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The proximity-induced superconducting state in the three-dimensional topological insulator HgTe has been
studied using electronic transport of a normal metal-superconducting point contact as a spectroscopic tool
(Andreev point-contact spectroscopy). By analyzing the conductance as a function of voltage for various
temperatures, magnetic fields, and gate voltages, we find evidence, in equilibrium, for an induced order parameter
in HgTe of 70 µeV and a niobium order parameter of 1.1 meV. To understand the full conductance curve as a
function of applied voltage we suggest a non-equilibrium-driven transformation of the quantum transport process
where the relevant scattering region and equilibrium reservoirs change with voltage. This change implies that the
spectroscopy probes the superconducting correlations at different positions in the sample, depending on the bias
voltage.
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I. INTRODUCTION

The two most important methods to obtain reliable quan-
titative spectral information about the electronic properties of
a superconductor are Giaever tunneling [1] and point-contact
Andreev spectroscopy [2,3]. In tunnel spectroscopy two thin
metal films are weakly coupled by an insulating tunnel barrier,
leading to a current-voltage characteristic which is controlled
by the unperturbed superconducting densities of states in
both metals Ns(E) and their occupation, given by the Fermi
functions f0(E). The technique can also be used successfully
to study the proximity effect in superconducting bilayers, as
experimentally shown by Wolf and Arnold [4], but requires the
difficult development of an opaque tunnel barrier. The second
method, point-contact Andreev spectroscopy, has become a
standard tool to evaluate the microscopic properties of new
bulk materials. The experimental configuration consists of a
macroscopically sized point-shaped metal wire, which touches
a superconducting material, usually a single crystal. In the
contact area the conductance in both the superconducting and
normal regimes is dominated by the channels with the highest
transmission, usually loosely called pinholes. Thus, there is
no need to know the exact nature of the contacting layer,
and the transmissivity of the point contact can be assumed
to reach values on the order of 1 without disturbing the
properties of the superconductor. This latter assumption is
valid because the two bulk materials are connected by an
area which is very small compared to the lateral dimensions
of the materials and assumed to be smaller than the elastic
mean free path of both materials (ballistic transport). Such a
geometry leaves the reservoirs undisturbed, a crucial condition
for the determination of the electronic parameters of the
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superconductor and generalized in the Landauer-Büttiker
picture of quantum transport.

Our aim in this paper is to apply Andreev spectroscopy
to the proximity-induced superconducting state in a 3D
topological insulator (3DTI). The application of Andreev
spectroscopy to low-dimensional heterostructures is a much
less mature experimental technique than for bulk systems. The
point contact has to be lithographically defined and is therefore
usually larger than for bulk systems, where accidentally
formed pinholes of smaller dimensions dominate the transport.
These experimental concerns are exacerbated in the case of
spectroscopy on proximity-induced superconductivity because
of the need to use two dissimilar materials and, unavoidably, a
complex lithographically structured geometry. In fact, very few
successful spectroscopic experiments on proximitized systems
have been carried out. One example, on diffusive systems, is
by Scheer et al. [5], using mechanical break junctions, an
approach that merges bulk point-contact behavior with thin
films. Recently, Kjaergaard et al. [6] presented results on
point-contact spectroscopy in the ballistic Al/InAs system,
which partially fulfills the experimental requirements. It shows
the expected doubling of the quantized conductance steps for
point contacts in the highly transmissive regime but exhibits,
from a spectroscopic perspective, many puzzling results and,
additionally, unexpected behavior as a function of the tunable
point-contact transmissivity. A different geometry was used
by Zhang et al. [7], also employing a tunable point contact,
predominantly in the regime of low transmission.

