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Abstract  

Superparamagnetic iron oxide nanoparticles (SPIOs) as contrast agents in magnetic resonance imaging 

(MRI) have been the subject of extensive research over the past decades. SPIOs are of characteristic sizes 

ranging from 1 to 100 nm in at least one dimension and are composed of iron oxide cores that are coated 

with different biodegradable materials. Due to their unique magnetic and physicochemical properties, the 

list of experimental and clinical research applications of SPIOs has further expanded. However, crucial 

information regarding interactions of clinically applied SPIOs with cells of the central nervous system (CNS) 

and potential toxic effects is still lacking. This is of particular importance because SPIOs are capable of 

penetrating biological barriers, such as the blood-brain barrier and blood-placenta barrier.  

The aim of this study was to investigate the morphology and viability as well as the cytokine and chemokine 

secretion profile of murine primary brain cells that were exposed to clinically relevant SPIOs of different 

sizes and compositions. For this purpose, I used primary cell cultures of microglia and hippocampal neurons 

cultured in monocultures and neuron-glia co-cultures. I exposed these primary cells to varying 

concentrations of two novel very small iron oxide particles (VSOPs) that have already passed clinical phase 

II trials, or the clinically approved SPIOs ferucarbotran or ferumoxytol for 6 and/or 24 hours, respectively. I 

show that SPIO accumulation by primary brain cells strongly depends on the cell type, exposure condition 

as well as particle type. Primary microglia strongly accumulated the smallest, citrate-coated VSOPs and 

the largest, carboxydextran-coated ferucarbotran but not the medium-sized, carboxymethyldextran-coated 

ferumoxytol verified by intense Prussian blue staining. Using immunocytochemistry, I show that SPIO 

accumulation causes morphological alterations from a ramified to an amoeboid shape, indicating microglial 

activation. Propidium iodide staining revealed that microglial viability was severely compromised, 

especially, when cells were exposed to high SPIO concentrations of 1.5 and 3.0 mM and incubated for 24 

hours. While ferumoxytol was only moderately accumulated by microglia without significantly affecting 

viability, it still induced morphological alterations. Just as detected for microglia, only VSOPs and 

ferucarbotran, but not ferumoxytol, are accumulated by primary neurons, especially, after exposure to the 

highest iron concentration of 3.0 mM. However, all SPIOs, independent of the particle size, composition 

and the applied iron concentration severely affected the morphology of primary neurons from monocultures 

after 24 hours of exposure, which is revealed using Sholl analysis. Neurons cultured without glial cells show 

reduced number of neurites and increased numbers of degenerated cells in comparison to untreated 

neurons. In contrast, SPIO exposure of neurons in neuron–glia co-cultures seems to have a stimulatory 

effect on neurites. However, the analyses of secreted cytokines and chemokines secretion does not show 

any tendencies of SPIO-mediated effects. From the represented data I conclude that the effect of SPIOs 

on brain cells not only strongly depends on the respective nanoparticle type and concentration but also on 

the physiological microenvironment they are applied to.  
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German Abstract 

Die Verwendung von superparamagnetischen Eisenoxid-Nanopartikeln (SPIOs) als Kontrastmittel in der 

Magnetresonanztomographie (MRT) ist seit Jahrzehnten Gegenstand intensiver Forschung. SPIOs 

bewegen sich in einer charakteristischen Größenordnung, die in mindestens einer Dimension zwischen 

1 bis 100 nm liegt. Sie bestehen aus Eisenoxidkernen, die mit unterschiedlichen, biologisch abbaubaren 

Materialien beschichtet sind. Aufgrund der einzigartigen magnetischen und physikochemischen 

Eigenschaften von SPIOs nimmt die Liste der potentiellen Anwendungsmöglichkeiten in der 

experimentellen und klinischen Forschung stetig zu. Jedoch fehlen bislang grundlegende Informationen 

hinsichtlich der Wechselwirkung von SPIOs mit Zellen des zentralen Nervensystems (ZNS) und der 

potentiell toxischen Auswirkungen. Dies ist von außerordentlicher Relevanz, denn SPIOs können 

entsprechend ihrer Komposition biologische Barrieren, wie z.B. die Blut-Hirn-Schranke und Blut-Plazenta-

Schranke überwinden. Aus diesem Grund war es Ziel meiner Untersuchungen sowohl die Morphologie und 

Vitalität von primären Hirnzellen als auch den Einfluss auf die Sekretion von Zytokinen und Chemokinen 

nach Inkubation mit klinisch relevanten SPIOs unterschiedlicher Größe und Zusammensetzung zu 

erforschen. Zu diesem Zweck verwendete ich primäre Zellkulturen von Mikroglia und hippocampalen 

Neuronen, die in als Monokultur oder Neuron-Glia Co-Kultur gezüchtet wurden. Die primären Zellkulturen 

wurden jeweils für 6 und/oder 24 Stunden, zum einen, mit neuartigen ‚Very Small Iron Oxide Nanoparticles‘ 

(VSOPs), welche die klinische Prüfungsphase II durchlaufen haben und, zum anderen, mit den klinisch 

geprüften SPIOs Ferucarbotran und Ferumoxytol inkubiert. Ich zeige, dass die Akkumulation von SPIOs 

durch primäre Hirnzellen vom jeweiligen Zelltyp, der Expositonsbedingung und dem Partikeltyp abhängen. 

Anhand der Berliner Blau Färbung wird deutlich, dass die kleinsten, Zitrat-beschichteten VSOPs und das 

größte, Carboxydextran-beschichtete Ferucarbotran, jedoch nicht das Carboxymethyldextran-beschichtete 

Ferumoxytol mittlerer Größe, verstärkt von Mikroglia akkumuliert werden. Mithilfe der Immunzytochemie 

weiße ich nach, dass SPIO-Akkumulationen morphologische Veränderungen primärer Mikroglia, von einem 

ramifizierten zu einem amöboiden Phänotyp bewirken. Die Propidiumiodid-Färbung beweist, dass die 

Vitalität von Mikroglia insbesondere durch hohe Partikelkonzentrationen von 1.5 und 3.0 mM und einer 

Inkubationsdauer von 24 Stunden stark beeinträchtigt wird. Obwohl Ferumoxytol kaum aufgenommen und 

die Vitalität von Mikroglia nicht gravierend beeinflusst wird, zeigen sich morphologische Veränderungen. 

Inkubation von primären Neuronen mit VSOPs und Ferucarbotran, nicht jedoch Ferumoxytol, weist vor 

allem bei hohen Eisenkonzentration von 3.0 mM Partikelablagerungen auf. Die Sholl-Analyse von 

Neuronen aus Monokulturen zeigt, dass die neuronale Morphologie nach 24-stündiger SPIO-Inkubation 

unabhängig von der Partikelgröße, Komposition und eingesetzter Eisenkonzentration gravierend 

beschädigt ist. Dies spiegelt sich anhand einer verringerten Anzahl von Neuriten und einer erhöhten Zahl 

degenerierter Zellen im Vergleich zu unbehandelten Neuronen wieder. Im Gegensatz dazu ist bei Neuronen 

aus Co-Kulturen nach SPIO-Exposition ein stimulierender Effekt auf Neuriten zu beobachten. Jedoch zeigt 

die Zytokin- und Chemokin-Analyse keine Tendenzen bezüglich SPIO-vermittelter Effekte. Die 

vorliegenden Ergebnisse lassen darauf schließen, dass der Einfluss von SPIOs auf Hirnzellen nicht nur 

vom jeweiligen Partikeltyp und Eisenkonzentration, sondern auch vom physiologischen System abhängt. 
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1 Introduction  

1.1 Nanoparticles 

A broad range of products in daily use include materials that are produced with the assistance of 

nanotechnology (Buzea et al. 2007; Kessler 2011; Contado 2015). These engineered materials exhibit 

sizes on a nanoscale level measuring between 1 to 100 nm in at least one dimension (Oberdorster et al. 

2005; Pettitt and Lead 2013). By virtue of their small size and resulting high surface-to-volume ratio, 

nanomaterials exert exceptional biological properties that differ substantially from larger scale particles of 

the same composition (Nel et al. 2006; Buzea et al. 2007; Contado 2015). These include increased 

chemical reactivity and bioavailability compared to their macroscopic counterparts. Since manufacturing 

began in the 1980s, nanomaterials have been exploited in a broad spectrum of applications, ranging from 

material engineering via agriculture and consumer products to applications in medicine and healthcare 

(Buzea et al. 2007; Laux et al. 2018). In commercially available products, nanoscale materials as 

ingredients are predominantly used in the form of nanoparticles, such as silicon dioxide, titanium dioxide, 

zinc oxide, nanosilver and iron oxide to improve product quality of food, pharmaceutics and cosmetics 

(Buzea et al. 2007; Kessler 2011; Contado 2015). Despite great progress in nanoparticle characterization, 

which has benefitted various applications, oral and dermal uptake of nanoscale ingredients in consumer 

products as well as nanoparticle incorporation through inhalation has resulted in a growing concern about 

their potential toxicity and environmental impact (Oberdorster et al. 2005; Buzea et al. 2007; Laux et al. 

2018). For instance, inhalation of diesel exhaust nanoparticles has been shown to cause neuronal damage 

(Block et al. 2004; Levesque et al. 2011). Through systemic circulation, nanoparticles are distributed to 

various organs, including the brain, where their small size allows for microvascular penetration facilitating 

direct cell contact. Due to their ability to interact and cross biological barriers, such as the blood-brain barrier 

(BBB) and blood-placenta barrier (Lockman et al. 2004; Nel et al. 2006; Hu and Gao 2010; Wang et al. 

2010; Yang et al. 2010; Cartwright et al. 2012; Muller et al. 2018) , nanoparticle incorporation poses serious 

risks and unforeseen side effects to human health that are difficult to predict in advance. Concerns are 

attributed to their size and enhanced, surface-to-volume ratio-dependent adsorption, when considering 

dimensions of biological components (Figure 1). Cells of living organisms are between 10 to 200 µm in size 

and are composed of much smaller molecules, such as proteins measuring 5 to 50 nm or DNA measuring 

2 nm in diameter (Figure 1). In comparison, nanoparticles are in the size domain of viruses emphasising 

their potential to also affect subcellular processes (Figure 1) (Buzea et al. 2007).   
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Figure 1: Illustration of biological components compared in sizes ranging from nano- to micrometer on a 

logarithmic scale. Adapted from (Buzea et al. 2007) 

These size differences, however, made it possible to use nanoparticles as very small probes to directly 

observe and manipulate cellular components, which became of special interest in the field of biomedical 

research (Salata 2004; Gupta and Gupta 2005; Rumenapp et al. 2012; Ali et al. 2016). Here, nanoparticles 

consisting of iron oxide cores with attractive qualities, such as specific magnetization and beneficial physical 

and chemical properties were exploited (Wang et al. 2001; Gupta and Gupta 2005; Ali et al. 2016). 

Originally, iron oxide nanoparticles were intravenously administered for the treatment of iron deficiency 

anaemia (Cameron et al. 1951; Spinowitz et al. 2008; Lu et al. 2010). Rapid development in nanotechnology 

in combination with tailored surface engineering made it possible to utilize these particles in a broad range 

of experimental and clinical applications (Lin et al. 2008a; Ali et al. 2016).  

The fundamental reasons for the increased focus on iron oxide as compared to other metal oxide 

nanoparticles, such as cobalt, nickel and manganese, is due to their biocompatibility (Gupta and Gupta 

2005; Shubayev et al. 2009; Ittrich et al. 2013). Iron is the second most abundant transition metal on earth 

and is predominantly found as iron (III) oxide in the form of rust as brown coloured pigment because it 

readily combines with oxygen (Sadrzadeh and Saffari 2004; Ali et al. 2016). In the human body, iron is 

found bound to the heme protein in the form of haemoglobin of blood, myoglobin of muscles, and in iron-

containing enzymes, such as catalase and cytochromes, or it is found as a non-heme iron in blood plasma, 

bound to its transport glycoprotein transferrin or is deposited in the iron storage proteins ferritin and 



13 
 

 
 

hemosiderin (Lieu et al. 2001; Sadrzadeh and Saffari 2004). Additionally, iron participates in a wide range 

of highly regulated metabolic processes, including oxygen transport, hemoglobin and DNA synthesis, 

myelin formation and dendrite development (Lieu et al. 2001; Sadrzadeh and Saffari 2004). Its biological 

importance is due to its capability to obtain multiple redox states as ferrous (Fe2+) and ferric (Fe3+) iron via 

the Fenton reaction, which can also cause oxidative cell damage by generating reactive oxygen species 

(ROS), such as hydroxyl and superoxide radicals (Lieu et al. 2001; Sadrzadeh and Saffari 2004). 

Nevertheless, the physicochemical and magnetic properties of iron have diverted its potential as an iron 

oxide nanoparticle for biomedical applications. Progress in nanotechnology and science led to the 

fabrication of iron oxide nanoparticles of defined sizes and coated with different biocompatible materials in 

order to prevent their reaction with oxidizing agents and to specifically interact with tissues and cells (Gupta 

and Gupta 2005; Wu et al. 2015a; Ali et al. 2016). The most commonly found forms of iron oxide are 

hematite (α-Fe2O3), magnetite (Fe3O4) and its oxidized form maghemite (γ-Fe2O3) (Gupta and Gupta 2005; 

Laurent et al. 2008; Wu et al. 2015a; Ali et al. 2016). Only the latter two iron oxides have attracted attention 

in biomedical applications due to their specific magnetic properties at nanoscale size (Rumenapp et al. 

2012; Wu et al. 2015a). Iron oxide nanoparticles with cores in sizes below 20 nm exhibit a unique form of 

ferromagnetism, called superparamagnetism (Wang et al. 2001; Gupta and Gupta 2005; Rumenapp et al. 

2012; Ali et al. 2016).  

1.1.1 Superparamagnetic iron oxide nanoparticles (SPIOs) 

Superparamagnetic iron oxide nanoparticles (SPIOs) are a class of contrast agents in magnetic resonance 

imaging (MRI) that significantly improve tissue discrimination by influencing proton relaxation times and, 

thereby, increase MRI sensitivity (Wang et al. 2001; Weinstein et al. 2010; Ittrich et al. 2013; Shokrollahi 

2013). SPIOs are comprised of crystalline ferri- (Fe3+) and ferro- (Fe2+) magnetic cores in the form of Fe3O4 

and γ-Fe2O3 (Wang et al. 2001; Gupta and Gupta 2005). By virtue of their small size, these ferromagnetic 

particles lose their permanent magnetism. Instead, they exhibit superparamagnetism, which refers to the 

special ability of the iron oxide cores to be magnetized in the presence of an external magnetic field and to 

completely lose magnetization once the magnetic field has been removed (Hendrick and Haacke 1993; Di 

Marco et al. 2007). The superparamagnetism-based large magnetic susceptibility of SPIOs strongly affects 

the relaxivity of surrounding tissue in MRI, which results in a strong tissue contrast (Wang et al. 2001; 

Taupitz et al. 2003; Wang 2011; Ittrich et al. 2013). Using SPIO-based contrast agents, a higher spatial 

resolution and diagnostics accuracy can be achieved compared to similar concentrations of conventional 

used paramagnetic gadolinium-based contrast agents (GBCAs) in clinical practice (Ittrich et al. 2013; 

Shokrollahi 2013; Pierre et al. 2014).  

At present, GBCAs, for instance Magnevist® (Bayer Schering Pharma AG), are predominantly used for 

clinical MRI (Shokrollahi 2013; Pierre et al. 2014). GBCAs consist of the rare earth element gadolinium, 

which is complexed with chelates, such as gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) 

because bare gadolinium ions are highly toxic. Although GBCAs provide an excellent tissue contrast, they 

are rapidly eliminated by the kidneys after intravenous administration and they do not allow for specific 

imaging of organ or tissue pathologies (Shokrollahi 2013). Furthermore, GBCAs bear the risk of causing 
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nephrotic systemic fibrosis in patients with impaired kidney function or renal insufficiency (High et al. 2007; 

Neuwelt et al. 2009; Ittrich et al. 2013). Moreover, findings about deposition of GBCAs within the brain and 

induced neurotoxicity raised concerns about their administration (Feng et al. 2010; Kanda et al. 2016; 

Gulani et al. 2017; Pasquini et al. 2018). For this reason, SPIOs appeared to be an attractive alternative 

with a better safety profile (Neuwelt et al. 2009; Chen et al. 2015; Iv et al. 2015; Wei et al. 2017). SPIOs 

have also been used in combination with GBCAs for pre-therapeutic evaluation in order to achieve higher 

accuracy with MRI (Weinstein et al. 2010; Shokrollahi 2013; Mao et al. 2016). 

Apart from their unique magnetic properties, the use of SPIOs as contrast agents in MRI further necessitate 

a biocompatible surface coating, which isolates the bioactive iron to prevent interaction with blood plasma 

components and prolongs blood circulation time for target-specific imaging. Therefore, SPIOs are coated 

with polymers, such as dextran, carbohydrate derivatives, polyethylene glycol (PEG), albumin and starch, 

or monomers, such as citrate and dimercaptosuccinate (DMSA) (Wang et al. 2001; Taupitz et al. 2003; 

Gupta and Gupta 2005; Laurent et al. 2008). The coating material decisively determines the overall particle 

size because in aqueous solution a hydration layer that increases the effective particle diameter instantly 

surrounds surface-coated SPIOs. Thus, SPIO size is usually defined by its hydrodynamic diameter (Wang 

et al. 2001; Wu et al. 2015a). Most commercially available SPIOs are coated by biodegradable polymers 

that have a high affinity to iron and relatively large hydrodynamic diameters. In comparison, electrostatically 

stabilized SPIOs coated with monomers exhibit a much smaller surface area and, therefore, much smaller 

hydrodynamic diameters then polymer-coated SPIOs (Taupitz et al. 2004; Laurent et al. 2008; Ittrich et al. 

2013). According to their hydrodynamic diameter, SPIOs are categorized into different subgroups. Standard 

SPIO sizes in experimental and clinical applications range from 40 to 150 nm, whereas SPIOs in sizes 

around 20 to 40 nm are referred to as ultrasmall superparamagnetic iron oxide nanoparticles. The smallest 

group of SPIOs, called very small superparamagnetic iron oxide nanoparticles (VSOPs) exhibit 

hydrodynamic sizes below 10 nm (Wang et al. 2001; Taupitz et al. 2004; Wagner et al. 2011; Ittrich et al. 

2013). Size, surface coating and charge of SPIOs decisively determine their pharmacokinetics and organ 

distribution. Following intravenous injection, larger SPIOs with diameters above 100 nm are eliminated 

within minutes from circulation by resident, tissue-specific macrophages of the reticuloendothelial system 

(RES), which is comprised of the liver, spleen, lymph nodes and bone marrow (Taupitz et al. 2003; Saito 

et al. 2012; Ittrich et al. 2013; Ali et al. 2016). The RES is responsible for removing and degrading foreign 

elements, including pathogens and non-biological particles. As the total phagocytic capacity is 

predominantly implemented by resident macrophages in the liver, 80 – 90 % of intravenously injected 

SPIOs accumulate in this organ, and to a lesser degree in the spleen (5 – 8 %) and bone marrow (1 – 2 %) 

(Ittrich et al. 2013). In contrast, SPIOs smaller than 50 nm transiently escape recognition by macrophages 

and show a prolonged blood half-life of up to several hours (Roohi et al. 2012; Saito et al. 2012).  

With respect to the passive targeting of RES organs after intravenous injection, SPIOs with deliberately 

engineered physicochemical features have been explored as MRI contrast agents for visualizing 

pathological tissue alterations of liver and spleen for more than two decades (Taupitz et al. 2003; Weinstein 

et al. 2010; Ittrich et al. 2013). Through systematic modification in size and surface coating as well as 

surface functionalization with targeting ligands, such as antibodies, other fields of experimental and clinical 

SPIO applications have emerged. For example, SPIOs are of interest for cell-based therapies, where in 
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vitro labelling of stem or immune cells and in vivo tracking is investigated for MR imaging of inflammatory 

diseases (Ittrich et al. 2013). Here, VSOPs have been shown to yield superior labelling efficiency and 

visualization of mesenchymal stem cells, neuronal precursor cells, macrophages and T cells (Stroh et al. 

2006; Wuerfel et al. 2011; Poller et al. 2016a). By virtue of their superior uptake by phagocytic 

macrophages, SPIOs have been investigated as contrast agents to image inflammatory lesions in 

experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis (Petry et al. 2007; 

Ittrich et al. 2013; Millward et al. 2013). Especially, the diagnosis and treatment of CNS pathologies with 

the help of SPIOs is one main focus due to the significant challenge of delivering contrast agents for imaging 

into the brain (Silva 2010; Gendelman et al. 2015; Silva Adaya et al. 2017). Recently, SPIOs conjugated 

with appropriate antibodies have been shown to target amyloid beta plaques in an animal model for 

Alzheimer’s disease, where the blood-brain barrier is impaired (Yang et al. 2011b; Wadghiri et al. 2013; 

Zhang et al. 2015). Biomedical studies are also exploring SPIOs as drug carriers to bypass the blood-brain 

barrier, for specific tumour targeting and subsequent treatment using magnetic hyperthermia (Barbu et al. 

2009; Silva 2010; Chatterjee et al. 2011; Wahajuddin and Arora 2012; Iv et al. 2015). Furthermore, the 

feasibility of SPIO-based contrast agents are being tested for diagnosing cerebral ischemia, arteriosclerotic 

plaques, vascular thrombi and neurodegenerative as well as neuroinflammatory diseases (Weinstein et al. 

2010; Wagner et al. 2011; Ittrich et al. 2013).  

1.1.2 Clinically relevant SPIOs 

Currently, a small number of SPIOs differing in surface coating and charge are approved by the United 

States Food and Drug Administration (FDA) or the European Medicines Agency (EMA) as contrast agents 

for diagnostics with MRI (Ittrich et al. 2013; Gendelman et al. 2015; Iv et al. 2015; Anselmo and Mitragotri 

2016). These include the commercially available ferucarbotran (Resovist®, Meito Sangyo, Japan) and 

ferumoxytol (Feraheme®, AMAG Pharmaceuticals Inc., USA) (Reimer and Balzer 2003; Balakrishnan et 

al. 2009), which are used for preclinical and clinical applications (Taupitz et al. 2003; Weinstein et al. 2010; 

Ittrich et al. 2013; Toth et al. 2017).  

The EMA-approved carboxydextran-coated ferucarbotran, also known under the trade name Resovist®, 

with a hydrodynamic diameter of 60 nm has successfully been applied as a liver-specific contrast agent in 

clinical MRI to detect tissue pathologies (Table 1) (Reimer and Balzer 2003; Taupitz et al. 2003; Weinstein 

et al. 2010; Ittrich et al. 2013). Due to weak demand and marketing strategy, manufacturing of ferucarbotran 

has been discontinued in 2009 in Europe but it is still internationally available in pharmaceutical quality from 

Meito Sangyo in Japan (Yang et al. 2011a; Ittrich et al. 2013). Therefore, ferucarbotran is still under 

investigation for potential fields of application, including biomedical research (Yang et al. 2011a; Araya et 

al. 2013; Burkhart et al. 2016).  

Due to limitations in using GBCAs as mentioned in the previous section, ferumoxytol as one of the few 

clinically approved SPIO-based contrast agents represents a reliable alternative (Weinstein et al. 2010; 

Ittrich et al. 2013; Iv et al. 2015). The carboxymethyldextran-coated ferumoxytol, also known under the 

trade name Feraheme®, with a hydrodynamic diameter of 30 nm was originally developed as contrast 

agent for MRI but only holds FDA-approval for iron replacement therapy for treating iron-deficiency anaemia 
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in patients with chronic kidney disease (CKD) (Prince et al. 2003; Lu et al. 2010; Kowalczyk et al. 2011; 

Toth et al. 2017). For human MRI, vials of 17 ml containing ferumoxytol in isotonic formulation and  510 mg 

of elemental iron are diluted using saline to a total volume of 24 – 60 ml prior intravenous administration 

over 15 min (Vasanawala et al. 2016). Ferumoxytol is investigated for various clinical imaging applications. 

Off-label clinical use includes imaging of central nervous system (CNS) pathologies, where ferumoxytol is 

used as a blood pool-contrast agent to visualize vascular malformations and to create cerebral blood-

volume maps with MRI (Table 1) (Weinstein et al. 2010; Anselmo and Mitragotri 2016; Toth et al. 2017). 

