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Abstract

Macromolecular nanostructures that are used as drug carriers are character-

ized by their loading and release kinetics. Release studies commonly employ

the dialysis method, in which a cellulose membrane separates the solution of

released drug from the nanocarrier solution. We demonstrate that it is nec-

essary to take the effect of the dialysis membrane on the release kinetics into

account. Using a two-step approach, consisting of a calibration experiment of

drug diffusion through the dialysis membrane in the absence of nanocarriers,

and an experiment in the presence of nanocarriers, we are able to determine all

kinetic rates and in particular to disentangle kinetic dialysis membrane prop-

erties from kinetic nanocarrier properties. We apply our general approach to

experimental dexamethasone release data from core-multishell nanocarriers and

demonstrate that our method yields a consistent description of the nanocarrier

release kinetics.
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1. Introduction

Polymer micelles with fine-tuned core-shell structures gained attention in

recent years for their function as drug delivery systems in tumor therapy and

topical treatment [1, 2, 3, 4, 5]. They enable the transport of hydrophobic drugs

in water by encapsulation in hydrophobic cores while the hydrophilic shells keep

the system dispersed in water and protect the drug from the immune system

[6, 7, 8, 9]. In order to maximize therapeutic efficiency, the release kinetics

of the drug from the nanocarriers has to be optimized and is an important

factor when designing such nanocarriers [10]. Dendritic core-multishell (CMS)

nanocarriers consist of a hyperbranched polar core, an inner shell and an outer

shell. These nanocarriers are able to transport guest molecules in polar as well

as nonpolar solvents and exhibit good tumor targeting as well as efficient topical

drug delivery [11, 12, 13]. A recent study has shown that these CMS carriers

can enhance penetration into the skin [12]. As a transport mechanism this may

allow for drugs to be released into deeper skin layers [14, 15]. In order for the

drug transport via nanocarriers to be efficient, the release time of a specific

drug from the carrier must be similar to the penetration time of the nanocarrier

itself. Thus, reliable determination of drug-nanocarrier release kinetics is of

great importance.

In this work we present a general approach to quantify the release kinetics of

a drug from nano carriers and apply our method to experimental data for dex-

amethasone released from CMS nanocarriers. Drug release from nanocarriers

is in the standard setup studied by drug diffusion through a dialysis mem-

brane, which poses the problem of disentangling the rate of drug release from

the nanocarrier and the rate of drug diffusion through the dialysis membrane

[16, 17, 18, 19]. We solve this problem by a two-step procedure. In the first step,

we perform a calibration experiment testing the release of dexamethasone from

the aqueous solution inside of a dialysis bag to an outside phosphate-buffered

saline solution in the absence of nanocarriers. Here we determine the drug dif-

fusion rate through the dialysis membrane. In the second step, we measure
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the release kinetics from nanocarriers, and use in the analysis of the data the

membrane diffusion rate from the calibration experiment. For the specific dial-

ysis membrane and CMS nanocarrier used in our experiments, we find for the

membrane release rate of dexamethasone rMI = 0.052 min−1 and for the CMS

nanocarrier release rate of dexamethasone rNI = 0.015 min−1. We conclude

that in our specific system, the release rate from nanocarriers is only roughly

three times smaller than the membrane release rate and thus both rates are of

the same order. In the following section we will elaborate on the structure of

the CMS nanocarriers as well as on the experimental details and the theoretical

model.

2. Materials and methods

CMS nanocarrier preparation. The CMS nanocarriers we used in our experi-

ments consist of a polar core surrounded by a poly(ε-caprolactone) (PCL) inner

shell and a monomethoxypoly(ethylene glycol) (mPEG) outer shell. The molec-

ular weight of a single nanocarrier is 163.8 kDa. Details about synthesis and

structure of the nanocarriers have been published previously [20].

Dexamethasone loading and release studies. 12 mg of dexamethasone film was

incubated with 6 ml of CMS aqueous solution with a nanocarrier concentration

of cCMS = 15 mg/ml. After 30 s ultrasonication, 3 ml of solution was with-

drawn and filtered immediately with a regenerated cellulose (RC) membrane

filter (0.45 µm pore size). After 3 min of additional ultrasonication, the remain-

ing 3 ml were filtered. At the start of the release experiment, 0.6 ml of each

solution was placed in a dialysis bag with a molecular weight cut-off (MWCO)

of 3.5 kDa. Since dexamethasone has a molecular weight of 392.46 Da [21], the

dialysis membrane holds back the nanocarriers but lets the drug quite easily

pass with a rate that we determine in the calibration experiment. The respec-

tive dialysis bag was then immersed in 30 ml of phosphate-buffered saline (PBS).

