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Current-induced switching of magnetic molecules on topological insulator surfaces
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Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that
such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the
surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for
the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current
can lead to a complete polarization of the molecule if the molecule’s magnetic anisotropy axis is appropriately
aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization
is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function
of the applied current.
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I. INTRODUCTION

The central idea behind the field of spintronics is to use
the electron’s spin degree of freedom, not its charge, for
information storage and processing [1–3]. Since the energy
required to generate magnetic fields scales unfavorably at small
length scales, electrical mechanisms for the manipulation and
detection of magnetic moments are crucial for successful
spintronics applications. The spin transfer torque [4,5] has
been established as a reliable effect to manipulate the mag-
netization of a thin ferromagnetic layer with a spin-polarized
current [6]. Whereas injection from a ferromagnet was used
as a spin-polarized current source in the original realization,
devices based on spin-orbit coupling have also been realized
[7–16].

An extreme form of spin-orbit coupling exists in the surface
states of topological insulators (TIs) [17,18]: These states
have complete spin-momentum locking; that is, the electron
spin and its direction of motion are perfectly correlated. One
consequence of the spin-momentum locking is that a surface
charge current in a TI is automatically spin polarized. Recent
proposals have concentrated on exploiting this effect to control
the dynamics of thin magnetic layers in the proximity of the
surface of a three-dimensional TI [19–26] or magnets coupled
to the edge of a two-dimensional TI [27,28]. Experiments
on metallic magnetic layers in contact with a TI have
reported a spin-transfer torque exceeding the values found
in nontopological spin-orbit materials [29–31].

In this paper, we investigate the possibility to use the
spin-polarized surface currents of a topological insulator to
control the magnetic moment of a molecular magnet adsorbed
on the surface of a three-dimensional topological insulator or
at the edge of a two-dimensional topological insulator. Like
a ferromagnet, a molecular magnet has degenerate magnetic
ground states, separated by an energy barrier [32,33], although
in the case of a molecular magnet the barrier is microscopic,
not macroscopic, which leads to a finite relaxation time of
the molecule’s magnetic moment. Of particular interest are
the so-called single-molecule magnets [34], which consist of
a magnetic core with a spin S ∼ 6–12, shielded from the envi-
ronment by a (typically) organic ligand. For single-molecule
magnets magnetic lifetimes of several years have been reported

for temperatures below the “blocking temperature” set by the
anisotropy barrier between the two magnetic ground states
[35]. Single-molecule magnets have been shown to preserve
their magnetic properties, including long magnetic lifetimes,
when adsorbed on conducting surfaces [36–40].

The mechanism by which an applied electrical current at
the surface of a TI can be used to switch the orientation of
a molecular magnet is best illustrated using the example of a
localized spin 1/2 coupled to the edge of a two-dimensional
topological insulator [41–44]. The electronic state at the edge
of a two-dimensional TI is helical, so that electrons moving
in opposite directions have opposite spin [17,18]. Hence, a
particle current to the right is polarized as “spin up” (see
Fig. 1). By spin conservation, backscattering of a right-moving
electron into a left-moving state requires the localized spin
to flip from down to up, so that a single backscattering
event is sufficient to polarize the spin 1/2 in the up state.
If the applied current is sufficiently large, the Pauli principle
forbids backscattering of left-moving electrons, which would
be accompanied by a spin flip in the opposite direction, so that
the spin 1/2 remains in the up state as long as the current is
being applied.

This simple picture needs to be refined for molecules with
a higher spin and for molecular magnets adsorbed to the
two-dimensional surface of a three-dimensional TI. Unlike
the spin 1/2 in the example in Fig. 1, a higher-spin molecule
comes with its own anisotropy axis, and the argument based
on spin conservation no longer applies in this simple form
if the molecule’s anisotropy axis is not aligned with the spin
quantization axis of the TI edge state. (Spin conservation is
also violated if the exchange coupling between the magnetic
molecule and the helical edge is not isotropic. This scenario
already applies to spin 1/2, see Refs. [45–47].) Simple spin
conservation arguments cannot be applied to a molecular
magnet on the surface of a three-dimensional topological
insulator either because in that case there is no unique spin
quantization axis, as electrons can propagate in an arbitrary
direction along the surface. As we will show below, in
this generic situation current-induced switching of molecular
magnet on a TI surface is not perfect, although appreciable
polarizations can be achieved even for randomly oriented
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FIG. 1. Current-induced switching of a localized spin 1/2 weakly
coupled to the helical edge of a two-dimensional topological insulator.
Backscattering of a right-moving electron is accompanied by a flip
to the spin-“up” state of the localized spin, leaving it in a fully
polarized state after a single backscattering event. For a sufficiently
large applied current the reverse scattering process, which would
return the localized spin to the “down” state, is strongly suppressed.

molecules. An interesting observation is that, unlike in the
example above, for a molecular magnet on the surface of a
three-dimensional TI the current-induced polarization is not a
monotonously increasing function of the applied current but
has a maximum at intermediate current densities.

This paper is organized as follows: In Sec. II we consider
a molecular magnet at the edge of a two-dimensional TI,
expanding the example in Fig. 1 to higher-spin molecules. We
calculate the probability with which current-induced switching
takes place, the current-induced switching rate, and the zero-
current relaxation rate that arises from the exchange coupling
of the molecule’s spin to the TI edge. In Sec. III we consider
the same questions for a molecular magnet on the surface of
a three-dimensional topological insulator, which is the more
likely candidate for an experimental realization. We conclude
with a brief outlook in Sec. IV. The main text mainly focuses
on molecules with integer spin S. The case of half-integer
spin, which requires a technically more demanding analysis,
is discussed in the Appendix.

II. MOLECULAR MAGNET AT THE EDGE
OF A TWO-DIMENSIONAL TI

A. Spin 1/2

To introduce our notation and to provide a reference
for further calculations, we start by considering a localized
moment of spin S = 1/2 exchange coupled to the helical edge
of a two-dimensional topological insulator. We assume that
there is only a single localized spin coupled to the edge and
that the temperature is large enough that the Kondo effect can
be neglected. In that case transitions between different spin
states can be described using rate equations.