Moreover, ferumoxytol is investigated for MRI of inflammatory CNS lesions to evaluate macrophage-rich 

brain regions (Weinstein et al. 2010; McConnell et al. 2016; Toth et al. 2017). Under pathological conditions 

with dysfunctional blood-brain barrier, ferumoxytol can be taken up by monocytes that infiltrate the brain or 

by brain resident microglia and astrocytes (McConnell et al. 2016). However, potential toxic effects of 

ferumoxytol after accumulating in the brain parenchyma have not been thoroughly investigated. The fact 

that ferumoxytol is being used beyond its approval for MRI of the CNS, including imaging of brain tumours 

in children and for cardiac MRI of neonates and young infants (Thompson et al. 2012; Ruangwattanapaisarn 

et al. 2015; Lai et al. 2017) emphasises the need for detailed studies concerning the impact on cells of the 

CNS. 

Apart from commercially available nanoparticles, preclinical studies are currently investigating the utility of 

substantially smaller VSOPs for advanced imaging approaches, such early stage clinical diagnostics and 

molecular imaging (Table 1) (Tysiak et al. 2009; Ittrich et al. 2013; Poller et al. 2016b). VSOPs are 

electrostatically stabilized particles and exhibit sizes of approximately 7 nm, which is achieved by monomer-

coating with citrate (Taupitz et al. 2004; Wagner et al. 2011). Citrate as a coating material is beneficial not 

only because of its influence on the effective particle size but also because it is an endogenous substance 

naturally occurring in mammals and is, thus, well tolerated and metabolized (Taupitz et al. 2000). The small 

size of VSOPs prolongs their blood circulation time and offers the advantage of an increased contact time 

with target tissues, which improves sensitivity of MRI and can be exemplified by VSOP-C184 (Ferropharm 

GmbH). Therefore, VSOPs were found to be suitable for vascular diagnostics with MR angiography (Taupitz 

et al. 2000; Taupitz et al. 2004; Weinstein et al. 2010; Wagner et al. 2011; Ittrich et al. 2013; Millward et al. 

2013). Moreover, VSOPs have been shown to target atherosclerotic lesion, enabling visualization of 

atherosclerotic plaques in MRI, which helps to assess the pathological mechanisms in atherogenesis 

(Ludwig et al. 2013; Wagner et al. 2013; Poller et al. 2016b). Another advantage of VSOPs is that their 

cellular incorporation is significantly increased compared to larger particles coated with polymers, such as 

ferucarbotran or ferumoxytol (Saito et al. 2012; Schweiger et al. 2012). Several studies have shown that 

VSOPs yield superior labelling efficiency and visualization of mesenchymal stem cells, neuronal precursor 

cells, macrophages and T cells (Stroh et al. 2006; Wuerfel et al. 2011; Poller et al. 2016a). Currently, 

different versions of VSOPs are under intensive investigation for cellular and molecular imaging, including 

VSOP-R1 and VSOP-R2 that were developed at the Institute for Radiology, Charité-Universitaetsmedizin 

Berlin (Taupitz et al. 2003; Wagner et al. 2011; Ittrich et al. 2013; Ludwig et al. 2013; Neubert et al. 2015; 

Poller et al. 2016a; Pohland et al. 2017).  
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These VSOPs are of special interest as MRI probes to detect various pathologies of the CNS and have 

been used to detect BBB breakdown and neuroinflammation in EAE (Tysiak et al. 2009; Millward et al. 

2013; Millward et al. 2017). Furthermore, VSOPs conjugated with targeting ligands, such as annexin A5 

allowed for visualization of apoptotic cells with MRI (Figge et al. 2014). Thus, the unique properties of 

VSOPs combine the advantages of prolonged blood circulation time needed to detect arteriosclerotic 

plagues (Ludwig et al. 2013; Wagner et al. 2013), improved detection of impaired BBB (Tysiak et al. 2009; 

Millward et al. 2013) and visualization of VSOP-labelled macrophages (Stroh et al. 2006; Wuerfel et al. 

2011) that migrate to inflammatory lesions. These examples illustrate the potential use of VSOPs for very 

new approaches to visualize different pathological events related to CNS inflammation. 

Table 1: Clinically relevant SPIOs. 

Generic name  

Trade name 

(synonym) 

 

Clinical 

dose  

(µmol 

Fe/kg) 

Blood half-

life 

Indication/ MRI  Manufacturer References 

Ferucarbotran  

Resovist® 

Cliavist® 

(SHU 555A) 

8 – 12  10 min  Liver lesions, 

spleen, bone 

marrow 

Meito Sangyo  (Reimer and Balzer 2003; 

Taupitz et al. 2003; 

Weinstein et al. 2010; 

Anselmo and Mitragotri 

2016) 

Ferumoxytol 

Feraheme® 

Rienso®  

(Code 7228) 

160 - 320 10 – 14 h  Iron deficiency 

anaemia, Imaging: 

brain & lymph 

node metastases, 

neuroinflammation 

in epilepsy, head/ 

neck cancer, 

myocardial 

infarction,  

multiple sclerosis 

AMAG 

Pharmaceuticals 

Inc. 

Takeda 

Pharmaceutical 

Company 

Limited 

(Weinstein et al. 2010; 

Anselmo and Mitragotri 

2016; Vasanawala et al. 

2016; Toth et al. 2017) 

VSOP-C184 15 – 75  

 

45 (bolus) 

30 – 60 min MR-angiography Ferropharm 

GmbH 

(2004; Taupitz et al. 

2004; Weinstein et al. 

2010; Ittrich et al. 2013) 

VSOP-R1  

(batch 080610) 

75 30 min MR-angiography 

Atherosclerotic 

plaque MRI 

Detection of early 

CNS inflammation 

Charité Institute 

of Radiology 

(Wagner et al. 2011; 

Millward et al. 2013) 
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Generic name  

Trade name 

(synonym) 

 

Clinical 

dose  

(µmol 

Fe/kg) 

Blood half-

life 

Indication/ MRI  Manufacturer References 

VSOP-C200 20 – 70  40 – 60 min Cell labelling and 

tracking 

Ferropharm 

GmbH 

(Stroh et al. 2006; 

Wuerfel et al. 2011) 

VSOP-R2  

(batch 050701) 

75 30 min MR-angiography 

Cell labelling and 

tracking 

Charité, Institute 

of Radiology 

(Tysiak et al. 2009; 

Ludwig et al. 2013; Poller 

et al. 2016a) 

 

1.2 Brain cells and primary cultures 

The brain consists of two main cell types, neurons and glia that vary in ratio across brain structures 

(Herculano-Houzel 2014; Peters and Connor 2014). In the CNS, the number of glial cells range from 40 to 

130 billion and the number of neurons reaches approximately 86 billion (Herculano-Houzel 2014; von 

Bartheld et al. 2016). The interconnected glial cells can be further divided into oligodendrocytes, astrocytes 

and microglia, supporting neurons metabolically and functionally (Kettenmann and Verkhratsky 2008). 

Primary cultures of brain cells obtained from rodent brains are convenient model systems to study 

influences on cellular morphology and viability as well as cell-cell communication under controlled 

conditions. In addition, primary cell cultures allow for direct investigation of distinct responses of individual 

cells, which is certainly more challenging within the complex cellular network of the brain. In order to more 

closely relate to the in vivo brain environment, co-cultures of primary neurons and glial cells provide a 

practical alternative, which also prevents the necessity for animal experiments (Gordon et al. 2013). 

Importantly, interactions of neurons and glial cells are crucial for maintaining neuronal vitality 

(Schmalenbach and Muller 1993; Park et al. 2001). The use of primary brain cell cultures, either cultivated 

individually or in co-culture with other cell types has made major contribution to understand their functions 

within the brain. 

In the following sections, the focus will be on the main characteristics, including morphology, physiology 

and partly pathology of neurons and microglia.  

1.2.1 Neurons 

Neurons are highly polarized cells in the CNS with the ability to communicate specifically and rapidly with 

each other and other brain cells through their unique excitability (Craig and Banker 1994; Peters and 

Connor 2014). In the course of neuronal development, neurons sprout and elongate two types of 
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morphologically and functionally distinguishable processes. Each neuron comprises several widely ramified 

dendrites that constitute the receptive field and one long tubular axon that propagates electrical signals 

(Barnes and Polleux 2009; Peters and Connor 2014). After neuronal development is complete, synapses 

at branched terminals of an axon and spines on dendritic branches are formed, establishing a complex 

network of interconnected neurons (Barnes and Polleux 2009; Biffi et al. 2013). Impulse propagation 

throughout the neuronal network depends partly on the capacity of incoming signals to depolarize the 

neuronal membrane, whereas the neuronal soma acts as an interface for signal integration and generation 

of action potentials (reference). Upon depolarization of the neuronal membrane and subsequent action 

potential generation at the axon hillock, the electrical signal is propagated towards the synapse. This results 

in an increase of intracellular calcium levels in the synapse and regulatory exocytosis of secretory vesicles 

containing neurotransmitters or neuromodulators (Scalettar 2006). Released neurotransmitters bind to their 

receptors of the postsynaptic neuron causing an excitatory or inhibitory response that subsequently affects 

further signal transmission.  

In vitro cell culture models of neurons have been frequently applied to study effects of a diverse range of 

stimuli, including nanoparticles on neuronal morphology and functionality (Oberdorster et al. 2005) 

1.2.1.1 Primary neuronal cultures  

Cultures of primary neurons can be prepared from different brain regions (Hansson et al. 1984). Primary 

cultures allow direct access for observation and manipulation of living neurons across days and weeks 

(Beaudoin et al. 2012). Furthermore, the physiological setting of neurons in culture is far less complex than 

in vivo (Beaudoin et al. 2012). A well-established model system to study neuronal differentiation and 

morphology are primary hippocampal neurons (Bradke and Dotti 2000; Kaech and Banker 2006; Biffi et al. 

2013). The hippocampus plays major roles in cognition, learning and memory and is significantly affected 

in a variety of neurological disorders, such as Alzheimer’s disease, epilepsy, schizophrenia, depression 

and stroke (Small et al. 2011; Anand and Dhikav 2012). The principle cell type in the hippocampus is the 

glutamatergic pyramidal neuron with its characteristic pyramidal-shaped morphology (Beaudoin et al. 

2012). They are some of the largest neurons in the brain and make up the vast majority of cells in the 

preparation (Kaech and Banker 2006). Morphologically, pyramidal neurons possess a long axon and a long 

apical dendrite originating from the apex as well as short basal dendrites emerging from the base of the 

cell body. Therefore, pyramidal neurons can easily be distinguished from smaller inhibitory interneurons 

(Kaech and Banker 2006; Beaudoin et al. 2012). Compared with most other regions of the CNS, the 

hippocampus in a late embryonic stage contains fewer glial cells than, for instance, the cortex and its cell 

population is relatively simple to differentiate (Fletcher and Banker 1989; Kaech and Banker 2006). 

Therefore, hippocampal neurons are predominantly isolated from embryonic mice (Kaech and Banker 

2006). Maintained in culture, embryonic neurons follow a common sequence of five developmental stages 

to acquire their polarity and form well-established synapses (Dotti et al. 1988; Fletcher and Banker 1989), 

allowing synaptic transmission and plasticity after 7 days in vitro (DIV7) (Ichikawa et al. 1993). The 

maintenance of hippocampal neurons in culture can be supported by glial cells providing trophic factors 

(Schmalenbach and Muller 1993; Kaech and Banker 2006). Therefore, culturing neurons together with 
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astrocytes and microglia as neuron-glia co-cultures improves viability and survival (Dotti et al. 1988; Park 

et al. 2001; Kaech and Banker 2006; Jones et al. 2012). In a classic co-culture model, an astroglial feeder 

layer is grown in cell culture plates. Hippocampal neurons grown on the underside of glass cover slips are 

then transferred into the culture (Kaech and Banker 2006; Jones et al. 2012). This neuron-glia co-culture 

system is a convenient approach to include the contribution of astrocytes to growing neurons (Jones et al. 

2012).  

1.2.2 Glial cells 

Glial cells of the CNS fulfil crucial functions in brain metabolism, development, immune surveillance, 

synapse formation, influencing of neuronal activity as well as the pathogenesis of neurological diseases 

(Kettenmann and Verkhratsky 2008; Herculano-Houzel 2014). Within the brain, there are four major 

populations of glia cell types, microglia, astrocytes, oligodendroglia and their progenitors, NG2-glia (Jakel 

and Dimou 2017). Only glial cells relevant in this thesis will be described in detail.  

1.2.2.1 Astrocytes 

In the brain, astrocytes are the most abundant cell type (Sofroniew and Vinters 2010; Oberheim et al. 2012; 

Gonzalez-Perez et al. 2015).  Due to their spatial proximity to each other, neurons and the vasculature, 

astrocytes modulate a variety of functions (Oberheim et al. 2012; Gonzalez-Perez et al. 2015; Liu et al. 

2017). For example, astrocytes maintain and influence the integrity of the BBB with their perivascular end 

feet (Abbott 2002). They also provide neuroprotection, for instance, through uptake and release of 

neurotransmitters (Liu et al. 2017). Similar to microglia, astrocytes become functionally activated in a 

gradated continuum of progressive cellular and molecular alterations as a response to all forms of CNS 

pathologies, including infection, trauma and neurodegenerative diseases (Sofroniew and Vinters 2010; 

Pekny et al. 2016; Liu et al. 2017). Astrocytes rapidly change their morphology and molecular expression 

in a process called reactive astrogliosis that can have beneficial roles or cause detrimental effects 

(Sofroniew 2014; Pekny et al. 2016; Liu et al. 2017). Reactive astrogliosis is also induced through damage 

of the BBB as a consequence of pathological processes, such as cerebral ischemia, multiple sclerosis and 

Alzheimer’s disease and can be used as a reliable marker of damaged tissue (Sofroniew and Vinters 2010; 

Sofroniew 2014; Liu et al. 2017). Morphologically, reactive astrocytes are characterized by variable degrees 

of hypertrophy of the cell body and processes, which is accompanied by limited proliferation and increased 

GFAP expression (Sofroniew and Vinters 2010; Oberheim et al. 2012; Liu et al. 2017). As a response to 

extreme levels of activation along borders of severe damage or inflammation, reactive astrogliosis leads to 

scar formation. To protect healthy tissue, the glial scars function not only as barriers for axon regeneration 

but also prevents invasion of inflammatory cells (Oberheim et al. 2012; Sofroniew 2014).  

Other important functions of astrocytes are the regulation of metal homeostasis in the brain and protection 

of neurons from metal-induced toxicity and oxidative stress (Tiffany-Castiglion and Qian 2001; Dringen et 

al. 2007; Macco et al. 2013; Pelizzoni et al. 2013; Migliore et al. 2015; Liu et al. 2017). Consequently, the 

interaction of metal-based nanoparticles with astrocytes has already been extensively investigated (Au et 
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al. 2007; Geppert et al. 2009; Ding et al. 2010; Geppert et al. 2011; Lamkowsky et al. 2011; Geppert et al. 

2012; Hohnholt and Dringen 2013; Hohnholt et al. 2013; Sun et al. 2013; Schaub et al. 2014; Migliore et al. 

2015; Petters et al. 2016). Therefore, a central focus of this thesis is on microglial cells and detailed 

information about their function in the brain presented is in the following section.   

1.2.2.2 Microglia  

Microglia are the immunocompetent cells in the CNS with unique functions under physiological and 

pathological conditions (Hanisch and Kettenmann 2007; Kettenmann et al. 2011; Walker et al. 2014; Sousa 

et al. 2017). Despite functional similarities, microglia represent a specialized cell population compared to 

non-parenchymal CNS macrophages, namely perivascular, meningeal and choroid plexus macrophages 

(Katsumoto et al. 2014; Goldmann et al. 2016). They are the only myeloid cells originating from 

erythromyeloid progenitors in the yolk sac (Ginhoux et al. 2010; Gomez Perdiguero et al. 2015). Microglia 

migrate into the CNS during early embryogenesis until the blood-brain barrier is formed and remain 

throughout adulthood via constant self-renewal (Ajami et al. 2007; Goldmann et al. 2016).  

Under physiological conditions, microglia fulfil a number of immunological and non-immunological functions 

crucial for brain development, adult neuroplasticity and neuroprotection (Town et al. 2005; Tay et al. 2017). 

During brain development, microglia are involved in the establishment of neuronal connectivity through 

synaptic pruning and refinement (Paolicelli et al. 2011). In the mature CNS, microglia can modulate activity-

dependent synaptic transmission, thereby influencing long-term synaptic plasticity that is essential for 

learning and memory processes (Parkhurst et al. 2013; Wu et al. 2015b). As active phagocytes, microglia 

are capable of eliminating apoptotic cells, cellular debris and invading pathogens (Rock et al. 2004; Walker 

et al. 2014; Casano and Peri 2015). Furthermore, microglia are the central communicators between the 

CNS and immune system. Through upregulation class-II major histocompatibility proteins (MHC-II) on their 

surface, microglia function as antigen presenting cells to T-cells and can also recruit macrophages from 

the periphery in response to infections and tissue damage in order to limit inflammation (Rock et al. 2004; 

Prinz et al. 2011). This diverse engagement of microglia is regulated by extracellular signals that activate 

microglial receptors and influence their release of trophic factors as well as pro- or anti-inflammatory 

mediators (von Zahn et al. 1997; Napoli and Neumann 2009; Kettenmann et al. 2011; Sousa et al. 2017). 

The disruption of physiological functions of microglia is critical for the onset and progression of neurological 

disorders, such as traumatic brain injury, ischemia and Alzheimer’s and Parkinson’s disease (Minghetti et 

al. 2005; Salter and Stevens 2017). Importantly, the prerequisite for specialized microglial functioning is the 

structural remodelling of their morphology (Walker et al. 2014).  

1.2.2.2.1 Microglial morphology and activation 

Microglia have a highly dynamic morphology and are not permanently connected to surrounding cells, 

which enables their rapid structural and functional response to changes in their extracellular milieu (Walker 

et al. 2014). Under physiological conditions, microglial morphology is characterized by small cell somata 

with little perinuclear cytoplasm and fine protrusions with extensively ramified processes. In this so-called 

‘resting’ state, microglia are actively surveying their parenchymal microenvironment by extending and 
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retracting their highly motile processes without disturbing neuronal circuity (Nimmerjahn et al. 2005). In this 

way, microglia are in intimate contact with nearby neurons, other glial cells and blood vessels and produce 

various neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), transforming growth factor-

β (TGF-β) and nerve growth factor (NGF) to maintain homeostatic balance (Hanisch and Kettenmann 2007; 

Ransohoff and Perry 2009; Kettenmann et al. 2011). Furthermore, the ramified and anti-inflammatory 

phenotype of microglia is partially maintained through endogenous signals, such as transcription factors 

like Runx1 or Irf1 and exogenous signals that include a number of neuron-derived signalling molecules, 

such as the chemokine fractalkine and the surface molecule CD200 (Biber et al. 2007; Eyo and Wu 2013; 

Kierdorf and Prinz 2013). These signals constitutively maintain microglia in their resting state and mainly 

suppress pro-inflammatory activity, but when absent alert microglia for potential danger that can lead to 

protective or detrimental microglial responses (Biber et al. 2007). Consequently, microglia directly react 

through reorganization of their morphological structure by sending their processes to the site of interest or 

by complete relocation (Hanisch and Kettenmann 2007; Walker et al. 2014). Microglia can shift structurally 

and functionally from a resting to an executive state of activation. This highly regulated and gradual process 

of microglial activation also involves complex genetic and functional changes and is dependent on the 

stimulus (Hanisch and Kettenmann 2007; Kettenmann et al. 2011). In the course of the activation process, 

microglia rapidly reduce and shorten their numerous processes, which is accompanied by an enlargement 

of their soma. Hence, microglia transform their morphology from a ramified to a rather amoeboid shape, 

which is required for motility, directed migration and proliferation as well as an increased secretory and 

phagocytic activity (Town et al. 2005; Hanisch and Kettenmann 2007; Walker et al. 2014). Activated, 

amoeboid microglia become efficient mobile effector cells that primarily serve host defence and 

neuroprotection through phagocytosis as well as the release of stimulus-specific signalling molecules. 

Furthermore, they can rearrange and increase the expression of cell surface receptors (Kettenmann et al. 

2011). For example, extracellular adenosine triphosphate (ATP) released upon cell damage is sensed by 

microglial purinergic receptors and induces microglial chemotaxis and eventually phagocytosis of apoptotic 

cells (Davalos et al. 2005). Microglia further recognize phosphatidylserine, an aminophospholipid that is 

externalized to the outer membrane of apoptotic cells assisting their clearance while promoting microglial 

release of anti-inflammatory cytokines, such as TGF-β (Minghetti et al. 2005; Sierra et al. 2013). Microglia 

also support neuroprotection by eliminating invading microorganisms via pattern recognition receptors, 

such as toll-like receptors, which induces phagocytosis and the release of pro-inflammatory mediators like 

tumour necrosis factor α (TNF-α), reactive oxygen species (ROS) and nitric oxide synthase-2 (Minghetti et 

al. 2005; Sierra et al. 2013). Although these factors are released to enhance microglial phagocytic activity 

and to prevent further damage, they may also exert neurotoxic effects. Elevated levels of pro-inflammatory 

cytokines TNF-α, IL-1β, IL-6 and IL-12 and neurotoxins including the pro-oxidant molecules nitrogen oxide 

(NO) and ROS have been implicated in the onset and progression of neurodegenerative disorders, such 

as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and amyotrophic lateral sclerosis 

(Minghetti et al. 2005; Lull and Block 2010; Smith et al. 2012; Walker et al. 2014). Here, increased or 

prolonged microglial activation accompanied by elevated levels of pro-inflammatory molecules proceeds to 

neuronal degeneration and further leads to progressive neuronal damage and propagation of disease. 

Microglial response to neuronal damage is termed reactive microgliosis, where microglia remain chronically 
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activated perpetuating microglial activation and neurotoxicity (Block et al. 2007; Lull and Block 2010). There 

is a critical balance between defence-orientated functions of activated microglia for neuroprotection and 

their deleterious contribution in neurodegeneration (Minghetti et al. 2005; Biber et al. 2007; Walter and 

Neumann 2009; Smith et al. 2012; Salter and Stevens 2017).  

1.2.2.3 Primary microglial cell cultures  

Cultures of murine or rat primary microglia are predominantly obtained from mixed glial cultures containing 

both, astrocytes and microglia (Saura et al. 2003; Floden and Combs 2007; Ni and Aschner 2010). Microglia 

are separated from primary astrocytes by mild agitation or trypsinization. Using the mild agitation method, 

microglia visible as small round cells are detached from a confluent primary astrocytic layer by shaking and 

are, subsequently, dispersed in the medium. The microglia-containing medium is then removed and cells 

can be seeded in separate cell culture plates (Ni and Aschner 2010; Tamashiro et al. 2012). When 

confluence is reached, primary microglia do not proliferate any longer and show ramified morphologies 

typical for resting microglia (Ni and Aschner 2010). Using mild trypsinization, astrocytes are detached and 

removed from confluent microglia (Saura et al. 2003). Both isolation procedures yield high purity of 

microglial cultures and large amounts of cells that are economical, fast and easy to reproduce (Saura et al. 

2003; Ni and Aschner 2010; Tamashiro et al. 2012). Microglial cultures obtained from postnatal animals of 

the same litter can be investigated under desired treatment conditions and compared with cell preparation 

replicates (Deierborg 2013). Cultured microglia can be analyzed, for instance, in terms of morphological 

alteration, including the state of activation and their pro- and anti-inflammatory cytokine secretion profile. In 

general, primary microglial cultures have been extensively used in pharmacological and biochemical 

studies to gain insights into their physiology and pathology (de Vellis and Cole 2012).  

1.3 Brain cells encountering SPIOs 

The ionic microenvironment within the CNS, essential for proper neural signalling, is protected from ions 

and molecules of the circulating blood by three barriers. These include the BBB formed by specialized 

endothelial cells, the blood-cerebrospinal fluid barrier formed by epithelial cells of the choroid plexus and 

the avascular arachnoid barrier formed by the arachnoid epithelium (Abbott et al. 2010). The BBB extents 

along the brain microvasculature, exhibiting the largest surface area for metabolic exchange. It consists of 

cerebrovascular endothelial cells connected through tight junctions as well as adherence junctions that 

restrict paracellular permeability across adjacent cells (Keaney and Campbell 2015). Together with 

astrocytic end-feet on the abluminal endothelial surface, pericytes and microglia, the BBB forms a dynamic 

neurovascular unit (Abbott et al. 2010; da Fonseca et al. 2014; Serlin et al. 2015). This unit prevents passive 

diffusion of hydrophilic molecules and ions from the blood but allows for free diffusion of lipophilic molecules, 

such as oxygen and carbon dioxide. For regulated entry and exit of metabolites, including glucose and 

amino acids, the BBB contains specific transcellular transport systems mediated through receptor protein 

carriers. For a selective uptake of macromolecules, such as hormones and enzymes, receptor-mediated 
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and adsorptive-mediated endocytosis occurs (Abbott 2002). Hence, the BBB constitutes a highly regulated 

boundary preserving homeostasis that is essential for a healthy CNS. 

