symmetry of the tensors is incorporated in such
a way that allows for studying notions of intrinsic fermionic
topological order. It is this step that brings the study of phases
of matter in terms of tensor networks to the fermionic realm
that constitutes the main contribution of this work, identifying
the required virtual symmetries. Tensor network descriptions
are not even known for the paradigmatic fermionic toric code
[17] that can be understood as the simplest fermionic string-net
model [19] given as a two-dimensional lattice model with spins
on the edges and fermions on the vertices. Reminiscent of
the bosonic analog, its Hamiltonian H = ∑

v Qv + ∑
p Qp is

given by a sum of vertex operators Qv and plaquette operators
Qp that are mutually commuting local projectors acting on
bosonic and fermionic degrees of freedom simultaneously. The
significant deviation from any bosonic model is reflected by
the fact that the low-energy effective spin topological quantum
field theory (TQFT) of the fermionic toric-code model is
given by a Chern-Simons theory that cannot be realized by
any local bosonic Hamiltonian. Even for this paradigmatic
model, and more so in generality, significant obstacles to a
tensor network description remain. It goes without saying that
a naive embedding into a spin system is doomed to failure
as a consequence of Jordan-Wigner strings. It is still much
less clear to what extent ideas of MPO injectivity potentially
carry over, given that the notion of locality is largely altered
by the presence of fermionic anticommutation relations. That
is to say, the introduction of fresh concepts of fermionic tensor
networks are necessary, which will be developed from now on.

θp

θf1

θf2

θf3

v2
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FIG. 2. Fermionic PEPS tensor A given in Eq. (2). Solid black
lines denote bosonic indices. Dashed green lines denote fermionic
indices.

The key obstacle in constructing tensor networks for
fermionic systems is to come up with a mechanism that
allows the reordering of fermionic operators by keeping track
of arising sign factors. Reordering the contraction order is
a necessary prerequisite for the efficient contraction of a
fermionic PEPS (fPEPS). One possibility to solve this problem
is to use PEPS of increased bond dimension instead of
fPEPS [31]. Another possibility is to use a particular kind
of Grassmann number tensor network as, e.g., in the fermion
coherent-state representation [32].

Here we use a similar construction. Each tensor has a
physical fermionic mode θp and virtual fermionic modes θfi

represented by Grassmann numbers. In addition, the tensor has
bosonic physical and virtual indices pi and vi and a bosonic
weight which is used to perform sign-factor bookkeeping but
also allows one to describe fermion-spin hybrid systems.

In the following, we will use tensors that are designed to
describe fermion-spin hybrid models on trivalent graphs with
spins on the edges and a fermionic mode at the vertex such
as the fermionic twisted quantum double models addressed
later. Different lattice geometries can be taken into account by
blocking several tensors together. The tensors are of the form

A =
∑

A
p1p2p3v1v2v3
pf1f2f3

θpθf1 θ̄ f2 θ̄ f3 , (2)

as depicted in Fig. 2. When the sum of all Grassmann number
exponents is even, the tensors commute and thus the tensor
network state is independent of the contraction order.

A contraction along a Grassmann valued bond is defined
by inserting a factor

∫
dθ̄f dθf and integrating out the two

Grassmann numbers θf and θ̄ f . To perform the integration, the
Grassmann numbers have to be reordered, yielding sign factors
that depend on the Grassmann numbers of the adjacent tensors.
This has consequences for the virtual symmetries of the tensor,
i.e., virtual symmetries cannot, in general, be captured by
bosonic MPOs. This makes it necessary to introduce the
concept of fermionic matrix-product operators.