We report on a study of a high-quality three-dimensional
topological insulator, epitaxially grown strained HgTe, which
is proximitized by a conventional superconductor, niobium.
In previous experiments we reported on the observation of
a “missing n = 1” Shapiro step [8], an indication of an un-
conventional Josephson effect in 3DTI HgTe-based Josephson
junctions. The same type of observation was subsequently
done in Josephson junctions in a two-dimensional topological
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insulator showing a sequence of even-only Shapiro steps (up
to n = 10) and emission at half the Josephson frequency. Both
signatures indicate at least a fractional 4π -periodic Josephson
effect and point towards the presence of gapless Majorana-
Andreev bound states [9,10]. Since the Josephson effect arises
from the proximity-induced superconducting state, we are in-
terested in a determination of the energy-dependent properties
of this induced superconducting state, which, in principle,
serves as a coherent reservoir for the Josephson effect,
analogous to the established proximity-effect-based niobium
superconductor-insulator-superconductor (SIS) junctions [11].
It is crucial to be able to measure these electronic states di-
rectly, particularly because the Josephson effect itself contains
information only about the phase difference and the nature of
the current-phase relation and not about its energy dependence.
For this reason we designed an experiment which is based on
an NcSp point contact to emulate Andreev spectroscopy of the
induced superconducting state (N is a normal reservoir, which
in our case is a topological insulator, c is the constriction, and
Sp is the proximity-induced superconductor), as schematically
shown in Fig. 1(a). Therefore, the strained HgTe is defined
lithographically to a finite-sized bar and covered over a small
distance by a conventional superconductor Sm. We assume
that an induced superconducting state exists underneath the
superconducting material, which we label Sp. The electronic
states in this region are the source for the observed Josephson
effect. Note that in such a geometry no Majorana zero modes
are expected to emerge due to the lack of confinement
[12], but unconventional superconducting correlations might
be observable [13,14]. We find that the electronic transport
between the N reservoir and the Sm reservoir is governed by
two energy scales, which we identify as the superconducting
gap of the niobium film �Nb and the induced gap in the
surface states of the HgTe, labeled �p. By using modeling
as introduced by Blonder et al. [2] we are able to show that the
transmissivity at the HgTe/Nb interface is rather low. We argue
that the voltage-carrying state, needed to obtain spectroscopic
information, leads to a nonequilibrium occupation of the
proximity-induced superconducting state, sending the device
into different experimental conditions, depending on the bias
voltage.

II. SAMPLE DESCRIPTION

The NcS junctions in this work are based on epitax-
ially grown layers of strained HgTe sandwiched between
Hg0.3Cd0.7Te capping layers. These additional layers have
a conventional band structure and protect against surface
oxidation, which reduces the carrier mobility. They also protect
the strained HgTe during subsequent lithographic processing.
The HgTe sandwich is shaped as a 1-µm-wide bar which at
one or both ends tapers out at an angle of about 45◦. The
top Hg0.3Cd0.7Te capping layer is removed by dry etching and
subsequently covered by niobium, which is in contact with
the strained HgTe. Figure 1(a) shows a schematic drawing
of the device. The orange part is the source superconductor
Sm, made of niobium, and the blue part is the strained HgTe.
At the interface we allow for a finite-transmission coefficient,
which is labeled Zm. This dimensionless barrier is, in general,
connected to the normal-state transmission by t = (1 + Z2)−1.
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FIG. 1. (a) Schematic of the experiment: An s-wave superconduc-
tor Sm (orange) is inducing superconducting pairing in an underlying
topological insulator Sp. This state is probed via a point contact. An
electron impinging from the 3DTI reservoir N can either be Andreev
reflected, normal reflected, or transmitted with probability amplitudes
A, B, and C respectively. The current is carried away to the right of
Zp as a supercurrent. (b) Schematic of the device and measurement
setup. A niobium strip is covering a HgTe bar which is coupled to
an equilibrium reservoir via a small orifice marked with the letter a.
The dashed lines mark the contours of the gate. (c) False-color SEM
picture of a device without a gate electrode. (d) dI/dV measurements
of four devices. The devices differ by the “connectivity” of the HgTe
bar, covered by niobium, as indicated in the inset.

The superconducting correlations are induced in the HgTe,
indicated by yellow dots. The tapered part of the HgTe, not
covered by the niobium, is left capped by the Hg0.3Cd0.7Te
layer, and we assume that this part has the same mobility
as the starting material. At the constriction we allow for an
additional elastic scattering parameter Zp.

