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Abstract

In the light of the progress in quantum technologies, the task of verifying the correct functioning of
processes and obtaining accurate tomographic information about quantum states becomes increas-
ingly important. Compressed sensing, a machinery derived from the theory of signal processing, has
emerged as a feasible tool to perform robust and significantly more resource-economical quantum
state tomography for intermediate-sized quantum systems. In this work, we provide a comprehensive
analysis of compressed sensing tomography in the regime in which tomographically complete data is
available with reliable statistics from experimental observations of a multi-mode photonic
architecture. Due to the fact that the data is known with high statistical significance, we arein a
position to systematically explore the quality of reconstruction depending on the number of employed
measurement settings, randomly selected from the complete set of data, and on different model
assumptions. We present and test a complete prescription to perform efficient compressed sensing
and are able to reliably use notions of model selection and cross validation to account for experimental
imperfections and finite counting statistics. Thus, we establish compressed sensing as an effective tool
for quantum state tomography, specifically suited for photonic systems.

Introduction
Quantum technologies have seen an enormous progress in recent years. Photonic architectures have matured from
basic proof-of-principle schemes to intermediate scale quantum devices [ 1], while the robustness offered by
integrated optical devices is poised to push these systems yet further [2, 3]. Similarly, systems of two-digit trapped
ions [4] and other condensed-matter type systems such as superconducting devices are catching up at a remarkable
pace [5]. Building upon this technological development, important primitives of quantum information science are
being experimentally realised [6—10]. In light of these systems, it has become increasingly important to establish a
toolbox for tomographic reconstruction that can keep up with this rapid development: The ironic situation that is
emerging is that by now the state of large quantum systems can be manipulated with a high degree of control, but
not easily reconstructed. Clearly, these technologies and the community require further advancement of their tools
for state reconstruction. In this work, we discuss an explicit method to achieve such a reconstruction, thus
contributing to this long-term goal. Specifically, we demonstrate a comprehensive exploration of the performance
of state reconstruction in the photonic setting as one varies both the number of measurements and the noise model.
The framework of compressed sensing, a set of techniques originating from the context of classical signal
processing [11, 12], has emerged as a key protagonist in closing the gap between technology and diagnostics
[13—15]. The idea behind its functioning is rooted in the fact that a substantial amount of data encountered in
realistic situations are structured and can be characterised by significantly fewer parameters than with ad hoc
schemes. Approximately low-rank matrices are at the centre of the paradigm of matrix completion in
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compressed sensing and correspond precisely to approximately pure quantum states. Since pure quantum states
are widely regarded as the key resource for quantum information processing, such methods for reconstructing
low-rank states are especially relevant. For even larger systems, tomographic tools based on basic variational sets
are conceivable, with matrix product states [16, 17], their continuous analogues [ 18], and permutationally
invariant states [19] providing prominent examples. The theory of such novel tools of reconstruction is
progressing quickly. This applies, e.g., to new insights to the assignment of fair and rigorous confidence regions
[20-23] as well as economical ways of performing instances of quantum process tomography [14, 24, 25].

Exciting steps toward using compressed sensing in experimental settings have been made [19, 24, 26, 27] in the
regime in which one assumes knowledge about the basis in which sparsity is expected [24], assumes additional
structure [19] or is in the highly tomographically incomplete regime [27]. In this work, we complement the picture
for experimental tomography for medium-sized quantum systems. In its simplest formulation, compressed
sensing tomography is based on a few random expectation values of suitable observables, from which
approximately low-rank states can be accurately reconstructed [13]. This is suited for the situation in which
expectation values can be obtained with good statistical significance, although acquiring many of them may be
expensive. Still a missing piece in this picture, however, is the exploration of model selection techniques that have
to be considered in the realm of experimental imperfections and finite counting statistics in order to make
compressed sensing tomography a practical tool. Model selection allows to prevent over- and underfitting by
controlling the dimensionality of the model of the system—in our case, the rank of the density matrix.

Here, we present a comprehensive analysis of experimental data from a multi-photon, multi-mode GHZ
state source using tools of compressed sensing. Instead of working with expectation values of observables—as it
is commonly done in this context, but may amount to information loss—our experimental setup allows us to
obtain information on the individual projector level from the respective outcomes of each measurement setting.
In contrast to complementing recent work [27], we are not tied to the regime of tomographically incomplete
knowledge. This allows us to study the behaviour of the reconstruction for the entire range of measurement
settings. We quantitatively explore model selection via cross validation and compare it to the model suggested by
the anticipated noise statistics. With these tools, we provide a more systematic way to choose the appropriate
parameters for compressed sensing quantum tomography. The results then provide the reader with the toolkit
and understanding to effectively implement these methods for future quantum state tomography (QST) in
general, and specifically for photonic systems.

