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Abstract
In the light of the progress in quantum technologies, the task of verifying the correct functioning of
processes and obtaining accurate tomographic information about quantum states becomes increas-
ingly important. Compressed sensing, amachinery derived from the theory of signal processing, has
emerged as a feasible tool to perform robust and significantlymore resource-economical quantum
state tomography for intermediate-sized quantum systems. In this work, we provide a comprehensive
analysis of compressed sensing tomography in the regime inwhich tomographically complete data is
available with reliable statistics from experimental observations of amulti-mode photonic
architecture. Due to the fact that the data is knownwith high statistical significance, we are in a
position to systematically explore the quality of reconstruction depending on the number of employed
measurement settings, randomly selected from the complete set of data, and on differentmodel
assumptions.We present and test a complete prescription to perform efficient compressed sensing
and are able to reliably use notions ofmodel selection and cross validation to account for experimental
imperfections andfinite counting statistics. Thus, we establish compressed sensing as an effective tool
for quantum state tomography, specifically suited for photonic systems.

Introduction
Quantum technologies have seen an enormous progress in recent years. Photonic architectures havematured from
basic proof-of-principle schemes to intermediate scale quantumdevices [1], while the robustness offered by
integrated optical devices is poised to push these systems yet further [2, 3]. Similarly, systemsof two-digit trapped
ions [4] andother condensed-matter type systems such as superconducting devices are catching up at a remarkable
pace [5]. Buildingupon this technological development, important primitives of quantum information science are
being experimentally realised [6–10]. In light of these systems, it has become increasingly important to establish a
toolbox for tomographic reconstruction that can keepupwith this rapid development: The ironic situation that is
emerging is that bynow the state of large quantumsystems canbemanipulatedwith ahighdegree of control, but
not easily reconstructed.Clearly, these technologies and the community require further advancement of their tools
for state reconstruction. In thiswork,wediscuss an explicitmethod to achieve such a reconstruction, thus
contributing to this long-termgoal. Specifically, we demonstrate a comprehensive explorationof the performance
of state reconstruction in the photonic setting as one varies both the number ofmeasurements and the noisemodel.

The framework of compressed sensing, a set of techniques originating from the context of classical signal
processing [11, 12], has emerged as a key protagonist in closing the gap between technology and diagnostics
[13–15]. The idea behind its functioning is rooted in the fact that a substantial amount of data encountered in
realistic situations are structured and can be characterised by significantly fewer parameters thanwith ad hoc
schemes. Approximately low-rankmatrices are at the centre of the paradigmofmatrix completion in
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compressed sensing and correspond precisely to approximately pure quantum states. Since pure quantum states
arewidely regarded as the key resource for quantum information processing, suchmethods for reconstructing
low-rank states are especially relevant. For even larger systems, tomographic tools based on basic variational sets
are conceivable, withmatrix product states [16, 17], their continuous analogues [18], and permutationally
invariant states [19] providing prominent examples. The theory of such novel tools of reconstruction is
progressing quickly. This applies, e.g., to new insights to the assignment of fair and rigorous confidence regions
[20–23] aswell as economical ways of performing instances of quantumprocess tomography [14, 24, 25].

Exciting steps toward using compressed sensing in experimental settings have beenmade [19, 24, 26, 27] in the
regime inwhichone assumes knowledge about the basis inwhich sparsity is expected [24], assumes additional
structure [19]or is in the highly tomographically incomplete regime [27]. In thiswork,we complement the picture
for experimental tomography formedium-sized quantumsystems. In its simplest formulation, compressed
sensing tomography is based on a few randomexpectation values of suitable observables, fromwhich
approximately low-rank states can be accurately reconstructed [13]. This is suited for the situation inwhich
expectation values canbeobtainedwith good statistical significance, although acquiringmanyof themmaybe
expensive. Still amissing piece in this picture, however, is the exploration ofmodel selection techniques that have
to be considered in the realmof experimental imperfections andfinite counting statistics in order tomake
compressed sensing tomography a practical tool.Model selection allows to prevent over- andunderfitting by
controlling the dimensionality of themodel of the system—in our case, the rank of the densitymatrix.

Here, we present a comprehensive analysis of experimental data from amulti-photon,multi-modeGHZ
state source using tools of compressed sensing. Instead of workingwith expectation values of observables—as it
is commonly done in this context, butmay amount to information loss—our experimental setup allows us to
obtain information on the individual projector level from the respective outcomes of eachmeasurement setting.
In contrast to complementing recent work [27], we are not tied to the regime of tomographically incomplete
knowledge. This allows us to study the behaviour of the reconstruction for the entire range ofmeasurement
settings.We quantitatively exploremodel selection via cross validation and compare it to themodel suggested by
the anticipated noise statistics.With these tools, we provide amore systematic way to choose the appropriate
parameters for compressed sensing quantum tomography. The results then provide the reader with the toolkit
and understanding to effectively implement thesemethods for future quantum state tomography (QST) in
general, and specifically for photonic systems.

