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Summary

Abstract (English)

Background: The developmental origins of health and disease hypothesis states that an impaired

intrauterine environment may induce long lasting changes in the offspring, affecting both, immediate

birth outcomes and later life disease susceptibility. Impaired birth outcomes, such as low birth weight or

preterm birth and also gestational diseases, such as gestational diabetes mellitus, have been associated

with an increased risk for adult non communicable disease in the offspring. However, our understanding

of the intrauterine environment and how it affects the phenotype of the offspring is still limited.

Metabolomics, a robust and efficient method to analyze a large number of small molecules, could give

new insight into the complex relationship between intrauterine conditions, maternal disease interactions

and birth outcomes. The underlying aim of the study was to characterize the maternal and fetal

metabolome at time of birth and to search for associations with birth outcomes (birth weight, preterm

birth) and maternal gestational disease (gestational diabetes mellitus).

Methods: At the time of birth, serum samples from mothers and newborns (cord blood) were collected

and screened for 163 metabolites utilizing tandem mass spectrometry in a mother/child pairs cohort.

According to available data, subcohorts were created to analyze associations between the maternal/fetal

metabolome and preterm birth, birth weight, and gestational diabetes mellitus. False discovery rate was

adjusted by using the Benjamini-Hochberg procedure. To demonstrate independent association

multivariable regression models were calculated adjusted for relevant confounding factors.

Results: Preterm birth was independently linked to higher diacyl-phosphatidylcholine 38:6

concentrations in maternal serum. Fetal lyso-phosphatidylcholines 14:0, 16:1, and 18:1 showed a strong

and independent positive association with birth weight, No significant associations were observed

between the maternal metabolome and birth weight. Gestational diabetes mellitus was independently

associated with fetal cord blood concentrations of acyl-alkyl-phosphatidylcholine 32:1 and proline. There

were no significant associations between maternal gestational diabetes mellitus and the maternal

metabolome.

Conclusions: Specific birth outcomes and gestational diabetes were shown to be associated with maternal

and fetal metabolic alterations. Results of the current studies showed a higher number of associations

between birth outcomes/gestational disease and fetal metabolites. Thus, future studies with similar aims,

should focus more on the so far neglected fetal metabolome.
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Abstrakt (Deutsch)

Hintergrund: Die Hypothese der "developmental origins of health and disease“ beschreibt, dass

ungünstige Einflüsse und Umweltbedingen während kritischer Phasen der intrauterinen Entwicklung zu

langanhaltenden und irreversiblen Veränderungen bei den Nachkommen führen können. Die auf diese

Weise induzierten Anpassungen in Organstruktur und –funktion beeinflussen sowohl neonatale

anthropometrische Parameter als auch das spätere Krankheitsrisiko im Erwachsenenalter. Allerdings sind

die komplexen zugrunde liegenden biologischen Vorgänge und molekularen Mechanismen bisher nur

ansatzweise verstanden. Die Anwendung moderner Methoden wie der Massenspektrometrie erlaubt die

Identifizierung und Quantifizierung einer großen Anzahl von Biomolekülen. So könnten neue Einblicke

in die Wechselwirkungen zwischen intrauterinen Bedingungen, maternalen Krankheitheiten und

neonatalem Outcome gewonnen werden. Ziel dieser Arbeit war es, maternale und fetale Metaboliten zum

Zeitpunkt der Geburt zu bestimmen und nach Zusammenhängen mit den klinischen Parametern

Geburtsgewicht und Frühgeburtlichkeit sowie Gestationsdiabetes zu suchen.

Methoden: Mittels Massenspektrometrie wurden mütterliche Serumproben vom Zeitpunkt der Geburt

und Nabelschnurblut analysiert und 163 Metaboliten quantifiziert. Um Assoziationen zwischen

maternalem und fetalem Metabolom und klinischen Parametern zu finden, wurden entsprechend der

vorhandenen Daten Untergruppen gebildet und verschiedene multiple Regressionsmodelle gerechnet.

Eine Kontrolle für falsch positive Ergebnisse wurde mit dem Benjamini-Hochberg Verfahren

durchgeführt.

Ergebnisse: Frühgeburtlichkeit war unabhängig mit einer höheren Konzentration von

Diacyl-phosphatidylcholin 38:6 im maternalen Serum assoziiert, während das Geburtsgewicht eine

unabhängig positive Assoziation mit fetalem Lyso-phosphatidylcholin 14:0, 16:1, and 18:1 zeigte.

Zwischen Geburtsgewicht bzw. Gestationsdiabetes und maternalen Metaboliten wurden keine

signifikanten Zusammenhänge gefunden, jedoch war Gestationsdiabetes unabhängig mit fetalem

Acyl-alkyl-phosphatidylcholin 32:1 und Prolin assoziiert.

Schlussfolgerungen: Die Ergebnisse dieser Studie zeigen, dass Parameter des neonatalen Outcomes bzw.

Gestationsdiabetes mit Veränderungen des fetalen und maternalen Metaboloms assoziiert sind.

Interessanterweise wurden für fetale Metabolite besonders häufig Zusammenhänge gefunden. In weiteren

Studien sollte daher besonders das bis dato schlecht charakterisierte fetale Metabolom im Fokus der

Untersuchungen stehen.

4



1. Introduction

It is by now widely accepted, that the early life environment is not just an important factor

affecting immediate birth outcomes, but is also associated with disease susceptibility in later life.

First observations in this regard originated from epidemiological studies that linked an impaired

intrauterine environment - measured by a reduced weight at time of birth - with an increased risk

for adult chronic, non-communicable disease [1,2]. These first observations were replicated in a

large number of independent studies and lead to the hypothesis of the developmental origins of

health and disease (DOHaD) [2-4]. Next to a reduced birth weight, newer evidence suggests that

preterm birth (PTB) is similarly associated with an increased risk for later life

non-communicable diseases, including metabolic and cardiovascular diseases [5,6].

Maternal pregnancy related diseases are known to impact on birth outcomes and also have been

associated with long term risks for the offspring [7]. Gestational diabetes mellitus (GDM) is an

important disease in this regard. It is defined as any degree of glucose intolerance with onset or

first recognition during pregnancy. GDM is one of the most common complications of pregnancy

and its prevalence is constantly rising [9]. If uncontrolled, GDM results in overt hyperglycemia,

which may significantly increase perinatal morbidity and mortality [10-14]. Potential long-term

consequences for the health of mother [7,15] and child [7] may be an impaired glucose tolerance,

obesity, and metabolic disorders. Traditionally, GDM is consider as a result of environmental

and maternal genotype predisposition [16,17]. Previous studies [18,19] also reported fetal might

affect maternal physiology, even a risk of GDM [20]. The pathogenesis of GDM is not well

understood so far.

Metabolomics is a fairly new ‘omics’ technology, which helps to characterize physiological

conditions, systematically monitor environmental factors, genetic regulations, and enzymatic

activity states [21,22]. Metabolomics may also serve to give new insight into the complex

relationship between intrauterine conditions, maternal-fetal interactions, gestational diseases and

birth outcomes. Furthermore, metabolomics may help in identifying relevant predictive

biomarkers for impaired birth outcomes or gestational disease, such as PTB, birth weight and

GDM. In this study a targeted metabolomics approach was performed, measuring 163

metabolites in maternal and fetal serum samples. Resulting metabolomics data were then used

to find associations between certain metabolites and birth outcomes (PTB, birth weight) or
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maternal gestational disease (GDM).

2. Methodology

2.1 Clinic data collection

The data compiled in this thesis stems from three studies performed with a subcohort (678

mother child pairs) of the Berlin birth cohort (BBC [23,24]) in which metabolomics was

performed. Study 1 investigated associations between maternal serum metabolites and PTB. 550

mother child pairs were included in this study. In the following two studies the focus was shifted

from solely analyzing maternal metabolites to also investigate the fetal metabolome. Study 2

investigated associations between maternal and fetal metabolites and birth weight. 226 mother

child pairs were included in this study. Study 3 analyzed associations between maternal and fetal

metabolites and GDM. 412 mother child pairs were included in this study. assessed screening for

GDM was performed according to the practice guideline of the German Diabetes Association

(DDG) and the German Association for Gynecology and Obstetrics (DGGG) [25]. In the

analyzed cohort, 31 of the 412 pregnant women were diagnosed with GDM.

Maternal basic and clinic data (age, ethnicity, body height and body weight before pregnancy,

diabetes mellitus, and hypertension during pregnancy, smoking during pregnancy, systolic and

diastolic blood pressure (BP) measurements recorded during pregnancy, and mode of delivery.)

and newborn biometric data (birth weight, birth length, ponderal index (birth length (m) / the

cube root of weight (kg) ), head circumference, child sex, and Apgar score 5 & 10 minutes.)

were collected.

2.2 Sample collection

Before delivery, midwives collected maternal blood from the cubital vein, and collected

umbilical cord immediately after delivery in the delivery room or on the ward. After collection,

the blood samples were centrifuged at 2750 g immediately. All obtained serum was stored at

-80 °C until metabolites measurement.

Out of the 678 mother child pairs that entered the study, metabolomics was performed in 550

maternal and 412 fetal cord blood samples. In study 1, which focused on screening for PTB
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biomarkers, metabolic data of 550 mothers was investigated. In study 2 and 3, both maternal and

fetal metabolites were analyzed. Study 2 investigated associations between maternal and fetal

metabolites and birth weight, and also studied interactions between the maternal and fetal

metabolome, resulting in the data analysis of 226 mother/child pairs. Study 3 investigated

associations between maternal and fetal metabolites and GDM, yet due to the lack of data in

literature in regard to fetal cord blood metabolites and GDM, the main focus was set on the

available metabolomic data of 412 fetal cord blood samples.

2.3 Targeted metabolomics in blood serum

Metabolomic measurements were performed in the Metabolomic Platform of the Genome

Analysis Center, Helmholtz Zentrum München. The quantification of 163 metabolites were

assayed by FIA-ESI-MS/MS and the AbsoluteIDQTM p150 Kit (BIOCRATES Life Sciences AG,

Innsbruck, Austria) out of 10 µL serum. All metabolite concentrations were reported in µM. In

total, the 163 metabolites including free carnitine, 40 acylcarnitines, 14 amino acids (13

proteinogenic + ornithine), hexoses (sum of hexoses – about 90-95 % glucose), 92

glycerophospholipids (15 lyso-phosphatidylcholines (lysoPC) and 77 phosphatidylcholines (PC)),

and 15 sphingolipids. The method of AbsoluteIDQTM p150 Kit has been proven to be in

conformance with the EMEA-Guideline "Guideline on bioanalytical method validation (July

21st 2011”) [26], which implies proof of reproducibility within a given error range. A detailed

description of the sample preparation, assay procedures and nomenclature have been published

previously [27,28]. For more details of the sample handling, mass spectrometric analyses,

data evaluation, and quality assessment see publication 1, 2, and 3.

2.4 Statistical analysis

Statistical analysis was performed by SPSS version 22.0. Quantitative data results of were

expressed as the arithmetic mean ± standard deviation (SD). Continuous variable data between

two groups were compared by unpaired t-test. Qualitative data were analyzed by Pearson’s

chi-square test. The linear correlation between quantitative data were analyzed by bivariate

correlation analysis. In order to reduce false discovery rate (FDR), P-values were adjusted with

Benjamini-Hochberg (BH) procedure. Significant difference of BH procedure is defined as Pm ≤

m×q/M [29,30]. M equals the total number of tested metabolites (M=163), q equals the FDR (the
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FDR is 0.05 in the current study), Pm equals the individual P-value’s rank, and m equals the

individual rank of tested metabolite. Significant difference was considered as a P-value less than

0.05. A flow diagram of the three studies analysis strategy is given in Figure 1.

Figure 1. Flow diagram of the three studies analysis strategy. PTB = preterm birth; GDM =

gestational diabetes. LPC = lysophosphatidylcholine; PC = phosphatidylcholine; ae = acyl-alkyl.

Note. The number of participants in the three studies were different, because we used different

analytic methods and different clinical data sets depending on the specific topic of the studies.

Fetal metabolomics was only performed in a subset of the 678 mothers with available

metabolomic data.

3. Results

Publication 1: “Maternal PC aa C38:6 is associated with preterm birth - a risk factor for

early and late adverse outcome of the offspring”
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Maternal serum metabolites and PTB

For more details see publication 1 (page 25)

Summary

Bivariate correlation analysis and multivariable regression analysis models adjusted for maternal

BMI before pregnancy, smoking during pregnancy, systolic blood pressure at the third trimester,

maternal BMI at the third trimester showed that PC aa C38:6 was inversely correlated with

gestational age. This result was further checked by unpaired t-test: group 1, gestational age < 37

weeks (PTB group); group 2, gestational age ≧ 37 weeks. The PTB group showed significantly

higher levels of PC aa C38:6 when compared with group 2 (100.09 ± 4.22 μM vs. 89.66 ± 1.17

μM, P = 0.023).

