
Chapter 2

Theoretical fundamentals.

Propagation equations

In this chapter we establish the theoretical basis for the further analytical

and numerical studies.

2.1 The propagation equation

The standard theoretical method in nonlinear and fiber optics is the slowly-

varying envelope approximation. In many cases, the time dependence of the

electric field consists of an envelope which varies on the time scale of the pulse

duration modulated by oscillations on the time scale of the reverse frequency.

Therefore, the rapidly varying part (carrier) of the electric field ~E(~r, t) can

be separated from the slowly varying envelope ~A(~r, t):

~E(~r, t) =
1

2
~A(~r, t) exp[iω0t− k(ω0)z] + c.c. , (2.1)
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where ~r = {x, y, z}, ω0 is the input carrier frequency, k(ω) = n(ω)ω/c the

wavevector and n(ω) the frequency-dependant refractive index. In the SVEA

the slowly varying envelope is assumed to satisfy the condition

∣∣∣∣∣
∂ ~A

∂t

∣∣∣∣∣� ω0

∣∣∣ ~A
∣∣∣ , (2.2)

which is fulfilled if and only if the spectral width of a pulse ∆ω is much

smaller than the carrier frequency ω0 of the pulse: ∆ω � ω0. The latter

condition allows to neglect higher-order terms in the Taylor expansion of

k(ω) around ω0 when determining the influence of dispersive effects:

k(ω) = k(ω0)+k′(ωo)(ω−ω0)+
k′′(ω0)

2
(ω−ω0)

2+
k′′′(ω0)

6
(ω−ω0)

3+. . . (2.3)

Obviously, these approximations are no longer valid for radiation with ultra-

wide spectra such as pulses with a duration approaching one optical cycle.

Pulse propagation without the special prerequisites of the SVEA can

be studied by the numerical solution of Maxwell’s equations by the finite-

difference time-domain method (see Ref. [39, 40, 14] and references therein).

In this method, two shifted space-time grids in the scale of the wavelength/op-

tical period are used for the description of the electric and magnetic fields

of the pulse. The values of the field for the next time step are found by a

special ”leap-frog” algorithm which ensures the second-order accuracy of this

method. However, due to the high-resolution grid needed in both space and

time the large numerical effort in this approach limits the possible propaga-

tion lengths to a few mm. In several papers various improved equations have

been derived that allow the theoretical description beyond the validity of

the standard approximations [41, 42, 43]. In the following we give a system-

atic derivation of a first-order unidirectional propagation equation without
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the use of the SVEA and the Taylor expansion of the linear refraction index.

This equation extends previously derived equations into the non-paraxial and

extremely nonlinear region from which the basic equations of Ref. [43] or [41]

can be derived in a physically transparent manner.

We start from the Maxwell equations in the form

∇× ~E =
∂ ~B

∂t
, ∇× ~H =

∂ ~D

∂t
+ ~Jf ,

∇ · ~D = ρf , ∇ · ~B = 0. (2.4)

Here ~H is the magnetic field, ~Jf and ρf are the current density and the

charge density, ~B and ~D are given by the constitutive relations ~D = ε0
~E +

~P , ~B = µ0
~H+ ~M where ε0 and µ0 are vacuum permittivity and permeability,

respectively, and ~P and ~M are induced electric and magnetic polarizations.

The curl ∇× is applied to the first equation of this set, and we can get the

propagation of pulses in nonlinear media in the form

(
∂2

∂z2
+ ∆⊥

)
~E − 1

c2

∂2

∂t2
~E = µ0

∂2

∂t2
~P , (2.5)

where

∆⊥ = ∂2/∂x2 + ∂2/∂y2. (2.6)

Assumptions necessary for rewriting (2.4) in the form (2.5) are

• the density of free charges and currents is zero

• the medium is non-magnetic

• dielectric permittivity is piecewise constant and scalar

which are satisfied with a high accuracy for propagation in fibers. The lat-

ter assumption means that a fiber can be separated into several regions so
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that within each of them the dielectric permittivity is a constant. On the

boundaries of these regions, the usual boundary conditions are set, i.e. the

continuity of a tangential component of ~E and a normal component of ~D.

Substituting the Fourier-transformed field

~E(z, ω,~k⊥) =

∫ ∞

−∞
exp(iωt− i~k⊥ ~r⊥) ~E(~r, t)dtd~r⊥, (2.7)

where ~r⊥ = {x, y}, ~k⊥ = {kx, ky} into the wave equation (2.5) we obtain

∂2 ~E(z, ω,~k⊥)

∂z2
+ β2

NL(ω) ~E(z, ω,~k⊥) = 0 (2.8)

with

βNL(ω,~k⊥) =

{
ω2

c2
[1 + χ(ω)]− ~k2

⊥ + µ0ω
2BNL(z, ω,~k⊥)

}1/2

. (2.9)

We assume ~PNL|| ~E, which requires that the

• medium be isotropic,

to get

BNL =
PNL(z, ω,~k⊥)

E(z, ω,~k⊥)
. (2.10)

Here we separate the polarization into a linear and a nonlinear part as

~P = ~PL(~r, ω) + ~PNL(~r, ω), (2.11)

where ~PNL(~r, ω) is the Fourier transform of the nonlinear part of the polar-

ization and

~PL(~r, ω) = ε0[n
2(ω)− 1] ~E(~r, ω) (2.12)

its linear part.

In most typical situations the condition µ0ω
2BNL � 2β2

NL is satisfied

with high accuracy, because the contribution of nonlinear polarization is
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much smaller than the field itself for any practical situation in which we can

neglect contribution from ionization as we do here. Therefore, the separation

∂2/∂z2 + β2
NL(ω) = [∂/∂z − iβNL(ω)][∂/∂z + iβNL(ω)] (2.13)

is possible. The electric field can be separated into a forward E+ and a

backward E− propagating part:

~E(z,~k⊥, ω) = ~E+(z,~k⊥, ω) + ~E−(z,~k⊥, ω). (2.14)

Let us consider a pulse propagating in the forward direction along the z-

axis ~E+(z,~k⊥, ω) ∼ exp[ik(ω)z] ~E0(z,~k⊥, ω) and neglect waves propagating

backward. This requires that the refractive index be constant or a smooth,

slowly changing function of the z coordinate. Therefore we have

∂ ~E+

∂z
(z,~k⊥, ω) = iβNL(z,~k⊥, ω) ~E+(z,~k⊥, ω) , (2.15)

when the effect of the backward wave on BNL can be neglected. This equa-

tion is applicable for the description of light propagation, if the following

conditions are satisfied:

• The product of the nonlinear refractive index and intensity is much less

than unity. This is valid for both materials considered here (fused silica

and argon) as well as for almost all other materials for the intensities

below the damage threshold;

• The nonlinear polarization and the electric field have the same direc-

tion;

• The initial condition consists only of the wave propagating in one di-

rection. This requirement is always satisfied after certain propagation
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length, even if the input field contained both forward and backward

waves initially. Each of the waves can be described by Eq.(2.15);

• The dependence of the refractive index on the propagation length, if

present, must be weak.