Drug release studies were performed in a bioshaker with 100 rpm at 37 ◦C. Since
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the dexamthasone solution is throughly filtered before usage, we can safely as-

sume that it corresponds to an equilibrium saturated solution and neglect the

presence of aggregates in our analysis. Samples of 0.1 ml volume were peri-

odically removed from the outside solution and the same volume of pure PBS

was added. The amount of released dexamethasone was determined by high-

performance liquid chromatography (HPLC). The HPLC measurements were

carried out on a Knauer Smartline-HPLC system, equipped with a reversed-

phase (RP) -C18 column (250 mm × 4 mm, 5µm particle size) and an UV/VIS

detector at λ = 245 nm. The mobile phase was an acetonitril-water (40:60, v/v)

mixture with a flow-rate of 1 ml/min. For comparison, the release of free dex-

amethasone without CMS nanocarriers was conducted in the same condition.

Each experiment was repeated three times. The release data are given by the

mean of the three data sets. Errors have been calculated according to

∆ΦO =

√√√√ 1

n− 1

n∑
j=1

(
ΦOj −

1

n

n∑
i=1

ΦOi

)2

. (1)

First order rate equations. We describe the release of dexamethasone using a

four-state model schematically illustrated in Fig. 1. We denote the fractions of

dexamethasone inside the nanocarriers, the inner solution volume, the dialysis

membrane and the outer solution volume as ΦN,ΦI,ΦM and ΦO, respectively.

The release kinetics of dexamethasone from the CMS nanocarriers can be de-

scribed by a system of coupled rate equations:

dΦN
dt
≡ Φ̇N (t) = −rNIΦN (t) + rINΦI(t), (2)

dΦI
dt
≡ Φ̇I(t) = −(rIN + rIM)ΦI(t) + rNIΦN (t) + rMIΦM (t), (3)

dΦM
dt
≡ Φ̇M (t) = −(rMI + rMO)ΦM (t) + rIMΦI(t) + rOMΦO(t), (4)

dΦO
dt
≡ Φ̇O(t) = −rOMΦO(t) + rMOΦM (t), (5)
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Figure 1: Schematic illustration of the experimental setup: The dialysis bag is immersed in

the outer solution with a volume VO. The black dots schematically denote dexamethasone

molecules, that are either inside the nanocarriers (N), the inner solution (I) with a volume

VI , the membrane (M) or the outer solution (O). During the experiment dexamethasone first

diffuses from the nanoparticle interior to the inner solution, then into the membrane and

finally into the outer solution. The dialysis membrane is impenetrable for the nanocarriers,

leading to the desired separation of the released dexamethasone from the nanocarriers.
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where rNI is the transition rate of going from state N to state I and analogous

for the other rates. Two properties are used to simplify the set of equations

(2-5). One is the conservation of the total amount of drug,

ΦN (t) + ΦI(t) + ΦM (t) + ΦO(t) = 1. (6)

The other is the rate symmetry

rMI = rMO, (7)

which reflects that the inner and outer membrane surfaces have identical prop-

erties and areas. Note that we neglect any diffusive process inside the solutions,

the nanocarriers and the membrane. This means that we assume the membrane

to be relatively thin and the solutions to be well-mixed. We also neglect the

finite drug loading capacity of the nanocarriers, which would lead to non-linear

effects. This assumption is justified since the nanocarriers are only loaded with

a few dexamethasone molecules at the beginning of the release experiments and

thus should be far from their loading capacity, as we will demonstrate in the Dis-

cussion section at the end. Using eq. (6) and (7), the simplified set of equations

is given by:

Φ̇N (t) = −rNIΦN (t) + rINΦI(t), (8)

Φ̇I(t) = − (rIM + rIN) ΦI(t)+rNIΦN (t)+rMI (1− ΦI(t)− ΦO(t)− ΦN (t)) , (9)

Φ̇O(t) = −rOMΦO(t) + rMI (1− ΦI(t)− ΦO(t)− ΦN (t)) . (10)

In the calibration experiments in the absence of CMS nanocarriers, the above

system reduces to a three-state model (I ↔ M ↔ O) which is fully described

by the two equations:

Φ̇I(t) = −rIMΦI(t) + rMI (1− ΦI(t)− ΦO(t)) , (11)