The coupling between the edge and the magnetic moment
is described by the exchange Hamiltonian

Hex = vJδ(z)S · σ , (1)

where z labels the coordinate along the helical edge, v is the
velocity of the helical edge state, and J is the dimensionless
exchange coupling. Since the dominant source of anisotropy
for molecular magnets is the molecule’s intrinsic anisotropy
energy (see Sec. II B), for simplicity we have taken the
exchange interaction (1) to be isotropic. (Note, however, that
for the case S = 1/2 intrinsic anisotropy is not possible, so
that the exchange interaction is the only source of anisotropy,
see, e.g., Refs. [45–47].) Because of spin-momentum locking
of the edge states, backscattering of edge electrons from the

molecular magnet involves simultaneous flips of the spin of
the edge electrons and of the localized spin of the molecular
magnet. We fix the spin z axis along the direction of the spin
quantization axis for the edge-state electrons,

Hedge = vpzσz, (2)

so that right-moving electrons at the edge have spin up and
left-moving electrons have spin down. We note that the spin
z axis need not be in the same direction as the laboratory z

axis. (In fact, for the edge of a two-dimensional topological
insulator, the spin quantization axis is commonly taken to be
perpendicular to the plane of the TI [48].) The states |k±〉
in the helical edge are labeled by their energy ε = h̄vk and
the propagation direction τ = ±, where we take τ = + for
right-moving electrons (positive z direction) and τ = − for
left-moving electrons. (Note that in this notation k merely
parameterizes the energy; its magnitude |h̄k| equals the
magnitude of the momentum, but the sign of k is that of the
energy ε, not of the momentum.)

The transition rates �s,s ′ between the spin states are calcu-
lated from Fermi’s golden rule. The rate �↓,↑ for transitions
from the spin-up state |↑〉 to the spin-down state |↓〉 is

�↓,↑ = 2π

h̄

∫ +∞

−∞

dkdk′

(2π )2
n−(εk)[1 − n+(εk′)]

× |〈+,↓|Hex| −,↑〉|2δ(εk − εk′)

= J 2

2πh̄

∫ +∞

−∞
dεn−(ε)[1 − n+(ε)]. (3)

(The matrix elements of Hex do not depend on k and k′, which
is why we have suppressed k, k′ in our notation.) Similarly,
the rate �↑,↓ at which transitions from the spin-down state to
the spin-up state take place reads

�↑,↓ = J 2

2πh̄

∫ +∞

−∞
dεn+(ε)[1 − n−(ε)]. (4)

The distribution function at temperature T and chemical
potential μ in the presence of an edge current I = Ie is

nτ (ε) = 1

1 + e(ε−μ−τπh̄I )/kBT
, (5)

as one can easily verify from the relation I =
(1/2πh̄)

∫
dε[n+(ε) − n−(ε)]. For definiteness, we will as-

sume throughout that the particle current is to the right, I > 0.
Performing the integrations in Eqs. (3) and (4) then gives

�↓,↑ = J 2g(I ), �↑,↓ = J 2g(−I ), (6)

where we abbreviated

g(I ) = I

e2πh̄I/kBT − 1
. (7)

For high applied currents, h̄I 	 kBT , scattering processes in
which a left-moving electron is scattered into a right-moving
one and, correspondingly, the rate �↓,↑ are exponentially
suppressed. On the other hand, for low applied currents,
|I | 
 kBT/h̄, scattering of thermally excited charge carriers
dominates the spin switching rates, and the application of the
current I gives only a slight asymmetry.
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In the absence of coherences between the spin states |1/2〉
and |−1/2〉 the probabilities P↑ and P↓ to find the spin in
a state with spin s = ↑,↓ can be solved from the stationary
solutions of the rate equation

dPs

dt
=

∑
s ′ �=s

(�s,s ′Ps ′ − �s ′,sPs). (8)

(In principle, one needs a density matrix to describe pos-
sible coherent superpositions of the degenerate states |1/2〉
and |−1/2〉, see, e.g., Refs. [44,49–53] and the Appendix.
However, such coherences do not occur in the present case,
in which there is no external magnetic field and a single
spin quantization axis for the conduction electrons at the TI
edge and the localized spin.) Substituting the rates (6), one
immediately finds (see also Refs. [43,45,46])

P↑ = 1 − P↓ = 1

1 + e−2πh̄I/kBT
. (9)

The same result also follows from the observation that the
coupling to the conduction electrons at the TI edge effectively
amounts to a Zeeman shift 2πh̄I between the spin-up and spin-
down states of the molecule. We conclude that the application
of a current I 	 kBT/h̄ leads to a complete polarization of the
molecule’s spin.

B. Higher-spin molecule

Although the application of a current through the helical
edge of a two-dimensional topological insulator causes a
polarization of a spin 1/2 exchange coupled to the edge state,
the induced magnetic moment quickly disappears as soon as
the current is switched off. In our model, in which the coupling
to the helical edge state is the only source of relaxation, the
corresponding relaxation rate � is given by the low-current
limit of Eq. (6),

�↑,↓ = �↓,↑ = J 2kBT

2πh̄
. (10)

Longer relaxation times in the absence of an applied current
requires molecules with a higher spin S. In this case, magnetic
anisotropy,

Hanis = −2π

h̄
D(S · e)2, (11)

imposes an energy barrier between states with maximal and
minimal spin ±h̄S (measured along the anisotropy axis e; see
Fig. 2), which, if kBT is lower than the barrier energy, leads
to strongly enhanced lifetimes. (See below for a quantitative
estimate for our model.) In our analysis, we have adopted a
simple easy-axis anisotropy strength D (which we take to have
units of frequency) with D > 0, although our considerations
also carry over to other forms for the anisotropy energy in
which there are two different minima. (The case D < 0 is
for easy-plane anisotropy, which does not have two separate
energy minima and will not be considered here.) We label the
spin states with the quantum number s = −S,−S + 1, . . . ,S

for the spin component h̄s along the e direction. (For S = 1/2,
s takes the values s = ±1/2, corresponding to the notation ↑
and ↓ in the previous section.)

FIG. 2. Schematic drawing of energy levels and transition rates
�s±1,s (a) for a spin-1 molecule and (b) for a spin-3/2 molecule.