Several reports in the literature have shown that nanoparticles can enter the CNS via different routes of 

exposure, including inhalation, dermal uptake and ingestion (Buzea et al. 2007; Oberdorster et al. 2009; 

Laux et al. 2018). For instance, intranasally inhaled nanoparticles were found to be transported into the 

brain by olfactory nerves after being deposited in the olfactory bulb (Wang et al. 2011; Wu et al. 2013b). In 

case of dermal penetration, incorporation and certainly injection, nanoparticles end up in the blood 

circulation and are distributed to various organs, such as the liver, spleen and brain (Oberdorster et al. 

2005; Buzea et al. 2007; Oberdorster et al. 2009). However, information about interferences with brain 

function or cytotoxic effects on neural cells associated with nanoparticle exposure has not been 

comprehensively explored. The reason for concern when using SPIO-based contrast agents is attributable 

to the fact that intravenously injected SPIOs are capable of easily, however, non-specifically pass cell- and 

tissue barriers, such as the BBB or blood-placenta barrier (Lockman et al. 2004; Wang et al. 2010; 

Cartwright et al. 2012; Kong et al. 2012; Hoff et al. 2013; Thomsen et al. 2013; Muller et al. 2018). By virtue 

of their size and surface chemistry, SPIOs have been shown to decisively influence their passage through 

the intact BBB (Lockman et al. 2004; Kim et al. 2006; Wang et al. 2010). As the brain endothelium 

represents an electrostatic barrier through its expression of negatively charged glycocalyx residues, anionic 

molecules are repelled if they do not target anionic transporters or receptors (Lockman et al. 2004). 

However, low doses of anionic nanoparticles smaller than 100 nm and cationic molecules, like positively-

charged nanoparticles are capable of interacting and locally disrupting the BBB, which was shown using 

an in situ rat brain perfusion model (Lockman et al. 2004). As the endothelium of BBB is almost completely 

covered by astrocytic end-feet, these cells likely encounter SPIOs first (Geppert et al. 2011; Lamkowsky et 

al. 2011; Thomsen et al. 2013). Nonetheless, microglia are also frequently found in close proximity to 

endothelial cells of the brain microvasculature, where their processes wrap and extend along vessels 

(Walker et al. 2014; Keaney and Campbell 2015). Thus, neurons and glial cells potentially encounter SPIOs 

following intravenous injection. 

SPIO penetration might also be a secondary result of the externally applied magnetic field through which 

those particles are unintentionally drawn across barriers or cell membranes. That certainly makes it much 

more difficult to predict consequences of diagnostically and therapeutically applied SPIOs on brain cells 

and the subsequent effects in the long term. Several publications using cell culture models of the BBB 

showed that 30 to 40 % of the applied SPIOs can overcome this barrier depending on the external magnetic 

force or/and surface coating (Dan et al. 2013; Hoff et al. 2013; Thomsen et al. 2013; Sun et al. 2014). Even 

in vivo studies on rodents have shown that 17 to 30 % of intravenously injected SPIOs can cross the intact 

BBB, whereas a magnetic field significantly increased SPIO penetration (Kong et al. 2012; Dan et al. 2013). 

Due to subsequent localization of SPIOs within endothelial cells, the mechanism for entry of SPIOs has 

been postulated to occur via transcellular trafficking (Ragnaill et al. 2011; Kong et al. 2012; Thomsen et al. 

2013).  

Consequently, penetrating or barrier-disrupting properties of SPIOs as well as their passive diffusion into 

the brain parenchyma must be investigated thoroughly for individual SPIO types to prevent potential 
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neurotoxic influences, for instance, by detrimental microglial activation. Available information about SPIO 

interactions with brain cells is still incomplete and serious concerns about potential toxic effects have been 

raised (Oberdorster et al. 2009; Hu and Gao 2010; Yang et al. 2010; Cupaioli et al. 2014). Decisive 

prerequisites have to be fulfilled in order to use SPIO-based contrast agents in clinical practice, which 

include research strategies with suitable in vitro models. An advantageous approach is utilizing primary 

brain cell cultures instead of immortalized cell lines because many important in vivo characteristics are 

preserved and, therefore, the actual impact of SPIOs on such cells is of greater biological relevance. 



26 
 

 
 

1.4 Aim of the thesis 

Today, there is still a lack of information concerning the cellular and molecular effects of SPIOs that are 

applied for clinical diagnostics or those that passed the first clinical trial phases. It is imperative to assess 

and link specific SPIO properties to potentially adverse particle interactions with brain cells. Therefore, this 

thesis explores the effects of novel VSOPs in comparison to commercially available ferucarbotran and 

ferumoxytol on the morphology and vitality of primary cell cultures of microglia and hippocampal neurons. 

In addition, neuron-glia co-cultures were used to test the impact of SPIOs under conditions that more closely 

reflect the environment within the brain. The first aim was to explore whether primary microglia and neurons 

in mono- and co-cultures accumulate SPIOs of varying composition when exposed to doses corresponding 

to those that are applied in clinical practice. Secondly, cellular morphology was investigated following SPIO 

exposure for 6 and/or 24 hours because morphological alterations can be used as indicators for adverse 

consequences. In addition, influences of SPIOs on cell viability and survival was investigated. Finally, 

cytokine and chemokine secretion profiles of all cell cultures, including astrocyte cultures, were examined 

to test whether certain types of SPIOs induce the release of pro- or anti-inflammatory mediators and, 

thereby, affect the communication between glial cells and neurons.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and media 

Product description Manufacturer  Article 
number 

2-Mercaptoethanol  Sigma M7522 

B27 Supplement Life technologies, Gibco 17504-044 

Chloroform Merck Millipore CAS 67-66-3 

DNase I Roche 11284932001 

Dulbecco's Modified Eagle Medium (DMEM)  Life technologies, Gibco  11995065 

Effectene transfection reagent  Qiagen 301425 

Ethanol (99.8 %) Carl Roth K928.4 

Fetal calf serum (FCS) Pan Biotech 3302-P291205 

Glucose Sigma G7021 

High-Capacity cDNA Archive Kit  Applied Biosystems, Carlsbad, 
CA, USA 

4374966 

Hank’s buffered salt solution (HBSS-/-: without 

calcium/ magnesium/ phenol red) 

Life technologies, Gibco  14170-088 

Hank’s buffered salt solution (HBSS +/+: with 

calcium/ magnesium/ phenol red) 

Life technologies, Gibco  14025-050 

Hoechst 10mg/ml Sigma 94403 

Immu-MountTM  Thermo Scientific 9990402 

Isopropanol Sigma 190764 

L-Glutamine Invitrogen 25030-024 

Lipopolysaccharide (LPS) Sigma L3024 

Milk powder  Carl Roth T145.2 

Minimal Essential Medium (MEM) Life technologies, Gibco 11095-080 

Nuclear fast red  Carl Roth N069.1 

Sodium citrate Carl Roth 3580.1 
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Sodium dihydrogen phosphate Merck Millipore 1.06346.1000 

Sodium hydroxide Carl Roth 6771.3 

Trypan blue dye Biochrom L6323 

Neurobasal Medium Life technologies, Gibco 21103-049 

Paraformaldehyde (PFA) Carl Roth 0335.3 

Penicillin/Streptomycin (Pen/Strep), 100 U/ml Pan-Biotech P06-07100 

Proteome Profiler Mouse Cytokine Array Kit, 

Panel A 

R&D Systems ARY006 

Prussian blue Sigma 03899 

Horse serum Pan-Biotech  P30-0702 

Poly-L-Lysin (PLL, 10 mg/ml) Sigma P6407 

Propidium iodide Carl Roth CN74.2 

Triton X-100 Sigma T8787-100ML 

TRIzolTM reagent Gibco 15596026 

Trypsin (2.5 %) Gibco 15090-046 

Trypsin-EDTA (0.25 %) Gibco 25200056 

Xylene Roth 9713.3 

 

2.1.2 Cell culture media 

Cell culture medium Composition 

Plating media for primary neurons (MEM+) 430 ml MEM  

15 ml Glucose solution, 20 % 

50 ml Horse serum 

5 ml Pen/Strep, 100x 

Growth medium for primary neurons 483,75 ml Neurobasal medium  

10 ml B27 Supplement, 50x 

1.25 ml L-Glutamine, 200 mM 

5 ml Pen/Strep, 100x 

Cell culture medium for primary microglia 
(DMEM+) 

444.5 ml DMEM 

50 ml FCS, 10 %   
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5 ml Pen/Strep, 100x  

0.5 ml 2-Mercaptoethanol, 50mM 

 

2.1.3 Buffers and solutions 

Solution Composition 

Borate buffer 6.18 g Boric acid 

1000 ml Millipore type II water 

Blocking solution 10 % FCS 

0.1 M PBS 

Fixative 4 % PFA 

15 % Sucrose  

0.2 M PB 

Permeabilization solution 0.1 % Triton X-100 

0.1 % Sodium citrate solution 

0.1 M PBS 

Phosphate buffer (PB), 0,2 M 
28,4 g Sodium dihydrogen phosphate (Na2HPO4) 

1000 ml Millipore type II water 

Phosphate buffered saline (PBS), 0,1 M 268.03 g/mol Sodium dihydrogen phosphate 

(Na2HPO4*7H2O) 

137.99 g/mol Sodium dihydrogen phosphate 

(Na2HPO4*H2O) 

pH 7.4 

Poly-L-lysine (PLL), 200 mg/ml 200 µg PLL, 10 mg/ml stock  

20 ml 0.1 M borate buffer/ 0.1 M PBS 

Propidium Iodide (PI), 5 µg/ml 5 mg PI, 500 µg/ml stock solution 

10 ml 0.1 M PBS 

Lipopolysaccharide (LPS), 0.1 µg/ml 10 mg/ml LPS stock solution 

1 µl in 1 ml DMEM+ 
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2.1.4 List of antibodies 

2.1.4.1 Primary antibodies 

Antigen Host Manufacturer Article number Dilution 

GFAP Rabbit Dako ASB-OAGA03280 1:1000  

SMI-32R Mouse Enzo Life Sciences, Inc. ABS219-0100 1:1000  

Tuj1 Mouse Covance MMS-435P 1:1000 

 

2.1.4.2 Secondary antibodies 

Antigen Host Manufacturer Article number Dilution 

CD11b-FITC Rat Miltenyi Biotec 130-081-201 1:200  

Alexa Fluor 488 Goat Life Technologies A-11029 1:1500  

Alexa Fluor 568 Goat Life Technologies A-11011 1:1500  

 

2.1.5 Hardware and software 

Product description Manufacturer 

ABI PRISM™ 7700 Sequence Detection System  Applied Biosystems 

ABI PRISM software Applied Biosystems 

Adobe Photoshop CS3 extended, version 10.0 Adobe Systems 

Binocular Leica 

CellSens Dimension Software, version 1.4.1 XV 

3.4, build 8624) 

Olympus 

Digital camera fluorescence microscope  

Olympus IX81: F-View II  

Olympus BX51:  MagnaFire 

Olympus 

Fluorescence microscope  Olympus 
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2.1.6 Equipment 

Product description Manufacturer 

Cell culture flasks, 75 cm2 Corning 

Dissecting set Fine Science Tools  

FalconTM  Conical Centrifuge Tubes Fisher Scientific 

Glass coverslips Menzel-Gläser 

Glass Pasteur pipettes Hirschmann Laborgeräte 

Microscope slides Corning 

Neubauer counting chamber Sigma 

Petri dishes Eppendorf 

Pipettes Eppendorf 

Olympus IX81 

Olympus BX51 

ECOSYS M3540idn multifunction printer Kyocera 

GraphPad Prism 5.0 software  GraphPad Software,  Inc. 

ImageJ 1.47v software  Wayne Rasband, National Institutes of Health 

Incubators (cell culture) Binder 

MagnaFire software, version 2.1B   Olympus 

Microsoft office  Microsoft Corporation 

Spectrophotometer  Thermo Scientific* Biomate 3 Fisher Scientific 

Thermo cycler Biorad 

Thermo shaker Eppendorf, Thermomixxer 

Centrifuge Eppendorf 



32 
 

 
 

Pipette tips Eppendorf 

Platform shaker Heidolph Polymax 2040 

Vortex shaker Janke & Kunkel, AL.16.P.0.10942 

Falcon™ Polystyrene Microplates (well plates) Fisher Scientific 

 

2.1.7 Iron oxide nanoparticles 

Very small superparamagnetic iron oxide particles (VSOPs) were synthesized by the Charité Institute of 

Radiology, and consist of monocrystalline iron oxide cores of magnetite (Fe3O4) and maghemite (γ-Fe2O3) 

coated with a monomeric citrate layer. Two types of VSOPs were applied: VSOP-R1, with a diameter of 

6.5 nm to 7.5 nm, comparable to commercially available VSOP-C184, and VSOP-R2, with a diameter of 

7.5 nm to 8.7 nm, comparable to commercially available VSOP-C200 (Stroh et al. 2006; Tysiak et al. 2009; 

Wagner et al. 2011; Wuerfel et al. 2011; Millward et al. 2013). These VSOPs have already been tested in 

human clinical trials up to Phase II (Taupitz et al. 2004; Wagner et al. 2011). For synthesis, 14 g ferrous 

chloride tetrahydrate and 28 g ferric chloride hexahydrate were dissolved in 0.4 M hydrochloric acid and 

then mixed with 310 ml 1.5 M sodium hydroxide. This mixture was stirred for 30 minutes, and then 22 g (for 

VSOP-R1) or 18 g (for VSOP-R2) citric acid monohydrate was added. After a further 30 minutes stirring at 

75°C, the mixture was cooled to RT and magnetically separated. Supernatant was withdrawn and sediment 

resuspended in Milli-Q® water, acidified with monosodium citrate (< pH 5), and then ultrafiltrated (30 kD). 

Iron concentration was adjusted to 0.5 M, and the final batch was heat-sterilized for 10 minutes at 100°C, 

resulting in a stable dispersion containing 60 g/L mannitol (Neubert et al. 2015). The VSOPs were about 

three times smaller than the ultrasmall particles described in the following. 

The ultrasmall SPIOs used were ferucarbotran (Resovist®; Bayer Schering Pharma, Germany) and 

ferumoxytol (Feraheme®; AMAG Pharmaceuticals, USA). Detailed information regarding the synthesis and 

characterization of ferucarbotran is described by Reimer and Balzer (Reimer and Balzer 2003) and of 

ferumoxytol by Balakrishnan et al (Balakrishnan et al. 2009). Briefly, ferucarbotran is a carboxydextran-

coated SPIO (27–35 mg/ml with an iron-to-carboxydextran ratio of 1:1) composed of approximately 

0.5 mol Fe/l, including 40 mg/ml mannitol and 2 mg/ml lactic acid, adjusted to a pH of 6.5. The overall 

hydrodynamic diameter of ferucarbotran is around 60 nm. Iron oxide cores of ferumoxytol are coated with 

carboxymethyldextran (polyglucose sorbitol carboxymethyl ether), exhibiting an overall hydrodynamic 

diameter of 30 nm (Neubert et al. 2015). An overview of the physicochemical properties of SPIOs used in 

this study given in Table 2. 
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Table 2: Physicochemical properties of applied SPIOs.  

Physicochemical 

properties 

VSOP-R1 VSOP-R2 Ferucarbotran Ferumoxytol 

Surface coating Citrate Citrate Carboxydextran  Carboxymethyl-

dextran 

Surface charge Anionic Anionic Anionic Neutral 

Iron (Fe) content 26.4 g Fe/l  

(0.473 M) 

27.2 g Fe/l 

(0.487 M) 

25.5 g Fe/L 

(0.457 M) 

29.99 g Fe/L 

(0.537 M) 

Iron oxide core size 4 nm 4 – 5 nm 4.2 nm 6 – 7 nm 

Hydrodynamic diameter 6.5 – 7.5 nm 7.5 – 8.7 nm 62 nm 28 – 32 nm 

2.1.8 Laboratory animals 

All mouse experimental procedures were carried out in accordance with the German Animal Welfare Act 

and European guidelines (2010/63/EU) for the use of laboratory animals, and were approved by the local 

regulatory authority of Berlin (Landesamt für Gesundheit und Soziales, LAGeSo: T0095/11). Pregnant and 

postnatal C57BL/6 mice were obtained from our central animal facility and kept under standard laboratory 

conditions (12 hour light/dark cycle, 55 % ± 15 % humidity, 22°C ± 1.5°C room temperature, and water ad 

libitum; enriched and grouped).  

2.2 Methods 

2.2.1 Primary glial cell cultures 

Prior to all cell preparations, glass coverslips for facilitating cellular adhesion were washed twice in distilled 

water and for one hour in 70 % ethanol. Coverslips were stored in 100 % ethanol and breamed. Culture 

flasks in sizes of 75 cm2 as well as 12-well plates and glass coverslips were coated with 200 µg/ml poly-L-

lysine (PLL; Sigma) overnight at 37°C and washed twice with sterile distilled water on the following day.  

Primary microglia were isolated from C57BL/6 mice at P0 - P2. After decapitation, brains were removed 

and collected in cold HBSS+/+ (Gibco). The medulla oblongata, the pia mater and arachnoid meninges 

were thoroughly removed; hemispheres were separated from each other and the cerebellum and collected 

in 15 ml cell culture tubes to numbers of maximum 10 brain pieces per tube. HBSS+/+ was carefully 

removed, brain tissue was washed once with cold HBSS-/- (Gibco) and incubated with 1 ml of 0.25 % 

trypsin-EDTA (Gibco) at 37°C for 12 min. Trypsinization was stopped by adding pre-heated DMEM+ (4.5 

g/l glucose, 200 mM L-glutamine, pyruvate) containing 10 % FCS, 1 % Pen/Strep und 0.1 % of 50 mM 2-

Mercaptoethanol. After the tissue settled down to the tube bottom, 4 ml DMEM+ and 20 µl DNase I 

(10 mg/ml; Roche) was added, respectively. Subsequent to careful homogenization using a 10 ml pipette, 

10 ml DMEM+ was added and the cell suspension was centrifuged for 1 min at 20 x g to eliminate non-
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dissociated tissue. Supernatants were transferred to new tubes and centrifuged for 5 min at 300 x g. The 

cell pellet was resuspended in 2 ml DMEM+ and further diluted to be plated in PLL pre-coated 75 cm2 cell 

culture flasks in densities of 1 x 106 cells in 8 ml, respectively. After 24 hours culture media was completely 

replaced by pre-heated DMEM+. The plated cell population consisting of microglia and astrocytes was kept 

in culture at 37°C and 5 % CO2 in culture for 8 to 10 DIV until microglia detached from the feeder layer of 

confluent astrocytes.  

Primary microglia were harvested by gentle agitation of the culture flasks. Cell suspension containing free-

floating microglia was removed, centrifuged for 5 min at 300 x g and the cell pellet was resuspended in pre-

heated DMEM+. Cell numbers were determined in a Neubauer counting chamber (Sigma) using trypan 

blue (Biochrom) exclusion staining to control microglial vitality. Primary microglia were seeded at densities 

of 2 × 105 cells per well in 1 ml DMEM+ in PLL-coated 12-well plates containing coverslips and maintained 

at 37°C and 5 % CO2 for 24 hours prior to the start of experiments.  

Primary astrocytes for neuron-glia co-cultures were prepared from C57BL/6 mice at P0 - P2 as described 

above. For trypsinization, 2 ml of 2.5 % trypsin (Gibco) and 200 µl DNase (10 mg/ml) was used and the 

tissue was incubated for 5 min at 37°C. Cells were dissociated with a 10 ml pipette, incubated for 10 min 

at 37°C and once again dissociated using a 5 ml pipette. Cells were resuspended in MEM+ plating medium 

and centrifuged for 5 min at 300 x g. The cell pellet was resuspended with a 2 ml pipette in MEM+ and the 

number of cells was determined using trypan blue dye in a Neubauer counting chamber (Sigma). Primary 

astrocytes were seeded in densities of 5 × 104 cells per well in PLL-coated six-well plates and maintained 

for 11 DIV until primary hippocampal neurons on PLL-coated coverslips were transferred to establish 

neuron-glia co-cultures. 

2.2.2 Primary hippocampal neuronal cultures and neuron-glia co-cultures 

Primary hippocampal neurons for monocultures and neuron-glia co-cultures were prepared from C57BL/6 

mice at E18. Pregnant females were sacrificed by cervical dislocation and uteri were transferred to petri 

dishes containing cold HBSS+/+. Embryonic brains were collected in cold HBSS+/+; the hippocampi of both 

hemispheres were carefully isolated and meninges thoroughly removed. Hippocampi were washed two 

times with HBSS-/- and enzymatically digested using 2.5 % trypsin in HBSS-/- at 37°C for 15 min. 

Trypsinization was blocked with 3 ml plating medium (MEM+). After adding 10 µl DNase I (10 mg/ml), the 

tissue was mechanically homogenized with a fire-polished Pasteur pipette. Following dissociation, the 

supernatant was transferred to a new tube and cells numbers were determined using a Neubauer counting 

chamber. Primary hippocampal neurons were plated in plating medium onto PLL-coated glass coverslips 

in 12-well plates with densities of 8 × 104 cells per well. After three hours of plating at 37°C and 5 % CO2, 

neurons were washed twice with sterile 0.1 M PBS and cultivated in 1 ml Neurobasal medium supplemented 

with 2 % B27, 0.5 mM L-glutamine and  100 U/ml penicillin, 100 μg/ml streptomycin at 37°C and 5 % CO2, 

respectively. Neurons were maintained at 37°C and 5 % CO2 for 10 DIV prior the start of experiments. 

For neuron–glia co-cultures, primary neurons on glass coverslips were transferred to astrocyte cultures on 

the day of preparation by placing them upside down on the plated astrocytes. After 7 DIV, one third of the 

media was replaced and neurons were maintained in co-culture for 10 DIV.  
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2.2.3 Transfection of primary neurons 

For ease of morphological analysis, primary neurons in mono- and co-cultures were transfected with 

enhanced green fluorescent protein (eGFP) (Invitrogen, Germany) 24 hour prior to SPIO exposure at 8 DIV. 

To introduce eGFP plasmid DNA into neuronal DNA, I applied Effectene Transfection Reagent (Qiagen) in 

conjunction with a special enhancer. The enhancer condensates the DNA, which is then coated with 

cationic lipids by the Effectene Reagent and subsequently incorporated by neurons. After incubation for 1 

hour at 37°C in 5 % CO2, the reagent was removed, cells were washed with sterile 0.1 M PBS, and 1 ml 

fresh growth medium was added to each well. Neurons were kept at 37°C in 5 % CO2 for 24 hours prior the 

start of SPIO exposure.  

2.2.4 Quantitative real-time PCR of neuron-glia co-cultures 

Identity and purity of primary cells in co-cultures were analysed by quantitative real-time (qRT-) polymerase 

chain reaction (PCR) that allows for quantitative analysis of relative gene expression levels (Jozefczuk and 

Adjaye 2011). In qRT-PCR, neuron-specific class III β-tubulin (Tuj1) determining neuronal origin, glial 

fibrillary acidic protein (GFAP) as a marker for astrocytes, and the ionized calcium-binding adaptor molecule 

1 (Iba1) as a marker for microglial cells were used. For RNA isolation, 3 ml of TRIzolTM reagent (Gibco) was 

added to neuron-glia co-cultures and incubated on a rocking platform shaker (Heidolph Polymax 2040) for 

5 min at RT. Primary cells were scraped in 1 M PBS and transferred into FalconTM Conical Centrifuge Tubes 

(Fisher Scientific). After adding 0.2 ml chloroform per 1 ml TRIzolTM reagent, the homogenate was incubated 

for 2 to 3 min at RT and centrifuged at 12000 x g for 15 min at 4°C. After centrifugation, three layers form, 

whereby the upper aqueous solution containing RNA was transferred to a new FalconTM tube. For RNA 

precipitation, 0.5 ml isopropanol per 1 ml TRIzolTM reagent was added, incubated for 10 min at RT and 

centrifuged at 12000 x g for 10 min at 4°C. The supernatant was discarded, the pellet washed with 1 ml of 

75 % ethanol per 1 ml TRIzolTM reagent for lysis. Subsequently, the pellet was vortexed briefly and 

centrifuged at 7500 x g for 5 min at 4°C. The resulting pellet was dried for 5 to 10 min, resuspended in 100 

µl of Millipore type II water to solubilize the RNA and immediately put on ice. Concentration and purity 

measurement of the total RNA isolated was determined by spectrophotometric analysis (Thermo Scientific* 

Biomate 3 spectrophotometer, Fisher Scientific). For cDNA synthesis, the High-Capacity cDNA Archive Kit 

(Applied Biosystems) was used, containing components for reverse transcription of total RNA to single-

stranded cDNA. A master mix was prepared, containing 5 µg total RNA, 10X Reverse Transcription Buffer, 

25X deoxynucleotides, 10X primers and adjusted with Millipore type II water to a final volume of 50 µl. 