For the backward wave we find

∂ ~E−

∂z
(z,~k⊥, ω) = −iβNL(z,~k⊥, ω) ~E−(z,~k⊥, ω) . (2.16)

Equation (2.15) represents a more general approach than the standard one

and is even more accurate than previously derived evolution equations with-

out SVEA as presented in [43]. This equation includes in the theoretical

analysis broad bandwidth, sharp temporal features, space-time coupling and

higher-order nonlinear dispersive effects. Note that the SVEA with paraxial

approximation for the transverse momentum fails to describe self-focusing in

dispersive media accurately long before the temporal structure reaches the

time of an optical cycle [44]. This effect is a result of space-time focusing of

short pulses leading to a reduced axially projected group velocity of wide-

angle rays in the angular spectra. Equation (2.15) can be numerically solved

by the second-order split-step Fourier method.

The square root in Eq. (2.9) is expanded as

β(ω,~k⊥) ' k(ω)− k2
⊥

2k(ω)
+

µ0ω
2

2k(ω)
BNL (2.17)

which additionally requires

• paraxial propagation.

However, space-time coupling is still taken into account. To account for
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losses, k(ω) can be made complex: k(ω) = k0(ω) + iα(ω). With the intro-

duction of the moving time coordinates ξ = z, η = t− zng/c with

∂/∂z = ∂/∂ξ − ngc
−1∂/∂η (2.18)

we obtain the following basic equation in Fourier presentation which we de-

note in the following as forward Maxwell equation (FME) [43]:

∂ ~E(~r, ω)

∂ξ
= i

[
k(ω)− ωng

c

]
~E(~r, ω)

+
i

2k(ω)
∆⊥ ~E(~r, ω) +

iµ0ωc

2n(ω)
~PNL(~r, ω). (2.19)

Here ng is a group refractive index ng = n(ω) + ω(dn/dω) calculated at

any frequency inside the spectrum. The choice of ng determines only an

arbitrary time shift. Equation (2.19) is a generalization of the so-called

reduced Maxwell equation [41, 49] which is valid only for a

• refractive index close to unity

• and also with neglection of the back propagating wave.

This equation is obtained from (2.5) by the substitution n(ω)−1 ' [n2(ω)−
1]/2 and back transformation into the time domain:

∂ ~E

∂ξ
= − 1

2ε0c

∂ ~P

∂η
. (2.20)

This equation is a useful tool for examining the nonlinear effects of ultra-

broadband radiation in gaseous media. It was recently applied for the study

of pulse compression and SC generation by the optical Kerr effect [14, 45] or

by high-order stimulated Raman scattering [46, 47] in hollow waveguides. In

Ref. [48] an extended version of this equation was used with inclusion of the
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diffraction term. However, as one would expect, for optically dense media

(n− 1 ∼ 1) solutions of this equation differ from those of the exact Maxwell

equation as can be seen by comparison of FME and the reduced Maxwell

equation in Fig. 2.1(b). It can be seen that results obtained by using FME

are in good agreement with exact results obtained by the FDTD method in

Ref. [14]. This shows that Eq. (2.19) is completely valid for description

of ultrabroadband radiation with good accuracy and reasonable numerical

effort.

Equation (2.19) generalizes the standard approximate evolution equation

for the envelope in nonlinear optics. To show this, we introduce the envelope

~A(ξ, η) as given by Eq. (2.1), choose the same prerequisites (2.2) and expand

β(ω) in the form (2.17) around ω0. After substitution of (2.1) into (2.19) the

propagation equation for the linearly polarized field of a plane wave takes

the form which can be found elsewhere [50]

∂ ~A

∂ξ
+

i

2
β ′′

∂2 ~A

∂η2
− 1

6
β ′′′

∂ ~A

∂η3
= iγ′

(
|A2| ~A +

i

ω0

∂|A|2 ~A

∂η

)
− αA , (2.21)

where α is loss and γ ′ = n2nωε0/2 is the nonlinear coefficient. This equation

can be further simplified if

• higher-order nonlinear and dispersive effects as well as loss can be ne-

glected, which requires still narrower spectrum.

In this case Eq.(2.21) reduces to the nonlinear Schrödinger equation (NSE)

in the form
∂ ~A

∂z
+

i

2
β ′′

∂2 ~A

∂η2
= iγ′

(
|A2| ~A

)
. (2.22)

This equation can be solved analytically by the inverse scattering problem

method.
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Figure 2.1: Pulse spectra calculated by different propagation equations.

Spectra of a 40-TW/cm2, 15-fs sech-shaped pulse after propagating 0.5 mm

of a standard fiber calculated by the full Maxwell equation, obtained in [14]

are shown by the green curves in (a) and (b). For comparison, by red curves

are shown the solutions of FME (b) and reduced Maxwell equations (a).

In contrast to reduced Maxwell equation, FME shows good agreement with

exact calculation. The initial spectrum (scaled) is shown by the blue curves.
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The same procedure can be applied if the nonlinear interaction of waves

with different carrier frequencies is considered, for example, in a degenerate

four-wave mixing (FWM). Pump, signal and idler pulses with central fre-

quencies ωP , ωS, ωI = 2ωP − ωS interact through the Kerr nonlinearity ~PK.

In this case using SVEA the linearly polarized electric field is presented by

E(z, t) = 1/2
∑

j

Aj(z, t) exp[i(kjz − ωjt)] + c.c. (2.23)

(j = S, P, I) and from Eq. (2.19) three propagation equations follow for

AP ,AS, and AI describing the process of FWM:

∂AP

∂z
= AP

(
−α + iγ′P[|AP|2 + 2|AI|2 + 2|AS|2]

)

+ 2i
ωPn2

c
A∗PASAI exp(i∆kz) + iβ2(ωP )

∂2AP

∂η2

∂AS

∂z
= AS

(
−α + iγ′S[|AS|2 + 2|AP|2 + 2|AI|2]

)

+ i
ωSn2

c
A∗I A

2
P exp(−i∆kz) +

(
1

vg,P
− 1

vg,S

)
∂AS

∂η
+ iβ2(ωS)

∂2AS

∂η2

∂AI

∂z
= AI

(
−α + iγ′I[|AI|2 + 2|AS|2 + 2|AP|2]

)

+ i
ωIn2

c
A∗SA

2
P exp(−i∆kz) +

(
1

vg,P
− 1

vg,I

)
∂AI

∂η

+ iβ2(ωI)
∂2AI

∂η2
. (2.24)

Here vg,j = c/ng,j are the group velocities of the corresponding waves, ∆k0 =

β(ωS) + β(ωI)− 2β(ωP ) is the wavevector mismatch. The additional advan-

tage of the evolution equation (2.19) is that all spectral components that can

take part in a given process are included automatically in a single equation.

This is particularly favorable if different processes can affect the propagation.

The cost for this more general approach with a single evolution equation is

the necessarily higher resolution of the temporal grid. The temporal grid
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step dt should be much less than the period of radiation, while in the SVEA

the resolution is in the scale of the envelope. However, in contrast to FDTD

methods, the numerical step dz in space does not need to be much shorter

than the wavelength, and in fact can be several mm. This explains the ad-

vantage of FME over FDTD methods, where dz cannot be made larger than

cdt.