If the anisotropy axis is aligned with the spin quantization
axis for the helical edge state, the analysis in the previous
section immediately carries over, and one finds

�s±1,s = J 2(S ∓ s)(S ± s + 1)g[∓(I + D(2s ± 1))]. (12)

For the probabilities Ps one then finds

Ps = 1

Z
e(2πsh̄I+2πh̄Ds2)/kBT , (13)

where the prefactor is fixed by the normalization condition∑
s Ps = 1.
If the temperature is much smaller than the anisotropy

energy, which is a condition that we will assume throughout
this paper, the rate equations can be solved directly, using
detailed balance, to give the zero-current switching rate
�switch(0) between the two magnetic ground states |S〉 and
|−S〉,

�switch(0) ≈ 1
2J 2S(S + 1)De−2πh̄DS2/kBT (14)

if S is integer and

�switch(0) ≈ J 2(S + 1/2)2 kBT

2πh̄
e−2πh̄D(S2−1/4)/kBT (15)

if S is half integer.
The application of a current I slightly larger than D(2S − 1)

leads to a quick and complete spin polarization of the molecule.
The switching rate �switch(I ) can be estimated as the inverse
of the sum of inverse transition rates �s,s+1, which gives

�switch(I ) ∼ J 2I (S + 1/2)/ ln(4S + 1) (16)

for large S. A smaller current, kBT 
 h̄I 
 h̄D(2S + 1), also
polarizes the molecule, but since thermal activation is still
needed in the switching process, the time required to reach the
polarized state is still large (although much shorter than the
zero-current lifetime),

�switch(I ) ≈ �switch(0)e2πh̄IS/kBT (17)

if S is integer and

�switch(I ) ≈ �switch(0)e2πh̄I (S−1/2)/kBT (18)

if S is half integer.
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If e is not aligned with the z axis, the expression for the rates �s±1,s involves the matrix elements

〈τ ′,s −1|Hex|τ,s〉 = Jvh̄

2

√
(S + s)(S − s + 1)

{−τ sin θ if τ ′ = τ ,

τ ′(1+ τ ′ cos θ )e−iφτ ′
if τ ′ = −τ ,

〈τ ′,s +1|Hex|τ,s〉 = Jvh̄

2

√
(S − s)(S + s + 1)

{−τ sin θ if τ ′ = τ ,

τ (1 + τ cos θ )eiφτ if τ ′ = −τ ,
(19)

where θ and φ are the polar angles corresponding to the
anisotropy axis e = cos θez + sin θ cos φex + sin θ sin φey .
This gives

�s±1,s = 1

4
J 2(S ∓ s)(S ± s + 1)

×
∑

τ

{g[∓D(2s ± 1)] sin2 θ

+ (1 ∓ τ cos θ )2g[τI ∓ D(2s ± 1)]}. (20)

One verifies that the zero-current rates are the same as those
of Eqs. (12), independent of the direction e of the anisotropy
axis, so that Eqs. (14) and (15) still apply.

Because of the degeneracy of the states |1/2〉 and |−1/2〉
the rate equation (8) is not sufficient to describe transitions
between these two states, and instead, one has to use a master
equation for the reduced 2×2 density matrix that is able to
account for coherent superpositions of the states |1/2〉 and
|−1/2〉. For that reason we here restrict ourselves to the case
of integer S, for which this complication does not occur. A
complete analysis and final expressions for half-integer S are
given in the Appendix.

We first discuss the case of an “intermediate” current
kBT 
 h̄I 
 h̄D(2S − 1), for which the transition rates (20)
can be approximated as

�s+1,s ≈ J 2D

4
(S − s)(S + s + 1)|2s + 1|

{
4 if s � 0,

(1 + cos θ )2e2πh̄(I−D|2s+1|)/kBT if s < 0,

�s−1,s ≈ J 2D

4
(S + s)(S − s + 1)|2s − 1|

{
(1 − cos θ )2e2πh̄(I−D|2s−1|)/kBT if s > 0,

4 if s � 0.
(21)

The large difference between “upstream” transitions to higher-
energy spin states and “downstream” transitions to lower-
energy spin states ensures that the molecule will predominantly
be in one of its two magnetic ground states |S〉 and |−S〉. The
presence of the applied current breaks the symmetry between
these two ground states and leads to a preferred population of
the state |S〉 if θ < π/2 and |−S〉 if θ > π/2, although there
is no longer a perfect polarization for generic θ ,

PS = 1 − P−S

= (1 + cos θ )2S

(1 + cos θ )2S + (1 − cos θ )2S
. (22)

Switching between the magnetic ground states involves ther-
mal activation, which is why the switching rate between the
magnetic ground states is exponentially long in 2πh̄DS2/kBT ,
although the rate is parametrically larger than the spontaneous
relaxation rate at zero current. Defining �switch(I ) as the
switching rate from |−S〉 to |S〉, we have

�switch(I ) = �switch(0)

(
1 + cos θ

2

)2S

e2πh̄IS/kBT , (23)

where �switch(0) is the zero-current relaxation rate of Eq. (14).
The switching rate for the inverse process is obtained upon
replacing θ → π − θ . The difference between the case θ =
0 and generic θ is most pronounced in the “high-current”
limit I 	 D(2S − 1), in which the rates �s±1,s in Eq. (20) are
dominated by the terms proportional to g[−I ∓ D(2s ± 1)].
Approximating g[−I ± D(2s ∓ 1)] ≈ I for I 	 D(2S − 1),

we find

�s±1,s = I

4
J 2(S ∓ s)(S ± s + 1)(1 ± cos θ )2. (24)

For the probabilities Ps this gives immediately

Ps = 4 cos θ (1 − cos θ )2(S−s)(1 + cos θ )2(S+s)

(1 + cos θ )2(2S+1) − (1 − cos θ )2(2S+1)
. (25)

For θ close to zero this still gives a narrow distribution
around s = S, but perfect polarization is not reached if θ �= 0
independent of the magnitude of the current I . Examples of
the distribution (25) are shown in Fig. 3 for S = 5 and for
several representative angles θ .

Figure 4 shows the mean values 〈S · e〉 of the spin
component along the anisotropy axis and 〈Sz〉 = 〈S · e〉(e · ez)
of the spin component along the current direction as a function
of the angle θ for two different values of the total spin
S. Except for θ = π/2, the application of a current always
results in a net spin in the current direction. For a randomly
oriented molecule, the average moment in the current direction
approaches S/2 in the limit of large S. Without a perfect
current-induced polarization, we should define the current-
induced “switching rate” �switch(I ) as the rate at which the
steady-state probability Ps is approached, starting from |−S〉
(if θ < π/2). The estimate (16) for the switching rate �switch(I )
obtained above for e parallel to the z axis remains valid as a
good order-of-magnitude estimate for the case of a general
orientation of the anisotropy axis in the high-current regime.
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FIG. 3. Steady-state probability distribution (25) for S = 5 and
for angles θ = 0, θ = π/6, θ = π/3, θ = 5π/12, θ = π/2, θ =
7π/12, θ = 2π/3, θ = 5π/6, and θ = π .

