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Abstract 

The river flow regime is one of the key parameters in river ecosystems as it controls 

physical habitat conditions, biological and ecological processes and river ecosystem 

functioning. River flow conditions have been substantially altered globally due to water 

regulation and climatic changes resulting in detrimental impacts on the functioning and 

health of river ecosystems. Given its importance, several investigations have been 

conducted to increase the knowledge and improve the understanding of ecological effects 

of flow alterations. Species of stream macroinvertebrates are a major organism group in 

river ecosystems that are highly sensitive to environmental changes. Current knowledge 

regarding the flow preferences of stream macroinvertebrates is mostly based on species’ 

qualitative ecological traits stemming from expert knowledge or literature analyses. These 

established qualitative data are difficult to be linked to e.g. quantitative discharge data 

that could be used in predictive modelling of species diversity in space and over time. 

This research deficit, make it difficult to quantitatively predict the effects of climate-

induced flow changes on river biota. To fill this research gap, it is crucial to better 

understand the quantitative changes in e.g. species’ abundance to environmental stressors 

such as flow alterations. Empirically-driven predictive relationships might be established 

for individual species by linking their abundance along wide ranges of environmental 

gradients to any environmental variables, e.g. different flow conditions. Any changes in 

flow can be described by indicators of hydrologic alterations (IHA metrics) that provide 

information on duration, frequency, magnitude, rate and timing of flow events. These 

predictive relationships can be used to assess species responses to climate-change-

induced flow alterations.  

In this thesis, potential changes in the abundance of stream macroinvertebrates due to the 

effects from climate-change-induced flow alterations are analysed. The thesis is divided 

into three parts: Firstly, a non-linear modelling approach is applied for a German-wide 

dataset which enabled to link the abundance of species to river flow to quantify flow 

preferences of stream macroinvertebrates along the range of a variety of flow conditions, 

i.e. various IHA metrics. Secondly, this approach is used in two contrasting river 

catchments in the lowland and lower mountainous region of Germany to quantitatively 

assess potential changes in species’ abundance due to projected changes in flow 

conditions under the climate scenario RCP 8.5. Thirdly, potential variability in projected 

abundance of individual species under 16 climate models derived from various 



Abstract 

 

 IV 

combinations of global and regional climate models are examined. The effects of 

variability in climate model predictions on species’ abundance and functional trait 

composition are tested. Based on these results, the ecological effects of changes in 

species’ abundance of sampling sites are assessed.  

The response relationships derived from the German-wide dataset showed that on 

average one-third (18-40% of 120 taxa depending on the IHA metric) of stream 

macroinvertebrates can be considered as ubiquitous with a broad hydrological tolerance, 

while about two-thirds of the taxa (35-53% of 120 taxa depending on the IHA metric) 

respond to either specific ranges of flow conditions with detectable optima for their 

occurrence or show monotone increasing/decreasing trends (23-41% of 120 taxa 

depending on the IHA metric). The habitat suitability for the taxa that showed preferences 

to specific ranges of flow conditions may be potentially affected by climate-change-

induced flow alterations. The results from the catchment-scale study revealed that 

climate change would most strongly affect the low-flow conditions, which can lead to 

decreasing abundance of individual species as far as 42%. However, due to strong 

increasing abundance of generalist taxa, the average response of all species over all 

metrics indicated increasing overall species assemblage abundance in 98% of the studied 

river reaches. The predictions of climate models showed more increasing trends in flow 

conditions within the lowland area (11 of 16 climate models) compared to the lower 

mountainous region (6 of 16 climate models). Furthermore, the predicted species’ 

abundance differed significantly depending on the climate model used, especially in the 

lower mountainous region. This high variability lead to less significant changes in the 

overall abundance of species and functional groups in the lower mountainous region 

compared to the lowland area. The projected changes in species’ abundance showed more 

significant ecological alterations in the lower mountainous region compared to the 

lowlands. We argue that the causes lie, on the one hand, with stronger climate-change 

impacts on rivers with higher flows, which leads to homogenisation of physical habitat 

conditions. On the other hand, it is due to the higher number of specialists in the lower 

mountainous region (26 of 134 species) compared to the lowland area (5 of 60 species). 

The results provide empirical evidence that the functional trait compositions will be 

affected by flow alterations, but the effects would be regionally different. For example, 

flow alterations lead to increasing abundance of rheophilic and tolerant rhithral species in 

the lowland area, which is referred to as “rhithralisation effect”. 
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The rather large number of stream macroinvertebrates with clear flow preferences in both 

the German-wide (35-53% of 120 taxa depending on the IHA metric, Chapter 2) and the 

catchment-scale studies (75-91% of 134 taxa in the lower mountainous region, and 85-

98% of 60 taxa in the lowland area depending on the IHA metric, Chapter 3 and 4) reveal 

the potentially strong influence of climate-change-induced flow alterations on these 

species. However, among a variety of causes such as inherent uncertainties in ecological 

models induced by e.g. data availability, the ability to predict these changes is also 

limited by the uncertainty in predicting climate change itself. 

These results go one step further than the qualitative assessment of species responses to 

environmental changes, and support the current knowledge that flow alterations and their 

effects on species’ abundance might be a global phenomenon. The main findings of this 

thesis underline the high susceptibility of stream macroinvertebrates to ongoing climate-

change-induced flow alterations. Concerning the methodology, a clear recommendation 

for future predictions is to reduce uncertainty inherent in climate change models and thus 

to improve future predictability of e.g. species’ abundance.  

The analyses applied in this thesis are applicable to forecast climate change impacts at 

different spatial and temporal scales as well as for different stressors or species. 
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Zusammenfassung 

Das Abflussregime ist ein zentraler Schlüsselparameter in Fließgewässerökosystemen, 

das die physischen Habitatbedingungen, die biologischen und ökologischen Prozesse 

sowie die Ökosystemfunktionen der Flüsse steuert. Aufgrund des klimawandels wurden 

die Abflussbedingungen und die Funktion der aquatischen Ökosysteme weltweit 

erheblich verschlechtert. Angesichts der Bedeutung dieser Veränderungen wurden in der 

Vergangenheit Untersuchungen durchgeführt, um das Wissen und das Verständnis über 

die ökologischen Auswirkungen von Abflussänderungen zu verbessern. Daraus 

resultierende Kenntnisse über die Fließpräferenzen von Makrozoobenthos basieren 

jedoch meist auf qualitativen Daten (d. h. ökologische Merkmale der Arten), die auf 

Expertenwissen oder Literaturanalysen beruhen. Diese etablierten qualitativen Daten 

können schwierig mit den quantitativen Daten (z. B. Abfluss) verknüpft werden, mit dem 

Ziel, Vorhersagen zur räumlich-, und zeitlichen Artenvielfalt zu treffen. Daher können 

die Auswirkungen des Klimawandels auf aquatische Biota nicht quantitativ vorhergesagt 

werden. Um jedoch die Bedeutung und Auswirkungen des Klimawandels und die 

nachfolgenden Veränderungen der Abflussbedingungen auf die Flussökosysteme erfassen 

zu können, ist es entscheidend, die quantitativen Reaktionen von Süßwasserorganismen 

auf Stressoren wie Abflussänderungen besser zu verstehen. Dieses Verständnis kann 

durch die Verknüpfung der Artenhäufigkeit entlang von weiten Bereichen einer 

Umweltvariablen, wie z.B. Abflussbedingungen, etabliert werden. Jegliche Änderungen 

des Abflusses können durch Indikatoren für hydrologische Veränderungen (IHA-

Metriken) beschrieben werden, die Informationen über Dauer, Häufigkeit, Größe, Rate 

und Zeitpunkt von Abflussereignissen liefern. Diese statistischen Werte können 

verwendet werden, um die Reaktionen der Arten auf durch den Klimawandel verursachte 

Abflussänderungen zu quantifizieren und zu beurteilen.  

Die vorliegende Arbeit untersucht die potentiellen Veränderungen in der Häufigkeit 

einzelner Makrozoobenthosarten aufgrund der Auswirkungen klimawandelbedingter 

Abflussänderungen. Die Arbeit ist in drei Teile gegliedert: Im ersten Teil wird ein 

nichtlinearer Modellierungsansatz für einen deutschlandweiten Datensatz angewendet. 

Dieser ermöglicht die Quantifizierung von Strömungspräferenzen von Makrozoobenthos 

entlang des Bereichs einer Vielzahl von Abflussbedingungen, dargestellt durch 

„Indikatoren hydrologischer Veränderungen“ (IHA-Metriken). Im zweiten Teil der Arbeit 

wird dieser Ansatz in zwei sich unterscheidenden Flusseinzugsgebieten im Tiefland und 
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Mittelgebirge von Deutschland verwendet, um mögliche Änderungen der 

Artenhäufigkeiten aufgrund projizierter Änderungen der Abflussbedingungen unter dem 

Klimaszenario RCP 8.5 zu quantifizieren. Dieses Klimaszenario wird als Worst-Case-

Szenario betrachtet, da es die extremsten Bedingungen darstellt. Im dritten Teil wird die 

potentielle Variabilität der projizierten Häufigkeiten einzelner Arten bewertet. Hierfür 

werden 16 Klimamodellen, die aus verschiedenen Kombinationen von globalen und 

regionalen Klimamodellen abgeleitet werden. Darüber hinaus werden die ökologischen 

Auswirkungen von Veränderungen der Artenhäufigkeit und der funktionellen 

Merkmalzusammensetzung getestet. Auf der Grundlage dieser Ergebnisse werden die 

ökologischen Auswirkungen von Veränderungen der Artenhäufigkeit von 

Probenahmestellen untersucht.  

Die aus dem deutschlandweiten Datensatz abgeleiteten Antwortbeziehungen zeigen, 

dass mehr als ein Drittel (18-40% der 120 Taxa je nach IHA-Metrik) des 

Makrozoobenthos als ubiquitär mit einer breiten hydrologischen Toleranz angesehen 

werden kann. Etwa zwei Drittel der Taxa reagierten entweder auf spezifische Bereiche 

der Abflussbedingungen (35-53% der 120 Taxa je nach IHA-Metrik) oder haben 

zunehmende/abnehmende Trends (23-41% der 120 Taxa je nach IHA-Metrik) mit 

nachweisbaren Optima für ihr Auftreten. Die Habitateignung für die Taxa, die bestimmte 

Abflussbedingungen bevorzugen, könnte möglicherweise durch globale Veränderungen 

der Abflüsse beeinflusst werden. Die Ergebnisse aus den Flusseinzugsgebieten zeigen, 

dass der Klimawandel die Niedrigwasserabflüsse am stärksten beeinflusst, was zu 

abnehmenden Häufigkeiten einzelner Arten bis zu -42% führt. Aufgrund der stark 

zunehmenden Häufigkeit von Generalisten, zeigt jedoch die durchschnittliche Reaktion 

aller Arten über alle Metriken hinweg eine Zunahme der Häufigkeit der gesamten 

Artengemeinschaft in 98% der untersuchten Flussgebiete in beiden Einzugsgebieten. Die 

Vorhersagen von Klimamodellen zeigen stärker ansteigende Trends der Abflusswerte im 

Tiefland (11 von 16 Klimamodellen) als im Mittelgebirge (6 von 16 Klimamodellen). Die 

projizierte Artenhäufigkeit unterscheidet sich je nach verwendetem Klimamodell 

signifikant, insbesondere im Mittelgebirge. Diese hohe Variabilität führt zu weniger 

signifikanten Veränderungen sowohl bei der Häufigkeit als auch bei funktionellen 

Gruppen der Makrozoobenthos-Gemeinschaften im Mittelgebirge im Vergleich zum 

Tiefland. Die projizierten Änderungen der Artenhäufigkeiten führten zu signifikanteren 

ökologischen Veränderungen im Mittelgebirge als im Tiefland. Wir argumentieren, dass 



Zusammenfassung 

 

 VIII 

die Ursachen zum einen in den stärkeren Auswirkungen des Klimawandels auf Flüsse mit 

höheren Abflussbereichen liegen, die zu einer Homogenisierung der physischen 

Habitatbedingungen führt. Zum anderen ist dies auf die höhere Anzahl von Spezialisten 

in den Mittelgebirgen (26 von 134 Arten) im Vergleich zum Tiefland (5 von 60 Arten) 

zurück zu führen. Darüber hinaus liefern die Ergebnisse empirische Hinweise, dass die 

funktionellen grouppen in den Lebensgemeinschaften durch Abflusssänderungen 

beeinflusst werden, aber auch, dass diese Wirkungen regional unterschiedlich sind. 

Beispielsweise führen die Abflussänderungen zu einem Anstieg der Häufigkeit von 

rheophilen und toleranten rhithralen Arten im Tiefland, was als "Rhithralisationseffekt" 

bezeichnet wird. 

Laut des deutschlandweiten Datensatzes zeigen 35-53% von 120 Taxa (abhängig von der 

IHA-Metrik), und laut der Einzugsgebietsstudie zeigen 75-91% von 134 Arten im 

Mittelgebirge und 85-98% von 60 Arten im Tiefland Präferenzen für bestimmte Bereiche 

der Abflussbedingungen. Dieser relativ große Anteil des Makrozoobenthos mit 

spezifischen Abflusspräferenzen verdeutlicht den potenziell starken Einfluss der durch 

den Klimawandel hervorgerufenen Abflussänderungen auf diese Arten. Jedoch ist die 

Genauigkeit, diese Veränderungen vorherzusagen, durch die Unsicherheit der 

ökologischen Modelle, wegen z.B. Datenverfügbarkeit, als auch der Vorhersage des 

Klimawandels begrenzt. 

Die erzielten Ergebnisse gehen über die qualitative Bewertung von Reaktionen der Arten 

auf Umweltveränderungen hinaus, sie stützen jedoch die aktuellen Kenntnisse, dass 

Abflussänderung und deren Einfluss auf die Abundanz von Arten ein globales Phänomen 

sind. Die Hauptergebnisse dieser Arbeit bestätigen die hohe Anfälligkeit von 

Makrozoobenthos gegenüber fortlaufenden klimawandelbedingten Abflussänderungen. 

Eine klare Empfehlung für zukünftige Vorhersagen wäre die Verringerung von 

Unsicherheiten in den Klimamodellen, um zukünftige Vorhersagemöglichkeiten, von z.B. 

der Artenhäufigkeit, zu verbessern.  

Die in dieser Arbeit angewandten Analysen sind anwendbar für die Vorhersage von 

Auswirkungen des Klimawandels auf verschiedenen räumlichen und zeitlichen Skalen 

sowie für verschiedene Stressoren oder Arten. 
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Thesis outline 

This thesis is composed of three manuscripts that are either published, or ready to be 

submitted to peer-reviewed journals. Each manuscript has an introduction, methodology, 

results and discussion and forms a chapter of the thesis (Chapters 2 to 4). A general 

introduction section (Chapter 1) provides the general context of the thesis and the results 

are discussed coherently as the general discussion section. The layout of the three 

manuscripts was modified and figures and tables were renumbered through the text to 

ensure a consistent layout throughout the entire thesis. The references of the general 

introduction, each manuscript, and general discussion were merged in an overall 

reference section. The research aims of Chapters 2, 3 and 4 are described in Paragraph 

1.3. 

