
3 Detailed thermophysical modeling

A detailed thermophysical model (TPM) is presented which is applicable to all
asteroids including NEAs. The effects of thermal inertia, spin state, irregular
shape, and thermal-infrared beaming are explicitly taken into account. Arbitrary
convex shapes are allowed for, a generalization to non-convex shapes is under
development (see chapter A in the appendix).

Realistic thermophysical modeling is required in order to reach the primary goal
of this thesis, namely to determine the thermal inertia of NEAs through analysis
of thermal-infrared observations; we wish to emphasize that there is no other well-
established method of measuring the thermal inertia of asteroids. Furthermore,
since the thermal physics of asteroid surfaces is here modeled in a more realistic
way than in the highly idealized thermal models described in the previous chapter,
TPM-derived estimates on diameter and albedo are potentially more accurate.

The thermal emission of NEAs is more challenging to model than that of MBAs
due to their larger thermal inertia and because they are typically observed at much
larger solar phase angles. While TPMs applicable to MBA data have previously
been available, we here report the first TPM shown to be applicable to NEA data.

After an overview section, the thermal physics of asteroid surfaces is discussed
in sect. 3.2. The model implementation is presented in sect. 3.3, validation test
are presented in sect. 3.4. Sect. 3.5 is devoted to fitting techniques.

3.1 Overview

Various models have been proposed to overcome the limitations of simple thermal
models. E.g., Hansen (1977) proposed a physical model for asteroid surface rough-
ness along with an approximative treatment of conduction on a spherical asteroid.
Non-spherical asteroid shapes have been modeled by Brown (1985), who proposed
a variant of the STM with ellipsoidal asteroid shape. Spencer (1990) proposed an
improved variant of Hansen’s model in which thermal conduction is modeled in
more detail. A variant of Spencer’s model has been used by Delbo’ (2004). The
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3 Detailed thermophysical modeling

most realistic asteroid TPM currently available is that by Lagerros (1996, 1997,
1998a) in which thermal conduction and surface roughness are explicitly modeled
on an asteroid of arbitrary shape. The Lagerros TPM has been widely used and
is well tested for applications to large MBAs. It enabled their thermal emission
to be studied to such a high accuracy that they are used as calibration standards
for space telescopes (see, e.g., Müller and Lagerros, 1998, 2002).

TPMs for asteroids were largely inspired by observations and models of other
atmosphereless bodies. The first extraterrestrial body with well understood ther-
mal properties was the Moon. It was found to display a thermal-infrared beaming
effect by Pettit and Nicholson (1930) who also concluded that the thermal con-
ductivity of lunar regolith was extremely low (see also Wesselink, 1948). Around
the Apollo era the thermal properties of the Moon were studied in great detail
from ground-based observations, in-situ measurements, and laboratory analysis
of returned lunar samples (see, e.g., Buhl et al., 1968; Winter and Krupp, 1971;
Saari and Shorthill, 1972; Jones et al., 1975; Langseth et al., 1976, and references
therein). While Martian results are not directly applicable to asteroids due to
Mars’ atmosphere, lessons can be learned from spacecraft observations of Martian
satellites (see, e.g., Lunine et al., 1982; Kührt et al., 1992), which are thought
to be captured asteroids. Also Mercury is an atmosphereless body with a well
observable and well modeled beaming effect (Emery et al., 1998). Due primar-
ily to its slow spin, only the vicinity of Mercury’s terminator is expected to be
influenced appreciably by thermal inertia. No effects of thermal conduction on
Mercury could be found from ground-based observations, but thermal-infrared
spacecraft observations using the MERTIS instrument (Benkhoff et al., 2006) on
BepiColombo are to be expected in the future.

Our TPM is based on that by Lagerros (1996, 1997, 1998a). Minor improve-
ments to the physical modeling are proposed. The implementation is completely
independent of Lagerros’. The model code was verified to produce physical results
for very large solar phase angles and for a thermal inertia up to that of bare rock;
extensive tests are reported in sect. 3.4. No such tests of the Lagerros TPM have
been reported, but it is clear that his model was primarily aimed at application
to MBAs. For geometric reasons, ground-based observations of MBAs cannot be
performed at phase angles largely exceeding 30◦. Furthermore, the typical ther-
mal inertia of MBAs appears to be comparable to that of lunar regolith. For both
reasons, modeling the thermal emission of MBAs is numerically less challenging
than that of NEAs.
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3.1 Overview

Our model is implemented in an object-oriented way (in C++) which makes it
easy to add new features.

3.1.1 Model description

The asteroid is modeled as a convex mesh of typically a few thousand triangular
facets. It is assumed to rotate about a fixed axis, i.e. non-principal-axis rotation
(“tumbling”) is not supported. All physical surface properties, such as albedo,
emissivity, thermal inertia, and surface roughness are assumed to be constant over
the surface. Local surface temperatures are calculated from the local insolation
geometry. One-dimensional thermal conduction into and from the subsoil is taken
into account, all relevant parameters are assumed to be constant. To model surface
roughness, model craters in the form of subdued hemispheres are added. The
crater density and opening angle can be varied. Inside craters, shadowing, multiple
scattering of optical and thermal flux, and reabsorption of both are fully taken
into account, leading to thermal-infrared beaming.

Global-scale convexity The asteroid shape model is assumed to be convex, only
small-scale concavity is modeled in terms of craters. Global-scale convexity im-
plies that facets cannot shadow one another, neither can they exchange energy
radiatively which would lead to mutual heating. Since facets are typically very
large compared to the penetration depth of the diurnal heat wave (see sect. 3.2.2),
lateral heat conduction between facets can be neglected. Hence, the thermal flux
emanating from an individual facet can be calculated independent of all other
facets, which significantly simplifies the numerical treatment. A more general
model variant, in which non-convex shape is allowed for, is described in chapter
A in the appendix.

Most available models of asteroid shapes are convex by design (see Kaasalainen
et al., 2002, for a review). Lacking such a shape model, one typically assumes a
spherical or ellipsoidal shape, which are also convex.

3.1.2 Model parameters

Required asteroid parameters are the shape and spin state (see sect. 3.2.1 for de-
tails), the absolute optical magnitude H, slope parameter G, and emissivity ε.
Model variables are the geometric albedo pV (which determines the diameter D
through H, and furthermore the Bond albedo A), the thermal inertia in SI units

49
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(J s-1/2K-1m-2), and the crater density and opening angle (in degrees). Model
fluxes are calculated for a given Julian date, wavelength (in µm), and observing
geometry, where the latter is defined by the heliocentric and observer-centric as-
teroid position in ecliptic coordinates (ecliptic longitude and latitude in degrees,
distance in AU). Data taken at different epochs should be stored in separate fit
files, but they can be read in and fitted simultaneously. Our techniques to fit
model parameters to a given set of data are described in sect. 3.5.

3.1.3 Implementation overview

The TPM program takes .convex files as input. Those are generated using auxil-
iary programs based on computer-readable shape models (see sect. 3.2.1). On each
facet, the diurnal temperature distribution is calculated as described in sect. 3.2.2.
Thermal-infrared beaming is modeled as described in sect. 3.2.3. Disk-integrated
model fluxes are calculated by summing up contributions from all visible facets.

3.2 Thermal physics

3.2.1 Global shape and spin state

In our TPM, the asteroid shape is modeled as a mesh of typically a few thousand
planar triangular facets, the typical format of available asteroid shape models.
The shape is defined by the coordinates of n vertices which form 2n − 4 facets,
each defined by the three indices of its vertices. As is common practice, a body-
centric coordinate system is used in which the z axis corresponds to the spin axis;
non-principal-axis rotation (“tumbling”) is not supported so far. To model spher-
ical and ellipsoidal shapes, an auxiliary program was developed which produces
models of triangulated spheres of user-specified resolution and stretches them into
ellipsoids if desired.

Geometric and thermal model tasks are separated in the code as far as possible,
such that time-consuming geometric calculations need to be performed only once
per shape. To this end, auxiliary programs have been developed to convert shape
model files provided by colleagues (currently, the quasi-standard OBJ wavefront
format and Mikko Kaasalainen’s variant thereof are supported) into a specifically
defined type called .convex. For the thermal emission of convex asteroids the
vertex positions are irrelevant, hence .convex files contain solely a list of 2n −
4 outbound surface-normal vectors (see sect. 3.2.1.a) and the model’s intrinsic
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3.2 Thermal physics

diameter (see sect. 3.2.1.b). Shape models are not checked for convexity, they are
assumed to be convex.

3.2.1.a Outbound surface-normal vector

Each facet is defined by three vertex vectors ~v1,2,3 and has an outbound surface-
normal vector (normal to the facet with a modulus equal to the facet size)

~dA = ±1
2

(~v2 − ~v1)× (~v3 − ~v1) (3.1)

where × denotes the vector product. We calculate ~dA with the positive sign and
then check the orientation; the sign is flipped if the resulting vector is inbound.
Assuming that the origin of the coordinate system is inside the object1 (which is
true for all common distributions of shape models), ~dA is outbound if

~dA · ~v1 + ~v2 + ~v3
3

> 0

(note that the division by 3 is not required to perform this test and is therefore
not done in the code).