The quality of the HgTe layers is characterized using a
Hall bar fabricated from the same wafer. At zero gate voltage
(Vg = 0) a density of n2D ≈ 5×1011 cm−2 and mobilities of
μ ≈ 200 000 cm2/Vs are routinely achieved, resulting in a
mean free path lmfp ≈ 2–3µm. The mobility is about 10 times
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lower when tuning the device into the p regime. As shown
in detailed magnetotransport studies [15,16], clear quantum
Hall plateaus are observed, indicating transport mediated
predominately by two-dimensional states which were shown
to originate from the topological surface states.

The point contact is fabricated using electron-beam
lithography and poly(methyl methacrylate) resist. As HgTe
is sensitive to temperatures above 90 ◦C, all bake-out and
lift-off procedures are carried out well below this temperature.
In the first step the HgTe mesa is defined using low-energy
argon sputtering. During this process a thin titanium etch
shield, separated by a SiO2 sacrificial layer from the HgTe,
is protecting the mesa. The shield is afterwards removed by
a buffered oxide etch dip. The dimensions of the mesa as
shown in Figs. 1(b) and 1(c) are chosen such that the orifice
(a = 1µm for devices 1, 2, and 4, and a = 0.6µm for device 3,
respectively) is smaller than the ballistic mean free path of the
surface states. The size of the normal reservoir is much larger
than this length scale to allow full energy relaxation in this
region. In the next step, the superconductor is deposited. Since
the interface is buried, the cap layer needs to be removed,
which is done by argon etching, followed by in situ magnetron
sputtering of about 110 nm of niobium. After this the leads for
the Ohmic contacts are defined, and 50 nm AuGe/50 nm Au
are deposited. The contact resistances are usually small (<50
�). To allow control of the charge carrier density in the 3DTI a
top-gate electrode is evaporated on top of the HgTe [see dashed
lines in Fig. 1(b)] as follows. First, a thin HfO2 insulator
is grown at about a temperature of 35 ◦C via atomic layer
deposition, followed by the deposition of 5 nm Ti /150 nm
Au. Using the same insulator on reference Hall bar structures,
it is possible to tune the density from the 1×1012 cm−2 n-type
regime to the −1×1012 cm−2 p-type-dominated conductance.
A false-color scanning electron microscopy (SEM) picture of
a final device without an applied gate is shown in Fig. 1(c).

For the transport studies the samples are then cooled down
in a dilution refrigerator with a base temperature of 30 mK
(device 1) or 120 mK (devices 2–4), and the differential
conductance dI/dV is measured using low-excitation and
low-frequency lock-in techniques combined with dc mea-
surements, as depicted in Fig. 1(b). Several devices made
from different wafers with and without a top gate have been
measured, all yielding very similar results, from which four
exemplary devices are discussed.

III. METHOD OF ANALYSIS

In the design of the experiment, we anticipate that the trans-
port from N to S will be controlled by the process of Andreev
reflection, which allows using the theory of Blonder et al. [2]
(BTK theory). This theory assumes thermal equilibrium for
the relevant states. In the experimental configuration used by
us the occupation of states will potentially deviate from the
equilibrium Fermi-Dirac distribution. As shown in Fig. 1(a),
we define three sections through which the transport occurs
in our device. In that drawing, the wide uncovered part of the
3DTI constitutes the N side and fulfills the criterion of a proper
Landauer-Büttiker equilibrium reservoir with a Fermi function
at the bath temperature Tb and a Fermi level μN = μp1 − eVSN,
which depends on the applied bias VSN. On the other side of

the constriction, located at Zp, the main superconductor Sm,
niobium, induces superconducting correlations in the 3DTI
bar Sp. Both superconductors form the same macroscopic
quantum state. The current through the sample, assumed to
enter from the N part, is carried away as a supercurrent.
Therefore, we do not expect a voltage drop beyond Zp, and the
superconducting side is initially, for zero applied bias VSN = 0,
characterized by an equilibrium Fermi function μp1 = μp2 at
the bath temperature Tb. With this starting point we anticipate
that the conductance as a function of voltage VSN will, in
principle, be described by