This work is structured as follows.We start by reviewing concepts of quantum state tomography and discuss
the specifics of compressed sensing inQST.We subsequently present our experimental setup consisting of a
four-qubit photonic system,which is used as a test bed for our tomographical approach.We continue by
discussing concepts ofmodel selection in the context ofQST and determine the appropriatemodel from the
experimental data.With this, we perform compressedQST and study the performance of the reconstruction
depending on the amount of collected data aswell as the robustness of ourmethodwith respect tomodel
mismatches.

Elements of quantum state tomography
Quantum state tomography is themost commonly usedmethod to diagnose quantum information processing
tasks. It is used to estimate the unknown quantum state of a system fromdata produced bymeasuring an
ensemble of identically prepared systems. Byfixing a basis, a general finite-dimensional quantum state can be
identifiedwith a positive semi-definite, unit-tracematrix, the densitymatrix

   c c cÎ = Î ={ ( ) } ( ): 0, tr 1 . 1d d

Here, Ì ´
d

d d denotes the set ofHermitianmatrices, and c 0 stands for a positive semi-definitematrix.
To determine the densitymatrix ñ of a quantum system,we need to prepare sufficientlymany copies of the

state from identical preparations, perform ameasurement on each copy using one out ofm different
measurement settings—corresponding to different observables, i.e. Hermitianmatrices ( )A j , j= 1,K,m—and
count the respective number ofmeasurement outcomes. Idealmeasurements are associatedwith unit rank
projectors P =( ) ( ) ( ) †v vk

j
k

j
k

j , where ( )vk
j is the kth normalised eigenvector of ( )A j . For eachmeasurement setting j

the specific outcome = ¼k d1, , occurs with probability

P≔ ( ) ( )( )p tr . 2j k k
j

,

Completeness, i.e. the property that the projectors sumup to unity,

å P =
=

( )( ) , 3
k

d

k
j

1

ensures normalisation for eachmeasurement setting j, so thatå == p 1k
d

j k1 , . For eachmeasurement setting j,
the outcome k corresponds to a randomvariable Yj k, . Repeatedmeasurements are independent from each other,
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and are performed onNj copies of the state for eachmeasurement setting j, yielding the respective integer-valued
realisation yj k, as observed frequency with å == y Nk

d
j k j1 , . Hence, for eachmeasurement setting j, the

probability of the randomvariables ¼( )Y Y, ,j j d,1 , to take the configuration ofmeasurement outcomes
¼( )y y, ,j j d,1 , is given by




!
! !

( )
N

y y
p p , 4

j

j j d
j
y

j d

y

,1 ,
,1 ,
j j d,1 ,

following amultinomial distribution ¼( ( ))N p p, , ,j j j d,1 , . Accordingly, wewill obtain the kth outcome N pj j k,

times in expectation.We formalise themeasurement process by introducing the linear operator

  P ( ( )) ( )( )N: tr , 5j k
j

j k,

whichmaps densitymatrices in d tomatrices in+
´m d, corresponding tomeasurement outcomes = ¼k d1, ,

for differentmeasurement settings = ¼j m1, , .We emphasise that ( ) is not an experimental datamatrix
itself; according to the law of large numbers, the frequencies in eachmeasurement realisation
 Î ´≔ ( )yj k

m d
, from the experiment will converge to ( )with growing number ofmeasurementsNj, i.e.

the expectation value ( )Yj k, of the randomvariable Yj k, is given by

 = P( ) ( ) ( )( )Y N tr 6j k j k
j

,

for each j k, . Apart from additional systematic sources of error, e.g. due to experimental imperfections, the
difference between  and ( ) is due tofinite counting statistics, and inmany settings, this is the largest
contribution to the error.

Themost straightforward approach to determine ñ from  would be to attempt to invert the linear systemof
equations

 =( ) ( ). 7

In general, however, noise on the data  would render the reconstructed densitymatrix ̂ unphysical ( ˆ 0). A
generic (full rank) densitymatrix in d is determined by -d 12 independent real parameters. Hence, in general,
one requires at least -d 12 linearly independent equations in order to solve equation (7). This is also called
tomographic completeness and corresponds to informational completenesswith sufficient information to in
principle capture full rank states. For further notions about informational completeness under prior
information (e.g. the rank of the state is assumed to not bemaximal) see [28, 29].When dealingwith significantly
less information, specialised reconstruction techniques are important with compressed sensing being a natural
choice, whichwewill discuss in the next section.

In our system, wewill be concernedwith local Paulimeasurements on each subsystemof amulti-partite
state.Wemeasure an n-qubit system ( =d 2n) usingm differentmeasurement settings, each of which
corresponds to an n-qubit Pauli operator

s=
=
⨂ ( )( ) ( )A , 8j

i

n

i
j

1

j= 1,K,m, with s s s sÎ { }( ) , ,i
j

x y z , where s s s, ,x y z are the Paulimatrices. This is often referred to as Pauli basis

measurement. The projectors of the two-qubit operator s sÄ≔( )A z z
1 , for example, are P = ñá∣ ∣( ) 0, 0 0, 01