3.2.1.b Intrinsic diameter

So far, all linear dimensions are in unspecified units. To convert them into physical
units, they must be multiplied with a scale factor

s :=
Dphys

Dintr
(3.2)

where Dphys is the physical diameter determined from the constant H and the
variable pV (eqn. 1.1), and Dintr is the intrinsic diameter of the shape model in
unspecified units. As is common practice, the effective diameter is defined as that
of the sphere of identical volume (see eqn. 2.1 on p. 28). The total volume V of
the polyhedral shape model equals the sum of all tetrahedral volumes Vi defined

1 Strictly speaking, the more stringent requirement holds that all straight lines connecting the
origin to the vertices must entirely lie within the object. By the definition of convexity, this
is implied if the origin is inside the object.
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3 Detailed thermophysical modeling

by the origin and the three vertices ~vi,123 belonging to facet i

V =
∑

i

1
6
|( ~vi,1 × ~vi,2) · ~vi,3| (3.3a)

Dintr = 3

√
6V
π
. (3.3b)

The scale factor s is updated inside the TPM code whenever the variable pV is
updated.

3.2.1.c Transformation into a co-rotating system

For the calculation of model fluxes, the coordinates of the Sun, ~eS , and of the ob-
server, ~eO, in a co-rotating asteroid-centric coordinate system are required. They
are calculated from the epoch of the observation, t, and from the ecliptic coordi-
nates of the asteroid in heliocentric (λS , βS) and observer-centric (λO, βO) frames,
respectively, which are typically taken from ephemeris generators. Further re-
quired input parameters are the epoch of zero rotational phase JD0, the spin period
P, and the ecliptic coordinates of the spin axis (λA, βA). The transformation into
the bodycentric co-rotating system reads: (Ra (φ) denotes the counter-clockwise
rotation about the a axis by the angle φ in radians)

− ~ex = Rz

(
− (t− JD0)

2π
P

)
Ry

(
βA −

π

2

)  cos (λx − λA) cosβx

sin (λx − λA) cosβx

sinβx

 (3.4)

using the usual Euler rotations (substitute S or O for x; the first Euler rotation
is performed explicitly, leading to the longitude λx − λA); the minus sign in front
of ~ex reflects the fact that ephemeris coordinates denote vectors pointing towards
the asteroid, whereas in the following we require vectors pointing away from it.

3.2.2 Thermal conduction

Thermal conduction into and from the subsoil causes asteroids to display thermal
inertia (see sect. 2.2.2), such that their surface temperatures not only depend on
the instantaneous insolation but also on the thermal history. As will be discussed
in sect. 3.2.2.b, the thermal inertia of asteroid surfaces may vary by some two
orders of magnitude, depending on various surface properties, leading to significant
differences in surface temperatures and hence in thermal fluxes.
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3.2 Thermal physics

As is common practice, lateral heat conduction is neglected; the length scale of
thermal conduction phenomena, the skin depth lS , is typically in the cm-range,
much below the resolution of available asteroid shape models.

Like most authors of recent asteroid thermophysical models (see, e.g., Lagerros,
1996, 1998a; Delbo’, 2004; Wright, 2007) we follow the example of Spencer et al.
(1989) and assume all relevant thermal parameters to be constant with depth and
hence with temperature (see discussion below).

3.2.2.a Mathematical description

Thermal conduction can be described in terms of the vector-valued heat flux, ~Φ,
which is defined as the amount of heat transfer per cross-sectional area. ~Φ points
into the direction of the heat transfer, which is proportional to the gradient of the
temperature T

~Φ = −κ~∇T. (3.5)

κ is a material specific constant, the thermal conductivity. Inside a thermal con-
ductor, the thermal energy per unit volume reads ρcT , with the surface bulk mass
density, ρ,2 and the specific heat, c. By conservation of energy, local changes in
thermal energy act as sources of heat flux, i.e.:

∂

∂t
ρcT = ~∇ ·κ~∇T. (3.6)

In the case of opaque atmosphereless bodies such as asteroids, a boundary condi-
tion of this partial differential equation of second order stems from the absorption
of solar flux at the surface (see eqn. 2.5 on p. 36)3

εσT 4 = (1−A)
S

r2
µS + ΦN (3.7)

where ΦN is the heat flux projection onto the outbound surface normal, and
µS is the cosine of the local zenith distance of the Sun (µS is defined to vanish
when the Sun is below local horizon).4 Thermal conduction thus couples surface

2 ρ should not be confused with the total bulk mass density of the body which can be very
different from that of the surface, e.g. in the case of loose regolith covering solid rock.

3 Note that non-opaque materials, such as water ice, allow sunlight to be absorbed at non-
negligible depth leading to, e.g., the solid-state greenhouse effect (see Kaufmann et al., 2006,
2007, and references therein).

4 For the sake of compactness, we consider direct insolation as the only source of absorbed
incoming flux throughout this section; other sources (originating, e.g., from other facets inside
concavities such as craters) are straightforward to add to the solar-radiation term. Similarly,
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3 Detailed thermophysical modeling

temperatures to the sub-surface temperature profile.

Throughout this work, three approximations are made:

Constant thermal conductivity The thermal conductivity κ is assumed to be spa-
tially constant, which tacitly includes that κ be temperature independent
(otherwise ~∇κ = ∂κ/∂T ~∇T , see the discussion in sect. 3.2.2.b). Under this
assumption, eqn. 3.6 reduces to the well-known diffusion equation

∂

∂t
T =

κ

ρc
∆T. (3.8)

with the Laplace operator ∆ = ~∇ · ~∇.

One-dimensional heat flow As we will see below, thermal conduction on asteroids
is effective over typical length scales in the cm-range, significantly below the
resolution of known shape models. We can therefore neglect lateral heat
conduction and only consider one-dimensional heat flow into and from the
subsoil. Throughout this work, a coordinate system will be used in which
the Z axis coincides with the local surface normal, Z = 0 at the surface and
Z > 0 below the surface.

No seasonal effects The insolation (and hence the temperature) on asteroids has
typically two fundamental periods, the spin period P and the orbital period
T , leading to diurnal and seasonal effects, respectively. Typically, T � P.
As will be seen below, seasonal effects are typically negligible on asteroids.
Insolation and temperature are then periodic in time with period P =: 2π/ω.

Under these assumptions, it is possible to express all relevant quantities in a
dimensionless way, following Spencer et al. (1989):

τ = ωt (3.9a)

z = Z/lS (3.9b)

u = T/TSS (3.9c)

with the following definitions of skin depth lS , subsolar temperature TSS , thermal

shadowing can easily be incorporated by defining µS to vanish whenever the facet is shadowed.
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inertia Γ, and thermal parameter Θ:

lS =
√

κ

ωρc
(3.10a)

TSS = 4

√
(1−A)S/r2

εσ
. (3.10b)

Θ =
κ/lS
εσTSS

3
=
√
ω

Γ
εσTSS

3
(3.10c)

Γ =
√
κρc (3.10d)

Eqn. 3.8 and eqn. 3.7 acquire the form

∂

∂τ
u(z, τ) =

∂2

∂z2
u(z, τ) (3.11a)

u(0, τ)4 = µS(τ) + Θ
∂

∂z
u(0, τ). (3.11b)

The heat transfer problem depends solely on the thermal parameter, Θ, which
is proportional to the thermal inertia, Γ, and otherwise independent of thermal
properties. It is easily seen that Θ = 0 corresponds to vanishing thermal inertia
(c.f. eqn. 2.5) while Θ → ∞ corresponds to an FRM-like asteroid (c.f. eqn. 2.9).
Θ is proportional to 1/

√
P, so the FRM limit is approached by fast rotators.

Equation eqn. 3.11a is a partial differential equation of second order which
requires two suitable boundary conditions to be solvable: Eqn. 3.11b and the
requirement that the temperature be spatially constant at infinite depth

lim
z→∞

∂

∂z
u(z, τ) = 0. (3.12)

Since the surface boundary condition is τ periodic with period 2π, so must the
solution u(z, τ), and there is a unique solution to the diffusion equation eqn. 3.11
in combination with eqn. 3.12, namely the wave equation 5

u (z, τ) = u0 +
∞∑

n=1

un exp
(
−z

√
n/2

)
cos

(
nτ − z

√
n/2− φn

)
. (3.13)

5 Derivation: A solution of the partial differential equation eqn. 3.11 u(z, τ) ∈ R with time
period 2π can be Fourier decomposed (see, e.g., Wesselink, 1948)

u(z, τ) =
∑
n∈Z

an exp(inτ)gn(z) ∀n∀z : angn(z) = a−ng−n(z)

where z denotes the complex conjugate of z. Denoting derivatives w.r.t. z with primes we
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Figure 3.1: Thermal model spectra of a spherical smooth NEA for different values
of Θ, which is proportional to thermal inertia Γ, and for phase angles of α = ±45◦,
placing the sub-observer point at local times of 9 AM and 3 PM, respectively (Sun and
observer are above the equator). Note the large morning-evening asymmetry for inter-
mediate Θ values, which asymptotically vanishes for low and large Θ values. This asym-
metry drives the important Yarkovsky effect (see sect. 1.3) and facilitates determinations
of thermal inertia from thermal data despite the competing effect of thermal-infrared
beaming which does not display a morning-evening asymmetry. Model parameters are
r = 1.1 AU, ∆ = 0.1 AU, P = 6 h, A = 0.1, and ε = 0.9. Hence, Θ = 1 corresponds to
γ ∼ 160 J s-1/2K-1m-2. A typical value for NEAs is 300 J s-1/2K-1m-2 (see sect. 7.3).