Subsequently, the mix was pipetted into a 96-well plate. As control condition, the reaction was performed 

without MultiScribe Reverse Transcriptase (50 U/µl). The thermal cycler was programmed for the first step 

10 min at 25°C and a second step for 120 min at 37°C. The quality of the amplified cDNA (with and without 

MultiScribe reverse transcriptase) was controlled by β-actin PCR. cDNA was diluted 1:5 with RNase, 

DNase-free water and stored at −20°C. Reverse transcriptase qRT-PCR was performed with the following 

gene expression assays: Tuj1 (assay ID Mm00727586_s1), Iba1 (assay ID Mm00479862_g1), GFAP 

(assay ID Mm00546086_m1), glycerinaldehyd-3-phosphat-Dehydrogenase (GAPDH) (assay ID 

4352932E) and β-actin (assay ID 4352933E) (Applied Biosystems). For HPRT, separate primer and probe 
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were used (Primer Mix for 5′-ATCATTATGCCGAGGATTTGGAA-3′; rev 5′-TTGAGCACACAGAGGGCCA-

3′ and probe 5′-TGGACAGGACTGAAAGACTTGCTCGAGATG-3′). The PCR was run on the ABI PRISM™ 

7700 Sequence Detection System (Applied Biosystems) and data obtained were processed by ABI PRISM 

software. Standard curves were created by serial dilutions of cDNA from P10 mouse cortex with 

amplification efficiency between 90 % and 100 %. Data were normalized to two different house-keeping 

genes (β-actin and HTPR), producing similar results. Each result is the average of three separate 

experiments (Neubert et al. 2015).  

2.2.5 Conditions of SPIO exposure in cell cultures 

VSOP-R1, VSOP-R2, ferucarbotran, or ferumoxytol were added to 12 well plates of primary microglia, 

primary hippocampal neurons, and neuron-glia co-cultures in 1 ml culture medium per well, yielding final 

iron concentrations of 0.5 mM, 1.5 mM, or 3.0 mM, respectively. Accordingly, primary cells were exposed 

to SPIO concentrations as listed in Table 3. 

Table 3: Iron concentration of applied SPIOs. 

 VSOP-R1 VSOP-R2 Ferucarbotran Ferumoxytol 

Iron (Fe) content 
26.4 g Fe/l  

(0.473 M) 

27.2 g Fe/l 

(0.487 M) 

25.5 g Fe/L 

(0.457 M) 

29.99 g Fe/L 

(0.537 M) 

0.5 mM 27.91 mg Fe/mL 27.93 mg Fe/mL 27.9 mg Fe/mL 27.92 mg Fe/mL 

1.5 mM 83.73 mg Fe/mL 83.79 mg Fe/mL 83.67 mg Fe/mL 83.77 mg Fe/mL 

3.0 mM 167.46 mg Fe/mL 167.58 mg Fe/mL 167.34 mg Fe/mL 167.54 mg Fe/mL 

 

Microglial cells were incubated with SPIOs at 8 to 9 DIV for 6 hours or 24 hours, respectively. Primary 

neurons and neuron–glia co-cultures were incubated for 24 hours at 9 DIV. Well plates of all cell culture 

models included wells with respective numbers of cells that were not treated with SPIOs serving as control 

condition (indicated in figures and tables as control). In primary microglial cultures, well plates additionally 

contained wells of cells that were stimulated with 0.1 µg/ml lipopolysaccharide (LPS, Sigma) and served as 

control condition for the activation state of microglia. 

2.2.6 Determination of microglial viability using propidium iodide  

The viability of primary microglia was assessed using propidium iodide (PI) staining (Carl Roth, Germany). 

Following SPIO exposure, primary microglia in densities of 2 × 105 cells per well were incubated with 

500 µg/ml PI for 15 min at 37°C. An inverted fluorescence microscope (objective UPLFLN 10×/0.30 PH1; 

Olympus IX81) was used to capture the fluorescent emission of PI at 630 nm with an F-View II digital 

camera using CellSens Dimension software (version 1.4.1 XV 3.4, build 8624; Olympus, Germany). Four 

images per exposure condition, including positive and negative controls, were acquired from four different 
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regions of the respective wells. The number of PI-positive microglia was quantified using the Image-Based 

Tool for Counting Nuclei plug-in in ImageJ 1.47v software (National Institutes of Health, USA). From four 

corresponding images, PI values were averaged, values of negative controls were subtracted, and results 

were normalized to PI values of positive controls. In total, 1630 images of PI-positive microglia were 

analysed. PI-staining and fluorescence measurements for the 6-hour exposure condition were performed 

on five independently prepared primary microglial cultures and for the 24-hour condition on seven 

independently prepared microglial cultures (Table 4). 

2.2.7 Prussian blue staining and nuclear fast red counterstain 

To cytochemically detect iron accumulation by microglia and neurons from monocultures following SPIO 

exposure, Prussian blue staining using the colorimetric ferrozine Perl’s stain method (Perl and Good 1992) 

was performed. Microglia were stained with Prussian blue reagent following the previously described PI 

measurements. Supernatants of microglial cultures and neuronal monocultures were removed, cells were 

washed twice with PBS and immediately fixed with 4% PFA (Carl Roth) in 15 % sucrose for 15 min at 4°C. 

After removing fixation solution, cells were hydrated in distilled water for 5 min and incubated with equal 

amounts of 1 % potassium ferrocyanide and 1 % hydrochloric acid for 30 min. To visualize cell nuclei, cells 

were washed with distilled water and incubated for 10 min with 0.1 % nuclear fast red counterstaining 

solution that produces an intense pink nuclear stain and slight pink colouring of the cytoplasm. 

Subsequently, cells were dehydrated with increasing alcohol concentrations ranging from 70 to 100 % 

before mounting coverslips on glass slides using xylene. 

2.2.8 Iron quantification of microglia 

For each exposure condition, images from six different regions of Prussian blue and nuclear fast red stained 

coverslips of primary microglia were captured with 40x magnification (LUCPLFLN 40x/0.60 PH2) using light 

microscopy (Olympus IX81) and saved in TIFF format. In order to eliminate colour-biased values, images 

were acquired with 256 colours in grey scale. The presence of iron in respective greyscale images was 

quantified using ImageJ 1.47v software. The mean grey-value intensities of four cells from six 

corresponding images were measured by defining regions of interest. Additionally, mean grey-value 

intensities of the image background in corresponding images, as well as values of negative controls, were 

averaged and subtracted from the averaged values of cells. Prussian blue staining and subsequent 

quantification of cellular iron content for the 6- and 24-hour exposure conditions were performed on six 

independently prepared primary microglial cultures (Table 4). In total, 24 microglial cells per SPIO-exposure 

condition were quantified and mean grey-value intensities of corresponding cells were averaged. In total, 

1752 images of Prussian blue stained microglia were analysed. 



38 
 

 
 

2.2.9 Immunostaining and microscopy  

2.2.9.1 Immunocytochemistry of microglia  

Following SPIO incubation, supernatants were removed and cells were washed twice with 0.1 M PBS. After 

fixation with 4% PFA in 15 % sucrose for 15 min at 4°C, microglia were washed twice with 0.1 M PBS, 

permeabilized using 0.1 % Triton X-100, 0.1 % sodium citrate in PBS for 3 min at 4°C, and washed again 

three times with 0.1 M PBS. Cells were blocked over night with 5 % FCS and 0.1 M PBS at 4°C. On the 

following day, microglia were immunocytochemically stained using cell-specific CD11b-fluorescein 

isothiocyanate (CD11b-FITC)-conjugated antibody (Miltenyi Biotec, Germany) in 5 % FCS and 0.1 M PBS 

for 90 min in the dark at RT. After removing the antibody solution, cells were washed three times with PBS. 

Cell nuclei were counterstained using the blue fluorescence nucleic acid stain Hoechst 33258 (Sigma-

Aldrich) and cell-containing coverslips were mounted using Immu-MountTM (Thermo Scientific, Germany). 

2.2.9.1.1 Immunofluorescence image acquisition and processing   

Immunofluorescence images of microglia were captured with an Olympus BX 51 microscope with narrow-

band filters (Olympus) using a MagnaFire digital camera and MagnaFire 2.1B software (Intas, Germany). 

Additionally, light microscopy was used to capture images of cell-associated SPIOs due to unfeasible 

combination of Prussian blue with immunocytochemical staining (Frank et al. 2007). As the iron oxide cores 

of SPIOs consist of ferric (Fe3+) iron, particles appear in brown colour (Sadrzadeh and Saffari 2004). Light 

microscope photographs were processed using Adobe Photoshop (CS3 extended, version 10.0; Adobe 

Systems) in order to create merged images of cell-associated SPIOs with corresponding 

immunofluorescence images of primary microglia. Therefore, bright field images of SPIOs were first 

inverted and pseudo-coloured in red by using the channel mixer tool, setting all colours to zero percent and 

only red to 100 %. To generate overlay images of microglia depicted in green with nuclei depicted in blue 

and SPIOs depicted in red, I created a triple layer image and excluded either the green, blue or red channel 

in each layer, depending on the respective layer order. For example, the background layer is the one 

showing blue nuclei, one level above, hence, superior ranked is the image of green microglia and the upper 

level is the image of red SPIOs. In each layer, the colour channel of the antecedent image was excluded 

making all images with respective colours visible at once. 

2.2.9.2 Immunocytochemistry of neuronal cultures 

Following SPIO exposure of transfected primary neurons from mono- and co-cultures, supernatants were 

collected, centrifuged at 16000 x g and stored for cytokine/chemokine measurements at -20°C. Coverslips 

of co-culture neurons were transferred to new 12-well plates. Cells were washed twice with 0.1 M PBS and 

immediately fixed with 4 % PFA in 15 % sucrose for 15 min at 4°C. After removing the fixation solution, 

neurons were washed twice with 0.1 M PBS and permeabilized with 0.1 % Triton X-100 and 0.1 % sodium 

citrate in 0.1 M PBS for 3 min at 4°C. Neurons were washed with 0.1 M PBS three times, blocked with 10 % 

FCS for 1 hour at RT and incubated with neuron-specific class III β-tubulin antibody Tuj1 (Covance) in 10 % 

FCS in 0.1 M PBS overnight at RT. Neurons from monocultures were also immunocytochemically stained 

using SMI-32R antibody (Enzo Life Sciences, Inc.) in a dilution of 1:1000 in 5 % FCS and 0.1 M PBS and 
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incubated overnight at RT. Secondary antibody Alexa Fluor 488 goat anti-mouse (Life Technologies) was 

diluted 1:1500 in 5 % FCS and 0.1 M PBS. Neurons cells were incubated for 90 min at RT and washed 

three times with 0.1 M PBS prior mounting coverslips with Immu-MountTM (Thermo Scientific). 

2.2.10 Image acquisition and Sholl analysis of primary hippocampal neurons 

The number of neurites of primary neurons from mono- and co-cultures was determined by means of Sholl 

analysis (Sholl 1953). Images of double-positive, i.e., with enhanced green fluorescent protein (eGFP) and 

red fluorescent Tuj1 stained neurons were acquired with fluorescence microscopy equipped with CellSens 

Dimension software and a 10x objective (Olympus IX81). Using Adobe Photoshop C5, images displaying 

different image frames of individual neurons were matched to create an image of the entire cell. The 

composite images were used to quantify the number of neurites of per exposure condition on 24 20 µm-

spaced concentric circles with maximal distances of 500 µm distal to the cell body. The innermost circle 

with a radius of 40 µm was placed onto each neuron, with its centre coinciding with the centre of the soma. 

The number of neurite intersections at each circle were counted blindly using ImageJ 1.47v software. The 

intersection curve was plotted by the average number of neurite intersections for each circle versus the 

circle radius using GraphPad Prism 5.0 software (GraphPad Software). Sholl analysis of neurons was 

performed via double determination of three independently prepared primary neuron monocultures and four 

independently prepared neuron-glia co-cultures for each exposure condition (Table 7 and 8, respectively). 

In total, 750 neurons from monocultures and 223 neurons from co-cultures were analysed using Sholl 

analysis. Neurons were excluded in the analysis in cases of undefined origin of neuronal processes or in 

cases of neurite overlapping. 

2.2.11 Degeneration analysis of primary hippocampal neurons 

To determine if SPIOs lead to neuronal degeneration and subsequent cell death, eGFP-transfected Tuj1-

positive neurons of mono- and co-cultures were manually counted under a fluorescence microscope 

(Olympus IX81; objective 10x). Numbers of degenerated neurons were calculated as percentages of total 

numbers of neurons. Neurons were classified as degenerated according to standard morphological criteria, 

i.e., fragmentation of neuronal processes, cell shrinkage, and somatic swelling (Adamec et al. 2001). 

Quantification of neurons was performed via double determination of three independently prepared primary 

neuron monocultures and four independently prepared neuron–glia co-cultures for each exposure 

condition.  

2.2.12 Cytokine and chemokine measurement  

To investigate cytokines and chemokines secretion of primary cell cultures of microglia, astrocytes and 

neurons from mono- and co-cultures supernatants of cultures incubated for 24 hours with 0.5 mM of 

VSOPs, ferucarbotran and ferumoxytol were used. Supernatants of untreated cells from respective cultures 

served as control condition and were always included for each measurement. Following SPIO exposure, 

supernatants were collected and centrifuged at 4°C with 16000 x g for 20 min to remove cellular debris. 
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The resulting supernatants were transferred into Eppendorf tubes and analysed for 40 different cytokines 

and chemokines using the Proteome Profiler Mouse Array Kit, Panel A (R&D Systems). Each kit contains 

four nitrocellulose membranes, where respective capture antibodies are spotted in duplicate. Membranes 

were incubated with 2 ml of the supplied blocking buffer (Array Buffer 6) on a rocking platform shaker 

(Heidolph Polymax 2040) for 1 h at RT. Meanwhile, 1 ml of respective cell culture supernatants was mixed 

with 0.5 ml of Array Buffer 4 and adjusted to a final volume of 1.5 ml with blocking buffer as necessary. To 

each sample, 15 µl of Mouse Cytokine Array Panel A Detection Antibody Cocktail (biotinylated antibody 

cocktail) was added and incubated for 1 hour at RT. After removing Array Buffer 6, the prepared samples 

were added to nitrocellulose membranes, respectively, and incubated on a rocking platform shaker over 

night at 4°C, so that the detection antibody complex is bound by capture antibodies on the membranes. On 

the next day, membranes were placed into individual petri dishes and washed three times with 20 ml of 

1x Wash Buffer on a rocking platform shaker. After washing, the supplied horseradish peroxidase-

conjugated streptavidin was diluted in blocking buffer and each membrane was incubated with 2 ml for 30 

min on a rocking platform shaker at RT. Subsequently, membranes were placed in individual containers, 

washed three times and transferred onto plastic sheets. Signal development was achieved by incubating 

each membrane with 1 ml of the provided chemiluminescence detection reagent for 1 min. Membranes 

were then covered by an additional plastic sheet and placed into an autoradiography film cassette. 

Autoradiography films were exposed for multiple times points for signal detection and subsequent 

quantification. In total, 16 kits containing 64 nitrocellulose membranes of the Proteome Profiler Mouse Array 

Kit, Panel A (R&D Systems) were used for analyses. Experiments were performed in triplicate with 

supernatants from all exposure conditions and cell cultures, respectively.   

2.2.12.1 Cytokine and chemokine quantification 

Nitrocellulose membranes were scanned in a resolution of 600 x 600 dpi and converted to TIFF format 

using the ECOSYS M3540idn multifunction printer (Kyocera) for each experimental condition, respectively. 

The mean grey-value intensities of respective duplicate spots in each image were quantified by defining 

regions of interest with ImageJ 1.47v software. Additionally, mean grey-value intensities of the image 

background and of the three reference spots in duplicate of corresponding images were quantified. 

Subsequently, averaged mean grey-value intensities of the image background were subtracted from the 

measured mean grey-value intensities of duplicate spots as well as reference points using Microsoft Excel 

(Microsoft Corporation). Values of averaged duplicate spots were normalized to averaged values of 

corresponding reference spots in the image and then normalized to averaged values of untreated controls, 

respectively. Statistical analysis was performed using GraphPad Prism 5 software. 

2.2.13 Statistics 

All data were collected using Microsoft Excel (Microsoft Corporation) following measurements. Statistical 

significance was evaluated with the assistance of GraphPad Prism 5.0 software using Kruskal–Wallis one-

way analysis of variance (ANOVA) followed by Dunn’s multiple comparison post hoc test, at indicated 

significance levels. Data are presented as means ± standard error of the mean (SEM).
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3 Results 

3.1 SPIOs affect the morphology and viability of primary microglia 

3.1.1 Microglia accumulate SPIOs dependent on size and surface coating 

The first question I addressed was whether novel VSOPs and commercially ferucarbotran and ferumoxytol 

are accumulated by primary microglia when applied in iron concentrations corresponding to clinical doses 

of 0.5 mM, 1.5 mM or 3.0 mM, respectively. For this purpose, I visualized microglia-associated SPIOs with 

very sensitive Prussian blue staining to cytochemically detect iron oxide; such staining is commonly used 

to identify SPIOs in cells and tissues (Cengelli et al. 2006; Tysiak et al. 2009; Andreas et al. 2012; Wagner 

et al. 2013; Jarockyte et al. 2016). During the reaction, even the smallest amounts of ferric iron chemically 

react with ferrocyanide to create a bright blue pigment, called ferric ferrocyanide or Prussian blue (Perl and 

Good 1992; Jarockyte et al. 2016). Subsequent to Prussian blue staining, I used nuclear fast red dye 

chromogenic counterstain in order to localize SPIO accumulation by microglial cells. The nuclear fast red 

dye visualized cell nuclei in intense pink and the cytoplasm in moderate pink colour (Cengelli et al. 2006; 

Pinkernelle et al. 2012). This allowed for visual examination of microglia-associated SPIOs using light 

microscopy. For reasons of comparison, representative images of microglia incubated for 24 hours with the 

lowest SPIO iron concentration of 0.5 mM and the highest concentration of 3.0 mM are shown (Figure 2). 

In general, image evaluation revealed that microglia exposed to VSOP-R1, VSOP-R2, and ferucarbotran 

but not ferumoxytol consistently showed intense Prussian blue staining (Neubert et al. 2015). Compared 

with the lowest iron concentration of 0.5 mM VSOP-R1, VSOP-R2, and ferucarbotran, particularly 

incubation with the highest concentration of 3.0 mM of these SPIOs for 24 hours, resulted in intense 

Prussian blue-positive deposits indicating increased particle accumulation (Figure 2). In contrast, microglia 

exposed to ferumoxytol in concentrations of 0.5 and 3.0 mM for 24 hours showed less Prussian blue-

detectable iron and, hence, a lower degree of particle accumulation (Figure 2) (Neubert et al. 2015). Upon 

SPIO accumulation, microglia were almost exclusively of amoeboid shape, compared to untreated microglia 

that showed ramified morphologies characteristic of the resting state (Figure 2). These morphological 

changes upon SPIO accumulation, from a ramified towards an amoeboid shape accompanied by expanded 

somata can be taken as a reliable indicator of microglial activation (Napoli and Neumann 2009; Ransohoff 

and Perry 2009; Walker et al. 2014). Consequently, citrate-coated VSOPs with hydrodynamic diameters of 

approximately 6 to 8 nm and the largest, carboxydextran-coated nanoparticle ferucarbotran of around 60 

nm were not only strongly accumulated by microglia but also induced morphological alteration. Both types 

of nanoparticles possess negative surface charges. In contrast, carboxymethyldextran-coated ferumoxytol 

of 30 nm and neutral surface charge was only moderately accumulated by primary microglial cells. These 

results indicate, that SPIOs are differently accumulated by microglia, which is dependent on particle size, 

surface coating material and surface charge. 
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Figure 2: Microglial SPIO accumulation is dependent on the particle type. Prussian blue staining and nuclear fast 

red counterstain of microglia exposed to 0.5 mM or 3.0 mM of VSOP-R1, VSOP-R2, ferucarbotran or ferumoxytol for 

24 hours, or untreated microglia, as indicated. Accumulation of VSOP-R1, VSOP-R2 and ferucarbotran are elevated 

at highest iron concentrations. In contrast, microglia exposed to ferumoxytol show less intense Prussian blue staining 

that only slightly increased after exposure to 3.0 mM of ferumoxytol. Upon SPIO accumulation, microglia show 

morphological transformation from ramified towards amoeboid-like phenotypes as well as expanded somata. In 

comparison, untreated cultured microglia show ramified morphologies. Scale 20 µm 
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3.1.2 SPIO accumulation induces alterations of microglial morphology 

To further verify morphological transformation of microglia towards a deramified phenotype following SPIO 

accumulation, I performed immunocytochemical staining using CD11b-FITC-conjugated antibody followed 

by the nucleic acid counterstain Hoechst 33258 (Neubert et al. 2015). The surface marker CD11b (cluster 

of differentiation molecule 11b), also called Mac-1 (macrophage-1 antigen) in mice is a constitutively 

expressed on microglia and upregulated following microglial activation (Ladeby et al. 2005; Korzhevskii and 

Kirik 2016). For visual comparison of microglial morphology, cells received either no treatment or stimulation 

with 0.1 µg/ml LPS. The Escherichia coli endotoxin LPS is a well-known immunostimulant substance that 

induces microglial activation accompanied by cytoskeletal reorganisation and morphological transformation 

(Zielasek and Hartung 1996). 

Unfortunately, Prussian blue staining for SPIO detection and immunocytochemistry of microglia could not 

be performed simultaneously due to the fluorescence absorption capacity of ferric ferrocyanide that leads 

to colour transformation of immunofluorescence (Frank et al. 2007). Consequently, I used light microscopy 

to capture images of cell-associated SPIOs with bright field microscopy of the same microscopic image 

frame. In bright field microscopy, SPIOs are visible in brown colour due to their composition of ferric (Fe3+) 

iron oxide cores that are naturally pigmented in brown (Figure 3A.1) (Sadrzadeh and Saffari 2004). 

Therefore, I pseudo-coloured bright field images of brown appearing particles in red (Figure 3A.2) using 

Adobe Photoshop CS5 software and created overlay images of SPIOs and corresponding 

immunocytochemically stained microglia (Figure 3A.3). This approach of capturing, firstly, fluorescence 

images of CD11b-FITC stained microglia and, secondly, bright field images depicting SPIOs enabled 

colocalization of cells and particles (Neubert et al. 2015). For illustrative comparison, bright field images of 

SPIOs and the corresponding merged images of CD11b-FITC-positive microglia are only shown for cells 

incubated for 24 hours in Figure 4. Here, VSOP-R2 is shown as representative for the citrate-coated particle 

type.  

