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1 General introduction 

1.1 The Ras superfamily of GTPases 

The Ras superfamily consists of around 167 small GTPase proteins that share the 

ability to bind and hydrolyse GTP (1). Although similar to the alpha subunit of G 

proteins, Ras superfamily proteins function as monomers. The superfamily can be 

divided into seven main families based on sequence homology and functional similarity: 

the Ras, Rho, Ran, Rab, Arf, Miro and RGK families.  

Ras superfamily GTPases share an overall conserved fold, called the G domain, of 

around 20kDa that is involved in nucleotide binding as well as, in most cases, 

conservation of sequences involved in GTP hydrolysis (2). In addition the majority of 

Ras superfamily proteins undergo specific lipid modifications including C-terminal 

addition of farnesyl, geranylgeranyl and palmitoyl moieties (Ras, Rho and Rab familes) 

or N-terminal myristoylation (Arf family) that help localise these small G proteins to 

cellular membranes. Some Ras superfamily members localise to membranes without 

an apparent lipid modification (e.g. Rit, RhoBTB, Miro, Sar1) while Ran and Rerg are 

neither lipid modified nor localised to membranes. 

A direct consequence of these features is the ability of Ras superfamily proteins to 

cycle between an active GTP-bound, and an inactive GDP-bound state. GTP-binding 

induces a conformational change in the protein, in particular at two regions called the 

switch I and II domains, that highly increases affinity of the GTP-bound protein for its 

downstream effectors, thus enabling downstream signalling. Effectors associate mainly 

through a core effector domain that includes the switch I domain. Hydrolysis of GTP 

terminates signalling (3). 

Members of particular Ras subfamilies share similarities not only in sequence but also 

in their function. For example, Ras family proteins have been typically associated with 

the regulation of cellular proliferation, survival and differentiation, Rho family members 

with the regulation of actin dynamics, Rab and Arf proteins with various aspects of 

vesicle trafficking and the smallest subfamily, Ran, with nuclear transport. These are 

not, however, strict divisions and functions are naturally interconnected. Rho family 

members, for example, also play critical roles in the regulation of cell migration, 

differentiation and vesicle transport not only through their roles in the regulation of 

cytoskeletal dynamics but also through the activation of alternative downstream 

signalling pathways (sections 4-5). 
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1.2 Regulation of the Ras superfamily 

Ras proteins regulate a myriad of core signalling functions such as proliferation and 

differentiation, cytoskeletal dynamics and membrane and vesicular trafficking that are 

essential for cell survival and function. Indeed, there are suprisingly few Ras proteins 

when one considers the vast number of cellular functions regulated by these proteins. 

It is important to note that, although the GTP-bound form is the active form for all Ras 

superfamily proteins, the process of GTP/GDP cycling is in itself critical for effective 

downstream signalling. Cycling enables effector dissociation and exchange and 

presents a bottleneck for activation of the multiple, mostly amplifying, downstream 

signalling cascades. Despite being able to bind GTP/GDP and, for the most part, 

possessing low intrinsic GTPase activity, Ras proteins are dependent on regulatory 

proteins to switch them on, off, or to maintain them in an active/inactive state. The main 

Ras regulators are the guanine-nucleotide exchange factors (GEFs), that promote the 

exchange of GDP for GTP, and the GTPase-activating proteins (GAPs) that stimulate 

the hydrolysis rate of GTP (Fig. 1). Guanine nucleotide dissociation inhibitors (GDIs) 

represent an additional class of regulators for the Rho and Rab subfamily and function 

by sequestering the GDP-bound form in the cytosol. These regulators, in particular the 

GEFs and GAPs, are essential for determining the timing, specificity and subcellular 

localization of Ras protein activation as well as the integration of Ras activity with other 

cellular activities and environmental cues. It has been estimated that around 0.5% of 

human genes encode functional GAPs, 60% of which are specific for Rho or Ras 

proteins (section 4-5) (4-6). 

 

Figure 1: Regulation of the 

activity of Ras superfamily 

GTPases. Ras proteins cycle 

between GTP-bound active and 

GDP-bound inactive states. 

Cycling is regulated by guanine-

nucleotide exchange factors 

(GEFs), GTPase-activating 

proteins (GAPs) and guanine 

nucleotide dissociation inhibitors 

(GDIs). Figure by Rosário 

(unpublished). 
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2 Original work 1: Signalling by TC21, a novel Ras family member 

2.1 Introduction 

2.1.1 The Ras family of GTPases 

The Ras family of GTPases has been further subdivided into Ras, Ral, Rit, Rap, and 

Rheb subfamilies. The founding members of this family were the Ras sarcoma 

oncoproteins H-ras and K-ras. These were initially described in the cancer-causing 

viruses Harvey sarcoma virus and Kirsten sarcoma virus, respectively, and later found 

to be also be mutated in human cancer cells (7-14). Subsequently N-Ras was identified 

as the transforming factor in several human cancer cell lines (15-19). Mutation of these 

three genes is one of the most common events in tumourigenesis, and is thought to 

occur in around 30% of all human tumours.  

Two hot spots for Ras oncogenic mutations have been identified around codons 12 and 

61. Glycine 12 is required for the interaction of Ras proteins with GAPs and mutation of 

this site (such as G12V) render Ras insensitive to inactivation. Q61, on the other hand, 

is involved in stabilizing the transition state for GTP hydrolysis and thus mutation of this 

amino acid inhibits the intrinsic GTPase activity of the Ras protein. These residues are 

conserved in most Ras superfamily members and equivalent mutations result in 

constitutively active proteins.  

Most of the other subsequently indentified Ras family proteins do not show transforming 

potential in the conventional NIH3T3 focus-forming assay with the exception of the R-

Ras subfamily of Ras proteins (original work 1). In addition, a few activating mutations 

have by now also been identified in Rho family members (including in Rac1/2, RhoT 

and Cdc42) (20). De-regulation of the expression of Ras superfamily proteins (including 

Ras, Rho, Rab and Arf family members) in cancer cells is more common. 

2.1.2 Ras signalling pathways 

The ERK1/2 MAP kinase pathway is the best characterised signalling pathway 

downstream of Ras proteins. Activation of Ras enables binding to the cytosolic Raf 

family of serine/threonine kinases, thus promoting the translocation of these kinases to 

the plasma membrane. Additional phosphorylation events here promote full Raf kinase 

activation and thus initiate a kinase cascade involving first the dual specificity protein 

kinases MEK1/2 and subsequently the ERK1/2 mitogen-activated protein (MAP) 

kinases. Activated ERK1/2 can phosphorylate multiple cytosolic effectors, and is also 

able to translocate to the nucleus where it can induce trancriptional changes through 

phosphorylation of nuclear targets such as the Ets-family of transcription factors.  
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Other signalling pathways that have by now been shown to be activated downstream of 

Ras proteins include the phosphatidylinositol-3-kinase (PI3K), p38MAPkinase, atypical 

MAP kinase Erk5, phospholipase C gamma (PLC γ) pathways and, through the 

recruitment of different GEFs, a number of other Ras superfamily proteins such as Rac, 

Ral and Rap (4, 21). 
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2.2 Original work 1: Activation of the Ral and phosphatidylinositol 3' kinase 
signalling pathways by the ras-related protein TC21.  