Publication 2: “Cord blood lysophosphatidylcholine 16: 1 is positively associated with birth

weight”

Maternal serum metabolites and child birth weight

For more details see publication 2 (page 33)

Summary

Employing bivariate correlation analysis followed by BH adjustment, there was no maternal

serum metabolite associated with child birth weight (Pm> m×q/M).

Fetal serum metabolites and child birth weight

Summary

Following bivariate correlation analysis and BH procedure, multiple linear regression analysis

(considering known factors associated birth weight, such as gestational age [31], child sex [32],

maternal age [33], maternal BMI before pregnancy [34], maternal smoking during pregnancy [35]

as confounders), showed that fetal serum LPC 14:0, 16:1, and 18:1 were significantly associated

with birth weight. Stepwise models of multiple linear regression were conducted to identify

which of the of the three LPCs (LPC 14:0, 16:1 and 18:1) has the strongest impact on birth

weight. These analyses demonstrated that fetal serum LPC 16:1 showed the strongest correlation

with birth weight in the stepwise regression models.
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Publication 3: “Fetal serum metabolites are independently associated with gestational

diabetes mellitus”

Maternal serum metabolites and gestational diabetes

For more details see publication 3 (page 44)

Summary

Unpaired t-test comparisons of mothers with GDM and mothers without GDM showed no

significant differences in maternal serum metabolite concentrations after BH adjustment (Pm >

m×q/M).

Fetal serum metabolites and gestational diabetes

Summary

Following BH adjusted t-tests comparing fetal cord blood metabolites from offspring of diabetic

to offspring of non-diabetic mothers, logistic regression models (considering known factors

associated with GDM, such as maternal age, ethnicity, family history of diabetes, pre-pregnancy

BMI, and smoking during pregnancy [36,37] as confounders), showed independent associations

between fetal serum PC ae C 32:1 or the amino acid proline with GDM.

As it was shown that gestational age may impact on the fetal and maternal metabolome [38], an

additional model was calculated including gestational age as confounder. Also in this model fetal

serum PC ae C 32:1 and the amino acid proline still demonstrated an independent association

with GDM.

4. Discussion

The study aimed at investigating associations between maternal and fetal serum metabolites and

birth outcomes such as gestational age at birth and child birth weight. Another aim was to find

characteristic metabolites of well-controlled GDM. Maternal serum concentrations of PC aa

C38:6 were associated with PTB. There were no associations between maternal serum

metabolites and birth weight or GDM. However, fetal serum LPCs 14:0, 16:1, and 18:1 were

significantly and positively correlated with birth weight. Furthermore, fetal serum PC ae C 32:1

and the amino acid proline showed an independent association with GDM.
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LPCs and PCs are clusters of glycerophospholipids which make up the main structural element

of most eukaryotic membranes [39,40]. PCs are secreted and biosynthesised in the liver whereas

[40] LPCs are derived from PCs hydrolysis by the enzymatic action of phospholipase A2 [41].

So far the role of PCs and LPCs during intrauterine life is very incompletely understood. In the

current studies, variations of maternal or fetal glycerophospholipids were independently

associated with PTB, birth weight, and maternal GDM.

Publication 1: “Maternal PC aa C38:6 is associated with preterm birth - a risk factor for

early and late adverse outcome of the offspring”

Two previous studies identified characteristic metabolites for PTB in amniotic fluid samples,

including carbohydrates, amino acids [42] and many metabolites reflecting liver metabolism [43]

to be associated with PTB. Different from the former two studies, the present study investigated

maternal serum metabolites to investigate associations between maternal serum metabolites and

PTB. Compared with normal mothers with a normal course of pregnancy, mothers with PTB

demonstrated significantly higher levels of PC aa C38:6.

Several factors capable of causing redox imbalances, such as maternal malnutrition, smoking,

obesity, intra-amniotic infection and inflammation, have been associated with PTB [44-46].

Oxidative stress induced damage plays an important role in the premature rupture of membranes

[47-49]. A possible link between increased oxidative stress, e.g. due to smoking [50] and PTB

might be alterations in metabolite levels. Xu et al. [51] demonstrated in a large cohort study that

current smokers had higher levels of unsaturated diacyl-PCs when compared with former

smokers and never smokers. In the present study unsaturated diacyl-PCs (PCaaC36:4,

PCaaC38:4, PCaaC38:5, PCaaC38:6, PCaaC40:4, PCaaC40:5, PCaaC40:6, PCaaC42:4),

especially PCaaC38:6, were negatively associated with gestational age even after adjusting for

maternal smoking status during pregnancy. Compared to the term birth group, the PTB group

showed significantly higher levels of PC aa C38:6. Higher levels of the unsaturated diacyl-PCs

may indicate higher levels of oxidative stress, which may be involved in the pathogenesis of

PTB. The measurement of unsaturated diacyl-PCs might serve as a biomarker for PTB, yet

appropriately designed future studies are still needed to confirm this.
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Publication 2: “Cord blood lysophosphatidylcholine 16: 1 is positively associated with birth

weight”

In agreement with a recent study [52], the present study demonstrated that fetal LPCs were

independently associated birth weight. In the large birth cohort study [52], several cord blood

LPCs, including LPC 14.0, 16:1, and 18:1 were independently positively correlated with birth

weight. The current study confirmed these results using a strict statistical approach the including

BH procedure and stepwise multiple linear regression models adjusted for relevant confounding

factors.

Increasing evidence in epidemiological studies [53-57] and animal studies [58] shows a

relationship between LPCs and overweight/obesity. However, study results in this regard are

conflicting, showing both positive and negative associations between obesity and LPCs. An

explanation for the contradictive results of these studies [53-58] might be due to the number and

specific types of analyzed LPCs, as saturated and unsaturated LPCs might exert different

biological functions [59-61]. It was shown in human or animal studies that obesity was

associated with lower concentrations of the unsaturated LPC 18:1 [55-58] and higher levels of

saturated LPCs (LPC 14:0, 18:0) [57] compared to lean controls. Another study performed in

children demonstrated that rapid growth in infancy and childhood obesity was positively related

to LPC 14:0 [54]. It is also known that subcutaneous adipose tissue mass is lower in

growth-restricted (GR) infants than appropriate-for-gestational-age (AGA) infants [62], and

extremely preterm birth with significantly lighter weight [63]. In the current study, lower birth

weight newborns demonstrated significantly lower levels of serum LPCs 14:0, 16:1 and 18:1,

Based on these observations, this may indicate that during early life development LPCs might be

involved in cell division, adipose tissue growth and remodeling, potentially beneficially affecting

fetal intrauterine growth.

LPCs were also shown to be connected to insulin signaling. LPCs were reported to stimulate

adipocyte glucose uptake and improve glucose homeostasis [64] and enhance glucose-dependent

insulin secretion [65]. Furthermore, a correlation between lower levels of LPC and insulin

resistance was reported in women with GDM [66]. In regard to the interpretation of the current

study these findings are interesting, as there is evidence that fetal insulin resistance may be

related to decreased birth weight [67,68]. In the current study, lower levels of LPCs (especially
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LPC 16:1) were associated with lower birth weight. Hypothetically, low levels of cord blood

LPCs might be associated with insulin resistance and decreased insulin secretion, and thus

influence fetal growth.

Publication 3: “Fetal serum metabolites are independently associated with gestational

diabetes mellitus”

Until now there are only a few studies that investigated the fetal metabolome in regard to

maternal GDM [69]. A previous study [66], analyzing maternal plasma metabolites,

demonstrated that lower levels of diacyl-PCs, LPCs and arachidonic acid were associated with

insulin resistance in women with GDM. The current study not solely analyzed potential

relationships between maternal metabolites and GDM, but also investigated associations between

fetal cord blood metabolites and GDM. Maternal serum metabolites were not associated with

GDM in the current study. However, fetal serum PC ae C 32:1 and the amino acid proline were

independently associated with GDM, even after BH procedure and adjustment for established

risk factors of GDM.

There is increasing evidence [70-73] reporting that changes of diacyl-PC and acyl-alkyl-PC are

associated with type 2 diabetes in the general population. Elevated concentrations of

branched-chain amino acids were also associated with an increased risk of GDM [74,75] T2D

[74,76], and insulin resistance [75]. To the best of our knowledge, this is the first large scale

study that identified the fetal serum acyl-alkyl-PC 32:1 and the amino acid proline to be

independently associated with maternal GDM. The pathogenesis of GDM is incompletely

understood so far. It is believed that GDM results from a complex interaction of multiple

environmental stimuli and maternal factors, with the placenta playing a key role [16,17]. Studies

[18,19] propose that the fetal genetic setup may also impact on maternal physiology and

pathophysiology during pregnancy, including maternal metabolism. The mechanisms that

underlie a fetal influence on maternal metabolism during gestation are still very incompletely

understood. The fetal genome might affect secretion patterns of placental hormones resulting in

variations of placental function [18,19], thus potentially impacting on maternal glucose status.

Metabolomics is a predictive approach that summarizes the impact of genetic regulation,

physiological conditions, and environmental factors on the metabolome [21,22]. Altered levels of
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fetal cord blood metabolites may be indicative of fetal genetic variants that are associated with

maternal GDM. However, this hypothesis has to be confirmed by future prospective studies,

integrating maternal and fetal genetic data and information of lifestyle-related environmental

factors and associate these with characteristic metabolomic alterations.

Conclusion

The performed studies identified maternal and fetal serum metabolites that were associated with

PTB, birth weight or GDM. Especially the fetal metabolome seems of interest, as more and

stronger associations were found analyzing fetal metabolites than by the analysis of maternal

metabolites. Given that there still is a lack of studies focusing on the fetal metabolome, the

variety of associations between fetal metabolites and birth outcomes/gestational disease show

that further research is warranted. These findings add to the growing evidence in literature,

demonstrating a maternal impact on fetal intrauterine development, yet also highlight a potential

fetal impact on maternal gestational disease. Given the purely associative character, the current

study result needs confirmation by future well designed clinical and animal studies.
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Abstract
Background/Aims:
mortality and morbidity of the offspring in early life and also have long-term consequences in 
later life. A better understanding of the molecular mechanisms of preterm birth could provide 
new insights regarding putative preventive strategies. Metabolomics provides a powerful 
analytic tool to readout complex interactions between genetics, environment and health and 
may serve to identify relevant biomarkers. In this study, the association between 163 targeted 

biomarkers for PTB. Methods: Five hundred twenty-three women were included into this 
observational study. Maternal blood was obtained before delivery. The concentration of 163 

correlation analysis followed by multivariable regression analysis and a comparison of 
mean values among gestational age groups. Results: Bivariate correlation analysis showed 
that 2 acylcarnitines (C16:2, C2), 1 amino acids (xLeu), 8 diacyl-PCs (PCaaC36:4, PCaaC38:4, 
PCaaC38:5, PCaaC38:6, PCaaC40:4, PCaaC40:5, PCaaC40:6, PCaaC42:4), and 1 Acylalkyl-PCs 
(PCaeC40:5) were inversely correlated with gestational age. Multivariable regression analysis 
confounded for PTB history, maternal body mass index (BMI) before pregnancy, systolic blood 
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pressure at the third trimester, and maternal body weight at the third trimester, showed that 
the diacyl-PC PCaaC38:6 was the only metabolite inversely correlated with gestational age. 
Conclusions: Maternal blood concentrations of PCaaC38:6 are independently associated with 
gestational age.

© 2016 The Author(s)
Published by S. Karger AG, Basel

Introduction

Preterm birth (PTB), defined as birth before 37th week of gestation, affects 5 to 18% 
of pregnancies worldwide. Evidence suggests that PTB not only significantly influences 
mortality and morbidity of the offspring in early life [1-7] but also causes serious long-term 
consequences in later life [8-11]. Systematic reviews and meta-analyses including large 
populations and different separate cohorts demonstrated that PTB increased the risk of 
metabolic syndrome at later childhood and adulthood [8-10]. Sensitive, effective, and non-
invasive new biomarkers to screen and diagnose PTB before birth could lead to treatment 
options that prevent poor birth outcomes associated with PTB. Pregnancy is a very complex 
process, influenced by a plethora of physiological and pathophysiological factors. It is known 
that environmental factors like maternal infections, nutrition, and stressful events can be 
associated with changes in the serum metabolite profile. Metabolomics provides a powerful 
analytic tool to get insights into the complex interaction of genetics, environment and health 
and may serve to identify relevant predictive biomarkers for PTB. Previous work from 
Romero et al. [12] and Menon et al. [13] showed that the metabolomic profile of amniotic fluid 
is a good biomarker to assess the risk of preterm delivery. However, amniotic fluid sample 
collection is an invasive procedure with potential risk for adverse outcomes for both mother 
and child [14,15]. Blood plasma and (or) urine can be collected much easier and therefore 
should be targeted in the search of potential biomarkers. One recent study demonstrated that 
the maternal urinary metabolic profile in early pregnancy can be helpful to identify PTB [16]. 
So far, there is no publication about the metabolomic profile of maternal plasma and PTB. In 
this study, a targeted metabolomics approach was performed, measuring 163 metabolites 
which were analyzed for associations with gestational age. The detection of new biomarkers 
predictive for PTB could help to better understand the underlying pathomechanisms of PTB 
and to create new preventive strategies for PTB.