1 ,
P = ñá∣ ∣( ) 0, 1 0, 12

1 , P = ñá∣ ∣( ) 1, 0 1, 03
1 , andP = ñá∣ ∣( ) 1, 1 1, 14

1 . The identitymatrix can be excluded for each
qubit since it has the same eigenvectors and hence corresponding projectors as sz and does not provide any
additional information about the state. Note, that in a Pauli basismeasurement, one obtains 2n outcomes per
measurements setting, as opposed to the Pauli expectation valuemeasurements, inwhichwe only use one
expectation value permeasurement setting. Pauli expectation valuemeasurements (including those containing
identitymatrices) can easily be obtained fromPauli basismeasurements by simply computing the expectation
values from the projection data for eachmeasurement setting. For n qubits, there exist ≔m 3n

max different Pauli
words in total, eachwith 2n eigenvectors, which corresponds to amaximumof ·3 2n n equations in equation (7).
Each set of Pauli projectors P ¢

={ }( )
k

j
k
d

1 forfixed setting ¢j contains a subset of elements that is linearly
independent from the projectors for all other settings.Hence, any number of smaller than mmax measurement
settingswill lead to the loss of tomographic completeness.When performingQST on large systems, however, it
is of practical necessity to employ as fewmeasurement settings as possible (and often also only few repetitions
permeasurement setting). The key question arising in this context, therefore, is whether it is feasible to
reconstruct an unknown state ñwith not only <m mmax measurement settings, but a significantly smaller
subset. The need forminimising the number ofmeasurement settings is particularly pressing in architectures
such as linear optical ones, since high repetition rates and good statistics are available, while it can be tedious or
costly to alter themeasurement setting. This is indeed the case inmany practically relevant situations using
compressed sensing schemes, whichwill be discussed in the next section.
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Compressed sensing for quantum state tomography
By parameter counting, a state with rank <r d can be completely characterised by fewer than d2 parameters,
that is~rd and informational completeness could in principle be achieved using correspondingly fewer
measurement settings.However, it is far fromobvious how to acquire these parameters using fewer
measurement settings and how to do so in a robust fashion—this is the starting point for compressed sensing
[11, 30]. Originally conceived for reconstructing sparse vectors, the concept was extended to the recovery of low-
rankmatrices [31, 32] and adapted to the problemofQST [13, 33]. Here, one again considers structured
problems inwhich one can exploit the fact that inmany useful settings approximately low-rank states are of
interest. This is a reasonable assumption, sincemost quantum information experiments aim at preparing pure
states.

In order to obtain a general complex-valued low-rankmatrix frommeasurements, naïvely, onewould
searchwithin the set of low-rankmatrices for the one thatmatches themeasurement constraint, solving

 


c c =
cÎ ´

( ) ( ) ( )min rank s.t. . 9
d d

The key idea for compressed sensing inmatrix recovery is to relax thisNP-hard problem [34] into the closest
convex optimisation problem [35]

*  


c c =
cÎ ´

  ( ) ( )min s.t. . 10
d d

Wedenote the nuclear norm (better known as the trace norm in the context of reconstructions in quantum

mechanics) of amatrixχ by *c c c  ≔ ( )†tr . Such problems arewell known to be efficiently solvable [36].
The crucial question in compressed sensing is howmanymeasurements are required to satisfactorily

reconstruct the sought-aftermatrix.Many proofs rely on randomisedmeasurements schemes: In [37], it has
been shown that for a generalmap  ´: d d M withGaussian entries,  -( )M r d r3 2 copies of ñ are
provably sufficient for the recovery of ñ. Building on this and closer to our situation is the recovery guarantee
presented in [38], inwhich M crd copies are neededwith some constant >c 0, for  : d

M ,
 P = ¼ ( ( ))( )tr j

j M1, , , mapping densitymatrices from d to vectors in M , withP =( ) ( ) ( ) †v vj j j , and ( )v j a
Gaussian vector for each j. In practice, numerical computations outperform these theoretical bounds.However,
there is a fundamental lower bound for the number of copies, = - -( )M r d r4 1, using a theoretically
optimal POVMwithM elements [39]. Note that—in themindset ofmeasurement settings and outcomes—the
number of outcomes k permeasurement setting j scales with the dimension of theHilbert space d. SinceM
corresponds to m d, the number ofmeasurement settings scales just with the rank, i.e. =m c r .

It is in general harder to prove comparable results for deterministicmeasurements—in our settingwith ( )v j

being eigenvectors of Pauli operators. To bridge this gap, notions of partial derandomisation have been
introduced, where ( )v j are notGaussian, but drawn from spherical designs—certain finite subsets of the d-
dimensional complex sphere—leading to similar statements [38]. Spherical designs, in turn, can be related to
eigenvectors of n-qubit Pauli operators [40]. Apart from results on the level of expectation values [41], less has
been proven for products of single-qubit eigenvectors, the setting at hand—strikingly in contrast to the great
success of the procedure in practice. These results remain stable when taking noise into account.

