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The production of high quality and cheap transparent 

electrodes is a fundamental step for a variety of optoelec-

tronic devices. We present a method for the production of 

transparent conducting films optimised for electrical 

conduction in one direction. The deposition of a metal 

film through a perfectly aligned nanosphere-lithography 

mask at variable incidence angle gave origin to parallel 

nanowires with thin interconnections. This structure 

showed excellent conductivity in one direction and high 

optical transparency. 
 

Glass substrates under the crystalline areas of the poly-

styrene-nanospheres mask. 
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1 Introduction Optoelectronic devices such as 

OLEDs, flat displays, touch screens and photovoltaic cells 

usually need a transparent conductor (TC) as top electrode. 

Moreover, transparent conductors are used for frost-free 

windows, antistatic layers, transparent antennas and elec-

tromagnetic shields [1]. Commonly, tin-doped indium ox-

ide, or ITO [2], is used. ITO has high transparency in the 

visible and near ultraviolet, and a high charge-carrier den-

sity providing sufficient electrical conductivity for most 

applications [3]. Disadvantages of ITO are the scarcity and 

costs of indium [4], the low mechanical flexibility [5], the 

degradation over time and its work function and roughness 

limiting the hole-injection efficiency [6,7] in semiconduc-

tors. Other transparent conducting oxides such as alumini-

um doped zinc oxide  [8,9], fluorine doped tin oxide  [10] 

as well as graphene, carbon nanotubes  [11] and organic 

polymers like PEDOT:PSS  [12] are alternative TC under 

investigation.  

If wire grids are used as TC for semiconducting devic-

es, the spacing between the wires must be lower than the 

diffusion length of the minority charge carriers  [13,14], 

which ranges from 10-20 nm for organic solar cells [15], 

approximately 300 nm for amorphous silicon [16] and over 

100 µm for thin-film crystalline silicon solar cells  [17]. 

Several approaches were used for the production of 

nanostructured electrodes, e.g. the evaporation of metals 

on electrospun fibres  [5] and the deposition of metals on a 

thin film gel cracked by desiccation  [18,19]. Metallic 

films with ordered nanoholes produced by nanosphere li-

thography showed good electrical conductivity, but low 

optical transparency  [20–23]. Highly symmetric structures 

cause additional optical absorption due to the interaction of 

light with surface plasmons, which can, both, reduce the 

overall transmission, but also enhance it for specific wave-

length bands (extraordinary optical transmission) [24]. 

Wire-grid electrodes can be optimised for one-

directional conductivity. A structure of aligned nanowires 

perpendicular to the side contacts leaves a higher portion 

of apertures for light transmission and reduces the sym-

metry. Transparent conductors with one-directional con-

ductivity and excellent properties were produced by metal 

transfer from a PDMS stamp [6,25]. Even higher quality 

was achieved in a two-step process by deposition of copper 

mesoscale wires covered by silver nanowires (below 1 Ω/□ 

sheet resistance and over 90% optical transmission)  [26]. 

Nanosphere lithography (NSL) was already used for 

the production of anisotropic metallic grids, which requires 

monocrystalline and oriented nanospheres masks  [27,28]. 



 

 

  

Here we present an alternative method based on the depo-

sition at variable incidence angle, which benefits from a 

simpler geometry of the evaporation chamber. A metallic 

structure of thick parallel lines with thin interconnections 

was deposited, which lead to excellent sheet resistance be-

low 3 Ω/□  and good transparency with an easy production 

method. Due to the geometry, the optical transmission is 

higher for light polarised perpendicularly to the lines, 

which can be exploited for particular applications absorb-

ing or emitting polarised light (e.g. liquid crystal displays). 

Depending on the application, apertures in the 100-

1000 nm range can be achieved. 

2 Experimental methods 
Nanostructured films of gold or silver were produced 

by nanosphere lithography and physical vapour deposition 
on glass substrates. 

2.1 Nanosphere Lithography Monolayers of poly-

styrene (PS) nanospheres with 754 nm diameter were de-

posited on a clean distilled water surface with a specially 

bent pipette [29]. For a 500 cm² surface, 500 µL of a 5% 

w/v colloidal dispersion of nanospheres in water-ethanol 

mixture were used. The spheres spontaneously formed 

crystalline domains with hexagonal symmetry. Carefully 

inducing small waves on the surface helped rearranging 

and aligning the domains to form larger crystals (over 200 

cm²). Introducing a tiny quantity of oil or grease on the wa-

ter surface squeezed the spheres together until close pack-

ing was reached. The monolayer was deposited onto glass 

substrates by evaporation of the water (see Figure in the 

Abstract). The spheres were reduced to 2/3 of their size by 

reactive ion etching in an oxygen-argon plasma according 

to Akinoglu et al.  [30] in a MiniFlecto RIE chamber from 

Plasma Technology. The orientation of the crystal was de-

termined by diffraction of a 532 nm laser beam. The laser 

wavelength should be about 60-90% of the periodicity (i.e. 

original size of the spheres); therefore if the periodicity is 

lower than 450 nm or higher than 1 µm, the orientation of 

the mask shall be determined by microscopy. 

2.2 Physical vapour deposition Metallic films 

were deposited onto the glass substrates through the NSL 

masks. The deposition was performed at variable incident 

angle by tilting the sample, so that oval apertures with dif-

ferent aspect ratio could be achieved as shadows of the 

spheres: the short axis remained equal to the sphere diame-

ter, the long axis increased for higher angles. The samples 

were mounted in the deposition chamber such that the 

spheres rows were aligned with the long axes of the ovals. 