Materials and Methods

Clinic data collection
This observational study was approved by the local Ethics Committee. A total of 550 pregnant women 

who delivered their babies at the Charité obstetrics department in Berlin, Germany between January 2007 
and December 2008 were invited to participate. As 27 mothers were excluded from the study because they 
delivered twins, 523 women entered the study. The majority of the mothers (n = 471) were of caucasian 
ethnicity, the others had an African, Asian, or Arabic background.

After written consent was obtained, a structured medical history was taken. The following data were 
extracted into our database: age, ethnicity, body height, body weight before pregnancy, gravidity, parity, 
diabetes mellitus and hypertension during pregnancy, smoking status before and during pregnancy, systolic 
and diastolic blood pressure (BP) measurements recorded during pregnancy and the mode of delivery. 
Biometric data of the newborn were collected during the routine postnatal examination: birth weight, birth 
length, head circumference, child sex, and Apgar score 5 minutes postnatally and Apgar score 10 minutes 
postnatally. Gestational age at delivery was based on last menstrual period, anamnestically assessed during 
the first pregnancy examination.

Sample collection, blood metabolomics compounds assay
Midwives collected maternal blood from a cubital vein in the delivery room or on the ward prior to 
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data were expressed as arithmetic mean ± standard error (SE). Bivariate Correlation Analysis was applied 
to detect correlations of metabolites and gestational age. Additionally, certain factors (PTB history, maternal 
BMI before pregnancy, systolic blood pressure at the third trimester, maternal body weight at the third 
trimester) were used as confounders to calculate and adjust putative predictive metabolites in multivariable 
linear regression models. Unpaired t-test was used for comparison of continuous variables between two 
groups. A p-value less than 0.05 was considered significant. 

Results

Description of the cohort
Descriptive data of the study population are given in table 1. The study population 

represented a typical German birth cohort in regards to key characteristics like maternal 
age, ethnicity, BMI before pregnancy, gravidity, parity, biometric data of the newborns like 
birth weight, birth length, child sex, and Apgar score (for more details, see Table 1). The 
distribution of gestational age is given in Figure 1.

Bivariate correlation analyses of maternal serum metabolites and gestational age 
 Bivariate correlation analyses showed that 2 acylcarnitines (C16:2, C2), 1 amino acid 

(xLeu), 8 diacyl-PCs (PCaaC36:4, PCaaC38:4, PCaaC38:5, PCaaC38:6, PCaaC40:4, PCaaC40:5, 
PCaaC40:6, PCaaC42:4), and 1 acylalkylphosphatidylcholine (PCaeC40:5) were significantly 
negatively correlated with gestational age (for more details, see table 2). 

Multivariable regression analyses of maternal blood metabolites and gestational age 
Significant results obtained by bivariate correlation analysis were subsequently analy-

Table 1. Detailed Descriptive Data of the Mother/Child Pairs (n = 523)birth, before the usage of oxytocin, 
or analgesics. Blood was centrifuged 
at 2750 g immediately after its 
taking and the obtained serum was 
stored at -80 °C until measurements 
were performed. 

163 targeted small metaboli-
tes were quantified simultaneously 
in 10 µL of serum using the Abso-
lute IDQTM-kit p150 (Biocrates 
Life Sciences AG, Innsbruck, Aus-
tria). The assay procedures were 
the same as previously described 
[17]. Concentrations of these tar-
geted metabolites were recorded 
in μM. These metabolites included 
14 amino acids, 1 sugar, 1 carnitine, 
26 acylcarnitines, 14 hydroxy and 
dicarboxy-acylcarnitines, 10 sphin-
gomyelins, 5 hydroxy-sphingomye-
lins, 38 diacyl-phosphatidylcholines 
(diacyl-PCs), 39 acyl-alkyl-phospha-
tidylcholines (Acylalkyl-PCs) and 15 
lysophosphatidylcholines. 

Statistical analysis
Data were analyzed with SPSS 

version 17.0. Results of quantitative 
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zed by multivariable regres-
sion analysis considering 
PTB history, maternal BMI 
before pregnancy, systolic 
blood pressure at the third 
trimester, maternal BMI at 
the third trimester in mo-
del B. Analysis showed that 
PCaaC38:6 was the only me-
tabolite significantly inver-
sely correlated with gesta-
tional age (for more details, 
see table 3).

PCaaC38:6 serum con-
centrations in relation 
to gestational age 
2 gestational age 

groups were stratified as 
follows: gestational age < 
37weeks as group 1 (PTB 
group), ≧ 37 weeks as group 
2. The PTB group displayed 
significantly higher con-
centrations of PCaaC38:6 
in comparison to group 2 
(100.09 ± 4.22 μM vs. 89.66 
± 1.17μM, P = 0.023);

4 gestational age 
groups were stratified as 
follows: gestational age < 
35 weeks as group 1 (se-
vere PTB group), 35~37 
weeks as group 2 (moderate 
PTB group), 38~39 weeks 
as group 3, ≧ 40 weeks as 
group 4. PCaaC38:6 showed 
a trend to decrease with in-
creasing gestational age (for 
more details, see figure 2).

Discussion

Fig. 1. Distribution of gestational age.

Table 2. Maternal serum metabolites related to gestational age in biva-
riate correlation analysis

In the current birth cohort study, the association of 163 maternal serum metabolites 
and gestational age before delivery was investigated. Diacyl phosphatidylcholine PCaaC38:6 
was strongly and inversely correlated with gestational age. Concentration of PCaaC38:6 was 
significantly higher in serum of mothers with PTB than in the serum of mothers who gave 
birth between 37th and 40th or above 40th week of gestation. This indicates that unsaturated 
diacyl-PCs (PCaaC38:6) might be candidate biomarkers for PTB screening and monitoring.

In recent years, elaborate molecular biologic methods like genomics, transcriptomics, 
and proteomics have been used to study normal pregnancy and pregnancy complications. 
Yet, only two studies have reported the use of metabolomics in PTB. Romero et al. [12] 
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collected amniotic fluid from transabdominal amniocentesis at the time of diagnosis for 
preterm labor and showed that mothers without intraamniotic infection/inflammation who 
delivered preterm had a relative decrease in carbohydrates and amino acids. In contrast, 
mothers with intraamniotic infection/inflammation had a more substantial decrease in 
compounds of the carbohydrate cluster, and a relative increase in amino acids. Menon et 
al. [13] collected amniotic fluid from transvaginal amniocentesis samples taken prior to 
delivery during active labor in an African-American population and found that the global 
metabolite profiles differed significantly between normal and preterm birth. Many of the 
significantly altered metabolites in the PTB group reflected liver metabolism. Different to 
previous studies, the current study investigated maternal metabolites in serum obtained 
before delivery in a typical German cohort. Statistical analyses showed that maternal plasma 
phospholipids (six Diacyl-PCs and two Acylalkyl-PCs), especially PCaaC38:6, are relevant to 
PTB.

Glycerophospholipids make up the main structural lipids of cellular membranes, 
and phosphatidylcholine (PC) accounts for >50% of the glycerophospholipids in most 
eukaryotic membranes [18, 19]. PC is the main component of circulating lipoprotein classes 
in the human plasma [20]. In addition, PC is particularly essential for hepatic secretion of 

Fig. 2. Mean maternal PCaaC38:6 according to gestational age groups. A: 2 gestational age groups were 
stratified as follows: <37 weeks with 57 cases, ≧ 37 weeks with 466 cases. B: 4 gestational age groups were 
stratified as follows: <35 weeks with 29 cases, 35~37 weeks with 73 cases, 38~39 weeks with 233 cases, ≧ 
40 weeks with 188 cases.

Table 3. Maternal serum metabolites related to gestational age in multivariable linear regression analysis
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triglyceride-rich very low density lipoprotein (VLDL) and high density lipoprotein (HDL) 
[19]. PC is essential for proper cell division and thus plays a very important role during 
fetal intrauterine growth. Furthermore, PC is the main source of choline which is essential 
for fetal brain and neurocognitive development [21,22]. Bernhard et al. [23] showed that in 
preterm infants, choline concentrations are lower in postnatal plasma than in cord plasma. 
La et al [24] conducted an S-plot for biomarkers of gestational age (PCs, PEs, and SMs) and 
showed that they had a weak, negative correlation with gestational age. Till now, there is no 
data available that links diacyl-PCs to gestational physiological or pathological conditions.

The most common phenotype of PTB is spontaneous PTB of unknown etiology. Risk 
factors of PTB include malnutrition, obesity, intra-amniotic infection (IAI) and inflammation, 
cigarette smoking, alcohol intake, drug use, antioxidant deficient diets, physiologic and 
psycho-social stressors, environmental pollutants, genotoxic agents, geographic location [25]. 
All of the PTB risk factors are capable of causing redox imbalances, leading to the production 
of superoxide, hydrogen peroxide, hydroxyl ions and nitric oxide that can damage collagen 
matrix and consume antioxidant defenses. These events can trigger uterine contractions 
(labor), leading to PTB and placing these infants at a higher risk of injury [25]. Recently, a 
large cohort study with 18,079 participants (KORA study) and seven years follow-up [26] 
showed that compared with former smokers and never smokers, current smokers had higher 
concentrations of unsaturated diacyl-PCs but lower concentrations of saturated diacyl-PC. It 
has been shown that unsaturated fatty acids are more vulnerable to lipid peroxidation [27-
29]. Furthermore, polyunsaturated diacyl-PCs can promote the oxidation and fragmentation 
of γ-hydroxyalkenals [29]. Oxidative stress (OS) can occur early in pregnancy [30], induce 
pregnancy-related disorders like preeclampsia [31-33] and  preterm premature rupture of 
membranes [34-36], and is considered a detrimental factor in preterm birth pathology [25]. 
Results of the current study showed that unsaturated diacyl-PCs (PCaaC36:4, PCaaC38:4, 
PCaaC38:5, PCaaC38:6, PCaaC40:4, PCaaC40:5, PCaaC40:6, PCaaC42:4), especially 
PCaaC38:6, were negatively correlated with gestational age. Higher unsaturated diacyl-PCs 
may be indicative of a higher level of OS. Future studies, including animal experiments and 
human epidemiological studies are needed to confirm the relationship between diacyl-PCs 
and OS.

One limitation of the study is that maternal serum metabolites were only measured 
prior to birth. Given that a predictive biomarker for PTB could be of great clinical significance, 
the current results should stimulate studies, which focus on measuring serum metabolites at 
multiple and/or earlier occasions in order to consider a potential gestational age dependent 
secretion of the metabolomic biomarkers. In particular the lipid biomarkers identified in 
the current study need confirmation in a second independent prospective study. Moreover, 
our work should stimulate preclinical work using specific tools to block and up-regulate 
the biological action of PCaaC38:6 to reveal causality and biological relevance between 
PCaaC38:6 and PTB.

Conclusion

Maternal blood PCaaC38:6 was clearly correlated with gestational age. PCaaC38:6 may 
be a candidate biomarker for PTB.
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Abstract
Background/Aims: Impaired birth outcomes, like low birth weight, have consistently been 
associated with increased disease susceptibility to hypertension in later life. Alterations in the 
maternal or fetal metabolism might impact on fetal growth and influence birth outcomes. 
Discerning associations between the maternal and fetal metabolome and surrogate 
parameters of fetal growth could give new insight into the complex relationship between 
intrauterine conditions, birth outcomes, and later life disease susceptibility. Methods: Using 
flow injection tandem mass spectrometry, targeted metabolomics was performed in serum 
samples obtained from 226 mother/child pairs at delivery. Associations between neonatal 
birth weight and concentrations of 163 maternal and fetal metabolites were analyzed. Results: 
After FDR adjustment using the Benjamini-Hochberg procedure lysophosphatidylcholines 
(LPC) 14:0, 16:1, and 18:1 were strongly positively correlated with birth weight. In a stepwise 
linear regression model corrected for established confounding factors of birth weight, LPC 
16:1 showed the strongest independent association with birth weight (CI: 93.63 - 168.94; 
P = 6.94×10-11 ). The association with birth weight was stronger than classical confounding 
factors such as offspring sex (CI: -258.81- -61.32; P = 0.002) and maternal smoking during 
pregnancy (CI: -298.74 - -29.51; P = 0.017). Conclusions: After correction for multiple testing 
and adjustment for potential confounders, LPC 16:1 showed a very strong and independent 
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association with birth weight. The underlying molecular mechanisms linking fetal LPCs with 
birth weight need to be addressed in future studies.