 

Rosario M, Paterson HF, Marshall CJ. 2001. Mol Cell Biol 21:3750-3762. 

https://doi.org/10.1128/MCB.21.11.3750-3762.2001 

TC21 (also called R-Ras2) is a Ras subfamily protein originally identified from an 

expression cDNA library derived from the human ovarian teratocarcinoma cell line 

A2780 (22). The mutation identified in this study, Q72L, is at the equivalent position to 

the hotspot codon 61 in Ras. TC21 shows most similarity to another Ras family 

member, R-Ras and together with M-Ras/R-Ras3 these genes constitute the R-Ras 

subgroup of Ras proteins. At the time of original work 1, another oncogenic mutation 

in TC21 had just been identified in an uterine leiomyosarcoma (23). Indeed, my 

previous research had demonstrated that TC21, like Ras, has transforming activity in 

vitro and that it can also activate the Raf/ ERK1/2 MAP kinase pathway, albeit more 

weakly than the classical Ras genes (24, 25). Activation of this pathway, however, did 

not appear to account for the transforming activity of this protein (26). We therefore, 

searched for other downstream effectors of TC21 that might mediate these cellular 

functions. Original work 1 is the first study to identify Ral and phosphatidylinositol 

3´kinase (PI3K) as dowstream effectors of TC21. In original work 1 we demonstrated 

that oncogenic (V23) TC21 is a powerful activator of class I PI3K through direct 

association with p110, the catalytic subunit of this kinase. Activation of PI3K 

downstream of TC21 induces the membrane translocation and activation of the 

downstream effector Akt and is necessary for TC21-induced morphological changes in 

NIH 3T3 and PC12 rat pheochromocytoma cells. A yeast two-hybrid screen had 

previously identified RalGDS, a GEF for the Ras family member RalA, as a putative 

interactor of TC21 (27), but the significance of this interaction or the function of the Ral 

pathway itself was unknown. We showed for the first time that TC21 could induce the 

translocation to the plasma membrane and thus activation of the cytosolic RalGEF 

family members, RalGDS and the atypical Rlf , in epithelial cells. Furthermore, we 

identified residues T46 and Y51 in TC21 as essential for association with these RalGEF 

family members and demonstrated that interaction of TC21 with RalGEFs results in the 

constitutive hyperactivation of endogenous RalA in NIH 3T3 cells. We also used 

overexpression of the Ral-GTP binding domain (RalBD) of the Ral effector, RalBP1, as 

a tool to selectively inhibit Ral signalling. Using this tool or a dominant negative mutant 

of Ral, we demonstrated that Ral activation downstream of TC21 is essential for TC21-

induced stimulation of DNA synthesis but is dispensible for the morphological 
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alterations in V23 TC21-transformed fibroblast cell lines as well as in human breast and 

uterine cancer cell lines harboring activating mutations in TC21. Furthermore, DNA 

synthesis in these RalBP1 RalBD-expressing cancer cell lines could be restored by 

expression of constitutively active Ral. This was the first demonstration that Ral 

signalling is involved in human tumour cell growth (section 6.1). 
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3 Original work 2: The SHP2 tyrosine phosphatase 

3.1 Introduction 

3.1.1 Activation of Shp2 and downstream signalling 

The PTPN11 gene encodes a non-receptor tyrosine phosphatase called Shp2 (or 

Syp, SH-PTP2, SH-PTP3, PTP1D or PTP2C) that contains two N-terminal SH2 

domains and a C-terminal phosphatase domain. Originally identified in parallel in 

mammals and in Drosophila (and named, Corkscrew, Csw), Shp2 was shown to 

become activated downstream of a subset of receptor tyrosine kinases and to 

promote the downstream activation of the Ras/ERK MAP kinase pathway (28-32). 

Analysis of the crystal structure of Shp2 and biochemical studies have revealed that 

activation of Shp2 is dependent on the release of an intramolecular autoinhibitory 

phosphotyrosine-independent interaction between the N-terminal SH2 domain and 

the phosphatase domain that maintains the protein in a “closed” inactive state. 

Release of this autoinhibitory interaction occurs upon interaction of the Shp2 SH2 

domains with phosphorylated tyrosine residues on activated receptors or associated 

adaptor proteins. Interaction with the receptor complex thus enables substrate 

access to the catalytic site of Shp2 and also localizes this cytosolic protein to the 

receptor complex and thus to the plasma membrane (33, 34). 

 

Figure 2: Activation of Shp2 

An intramolecular phosphotyrosine-independent interaction between the N-terminal SH2 

domain and residues in the phosphatase domain (PTP) keeps Shp2 in an inactive state. 

Higher affinity phosphotyrosine-based interaction of both SH2 domains with tyrosine-

phosphorylated effector proteins release this inhibitory interaction. Figure by Rosário 

(unpublished), based on (35). 

 

The major pathway activated downstream of Shp2 is the Ras/ ERK1/2 MAP kinase 

pathway. Several mechanisms have been suggested to mediate Ras activation 

downstream of Shp2. These include through the recruitment of the adaptor protein 
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Grb2 (36-41), the dephosphorylation of Ras on inhibitory sites (42), the 

dephosphosphorylation of binding sites for negative regulators of Ras such as 

RasGAP on receptors and associated adaptor proteins (43-45), the 

dephosphorylation of the Ras/ERK negative regulator Sprouty (46) and through the 

activation of Src tyrosine kinase either via direct dephosphorylation and thus 

activation of Src proteins or through dephosphorylation of the Src inhibitor Csk (47). 

Other pathways that have been described to be activated downstream of Shp2 

include the Rho family of GTPases (48-50), ROCKII (51), PI3K (52), NF-kB (53) and 

the Jak/Stat signalling pathway (54). Nuclear and mitochondrial functions for Shp2 

have also been proposed (55-58). 

3.1.2 The role of Shp2 in human disease  

Germline mutations in the human PTPN11 gene have been shown to cause Noonan 

(NS) and LEOPARD (Lentigenes, ECG abnormalities, Ocular hypertelorism, 

Pulmonic valvular stenosis, Abnormalities of genitalia, Retardation of growth, and 

Deafness) syndromes (58-61). These are distinct multisymptomatic syndromes that 

are both associated with intellectual disability, different craniofacial and cardiac 

defects and short stature but also show distinct symptoms such as webbed neck, 

skeletal defects and bleeding in NS but not in LEOPARD syndrome. In addition 

somatic mutations in PTPN11 are associated with tumourigenesis. Indeed, PTPN11 

has been found to be mutated in several haematologic malignancies, most notably 

juvenile myelomonocytic leukemia (JMML) (62). Furthermore PTPN11 mutations 

have also been described in a handful of solid tumours including neuroblastomas, 

lung cancer, breast cancer, pilocytic astrocytoma and medulloblastomas (63-69). 

It is estimated that almost 50% of NS patients, 80% of LEOPARD syndrome and 

35% of JMML patients carry mutations in PTPN11 (58; 70-73). Mutations in NS and 

JMML are generally missense and mostly lie either in the N-terminal SH2 domain or 

in the phosphatase domain. These mutations are thought to interfere with the 

autoinhibitory interaction of the N-terminal SH2 and phosphatase domains and hence 

to result in gain of function (GOF) mutants (74, 75). LEOPARD-associated mutations 

were first thought to be loss-of-function (LOF) mutations but subsequent work has 

suggested that they may also possess GOF activity (76). 

The major signalling event underlying these condition appears to be the 

hyperactivation of the Ras/ERK pathway. Mutations in other players of the Ras/ERK 

pathway such as Ras, the serine kinase Raf, the Ras GEF, SOS1 and in and the Ras 

GAP, NF1 have also been described in NS and JMML patients that lack PTPN11 

mutations (58; 77-80). Indeed, NS and LEOPARD are considered to be 
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RASopathies. Other Shp2-regulated pathways that have been associated with these 

conditions include the JAK/Stat pathway (81) and PI3K/Akt pathways (82-84).  

Additionally, animal models have uncovered critical functions for Shp2 in the 

development of several mammalian organs including the heart, CNS, bone and the 

hematopoietic and immune system (section 4.1.1) (58). 
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3.2 Original work 2: Specific inhibitors of the protein tyrosine phosphatase Shp2 

identified by high-throughput docking. 