ISN = 1

eRN

∫ +∞

−∞
[f0(E − eVSN,T ) − f0(E,T )]

×[1 + A(E,Z) − B(E,Z)] dE, (1)

where f0(E,T ) is the Fermi-Dirac distribution at energy E and
temperature T . A(E) and B(E) are the probability amplitudes
for Andreev and normal reflection of an incident electron from
and to the normal reservoir. The normal-state resistance RN is
assumed to be the resistance arising from the finite number of
modes carried by the cross section. The voltage drop is located
at the orifice with elastic scattering parametrized by Z = Zp,
as indicated in Fig. 1(a).

We do not know the coefficients A(E) and B(E) a priori.
They contain the spectral information we are interested in and
are the result of the interaction of the superconductor with
the confined bar of the 3DTI with its limited geometry, finite
elastic mean free path, and finite interfacial transparency Zm

[5,17]. In addition we need to consider that the normal part
is a 3DTI, where helical surface states dominate the transport
[12,14,18].

In the covered TI bar we allow for a finite paring potential
�, which implies that the self-consistency equation of the
Bogoliubov–de Gennes equations

�(�r) = VN

∑
E>0

v∗(�r)u(�r)[1 − 2f0(E)] (2)

needs to be fulfilled. The value � depends on the distribution
function, which for a driven system may differ from the one
assumed for equilibrium reservoirs.

Hence, we will analyze our data under the assumption that
Andreev reflection, due to a finite value of �, takes place
at Zp, which allows us to apply Eq. (1) to our system with,
initially, for low voltages, the equilibrium reservoirs taken to
be on the normal side and in the proximitized HgTe on the
superconducting side with a finite value of � = �p, although
it does not necessarily resemble a BCS-like density of states.

IV. EXPERIMENTAL DATA AND INTERPRETATION

Figure 1(d) gives an overview of the differential con-
ductance across the point contact for four different devices
at zero applied gate voltage and zero magnetic field. At
voltages |VSN| > 1.5 mV, larger than �Nb, the differential
conductance is almost constant, and a normal-state resistance
of RN = 160–240 � is observed, depending on the measured
device. For voltages around VSN � 1.1 meV the conductance
is slightly enhanced, which is indicated by the black arrows,
and then starts to decrease for smaller voltages. Close to
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zero bias, the conductance is enhanced again, resulting in a
double-peak structure around VSN = 0, with a peak separation
of about 100µV for device 1 and slightly different value for the
other devices. The red arrows are used to draw attention to a
sample-dependent subgap feature. The four devices differ with
respect to the shape and length of the HgTe bar underneath the
superconductor. Device 1 is symmetric, with width w = 1µm
and two open ends. Device 2 has a steplike shape, with partially
width w and partially a width of 0.6µm. Device 3 is similar, but
with the wide “normal” electrode connected to the wide part
rather than the narrower part. Finally, device 4 is terminated
half way and implies a largely closed HgTe bar. At present it
is not clear whether this should be interpreted as a feature in
the relevant nonequilibrium distribution entering Eq. (1) or as
reflecting a finite size effect of HgTe in the spirit of the analysis
of Kopnin and Melnikov [19]. Systematic shape-dependent
experiments are needed to map and evaluate this dependence
accurately and to test the full hypothesis. An asymmetric
background for negative and positive biases is observed in
all devices. The data can be normalized by multiplying by
the normal-state resistance RN measured at T > Tc, as shown
in Fig. 2, to eliminate this slope. We will now discuss the
observed behavior in more detail.

A. Low-voltage data: Proximity-induced order parameter

Close to zero bias, we find a strongly enhanced conductance
with a double-peak structure in devices 1–3 and a single
peak for the closed bar (device 4). As shown in Fig. 2, this
double-peak structure merges at higher temperatures to a
bell-shaped curve.