The differencies between the different propagation equations, including

the propagation equation in fibers which will be derived later, are summarized

in the Table 2.1.
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Propagation

equation

Prerequisites Advantages Disadvantages

Wave equa-

tion (2.5)

ε is piecewise

constant

Most general Requires a tremen-

dous numerical effort

Forward

Maxwell

equation

(2.19)

dn/dz � λ,

forward prop-

agation

Can be effectively

solved numerically

FME in fibers

(2.66)

Weak selffo-

cusing

1+1-dimensional Limits maximum

power

Reduced

Maxwell

equation

(2.20)

n(ω)− 1� 1 None in comparison

with FME

Not valid for opti-

cally dense (n − 1 ∼
1) media

Generalized

nonlinear

Schrödinger

equation

(2.21)

Narrow spec-

trum, SVEA

Usual equation with

SVEA

Not applicable for

broad spectra

Nonlinear

Schrödinger

equation

(2.22)

Still narrower

spectrum

Can be solved ana-

lytically

Does not include

higher-order effects

Table 2.1: The comparison of different propagation equations. Note that

requirements for more general equations apply also for less general, e.g. re-

duced Maxwell equation is valid only when the prerequisites of the wave

equation are fulfilled.
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2.1.1 Dispersion and nonlinear polarization

Up to this point, the specific form of the polarization ~P as a function of ~E

as well as the physical considerations determining it, have not been speci-

fied. We start from the consideration of the linear polarization. Under the

influence of the electric field, the dipole momentum is induced in the medium

due to the redistribution of charged particles. The general form for the linear

term in the expression for the polarization can be written as

~PL(t) = ε0

∫ ∞

0

χ̂(τ) ~E(t− τ)dτ. (2.25)

Here we neglect effects of optical activity as well as other non-local effects

(dependence of the polarization on the electric field in adjacent points). The

quantity χ̂(τ) represents a delayed response of a medium to the electric field.

Generally it is a tensor, but since optical fibers are homogeneous, it reduces to

a scalar in our case. The previous convolution expression can be reformulated

more conveniently in the frequency domain:

~PL(ω) = ε0χ(ω)E(ω). (2.26)

For the linear propagation problems, the susceptibility χ is related to the

refractive index n by n2 − 1 = χ. It can be real or complex, with the

imaginary part describing the losses.

The physical origin of the delayed response of the medium can be under-

stood by means of a classical model of electrons moving under an action of

an external field. The binding forces of atoms are described as a potential

ω2
jx

2
j/2, where ωj characterises the j’th group of the electrons which consist

of fj particles per unit volume and ~xj is the displacement for the j’th group.
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The polarization is given by (see, for example, [51])

~P = −e
∑

j

fj ~xj. (2.27)

The equation of electron motion is written as

d2 ~xj
dt2

+ gj
d~xj
dt

+ ω2
j ~xj = −

~Ee

m
, (2.28)

Here e and m are the electron charge and mass, respectively, and the effects

of the magnetic field are neglected. The effects of loss are also introduced

through gj. The solution for the harmonic driving field E0 exp(−iω0t) can

be easily found, which yields

~xj = − e ~E

m[ω2
j − ω2

0 − igjω0]
(2.29)

and substituting into (2.27) results in

χ(ω) =
e2

mε0

∑

j

fj
ω2
j − ω2

0 − igjω0
. (2.30)

Thus the susceptibility is determined as a sum of the contributions from sev-

eral absorption lines. The dampings gj determine the widths, and frequencies

ωj the positions of these lines, respectively. For dense media, the effect of the

induced polarization on the driving field should be taken into account, which

can be done by replacing ~E in the driving field by ~E + ~P/(3ε0) (so-called

Lorentz-Lorentz model). The exact quantum model yields an expression

identical to (2.30), but with the values of fj, ωj and gj calculated from the

wavefunctions of the electronic states. The frequencies ωj are replaced by

the energy level distances (E1 − E2)/h̄, and the square of the corresponding

dipole moments appear in fj. Nevertheless the basic form of the expression

(2.30) remains, and is used for practical calculations of the dispersion. The
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frequency dependence in wide spectral range typically can be described by

two or three so-called Sellmeyer terms, coefficients for which can be found in

tables (e.g. [52]). The frequency dependence of χ(ω) = n2(ω)−1 determines

the group velocity vg(ω) = c/[d(ωn(ω))/dω] as well as the dispersion regime.

In the normal-dispersion regime, higher-frequency components travel slower

than lower-frequency ones (dvg/dω < 0), the opposite occurs in the anoma-

lous dispersion regime (dvg/dω > 0). For example, bulk fused silica has

normal dispersion for the wavelength shorter than 1.27 µm and anomalous

dispersion for longer wavelengths.

The expression (2.25) is only the first term in the expansion of ~P in powers

of ~E, because generally the dependence ~P ( ~E) is not linear. Rather, it can

be represented in the form of series

~PL(t) = ε0

∫ ∞

0

χ̂1(τ) ~E(t− τ)dτ +

ε0

∫∫ ∞

0

χ̂2(τ1, τ2) ~E(t− τ1) ~E(t− τ2)dτ1dτ2 +

ε0

∫∫∫ ∞

0

χ̂3(τ1, τ2, τ3) ~E(t− τ1) ~E(t− τ2) ~E(t− τ3)dτ1dτ2dτ3+, . . .

(2.31)

where χn is the n-th order susceptibility and we completely exclude nonlo-

cal effects. As in the case of linear susceptibility, transformation into the

frequency domain simplifies the expression to

~P (ω) = χ̂1(ω) ~E(ω) + χ̂2(ω1, ω = ωi + ωj) : ~E(ωi) ~E(ωi) +

χ̂3(ω = ωi + ωj + ωk) : ~E(ωi) ~E(ωi) ~E(ωi) + . . . . (2.32)

Here the susceptibility of n-th order is a tensor of n+1’th order, and the : sign

expresses corresponding index summation. The relations in the argument of
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χ underline the fact that the sum of frequencies of the photons created and

destroyed in the nonlinear process must be the same as a consequence of the

energy conservation law.

While a full calculation of the nonlinear susceptibilities is possible only by

a quantum model, the origins of the nonlinearity can be understood through

the model of an anharmonic oscillator. Anharmonicity ajx
3
j/3 is added to

the binding potential of j-th group of atoms, so that equation of motion now

looks like [53]
d2 ~xj
dt2

+ gj
d~xj
dt

+ ω2
j ~xj + ajx

2
j = −

~Ee

m
. (2.33)

To solve it, a perturbative method can be used for not too strong fields. The

solution of unperturbed equation (2.28) as given in Eq.(2.30) is substituted

in the anharmonical term in (2.33).