 

Chapter 1: 

General introduction 

 

Chapter 2: 

Kakouei, K., Kiesel, J., Kail, J., Pusch, M., and Jähnig, S.C., 2017. Quantitative 

hydrological preferences of benthic stream invertebrates in Germany. Ecological 

Indicators, 79, 163-172. https://doi.org/10.1016/j.ecolind.2017.04.029 

Author Contributions: K. Kakouei designed the study, analysed the data and compiled the 

manuscript. J. Kiesel, J. Kail, M.T. Pusch and S.C. Jähnig co-designed the study and 

contributed to the text. 

 

Chapter 3: 

Kakouei, K., Kiesel, J., Domisch, S., Irving, K. S., Jähnig, S. C., and Kail, J., 2018. 

Projected effects of climate‐change‐induced flow alterations on stream 

macroinvertebrate abundances. Ecology and evolution, 8(6), 3393-3409. 

https://doi.org/10.1002/ece3.3907 

 

https://doi.org/10.1016/j.ecolind.2017.04.029
https://doi.org/10.1002/ece3.3907
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contributed to the text. 

 

Chapter 4: 

Kakouei, K., Kiesel, J., Kail, J., and Jähnig, S.C., (to be submitted). Uncertainty in 

assessing climate-change effects on stream macroinvertebrates resuling from the 

variability in climate model predictions. 
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contributed to the text. 
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1. General introduction 

1.1 River flow: importance in ecosystem functioning and research 

history  

Freshwater systems are strongly endangered worldwide (Allan and Flecker, 1993 and 

references therein; Dudgeon et al., 2006), and among these, rivers are the most threatened 

ecosystems affected by human pressures (Gleick, 2003; Sala et al., 2000). River flow is 

among the most important physical variables that is present in a continuous gradient from 

headwaters to river mouth (river continuum concept, Vannote et al., 1980). The flow 

regime controls the physical habitat and ecological processes in river ecosystems 

(Maddock, 1999). It consequently governs the structure and compositions of river 

communities such as fish and macroinvertebrates. Given its importance, it is crucial to 

have a clear understanding of the natural flow regime and its dynamics (Poff et al., 2017).  

Major scientific studies on river flow appeared around the 1950s which investigated river 

flow and its variability (Lane and Lei, 1950). In 1990s, studies viewed river flow as a 

‘master variable’ (Power et al., 1995; Walker et al., 1995) and realised the importance of 

the natural flow regime (Poff et al., 1997; Richter et al., 1997) that sustains ecosystem 

functioning and shapes the ecological and physical characteristics of river ecosystems 

(Poff and Zimmerman, 2010). Much of the research up until now has largely focused on 

understanding river flow dynamics and modelling past and future trends of river flow 

conditions and direct/indirect effects of environmental change on these trends (Archfield 

et al., 2014; Magilligan and Nislow, 2005).  

More recently, the interactions between flow and ecology have increased in interest. For 

example, Statzner et al. (1988) modelled the preferences of aquatic insects along a wide 

range of hydraulic conditions. However, the number of recent scientific studies on flow-

ecology relationships is less abundant than studies solely focusing on river ecology or 

flow (Figure 1). The studies on Flow-ecology relationships give an insight into human-

induced regulation of river flow and its impacts on river biota in general (Bunn and 

Arthington, 2002; Nilsson and Svedmark, 2002; Poff and Zimmerman, 2010 and 

references therein), which clearly highlight the need to further explore the drivers of 

change in order to prevent river ecosystems from further degradation.  
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Figure 1 Publishing trends of ISI papers during the period of 1990 – 2017 in flow-ecology 

research in river ecosystems. Number of individual ecological and flow, and combined flow-

ecology papers according to ISI Web of Science1 (accessed data, adapted according to Tonkin et 

al., 2014).  

 

1.2 Changing flow conditions and its implications 

River flow conditions are anticipated to change in space and over time. Causes lie on the 

one hand in the increasing demand of water and energy (Gleick, 1994) and the structural 

formation of river morphology from water withdrawals, straightening and damming 

(Lloyd et al., 2004; Magilligan and Nislow, 2005) and on the other hand, in the climate-

induced environmental changes such as altered flow conditions (Vörösmarty et al., 2010). 

River ecosystems are assumed to be highly sensitive to flow alterations leading to 

subsequent loss of habitat diversity and connectivity between viable habitat patches 

(Bunn and Arthington, 2002; Poff et al., 2010; Vörösmarty et al., 2010). 

                                                 
1 Searching terms (adapted and continued from Tonkin et al., 2014): 

Flow: TS=((river* OR lotic OR stream OR streams OR creek OR creeks OR brook OR brooks) 

AND (flow OR “flow regime” OR “flow regulation” OR hydrolog*)) 

Ecology: TS=((river* OR lotic OR stream OR streams OR creek OR creeks OR brook OR 

brooks) AND ((invertebrate* OR macroinvertebrate* OR fish OR alga* OR periphyt* OR 

macrophyt*))) 

Flow + Ecology: TS=((river* OR lotic OR stream OR streams OR creek OR creeks OR brook 

OR brooks) AND (flow OR “flow regime” OR “flow regulation” OR hydrolog*) AND 

((invertebrate* OR macroinvertebrate* OR fish OR alga* OR periphyt* OR macrophyt*))) 
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Climate change is predicted to alter long-term river flow conditions and the natural 

dynamics of flow regimes (Bunn and Arthington, 2002; Laizé et al., 2014; Schinegger et 

al., 2012; Vörösmarty et al., 2010). Prolonged low-flow periods, decreased mean-flow 

conditions and increased high-flow events are projected to occur more frequently in the 

future (Nilson and Krahe, 2014; van Vliet et al., 2013). However, the patterns of changing 

flow conditions might vary regionally. For example, Nilson and Krahe (2014) predicted 

an increase in northern lowlands or south-eastern region of Germany under an extreme 

scenario for regional runoff depth (i.e. the amount of precipitation minus 

evapotranspiration, l/m2), with slight decreasing trends for the remaining areas (Figure 2). 

 

Figure 2 Predicted changes in the regional runoff depth (precipitation minus evapotranspiration, 

l/m2) in Germany. This map shows the extreme scenario comparing the period of 2021-2050 to 

1961-1990 (Nilson and Krahe, 2014; http://www.bmbf.wasserfluesse.de/#37). Location of study 

areas in Chapter 3 and 4 with increasing trends in regional runoff depth predicted for the Treene 

catchment in lowland area (a), and decreasing trends predicted for the Kinzig catchment in lower 

mountainous region (b).  

Changes in regional  

runoff depth (l/m2) 

a 

b 

 

N 



Chapter 1                                                                                              General introduction 

 

 4 

The natural flow regime sustains the diversity of river ecosystems by providing a range of 

ecosystem processes (Poff et al., 1997; Poff and Ward, 1989; Richter et al., 1996). For 

example, high flow conditions import woody debris into the rivers, which increase the 

habitat diversity in rivers and leads to increasing biodiversity (Hoffmann and Hering, 

2000). However, projected decrease in the variability of flow regime and thus declining 

high-flow magnitudes may affect ecosystem processes in rivers. Furthermore, the life 

history strategies of stream biota are evolved according to the natural flow regime 

(Bellard et al., 2012; Lytle and Poff, 2004; Poff et al., 2007; Statzner et al., 1988). 

Therefore, flow alterations that lead to homogenisation of river microhabitats might be 

suitable for some species, e.g. generalists (i.e., species occurring over a wide range along 

the river continuum), while less suitable for others, e.g. specialists (Merigoux and 

Doledec, 2004). Increasing or decreasing abundance of e.g. specialist species, which play 

important functional roles, could have profound ecological effects and change the 

functioning of river ecosystems.  

1.3 Research gaps, aims and structure of this thesis 

Stream macroinvertebrates are a very diverse organism group that play an important role 

in the ecological function of river ecosystems (Covich et al., 1999; Wallace and Webster, 

1996). These species are sensitive to any changes in their environment (Hering et al., 

2009, and references therein), and flow alterations can affect the occurrence and 

distribution pattern of these species (Arthington et al., 2006; Lytle and Poff, 2004; Poff, 

2017; Poff et al., 1997). Concerns about the effects of anthropogenic flow alterations on 

stream macroinvertebrates have increased over the recent decades (Bunn and Arthington, 

2002; Konrad et al., 2008; Monk et al., 2006; Poff et al., 1997; Poff and Ward, 1989; Poff 

and Zimmerman, 2010; Pyne and Poff, 2017). Despite the rich literature on river flow 

dynamics and their drivers, major research gaps remain, particularly with respect to 

changes in the abundance of stream macroinvertebrates to spatial and temporal changes in 

river flow conditions.  

Previous studies that investigated the effects of flow alterations on stream 

macroinvertebrates have focused on qualitative or semi-quantitative data (e.g., Chessman, 

2015; Matthews and Marsh‐Matthews, 2003). The output of these studies has usually 

been qualitative that are stored in comprehensive databases (e.g., freshwaterecology.info 

platform) that describe species’ ecological traits such as current preferences. The 

http://www.freshwaterecology.info/
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parameters therein have often been assessed based on literature analysis and/or expert 

knowledge. Furthermore, there is a gap in information available for a wide variety of 

benthic invertebrates (freshwaterecology.info).  For example, out of 4,632 identified 

benthic macro-invertebrate taxa that occur in Germany, only 1,681 (36%) taxa are 

classified regarding their current preferences. Being descriptive, these ecological traits are 

of limited value to be linked to quantitative data such as flow to e.g. analyse the potential 

effects of flow alterations.  

Any changes in flow, in turn, can be described in great detail by Indicators of Hydrologic 

Alterations (IHA metrics) that represent hydrological flow characteristics (Table 1). The 

IHA metrics provide information on duration, magnitude, timing, and frequency of daily, 

seasonal and annual flow variability, and rate and frequency of changes in flow 

conditions (Olden and Poff, 2003; Poff et al., 1997; Richter et al., 1996; Walker et al., 

1995).  

 

 Table 1 Indicators of Hydrologic Alterations (IHA) describing the intra- and inter-annual 

changes in flow conditions. 

IHA category Specific alteration Description 

Duration Prolonged low/high flows 1-/3-/7-/30-/90-day annual mean/min./max. 

Frequency Flow stabilization Number of low/high annual pulses 

Magnitude Variation in flow conditions Mean value of each calendar month  

Timing Seasonal flow peaks 
Flooding of non-flooding periods, Julian 

date of each annual 1-day min./max.  

Rate Rapid changes in flow condition Rise and fall rates 

 

Only recently, research studies used the IHA metrics to assess flow-ecology relationships 

(e.g., Poff and Zimmerman, 2010 and references therein). However, among the various 

drivers of change, the focus has mostly been on flow alterations caused by damming and 

river regulations (Poff and Zimmerman, 2010 and references therein). Only a handful of 

studies quantified the effects of climate-change-induced flow alterations on stream 

macroinvertebrates, which have been explored at higher levels of identification, e.g. 

genera (Pyne and Poff, 2017), or focused at the community level (Konrad et al., 2008; 

Monk et al., 2006; Poff and Zimmerman, 2010 and references therein; Wood et al., 2000). 

http://www.freshwaterecology.info/
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A comprehensive review on the related findings has been carried out by Poff and 

Zimmermann (2010). There are also several reviews on the effect of low-flow conditions 

in intermittent rivers (e.g., Leigh and Datry, 2016). Analysing the impacts of flow 

alterations on species’ probability of occurrence using species distribution models has 

been very scarcely investigated (Domisch et al., 2017; Kuemmerlen et al., 2015). 

However, modelling of species’ abundance along the range of flow conditions – thereby 

determining and quantifying species flow preferences, has not yet been investigated. 

Furthermore, the potential impact of flow alterations on the abundance of stream 

macroinvertebrates has been, so far, rarely considered, thus being an interresting 

challenge that will enhance our understanding for improving river management and 

biodiversity conservation plans.  

Detailed information describing potential changes in species’ abundance, instead of only 

presence/absence data, enable better understanding of the critical biodiversity thresholds 

and drastic changes in species’ abundance (Barnosky et al., 2012). Quantitative data 

describing changes in species’ abundance will enable understanding of the range of 

impacts of e.g. flow alterations on individual species. Furthering this knowledge will help 

to give priority to species that play important roles in river ecosystems and would be 

affected most strongly by environmental changes.  

To quantify the effects of climate change and flow alterations on species’ abundance, we 

need to set up the statistical relationship between species’ abundances and flow 

conditions, i.e. described by IHA metrics. The IHA metrics can be calculated using time-

series of daily discharge data; hence, the predictions are extremely dependent on the 

accuracy of discharge data derived from climate-change models, which enable predictions 

in both space and time. Therefore, hydrological models can be considered as very 

important input data, variability of which may cascade into ecological models and lead to 

strong variability in predicted abundance of individual species. Previous research studies 

usually applied the outcome of Representative Concentration Pathways (RCPs, e.g., RCP 

8.5), while Regional Climate Models (RCM) can be used to calculate the Global 

Circulation Models (GCM) data to a higher resolution. The variability between climate 

models according to various combinations of GCMs and RCMs has yet been very rarely 

linked to ecology, especially when focusing on the variability of ecological effects and 

responses of river biota (Wiens et al., 2009), e.g. changes in species’ abundance or 

functional trait composition. Therefore, the variability of climate model predictions make 
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it necessary to measure the variability in changes in species projected abundance or 

functional trait composition across a variety of climate models.  

Despite recent studies that have improved our understanding of flow-ecology 

relationships (Arthington, 2015), the potential ecological effects of climatic changes have 

usually been lacking or were based upon expert opinion (Davies et al., 2014; Kakouei et 

al., 2018; Souchon et al., 2008). Therefore, there are still knowledge gaps in the 

ecological effects of climate-change-induced flow alterations (Poff and Zimmerman, 

2010; Webb et al., 2013), especially on the abundance of stream macroinvertebrates and 

functional trait composition.  

 

 

Figure 3 Conceptual schematic of the structure of thesis. 
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This thesis thus aims to determine and quantify flow preferences of stream 

macroinvertebrates to assess potential changes in species’ abundance caused by climate-

change-induced flow alterations. The objectives, methodology and potential outcome of 

this thesis are shown on Figure 3. The specific aims and objectives of the thesis are as 

follows: 

1) Determine and quantify hydrological preferences of stream invertebrates in 

Germany (Chapter 2): In this chapter, the aim is to quantitatively determine the flow 

preferences of stream macroinvertebrates - thereby defining quantitative 

“hydrological traits” for German rivers by analysing existing hydrological and 

biomonitoring data. More specifically, we investigate whether invertebrates show a 

clear response and have an optimum response along the gradient of different flow 

metrics and hence have specific hydrological traits at all. We also quantify the 

hydrological thresholds at which species’ abundance and presence change. The 

hydrological preferences of individual taxa enable the prediction of taxa responses to 

flow alteration, and may be used in forecasting potential impacts of flow alterations 

on stream macroinvertebrates. 