 

Hellmuth K, Grosskopf S, Lum CT, Wurtele M, Roder N, von Kries JP, Rosario M, Rademann 

J, Birchmeier W. 2008. Proc Natl Acad Sci U S A 105:7275-7280. 

https://doi.org/10.1073/pnas.0710468105 

 

The association of human disease with the aberrant activation of Shp2 has caused 

great interest in the development of a specific inhibitor to Shp2. However, the 

similarity of the catalytic cleft among tyrosine phosphatases presents a challenge for 

the identification of a specific inhibitor. In original work 2 we used a high-thoughput 

in silico screen to identify a small-molecular-weight compound that is specific for 

Shp2. We used available information on the 3D structure of SH2-autoinhibited Shp2 

and of the phosphatase domain of other tyrosine phosphatases together with 

knowledge of the activation mechanism of Shp2 (Fig. 2), to model the open-

configuration state of the Shp2 phosphatase domain. Using this structure, we carried 

out in silico docking of a library of around 2.7 million small molecular weight 

compounds into this catalytic site. This enabled identification of twenty compounds 

that inhibited Shp2 but not the closely related Shp1 phosphatase in an in vitro 

enzymatic assay. Eight of these also blocked signalling by Hepatocyte Growth Factor 

(HGF) in MDCK cells, which is dependent on Shp2 activity (85, 86). The most 

efficient compound, PHPS1 was further studied and several derivatives of this 

compound were generated and tested for specificity and biological activity. The 

predicted binding mechanism of PHPS1 in Shp2 was also confirmed in vitro using 

mutations in Shp2 and by the substitution of amino acids in the related but non-

interacting tyrosine phosphatase PTP1B to those predicted to be relevant for PHPS1 

binding to Shp2. We then used a panel of different biological assays to demonstrate 

that PHPS1 is capable of specifically inhibiting the biological activity and downstream 

signalling of not only wildtype but also a dominant active JMML-associated mutant of 

Shp2 without affecting other parallel signalling pathways or parallel routes to 

activation of the ERK/MAP kinase pathway. Most importantly, we showed that the 

compound is non-cytotoxic, cell-permeable and can inhibit the growth of a panel of 

human tumour cell lines, including very efficiently a lung carcinoma cell line that 

carries an activating mutation in Shp2.  



 33 

4 Original work 3: NOMA-GAP/ARHGAP33: a novel neuronal regulator 
of Shp2 and of the RhoGTPase Cdc42 

4.1 Introduction 

4.1.1 The function of Shp2 during cerebral development 

Noonan syndrome (NS) is associated with mild cognitive impairment and learning 

disability (58, 87). Mice expressing a NS GOF Shp2 mutant in the forebrain show 

defects in exploratory behaviour and memory specificity associated with strongly 

perturbed activity-induced signalling in hippocampal neurons (82).  

Shp2 activation has been shown to be a necessary step downstream of several 

receptors involved in neuronal differentiation and neocortical development. These 

include the fibrobast growth factor receptors (FGFRs) and the Trk family of 

neurotrophin receptors (58). Mutation of the Shp2 binding sites in FRS2 alpha, an 

adaptor protein that can mediate recruitment and activation of Shp2 downstream of 

both of these receptors (88, 89), disturbs neuronal progenitor division and thus 

development of the neocortex in mice (90). The proliferation of neuronal progenitors 

is also disturbed upon conditional knockout of Shp2 in neural progenitors cells using 

the Nestin-Cre recombinase line, and leads to defective neuronal cell fate 

specification and impaired corticogenesis (section 5) (91). Experiments using 

expression of GOF mutants of Shp2 in the neocortex similarily indicated a positive 

role for Shp2 in inducing the neurogenic cell fate in the neocortex (92). Shp2 also 

has pro-neurogenic functions during retinal development (93). In addition, Shp2 has 

critical roles in the mature brain in synaptic plasticity and memory formation as well 

as in the regulation of energy balance and metabolism (94, 95). The signalling 

mechanisms involved in the function of Shp2 in neuronal cells remain poorly 

understood (original work 3). 

4.1.2 Neurotrophin signalling 

Neurotrophins are important regulators of neuronal differentiation, morphology and 

synaptic maturation during brain development as well as of synaptic transmission 

and plasticity in the mature brain. Indeed, defective neurotrophin signalling has been 

associated with a number of human neurological diseases including neuropsychiatric 

diseases such as Autism Spectrum Disorders (ASD), obsessive-compulsive disorder, 

major depression and Schizophrenia, as well as neurodegenerative conditions such 

as Alzheimers and Parkinsons (96, 97). Downstream activation of the MAPK 

cascade, through multiple redundant mechanisms, is a critical and necessary step for 
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neurotrophin function. Shp2 has been shown to be required for the sustained 

activation of the ERK1/2 MAP kinase pathway downstream of neurotrophins (98).  

Another important signalling pathways activated downstream of neurotrophins are 

the Rho family of actin regulators (original work 3) (21). Indeed, Rho GTPases were 

shown to be critical regulators of the various morphological alterations induced by 

neurotrophins during neuronal differentiation or in response to activity, including axon 

outgrowth and dendritic maturation and dendritic tree and spine maturation (99-102). 

4.1.3 The Rho family of GTPases 

The Ras homologous (Rho) family consists of over 20 members that have been 

divided into 8 subgroups based on amino acid similarity (Fig. 3). The best studied 

members are RhoA, Rac1 and Cdc42. Like other Ras proteins, classical 

RhoGTPases act as small molecular switches by cycling between active GTP-bound 

and inactive GDP-bound states. Specificity in the timing, subcellular location and 

kinetics of signalling is thought to be achieved through the differential action and 

properties of Rho regulators, in particular GEFs and GAPs, respectively encoded by 

the ARHGEF and ARHGAP families of genes, which far outnumber the Rho proteins 

themselves.  

 

Figure 3: Phlyogenetic tree of the mammalian RhoGTPases 

The names of the Rho subfamilies are shown next to the grouped members. RhoGTPases 

with known expression in the developing cerebral cortex are underlined (103). Figure by 

Rosário (unpublished), based on (104). 
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RhoGTPases are best known for their ability to direct actin dynamics and thereby 

regulate the cytoskeletal structure. Activation of RhoA is associated with the 

assembly of contractile actin:myosin filaments while Rac1 and Cdc42 both promote 

peripheral actin polymerization and respectively induce the formation of lamellipodia 

and filopodia. Critical for these functions is the activation of two actin polymerization 

factors: the Arp2/3 complex downstream of Rac and Cdc42 and the Formins 

downstream of Rho (105). 

In addition, RhoGTPases regulate several signalling cascades that result in changes 

in gene expression, enzymatic activity and the regulation of microtubule dynamics. 

RhoGTPases are thereby essential regulators of various essential cellular functions 

such as cell proliferation, differentiation, survival, morphology, polarity and movement 

(105, 106). Unsurprisingly, germ line deletion of Rac1 or Cdc42 leads to very early 

embryonic lethality associated with severe morphological defects and cell death 

(107). A large number of tissue-specific deletions in different Rho proteins have since 

been generated that underscore the critical importance of these GTPases for the 

development and function of most tissues analysed (section 5.1.3) (108). 
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4.2  Original work 3: NOMA-GAP/ARHGAP33: The neurite outgrowth 

multiadaptor RhoGAP, NOMA-GAP, regulates neurite extension through SHP2 

and Cdc42. 

 

Rosario M, Franke R, Bednarski C, Birchmeier W. 2007. J Cell Biol 178:503-516. 

https://doi.org/10.1083/jcb.200609146 

 

Original work 3 describes the first identification and characterisation of a novel 

neuron-specific RhoGAP and multiadaptor protein, NOMA-GAP encoded by the 

ARHGAP33 gene (Fig. 4; original works 4 and 5). We identified and cloned NOMA-

GAP through two different routes: by screening expression profile data of E12-E14 

mouse spinal cords and DRGs for sequences predicted to encode GAPs or GEFs for 

Rho family GTPases and by cross-referencing this data to a modified yeast two-

hybrid screen in a human brain cDNA library for novel protein interactors of Shp2. 

Original work 3 also describes the first full-length sequence of PX-RICS encoded by 

the ARHGAP32 gene (other names used for partial sequences, include, RICS, GC-

GAP or GRIT) (109-111). Both NOMA-GAP/ARHGAP33 and PX-RICS/ARHGAP32 

possess an N-terminal Phox (PX)-like domain, a src-homology domain 3 (SH3), a 

RhoGAP domain specific for Cdc42 and a large divergent tyrosine and serine-rich C-

terminus. Given the homology between these proteins in the N-terminal domain-

containing half, we proposed that PX-RICS/ARHGAP32 and NOMA-

GAP/ARHGAP33 form a subfamily of Rho GAPs. This is now accepted (112).  

NOMA-GAP expression during development is restricted to neuronal tissue. Using 

siRNA to downregulate NOMA-GAP expression in the neuronal precursor PC12 

phaechromocytoma cell line and through overexpression of NOMA-GAP in the 

developing chick spinal cord, we showed that NOMA-GAP is essential for NGF-

induced neuronal differentiation and, when overexpressed, is sufficient to induce 

neuronal differentiation in different systems. Furthermore, we showed that NOMA-

GAP directly associates with the NGF receptor, TrkA, and is a constitutive 

component of this receptor complex. Neurotrophin activation leads to the 

phosphorylation of NOMA-GAP/ARHGAP33 on multiple tyrosine residues, two of 

which act as binding and thus activation sites for Shp2 (Fig. 2 and 4). 