Φ̇O(t) = −rOMΦO(t) + rMI (1− ΦI(t)− ΦO(t)) . (12)

6



The solution of equations (11-12) for the initial condition Φ0
I ≡ ΦI(0) = 1 (an

explicit derivation is found in the supplement) can be given in terms of the

Laplace transform of ΦO, denoted as Φ̃O:

Φ̃O(s) ≡
∫ ∞
0

ΦO(t)e−stdt =
rIMrMI

s(s− s1)(s− s2)
. (13)

The roots s1 and s2 are given as:

s1 =
1

2

(
−rIM − 2rMI − rOM −

√
r2IM + 4r2MI − 2rIMrOM + r2OM

)
, (14)

s2 =
1

2

(
−rIM − 2rMI − rOM +

√
r2IM + 4r2MI − 2rIMrOM + r2OM

)
. (15)

One can further reduce the number of parameters to two by invoking the relation

VIrIM = VOrOM, (16)

which reflects that the rate for a drug molecule to hit the membrane from

the inside or outside solution is inversely proportional to the solution volume,

denoted by VI and VO. After back transforming eq. (13) we find the time

dependent fraction of dexamethasone outside the dialysis bag, ΦO(t), as

ΦO(t) = rIMrMI
s1 − s2 + s2e

s1t − s1es2t

s1s2(s1 − s2)
, (17)

which depends on only two parameters, rIM and rMI, since VI = 0.6 ml and

VO = 30 ml are known experimental parameters. This function is used as the

model function for fitting the release data from the calibration experiments in

the absence of CMS nanocarriers. The equilibrium fractions follow from the

stationary solution of equations (11-12) and are denoted by an asterisk:

Φ∗M
Φ∗I

=
rIM
rMI

, (18)

Φ∗M
Φ∗O

=
rIM
rMO

. (19)
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Since the inner and the outer solution have the same dexamethasone solubility,

the following relation for the equilibrium fractions holds:

Φ∗I
Φ∗O

=
VI
VO

. (20)

Using this assumption we can determine the equilibrium fractions as:

Φ∗I =
rMIVI

rIMVI + rMI(VI + VO)
, (21)

Φ∗O =
rMIVO

rIMVI + rMI(VI + VO)
, (22)

Φ∗M =
rIMVI

rIMVI + rMI(VI + VO)
. (23)

The equilibrium fraction of dexamethasone inside the dialysis membrane, Φ∗M ,

is called the retention fraction, and it plays an important role for the character-

ization of a dialysis membrane.

The solution of the rate equations in the presence of CMS nanocarriers is

more involved. The derivation involves the roots of a third order polynomial,

which we denote as s1, s2 and s3 and which depend on the transition rates.

A full derivation can be found in the supplement. Using that in the begin-

ning of the release experiment, the dexamethasone is inside the inner solution

(Φ0
N ≡ ΦN (0),Φ0

I ≡ ΦI(0),Φ0
N + Φ0

I = 1), the time dependent dexamethasone

fraction in the outside solution is given as

ΦO(t) = rIMrMI

[
es1t

(
rNI + s1Φ0

I

)
s1(s1 − s2)(s1 − s3)

+
es2t

(
rNI + s2Φ0

I

)
s2(s2 − s1)(s2 − s3)

+
es3t

(
rNI + s3Φ0

I

)
s3(s3 − s1)(s3 − s2)

− rNI

s1s2s3

]
. (24)

For the initial conditions we use the fact that the initial fractions Φ0
N and Φ0

I

are in equilibrium,
Φ0
N

Φ0
I

=
rIN
rNI

, (25)

which is in line with the fact that the experimental release data do not differ

significantly for the two different loading times, 30 s and 3 min (see Fig. 3a).
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From the maximal dexamethasone solubility in water, cmax
DMS = 0.075 mg/ml,

measured at room temperature, and the maximal total dexamethasone concen-

tration in aqueous solution including CMS of a concentration cCMS = 15 mg/ml,

cCMS
DMS = 0.173 mg/ml, we find the initial fraction in the inner solution, Φ0

I , as

Φ0
I = cmax

DMS/c
CMS
DMS = 0.43, (26)

and consequently the initial fraction in the nanocarriers, Φ0
N , as

Φ0
N = 1− Φ0

I = 0.57. (27)

Using the rates rIM and rMI that we determined from the calibration experiment,

our fit function has only one remaining unknown parameter which we choose

to be the rate at which dexamethasone is released from the nanocarriers to the

aqueous solution volume VI inside the dialysis bag, rNI .