The resulting equation can readily be solved. For example, for the com-

ponent χ2(ω1 + ω2) one gets

χ2(ω1, ω2) =
∑

j

−2aj(e/m)2

(ω2
j − ω2

2 − iω2gj)(ω2
j − ω2

1 − iω1gj)

× 1

ω2
j − (ω1 + ω2)2 − i(ω1 + ω2)gj

. (2.34)

In fact, second-order nonlinearity is absent in fibers due to the symmetry

χ2 = 0. However third-order susceptibilities can be derived in a similar way.

This simple classical model illustrates the mechanism of nonlinearity,

which is most important in the scope of this work, namely Kerr nonlin-

earity. In the quantum consideration, it results from the distortion of the

electron wavefunctions in the field. There exist several other mechanisms of

nonlinearity, such as Raman effect, molecular reorientation, electrostriction,

heating, and so on. Among them, only a Raman effect has sufficiently small
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response time to play any role in the processes on the femtosecond time scale

considered here. In this effect, incident light is scattered by a molecule in

a certain initial vibrational state. The molecule is excited to a high-energy

electronic state and immediately reemits the photon. However, the final vi-

brational state of the molecule is different from the initial one, therefore the

energy of the photon changes. The stimulated Raman scattering is a third-

order nonlinear process which is responsible for about 1/5 of the nonlinear

response in the silica. It is known that it introduces a shift of the soliton

frequency (see e.g. [54]). However, our numerical simulations show that the

Raman effect does not play a significant role in the processes of SC generation

in PCFs and hollow fibers, therefore it was not included into considerations.

The nonlinear polarization PNL far off the medium resonance for not too

high intensity in a isotropic medium can be treated as a third-order process

and is dominated by the Kerr nonlinearity. Sheik-Bahae et al. [55] have

developed a model for the dispersion of the dominant electronic part of χ3

for semiconductors and wide-gap optical solids. It gives a universal formula

for χ3(ω1, ω2, ω3, ω4) in quite good agreement with measurements. According

to this model for

ωj � ωg =
Eg

h̄
, (2.35)

where j = 1..4 and Eg is the bandgap energy, up to the first correction term

χ3(ω, ω,−ω, ω) has the form

χ3 = χ
(0)
3

(
1 + 2.8

ω2

ω2
g

+ . . .

)
. (2.36)

For fused silica it holds that Eg = 9 eV and therefore the correction terms

do not play a significant role even for the extremely broad spectra considered

here. With this estimation the nonlinear polarization is instantaneous, i.e.
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PNL(z, t) depends only on the E(z, t) as ~PNL(z, t) = ε0χ
(0)
3 E2(z, t) ~E(z, t).

2.1.2 Self-phase modulation

The physical origin of the effect of self-phase modulation is connected with

the distortion of the electronic distribution of the media leading to a refractive

index change by the electric field n = n0 + n2I. It was first observed in

1967 [56] in gases, and later also in solids [57] and optical fibers [58]. The

description of this process, which is presented here following Ref. [50], can

be done simply in the case when the effects of the linear dispersion can be

ignored; this requirement is expressed as LD � LNL, where LNL = 1/(γ′A2
0)

and LD = T 2
0 /β ′′ are characteristic linear and nonlinear lengths, respectively,

and T0 = τ0/1.76 is related to the initial full-width half-maximum (FWHM)

pulse duration τ0. Then the equation (2.21) for the field can be written as

∂U

∂z
=

i

LNL
exp(−2αz)|U |2U (2.37)

where the variable U = A/A0 is the envelope of the field normalized by its

initial value, and α is the field loss. The solution of this equation is [50]

U(z, t) = U(0, t) exp[iφNL(z, t)] (2.38)

with

φNL(z, t) = |U(0, t)|2 zeff
LNL

. (2.39)

Here zeff is given by

zeff =
1

α
[1− exp(−2αz)] (2.40)

and is smaller than z thus indicating that the loss limits the SPM. As a re-

sult, a time-dependent phase φNL is induced which implies a time-depending
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instantaneous frequency shift

δω(t) = −∂φNL
∂t

= −∂|U(0, t)|2
∂t

zeff
LNL

. (2.41)

The chirp is caused by SPM and increases in magnitude with the propagation.

This chirp leads to negative δω on the leading front of the pulse and positive

δω on the trailing edge. Over a large central region, the chirp is almost linear

and positive. Consequently, new frequencies are generated on both sides on

the input frequency. These SPM-induced components broaden the spectrum

over its input width at the input. An estimate of the magnitude of this

broadening can be done by maximizing δω given by the above equation. The

result for U(0, t) = 1/cosh(t/T0) is

δωmax = 0.86
φmax
T0

, (2.42)

where φmax is the maximum value of the phase shift obtained for T = 0,

which is given by

φmax =
zeff
LNL

. (2.43)

The resulting spectra have an oscillatory behavior with the number of oscil-

lation approximately equal to φmax/π. The reason for this behavior is that

the same frequency occurs for two values of t in the expression (2.41) for

the frequency shift. Depending on the phase between these components, the

interference between them can be constructive or destructive, thus creating

the oscillatory behavior.

This consideration is valid only if the group velocity dispersion can be

neglected, expressed by the condition LD >> LNL. In the normal disper-

sion regime, pulse broadening happens faster than in the case when GVD

is absent. This is due to the fact that SPM generates new frequency com-

ponents, which are red-shifted near the leading edge and blue-shifted near
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the trailing edge. Red components move faster than the blue components in

the normal-dispersion regime. Therefore SPM leads to a larger rate of pulse

broadening compared with that expected from GVD alone. The temporal

shape for this case becomes characteristically rectangular-like. The reason

is that any peak in the temporal shape results in the chirp, and newly cre-

ated spectral components are pulled apart by the normal dispersion, thus

leading to smoothing of the initial peak. Quick elongation of the pulse leads

to lowering of the peak intensity and less effective SPM. The ratio of pulse

durations with and without GVD, which is reverse of the ratio of intensities

for unchanged pulse shape, is given by [59]

τ

τ0
=

[
1 +
√

2φmax
z

LD
+

(
1 +

4

3
√

3
φ2
max

)
z2

L2
D

]1/2

. (2.44)

Thus for strong normal GVD the spectral broadening becomes less effective

due to decreasing peak intensity.

The effects of anomalous GVD are different. For N =
√

LD/LNL∼ 1 the

spectral broadening is stopped by GVD. This happens as soon as the pulse

reaches a duration which corresponds to that of a fundamental soliton. For a

fundamental soliton, effects of GVD and SPM exactly compensate each other,

and no further broadening occurs. For still larger values of N , higher-order

solitons can be created, as described in the next subsection.