 

Figure 3: Representative illustration of the process creating merged images of SPIOs and primary microglia 

from one microscopic image frame. Primary microglia were exposed to 1.5 mM VSOP-R2 for 24 hours and 

immunocytochemically stained using CD11b-FITC conjugated antibody. (A.1) The bright field image shows VSOP-R2 

visible in brown colour without additional staining. (A.2) The same image frame was processed using Adobe Photoshop 

CS3 extended (version 10.0) for pseudo-colouring nanoparticles in red and creating (A.3) a merged image of VSOP-

R2 together with immunostained microglial cells. Scale 40 µm 
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Figure 4: Morphology of primary microglia is altered following SPIO exposure. Primary microglia were incubated 

for 24 hours with (A, D, G) VSOP-R2, (B, E, H) ferucarbotran and (C, F, J) ferumoxytol in concentrations of (A, B, C) 

0.5 mM, (D, E, F) 1.5 mM and (G, H, J) 3.0 mM, respectively, or were (K) untreated or (J) stimulated with 0.1 µg/ml 

LPS. Microglia cells were immunocytochemically stained using CD11b-FITC-conjugated antibody and Hoechst 33258 

nuclear counterstain. (A.1–J.1) In bright field microscopy, SPIOs are visible in brown colour. (A.2–J.2) Merged images 

of red pseudo-coloured SPIOs and immunostained microglia of corresponding image frames were created using Adobe 

Photoshop CS5 software. Microglia reveal morphological transformation from a ramified towards an amoeboid 

phenotype upon accumulation of (A.2, D.2, and G.2) VSOP-R2 and (B.2, E.2, and H.2) ferucarbotran with increasing 

iron concentrations from (A, B) 0.5 mM to (G, H) 3.0 mM. (C.1, F.1, and J.1) In contrast, bright field images of microglia 

exposed to ferumoxytol in all concentrations do not show brown appearing particles but amoeboid morphologies in 

(C.2, F.2, and J.2) fluorescence images. (K) In comparison, untreated microglia show strongly ramified morphologies 

characteristic for resting microglia, whereas microglia exposed to (L) 0.1 µg/ml LPS show a typical amoeboid 

phenotype. Scale 20 µm 

The bright field images of microglia exposed for 24 hours to all iron concentrations of VSOP-R2 

(Figure 4A.1, D.1 and G.1) and ferucarbotran (Figure 4B.1, E.1, H.1) clearly depict brown coloured 

particles. In contrast, bright field images of microglia incubated with ferumoxytol in all concentrations hardly 

show any particles (Figure 4C.1, F.1, and J.1), which partially corresponds to Prussian blue staining 

(Figure 2D.1, D.2). Merged images of green fluorescent microglia and red pseudo-coloured VSOPs 

(Figure 4A.2, D.2, G.2) and ferucarbotran (Figure 4B.2, E.2, H.2 ) after exposure for 24 hours to 

concentrations of 0.5 mM (Figure 4A.2, B.2), 1.5 mM (Figure 4D.2, E.2) and 3.0 mM (Figure 4G.2, H.2), 

respectively, reveal morphological transformation from a ramified towards an amoeboid phenotype upon 

particle accumulation. These morphological changes indicate microglial activation (Napoli and Neumann 

2009; Ransohoff and Perry 2009; Walker et al. 2014). In comparison, untreated microglia cultured under 

the same conditions showed ramified morphologies (Figure 4K) characteristic for resting microglia 

(Ransohoff and Perry 2009), whereas microglia exposed to 0.1 µg/ml LPS show a typical amoeboid 

phenotype (Figure 4L). Interestingly, merged images of microglia exposed to ferumoxytol in all 

concentration also reveal amoeboid morphologies without obvious particle accumulation (Figure 4C.2, F.2 

and J.2).  
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SPIOs of anionic surface charge, namely the smallest citrate-coated VSOPs with sizes below 10 nm and 

the largest, carboxydextran-coated ferucarbotran of around 60 nm induced morphological alterations of 

microglia. Exposure of microglia to the carboxymethyldextran-coated ferumoxytol of 30 nm in size and 

neutral surface charge did also affect the morphology of microglial cells without obvious particle 

accumulation. Furthermore and in accordance with Prussian blue staining (Figure 3), images in Figure 4 

show that increasing SPIO concentrations induce morphological transformation towards amoeboid 

phenotypes of microglia. These data verify that SPIO exposure affects microglial morphology dependent 

on the SPIO type and concentration (Neubert et al. 2015). 

3.1.3 SPIOs influence viability of primary microglia  

Based on results obtained previously, I investigated whether increased SPIO accumulation is associated 

with adverse effects on microglial viability following exposure to iron concentrations of 0.5 mM, 1.5 mM and 

3.0 mM for 6 or 24 hours, respectively. Therefore, I performed propidium iodide (PI) staining to assess the 

viability of primary microglia following SPIO incubation. As PI only perforates cells upon impaired 

membrane integrity and intercalates into nucleic acids (Takano et al. 2003), the increase in numbers of PI-

positive microglia reflects the loss of cell viability (Neubert et al. 2015). For each exposure condition, I 

acquired images displaying PI-positive microglia, whereas only microglia incubated with 0.5 mM 

(Figure 5 and 7) and 3.0 mM (Figure 6 and 8) for 6 or 24 hours, respectively, are shown for comparison. 

Subsequently, I quantified the number of PI-positive cells using ImageJ software and compared the effect 

of SPIOs on microglia concerning iron concentration and incubation time (Figure 9, black bars). In addition 

to PI staining, I assessed the amount of cell-associated particles for each exposure condition by quantifying 

the Prussian blue staining intensity of acquired images using ImageJ software. I used this approach in order 

to directly compare SPIO accumulation by microglia with numbers of PI-positive cells from the same cell 

culture after nanoparticle exposure for 6 or 24 hours (Figure 9). I normalized all numbers of PI-positive cells 

and values of Prussian blue staining intensity and to values of untreated microglia, respectively (Table 4). 

Thus, values per exposure condition are displayed as percentage in Figure 9.  
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Table 4: Data and sample size of primary microglia used for PI and Prussian blue quantification. Values refer to 

average numbers of microglial cells normalized to untreated control cells and are depicted as percentages (illustrated 

in Figure 9). Numbers of quantified cells (n) for each exposure condition of three independently prepared cultures are 

shown in brackets, respectively. 

 
6 h  24 h 

 
0.5 mM 1.5 mM 3.0 mM 0.5 mM 1.5 mM 3.0 mM 

Number of 

microglial  

cultures = 3  

Pl-positive microglia (%) 

VSOP-R1 11.1  

(n = 13) 

22.5  

(n = 13) 

45.5  

(n = 13) 

-2.28  

(n = 15) 

62.1  

(n = 14) 

82.6  

(n = 14) 

VSOP-R2 25.6  

(n = 13) 

35.2  

(n = 13) 

42.5  

(n = 13) 

11.3  

(n = 13) 

27.2  

(n = 14) 

63.0  

(n = 14) 

Ferucarbotran 5.8  

(n = 9) 
11.2 (n = 9) 

32.2  

(n = 9) 

-6.8  

(n = 10) 

24.8  

(n = 10) 

56.6  

(n = 10) 

Ferumoxytol -5.5   

(n = 12) 

-12.5 

(n = 12) 

-18.9 

(n = 12) 

-3.7  

(n = 10) 

-8.6  

(n = 11) 

-10.3 

(n = 11) 

Controls (n = 15) (n = 17) 

Number of  

microglial  

cultures = 4 

Prussian blue staining intensity of microglia (%) 

VSOP-R1 
6.2  

(n = 10) 

9.0  

(n = 10) 

14.0  

(n = 10) 

12.4  

(n = 10) 

13.3  

(n = 10) 

19.3  

(n = 10) 

VSOP-R2 
6.7  

(n = 10) 

8.4  

(n = 10) 

9.7  

(n = 10) 

11.7  

(n = 11) 

16.4  

(n = 11) 

15.0  

(n = 11) 

Ferucarbotran 
8.6 

(n = 9) 

10.2  

(n = 9) 

13.8  

(n = 9) 

14.4  

(n = 9) 

19.7  

(n = 9) 

23.6  

(n = 9) 

Ferumoxytol 
1.1  

(n = 8) 

0.8  

(n = 8) 

1.6  

(n = 8) 

1.7 

(n = 8) 

5.4 

(n = 8) 

5.5  

(n = 9) 

Controls (n = 18) (n = 21) 
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Figure 5: PI-positive primary microglia exposed to 0.5 mM of SPIOs for 6 hours. Primary microglia were exposed 

to 0.5 M of (A) VSOP-R1, (B) VSOP-R2, (C) ferucarbotran or (D) ferumoxytol for 6 hours or (F) untreated. After 

incubation with respective particles, microglia in densities of 2 × 105 cells per well were incubated with 500 µg/ml 

PI for 15 min. Images were acquired with an inverted fluorescence microscope (Olympus IX81). Increased 

numbers of PI-positive microglia were found after exposure to 0.5 mM of (B) VSOP-R2 compared to other 

SPIOs and (F) untreated microglia. Scale 100 µm.    
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Figure 6: PI-positive primary microglia exposed to 3.0 mM of SPIOs for 6 hours. Primary microglia were exposed 

to 3.0 M of (A) VSOP-R1, (B) VSOP-R2, (C) ferucarbotran or (D) ferumoxytol for 6 hours or (F) untreated. After 

incubation with respective particles, microglia in densities of 2 × 105 cells per well were incubated with 500 µg/ml 

PI for 15 min. Images were acquired with an inverted fluorescence microscope (Olympus IX81). Increased 

numbers of PI-positive microglia were found after exposure to 0.5 mM of (B) VSOP-R2 and to a lower 

extend after exposure to 0.5 mM of (A) VSOP-R1 and (C) ferucarbotran compared to (D) ferumoxytol and 

(F) untreated microglia. Scale 100 µm. (D) Incubation with ferumoxytol showed reduced numbers of PI-

positive microglia compared to (F) untreated cells. Scale 100 µm.    
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Figure 7: PI-positive primary microglia exposed to 0.5 mM of SPIOs for 24 hours. Primary microglia were exposed 

to 0.5 M of (A) VSOP-R1, (B) VSOP-R2, (C) ferucarbotran or (D) ferumoxytol for 24 hours or (F) untreated. After 

incubation with respective particles, microglia in densities of 2 × 105 cells per well were incubated with 500 µg/ml 

PI for 15 min. Images were acquired with an inverted fluorescence microscope (Olympus IX81). Increased 

numbers of PI-positive microglia were found after exposure to 0.5 mM of (B) VSOP-R2 and to a lower 

extend after exposure to 0.5 mM of (A) VSOP-R1 and (C) ferucarbotran compared to (D) ferumoxytol and 

(F) untreated microglia. Scale 100 µm. (D) Incubation with ferumoxytol showed reduced numbers of PI-

positive microglia compared to (F) untreated cells. Scale 100 µm.    
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Figure 8: PI-positive primary microglia exposed to 3.0 mM of SPIOs for 24 hours. Primary microglia were exposed 

to 3.0 mM of (A) VSOP-R1, (B) VSOP-R2, (C) ferucarbotran or (D) ferumoxytol for 24 hours or (F) untreated. After 

incubation with respective particles, microglia in densities of 2 × 105 cells per well were incubated with 500 µg/ml 

PI for 15 min. Images were acquired with an inverted fluorescence microscope (Olympus IX81). High 

numbers of PI-positive microglia were found after exposure to 3.0 mM of (A) VSOP-R1, (B) VSOP-R2 and 

(C) ferucarbotran, whereas numbers of PI-positive microglia of the latter two appear to be increased to a 

similar extend. (D) Incubation with ferumoxytol showed reduced numbers of PI-positive microglia compared 

to (F) untreated cells. Scale 100 µm. 
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Figure 9: SPIO influence the viability of primary microglia. Microglia were incubated for either (A-C) 6 hours or (D-

F) 24 hours with SPIOs of different iron concentration as indicated. Acquired images of PI- and Prussian blue-positive 

cells were quantified using ImageJ software and values were normalized to untreated microglia using GraphPad Prism 

5 software. Black bars indicate the percentage of PI-positive microglia (left y-axis in each plot); grey bars indicate the 
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percentage of Prussian blue staining intensity, referring to microglial iron content (right y-axis). (A–F) Numbers of PI-

positive cells increased by more than 20% after extended incubation from 6 to 24 hours with SPIOs except ferumoxytol. 

Microglial iron accumulation after incubation with VSOPs and ferucarbotran significantly increased compared to cells 

incubated with ferumoxytol for 6 or 24 hours. However, increases in microglial SPIO accumulation did not correspond 

with proportional increases in the numbers of PI-positive cells. Kruskal–Wallis one-way ANOVA and Dunn’s multiple 

comparison post hoc test, expressed as mean ± SEM: ***p<0.0004; **p<0.01; *p<0.05. 

The image evaluation of PI-positive cells following exposure to all SPIOs, except after incubation with 

ferumoxytol, revealed increased numbers of non-viable primary microglia with increasing iron concentration 

and incubation time (Figure 5-8). These observations are in line with the quantification of acquired PI 

images using ImageJ software (Figure 9). The obtained data clearly show decreased microglial viability, as 

indicated by the percentage of PI-positive cells, after incubation with high concentrations of 1.5 and 3.0 mM 

of VSOPs and ferucarbotran, but not ferumoxytol (Figure 9B, C, E and F). I observed a strong increase in 

numbers of PI-positive microglia with a maximum of more than 30 % (see Table 4 for data) for all SPIOs 

with iron concentration of 3.0 mM, except ferumoxytol when comparing data between 6 and 24 hours of 

exposure (Figure 9C and F). The largest increases in PI-positive microglia were found after exposure to 

1.5 and 3.0 mM of VSOP-R1 (Figure 9E and F) and also after exposure to 3.0 mM of VSOP-R2 or 

ferucarbotran for 24 hours (Figure 9C and F). 

Next, I compared microglial particle accumulation according to Prussian blue staining intensity following 

incubation with 0.5 mM, 1.5 mM and 3.0 mM for 6 and/ or 24 hours of respective SPIOs 

(Figure 9, grey bars). The quantification of iron detected by means of Prussian blue revealed significantly 

higher staining intensities of microglia exposed to VSOPs or ferucarbotran, respectively, than microglia 

exposed to ferumoxytol for 6 or 24 hours (Figure 9A–F). I also observed that particle accumulation 

increased with increasing concentration for all SPIOs (Figure 9A–F). Direct comparison between 

6 (Figure 9A–C) and 24 hours (Figure 9D–F) of exposure showed only marginal increases in Prussian blue 

staining intensities of microglia after exposure to all particle concentrations, whereas incubation with 

1.5 mM (Figure 9E) and 3.0 mM (Figure 9F) of ferucarbotran showed the highest increase of 9.5 and 9.8 % 

(see Table 4 for data), respectively. However, the observed increases in Prussian blue-staining intensity 

after exposure of microglia to VSOPs or ferucarbotran did not proportionally increase with concentrations 

three or six times higher than 0.5 mM (Neubert et al. 2015).  

When comparing numbers of PI-positive microglia with respective Prussian blue staining intensities, I 

observed an association between microglial viability and iron accumulation. In the experimental conditions 

I observed that increased accumulation of SPIOs positively correlated with the PI-positive, nonviable cell 

bodies. However, this observation did not apply for exposure to nanoparticles in iron concentrations of 

0.5 mM (Figure 9A and D), for all concentrations of ferumoxytol (Figure 9A–F) and for 1.5 mM of VSOP-R2 

(Figure 9B and E) when comparing 6 and 24 hours of exposure. While overall Prussian blue-staining 

intensities were highest after exposure for 24 hours to ferucarbotran in all concentrations (Figure 9D–F), 

numbers of PI-positive microglia were higher after incubation with VSOP-R1 and VSOP-R2 for both the 1.5 

mM and the 3.0 mM exposure conditions (Figure 9E and F). Interestingly, these data showed concentration-

dependent decreases of microglial PI values after exposure to ferumoxytol for 6 or 24 hours (Figure 9A-F). 
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In turn, this revealed statistically significant differences when comparing ferumoxytol with VSOPs and 

ferucarbotran, but not after exposure to 0.5 mM of all SPIOs for 24 h (Figure 9D), or to 0.5 mM ferucarbotran 

for 6 hours (Figure 9A) and 1.5 mM ferucarbotran for 24 hours (Figure 9E).  

In conclusion, prolonged exposure times and microglial accumulations of VSOPs or ferucarbotran 

negatively affect cell viability, whereas exposure to ferumoxytol did not cause decreased microglial viability 

although minimal amounts of iron were detected (Neubert et al. 2015). These data, concerning effects of 

VSOPs and ferucarbotran correspond to results I obtained for the affected microglial morphology 

(section 3.1.2)  

 

3.2 SPIOs affect the morphology of primary neurons dependent on 

particle composition and cell culture model 

3.2.1 SPIO-type dependent accumulation by primary hippocampal neurons  

To address the question of whether SPIOs are also accumulated by primary neurons after 24 hours of 

incubation, I performed Prussian blue staining that is a commonly used method to detect cell-associated 

particles (Cengelli et al. 2006; Tysiak et al. 2009; Andreas et al. 2012; Wagner et al. 2013; Jarockyte et al. 

2016). In addition, I applied nuclear fast red counterstain to visualize cell nuclei in intense pink and the 

cytoplasm in moderate pink colour (Cengelli et al. 2006; Pinkernelle et al. 2012). This allowed for visual 

examination of neuron-associated SPIOs with light microscopy as described above. The image evaluation 

revealed that only VSOPs and ferucarbotran accumulated in neuronal somata and neurites. An example is 

depicted in Figure 10, where VSOP-R2 are shown as representative for the very small nanoparticles. 

Especially, neurons exposed to the highest iron concentration of 3.0 mM of VSOP-R2 and ferucarbotran 

showed substantial Prussian blue-positive deposits (Figure 10 A and B) compared to the same 

concentration of ferumoxytol (Figure 10C) or untreated neurons (Figure 10D). 

These results demonstrate that the smallest, citrate-coated VSOPs and the largest, carboxydextran-coated 

ferucarbotran, both of anionic surface charge are bound, presumably by extracellular matrix components 

of neuronal somata and neurites of primary neurons from monocultures (Ludwig et al. 2013; Neubert et al. 

2015). In contrast, carboxymethyldextran-coated ferumoxytol exhibiting neutral charge and intermediate 

size of 30 nm was not accumulated by cell bodies or neuronal processes. Hence, SPIO composition, 

including charge and size influences the interaction with cell membranes of primary neurons.  
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Figure 10: Accumulation of SPIOs by primary neurons in monoculture is dependent on the particle-type. To 

visualize cell-associated particles, primary neurons were stained with Prussian blue and nuclear fast red counterstain 

after exposure to 3.0 mM of (A) VSOP-R2, (B) ferucarbotran or (C) ferumoxytol for 24 hours, or (D) without treatment. 

VSOP-R2 is shown as representatives for the very small nanoparticles. Only (A) VSOPs and (B) ferucarbotran were 

accumulated by neurons. These SPIOs were found distributed along neurites and considerably accumulated at 

neuronal somata as depicted as large blue dots. (C) Neurons exposed to ferumoxytol did not show Prussian blue 

detectable iron. Scale 40 µm 

In order to examine the morphology of primary hippocampal neurons after the exposure to three different 

concentrations of SPIOs for 24 hours, I initially performed immunocytochemical staining using the SMI-32 

antibody followed by the nucleic acid counterstain Hoechst 33258. SMI-32 antibody stains non-

phosphorylated neurofilament proteins and is a specific marker for differentiating neurons (Del Rio and 

DeFelipe 1994). Therefore, it is well suited to visualize neuronal morphology at 10 DIV. Just as in section 

3.1.1, I captured bright field images to identify SPIOs appearing in brown colour, pseudo-coloured these in 

red using Adobe Photoshop CS5 software and merged them with immunofluorescence images to visualize 

neuron-associated particles. In Figure 11, VSOP-R2 serves as representative for the very small 

nanoparticles. In corresponding images, arrows heads point towards neuronal somata, respectively. 
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The bright field images of neurons exposed for 24 hours only show marginal deposits of VSOP-R2 

(Figure 11A.1, D.1 and G.1) and ferucarbotran (Figure 11B.1, E.1 and H.1), which increase with increasing 

particle iron concentrations, respectively. I mainly observed SPIO accumulations proximal to neuronal 

somata and also distributed along neurites. Bright field images of primary neurons incubated with 

ferumoxytol in all iron concentrations did not reveal accumulated particles (Figure 11C.1, F.1 and J.1).  
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Figure 11: Morphology of primary neurons from monocultures following SPIO exposure show signs of 

neuronal degeneration.  Primary neurons were incubated for 24 hours with (A, D, G) VSOP-R2, (B, E, H) ferucarbotran 

and (C, F, J) ferumoxytol in concentrations of (A, B, C) 0.5 mM, (D, E, F) 1.5 mM and (G, H, J) 3.0 mM, respectively. 

Neurons were immunocytochemically stained using SMI-32 primary antibody Alexa Fluor 488 and Hoechst 33258 

nuclear counterstain. (A.1–J.1) In bright field microscopy, SPIOs are appear in brown colour but were hardly found. 

Arrow heads indicate the location of neurons in corresponding images. (A.2–J.2) Merged images of red pseudo-

coloured SPIOs and immunostained neurons of corresponding image frames were created using Adobe Photoshop 

CS5 software. (K) Immunofluorescence image of neurons without treatment.  Scale 40 µm 

The representative fluorescent images of SPIO-exposed primary neurons were acquired to visually assess 

potential effects of SPIOs on neuronal morphology. To obtain conclusive data concerning the impact of 

SPIO exposure, I further explored the morphology of primary neurons, which is described in the following 

section. 

3.2.2 Primary hippocampal neurons degenerate after SPIO exposure 

In order to quantitatively determine the influence of SPIO exposure for 24 hours on the morphology of 

primary hippocampal neurons from monocultures, I applied Sholl analysis (Sholl 1953). This is a commonly 

used method that allows quantification of neuronal processes by counting the number of neurite crossings 

on concentric circles with a gradually increasing radius (Nakayama et al. 2000; Rosario et al. 2012). I 

quantified the number of neurite intersections of 750 primary neurons in total on 24 concentric circles with 

the innermost circle coinciding with the centre of the soma. An example of a primary neuron studied by 

means of Sholl analysis is shown in Figure 12. After manual counting of neurite intersections per circle, I 

graphically depicted the average number of neurite intersections from all neurons in distance of up to 

500 µm from the soma (Figure 13A, C and E). For statistical analysis, I quantified the average number of 

neurite intersections per cell and compared values using GraphPad Prism 5 software (Figure 13B, D and F).  
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Figure 12: Immunofluorescence example image of an untreated primary neuron examined with Sholl analysis. 

In Sholl analysis, neurite intersections of eGFP-transfected- and Tuj1-positive neurons were manually counted using 

24 20 µm-spaced concentric circles (red) with the innermost circle coinciding with the centre of the soma. Scale 100 µm  

Table 5: Data and sample size of neurons from monocultures used in Sholl and degeneration analysis.  For 

Sholl analysis, total numbers of neurons analyzed for each exposure condition are shown. For degeneration analysis, 

counted total numbers compared with numbers of degenerated neurons are shown, respectively. Numbers of quantified 

cells (n) for each exposure condition of three independently prepared neuronal cultures are shown in brackets, 

respectively. Ratios as percentage for both analyses are depicted in Figure 13 and Figure 15, respectively. 

Number of 

neuronal cell 

cultures = 3 

 Sholl analysis                                              

(number of analyzed neurons) 

Degeneration analysis                                          

(number of total /degenerated neurons) 

 0.5 mM 1.5 mM 3.0 mM 0.5 mM 1.5 mM 3.0 mM 

VSOP-R1 n = 55 n = 67 n = 60 249 / 83 (n = 5) 163 / 63 (n = 5) 195 / 80 (n = 5) 

VSOP-R2 n = 63 n = 61 n = 79 294 / 86 (n = 5) 210 / 74 (n = 5) 210 / 70 (n = 5) 

Ferucarbotran n = 52 n = 47 n = 50 221 / 85 (n = 5) 151 / 66 (n = 5) 211 / 88 (n = 5) 

Ferumoxytol n = 62 n = 50 n = 48 246 / 84 (n = 5) 233 / 89 (n = 5) 229 / 90 (n = 5) 

Controls n = 56 579 / 129 (n = 6) 
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Figure 13: SPIO exposure leads to reduction in numbers of neurites of primary neurons from monocultures. 

(A, C, E) Average numbers of neurite intersections from 750 neurons in total were quantified by means of Sholl analysis 

and are depicted in increasing distance to the soma for each exposure condition. Untreated neurons are referred to as 



65 
 

 
 

control. Sholl analyses of primary neurons shows a downward shifted intersection curve that reflects reduced numbers 

of neurites after SPIO exposure for 24 hours (coloured lines) compared to untreated neurons (black line). 

(B, D, F) Quantification of average numbers of neurite intersections with concentric circles per neuron exposed to 

indicated SPIOs and concentrations, respectively. Significant reduction in average number of neurites were found for 

all concentrations of VSOP-R2, ferucarbotran and ferumoxytol and 1.5 mM VSOP-R1. Decreased average numbers of 

neurites after exposure to 0.5 mM and 3.0 mM of VSOP-R1 were found but were not significantly different. Kruskal–

Wallis one-way ANOVA and Dunn’s multiple comparison post hoc test, expressed as means ± SEM: ***p<0.0001; 

**p<0.01; *p<0.05. 

Sholl analysis revealed reduced neurite complexity of primary neurons following exposure to all SPIOs of 

all concentrations (Figure 13A, C and E). The downward shifted intersection curve for neurons exposed to 

SPIOs for 24 hours reflects reduced numbers of neuronal processes after SPIO exposure 

(Figure 13A, C and E, coloured lines) compared to untreated neurons (Figure 13A, C and E, black 

lines, referred to as control). I found substantially reduced numbers of neurites, especially, in proximal 

extensions of nanoparticle exposed neurons (Figure 13, coloured lines) compared to numbers of neurite 

intersection of untreated neurons (Figure 13, black line). Statistically significant reduction of average neurite 

intersections were observed for neurons exposed to all SPIOs in all concentrations, except for 

0.5 and 3.0 mM of VSOP-R1 compared to untreated neurons (Figure 13B, D and F). Consequently, SPIOs 

adversely affected neurite complexity during the differentiation process of primary neurons in monoculture 

during particle incubation for 24 hours, which was independent of the particle composition (Neubert et al. 

2015). 