The data in Fig. 2 are taken for device 1, which we will focus
on for a detailed analysis. The conductance is normalized with
the normal-state resistance RN above the critical temperature
T > Tc. From Fig. 2(a) it is clear that at 4.2 K an energy gap
opens up, which is on the scale of the superconducting niobium
gap. Upon lowering the temperature a peak emerges around
VSN = 0, which splits in two below 500 mK.

Figure 2(b) shows the conductance measured at 30 mK for
increasing values of magnetic field applied perpendicular to
the sample. We verified that the response is independent of the
direction of the applied magnetic field. For clarity, a small
vertical shift has been removed in the presentation of the
data in Fig. 2(b) to highlight that the high-voltage part of
the conductance is immune to these magnetic field strengths.
Evidently, the central peak can be suppressed completely
by applying a magnetic field. We attribute this central bell-
shaped peak, which evolves into a two-peak structure, to a
manifestation of the proximity-induced superconducting order
parameter as given by Eq. (2).

For VSN = 0 the system is in equilibrium, and the apparent
� is the result of electrons in the HgTe bar underneath the
niobium film, which are confined in a certain width and length.
Their occupation is given by a Fermi-Dirac distribution, and it
is part of the superconducting equilibrium reservoir Sp. For
finite voltage bias, the current in Sp is carried away as a
supercurrent, and importantly, the voltage drop occurring at the
interface indicated by Zp in Fig. 3(a) is due to the difference in
electrochemical potentials between N on the left of Zp and Sp

on the right of Zp. The scale of the relevant Sharvin resistance
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FIG. 2. (a) Conductance of device 1 normalized to the resistance
RN at T = 9 K (purple). At 4.2 K an energy gap has clearly opened
up due to the niobium being superconducting. Upon lowering the
temperature a peak emerges around VSN = 0, which splits below
500 mK. (b) Conductance measured at 30 mK for increasing (small)
magnetic field values. This response is independent of the direction
of the applied magnetic field. For clarity a small vertical shift has
been removed in the presentation of the data to highlight that the
high-voltage part of the conductance is immune to these magnetic
field strengths.

is controlled by the number of modes at the Zp location and
by the unknown value of Zp. Therefore, the normalization on
RN as defined above is not viable in this equilibrium regime.

In Fig. 4(a), data for different temperatures are compared
with standard BTK modeling using Eq. (1) (cyan) and the
model that explicitly takes the surface states of a 3DTI into
account from Ref. [14] (magenta), both leading to very rea-
sonable agreement. In Fig. 4(a) we have renormalized the data
differently. We have chosen the conductance value at the edge
of the gray zone in Fig. 4(b) as a reasonable approximation of
the real value of RN entering Eq. (1). From the comparison
shown in Fig. 4(a), we conclude that we find a proximity-
induced order parameter �p = 70µeV for both models.

The fits using Eq. (1) were obtained with a small barrier
height Zp = 0.4. Here, we have assumed that the proximity-
induced order parameter �p leads to a standard BCS-like
behavior of the coefficients A(E) and B(E) as a function of en-
ergy and that the normal state is described by a parabolic band
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constriction is, initially, characterized by a barrier Zp, and the superconductor is characterized by a pair potential �p. In (a) the system is at
zero bias and zero temperature. The voltage difference will emerge at the narrow point contact, and Andreev reflections (normal reflections)
are occurring there with probability A (B). The TI-Cooper pairs are phase-coherently coupled to the Nb condensate �Nb. They form one
superconducting condensate. In (b) at finite temperature and bias, electrons from higher energies are allowed to enter the proximity-induced
superconductor. These “hot” electrons are trapped in the proximitized area because Andreev reflection does not carry entropy. The only relaxation
mechanism is by electron-phonon relaxation or by contact with a thermal equilibrium reservoir. So the proximity-induced superconducting
state Sp is quenched (�p → 0), and the situation as depicted in (c) occurs. Then, at higher voltages transport is measured between a normal
reservoir, being the 3DTI HgTe, and the superconductor niobium with an interface resistance characterized by Zm.

dispersion. The model might therefore not capture the micro-
scopic details but is suitable for comparison to other systems.