Introduction

It is by now widely accepted, that the early life environment is not just an important 
factor affecting immediate birth outcomes, but is also associated with cardiovascular disease 
susceptibility in later life – for instance the likelihood of developing hypertension. The 
developmental origins of health and disease (DOHaD) hypothesis, an explanatory model for 
the link between early life conditions and adult disease susceptibility, has been established 
based on the data of epidemiological [1-4] and animal studies [5-8]. As alterations in the 
intrauterine environment can affect fetal growth, anthropometric measures at birth, 
like birth weight, birth length and head circumference are well established surrogate 
parameters in the investigation of developmental disease origins [9]. There is a vast amount 
of compelling evidence in literature demonstrating that low birth weight is associated with 
an increased risk for metabolic and cardiovascular disease as well as hypertension in later 
life [2, 10-11]. Growth and development in utero are complex processes which depend on 
a variety of maternal, paternal and fetal factors for an optimal outcome [12]. Due to the 
intricacy of involved factors, our understanding of underlying mechanisms of developmental 
disease origins is still limited. Recent technologic advances in high-throughput methods, like 
array and diverse Omics approaches have revolutionized biological research. Metabolomics 
may capture exposures that are notoriously challenging to quantify and improve our 
understanding of the link between early-life environmental factors, fetal development and 
disorders in later life [12-14]. Targeted metabolomics can provide detailed quantitative 
information on the metabolic status of an organism, adding to the better characterization of 
phenotypes associated with metabolic and cardiovascular sequelae over the life course [14]. 
Metabolic profiling was already used in characterizing maternal plasma and umbilical cord 
blood metabolomes in conditions such as preterm birth [15], small for gestational age (SGA) 
[16], low birth weight [17], very low birth weight [18, 19] and intrauterine growth retardation 
(IUGR) [20-22]. However, a major limitation of available studies are heterogeneous study 
designs, applied methodology, low sample sizes, the usage of untargeted metabolomic 
approaches, and the lack of replication of obtained study results [15-23].

The aim of the current study was to investigate associations between the maternal and 
fetal metabolome at time of birth and well established birth weight in an appropriately sized 
mother child cohort employing a widely used targeted metabolomic approach.

Materials and Methods

Clinic data collection
This observational study was approved by the local ethics committee and carried out at the Depart-

ment of Obstetrics, Charité Universitaetsmedizin Berlin (Berlin, Germany). 226 newborns and their moth-
ers entered the study. The majority (89.9%) were of Caucasian ethnicity – for details see also [15, 24, 25].

A structured medical history was taken. The following data were extracted into our database: age, 
ethnicity, weight before pregnancy, body height, gravidity, parity, hypertension and diabetes mellitus 
during pregnancy, smoking status before and during pregnancy, systolic and diastolic blood pressure (BP) 
measurements recorded during pregnancy, and the mode of delivery (normal delivery or cesarean section). 
As well as the newborn postnatal examination biometric data birth weight, birth length, head circumference, 
child sex, and Apgar scores assessed at 5 and 10 minutes were collected

Sample collection
Midwives collected maternal blood from a cubital vein in the delivery room or on the ward prior to 

birth. Fetal blood was collected from the umbilical cord immediately after delivery. Blood was centrifuged at 
2750 g and the obtained serum samples were then stored at -80 °C until it was analyzed.

© 2018 The Author(s)
Published by S. Karger AG, Basel
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Targeted metabolomics in blood serum
Metabolite quanitification were done in the Metabolomic Platform of the Genome Analysis Center, 

Helmholtz Zentrum München, using FIA-ESI-MS/MS and the AbsoluteIDQTM p150 Kit (BIOCRATES Life 
Sciences AG, Innsbruck, Austria). The assay allows simultaneous quantification of 163 metabolites out of 
10 µL serum, and includes free carnitine, 40 acylcarnitines, 14 amino acids (13 proteinogenic + ornithine), 
hexoses (sum of hexoses – about 90-95 % glucose), 92 glycerophospholipids (15 lysophosphatidylcholines 
(lysoPC) and 77 phosphatidylcholines (PC)), and 15 sphingolipids. The method of AbsoluteIDQTM p150 
Kit has been proven to be in conformance with the EMEA-Guideline “Guideline on bioanalytical method 
validation (July 21st 2011”) [26], which implies proof of reproducibility within a given error range. A 
detailed description of the sample preparation, assay procedures and nomenclature have been published 
previously [27-29].

Sample handling was performed by a Hamilton Microlab STARTM robot (Hamilton Bonaduz AG, Bonaduz, 
Switzerland) and a Ultravap nitrogen evaporator (Porvair Sciences, Leatherhead, U.K.), beside standard 
laboratory equipment. Mass spectrometric analyses were done on an API 4000 triple quadrupole system 
(Sciex Deutschland GmbH, Darmstadt, Germany) equipped with a 1200 Series HPLC (Agilent Technologies 
Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto sampler (CTC Analytics, Zwingen, Switzerland) 
controlled by the software Analyst 1.5.1. Data evaluation for quantification of metabolite concentrations and 
quality assessment was performed with the MetIDQ™ software package, which is an integral part of the 
AbsoluteIDQ™ Kit. Metabolite concentrations were calculated using internal standards and reported in µM.

Statistical analysis
Data were analyzed with SPSS version 22.0. To find associations between neonatal birth weight and 

targeted metabolites, a three-step analysis was used: bivariate correlation analysis, P-values adjustment 
for multiple testing, and multiple linear regression analysis. In bivariate correlation analysis, B was used 
to estimate the strength of a correlation. To reduce false discovery rate (FDR) due to multiple testing, 
resulting P-values from bivariate correlation analysis were adjusted using the Benjamini-Hochberg (BH) 
procedure. The BH procedure is defined as Pm ≤ m×q/M [30, 31]. M equals the total number of tested 
metabolites (M=163, 163 metabolites), q equals the FDR (the FDR set up at 5% in the present paper), Pm 
equals the individual P-value’s rank, and m equals the individual rank of tested metabolite. Factors known 
to be associated with birth weight (gestational age [32], child sex [33], maternal age [34], maternal BMI 
before pregnancy [35], maternal smoking during pregnancy [36, 37]) were used as confounders to calculate 
and adjust putative predictive metabolites in linear regression and stepwise linear regression models. For 
stratifying the cohort into small (SGA), appropriate (AGA), and large for gestational age (LGA) offspring, the 
10th and 97th percentiles of birth weight for the gestational age were used as cut-offs defining SGA and LGA, 
respectively [38, 39]. A statistically significant difference 
was considered as P < 0.05.

Results

Description of the cohort
Descriptive data of the study population, which 

represented a regular birth cohort in regard to 
key characteristics such maternal age, height, BMI 
before pregnancy, smoking status and newborn sex, 
birth weight, birth length, and head circumference, 
are given in Table 1. For the distribution of child 
birth weight see Fig. 1. A.

Bivariate correlation analyses of maternal serum 
metabolites and child birth weight
Bivariate correlation analyses showed that 

four acylcarnitines (C10:1, C14:2-OH, C16:2-OH, 
C18:1-OH), and one sphingolipid SM (OH) C 16:1 

Table 1.  Detailed Descriptive Data of the 
mother and child (n = 226). Data are given 
as mean ± SE or %

 
Variable Mean±SE / % 

Caucasian ethnicity/other ethnicity, % 90.0/10.0 
Maternal age, y 30.4±0.4 

Maternal height, cm 166.3±0.5 
Maternal weight before pregnancy, kg 63.2±0.6 

Maternal BMI before pregnancy, kg/m2 22.3±0.3 
Primigravida/primipara, % 37.4/62.6 

Smoking before/during pregnancy, % 43.1/16.2 
Hypertension before/during pregnancy, % 3.5/11.3 

Diabetes mellitus before/during pregnancy, % 1.5/9.0 
Mean weight 1st trimester kg 65.0±1.0 
Mean weight 2nd trimester, kg 67.7±1.0 

Mean weight 3rd trimester half , kg 75.2±0.0.9 
Mean SBP in 1st trimester, mm Hg  113.1±1.0 
Mean SBP in 2nd trimester, mm Hg  112.3±0.8 
Mean SBP in 3rd trimester, mm Hg  113.3±0.7 
Mean DBP in 1st trimester, mm Hg  68.7±0.7 
Mean DBP in 2nd trimester, mm Hg  67.2±0.5 

Mean DBP in 3rd trimester half, mm Hg 69.2±0.5 
Gestational age at delivery, days 273.3±0.6 

Child sex, male/female, % 52.2/47.8 
Child birth weight, g 3372.3±30.5 

Child birth length, cm 50.7±0.2 
Child head circumference 34.7±0.1 

Apgar score at 5 min 9.4±0.1 
Apgar score at 10 min 9.6±0.1 

Fetal cord blood pH 7.27±0.05 
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were positively correlated 
with birth weight (Table 
2a). After p-value correction 
of the initially significant 
associations using the BH 
procedure (Pm > m×q/M), no 
more significant associations 
were observed.

Bivariate correlation 
analyses of fetal 
metabolites and child 
birth weight
Bivariate correlation 

analyses showed that nine 
LPCs (LPC 14:0, 16:0, 16:1, 
17:0, 18:0, 18:1, 18:2, 
20:3, 20:4) were positively 
correlated with birth weight 
(Table 2b). After Benjamini-
Hochberg adjustment, three 
LPCs (LPC 14:0, 16:1, 18:1) 
with Pm ≤ m×q/M remained 
significantly correlated with 
birth weight (Table 2b).

Linear regression 
analyses of fetal 
metabolites and child 
birth weight
Significant results 

obtained by FDR corrected 
bivariate correlation analysis 
were subsequently analyzed 
by multiple linear regression 
analysis, considering 
gestational age, child sex, 
maternal age, maternal 
BMI before pregnancy, and 
maternal smoking during 
pregnancy as confounders. 
LPC 14:0 (Standardized beta 
= 0.31, P = 1.75×10-7), 16:1 
(Standardized beta = 0.38, 
P = 6.94×10-11), and 18:1 
(Standardized beta = 0.35, P 
= 7.89×10-9) were strongly 
correlated with birth weight 
(table 3a). To investigate 

Fig. 1. Distribution of child birth weight (A), mean fetal serum 
LPC 16:1 in groups of child weight <2500g (n = 5), 2500-4000g (n 
= 199) and >4000g (n = 22) (B), and mean fetal serum LPC 16:1 in 
groups of SGA (n = 23), AGA (n = 198), and LGA (n = 5) (C). LPC = 
lysophosphatidylcholine. Data are given as mean ± SE, SGA = small for 
gestational age, AGA = appropriate for gestational age, LGA = large for 
gestational age.

Figure 1 Distribution of child fetal birth weight (A), mean fetal serum LPC 16:1 in groups of fetal 
weight <2500g (n = 5), 2500-4000g (n = 199) and >4000g (n = 22) (B), and mean fetal serum 
LPC 16:1 in groups of SGA (n = 23), AGA (n = 198), and LGA (n = 5) (C). LPC = 
lysophosphatidylcholine. Data are given as mean ± SE, SGA = small for gestational age, AGA = 
appropriate for gestational age, LGA = large for gestational age.

A B

C
P = 4.46×10-4

P = 0.025

P = 0.005

P = 1.02×10-4

P = 0.032

P = 0.003

Table 2. a. Correlation between maternal serum metabolites and 
child birth weight. (n = 226). Note: only metabolites with a p-value 
less than 0.05 in bivariate correlation analysis shown in the table. Cx:y 
= acylcarnitine, -OH = hydroxy, SM = sphingomyelin. b. Correlation 
between fetal serum metabolites and child birth weight. (n = 226). 
Note: only metabolites with a p-value less than 0.05 in bivariate 
correlation analysis shown in the table. LPC = lysophosphatidylcholine

which of the of the three identified LPCs (LPC 14:0, 16:1 and 18:1) shows the greatest impact 
on birth weight, a stepwise multiple linear regression model was calculated. In this model 
fetal LPC 16:1 (Standardized beta = 0.39, P = 6.94×10-11, Table 3b model B) demonstrated the 
strongest correlation with birth weight.
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To rule out that the 
observed correlation 
between fetal LPC 16:1 
and birth weight is an 
epiphenomenon mediated 
by hypoxic activation of 
phospholipase A2 and 
subsequent generation/
accumulation of LPCs, 
further statistical analyses 
using fetal cord blood 
pH and APGAR scores as 
parameters of birth related 
hypoxia were performed. 
Fetal LPC 16:1 was not 
significantly correlated 
to fetal cord blood pH. 
Furthermore, quartiles of 
LPC 16:1 fetal serum levels 
were generated and fetal 
cord blood pH and APGAR 
scores at 5 min & 10 min 
compared within these 
4 groups. There were no 
significant differences in 
fetal cord blood pH and 
APGAR score at 5 min & 10 
min among the LPC 16:1 
quartiles (For more details, 
see Table 4). To further 
confirm that fetal LPC 16:1 
is independently associated 
with birth weight, a third 
linear regression model 
(model C) using fetal cord 
blood pH and APGAR score 
at 5 min as confounders 
were conducted. Also in 
this model, fetal LPC 16:1 
(Standardized beta = 0.39, 
P = 8.17×10-10) was clearly 
positively correlated with 
birth weight (Table 3b).