2) Assess projected effects of climate-change-induced flow alterations on stream 

macroinvertebrate abundance (Chapter 3): In this chapter, we apply an approach 

that can be used to quantitatively predict the impacts of climate-change-induced flow 

alterations on the abundance of stream macroinvertebrates. We compare the predicted 

species’ abundance in two contrasting catchments in the lower mountainous region 

(Kinzig catchment) and lowland area (Treene catchment) of Germany differing in 

flow regime and species pool to answer the following questions: (1) in which regard 

do the climate-change-induced changes in discharge (different flow conditions 

according to IHA metrics from five IHA categories) have varying effects on stream 

macroinvertebrates’ abundance? Changes in which flow metrics from different IHA 

categories will potentially have the largest impact? And (2) how do possible climate-

change impacts on species’ abundance, mediated through flow, differ between the 

lower mountainous region (Kinzig catchment) and lowland area (Treene catchment)? 

Such quantitative analyses of freshwater taxa responses to flow alterations provide 

valuable results for predicting potential climate-change impacts on species’ 

abundance and can be applied to any species, or region. 
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3) Assess the uncertainty in climate-change effects on stream macroinvertebrates 

resulting from the variability in climate model predictions (Chapter 4): The main 

goal of this study is to (1) quantify variability in the predicted effects of climate-

change-induced flow alterations on species’ abundance with regards to the high 

variability in climate-change model predictions. This allows to (2) assess possible 

effects of climate change on functional trait composition, and (3) evaluate possible 

changes in the ecological status of sampling sites of rivers of different size (i.e., river 

orders).  
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2.1 Abstract 

Current knowledge regarding the flow preferences of benthic stream invertebrates is 

mostly based on qualitative data or expert knowledge and literature analysis. These 

established flow preferences are difficult to use in predictions of the effects of global 

change on aquatic biota. To complement the existing categories, we performed a large-

scale analysis on the distribution of stream invertebrates at stream monitoring sites in 

order to determine their responses to various hydrological conditions. We used 325 

invertebrate surveys from environmental agencies at 238 sites paired to 217 gauges across 

Germany covering a broad range of hydrological conditions. Based on these data, we 

modelled the respective probabilities of occurrences for 120 benthic invertebrate taxa 

within this hydrological range using hierarchical logistic regression models. Our analyses 

revealed that more than one-third of the taxa (18-40 %) can be considered as ubiquitous 

and having a broad hydrological tolerance. Furthermore, 22-41 % of the taxa responded 

to specific ranges of flow conditions with detectable optima. “Duration high flow event” 

represented the flow parameter that correlated best with the abundance of individual taxa, 

followed by “rate of change average event”, with 41 and 38 % of the taxa showing a peak 

in their probability of occurrence at specific ranges of these metrics, respectively. The 

habitat suitability for these taxa may be potentially affected by global change-induced 

hydrological changes. Quantified hydrological traits of individual taxa might therefore 

support stream management and enable the prediction of taxa responses to flow 

alteration. The hydrological traits of stream benthic invertebrates may be used in 

forecasting studies in central Europe, and the methods used in this study are suitable for 

application in other regions with different flow regimes. 

2.2 Introduction 

Hydraulic conditions are key habitat variables for all biota living in running waters and 

result from the interaction between river morphology and discharge or flow. Benthic 

invertebrates show high biodiversity in streams and rivers, have been shown to include 

indicator species sensitive to flow conditions, occupy a central position in the functioning 

of river ecosystems, and display some fascinating adaptations to flowing waters, e.g., in 

terms of life history, nutrition, respiration, or behavioral and morphological 

characteristics (Bellard et al., 2012; Lytle and Poff, 2004; Poff et al., 2007; Statzner et al., 

1988). However, quantitative empirical knowledge on the flow requirements or 
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preferences of lotic benthic invertebrates is limited but is essential (i) to assess the effects 

of hydrological alterations, e.g., due to global change or water uses, and (ii) to identify 

environmental flow regimes that aim to preserve the ecological integrity of river 

ecosystems (Bunn and Arthington, 2002; Poff and Zimmerman, 2010).  

There are three main approaches to assessing flow preferences. First, they are usually 

assessed based on literature reviews and/or expert knowledge and described at nominal 

(e.g., “generalist”, “lentic” or “lotic”) or ordinal scales (e.g., “limnobiont” to “rheobiont”) 

(Schmidt-Kloiber and Hering, 2015) and have already been collated for many taxa and 

compiled in databases such as the freshwaterecoloy.info-database (Schmidt-Kloiber and 

Hering, 2015). Such descriptive classifications of invertebrate flow preferences are 

suitable and widely used to compare the flow trait composition of different sampling sites 

(Armanini et al., 2011). However, due to their qualitative nature, they are less suited to 

assess, model and predict the effects of flow changes that are described in quantitative 

terms (e.g., discharge changes due to global change). Second, the hydraulic preferences of 

invertebrates have already been described in semi-quantitative terms in several studies by 

recording species’ probability of occurrence and relating it to near-bed shear stress 

measured using FST-hemispheres (Schmedtje, 1995; Statzner et al., 1988). However, data 

requirements and computational time make it infeasible to map or model the hydraulic 

conditions at larger than reach scales (e.g., for whole river networks) to apply such 

hydraulic preferences, e.g., for their application in catchment or larger scale species 

distribution models. Moreover, the hydraulic shear stress recorded for a specific discharge 

only partly reflects the complex relationship between changing flow conditions over time, 

since it effects species throughout different life stages and finally determines reproductive 

success and hence, the presence or absence of individual invertebrate species. Third, flow 

preferences can be based on qualitative discharge measurements, which can be 

summarized into typical flow or hydrological regimes when analyzed over time. It has 

been shown that the flow regime strongly influences ecological processes and that 

changes in the abundance and distribution of aquatic invertebrates are caused, in part, by 

flow alterations (Brooks et al., 2011; Poff and Zimmerman, 2010). In contrast to shear-

stress data, long-term discharge time series (gauging data) are readily available at large 

spatial scales. Additionally, these data are useful for statistical modelling and for its large-

scale upscaling, e.g., to predict the effects of discharge changes due to global change. 

Despite this clear relationship between the hydrological conditions and biota, few studies 
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have used hydrological data to quantify the flow preferences of benthic invertebrates in 

rivers. Among these, most studies represent specific case studies and reviews on flow 

alteration and associated ecological processes (Dunbar et al., 2010; Monk et al., 2007; 

Monk et al., 2006; Poff and Zimmerman, 2010), with a prevailing focus on the 

community structure (Brooks et al., 2011; Death, 2008; Konrad et al., 2008; Principe et 

al., 2007) preferentially on individual taxa (Armanini et al., 2011).  

We aimed to quantitatively determine the flow preferences of lotic invertebrates—thereby 

defining “hydrological traits” for central European rivers by analysing existing 

hydrological and biomonitoring data. More specifically, we (i) investigated whether 

invertebrates show a clear response and have an optimum along the gradient of different 

hydrological variables and hence have specific hydrological traits at all and (ii) aimed to 

quantify the hydrological thresholds at which species’ abundance and presence sharply 

change. 

2.3 Methods 

2.3.1 Datasets and pairing biomonitoring sites with gauging stations on 

the river network 

We gathered and analyzed two independent, already existing long-term datasets from 

Germany: (i) daily hydrological data (gauging data) and (ii) results from benthic 

invertebrate surveys conducted by regional water managers in German rivers. Our dataset 

covers a wide range of hydrological conditions in Germany, including streams and rivers 

in the northern lowlands, central lower-mountain areas, and Alpine region of southern 

Germany. 

Using the German national flow gauge network and the geographical coordinates of the 

benthic invertebrate sampling sites, we searched for gauging stations located in the same 

river reach as at least one biomonitoring site. As the locations of biomonitoring sites did 

not usually match those of the gauging stations, they were assigned to the nearest station 

(DeWeber and Wagner, 2014) when the following criteria were met: (i) having no 

tributaries in between and (ii) located within a maximum distance of 12 km from the 

paired gauging station. This pairing resulted in 371 invertebrate surveys from 238 sites 

paired to 217 gauging stations (Figure 4). To consider the effect of distance on discharge, 

the discharge data from the gauging station was recalculated for the sampling sites 



Chapter 2                  Quantitative hydrological preferences of stream macroinvertebrates 

 

 14 

according to the ratio between the catchment size at the biomonitoring site and at the 

paired gauge.  

 

Figure 4 The locations and distribution of sampling sites in the German river network. The 

gauging stations are not shown as they are too close to sampling sites for being distinguishable on 

this scale. 

 

The biological dataset included abundance data for benthic invertebrate taxa that had 

been sampled in either spring or summer between 2004 and 2013 according to the 

currently used standard biomonitoring protocols. All sites were in a good or high 

ecological status according to the EU Water Framework Directive. We analyzed the 

hydrological preferences of 120 taxa that occurred in at least eight sites for each season 

(spring and summer). Rare taxa with an abundance of fewer than three occurring in fewer 

than eight sampling sites were excluded from the dataset because such sparse data do not 

allow statistical analysis (Heino and Soininen, 2010; Leigh and Datry, 2016). The 

taxonomic resolution was the species level (111 taxa), while nine taxa were only 

identified to the genus level (Supplementary Table ST1). The most frequent orders were 
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Trichoptera (43 taxa), Ephemeroptera (25), Coleoptera (12) and Diptera (12) (Table 2). 

Prior to all analyses, the abundance data were log (x+1)-transformed. 

Since the addition of pseudo-absences is strongly recommended when modelling species 

preferences and distributions (Vaughan & Ormerod, 2005; Lobo & Tognelli, 2011) we 

added absence data for species at specific sites. Instead of randomly generated absence 

data (Lobo and Tognelli, 2011; VanDerWal et al., 2009), we preferentially generated 

absence data using a semi-random stratified approach, considering the stream type 

(Schmedtje et al., 2000) of the sampling sites according to their common environmental 

and hydromorphological characteristics. Sites with absences were selected based on two 

criteria: (i) having the same stream type as sites where the taxa were already recorded and 

(ii) being located in the same region/federal state as the present sites. These two criteria 

ensured the exclusion of sites representing inappropriate habitat conditions for the 

occurrence of taxa. All sites meeting these criteria were added as pseudo-absences to the 

analysis. 

 

Table 2 Number of taxa per systematic unit analysed in this 

study 

Taxon Number of species Number of genera 

Trichoptera 41 2 

Ephemeroptera 24 1 

Coleoptera 11 1 

Diptera 7 5 

Crustacea 5 - 

Plecoptera 3 1 

Gastropoda 4 - 

Turbellaria 3 - 

Oligochaeta 3 - 

Bivalvia 2 - 

Megaloptera 2 - 

Odonata 2 - 

Hirudinea 2 - 

Heteroptera 1 - 

Total number of taxa 120 

 



Chapter 2                  Quantitative hydrological preferences of stream macroinvertebrates 

 

 16 

2.3.2 Computation and pre-selection of hydrological metrics 

There are 171 hydrological metrics known as Indicators of Hydrologic Alteration (IHA) 

that are ecologically relevant and can be calculated based on daily discharge data, 

describing the duration, frequency, timing, magnitude, and rate of flow events (Olden and 

Poff, 2003). These metrics were calculated using discharge data from the 12-month 

period prior to the date of the biological sampling (e.g., for a macroinvertebrate sample 

from 12.06.2012, flow data between 13.06.2011 and 12.06.2012 were considered). This 

period has been shown to best describe the effects of hydrological conditions on benthic 

invertebrates (Leigh and Datry, 2016). Twenty metrics were excluded due to the need for 

longer periods of discharge data, resulting in 151 metrics for further analysis. There was 

no significant gap (i.e., missing values for more than 5 days) in the discharge data for any 

of the sampling sites. Missing discharge data were filled in for individual gaps according 

to the trends before and after failures and by comparing trends with the data from nearby 

gauge(s) for which pairwise correlations exceeded the reliable threshold of |r| > 0.5 

(Kennard et al., 2010; Leigh and Datry, 2016). All flow metrics were computed using the 

R package EflowStats (Archfield et al., 2014; Henriksen et al., 2006).  

We aimed to select at least one metric from each of the five flow regime categories 

(duration, frequency, timing, magnitude and rate) to minimize redundancies prior to the 

development of the hierarchical logistic regression models (see below). A pairwise 

collinearity test and a principal component analysis facilitated the selection among the 

151 hydrological metrics using data from the 217 paired gauges. When pairwise 

correlations exceeded the sensitive threshold of |r| > 0.7 (Dormann et al., 2013), and 

hence redundancy occurred, the metric with the lower loading on the most significant 

principal component axis was removed from the list.  

2.3.3 Temporal and spatial pseudo-replication 

It was necessary to analyze temporal and spatial pseudo-replication because some 

sampling sites were paired with the same gauging station or may be flow-connected (Hale 

et al., 2016). To avoid temporal pseudo-replication, sampling sites paired to the same 

gauging station and with overlapping 12-month periods were considered temporally 

dependent, and only the site located nearest to the gauging station was included in the 

analysis. This resulted in removing 46 of the 371 benthic invertebrate sampling sites.  



Chapter 2                  Quantitative hydrological preferences of stream macroinvertebrates 

 

 17 

We further tested for spatial autocorrelation resulting in pseudo-replication among sites 

that are longitudinally flow-connected (Hale et al., 2016). However, due to the large 

spatial scale of this study, less than five percent of the biomonitoring sites were flow-

connected. To test the spatial autocorrelation and detect sites with pseudo-replication, we 

first grouped flow-connected sites and then divided them into several bins with different 

distance categories among sites. We then calculated the Moran’s I autocorrelation 

coefficient (Gittleman and Kot, 1990) for each hydrological metric of all sites in a group 

and then for different distance categories. However, Moran’s I was not significant for any 

of the sampling site pairs, and hence none of the sites had to be excluded from the 

analysis due to spatial autocorrelation. 

2.3.4 Hierarchical logistic regression modelling 

We selected extended Huisman-Olff-Fresco (eHOF) models to quantify the flow traits of 

benthic invertebrates because they offer a variety of ways to efficiently fit the response 

data of taxa (Jansen and Oksanen, 2013). Based on the complexity of the biological data, 

the models were ranked in the following order with increasing empirical evidence for a 

response of the taxa to the hydrological metrics and evidence for the existence of a 

hydrological threshold: (I) a flat response over the hydrological gradient, (II) monotone 

in-/decreasing model: a monotone increasing or decreasing trend with a data-driven 

optimum at the end or at the beginning, respectively, (III) interval optimum model: an 

increasing or decreasing trend with a plateau below the upper bound, (IV) symmetrical 

model: a symmetrical response curve with similar slopes on both sides, and (V) skewed 

model: a skewed response curve with a steeper slope toward the gradient end (Huisman et 

al., 1993; Jansen and Oksanen, 2013) (Table 3).  