Subsequently, I raised the question of whether SPIOs also cause neuronal degeneration or impair neuronal 

survival after exposure to neurons for 24 hours. Morphologically, neuronal degeneration is defined by 

fragmented neuronal processes, cell shrinkage, and somatic swelling (Adamec et al. 2001). To investigate 

this, I manually quantified total numbers and numbers of obviously degenerated primary neurons that were 

exposed to SPIOs in all concentrations or untreated using fluorescence microscopy. I only counted neurons 

fulfilling the morphological criteria of neuronal degeneration, which is displayed in the example image in 

Figure 14. In total, I manually counted 3191 total and 1087 degenerated neurons from monocultures of 

three independently prepared cell cultures (Table 5).  
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Figure 14: Representative image of a degenerated primary neuron incubated with 3.0 mM of VSOP-R1. To 

determine numbers of degenerated neurons, eGFP-transfected- and Tuj1-positive cells were manually counted using 

fluorescence microscopy. Only neurons that showed obvious sign of degeneration, including fragmentation of neuronal 

processes, cell shrinkage, and somatic swelling were counted (Adamec et al. 2001). Scale 100 µm 

 

 

Figure 15: Neurons from monocultures degenerated after SPIO exposure. Numbers of degenerated neurons were 

manually counted in fluorescence microscopy following the exposure to (A) 0.5 mM, (B) 1.5 mM (C) or 3.0 mM of the 

respective SPIOs. All values were normalized to untreated neurons (control) and are displayed as percentage. All 
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concentrations of ferucarbotran led to significant increase in numbers of degenerated neurons compared to untreated 

neurons (control). Kruskal–Wallis one-way ANOVA and Dunn’s multiple comparison post hoc test, expressed as means 

± SEM: (A) **p ≤ 0.0174; (B) *p < 0.05; (C) *p < 0.05; **p ≤ 0.0029. 

The quantification revealed significant increases in neuronal degeneration after exposing primary neurons 

to all concentrations of ferucarbotran (Figure 15A – C), to 1.5 mM (Figure 15B) and 3.0 mM of VSOP-R2 

(Figure 15C), and to 1.5 mM of ferumoxytol (Figure 15B) compared to untreated neurons 

(Figure 15 A, B and C, referred to as control). Hence, the largest and carboxydextran-coated ferucarbotran 

had the most adverse effect on primary neurons. In addition, high concentrations of the citrate-coated 

VSOP-R2, which also has an anionic surface charge induced significantly increased neuronal 

degeneration. 

Interestingly, and in contrast to the effect on the viability of primary microglia (Figure 5), ferucarbotran but 

not VSOP-R1 resulted in significantly increased numbers of degenerated cells. Consequently, 

ferucarbotran in all concentrations most strongly impaired the viability of primary neurons. Furthermore, 

while ferumoxytol did not cause immediate death of primary microglia (Figure 5), it induced a decrease in 

the number of neurites (Figure 9) and increased degeneration of primary neurons (Figure 15) (Neubert et 

al. 2015). 

To further investigate the heterogeneous effects of SPIOs, I studied the influence of these nanoparticles in 

respective concentrations in a more complex cell-culture model using neuron-glia co-cultures. 

3.2.3 Neurons in neuron–glia co-cultures do not substantially degenerate after 

SPIO exposure 

In neuron-glia co-cultures, I analysed neuronal morphology and vitality under equivalent exposure 

conditions as described for neurons from monocultures. The aim was to examine whether glial cells in co-

cultures help to maintain homeostatic balance and protect neurons from adverse SPIO effects. Due to their 

strong phagocytic activity, microglia were thought to contribute to neuroprotection. To verify that equal 

numbers of neurons and microglial cells were included in co-cultures, I performed qRT-PCR (Figure 12). 

The cell markers I applied to assess relative gene expression levels were neuron-specific class III β-tubulin 

(Tuj1) to determine neuronal origin, glial fibrillary acidic protein (GFAP) as a marker for astrocytes, and the 

ionized calcium-binding adaptor molecule 1 (Iba1) as a marker for microglial cells. The marker GAPDH as 

a ubiquitously expressed house-keeping gene was used for normalization. Subsequently, I performed Sholl 

analysis on neurons from neuron-glia co-culture to investigate neuronal morphology after SPIO exposure 

and quantified numbers of degenerated cells using fluorescence microscopy. In total, I manually counted 

344 viable and 84 degenerated neurons from co-cultures (Table 6). 

 



68 
 

 
 

Tuj1

G
FA

P
Ib

a1

10- 3

10- 2

10- 1

100

R
e
la

ti
v
e
 g

e
n

e
 e

x
p

re
s
s
io

n
 n

o
rm

a
li
z
e
d

to
 G

A
D

P
H

 

Figure 16: Quantitative real-time PCR of neuron-glia co-cultures. Relative gene expression levels of neurons 

(Tuj1), astrocytes (GFAP) and microglia (Iba1) in co-culture were determined at 10 DIV and normalized to GAPDH 

(logarithmic scaling). Microglia and neurons show corresponding expression levels. 

The quantification by means of qRT-PCR revealed corresponding gene expression levels of Tuj1 and Iba1 

in neuron-glia co-culture after 10 DIV (Figure 12). Compared to Tuj1 and Iba1, the relative expression levels 

of GFAP were shown to be approximately twice as high (Neubert et al. 2015).  

Table 6: Data and sample size of neurons from neuron–glia co-cultures used in Sholl and degeneration 

analyses.  For Sholl analysis, total numbers of neurons analyzed for each exposure condition are shown. For 

degeneration analysis, counted total numbers compared with numbers of degenerated neurons are shown, 

respectively. Numbers of quantified cells (n) for each exposure condition of four independently prepared neuronal 

cultures are shown in brackets, respectively. Ratios as percentage for both analyses are depicted in in Figure 17 and 

Figure 18, respectively. 

Number of neuronal 

cell cultures = 4 

Sholl analysis                                              

(number of analyzed neurons) 

Degeneration analysis                                          

(number of total /degenerated neurons) 

 0.5 mM 1.5 mM 3.0 mM 0.5 mM 1.5 mM 3.0 mM 

VSOP-R1 n = 15 n = 14 n = 21 22 / 3  (n = 8) 12 / 7  (n = 6) 22 / 7  (n = 7) 

VSOP-R2 n = 13 n = 12 n = 12 17 / 3  (n = 5) 30 / 7  (n = 6) 27 / 5  (n = 7) 

Ferucarbotran n = 12 n = 11 n = 16 21 / 6  (n = 8) 19 / 5  (n = 5) 25 / 6  (n = 7) 

Ferumoxytol n = 28 n = 17 n = 29 38 / 9  (n = 8) 30 / 8  (n = 6) 42 / 8  (n = 8) 

Controls n = 23 39 / 10 (n = 7) 
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Figure 17: SPIOs exert contrary effects on neurites of neurons from neuron–glia co-cultures.  Sholl profile of 

neurons form co-cultures (10 DIV) that were either untreated (control, black line) or incubated for 24 hours with 

concentrations of (A, B) 0.5 mM, (C, D) 1.5 mM) or (E, F) 3.0 mM of the indicated SPIOs. Untreated neurons are 
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referred to as control. (A, C, E) Average numbers of neurite intersections from 223 neurons in total were quantified by 

means of Sholl analysis and are depicted in increasing distance to the soma for each exposure condition. For clarity 

reasons, error bars are set to either below or above the intersection curves. Sholl analyses of neurons from co-cultures 

partially shows upwards shifted intersection curves that reflects increased numbers of neurites after SPIO exposure for 

24 hours (coloured lines) compared to untreated neurons (black line). (B, D, F) Quantification of average numbers of 

total neurite intersections with concentric circles per neuron exposed to indicated SPIOs and concentrations, 

respectively. No significant differences compared to untreated neurons were found. Kruskal–Wallis one-way ANOVA 

and Dunn’s multiple comparison post hoc test: (B) p = 0.3195; (D) p = 0.4032; (F) p = 0.4292. 

Interestingly, Sholl analysis of primary neurons from co-cultures revealed contrary effects compared to 

neurons from monocultures, in both morphological alterations (Figure 17) and neuronal degeneration 

(Figure 18) using different SPIO concentrations (Neubert et al. 2015).  

 

Figure 18: Neurons from neuron-glia co-cultures did not significantly degenerate after SPIO exposure. Numbers 

of degenerated neurons were manually counted in fluorescence microscopy following the exposure to (A) 0.5 mM, (B) 

1.5 mM and (C) 3.0 mM of respective SPIOs. All values were normalized to untreated neurons (referred to as (control) 

and are displayed as percentage. Quantification of the percentage of degenerated neurons exposed to various particle 

concentrations did not show significant differences when compared to untreated neurons. However, numbers of 

degenerated neurons incubated with (B) 1.5 mM of VSOP-R2 were more than twice as high compared to controls. 

Kruskal–Wallis one-way ANOVA and Dunn’s multiple comparison post hoc test: (A) p = 0.6719; (B) p = 0.6069; (C) p 

= 0.9260.  

Using Sholl analysis, I predominantly found increased numbers of neurite intersections of SPIO-exposed 

neurons (Figure 17A, C, and E, coloured lines) compared to untreated neurons from neuron-glia co-cultures 

(Figure 17, C, and E, black lines). Co-cultured neurons incubated for 24 hours with iron concentrations of 

0.5 mM of VSOP-R2, ferucarbotran and ferumoxytol but not VSOP-R1 showed increased numbers of 

neurite intersections (Figure 17A and B). Neurons exposed to 0.5 mM of VSOP-R1 (Figure 17A) showed 

slightly reduced numbers of neurites proximally to cell somata when compared to untreated neurons. 

Except for 3.0 mM of VSOP-R2 (Figure 17E and F), neurons exposed to SPIO concentrations of 3.0 mM 
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possessed similar numbers of neuronal processes (Figure 17E and F) in comparison to untreated neurons 

(Figure 17E and F). In contrast, exposure of neurons to for 3.0 mM of VSOP-R2 led to an increase in 

number of neurites (Figure 17E and F), whereas a concentration of 1.5 mM of this nanoparticle resulted in 

a reduction in neurite numbers (Figure 17C and D). In principle, I counted more neuronal processes with 

increasing SPIO concentrations, which is reflected by approximating intersection curves of particle-exposed 

compared to untreated neurons (Figure 17C-F). However, the numbers of neurons from neuron-glia co-

cultures that I was able to use for Sholl analysis (Table 5) were much less compared to numbers of neurons 

from monocultures (Table 4) and variations in neurite morphology were high (Figure 17). Consequently, 

the average number of neurite intersections per exposure condition did not reveal significant differences 

compared to untreated control neurons (Figure 17B, D and F).  

The data from the quantification of average numbers of neurite intersections using Sholl analysis 

(Figure 17B, D and F) were according to the results from degeneration analysis (Figure 18). The 

quantification of numbers of degenerated neurons revealed slightly increased numbers of degenerated 

neurons from co-cultures after exposure to concentrations of 0.5 mM of ferucarbotran (Figure 18A) and 

3.0 mM of VSOP-R2 (Figure 18C) compared to controls (Figure 18A-C). Under these exposure conditions, 

however, neurons showed increased numbers of neurites (Figure 17B, D and F) with the exception of 

1.5 mM VSOP-R2 (Figure 18B). Numbers of degenerated neurons incubated with 1.5 mM of VSOP-R2 

were more than twice as high as numbers of degenerated controls (Figure 18B). This is in accordance with 

Figure 17B, D and F, which shows decreased numbers of neurites for neurons incubated with 1.5 mM of 

VSOP-R2. However, I did not find significant differences in numbers of degenerated neurons incubated 

with SPIOs in all concentrations compared to untreated cells (Figure 18A, B, and C).  

These data show that neurons in neuron-glia co-culture do not substantially degenerate after SPIO 

exposure compared to neurons from monoculture (Neubert et al. 2015).  

3.3 SPIOs do not significantly modulate cytokine and chemokine 

secretion of brain cells in culture 

In neuron-glia co-cultures it became apparent that SPIO-mediated effects may be influenced by the 

interaction of the different cell types. Neurons specifically communicate with glial cells in a bidirectional 

manner via the release of signalling molecules and in turn, influence, the state of activation of microglia 

(Biber et al. 2007; Hanisch and Kettenmann 2007; Eyo and Wu 2013). Slight deviations in molecule 

secretion caused by impaired neuronal function or atrophy can either result in neurotoxic or neuroprotective 

microglial responses mediated through the release of pro- or anti-inflammatory cytokines and chemokines 

(von Zahn et al. 1997; Biber et al. 2007; Napoli and Neumann 2009; Walter and Neumann 2009). Therefore, 

I performed a screening for 40 different cytokines and chemokines in cell culture supernatants of microglia, 

astrocytes and neurons as well as neuron-glia co-cultures using the Proteome Profiler Mouse Array Kit, 

Panel A (ARY006; R&D Systems). As I found increased neurite branching of neurons from neuron-glia co-

cultures, especially, after the exposure to SPIO concentrations of 0.5 mM for 24 hours, I used supernatants 
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of all cultures under these experimental conditions as well as of untreated cell cultures and performed 

measurements in triplicate, respectively. Before measuring the relative expression of cytokines and 

chemokines, I incubated the Array Kit nitrocellulose membranes with cell culture respective supernatants 

for chemiluminescence detection. I quantified the chemiluminescence signals of individual nitrocellulose 

membranes using ImageJ software. Subsequently, I averaged the quantified mean grey-value intensities 

of duplicate spots that represent one of the 40 different cytokines/chemokines and normalized these with 

averaged values of reference spots in corresponding images. Data were compared with GraphPad Prism 5 

software. 

The quantification of mean grey-value intensities of all measured cytokines and chemokines did not reveal 

significant differences, neither in comparison of VSOP-R1, VSOP-R2, ferucarbotran and ferumoxytol in 

respective cell cultures, nor in comparison between microglial, astrocyte and neuronal cultures. However, 

I observed exceptionally increased or decreased expression levels when comparing certain mean grey-

value intensities of cytokines and chemokines that originate from supernatants of cell cultures exposed to 

different SPIO types. For instance, microglia exposed to 0.5 mM of VSOPs and ferumoxytol for 24 hours 

show strongly increased expression of the chemokine CCL4 compared to the same concentration of 

ferucarbotran and astrocyte and neuronal cultures.  
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Figure 19: Cytokine and chemokine secretion profile of primary brain cells. The secretion of cytokines and 

chemokines in respective cell culture supernatants was analysed using the Proteome Profiler Mouse Array Kit Panel A 

(ARY006, R&D Systems), where capture antibodies for 40 different cytokines and chemokines are spotted in duplicate. 
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Quantification of detected cytokines/ chemokines via chemiluminescence was performed using ImageJ. Averaged 

mean grey-value intensities of duplicate spots were normalized to averaged values of reference spots and, 

subsequently, to averaged values of untreated controls, respectively. Mean grey-value intensities for each cytokine and 

chemokine are shown as percentage of controls. Although the cytokine and chemokine profile shows either strongly 

increased or decreased mean grey-value intensities, no significant differences of their secretion within respective cell 

cultures and in comparison between the four different cultures were found. Variation in measurements are presented 

as SEM. 
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4 Discussion 

The aim of this thesis was to investigate the consequences of the clinically approved MRI contrast agents 

ferucarbotran and ferumoxytol in addition to two types of VSOPs that entered clinical phase II trials on 

murine primary brain cells. The capacity of SPIOs to penetrate the intact BBB depending on their 

composition, including size, surface coating and charge, which is further facilitated by an external magnetic 

field (Lockman et al. 2004; Kim et al. 2006; Wang et al. 2010; Kong et al. 2012; Hoff et al. 2013; Thomsen 

et al. 2013; Sun et al. 2014) elucidates the necessary requirement to test for potential cytotoxic effects 

associated with respective SPIO compositions. My work indicates that SPIO size, surface coating and 

charge have substantial influence on the cellular response of brain cells, which highlights the unique effect 

of SPIO compositions. The probability of brain cells to encounter SPIOs is tremendously increased when 

these particles are systemically administered for diagnosis under neuroinflammatory conditions with 

dysfunctional BBB (Weinstein et al. 2010; Gendelman et al. 2015; Silva Adaya et al. 2017). Here, different 

types of SPIOs have been reported to be transported into the brain, for instance, by leukocytes that 

phagocytosed particles (Petry et al. 2007; Weinstein et al. 2010; Weise and Stoll 2012; Krol et al. 2013). 

Nevertheless, even the guidelines of the International Conference for Harmonization for drug development, 

which also accounts for SPIO-based contrast agents merely assess the survival of animals or cells in culture 

in order to address potential toxicity (Safety Guidelines of the International Conference for Harmonization ; 

Neubert et al. 2015). Serious concerns about SPIO-induced neurotoxic effects have been raised 

(Oberdorster et al. 2009; Hu and Gao 2010; Cupaioli et al. 2014; Migliore et al. 2015; Jarockyte et al. 2016).  

There are studies available in the literature that already investigated particle-cell interactions, cytotoxicity, 

and degradation of SPIOs of various composition (Pisanic et al. 2007; Hong et al. 2011; Kim et al. 2011; 

Soenen et al. 2011). However, first of all, most of the applied nanoparticles where specifically designed to 

explore various processes, like iron oxide metabolism and fate following cellular uptake by primary brain 

cells (C. et al. 2010; Geppert et al. 2011; Geppert et al. 2012; Hohnholt and Dringen 2013; Luther et al. 

2013; Petters et al. 2014; Petters et al. 2016). When applying clinically relevant SPIOs, exposure-induced 

effects were predominantly assessed using immortalized cell lines (Cengelli et al. 2006; Soenen et al. 

2010b; Soenen et al. 2011; Rosenberg et al. 2012), which only provide limited informative value. 

Immortalized cells show altered physiological properties, including proliferation, survival, differentiation and 

activated states compared to the corresponding primary cell types (Jenkins et al. 2013). They are more 

resistant to adverse stimuli and have been shown to take up SPIOs much stronger than, for instance, 

primary cerebellar neurons (Pinkernelle et al. 2012; Jenkins et al. 2013). Consequently, interpretation of 

results with regard to affected cellular morphology, cell viability and metabolism of SPIO-exposed 

immortalized cell lines should be treated with caution.  

In order to study the impact of SPIO exposure on the viability of brain cells, the use of primary cell culture 

models cultivated under controlled conditions is a suitable approach. Assessing individual cells in culture 

has the advantage to observe early signs of adverse SPIO effects that can be reflected by morphological 

transformation of microglia from a ramified towards an amoeboid phenotype and cytoskeletal disruptions 
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of neurons (Valdiglesias et al. 2015). The neurotoxic potential of different types of nanoparticles has already 

been demonstrated using various approaches and is currently of major concern, not only in the field of 

biomedicine (Nel et al. 2006; Buzea et al. 2007; Hu and Gao 2010; Yang et al. 2010; Cupaioli et al. 2014; 

Migliore et al. 2015; Valdiglesias et al. 2015; Jarockyte et al. 2016). For instance, intranasal inhaled 

nanoparticles were found to be transported into the brain by olfactory nerves after being deposited in the 

olfactory bulb (Wang et al. 2011; Wu et al. 2013b). Consequently, high particle concentrations were found 

in the striatum and hippocampus, which are both regions affected in neurodegenerative diseases (Hu and 

Gao 2010; Migliore et al. 2015; Valdiglesias et al. 2015).  

The question remains, however, which concentrations of the intravenously administered SPIOs eventually 

reach the brain parenchyma. Most available studies applied particle iron concentrations to cultured cells 

that are not comparable to SPIO doses that eventually reach the brain (Table 7 – 9). Therefore, iron 

concentration range of SPIOs used in this thesis were selected based on the following calculations. For 

VSOP injections in humans, it has been shown that a dose of 0.075 mM iron/kg (1.34 mg iron/kg) body 

weight leads to a plasma concentration of 90 mg/l iron or approximately 1.6 mM iron plasma concentration 

(Taupitz et al. 2004), which is according to the SPIO concentration used in this study (Neubert et al. 2015). 

With regard to the clinically applied bolus dose of 510 mg ferumoxytol, an amount of 8.5 mg iron/kg body 

weight for a person weighing 60 kg can be assumed (Lu et al. 2010; Pai et al. 2010; Toth et al. 2017). 

Hence, ferumoxytol administration could result in a plasma iron concentration of approximately 10.0 mM, 

which is three times higher than the highest iron concentration of 3.0 mM used in the presented 

experimental approach. Based on those results, the applied particle concentrations of 0.5 mM, 1.5 mM and 

3.0 mM are within the range of clinical relevant doses. In addition, previous studies have demonstrated that 

30 % of applied SPIOs (30 % of 1.6 mM: ~0.5 mM and 30% of 10.0 mM: ~3.0 mM) can penetrate the BBB 

(Kong et al. 2012; Dan et al. 2013; Hoff et al. 2013; Thomsen et al. 2013; Sun et al. 2014). Due to these 

calculations on the available data, brain cells were exposed with SPIOs of clinically relevant doses (Neubert 

et al. 2015).  

4.1 Consequences of SPIO exposure on glial cells 

Several reports have addressed the interaction, including uptake and metabolism of iron oxide 

nanoparticles with primary astrocytes (Au et al. 2007; Geppert et al. 2009; Ding et al. 2010; Geppert et al. 

2011; Lamkowsky et al. 2011; Geppert et al. 2012; Hohnholt and Dringen 2013; Hohnholt et al. 2013; Sun 

et al. 2013; Schaub et al. 2014; Migliore et al. 2015; Petters et al. 2016). Due to their close proximity to the 

brain microvasculature, essential function in brain iron metabolism und metabolic support of neurons, the 

effect of SPIOs on astrocytes have been extensively investigated. As neuron-glial co-cultures used in my 

investigations are composed of astrocytes, SPIO-induced effects will be described in the following. 

4.1.1 Effects of SPIOs on primary astrocytes  

Due to their major role in iron metabolism of the brain, astrocytes are capable of buffering iron overload as 

a consequence of SPIO exposure and protect neurons from iron-mediated toxicity and oxidative stress 
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(Tiffany-Castiglion and Qian 2001; Dringen et al. 2007; Macco et al. 2013; Pelizzoni et al. 2013; Liu et al. 

2017). So far, previous studies investigated the effects on astrocyte physiology using various SPIO types 

(Table 7). The applied SPIOs were found to be internalized by clathrin-mediated endocytosis and 

macropinocytosis following their attachment to the cell membrane (Hohnholt and Dringen 2013; Petters et 

al. 2016). Here, the surface charge of SPIOs decisively influenced their uptake, whereas positively charged 

particles were taken up superior to negatively charged SPIOs (Hohnholt and Dringen 2013; Sun et al. 

2013). Following uptake, SPIOs were localized into lysosomes, where the acidic pH and reducing 

compounds facilitated particle degradation and liberation of iron ions (Levy et al. 2010; Hohnholt et al. 

2013). SPIO-derived iron ions are thought to be stored in ferritin after their transport into the cytosol by the 

divalent metal transporter 1 (DMT1) (Hohnholt and Dringen 2013; Petters et al. 2016). 

The uptake of DMSA- and dextran-coated iron oxide nanoparticles by astrocytes in vitro was shown to 

depend on particle concentration, exposure time and temperature (Ding et al. 2010; Geppert et al. 2011; 

Lamkowsky et al. 2012). However, incubation with these types of SPIOs did not impair cell viability 

(Table 7). Instead, astrocytes appeared to be resistant against iron induced toxicity, putatively due to the 

storage of particle-derived excess iron in ferritin (Geppert et al. 2009; Geppert et al. 2012). However, a slow 

liberation of iron ions from accumulated DMSA-coated particles induced the generation of reactive oxygen 

species (ROS) and, hence, delayed decrease in cell viability (Geppert et al. 2012). SPIOs coated with 

different materials, such as aminosilane and starch were found to induce cytotoxicity depend on the applied 

concentration (Au et al. 2007; Sun et al. 2013). In addition, SPIO uptake significantly increased when cells 

were exposed to a magnet (Lamkowsky et al. 2012; Sun et al. 2013; Schaub et al. 2014). These results 

emphasize the importance to investigate SPIO-induced effects with regard to particle size and surface 

properties and respective experimental condition. 

 

 

 

 

 

 

 

 

 

 

 



82 
 

 
 

Table 7: Studies on the effects of SPIOs on primary astrocytes in vitro. 

SPIO characteristics Exposure condition Effects on primary astrocytes  Reference 

Fe3O4 or ɣ-Fe2O3  

(exact composition not 

disclosed) 

10 µg/ml  

for 6 h 

Membrane integrity not affected  

Significantly impaired viability  

(Au et al. 

2007) 

Dextran-coated Fe3O4 

2 – 6 nm 

32, 64 and 128 µg/ml 

for 24 h 

No influence on proliferation 

No cytotoxicity 

(Ding et al. 