To check and confirm 
the final result, fetal serum 
LPC 16:1 concentrations 
were compared in low 
(<2500g), normal (2500-
4000g) and high (>4000g) 
birth weight groups, and 
in groups small (SGA), 
appropriate (AGA) and large 
for gestational age (LGA). 
Newborns with low birth 

Table 3. a. Linear Regression models analyzing associations between 
fetal serum metabolites and child birth weight. (n = 226). LPC = lyso-
phosphatidylcholine. Model A Considering gestational age, child sex, 
maternal age, maternal pre-pregnancy BMI, mother smoking during 
pregnancy, and LPC 14:0 being the independent variable and birth 
weight being dependent variable. Model B Considering gestational age, 
child sex, maternal age, maternal pre-pregnancy BMI, mother smoking 
during pregnancy, and LPC 16:1 being the independent variable and 
birth weight being dependent variable. Model C Considering gestation-
al age, child sex, maternal age, maternal pre-pregnancy BMI, mother 
smoking during pregnancy, and LPC 18:1 being the independent vari-
able and birth weight being dependent variable. 3b. Stepwise Linear 
Regression models analyzing associations between fetal serum me-
tabolites and child birth weight. (n = 226). LPC = lysophosphatidyl-
choline. Model A Considering gestational age, child sex, maternal age, 
maternal pre-pregnancy BMI, mother smoking during pregnancy being 
the independent variable and birth weight being dependent variable. 
Model B Considering gestational age, child sex, maternal age, mater-
nal pre-pregnancy BMI, mother smoking during pregnancy, and the 
3 metabolites from the above table 2b (Pm ≤ m×q/M) being the inde-
pendent variable and birth weight being dependent variable. Model 
C Considering gestational age, child sex, maternal age, maternal pre-
pregnancy BMI, mother smoking during pregnancy, fetal cord blood 
pH, apgar score at 5 min and the 3 metabolites from the above table 2b 
(Pm ≤ m×q/M) being the independent variable and birth weight being 
dependent variable
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weight (<2500g; n = 5) displayed significantly lower (1.90±0.21 µM) mean serum LPC 16:1 
levels compared to normal (2500-4000g; n = 199; 3.85±0.09 µM) and high (>4000g; n = 
22; 4.60±0.33 µM) birth weight newborns (for more details, see Fig. 1.B). Additionally, high 
birth weight newborns had significantly elevated serum LPC 16:1 concentrations compared 
to normal birth weight newborns. The same pattern of significant differences in fetal serum 
LPC 16:1 levels could be observed comparing SGA (n = 23; 3.04±0.25 µM), AGA (n = 198; 
3.97±0.09 µM), and LGA (n = 5; 5.50±0.74 µM) newborns (for more details, see Fig. 1.C).

Discussion

The current study investigated the association between 163 maternal and fetal serum 
metabolites at birth and newborn birth weight in a cohort of 226 mother-newborn pairs. An 
initial analysis, not adjusted for confounding factors, identified associations between several 
maternal and fetal metabolites with birth weight. However, after FDR adjustment only fetal 
LPC 14:0, LPC 16:1, and LPC 18:1 were significantly associated with birth weight. Employing 
linear multiple regression models followed by a stepwise multiple regression model, all 
adjusted for confounding factors known to affect neonatal anthropometric measurements 
(gestational age [32], child sex [33], maternal age [34], maternal BMI before pregnancy 
[35], maternal smoking during pregnancy [36, 37]) revealed that out of the three LPCs, fetal 
serum LPC 16:1 showed the strongest independent association with birth weight. Data 
stratification into groups of birth weight (<2500g; 2500-4000g; >4000g;) and groups of size 
for gestational age (SGA; AGA; LGA) further substantiated the positive association between 
fetal LPC 16:1 and size at birth.

One possible explanation of the observed positive association between fetal LPC 16:1 
and birth weight might be hypoxia. It is well known that hypoxia activates phospholipases 
that induce the generation of LPCs [40-42]. The process of giving birth is characterized by 
hypoxic periods of varying duration for both, the mother and the fetus. Theoretically, due to a 
longer duration of giving birth, larger newborns may be subjected to longer acute periods of 
hypoxia and thus display a stronger activation of phospholipases and higher levels of LPCs. 
However, in the current study we were not able to observe a significant association between 
data indicative of hypoxia, ie. fetal cord blood pH and APGAR scores, and fetal LPC 16:1 levels.

To the best of our knowledge, this is the second large scale study showing an independent 
association between fetal LPCs and birth weight. Very recently, Hellmuth et al. demonstrated 
in a large birth cohort a strong independent positive correlation between birth weight and 
several cord blood LPCs, including LPC 14.0, LPC 16:1, and LPC 18:1 [43]. Similarly, also in 
the current study these metabolites were independently associated with birth weight after 
FDR adjustment. Furthermore, also in the study by Hellmuth et al. LPC 16:1 demonstrated 
the strongest association with birth weight. In addition, several metabolites were negatively 
associated with birth weight, which might have been due to the larger cohort size of 753 
fetal cord blood samples/newborns. Different from the current study, Hellmuth et al. did not 
use a commercially available kit for the metabolomic analyses but several methodological 
approaches targeting different classes of metabolites. Based on these methodological 
differences absolute metabolite concentrations might not be comparable between the two 
studies. The general tendencies of metabolite concentrations i.e. in relation to birth weight 
should not be affected. This underscores a putatively important role of specific LPCs in fetal 
growth. Based on the current state of literature, however, not much is known regarding 

Table 4. Fetal cord blood pH and apgar score at 5 min & 10 min comparison according LPC 16:1 quartiles. 
Data are given as mean ± SE.

 
 

Variable First quartile (n = 56) Second quartile (n = 56) Third quartile (n = 56) Fourth quartile (n = 55) P value 
Fetal cord blood pH 7.25±0.01 7.25±0.01 7.29±0.01 7.27±0.01 0.072 
Apgar score at 5 min 9.22±0.13 9.38±0.11 9.54±0.08 9.31±0.10 0.154 

Apgar score at 10 min 9.48±0.11 9.62±0.09 9.72±0.07 9.62±0.09 0.250 
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underlying mechanisms of the observed association. LPCs in the adult organism result from 
partial hydrolysis of PCs by the enzymatic action of phospholipase A2 [44], from hepatic 
secretion [45], and lecithin-cholesterol acyltransferase [46]. Several studies have linked 
LPCs with obesity, but results are contradictive, which might be due to the multifaceted 
incompletely understood functions of LPCs [47-49]. Higher levels of LPC species were 
reported in obese men [50] and also observed in an obese monozygotic twin study [51]. 
In a study designed to discover biomarkers that are indicative of weight change, LPC 14:0 
was shown to be strongly positively associated with rapid growth and childhood obesity 
[52]. In contrast to these positive associations other studies showed negative associations 
between serum LPCs and obesity [53-57]. Overweight/obese children had decreased 
levels of the unsaturated LPC 18:1 [53, 54] compared with normal weight children. The 
comparison of adult overweight/obese subjects to their lean counterparts demonstrated 
increased concentrations of saturated LPCs (LPC 14:0, 18:0) and decreased concentrations 
of the unsaturated LPC 18:1 [55]. Also in an animal model of obesity decreased levels of 
the unsaturated LPCs 16:1 and 18:1 were observed [58]. Given the inhomogeneity of study 
results and lack of available suitable mechanistic data, it is hard to draw any firm conclusions 
on how LPCs might influence body weight, especially in the fetal organism. However, one 
mechanism that is believed to negatively affect offspring birth weight that might also be 
connected to LPC metabolism is fetal insulin resistance. Insulin is one of the main culprits 
of macrosomia in children born to diabetic mothers [59]. Contrary, attenuated fetal insulin 
signaling, as found in insulin resistance, has been suggested to decrease birth weight and 
to be a characteristic of the low birth weight phenotype [60, 61]. It was shown, that certain 
LPCs (among these LPC14:0) can interact with glucose metabolism independent of insulin 
signaling and lead to enhanced cellular glucose uptake [62]. Transcriptome analyses of 
human myotubes treated with LPC 16:0 and 18:1, demonstrated an increased expression 
of PPARδ regulated transcripts, inducing anti-diabetic and antiinflammatory effects [63]. 
Furthermore, it was demonstrated that LPCs (especially LPC 18:1) can enhance glucose-
dependent insulin secretion in perfused rat pancreas via an orphan G-protein coupled 
receptor [64]. A study investigating associations between BMI, inflammation and insulin 
resistance demonstrated negative associations between LPC 18:1 and various adipokines 
and inflammatory mediators. Low levels of LPC 18:1 together with increased levels of leptin 
or CRP were associated with increased HOMA scores [65]. Applied to the results of the 
current study, altered levels of LPCs hypothetically could affect fetal growth by influencing 
insulin resistance and insulin secretion. Lower levels of LPCs, as found in offspring with 
lower birth weight, could result in increased fetal insulin resistance and decreased insulin 
secretion, which could negatively affect fetal growth. This hypothesis is interesting in context 
with previous findings from our group. In two independent previous studies we observed 
a negative correlation between total glycated cord blood hemoglobin and birth weight, an 
observation that contrasts the usual positive correlation between maternal glycemia and 
birth weight [66, 67]. Results of these studies indicated that lighter fetuses, when subjected 
to similar degrees of maternal glycemia, display an incapability of adequately lowering their 
blood glucose concentrations (reflected by elevated cord blood total glycated hemoglobin), 
in comparison to heavier fetuses. The mechanism behind these associations remained 
unexplored, but alterations in LPC metabolism may serve as a link in the connection between 
impaired fetal glucose handling and low birth weight.

The reason why LPCs 14:0, 16:1 and 18:1 were lower in the serum of lower birth weight 
newborns cannot be answered by our study. Several factors including maternal dietary 
intake, placental transfer and fetal production are possible. In the current study, levels of LPC 
16:1 were about threefold higher in fetal compared to maternal serum, yet showed a barely 
significant positive correlation (data not shown). This finding suggests that LPC 16:1 might 
predominantly be generated in the fetus, but does not preclude alterations in the trans-
placental transport of precursor forms. Interesting in this regard, LPC 16:0 concentrations 
did not differ between mother and fetus and there was a modest, highly significant correlation 
between fetal and maternal LPC 16:0 levels. The same pattern of absent maternal-fetal 
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concentration differences and presence of significant correlations could be observed for the 
saturated LPCs 14:0 and 18:0.

Study limitations and Outlook
One limitation of the current study is that serum metabolites were only measured at 

one occasion prior to birth. Furthermore, we cannot rule out if specific phenotypic and 
lifestyle factors which we did not account for, may have influenced the results.  However, 
we used a very strict approach, employing BH procedure to reduce false discovery rate, 
followed by linear regression analysis adjusted for confounding factors known to affect 
neonatal anthropometric measurements. Moreover, the results of the study remain purely 
associative. Future studies are needed to investigate underlying mechanisms of the observed 
associations. Despite of the mentioned study limitations, a strength of the current study is 
the replication of major findings of a previous study by Hellmuth et al., [43] which is a crucial 
aspect of research based on high-throughput data.

In conclusion, after correction for multiple testing and adjustment for potential 
confounders, lysophosphatidylcholine 16:1 showed a very strong and independent 
association with birth weight, a surrogate parameter of intrauterine development and 
adult disease susceptibility. In the future, suitable preclinical studies are needed to better 
characterize underlying mechanisms of the observed association and to investigate if there 
is a mechanistic link between low birth weight, insulin resistance and alterations in LPC 
metabolism. Future clinical studies should include additional collection of information on 
possible lifestyle-related environmental factors and medication with a possible influence on 
the metabolic profile, as well as the measurement of serum metabolites at multiple and/or 
earlier occasions.

Conclusion

The aim of the current study was to investigate associations between the maternal 
and fetal metabolites and birth weight. There were no correlations between maternal 
metabolomics and birth weight. After correction for multiple testing and adjustment for 
potential confounders, LPC 16:1 showed a very strong and independent association with 
birth weight. This correlation was even stronger than classical confounding factors such as 
maternal smoking orr offspring sex.
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Abstract
Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the 
metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of 
studies that investigated both, the maternal and the fetal serum metabolome in the setting of 
GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational 
disease but might play an active role in it. Metabolomic studies performed in maternal 
blood and fetal cord blood could help to better discern distinct fetal from maternal disease 
interactions. Methods: At the time of birth, serum samples from mothers and newborns 
(cord blood samples) were collected and screened for 163 metabolites utilizing tandem 
mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of 
maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in 
the maternal blood and 54 metabolites in the cord blood were associated with GDM. After 
Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal 
phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association 
with GDM. Conclusions: This study found metabolites in cord blood which were associated 
with GDM, even after adjustment for established risk factors of GDM. To the best of our 
knowledge, this is the first study demonstrating an independent association between fetal 
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serum metabolites and maternal GDM. Our findings might suggest a potential effect of the 
fetal metabolome on maternal GDM.