These models enable the determination and identification of taxa preferences for 

environmental conditions, e.g., min./max./optimum values for individual taxa. The set of 

five hierarchical models can be fitted to the observations and describe the response 

pattern over the environmental gradient with logistic and non-linear regression techniques 

(Huisman et al., 1993; Jansen and Oksanen, 2013). 

Covering a wide range of hydrological conditions across Germany, the probability of 

occurrence for individual taxa was determined and quantified by sorting the log-

transformed abundance data along the gradient of each hydrological metric. The most 

adequate model type that best fitted the observations was selected according to its 
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deviance from the log-likelihood of the predictions and an Akaike test (Akaike 

information criterion; AIC). The purity of the selected model type was quantified via 

bootstrapping with 100 re-sampling events (Supplementary material). The bootstrapping 

approach changed the model selected for 15-25 % of the taxa (Figure SF1).  

Table 3 Description of eHOF models (according to Huisman et al., 1993; Jansen and Oksanen, 

2013) 

eHOF model type Description 
Model 

schemes 

Flat response model (I) A flat response over a hydrological gradient 
 

Monotone in-/decreasing model (II) 
A monotone increasing or decreasing trend with an 

optimum at the end or at the beginning, respectively  

Interval optimum model (III) 

An increasing or decreasing trend with a plateau 

below the upper boundary (the upper boundary is 

considered the optimum interval) 
 

Symmetrical model (IV) 
A symmetrical response curve with similar slopes on 

both sides  

Skewed model (V) 
A skewed response curve with a steeper slope toward 

one of the gradient ends  

 

2.3.5 Taxa responses to hydrological metrics and along the range of 

hydrological gradients 

Based on the individual model outcomes, the response shape and the highest probability 

of occurrence along the hydrological range, we evaluated the importance of each metric 

for the whole taxa pool.  

To analyze the taxa responses along the range of hydrological gradients, the ranges of 

each metric were divided into quartiles. For each taxon, the quartile was recorded in 

which the optimum gradient value is reached (i.e., where the response is strongest). The 

optimum is an interval for taxa with an interval optimum model; therefore, their optimum 

gradient value might be affiliated with two or more quartiles. Prior to this analysis, we 

excluded taxa assigned to flat response and monotone in-/decreasing models, as they 

tolerate a wide range of hydrological conditions and an optimum value cannot be 

determined.  
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2.3.6 Hydrological thresholds 

The eHOF models provide information on the shape of taxa responses along the 

hydrological gradients. Using this information, we identified hydrological thresholds 

(inflection points), where the maximum change occurs in taxa responses when moving 

along the hydrological gradient. These points can be detected on either the increasing or 

decreasing limb of the “interval optimum”, “symmetrical” and “skewed” models.   

All statistical analyses were carried out in R 3.2.3 (R Development Core Team, 2016). 

2.4 Results 

2.4.1 Taxa responses to hydrological metrics 

The following seven metrics (Table 4) remained after the pairwise collinearity test: 

“Duration of high flow event” (dh4), “duration of low flow event” (dl9), “frequency of 

high flow event” (fh9), “frequency of low flow event” (fl2), “magnitude of low flow 

event” (ml17), “rate of change in average event” (ra2) and “timing of average flow event” 

(ta1; Colwell , 1974). Figure 5 shows the results of the models selected for all taxa among 

all metrics. 

The invertebrate taxa responded most strongly to dh4 (duration of high flow event) and 

ra2 (rate of change in average event), having the lowest share of flat response and 

monotone in-/decreasing models.  

The flat response model was selected for 18-40 % of the taxa, depending on the 

hydrological metric (Figure 6). The share of taxa showing a monotone increase or 

decrease along the gradient of the seven hydrological variables was 35-53 %. The 

symmetrical model was the least often selected model among all metrics, selected, on 

average, for 4 % of the taxa (Figure 6). 

2.4.2 Taxa responses along the range of hydrological gradients 

23-41 % of all 120 taxa show clear preferences along the ranges of the seven hydrological 

metrics. The three eHOF model types “interval optimum”, “symmetrical” and “skewed” 

allow the determination of the positions of optimum values for taxa (Figure 7). The 

lowest proportion of taxa responding to specific ranges of a hydrological metric was to 

fl2 (frequency of low flow event), and the highest proportion was for dh4 (duration of 

high flow event). 
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Table 4 Descriptions, calculation procedures, units and temporal aspects of seven IHA metrics 

further used in this study (according to Olden & Poff (2003) and references therein). 

IHA group 

(code) 
IHA metric Calculation procedure Unit 

Temporal 

aspect 

Duration of 

high flow event 

(dh4) 

Annual 

maximum 30-

day  

moving 

average flows 

Compute the max of 30-day 

moving average flows and take 

the max for each year; take the 

mean of these values. These 

values were log-transformed for 

use in the modelling approach. 

Log(m3/s) Daily 

Duration of low 

flow event 

(dl9) 

Variability in 

annual 

minimum 30-

day moving 

average flows 

Compute the standard deviation 

of the yearly min 30-day 

moving averages; multiply by 

100 and divide by the mean of 

the yearly min 30-day moving 

averages 

% Daily 

Frequency of 

high flow event 

(fh9) 

Flood 

frequency 

Compute the number of flow 

events with flows above the 75 

% exceedance value for the full 

flow record; take the average 

number of events per year 

1/year Annual 

Frequency of 

low flow event 

(fl2) 

Variability in 

low pulse count 

Compute the standard deviation 

of the average number of flow 

events per year below the 25th 

percentile for the full flow 

record; multiply by 100 and 

divide by the average number of 

flow events 

% Annual 

Magnitude of 

low flow event 

(ml17) 

Base flow 

Compute mean annual flow, 

compute the min of a 7-day 

moving average annual flow 

and divide by the mean annual 

flow; calculate the mean of 

those ratios 

Dimensionless Annual 

Rate of change 

in average 

event (ra2) 

Variability in 

rise rate 

Compute the standard deviation 

of positive flow changes for the 

full flow record, multiply by 

100 and divide by the mean 

change in rising flows 

% Daily 

 

Timing of 

average flow 

event (ta1) 

 

Constancy 

 

Compute constancy from the 

Colwell (1974) matrix 

 

Dimensionless 

 

Daily 
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Figure 5 Results of models selected for all taxa among all metrics. Rows are separated according 

to the seven IHA metrics (a to g), columns are separated according to eHOF model types. The x-



Chapter 2                  Quantitative hydrological preferences of stream macroinvertebrates 

 

 22 

axis represents the gradient of the respective hydrological metrics, and the y-axis is the 

probability of occurrence of the taxa, which is based on log-transformed abundance data. 

Quartiles are separated by gray dashed lines, and different colors represent orders. While taxa 

with the eHOF model types of “interval optimum”, “symmetrical” and “skewed” have preferences 

for specific ranges of hydrological values, taxa with a “flat response” model tolerate wide ranges 

of hydrological conditions and exhibit no response along the hydrological gradient. The plots of 

“flat response” models were excluded from this figure due to limited space and the simplicity of 

this model. The red arrows mark thresholds where the probability of taxa occurrence drastically 

decreases, and green and blue brackets mark gradient ranges that are preferred by taxa. 

 

Taxa occurrences according to the recorded quartile of optimum values varied among 

metrics (Figure 7). The highest fraction of taxa with high occurrence probabilities in the 

first quartile were found for ml17 (magnitude of low flow event, 34 % of taxa) and ta1 

(timing of average flow event, 42 % of taxa), i.e., taxa occurred more often when low 

flow events did not last long or when flow events were not highly constant, respectively. 

The last quartile ranked highest for fh9 (frequency of high flow event, 33 % of taxa) and 

ra2 (rate of change in average event, 38 % of taxa), i.e., taxa occurred more often when a 

greater number of flow events were recorded with flows above the 75-percent exceedance 

value for the entire 12-month period or taxa occurred more often with a higher variability 

in the rise rate, respectively.  

Taxa exhibit peak responses to values lower than the median for fl2 (frequency of low 

flow event, 61 %), ta1 (timing of average flow event, 58 %) and ml17 (magnitude of low 

flow event, 57 %) (Figure 7). Optimal responses were found for values higher than the 

median for ra2 (rate of change in average event, 63 %), fh9 (frequency of high flow 

event, 59 %) and dh4 (duration of high flow event, 51 %). Approximately equal 

proportions of taxa have peak preferences to either higher or lower median values for 

both metrics belonging to the indicators of hydrologic alteration category of duration 

(dh4, dl9); however, the preferences for quartiles differ significantly for all other 

categories (Figure 7). 

Taxa responding according to the monotone in-/decreasing model show either a positive 

or a negative trend in occurrence probabilities. The two metrics of dh4 and ra2 (duration 

of high flow event: 73 % and rate of change in average event: 71 %) had the highest share 

of negative trends (Table 5), i.e., a high proportion of taxa prefer low values along the 

gradient of maximum moving average flows or variability in rise rate.  
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Figure 6 Model frequencies and responses of taxa to selected IHA metrics (abbreviations in 

Table 4). 

 

 

Figure 7 Quartiles along the hydrological gradient where the taxa responses were strongest (i.e., 

location of optimum) according to the “interval optimum”, “symmetrical” and “skewed” eHOF 

models (abbreviations in Table 4). Quartiles are shown as gray dashed lines in Figure 5.  
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In contrast, fl2 (frequency of low flow event, 70 %) and ta1 (timing of average flow 

event, 59 %) include high proportions of positive trends in monotone in-/decreasing 

model outcomes, revealing preferences for high values along the gradient of variability in 

low pulse count (Table 5).  

For taxa with an interval optimum model, fh9 (frequency of high flow event, 100 %) and 

dh4 (duration of high flow event, 73 %) have the highest proportion of negative trends, 

while ml17 (magnitude of low flow event, 82 %) and ta1 (timing of average flow event, 

78 %) include high proportions of positive trends (Table 5).  

Trichoptera had the highest proportion of taxa with the eHOF model types “interval 

optimum”, “symmetrical” and “skewed” followed by Ephemeroptera, Coleoptera and 

Plecoptera taxa (Table 6), which shows their preferences for specific ranges of 

hydrological conditions. 

 

Table 5 Number and proportion of taxa with either a positive or negative trend in eHOF monotone 

in-/decrease or interval optimum model (abbreviations in Table 4). 

 dh4 dl9 fh9 fl2 ml17 ra2 ta1 

Number of monotone in-

/decreasing model outcomes 
49 43 55 64 46 42 44 

Percentage of positive/negative 

trends for monotone in-

/decreasing model 

27 / 73 49 / 51 42 / 58 70 / 30 43 / 57 29 / 71 59 / 41 

Number of interval optimum 

model outcomes 
11 10 11 8 11 17 9 

Percentage of positive/negative 

trends for interval optimum 

model 

27 / 73 40 / 60 0 / 100 38 / 62 82 / 18 53 / 47 78 / 22 

 

 

The highest response of Trichoptera taxa was to dh4 (duration of high flow event, 16 

taxa) followed by fh9 (frequency of high flow event, 14 taxa), while Ephemeroptera taxa 
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responded mostly to ra2 (rate of change average event, 14 taxa) and dl9 (duration of low 

flow event, 8 taxa). Two Plecoptera taxa respond to fh9 (frequency of high flow event), 

fl2 (frequency of low flow event) and ml17 (magnitude of low flow event), while only 

one taxon responds to dh4 (duration of high flow event), dl9 (duration of low flow event), 

ra2 (rate of change in average event) and ta1 (timing of average flow event).  

 

Table 6 Proportion (%) of taxa from major orders and all others as “Rest” that respond to 

hydrological metrics with interval optimum, symmetrical or skewed model types. Taxa with a flat 

response model or monotone in-/decreasing model are not included due to their flat or nearly zero 

responses along the hydrological gradients (abbreviations in Table 4). 

Models Category Metric 
Trichoptera 

(43 taxa) 

Ephemeroptera 

(25 taxa) 

Plecoptera 

(4 taxa) 

Coleoptera 

(12 taxa) 

Rest 

(36 

taxa) 

In
te

rv
al

 o
p
ti

m
u
m

, 
sy

m
m

et
ri

ca
l 

o
r 

sk
ew

ed
 

m
o
d
el

 (
II

I,
 I

V
 a

n
d
 V

) 

Duration dh4 37.2 % 8.0 % 25.0 % 50.0 % 50.0 % 

Duration dl9 25.6 % 36.0 % 25.0 % 41.7 % 16.7 % 

Frequency fh9 32.6 % 32.0 % 50.0 % 41.7 % 25.0 % 

Frequency fl2 18.6 % 24.0 % 50.0 % 16.7 % 25.0 % 

Magnitude ml17 16.3 % 28.0 % 50.0 % 50.0 % 13.9 % 

Rate ra2 30.2 % 56.0 % 25.0 % 58.3 % 36.1 % 

Timing ta1 14.0 % 24.0 % 25.0 % 58.3 % 22.2 % 

 

 

2.4.3 Hydrological thresholds 

A strong decrease to nearly zero in taxa occurrence probabilities occurs if dh4 (duration 

of high flow event) reaches values of either greater than four (i.e., 50 m3/s prior to log 

transformation) or less than one (i.e., 1.7 m3/s prior to log transformation) as the 

maximum flow duration. Three taxa with interval optimum models showed the highest 

occurrence probability for “duration of high flow event” > 4 (red arrows mark these 

change points; Figure 5a).  



Chapter 2                  Quantitative hydrological preferences of stream macroinvertebrates 

 

 26 

Remarkable reductions in the probabilities of taxa occurrence were recorded for other 

hydrological metrics, as well (red arrows for strong reductions; Figure 5b-g). A reduction 

was recorded at values greater than 80 % coefficient of variation (CV) of dl9 (duration of 

low flow event), the magnitude of minimum annual 30-day flows (Figure 5b). This 

threshold for fh9 (frequency of high flow event) was more than 13, with the annual high 

flow events being above the threshold equal to the 75-percent exceedance value. Taxa 

preferences for ranges of ml17 (magnitude of low flow event) were substantially reduced 

by values less than 0.4, describing a very low base flow index (Figure 5e). Constancy 

values of greater than 0.8 for ta1 (timing of average flow event) are also not preferred by 

the taxa (Figure 5g). 

Focusing on specific models, none of taxa with an interval optimum model tolerated a 

mean number of annual high flow events larger than 12, and all preferred fewer than 9 

according to dh4 (green curly bracket; Figure 5c-III). Taxa with a skewed model highly 

prefer quartile four of fh9 (frequency of high flow events) with gradient values between 8 

and 13 (blue curly bracket; Figure 5c-V). The probability of taxa occurrence increases at 

low flow magnitudes > 0.4 (Figure 5e-III), but several taxa with a skewed model 

preferred the values in quartile one based on this hydrological metric (green curly 

bracket; Figure 5e-V). Almost all taxa with skewed models had an optimum in the fourth 

quartile for ra2 (rate of change average event), which means they tolerate wide ranges of 

rise rates (green curly bracket; Figure 5f-V). The gradient values of these thresholds are 

shown in Table ST1 for individual taxa. 