2010) 

DMSA coated  

ɣ-Fe2O3  

Anionic charge 

60 nm 

500 and 1000 µM  

for up to 6 h 

No acute cell death within 6 h 

No changes in viability 

Time- and concentration-dependent 

SPIO accumulation 

(Geppert et 

al. 2011) 

DMSA coated  

ɣ-Fe2O3  

Anionic charge 

60 nm 

0.25, 1 and 4 mM 

for 4 h 

No changes in viability after 4 h but 

after 7 days post incubation 

No alteration in cell metabolism 

Dose-dependent increases in iron 

content and slight increase in ROS 

(Geppert et 

al. 2012) 

DMSA coated  

ɣ-Fe2O3  

Anionic charge 

60 nm 

1 and 4 mM  

for 4 h  

at 4 °C or 37°C 

No changes in viability 

External magnetic field-induced 

acceleration of particle uptake in time, 

temperature and concentration 

dependency 

(Lamkowsky 

et al. 2012) 

Aminosilane (AmS)-coated 

(cationic charge) and 

Carboxyl-AmS-coated Fe3O4 

(anionic charge) 

27 nm 

 

0.1 – 224 μg/mL  

for 24 h 

Cytotoxicity above 100 µg/ml SPIO 

concentration, especially of COOH-

AmS- Fe3O4 in the presence of a 

magnetic field 

Strong SPIO uptake 

(Sun et al. 

2013) 

AmS-coated (50 and 100 nm) 

and  

Starch- (50 nm) coated 

SPIOs 

0.25, 1.25 and 

2.5 mg/ml  

for 24 or 72 h 

Altered viability in presence of 

alternating magnetic field induced cell 

death 

(Schaub et 

al. 2014) 

Fluorescent DMSA-coated        

ɣ-Fe2O3  

Anionic charge   

42 – 49 nm 

0.1, 0.3, 1.0 and 

3.0 mM for 6 h 

and 0.3 mM for 24 h 

No influence on viability 

Slight increase in ROS 

(Petters et 

al. 2016) 
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4.1.2 Effects of SPIOs on microglial cells  

Apart from this thesis that includes already published results (Neubert et al. 2015), only a few number of 

studies investigated the effects of SPIOs of primary microglial cells (Xue et al. 2012; Luther et al. 2013; Wu 

et al. 2013a; Petters et al. 2016). An overview of the previous studies is given in Table 8. None of the 

applied SPIOs have been investigated to this extend concerning their influence on the morphology and 

viability of primary microglia. Most available studies using different model systems have demonstrated that 

microglia are capable of engulfing various types nanoparticles (Fleige et al. 2001; Tysiak et al. 2009; 

Pickard and Chari 2010; Wang et al. 2011; Pinkernelle et al. 2012; Luther et al. 2013; Millward et al. 2013). 

Furthermore, several reports have shown that microglia become activated upon nanoparticle exposure, 

which was, in some cases, accompanied by the release pro-inflammatory and potentially neurotoxic 

mediators, such as NO, TNF-α and ROS (Table 8) (Wang et al. 2011; Xue et al. 2012; Wu et al. 2013a; 

Cupaioli et al. 2014). For instance, intranasal exposure of maghemite nanoparticles caused microglial 

activation and generation of ROS and NO, leading to pathological tissue alterations of the olfactory bulb, 

hippocampus and striatum in mice (Wang et al. 2011). Although the subsequent effects of peripherally 

applied nanoparticles are not directly comparable to effects of systemically injected SPIOs, these results 

indicate that particle-induced microglial activation might have detrimental impact (Minghetti et al. 2005; 

Kierdorf and Prinz 2013; Sierra et al. 2013). However, results of previous studies were conflicting 

concerning microglial activation (Pickard and Chari 2010; Luther et al. 2013) and activation-induced 

secretion of pro-inflammatory mediators TNF-α, IL-1β, IL-6, ROS and NO (Table 8) (Cengelli et al. 2006; 

Wang et al. 2011; Xue et al. 2012; Ye et al. 2013). Two studies reported a decrease in viability of primary 

microglia following the exposure to anionic DMSA-coated SPIOs (Luther et al. 2013; Petters et al. 2016). 

These data demonstrate that microglial reactions following SPIO exposure strongly depend on nanoparticle 

size, surface coating and charge and are further influenced by the applied cell culture model. Consequently, 

understanding the reaction of primary microglia to clinically applied SPIOs and estimating a potential 

induction of neurodegeneration by activated microglia remained to be explored.  
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Table 8: Studies on the effects of SPIOs on microglial cells in vitro. 

Microglial 

cells 

SPIO characteristics Exposure 

condition 

Effects on microglial cells Reference 

Murine 

microglial 

N9 and 

N11 cells 

Dextran-coated 

Endorem® (80 – 150 nm) 

& Sinerem® (15 – 30 nm) 

with neutral charge 

PVA-SPIOs (neutral) 

Amino-PVA-SPIOs 

(anionic) 

Carboxy-PVA-SPIOs 

(cationic) 

Thiol-PVA-SPIOs 

(cationic) 

30 nm 

0.4, 1.8 and      

3.5 mM  

for  2 – 35 h 

No cytotoxicity or NO production  

Low and slow uptake of dextran-

coated SPIOs increasing over time 

Time- and concentration-dependent 

uptake of amino-PVA-SPIOs 

 

(Cengelli et 

al. 2006) 

Murine 

microglial 

Bv-2 cells 

α-Fe2O3 (143 nm), 

ɣ-Fe2O3 (644 nm) 

0.02, 0.2 and           

2 mmol/L 

for 2 – 12 h 

No significant cytotoxicity, Viability 

recovered after 12 h 

No significant increase in IL-1β, IL-6 

and TNF-α 

Increase ROS and NO production 

(Wang et 

al. 2011) 

Murine 

microglial 

Bv-2 cells  

Dextran-coated 

ferumoxide (Feridex®) 

Anionic charge 

 80 –150 nm 

11.2, 22.4 and       

56 µg iron  

for 6 h 

No influence on viability 

Dose-dependent increase in iron 

concentration  

(Rosenberg 

et al. 2012) 

Primary 

microglia 

(rat) 

Fe3O4                                 

(exact composition not 

disclosed) 

45 nm 

0.25 and           

0.5 mg/ml 

for 24 h 

No increase in NO production 

Mild increase in IL-1β, IL-6 and 

TNF-α release independent from 

the dose 

(Xue et al. 

2012) 

Primary 

microglia 

(mice) 

Carboxydextran-coated 

ferucarbotran (Resovist®) 

Anionic charge 

45 – 60 nm 

1, 10 and 

50 µg/ml  

for 30 min,  

stimulated with 

100 ng/ml LPS for 

24 h 

No influence on viability and 

morphology 

LPS + SPIO attenuated IL-1β but 

not TNF-α production 

 

(Wu et al. 

2013a) 
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Microglial 

cells 

SPIO characteristics Exposure 

condition 

Effects on microglial cells Reference 

Primary 

microglia 

(rat) 

Fluorescent DMSA-coated 

ɣ-Fe2O3 

Anionic charge   

60 – 70 nm 

150, 450 and     

1500 µM 

for 3 and 6 h 

Time-, concentration- and 

temperature-dependent SPIO 

uptake 

Severely affected cell viability at 

high concentrations and prolonged 

exposure  

(Luther et 

al. 2013) 

Primary 

microglia 

(rat) 

Fluorescent DMSA-coated   

ɣ-Fe2O3  

Anionic charge   

42 – 49 nm 

0.1, 0.3, 1.0 and 

3.0 mM for 6 h 

and  

0.3 mM for  24 h 

Severe concentration-dependent 

increase in iron content, ROS and 

cytotoxicity 

(Petters et 

al. 2016) 

 

In this thesis, I showed that microglia undergo morphological transformation indicative for microglial 

activation after exposure to clinically relevant SPIOs (Neubert et al. 2015), which has not been 

demonstrated for these nanoparticles and applied iron concentrations before. The activation process of 

microglia involves morphological transformation from a resting, meaning constantly surveilling towards an 

executive state, which is accompanied by a gradual de-ramification of the highly motile processes, 

expanded soma and overall enlargement of the cell body, resulting in an amoeboid-shaped phenotype 

(Town et al. 2005; Hanisch and Kettenmann 2007; Walker et al. 2014). Activated microglia also become 

highly phagocytic (Fleige et al. 2001; Wang et al. 2011; Walker et al. 2014), which accounts for the 

increased accumulation of VSOPs and ferucarbotran but not ferumoxytol. These characteristic 

morphological and functional criteria of microglia can be observed for the in vitro just as for the in vivo 

phenotype and are considered as reliable indicators for their activation (Napoli and Neumann 2009; 

Ransohoff and Perry 2009; Walker et al. 2014). In Prussian blue staining (Figure 2), I already observed 

clear indications for microglial activation upon accumulation of VSOPs and ferucarbotran with increasing 

iron concentrations and prolonged exposure time, which I confirmed with immunocytochemical staining 

(Figure 4) (Neubert et al. 2015). These observations were also confirmed in immunocytochemical staining 

for the exposure of microglia to carboxymethyldextran-coated ferumoxytol of neutral surface charge but 

were by far not as distinct as for the negatively charged VSOPs and ferucarbotran. However, my results 

are not in line with previous reports concerning SPIO-induced microglial activation (Pickard and Chari 2010; 

Luther et al. 2013). This is due to the fact that SPIOs of various composition were applied, leading to 

divergent observations with regard to cellular effects and cytotoxicity (Karlsson et al. 2009; Hong et al. 

2011; Horie et al. 2012; Saito et al. 2012; Hirsch et al. 2013). Upon exposure, microglia effectively and 

avidly accumulated SPIOs of negative surface charge, whereby cellular accumulation of VSOPs appeared 

to be much faster and quantitatively superior (Neubert et al. 2015).  

The accumulation and subsequent internalization of nanoparticles has been shown to depend on their 

physicochemical properties, including size, surface coating and charge (Wilhelm et al. 2003; Zhang et al. 
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2009; Verma and Stellacci 2010; Horie et al. 2012; Saito et al. 2012; Schweiger et al. 2012; Hirsch et al. 

2013; Horie et al. 2013; Petters et al. 2014). Especially, the surface charge has been shown to influences 

particle-cell interactions and subsequent uptake (Wilhelm et al. 2003; Schweiger et al. 2012). Cell 

membranes constitute selectively permeable barriers, consisting of a phospholipid bilayer with embedded 

proteins as well as transport channels that exhibit large negatively charged domains. Positively charged 

SPIOs have been shown to electrostatically interact with the negatively charged glycocalyx forming clusters 

at the plasma membrane that are, subsequently, internalized  by clathrin-mediated or adsorptive 

endocytosis (Wilhelm et al. 2003; Zhang et al. 2009; Verma and Stellacci 2010; Schweiger et al. 2012; Sun 

et al. 2013; Petters et al. 2014). Thus, adsorption of cationic particles is likely independent on the cell type 

(Wilhelm et al. 2003; Valdiglesias et al. 2015). In contrast, anionic particles are repelled by electrostatic 

repulsion at the plasma membrane, however, have been shown to be strongly internalized by different cell 

types (Mailander et al. 2008; Verma and Stellacci 2010; Andreas et al. 2012; Schweiger et al. 2012). I 

confirmed these findings for primary microglia, showing that both SPIOs of anionic surface charge, namely 

citrate-coated VSOPs and carboxydextran-coated ferucarbotran were efficiently accumulated (Neubert et 

al. 2015). In the case of ferucarbotran, the negatively charged carboxyl groups have been shown to 

enhance particle internalization by macrophages at iron concentrations of 1.5 mM (Wilhelm et al. 2003; 

Mailander et al. 2008; Andreas et al. 2012). In the course of my experiments, additional studies 

demonstrated that other types of negatively charged nanoparticles, such as DMSA-coated SPIOs were 

strongly taken up by primary microglia (Pinkernelle et al. 2012; Luther et al. 2013; Petters et al. 2016). The 

internalization mechanism of anionic SPIOs has been postulated to occur through nonspecific interaction 

with cationic domains of the extracellular membrane (Wilhelm et al. 2003; Verma and Stellacci 2010; 

Andreas et al. 2012). After attaching and clustering at the plasma membrane, SPIOs are internalized into 

cells, including microglia via endocytic mechanisms and are, subsequently, transported into lysosomal 

compartments (Fleige et al. 2001; Tysiak et al. 2009; Verma and Stellacci 2010; Andreas et al. 2012; 

Pinkernelle et al. 2012; Luther et al. 2013; Wu et al. 2013a). Cellular accumulation of ferucarbotran via 

clathrin receptor-mediated endocytosis has already been described previously for macrophages (Lunov et 

al. 2010; Soenen et al. 2010a; Yang et al. 2011a). Therefore, it seems likely that this uptake mechanism 

also applies for primary microglia. After internalization by macrophages, carboxydextran-coated particles 

were found to be located in early endosomes that migrate toward lysosomal vesicles, where the acidic 

environment facilitates the degradation of the carboxydextran coat and iron oxide cores (Arbab et al. 2005; 

Lunov et al. 2010; Andreas et al. 2012; Schweiger et al. 2012; Wu et al. 2013a). A similar uptake and 

degradation mechanism has been described for citrate-coated, negatively charged VSOPs (Wilhelm et al. 

2003; Soenen et al. 2010a; Andreas et al. 2012). As the facilitated accumulation of VSOPs and 

ferucarbotran resulted in a concentration- and exposure time-dependent consistent decrease in microglial 

viability over 24 hours (Figure 9), it can be assumed that iron liberated from iron oxide cores plays a decisive 

role (Luther et al. 2013; Petters et al. 2016). Using anionic DMSA-coated SPIOs, it has been demonstrated 

that particles internalized via the lysosomal pathway were rapidly degraded. This lead to the release of 

ferrous iron, which was, subsequently, transported into the cytosol, where it may stimulate the synthesis of 

the iron storage protein ferritin (Petters et al. 2014; Petters et al. 2016). Especially high iron concentration 

of 3.0 mM resulted in ROS production and compromised microglial viability. The elevated ROS generation 
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appeared to be caused by excess iron, catalyzed by ferritin. When using lower concentrations, ROS 

production was not induced and immediate toxic effects were not observed (Levy et al. 2010; Petters et al. 

2014). Furthermore, formation of intracellular iron deposits can impair mitochondrial function (Mairuae et 

al. 2011; Andersen et al. 2013; Urrutia et al. 2014), which could also account for the decreased microglia 

viability with increasing SPIO concentration.  

In my experiments, I observed a rapid and quantitatively superior VSOP accumulation by microglia 

compared to polymer-coated ferucarbotran and ferumoxytol, which might partially be due to their small size 

below 10 nm and resulting higher surface-to-volume ratio. Investigations applying VSOPs as target specific 

contrast agents found that these particles were attached to extracellular membrane glycosaminoglycans 

(GAGs) prior to internalization (Ludwig et al. 2013; Wagner et al. 2013; Berndt et al. 2017). As GAGs are 

negatively charged, it is assumed that their high chelating capacity replaces the citrate coating of VSOPs 

(Wagner et al. 2013).  

In contrast, my investigations showed that ferumoxytol exposure did not lead to decreased microglial 

viability over a time span of 24 hours of exposure (Figure 9) (Neubert et al. 2015). As cultured primary 

microglia do not further proliferate after being adherent (Floden and Combs 2007), this effect cannot have 

been due to an enhanced microglial proliferation that would eliminate dead cells and explain the differences 

in the statistics (Figure 9). Due to the coating material, ferumoxytol exhibits a neutral surface charge, which 

potentially diminishes the interaction with extracellular membrane components. Ferumoxytol has been 

designed for the treatment of human CKD (Kowalczyk et al. 2011) and, therefore, exhibits a tendency to 

avidly release free iron ions. This is due to the poor affinity of the coating material toward the iron oxide 

cores, so that the coating is reversibly adsorbed (Lin et al. 2008b; Balakrishnan et al. 2009; Kowalczyk et 

al. 2011). Consequently, ferumoxytol rapidly degraded after it was added to cell cultures, which induced 

the release of free iron ions and deposition of extracellular iron. Cytotoxicity induced by nanoparticles has 

been strongly associated with the release of free metal ions and decreased mitochondrial activity 

accompanied by increased levels of ROS (Wang et al. 2011; Geppert et al. 2012; Horie et al. 2012; 

Hohnholt and Dringen 2013; Cupaioli et al. 2014; Petters et al. 2016). The potential generation of free 

oxygen radicals might subsequently adversely affect microglial survival in the long term (Mairuae et al. 

2011; Andersen et al. 2013). The exposure to ferumoxytol in high doses might diminish microglial particle 

accumulation over an extended period of time because elevated iron levels strongly impair the endocytic 

activity of microglia by affecting mitochondrial function (Mairuae et al. 2011; Urrutia et al. 2014). This could 

explain increased cell survival within the relatively short incubation of 24 hours with ferumoxytol (Neubert 

et al. 2015). Whether this actually applies needs to be investigated by using much longer exposure times 

of several days or weeks. 

These results suggest that SPIO-induced activation of microglia may lead to a defensive response, which 

could also result in chronic microglial activation accompanied with a sustained of neurotoxic signalling 

molecules (Minghetti et al. 2005; Walter and Neumann 2009; Lull and Block 2010; Andersen et al. 2013; 

Cupaioli et al. 2014; Zhang et al. 2014). This could eventually lead to neurodegeneration and has been 

implicated in the onset and progression of various pathological processes within the CNS.  
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4.2 Consequences of SPIO exposure on neurons  

Research data on SPIOs interactions with neurons has shown both negative (Block et al. 2004; Pisanic et 

al. 2007; Rivet et al. 2012; Xue et al. 2012) and positive impact (Silva 2010; Kim et al. 2011; Neubert and 

Brauer 2015). This is likely due the fact that SPIOs of various composition were applied on different cell 

culture models, which is presented as an overview in Table 9. Several studies provide evidence that 

nanoparticles can induce neurotoxicity dependent on their size, surface coating and charge (Kim et al. 

2006; Karlsson et al. 2009; Hu and Gao 2010; Yang et al. 2010; Hong et al. 2011; Horie et al. 2012; Liu et 

al. 2013; Wu et al. 2013b; Migliore et al. 2015; Valdiglesias et al. 2015; Jarockyte et al. 2016), which I 

confirmed in this study (Neubert et al. 2015).  

Here, I show that the morphology and viability of primary hippocampal neurons in monocultures is severely 

affected by clinically relevant SPIOs of different composition (Neubert et al. 2015). Ferucarbotran and two 

types of VSOPs, both possess a negative surface charge, were continually accumulated by primary 

neurons as shown with Prussian blue staining (Figure 10 A and B). These SPIOs were especially localized 

around the neuronal cell body but were also distributed along neurites. This intense accumulation of 

ferucarbotran and VSOPs around the somata of primary neurons appeared to adversely affect neuronal 

morphology as shown with Sholl analysis (Figure 13, A, C and E). Although immunocytochemistry did not 

evidently reveal reduced number of neuronal processes (Figure 11), Sholl analysis clearly showed reduced 

numbers of neurites, especially proximal to neuronal somata, of neurons exposed to SPIOs (Figure 13). 

The preferential binding of carboxydextran- and citrate-coated SPIOs onto neuronal somata is most likely 

due to the high affinity of the anionic surface charge towards positively charged domains of the extracellular 

membrane (Wilhelm et al. 2003; Soenen et al. 2010a; Andreas et al. 2012; Ludwig et al. 2013). Moreover, 

I suggest that membrane-associated particles at the somata were internalized, which might explain the 

significantly increased numbers of degenerated neurons indicating a loss in viability of neurons exposed to 

all iron concentrations of ferucarbotran and high iron concentrations of VSOP-R2 (Figure 15). This is in line 

with other reports that demonstrated neurotoxic effects of SPIOs after internalization and intracellular iron 

accumulation (Kim et al. 2006; Rivet et al. 2012; Xue et al. 2012; Wu et al. 2013b; Yarjanli et al. 2017). 

Interestingly, ferumoxytol-exposed neurons revealed significantly decreased number of proximal neurites 

independent of the particle concentration (Figure 13), although ferumoxytol was not detectable with 

Prussian blue staining (Figure 10 C). Compared to negatively charged SPIOs, the neutral surface charge 

of ferumoxytol prevents electrostatic interactions with the cell membrane and subsequent internalization by 

neurons. The poor affinity of the carboxymethyl-dextran coating towards iron oxide induces rapid particle 

degradation and the release of free iron ions (Lin et al. 2008b; Balakrishnan et al. 2009; Kowalczyk et al. 

2011). Consequently, extracellular iron depositions might be responsible for adverse effect of ferumoxytol 

on neuronal morphology and viability. I observed elevated numbers of degenerated neurons that were 

incubated with ferumoxytol, especially in iron concentrations of 1.5 mM compared to control neurons 

(Figure 15). Therefore, the release of free iron ions from extracellular iron deposits and the subsequent 

generation of highly toxic oxygen radicals might cause neurodegeneration (Valdiglesias et al. 2015), as 

hippocampal neurons are highly sensitive to oxidative damage (Yang et al. 2010). Early signs for 
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neurodegenerative processes might, therefore, be reflected by impaired neuronal morphology and 

increasing numbers of degenerated cells (Neubert et al. 2015).  

These results emphasizes the importance of evaluating SPIO–cell interactions individually according to the 

physicochemical properties of SPIOs as well as the culture condition. In addition, the exact mechanisms 

behind the observed adverse effects of the applied SPIOs on neuronal morphology remain to be explored, 

whereby existing studies using neuronal cell lines could give indications.  

Previous to and during my investigations, only a few number of studies performed their tests using primary 

neurons to investigate SPIO-mediated effects (Rivet et al. 2012; Sun et al. 2013; Petters and Dringen 2015; 

Petters et al. 2016). Most approaches used immortalized pheochromocytoma (PC12) cells derived from rat 

adrenal medulla as a model to evaluate neuronal particle uptake and neurotoxicity (Table 9) (Pisanic et al. 

2007; Kim et al. 2011; Soenen et al. 2011; Pinkernelle et al. 2012; Xue et al. 2012; Wu et al. 2013b). PC12 

cells possess a neuronal phenotype and mimic properties of dopaminergic neurons, including dopamine 

production. Therefore, this cell line is a popular model for nanoparticle cytotoxicity studies (Pisanic et al. 

2007; Kim et al. 2011; Pinkernelle et al. 2012; Xue et al. 2012). In growing PC12 cells (2 DIV), it has been 

shown that treatment with increasing iron concentrations of up to 1.5 mM of anionic DMSA-coated SPIOs 

resulted in cytoskeletal alterations, such as reduced microtubules protrusions, reduced formation of actin 

microfilaments as well as loss of organized actin within the cells (Pisanic et al. 2007; Migliore et al. 2015). 

Consequently, DMSA-coated SPIOs caused a concentration-dependent decrease in viability of PC12 cells 

after 24 hours of exposure, which also adversely affected the extension of neurites in response to NGF 

(Table 9) (Pisanic et al. 2007). In contrast, exposure of PC12 cells to PEG-phospholipid-coated SPIOs and 

NGF, synergistically, lead to an increase in neurite outgrowth with increasing SPIO-concentrations (Kim et 

al. 2011). However, prolonged exposure to high iron concentrations of PEG-phospholipid-coated SPIOs 

was shown to cause neurotoxicity and damage neuronal morphology (Kim et al. 2011). Comparable results 

were obtained by exposing PC12 cells and neural c17.2 progenitor cells to high iron concentrations of 

dextran-coated ferumoxide of neutral surface charge as well as anionic carboxydextran-coated 

ferucarbotran and citrate-coated VSOP-C200, which were, however, complexed with a transfection agent 

(Soenen et al. 2010b; Soenen et al. 2011). All SPIOs adversely affected the morphology and neurite 

formation, which correlated with the amount of particle uptake and, subsequently, induced cytotoxic effects 

(Table 9). However, the concentration-dependent toxicity was transiently reduced until it disappeared when 

culturing cells for additional 8 days following SPIO exposure (Soenen et al. 2010b). This effect is likely due 

to SPIO dilution by further cell divisions of the immortalized cell lines (Soenen et al. 2010b) and would not 

apply to post-mitotic primary neurons, which emphasizes the relevance using primary cells as model 

system. Additionally, the impact of SPIOs on the morphology and viability of primary neurons in co-culture 

with glial cells allows for more profound insights into particle-mediated effects. 
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Table 9: Studies on the effects of SPIOs neuronal cells in vitro. 