Introduction

GDM is defined as any degree of glucose intolerance with onset or first recognition during 
pregnancy. Commonly, the diagnosis is based on results from an oral glucose tolerance test at 
24–28 weeks of gestation [1]. GDM is one of the most common complications of pregnancy 
and its prevalence is constantly rising [2]. If uncontrolled, GDM results in overt hyperglycemia 
which may significantly increase perinatal morbidity and mortality [3]. Women with GDM 
have a higher risk of preeclampsia and cesarean section, [4, 5] whereas complications for 
their newborns include a higher risk for macrosomia [5-7] and fetal hypoglycemia [4, 8]. 
Potential long-term consequences for the health of mother [9-11] and child [10, 12, 13] may 
be an impaired glucose tolerance, obesity, and metabolic disorders. Even though GDM usually 
resolves after birth and blood glucose returns to normal levels, mothers that developed 
GDM during pregnancy have an increased risk for type 2 diabetes mellitus (T2DM) [14]. 
Therefore, screening and treatment for GDM are common in most developed countries. 
Randomized controlled trials have shown improved maternal and neonatal outcomes for 
these strategies [15, ]. But even with strict glycaemic control GDM still represents a risk for 
adverse pregnancy outcomes. It is known that ethnicity, higher maternal age, obesity, greater 
weight gain during pregnancy, and hypertension display risk factors for GDM [17].

The pathogenesis of GDM is multifactorial and exact mechanisms underlying the 
development of the disease are still poorly understood. A traditional pathophysiologic 
concept proposes that pancreatic β-cells are not able to account for the physiologic 
pregnancy-related decline in tissue sensitivity to insulin. Glucose intolerance occurs as a 
result of an inadequate increase in insulin secretion [18]. The placenta secretes cytokines 
and other factors which add to pregnancy-induced insulin resistance [19]. Other potentially 
contributing factors discussed in the literature include chronic low-grade inflammation [20], 
different genetic, epigenetic and non-genetic environmental factors including nutrition [21-
26]. Moreover, fetal sex [23, 27] and fetal genes [28] have been shown to correlate with 
maternal glucose concentrations during pregnancy and thus may modulate the risk for 
maternal GDM. However, it is not clear if the fetus can impact on the maternal organism in 
such a regulating manner. Pathophysiologic pathways of development and progression of 
GDM still need to be investigated more thoroughly in order to better understand a potential 
involvement of a fetal influence.

Metabolomics is an investigative approach that analyses products of biochemical 
pathways in a detailed way [29]. It is a robust, rapid, and efficient method to analyze a large 
number of small molecules in tissues, urine, blood and other biological fluids. This approach 
is well suited to find biomarkers for the prediction, diagnosis, and monitoring of several 
diseases including metabolic disorders like GDM [30]. It can also help to better understand 
physiologic and pathophysiologic processes on a molecular level and, as such, in a more 
detailed manner. However, the knowledge of the human metabolome in general still presents 
a big challenge to science. This is especially true for a period like pregnancy where the body 
undergoes multiple physiologic changes.

In this study, we wanted to investigate characteristic disease-associated metabolites in 
the serum of pregnant women with GDM and compare them to the findings from women 
without GDM. Moreover, as there is a lack of studies that investigated the fetal metabolome 
in GDM, we compared the metabolic cord blood profile of newborns from mothers with GDM 
to the profile of newborns from mothers without GDM.

© 2018 The Author(s)
Published by S. Karger AG, Basel
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Fig. 1. Flowchart for the metabolomics analysis strategy. M = 
total number of analyzed metabolites (M=163); q = FDR; m = the 
individual rank of tested metabolite; Pm = the individual P-value; 
PC = phosphatidylcholine; ae = acyl-alkyl. The Assay Workflow was 
adapted from: AbsoluteIDQ® p150 Kit - Biocrates. Pge 2. Assay 
Workflow. http://www.biocrates.com/images/p150_KitFolder.
pdf.

  

Materials and Methods

Clinical study
This observational study was approved by the local Ethics Committee. A total of 412 pregnant women 

who delivered their newborns at the Charité obstetrics department in Berlin, Germany were invited to 
participate (Berlin Birth Cohort, ref: [31, 32]). As the focus of this study was set on patients with GDM, 
mothers with overt diabetes before pregnancy were not included. The majority of mothers (n = 344) were 
of European background, the others had an African, Asian, or Arabic background.

After written consent was obtained, a structured medical history was taken. The following data were 
extracted into our database: age, ethnicity, body height and body weight before pregnancy, diabetes mellitus, 
and hypertension during pregnancy, smoking during pregnancy, systolic and diastolic blood pressure (BP) 
measurements recorded during pregnancy, and mode of delivery. Biometric data of the newborns were 
collected during the routine postnatal examination: birth weight, birth length, ponderal index (birth length 
(m) / the cube root of weight (kg)), head circumference, child sex, and Apgar score 5 minutes postnatally 
and Apgar score 10 minutes postnatally were screened and assessed [33]. Gestational age at delivery was 
based on the last menstrual period and anamnestically assessed during the first pregnancy examination. 
Midwives collected maternal blood from the cubital vein in the delivery room or on the ward. Fetal blood 
samples were collected from the umbilical cord within 10 min after delivery. Blood was centrifuged at 2750 
g immediately after its withdrawal and the obtained serum was stored at -80 °C until measurements were 
performed. Obtained serum samples were used for metabolomic analyses and additionally to measure 
glucose and insulin concentrations. GDM was screened and assessed according to the practice guideline of 
the German Diabetes Association (DDG) and the German Association for Gynecology and Obstetrics (DGGG) 
[34]. In total, 31 out of 412 pregnant women were diagnosed with GDM.

Targeted metabolomics in maternal and fetal blood samples
The targeted metabolomics approach was based on flow injection analysis–electrospray ionization–

tandem mass spectrometry (FIA–
ESI–MS/MS)   measurements 
with the Absolute IDQTM p150 
kit (BIOCRATES Life Sciences AG, 
Innsbruck, Austria). For more 
details of the assay workflow see 
Fig. 1. The assay allows simultaneous 
quantification of 163 metabolites 
out of 10 µL serum and includes free 
carnitine, 40 acylcarnitines (Cx:y), 
14 amino acids (13 proteinogenic 
+ ornithine), hexoses (sum of 
hexoses – about 90-95 % glucose), 
92 glycerophospholipids (15 
lysophosphatidylcholines (lysoPC) 
and 77 phosphatidylcholines (PC)), 
and 15 sphingolipids (SMx:y). 
The abbreviations Cx:y are used 
to describe the total number of 
carbons and double bonds of all 
chains, respectively. The method of 
the AbsoluteIDQTM p150 kit has been 
proven to be in conformance with the 
FDA-Guidlines “Guidance for Industry 
- Bioanalytical Method Validation 
(May 2001)” [35], which implies 
proof of reproducibility within a given 
error range. Measurements were 
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performed as described in the manufacturer’s manual. This manual contains comprehensive instructions 
and detailed information on analytical specifications, including the limit of detection (LOD), specificity, 
accuracy, reproducibility, and all other specifications. The assay procedures of the Absolute IDQTM p150 kit, 
as well as the metabolite nomenclature, have been described in detail previously [36, 37]. Sample handling 
was performed by a Hamilton Microlab STARTM robot (Hamilton Bonaduz AG, Bonaduz, Switzerland) and a 
Ultravap nitrogen evaporator (Porvair Sciences, Leatherhead, U.K.). Mass spectrometric analyses were done 
on an API 4000 triple quadrupole system (Sciex Deutschland GmbH, Darmstadt, Germany) equipped with 
a 1200 Series HPLC (Agilent Technologies Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto 
sampler (CTC Analytics, Zwingen, Switzerland) controlled by the software Analyst 1.6.1. Data evaluation 
for quantification of metabolite concentrations and quality assessment was performed with the MetIDQ™ 
software package, which is an integral part of the AbsoluteIDQ™ kit. Internal standards served as a reference 
for the calculation of metabolite concentrations [µM].

Statistical analysis
Data were analyzed with SPSS version 22.0. Results of quantitative data were expressed as the 

arithmetic mean ± standard deviation (SD). An unpaired t-test was used for comparison of continuous 
variables between two groups. To reduce false discovery rate (FDR) after t-test, P-values were adjusted using 
the Benjamini-Hochberg procedure. The BH procedure is defined as Pm ≤ m×q/M [38, 39]. M = total number 
of tested metabolites (M=163), q = FDR (the FDR set up at 5% in the present paper), Pm = the individual 
P-value’s rank, m = the individual rank of the tested metabolite. Pearson’s chi-square test was used for 
testing qualitative data. In the next step, we performed logistic regression analyses to correct for known 
confounding factors. Relevant confounding factors of GDM mentioned in current literature were included 
into the models: maternal age, pre-pregnancy body 
mass index (BMI), ethnicity, family history of diabetes, 
and smoking during pregnancy. A flowchart for the 
metabolomics analysis strategy is given in Fig. 1. A 
P-value less than 0.05 was considered significant.

Results

Description of the cohort
Descriptive data of the study population 

are given in Table 1. The study population 
represented a typical German birth cohort in 
regards to key characteristics like maternal 
age, ethnicity, BMI before pregnancy, gravidity, 
parity, and biometric data of the newborns 
(for more details, see Table 1).

Pregnancy outcomes of mothers and 
newborns
Mothers with GDM had a significantly 

higher age compared to non-GDM mothers. 
There were no significant differences in blood 
glucose levels or in any of the other recorded 
parameters between the two groups (for more 
details, see Table 2).

Newborns from mothers with GDM 
had a significantly higher preterm birth 
rate compared to newborns from non-GDM 
mothers. Crucial parameters of fetal outcome 
like birth weight or ponderal index were not 

Table 1. Detailed descriptive data of all mother/
child pairs (n = 412). Data are given as mean ± SD 
or % 

 

Variable 
Mean±SD / % 

Maternal age, y 30.5±5.9 
Maternal height, cm 166.3±7.2 
Maternal BMI before pregnancy, kg/m2 22.6±4.5 
Smoking before pregnancy, % 40.8 
Smoking during pregnancy, % 14.6 
Hypertension before pregnancy, % 3.40 
Hypertension during pregnancy, % 9.5 
Diabetes during pregnancy, % 8.1 
Mean systolic BP 3rd trimester of pregnancy, mm Hg  114.0±9.8 
Mean diastolic BP 3rd trimester of pregnancy, mm Hg 69.6±6.9 
Gestational age at delivery, day 271.7±11.4 
Child sex, male/female, % 50.8/49.2 
Child birth weight, g 3346.9±581.9 
Child birth length, cm 50.7±2.7 
Ponderal index 25.6±2.3 
Head circumference, cm 34.7±1.5 
Apgar score at 5 min 9.3±1.0 
Apgar score at 10 min 9.5±0.9 

 
Table 2. Descriptive data of mothers grouped 
according to GDM (n = 412). Data are given as 
mean ± SD or % 

Variable 
Non-GDM 

(n =381) 

GDM 

(n = 31) 
χ2 /t P value 

Maternal age, y 30.3±5.9 32.6±6.2 -2.01 0.045 
Maternal height, cm 166.4±7.0 165.4±8.9 0.79 0.431 
Pre-pregnancy BMI, kg/m2 22.5±4.4 24.8±6.5 2.00 0.054 
Ethnicity, n (%) 

Caucasian 

Other  

 

316 (84.9%) 

56 (15.1%) 

 

28 (90.3%) 

3 (9.7%) 

0.66 

 

0.416 

 
Weight gain during pregnancy, kg 13.1±7.2 13.7±8.2 -0.38 0.704 
Gestational hypertension, n (%) 36 (9.5%) 3 (9.7%) 0.001 0.974 
Smoking during pregnancy, n (%) 54 (14.2%) 6 (19.4%) 0.27 0.606 
C-section, n (%) 22 (5.8%) 2 (6.4%) 0.51 0.612 
Maternal glucose, mmol/L 5.2±1.4 5.2±1.3 0.13 0.899 
Maternal insulin, mIU/L 37.2±36.9 29.6±22.8 0.74 0.460 
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significantly different in newborns from 
mothers with GDM when compared to 
newborns from non-GDM mothers (for 
more details, see Table 3).

Results from targeted metabolomics in 
maternal and newborn blood samples
In total, eight of the 163 targeted 

maternal serum metabolites differed 
significantly between mothers with 
GDM and mothers without GDM (1 
acylcarnitines, 2 diacyl-PCs, 4 acyl-alkyl-
PCs, and sum of hexoses.). After adjusting 
the P-values using the Benjamini–
Hochberg procedure no metabolites were 
significantly different between mothers 
with GDM and mothers without GDM (for 
more details, see Table 4).