The parameters un and φn remain to be determined from the surface boundary
condition eqn. 3.11b. In practice, this is less convenient than a straightforward
numerical integration of the differential equation, so the heat-wave solution is of
little practical use. It is, however, important to realize that the amplitude of the
heat wave decays exponentially with depth.

3.2.2.b Physical discussion

When observing the effect of thermal conduction on asteroid thermal fluxes, the
primary observable quantity is Θ (see eqn. 3.10c). As can be seen from Fig. 3.1,

get:

n = 0 : g′′0 (z) = 0 −→ g0(z) = λ0 z + u0

n > 0 : g′′n(z) = ingn(z) −→ gn(z) = λn exp
[√

n/2 (1 + i) z
]

+ µn exp
[
−

√
n/2 (1 + i) z

]
n < 0 : g′′n(z) = ingn(z) −→ gn(z) = λn exp

[√
−n/2 (1− i) z

]
+ µn exp

[
−

√
−n/2 (1− i) z

]
with constants λn and µn. The boundary condition eqn. 3.12 requires all λn to vanish. The
proof is finished by substituting anµn(z) with un exp(iφn)/2 (∀n : un ∈ R and φn ∈ R).
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3.2 Thermal physics

Θ is difficult to measure in the limiting cases when it approaches 0 or ∞, and is
most readily measurable for intermediate values of the order of 1.

Depending on their angular spin velocity ω and the subsolar temperature TSS

(which depends chiefly on the heliocentric distance r), objects with identical ther-
mal inertia may nevertheless have very different thermal parameters. While it is
intuitively clear that the surface temperatures of fast rotators are more signifi-
cantly influenced by thermal conduction than those of cold rotators, the depen-
dence of Θ on TSS is less intuitively obvious; to explain the latter, it is instructive
to think of thermal emission into space (proportional to TSS

4) as a heat trans-
fer mechanism which competes with conduction into the subsoil (proportional to
TSS). This explains, among other things, why the STM (which assumes Θ = 0)
appears to be a poor thermal model for Kuiper belt objects (see Stansberry et al.,
2007, and references therein) despite the low thermal inertia typically expected
for such objects: Due to their large heliocentric distances, Kuiper belt objects are
cold, and hence Θ can no longer be neglected even for low Γ values.

The three physical parameters ρ, c, and κ cannot be determined separately, but
only the thermal inertia Γ =

√
ρcκ (see eqn. 3.10d). As can be seen from table

3.1 on p. 58, for plausible asteroid-surface materials κ is much more variable than
ρ and c, hence Γ is largely determined from κ. Γ is often transformed into κ and
vice-versa assuming typical values of ρ and c. Confusingly, it is common practice
among modelers of the Yarkovsky and YORP effects to consider κ as the primary
variable (see, e.g., Bottke et al., 2006, and references therein; “thermal inertia” is
often not mentioned in such papers), while thermal observers and modelers tend
to highlight Γ rather than κ.

Geological interpretation As can be seen in table 3.1 on p. 58, the thermal inertia
of lunar regolith is around 50 J s-1/2K-1m-2, roughly that of very light polystyrene
foam. Other plausible soil materials, such as coal or sand, have much larger
thermal inertia, and bare rock (granite or marble) reaches Γ ∼ 2500 J s-1/2K-1m-2,
some 50 times larger than that of lunar regolith. Metals are excellent thermal
conductors, metallic meteoroids may therefore display a very large thermal inertia
some 350 times larger than that of lunar regolith.

The thermal inertia of a given particulate material decreases with decreasing
grain size unless grains are much larger than the thermal skin depth (see, e.g.,
Jakosky, 1986; Clauser, 1995; Presley and Christensen, 1997). Thermal inertia is
thus a very sensitive indicator for the presence or absence of loose surface material.
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Table 3.1: Thermal properties of some typical materials: thermal conductivity κ, mass
density ρ, specific heat capacity c, all for temperatures of 20 ◦C unless otherwise stated.
Thermal inertia Γ is calculated from eqn. 3.10d, skin depths lS from eqn. 3.10a, assuming
periods of P = 24 h or 365 d. References: Text books and standard tables (Stephan, 2001;
Volger and Laasch, 1989; Berber et al., 1999; Ahrendts, 2000), and Winter and Krupp
(1971) for lunar regolith. Values in parentheses were estimated based on similar materials.

Material κ ρ c Γ lS (day) lS (year)

W K-1m-1 kg m-3 J kg-1K-1 J s-1/2K-1m-2 cm cm

Nickel 91 8850 448 19 · 103 56 1000
Iron 81 7860 452 17 · 103 56 1000
Granite 2.9 2750 890 2600 13 250
Marble 2.8 2600 800 2400 14 260
Water ice, 0 ◦C 2.25 917 2000 2040 13 252
Water, 0 ◦C 0.56 1000 4200 1500 4.3 82
Snow (compact) 0.46 560 2100 740 7.3 140
Sandy soil 0.27 1650 800 600 5.3 100
Coal 0.26 1350 1260 665 4.6 88
Pumice 0.15 800 (900) 330 5.4 100
Paper 0.12 700 1200 320 4.4 85
Polystyrene foam 0.03 50 1500 47 7.4 140
Air, 20 ◦C 0.026 1.2 1000 5.6 55 1000
Lunar regolith 0.0029 1400 640 51 0.7 13

Note: The entry for air only applies to small volumes of air, where convective heat transfer
(which dominates in large volumes) is inefficient. For very porous bodies on Earth (such as
polystyrene foam), heat conduction through air trapped inside the pores is the dominant heat
transfer mechanism, placing a lower limit on thermal conductivity. On atmosphereless bodies
such as the Moon or asteroids, lower conductivities are possible.

This is widely used in Martian geology (see, e.g., Mellon et al., 2000; Christensen
et al., 2003; Putzig et al., 2005, and references therein). It must be noted, however,
that even the thin Martian atmosphere greatly enhances the thermal conduction
among fine grains (see Presley and Christensen, 1997) relative to purely radiative
heat transfer. To the best of our knowledge, the dependence of thermal inertia on
grain size in a vacuum has not been studied so far, therefore it is presently not
straightforward to interpret thermal-inertia values on asteroids in terms of grain
size.

Another trend apparent in table 3.1 is that thermal inertia decreases with
porosity (see the difference between ice and snow or the low thermal inertia of
volcanic pumice). It is therefore hard to tell a priori what thermal inertia an
asteroid composed of “bare rock” should display, but the commonly quoted value
of 2,500 J s-1/2K-1m-2 (see the values for granite and marble in table 3.1) may be
expected to be an upper limit.

It is also apparent from table 3.1 that neglecting lateral heat conduction on
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3.2 Thermal physics

asteroid surfaces is unlikely to introduce significant systematic uncertainties: Even
metallic objects with their huge thermal inertia and with a relatively slow rotation
rate of 24 h would have a thermal skin depth of only 56 cm, such that for all
objects larger than a few tens of meters in diameter lateral heat conduction can
be safely neglected. However, lateral heat conduction is very important for thermal
modeling of the precursor bodies of metallic meteoroids and their Yarkovsky drifts.
Since such objects cannot be observed with current mid-IR telescopes, they are
beyond our scope.

Heat transfer mechanisms There are three major heat transfer mechanisms:
conduction, convection, and thermal radiation. While convection is irrelevant on
atmosphereless bodies, both conductive and radiative heat transfer could plausi-
bly occur on asteroids. Conduction would be expected to occur within surface
grains, while radiation should dominate the heat transfer between grains. In the
limit of point-like grains, conduction vanishes while for compact bodies radiative
heat transfer can be neglected. The relative importance of the two heat transfer
processes thus depends on the typical surface-grain size, which is unknown for
asteroids.

For conductive heat transfer, κ is largely independent of temperature T (for the
materials and the temperature range relevant for our purposes) whereas radiative
heat transfer is well described with κ ∝ T 3. For lunar regolith, it is known from
Apollo in-situ measurements and laboratory analysis of returned lunar samples
that both conductive and radiative heat transfer are relevant, such that κ = a+bT 3

with constants a and b (see, e.g., Jones et al., 1975, and references therein; in their
model, a and b are functions of depth).

Kührt and Giese (1989) proposed a complex TPM in which lunar results are
rescaled to the conditions prevailing on the Martian satellites. When attempting
to use their model to fit observational data of Deimos and Phobos, however, they
reverted to a simplified model, in which only the radiative T 3 term is considered
(Giese and Kührt, 1990; Kührt et al., 1992). Note that in this case heat transfer is
no longer described by the diffusion equation eqn. 3.8 on p. 54, but an additional
term occurs, which stems from the derivative of κ.