Themeasured data can bewritten as

     h= + = P +( ) ( ) ( ( )) ( ) ( )( )N tr , 11j k
j

j k j k j k, , ,

with  and hj k, representing the noise due tofinite counting statistics. For positive semi-definitematrices such
as quantum states, the nuclear normof amatrix reduces to the trace of thematrix. Consequently, relaxing the
equality constraint in equation (10) and including the positivity constraint, we arrive at the semi-definite
programme (SDP) [34]

 


c c e- <
c

 ( ) ( )min tr s.t. , 12
0

2
2

for some yet-to-be-determined e > 0 and · 2 representing the entrywise two-norm.This is exactly the problem
we aim to solve in order to achieve efficientQST. SDPs, being convex programmes, feature a rich theory, and
numerical implementation is easily achievable [42, 36]. Note that the procedureminimises the trace, which at
first sightmight seem contradictory to the requirement for densitymatrices to have unit trace. However, the unit
trace requirement is implicitly included in the data constraint since the probabilities in themap are
normalised. Perfect data would lead to an optimiser with trace exactly equal to one. In turn, a relaxation of this
constraint leads to a relaxation of the unit trace requirement. As a result, generically for not too small ε, the
optimalχ, denoted by ĉ, will be subnormalised, due to its location on the part of the boundary of the ε-ball with
the lowest trace. In order to obtain a physicallymeaningful reconstruction  Îˆ d, we find in our simulations
that renormalising via
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c
c
c

ˆ ˆ ≔ ˆ
( ˆ )

( )
tr

13

produces the highest fidelity results. To carry out the optimisation procedure, we employ the convex
optimisation solver SDPT3 4.0 [43] together withCVX [44]. For higherHilbert space dimensions,methods like
singular value thresholding [45] come into play, which typically are faster, but less accurate.

Experimental setup
The experiment is designed to prepare the four-qubit GHZ state associatedwith the state vector

y ñ = ñ + ñ∣ (∣ ∣ ) ( )H H H H V V V V
1

2
, , , , , , 14GHZ

with the qubits encoded in the polarisation degree of freedomof four photons.Here, ñ∣H and ñ∣V represent
horizontally and vertically polarised photons, respectively, hence effectively spanning a two-dimensionalHilbert
space. The experimental setup, building upon the one outlined in [46], is shown infigure 1 and consists of two
Bell pair sources which undergo a parity check or post-selected fusion [8, 47–52] to probabilistically generate the
GHZ state. Both the photon pairs, generated by spontaneous four-wave-mixing inmicrostructured fibres, and
the fusion operation are successful only probabilistically, but in a heralded fashion, i.e. a classical signal is
available signifying success of the preparation. Successful generation of the state is determined by post-selecting
only four-photon coincident events which occur at a rate of approximately 1–2 Hz. The post-selected data is
effectively free fromdark counts—noise generated by single-photon detectorsfiring erroneously in the absence
of a photon. This is due to the fact that the rate at which dark counts in nmodes occur in the coincidence window
decreases exponentially with n, i.e. four simultaneous dark counts are negligibly rare. Due to additional
experimental imperfections, however, the prepared state is non-ideal. Themain cause of deviation between the
actually prepared state and the target state arises from the distinguishability of photons partaking in the fusion
operation and inherentmixedness from the parasitic effects in the pair generation [53]. These tend to cause the
generated state to resemble a partially dephasedGHZ state [8].Measurements on the state then proceed using
single-qubit rotations (waveplates) and projections (polarising beam splitters and single-photon detectionwith
avalanche photo-diodes) usingwell-characterised bulk-optical elements allowing high-fidelitymeasurements to
be performed.

Figure 1.Experimental setup for generating the four-photon polarisation entangled states y ñ∣ GHZ , consisting of photonic crystal fibre
(PCF) sources, half-waveplates (HWPs), quarter-waveplates (QWPs), a Soleil-Babinet (SB), polarising beam splitters (PBSs) and
dichroicmirrors (DMs). The 80 MHzTi-Saph laser is split onto twoPCF sources in twisted Sagnac-loop interferometer configurations
generating polarisation entangled Bell pairs. The signal and idler photons from each source are separated byDMs and the signal
photons interfere on a PBSwith relative time between paths tD » 0, which on post-selecting a single photon in each output port
performs a fusion operation. The SB is set tomatch the phase between the ñ∣H H H H, , , and ñ∣V V V V, , , components to zero. Each
mode ismeasured by single-qubit rotations consisting of aHWPandQWP, and is projected in the ñ ñ{∣ ∣ }H V, -basis by PBSs and
avalanche photodiode detectors.
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As stated above, in order to achieve a tomographically complete basis for n qubits, one requires =m 3n
max

measurement settings. In our systemof four qubits, n=4, we havemeasured a tomographically complete set of
81 local Pauli operators. For eachmeasurement setting, around 650 four-coincident events are accumulated
within an integration time of sixminutes. Evidently, given the exponential scaling of the tomographically
complete set ofmeasurement settings, achieving such reliable statistics for larger states ( >n 4) is increasingly
demanding on resources and quickly becomes infeasible.