III. AXIOMS OF FERMIONIC MPO INJECTIVITY

The key idea of fermionic MPO injectivity remains the
same as in the bosonic setting: The MPO projector singles out
a virtual subspace on every region, which eventually gives
rise to the right entanglement scaling and the topological
ground-state degeneracy. However, the algebraic structure
of the fermionic symmetry MPO and the corresponding
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FIG. 3. Symmetry fMPOs P+ and P− consisting of Y tensors
(gray) and tensors T+ (blue) and T− (red).

virtual subspace is fundamentally different from the bosonic
case. For example, performing a Jordan-Wigner transform
to obtain a usual bosonic MPO would drastically alter the
locality structure of the MPO. The virtual fermions also affect
the stability of MPO symmetry and MPO injectivity under
concatenation, since concatenation of two MPOs is always
accompanied by a reordering of virtual modes and thus by
emerging additional sign factors. In the following, we will
define fermionic matrix-product operators and state the axioms
of fermionic MPO injectivity.

Definition 1. fMPO symmetry. A tensor A has fermionic
MPO (fMPO) symmetry if it is invariant under the action of a
fermionic MPO.

By fermionic MPO, we refer to an MPO consisting of single
tensors that are fermionic, i.e., they have virtual bosonic bonds
and virtual fermionic bonds, again represented by Grassmann
numbers. To define MPO injectivity in more generality, it
is convenient to equip the tensor network with a branching
structure. That is, the edges of all PEPS tensors are oriented
such that no cyclic triangles arise. The symmetry MPO, in
general, depends on the orientation of the boundary edges
of the tensor A using the following construction: The MPO
itself is given an orientation (counterclockwise used here) and
consists of T+ tensors at edges that are parallel to the MPO
direction and T− tensors at antiparallel edges. Using two types
of tensors to construct general MPOs suffices in the bosonic
setting [14]. However, in the fermionic setting, additional
sign factors emerging from a reordering of fermionic modes
pose an obstacle to the stability of MPO symmetry under
concatenation—an axiom that is required. In order to overcome
this adversity and consistently define symmetry MPOs for
a region R composed of an arbitrary number of MPO-
symmetric triangle tensors, one can introduce an additional
purely bosonic sign-factor tensor Y whose position within the
MPO depends on the edge orientations on the boundary of
R. To illustrate the construction, the symmetry MPOs for the
two possible branching structures of a single triangle tensor
P+ = tTr[T+T+T−Y ] and P− = tTr[T+T−T−Y ] are depicted
in Fig. 3. Here, tTr denotes a contraction of all bonds along
the transversal direction of the MPO ring.

Axiom 1. Projector property. The MPOs P± fulfill P 2
± = P±

and thus are projectors.
Based on the stability of MPO injectivity under concate-

nation explained below, this property generalizes to MPOs of
arbitrary size.

Axiom 2. Stability of fMPO symmetry. Fermionic MPO
symmetry is stable under concatenation.

FIG. 4. Concatenation of two MPO tensors with open or partially
closed radial indices.

In particular, the concatenation of two fMPO-symmetric
tensors with compatible branching structure is again fMPO
symmetric. In order for this axiom to be realizable, one first
needs to consistently define symmetry fMPOs on regions of
arbitrary size. One way to do this is to choose a branching
structure that admits a global flow direction, i.e., all edges are
oriented into one direction with a deviation of less than π/2,
and to place Y tensors within the MPO at positions that depend
on the edge orientation of the boundary. Then one can show that
if the concatenation of two MPO tensors proceeds according
to the rules stated in Fig. 4, stability under concatenation is
guaranteed. For more details and a proof based on induction,
we refer to the Appendix.

Definition 2. fMPO injectivity. A tensor A that is fMPO
symmetric and has a pseudoinverse Ã such that ÃA = P , i.e.,
is invertible on the fMPO-symmetric subspace given by the
projector P , is called fMPO injective.

Axiom 3. Stability of fMPO injectivity. Fermionic MPO
injectivity is stable under concatenation, i.e., the concatenation
of two fMPO-injective tensors is again fMPO injective.

As in the bosonic case, this is a direct consequence of the
stability of fMPO symmetry under concatenation [14].

Tensor networks satisfying fermionic MPO injectivity
defined by the three axioms above provide a consistent and
versatile framework to describe nonchiral intrinsic topological
order for fermionic models. To provide further substance
to the framework established, we present a large class of
fermionic models that admit an fMPO-injective tensor network
description.