Phosphorylation of NOMA-GAP/ARHGAP33 also enables the recruitment of other 

downstream signalling molecules such as the small adaptor proteins and MAP 

kinase activators, Shc and Grb2. Using point mutations in the binding sites for these 
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different downstream effectors, we demonstrated that Shp2-binding is essential for 

NOMA-GAP-induced neuronal differentiation. Moreover, we showed that activation of 

Shp2 downstream of NOMA-GAP and TrkA leads to the sustained activation of the 

atypical MAP kinase, ERK5. In addition, we demonstrated that NOMA-

GAP/ARHGAP33 possesses GAP activity against the Rho family member, Cdc42, 

and is involved in restricting Cdc42 activation and downstream signalling following 

NGF stimulation. Finally, we showed that the GAP activity of NOMA-GAP is also 

necessary for NGF-stimulated neurite outgrowth (Fig 4; original work 3). 

 

 

 

Figure 4: Signalling by NOMA-GAP downstream of the neurotrophin receptor, TrkA.  

NOMA-GAP is constitutively associated with the neurotrophin receptor TrkA and becomes 

heavily phosphorylated following receptor activation. This enables recruitment of multiple 

downstream signalling effectors including Shp2, Grb2 and Shc. Both the Shp2 binding site 

and RhoGAP activity are essential for NOMA-GAP and NGF-induced of neurite outgrowth. 

Figure by Rosário (unpublished). 
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5 Original works 4 and 5: the role of NOMA-GAP/ARHGAP33 and the 
RhoGTPase Cdc42 in the development of the cerebral neocortex.  

5.1 Introduction:  

5.1.1 Development of the cerebral neocortex 

The human neocortex is a complex six-layered structure responsible for directing 

higher order brain functions including cognition, advanced motor functions, language, 

social interactions and sensory perception. These functions depend on the correct 

development of two main populations of neurons, the inhibitory GABAergic 

interneurons that are involved in local circuitry and the more abundant excitatory 

projection or pyramidal neurons that extend axons to more distant intracortical, 

subcortical and subcerebral targets (113, 114). Interneurons are born laterally in the 

medial and caudal ganglionic eminences and must migrate tangentially to reach the 

cortex. The pyramidal neurons that occupy the different cortical layers possess 

distinct molecular characteristics, functions and connectivity. They are however, all 

generated by tightly-timed, sequential divisions of progenitor cells found in the 

ventricular and subventricular zones (VZ/SVZ) that overlie the lateral ventricles of the 

dorsal telencephalon (115). This process occurs in an inside-out manner so that 

earlier born neurons occupy the deepest cortical layers while later born neurons must 

undergo radial migration past these earlier born neurons to settle in more superficial 

layers. Newly-born neurons have been described to go through four steps during this 

migratory process: first the acquistion of a bipolar morphology and movement to the 

SVZ, secondly an approximately 24h pause in migration and acquisition of a dynamic 

multipolar morphology, thirdly the extension of a leading process and cellular 

movement towards the ventricle and finally reaquisition of bipolar morphology, 

reversal of polarity and resumption of migration towards the cortical plate (116). 

Migration into the cortical plate occurs along the parallel radial fibers that serve as 

the attachment of radial glia, a progenitor cell type, to the pial surface (Fig. 5) (114). 

Axon extension and determination likely occurs upon cellular contact with the 

ventricle, before start of the migratory stage, and continues during migration (116). 

Formation of the dendritic tree, the highly branched structure that acts as the site of 

information input to the neuron, is suppressed during these early stages and during 

migration and only starts after the neuron has reached its correct position in the 

cortical plate. The mechanism of suppression of dendritic development during 

neuronal differentiation in the neocortex was first addressed in original work 4 

(section 5.2).  
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Upon detachment from the radial fibres, the migratory leading process of the neuron 

extends, contacts the pia and branches to form the apical dendrite. At the same time 

basal dendrites extend and branch from the base of the neuronal soma. The 

branched dendritic tree subsequently undergoes further maturation and dendritic 

spines, the sites of synaptic contact, form along the dendrites. This enables activity-

dependent remodelling of the dendritic tree leading to pruning of some dendrites and 

the strengthening of others (117). Thus, unlike axon determination and outgrowth, 

dendritic tree branching and maturation occurs mainly in the postnatal period and is 

only completed upon adulthood. During adulthood the dendritic tree is mostly stable. 

Dendritic spines, on the other hand, can be dynamically remodelled throughout the 

life of the neuron (118).  

 

Figure 5: Neuronal differentiation during mammalian neocortical development 

In the mammalian neocortex, neurons (green) arise from the asymmetric division of 

progenitor cells (grey) in the ventricular and subventricular zones (VZ/SVZ). The neuron must 

undergo dramatic morphological changes until it has reached its final laminar position in the 

neocortex, differentiated fully and established synaptic contact. Dendritic tree and axon 

morphology are relatively stable in the mature neuron. Dendritic spines, however, are 

continuously remodelled in response to activity and environmental cues in the mature neuron 

requiring dynamic regulation of the cytoskeleton throughout the life of the neuron. Figure by 

Rosário (unpublished). 
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5.1.2 Studying the role of RhoGTPases 

Many of the cellular functions of RhoGTPases have been investigated using 

dominant negative and constitutively active mutants of these GTPases (original 

work 3). Constitutively active mutants contain mutations in sites originally identified 

as hotspot oncogenic mutations in Ras proteins (section 2) and possess a slower 

rate of GTP hydrolysis together with a faster intrinsic GTP/GDP exchange. Dominant 

negative mutants such as S17N, were generated based on equivalent mutations in 

Ras proteins and function by sequestering upstream GEFs, thus preventing 

activation of endogenous Rho proteins (119-122). Given that many GEFs can act on 

multiple Rho proteins, these mutants can affect the activation of multiple Rho 

proteins. Bacterial C3-like ADP-ribosyltransferases that preferentially modify and 

inhibit Rho A, B and C have also been used to examine the function of RhoGTPases 

(123).  

More recently, genetical engineering of mice and the generation of tissue-specific 

deletions of genes encoding Rho proteins and their regulators, has provided an 

alternative and powerful tool for the analysis of the role of these proteins and their 

regulators in normal physiology and during embryonic development (Table 1; 

original work 4). An additional technique that has enabled in vivo analysis of the 

function of RhoGTPases and their regulators is in utero electroporation. Here DNA 

constructs, for example overexpression or downregulation constructs, are injected 

into the lateral ventricles of mouse embryos in utero and are taken up by the 

neuronal progenitor cells lining the ventricle walls following a short electrical pulse 

applied across the developing neocortex. The embryos are allowed to develop 

normally in utero so that the constructs are passed onto all the neurons born from 

these modified progenitors after the time of electroporation (original works 4 and 5) 

(124). 

5.1.3 RhoGTPases and their GAPs in neuronal development and disease 

Neuronal differentiation involves dramatic morphological changes (Fig. 5) which are 

dependent on precisely controlled and dynamic alterations to the cellular 

cytoskeleton. In vitro studies have shown that RhoGTPases play central roles in 

most neuronal functions including during early neuronal differentiation steps such as 

neuritogenesis and the acquisition of polarity, as well as during axon formation and 

guidance, during the development and maturation of the dendritic tree and during 

synaptic transmission (section 4) (125). Furthermore, in vivo studies using Cre-

mediated deletion of floxed Cdc42, Rac1 or RhoA alleles in the mouse brain have 
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emphasized the critical importance of these proteins for neuronal development and 

function (Table 1).  

 

 

Table 1: Summary of the phenotypes observed upon neuronal-specific deletion of the 

RhoGTPases RhoA, Rac1 or Cdc42.  

Several cre lines have been used to study the role of RhoGTPases during cerebral 

development. The Foxg1-Cre line is active in early forebrain cells (136), the Emx1-cre in the 

dorsal telencephalon (137) and the Nestin-cre in CNS progenitor cells including radial glia. 

Table by Rosário (unpublished), based on (108).  