Model selection
The starting point for carrying out compressed sensing quantum tomography is the question of determining an
appropriate value for ε in the optimisation procedure equation (12). Essentially, larger values of ε result in
greater relaxation of the datafitting constraint, leading to lower-rank estimates ̂ ;while smaller ε values will
yield ̂ matrices with larger rank, which betterfit the particular data set. Depending on the underlying state and
the particular instance of noise in the data, the choice of εmight result in underfittingwith too coarse amodel, or
in overfitting—i.e. including parts of the noise into themodel of the state. Both extremes in general lead to states
that fail to correctly predict future data. In themost severe cases, it could happen that using the same
measurement prescription  and the same data  , the optimisation procedure in equation (12) yields a full
rank or a rank-onematrix, depending on the choice of ε.Worse still, too small a value of ε canmake the
optimisation procedure unfeasible, whereby there is no feasible state that would result in data sufficiently close
to thatmeasured. The task of determining the appropriatemodel—in our case, the value ofε—that is
statistically faithful to the data via an appropriate choice of the respective external parameters is calledmodel
selection (see e.g. [54]). Several ideas ofmodel selection have a rigorousmathematical underpinning: Particularly
well known is the Akaike information criterion (AIC) [55], providing ameasure of the relative quality of
statisticalmodels for a given set of data. For a collection ofmodels compatible with a given data set, this criterion
gives an estimate for the relative quality of eachmodel. Similarly frequently employed is the Bayesian
information criterion (BIC) [56]. Direct application of AIC andBIC to quantum tomography—an approach
followed in [15]—is problematic for larger systems since it requires rank-restrictedmaximum likelihood
estimation, leading to non-convex optimisation, which scales unfavourably with the system size. This is due to
the fact that these techniques are discrete in the sense that they explicitly restrict the rank of the densitymatrix. In
the compressed sensingmindset, the parameter that controls the rank in a continuous fashion is ε. Aswe
mentioned above, this is at the centre of our discussion.

For sufficiently small noise, a promising ansatz for identifying a suitable ε is to use the data to compute the
estimate ê ( ) according to the expectation value of

  c - =   ( ) ( ) ( ). 152
2

2
2

Assuming the noise is solely due tofinite counting statistics, i.e. the deviations frommeasurement outcomes
from the expected variance of themultinomial distribution, we obtain

  å å åh h= = = - ( ( ) ) ( ) ( ) ( ) ( )N p p1 , 16
j k

j k
j k

j k
j k

j j k j k2
2

,
,

2

,
,

,
, ,

with variance . The second step follows from  h =( ) 0j k, for each j and k. In order to compute ê from the data,
we need to approximate pj k, as y Nj k j, , which is reasonable for sufficiently largeNj according to the law of large
numbers. By equation (16), we obtain the estimate

 å åe -
= =

ˆ ( ) ≔ ( ) ( )y y N1 . 17
j

m

k

d

j k j k j
1 1

, ,

This choice of e e=ˆ ˆ ( ) scales linearly withm, the number ofmeasurements in the data set  . Note that ê
depends on the noisemodel, which in several casesmay not be sufficiently established. In our case, however, the
noisemodel is known to a high degree, which allows us to study and compare differentmethods for estimating
the parameter ε.

Complementarily, we employ a straightforward, well-establishedmodel selection technique based on cross
validation (see e.g. [57]), which ismore scalable than the use of AIC or BIC in our case. Because of its generality
and independence from the noisemodel, it can be used in a variety of scenarios. Themethodworks as follows:
The data is partitioned into independent training and testing sets. Differentmodels, i.e. different values forε, are
built from the training data and used to predict the testing data. The sought-after parameters—in our case ε—
then result from themodel corresponding to the smallest errorwith respect to the testing data.

Specifically, we randomly draw =m 10, 15, 20, 40, 60, 80 out of the =m 81max measurement settings
without replacement, corresponding to different levels of limited experimental knowledge. The respective data
sets  Î +

´( )m m d are then partitioned intofive subsets   ¼ Î +
´( ) ( )( ) ( )m m, , m d1 5 5 . The optimisation in

equation (12) is performedwith respect to every possible union of four subsets = ¹⋃ ( )( ) mi i q
i

1,
5 , = ¼q 1, , 5,
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and different ε parameters. Each reconstruction yields an estimate  eˆ ( )m q, , and the remaining subset  ( )( ) mq

is used as a testing set. The state estimate  eˆ ( )m q, , is used to compute the predictedmeasurement data
 e( ˆ ( ))m q, ,m q, and compare these with the corresponding subset of the experimentalmeasurement data

 ( )( ) mq (   +
´:m q d

m d
,

5 being the reduction of the operator to the subsets ofmeasurement settings

corresponding tom and q). The resulting distance  e - ( ˆ ( )) ( )( )m q m, ,m q
q

, 2, between the predicted and
measured data, also known as the prediction error or predicted risk, is averaged over q (fivefold cross validation),
yielding an estimate for the averaged prediction error (testing set error)

 åe e= -
=

 ( ) ( ˆ ( )) ( ) ( )( )E m m q m,
1

5
, , . 18

q
m q

q

1

5

, 2

If the corresponding optimisation problem is infeasible for a certain combination of ε,m, and q (i.e. the set of
densitymatrices that satisfy the constraint in equation (12) is empty), the prediction error is set to  ( )( ) mq