This work is structured as follows. We start by reviewing concepts of quantum state tomography and discuss
the specifics of compressed sensing in QST. We subsequently present our experimental setup consisting of a
four-qubit photonic system, which is used as a test bed for our tomographical approach. We continue by
discussing concepts of model selection in the context of QST and determine the appropriate model from the
experimental data. With this, we perform compressed QST and study the performance of the reconstruction
depending on the amount of collected data as well as the robustness of our method with respect to model
mismatches.

Elements of quantum state tomography

Quantum state tomography is the most commonly used method to diagnose quantum information processing
tasks. Itis used to estimate the unknown quantum state of a system from data produced by measuring an
ensemble of identically prepared systems. By fixing a basis, a general finite-dimensional quantum state can be
identified with a positive semi-definite, unit-trace matrix, the density matrix

0€Sa={x€Ha: x 70, tr(x) =1}. (¢Y)

Here, Hy; C C%*4 denotes the set of Hermitian matrices, and X = 0 stands for a positive semi-definite matrix.

To determine the density matrix p of a quantum system, we need to prepare sufficiently many copies of the
state from identical preparations, perform a measurement on each copy using one out of m different
measurement settings—corresponding to different observables, i.e. Hermitian matrices A, j = 1,...,m—and
count the respective number of measurement outcomes. Ideal measurements are associated with unit rank
projectors H;Cj) = v,Ej )vlgj )T, where v,ij ) is the kth normalised eigenvector of A, For each measurement setting j
the specific outcome k = 1,..., d occurs with probability

Py = (@ o). )

Completeness, i.e. the property that the projectors sum up to unity,

d
S -1 ®
k=1
ensures normalisation for each measurement setting j, so that 3°¢_, p;x = 1. For each measurement setting,
the outcome k corresponds to a random variable Y . Repeated measurements are independent from each other,
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and are performed on N; copies of the state for each measurement setting j, yielding the respective integer-valued
realisation y, , as observed frequency with Ny Yx = Nj. Hence, for each measurement setting j, the
probability of the random variables (Y]}, ..., Y 4) to take the configuration of measurement outcomes

(Y12 --2¥;,4) 1s given by

, y
, PP P &
}/j,l IR }}]’d !
following a multinomial distribution M(N;, ( Pip-sD 1))- Accordingly, we will obtain the kth outcome N; Pk
times in expectation. We formalise the measurement process by introducing the linear operator

Az o (NI 0))k, (5)

which maps density matrices in S; to matrices in R™ 4 corresponding to measurement outcomes k = 1,...,d
for different measurement settings j = 1,...,m. We emphasise that A (o) is not an experimental data matrix
itself; according to the law of large numbers, the frequencies in each measurement realisation

V= ( 7 Q) € Nmx 4 from the experiment will converge to .A (o) with growing number of measurements Nji.e.
the expectation value [E(Yj ;) of the random variable Yj x is given by

E(Y;x) = Nitr(I1Y 0) (6)

for each j, k. Apart from additional systematic sources of error, e.g. due to experimental imperfections, the
difference between ) and A (o) is due to finite counting statistics, and in many settings, this is the largest
contribution to the error.

The most straightforward approach to determine g from ) would be to attempt to invert the linear system of
equations

A(o) = ). (7)

In general, however, noise on the data ) would render the reconstructed density matrix @ unphysical (o # 0). A
generic (full rank) density matrix in S; is determined by d2 — 1independent real parameters. Hence, in general,
onerequires atleast 2 — 1linearly independent equations in order to solve equation (7). This is also called
tomographic completeness and corresponds to informational completeness with sufficient information to in
principle capture full rank states. For further notions about informational completeness under prior
information (e.g. the rank of the state is assumed to not be maximal) see [28, 29]. When dealing with significantly
less information, specialised reconstruction techniques are important with compressed sensing being a natural
choice, which we will discuss in the next section.

In our system, we will be concerned with local Pauli measurements on each subsystem of a multi-partite
state. We measure an n-qubit system (d = 2") using m different measurement settings, each of which
corresponds to an n-qubit Pauli operator