Rac1 

Mouse Cre Line Phenotype 

Foxg1-Cre  

 

Embyonic lethal (late), microcephaly, defects in all commissures and 

projections, cortical laminar disorganisation including cobblestone 

lisencephaly associated with defects in radial glial attachment, survival and 

differentiation (126-128). 

Emx1-Cre  Absence of the corpus callosum and anterior commissure (129).  

Nestin-Cre  Early postnatal lethal, hydrocephalus and cerebellar defects (130). 

Cdc42 

Mouse Cre Line Phenotype 

Foxg1-Cre  

 

Progenitor cells in the neuroepithelium show defects in cell polarity and 

adhesion that may underly the observed holoprosencephaly and thicker 

neuroepithelium (131).  

Emx1-Cre  

 

Neuronal progenitor cells show defects in cell polarity and adherens 

junctions. Increased cortical thickness associated with premature 

neurogenesis and increased number of intermediate progenitors (132). 

Nestin-Cre  Lethal at birth. Loss of axonal tracks and defective growth cones (133). 

RhoA 

Mouse Cre Line Phenotype 

Foxg1-Cre  

 

Enlarged forebrain, exencephaly-like protrusions. Proliferation and cell 

polarity defects (134). 

Emx1-Cre  

 

Megalencephaly associated with increased proliferation, subcortical band 

heterotopia and cobblestone lisencephally associated with defective radial 

glial fibres (135). 



 56 

While mutation of these critical RhoGTPases has not been reported in human 

neurological disease, mutations of genes encoding GEFs and GAPs for 

RhoGTPases have been increasingly identified in association with human 

neurological conditions in particular with intellectual disability and neuropsychiatric 

conditions (138). These include the Rho GAPs oligophrenin-1/ARHGAP41(139) and 

MEGAP/srGAP3/ARHGAP14 (140) as well as the Rho GEFs ARHGEF6 (141) and 

FGD1 (142) all of which have been linked to intellectual disability in humans. Many 

more RhoGTPase regulators have been identified in numerous screens for human 

neurodevelopmental disease-associated single nucleotide polymorphisms (SNPs) 

and copy-number variations (CNVs), but remain further uncharacterised. 

GEFs and GAPs are generally large proteins containing multiple additional protein 

and lipid domains that enable the integration of RhoGTPase regulation with other 

signalling cascades. Of the 70 mammalian Rho GAPs identified so far, we have 

estimated that 50 are expressed in the brain, reflecting the importance of tight 

regulation of RhoGTPases in neuronal cells. Their association with neurological 

disease has heightenened interest in these signalling molecules and the function of 

some Rho GAPs has been analysed in vitro or in vivo using mouse models (original 

work 4 and 5) (103). The emerging picture is that Rho GAPs are critical regulators of 

in vivo neuronal differentiation which direct distinct cellular events or cell types during 

the formation of the brain. 
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5.2 Original work 4: Neocortical dendritic complexity is controlled during 

development by NOMA-GAP-dependent inhibition of Cdc42 and activation of 

cofilin. 

 

Rosario M, Schuster S, Juttner R, Parthasarathy S, Tarabykin V, Birchmeier W. 2012. Genes 

& Dev 26:1743-1757. 

https://doi.org/10.1101/gad.191593.112 

 

In original work 4 we addressed the in vivo function of NOMA-GAP in the mouse 

during development. We inserted the LacZ gene into the ARHGAP33 locus, thus 

disrupting expression of NOMA-GAP. Beta-galactosidase reporter activity in these 

mice is therefore under the control of the endogenous NOMA-GAP promoter. Similar 

to what we observed using in situ hybridisation, beta-galactosidase activity indicates 

that NOMA-GAP is principally expressed in neuronal tissue. In the neocortex, 

NOMA-GAP expression is very strong in all postmitotic layers from around E14.5 but 

absent in the proliferative VZ and SVZ. 

NOMA-GAP-deficient mice are born at the expected Mendelian ratio and are 

indistinguishable from littermate wildtype mice in terms of their size and outward 

appearance. MRI scans showed however, that NOMA-GAP-deficient mice have a 

reduced brain volume associated predominantly with a reduced cortical thickness. 

Overall brain anatomy appears unaltered. Cortical thinning becomes apparent in the 

first postnatal week but there are no changes in total cell number or in the rates of 

cell death or proliferation in the neocortex. The fate specification, migration and final 

laminar position of the different cortical neurons is also unaltered. Original work 4 

demonstrates however, that dendritic arborization, particularly that of upper layer 

neurons, is strongly disturbed in NOMA-GAP-deficient mice and neurons develop 

only very simple, poorly ramified dendritic trees. The number of primary dendrites, 

that is those emerging directly from the soma, is not altered. This indicates that the 

defect is specific to the acquisition of branching complexity. In upper layer neocortical 

neurons, dendritic branching occurs primarily during the first postnatal week in mice, 

after migration of these neurons to their correct laminar position is complete (section 

5.1.1). This process is associated with a decrease in cellular density and a 

corresponding increase in cortical volume. Loss of NOMA-GAP interferes with 

dendritic arborization and thus postnatal cortical volume expansion does not occur 

normally. Original work 4 further shows that NOMA-GAP is a major negative 

regulator of Cdc42 in the developing cortex. Loss of NOMA-GAP is associated with 
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hyperactivation of the Cdc42 and the downstream PAK1/2 signalling pathway in the 

developing neocortex. Indeed, we could restore dendritic branching in NOMA-GAP-

deficient primary neurons in culture by expression of a dominant negative mutant of 

Cdc42 or by re-expression of full-length, but not RhoGAP-defective, NOMA-GAP.  

In original work 4 we also used the technique of in utero electroporation first 

described by Saito et al (143) to selectively modify upper layer neurons in vivo in the 

developing mouse neocortex. Using this technique we showed that hyperactivation of 

Cdc42 in postmitotic neurons, is sufficient to disturb dendritic branching during 

neocortical development.  

To address the molecular mechanism by which Cdc42 activity inhibits dendritic 

arborization, we used an immunoprecipitation (IP)-mass spectrophotometric 

approach to identify changes in phosphorylated proteins in the cortex of NOMA-GAP-

deficient embryos. Through this approach we found that loss of NOMA-GAP is 

associated with increased phosphorylation of the actin polymerization regulator 

cofilin. Phosphorylation of cofilin on serine 3 has been previously shown to be 

catalysed by the kinases LIMK1/2 which can themselves be activated by the Cdc42 

effectors PAK kinases (144-146). PAK1/2 and LIMK1/2 activities are both elevated in 

the developing cortex of NOMA-GAP-deficient mice.  

In order to demonstrate that hyperactivation of Cdc42 is responsible for the 

hyperactivation of PAK/LIMK and the inactivation of cofilin, we used genetic crosses 

between NOMA-GAP-deficient mice, mice carrying a floxed Cdc42 allele (147) and 

mice expressing cre recombinase from the Nex1 cortical postmitotic promoter (148) 

to lower the levels of Cdc42 protein in NOMA-GAP-deficient neurons in vivo (N-cdc-

cre line). Heterozygous deletion of Cdc42 in these mice, restores PAK1/2 and 

LIMK1/2 activity levels as well as cofilin serine 3 phosphorylation levels to those 

observed in wildtype mice. This indicates that hyperactivation of Cdc42 upon loss of 

NOMA-GAP is responsible for the downstream elevated activation of PAK1/2 and 

LIMK1/2 and hyperphosphorylation of cofilin (Fig. 6). Phosphorylation of cofilin on 

serine 3 inhibits the ability of this protein to interact with G or F-actin, thus 

inactivating it (149). 

Heterozygous deletion of Cdc42 in NOMA-GAP deficient mice through this approach 

also partially restored the complexity of the dendritic tree of neocortical neurons in 

vivo.  
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Figure 6: Cdc42-regulated signalling downstream of NOMA-GAP in the developing 

neocortex. Activation of Cdc42 (conversion to the GTP bound form) initiates a kinase 

cascade involving the activation of the kinases PAK1/2 and LIMK that results in the 

phosphorylation on serine 3 and consequent inactivation of cofilin. NOMA-GAP counteracts 

this pathway by direct inactivation of Cdc42. Figure by Rosário (unpublished). 