2.
For averaging, each point e( )m, is sampled 50 times.

Themean values and standard deviations of the prediction error depending on themodel parameter are
depicted infigure 2.We see that for values of ε around ê the error is smallest, which is consistent with our ansatz
and allows us to gain confidence in the assumption that themeasurement data can be effectivelymodelled by a
multinomial distribution. Themoremeasurement settings are considered, the clearer the choice of the optimal ε
becomes, with both the prediction error and its variance attaining theirminima close to e e= ˆ . For those values
of ε close to ê and sufficientlymanymeasurement settings, the prediction error e( )E m, is only slightly bigger
than the error estimate for the data ε. Here, the error arises primarily from rawmultinomial noise, ε, present in
the testing set itself and cannot be overcomewith improved reconstructionmethods.Where fewer
measurement settings are considered, less information about the state is available, resulting in large testing set
errors as well as greater variance of the state estimates, although the smallest prediction errors are still seen for ε
close to ê. As ε decreases below ê, the chance of the optimisation being infeasible increases, causing the
prediction errors to effectively increase with a greater spread attributed to different optimisation runs. As ε
increases above ê, the datafitting constraint is weakened, resulting in too coarsemodel fits and a gradually
increasing prediction error.

Using equation (17) instead of cross validation has the advantage ofmuch less computational effort and is
useful in a scenario with good statistics for eachmeasurement setting.Moreover, cross validation relies on
partially discarding data, which could aggravate the issues of having too little data, yielding poorer estimates for
ε. However, equation (16) relies on the assumption of awell identified errormodel—in our case,multinomial
noise, as verified by cross validation. In cases in which the errormodel is not known, cross validation can provide
amore robust estimate of ε.

Figure 2.Cross validation results. Prediction errors  e e= å -=  ( ) ( ˆ ( )) ( )( )E m m q m, 1 5 , ,q m q
q

1
5

, 2 in units of ê depending
on themodel parameter ε and on the number ofmeasurement settingsm. The standard deviation is bigger for fewermeasurement
settings and for smaller ε. The latter is due to the increasing chance of the optimisation to be infeasible for smaller ε. For ε close to ê
and sufficientmanymeasurement settings, the error is only slightly bigger than the deviation due to themultinomial distribution of
themeasurement outcomes.
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Compressed sensing tomography of theGHZ state
Having verified that the optimal value for ε is close to that computed from equation (17), we use it as input for
the compressed sensing tomography of the experimental state and compute the optimal estimate
  eˆ ≔ ˆ ( ˆ )m ,CS max of the a priori unknown experimentally prepared state ñ. The good statistics available in our
experiment allow us to estimate ñwith comparably high accuracy. In general, due to experimental
imperfections, ñ (and hence ̂ )will deviate from the target state  y yñá≔ ∣ ∣GHZ GHZ GHZ , see figure 3 for a
pictorial representation. There, we show a comparison between the densitymatrices of the target state and the
optimal compressed sensing estimate using bar plots.

The standard figure ofmerit to determine the performance of tomography is the quantum fidelity F of two
statesχ andσ, which is defined as c s cs c=( ) (( ) )F , tr 1 2 [6].Wefind that the fidelity between theGHZ
state GHZ and the estimated state ̂CS is

Figure 3.Bar plot of the densitymatrix of the target (GHZ) state rGHZ and its optimal compressed sensing estimate r̂CS. The basis is
fixed to the tensor products of one-particle vectors in the order ñ ñ ¼ ñ∣ ∣ ∣H H H H H H H V V V V V, , , , , , , , , , , , . The height of each
bar corresponds to the size of the absolute value of the respective densitymatrix entry  = j∣ ∣ej k j k, ,

i j k, and the colour to its complex
phase j p pÎ -( ],j k, . The colourmap is chosen to account for the periodicity of the phase. The fidelity of the estimate with respect to

theGHZ state is 0.855±0.006 and its purity  = ( ˆ )tr 0.60 0.01CS
2 , representing an expectedmixedness due to experimental

imperfections.
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  = ( ˆ ) ( )F , 0.855 0.006. 19GHZ CS

The uncertainty of the fidelity is determined by using the optimal compressed sensing estimate, ̂ , as input for
the generation of simulated data—parametric bootstrapping [57]—and taking the empirical standard deviation
of the fidelity values. This uncertainty determines the robustness of themethod.Obtaining a closed expression
for proper error bounds from the datawith respect to positivity constraints is hard [23, 58], while bootstrapping
and taking the empirical standard deviation gives a good estimate of uncertainty [57].

To build confidence, we also computed themaximum likelihood estimate [59], ̂MLE, using the same data
to obtain a fidelity with respect to the target state of   = ( ˆ )F , 0.843 0.004GHZ MLE , which shows that the
estimators yield similar results; as will other estimators such as least squares with positivity constraint.
Additionally, since we havemeasured a tomographically complete set of observables and the statistical
properties of themeasured data are sufficiently understood, we are able to provide an estimate of the fidelity
with respect to the target state directly from themeasured data without the need of performing tomography
and an estimate of the corresponding error bound, see the appendix for details.With this, we obtain a fidelity
of 0.845±0.005, which again is in good agreement with the results computed from the compressed sensing
estimate.We note that the standard technique for estimating the fidelity of a state with respect to a specific
target state requires estimating only the expectation values of a set of operators that form a decomposition of
the target state. For a four-qubit GHZ state, this requires aminimumof nine specific Pauli basis
measurements, as explained in the appendix. In contrast, using compressed sensing tomography, even a
random set ofmeasurement settings produces fidelity estimates with respect to the GHZ state, which quickly
approach themaximum at around 25measurement settings. Furthermore, thesemeasurement settings
suffice to compute the fidelities with respect to arbitrary states, since they allow for the estimation of the entire
state.