AD = Qo ®)

i=1

j=1,...,m,with agj) € {0y o), 0,}, where oy, 0,, 0, are the Pauli matrices. This is often referred to as Pauli basis
measurement. The projectors of the two-qubit operator AD = g, ® o,,for example, are Hﬁl) =10, 0)0, 0,
Y = 10, 1)(0, 1], TP = |1, 01, 0],and 1" = |1, 1)1, 1]. The identity matrix can be excluded for each
qubit since it has the same eigenvectors and hence corresponding projectors as o, and does not provide any
additional information about the state. Note, that in a Pauli basis measurement, one obtains 2" outcomes per
measurements setting, as opposed to the Pauli expectation value measurements, in which we only use one
expectation value per measurement setting. Pauli expectation value measurements (including those containing
identity matrices) can easily be obtained from Pauli basis measurements by simply computing the expectation
values from the projection data for each measurement setting. For n qubits, there exist m1,,,,x := 3" different Pauli
words in total, each with 2" eigenvectors, which corresponds to a maximum of 3" - 2" equations in equation (7).
Each set of Pauli projectors { H}(f’) }4_, for fixed setting j’ contains a subset of elements that is linearly
independent from the projectors for all other settings. Hence, any number of smaller than #1,,,, measurement
settings will lead to the loss of tomographic completeness. When performing QST on large systems, however, it
is of practical necessity to employ as few measurement settings as possible (and often also only few repetitions
per measurement setting). The key question arising in this context, therefore, is whether it is feasible to
reconstruct an unknown state p with notonly m < mu,,x measurement settings, but a significantly smaller
subset. The need for minimising the number of measurement settings is particularly pressing in architectures
such as linear optical ones, since high repetition rates and good statistics are available, while it can be tedious or
costly to alter the measurement setting. This is indeed the case in many practically relevant situations using
compressed sensing schemes, which will be discussed in the next section.
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Compressed sensing for quantum state tomography
By parameter counting, a state with rank < d can be completely characterised by fewer than d” parameters,
that is ~rd and informational completeness could in principle be achieved using correspondingly fewer
measurement settings. However, it is far from obvious how to acquire these parameters using fewer
measurement settings and how to do so in a robust fashion—this is the starting point for compressed sensing
[11, 30]. Originally conceived for reconstructing sparse vectors, the concept was extended to the recovery of low-
rank matrices [31, 32] and adapted to the problem of QST [13, 33]. Here, one again considers structured
problems in which one can exploit the fact that in many useful settings approximately low-rank states are of
interest. This is a reasonable assumption, since most quantum information experiments aim at preparing pure
states.

In order to obtain a general complex-valued low-rank matrix from measurements .4, naively, one would
search within the set of low-rank matrices for the one that matches the measurement constraint, solving

min rank(y) st A(y) = V. C)
XE(CdXd

The key idea for compressed sensing in matrix recovery is to relax this NP-hard problem [34] into the closest
convex optimisation problem [35]

min |xlk st AQ) = Y. (10)
Xecdxd

We denote the nuclear norm (better known as the trace norm in the context of reconstructions in quantum
mechanics) of a matrix x by || x|}« = tr(m ). Such problems are well known to be efficiently solvable [36].

The crucial question in compressed sensing is how many measurements are required to satisfactorily
reconstruct the sought-after matrix. Many proofs rely on randomised measurements schemes: In [37], it has
been shown that for a general map A : R¥*¢ — RM with Gaussian entries, M > 3r (2d — r) copies of pare
provably sufficient for the recovery of . Building on this and closer to our situation is the recovery guarantee
presented in [38], in which M > crd copies are needed with some constant ¢ > 0,for A : S; — RM,

0 (tr(IY9));_y, . m, mapping density matrices from S to vectors in RM, with IT) = y(y()7,and v a
Gaussian vector for each j. In practice, numerical computations outperform these theoretical bounds. However,
there is a fundamental lower bound for the number of copies, M = 4r(d — r) — 1, usinga theoretically
optimal POVM with M elements [39]. Note that—in the mindset of measurement settings and outcomes—the
number of outcomes k per measurement setting j scales with the dimension of the Hilbert space d. Since M
corresponds to m d, the number of measurement settings scales just with the rank, i.e. m = c r.

Itis in general harder to prove comparable results for deterministic measurements—in our setting with v(/)
being eigenvectors of Pauli operators. To bridge this gap, notions of partial derandomisation have been
introduced, where v/ are not Gaussian, but drawn from spherical designs—certain finite subsets of the d-
dimensional complex sphere—leading to similar statements [38]. Spherical designs, in turn, can be related to
eigenvectors of n-qubit Pauli operators [40]. Apart from results on the level of expectation values [41], less has
been proven for products of single-qubit eigenvectors, the setting at hand—strikingly in contrast to the great
success of the procedure in practice. These results remain stable when taking noise into account.