IV. FERMIONIC TWISTED QUANTUM DOUBLE MODELS

In the realm of bosonic MPO injectivity, it has been
established that the ground states of an important class of
models exhibiting topological order, i.e., Levin-Wen string-net
models, can be written as PEPS. Furthermore, the self-
consistency equations of the renormalization-group (RG) flow
defined for Levin-Wen string-net models, in particular the
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pentagon equation, give rise to a virtual MPO symmetry of
the respective tensors.

Building upon this insight, we construct fPEPS for a
particular subset of fermionic string-net models proposed
in Ref. [19] that we refer to as fermionic twisted quantum
double models. Here, the bosonic spin degrees of freedom
(edge labels) are given by a group G and spinless fermions
on the vertices are coupled to the bosonic edge degrees via a
2-cocycle s ∈ H2(G,Z2) fulfilling

Mod[s(a,b) + s(ab,c) + s(a,bc) + s(b,c),2] = 0. (3)

That is, the presence of a fermion at a vertex is determined
by the adjacent spins on the two incoming edges or the two
outgoing edges gi,gj of the vertex via θs(gi ,gj ).

For bosonic twisted quantum double models, the main
self-consistency equation of the RG flow, i.e., the pentagon
equation, reduces to a 3-cocycle equation. In the fermionic
setting, the anticommutation relations lead to a super-3-
cocycle equation, i.e., a 3-cocycle equation graded by the
2-cocycle s,

ω(a,b,c)ω(a,bc,d)ω(b,c,d)

= (−1)s(a,b)s(c,d)ω(ab,c,d)ω(a,b,cd). (4)

A solution to Eq. (4) exists iff the function (−1)s(a,b)s(c,d) is
a coboundary B4(G,U (1)) viewed as a 4-cocycle. The full
model is then described in terms of a triple (G,s,ω), where
ω ∈ H3

f (G,U (1),s) fulfills Eq. (4).
We use the branching structure of the lattice to define

positively and negatively oriented tensors A+/− according to
whether the majority of the edges are oriented clockwise or
counterclockwise (cf. Fig. 3 ). The expressions for A± read

A+ =
∑

v0,v1,v2

ω
(
v0,v

−1
0 v1,v

−1
1 v2

)

× θs(v−1
0 v1,v

−1
1 v2)θs(v0,v

−1
0 v2)θ̄ s(v1,v

−1
1 v2)θ̄ s(v0,v

−1
0 v1)

× ∣∣v−1
0 v1,v

−1
1 v2,v

−1
0 v2

〉〈v0,v1,v2|, (5)

A− =
∑

v0,v1,v2

ω−1
(
v0,v

−1
0 v1,v

−1
1 v2

)

× θs(v0,v
−1
0 v1)θs(v1,v

−1
1 v2)θ̄ s(v0,v

−1
0 v2)θ̄ s(v−1

0 v1,v
−1
1 v2)

× ∣∣v−1
0 v1,v

−1
1 v2,v

−1
0 v2

〉〈v0,v1,v2|. (6)

The 2-cocycle s determines the occupation of physical (virtual)
fermionic modes via a coupling to their adjacent physical
(virtual) spins which ensures that the fPEPS tensors are
commuting by construction. Reminiscent of the bosonic
setting, the weight of the tensors is defined in terms of the
super-3-cocycle ω and the relation between physical and
virtual indices is chosen as pi,j = v−1

i vj , which means that
the fPEPS is not injective, but invertible only on a symmetry
subspace singled out by the MPO projector given below.

FIG. 5. The MPO tensors T+(g), T−(g), and Y .