2.5 Discussion 

2.5.1 Hydrological metrics  

We used 12 months of continuous daily discharge data antecedent to each individual 

benthic invertebrate sampling date to compute IHA metrics describing the hydrological 

conditions at each sampling site. The short-term hydrological conditions prior to 

biological sampling are important in the occurrences and diversity of individual taxa and 

describe any changes according to recent hydrological conditions (Stewart‐Koster et al., 

2011). The calculation of IHA metrics based on very long periods of discharge and 

continuous biological data are more of interest if focusing on historical adaptations and 

long-term changes in assemblages of benthic invertebrates (Leigh and Datry, 2016). 
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2.5.2 Taxa responses to metrics and along the range of hydrological 

gradients 

A variety of taxa responses to recent hydrological conditions were revealed. Our analysis 

determined the analytical optimum of taxa to seven hydrological metrics according to 

individual modelling responses per taxon. Taxa for which the flat response model was 

selected can be considered ubiquitous, as these taxa have no clear optima or preferences 

along the hydrological gradients. Taxa for which the symmetrical or skewed model (and 

potentially the interval optimum model) was chosen, showed clear responses to specific 

ranges of the hydrological gradients. They might cope with changes in that range 

compared to changes at the gradient ends, where the probability of occurrence is lower. 

Our results of the model frequency analysis (Figure 6) show that taxa responded more 

often to metrics describing high flow magnitudes and frequencies rather than low flows 

and to other metrics such as ra2 (rate of change in average event). These results are in 

concordance with other studies that reported strong influences of high flow conditions on 

species of benthic invertebrates (Clausen and Biggs, 1997; Death and Winterbourn, 1995; 

Suren and Jowett, 2006).  

We covered wide ranges of quantified hydrological conditions, while previous semi-

quantitative studies have covered limited ranges of flow conditions at the reach scale due 

to their methodology and data availability, e.g., the FST-hemispheres that were 

introduced by Statzner et al. (1988). The existing qualitative or semi-quantitative data 

described at the nominal or ordinal scales (Schmedtje, 1995; Schmidt-Kloiber and 

Hering, 2015) are barely comparable with the quantitative hydrological traits of benthic 

invertebrates and responses of taxa and thresholds along the hydrological gradients 

evaluated here. However, there are ecologically meaningful links between the ecological 

and hydrological preferences of taxa. For example, the taxa showing a clear negative 

response to high flows (e.g. dh4, fh9 and ra2) are prone of drifting by high flows as taxa 

respond to hydrological and hydraulic stress (Statzner and Holm, 1982). Anabolia 

nervosa and Pisidium subtruncatum show negative responses to metrics describing high 

flows, and preferably occur in standing waters and avoid current (Schmidt-Kloiber and 

Hering, 2015 and references therein); therefore, may be prone of being affected by higher 

high flows. Besides, taxa showing a clear negative response to low flows (e.g. dl9, fl2 or 

ml17) have a high oxygen demand, and hence are vulnerable to extreme low flow 

conditions in summer related to high water temperature and low oxygen content (Brooks 
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et al., 2011). Habroleptoides confusa, Hydropsyche pellucidula, Baetis rhodani and 

Heptagenia sulphurea show negative responses to metrics describing low flow conditions, 

and preferably occur in streams with moderate to high current (Schmidt-Kloiber and 

Hering, 2015 and references therein), thus may be prone of being affected by low flow 

conditions.  

The “duration of high flow event” (dh4) describes the amount of discharge a taxon might 

tolerate over a period of maximum 30-day moving average flows. This metric therefore 

describes the river size at which discharge is larger in rivers compared to streams and 

within the same river size the point at which it is larger for more dynamic flow regimes 

compared to those that are more monotonous. This reflects the river continuum concept, 

i.e., some taxa prefer to inhabit upstream areas of small streams, while others prefer 

larger streams or rivers (Vannote et al., 1980). The ecological trait of “stream zonation 

preference” (freshwaterecology.info, Schmidt-Kloiber and Hering, 2015) may describe 

taxa hydrological preferences to dh4 (duration of high flow event) best. However, the 

information is available for only 88 of 120 taxa. The quantitative responses of more than 

90 % of 88 taxa make sense ecologically and fit to the expert judgment in the freshwater 

ecology database. For example, all taxa with a “flat response model” are marked as 

having preferences to almost all categories of “stream zonation preference”. Baetis 

buceratus, Baetis muticus and Glossiphonia complanata are indicator taxa that occur in 

almost all categories and show a flat response along the range of “duration of high flow 

event”. The inconsistencies for less than 10 % of the taxa might be due to data 

deficiencies or methodological constraints.  

The information on the ecological traits of stream benthic invertebrates is lacking for 

dozens of taxa, which hinders the description of their ecological and hydrological 

requirements; however, we successfully determined quantitative hydrological 

requirements for all studied taxa.  

2.5.3 Hydrological thresholds 

Both very high and very low flow conditions influence the abundance of benthic 

invertebrates in river ecosystems (Dewson et al., 2007; Suren and Jowett, 2006). 

Although the gradient ends of hydrological metrics are not well suited for taxa, all taxa 

show strong responses to the first or fourth quartile of hydrological metrics (e.g., taxa 
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with a skewed model; Figure 6). High values of maximum flow duration render taxa 

unable to resist against flow and drift downstream as a result (Lake, 1990).  

Moreover, high gradient values of dl9 (duration of low flow event) and low gradient 

values of ml17 (magnitude of low flow event) are not suitable for taxa, as critical 

thresholds of low flows might be reached (Acuna et al., 2005), which are associated with 

high water temperatures and linked with low dissolved oxygen concentrations (Brooks et 

al., 2011). 

Global change might potentially affect taxa by leading to changes in flow regime and 

discharge conditions in similar ranges of the gradient affecting some taxa. A vulnerability 

analysis of taxa according to their hydrological thresholds requires high-resolution 

hydrological data from climate change hydrological models. Quantitative hydrological 

traits are therefore suitable information for modelling and predicting the effects of flow 

changes due to global change.  

2.5.4 Methodological constraints 

The hydrological metrics are inherently co-correlated (Olden and Poff, 2003). We aimed 

to analyze taxa responses to each IHA category; therefore, at least one metric per 

category was selected as being representative for that specific hydrological feature, 

resulting in seven metrics from five IHA categories. The seven selected metrics are 

representative of many other metrics of the same group. Even in this highly reduced set of 

metrics, some correlation occurs, for example, dh4 (the annual maximum 30-day moving 

average flows, duration of high flow event) is highly correlated with dl9 (annual 

minimum 30-day moving average flows) with a pairwise correlation value of negative 

one (|r| = -1). Therefore, taxa responses cannot be judged as unique with certainty, and a 

currently unknown proportion of taxa could respond to either metric.  

Taxa with monotone in-/decreasing model show a preference—through an increasing or 

decreasing trend—to either low or high values along the range of hydrological metrics 

with the analytical optimum at the gradient end. Taxa with an interval optimum model 

also have a threshold at which the occurrence probabilities increase/decrease drastically 

with a plateau at the upper level. The decreasing limb of taxa with this model is missing. 

However, these models are extremely sensitive at the gradient ends and can be affected 

even by a single data point (Jansen and Oksanen, 2013). This implies that the 

hydrological range of the respective taxa is probably not fully covered in the data.  
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Taxa responses vary across life stages (Lancaster and Downes, 2010a). Biological 

sampling at only one specific time of the year results in invertebrate species at a specific 

stage in their life cycle being represented. This might affect the integrity of the 

determination of taxa responses to hydrological conditions (Lancaster and Downes, 

2010a; Lancaster et al., 2009). Although we used benthic invertebrate sample data from 

two seasons over a 10-year period, our dataset cannot fully overcome this difficulty, as 

data on all life stages of the life cycle are not available through the standard 

biomonitoring procedure. 

The in-situ probability of taxa occurrences depends on many environmental variables. In 

particular, land use, habitat availability and water quality are known to be influential even 

over long periods of time (Allan, 2004; Harding et al., 1998). Although the range of 

hydrological conditions was well-covered by the rich biological data from sampling sites 

with good or high ecological status, other environmental variables might still influence 

taxa occurrences (Stoll et al., 2016; Tonkin et al., 2016). Furthermore, suitable data for 

ecological processes such as competition are lacking, and these processes were not 

considered in this study. 

Evolved traits enable benthic invertebrates to survive flow conditions within the context 

of natural flow regimes (Lytle and Poff, 2004), and the abundance and structure of their 

communities are believed to be significantly affected by changing hydrological 

conditions (Sousa, 1984). Global change is influencing all aspects of the flow regime in 

space and over time, causing, e.g., an increase in extremely low or high flow conditions 

(IPCC, 2007, 2014). Germany is also facing the impacts of global change-induced flow 

alteration, with low and high flow conditions projected to occur more often (Nilson, 

2014), which affect the distribution and probability of occurrence of several taxa. As 

ecological processes and the abundance and distribution of aquatic invertebrates are 

strongly influenced by the actual type of flow regime (Poff et al., 1997), the benthic 

invertebrate community will respond to flow alteration by changes in their diversity and 

abundance (Arthington et al., 2006; Brooks et al., 2011; Poff and Zimmerman, 2010) as 

well as by plasticity and adaptations (Stoks et al., 2014). 

2.5.5 Summary and outlook 

Our study represents a shift from existing studies on ecological traits, which are based on 

largely qualitative data and often grounded in expert knowledge and literature analysis, to 
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describing hydrological traits, which are quantitative and data-based. However, these 

quantitative hydrological traits do not replace the categories of ecological traits that are 

linked to hydrology, e.g., resistance/resilience to droughts (Schmidt-Kloiber and Hering, 

2015), but preferentially append new categories that might be useful for forecasting 

changes. 

The quantified hydrological traits of individual taxa might therefore support stream 

management and enable the prediction of taxa responses to flow alteration. Such large-

scale studies of flow preferences for modelling individual taxa responses to hydrological 

gradients can be implemented to optimize taxon-specific hydrological models.  

The hydrological traits of stream benthic invertebrates may be used in forecasting studies 

in central Europe, and the methods used in this study are suitable for application in other 

regions, where a different flow regime might suggest the need to analyze other flow 

metrics. Other hydrological traits, e.g., those regarding extreme events, could also be 

modelled depending on research questions and interests.  
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3.1 Abstract 

Global change has the potential to affect river flow conditions which are fundamental 

determinants of physical habitats. Predictions of the effects of flow alterations on aquatic 

biota have mostly been assessed based on species ecological traits (e.g., current 

preferences), which are difficult to link to quantitative discharge data. Alternatively, we 

used empirically-derived predictive relationships for species’ response to flow to assess 

the effect of flow alterations due to climate change in two contrasting central European 

river catchments. Predictive relationships were set up for 294 individual species based on 

(i) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment 

and 67 sites in the Treene lowland catchment, and (ii) flow conditions at these sites 

described by five flow metrics quantifying the duration, frequency, magnitude, timing and 

rate of flow events using present-day gauging data. Species’ abundance were predicted 

for three periods: (i) baseline (1998-2017), (ii) horizon 2050 (2046-2065) and (iii) 

horizon 2090 (2080-2099) based on these empirical relationships and using high-

resolution modelled discharge data for the present and future climate conditions. We 

compared the differences in predicted abundance among periods for individual species at 

each site, where the percent change served as the basis to assess the potential species 

responses to flow alterations. Climate change was predicted to most strongly affect the 

low-flow conditions, leading to decreased abundance of species as far as 42%. Finally 

combining the response of all species over all metrics indicated increasing overall species 

assemblage responses in 98% of the studied river reaches in both projected horizons and 

were significantly larger in the lower-mountainous Kinzig compared to the lowland 

Treene catchment. Such quantitative analyses of freshwater taxa responses to flow 

alterations provide valuable tools for predicting potential climate-change impacts on 

species’ abundance and can be applied to any stressor, species, or region. 

3.2 Introduction 

River biota depend on a range of environmental variables, including natural habitat 

conditions as well as stressors. While the effects of a variety of environmental variables 

and stressors such as land-use, climate and substrate conditions on riverine species are 

well understood (Miserendino et al.; Schröder et al., 2013), the relationship between 

riverine species’ abundance and river flow is less often explored (Kuemmerlen et al., 

2015; Kuemmerlen et al., 2014; Pyne and Poff, 2017), although it has been widely stated 
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that flow (i.e., discharge) is one of the key habitat variables in river ecosystems 

(Arthington et al., 2006; Dewson et al., 2007; Poff et al., 1997). 

Flow alterations are among the most important stressors that affect river habitats 

(Vörösmarty et al., 2010), and different organism groups strongly respond to flow 

alterations (Bunn and Arthington, 2002; Kuemmerlen et al., 2015; Lloyd et al., 2004; 

Lytle et al., 2017; Poff and Zimmerman, 2010; Pyne and Poff, 2017; White et al., 2017). 

Regional precipitation patterns and variability are likely to change until mid-century, e.g., 

increasing number of extreme events (Nilson and Krahe, 2014). Since river flow 

conditions are precipitation-driven, they may respond directly to climate change (Filipe et 

al., 2013; Wenger et al., 2011; Woodward et al., 2010), and severe flow alterations are to 

be expected. 

Several studies have already assessed the ecological response of stream 

macroinvertebrates to climate change (Chessman, 2015; Floury et al., 2013; Poff and 

Zimmerman, 2010 and references therein). In the absence of long-term observational 

data, they focused on species ecological traits as the basis for their analyses. Species 

ecological traits have been reported to be informative and best-case data for providing 

clues to the poorly understood mechanisms that threaten species occurrences in their 

environment (Matthews and Marsh‐Matthews, 2003). Moreover, potential responses and 

range shifts of species to climate-change impacts might be identified by their ecological 

traits (Hamilton et al., 2010). For example, a strong correlation between medium-/high-

flow conditions and the occurrence of rheophilic species suggests that a projected 

decrease in flow conditions may have a major impact on the occurrence of these species 

(e.g., Chessman, 2015; Thomson et al., 2012). However, as traits information are often 

qualitative data stemming from literature reviews and expert knowledge (Schmidt-

Kloiber and Hering, 2015), it is difficult to link traits to quantitative data and they are less 

suited to quantitatively assess and predict the effects of flow changes (e.g., discharge 

changes due to climate change). 

Only recently, discharge data have been used to empirically derive quantitative flow 

preferences for macroinvertebrates (Kakouei et al., 2017). These flow preferences reveal 

species response along the range of flow conditions. The information on flow conditions 

is described by key flow metrics, e.g., the indicators of hydrologic alterations—also 

known as IHA metrics (Richter et al., 1996). The IHA metrics provide information on the 

duration, magnitude, frequency, timing and rate of flow events for present patterns and 
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also for potential future changes. The effects of climate change on ecologically important 

attributes of flow conditions (e.g., extreme events) have the potential to threaten 

ecosystem functioning (Jentsch and Beierkuhnlein, 2008) by causing ecological changes 

in the structure and composition of aquatic communities (Poff and Zimmerman, 2010; 

Pyne and Poff, 2017).  

Here, we introduce an approach that can be used to quantitatively predict the impacts of 

climate-change-induced flow alterations on the abundance of stream macroinvertebrates. 