The treatment of Ref. [14] models the conductance of a NS
junction on the surface of a 3DTI, which is exactly appropriate
for our experiment. The contact between the normal region and
the induced superconducting reservoir is modeled as a square
potential barrier, where the dimensionless barrier strength Zp

is defined as the product of the barrier height and width.
The subgap tunnel conductance of the NS junction is then an
oscillatory function of the barrier strength Zp and minimum
for values Zp = (n + 1/2)π , with n being an integer [20,21].
By applying this model to our experimental data, a rather large
barrier can be used. The enhanced conductance can then be
seen as a signature of the helical surface states where highly
transparent modes are always expected due to Klein tunneling.

We interpret the low-voltage data as a probe of the induced
superconducting state in the 3DTI of strained HgTe. There is
no reason to expect a priori an s-wave order parameter. In fact,
we expect deviations, such as those predicted by Burset et al.
[14]. Since the actual spectra depend on several parameters, a
larger data set is needed to provide a reliable analysis to show
the influence of the helical Dirac nature of the surface states.
Nevertheless, this open question does not affect the conclusion
that we can draw with respect to the identification of the
regime, where spectroscopy of the induced superconducting
state can reliably be performed.

B. High-voltage data: Niobium order parameter

For voltages larger than 0.5 meV, the conductance curves
in Fig. 2(b) all superimpose, if we except the central part

interpreted as the proximity-induced order parameter. The
data outside the central part can no longer be interpreted as
the conductance of a NcS point contact at Zp. The electronic
states in the HgTe bar underneath the niobium are no longer
correlated as expressed in Eq. (2). For increasing voltage
at the location Zp, higher-energy quasiparticles are injected
into the HgTe bar as depicted in Fig. 3(b). They cannot
escape into an equilibrium reservoir because of the large
gap of the superconductor niobium and the fact that Andreev
reflections do not exchange heat. Therefore, f0(E) in Eq. (2)
becomes a nonequilibrium distribution with relatively hot
electrons, which leads in general to the destruction of the
proximity-induced order parameter �p in the same way as a
small magnetic field quenches this induced superconducting
state. Hence, beyond a voltage of about 0.5 meV the system
has changed, and we are left with a nonsuperconducting HgTe
bar in contact with niobium [as shown in Fig. 3(c)] with an
interface with an unknown transmissivity parametrized by Zm.

The change in conductance around 1.1 mV is now naturally
attributed to the superconducting gap of the niobium film.
The conductance increases slightly, as expected at the super-
conducting gap edge. For smaller voltages the conductance
decreases, an indication of dominant normal reflections over
Andreev reflections (B/A > 1). As shown in Fig. 4(b), we
are able to achieve fairly good qualitative agreement with a
BTK analysis as well for this outer gap, using a quite large
barrier Zm = 1.1 and �Nb = 0.8 meV, indicating a relatively
low transparency of the Nb/HgTe interface. We also need to use
a relatively large broadening parameter � = 0.7�Nb, which
could be caused by the large contact area and spatial gradients
at the Nb/HgTe interface.
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FIG. 4. In (a) the central split peak [gray zone in (b)] is compared
to an analysis using Eq. (1) (cyan) with a fixed value of Zp = 0.4
and a broadening parameter � ≈ 0.025�p. The magenta lines show a
comparison with the model developed in Ref. [14] with a broadening
parameter � < 0.015�p. The value of �p in both models is 70µeV.
In (a) we have abandoned the normalization of the data on RN at high
voltages and in the normal state. Instead, we have chosen to take the
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a bit arbitrary but should be close to this value. The curves are offset
for better visibility. (b) Conductance of device 1 normalized with the
normal-state resistance RN above the critical temperature T > Tc at
30 mK. The gray area indicates the voltage range where we assume
an equilibrium proximity-induced superconducting state. The dashed
lines show fits using Eq. (1) for three different Zm parameters and a
broadening of 0.7�Nb.