2.1.3 Optical solitons in fibers

Solitons were first observed as steady waves on a water surface in the 19th

century, and since then many systems such as plasma, sound waves, and

optical waves have been shown to exhibit solitonic behavior. Optical solitons

were first observed in fibers by Mollenauer et al. [60].
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Let us consider the NSE (2.22), which is the propagation equation for

the electromagnetic field in the case when only Kerr–like nonlinearity and

second-order dispersion are included:

∂A

∂z
+

i

2
β ′′

∂2A

∂η2
= iγ′|A2|A. (2.45)

It can be transformed to the normalized form by the variable change (see

[50] for the summary used here)

U =
A

A0
, ξ =

z

Ld
, τ =

η

T0
(2.46)

where A0 and τ0 = 1.76T0 are the initial pulse amplitude and duration,

respectively (here sech-shaped pulses are assumed). Then the equation takes

the form

i
∂U

∂ξ
= sgn(β ′′)

1

2

∂2U

∂τ 2
−N2|U2|U (2.47)

where the parameter N is given by

N2 =
ω0n2nA2

0T
2
0 ε0

2β ′′
=

Ld
LNL

. (2.48)

For β ′′ < 0 and N > 0.5, solitons can form from the initial pulse, with

the number of solitons for the sech-shaped pulse being the integer closest

to N . They are a result of the balance between linear dispersion, which

introduces negative (anomalous) chirp, and self-phase modulation, which in-

troduces positive chirp.

This equation can be solved by the inverse scattering method [61, 50],

which allows to analytically find the solution for (2.47) with any localized

initial condition U(0, τ). The scattering problem associated with Eq. (2.47)

written for u = NU is

∂ν1

∂τ
+ iζν1 = uν2 (2.49)

∂ν2

∂τ
+ iζν2 = uν1 (2.50)
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for the amplitudes ν1,2 of the waves scattered on the potential u(ξ, τ), and ζ

is the eigenvalue. First, initial scattering data in the form of the continuous

spectrum r(ζ) and N poles (bound states) with eigenvalues ζj and residues

cj are obtained from the initial field distribution u(0, τ). Then, the evolution

with ξ of the scattering data r(ζ); ζj; cj is determined by simple algebraic

relations found elsewhere [50, 62]. And finally, the solution u(ξ, τ) is recon-

structed from the scattering data at the point ξ. This last step is especially

simple if r = 0. Then the scattering data in the form of N constant eigen-

values ζj and the residues cj correspond to the N solitons, and the field is

obtained in the form

u(ξ, τ) = −2
N∑

j=1

λ∗jψ
∗
2j (2.51)

where λj =
√

cj exp(iζjτ + iζ2
j ξ) and ψ2j are obtained from the linear set of

equations

ψ1j +
n∑

k=1

λjλ
∗
k

ζj − ζ∗k
ψ∗2k = 0 (2.52)

ψ1j +
n∑

k=1

λjλ
∗
k

ζj − ζ∗k
ψ∗2k = 0. (2.53)

Each term in the sum for u is what is called a constituent soliton, a part

of radiation determined by the corresponding eigenvalue ζj. Generally, N

solitons have different Re(ζj) and therefore different central frequencies and

different velocities. In the collisions, such solitons preserve their form and

amplitude, and experience only a temporal shift. Far from the collision re-

gion, each of the constituent solitons is the simplest form of a soliton, which

is called a fundamental soliton (N = 1); the field in this case is described by

U(ξ, τ) = sech(τ) exp(iξ/2). (2.54)
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In contrast, if all the central frequencies of the constituent solitons are the

same, a bound higher-order soliton is formed, which is characterized by peri-

odic (with period πLD/2) changes of shape during propagation. The simplest

example for a higher-order soliton for N = 2 is given by

U(ξ, τ) =
2[cosh(3τ) + 3 exp(4iξ)cosh(τ)] exp(iξ/2)

cosh(4τ) + 4cosh(2τ) + 3 cos(4ξ)
. (2.55)

The situation is more complicated if other (higher-order) terms are included

in Eq. (2.47) as e.g. in Eq. (2.21). If third-order dispersion (TOD) or the

Raman effect are taken into account, the stability of the higher-order soli-

ton is broken. It splits into constituent fundamental solitons with different

eigenvalues ζ, which have different frequencies and group velocities. For the

propagation of a pulse at the zero-dispersion wavelength, the initial spectrum

of the pulse splits into the peak in the anomalous region, which is fundamen-

tal soliton, and the peak in the normal region, which constitutes dispersive

non-solitonic radiation [63]. The energy contained in both pulses can be ap-

proximately of the same magnitude. If the initial frequency is far from the

zero-dispersion wavelength, the third-order dispersion can be considered as

a perturbation [64]. The perturbed NSE is written in the form

i
∂u

∂ξ
− ∂2u

∂τ 2
− 2u|u|2 = iε

∂3u

∂τ 3
(2.56)

which can always be achieved by the corresponding renormalization of vari-

ables. Here ε = β ′′′/(3τ0β
′′) is a dimensionless parameter which describes the

relative impact of third order dispersion. The fundamental soliton solution

(2.54) is modified by the presence of TOD by a small change in the pulse

parameters and the emission of a low-level background radiation field. In

the first order in ε, only the velocity of the soliton reduces by the amount
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equal ε. All other parameters are unchanged in the first order; to determine

them, it is necessary to use the numerical result of Refs. [63, 65]. It is shown

there that the frequency at which the soliton is stabilized differs from the

input frequency by a value determined from the equation Aεc < 0.04. Here

A and ε are the dimensionless amplitude and TOD-factor taken at the final

soliton frequency. If this condition is not initially fulfilled, the soliton emits

non-solitonic radiation and shifts away from the zero-dispersion point until

the stability is reached. To describe the properties of the non-solitonic radi-

ation, a change of variables is introduced on the basis of the fact that Eq.

(2.56) has several conserving quantities, or invariants (for details see [66, 67]).

The new independent function f(ξ, η) is ”associated” with the perturbation

δu = u− u0 of the fundamental-soliton solution u0, as given by (2.54) [64]:

δu = −∂2f

∂τ 2
+ 2tanh(τ)

∂f

∂τ
− tanh2(τ)f + u2

0f
∗. (2.57)

This new field satisfies the linear evolution equation

i
∂f

∂ξ
=

∂2f

∂τ 2
+ iε

∂f

∂τ
− iε

2

∂u0

∂τ
(2.58)

and its solutions can be found by Fourier-transforming the previous equation

in the form

f(ξ, τ) = − ε

4

∫ ∞

−∞

ωsech
(

1
2
πω
)

D(ω)
{exp[i(ω2−ε(ω3−ω))]−exp(−iξ)} exp(iωτ)dω.

(2.59)

The dispersion relation D(ω) = ω2 + 1− ε(ω3 − ω) = 0 determines the spec-

tral position of the generated radiation. This condition is equivalent to the

phase-matching condition ks = k(ωr), where ks = ∂β/∂ω(ωs)− (1/2)n2Iωs/c

is the wavenumber of the fundamental soliton at frequency ωs and ωr is the

frequency of the non-solitonic radiation. The latter condition is also valid if
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higher (4th and larger) orders of linear dispersion need to be taken into ac-

count, as it is the case for PCF’s. In more detail, this condition is considered

in Chapter 3, as well as a case of higher-order input soliton.