Next we explicitly construct the T+ and T− tensors of the
fMPO under which A± is symmetric [cf. Figs. 5(a) and 5(b)],

T+(g) =
∑
v0,v1

ω
(
g,v0,v

−1
0 v1

) |v0,v1〉〈gv0,gv1|

× θs(v0,v
−1
0 v1)θs(g,v1)θ̄ s(gv0,v

−1
0 v1)θ̄ s(g,v0), (7)

T−(g) =
∑
v0,v1

ω−1(g,v1,v
−1
1 v0

) |v0,v1〉〈gv0,gv1|

× θs(g,v1)θs(gv1,v
−1
1 v0)θ̄ s(g,v0)θ̄ s(v1,v

−1
1 v0), (8)

and the purely bosonic sign-factor tensor depicted in Fig. 5(c),

Y =
∑
v,w

(−1)s(wv−1,v)|v,w〉〈v,w|. (9)

Note that each group element g ∈ G yields a distinct sym-
metry MPO, i.e., we have A± = A±V±(g), with V±(g) =
tTr[T±(g)T±(g)T∓(g)Y ] for each element independently. The
MPO projector is given by P± = ∑

g V±(g) and the projector
identity P 2

± = P± follows from the fact that V±(g) fulfills
the group representation property V±(g)V±(h) = V±(hg). The
existence of the pseudoinverses of A± is verified by explicit
calculation and the stability of MPO symmetry and MPO
injectivity under concatenation follows directly from the fact
that the tensors T± fulfill the concatenation properties depicted
in Fig. 4, which is a consequence of direct calculation.

V. GROUND-STATE SPACE

The concept of fMPO injectivity makes it possible to
compute essential properties of a physical model solely based
on the characterization of the virtual tensor symmetries without
considering the state or the Hamiltonian explicitly on a
physical level. Based on the formalism developed, one can
compute the ground-state degeneracy of an fMPO-injective
PEPS on a torus equipped with a branching structure admitting
a global flow, without having to consider the physical degrees
of freedom. Here, we closely follow the approach of Ref. [14].
We consider all locally undetectable closures on a minimal
torus which are MPO symmetric, i.e., all states which can
be defined simultaneously using the three different closure
tensors depicted in Fig. 6. Similar to the bosonic setting, one
can parametrize this space as

span{M(g,h)| [g,h] = 0, s(g,h) = s(h,g)}, (10)
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FIG. 6. The three different closure tensors on a minimal torus.

where the closure tensor M is constructed as depicted in Fig. 7
and given by

M(g,h) =
∑

α

λ(α; g,h)|α,gα,ghα,hα〉

× θs(gα,αg−1)θs(hgα,αh−1)θ̄ s(ghα,αg−1)θ̄ s(hα,αh−1).

(11)

Here, αg = α−1gα denotes conjugation by the inverse element
and the coefficient λ is given in the Appendix.

Imposing MPO symmetry simply by acting with a four-site
MPO V (k) on M , we obtain a parametrization of the ground-
state space in terms of MPO-symmetric tensors,

M ′(g,h) = 1

|G|
∑

k

V (k)M(g,h)

= 1

|G|
∑

k

ηω
g (h,k)M(gk,hk), (12)

where gk = kgk−1 denotes conjugation and ηω
g (h,k) is given

in the Appendix.
Next we count the number of linearly independent elements

of the ground-state space. First, one can show that two
states M ′(g,h) and M ′(k,l) are linearly dependent if (g,h)
and (k,l) are in the same pair-conjugacy class. Furthermore,
not all pair-conjugacy classes correspond to a nonvanishing
state. Similar to the bosonic setting, one finds that only pair-
conjugacy classes C(g,h) contribute to the total ground-state
space dimension for which [g,h] = 0,s(g,h) = s(h,g) and, for
all elements of the centralizer k ∈ Z(g,h), we have

cω
g (h,k) = cω

g (k,h), (13)

where

cω
g (h,k) = ω(g,h,k)ω(h,k,g)

ω(h,g,k)
. (14)

We refer to this property as (cω,s) regular. Since states
from different pair-conjugacy classes are linearly independent,

FIG. 7. Closure tensor M(g,h).

we conclude that the ground-state degeneracy for fermionic
twisted quantum double models defined by a triple (G,s,ω)
on a minimal torus is given by the number of (cω,s)-regular
pair-conjugacy classes. In complete analogy to the bosonic
setting, the considerations on the minimal torus hold equally
well on a torus of arbitrary size due to the axioms of stability
under concatenation.