Most TPMs for asteroids proposed so far assume Γ to be independent of depth
and temperature (see Spencer et al., 1989; Lagerros, 1996; Delbo’, 2004; Wright,
2007, and references therein). This implicitly prefers conductive over radiative
heat transfer. Another, widely quoted, interpretation is that the exact dependence
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of thermal parameters on depth and temperature is too poorly constrained by
available data to be modeled explicitly, hence one reverts to constant values which
are effective averages over the relevant length scales.

Due to their generally lower heliocentric distance, NEAs are typically hotter
than MBAs, hence one might expect the radiative T 3 term to be more important
for their thermal emission than for that of MBAs. However, the relative impor-
tance of the T 3 radiative term and the T 0 conductive term are not clear a priori.
An “Apollo-like” thermal conductivity model with two or more fit parameters (a
and b given above) would probably be most realistic, but the ratio a/b would be
very hard to constrain with typical asteroid data. We adopted a model in which
all thermal properties including κ are assumed to be constant, but we note that
it may be worthwhile to consider a model in which κ is proportional to T 3. This
is left to future work.

3.2.3 Thermal-infrared beaming

As introduced in sect. 2.2.3, the emission characteristics of asteroids surfaces are
different to those of smooth Lambertian surfaces, with an observed relative tem-
perature and flux enhancement at low phase angles which, due to conservation of
energy, must correspond to relative flux losses at large phase angles. This phe-
nomenon is referred to as thermal-infrared beaming and is well known from thermal
observations of the Moon (see, e.g., Saari and Shorthill, 1972, for an overview) and
Mercury (e.g. Emery et al., 1998). The surfaces of these bodies are well known to
be densely covered with impact craters; “cratered” thermophysical models were
seen to reproduce the observed beaming well (see, e.g., Buhl et al., 1968; Winter
and Krupp, 1971; Emery et al., 1998). In these models, craters are modeled as
sections of hemispheres and the beaming effect stems from mutual heating of facets
due to reabsorption of scattered and thermally emitted flux inside the crater, and
furthermore from shadowing effects which become relevant at large phase angles,
both leading to sharp temperature contrasts on small length scales.

Similar crater models have been successfully applied to planetary satellites (e.g.
Giese and Kührt, 1990; Kührt et al., 1992) and are frequently employed to model
asteroid surface roughness (see Hansen, 1977; Spencer, 1990; Lagerros, 1998a;
Delbo’, 2004, and references therein).

These models differ in the degree to which multiple scattering inside craters is
taken into account: While Hansen (1977) neglect multiple scattering altogether
but include shadowing and mutual heating due to reabsorption of thermal flux,
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Spencer (1990) additionally considers multiple scattering of sunlight but not of
thermal flux (equivalently, ε = 1 is assumed inside craters); Delbo’ (2004) follows
Spencer’s approach. The crater model by Kührt and Giese (1989) is virtually
identical to Spencer’s but differs in the treatment of thermal conduction inside
craters (see below). The model by Lagerros (1998a) is the most complete crater
model currently available: Direct and multiply scattered sunlight, shadowing, and
reabsorption and multiple scattering of thermal radiation are taken into account.
We here present an improvement over the model by Lagerros (1998a) where mul-
tiple thermal scattering is fully considered to all orders (see sect. 3.2.3.e for our
improvement to Lagerros’ model).

Several methods have been proposed in the literature to model thermal conduc-
tion inside hemispherical craters. Lagerros (1998a) and Delbo’ (2004) explicitly
solve the one-dimensional heat conduction problem for each surface tile inside
the crater (see above for limitations of the Delbo’, 2004, model) which is, how-
ever, computationally very expensive. Although a more complex model had been
proposed by Kührt and Giese (1989), the same authors used a simplified variant
thereof for fitting observations of the Martian satellites (Giese and Kührt, 1990;
Kührt et al., 1992), in which effectively only one subsoil depth is considered—
while this satisfactorily reproduces the effect of thermal inertia on the diurnal
lightcurve amplitude, it fails to reproduce the phase lag introduced by thermal
inertia. We use an approximation proposed and validated by Lagerros (1998a)
(see sect. 3.2.3.f) in which the numerical treatment of thermal conduction and
cratering decouple, which is numerically highly advantageous.

3.2.3.a Model assumptions

Beaming is modeled by adding craters to each surface facet. Variable model pa-
rameters are the crater opening angle (equivalent to the relative crater depth) and
the crater density, i.e. the surface fraction covered in craters. Very small craters
with diameters comparable to or below the thermal skin depth lS (in the cm-range
for typical asteroid surfaces, see table 3.1 on p. 58) do not contribute significantly
to the observable beaming because temperature contrasts are reduced by lateral
heat conduction. We shall only consider much larger craters, such that lateral heat
conduction can be neglected. Under this assumption, thermal fluxes are indepen-
dent of the crater size distribution for a given opening angle and crater density.
One-dimensional heat conduction inside craters is considered in an approximate
way, which decouples the treatment of craters from that of thermal conduction.
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3 Detailed thermophysical modeling

Multiple scattering and reemission of both sunlight and thermal emission are fully
taken into account, our approach is an improvement over that by Lagerros (1998a),
the most complete available in the literature so far. So far, the only considered
source of input flux is the Sun; for globally non-convex asteroid shapes, where
facets may receive additional flux from one another, a generalized model may be
required (see sect. A.1.5 on p. 251).

Two different radiation fields inside the crater are considered, one at optical
wavelengths with total energy density JV (~r) and corresponding absorptivity 1−A
(A denotes the bolometric Bond albedo); and another radiation field JIR(~r) con-
taining thermal radiation (integrated over all thermal wavelengths), with spec-
trally constant emissivity = absorptivity ε and reflectivity 1− ε. These two fields
are independent from one another, with the exception that absorption of optical
energy is a source of thermal energy.

3.2.3.b Geometry

Since the crater size distribution is irrelevant, the crater radius is set to unity
without loss of generality. The crater shape then solely depends on the opening
angle γ, where low γ corresponds to shallow craters and γ = 180◦ corresponds
to craters shaped as full hemispheres, the deepest craters considered. The slope
of surface facets at the crater rim relative to neighboring smooth facets equals
γ/2. Throughout the following, we use the following parametrization of the crater
surface

~r =

 sin θ cosφ
sin θ sinφ
− cos θ

 (3.14)

where φ runs from 0–2π and θ from 0–γ/2. The crater floor is at depth −1, the
crater rim at depth − cos(γ/2), hence the total crater depth is 1− cos(γ/2). Note
that in our notation the value of the opening angle is twice as large as in the
notations of Kührt and Giese (1989); Spencer (1990); Emery et al. (1998); Delbo’
(2004): in their notation, e.g., the full hemisphere has an opening angle of 90◦

rather than 180◦. Hansen (1977) and Lagerros (1998a) parametrize crater shape
in terms of depth over diameter S′ 6 rather than opening angle γ; for comparison

6 They use the symbol S which we replace by S′ to avoid confusion with the solar constant.
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the following expressions are helpful:

S′ =
1− cos(γ/2)

2
= sin2

(γ
4

)
(3.15a)

1− S′ = cos2
(γ

4

)
. (3.15b)

The outbound area element ~dA(~r) inside the crater is given by

~dA (~r) = − sin θ ~r dθ dφ, (3.16)

in particular the outbound unit normal vector ~n equals

~n (~r) = −~r. (3.17)

We make frequent use of the local directional cosines of the directions towards
the Sun, mS(~r), and the observer, mO(~r); and of the cosines of the angular dis-
tances of Sun, µS , and observer, µO, from local zenith. All these quantities are
clipped to be non-negative. Denoting the unit direction-vector towards the Sun
or, respectively, the observer as rx (substitute S or O for x) and the unit vector
in z direction (i.e. local zenith) as ~ez, µx equals ~rx · ~ez (or 0 if ~rx is below local
horizon) and

mx (~r) =

−~r · ~rx if ~rx is visible from ~r

0 otherwise (i.e. ~r is eclipsed/occulted)
(3.18)

~rx is visible from ~r if µx is positive and if the straight line containing ~r with
tangent vector ~rx intersects the sphere circumscribing the crater above the crater
rim (in addition to the trivial intersection at ~r itself):

~r · ~ez − 2 (~r · ~rx) (~rx · ~ez) > − cos
(γ

2

)
. (3.19)

The vectors ~rS and ~rO in the crater coordinate system can be constructed from
scalar products performed in the asteroid-centric coordinate system (scalar prod-
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ucts are invariant under rotations) which is computationally advantageous:

~rS =


√

1− µS
2

0
µS

 (3.20)

~rO =


√

1− µO
2 cosφA√

1− µO
2
√

1− cos2 φA

µO

 . (3.21)

The µx can be calculated from the scalar products of ~rx and ~dA and

cosφA =
~rS · ~rO − µSµO√

1− µS
2
√

1− µO
2
. (3.22)

(note that this approach fails when thermal conduction inside the crater is explic-
itly modeled, since then knowledge of ~rx is required as a function of rotational
phase).