2.2 Propagation equation in fibers

In a fiber, radiation generally can propagate in several transverse modes. In

the absence of birefringence, the energy transfer between the modes can be

caused by nonlinear effects. In a single-mode fiber for a power below the

critical power of selffocusing Pcr = λ2
0/(πn2) the energy transfer to higher

transverse modes is weak [27]. In Chapter 5 the this limitation on the max-

imum intensity will be considered in more detail. The electric field in the

frequency domain can be separated [50] into the form:

E(x, y, z, ω) = F(x, y, ω)Ẽ(z, ω), (2.60)

where the transverse fundamental mode distribution F(x, y, ω) is the solution

of the Helmholtz equation

∆⊥F + k(ω)2F = β(ω)2F (2.61)

for a PCF with the eigenvalue β(ω). We substitute (2.60) into (2.5), take

account of (2.61), and assume that the dependence of ~F on ω is much weaker

than that of Ẽ. In this way we obtain

~F (x, y, ω)
∂2Ẽ(z, ω)

∂z2
+ β2(ω)~F (x, y, ω)Ẽ(z, ω) =

−µ0ω
2F 2(x, y, ω)~F (x, y, ω)PNL(z, ω) (2.62)

where PNL(ξ, η) = χ3ε0Ẽ
3(ξ, η). This equation is multiplied by ~F , the inte-

gration is taken over the cross-section, and the result is divided by the mode
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area

S1(ω) =

∫

S

F 2(x, y, ω)dS. (2.63)

The equation obtained in this way is

∂2Ẽ(z, ω)

∂z2
+
(
β2(ω) + W (ω)µ0ω

2BNL(z, ω)
)
Ẽ(z, ω) = 0, (2.64)

where PNL(z, t) = χ3ε0Ẽ
3(z, t) and

W (ω) =

∫
S

F 4(x, y, ω)dS

S1

(2.65)

is a nonlinear reduction factor. We can now follow the same argumentation

which allowed to obtain (2.19) from (2.5). With the introduction of the

moving time coordinates ξ = z, η = t − zng/c, the longitudinal distribution

Ẽ(ξ, ω) satisfies the equation

∂Ẽ(ξ, ω)

∂ξ
= i

[n(ω)− ng]ω

c
Ẽ(ξ, ω) + iµ0c

ω

2n(ω)
W (ω)PNL(ξ, ω). (2.66)

Here PNL(ξ, η) = χ3ε0Ẽ
3(ξ, η). This equation can be used to model the

propagation of ultrashort light pulses in fibers, and has the same advantages

as the FME equation (2.19). The additional requirement that power be much

less than the power of selffocusing makes it possible to reduce the dimension

of the problem, i.e. the unknown function Ẽ depends on only one spatial

coordinate in (2.66).

2.2.1 Waveguiding model for a step-index fiber

The description of a step-index fiber is done in a standard way found else-

where [68, 69]. Let us consider a step-index fiber, which consists of a core

with radius a and refractive index n0 surrounded by unlimited cladding with

refractive index n1, n0 > n1. The problem is to determine the wavenumber
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β for a mode with frequency ω. The temporal and longitudinal dependence

of the electric and magnetic fields of the mode is given by exp(iωt − iβz).

The Helmholz equation for each of these fields is given by [68, 69]

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ n2

0,1k
2
0 − β2 = 0. (2.67)

Here k0 = ωc, φ is the azimutal coordinate of a cylindrical coordinate system

with the axis directed along the axis of the fiber; the dependence of the field

in this direction is fixed for each mode and is given by exp(ilφ) where l is

the azimuthal order of the mode. This dependence follows from the fact

that any field should be a periodic function of φ. It is useful to introduce

denotations V =
√

n2
0 − n2

1ak0, u = a
√

n2
0k

2
0 − β2, and v = a

√
β2 − n2

1k
2
0,

where k0 = ω/c. The Helmholtz equation then transforms to a differential

equation in the ρ direction

d2

dρ2
+

1

ρ

d

dρ
+

(
a2u2 − l2

ρ2

)
= 0 (2.68)

in the core (ρ < a) and

d2

dρ2
+

1

ρ

d

dρ
+

(
−a2v2 − l2

ρ2

)
= 0 (2.69)

in the cladding (ρ > a). The solutions are given by Bessel functions. If we

account for boundary conditions (all fields should be zero at infinitely large

radius and have finite values at ρ = 0), then the fields inside (outside) the
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core are given by (modified) Bessel functions of first (second) type:

Ez1 = AEJl(uρ/a) cos lφ (2.70)

Hz1 = AHJl(uρ/a) sin lφ (2.71)

Eρ1 = −j
a

u
[βAEJ ′l(uρ/a) + ωµ0

la

uρ
AHJl(uρ/a)] cos lφ (2.72)

Hρ1 = −j
a

u
[βAHJ ′l (uρ/a) + ωε0n

2
0

la

uρ
AEJl(uρ/a)] cos lφ (2.73)

Eφ1 = j
a

u
[
lβa

uρ
AEJl(uρ/a) + ωµ0AHJ ′l (uρ/a)] sin lφ (2.74)

Hφ1 = −j
a

u
[
lβa

uρ
AHJl(uρ/a) + ωn2

0ε0AHJ ′l(uρ/a)] sin lφ (2.75)

in the core and

Ez2 = DEKl(vρ/a) cos lφ (2.76)

Hz2 = DHKl(vρ/a) sin lφ (2.77)

Eρ2 = −j
a

v
[βDEK ′l(vρ/a) + ωµ0

la

vρ
DHKl(vρ/a)] cos lφ (2.78)

Hρ2 = −j
a

v
[βDHK ′l(vρ/a) + ωε0n

2
1

la

vρ
DEKl(vρ/a)] cos lφ (2.79)

Eφ2 = j
a

v
[
lβa

vρ
DEKl(vρ/a) + ωµ0DHK ′l(vρ/a)] sin lφ (2.80)

Hφ2 = −j
a

v
[
lβa

vρ
DHJl(vρ/a) + ωn2

0ε0DHK ′l(vρ/a)] sin lφ (2.81)

in the cladding. The constants A and D have to be chosen so that the fields

satisfy boundary conditions at ρ = a. In the general case of large refractive

index difference, the boundary condition yields a system of homogeneous

linear equations for A and D. Solution of this system exists if the determinant

is equal to zero, which yields the following dispersion relation for the step-

index fibers in the general case:

l2
β2

k2
0

(
1

u2
+

1

v2

)2

= (Y1n
2
0 + X1n

2
1)(Y1 + X1) (2.82)
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where Xl = K ′l(v)/(vKl(v)) and Y1 = J ′m(u)/(uJm(u)). This equation is to

be solved together with u2+v2 = V 2 to obtain unknown variables u and v and

thus β as function of ω. The detailed analysis of this equation, which is out

of the scope of this work, shows that there always exists one solution, which

corresponds to the fundamental mode EH11. For V larger than the threshold

value of approximately 2.405, other modes can be excited. In this work, only

radiation in the fundamental mode is considered. The simplification of the

dispersion equation is possible for weakly guiding fibers with n1 ≈ n0. In

this case for the fundamental mode

uJ1(u)

J0(u)
=

vK1(v)

K0(v)
. (2.83)

However, for all problems considered here the full equation (2.82) was used

because of a large step between the refractive indexes of core and cladding

in the photonic and tapered fibers.