In the case where the 2-cocycle s is trivial, i.e., the bosonic
case, we obtain a classification of the ground-state basis in
terms of cω-regular pair-conjugacy classes as expected from
the results of Ref. [14] for bosonic twisted quantum double
models. We recall that the ground-state degeneracy of a
bosonic quantum double model for a group G is given by the
number of pair-conjugacy classes and that the ground-state
degeneracy for any twisted bosonic quantum double model
is thus always lesser than or equal to the degeneracy of
the untwisted model. For fermionic twisted quantum double
models, there is no untwisted counterpart because for a
fermionic model there is at least one pair of group elements
(a,b) for which the 2-cocycle evaluates to s(a,b) = 1 in order
to be called a fermionic model. This implies that the graded
3-cocycle ω cannot be chosen to be completely trivial. Thus,
we cannot compare the ground-state degeneracy of twisted
fermionic quantum double to untwisted fermionic quantum
double models. However, it remains true that the ground-
state degeneracy of a twisted fermionic quantum double
model will be lesser than or equal to the untwisted bosonic
quantum double. Also note that not all bosonic quantum
double models have fermionic counterparts, i.e., for Zn with
n odd, there is no nontrivial 2-cocycle, i.e., no fermionic
model. It is an open question whether the symmetry condition
for the 2-cocycle s(g,h) = s(h,g) is a substantial restriction
on the pair-conjugacy classes on top of the cω regularity. A
simple calculation shows that for cyclic groups, all 2-cocycles
are symmetric and the condition is trivially fulfilled, but
it remains an interesting open question whether this result
extends to all Abelian groups.

VI. FERMIONIC TORIC CODE

To illustrate the formalism of fermionic MPO-injective
fPEPS, we will elucidate how the ground state of the
fermionic toric-code Hamiltonian as proposed in Ref. [17]
can be written as a fermionic tensor network satisfying the
axioms of fermionic MPO injectivity. The fermionic toric-code
Hamiltonian is given in a string-net description. It can be seen
as the simplest solution of the self-consistency equations for
fermionic twisted quantum double models, i.e., the simplest
triple (G,s,ω).

The local Hilbert space is given by qubits represented
by the group Z2 = {0,1}. This group has only two second
cohomology classes. Choosing the 2-cocycle s as a represen-
tative of the trivial cohomology class, one obtains the usual
bosonic toric-code or the double-semion model, depending on
the choice of ω, i.e., the solution to the pentagon equation
which is a usual 3-cocycle equation in this case. Choosing
the nontrivial second cohomology class, in particular the
normalized representative sf T C(g,h) = 1 if g = h = 1 and
0 otherwise, yields two normalized solutions to the graded
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pentagon equation,

ωf T C(g,h,k) =
{±i if g = h = k = 1,

1 otherwise,
(15)

which precisely correspond to the fermionic toric-code model
and its dual. For a discussion of possible Hamiltonian gauges
for the fermionic toric code, see the Appendix.

The ground-state wave function of the fermionic toric code
can be written in terms of A± tensors, defined in Eq. (5)
and (6) using s and ω, and the lattice geometry dual to the
physical lattice from Ref. [17] which admits a global flow.
By construction, this tensor network is fMPO injective. To
prove that it is indeed the ground state of the fermionic
toric-code Hamiltonian, one can verify that the tensor network
is an eigenstate to each local projector. The property of
being an eigenstate to the vertex projector is also already
implied in the construction of the A± tensor. Confirmation
that the tensor network state is an eigenstate to each plaquette
operator is done by explicit calculation in the Appendix.
Intuitively, this can be understood by interpreting the plaquette
operator as inserting a closed loop around the center of the
hexagon. The contraction of the inner virtual index v0 exactly
compensates for that, i.e., QpAhex(v0 = 0) = Ahex(v0 = 1)
and QpAhex(v0 = 1) = Ahex(v0 = 0). Note that due to the
anticommutating Grassmann variables, it is not trivial to see
that all sign factors are indeed correct, but it is a result of an
explicit calculation. Due to the translation invariance of the
lattice, it follows that the tensor network state is the ground
state on any region with open virtual boundary. To calculate
the ground-state degeneracy on a torus, we use the formalism
developed in the previous section. Since Z2 is Abelian, there
are four pair-conjugacy classes labeled by (0,0),(0,1),(1,0),
and (1,1). All of them are (cω,s) regular. To see this, note
that the 2-cocycle s is symmetric, which is true for any cyclic
group, as noted earlier. The graded 3-cocycle is normalized.
Thus, the regularity condition is trivially fulfilled whenever
one of the elements g,h,k is the trivial group element, but
the only other case g = h = k = 1 is also trivially fulfilled.
Thus, the ground-state degeneracy on a torus is four, which is
in agreement with the result obtained directly on the physical
level in Ref. [17].