III. THREE-DIMENSIONAL TOPOLOGICAL INSULATOR

The main result of the previous section is that the current-
induced polarization of a molecular magnet coupled to the edge
of a two-dimensional TI is complete only if the molecule’s
anisotropy axis is aligned with the spin quantization axis for
the TI edge state, whereas the polarization is incomplete, but
generally nonzero, for arbitrary orientations of the molecule.
The analysis was simplified by the fact that the edge of a two-
dimensional TI has a unique propagation direction and hence
a unique spin quantization axis. This is the main difference
from the case of a molecule coupled to the surface of a three-
dimensional TI: Electrons at the surface of a three-dimensional
TI can propagate in all directions in the plane of the surface,
even in the presence of a large applied current. Hence, there
is not a unique spin quantization axis, and there will always
be surface-state electrons with a spin that is not aligned with
the anisotropy axis of the molecular magnet. Nevertheless, as
we show below, even for a molecule adsorbed on the surface

FIG. 4. Mean spin component 〈S · e〉 along the direction of the
anisotropy axis (solid curves) and the mean spin component 〈Sz〉 in
the current direction (dashed curves) as a function of the angle θ for
S = 1 (left panel) and S = 10 (right panel).

FIG. 5. Molecular magnet on the surface of a three-dimensional
topological insulator. The TI surface is the xz plane. A current is
applied in the positive z direction.

of a three-dimensional TI the application of an electrical
current can lead to a complete spin polarization, provided the
molecule’s anisotropy axis is aligned with the current direction
and the magnitude of the applied current is appropriately
chosen. As in the case of a two-dimensional TI, the spin
polarization of the molecular magnet is not complete (but
generally nonzero) if the molecule’s magnetic anisotropy axis
is not aligned with the current direction. To keep the notation
close to that of the previous section, we take the TI surface to
be the xz plane and take the direction of (particle) current flow
to be the positive z direction (see Fig. 5). The electrons at the
TI surface are then described by the Hamiltonian

Hsurface = v(pxσx + pzσz). (26)

We write the current density j as

j = 1
4kFIez, (27)

where kF is the Fermi wave number and I has the dimension
of current. For the exchange Hamiltonian we take

Hex = 2v

kF
Jδ(x)δ(z)S · σ , (28)

where, as in the previous section, a prefactor has been
included to make the strength J of the exchange interaction
dimensionless. The Hamiltonian Hanis for the magnetic
anisotropy of the magnetic molecule is the same as in Sec. II B
[see Eq. (11)]. The eigenstates of Hsurface are labeled by the
energy ε = h̄vk and by the angle ϕ of the propagation direction
in the xz plane, such that ϕ = 0 corresponds to the positive z

direction. We assume that the chemical potential μ = h̄kFv 	
max(kBT ,h̄I ), which ensures that thermally excited carriers
as well as carriers contributing to the current flow remain well
away from the Dirac point. In that case the distribution function
in the presence of a particle current density 1/4kFIez is

n(ε,ϕ) = 1

1 + e(ε−μ−πh̄I cos ϕ)/kBT
. (29)

Equation (29) both follows from a solution of the Boltzmann
equation and maximizes the entropy under the constraint of a
fixed current density j = kFIez/4.

For the calculation of the transition rates between different
spin states we need the matrix elements

〈ϕ′,s ± 1|Hex|ϕ,s〉
= Jvh̄

kF

√
(S ∓ s)(S ± s + 1)[(cos θ cos φ ± i sin φ) sin ϕ+

± (cos φ ± i cos θ sin φ) sin ϕ− − sin θ cos ϕ+], (30)
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where we abbreviated ϕ± = (ϕ′ ± ϕ)/2. Equation (30) generalizes Eq. (19) to the case of a surface state. As in Eq. (19), θ

and φ are the polar angles marking the direction of the anisotropy axis. For the transition rates we then find, again assuming
μ 	 max(kBT ,h̄I ),

�s±1,s = J 2(S ∓ s)(S ± s + 1)
∫

dϕ′

2π

dϕ

2π
(1 ± cos θ cos ϕ + sin θ cos φ sin ϕ)

× (1 ∓ cos θ cos ϕ′ + sin θ cos φ sin ϕ′)g[I (cos ϕ′ − cos ϕ)/2 ∓ D(2s ± 1)], (31)

where the function g(I ) was introduced in Eq. (7). We will now analyze these rates and the resulting probabilities Ps

in the regimes of low current densities, h̄|I | 
 kBT ; intermediate current densities, kBT 
 h̄I 
 h̄D(2S − 1); and high
current densities, h̄I 	 h̄D(2S − 1). (For S = 1/2 no intermediate regime exists, and the high-current regime is defined as
h̄I 	 kBT .)

For low current densities h̄|I | 
 kBT the expressions (31) for the transition rates simplify to

�s+1,s ≈ �−s−1,−s ≈ J 2(S − s)(S + s + 1) ×
⎧⎨
⎩

D|2s + 1| if s > −1/2,

kBT/2πh̄ if s = −1/2,

D|2s + 1|e−2πh̄D|2s+1|/kBT if s < −1/2.

(32)

The resulting zero-current switching rate �switch(0) is given by the same expression as in the two-dimensional case [see Eqs. (14)
and (15)].