The measured data can be written as

Y = A(o) + No) = WNitr(I )ik + (1,65 (11)

with A and 7, ; representing the noise due to finite counting statistics. For positive semi-definite matrices such
as quantum states, the nuclear norm of a matrix reduces to the trace of the matrix. Consequently, relaxing the
equality constraint in equation (10) and including the positivity constraint, we arrive at the semi-definite
programme (SDP) [34]

mintry st [JA(x) — Y5 <e, (12)

X0
for some yet-to-be-determined € > 0and |||, representing the entrywise two-norm. This is exactly the problem
we aim to solve in order to achieve efficient QST. SDPs, being convex programmes, feature a rich theory, and
numerical implementation is easily achievable [42, 36]. Note that the procedure minimises the trace, which at
first sight might seem contradictory to the requirement for density matrices to have unit trace. However, the unit
trace requirement is implicitly included in the data constraint since the probabilities in the map A are
normalised. Perfect data would lead to an optimiser with trace exactly equal to one. In turn, a relaxation of this
constraint leads to a relaxation of the unit trace requirement. As a result, generically for not too small ¢, the
optimal x, denoted by %, will be subnormalised, due to its location on the part of the boundary of the e-ball with
the lowest trace. In order to obtain a physically meaningful reconstruction 9 € S;, we find in our simulations
that renormalising via
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Ti-Saph
v
9]
m

Figure 1. Experimental setup for generating the four-photon polarisation entangled states |1)gpz), consisting of photonic crystal fibre
(PCF) sources, half-waveplates (HWPs), quarter-waveplates (QWPs), a Soleil-Babinet (SB), polarising beam splitters (PBSs) and
dichroic mirrors (DMs). The 80 MHz Ti-Saph laser is split onto two PCF sources in twisted Sagnac-loop interferometer configurations
generating polarisation entangled Bell pairs. The signal and idler photons from each source are separated by DMs and the signal
photons interfere on a PBS with relative time between paths A7 a 0, which on post-selecting a single photon in each output port
performs a fusion operation. The SB is set to match the phase between the |H, H, H, H)and |V, V, V, V) components to zero. Each
mode is measured by single-qubit rotations consisting of a HWP and QWP, and is projected in the {|H), | V') }-basis by PBSs and
avalanche photodiode detectors.

X — 0= —
tr(%)

13)

produces the highest fidelity results. To carry out the optimisation procedure, we employ the convex
optimisation solver SDPT3 4.0 [43] together with CVX [44]. For higher Hilbert space dimensions, methods like
singular value thresholding [45] come into play, which typically are faster, but less accurate.

Experimental setup
The experiment is designed to prepare the four-qubit GHZ state associated with the state vector
1
|¢GHZ> - ﬁ(lH, H, H) H> + |V) V> V: V>) (14)

with the qubits encoded in the polarisation degree of freedom of four photons. Here, |H) and | V') represent
horizontally and vertically polarised photons, respectively, hence effectively spanning a two-dimensional Hilbert
space. The experimental setup, building upon the one outlined in [46], is shown in figure 1 and consists of two
Bell pair sources which undergo a parity check or post-selected fusion [8, 47-52] to probabilistically generate the
GHZ state. Both the photon pairs, generated by spontaneous four-wave-mixing in microstructured fibres, and
the fusion operation are successful only probabilistically, but in a heralded fashion, i.e. a classical signal is
available signifying success of the preparation. Successful generation of the state is determined by post-selecting
only four-photon coincident events which occur at a rate of approximately 1-2 Hz. The post-selected data is
effectively free from dark counts—noise generated by single-photon detectors firing erroneously in the absence
ofa photon. This is due to the fact that the rate at which dark counts in n modes occur in the coincidence window
decreases exponentially with #, i.e. four simultaneous dark counts are negligibly rare. Due to additional
experimental imperfections, however, the prepared state is non-ideal. The main cause of deviation between the
actually prepared state and the target state arises from the distinguishability of photons partaking in the fusion
operation and inherent mixedness from the parasitic effects in the pair generation [53]. These tend to cause the
generated state to resemble a partially dephased GHZ state [8]. Measurements on the state then proceed using
single-qubit rotations (waveplates) and projections (polarising beam splitters and single-photon detection with
avalanche photo-diodes) using well-characterised bulk-optical elements allowing high-fidelity measurements to
be performed.
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As stated above, in order to achieve a tomographically complete basis for n qubits, one requires #1,,,,, = 3"
measurement settings. In our system of four qubits, n = 4, we have measured a tomographically complete set of
81 local Pauli operators. For each measurement setting, around 650 four-coincident events are accumulated
within an integration time of six minutes. Evidently, given the exponential scaling of the tomographically
complete set of measurement settings, achieving such reliable statistics for larger states (n > 4) is increasingly
demanding on resources and quickly becomes infeasible.