2.2.2 Effective cladding model for PCF’s

For the tapered and photonic fibers, no closed analytical expression for the

transverse mode distribution exists. There are two common approaches to

the calculation of the dispersive properties of the PCF’s: the full vectorial

model [70] and the approximate effective-cladding model. While for photonic

band gap guiding only the full model can give correct results, for the guiding

by the full internal reflection (as in the standard fibers) the effective-cladding

model [2] gives satisfactory results which coincide with the experimental ones.

It was recently shown that in this case the periodic structure of the PCF does

not play a decisive role in the waveguiding properties [71]. The abovemen-

tioned method to describe the effective cladding is used in this work, as
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shown in this subsection. To study pulse propagation in PCF’s besides the

evolution equation presented in Section 2.2 we need a model for the PCF

waveguide contribution to dispersion, which is calculated by the following

two-step procedure illustrated in Fig. 2.2. First, an infinite photonic crystal

Figure 2.2: Effective-cladding model for calculation of dispersion in PCF’s

and elementary cell transformation. The hexagonal cell of the effective

cladding with refractive index neff with a continuity boundary condition

is transformed into circular cell.

fiber without central defect (core) is considered. The fundamental space-

filling mode in such a system can be analyzed in the scalar approximation,

i.e. the transverse dependence of all components of both electric and mag-

netic fields are given by the same function F (ω, x, y). This function satisfies

the Helmholtz equation. Besides that, the fundamental mode has the same

periodical properties as the photonic crystal. We split the photonic crystal

into the elementary hexagonal cells so that the air holes are in the center of

the cells. From the periodicity of F (ω, x, y) and from the condition that the

derivative of F is continuous, it follows that the derivative ∂F/∂~n vanishes at

the cell boundary, where ~n is the vector normal to the boundary. To further

simplify the calculations, we consider a circular cell instead of the hexagonal
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one. The radius of the inner air cylinder in the circular cell equals d = 2r,

the outer radius is defined by the air fraction in the original crystal as

R = Λ

√√
3/(2π). (2.84)

Now we consider the function F (ω, x, y) in the polar coordinates as F (ω, ρ, ϕ).

The condition
∂F

∂~n
= 0 (2.85)

transforms to
∂F

∂ρ

∣∣∣∣
R

= 0, (2.86)

and the continuity conditions on the inner air-silica interface have to be

satisfied as well. In the inner (0 < ρ < r) area, it holds that

β2(ω)− n2
Air(ω)ω2/c2 = κ2(ω) > 0 (2.87)

and therefore F ∼ I0(κ(ω)ρ), where I is the modified Bessel functions of first

type. In the outer area (r < ρ < R) we write

β2(ω)− n2
Silica(ω)ω2/c2 = −γ2(ω) < 0 (2.88)

and F is equal to the linear combination of J0 and Bessel function of second

order N0 with coefficients chosen so that the boundary condition at R is

satisfied:

F (ω, ρ) ∼ J0(γ(ω)ρ)−N0(γ(ω)ρ)
J1(γ(ω)R)

N1(γ(ω)R)
. (2.89)

Substituting F (ω, ρ) into the boundary conditions we obtain the dispersion

equation

κ(ω)
I1(κ(ω)r)

I0(κ(ω)r)

[
J0(γ(ω)r)−N0(γ(ω)r)

J1(γ(ω)R)

N1(γ(ω)R)

]
=

−γ(ω)

[
J1(γ(ω)r)−N1(γ(ω)r)

J1(γ(ω)R)

N1(γ(ω)R)

]
. (2.90)
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This equation is solved together with

κ2(ω) + γ2(ω) = [n2
Silica(ω)− n2

Air(ω)]ω2/c2 (2.91)

to find subsequently κ(ω), β(ω) = (κ2(ω)+n2
Air(ω)ω2/c2)1/2 and the effective

refractive index for the fundamental space-filling mode neff (ω) = β(ω)c/ω.

Then we consider the omitted hole as a core of a step-index fiber with

diameter 2r = 2Λ − d, where Λ is the center-to-center distance between

the holes (pitch) and d is the hole diameter, and the surrounding photonic

crystal as homogeneous cladding with refractive index neff(ω). Note that

for certain PCF’s the air holes are very large and therefore the central core

is supported by the very thin bridges of silica which can be neglected in the

calculation of β(ω) and such a fiber can be described as an isolated strand of

silica surrounded by air. The dispersion of tapered fiber, which is a µm-scale

silica core surrounded by air, can be described in the same way.

2.2.3 Dispersion in hollow fibers

For hollow fibers, the transverse structure and dispersive properties of the

modes can be found analytically, as it was done in Ref. [72] and repro-

duced here. These properties were derived for the conditions λ/a � 1 and
√

ν2 − 1 � λ/a. Here a is the radius of the hollow fiber, ν is the ratio of

the refractive indices of the hollow fiber walls and the gas filling. These re-

quirements are satisfied with high accuracy for the typical values λ = 0.8

µm, a = 100 µm, ν=1.45 (for fused silica cladding), which allows sim-

plification of general equations. The expressions for the fields are derived

from the Helmoltz equation and from the continuity boundary conditions

Eφ(a − 0) = Eφ(a + 0), Ez(a − 0) = Ez(a + 0), Dz(a − 0) = Dz(a + 0) set



CHAPTER 2. THEORETICAL FUNDAMENTALS 53

at ρ = a. There exist three types of modes in such a system (as well as in a

step-index fiber): transverse electric, or TE0m (Ez = 0), transverse magnetic,

or TM0m (Hz = 0), and hybrid EHlm (both electric and magnetic field have

nonzero z component). The index l characterizes the azimuthal dependence

of the mode exp(ilφ), m is the order of the mode. The distribution of fields

in the cross-section plane for the case λ/a� 1 is

Eφ = −
√

µ0

ε0

Hr = J1

(
u0m

ρ

a

)
(2.92)

for TE0m modes,

Er =

√
µ0

ε0
Hφ = J1

(
u0m

ρ

a

)
(2.93)

for TM0m modes, and

Eφ = −
√

µ0

ε0

Hr = Jn−1

(
U0m

ρ

a

)
cos nφ (2.94)

Er =

√
µ0

ε0
Hφ = Jn−1

(
0m

ρ

a

)
sin nφ (2.95)

for hybrid EHlm modes. Here Ulm is the m’th root of the equation Jl−1(Ulm) =

0. The dispersion relation is given by

Jn−1(
√

k2
0 − β2a) = iΛx

√
k2

0 − β2a

k0
Jn(
√

k2
0 − β2a) (2.96)

and for low-order modes, β can be explicitly expressed:

βlm =
ωn(ω)

c

(
1− 1

2γ2
g

)
(2.97)

with the field loss determined by

αlm =
<(Λx)

R2
gR

. (2.98)

Here n(ω) is the refractive index of the fiber filling, and the parameters Rg

and Λx are introduced by

Rg =
2πR

Ulmλ
(2.99)
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and

Λx =





1√
ν2−1

for TE0m modes

ν2√
ν2−1

for TM0m modes

ν2+1
2
√
ν2−1

for EHlm modes

. (2.100)

With propagation, only the mode with lowest loss will remain in the

waveguide. In this case it is the EH11 mode [73], for which the transverse

distribution of intensity is given by J0(a1ρ/a). Here r is the transverse coor-

dinate and a1 is the first zero of the Bessel function J1. The contribution of

the waveguide to the dispersion in this case is given by [73]

β(ω) = k(ω)− 1

2

(
2.405c

ωa

)2 [
ω

c
− i

1 + ν2

a
√

ν2 − 1

]
. (2.101)

The hollow waveguide is not truly a guiding system in the sense that it

possess no lossless modes. Therefore the loss, which is inversely proportional

to a3, is introduced. Our calculations show that the values W = 0.567 and

S1 = 0.269πa2 do not depend on frequency in the case of the hollow fibers.