For intermediate current densities, kBT 
 h̄I 
 h̄D(2S − 1), the exponential suppression of the transition rates to higher-
energy spin states is reduced, whereas the transition rates into the lower-energy states remains approximately as in the low-current
regime. For a quantitative analysis we restrict ourselves to the case of integer spin S, referring to the Appendix for a discussion
of half-integer S. In the intermediate-current regime the transition rates can be approximated as

�s+1,s ≈ J 2(S − s)(S + s + 1) ×
{
D|2s + 1| if s � 0,
kBT

2π2h̄I
(1 + cos θ )2D|2s + 1|e2πh̄(I−D|2s+1|)/kBT if s < 0,

�s−1,s ≈ J 2(S + s)(S − s + 1) ×
{

kBT

2π2h̄I
(1 − cos θ )2D|2s − 1|e2πh̄(I−D|2s−1|)/kBT if s > 0,

D|2s − 1| if s � 0.
(33)

As in the two-dimensional case, the applied current breaks
the symmetry between states with positive and negative spin
s, leading to an imbalance between the populations of the
ground states |S〉 and |−S〉,

PS = 1 − P−S

= (1 + cos θ )2S

(1 + cos θ )2S + (1 − cos θ )2S
. (34)

The population of the excited states |s| < S remains ex-
ponentially small in h̄D(2S − 1)/kBT . The current-induced
switching rate from the state |−S〉 into |S〉 is

�switch(I ) = �switch(0)

[
kBT (1 + cos θ )2

2π2h̄I

]S

e2πh̄SI/kBT . (35)

The inverse rate is given by the same expression, but with cos θ

replaced by − cos θ .
The case with θ = 0 in which the molecule’s anisotropy

axis is aligned with the current direction must be considered
separately. In this case the leading approximation of Eq. (33)
vanishes for the upstream rate �s−1,s with s > 0, and sublead-
ing contributions in the small parameter I/D must be taken
into account. One finds

�s−1,s ≈ J 2(S + s)(S − s + 1)
D|2s − 1|(kBT )3

8π4h̄3I 3

× e2πh̄(I−D|2s−1|)/kBT (36)

if s > 0. Asymptotically, forh̄I 	 kBT [but still I 
 D(2S −
1)], this leads to a complete spin polarization of the molecule,

Ps = δS,s . (37)

[The probability P−S vanishes ∝(kBT/h̄I )2S ; all other prob-
abilities are exponentially small in h̄D(2S − 1)/kBT .] The
perfect polarization can be understood if one observes that the
surface-state electrons responsible for the transitions to higher-
energy spin states are predominantly electrons moving in the
positive z direction, which are then backscattered to the nega-
tive z direction. These electrons have a unique spin quantiza-
tion axis, and their scattering leads to a well-defined change in
the molecule’s spin state |s〉. The switching rate from the state
|−S〉 to |S〉 is given by Eq. (35) with θ = 0. The rate for the
inverse process |S〉 → −|−S〉 vanishes in the limit kBT 
 h̄I .

Remarkably, the complete polarization is lost again when
the current is increased further. If I 	 D(2S − 1), not only
electrons moving in the positive z direction but essentially
all electrons that contribute to the current j can scatter off
the localized magnetic moment and change its spin. For high
current densities the transition rates are (for arbitrary direction
of the anisotropy axis)

�s±1,s ≈ J 2I (S ∓ s)(S ± s + 1)

2π
F±(θ ), (38)

where we abbreviated

F±(θ ) = 4(4 − sin2 θ )

3π
± π

2
cos θ, (39)
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FIG. 6. The probabilities P1, P0, and P−1 for a spin-1 molecule
on the surface of a three-dimensional topological insulator to be in
the corresponding spin state as a function of 2πh̄I/kBT . We have
set 2πh̄D/kBT = 5. The inset shows the maximum value of the
probability P1 for a molecule with S = 1 as a function of 2πh̄D/kBT .

and one quickly obtains the steady-state distribution from here,

Ps = [F+(θ ) − F−(θ )]F+(θ )S+sF−(θ )S−s

F+(θ )2S+1 − F−(θ )2S+1
. (40)

Since F±(0) = (32 ± 3π2)/6π , even for a perfectly aligned
molecule, no perfect polarization occurs in the limit of large
currents. The probability PS to find the molecule in the
maximal-spin state saturates at a value slightly above 96% for
molecules with large spin S. Although no perfect polarization
results for current densities I 	 D(2S − 1), the rate at which
the steady-state distribution is approached is considerably
enhanced in comparison to the intermediate current-density
regime [see Eq. (16)].

As an illustration, we show the probabilities Ps for
s = −1,0,1 for a molecule with S = 1 as a function of the
applied current density for 2πh̄D/kBT = 5 (see Fig. 6).
Notice the (faint) maximum of P1 for I ∼ D. The inset

FIG. 7. Mean spin component 〈S · e〉 along the direction of the
anisotropy axis (solid curve) and the mean spin component 〈Sz〉 in the
current direction (dashed curve) as a function of the angle θ for total
spin S = 5. Left panel: intermediate-current regime kBT 
 h̄I 

h̄D(2S − 1); right panel: high-current regime I 	 D(2S − 1).

1 2 3 4 5 6 7 8 9 10
Spin S

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

〈S
z
〉(

u
n

it
s

of
S

)

FIG. 8. Mean spin component in the current direction 〈Sz〉 per
molecule as a function of the total spin S for an ensemble of randomly
oriented molecular magnets on the surface of a three-dimensional
topological insulator. Open circles are for the intermediate-current
regime kBT 
 h̄j 
 h̄D(2S − 1); solid circles are for the high-
current regime j 	 D(2S − 1).

shows that the maximum value of P1 approaches unity in
the limit when the anisotropy energy is much larger than the
temperature, h̄D 	 kBT .

Figure 7 shows the mean spin components 〈S · e〉 along the
molecule’s anisotropy axis and 〈Sz〉 along the current direction
as a function of the angle θ for S = 5 for the intermediate-
current regime and for the high-current regime. As in the case
of a two-dimensional TI, except for θ = π/2, the application
of a current always results in a net spin in the current direction.
For a randomly oriented molecule, the average moment in the
current direction approaches S/2 in the limit of large S.

We can apply the results obtained here to a topological
insulator surface with a dilute covering of molecular magnets.
For a dilute covering our single-molecule analysis can be used
to obtain the net polarization of the molecular layer. Assuming
that the molecules have randomly orientated anisotropy axis,
a valid assumption if the magnetic core is shielded by an
approximately spherical shell (see, e.g., Ref. [54]), the net
polarization is found by averaging a single molecule’s average
moment over the directions of the anisotropy axis e. The
calculation is straightforward in principle, starting from the
steady-state distributions (34) and (40). [See Eqs. (A22) and
(A25) for steady-state distributions for half-integer spin S.]
Instead of reporting the resulting expressions, which are rather
cumbersome, we refer to Fig. 8, which shows the resulting net
polarization per molecule as a function of S.