We compared the predicted species’ abundance in two contrasting catchments differing in 

flow regime and species pool to answer the following questions: 

(1) In which regard do the climate-change-induced changes in discharge (different flow 

conditions according to IHA metrics) have varying effects on stream macroinvertebrates’ 

abundance? And changes in which flow metrics will potentially have the largest impact? 

(2) How do possible climate-change impacts on species’ abundance, mediated through 

flow, differ between the two catchments? 

 

Figure 8 The study area: the Treene catchment in lowland (a) and the Kinzig catchment in the 

lower mountainous region (b) in Germany. 
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3.3 Methods 

3.3.1 Study area 

The effect of climate-change-induced flow alterations on river macroinvertebrates was 

assessed in two case-study catchments in Germany to investigate potential differences 

between effects in different ecoregions: the central lower mountainous region (Kinzig 

catchment) and the northern lowlands (Treene catchment, Figure 8, Table 7).  

The following datasets were gathered in each catchment: (1) stream macroinvertebrate 

samples (2) temporally corresponding gauge data for calibrating hydrological models and 

setting up predictive relationships between macroinvertebrates and flow conditions (i.e., 

discharge), and (3) projected high-resolution climate model data for simulating projected 

changes in flow conditions and deriving changes in species response. 

 

Table 7 Catchment characteristics of the two study catchments. 

Catchment characteristic Treene Kinzig 

River basin Eider Main 

Ecoregion Lowland Lower mountain region 

Number of river orders 3 3 

Catchment size at outlet [km2] 481 1175 

Elevation gradient [m a.s.l.] 1 - 80 98 - 731 

Major land-use classes 
Agriculture (48%) 

Pasture (32%) 

Forest (45%) 

Pasture (22%) 

Mean annual precipitation [mm] 887 859 

Mean runoff rate (ls-1km-2] 13.2 10.7 

Mean discharge [m3s] 6.23 10.48 

Maximum discharge [m3s] 34.9 165 

Mean channel slope [%] 1.29 10.37 

Median slope [%] 0.93 8.23 

 

3.3.2 Biological data 

For both river catchments, macroinvertebrate sample data were gathered from regional 

authorities. Samples were taken between 2005 and 2012 in the Kinzig catchment and 

between 2004 and 2015 in the Treene catchment. Sampling and identification was done 

according to the standardised multihabitat sampling protocol (Haase et al., 2004), where 
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each sample is representative of a 100-meter river reach. All taxa were identified to the 

species level. The datasets consisted of 225 samples from 176 sites in the Kinzig and 70 

samples from 30 sites in the Treene catchment (Figure 8). Species occurring at less than 

eight sampling sites were excluded, since these data might affect the robustness of the 

statistical analyses (Heino and Soininen, 2010; Leigh and Datry, 2016); which reduced 

the number of modelled species from 150 to 134 in the Kinzig and from 78 to 60 in the 

Treene catchment (Table ST2). 

3.3.3 Flow data 

Catchment borders and river networks used in this study were obtained from a digital 

elevation model with a 25-meter resolution (Hessian Administration for Soil Management 

and Geo-information, and the Land Survey office Kiel). The obtained river network had 

14067 and 5863 grid cells for the Kinzig and the Treene, respectively. All geoprocessing 

procedures were carried out using the open-source software QGIS (QGIS Development 

Team, 2017). 

To obtain flow data for each grid cell along the river network, the daily discharge time 

series (m3/s) from six (Kinzig) and four (Treene) gauging stations were extrapolated. 

Flow accumulation values were calculated for all sites/grid cells, providing the number of 

upstream cells that flow into that site/grid cell, 𝐹𝐴𝑠𝑖
. This drainage area of the site/grid 

cell was then related to the drainage area of the nearest gauging station, 𝐹𝐴𝑔, and the flow 

accumulation approach was used to calculate the mean daily discharge at all sites/grid 

cells along the river network, 𝑀𝐷𝐷𝑠𝑖
, based on the mean daily discharge at the gauge 

𝑀𝐷𝐷𝑔: 

𝑀𝐷𝐷𝑠𝑖
= (

𝑀𝐷𝐷𝑔

𝐹𝐴𝑔
) . 𝐹𝐴𝑠𝑖

 
Eq. 1 

To obtain future projections of discharge, the hydrological processes in both catchments 

were modelled by the eco-hydrological model SWAT (Soil and Water Assessment Tool; 

Arnold et al., 1998). SWAT is a semi-distributed ecohydrological model that is used to 

calculate river discharge based on physical catchment data and climate time series. 

SWAT delineates a given catchment into sub-basins, which are further divided into areas 

with similar soil, land-use and slope (i.e., hydrological response units, HRUs). Processes 

such as evapotranspiration, surface runoff, interflow and groundwater components, 

infiltration and soil water storage are depicted in each HRU and then aggregated to the 
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sub-basin scale (Guse et al., 2015). This procedure led to 22 sub-basins in the Kinzig and 

13 sub-basins in the Treene catchment, for which daily simulated discharge data were 

available. The historical period from 1997-2015 was used to calibrate and validate the 

models. IHA metrics were calculated from simulated and observed discharge and the 

difference between the simulated and observed IHA metrics minimised during the 

calibration process (Kiesel et al., 2017). 

Climate change data for SWAT was prepared from the CORDEX (Jacob et al., 2014) 

daily precipitation and minimum and maximum temperature dataset for Europe for the 

RCP 8.5 scenario. We selected this scenario because it is considered the worst-case 

scenario and represents the most severe conditions, meaning that this scenario would set 

the upper limit for potential taxa responses. The CORDEX dataset provides the most 

recent and most detailed (11-km resolution) climate change dataset for Europe. All 16 

available global climate models and regional climate models were downloaded (ESGF, 

2016), and the time series were extracted from all climate stations where observed data 

were available for bias correction. The time series were bias-corrected using six methods 

(linear scaling, delta change, distribution mapping, local intensity scaling, and power 

transformation; Teutschbein and Seibert, 2012). All combinations of model types and bias 

corrections (in total, 80 per catchment) were run in the calibrated SWAT models for the 

Kinzig and Treene catchments (unpublished data). The hindcasted climate data from the 

global climate model MOHC-HadGEM2-ES, combined with the regional climate model 

CLMcom-CCLM4-8-17 and the bias correction method "distribution mapping", 

performed best in depicting the historic flow conditions in the Treene and Kinzig 

catchments; hence, this was the method also used for climate change predictions in this 

study. The CORDEX data were used for both the baseline (hindcasted) and the future 

conditions to ensure that results were not affected by differences between modelled and 

observed climate data. 

3.3.4 Pre-selection and calculation of IHA metrics 

The 177 IHA metrics (Olden and Poff, 2003) were grouped into five categories that 

provide information on changes in duration, magnitude, frequency, timing and rate of 

flow events. All 177 IHA metrics were calculated for all sampling sites according to the 

flow data 12 months before the biological sampling using the flow data from the 

historical period 1997-2015 for each SWAT sub-basin. To avoid redundancy, one metric 

per IHA category was selected in each river catchment according to the following criteria:  



C
h
a
p
ter 3

                                                 E
ffe

cts o
f flo

w
 a

ltera
tio

n
s o

n
 sp

ecies’ a
b
u
n
d
a
n
ce

 

  
3
9

 

Table 8 Descriptions, calculation procedures, units and temporal aspects of the five IHA metrics used in Treene and Kinzig catchment, respectively; one 

IHA metric per category (according to Olden and Poff, 2003 and references therein). 

Temporal aspect 

Daily 

Annual 

Inter-annual 

Daily 

Annual 

Daily 

Annual 

Annual 

Annual 

Annual 

Unit 

m3s-1 

% 

Dimensionless 

m3s-1 

Dimensionless 

m3s-1 

Number of 

events/year 

 

% 

% 

Dimensionless 

Calculation procedure 

Compute the max of 30-day moving average flows. 

fl1 computes the average number of flow events with flows below a 

threshold equal to the 25th percentile value for the entire flow 

record. To compute fl2, the standard deviation in the annual pulse 

counts was calculated for fl1, and fl2 is 100 times the standard 

deviation divided by the mean pulse count 

Compute the median of the ratios of minimum annual flows to the 

median flow for each year 

Compute the change in log of flow for days in which the change is 

negative for the entire flow record 

Divide the period up into 2-month periods (i.e., Oct-Nov, Dec-Jan, 

etc.). Count the number of flood days (flow events with flows > 

1.67-year flood) in each period over the entire flow record. ta3 is the 

maximum number of flood days in any one period divided by the 

total number of flood days 

Compute the max of 30-day moving average flows. 

Compute the average number of flow events with flows below a 

threshold equal to the 25th percentile value for the entire flow record 

Compute the standard deviation for the ratios of minimum 7-day 

moving average flows to mean annual flows for each year 

Compute the standard deviation for the negative flow changes 

Computed as the maximum proportion of a 365-day year that the 

flow is less than the 1.67-year flood threshold. Accumulate nonflood 

days that span all years. The th3 is maximum length of those flood-

free periods divided by 365 

Description 

Annual maximum 30-day  

moving average flows 

Variability in low pulse 

count 

Median of annual 

minimum flows 

Negative change of flow 

Seasonal predictability of 

flooding 

Annual maximum 30-day  

moving average flows 

Low flow pulse count 

Variability in base-flow 

index 

Variability in fall rate 

Seasonal predictability of 

non-flooding 

IHA metric (code, 

category) 

Duration of high-flow 

events (dh4, duration) 

Frequency of low-flow 

events (fl2, frequency) 

Magnitude of low-flow 

events (ml16, magnitude) 

Rate of change in flow 

events (ra7, Rate) 

Timing of high-flow 

events (ta3, timing) 

Duration of high-flow 

events (dh4, duration) 

Frequency of low-flow 

events (fl1, frequency) 

Magnitude of low-flow 

events (ml18, magnitude) 

Rate of change in flow 

events (ra4, Rate) 

Timing of low-flow 

events (th3, timing) 

Catchment 

Treene 

Kinzig 
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(i) the pairwise correlation between IHA metrics should not exceed the sensitivity 

threshold of |𝑟| > 0.7 (Dormann et al., 2013), and (ii) if it exceeds this threshold, the 

metric with the lower loading on the most significant principal component axes was 

excluded (for details see Olden and Poff, (2003) and Kakouei et al. (2017)). 

The criteria resulted in the selection of different IHA metrics in the two study catchments 

(Table 8) due to differences in the flow regime and climatic-/ hydro-morphological 

conditions in lower mountainous versus lowland regions. Some metrics were highly co-

correlated in the lowland Treene, while pairwise correlations remained below the 

sensitivity threshold in the lower-mountainous Kinzig catchment. However, the selected 

metrics covered all five IHA categories; therefore, a diverse range of possible 

environmental responses to climate-change-induced flow  alterations was expected (Burn 

and Soulis, 1992). All other metrics were co-correlated (|𝑟| > 0.7) with at least one of the 

selected metrics in this study. 

For all sampling sites in both river catchments, the IHA metrics (Figure 9b) were 

calculated based on the extrapolated gauge data from the 12-month period prior to the 

date of the biological sampling (Figure 9a). This period is expected to represent the 

effects of flow conditions on macroinvertebrates for a sample (Jourdan et al., 2018; Leigh 

and Datry, 2016). For example, for a macroinvertebrate sample from 21.04.2013, flow 

data between 22.04.2012 and 21.04.2013 were considered. 

3.3.5 Temporal pseudo-replication 

Some samples were taken at the same sampling site but at different dates. To avoid 

temporal pseudo-replication (Hale et al., 2016; Hurlbert, 1984), only biological samples 

taken at the same sampling site but sampled at least 12 months apart were considered as 

temporally independent and were included in the analysis (Kakouei et al., 2017). The 12-

month time period did overlap for two (Kinzig) and three (Treene) samples taken at the 

same site, slightly lowering the number of samples from 225 to 223 in the Kinzig and 

from 70 to 67 in the Treene, respectively.  

3.3.6 Set-up of predictive relationships  

The predictive relationships were derived using hierarchical logistic regression modelling 

(Huisman et al., 1993; Jansen and Oksanen, 2013). Species responses to each of the five 

IHA metrics were tested by seven logistic regression models with hierarchically 

increasing complexity (for details see Jansen and Oksanen, 2013 and Kakouei et al., 
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2017), including all five Huisman-Olff-Fresco models and two extended models: the 

eHOF models flat response (I), monotone in-/decreasing (II), interval optimum (III), 

symmetrical (IV), skewed (V), and the two extended models bimodal response with equal 

optima (VI), and bimodal response with unequal optima (VII). The ability of each model 

to support the data and to fit the observations was evaluated by comparing the Akaike 

Information Criterion (AICc).  

For each taxon, the model explaining best its abundance using the specific IHA metric 

(Figure 9b), was then used as the predictive relationship for that IHA metric (Figure 9c). 

 

 

Figure 9 Workflow schematic of the analyses for one species and one IHA metric. The predictive 

relationship (c) was set up by calculating each IHA metric for each sample (b) using the 12-month 

time-series gauge data before the date of biological sampling (a). Each IHA metric (e) was then 

calculated for each year during baseline (BL, 1998 – 2017, d), horizon 2050 (H2050, 2046 – 

2065, d) and horizon 2090 (H2090, 2080 – 2099, d) and then used to predict projected abundance 

values (AV, f) for each species in each year during each period. The 20 abundance values per 

species were averaged to calculate the mean abundance value (MAV, g) for each species in each 

period.  
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3.3.6.1 Predictive ability of best selected eHOF models 

For each taxon, the predictive ability of the best model for each of the five IHA metrics 

was quantified by randomly separating the presences (observations, i.e., abundance data) 

and absences into training (75% of presences and 75% of absences) and testing (25% of 

presences and 25% of absences) datasets. We ran this random selection process 100 

times, calculated the area under the receiver operating characteristic curve (AUC) for the 

test dataset, and subsequently averaged the 100 AUC scores per species (see Table ST2 of 

the supplementary material for all model scores). The AUC measures the model’s ability 

to discriminate between true and false positives (Hosmer Jr et al., 2013). AUC values 

range from 0.5 (model is no better than random) to 1 (perfect discrimination). Hosmer Jr 

et al. (2013) report that AUC values < 0.7 represents a sensitive threshold of adequate 

model discrimination, a score that was not met by 17 species regarding the timing of high 

flow events (ta3) in the Treene catchment. We decided to keep all species in our analyses, 

but accounted for the model skill via a weighting scheme that was proportional to the 

model skill (the better the AUC, the higher the influence of the species in the final species 

assemblage response analysis). We used a continuous weighting factor from one to two 

with 0.02 intervals.  

The AUC values were calculated using the ‘multiclass.ROC’ function in the R-package 

‘pROC’, which builds multiple receiver operating characteristic (ROC) curves to compute 

the multi-class AUC (Robin et al., 2011).  