Model selection
The starting point for carrying out compressed sensing quantum tomography is the question of determining an
appropriate value for € in the optimisation procedure equation (12). Essentially, larger values of € result in
greater relaxation of the data fitting constraint, leading to lower-rank estimates o; while smaller ¢ values will
yield 9 matrices with larger rank, which better fit the particular data set. Depending on the underlying state and
the particular instance of noise in the data, the choice of ¢ might result in underfitting with too coarse a model, or
in overfitting—i.e. including parts of the noise into the model of the state. Both extremes in general lead to states
that fail to correctly predict future data. In the most severe cases, it could happen that using the same
measurement prescription .4 and the same data )/, the optimisation procedure in equation (12) yields a full
rank or a rank-one matrix, depending on the choice of €. Worse still, too small a value of € can make the
optimisation procedure unfeasible, whereby there is no feasible state that would result in data sufficiently close
to that measured. The task of determining the appropriate model—in our case, the value of e—thatis
statistically faithful to the data via an appropriate choice of the respective external parameters is called model
selection (see e.g. [54]). Several ideas of model selection have a rigorous mathematical underpinning: Particularly
well known is the Akaike information criterion (AIC) [55], providing a measure of the relative quality of
statistical models for a given set of data. For a collection of models compatible with a given data set, this criterion
gives an estimate for the relative quality of each model. Similarly frequently employed is the Bayesian
information criterion (BIC) [56]. Direct application of AIC and BIC to quantum tomography—an approach
followed in [15]—is problematic for larger systems since it requires rank-restricted maximum likelihood
estimation, leading to non-convex optimisation, which scales unfavourably with the system size. This is due to
the fact that these techniques are discrete in the sense that they explicitly restrict the rank of the density matrix. In
the compressed sensing mindset, the parameter that controls the rank in a continuous fashion is €. As we
mentioned above, this is at the centre of our discussion.

For sufficiently small noise, a promising ansatz for identifying a suitable ¢ is to use the data to compute the
estimate £ (/) according to the expectation value of

A — Vi = M) (15)

Assuming the noise is solely due to finite counting statistics, i.e. the deviations from measurement outcomes
from the expected variance of the multinomial distribution, we obtain

E(M@[) = YSEG3 ) = 2 Va0 = YN (1 = pys (16)
jok jok 7k

with variance V. The second step follows from E(; ) = 0 for eachjand k. In order to compute & from the data,
we need to approximate p, , as y; , /Nj, which is reasonable for sufficiently large N;according to the law of large
numbers. By equation (16), we obtain the estimate

m d
EO) =202 (1 =y /N). 17)
j=1k=1

This choice of € = £ ())) scales linearly with m, the number of measurements in the data set ). Note that &
depends on the noise model, which in several cases may not be sufficiently established. In our case, however, the
noise model is known to a high degree, which allows us to study and compare different methods for estimating
the parameter ¢.

Complementarily, we employ a straightforward, well-established model selection technique based on cross
validation (see e.g. [57]), which is more scalable than the use of AIC or BIC in our case. Because of its generality
and independence from the noise model, it can be used in a variety of scenarios. The method works as follows:
The data is partitioned into independent training and testing sets. Different models, i.e. different values for ¢, are
built from the training data and used to predict the testing data. The sought-after parameters—in our case e—
then result from the model corresponding to the smallest error with respect to the testing data.

Specifically, we randomly draw m = 10, 15, 20, 40, 60, 80 out of the 71,y = 81 measurement settings
without replacement, corresponding to different levels of limited experimental knowledge. The respective data
sets Y(m) € R 4 are then partitioned into five subsets Z((m), ..., Z&(m) € Rﬂ/S *d_The optimisation in
equation (12) is performed with respect to every possible union of four subsets |_J?_ Lizq Z0(m),q = 1,..., 5,
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E[4]

Figure 2. Cross validation results. Prediction errors E (m, €) = 1 / 5 ZZ:1H-’4m,q@ (m, g, €)) — Z@D(m)||, in units of & depending
on the model parameter € and on the number of measurement settings m1. The standard deviation is bigger for fewer measurement
settings and for smaller e. The latter is due to the increasing chance of the optimisation to be infeasible for smaller . For ¢ close to &
and sufficient many measurement settings, the error is only slightly bigger than the deviation due to the multinomial distribution of
the measurement outcomes.

and different € parameters. Each reconstruction yields an estimate 2 (m, g, €) and the remaining subset Z@ (1)
is used as a testing set. The state estimate o (m, ¢, €) is used to compute the predicted measurement data

Aum,q(0 (m, g, €))and compare these with the corresponding subset of the experimental measurement data
ZD(m) (Apg: Si— RT/ 5*d being the reduction of the operator A to the subsets of measurement settings
corresponding to m and g). The resulting distance || A, 4(2 (m, g, €)) — 2 @(m)||,, between the predicted and
measured data, also known as the prediction error or predicted risk, is averaged over ¢ (fivefold cross validation),
yielding an estimate for the averaged prediction error (testing set error)

5
E(m, <) = é S Amg (2 (my 45 €)) — ZD(m)]. (18)
q=1

If the corresponding optimisation problem is infeasible for a certain combination of €, m, and g (i.e. the set of
density matrices that satisfy the constraint in equation (12) is empty), the prediction error is set to || 2@ (m) ;.
For averaging, each point (1, ¢) is sampled 50 times.