IV. CONCLUSION

The strict spin-momentum locking at the surface of a
topological insulator provides an appealing mechanism to use
electric currents to switch the spin state of a molecular magnet
weakly coupled to the surface. Whereas based on simple
spin-conservation arguments one expects a complete response
for a molecular magnet at the edge of a two-dimensional
topological insulator if the molecule’s magnetic anisotropy
axis is aligned appropriately with the spin quantization axis
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of the surface state, the situation is more complicated for
molecular magnets on the surface of a three-dimensional
topological insulator and/or for an arbitrary orientation of the
magnetic anisotropy axis. For a molecule on the surface of a
three-dimensional topological insulator, a full current-induced
polarization is achieved only if the molecule’s magnetic
anisotropy axis is aligned with the current direction and the
magnitude j of the current density is in an intermediate
range, kBT 
 h̄j/kF 
 h̄D(2S − 1), with h̄DS2 being the
molecule’s anisotropy energy and S being the magnitude of
its spin. However, even for a surface covered by molecules
with randomly oriented anisotropy axes the application of a
surface current should result in a net magnetic moment per
molecule for all current strengths.

The minimal current density j required to polarize
the molecule and the resulting steady-state distribution of
the molecule’s magnetic states depends more on properties
of the topological insulator surface than properties of the
molecular magnet itself. The condition for an appreciable
current-induced polarization is j 	 kBT kF/h̄; that is, the
distortion of the Fermi surface by the applied current should
be large in comparison to the blurring of the Fermi surface by
temperature. This is a condition that is easier to achieve if the
chemical potential is in the vicinity of the Dirac point, so that kF

is small, and a relatively small current density implies a large
shift of the distribution function. The role of the anisotropy
energy is to set a crossover scale j ∼ D(2S − 1)kF, above
which current-induced transitions allow the molecule to be in
all spin states, whereas for lower current densities only the
magnetic ground states |S〉 and |−S〉 are accessible. Again,
the crossover between these regimes happens at lower current
densities if the chemical potential is closer to the Dirac point.

Details of the coupling between the molecule and the
surface play a crucial role when it comes to setting the switch-
ing rate. This applies both to the zero-current spontaneous
switching between the degenerate magnetic ground states |S〉
and |−S〉 and to the current-induced changes between these
states. If the temperature is below the blocking temperature,
appreciable switching rates can be obtained only in the
high-current regime j 	 D(2S − 1)kF, where we found the
switching rate to be of order �switch ∼ J 2j/kF, where J is
the dimensionless exchange coupling. An upper limit for this
rate is found by setting J ∼ 1, although we expect that the
presence of the organic shell will typically lead to much
smaller exchange couplings for single-molecule magnets on a
topological insulator surface. Taking a current density j at the
lower end of the high-current regime, j ∼ D(2S − 1)kF, we
find an upper bound for switching times in the range of 10−11

s for a molecule with a blocking temperature of a few degrees
Kelvin, but it is most likely significantly longer if J is smaller.

Our calculations have shown that in-plane currents can
be used as an effective tool to switch the orientation of
the spin of molecular magnets adsorbed on the surface of a
three-dimensional topological insulator, even if no complete
polarization is achieved for molecules without a specially
aligned magnetic anisotropy axis. We hope that our observa-
tions, together with other theoretical studies highlighting the
intriguing physics of molecular magnets on TI surfaces [55],
will motivate further experimental and theoretical research in
this direction.
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APPENDIX: MOLECULAR MAGNETS
WITH HALF-INTEGER SPIN

In the case of a molecular magnet with half-integer spin S

the states |1/2〉 and |−1/2〉 are degenerate, which means that
transitions between these states cannot be described by means
of a rate equation and that they need to be described with a
master equation for the (reduced) density matrix

ρ =
(

ρ1/2,1/2 ρ1/2,−1/2

ρ1/2,−1/2 ρ−1/2,−1/2

)
. (A1)

The diagonal elements ρs,s = Ps are the probabilities to find
the molecule in spin state |s〉, s = ±1/2; the off-diagonal
elements describe coherences between these two spin states.

To allow for a unified treatment of a molecular magnet
coupled to the edge of a two-dimensional TI and a molecular
magnet at the surface of a three-dimensional TI, we write
matrix elements of the exchange Hamiltonian (1) for the two-
dimensional case as

〈ϕ′,s ′|Hex|ϕ,s〉 = 1
2Jvh̄ms ′,s(ϕ

′,ϕ), (A2)

where we use the propagation angle ϕ = 0 for a right-moving
electron (labeled with τ = +1 in Sec. II) and ϕ = π for a
left-moving electron (labeled with τ = −1). Matrix elements
of the exchange Hamiltonian (28) for the three-dimensional
case are written

〈ϕ′,s ′|Hex|ϕ,s〉 = Jvh̄

kF
ms ′,s(ϕ

′,ϕ). (A3)

The rates �s ′,s , see Eqs. (20) and (31), are then expressed as

�s ′,s = J 2
∫

dϕ

2π

dϕ′

2π
|ms ′,s(ϕ

′,ϕ)|2

× g[I (cos ϕ′ − cos ϕ)/2 + D(s2 − s ′2)], (A4)

where the double integration
∫

(dϕ/2π )(dϕ′/2π ) should be
replaced by a double sum (1/4)

∑
ϕ,ϕ′=0,π for the case of a

two-dimensional TI. The explicit expressions for m(ϕ′,ϕ) read

h̄m(ϕ′,ϕ) = 2(Sz cos θ − Sx sin θ ) cos ϕ+ + (Sx cos θ

+ Sz sin θ )(cos φ sin ϕ+ + i sin φ sin ϕ−)

+ iSy(cos φ sin ϕ− + i sin φ sin ϕ+), (A5)

where ϕ± = (ϕ′ ± ϕ)/2 [see the text below Eq. (30)].
Because of the large energy differences between spin states

with different values of |s| and the lack of direct transitions
between the degenerate spin states |s〉 and |−s〉 for |s| > 1/2,
the rates (A4) are sufficient to calculate the (rate of change of
the) probabilities Ps that the molecule is in spin state |s〉 for
|s| > 1/2 [see Eq. (8)]. On the other hand, for the degenerate
spin states |1/2〉 and |−1/2〉 we must use the full density matrix
ρ [see Eq. (A1)]. The equation of motion for this density matrix
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has the well-known Lindblad form [56,57]

dρ

dt
= − i

h̄
(Hexρ − ρHex) +

∑
±

[
�±1/2,±3/2�±1/2P±3/2 − 1

2
�±3/2,±1/2(�±1/2ρ + ρ�±1/2)

]

+ J 2
∫

dϕ

2π

dϕ′

2π
g[I (cos ϕ′ − cos ϕ)/2]

{
m(ϕ′,ϕ)ρm(ϕ′,ϕ)† − 1

2
[m(ϕ′,ϕ)†m(ϕ′,ϕ)ρ + ρm(ϕ′,ϕ)†m(ϕ′,ϕ)]

}
, (A6)

where the projection matrices �1/2 and �−1/2 are defined
as

�1/2 =
(

1 0
0 0

)
, �−1/2 =

(
0 0
0 1

)
. (A7)

One verifies that the Lindblad equation (A6) simplifies to the
standard rate equation (8) if the density matrix ρ is a diagonal
matrix, ρ = diag (P1/2,P−1/2).