 

Finally, we used in utero electroporation of an active mutant of cofilin (S3A) into the 

developing neocortex of NOMA-GAP-deficient mice to address the role of cofilin 

downstream of NOMA-GAP. In vivo expression of S3A cofilin restored the complexity 

of the neuronal dendritic tree in NOMA-GAP-deficient animals, indicating that positive 

regulation of cofilin downstream of NOMA-GAP is essential for the development of 

this important neuronal structure. 

Original work 4 was the first study to establish the role of Cdc42 and downstream 

signalling in the suppression of dendritic branching during the early migratory stage 

of neuronal differentiation and to provide a mechanism for how this suppression is 

relieved upon completion of migration (section 6.3.2).  
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5.3 Original work 5: NOMA-GAP/ARHGAP33 regulates synapse development and 

autistic-like behavior in the mouse. 

 

Schuster S, Rivalan M, Strauss U, Stoenica L, Trimbuch T, Rademacher N, Parthasarathy S, 

Lajko D, Rosenmund C, Shoichet SA, Winter Y, Tarabykin V, Rosario M. 2015. Mol 

Psychiatry 20:1120-1131. 

https://doi.org/10.1038/mp.2015.42 

 

Original work 5 addresses the role of NOMA-GAP and Cdc42 signalling during the 

formation of dendritic spines and the establishment of connectivity in the mouse 

neocortex as well as the consequences of loss of NOMA-GAP/ARHGAP33 for 

mouse behaviour.  

NOMA-GAP is found in small vesicles along the dendritic shaft and in large 

accumulations at the heads of spines where it colocalizes with postsynaptic proteins 

suggesting that it may have a function in the development and/or function of the 

dendritic spine. Indeed, orginal work 5 shows that loss of NOMA-GAP in the mouse 

is associated with neocortical neurons that possess dendritic spines with longer 

necks, an indication of immaturity. These neurons also form fewer synapses in 

culture. In line with these observations, we observed that the electrophysiological 

properties of these neurons in acute slices are strongly altered. Interestingly, we 

could restore dendritic spine morphology in vivo by re-expression of full length 

NOMA-GAP by in utero electroporation in the developing mouse neocortex, 

indicating that this is a cell intrinsic defect. Surprisingly however, expression of a 

mutant of NOMA-GAP that lacks the RhoGAP domain in vivo also restored spine 

morphology suggesting that the RhoGAP activity of NOMA-GAP is dispensible for 

the regulation of spine development. We confirmed this by analysing the N-cdc-cre 

mouse line where one copy of the Cdc42 is postmitotically deleted in neocortical 

neurons deficient in NOMA-GAP. Lowering the levels of Cdc42 expression through 

this approach however, did not improve spine morphology or synaptic transmission, 

although the same manipulation is sufficient to restore dendritic branching in these 

mice (original work 4).  

These results suggest that NOMA-GAP exerts its effects on spine morphology 

through a pathway other than Cdc42. Original work 5 shows that NOMA-GAP also 

directly interacts with several members of the MAGUK family of postsynaptic scaffold 

proteins, including PSD-95. Furthermore, we demonstrated that correct subcellular 

localization and phosphorylation of PSD-95 is dependent on the expression of 
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NOMA-GAP. Loss of NOMA-GAP is associated with the hyperphosphorylation of 

PSD-95 on the regulatory serine 295, and relocation of PSD-95 away from the spine 

head and into the dendritic shaft. Interestingly, association with PSD-95 appears to 

negatively regulate the Cdc42 GAP activity of NOMA-GAP. 

Surface expression of the AMPA receptor subunit GluR1 is also dependent on 

expression of NOMA-GAP as shown both by immunofluorescent and surface 

biotinylation studies. The AMPA receptor is an ionotropic transmembrane 

heterotetrameric glutamate receptor that is responsible for most of the fast excitatory 

synaptic transmission in the CNS. Its localization and retention at the dendritic spine 

is indirectly dependent on PSD95 (sections 6.3.3-6.3.4) (150-152). 

Original work 5 also addressed the consequences of loss of NOMA-GAP for animal 

behaviour. Following SHIRPA protocols we first carried out a general 

characterisation of animal health and well-being and then addressed general animal 

behaviour as well as sensory function in a battery of different tests. NOMA-GAP-

deficient mice are indistinguishable from wildtype littermates in terms of their general 

health, sensory perception and gross overall behaviour. However, original work 5 

demonstrates that male NOMA-GAP-deficient mice have strong defects in social 

interaction and recognition. Specifically, male NOMA-GAP-deficient mice spend less 

time interacting with a new mouse, fail to show a preference for spending time with 

another mouse as opposed to an object and fail to distinguish between a familiar and 

an unfamiliar mouse. These alterations in social behaviour were not restored by 

genetically lowering the levels of Cdc42 (N-cdc-cre line).  

Interestingly, we did not see a significant change in the social behaviour of female 

NOMA-GAP-deficient mice. However, NOMA-GAP-deficient, particularly the female, 

mice, showed signs of increased anxiety in a number of the tests undertaken. This 

included increased number of freezing and grooming bouts in a novel environment, 

the building of more complex nests and faster burrowing of foreign objects.  

Increased anxiety and altered social behaviour are characteristics of neuropsychiatric 

disorders such as Autism spectrum disorders and Schizophrenia (section 6.3.5).
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6 Discussion 

6.1 Signalling by the Ras-related protein TC21 

At the time of original work 1, TC21 was a relatively new Ras subfamily protein, that 

exibited transforming potential but that had not been further characterised. Since, 

TC21 has been found to be mutated at the hotspot codons 23/24 and 70/72 

(equivalent to positions 12 and 61 respectively in Ras) in only a small number of 

tumours (153). De-regulation of TC21 expression is much more common and has 

been reported in several human carcinomas including of the oral cavity, esophagus, 

stomach, skin and breast, and in lymphomas and a wide range of CNS tumours 

including glioblastomas, astrocytomas and oligodendrogliomas (153-157). Indeed 

overexpression of TC21 in pre-malignant hyperplasias of the brain has lead to the 

suggestion that this is a key step in triggering transformation in this organ (156).  

Activation of PI3K by TC21, as first identified in original work 1, has since been 

shown to be a critical step for tumourigenesis (158-160). Indeed, in the mammary 

gland, whose normal development is dependent on TC21 activity, TC21 function and 

the downstream activation of PI3K is necessary for both primary tumorigenesis and 

metastasis (161, 162).  

Original work 1 also demonstrated for the first time that TC21 is a powerful activator 

of at the time relatively unknown, Ral pathway and thereby demonstrated a new 

mechanism for crosstalk between different Ras family members. Furthermore, 

original work 1 provided the first demonstration that this pathway was necessary for 

the proliferation of human tumours. Indeed, we showed that activation of the Ral 

pathway although necessary is, by itself, insufficient for tumourigenesis. Subsequent 

work has confirmed these initial observations (163) and established the Ral pathway 

as a critical but not sufficient player in tumourigenesis, in particular downstream of 

Ras signalling. Recently, multiple efforts to selectively target this pathway in human 

cancers have been initiated (164, 165).  
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6.2 Rational design of Shp2 inhibitors 

Hyperactivation of the Ras/ERK MAP kinase pathway has been estimated to be 

involved in the malignant transformation of more than 90% of human cancers. 

Considerable effort has therefore been directed at designing specific inhibitors to 

different components of this cascade (166). In original work 2 we identified and 

characterised a new inhibitor (PHPS1) of Shp2, a tyrosine phosphatase that is 

necessary for the prolonged activation of this pathway. PHPS1 was the first inhibitor 

that could distinguish between Shp2 and the closely related phosphatase, Shp1. This 

was an important criterion. Shp1 is predominantly expressed in the hematopoietic 

system and its deletion or inhibition in these cells can lead to the development of 

myelomonocytic leukemia-like disease and systemic autoimmunity (167). 