3.3.7 Other environmental variables 

The in-situ occurrence and ecological response of stream macroinvertebrates depends on 

a variety of environmental variables, e.g., land-use, precipitation, and temperature (Pyne 

and Poff, 2017; Stoll et al., 2016; Tonkin et al., 2016). Precipitation is highly co-

correlated with discharge. Although none of these variables were directly used as 

covariates in this analysis, several variables (e.g., soil, land-use and management, 

elevation and slope, precipitation, temperature, wind, humidity, and solar radiation) were 

considered in the SWAT hydrological models and, hence, were not duplicated as direct 

covariates in the modelling of taxa responses to flow alterations. 

3.3.8 Potential responses of individual species and assemblages of river reaches  

To account for the natural annual precipitation and discharge fluctuations (i.e., 

differences between wet and dry years), we compared three 20-year periods instead of 
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single years: a baseline period (i.e., current flow conditions from 1998 to 2017) and two 

future projected periods (named here as “horizon 2050” for the period between 2046 and 

2064, and “horizon 2090” from 2080 to 2099; Figure 9d). For each biological sampling 

site, the flow data modelled by SWAT (Figure 9d) was used to compute a single IHA-

metric value (Figure 9e) and to predict species’ abundance values (AV, Figure 9f) for 

each year (12-month period) of the three 20-year periods, resulting in 60 IHA-metric 

values and abundance values per species. The 20 abundance values per species were used 

to calculate a mean abundance value (MAV) for each of the three 20-year periods 

(𝑀𝐴𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝑀𝐴𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛 2050, 𝑀𝐴𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛 2090, Figure 9g). 

The ratio between the mean response value of the baseline and the two future time-

periods was used to assess the effect of changes in each IHA metric (𝑚𝑖) on each species 

(𝑠𝑝𝑖) at each sampling site (𝑠1) by calculating percent change (∆ ̵𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒):  

{{∆𝑅ℎ𝑜𝑟𝑖𝑧𝑜𝑛 2050
𝑚𝑖 =

𝑀𝐴𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛 2050
𝑚𝑖 . 100

𝑀𝐴𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑚𝑖
}

𝑠𝑝𝑛

 
𝑠𝑝𝑖

}

𝑠𝑛

 
𝑠𝑖

 Eq. 2 

{{∆𝑅ℎ𝑜𝑟𝑖𝑧𝑜𝑛 2090
𝑚𝑖 =

𝑀𝐴𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛 2090
𝑚𝑖 . 100

𝑀𝐴𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑚𝑖
}

𝑠𝑝𝑛

 
𝑠𝑝𝑖

}

𝑠𝑛

 
𝑠𝑖

 Eq. 3 

A positive value for percent change indicates an increase in species’ abundance and vice 

versa. In addition, species response (SR) to each IHA metric was calculated as the mean 

∆ ̵𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 of each species across all sampling sites; this was calculated separately for 

each of the two catchments and for each of the two future time-periods. Species with the 

most negative SR values would be most susceptible to climate-change-induced flow 

alteration of the respective IHA metric in that catchment. 

All responses calculated above are related to a single species, while all following analyses 

measure responses at the species assemblage level. Each sampling site is representative of 

a 100-meter river reach. For each sampling site (𝑠𝑖), the species assemblage response in 

that river reach, 𝑆𝐴𝑅𝑟𝑖
, to each IHA metric (𝑚𝑖) was assessed by calculating the means of 

the response values for all species occurring in that reach (𝑠𝑝1 𝑡𝑜 𝑠𝑝𝑛 ): 

{𝑆𝐴𝑅𝑟𝑖

𝑚𝑖 = 𝑚𝑒𝑎𝑛(∆𝑅𝑠𝑝1

𝑚𝑖 , ∆𝑅𝑠𝑝2

𝑚𝑖 , … , ∆𝑅𝑠𝑝𝑛

𝑚𝑖  )}
𝑠𝑖

𝑠𝑛
 Eq. 4 

This value was separately calculated for both future time-periods (i.e., horizon 2050 and 

horizon 2090) and each IHA metric, resulting in 10 overall values per river reach. 
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Although the metrics used in both catchments (Kinzig and Treene) were different, which 

made a direct comparison difficult, the IHA metrics inherently co-correlated with many 

other metrics from the same category (Olden and Poff, 2003). Therefore, the results for 

both species (SRs) and species assemblage responses (SARs) are considered insensitive 

to the choice of the particular metrics within the same IHA category. 

IHA metrics describe different aspects of key flow conditions (i.e. duration, frequency, 

magnitude, rate and timing) that might be unequally important for the assemblages of 

stream macroinvertebrates (Kuemmerlen et al., 2015; Tonkin, 2014). Therefore, the 

overall response of macroinvertebrate assemblages (OSARs) to flow alterations was 

assessed according to the mean of SAR values for all five IHA metrics in each river reach 

(𝑟𝑖): 

{𝑂𝑆𝐴𝑅𝑟𝑖

𝑚𝑎𝑙𝑙 = 𝑚𝑒𝑎𝑛(𝑆𝐴𝑅𝑚1
, 𝑆𝐴𝑅𝑚2

, 𝑆𝐴𝑅𝑚3
, 𝑆𝐴𝑅𝑚4

, 𝑆𝐴𝑅𝑚5
)}

𝑠𝑖

𝑠𝑛
 Eq. 5  

Therefore, all IHA metrics (𝑚𝑎𝑙𝑙) contributed to the overall species assemblage responses 

(OSARs) in each river reach. The outcome of such overall assessment (OSARs) based on 

partial assessments (SARs) extremely depend on the choice of the aggregation method 

(Langhans et al., 2014).  

The sensitivity of outcomes using another widely used aggregation method (the minimum 

aggregation method, also known as worst scenario) is shown in the supplementary 

material (potential worst overall species assemblage responses, WOSAR). The minimum 

aggregation method assumes that decreased abundance values caused by changes in one 

of the flow metrics might not be compensated by increased abundance values caused by 

any other metrics.  

All statistical analyses were carried out in R 3.3.2 (R Development Core Team, 2016). 

We used one-way analysis of variance (ANOVA) for all significance tests of flow 

alteration, and paired t-tests to compare the means of SRs, SARs and OSARs to flow 

alterations. 

3.4 Results  

3.4.1 Potential changes in flow conditions 

In the Kinzig catchment, climate change was predicted to most strongly affect the low-

flow conditions (Figure 10, 11, SF2, SF3 and SF4). The variability in base-flow index 
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(ml18) was predicted to increase within horizon 2050 (Figure 11h, SF2h), while the 

frequency of low-flow events was predicted to decrease in horizon 2090 (fl1, low-flow 

pulse count, Figure 11g, SF2g). In addition, the modelled future discharge values showed 

a lower seasonal predictability of low-flow events (th3, Figure 11j, SF2j). These predicted 

changes were significant for the first period, horizon 2050, similar to the two metrics 

describing the magnitude of high flows (dh4, annual maximum 30-day moving average, 

Figure 11f, SF2f) and the variability of the falling rate of high-flow events (ra4, 

variability of fall rate, Figure 11i, SF2i).  

 

 

Figure 10 Potential changes in variability in low pulse count (fl2) in the Treene (a, b and c) and 

low pulse count (fl1) in the Kinzig (d, e and f) catchment, comparing the baseline (a and d; 1998 – 

2017) to horizon 2050 (b and e; 2046 – 2065) and horizon 2090 (c and f; 2080 – 2099). Other 

changes in flow metrics in the respective catchments are shown in Figure SF3 and SF4.  

 

In the Treene catchment, climate change was also predicted to most strongly affect the 

low-flow conditions at the sampling sites, but modelled effects were larger compared to 

those in the Kinzig catchment (Figure 11, SF2, SF3, SF4). However, the modelled 

changes in IHA metrics describing the high-flow conditions were less obvious but still 

significant (Figure 11, SF2).  
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Figure 11 Boxplots (bar – median; red triangular – mean; box – 1st and 3rd interquartile ranges) showing potential percent changes in the 

IHA metrics at the sampling sites of the Treene (a-e) and Kinzig (f-j) catchments for the two defined 20-year periods of horizon 2050 

(2046 – 2065) and horizon 2090 (2080 – 2099) compared to the baseline (1998 – 2017). For more details see Figure SF2. 
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The magnitude and inter-annual variability of low-flow events were predicted to 

markedly decrease (Figure 11b, 11c, SF2b, SF2c) with (i) a decrease in the median annual 

minimum flow (ml16, lower ratios of minimum annual flows to median annual flows) 

and (ii) a decrease in the variability of low pulse counts (fl2, lower coefficient of 

variation for the number of low-flow events per year). In respect to the high-flow events, 

the modelled future discharge values showed an increase in the seasonal predictability of 

flooding (ta3, Figure 11e, SF2e) and lower maximum flows, at least in the first period, 

horizon 2050 (dh4, maximum 30-days maximum moving average, Figure 11a, SF2a, 

ANOVA, p < 0.05, Tukey HSD, p < 0.05).  

3.4.2 Species responses (SRs) 

Overall, the predicted changes in SRs were larger in the Kinzig compared to the Treene 

catchment (Figure 12). The mean percentage change of the absolute values for all species 

and all metrics was significantly higher in the Kinzig compared to the Treene for both 

time-periods. The mean change was 21.6% in the Kinzig, compared to only 13.9% in the 

Treene catchment for horizon 2050 (t-test, p<0.01), while in horizon 2090, it was 19.3% 

and 14.7% in the Kinzig and Treene, respectively (t-test, p<0.01). 

In the Kinzig catchment, in accordance with the large predicted effect on the low-flow 

conditions, these IHA metrics (frequency and magnitude) resulted in a decrease in 

abundance for a large number of species. The share of these species was significantly 

larger for these two IHA metrics (Figure 12q, 12m, 12r) compared to the other metrics 

(Chi-Squared test, p < 0.05). Projected changes in the magnitude of low-flow events 

(ml18) caused decreasing trends, with a percentage change of up to -50% for most of the 

studied species in both horizons (Figure 12m, 12r, 72% and 70% of species in horizon 

2050 and 2090, respectively). The frequency of low-flow events (fl1) caused greater 

decreases in abundance values in horizon 2090, with 55% of species showing a decrease 

in abundance up to -46% (Figure 12q). 

However, a large number of species (81% and 78% of species in horizons 2050 and 2090, 

respectively) were predicted to increase up to 79% in abundance and benefit from only a 

slight decrease in the high-flow conditions (dh4, Figure 12k, 12p, mean values of each 

period: 7.8 for baseline, 5.9 for horizon 2050, and 7.4 for horizon 2090) and changes in 

flood-free periods (th3, Figure 12o, 12t, 66% of species in horizon 2050 and 73% in 2090 

show increased values of up to 97%, mean values of each period: 0.826 for baseline, 
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0.813 for horizon 2050, and 0.828 for horizon 2090). The projected changes for both IHA 

metrics were significant only in horizon 2050 (Figure 11f, 11j, SF2f, SF2j, ANOVA, p < 

0.05, Tukey HSD, p < 0.05). 

 

 

 

Figure 12 The mean response of individual species (SRs) to each IHA metric in the Treene (60 

species, a-j) and Kinzig (134 species, k-t) catchments for horizon 2050 (upper row in each 

catchment, a-e and k-o) and horizon 2090 (lower row in each catchment, f-j and p-t). The bars are 

sorted by decreasing to increasing SR. 

 

In the Treene, the share of species with decreasing responses was also high for the 

metrics that were predicted to change significantly (fl2 and ml16, Figure 11b, 11c, SF2b, 

SF2c, 12b, 12c, 12g, 12h). The magnitude of SR was also highest for these metrics 

compared to the rest of the metrics (t-test, p < 0.05). Furthermore, large decreasing trends 

were detected in response to the timing of high-flow events (ta3).  

Despite insignificant changes in the rate of change in flow events (ra7) in both horizons 

(Figure 11d, SF2d), more species (80% and 87% of species in horizons 2050 and 2090, 
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respectively) were predicted to increase in abundance (up to 57%, Figure 12d, 12i) 

compared to all other metrics. 

3.4.3 Species assemblage responses (SARs) 

3.4.3.1 Species assemblage responses (SARs) per IHA metric  

Similar to the SRs, the predicted SARs to single IHA metrics were larger in the Kinzig 

compared to the Treene catchment (Figure 13, for details see Table ST3 and ST4).  

 

 

 

Figure 13 The mean response of species assemblages (SARs) at each site for each IHA metric 

and river order in the Treene (67 sites, a-j) and Kinzig (223 sites, k-t) catchments for horizon 

2050 (upper row in each catchment, a-e and k-o) and horizon 2090 (lower row in each catchment, 

f-j and p-t). The characters (a, b, c and ab) show whether the values of species assemblage 

responses in a river order would be significantly (p < 0.05; dissimilar characters) different from 

other river orders or not (similar characters).  
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The mean percentage change of the absolute values over all sites (60 sites in the Treene 

and 223 sites in the Kinzig) and all metrics were significantly higher in the Kinzig 

compared to the Treene for both horizons. The mean change of absolute values was 

13.8% in the Kinzig compared to only 8.0% in the Treene catchment for the horizon 2050 

(t-test, p<0.01), and differences were smaller for the horizon 2090, with 15.6% in the 

Kinzig and 8.7% in the Treene catchment (t-test, p<0.01).  

In the Kinzig, the SARs per metric shows—similar to the SR—large increases in species 

assemblage abundance caused by decreasing duration of high-flow conditions (dh4), 

especially for the higher-order reaches (river order three, Figure 13k, 13p, SF5a and 

SF5b). The SARs to this metric were significantly higher in downstream reaches (i.e., 

river order three) with mostly increased abundance values compared to decreased values 

in the upstream reaches (ANOVA, p < 0.01, Tukey HSD, p < 0.01). Most increasing 

trends in SARs were caused by the small increased values predicted in flood-free periods 

(th3, mean values of each period: 0.83 for baseline, 0.86 for horizons 2050 and 2090), 

while decreasing trends (Figure 13q, 13m, 13r, 13n, SF5d, SF5e, SF5f) were mainly 

caused by increased or decreased values in the low-flow conditions (mainly increased 

ml18 with the following mean values of each period: 56.0% for baseline, 63.4% for 

horizon 2050, and 63.0% for horizon 2090, and decreased fl1 with the following mean 

values: 4.4 low-flow events for baseline and 3.8 for horizon 2090, and decreased ra4 with 

the following mean values: 202.3 for baseline, 197.2 for horizon 2050). 

The SARs of the Treene river reaches showed decreased abundance values to both low 

and high flow conditions described by timing, duration and frequency of flow events 

(Figure 13a, 13e, 13f, 13g, SF6a, SF6b, SF6d, SF6i, SF6j). Two metrics of duration and 

frequency show decreased values in the future (dh4, mean values of each period: 2.6 m3/s 

for baseline, 2.0 m3/s for horizons 2050 and 2.4 m3/s for 2090, and mean values of fl2 in 

each period: 56.8% for baseline, 48.0% for horizons 2050 and 47.6% for 2090), while 

timing was projected to increase slightly (th3, mean values of each period: 0.83 for 

baseline, 0.86 for horizons 2050 and 2090). Decreased frequency low-flow events (fl2, 

Figure 13b, 13g, SF6c, SF6d) and rate of flow events (ra7, Figure 13d, 13i, SF6g, SF6h, 

mean values of each period: 56.8% for baseline, 48.0% for horizons 2050 and 47.6% for 

2090) caused most increased SARs in the Treene catchment.  