Compressed sensing is about employing provably fewermeasurement settings thanwith standardmethods,
while still producing satisfactory reconstructions, i.e. to effectively sense in a compressive way. Along these lines,
we explore how varying the number ofmeasurement settingsm affects thefidelity. This is shown in figure 4. In
order tomake the results independent from specificmeasurement settings, we randomly drawwithout
replacementm out ofmmax different settings 200 times and average over the resulting fidelities, thus providing a
value for a typically expectedfidelity for eachm. As onewould expect intuitively, we can see that the value of the
fidelity increasesmonotonically with the number ofmeasurement settings and converges to the fidelity of the
estimate from tomographically complete data. The shaded region represents the uncertainty (± standard
deviation) in thefidelity computed via bootstrapping and displays the decreasing uncertainty with increasing
numbers ofmeasurement settings. Thefidelity already falls within the error bars of its final value for comparably
smallm.

Figure 4. Fidelity   e( ˆ ( ˆ ))F m, ,GHZ as a function of the number ofmeasurement settingsmwith uncertainty (shading) from
bootstrapping for e e= ˆ . For largem, F approaches thefidelity of GHZ and ̂ ,   =( ˆ )F , 0.855GHZ CS , getting very close already for
comparably fewmeasurement settings, and the standard deviation becomes smaller.
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Deviations from the optimal parameter
In this section, we study the effect thatmisestimating εhas in the performance of the reconstruction of the state.
We carry out this task by numerical simulation: Using the compressed sensing state estimate ̂CS, we simulate
measurement data, whichwe subsequently input to our compressed sensing reconstruction procedure, varying
both ε,m and randomly drawingmeasurement settings without replacement. If the corresponding optimisation
problem is infeasible and yields no estimate, the fidelity F is set to zero. Thefidelities   e( ˆ ˆ ( ))F m, ,CS are
averaged over data andmeasurement settings (500 different data sets and differentmeasurement settings perm
and ε).

The results for varyingm and ε in units of ê are shown infigure 5.We compare the reconstructed states to
̂CS, whichwe used to generate the simulated data.We see that asm increases, thefidelity converges to unity at
e e= ˆ (where ̂CS is defined).We are interested in howquickly our reconstructed state approaches the optimal
̂CS with fewermeasurement settings, particularly if ε ismisestimated. For instance, we see that we can obtain
average fidelities ofmore than 0.8 for only 6measurement settings. Figure 5 (top) again illustrates that e e= ˆ is
the best choice as the fidelities around this region (and away frompathologically small numbers ofmeasurement
settings, >m 3) are the highest.Moreover, we also see thatwith increasingm, the standard deviationDF of the
fidelity becomes smaller for e ê. For e e< ˆ , infeasibilities of the optimisation equation (12) that appear for
certain choices ofmeasurement settings lead to large standard deviations, which can be seen by the ridge in the
area left of e e= ˆ infigure 5 (bottom). The ridge aswell as the region of infeasibility gets close to e e= ˆ for large
m, which is reasonable sincemore information (i.e. more constraints) puts greater restrictions on the
optimisation problems. If fewermeasurement settings are considered, as in the highly tomographically
incomplete regime, overestimation of ε is less detrimental and state estimates still performwell, i.e. thefidelity is
relatively constant for  e e eˆ ˆ3 . However, asmincreases, the reconstruction becomesmore strongly
dependant on the choice of ε. Generally, we see that the higher the fidelity, the lower the standard deviation.

Figure 5. Fidelity   e( ˆ ˆ ( ))F m, ,CS depending on the number ofmeasurement settingsm and themodel parameter ε (top) and
corresponding standard deviationDF (bottom) obtained via bootstrapping. Since in compressed sensingwe aremore interested in
the regime of fewmeasurement settings and thefidelities do not change significantly for largerm, we restrict ourselves to the region
with m 20. The data are generated randomly from ̂CS and themeasurement settings perm are drawn randomly aswell. The
fidelities are averaged over different data realisations andmeasurement settings. The highestfidelities are achieved for e e» ˆ with
rapid decrease for e e< ˆ where the fraction of infeasible optimisations increases. Note that the higher thefidelity, the lower the
standard deviation.
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Discussion
In this work, we have experimentally explored the compressed sensing paradigm for quantum state tomography
as applied to the photonic setting.We have explicitly laid out amethod for applying these techniques and
reconstructed the state of a four-photon systemwith tomographically complete data available, observing a high
fidelity of the reconstructed statewith respect to the target state. The presence of noise in the data requires that
one carefully chooses appropriate constraints on the optimisation. In current applications, these parameters are
usually obtained in an ad hocway.We have provided a prescription to establish the parameters in amore
systematic way bymodelling the noise and performing cross validation, which is a generalmethod formodel
selection. The quality of the data, being afflictedwith noise predominantly attributed tofinite counting statistics,
allows us tomodel the noise via amultinomial distribution. This is a situation commonly expected for photonic
experiments with post-selected data. In fact, we observe a great agreement between estimating themodel
parameter from theoretical noisemodelling and cross validation.