PHPS1 is now commercially available from several large pharmaceutical companies 

and has since been used in numerous studies addressing the role of Shp2 in 

different biological contexts including tumourigenesis (42, 168, 169), LEOPARD 

syndrome-associated hypertrophic cardiomyopathy (170) and pulmonary fibrosis 

(171) among others. Several other Shp2 inhibitors have by now been published, but 

PHPS1 remains among the most specific and potent inhibitors for Shp2 available 

(172). 
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6.3 The RhoGAP and multiadaptor protein NOMA-GAP/ARHGAP33 in the 
development of the neocortex and in disease 

6.3.1 Rho GAPs  

Interest in ARHGAPs has increased considerably in recent years due to the 

identification of mutated forms of these genes in association with human 

neurodevelopmental disorders. Most Rho GAPs are still uncharacterised and the 

functional consequences of identified disease-associated SNPs or mutations are 

unknown. Nevertheless, it is acknowledged that a precisely timed activation of the 

different Rho family members is essential for the generation, migration, differentiation 

and cellular functions of neurons (106, 125). Integration of this signalling with 

environmental cues and cellular status is critical to achieve the appropriate cellular 

responses. The large variety and number of protein and lipid interaction and 

regulatory domains present on Rho GAPs enables this precise and integrative 

activation of RhoGTPases and remodelling of the cytoskeleton (Fig. 7) (112).  

Figure 7: Domain structure of the Rho GAPs predicted to be expressed in neuronal 

tissue. The structure of NOMA-GAP is highlighted by a box. Domain prediction using SMART 

v9. Figure assembled by A. Newmann and M. Rosário (unpublished). 

 

Original works 3 to 5 describe the identification of a novel Rho GAP, NOMA-GAP 

(encoded by the ARHGAP33 gene), the characterisation of its signalling and of its 
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cellular functions in the developing neocortex and finally the consequences of loss of 

this protein to animal behaviour. ARHGAP33 encodes, through alternative splicing, 

several proteins of around 137-140kDa that contain a PX (Phox-like) domain, a SH3 

(Src-Homology 3) domain that may be involved in association with receptors, a 

Cdc42-specific RhoGAP domain and a large C-terminal tail rich in phosphorylated 

tyrosine and serine residues (original work 3).  

Many Rho GAPs contain lipid binding motifs that enable localisation to the plasma 

membrane and thus proximity to their targets (Fig. 7). Canonical PX domains have 

been shown to bind phosphoinositides (PIs) (173). Although the PX-like domain of 

NOMA-GAP lacks key residues involved in lipid binding, in vitro association with 

several phosphoinositides has been reported (174). Membrane association may also 

be stabilised through interaction with membrane proteins (orginal work 3, 5) (174, 

175).  

Like other Rho GAPs, NOMA-GAP possesses several protein-interaction domains in 

addition to the required RhoGAP domain. In NOMA-GAP these enable interaction 

with both multiple downstream effectors such as Shp2, Cdc42 and Grb2 but also with 

upstream activators such as the Trk receptors (original work 3). In original work 3 

we showed that NOMA-GAP is constitutively associated with TrkA and that it is 

essential for the activation of signalling downstream of this receptor. Interaction with 

TrkA occurs in a region conserved among other neurotrophin receptors. Indeed, we 

have observed interaction of NOMA-GAP also with TrkB. Interaction of NOMA-GAP 

with TrkB was recently confirmed by another group that further suggested that 

NOMA-GAP is essential for the trafficking and correct subcellular localization of this 

receptor (175, 176). In fact, original work 4, demonstrated that NOMA-GAP is 

localised not only to the plasma membrane but also to intracellular vesicles. 

Furthermore, as demonstrated in original work 5, NOMA-GAP is required for the 

correct surface localisation not only of the neurotrophin receptors but also of the 

AMPA receptors, suggesting a broader role in directing the intracellular transport of 

various dendritic proteins. 

The specificity and catalytic potency of the RhoGAP domain varies among Rho GAP 

proteins. Rho GAPs often show in vitro catalytic activity towards multiple Rho family 

GTPases although in vivo activity is often more restrictive (177). We have shown that 

both in PC12 cells and in the developing mouse neocortex, the major catalytic 

function of NOMA-GAP is the regulation of Cdc42 (original work 3 and 4). In 

accordance, activation of Rac and Rho proteins do not appear to be altered in the 

neocortex upon loss of NOMA-GAP. Furthermore, the reduced complexity of the 
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dendritic tree in these mice can be partially restored by genetic manipulation that 

decrease Cdc42 protein levels (original work 4).  

The GAP activity of NOMA-GAP does not, however, seem to be required for all 

NOMA-GAP–dependent cellular activities. Adipocytes express a variant isoform of 

NOMA-GAP (named TCGAP) that negatively regulates insulin-stimulated GLUT4 

translocation and glucose uptake through a RhoGAP-independent mechanism (174). 

Similarly, we have shown that regulation of dendritic spine morphology by NOMA-

GAP is independent of the RhoGAP domain (orginal work 5). 

6.3.2 NOMA-GAP and the regulation of dendritic branching 

Orginal work 4 uncovered the first molecular mechanism that explains how dendritic 

branching is timed in vivo during formation of the neocortex. When primary neurons 

are placed in culture, dendritic branching and axon extension occur roughly at the 

same time. During neocortical development however, axogenesis is initiated much 

earlier, before the migration of neurons into the cortical plate takes place. Dendritic 

branching, on the other hand, starts only once migration is finished and contact to the 

pial surface is established (178). The mechanisms that prevent dendritic branching 

during the early stages of neuronal differentiation had not been previously 

addressed. Original work 4 indicates that regulation of the RhoGTPase Cdc42 is 

essential for the control of dendritic branching. Activation of Cdc42 has been 

previously shown to play an essential role in maintaining the polarity and thus the 

fate of apical progenitor cells in the VZ of the neocortex (132). In addition, Cdc42 

appears to be required very early during neuronal differentiation for the aquisition of 

polarity and axonogenesis (133, 179, 180). Original work 4 shows, however, that 

continued activation of Cdc42 after these early stages acts as a brake for dendritic 

arborization by leading to the inhibition of the actin-binding molecule, cofilin. 

Prevention of dendritic arborization in these early stages is essential to enable the 

migration of these neurons out of the VZ/SVZ and into their correct laminar position 

in the cortical plate. Upon reaching the cortical plate, however, neurons induce the 

expression of NOMA-GAP which then directly inhibits Cdc42 activity, thus enabling 

the activation of cofilin and initiation of dendritic arborization (Fig. 8). Original work 4 

was the first work to address the postmitotic functions of Cdc42, independently of its 

function in progenitor cells (103). Our observations have stressed the importance of 

addressing each neuronal developmental stage singly and, together with original 

work 5, have highlighted that molecules such as Cdc42 can play distinct roles at 

different timepoints in the differentiation of the neuron. 
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It is still unclear how Cdc42 becomes activated in the neocortex and why upper layer 

neurons are particularly sensitive to loss of the negative Cdc42 regulator, NOMA-

GAP. Upper layer neurons, as the last born neurons, have a longer migratory 

distance to cover than the first-born deeper layer neurons and may for this reason be 

more sensitive to factors that influence their migration or timing of contact with the 

pia. In addition, the developing neocortex expresses a number of other RhoGAPs, 

including PX-RICS/ARHGAP32 which shares close N-terminal homology to NOMA-

GAP (original work 3). These may act as redundant regulators of Cdc42 in deeper 

layer neurons. Although loss of PX-RICS in the mouse does not appear to affect 

neocortical development (181), defects in the extension of primary dendrites have 

been reported following the knockdown of this protein using shRNA in cultured 

neurons (182). In addition, Cdc42 may become more strongly activated in upper 

layer neurons following stimulation of these neurons from pial/upper layer-derived 

diffusible factors such as Reelin and Semaphorin 3A, both of which have been 

shown to regulate actin dynamics through activation of Cdc42 and regulation of 

cofilin (183-188). Finally, upper and deeper layers neurons have unique molecular 

characteristics which may modulate their responses to external stimuli. The 

neurotrophins BDNF and NT-3 have, for example, been shown to exert layer-specific 

effects on the dendritic morphology of neocortical neurons (189). 

Live-imaging studies in hippocampal slices have indicated that neurons first form 

primary dendrites, followed by branches that arise from the sides of the dendritic 

shaft and not from the growing tip (190). These branches start off as short unstable 

actin-rich projections called filopodia that eventually stabilize and extend. Dendritic 

branching therefore requires a dynamic reorganisation of the actin structure in the 

primary dendrite. Cofilin is an actin-severing molecule whose function in creating 

breaks in F-actin may not only act to generate a site for branching to occur but also 

generate a local pool of free actin available for recycling and novel actin 

polymerization. Activation of cofilin in neocortical neurons upon suppression of the 

Cdc42/PAK/LIMK pathway by NOMA-GAP may thus promote branching by 

increasing actin turnover and dynamics (191). In support of our observations, LIMK 

has been shown to stabilize exisiting actin filaments through inhibition of cofilin and 

thereby to inhibit actin dynamics and the growth of new actin filaments (145, 146). 