The first term in Eq. (A6) contains the expectation value
of the exchange Hamiltonian projected onto the spin states
|±1/2〉. It acts as an effective magnetic field driving coherent
transitions between the states |1/2〉 and |−1/2〉. This term
plays no role for states |s〉 with |s| > 1/2 because it is much
smaller than the anisotropy field if the exchange coupling is
weak, |J | 
 1. However, for transitions between the states
|1/2〉 and |−1/2〉 there is no anisotropy field, and the exchange
field competes with the similarly small scattering-induced
transitions between the states |1/2〉 and |−1/2〉. With the same
notation as above we have

Hex = JIh̄

2

∫
dϕ

2π
m(ϕ,ϕ) cos φ, (A8)

where, for a molecule coupled to the edge of a two-dimensional
topological insulator, the integration

∫
(dϕ/2π ) should be

replaced by a summation (1/2)
∑

ϕ=0,π . Performing the
angular integration gives

Hex = JIh̄

8

(
2 cos θ −(2S + 1) sin θ

−(2S + 1) sin θ −2 cos θ

)
, (A9)

which is indeed what one expects for an exchange field in the
z direction, recalling that the spin states |s〉 are defined with
respect to the anisotropy axis e = cos θez + sin θ cos φex +
sin θ sin φey .

A solution of the Lindblad equation proceeds by parame-
terizing

ρ = 1

2
ρ0τ0 + 1

2

∑
j=x,y,z

ρj τj , (A10)

where τ0 is the 2×2 identity matrix and τj are the Pauli
matrices in the space spanned by |1/2〉 and |−1/2〉. We
give the equation of motion for ρ for the intermediate-
and high-current regimes, in which we may approxi-
mate g[I (cos ϕ′ − cos ϕ)/2] ≈ I (cos ϕ − cos ϕ′)/2 if cos ϕ >

cos ϕ′ and g[I (cos ϕ′ − cos ϕ)/2] ≈ 0 otherwise (including
the case cos ϕ = cos ϕ′).

In the two-dimensional case there is a contribution from
only ϕ = 0, ϕ = π . The equations of motion read

dρ0

dt
=

∑
±

[
�±1/2,±3/2P±3/2 − 1

2
�±3/2,±1/2(ρ0 ± ρz)

]
,

dρx

dt
= −JI

8
ρy cos θ + J 2I

8
{−ρx[4 sin2 θ + (2S + 1)2] + 2(ρz cos θ − 2ρ0)(2S + 1) sin θ} − 1

2
ρx

∑
±

�±3/2,±1/2,

dρy

dt
= JI

16
[2ρx cos θ + ρz(2S + 1) sin θ ] − J 2I

8
ρy[4 sin2 θ + (2S + 1)2 cos2 θ ] − 1

2
ρy

∑
±

�±3/2,±1/2,

dρz

dt
= −JI

16
(2S + 1)ρy sin θ + J 2I

8
(2S + 1){(2S + 1)[2ρ0 cos θ − ρz(cos2 θ + 1)] + 2ρx sin θ cos θ}

+
∑
±

[
±�±1/2,±3/2P±3/2 − 1

2
�±3/2,±1/2(ρz ± ρ0)

]
. (A11)

In the three-dimensional case the equations of motion are

dρ0

dt
=

∑
±

[
�±1/2,±3/2P±3/2 − 1

2
�±3/2,±1/2(ρ0 ± ρz)

]
,

dρx

dt
= −JI

8
ρy cos θ − J 2I

3π2
{ρx[4 + sin2 θ + 2(2S + 1)2] + 4 sin θ cos θρz} − J 2I

4
ρ0(2S + 1) sin θ − 1

2
ρx

∑
±

�±3/2,±1/2,

dρy

dt
= JI

16
[2ρx cos θ + ρz(2S + 1) sin θ ] − J 2I

3π2
ρy[4 + 4 sin2 θ + (2S + 1)2(1 + cos2 θ )] − 1

2
ρy

∑
±

�±3/2,±1/2,
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dρz

dt
= −JI

16
(2S + 1)ρy sin θ + J 2I

3π2
(2S + 1)[2ρx sin θ cos θ − ρz(2S + 1)(4 − sin2 θ )] + J 2I

8
(2S + 1)2ρ0 cos θ

+
∑
±

[
±�±1/2,±3/2P±3/2 − 1

2
�±3/2,±1/2(ρz ± ρ0)

]
. (A12)

In the intermediate-current regime we may set

�±3/2,±1/2 ≈ J 2D

2
(2S − 1)(2S + 3) (A13)

[see Eqs. (20) and (33)]. For the high-current regime we may
approximate �±3/2,±1/2 by Eqs. (24) and (38) for the two-
dimensional and three-dimensional cases, respectively.

When searching for a stationary solution, the contributions
from transitions to and from the spin states |±3/2〉 vanish
in the equations of motion for ρ0 and ρz because of detailed
balance. They remain, however, in the equations of motion
for ρx and ρy . Once the ratio P1/2/P−1/2 has been determined
from the stationary solution of the Lindblad equations (A11)
or (A12), the remaining probabilities Ps for |s| > 1/2 can be
found from the principle of detailed balance,

P|s| = �|s|,|s|−1P|s|−1

�|s|−1,|s|
, s = ±3/2, . . . , ± S, (A14)

and from the normalization condition
∑

s Ps = 1.
We now report expressions for the ratio P1/2/P−1/2 for

the intermediate- and high-current regimes kBT 
 h̄I 

h̄D(2S − 1) and I 	 D(2S − 1) for a spin coupled to the
edge of a two-dimensional TI and to the surface of a
three-dimensional TI. The expressions for the intermediate-
current regime are simplified using the inequalities I 

D(2S − 1) and J 
 1, but we make no assumptions regarding
the relative magnitude of these two quantities. (Note that
the intermediate-current regime does not exist for S = 1/2.)
The expressions for the high-current limit are simplified using
the inequality J 
 1.