There is a critical deposition angle at which the long axis 

reaches the periodicity, i.e. the oval apertures perco-

late  [31]. The critical angle can be determined by micros-

copy (AFM or SEM) or by electrical conductivity meas-

urements (see Section 3).  For this work, 60-70 nm of sil-

ver or gold were deposited on a 1-2 nm thick layer of tita-

nium for better adhesion on the glass substrate. The evapo-

ration was performed at a distance of 15 cm, a vacuum of 

10-7 hPa and a deposition rate of 1 nm/min. The first part 

of the metal deposition (15-20 nm) was performed just be-

low the critical angle (40° to the perpendicular) and origi-

nated a film with oval apertures. The incidence angle was 

then increased (60° to the perpendicular) to deposit thick 

lines parallel to the long axis of the oval apertures (150 nm 

width and 45-50 nm thickness), as visible in Fig. 1. The 

lines are responsible for the biggest amount of the electri-

cal conductivity. The underlying film with holes provides 

interconnections that bypass defects in the lines. After 

metal deposition, the spheres were removed by sonication 

in toluene. The samples were annealed for 3 h in vacuum 

at 300°C for gold nanostructures or 120°C for silver 

nanostructures. 

 

 
Figure 1 SEM micrograph of silver lines on a film with oval 

apertures.  

 

2.3 Characterisation Optical transmission was 

measured between 300 nm and 1100 nm with a Thermo 

Scientific Evolution Array UV-Vis-IR spectrometer and the 

average value in the visible spectrum was evaluated. For 

the sheet-resistance determination, silver electrodes were 

deposited at the sides of the sample perpendicularly to the 

lines. Four-point measurements were performed with a 

current of 0.1 A. 

 

3 Results First, we analysed the properties of simple 

metallic films with oval apertures. A deposition at perpen-

dicular angle (0°) produced a film with circular apertures, 

which had high conductivity but low transparency due to 

the small apertures and high symmetry of the structure 

(Fig. 2). Increasing the deposition angle elongates the aper-

tures to ovals, which then percolated forming lines  [31]. 

This reduced the symmetry and increased the aperture size 

for light transmission. As a consequence, we observed a 

strong increase in transparency with little losses in conduc-

tivity up to the critical angle at which the ovals percolate. 

In particular, we measured for a deposition angle of 40° 

unchanged electrical conductivity in the long-axis direction 

and 70% higher transparency. For higher angles, the struc-

ture consisted of lines, whereby single defects or damages 

were sufficient to block the electrical conductivity of 

whole lines, with a sudden drop in the conductivity.  



 

 

  

 

 

Figure 2 Sheet resistance and optical transparency of a 60 nm 

thick silver film with oval holes. A clear increase in resistance is 

measured at the deposition angle corresponding to the percolation 

of the oval holes, i.e. after breaking of the interconnections. No-

tice that these results show the sheet resistance of the film without 

thick lines for improved electrical conductivity. 

 
The superposition of thick lines on the film with oval 

apertures (Fig. 1) allowed combining the excellent optical 

and electrical properties of the lines and the bypassing of 

defects by the thin interconnections. This lead to a sheet 

resistance along the lines below 10 Ω/□ for silver films 

with 60% optical transmission and 5 Ω/□ for gold films 

with 70% transmission. Perpendicularly to the lines a sheet 

resistance of over 1000 Ω/□ was measured, which is in 

agreement with the results of Morfa et al for very thin con-

ducting paths [32]. We noticed that lattice defects inter-

rupting the lines (e.g. due to spheres of wrong size or crys-

tal lattice defects) usually create additional interconnec-

tions in the vicinity. In this way, the line defects are effi-

ciently bypassed in spite of the very high sheet resistance 

perpendicularly to the lines. Despite the higher cost, gold 

films also have a transmission spectrum better fitting the 

visible and NIR spectrum of the sun (Fig. 3), which is con-

venient for most applications. The silver nanostructures 

have an extraordinary optical transmission peak at 325 nm, 

the gold nanostructures weaker peaks at 500 nm and 1100 

nm. The EOT peaks can be shifted by changing the perio-

dicity of the nanostructure, i.e. the sphere size of the litho-

graphic mask. They are more pronounced for higher sym-

metry (low deposition angle), whereby an increase in 

symmetry reduces the overall transmission due to plas-

monic absorption.

 

Figure 3 Transmission spectra of gold and silver films with oval 

apertures (deposition angle of 33°). While gold performs better in 

the optical and NIR range, silver has a very pronounced UV 

transmission peak. For comparison, the standard solar spectrum 

AM1.5 is shown. 

4 Conclusion We presented a method for the produc-

tion of metallic-grid transparent conductors with a mesh in 

the submicrometre range. They have very low sheet re-

sistance and high transparency in the optical, UV-A and 

NIR range. For comparison, the well-established ITO elec-

trodes have higher optical transmission (about 80% for 

200-300 nm thickness) but usually higher sheet resistance 

of 10-100 Ω/□ [33,34]. The structure was formed by self-

assembled nanosphere lithography masks without the need 

of advanced nanolithographic systems. A structure of thick, 

highly-conducting lines with thin interconnections was 

achieved with a single metal deposition at different inci-

dence angles. Depending on the application, the material 

can be optimised for higher transmission or higher trans-

parency by variation of line width and deposition angles. 

Moreover, the aperture size can be tuned using spheres of 

different size. 
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