We summarize all assumptions made in our theoretical description of the

experimental release kinetics:

1. In order for the description in terms of rate equations to be valid, the drug

concentration in each compartment has to be homogeneous. This means

that we neglect diffusion effects inside the solutions, in the nanocarriers

and in the dialysis membrane.

2. The total amount of drug in the system does not change throughout the

release experiment.

3. The loading of nanocarriers in solution prior to the release experiment

corresponds to thermodynamic equilibrium.

4. The membrane is thin, so that the rates rMI and rMO are equal.

5. The loading of the nanocarriers is far from their loading capacity so that

linear kinetics is valid.

3. Results

Dexamethasone release kinetics through dialysis membrane: calibration experi-

ment. We fit the average release data of the three runs of the calibration exper-
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Figure 2: a) Released fraction of dexamethasone outside the dialysis bag ΦO(t) from the cali-

bration experiment (points) in absence of CMS nanocarriers and the best estimated fit accord-

ing to eq. (17) (dashed line). The fit parameters are 1/rIM = 3 min and 1/rMI = 19 min. b)

Different curves for fixed 1/rMI = 19 min and 1/rIM = 1, 3, 10, 20, 30 min (violet, blue, green,

yellow, red). c) Different curves for fixed 1/rIM = 3 min and 1/rMI = 5, 10, 19, 30, 40 min

(violet, blue, green, yellow, red).
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iment in absence of CMS nanocarriers, denoted as ΦO, to eq. (17) using the in-

ternal function NonlinearModelFit of Mathematica (Version 10.4.0.0) [22]. The

squared reciprocals of the experimental errors, calculated according to eq. (1),

are used as weights for the model fit. Fig. 2a displays the release data measured

in the calibration experiment in the absence of CMS nanocarriers as well as a

plot of the fit function in eq. (17). We find that the release rate for dexam-

ethasone from the inner solution volume of the dialysis bag into the membrane

is rIM = 0.342 min−1 (1/rIM = 3 min) with an estimated standard error of

∆rIM = 0.053 min−1. The rate for dexamethasone going back from the dialysis

membrane into the inner solution volume is rMI = 0.052 min−1 (1/rMI = 19 min)

with an estimated standard error of ∆rMI = 0.005 min−1. The remaining rates

are calculated according to eq. (7) as rMO = rMI = 0.052 min−1 and eq. (16) as

rOM = rIMVI/VO = 0.007 min−1 (1/rOM = 146 min). The resulting equilibrium

fractions are Φ∗I = rMIVI/ (rIMVI + rMI(VI + VO)) = 0.017, Φ∗O = Φ∗IVO/VI =

0.868 and the membrane retention is Φ∗M = 1− Φ∗I − Φ∗O = 0.115. This means

that roughly 10 % of dexamethasone is in equilibrium retained in the mem-

brane, which is a significant fraction. The agreement between the data and

the fit function in Fig. 2a is not perfect, which might point to the relevance

of diffusion effects inside the dialysis membrane. Fig. 2b and 2c display curves

where one of the two parameters is fixed to the best fit parameter value and the

other is varied over a range of more than one order of magnitude. The curves

demonstrate that the fitting procedure is quite robust.

Dexamethasone release kinetics from CMS nanocarriers. We next use the re-

sults of the fit of the calibration experiment in the absence of CMS nanocarriers

for rIM and rMI to fit the time dependent fraction of dexamethasone ΦO(t) in

the presence of CMS nanocarriers inside the dialysis bag. We find the dexam-

ethasone transition rate from the nanocarriers to the aqueous solution volume

VI , to be rNI = 0.015 min−1 (1/rNI = 66 min) with an estimated standard error

of ∆rNI = 0.003 min−1. Fig. 3a displays the experimental release data for two

loading times 30 s and 3 min (yellow and green symbols) as well as release data
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Figure 3: a) Released fraction of dexamethasone outside the dialysis bag ΦO(t) from the

release experiment in the absence of nanocarriers (blue points) and including nanocarriers

(yellow points for 30 s loading time, green points for 3 min loading time) and the best estimated

fits (dashed lines). The green curve corresponds to a dexamethasone release rate from the

nanocarriers of rNI = 0.015 min−1 (τNI = 66 min). The other two parameters, fixed by the

calibration experiment, are τIM = 3 min and τMI = 19 min. b) Curves for different values

of τNI = 0, 10,20, 40, 66, 100, 150 min (violet, blue, light blue, green, yellow, orange, red),