VII. SUMMARY AND OUTLOOK

In this work, we have introduced a general tensor network
formalism that is sufficiently versatile to capture topological
order of quantum systems with a fermionic component. We
hence generalize the idea of describing phases of matter using
tensor network states to the fermionic realm. Yet, needless
to say, this is only the beginning of an extensive program:
In future work, instances of symmetry-protected topological
order will be discussed, as well as more subtle situations
in which a global flow cannot be identified [33]. It will
also be interesting to grasp modular matrices directly in this
framework. It is the hope that this work can be seen as a further
invitation to explore tensor networks to capture topological
phases of matter.

FIG. 8. MPO for a generic boundary consisting of Y tensors (gray)
and tensors T+ (blue) and T− (red).

ACKNOWLEDGMENTS

We would like to thank the DFG (Grant No. CRC 183),
the Templeton Foundation, the Studienstiftung des Deutschen
Volkes, and the ERC (Grant No. 307498) (TAQ) for support.

APPENDIX A: CONCATENATION STABILITY

We restate the construction recipe for consistent MPOs
given a branching structure admitting a global flow: Y tensors
are placed at each point where the boundary vertex has two
outgoing edges, which form an angle of less than π , and
at each point where the boundary vertex has two incoming
edges, which form an angle of more than π . In Fig. 8, a
tensor with a generic boundary and its symmetry MPO are
depicted to illustrate the construction. Next we provide proof
that the stability of MPO symmetry under concatenation is
guaranteed if the concatenation of two MPOs follows the
rules stated in Fig. 4. This is done by induction and it
suffices to show that adding MPO-symmetric triangle tensors
to an existing MPO-symmetric tensor patch is again MPO
symmetric. This is easily checked by considering all different
concatenation cases. To this end, we first make a distinction
between an “open” concatenation, where the MPO tensor
concatenation depicted in Fig. 4(a) is relevant, and a partially
closed concatenation [Figs. 4(b) and 4(c)], relevant when an
outer vertex of a triangle tensor becomes an inner vertex during
the concatenation process.

Before we discuss the different cases occurring, we intro-
duce a shorthand notation to symbolize the concatenation of
MPO-symmetric tensors. Instead of drawing the full symmetry
MPO, we just indicate the positions of Y tensors before and
after the concatenation (Fig. 9) by circles at the respective
boundary vertices.

In the case of “open” concatenation, it is sufficient to
consider concatenation along an edge pointing towards the
global flow direction and then categorize the different cases
according to the shared angles with the neighboring edges
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FIG. 9. The concatenation of two MPO-symmetric tensors writ-
ten in explicit notation (upper panel) and in abbreviated notation only
depicting the positions of Y tensors.

at the origin vertex. Since the placement of Y tensors only
depends on the criteria of whether angles are smaller or larger
than π and the edge orientations, the exact angles are irrelevant
and we only have to distinguish four cases distinguished
by 0,π/2,π,3π/2. Taking into account geometric constraints
imposed by the global flow criterion and making use of the
mirror symmetry along the global flow direction, there are six
distinct cases left to consider. All of them can be shown to yield
the correct MPO symmetry after concatenation, as shown in
Fig. 10.