Another important quantity in the following discussion is the view factor Vrr′

from ~r to ~r′. It is defined as the fraction of radiative energy per area leaving
the facet centered at ~r and directly striking that at ~r′. Assuming Lambertian
emission, the view factor is a purely geometric quantity symmetric in ~r and ~r′; it
equals

Vrr′ =

(
~n ·

(
~r′ − ~r

)) (
~n′ ·

(
~r − ~r′

))
π

∣∣∣~r − ~r′
∣∣∣4 (3.23)

with the unit outbound surface-normal vectors ~n and ~n′. In particular, the solid
angle under which a facet is visible at another is proportional to the product of
its size and the view factor. Inside a sphere, ~n = −~r (see eqn. 3.17), hence (using
~r ·~r = ~r′ · ~r′ = 1)

Vrr′ =
(~r · (~r′ − ~r))(~r′ · (~r − ~r′))

π
∣∣∣~r − ~r′

∣∣∣4 =
1

4π
. (3.24)

The fact that the view factor is constant is a peculiarity of the sphere owing to
its high symmetry; it will prove to be crucial in the following. In particular, it

64



3.2 Thermal physics

enables the analytic evaluation of two important surface integrals:

∫
A

Vrr′dA =
2π
4π

γ/2∫
0

sin θdθ =
1− cos(γ/2)

2
= sin2

(γ
4

)
(3.25)

and ∫
A

Vrr′mx (~r) dA = µx sin2
(γ

4

)
cos2

(γ
4

)
. (3.26)

Proof of eqn. 3.26. By construction, the integral over the entire crater A equals
the integral over that part A′ from which ~rx is not obstructed because mx(~r)
vanishes elsewhere. On A′, the integral can be written as 1

4π

∫
A′ ~rx · ~dA′ (see

eqn. 3.17 and 3.18) which, by virtue of Gauss’ theorem, equals the sum of three
contributions:

1. the integral over the crater “cap” = 2π
4πµx

∫ sin(γ/2)
0 ρdρ = µx/4 sin2(γ/2) =

µx sin2(γ/4) cos2(γ/4)

2. the vanishing integral over the “terminator,” i.e. the boundary between vol-
ume elements that see or do not see ~rx. The surface normal vector of that
region is perpendicular to ~rx by construction, hence this integral vanishes (if
the entire crater sees ~rx, this integral vanishes trivially)

3. the volume integral of the (vanishing) divergence of ~rx inside the region
circumscribed by the three areas.

3.2.3.c Optical flux

A necessary prerequisite to the determination of the temperature distribution in-
side the crater is a complete knowledge of the radiation field at optical wavelengths
JV (~r). Apart from direct insolation, surface elements receive scattered light from
other facets, where multiple scattering occurs, i.e. light scattered from one facet
to another may be scattered again at the latter.

There are two approaches to model multiple scattering, either by summing
up individual scattering orders (which we will do at the end of this section for
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illustrative purposes) or by self-consistency, i.e. by solving the integral equation

JV (~r) = A

 S

r2
mS(~r) +

∫
A′

JV (~r′)Vrr′dA′
 , (3.27)

with solar constant S and heliocentric distance r (in AU). Eqn. 3.27 can be solved
analytically for hemispherical craters because the view factor Vrr′ is constant (see
eqn. 3.24), hence the integral in eqn. 3.27 is independent of ~r, i.e. a mere constant
K1

JV (~r) = A

[
S

r2
mS(~r) +K1

]
. (3.28a)

K1 =
∫
A′

JV (~r′)
dA′

4π
= A

 S

r2

∫
A′

mS(~r)
dA′

4π
+K1

∫
A′

dA′

4π

 (3.28b)

by reinserting eqn. 3.27. Using the integrals eqn. 3.25 and 3.26:

K1 = A

[
S

r2
µS sin2

(γ
4

)
cos2

(γ
4

)
+K1 sin2

(γ
4

)]
(3.29a)

K1 = AµS
S

r2
sin2 (γ/4) cos2 (γ/4)

1−A sin2 (γ/4)
(3.29b)

such that

JV (~r) = A
S

r2

[
mS (~r) + µS

sin2 (γ/4) cos2 (γ/4)
1−A sin2 (γ/4)

]
. (3.30)

Correction of the Bond albedo The presence of craters lowers the albedo relative
to that of a flat surface patch. Due to the absorption processes associated with
multiple scattering, the crater scatters less optical flux outward than a flat surface
of equal area would. The corrected Bond albedo Acorr equals Vout/Vin with total
in- and outgoing optical flux Vin and Vout, respectively.7 The total solar flux
Vin entering through the crater rim equals µSS/r

2 times the projected area of
the crater cap π sin2(γ/2) = 4π sin2(γ/4) cos2(γ/4). The total outgoing flux Vout

equals
∫
A′

∫
A JV (~r′)Vrr′dAdA′, where the integral is performed over the crater

interior A′ and the crater cap A. By virtue of Gauss’ theorem, one can deform
A into the complement of the sphere circumscribing the crater (i.e. the range

7 In principle, this ratio must be averaged over the hemisphere of all possible incidence directions.
Below, however, we will find the albedo to be independent of the incidence angle.
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Figure 3.2: Dependence of absorptivity 1 − A, which determines temperatures, on the
albedo correction due to the presence of craters (see eqn. 3.31) as a function of crater
opening angle γ for different values of flat-surface Bond albedo A. To convert A into
geometric albedo pV, G = 0.15 is assumed (see sect. 2.2.1).

γ/2 < θ < π) without changing the result, such that

Vout =

2π∫
0

dφ

π∫
γ/2

sin θdθK1 (see eqn. 3.28)

= 2π
(

2 cos2
(γ

4

))
AµS

S

R2

sin2(γ/4) cos2(γ/4)
1−A sin2(γ/4)

= VinA
1− sin2(γ/4)

1−A sin2(γ/4)

such that the corrected Bond albedo reads

Acorr = A
1− sin2(γ/4)

1−A sin2(γ/4)
. (3.31)

See Fig. 3.2 for a depiction of the relative changes in absorptivity 1 − A. For
realistic asteroid albedos pV ≤ 0.6 (see sect. 1.5.1; pV = 0.6 corresponds to A =
0.24 assuming G = 0.15, see sect. 2.2.1), the relative change in absorptivity cannot
greatly exceed 10 %, leading to only moderature changes in temperature since
T ∝ 4

√
1−A. It is, however, very important to use the corrected Bond albedo

when verifying that the ingoing optical flux equals the total optical and thermal
flux, which is an important test of model consistency used in the following.
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Direct summation of scattered light to all orders It is instructive to verify
eqn. 3.30 by explicitly summing up scattered contributions to all orders, which
can be performed analytically in this case: For the sake of this discussion, let us
denote the amount of directly scattered sunlight emanating from ~r as J0(~r) and
the n-times scattered component as Jn(~r). Then

JV (~r) =
∞∑

n=0

Jn(~r) (3.32)

and the following relations hold:

J0(~r) = A
S

r2
mS(~r)

J1(~r) = A

∫
A′

J0(~r′)Vrr′dA′ = A2 S

r2
µS sin2

(γ
4

)
cos2

(γ
4

)
∀n≥1 : Jn+1(~r) = A

∫
A′

Jn(~r′)Vrr′dA′ = A sin2
(γ

4

)
Jn(~r)

(the middle equation holds because of eqn. 3.26 and, inductively, implies the third
equation together with eqn. 3.25—note that all Jn(~r) are independent of ~r for
n ≥ 1). Eqn. 3.32 acquires the form of a geometric series and can be summed up
analytically (

∑∞
n=0 q

n = 1/(1− q) for |q| < 1; here, q = A sin2(γ/4) < 1), yielding
eqn. 3.30.

3.2.3.d Temperature distribution

Similar to the total optical flux JV (~r), the total thermal flux emanating from ~r,
JIR(~r), equals the sum of the locally emitted flux εσT 4(~r) plus the flux scattered
away from ~r

JIR(~r) = εσT 4(~r) + (1− ε)
∫
A′

JIR(~r′)Vrr′dA′ (3.33)

= εσT 4(~r) + (1− ε)K2, (3.34)

68



3.2 Thermal physics

where, again, K2 is constant because the view factor Vrr′ is constant. As above

K2 =
∫
A′

JIR

(
~r′

)
Vrr′dA′ = εσ

∫
A′

T 4(~r′)
dA′

4π
+ (1− ε)K2 sin2

(γ
4

)
K2 =

εσ

1− (1− ε) sin2(γ/4)

∫
A′

T 4(~r′)
dA′

4π
. (3.35)

Sources of the temperature field T (~r) are absorption of direct sunlight, of scat-
tered optical flux (see eqn. 3.30), of direct and scattered emission JIR(~r) received
from other facets, and thermal conduction from the subsoil:(

T (~r)
TSS

)4

= mS(~r) +
∫
A′

[
(1−A)

JV (~r′)
εσTSS

4
+ ε

JIR(~r′)
εσTSS

4

]
Vrr′dA′ +

Θ
TSS

∂T

∂z
(3.36)

= mS (~r) +
1−A

εσTSS
4
K1 +

ε

εσTSS
4
K2 +

Θ
TSS

∂T

∂z
(3.37)

where the temperature derivative in the last term is with respect to the dimension-
less depth coordinate of the one-dimensional heat-conduction problem considered
in sect. 3.2.2, which is not to be confused with the z coordinate in the crater
coordinate system. See eqn. 3.10b for the definition of the subsolar temperature
TSS .