Neuronal 

cell line  

SPIO characteristics Exposure 

condition 

Effects on neuronal cells Reference 

PC12 cells DMSA-coated Fe2O3 

anionic charge  

5 – 12 nm 

0.15, 15 and        

1.5 mM   

for 24 h 

Concentration-dependent 

decreases in viability and neurite 

formation, morphological changes 

(Pisanic et 

al. 2007) 

Neural 

c17.2 

progenitor 

cells 

(mice)  

 

Dextran-coated 

ferumoxide 

(Endorem®, neutral 

charge, 80 – 150 nm) 

Carboxydextran-

coated ferucarbotran 

(Resovist®, anionic 

charge, 62 nm) 

Citrate-coated VSOP 

(VSOP-C200, anionic 

charge, 8.6 nm) 

500 and 1000 µg/ml 

+ transfection agent 

Lipofectamine 2000  

(5 µl/ml) 

for 4 and 24 h 

Highest amounts of intracellular iron 

after ferucarbotran, least after 

VSOP incubation for 24 h 

Cytoskeletal alterations after 

ferucarbotran and ferumoxide 

incubation with 1000µg/ml for 24 h, 

reduced proliferation 

Toxic effects after VSOP incubation 

with 500 µg/ml for 24 h 

(Soenen et 

al. 2010b) 

PC12 cells PEG-phospholipid-

coated Fe3O4 

11 nm 

5, 10, 20, and            

40 µg/ml  

+ NGF (100 ng/ml) 

for 1, 3, and 5 days 

Slight effects on viability at the 

highest concentration after 3 or 5 

days 

Increase in neurite outgrowth with 

increasing SPIO concentration 

Neurotoxicity at high concentration 

and prolonged exposure 

(Kim et al. 

2011) 

Neural 

c17.2 

progenitor 

cells 

(mice)  

PC12 cells 

 

Dextran-coated 

ferumoxide 

(Endorem®, neutral 

charge, 80 – 150 nm) 

Carboxydextran-

coated ferucarbotran 

(Resovist®, anionic 

charge, 62 nm) 

Citrate-coated VSOP 

(VSOP-C200, anionic 

charge, 8.6 nm) 

200 and 400 µg/ml 

of Endorem®, 

150 and 300 µg/ml 

of Resovist®, 

200 and 600 µg/ml 

of VSOP-C200 

+ transfection agent 

Lipofectamine 2000  

(5 µl/ml) 

for 4 and 24 h 

c17.2 cells: no effect on viability, but 

cytotoxicity through ROS production 

and decreased proliferative capacity 

at high concentrations  

PC12 cells: Internalized SPIOs 

faster than c17.2 cells, adverse 

effect of all SPIOs on neurite 

formation 

(Soenen et 

al. 2011) 
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Neuronal 

cell line  

SPIO characteristics Exposure 

condition 

Effects on neuronal cells Reference 

Primary 

cortical 

neurons 

(chick) 

Amine-coated 

(45.3 nm), 

Dextran- coated 

(24.7 nm)  and 

PEA-coated 

(47.5 nm)  

Fe3O4 

 

1, 5, and 10 % of 

stock particle 

solution   

39.3 mg/ml (Amine- 

Fe3O4),  

53.1 mg/ml 

(Dextran- Fe3O4), 

60.5 mg/ml   (PEA- 

Fe3O4) 

for 24 h 

PEA- Fe3O4 induced toxic effects 

Amine- Fe3O4 significantly 

decreased metabolic activity in 

concentration-dependency 

Dextran- Fe3O4 partially altered 

viability at highest concentrations 

(Rivet et al. 

2012) 

PC12 cells 

Primary 

cerebellar 

neurons 

(mixed 

cultures) 

 

Fluorescent polymer-

coated SPIOs  

Anionic charge  

190 nm 

10, 50 and          

100 µg/ml  

for 24 h 

Significant increase in SPIO uptake 

by PC12 cells compared to neurons 

from mixed cultures 

(Pinkernelle 

et al. 2012) 

PC12 cells Fe3O4 

45 nm 

0.25 and            

0.50 mg/ml 

for 24 and 48 h 

 

Cytotoxicity through soluble factors 

from SPIO-treated microglia 

(Xue et al. 

2012) 

Primary 

cortical 

neurons 

(mice) 

AmS-coated (cationic 

charge) and  

Carboxyl-AmS-coated 

Fe3O4 (anionic 

charge) 

27 nm 

0.1 – 224 μg/mL  

for 24 h 

Cytotoxicity above 100 µg/ml SPIO 

concentration, especially AmS- 

Fe3O4, moderate SPIO uptake  

(Sun et al. 

2013) 
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Neuronal 

cell line  

SPIO characteristics Exposure 

condition 

Effects on neuronal cells Reference 

PC12 cells Uncoated Fe3O4  

30 nm 

25, 50, 100 and      

200 μg/mL  

for 6 or 24 h 

Dose-dependent toxicity, increased 

ROS, reduced GSH, induced 

apoptosis 

(Wu et al. 

2013b) 

Primary 

cerebellar 

granule 

cells (rat) 

DMSA-coated           

ɣ-Fe2O3  

Anionic charge 

80 – 120 nm 

0, 0.5, 1.0, 1.5 and 

2 mM  

for 1, 2, 4 and 6 h 

Delayed toxicity in time and 

concentration dependency, no 

altered morphology or viability  

(Petters and 

Dringen 

2015) 

Primary 

cerebellar 

granule 

cells (rat) 

Fluorescent DMSA 

coated ɣ-Fe2O3  

Anionic charge   

42 – 49 nm 

0.1, 0.3, 1.0 and      

3.0 mM  

for 6 h and  

0.3 mM for 24 h 

No influence on viability, slight 

increase in ROS 

(Petters et 

al. 2016) 

 

In contrast to primary neurons from monocultures, SPIO exposure did not cause coherent reduction of 

neurites of neurons from neuron-glia co-cultures. Neurite branching of hippocampal neurons cultured with 

glial cells partially increased in a particle type- and dose-dependent manner (Figure 17). Here, iron 

concentrations below 3.0 mM of ferucarbotran (Figure 17A and C) and 3.0 mM of VSOP-R2 (Figure 17E) 

caused increasing numbers of neurites compared to untreated neurons, whereas 1.5 mM of VSOP-R2 

induced a slight reduction in neurite numbers (Figure 17C). The contrary effects of ferucarbotran and 

VSOP-R2 on the morphology of co-culture neurons might be associated with the particle size. VSOPs, as 

the smallest particles of approximately 8 nm, might be rapidly taken up by activated microglial cells, which 

could be further promoted by the anionic surface charge (Soenen et al. 2010b). Since neuron-glia co-

cultures contained equal amounts of primary neurons and microglia (Figure 16), preferential SPIO uptake 

by microglial cells, which has been shown for other nanoparticle types in mixed cultures (Pickard and Chari 

2010; Pinkernelle et al. 2012) can be assumed. Consequently, neurons are exposed to a less extent to 

SPIOs, even when challenged by high iron concentrations. However, the long-term consequences of SPIO-

accumulation by microglia remains to be elucidated.  

However, in this context it is important to consider that activated microglia, which can also be caused by 

SPIOs, can also induce neurotoxicity through the release of pro-inflammatory mediators (Minghetti et al. 

2005; Pais et al. 2008; Lull and Block 2010; Wang et al. 2011; Kierdorf and Prinz 2013). Activated microglia 

not only promote neuronal damage by producing a wide range of cytotoxic factors, such as TNFα, NO, or 

ROS, but also support neuronal survival by releasing trophic and anti-inflammatory factors (Biber et al. 

2007; Lull and Block 2010; Smith et al. 2012; Kierdorf and Prinz 2013; Ye et al. 2013). Nonetheless, iron 

accumulations in neurons and microglia are promoted by inflammatory cytokines, like TNFα and IL-6, which 

are caused by mitochondrial dysfunction (Mairuae et al. 2011; Urrutia et al. 2014). As these conditions can, 
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consequently, weaken the phagocytic activity of activated microglia, intracellular iron accumulations might 

have detrimental effects in the long term. 

In contrast, it could be suggested that the applied SPIOs may exert a stimulatory effect on neurite branching 

of co-culture neurons in a concentration- and particle type-dependent manner (Neubert et al. 2015), which 

has been shown for PC12 cells (Kim et al. 2011). However, astrocytes in neuron-glia co-cultures might also 

contribute to protection of neurons from detrimental SPIO interactions. First of all, co-culturing neurons with 

astrocytes make them less vulnerable to adverse stimuli (Schmalenbach and Muller 1993; Park et al. 2001; 

Liu et al. 2017). This can be explained by the metabolic support of neurons by astrocytes. In addition, 

astrocytes are well known for their neuroprotective potential against iron-mediated oxidative stress and 

their release of neurotrophic mediators and growth-promoting glycoproteins (Schmalenbach and Muller 

1993; Dringen et al. 2007; Jones et al. 2012; Liu et al. 2017). Astrocytes their major role in iron metabolism 

(Dringen et al. 2007; Pelizzoni et al. 2013; Liu et al. 2017) and have been shown efficiently accumulate 

anionic nanoparticles through clathrin-mediated endocytosis without the induction of cytotoxicity, even at 

high particle concentrations (Geppert et al. 2009; Hohnholt and Dringen 2013). Furthermore, astrocytes are 

capable of storing particle-derived excess iron in the intracellular storage protein ferritin (Geppert et al. 

2009; Geppert et al. 2012), which could attenuate adverse impact of SPIOs on neuronal morphology, 

thereby protecting neurons from oxidative stress.  

The variety of different processes that account for SPIO-induced effects on brain cells highlight the 

complexity of the involved mechanisms. My investigations demonstrate that the unique properties SPIOs 

differentially affect the morphology and viability of primary brain cells, which is closely associated with 

particle size, surface coating, charge, iron concentration and exposure time. Furthermore, the model 

system plays a decisively role. These results show the difficulty to reliably predict the consequences of 

nanoparticle exposure on brain cells and the subsequent influences on cell physiology in the long term. In 

turn, particle–cell interactions as well as measurement-influencing parameters should accurately be 

validated for individual SPIOs in advance. Additionally, long-term effects of other diagnostically and 

therapeutically applied SPIOs on cellular metabolism and functionality should be thoroughly investigated, 

because adverse effects cannot be estimated across different SPIO types. 

4.3 Cytokine and chemokine secretion by brain cells in culture 

CNS function might strongly be disturbed by tremendous secretion of microglia-derived cytokines and 

chemokines (Hanisch 2002; Hanisch and Kettenmann 2007; Napoli and Neumann 2009; Ransohoff and 

Perry 2009; Kettenmann et al. 2011; Smith et al. 2012) , which was partially mentioned in the previous 

sections. Due to the complexity of neuron-glia communication involving a wide array of signal molecules, 

which were not found to be significantly and profoundly influenced by SPIO exposure (Figure 19), this topic 

will not be further discussed. Moreover, a subsequent study that was performed in by a member of our 

research group using murine organotypic hippocampal slice cultures showed that VSOP treatment with the 

same iron concentrations used in the presented study did not affect cytokine homeostasis (Pohland et al. 

2017).  
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4.4 Clinical significance of obtained results  

The off-label application of ferumoxytol for MRI imaging of CNS pathologies could have serious 

consequences on brain functionality considering that ferumoxytol has been found in areas of dysfunctional 

BBB, which may be fundamentally related to neuroinflammation (Weinstein et al. 2010; Schieda 2013; 

McConnell et al. 2016; Toth et al. 2017). The consequences of ferumoxytol extravasation from the 

cerebrovasculature and subsequent accumulation within the brain parenchyma cannot be estimated 

(McConnell et al. 2016). Moreover, differences in ferumoxytol clearance among patients have been 

reported (Hasan et al. 2012). Special caution has to be exercised when using ferumoxytol in pregnant 

woman because potential iron deposits could dramatically influence brain development of neonates and 

young infants (Thompson et al. 2012; Ruangwattanapaisarn et al. 2015; Lai et al. 2017). Therefore, the 

results obtained in this thesis contribute to re-evaluate ferumoxytol administration.  

In addition, previous studies using models that mimic the BBB clearly demonstrated that SPIOs are capable 

of crossing the intact BBB depending on their composition, including size, surface coating and charge 

(Lockman et al. 2004; Kong et al. 2012; Dan et al. 2013; Thomsen et al. 2013; Sun et al. 2014). Moreover, 

the applied magnetic field when using SPIOs as contrast agents in MRI accelerates BBB penetration (Kong 

et al. 2012; Hoff et al. 2013; Thomsen et al. 2013; Sun et al. 2014).The probability of brain cells to encounter 

SPIOs is tremendously increased when these particles are systemically administered for diagnosis under 

neuroinflammatory conditions with dysfunctional BBB, such as traumatic brain injury, multiple sclerosis or 

Alzheimer’s disease (Weinstein et al. 2010). Here, different types of SPIOs have been reported to be 

transported into the brain, for instance, by leukocytes that phagocytosed particles (Petry et al. 2007; Tysiak 

et al. 2009; Weinstein et al. 2010; Weise and Stoll 2012; Krol et al. 2013; Millward et al. 2013). Therefore, 

previously reports have raised serious concerns about SPIO-induced neurotoxicity (Oberdorster et al. 2009; 

Hu and Gao 2010; Cupaioli et al. 2014; Jarockyte et al. 2016), however, did not apply clinically approved 

SPIOs in relevant doses. I showed that primary microglia effectively and rapidly accumulate SPIOs. 

Consequently, I observed clear indications of microglial activation upon particle accumulation based on 

morphological observation. Although the long term fate of SPIOs entering the brain remains to be explored, 

they can potentially induce  chronic microglial activation, which has been shown to cause 

neurodegeneration (Minghetti et al. 2005; Walter and Neumann 2009; Lull and Block 2010; Andersen et al. 

2013; Cupaioli et al. 2014; Zhang et al. 2014). In addition, excess iron and iron deposition within the brain 

have been associated with the onset and progression of neurodegenerative diseases, including Friedreich's 

ataxia, Parkinson’s disease, Alzheimer’s disease and multiple sclerosis (Andersen et al. 2013; Hare et al. 

2013; Rouault 2013; Urrutia et al. 2014). Under neuropathological conditions, activated microglia have been 

found to either cause BBB breakdown or become activated as a consequence of BBB dysfunction (Fleige 

et al. 2001; da Fonseca et al. 2014). In fact, increased SPIO accumulation by microglia have been found 

in tumorous and inflammatory CNS lesions (Tysiak et al. 2009; Weinstein et al. 2010; Ittrich et al. 2013; Iv 

et al. 2015). Hence, the administration SPIOs that target the brain requires particular caution. 
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4.5 Methodological limitations  

4.5.1 Cell cultures 

In general, investigations using cultured primary brain cells limit the informative value concerning cell-cell 

interactions between different cell types, their selective responses and also vulnerability towards adverse 

stimuli. The in vitro model is lacking the complexity of structure and function within the three dimensional 

organization of the brain in vivo. Thus, SPIO-mediated effects are of higher biological significance when 

studied in slice culture models, where some the brain architecture is partially preserved. Ultimately, 

observations have to be verified in animal models to produce conclusive results.  

A fact that potentially limits the relevance of the obtained results concerns investigations using microglial 

cell cultures. Cultivated microglial cells isolated from early postnatal brains have been shown to change 

their phenotype from an ovoid to a strongly ramified morphology after several days in culture (Caldeira et 

al. 2014). In my experiments, microglia were treated with SPIOs 24 hours after isolation from mixed glial 

cultures, which could have potentially biased the results concerning microglial activation. However, I 

predominantly observed strongly ramified morphologies of microglia that have not been exposed to 

particles and kept under same environmental conditions. It has also been reported that microglia kept for 

10 DIV in culture show reduced phagocytic capacity compared to microglia cultivated for only 2 DIV 

(Caldeira et al. 2014).  

4.5.2 Technical limitations 

My data show that SPIO accumulation was elevated with increasing particle concentration and incubation 

time in a non-proportional manner (Figure 9, grey bars). Prussian blue staining was used in order to quantify 

microglial SPIO accumulation because it allowed to correlate staining intensities with values of previously 

performed PI measurements. Despite characteristic morphological features indicating microglial activation 

associated with SPIO-type dependent accumulation were clearly depicted, the applied techniques have 

limitations in their informative value. From a technical perspective, iron quantification by measuring the 

Prussian blue staining intensity using greyscale provides only an assessable spectrum of zero to 255 

shades of grey. Consequently, the iron quantification cannot exceed the maximum darkness intensity, 

which might have restricted the amount of identifiable SPIOs. Therefore, the presented approach to quantify 

cell-associated SPIOs might not show proportional increases with increasing particle concentration. 

Another option to quantify cellular iron content of cultured cells is a colorimetric ferrozine-based assay 

(Riemer et al. 2004). However, cell lysates are used for iron quantification, which excludes the possibility 

to perform PI measurements prior Prussian blue staining of the same cell cultures. In addition, quantifying 

the iron content in an aliquot could bias the measured amount of iron per cell because potential SPIO 

aggregations would also be included, resulting in calculations with higher iron amounts per cell (Mailander 

et al. 2008). From a physiological perspective, the phagocytic capacity of microglia limits the amount of 

possibly accumulated and incorporated particles (Sierra et al. 2013). Due to the time-dependent saturation 
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of SPIO uptake by microglia, a prolonged incubation for up to 24 hours does not lead to proportional 

increases in detectable iron.  

Another limitation concern the applied staining methods. The combination of Prussian blue staining to 

detect microglial SPIO accumulation with immunocytochemical staining to visualize microglial morphology 

of the same cells is not possible. This is due to the absorption of fluorescent light in the range of 365 to 490 

nm by Prussian blue or ferric ferrocyanide, which is within the emission spectrum of FITC (530 ± 50 nm) 

and Hoechst 33258 (similar to 4',6-diamidino-2-phenylindole, DAPI ≥ 470 nm) (Frank et al. 2007). Hence, 

Prussian blue would reduce immunofluorescence of microglia morphology and limit their visualization 

following SPIO exposure. An alternative approach would be to perform immunocytochemistry prior Prussian 

blue staining, which requires removing the glass cover slips from microscopic slides after they have been 

imaged leading to mechanical damage of microglia.  

In this study, commonly applied cytotoxicity measurements, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (also known as MTT) assay to investigate mitochondrial function, or lactate 

dehydrogenase (LDH) release assay to assess cell membrane integrity were not performed because the 

accuracy and reliability with these methods for assessing cytotoxicity is restricted (Liu et al. 2013). It has 

been frequently demonstrated that SPIOs can physicochemically interfere with the measurement or interact 

with assay components, thereby biasing the results (Kroll et al. 2009; Holder et al. 2012; Kroll et al. 2012; 

Liu et al. 2013). In general, protocols to assess nanoparticle-mediated toxicity should be more uniform and 

produce reliable data.  

4.5.3 Additional considerations 

The efficiency of cellular SPIO internalization and metabolism is critically influenced by surface coating and 

respective surface charge (Safi et al. 2011; Saito et al. 2012; Schweiger et al. 2012; Petters and Dringen 

2015). Especially, the surface charge of SPIOs determines interactions with cell membrane domains of 

opposite charge or extracellular GAGs (Wilhelm et al. 2003; Ludwig et al. 2013; Berndt et al. 2017). 

Importantly, surface charge not only affects nanoparticle binding to cells but also interactions with cell 

culture medium components, such as serum proteins. The protein adsorption leads to the formation of a 

protein corona around particles, which increases the effective hydrodynamic diameter and also affects the 

particle agglomeration (Verma and Stellacci 2010; Safi et al. 2011; Horie et al. 2012; Schweiger et al. 2012; 

Hirsch et al. 2013; Horie et al. 2013; Sakulkhu et al. 2014). The nanoparticle-protein complex could 

decisively influence the cellular response, as it has been shown for anionic DMSA-coated SPIOs (Petters 

and Dringen 2015). In the presence of 10 % FCS, particle uptake by primary neurons occurred much slower 

than in the absence of serum in the cell culture media. These investigations concerning SPIO composition-

dependent interactions with serum components were, however, not performed in this study but should 

certainly be included and further characterized in perspective approaches.      
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4.6 Future perspectives 

SPIOs used as multifunctional tools could offer revolutionary approaches for the treatment of 

neurodegenerative diseases (Shubayev et al. 2009; Silva 2010; Gendelman et al. 2015; Neubert and 

Brauer 2015; Saraiva et al. 2016; Silva Adaya et al. 2017). As SPIOs can be directed by an external 

magnetic field, they can potentially serve as diagnostic marker and delivery vehicle for therapeutic agents, 

simultaneously (Shubayev et al. 2009; Rumenapp et al. 2012; Ittrich et al. 2013; Wu et al. 2015a). Novel 

therapeutic strategies for CNS injuries are exploring the utility of SPIOs to promote neuronal regeneration 

on the molecular level (Neubert and Brauer 2015; Papastefanaki et al. 2015; Polak and Shefi 2015). For 

instance, it has been shown that iron ions from certain nanoparticles enhance neuronal differentiation and 

survival of PC12 cells, thereby promoting neurite outgrowth in a dose-dependent manner (Kim et al. 2011).  

The restricted regeneration and growth potential of neurons within the adult CNS (Pernet and Schwab 

2014) lead to the concept of modulating extracellular cues and receptors as well as influencing cytoskeletal 

dynamics of neurons involved in axonal and dendritic growth by utilizing SPIOs (Neubert and Brauer 2015). 

In CNS injury and glial scar formation, the distal tip of the axonal growth cone communicates with the intra- 

and extracellular environment at the growth cone, which regulates molecular mechanisms for axon 

guidance (O'Donnell et al. 2009). Therefore, targeting the growth cone with SPIOs and, subsequently, 

remote guide the particle labelled axon using a magnetic force can potentially promote neurite outgrowth 

(Pita-Thomas et al. 2015). The experimental approach applied SPIOs that were functionalized with Cholera 

Toxin B and anti-Thy1 antibody, which bind to growth cone membranes of primary retinal ganglion cells 

(RGCs). The application of a local magnetic field force induced axon elongation of the SPIO-labelled growth 

cone (Pita-Thomas et al. 2015). This controlled mechanism for directional axonal outgrowth can be further 

investigated to achieve target specificity of axon guidance during regeneration processes in the adult brain. 

Another strategy to promote neurite outgrowth explores SPIO functionalization with antibodies that activate 

neurotrophin receptors (Steketee et al. 2011). The internalization of both the receptor and SPIOs under the 

influence of a magnetic force induced neurite elongation to the same extend as BDNF that is critically 

involved in neuroregeneration (Steketee et al. 2011; Neubert and Brauer 2015). 

Another interesting approach to promote neuronal regeneration involves the utilization of extracellular 

vesicles (EVs), which have been shown to be critically involved in neuron-glia communication (Neubert and 

Glumm 2016). These vesicles, derived through either budding of the plasma membrane or ectocytosis of 

multivesicular bodies, have been shown to be secreted by neurons, microglia and astrocytes (Kalani et al. 

2014). Hence, EVs carry functionally active cargos, such as genetic material, proteins and lipids and can 

be differentiated by their membrane composition, which contains information about their cell of origin. This 

membrane composition also determines the fate of the EV and can decisively influence the response of its 

recipient (Kalani et al. 2014). The encapsulation of SPIOs in membranes of EVs has created a novel 

concept for therapeutic interventions on the molecular level. SPIO-labelled EVs could be loaded with 

neurotrophic factors and guided by an external magnetic field for targeted delivery (Neubert and Glumm 

2016). This approach of using biological entities could be further applied in cancer treatment by loading 

EVs with chemotherapeutic agents together with SPIOs and magnetically remote guided them to the tumour. 
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However, several aspects still require intensive investigation before its clinical translation, including specific cargo 

release and SPIO biocompatibility as well as long term fate of iron particles (Neubert and Glumm 2016). 

Although great progress in nanotechnology has been made, information about SPIO-induced toxicity is still 

incomplete and unexpected adverse side effects are only detected after they occurred. Studies dealing with 

nanotoxicology and biocompatibility hardly include cumulative and nanoparticle-associated effects on cell 

function, which could result in irreversible damage following internalization, especially after entering the 

CNS. SPIOs must meet several requirements in order to be safely applied in living organisms for basic 

research purposes or in humans as contrast agents in clinical practice. To assess potential risks of 

nanoparticle exposure and to determine the pharmacokinetic and pharmacodynamic consequences, 

detailed information about the SPIO type-dependent release, translocation, elimination and metabolism is 

required. For their successful utilization, it is absolutely essential to understand the biological activity of 

SPIOs. First of all, it is of high importance to use adequate model systems and experimental approaches 

to evaluate the effects of SPIO. This includes the precise SPIO localization within cells and their 

compartments, for instance, by using electron microscopy and strategies to determine their fate and 

degradation. Prospective studies should certainly focus on initial test series using primary cells to estimate 

the kind of cellular influence, and proceed with cytotoxicity measurements on more complex experimental 

models, like slice cultures. Subsequently, cell functionality following SPIO administration within living 

organisms has to be explored thoroughly. Reliable data should be generated that can serve as 

representative of consequences on the human brain. This requires standardized protocols and strategies 

for cytotoxicity assessment. So far, cytotoxicity measurements were performed using a many different 

primary cells and cell lines as well as a wide variety of different types of SPIOs that exhibit their own specific 

surface chemistry and size. Variations in cell exposure protocols investigating particle-cell interactions and 

internalization hamper the predictability about the safe profile of SPIOs used as contrast agents in MRI. 

Although various SPIO coating materials have been tested to avoid particle-mediated cytotoxicity, the need 

for standardized procedures still persists.  
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