The mean values and standard deviations of the prediction error depending on the model parameter are
depicted in figure 2. We see that for values of € around & the error is smallest, which is consistent with our ansatz
and allows us to gain confidence in the assumption that the measurement data can be effectively modelled by a
multinomial distribution. The more measurement settings are considered, the clearer the choice of the optimal
becomes, with both the prediction error and its variance attaining their minima close to ¢ = . For those values
of ¢ close to ¢ and sufficiently many measurement settings, the prediction error E (m, ¢) is only slightly bigger
than the error estimate for the data €. Here, the error arises primarily from raw multinomial noise, €, present in
the testing set itself and cannot be overcome with improved reconstruction methods. Where fewer
measurement settings are considered, less information about the state is available, resulting in large testing set
errors as well as greater variance of the state estimates, although the smallest prediction errors are still seen for ¢
close to £. As € decreases below &, the chance of the optimisation being infeasible increases, causing the
prediction errors to effectively increase with a greater spread attributed to different optimisation runs. As ¢
increases above &, the data fitting constraint is weakened, resulting in too coarse model fits and a gradually
increasing prediction error.

Using equation (17) instead of cross validation has the advantage of much less computational effort and is
useful in a scenario with good statistics for each measurement setting. Moreover, cross validation relies on
partially discarding data, which could aggravate the issues of having too little data, yielding poorer estimates for
€. However, equation (16) relies on the assumption of a well identified error model—in our case, multinomial
noise, as verified by cross validation. In cases in which the error model is not known, cross validation can provide
amore robust estimate of .
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Estimated state

Figure 3. Bar plot of the density matrix of the target (GHZ) state pgy;, and its optimal compressed sensing estimate . The basis is
fixed to the tensor products of one-particle vectorsin the order |H, H, H, H), |H, H, H, V),...,|V, V, V, V). The height of each
bar corresponds to the size of the absolute value of the respective density matrix entry g;x = |2; €'+ and the colour to its complex
phase ¢, , € (=, ]. The colourmap is chosen to account for the periodicity of the phase. The fidelity of the estimate with respect to
the GHZ state is 0.855 £ 0.006 and its purity tr(d&) = 0.60 + 0.01, representing an expected mixedness due to experimental
imperfections.

Compressed sensing tomography of the GHZ state
Having verified that the optimal value for ¢ is close to that computed from equation (17), we use it as input for
the compressed sensing tomography of the experimental state and compute the optimal estimate
Ocs = 0 (Mmax, &) of the a prioriunknown experimentally prepared state o. The good statistics available in our
experiment allow us to estimate p with comparably high accuracy. In general, due to experimental
imperfections, o (and hence 2) will deviate from the target state oguz = |Yuz)X¥cuz|> see figure 3 fora
pictorial representation. There, we show a comparison between the density matrices of the target state and the
optimal compressed sensing estimate using bar plots.

The standard figure of merit to determine the performance of tomography is the quantum fidelity F of two
states x and o, which is defined as F (x, o) = tr(((X 0/X)'/?) [6]. We find that the fidelity between the GHZ
state oz and the estimated state pcg is
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Figure 4. Fidelity F (oGnz, 0 (m, £)) asa function of the number of measurement settings # with uncertainty (shading) from
bootstrapping for e = . For large m, Fapproaches the fidelity of pguz and 2, F (9Guz, &cs) = 0.855, getting very close already for
comparably few measurement settings, and the standard deviation becomes smaller.

F(ocnz> &cs) = 0.855 & 0.006. (19)

The uncertainty of the fidelity is determined by using the optimal compressed sensing estimate, 2, as input for
the generation of simulated data—parametric bootstrapping [57]—and taking the empirical standard deviation
of the fidelity values. This uncertainty determines the robustness of the method. Obtaining a closed expression
for proper error bounds from the data with respect to positivity constraints is hard [23, 58], while bootstrapping
and taking the empirical standard deviation gives a good estimate of uncertainty [57].