The second case is relevant when two MPO-symmetric
tensors are contracted along a common boundary of
length two or more. Performing the contraction sequentially
along the common boundary amounts to a step-by-step
reduction of the size of the boundary and thus to a reduction
of the size of the symmetry MPO. Note that in this case,
there are two different concatenation rules depending on the
orientation of the inner edge relative to the position of the
already contracted transversal indices [Figs. 4(b) and 4(c)].

If the edges to be contracted share a vertex at their origin,
the contraction does not yield additional Y tensors and,
independently from the rest of the tensor, the contracted tensor
will have the expected MPO symmetry (Fig. 11, upper panel).
In the other case, one can consider all different cases of the
edge configurations in the immediate vicinity of the contracted
edge. Using symmetry arguments, there are three distinct
cases which can be checked explicitly (Fig. 11, lower three
panels).

APPENDIX B: GROUND-STATE SPACE

In this section, we present additional details to the calcula-
tion of the ground-state space degeneracy. The coefficient λ in
Eq. (11) is given by

λ(α; g,h) = ω(h,g,α)ω(h,gα,αg−1)

ω(g,h,α)ω(g,hα,αh−1)

× (−1)s(ghα,αh−1)s(gα,αg−1)+s(hgα,αg−1)s(hα,αh−1)

× (−1)(s(h,α)+s(hα,αh−1))(s(g,α)+s(gα,αg−1))+s(hg,α),

(B1)

FIG. 10. All six distinct cases for concatenating two MPO-
symmetric tensors along an open edge.

and the coefficient ηω
g (h,k) in Eq. (12) by

ηω
g (h,k) = ω(g,k−1,hk)ω(k−1,hk,gk)ω(h,g,k−1)

ω(h,k−1,gk)ω(k−1,gk,hk)ω(g,h,k−1)

× (−1)[s(k−1,kh)+s(kh,k−1)][s(k−1,kg)+s(kg,k−1)]

× (−1)s(k−1,kgh)+s(kgh,k−1). (B2)

The fact that M ′(g,h) and M ′(j,l) are linear dependent if
(j,l) = (gt ,ht ) for some t , i.e., if they are in the same pair-
conjugacy class, follows from the identity

ηω
gt (xt ,yt−1) = ηω

g (x,y)

ηω
g (x,t)

(B3)

that holds formally as in the bosonic setting despite the fact that
ηω has additional sign factors and is given by a product of super
3-cocycles ω. Equation (B3) is also used in order to derive that
only (cω,s)-regular pair-conjugacy classes contribute to the
ground-state dimension. To this end, first note that if

∑
s∈Z(g,h)

ηω
g (h,s) = 0, (B4)
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FIG. 11. Contracting two edges of the same MPO-symmetric
tensor.

then also ∑
s|gs=gti ,hs=hti

ηω
g (h,s) = 0, ∀i. (B5)

Writing out the state M ′(g,h) in the basis of the elements of
the pair-conjugacy class C(g,h), we make use of the fact above
to conclude that

M ′(g,h) = 0 ⇔
∑

s∈Z(g,h)

ηω
g (h,s) = 0. (B6)

To single out the pair-conjugacy classes for which Eq. (B6)
is fulfilled, we note that for all elements k in the centralizer of
(g,h) with [g,h] = 0, we have

ηω
g (h,k) = cω

g (k−1,h)

cω
g (h,k−1)

, (B7)

where cω
g (h,k) as defined in Eq. (14). For g,h,k ∈ Z(g,h) and

[g,h] = 0, i.e., g,h,k are mutually commuting, cω
g (h,k) is a

2-cocycle. This insight is used to apply the same arguments as
in Ref. [34] and show that∑

s∈Z(g,h)

ηω
g (h,s) = 0 ⇔ cω

g (h,s) 	= cω
g (s,h). (B8)

In other words, only pair-conjugacy classes C(g,h) contribute
to the total ground-state space dimension for which [g,h] =
0,s(g,h) = s(h,g) and cω

g (h,k) = cω
g (k,h).