In the intermediate-current regime we find for the case of
a molecular magnet coupled to the edge of a two-dimensional
TI

P1/2

P−1/2
= G+(θ )

G−(θ )
, (A15)

with

G±(θ ) = (1 ± cos θ )2 + I sin2 θ

16DJ 2(2S − 1)(2S + 3)
. (A16)

This result agrees with what one obtains from naive application
of the rate equations if I 
 J 2D(2S − 1) but differs otherwise
because of the effect of the current-induced exchange field
(A9). Note that G−(θ ) = G+(π − θ ). The resulting steady-
state probability distribution is

PS = 1 − P−S

= G+(θ )(1 + cos θ )4S−2

G+(θ )(1 + cos θ )4S−2 + G−(θ )(1 − cos θ )4S−2
.

(A17)

The current-induced switching rate from |−S〉 to |S〉 can be
calculated as the transition rate from |−1/2〉 to |1/2〉 starting

with the initial condition

ρ(0) = (1 + cos θ )S−1/2

2S−1/2
�−1/2e

2πh̄(S−1/2)[I−D(S+1/2)]/kBT ,

which is the reduced density matrix after current-induced
equilibration of all states with s < 0, including the state
|−1/2〉 but without including transitions from |−1/2〉 to |1/2〉.
Within a time ∼2/J 2D(2S − 1)(2S + 3), which is short in
comparison to the time required to transition from to |−1/2〉
to |1/2〉, a quasisteady state is reached for the reduced density
matrix ρ, in which the off-diagonal component ρy becomes
nonzero,

ρy ≈ ρzI (2S + 1)

8JD(2S − 1)(2S + 3)
.

The current-induced switching rate �switch(I ) is then found
as the rate of change of P1/2 in this quasisteady state, which
gives

�switch(I ) = J 2I (2S + 1)2

2S+7/2
G+(θ )(1 + cos θ )S−1/2

× e2πh̄(S−1/2)[I−D(S+1/2)]/kBT , (A18)

where G+(θ ) was defined in Eq. (A16). The switching rate for
the opposite process is given the same expression, but with the
replacement θ → π − θ .

For the high-current limit and a two-dimensional TI we find
P1/2/P−1/2 = G+(θ )/G−(θ ) with the function G±(θ ) defined
as

G±(θ ) = 1 ± cos θ

2
+ 3(2S − 1)(2S + 3)

32
sin2 θ, (A19)

which is different from the result one obtains from naive
application of the rate equations. For S = 1/2 the ratio
P1/2/P−1/2 is consistent with a spin polarized in the z direction.
The resulting probability distribution Ps reads

P±|s| = 4 cos θG±(θ )

G+(θ )(1 + cos θ )2S−1 + G−(θ )(1 − cos θ )2S−1

× (1 ± cos θ )2(|s|+S−1)(1 ∓ cos θ )2(S−|s|)

(1 + cos θ )2S+1 − (1 − cos θ )2S+1
. (A20)

Equation (16) of the main text is a good order-of-magnitude
estimate for the rate �switch(I ) at which this steady-state
distribution is approached.

For a molecule on the surface of a three-dimensional TI with
an applied current in the intermediate-current regime kBT 

h̄I 
 h̄D(2S − 1) the stationary solution of the Lindblad
equation (A12) gives the ratio P1/2/P−1/2 = G+(θ )/G−(θ ),
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with

G±(θ ) = F±(θ ) + πI sin2 θ

32DJ 2(2S − 1)(2S + 3)
, (A21)

where the function F±(θ ) was defined in Eq. (39) of the
main text. This expression simplifies to the ratio P1/2/P−1/2 =
F+(θ )/F−(θ ) one obtains by considering rates only in the
limit I 
 DJ 2(2S − 1). The corresponding steady-state dis-
tribution reads

PS = 1 − P−S

= G+(θ )F+(θ )4S−2

G+(θ )F+(θ )4S−2 + G−(θ )F−(θ )4S−2
. (A22)

The switching rate from |−S〉 to |S〉 is calculated in the
same way as for the case of a two-dimensional TI, and one
finds

�switch(I ) = J 2I (2S + 1)2G+(θ )

8π

(
2(1 + cos θ )2kBT

π2h̄I

)S−1/2

× e2πh̄(S−1/2)[I−D(S+1/2)]/kBT . (A23)

The switching rate for the inverse transition is again given by
the replacement θ → π − θ .

Finally, for the high-current regime in three dimensions we
find that the stationary solution of the Lindblad equation (A12)
has P1/2/P−1/2 = G+(θ )/G−(θ ), with

G±(θ ) = 1

2
± 3π2

64
cos θ

+ (2S − 1)(2S + 3)

64
(8 − sin2 θ ) sin2 θ. (A24)

The corresponding steady-state distribution reads

P±|s| = F+(θ ) − F−(θ )

G+(θ )F+(θ )S−1/2 + G−(θ )F−(θ )S−1/2

× G±(θ )F±(θ )|s|+S−1F∓(θ )S−|s|

F+(θ )S+1/2 − F−(θ )S+1/2
. (A25)

This distribution is approached at the rate given by Eq. (16) of
the main text.

If the magnetic anisotropy axis is aligned with the current
direction, the rate equation approach can be used throughout.
In this case the transition rates �1/2,−1/2 and �−1/2,1/2 for the
intermediate- and high-current regimes read

�±1/2,∓1/2 = J 2I (S + 1/2)2

[
8

3π2
± 1

4

]
. (A26)

In the intermediate-current regime, the steady-state spin
polarization of the molecule is complete. The probability P−S

vanishes ∝(kBT/h̄I )2S−1 if S is half integer, whereas all other
probabilities are exponentially small inh̄D(2S − 1)/kBT . The
switching rate out of the state |−S〉 is, in the intermediate-
current regime,

�switch(I ) = J 2h̄I (S + 1/2)2(32 + 3π2)

12π2h̄

(
8kBT

π2h̄I

)S−1/2

× e2πh̄(S−1/2)[I−D(S+1/2)]/kBT . (A27)

In the high-current regime the order-of-magnitude estimate
(16) for the switching rate also applies to the half-integer spin
case.
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