τIM = 3 min and τMI = 19 min. c) Curves for fixed τNI = 66 min and various values of rMI and

rIM at a constant ratio, namely τIM/τMI = 0/0, 0.03/0.19, 3/19, 7/48, 15/97, 29/194 min/min

(red, yellow, green, light blue, blue, violet). We see that for τMI > τNI the release kinetics

slows down. If on the other hand the membrane release rate rMI becomes larger than the

nanocarrier release rate rNI, the release kinetics approaches a limiting functional form.
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measured in the calibration experiment in the absence of CMS nanocarriers

(blue symbols) together with the corresponding fit functions. Fig. 3b displays

curves for different transition rates rNI ranging from 150−1 min−1 up to the limit

of 1/rNI → 0 min. We again conclude that the fit is quite robust. In Fig. 3c,

we compare the experimental data with theoretical release curves for which the

membrane rates rMI and rIM are modified while keeping their ratio fixed. The

curves demonstrate pronounced deviations from the experimental data when

the membrane release rate rMI is significantly smaller than the nanocarrier re-

lease rate rNI. In this case the drug release kinetics becomes dominated by the

membrane transfer kinetics. In the opposite limit, when the membrane rate

rMI is larger than rNI, the curves approach a limiting functional form and the

drug release kinetics is dominated by the release from the nano carriers. We

see from this plot that for the experimental system studied by us, the kinetics

of nanocarrier release and membrane transfer occur on similar time scales and

thus are coupled. Clearly, for the robust analysis of dialysis release experiments

it is favorable to choose a membrane that has faster release kinetics than the

nanocarriers.

4. Discussion

By comparing experimental drug release data in the absence of nanocarriers

with release data including nanocarriers, we can unambiguously estimate the

release rate of dexamethasone from nanocarriers to be approximately rNI =

0.015 min−1, which corresponds to a release time of 1/rNI = 66 min. If we

compare the release time from nanocarriers with the membrane release time

1/rMO = 19 min, we find that they have the same order of magnitude. This

means that the effect of the membrane can not be neglected when modeling the

drug release kinetics from CMS nanocarriers in a typical dialysis experiment. It

transpires that one has to obtain all relevant kinetic parameters in a calibration

experiment in the absence of CMS nanoparticles in order to be able to fit the

more complex release of dexamethasone including nanocarriers.

13



We now compare our theoretical analysis of the dexamethasone release data

with a much simpler kinetic model. In Fig. 4 we show the result of a fit using

a single exponential decay given by

ΦO(t) = 1− e−rNIt. (28)

Eq. (28) can be deduced from our general model eq. (24) by taking the limits

rMO → ∞ and rIM → ∞, corresponding to infinitely fast membrane kinetics,

and using an initial condition Φ0
N = 1, meaning that initially dexamethasone is

entirely inside the nanocarriers. Fitting the experimental release data using this

simplified model, we obtain a nanocarrier release rate of rNI = 0.0083 min−1

with an estimated standard error of ∆rNI = 0.0012 min−1. This corresponds

to a release time of 1/rNI = 121 min, which is roughly two times larger than

the nanocarrier release time obtained from our more realistic four-state model,

which is 1/rNI = 66 min. We conclude, that neglecting the effect of the mem-

brane introduces a significant error in the resulting nanocarrier release rate. In

Fig. 4 we also see that the single-exponential fit does not describe the experi-

mental accurately over the entire time range, which we explain by the fact that

the experimental data exhibit multi-exponential decay.

A subtle point of release kinetics study is the fact that typical models assume

rapid mixing of the solution. In our release study we use a bioshaker in order to

meet this condition. It is important to note that diffusion of the drug without

shaking is not sufficiently fast to provide rapid mixing. For the sake of argument

we calculate the typical diffusion time of a dexamethasone molecule within a

spherical dialysis bag with a volume of 0.6 ml. The radius of the dialysis bag

follows from 0.6 · 10−6 m3 = 4
3πr

3 as r = 5.23 mm. Using Stokes’ law and

the Einstein relation, we find the diffusivity of a dexamethasone molecule as

DDMS = kBT/ (6πηrDMS) = (kB 310.15 K) /
(
6π 0.69 · 10−3 Pa s · 0.7 nm

)
=

0.48 nm2/ns, estimating the dexamethasone radius along the long axis as rDMS =

0.7 nm. Consequently the mean time for a dexamethasone molecule to travel a

distance of 5.23 mm is given by τ = r2/ (6DDMS) = 160 min. Interestingly, this

is more than two times larger than the release time of dexamethasone from the

14



30 s loading

3 min loading

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

t/min

re
le

a
s
e
d

fr
a
c
ti
o
n
Φ
O

Figure 4: A single-exponential decay according to eq. (28) is compared with the ex-

perimental release data including nanocarriers. The obtained nanocarrier release rate is

rNI = 0.0083 min−1, which is only half as large as the rate obtained from the full four-

state model rNI = 0.015 min−1. In addition to the best fit corresponding to 1/rNI = 121 min