In fetal cord blood, 54 of the 163 
targeted metabolites were significantly 
different in newborns of mothers 
with GDM compared to non-GDM 
mothers. These metabolites included 
10 amino acids, 5 sphingomyelins, 
1 hydroxy-sphingomyelin, and 38 
glycerophospholipids (for more details, 
see Table 5). After BH adjustment of 
the P-values fourteen metabolites (3 
amino acids, 2 sphingomyelins, and 9 
glycerophospholipids (2 lyso-PCs, 4 
diacyl-PCs, and 3 acyl-alkyl-PCs)) with Pm 
≤ m×q/M remained significantly different 
in fetal cord blood from GDM mothers 
compared to non-GDM mothers (for 
more details see Table 5). Furthermore, 
Manhattan Plot of all fetal serum 
metabolites is given in Fig. 2.

Logistic regression
Following the univariate analyses, logistic regression models were calculated to see 

which of the identified fetal metabolites were independently associated with GDM. Logistic 
regression models were adjusted for age, ethnicity, family history of diabetes, and pre-
pregnancy BMI, and smoking during pregnancy, all known risk factors for GDM [19, 40]. 
An additional model was calculated including gestational age, as GDM offspring had a 
significantly reduced gestational age and it is know that gestational age is a contributing 
factor to the fetal and maternal metabolome [41, 42].

All these models demonstrated an independent association of the phosphatidylcholine 
acyl-alkyl C 32:1 (PC ae C 32:1) and the amino acid proline with GDM (for more details, see 
Table 6).

PC ae C 32:1, proline, GDM and preterm birth
As mentioned above, GDM offspring displayed a significantly reduced gestational age. 

Adding gestational age as a confounder in logistic regression analysis (Model D) did not affect 
the independent association between fetal PC ae C 32:1, proline, and GDM. To get further 

Table 4. Comparison of maternal serum metabolites 
between non-GDM and GDM. Data are given as mean 
± SD. Cx:y=acylcarnitines, the abbreviations Cx:y are 
used to describe the total number of carbons and 
double bonds of all chains, respectively; PC = phospha-
tidylcholine; a = acyl; aa = diacyl; ae = acyl-alkyl; SM 
= Sphingomyelins; H1 = sum of hexoses.  Note. Only 
metabolites with Pm ≤ 0.05 were shown in the table. M 
= total number of analyzed metabolites (M=163); q = 
FDR; m = the individual rank of tested metabolite; Pm 
= the individual P-value 

Variable 
Non-GDM 

(n = 381) μM 

GDM 

(n = 31) μM 
t Pm value m×q/M value 

Acylcarnitines and Hydroxy-&dicarboxy-acylcarnitines 
C4:1 1.44×10-2±3.73×10-3 1.64×10-24.69×10-3 -2.15 0.033 9.20×10-4 
      
Diacyl-phosphatidyl-cholines 
PC aa C36:5 19.60±9.57 24.91±11.83 -2.28 0.024 6.10×10-4 
PC aa C36:6 1.68±0.65 2.01±0.85 -2.05 0.041 1.84×10-3 
      
Acyl-alkyl-phosphatidyl-cholines 
PC ae C38:0 3.54±1.23 4.18±1.59 -2.10 0.037 1.23×10-3 
PC ae C38:3 17.06±5.33 19.66±6.16 -2.01 0.046 2.45×10-3 
PC ae C40:1 3.94±1.56 4.74±2.33 -2.03 0.044 2.15×10-3 
PC ae C40:5 8.79±2.69 10.16±3.26 -2.09 0.038 1.53×10-3 
      
Sum of hexoses 
H1 4565.46±1679.64 6346.35±2585.17 -2.95 0.008 3.07×10-4 

 

Table 3. Descriptive data of newborn grouped accord-
ing to maternal GDM (n = 412). Data are given as mean 
± SD or % 

Variable 

 

Non-GDM 

(n = 381) 

GDM 

(n = 31) 
χ2 /t P value 

Gestational age, (d) 272.2±11.3 265.8±10.6 3.05 0.002 
Gestational age, n (%) 
  < 259 d 
  259～280 d 
  > 280 d 

20(5.5%) 
293(81.2%) 
48(13.3%) 

4(12.9%) 
27(87.1%) 

0(0.0%) 

 
 

6.77 

 
 

0.034 
Birth weight (g) 3352.3±514.7 3297.1±575.8 0.57 0.285 
Birth weight, n (%) 
  < 2500 g 
  2500～4000 g 
  > 4000 g 

 
17(4.6%) 

316(84.7%) 
40(10.7%) 

 
3(9.7%) 

27(87.1%) 
1(3.2%) 

 
 

3.12 

 
 

0.210 
Birth length, cm 50.7±2.7 50.2±3.2 1.07 0.285 
Head circumference, cm 34.7±1.5 34.2±1.6 1.90 0.066 
Ponderal index 25.6±2.9 26.1±2.8 -1.31 0.191 
Apgar score 
  5 min 
  10 min 

 
9.3±1.0 
9.6±0.9 

 
9.2±1.0 
9.5±0.8 

 
0.48 
0.41 

 
0.631 
0.684 

Fetal glucose, mmol/L 2.9±1.3 3.0±2.6 -0.10 0.924 
Fetal insulin, mIU/L 6.8±3.9 9.6±10.4 -0.59 0.585 
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insight if these metabolites 
might be associated with 
a reduced gestational age 
in GDM we calculated two 
additional multivariable 
regression models (Table 
7). Model A consisted of 
known factors affecting 
gestational age at birth, 
including pre-pregnancy 
BMI, history of preterm 
birth, smoking during 
pregnancy and the maternal 
GDM status. In Model B 
fetal concentrations of PC 
ae C 32:1 and proline were 
added. Model A showed 
a significant association 
between gestational age 
and GDM status of the 
mother and history of 
preterm birth. Adding fetal 
PC ae C 32:1 and proline 
in Model B rendered the 
previously significant 
association between 
GDM and gestational age 
insignificant, yet both 
metabolites demonstrated a 
significant association with 
gestational age. This result 
indicates that altered levels 
of PC ae C 32:1 and proline 
in cord blood of GDM 
offspring might impact on 
GDM related reductions in 
gestational age at birth.

Discussion

In the current study, 
163 metabolites were 
analyzed in maternal and 
fetal cord blood of 412 
delivering women. 31 of 
the participating pregnant 
women had been diagnosed 
with GDM. The goal of 
the study was to identify 
associations between 

Table 5.  Comparison of newborn serum metabolites between non-
GDM and GDM. Data are given as mean ± SD. Data are given as mean ± 
SD. PC = phosphatidylcholine; a = acyl; LPC = lysophosphatidylcholine; 
aa = diacyl; ae = acyl-alkyl; SM = Sphingomyelins; OH = hydroxy. Note. 
Only metabolites with Pm ≤ 0.05 were shown in the table. M = total 
number of analyzed metabolites (M=163); q = FDR; m = the individual 
rank of tested metabolite; Pm = the individual P-value 

Variable 
Non-GDM 

(n = 381) μM 

GDM 

(n = 31) μM 
t Pm value m×q/M value 

Amino acids 
Gln 398.04±106.67 449.75±120.24 -2.57 0.011 0.010 
His 111.08±28.66 128.02±27.28 -3.18 1.60×10-3 9.20×10-4 
Met 36.49±10.06 41.39±7.27 -2.66 8.24×10-3 7.67×10-3 
Phe 69.33±17.97 76.08±14.10 -2.04 0.042 0.016 
Pro 182.78±47.68 219.47±51.19 -4.10 5.00×10-5 3.07×10-4 
Ser 136.62±43.47 152.85±38.93 -2.01 0.045 0.017 
Thr 217.31±81.80 248.62±61.74 -2.08 0.038 0.015 
Tyr 73.00±20.86 84.04±17.37 -2.87 4.35×10-3 5.21×10-3 
Val 187.19±55.22 215.66±50.06 -2.78 5.71×10-3 6.44×10-3 
xLeu 206.33±56.82 233.94±63.44 -2.58 0.010 9.20×10-3 
      
Lyso-phosphatidyl-colines 
LPC 14:0 3.80±0.42 3.96±0.40 -2.07 0.039 0.015 
LPC 16:0 53.53±15.96 59.99±11.28 -2.21 0.028 0.014 
LPC 16:1 3.72±1.38 4.42±1.33 -2.72 6.85×10-3 7.06×10-3 
LPC 18:1 12.29±4.24 14.54±3.50 -2.87 4.30×10-3 4.60×10-3 
LPC 18:2 11.49±4.56 13.49±3.05 -3.35 1.63×10-3 1.23×10-3 
LPC 20:3 3.95±1.45 4.58±1.28 -2.36 0.019 0.013 
LPC 20:4 13.53±5.15 16.00±4.71 -2.58 0.010 9.51×10-3 
      
Diacyl-phosphatidyl-cholines 
PC aa C28:1 0.93±0.36 1.08±0.50 -2.20 0.029 0.014 
PC aa C30:0 4.12±1.25 4.78±0.92 -2.91 3.81×10-3 3.68×10-3 
PC aa C32:0 14.73±4.78 17.28±3.63 -2.91 3.86×10-3 3.99×10-3 
PC aa C32:1 11.92±4.62 14.48±4.03 -3.00 2.91×10-3 2.45×10-3 
PC aa C32:2 1.02±0.52 1.23±0.86 -2.03 0.043 0.016 
PC aa C34:1 104.66±26.66 119.59±27.78 -2.99 3.00×10-3 3.07×10-3 
PC aa C34:2 85.16±31.22 101.08±42.55 -2.65 8.41×10-3 7.98×10-3 
PC aa C34:4 0.49±0.17 0.60±0.32 -3.00 2.88×10-3 2.15×10-3 
PC aa C36:1 24.84±7.17 28.74±7.30 -2.90 3.89×10-3 4.29×10-3 
PC aa C36:2 51.05±19.72 61.37±28.65 -2.69 7.35×10-3 7.36×10-3 
PC aa C36:3 65.01±19.73 75.68±22.49 -2.86 4.43×10-3 5.52×10-3 
PC aa C36:4 123.24±28.67 136.94±25.58 -2.58 0.010 8.90×10-3 
PC aa C36:5 5.18±2.46 6.64±2.54 -3.16 1.69×10-3 1.53×10-3 
PC aa C36:6 0.32±0.14 0.39±0.18 -2.530 0.012 0.011 
PC aa C38:3 41.35±11.77 45.84±9.39 -2.07 0.039 0.015 
PC aa C38:5 21.05±5.82 23.70±8.99 -2.32 0.021 0.013 
PC aa C38:6 56.98±18.92 65.43±21.45 -2.37 0.018 0.012 
      
Acyl-alkyl-phosphatidyl-cholines 
PC ae C30:0 0.27±0.08 0.30±0.07 -2.20 0.028 0.013 
PC ae C30:1 0.18±0.07 0.21±0.07 -2.48 0.014 0.011 
PC ae C32:1 2.40±0.80 2.83±0.67 -2.87 4.31×10-3 4.91×10-3 
PC ae C32:2 0.48±0.15 0.55±0.12 -2.47 0.014 0.012 
PC ae C34:1 4.75±1.65 5.72±1.74 -3.15 1.77×10-3 1.84×10-3 
PC ae C34:2 3.02±1.21 3.62±1.96 -2.49 0.013 0.011 
PC ae C36:3 1.99±0.80 2.34±1.33 -2.23 0.026 0.013 
PC ae C36:4 8.88±2.80 10.22±2.78 -2.57 0.011 0.010 
PC ae C36:5 6.37±2.18 7.34±2.26 -2.37 0.018 0.012 
PC ae C38:4 7.59±2.23 8.47±2.37 -2.09 0.037 0.014 
PC ae C38:5 7.14±2.25 8.32±2.79 -2.76 6.01×10-3 6.75×10-3 
PC ae C38:6 2.96±1.01 3.54±1.25 -2.99 2.93×10-3 2.76×10-3 
PC ae C40:0 6.70±0.99 7.19±1.15 -2.60 0.010 8.59×10-3 
PC ae C40:1 0.95±0.42 1.05±0.24 -2.11 0.041 1.56×10-3 
      
Hydroxy-sphingomyelins 
SM (OH) C16:1 1.67±0.54 1.93±0.52 -2.61 9.47×10-3 8.28×10-3 
      
Sphingomyelins 
SM C16:0 52.30±14.60 60.03±15.26 -2.83 4.96×10-3 6.13×10-3 
SM C16:1 9.82±3.09 11.33±3.28 -2.59 0.010 9.82×10-3 
SM C18:0 20.24±5.73 23.79±4.85 -3.35 8.77×10-4 6.10×10-4 
SM C18:1 13.05±4.22 15.29±3.89 -2.84 4.68×10-3 5.83×10-3 
SM C24:1 30.55±9.08 35.54±9.22 -2.94 3.52×10-3 3.37×10-3 
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distinctive maternal and 
fetal metabolites and 
GDM. Our study identified 
metabolites in cord blood 
which were associated with 
GDM, even after adjustment 
for established risk factors 
of GDM. Interestingly, 
further analyses showed 
an additional independent 
interaction between the 
identified cord blood 
metabolites and GDM 
associated reductions in 
gestational age at birth. To 
the best of our knowledge, 