If thermal inertia is explicitly modeled inside the crater, eqn. 3.37 takes the
role of the surface boundary-condition eqn. 3.11b of the heat-conduction problem,
which must be solved in conjunction with eqn. 3.35.

If thermal conduction is neglected inside craters, the last term in eqn. 3.37
vanishes, such that K2 can be determined by inserting eqn. 3.37 and eqn. 3.29
into eqn. 3.35:

K2 = εσTSS
4µS

sin2(γ/4)
1−A sin2(γ/4)

neglecting thermal conduction (3.38)

and hence (
T (~r)
TSS

)4

= mS(~r) +
µS sin2 (γ/4)

1−A sin2 (γ/4)

(
ε+A cos2 γ

4

)
. (3.39)

This represents an analytic solution to the temperature distribution inside the
crater, where multiple scattering of both sunlight and thermal asteroid radiation
are taken into account to all orders (Lagerros, 1998a).
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3.2.3.e Fluxes

The observable thermal flux F (λ) at wavelength λ is the sum of the directly
emitted flux component F0(λ) and an infinite number of scattered components
Fi(λ), where the index i > 0 denotes the scattering order

F (λ) =
∞∑
i=0

Fi(λ).

Each of these components equals an integral of the respective local flux component
Fi(λ,~r) over the visible portion of the crater. In particular

F0 (λ) =
∫
A

mO (~r)
π∆2

F0 (λ,~r) dA (3.40a)

F0 (λ,~r) = εB (λ, T (~r)) (3.40b)

with the Planck function B(λ, T ) (see eqn. 2.6), the observer-centric distance ∆,
and the local directional cosine towards the observer mO (see eqn. 3.18). Scattered
orders are determined recursively

Fi+1 (λ) =
∫
A

mO (~r)
π∆2

Fi+1 (λ,~r) dA (3.41a)

Fi+1 (λ,~r) = (1− ε)
∫
A

Fi (λ,~r)
dA
4π

, (3.41b)

where we have used Vrr′ = 1/4π (eqn. 3.24). In particular

F1 (λ,~r) = (1− ε)
∫
A

εB (λ, T (~r))
dA
4π

(3.42a)

F1 (λ) = (1− ε)
∫
A

mO(~r)
π∆2

dA
4π

∫
A′

εB
(
λ, T

(
~r′

))
dA′ (3.42b)

= (1− ε)µO
sin2(γ/4) cos2(γ/4)

π∆2

∫
A

F0 (λ,~r) dA. (3.42c)

Observable flux according to Lagerros (1998a) In Lagerros (1998a), the total
observable flux is approximated as the sum of directly emitted flux F0 and singly
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scattered flux F1 (c.f. Lagerros, 1998a, eqn. 19),

F (λ)Lagerros = F0(λ) + F1(λ) (3.43a)

=
ε

π∆2

∫
A

[
mO(~r) + µO sin2

(γ
4

)
cos2

(γ
4

)
(1− ε)

]
B (λ, T (~r)) dA.

(3.43b)

It is not discussed therein why higher scattering orders are neglected.

Observable flux to all orders While, to the best of our knowledge, this has not
been discussed in the literature so far, it is feasible to consider all scattering orders
in the calculation of observable flux. To this end it is crucial to realize that, because
the view factor Vrr′ = 1/4π is constant, all scattered flux components Fi>0(λ,~r)
are actually independent of ~r as is easily seen in the recursion eqn. 3.41. Hence

Fi+1 (λ,~r) = (1− ε)
∫
A

Fi (λ,~r)
dA
4π

= (1− ε) sin2
(γ

4

)
Fi (λ,~r) (3.44)

for all i ≥ 1 (using eqn. 3.25). The sum of all scattered flux components acquires
the form of a geometric series

∞∑
i=1

Fi (λ) = F1 (λ)
∞∑
i=0

[
(1− ε) sin2

(γ
4

)]i
=

F1 (λ)
1− (1− ε) sin2(γ/4)

(3.45)

and the flux to all orders reads

F (λ) =
∞∑
i=0

Fi(λ)

=
ε

π∆2

∫
A

[
mO(~r) +

µO(1− ε) sin2(γ/4) cos2(γ/4)
1− (1− ε) sin2(γ/4)

]
B (λ, T (~r)) dA. (3.46)

Note, in particular, that the only difference between this expression and Lagerros’
approximation (eqn. 3.43) is the redefinition of a constant factor, hence the effort
to evaluate them through numerical integration is identical.

The difference between the two expressions is in second and higher scattering
orders, i.e. of the order (1− ε)2. For asteroids, ε ∼ 0.9, this would be expected to
lead to differences at the percent level, only. This has been verified numerically
(see Fig. 3.3 on p. 72); only for rather unrealistically small ε values do the two
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Figure 3.3: Ratio of crater model fluxes resulting from the solution to all scattering
orders eqn. 3.46 relative to Lagerros’ approximate treatment eqn. 3.43 as a function of ε.
Both Sun and observer are at local zenith, used parameters are γ = 180◦, r = 1.1 AU,
A = 0.1. Model fluxes were determined using the code described in sect. 3.3.3.

expressions differ by more than 10 %.8 However, since the effort in numerical
evaluation is identical, there is no good reason not to use the full solution.

3.2.3.f Approximative treatment of thermal conduction inside craters

We do not explicitly model thermal conduction inside the crater, but rather use an
approximation proposed by Lagerros (1998a, Eqn. 23). There, it is proposed that
the relative temperature change due to thermal inertia inside the crater equals the
relative temperature change outside the crater:

Tcrater(Θ)
Tcrater(0)

=
Tsmooth(Θ)
Tsmooth(0)

. (3.47)

Under this approximation, the numerical treatment of cratering decouples from
that of thermal conduction. In particular, advantage can be taken of the analytic
expression for the temperature distribution inside the crater neglecting thermal
conduction (eqn. 3.39).

Lagerros (1998a) generated model fluxes using both his full-blown model and a
simplified model making the approximation eqn. 3.47. He found that the latter
systematically overestimates fluxes relative to the former, increasingly so with

8 We have checked both solutions for conservation of energy as described in sect. 3.4.2. It was
seen that the full solution does conserve energy to within numerical noise, while Lagerros’
approximation does not—as expected, the mismatch increases systematically with decreasing
ε and is insignificant for ε = 0.9.
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increasing crater opening angle and thermal parameter, but mutual agreement
stayed within 1 % for the specific circumstances of his test.

While this is not discussed in Lagerros (1998a), the approximation eqn. 3.47 can
not be used on the night side, where temperatures would vanish without thermal
inertia. We therefore neglect craters on the night side altogether. For the same
reason, temperature ratios diverge close to the terminator. Together with the finite
spatial resolution of the shape models used by us, this leads to random occurrences
of unphysically large flux contributions from facets close to the terminator. To
prevent such overshoots, we clip the temperature ratio on the right-hand side of
eqn. 3.47 to be ≤ 1.3; we have verified that model fluxes are largely independent
of the precise value of this threshold value within reasonable limits.

3.3 Implementation

Our TPM model code has been implemented in C++. It compiles on a Windows
XP platform using the compiler which is part of the Visual Studio .NET 2003
suite and furthermore under Linux using gcc. All debugging and testing has been
performed under Windows.

In the code development, emphasis was put on a transparent, generic, and
object-oriented code structure which makes it easy to add new features. Numerical
efficiency was not a primary implementation goal. If in doubt, we erred on the
side of simplicity and understandability as opposed to sophistication and obscurity.
Not only does this save on development time (including time required for potential
further development) but it also helps in the physical validation of the code. On
the other hand, the model code is numerically quite inefficient, such that fits to
large databases can require several nights of CPU time on a 2.66 GHz PC.

3.3.1 Class structure

The most important objects inherit from the abstract, generic base classes asteroid
or ThermalModelConvex (the latter inherits from the more abstract ThermalModel).

asteroid is a purely abstract base class, only objects belonging to the sub-class
TriangulatedConvex can be instantiated. Within its scope, all required informa-
tion on the asteroid shape and spin state is stored, as well as the constants H, G,
and ε. pV is a protected variable within the scope of asteroid, its value can be
changed using a routine which also updates the Bond albedo A and the diameter
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scale factor s (since H is constant, changing pV is equivalent to changing the diam-
eter). TriangulatedConvex contains several routines to calculate disk-integrated
thermal fluxes. These routines rely on ThermalModelConvex objects (see below)
to calculate flux contributions from single facets; the actual model to be used is
specified by passing a reference to the appropriate ThermalModelConvex object.
The transformation of heliocentric and observer-centric asteroid coordinates into
asteroid-centric directions towards the Sun or the observer (see sect. 3.2.1.c) is
performed within the scope of TriangulatedConvex.

The chief interface between asteroid and ThermalModelConvex objects are the
functions fluxModFactors and ThermalLightCurveModFactors within the scope
of ThermalModelConvex. They return a dimensionless flux value or a dimension-
less thermal lightcurve for a given time, observing geometry, and a single facet. All
returned flux values must be multiplied by a constant factor of 2πεhc2/(∆2λ5)×s2

(with the scale factor s defined in eqn. 3.2 on p. 51) to convert them into units
of W/m2/µm. This multiplication is done by the calling routine within the scope
of asteroid after adding contributions from all facets. fluxModFactors is over-
loaded to allow calculation of fluxes for either a single wavelengths or simultane-
ously for a vector of wavelengths, the latter significantly increases the efficiency if
spectra are calculated for non-vanishing values of thermal inertia.