(green), we show curves for the different values 1/rNI = 30, 66, 200, 300 min (violet, light blue,

yellow, red).
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CMS nanocarriers 1/rNI, showing that indeed mixing of the inside of the dial-

ysis bag is important in order to be able to model the experiment by a simple

four-state model.

In order to obtain the nanocarrier loading rate per nanocarrier r̃IN we divide rIN

by the nanocarrier molar concentration in the inner solution volume. The mo-

lar concentration of CMS nanocarriers nCMS follows as nCMS = cCMS/MCMS =

(15 mg/ml) / (163.8 kg/mol) = 91.6 mmol/m3. The transition rate coefficient

r̃IN follows as

r̃IN =
rIN
nCMS

= 217
ml

min mmol
≈ 3.62

l

s mol
. (29)

This rescaled loading rate does not depend on the concentration of CMS nanocar-

riers.

Finally, we estimate the chemical potential of a dexamethasone molecule inside

a CMS nanocarrier. Assuming that the CMS nanocarriers have the same density

as water we estimate the total nanocarrier volume as VN = (cCMS · 0.6 ml) /cH2O =

(15 mg/ml · 0.6 ml) / (1000 mg/ml) = 9 µl. We calculate the number of CMS

nanocarriers in 0.6 ml solution with a nanocarrier concentration of cCMS =

15 mg/ml as NCMS = (cCMS · 0.6 ml) / (163.8 kg/mol/NA) = 3.31 · 1016, NA

being the Avogadro constant. By dividing VN by the number of nanocarriers in

the system, we deduce the volume of a single nanocarrier as

ṼN = VN/NCMS =
9 µl

3.31 · 1016
= 272.0 nm3, (30)

corresponding to a radius rCMS = 4 nm. We can calculate the number of dex-

amethasone molecules in 0.6 ml of solution from the experimental concentration

cCMS
DMS = 0.173 mg/ml as NCMS

DMS =
(
cCMS
DMS · 0.6 ml

)
/ (392.46 g/mol/NA) = 1.59 ·

1017. Using the fact that the concentration outside the nanocarriers corresponds

to the maximal solubility cmax
DMS, we can define the dexamethasone concentration

inside the nanocarriers cNDMS via cCMS
DMS ·0.6 ml = cNDMS ·VN +cmax

DMS ·(0.6 ml−VN ),

which leads to

cNDMS = 6.61 mg/ml. (31)
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The number of dexamethasone molecules per nanocarrier is obtained by multi-

plying the concentration cNDMS by the volume of a single nanocarrier, ÑN
DMS =

cNDMS · ṼN/ (392.46 g/mol/NA) = 2.76. We conclude that the number of dexam-

ethasone molecules per nanocarrier is quite small, validating our linear theoret-

ical description of the experimental data.

The equilibrium loading constant is obtained by dividing the dexametha-

sone concentration inside a nanocarrier by the concentration of dexamethasone

in aqueous solution, K = cNDMS/c
max
DMS = (6.61 mg/ml) / (0.075 mg/ml) = 88.

From the equilibrium constant, we deduce the chemical potential of dexametha-

sone in a nanocarrier as

K = e−µ/(kBT ) =⇒ µ = −4.48 kBT. (32)

We see that dexamethasone strongly prefers the interior of a nanocarrier com-

pared to the aqueous solution, which demonstrates that nanocarriers are highly

efficient for storing and transporting hydrophobic drugs in an aqueous environ-

ment. It is interesting to compare the dexamethasone chemical potential inside

a nanocarrier with the dexamethasone octanol-water partition coefficient, which

is given by logP = 1.83 [23]. Since log(K) = 1.94 is fairly close to the dexam-

ethasone logP value, we conclude that CMS nanocarriers provide a lipophilic

nano-environment that is quite similar to octanol.
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