6.3.3 Spine formation, connectivity and animal behaviour 

Dendritic branching is followed by the formation of specialized cell contact structures, 

the dendritic spines, that enable neurons to receive signals from other neurons. 

Spines are therefore specialized signalling compartments that must be equipped to 
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maintain contact with the axon, to receive and further transmit the signal into the cell 

and to regulate their molecular components in response to the strength, frequency 

and duration of signal transmission as occurs during long-term potentiation (LTP) 

and depression (LTD).  

Spine formation is initiated along dendrite branches through the formation of unstable 

actin-rich filopodia, in a manner similar to the formation of new branches (192). 

Stabilisation of the spine structure occurs upon contact with an incoming axon. 

Further maturation into a mushroom-shaped structure involves the transport of 

postsynaptic proteins into the immature spine and the assembly of the postsynaptic 

density and is accompanied by spine head growth (193).  

Most studies indicate that Cdc42 activity is necessary for the formation of dendritic 

spines (194-196) and that, like other RhoGTPases, it becomes strongly activated at 

the spine head following stimulation (197). Interestingly, unlike other RhoGTPases, 

activation of Cdc42 following stimulation is restricted to the spine head and does not 

diffuse out of the spine head along the neck and into the dendrite (197), suggesting 

the existence of a restricting mechanism. Original work 5 shows that NOMA-GAP, a 

potent inhibitor of Cdc42, is enriched at the postsynaptic site, where it could 

potentially prevent activation of Cdc42. However, original work 5 also shows that 

association of NOMA-GAP with PSD-95, a major postsynaptic scaffold protein, 

inhibits the GAP activity of NOMA-GAP, thereby presumably preventing inhibition of 

Cdc42 at this subcellular location (Fig. 8). 

6.3.4 Regulation of PSD-95 and AMPAR by NOMA-GAP 

Spine maturation and responses to the electrical transmission require the recruitment 

of the glutamatergic AMPARs to the postsynaptic site. This step is dependent on the 

indirect association of AMPARs with PSD-95 through the stargazin family of co-

receptor molecules (150, 152, 198). Loss of PSD-95 is associated with a decrease in 

AMPAR-containing synapses. This has been suggested to result in the synaptic 

defects seen in PSD-95-deficient animals (151, 199). Interestingly, we observe the 

same defects in synaptic transmission namely, a strongly reduced mEPSC frequency 

with no alterations in amplitude in upper layer neurons in acute neocortical slices of 

NOMA-GAP-deficient animals (original work 5). Original work 5 also demonstrates 

that NOMA-GAP directly associates with and regulates PSD-95 (Fig. 8). Aberrant 

phosphorylation and subcellular localization of PSD-95 away from dendritic spine 

heads, as observed upon loss of NOMA-GAP, is expected to result in the 

mislocalisation of AMPARs. Indeed, original work 5 shows that there is a 50% loss 
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in the level of AMPARs at the cell surface of neurons lacking NOMA-GAP. This likely 

explains the aberrant synaptic transmission observed in these animals. 

Many animal models for neuropsychiatric disorders such as ASD, show a 

dysregulation of AMPAR signalling or localisation. Thus, for example surface 

expression of the AMPAR has been shown to be regulated by the ASD and 

Schizophrenia-associated Neurexin-Neuregulin signalling complex (200, 201), the 

Angelmann syndrom-associated E3 ubiquitin ligase Ube3A (202) and the fragile X 

syndrome associated FMRP proteins (203) among others. Disturbances in both 

ionotropic AMPAR and NMDAR signalling as well as in metabotropic glutamate 

signalling have been associated with ASD in humans. These include the elevation of 

serum levels of glutamate in ASD children (204, 205), alterations in the levels of 

AMPA, NMDA and metabotropic glutamate receptors (206) and mutations in several 

NMDAR subunits (207, 208). Several therapeutic approaches aimed at altering 

ionotropic and/or metabotropic glutamatergic neurotransmission have thus been 

developed and are currently been evaluated (208, 209). Interestingly, both NMDAR 

and metabotropic glutamatergic receptor signalling have been shown to regulate the 

trafficking and surface expression of AMPARs (210). 

Figure 8. Regulation of Dendritic arborisation and Spine maturation during neocortical 
development 

During cortical development, newly born neurons (pink) migrate out of the VZ/SVZ and into 

the cortical plate. Migration occurs along radial glia tracks (grey cells). Dendritic arborisation 

is suppressed by Cdc42-mediated inactivation of the actin binding protein cofilin probably 

through a PAK/LIMK dependent pathway. Upon completion of migration, neurons upregulate 
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the expression of ARHGAP33/NOMA-GAP, a multiadaptor protein with RhoGAP activity, 

which suppresses Cdc42 activity, thus enabling cofilin activation. Cofilin activity is essential to 

promote the branching of dendrites (original work 4). Cdc42 activation is enabled during 

maturation of the dendritic spines through the association of NOMA-GAP with PSD-95, which 

inhibits the RhoGAP activity of NOMA-GAP (original work 5). In turn, NOMA-GAP promotes 

the correct subcellular localization and phosphorylation state of PSD-95 and thus spine 

maturation (original work 5). VZ ventricular zone; SVZ subventricular zone; CP cortical plate. 

Figure by Rosário (unpublished). 

6.3.5 Neuropsychiatric disorders and NOMA-GAP/ARHGAP33 

Disorders in dendritic branching and spine formation are associated with cognitive 

alterations including intellectual disability and neuropsychiatric disorders such as 

Autism Spectrum Disorders (ASD) and Schizophrenia (211, 212). The candidate 

molecules identified so far are, like NOMA-GAP, predominantly postsynaptic 

proteins. ARHGAP33/NOMA-GAP-deficient mice show a sexual dimorphic 

behavioural phenotype typically seen in mouse models for neuropsychiatric diseases 

such as ASD and schizophrenia (orginal work 5). Male NOMA-GAP-deficient mice 

have strong defects in social behaviour in standard tests for identifying autism-like 

alterations in the mouse and the female mice show signs of increased anxiety. Both 

genders exhibit normal general behaviour, health and motor and sensory function. 

Importantly, NOMA-GAP-deficient mice show no olfactory deficits, ruling out the 

possibility that their lack of preference for a novel social interaction is due to an 

inability to detect and recognize olfactory cues that are at the basis of all social 

interactions in mice. Given the absence of physical, sensory and motor defects, the 

marked deficits in the preference for the stranger mouse, and the failure to 

distinguish between stranger and familiar mouse, shown by NOMA-GAP-deficient 

male mice can be interpreted as autism-like behaviour (213, 214). Furthermore, 

NOMA-GAP-deficient mice show normal exploration of novel environments, further 

emphasizing the social-nature of the phenotype.  

Anxiety is the most common comorbidity with neuropsychiatric disorders in humans 

(215). Signs of increased animal anxiety, such as aberrant nest building, has also 

been observed in other rodent models for ASD (214). Similarly, NOMA-GAP-deficient 

mice, in particular the females, show signs of increased anxiety. The prevalence of 

anxiety in human patients with neuropsychiatric disorders is also higher in affected 

females. Indeed this leads to a higher initial misdiagnosis of ASD-affected female 

patients with conditions such as anxiety disorder, depression or borderline 

personality disorder (216, 217).  
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Although highly heritable, neuropsychiatric conditions are more frequently associated 

with changes in multiple genes through copy-number variations (CNVs), the 

accumulation of high-risk single-nucleotide polymorphisms (SNPs) or epigenetic 

changes than with single gene mutations. Interestingly, there is a large overlap in the 

genes so far identified in association with ASD, Schizophrenia, intellectual disability 

and epileptic encephalopathy (218, 219). Indeed, recently ARHGAP33 was identified 

as a candidate for severe intellectual disability (220). The mutation identified, 

Val499Met, lies in the RhoGAP domain of NOMA-GAP and is predicted to destabilize 

or deform the GTP-binding site thus lead to the inactivation of this function (220). 
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