APPENDIX C: HAMILTONIAN GAUGE

As addressed in Ref. [20], string-net models can be defined
using different gauges. Under such gauge transformations,
the Hamiltonian changes according to local physical unitary
operations that do not alter the topological phase. A typical
gauge degree of freedom is the choice of the loop weight, also
referred to as quantum dimension di . For all bosonic twisted

TABLE I. The first 32 matrix elements of the plaquette operator Qp defined on a hexagon with physical spins i,j,k,l,m,n after ungauging
the Hamiltonian given in Ref. [17]. The remaining 32 matrix elements follow by Hermitian conjugation.

i,j,k,l,m,n p(i,j,k,l,m,n)Fp(i,j,k,l,m,n) i,j,k,l,m,n p(i,j,k,l,m,n)Fp(i,j,k,l,m,n)

000000 −α/βc
†
3c

†
6

100000 c
†
3c1 010000 1/β2c

†
1c

†
2c

†
3c

†
6

001000 c
†
6c2 000100 c

†
6c4

000010 −1/β2c
†
3c

†
4c

†
5c

†
6 000001 c

†
3c5

110000 −1/βc
†
2c

†
3 011000 −1/βc

†
1c

†
6

001100 −βc
†
6c4c3c2 000110 1/βc

†
5c

†
6

000011 −1/βc
†
3c

†
4 100001 βc

†
3c6c5c1

101000 −αβc2c1 010100 α/βc
†
1c

†
2c

†
6c4

001010 −α/βc
†
4c

†
5c

†
6c2 000101 αβc5c4

100010 −α/βc
†
3c

†
4c

†
5c1 010001 α/βc

†
1c

†
2c

†
3c5

100100 −αβc4c1 010010 α/β2c
†
1c

†
2c

†
3c

†
4c

†
5c

†
6

001001 αβc5c2

000111 1 001110 −c
†
5c

†
6c3c2

011100 c
†
1c

†
6c4c3

101100 αβ2c4c3c2c1 010110 α/β2c
†
1c

†
2c

†
5c

†
6

001011 −αc
†
4c2 100101 −αβ2c6c5c4c1

110010 α/β2c
†
2c

†
3c

†
4c

†
5 011001 −αc

†
1c5

010101 −c
†
4c

†
5c2c1
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v0

v1

v2

v3
v4

v5

v6

FIG. 12. Hexagonal patch Ahex of a fermionic PEPS with the
lattice geometry dual to the physical lattice geometry used in
Ref. [18].

quantum double models, an MPO-injective PEPS description
can be found. Here, a particular gauge degree of freedom is
the choice of the representative ω of a certain cohomology
class which defines the model. A natural gauge is to choose
a normalized 3-cocycle, which will yield a wave-function
invariant under adding a closed loop, i.e., di = 1. Thus, the
tensor network gauge suggests a particular Hamiltonian gauge

of the corresponding string-net model. The same applies in the
fermionic setting.

The Hamiltonian in Ref. [17] is given in a specified gauge
(β = 1). To obtain the gauge compatible with the tensor
network description used here, we apply the transformation

c† 
→ 1√
β

c†, c 
→
√

βc, (C1)

to ungauge the Hamiltonian, and then choose β = −i, which
yields the gauge with trivial loop weights di = 1. The
matrix elements in this so-called tensor-network gauge of the
plaquette operator, written as

Qp =
∑

g1,...,g6

p(g1, . . . ,g6)Fp(g1, . . . ,g6)

× |g1 ⊕ 1, . . . ,g6 ⊕ 1〉〈g1, . . . ,g6|, (C2)

where ⊕ denotes addition modulo two, are given in Table I.
In this gauge, it is easy to check that the tensor network
state constructed from the tensors A± defined by the triple
(Z2,ωf T C,sf T C) is an eigenstate to each plaquette operator.
To see this, compute a hexagonal patch of the tensor network
Ahex as depicted in Fig. 12 and verify that QpAhex = Ahex.
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