V. GATE DEPENDENCE OF THE CONDUCTANCE

The previous data are all obtained on the electron side (n
type), in which the mobility is high. In Fig. 5(a) conductance
data are shown for different gate voltages from +1 to −4 V, for
which the 3DTI changes from n- to p-type conduction. The
curves are normalized to the resistance RN (T > Tc) for each
gate voltage individually. The behavior of the normal-state
resistance of device 2 versus the gate voltage is comparable to
the reference Hall bar for which we are able to tune the density
from initially n doped over the charge neutrality point into the
hole-dominated regime. We distinguish two regimes; from 1
to about −1 V the device is in the n-conducting regime. In this
regime the mobility is high, and the point contact is expected to
be ballistic. By tuning into the p regime the mobility decreases
by about a factor of 10, and the mean free path is now smaller
than the size of the point contact and therefore is expected to
be in the diffusive regime.
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FIG. 5. (a) Gate dependence of normalized conductance of device
2 at B = 0 T from 1 to −4 V. The black bar indicates how the height
of the central peak is evaluated in (b). (b) Normal-state resistance
RN versus gate voltage (black) and size of the peak (red) defined
as indicated in (a) by the black bar for Vg = 0. (c) Normal-state
conductance versus zero-bias conductance.

From the conductance curves [Fig. 5(a)] it is clear that we
no longer observe a signature of the niobium pairing potential
in the p regime. Upon changing the gate voltage, features
at the scale of the niobium gap disappear upon approaching
the Dirac point (at −2.2 V). The only significant voltage-
dependent feature is around ±100µeV. We assume that this
observation is a sign that the NcS point contact is probing the
induced superconducting state of the HgTe bar in a diffusive
proximity system, leading to a minigap. The height of the
zero-bias anomaly as a function of gate voltage is quantified
using Fig. 5(a) by defining dI/dVT =30 mK − dI/dVT >Tc

and
plotted in Fig. 5(b) as red dots. The amplitude is several tens of
e2/h in the n-conducting regime and decreases continuously
up to the maximum in the resistance region, where it saturates
at a value of 1–2 e2/h depending on the sample.

VI. GENERAL REMARK ABOUT OUR ANALYSIS

The analysis of our data has led us to discuss the conduc-
tance data resulting from the transport through three different
electron systems (N, Sp, and Sm), separated by two interfaces
of transparency, Zp and Zm. Following Beenakker [22], it is
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assumed that any contact between a normal reservoir and a
superconducting reservoir is given by

GS = 2G0
G2

N

(2G0 − GN )2
, (3)

with G0 = 2e2/h being the quantum unit of conductance,
GN being the conductance in the normal state, and GS being
the conductance with one of the electrodes superconducting.
This expression is the zero-voltage limit of the classical BTK
formula for different values of transmissivity Z. In order
to calculate GS , often, the conductance at V > �s is used
as GN [see also Fig. 5(c)], implying that this experimental
value is independent of the applied bias. The most important
implication in our case is that one measures at high voltages
not a proximity-induced superconducting gap, but rather the
parent superconductor. We suggest that the low-voltage data
should be understood by acknowledging that the scattering
region and the equilibrium reservoirs at VSN = 0 should be
defined differently from those at higher voltages, such as, in
our case, V > 0.8 meV. This distinction is, in general, not
specific to our case but should apply to other topological
systems, for example, the one studied in Kjaergaard et al.
[23] and Suominen et al. [24], and might explain deviations
from expected behavior in these two papers.

VII. CONCLUSIONS

In conclusion, we have carried out transport spectroscopy
of the proximity-induced pair potential of a niobium-covered

bar of strained HgTe, which has been demonstrated to be a
3DTI. In analyzing the data we allow for a finite pairing
potential in the st HgTe, in contrast to the commonly made
quantum transport simplification introduced by Lambert [25]
and Beenakker [22], in which the properties are assumed to
be controlled exclusively by the scattering in the structure. In
addition, we take into account how to identify the relevant
distribution function over the energies, implying the relevance
of a nonequilibrium distribution function in analyzing the data.
These results are an important step towards a better under-
standing and engineering of topological superconductivity and
may serve as a building block for further analysis of the 4π

Josephson effect as reported in Refs. [8–10].
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