Having established the appropriatemodel, we have been able to perform state reconstructionwith
tomographically incomplete data, which rapidly converges to the highestfidelity estimate as the number of
measurement settings increases. As a validity check, we have also run different estimators on the full data and
obtained similar results, showing that our compressed sensing procedure yields reasonable estimates. As is
predicted by themathematical theory of compressed sensing, we have found that the number ofmeasurement
settings needed for a satisfactory estimate of the underlying state ismuch smaller than the number of
measurements necessary for tomographic completeness.We have also carried out a comprehensive
bootstrapping analysis to build confidence in the robustness of ourmethod. In fact, we have observed that the
uncertainty in the fidelity quickly decreases with increasing number ofmeasurement settings.

Furthermore, we have studied the robustness of ourmethodwith respect to impropermodel selection and
the effects on the reconstruction.We have found that for several choices ofmodels and different numbers of
measurement settings, the performance of the reconstruction can vary dramatically. For small numbers of
measurement settings, ourmethod depends less strongly on themodel. In contrast, for large numbers of
measurement settings, it is imperative to determine the appropriatemodel for optimal performance.

Our results confirm that compressed sensing in conjunctionwith suitablemodel selection gives rise to
reliable procedures for state reconstruction leading to effective tomographywith tomographically incomplete
data. These techniques can be applied to awide range of experimental settings and provide ameans to identify
and verify appropriatemodels thereby paving theway for the future of practical quantum state tomography.
With this, we contribute to establishing compressed sensing as a practical tool for quantum state tomography in
the low-information regime.
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Appendix:fidelity estimationwith error bound

In this section, we providemore detail to the fidelity estimationwith an error boundwithout the need of
resorting to quantum state tomography. In the Pauli operator basis

 s s sÎ
=

{ ⨂ { }} ( )O O: , , , , A1l l
j

n

x y z
1

we can estimate from themeasured probabilities =p̂ y Nj k j k j, , the expansion coefficients

x = ( ) ( )O dtr A2l
l

of the prepared state ñ by a linear transformationΩ,

x = W ˆ ( )p. A3

For convenience, we denote by p̂ the row-vectorisation of thematrix with entries p̂j k, . Thefidelity with respect
to a pure target state  T can bewritten in terms of the expansion coeffcients as
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    å xx x= = W( ) ˆ ( )pF , . A4
l

l l T2
T

T T

The frequency of the d different outcomes for the jthmeasurement setting is described by amultinomial
distribution. The covariancematrix is given for eachmultinomial distribution by

d= -( ) ( ) ( )Y Y N p p pCov , . A5j k j l j j k i j j k j l, , , , , ,

Since differentmeasurement settings correspond tomutually orthonormal operators, the frequencies of
differentmeasurement settings are uncorrelated, i.e. =( )Y YCov , 0i k j l, , for ¹i j. Therefore the covariance
matrix for the probabilities p̂ can be estimated from the data as

d= --( ˆ ˆ ) ( ˆ ˆ ˆ ) ( )p p N p p pCov , . A6j k j l j j k i j j k j l, ,
1

, , , ,

Bymeans of linear error propagation, the variance of the fidelity is given by

 x x= W W( ) ( ˆ ˆ ) ( )F p pVar Cov , , A7T T2
T T

which yields an estimate of the statistical error of the fidelity estimate from the data

 D =( ) ( ) ( )F F, Var . A82
T

2

In particular, in order to estimate the fidelity with respect to theGHZ state, only nine Pauli basismeasurements
contribute. This can be seen from the expansion of theGHZdensitymatrix in the Pauli operator basis

 


 å å ås s s s s s s= + Ä Ä Ä + Ä Ä Ä
s s s sÎ

Ä
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )

{ }

1

16
, A9z z x x y yGHZ

, , ,

4

Perm. Perm.x y z

where the last two sums run over all six distinct orders of the four factors of the tensor product.
To estimate thefidelity (A4), only the 16 Pauli coefficients of the prepared state are required that correspond

to the operators of the expansion(A9). From themeasurement outcomes of themeasurement setting sÄ
z

4, all
coefficients of operators containing only the identity  and sz can be estimated. Thus, only nine Pauli basis
measurements are necessary to estimate the fidelity.

Note that it is also possible to employ themeasurement outcomes of all othermeasurement settings in the
estimation of coefficients of terms that include the identity in equation (A9). In principle, it is thereby possible to
further reduce the statistical error of the estimate of those coefficients. However, for the data set considered in
this work, usingmore than ninemeasurement settings does not significantly alter thefidelity estimate.
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