Table 7. Multiple linear regression models analyzing the associa-
tion between cord blood PC ae C32:1 and proline and gestational age. 
PC = phosphatidylcholine; ae = acyl-alkyl. Model A: Considering mater-
nal pre-pregnancy BMI, Maternal GDM, maternal smoking during preg-
nancy, and history of preterm birth (<37weeks). Model B: Model A + 
cord blood proline and PC ae C32:1

 

 

Variable Standardized Beta t P 95.0% Confidence interval for B 
Model A (R2 = 0.05) 
Maternal pre-pregnancy BMI -0.03 -0.52 0.605 -0.32～0.19 
Maternal GDM -0.12 -2.29 0.023 -9.16～-0.69 
Smoking during pregnancy -0.03 -0.57 0.568 -4.03～2.22 
History of preterm birth  -0.14 -2.63 0.009 -16.42～-2.36 
     
Model B (R2 = 0.09) 
Proline -0.15 -2.81 0.005 -0.06～-0.01 
PC ae C32:1 -0.12 -2.28 0.023 -3.16～-0.23 
Maternal pre-pregnancy BMI -0.05 -0.99 0.325 -0.38～0.13 
Maternal GDM -0.07 -1.34 0.182 -7.13～1.35 
Smoking during pregnancy -0.03 -0.65 0.518 -4.07～2.05 
History of preterm birth (<37weeks)  -0.13 -2.48 0.014 -15.62～-1.79 

 

 

 

Fig. 2. Manhattan Plot of all fetal serum metabolites. 
The –log10 of resulted p-values is shown. The level 
of significance for the unadjusted analyses is shown 
by a dotted line. Each class of metabolites is marked 
with a respective symbol. Metabolites shown in grey 
together with the respective metabolite name indi-
cate metabolites that were still significantly different 
after Benjamini Hochberg adjustment.
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Table 6. Adjusted logistic regression models analyz-
ing associations between newborn metabolites and 
GDM. PC = phosphatidylcholine; ae = acyl-alkyl. Mod-
el A: Considering maternal age, Maternal pre-preg-
nancy BMI, Ethnicity, and 14 metabolites from the 
above Table 4. (Pm ≤ m×q/M) being the independent 
variable and GDM being dependent variable. Model B: 
Model A + family history of diabetes being the inde-
pendent variable. Model C: Model B + smoking dur-
ing pregnancy being the independent variable. Model 
D: Model C + gestational age being the independent 
variable

 

 

 

Variable P value OR 95.0% Confidence interval for B 
Model A 
Maternal age 0.051 1.07 1.00～1.15 
Maternal pre-pregnancy BMI 0.002 1.11 1.04～1.19 
Ethnicity 0.507 1.59 0.40～6.32 
Proline 0.005 1.01 1.00～1.02 
PC ae C32:1 0.029 1.66 1.06～2.62 
    
Model B 
Maternal age 0.064 1.07 1.00～1.14 
Maternal pre-pregnancy BMI 0.002 1.11 1.04～1.19 
Ethnicity 0.530 0.80 0.42～1.52 
Family history of diabetes 0.965 1.56 0.39～6.23 
Proline 0.004 1.01 1.00～1.02 
PC ae C32:1 0.029 1.66 1.06～2.62 
    
Model C 
Maternal age 0.063 1.07 1.00～1.14 
Maternal pre-pregnancy BMI 0.002 1.11 1.04～1.19 
Ethnicity 0.542 1.54 0.38～6.20 
Family history of diabetes 0.949 1.03 0.45～2.35 
Smoking during pregnancy 0.266 1.81 0.64～5.16 
Proline 0.004 1.01 1.00～1.02 
PC ae C32:1 0.030 1.65 1.05～2.60 
    
Model D 
Maternal age 0.067 1.07 1.00～1.14 
Maternal pre-pregnancy BMI 0.002 1.11 1.04～1.19 
Ethnicity 0.459 1.73 0.40～7.42 
Family history of diabetes 0.952 1.03 0.45～2.36 
Smoking during pregnancy 0.330 1.69 0.59～4.90 
Gestational age 0.352 0.98 0.95～1.02 
Proline 0.004 1.01 1.00～1.02 
PC ae C32:1 0.028 1.66 1.06～2.61 
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this is the first study demonstrating an independent association between fetal serum 
metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal 
metabolome in maternal GDM.

Analysis of descriptive data of the study population revealed that newborns from 
mothers with GDM had a significantly higher risk of preterm birth than newborns from non-
GDM mothers, in accordance with earlier studies [43, 44]. To investigate, if differences in 
gestational age might have contributed to the observed differences in PC ae C32:1 and proline 
cord blood levels, gestational age was added to the logistic regression model. The addition 
of gestational age did not impact on the independent association between cord blood PC 
ae C32:1, and proline and GDM. However, two multivariable linear regression models using 
gestational age as independent variable indicated that the impact of GDM on gestational 
age might be controlled by cord blood PC ae C32:1 and proline concentrations. This result 
is in accordance with current literature, at least for proline. Two previous publications 
also demonstrated a negative correlation between proline, measured in amniotic fluid and 
neonatal blood, and gestational age [45-48]. To the best of our knowledge, there are no 
earlier studies that observed an association of proline and PC ae C32:1 with GDM related 
reductions in gestational age [44].

There was no significant difference in birth weight from newborns from mothers with 
GDM and newborns of mothers without GDM in our study. This may seem surprising because 
GDM is a known risk factor for macrosomia of the newborn, at least if untreated [4, 8, 49]. 
In our study, women with GDM had comparable glucose levels to women without GDM, 
therefore a good glucose control of mothers with GDM during pregnancy in combination 
with the reduced duration of gestation might explain the similar birth weight results. Despite 
comparable glucose levels in both groups, we found differences in the metabolomic profiles 
of mothers and newborns. Therefore, the observed differences may be independent of blood 
glucose. This is corroborated by the fact that there was no correlation between the identified 
metabolites and glucose or insulin (data not shown).

Fetal metabolites associated with maternal GDM
An initial non-adjusted analysis identified 54 metabolites in the cord blood being 

associated with GDM. After adjusting the P-values using the BH procedure and calculating 
various models corrected for confounding factors of GDM, our study demonstrated that PC 
ae C32:1 and the amino acid proline were independently associated with GDM.

The traditional pathophysiologic concept states that GDM is a result of environmental 
cues and maternal genetic predisposition [21, 22]. However, this has currently been 
challenged by a new theory. It was proposed that fetal genes may also impact on maternal 
physiology during pregnancy, thus potentially modifying maternal blood pressure 
and glucose concentration [50]. In women with certain maternal gene polymorphisms, fetal 
sex influenced important parameters of maternal physiology during pregnancy, including 
those of the glucose metabolism [23-25]. Moreover, paternally transmitted gene variants 
of the fetal IGF2 gene (which encodes insulin-like growth factor-II) were associated with 
increased maternal glucose concentrations, thus potentially altering her risk of developing 
gestational diabetes mellitus [28].

The mechanisms, however, of how the fetal genotype may influence maternal metabolism 
are unknown. One hypothesis is that variations in placental function induced by the fetal 
genome could play a key role in this process, probably by changing the secretion pattern of 
placental hormones [50, 51]. In fact, the placenta acts as an interphase between mother and 
child and is partially of fetal origin. Thus, the fetal genome may influence maternal glucose 
status and blood pressure via placental function in order to guarantee the nutrient supply for 
the fetus. As such, fetal genes would be able to “demand” an increased flow of nutrients from 
the maternal blood, in case it is needed, which is best exemplified by multifetal pregnancies. 
Interestingly, multifetal pregnancies are associated with an increased risk for GDM [52]. A 
recent meta-analysis including twenty studies and data of over 2, 4 million women showed 
that pregnant women bearing a male fetus had a 1.04-fold higher risk of developing GDM 
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than those bearing a female fetus [27]. This data clearly shows that fetal genotype (sex being 
considered as a genetic variant) is associated with maternal GDM.

Until now it is not known if the fetal metabolome is also associated with maternal GDM. 
We believe that a comparable concept like one of fetal genes influencing maternal metabolism 
can be applied to the fetal metabolome. So far, no data has been published explicitly on 
eventual effects of fetal metabolites on the development of maternal GDM during pregnancy. 
However, first hints of an association of fetal metabolites and maternal GDM come from 
other metabolomics studies [53-55].

Up to now, the focus of metabolomics research for GDM lies on analyzing maternal 
body fluids. Lehman et al. [56] saw decreased levels of plasma diacyl-PCs, lyso-PCs and 
arachidonic acid being associated with insulin resistance in women with GDM. Liu et al. 
[57] found changes in serum metabolites of women with GDM, but only in the later stage 
of pregnancy. Acyl-alkyl-PCs have been associated with T2D in the general population [58]. 
A European prospective study analyzing more twenty thousand individuals revealed that 
diacyl-PCs were independently associated with increased risk of T2D and serum acyl-alkyl-
PCs were associated with a decreased risk [59]. Importantly, other studies showed that 
environmental, dietary and lifestyle factors changed metabolic patterns of diacyl-PC and 
acyl-alkyl-PC in T2DM-cohorts [60-62]. We found distinct fetal acyl-alkyl-PC independently 
associated with GDM, even after strict adjustment for confounding factors and apparently 
independent of blood glucose.

Some studies have reported that elevated plasma levels of branched-chain amino acids 
(BCAAs) also were associated with an increased risk of GDM [63, 64] T2D [64, 65], and 
insulin resistance [66]. In our present study, there were no significant differences in maternal 
plasma amino acid levels between GDM and non-GDM mothers. Similarly, Chorell et al. did 
not observe significant differences in levels of BCAAs during pregnancy, yet were able to 
demonstrate a significant increase in GDM mothers postpartum [67]. In the current study, ten 
amino acids displayed higher cord blood concentrations in newborns from mothers with GDM 
compared to newborns from non-GDM mothers. After BH procedure and strict adjustment 
for confounding factors for GDM, fetal proline still showed an independent association with 
GDM. This finding is supported by literature [68]. Cetin et al. [68] also demonstrated higher 
cord blood levels of the amino acid proline, which was absent in the maternal circulation. 
Correlation analysis furthermore showed a significant relationship between fetal and 
maternal proline levels in GDM cases, which could not be found in the absence of GDM. The 
authors concluded that alterations in placental amino acid exchange and/or fetal/placental 
amino acid metabolism might have been responsible for this observation.

Our results suggesting a fetal contribution to the development of maternal GDM has to 
be investigated more thoroughly. Of course, it is also possible that the observed changes in 
fetal metabolites solely occurred as a consequence to the developing GDM in the mother. 
We are aware that the idea of a fetal influence on maternal physiology via genes and/or 
metabolites is a new concept and study results including ours, so far do not give evidence 
for causality.

Study limitations and Outlook
In this study, serum metabolites were only measured at one occasion prior to birth. 

Metabolomics data as a reflection of systemic metabolic processes, in general, need to be 
interpreted with caution as it may be influenced by phenotype and lifestyle factors. However, 
Floegel et. Al. [69] performed targeted metabolomics at two points in time 4 months apart 
among 100 healthy subjects and demonstrated that most of the metabolites of a single 
measurement may be sufficient for risk assessment in epidemiologic studies with healthy 
subjects.

Despite the mentioned study limitations, findings of the current study may contribute 
to better understand fetal pathophysiological processes in GDM pregnancies. However, 
for further conclusions findings of the current study need confirmation in independent 
prospective studies. Future studies should include collection of information on possible 
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lifestyle-related environmental factors and medication with a possible influence on the 
metabolic profile, as well as the measurement of serum metabolites at multiple and/or 
earlier occasions. Metabolomic assessment of other easily accessible biological fluids, such as 
urine and feces might be of importance. Furthermore, the role of the preconceptual paternal 
metabolome in gestational disease such as GDM should be addressed by future studies. 
Lastly, GDM studies with a long-term follow up should be conducted, to evaluate lasting 
effects of early life metabolic alterations [67]. With a well-designed prospective study based 
on findings from this and other studies, a comprehensive understanding of the variation of 
metabolites in the development of GDM and possibly its consequences could be achieved.

Conclusion

This study aimed at finding characteristic metabolites in a mother-child cohort of 
well-controlled GDM and healthy pregnancies. There were no significant differences in the 
maternal metabolome between GDM and non-GDM mothers. Interestingly fetal cord blood 
phosphatidylcholine acyl-alkyl C 32:1 and proline were associated with GDM independent of 
established GDM risk factors. This finding of an independent association adds to the growing 
evidence in literature demonstrating a fetal impact on maternal gestational metabolic 
disease and warrants further research. Figure 3 gives a summary of the significantly different 
metabolites found in the current study and their association with GDM or T2D according to 
published literature.
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