Important auxiliary classes include ConvexFile, SpinState, and fitFileSI.
The latter serves to read in an ASCII file containing thermal flux values along
with the epoch and observing geometry of the observations. All model flux values
are in units of W/m2/µm. The auxiliary class fitFileMJy is used to read in fit
files with fluxes in units of mJy and to convert them into units of W/m2/µm;
fitFileMJy inherits from fitFileSI.

In order to fit thermal data, the TPM code is used to output ASCII files contain-
ing χ2 for different combinations of thermal parameters which are then manually
analyzed. Output files are in a suitable format for plotting using the open-source
software gnuplot. For each combination of thermal parameters, a best-fit pV is
determined analogous to our NEATM-fitting approach (see eqn. 2.17 on p. 45).
If the crater density is considered as a fit parameter, linear regression is used to
analytically determine the best-fit crater density. χ2 values are determined by
calling an appropriate function at the main-routine level. Prior to this, the data
file (or files) are read in and a TriangulatedConvex object is instantiated with
all asteroid constants including the shape model (passed as a ConvexFile object)
and the SpinState. Then, for each combination of relevant model parameters,
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a ThermalModelConvex object is instantiated,9 which is used to calculate model
fluxes for the times and observing geometry given in the fit files.

3.3.2 Thermal conduction

The subclass of ThermalModelConvex for numerical modeling of thermal conduc-
tion on smooth surface elements is ThermalInertiaOnlyConvex. Thermal con-
duction is modeled as described in sect. 3.2.2. The dimensionless heat diffusion
equation (eqn. 3.11) in the subsoil and the boundary condition at the surface
(eqn. 3.11b) are discretized in a straightforward fully explicit way with equidis-
tant sampling points in space and time. This is numerically stable provided the
time resolution is not too coarse, specifically (see Press et al., 1992, sect. 19.2)
the parameter dTdZ2 (dimensionless time resolution divided by the square of the
dimensionless depth resolution) must not exceed 0.5. The numerical integration
is truncated at a certain depth, at which the infinite-depth boundary condition
eqn. 3.12 is taken into account.

In the constructor, the thermal parameter and the desired fractional accuracy
goal are specified as well as the discretization parameters nTime (number of time
steps), nZ (number of depth steps), and zMax (maximum depth in units of skin
depths). The constructor checks whether the stability criterion mentioned above
is met and throws an exception otherwise.

To calculate surface temperatures, the cosine of the solar angular zenith distance
µS , clipped to be non-negative, is determined for each time step and stored into
an array. If all entries are essentially zero, zero flux is returned (the facet is not
illuminated for any time of day). Then an array containing the temperature profile
is initialized with a constant temperature distribution,10 and the asteroid is spun
until the surface temperature at the desired time has remained constant to within
the user-specified fractional accuracy goal. For all time steps, the temperature
profile is kept in the computer’s RAM, which proved helpful for debugging and
validating the code. An asteroid revolution consists of nTime time steps. For each,
the new subsoil temperature profile newP[i] (with 1 ≤ i ≤ nZ− 2) is determined

9 If thermal inertia is considered and if data were taken at more than one epoch, data from each
epoch should be stored within a separate fit file, and separate ThermalModelConvex objects
should be instantiated for each. Differences in heliocentric distance r translate into differences
in thermal parameter Θ for otherwise constant parameters.

10 It has been verified that the final surface temperature is independent of that initialization.
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from the old profile oldP[i] using

newP[i] = oldP[i] + dTdZ2 (oldP[i-1] + oldP[i+1]− 2oldP[i]) , (3.48)

with the parameter dTdZ2 defined above. The surface temperature newP[0] is
determined from a discretization of the boundary condition (eqn. 3.11b)

newP[0]4 = µS + Θ
newP[1]− newP[0]

dZ
(3.49)

with the dimensionless spatial resolution dZ. This nonlinear equation is solved
using Newton’s method, with oldP[0] as a first guess for newP[0]. The new tem-
perature at the maximum depth considered, newP[nZ-1], is calculated from eqn.
3.48 assuming that the fictitious oldP[nZ] equals oldP[nZ-1], thus approximat-
ing the boundary condition at infinite depth (eqn. 3.12)

newP[nZ-1] = oldP[nZ-1] + dTdZ2 ∗ (oldP[nZ-2]− oldP[nZ-1]) . (3.50)

Typically used values for nZ, zMax, and nTime are 25, 6, and 300, respectively,
a typical value for the fractional accuracy goal is 0.0001.

The fully explicit discretization scheme used to solve the heat diffusion equation
and the discretization of the boundary conditions are fully encapsulated within
the scope of the class ThermalInertia and its member class TimeStep. Other
discretization schemes, such as Crank-Nicholson (see, e.g., Press et al., 1992, sect.
19.2) can be implemented easily without changes to the remaining code.

3.3.3 Beaming

Without thermal inertia Fluxes are calculated by HemisphericNoInertia ob-
jects, which inherit from ThermalModelConvex. Returned fluxes are for a crater
density of 100 % and must be combined with “non-cratered” fluxes in the calling
function to account for lower crater densities.

The temperature distribution inside the crater follows from eqn. 3.39, fluxes are
obtained by numerically integrating eqn. 3.46.11

The two-dimensional integral over the crater surface is performed separately for
φ and θ. For each, a Simpson quadrature algorithm has been implemented which
adaptively refines the step width until the user-defined fractional accuracy goal is

11 A class that integrates Lagerros’ approximation eqn. 3.43 has also been implemented—it differs
from that considered herein by a mere redefinition of a constant parameter.
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reached (see, e.g., Press et al., 1992, chapt. 4).
Care was taken to minimize the number of calls to the numerically expensive

trigonometric functions. E.g., in the polar integral the variable θ is transformed
into z = cos θ such that

∫ γ/2
0 sin θdθ becomes −

∫ 1
cos γ/2 dz.

With thermal inertia As has been discussed in sect. 3.2.3.f, thermal conduction
inside craters is modeled in an approximative way. Model fluxes are calculated by
objects belonging to the class InertiaTimesCraterLagerros, which own respec-
tively one instance of HemisphericNoInertia and of ThermalInertiaOnlyConvex.

The ThermalInertiaOnlyConvex object is used to calculate the temperature at
a smooth surface patch with thermal conduction. If the Sun is below local horizon
(µS ≤ 0), the crater routine is not called, and fluxes are returned corresponding
to that temperature. Otherwise, the ratio of the temperature with and without
thermal conduction is determined (without thermal inertia, T/TSS = 4

√
µS) and

clipped to be ≤ 1.3 (see discussion in sect. 3.2.3.f). “Cratered” model fluxes are
calculated with a rescaled temperature distribution. This is accomplished without
changes to the implementation of HemisphericNoInertia by using a trick which
is based on the fact that fluxModFactors is a function of λT , hence rescaling
the temperature T is equivalent to rescaling the wavelength λ by the same factor
(note that the coefficient of the Planck function containing λ−5 is not multiplied in
fluxModFactors but in the calling function). Different fractional accuracy goals
can be chosen for the HemisphericNoInertia and ThermalInertiaOnlyConvex

objects.

3.4 Validation

In this section, tests for internal model consistency are reported, with an emphasis
on validating the model for application to NEA data, i.e. for large phase angles
(> 30◦) and for thermal inertias up to 2500 J s-1/2K-1m-2. Another important
model validation was its application to thermal-infrared observations of a well-
studied reference NEA, (433) Eros, which will be reported in sect. 6.1.

3.4.1 Thermal conduction

A first qualitative validation of our thermal-conduction model is from visual in-
spection of Fig. 2.2 on p. 29, which was generated using the TPM code. As
required, increasing thermal inertia reduces the diurnal temperature contrast and
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shifts the temperature peak towards the afternoon side. Additionally, the peak
temperature at low thermal inertia approaches the theoretical value of TSS around
376 K (for the parameters specified), while for large thermal inertia the essentially
constant temperature approaches TSS/ 4

√
π (see sect. 2.4.2) or roughly 283 K as

required.
Due to conservation of energy, the thermally emitted power integrated over

one asteroid revolution must match the total absorbed solar power. This was
numerically checked, using the discretization parameters stated at the end of sect.
3.3.2, a fractional accuracy goal of 0.001, and assuming the situation depicted
in Fig. 2.2—i.e., facet at the equator, r = 1.1 AU, A = 0.1, P = 6 h. For a
thermal inertia of 10,000 J s-1/2K-1m-2, the total model emission was found to be
too low by roughly 16 %, around 4 % too low for 2500 J s-1/2K-1m-2, and around
1 % for 50 J s-1/2K-1m-2. Tightening the fractional accuracy goal to 0.0001 incurs
a penalty of largely increased program run time, but leads to a conservation of
energy to within 1.5 % for thermal-inertia values up to 10,000 J s-1/2K-1m-2, to
0.4 % for thermal inertia up to 2,500 J s-1/2K-1m-2, and much better for lower
thermal inertia. No asteroid studied to date displays a thermal inertia larger than
1000 J s-1/2K-1m-2, hence a fractional accuracy goal of 0.001 is typically sufficient.