To build confidence, we also computed the maximum likelihood estimate [59], oM, using the same data
to obtain a fidelity with respect to the target state of F (9guz, omre) = 0.843 £ 0.004, which shows that the
estimators yield similar results; as will other estimators such as least squares with positivity constraint.
Additionally, since we have measured a tomographically complete set of observables and the statistical
properties of the measured data are sufficiently understood, we are able to provide an estimate of the fidelity
with respect to the target state directly from the measured data without the need of performing tomography
and an estimate of the corresponding error bound, see the appendix for details. With this, we obtain a fidelity
0f0.845 £ 0.005, which again is in good agreement with the results computed from the compressed sensing
estimate. We note that the standard technique for estimating the fidelity of a state with respect to a specific
target state requires estimating only the expectation values of a set of operators that form a decomposition of
the target state. For a four-qubit GHZ state, this requires a minimum of nine specific Pauli basis
measurements, as explained in the appendix. In contrast, using compressed sensing tomography, even a
random set of measurement settings produces fidelity estimates with respect to the GHZ state, which quickly
approach the maximum at around 25 measurement settings. Furthermore, these measurement settings
suffice to compute the fidelities with respect to arbitrary states, since they allow for the estimation of the entire
state.

Compressed sensing is about employing provably fewer measurement settings than with standard methods,
while still producing satisfactory reconstructions, i.e. to effectively sense in a compressive way. Along these lines,
we explore how varying the number of measurement settings m affects the fidelity. This is shown in figure 4. In
order to make the results independent from specific measurement settings, we randomly draw without
replacement m out of m,,,,, different settings 200 times and average over the resulting fidelities, thus providing a
value for a typically expected fidelity for each m. As one would expect intuitively, we can see that the value of the
fidelity increases monotonically with the number of measurement settings and converges to the fidelity of the
estimate from tomographically complete data. The shaded region represents the uncertainty ( & standard
deviation) in the fidelity computed via bootstrapping and displays the decreasing uncertainty with increasing
numbers of measurement settings. The fidelity already falls within the error bars of its final value for comparably
small m.
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Figure 5. Fidelity F (0cs, £ (m, €)) depending on the number of measurement settings 1 and the model parameter ¢ (top) and
corresponding standard deviation AF (bottom) obtained via bootstrapping. Since in compressed sensing we are more interested in
the regime of few measurement settings and the fidelities do not change significantly for larger m, we restrict ourselves to the region
with m < 20. The data are generated randomly from 2¢s and the measurement settings per 1 are drawn randomly as well. The
fidelities are averaged over different data realisations and measurement settings. The highest fidelities are achieved for £ ~ & with
rapid decrease for € < & where the fraction of infeasible optimisations increases. Note that the higher the fidelity, the lower the
standard deviation.

Deviations from the optimal parameter
In this section, we study the effect that misestimating ¢ has in the performance of the reconstruction of the state.
We carry out this task by numerical simulation: Using the compressed sensing state estimate J¢g, we simulate
measurement data, which we subsequently input to our compressed sensing reconstruction procedure, varying
both ¢, m and randomly drawing measurement settings without replacement. If the corresponding optimisation
problem is infeasible and yields no estimate, the fidelity Fis set to zero. The fidelities F (9cs, @ (m, €)) are
averaged over data and measurement settings (500 different data sets and different measurement settings per m
ande).

The results for varying m and ¢ in units of £ are shown in figure 5. We compare the reconstructed states to
Ocs» which we used to generate the simulated data. We see that as m increases, the fidelity converges to unity at
€ = & (where pcs is defined). We are interested in how quickly our reconstructed state approaches the optimal
Ocs with fewer measurement settings, particularly if € is misestimated. For instance, we see that we can obtain
average fidelities of more than 0.8 for only 6 measurement settings. Figure 5 (top) again illustrates that ¢ = £ is
the best choice as the fidelities around this region (and away from pathologically small numbers of measurement
settings, m > 3) are the highest. Moreover, we also see that with increasing m, the standard deviation AF of the
fidelity becomes smaller for € > &.For ¢ < &, infeasibilities of the optimisation equation (12) that appear for
certain choices of measurement settings lead to large standard deviations, which can be seen by the ridge in the
arealeftof ¢ = & in figure 5 (bottom). The ridge as well as the region of infeasibility gets close to ¢ = £ for large
m, which is reasonable since more information (i.e. more constraints) puts greater restrictions on the
optimisation problems. If fewer measurement settings are considered, as in the highly tomographically
incomplete regime, overestimation of € is less detrimental and state estimates still perform well, i.e. the fidelity is
relatively constant for ¢ < ¢ < 3 . However, as m increases, the reconstruction becomes more strongly
dependant on the choice of €. Generally, we see that the higher the fidelity, the lower the standard deviation.
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Discussion

In this work, we have experimentally explored the compressed sensing paradigm for quantum state tomography
as applied to the photonic setting. We have explicitly laid out a method for applying these techniques and
reconstructed the state of a four-photon system with tomographically complete data available, observing a high
fidelity of the reconstructed state with respect to the target state. The presence of noise in the data requires that
one carefully chooses appropriate constraints on the optimisation. In current applications, these parameters are
usually obtained in an ad hoc way. We have provided a prescription to establish the parameters in a more
systematic way by modelling the noise and performing cross validation, which is a general method for model
selection. The quality of the data, being afflicted with noise predominantly attributed to finite counting statistics,
allows us to model the noise via a multinomial distribution. This is a situation commonly expected for photonic
experiments with post-selected data. In fact, we observe a great agreement between estimating the model
parameter from theoretical noise modelling and cross validation.