2.2.4 Nonlinear term for propagation in fibers

This procedure allows us to determine the dispersion of PCF or tapered fibers

as determined by the function β(ω). The dependence of the mode area S1

and frequency can also be determined with this model. A typical case is

presented in Fig. 2.3. Although there exits a slight variation of W in the

infrared, we neglect this effect because dominant part radiation has shorter

wavelength in all spectra considered here. A similar physical picture can be

observed for other fibers considered in this work.

In the literature, for the case of the NSE the definition of envelope which

differs from (2.1) is often used. The envelope A∗(ξ, η) = A(ξ, η)
√

ε0ncS1/2
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Figure 2.3: Nonlinear reduction factor W (solid) and mode area S1 (dotted)

as functions of frequency for PCF with Λ=1.5 µm and d=1.3 µm.

is normalized so that A2
∗ gives the power of the pulse. In this normalization,

the NSE (2.22) reads as

∂ ~A∗
∂z

+
i

2
β ′′

∂2 ~A∗
∂η2

= iγ
(
|A2
∗| ~A∗

)
. (2.102)
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where γ = ω0n2/(cAeff) with

Aeff (ω) =

(∫
S

F 2(x, y, ω)dS
)2

∫
S

F 4(x, y, ω)dS
=

S1(ω)

W (ω)
. (2.103)

The value Aeff is usually called effective mode area. This description gives

an equivalent way to express the nonlinear term, but the quantity S1 is useful

because it relates power and peak intensity.

2.3 Numerical procedure

For the numerical simulation of Eq. (2.66), the split-step Fourier method was

used. The right-hand side of this equation can be separated into linear and

nonlinear parts. We then define operators ĜL(dz) and ĜNL(dz) for linear and

nonlinear dz-steps, each of which consist of a propagating field Ẽ(ξ, ω) over

dz by linear and nonlinear right-hand terms in (2.66), respectively. It can be

shown [50] that using a certain sequence of such operators one can build a

second-order (in dz) method for the simulation of the field propagation. For

a spatial grid with N+1 points this sequence reads as follows:

ĜL(dz/2)[ĜNL(dz)ĜL(dz)]N−1ĜNL(dz)ĜL(dz/2). (2.104)

It is possible to construct fourth- and higher-order methods in this way [74],

which however were not implemented in this work, because they significantly

complicate the program without guaranteeing faster calculations.

Note that linear and nonlinear steps in this method are performed in the

different spaces: in the frequency and time space, respectively. For the linear

step, the corresponding equation is written in the frequency space as

∂Ẽ(ξ, ω)

∂ξ
= i

[n(ω)− 1]ω

c
Ẽ(ξ, ω) (2.105)
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and can be solved exactly:

ĜL(dz) = exp

(
i
[<n(ω)− 1]ωdz

c

)
exp(α(ω)dz)Ẽ(ξ, ω), (2.106)

where α(ω) is the loss. The nonlinear step is expressed by the following

equation in the time domain:

∂Ẽ(ξ, t)

∂ξ
= µ0ε0cχ3

W

2n

∂

∂t
Ẽ3(ξ, t), (2.107)

and we assume W (ω)/n(ω) ∼ const. To improve the accuracy of the method

it is necessary to make the nonlinear step by a method with higher order

than the split-step fourier method [75], therefore in this work a fourth-order

Runge-Kutta method was used for solving Eq.(2.107):

∆E1(t) = C
∂Ẽ3(z, t)

∂t
(2.108)

∆E2(t) = C
∂(Ẽ(z, t) + ∆E1(t)/2)3

∂t
(2.109)

∆E3(t) = C
∂(Ẽ(z, t) + ∆E2(t)/2)3

∂t
(2.110)

∆E4(t) = C
∂(Ẽ(z, t) + ∆E3(t))

3

∂t
(2.111)

Ẽ(z + dz, t) = Ẽ(z, t) +

1

6
[∆E1(t) + 2∆E1(t) + 2∆E1(t) + ∆E1(t)] (2.112)

where C = dzWχ3/(2cn) and ∆E1,2,3,4(t) are the approximations of the

Runge-Kutta method.

The sequence (2.104) implies that the Fourier transform has to be per-

formed between the linear and nonlinear steps. However this does not signif-

icantly increase the calculation time due to the application of a fast Fourier

transform algorithm. A homogeneous rectangular grid was used for the nu-

merical simulations. The time step dt was chosen to be 0.0276 fs to accu-
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rately resolve the carrier oscillations even for the high-frequencies compo-

nents which have a period around 1 fs. The number of time points was

2×105 in most calculations, which yields the time window Tw of 5.52 ps.

The corresponding resolution in the frequency domain is 0.0227 fs−1. The

spatial step dz was chosen around 1 µm. The time differential operator in

(2.112) is implemented by the central second-order difference ∂Ẽ3(z, t)/∂t =

(Ẽ3(z, t + dt)− Ẽ3(z, t− dt))/(2dt). The numerical error introduced by this

algorithm was estimated by repeating the calculations with the halved spa-

tial step; the comparison of the result shows that the error does not exceed

1%.

The initial condition E(0, t) = E0 cos(ω0t)/cosh(1.76t/τFWHM) is taken

at ξ = 0. The question of nonreflecting boundary conditions, which have to

be imposed for t = −Tw/2 and t = +Tw/2, is important in many numeri-

cal methods involving modeling of propagation [76, 77]. Without boundary

conditions, the radiation would reflect from the planes t = ±Tw/2 and thus

create numerical artifacts. In the case considered here, instead of using non-

reflecting boundary conditions for the extreme points in the temporal grid,

the grid was looped to achieve a stable and simple way to account for waves

which move too slowly or too quickly with respect to the main radiation and

go beyond the time window. Such waves will simply appear on the other

side of the domain. Looping is done automatically in frequency-space steps,

and the corresponding modification of the central difference allows looping

also for the nonlinear step. Of course one has to ensure that waves do not

overlap after making the round-trip over the domain. This method has the

additional advantage that it does not require preliminary knowledge of the

velocities of the waves.
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The numerical simulations were performed on a workstations with an

Alpha CPU at 667 MHz. The typical computation time was around 24

hours.