We wish to stress that the numerical effort for sufficiently accurate modeling of
thermal conduction increases with thermal inertia; TPM codes suitable for MBAs
may therefore be unsuitable for NEAs with typically much larger thermal inertia.

3.4.2 Beaming without thermal conduction

As detailed in sect. 2.2.3, thermal-infrared beaming is an enhancement relative to
a Lambertian surface both in absolute flux level and in apparent color temperature
for observations taken at low phase angles.

Figures 3.4, 3.5, and 3.6 show plots of crater fluxes relative to a flat Lambertian
surface for hemispherical craters (γ = 180◦) and for different viewing geometries
(many other opening angles were tested, leading to qualitatively equivalent re-
sults). As expected, beaming not only enhances the flux at low phase angles (i.e.
low zenith distances in Figures 3.4 and 3.5, low azimuthal distance in Fig. 3.6)
but also the apparent color temperature: the flux ratio increases with decreasing
wavelength. This is compensated for at large phase angles, when fluxes are re-
duced relative to a Lambertian emitter—more so at short wavelengths such that
the color temperature is reduced relative to a Lambertian emitter.

An important consistency check is to verify the conservation of energy, i.e. to
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Figure 3.4: Relative flux enhancement due to a hemispheric crater (γ = 180◦) as a
function of observer angular distance from local zenith; the Sun is at local zenith. Further
model parameters: r = 1.1 AU, A = 0.1, ε = 0.9. The slight “wiggles” in the lines are due
to numerical noise, they disappear for more stringent accuracy goals (we here use 0.001,
a typical value).
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Figure 3.5: Relative flux enhancement as in Fig. 3.4, but as a function of solar angular
distance from local zenith, with observer at local zenith.
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Figure 3.6: Relative flux enhancement as in Fig. 3.4 with both Sun and observer placed
at a zenith distance of 45◦, the azimuthal distance between the two is varied.

compare ingoing solar flux with the total outgoing energy. For a hemispherical
crater of opening angle γ = 180◦ and projected area of π this means

πµS (1−Acorr)
S

r2
=

∞∫
0

dλ
∫
A

dA F (λ) (3.51)

for, e.g., a hemisphere A above the crater, with the observable flux eqn. 3.46 and
the corrected Bond albedo eqn. 3.31.

Conservation of energy was tested by numerically integrating eqn. 3.51 for dif-
ferent values of solar zenith distance (assuming r = 1.1 AU, A = 0.1, and ε = 0.9).
To this end, the integral over dλ was discretized and truncated with 80 equidis-
tant λ steps between 0.5 and 79.5 µm using the Simpson integration scheme (see,
e.g., Press et al., 1992); for the integral over dA, a Monte-Carlo scheme was
implemented with 2,500 uniformly distributed random directions towards the ob-
server,12 each Monte-Carlo integration was executed four times with identical
parameters in order to gage the statistical noise. The typical scatter among the
four runs is 1 %. In order to gage the absolute accuracy, disk-integrated thermal

12 Note that the distribution of vectors resulting from uniformly distributed polar coordinates
would not be uniform but rather biased towards the poles. Instead, we have drawn three
Cartesian coordinates per vector uniformly distributed between −1 and 1 (0 and 1 for the
z coordinate, so vectors are above local horizon) and rescaled the resulting vectors to unit
length.
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fluxes were generated for a spherical Lambertian emitter without thermal inertia
and integrated those fluxes over dλ and dA. The resulting total thermal power
emitted by the asteroid equals the total absorbed power to within the numerical
noise (∼ 1 %).

To check the crater routine for conservation of energy, it turned out to be
convenient to check it against a Lambertian emitter. To this end, two integrals are
calculated using the discretization above, where once the integrand is the output
of the crater routine and once that of the Lambertian routine,13 then the two
resulting integrals are compared. Note that the crater induces a reduced albedo
Acorr relative to the smooth surface (see sect. 3.2.3.c) due to the increased optical
absorption inside the crater. Hence, the “crater integral” should be larger than
the Lambertian integral by a factor of (1 − Acorr)/(1 − A), which equals roughly
1.05 for the parameters considered here (see Fig. 3.2 on p. 67). For a fractional
accuracy goal of 0.01, energy was seen to be conserved within 1 % (the Sun was
placed at zenith distances of 0, 30, and 60◦).

3.4.3 Beaming with thermal conduction

When thermal inertia is considered, ingoing and outgoing radiation are no longer
in instantaneous equilibrium but only after integration over a asteroid revolution.
The latter integral reduces to a mere sum of contributions from each of the nTime

time steps, where for each the integral over dλ and dA is performed as above.
As in the case without thermal inertia, the integral over fluxes returned by an
InertiaTimesCraterLagerros object are compared to the integral over Lamber-
tian fluxes multiplied by (1−Acorr)/(1−A).

Integration runs were performed for P = 6 h, and the remaining parameters as
in the rest of this section. The Sun was placed at an angular distance of 90◦ from
the spin pole (i.e. over the equator), facets pointing 30, 60, and 90◦ away from the
pole were considered, for thermal-inertia values of 50, 500, and 2500 J s-1/2K-1m-2.
For a fractional accuracy goal of 0.0001 for the treatment of thermal inertia (as in
the case of thermal inertia alone) and of 0.01 for cratering (as for cratering alone),
energy was found to be conserved to within a few percent in all cases.

13 In both instances, the fluxModFactors routines of the respective objects are called, hence
returned values must be multiplied by λ−5.
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3.5 TPM fits to asteroid data

In principle, our TPM contains four parameters which can be varied independently
to obtain the best fit to the data: the diameter D (which is related to pV through
the optical magnitude H), the thermal inertia Γ, the crater opening angle γ, and
the crater density ρc. It has been shown by Emery et al. (1998) and Lagerros
(1998a) that the modeled effect of surface roughness is practically a function of a
single parameter, the mean surface slope Θ̄, which is a function of crater opening
angle and crater density, reducing the dimensionality of the parameter space by
one.

Originally (see Mueller et al., 2004), our approach was to fix the crater opening
angle at a constant value and to determine the combination of diameter, thermal
inertia, and crater density that best fit the data. In this approach we exploited
the fact that, as discussed in sect. 3.1.2, model fluxes depend linearly on the
assumed crater density. For a given combination of diameter and thermal inertia
it is therefore possible to analytically determine the best-fit crater density through
linear regression (with the constraint that the density must be non-negative and
≤ 100 %).

Later, however, we found that the crater roughness is often not significantly
constrained by the data. We find it more instructive and more transparent to
use four preset combinations of roughness parameters which span the range of
possible surface roughness, and to determine the best-fit diameter and thermal
inertia for each. The results are then compared with one another, potentially
showing that some roughness model fits the data significantly better than others,
and otherwise illustrating the range of roughness-induced uncertainty in thermal
inertia and diameter. The four roughness models considered throughout this thesis
are

No roughness γ = 0, ρc = 0

Low roughness γ = 117.70116◦, ρc = 0.4

Default roughness γ = 144.59046◦, ρc = 0.6

High roughness γ = 151.75834◦, ρc = 1.0

The parameters for “low”, “default”, and “high” roughness have been defined by
Müller et al. (2004, see also references therein) on the basis of thermal-infrared
analyses of MBAs.
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Synthetic thermal fluxes are generated for the observing geometry and at the
wavelengths of the observational data. To fit diameter and thermal inertia for a
given set of roughness parameters, model fluxes are calculated on an equidistant
grid of thermal-inertia values from the largest value considered down to 0. For
each value of thermal inertia, a best-fit diameter is determined from the assumed
input diameter and the scale factor κ which minimizes

χ2 =
n∑

i=1

(
κ ·mi − di

σi

)2

(3.52)

(for data points di with uncertainties σi and synthetic model fluxes mi; see eqn.
2.17). The best-fit diameter and the corresponding χ2 are stored. We neglect
that changing the diameter is, for constant H, equivalent to changing the albedo,
which in principle changes model temperatures and thermal fluxes in a nontrivial
way. A full recomputation of model fluxes would, however, be computationally
very expensive. We would expect that it is safe to neglect the influence of albedo
on temperature if pV is reasonably constant, i.e. if the resulting κ value is close to
unity (see also sect. 2.5.4).

For the first (largest) thermal-inertia value considered in each series, an arbitrary
default-value of pV is used. For all following steps, model fluxes are calculated
assuming the best-fit pV determined in the previous thermal-inertia step. For not
too large steps in thermal inertia, κ typically stabilizes to values close to unity
within a small number of iterations (see, e.g., sect. 6.1.3 for a discussion) such
that our approximation above becomes uncritical.

For each roughness model, an ASCII file is output which can be used as a data
file for GNUplot. Those files contain, among other things, data lines with entries
for thermal inertia, the best-fit χ2 obtained, and the corresponding best-fit pV.
Best-fit roughness models, thermal inertias, and diameters are then determined
from an analysis of the obtained plots (see, e.g., sect. 6.1.3). The run time scales
with the number of data points and the number of facets in the shape model,
typical values range between a few hours and a few days on a 2.66 GHz PC.
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