Having established the appropriate model, we have been able to perform state reconstruction with
tomographically incomplete data, which rapidly converges to the highest fidelity estimate as the number of
measurement settings increases. As a validity check, we have also run different estimators on the full data and
obtained similar results, showing that our compressed sensing procedure yields reasonable estimates. As is
predicted by the mathematical theory of compressed sensing, we have found that the number of measurement
settings needed for a satisfactory estimate of the underlying state is much smaller than the number of
measurements necessary for tomographic completeness. We have also carried out a comprehensive
bootstrapping analysis to build confidence in the robustness of our method. In fact, we have observed that the
uncertainty in the fidelity quickly decreases with increasing number of measurement settings.

Furthermore, we have studied the robustness of our method with respect to improper model selection and
the effects on the reconstruction. We have found that for several choices of models and different numbers of
measurement settings, the performance of the reconstruction can vary dramatically. For small numbers of
measurement settings, our method depends less strongly on the model. In contrast, for large numbers of
measurement settings, it is imperative to determine the appropriate model for optimal performance.

Our results confirm that compressed sensing in conjunction with suitable model selection gives rise to
reliable procedures for state reconstruction leading to effective tomography with tomographically incomplete
data. These techniques can be applied to a wide range of experimental settings and provide a means to identify
and verify appropriate models thereby paving the way for the future of practical quantum state tomography.
With this, we contribute to establishing compressed sensing as a practical tool for quantum state tomography in
the low-information regime.
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Appendix: fidelity estimation with error bound

In this section, we provide more detail to the fidelity estimation with an error bound without the need of
resorting to quantum state tomography. In the Pauli operator basis

{01: O1€ @, oy, 0y, 0.} ), (A1)
j:l

we can estimate from the measured probabilities 13] K = Vi / N; the expansion coefficients
¢ =tr(o 0//Vd) (A2)
of the prepared state ¢ by alinear transformation €2,

§,=Qp. (A3)

For convenience, we denote by p the row-vectorisation of the matrix with entries 13] « The fidelity with respect
to a pure target state o can be written in terms of the expansion coeffcients as
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F (o1, 0) =) ¢, €, =&, Qp. (Ad)
1

The frequency of the d different outcomes for the jth measurement setting is described by a multinomial
distribution. The covariance matrix is given for each multinomial distribution by

COV(Yj,k, Yj,l) = I\]](p]k (51',]' - pj,k p]l) (A5)

Since different measurement settings correspond to mutually orthonormal operators, the frequencies of
different measurement settings are uncorrelated, i.e. Cov(Y;, Y;;) = Ofor i = j. Therefore the covariance
matrix for the probabilities p can be estimated from the data as

COV(@‘,]@ ﬁ]l) = Nj_l(lsj,kéi,j - ﬁ]kﬁ]l) (A6)
By means of linear error propagation, the variance of the fidelity is given by
Var(F?) = ggT Q Cov(p, p)QT €, (A7)

which yields an estimate of the statistical error of the fidelity estimate from the data

AF? (0, o1) = yVar(F?). (A8)

In particular, in order to estimate the fidelity with respect to the GHZ state, only nine Pauli basis measurements
contribute. This can be seen from the expansion of the GHZ density matrix in the Pauli operator basis

1

o Yoo o+ Y IRIQa®a+ Y. 0 Q0 ® 0, 0, (A9)
oef

Jl,o’x,ay,az} Perm. Perm.

OGHZ =

where the last two sums run over all six distinct orders of the four factors of the tensor product.

To estimate the fidelity (A4), only the 16 Pauli coefficients of the prepared state are required that correspond
to the operators of the expansion (A9). From the measurement outcomes of the measurement setting 0%, all
coefficients of operators containing only the identity 1 and o, can be estimated. Thus, only nine Pauli basis
measurements are necessary to estimate the fidelity.

Note that it is also possible to employ the measurement outcomes of all other measurement settings in the
estimation of coefficients of terms that include the identity in equation (A9). In principle, it is thereby possible to
further reduce the statistical error of the estimate of those coefficients. However, for the data set considered in
this work, using more than nine measurement settings does not significantly alter the fidelity estimate.
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