Similar to the Kinzig catchment, SARs revealed increased abundance values by slight 

(but significant) decreased values in duration of high flow events (dh4) in higher river 
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orders (Figure 13a, 13b, SF6a, SF6b), while only decreased SARs were detected in lower 

river orders. 

3.4.3.2 Overall species assemblage responses (OSARs, overall scenario) 

Similar to the SRs and SARs, the absolute OSARs were significantly larger in the Kinzig 

(mean percentage change of the absolute values: 10.1% in horizon 2050 and 9.8% in 

horizon 2090) compared to the Treene catchment (mean percentage change of the 

absolute values: 5.6% in both horizons, t-test, p<0.01). 

In the Kinzig, OSARs were predicted to be positive in all river reaches in horizon 2050, 

while three river reaches showed negative values in horizon 2090 (Figure 14c and 14d). 

In the Treene, positive OSARs were predicted for all river reaches except one reach in 

each horizon (Figure 14a, 14b).  

 

 

Figure 14 Potential overall response of species assemblages (OSARs, equation 5) in the Treene (a 

and b) and Kinzig (c and d) river reaches in horizons 2050 (a and c) and 2090 (b and d), according 

to mean value, i.e., contribution of all five IHA metrics. 
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3.5 Discussion 

Assessing the quantitative impact of possible flow alterations on species responses 

yielded several key findings: (1) climate change was predicted to strongly decrease the 

low-flows in both studied catchments, (2) the predicted increases and decreases in 

species’ abundance were not proportional to changes in flow metrics, and (3) predictions 

showed that species would experience decreased and increased abundance values with 

regard to flow alterations detected by five IHA metrics in both the lowland and lower 

mountainous region. The species assemblage responses were predicted to increase at most 

sampling sites for most IHA metrics, which resulted in increasing overall species 

assemblage responses in all Kinzig and 98% of Treene river reaches. These changes were 

significantly larger in the lower-mountainous Kinzig compared to the lowland Treene 

catchment. The increased overall abundance values are reasonable and can be described 

by the high proportion of generalist species, e.g. only 26 and five habitat specialists in the 

Kinzig and Treene, respectively (according to Schmidt-Kloiber and Hering, 2015). 

Generally, increased abundance values are not identical to a better ecological status 

(according to regular monitoring required by the European Water Framework Directive) 

since specialists might decrease in abundance while generalists or invasive species might 

increase strongly.  

3.5.1 Flow alterations and species/assemblage abundances 

We detected strong effects of climate change on low-flow conditions in both catchments 

which were previously reported in in-situ studies of European rivers (Laizé et al., 2014; 

Schinegger et al., 2012). For example, the lower frequency and magnitude of flow events 

were also detected in previous studies on the Treene catchment (Guse et al., 2015). These 

patterns (e.g., decreasing magnitude of low-flow conditions) were also reported in other 

regions in Europe, e.g., south-western Balkans (Papadaki et al., 2016). 

The largest and most significant changes in flow conditions were only partly reflected by 

species or species assemblage responses (SRs and SARs). For example, strong decreasing 

trends were predicted for metrics describing low-flow conditions (frequency and 

magnitude of low flow events); however, species and assemblages showed strong 

responses (increased abundance values) to other metrics that are projected to change less 

severely (e.g., Treene: rate of change in flow conditions (ra7), and Kinzig: duration of 

high-flow events (dh4) and timing of low-flow events (th3)).  
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This revealed that even small changes in flow conditions possibly lead to strong species 

responses. Alternatively, slight changes in these flow conditions may result in a more 

suitable flow condition and subsequently a more suitable habitat that is closer to the 

species’ optimal preferences (e.g., Gamarus roeselii, Fig. 14a).  

It is widely reported that increasing the number of low-flow events and discharge (e.g., 

downstream of dams) has negative effects on stream macroinvertebrates due to higher 

temperatures (Bredenhand and Samways, 2009; Dewson et al., 2007; Maheu et al., 2016). 

The species assemblage responses to a decrease in the number of low flows (fl1) resulted 

in an increase in species assemblage abundance (Fig. 13) which is expected ecologically.  

Moreover, the predicted decrease in abundance values caused by fewer low-flow events 

(fl1) in horizon 2090 might be due to the sensitive range of flow conditions, i.e., 

minimum values, which will be affected most by climate change. An example of the 

modelled predictive relationship of Gamarus roeselii (Trichoptera, Figure 15b) shows 

how species preferences to specific ranges of low-flow frequencies (fl1) might cause their 

abundance to decrease. The peak preference values of about five annual low-flow events 

indicates that the disturbances caused by more frequent low-flow events lead to negative 

responses in this species. So this species might prefer low-flow conditions in certain 

stages of their life cycle, e.g., for hatching, laying eggs or emergence (Lancaster and 

Downes, 2010b). However, the positive responses of SARs to fewer low flow events (fl1, 

Figure 13q) show that they favour the projected decrease in low-flow conditions.  

Furthermore, the decreased variability and frequency of low-flow events observed in our 

climate models for both central European catchments, i.e. less stress on the species in that 

respect, resulted in increasing abundance of both species and assemblages of stream 

macroinvertebrates. However, increasing frequencies of low-flow events, and hence, 

decreasing species diversity were reported in other regions (Brooks and Haeusler, 2016; 

Chessman, 2013, 2015; Dewson et al., 2007; Leigh and Datry, 2016). This reveals the 

importance of spatial scale of climate-change studies and regional differences in the type 

of responses. 

Some studies reported changes up to -100% in species richness due to the loss of 

climatically suitable habitats caused by warming climates (Domisch et al., 2013) or 

extinctions (according to species probability of occurrences) by changes in flow and/or 

temperature (Pyne and Poff, 2017). Our findings show that the SRs barely exceeded 
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percent-change values ranging smaller than -50% and larger than +50% in the Treene and 

Kinzig catchments. We were only looking on the effect of climate change on stream 

macroinvertebrates via its effect on flow conditions. Even when generalists potentially 

will benefit from the flow alterations, other environmental variables that are changing 

with climate change may counteract.  

 

 

Figure 15 The response of Gammarus roeselii (Crustacea) to projected flow alterations in low-

flow pulse count (fl1, a), and seasonal predictability of non-flooding (th3, b). The (dashed) lines 

show the species responses to altered flow values at a random sampling site during the projected 

periods, compared to the baseline (solid line). 
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This reveals that flow alterations, as a single stressor, might not lead to catchment-scale 

extinctions among the studied species, and hence, extinctions or more severe decreasing 

trends in species diversity may depend on additional effects from other environmental 

stressors (e.g. temperature) or decreasing habitat suitability (Dewson et al., 2007; Pyne 

and Poff, 2017). Furthermore, differences in the taxonomic resolution, variables, and time 

scales or the smaller spatial scale with much finer resolution in our study, compared to 

other studies, might be the reason for the lower predicted impacts of climate change on 

stream macroinvertebrates observed in this study. Furthermore, our limited understanding 

of biotic interactions hinders attempts to add these factors to observed relationships. 

3.5.2 Effects of flow alterations on each catchment 

We observed stronger potential flow alterations in the Kinzig compared to the Treene 

catchment, probably due to different catchment characteristics. The Treene is a lowland 

groundwater-dominated river with low hydrological gradients (Guse et al., 2015; Kiesel 

et al., 2010; Pfannerstill et al., 2014) which showed low ranges of flow alterations; 

however, the Kinzig is a precipitation-driven lower-mountainous river with high 

hydrological gradients which will be highly affected by the climate-change-induced flow 

alterations.  

The observed higher magnitude of SRs, SARs and OSARs in the Kinzig compared to the 

Treene catchment might be linked to (1) the differences in flow regimes and catchment 

characteristics between the lowland (Treene) and lower mountainous region (Kinzig, 

Table 7), and (2) different effects of climate change on flow regime in each region 

(lowland versus lower mountainous region) according to climate models (Fig. 11). Yet 

another possible explanation is the lower hydraulic and hydrological gradient in the 

Treene compared to the Kinzig, which lead to higher impact of even small flow 

alterations on stream macroinvertebrates responses. This confirmed the results of several 

studies (Buisson and Grenouillet, 2009; Fenoglio et al., 2010; Poff et al., 2010), which 

reported that both species and assemblages of freshwater biota are likely to respond 

stronger in regions with higher flow conditions (discharge) and stronger hydraulic and 

hydrological gradient. Alternatively, because flow alterations are stronger in rivers with 

strong hydrological gradient and high flow conditions (e.g., in the steeper lower-

mountainous Kinzig). Possibly, strong flow alterations – representing hydrological 

disturbances, create environmental filters for species occurrences, mainly through 

changing geomorphic and physical habitat conditions (Rolls et al., 2017). Moreover, the 
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higher channel slope in the Kinzig and hence the higher flow velocity, especially in the 

first order headwaters, has a stronger effect on the shear stress. If the shear stress at high 

flows decreases in the Kinzig (e.g. from 20 to 10 Nm2), this might have a tremendous 

effect on generalist species that cannot stand high shear stress while a small decrease in 

shear stress (e.g. from 5 to 2.5 Nm2) in the lowland Treene is just reducing an already 

non-disturbing stress to an even lower stress.  

Furthermore, the lowland Treene, a ground-water dominated river with low variability in 

flow conditions, may respond slower to climate change compared to the Kinzig. The 

stable flow regime may cause more generalists and fewer specialists to occur in the 

Treene (only 5 habitat specialists) compared to a higher proportion of specialists in the 

Kinzig (26 habitat specialists, according to Schmidt-Kloiber and Hering, 2015). 

Therefore, the species assemblages of the Treene reaches might cope better with the flow 

alterations compared to the Kinzig catchment. 

3.5.3 Effects of flow alterations on rivers of different size 

In this catchment-scale study, the response of stream macroinvertebrates to flow 

alterations varied with river order, and most positive responses were detected in higher 

river orders, while most decreased abundance values were detected in the lower river 

orders and upstream area. Headwater systems are critical areas for stream 

macroinvertebrates habitats (Meyer and Wallace, 2001) because they are subject to more 

temporal and spatial variation (Gomi et al., 2002). Hence, projected changes in the 

upstream area with lower discharge magnitudes will affect the species more than changes 

in the downstream area. For example, a slight but significant decrease in duration of high-

flow events (dh4) in both catchments was predicted to affect the communities in upstream 

reaches more than in downstream reaches (Figure 13a, 13f, 13k, 13p, SF5 and SF6), as 

the increased abundance values were detected in only downstream reaches (river order 

three) in both horizons. This means that the communities that inhabit the higher order 

reaches would benefit from climate change, and the predicted flow conditions would be 

closer to species’ flow preferences.  

The increase in SARs (Figure 13k) caused by the decrease in peak flows in the Kinzig 

(Figure 11f horizon 2050) might be due to the fact that many species also occurring in the 

lowlands (i.e. generalists) suffer from high flows and will increase in abundance if the 

peak flows decrease, while the few specialists adapted to these high flows decrease in 
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abundance (species with negative values in Figure 12k). This is supported by the fact that 

the increase in abundance due to the reduced peak flows is much lower in the first order 

reaches compared to the larger third order reaches. Possibly because slope is very high in 

the first order reaches, and hence, only the rheophilic specialists occur in headwaters. The 

specialists will not benefit but suffer from a decrease in high flows, while the generalists 

occur usually in the third order reaches where the observed decrease in peak flows favors 

them. 

Although decreasing high-flow events in the higher order reaches will decrease species 

downstream drift (Death, 2008), it might affect species through higher temperatures 

(Pyne and Poff, 2017) and lower oxygen content (Allan and Castillo, 2007). This 

ecological effect can also be well described by species increased abundance values in 

response to significant decrease in low flow conditions (fl1 in Kinzig, Figure 11g, 13l, 

13q). These increasing trends show the vulnerability of species to, e.g., prolonged low-

flow conditions, which have been most often explored in recent years (Leigh, 2013; Leigh 

and Datry, 2016; Walters, 2016).  

3.5.4 Outlook 

Overall, invertebrate abundance was predicted to increase due to climate-change-induced 

flow alterations (which we consider surprising). Although the species’ abundance can be 

affected by potential changes in other environmental variables (e.g. temperature), the 

observed increase in overall species assemblage abundance might be due to the fact that 

generalists will benefit from the flow alterations. However, the sensitive species of 

conservation interest are probably among the ones that will decrease in abundance (e.g. 

indicated by the much lower overall increase in abundance values in the headwaters), 

therefore, further studies including information on the taxa groups increasing and 

decreasing in abundance will give more information on this.  

Effects of projected flow alterations might be manifested as either changes in community 

structure and composition of aquatic fauna or loss of ecosystem functioning and services 

(Laizé et al., 2014). Our study suggests that changes in flow conditions would lead to a 

variety of responses in stream macroinvertebrates. These species are indicators of 

ecosystem health. Furthermore, healthy aquatic ecosystems provide ecosystem services 

such as clean drinking water (Brisbane Declaration, 2007). Analysing the responses of 

individual species to flow alterations might further reveal whether species responses to 
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flow alterations can be considered as ecologically positive or negative. For example, 

increased abundance of e.g. Dugesia sp. might be ecologically negative as it is known to 

be the indicator of low water quality (Johnson et al., 1993).  

Upscaling catchment-scale spatial variation in species responses to flow alterations and 

the subsequent effects on community structure and composition can provide insights into 

potential shifts across broad climatic gradients at larger spatial scales (Campbell et al., 

2015).  

Although the few studies that assessed the effects of multiple stressors on stream 

macroinvertebrates reported higher impacts of some stressors (e.g., land-use) other than 

flow (Kuemmerlen et al., 2015; Kuemmerlen et al., 2014), flow alteration is reported to 

be among the most important variables affecting the species of stream macroinvertebrates 

(Poff et al., 2017). The method applied in this study, i.e., the quantitative assessment of 

flow-ecology relationships, can be applied to any specific IHA metric according to 

research interests (e.g., high-/low-flow conditions, extreme events, zero-flow days) or any 

quantitative environmental variable (e.g., temperature) to assess the effects of global 

changes on river ecosystems. It can also be applied and modified for use in other regions 

and at different spatial and temporal scales. We suggest further quantitative flow 

alteration - species abundance relationship studies in other regions, e.g., Mediterranean 

region or Alpine territory, where flow conditions might change differently than in central 

Europe.  

Acknowledgements 

This study was funded through the “GLANCE” project (Global Change Effects in River 

Ecosystems; 01 LN1320A) supported by the German Federal Ministry of Education and 

Research (BMBF). SCJ and SD acknowledge funding through the “AQUACROSS” 

project (Knowledge, Assessment, and Management for AQUAtic Biodiversity and 

Ecosystem Services aCROSS EU policies; 642317) supported by the European Union’s 

Horizon 2020 Programme for Research, Technological Development and Demonstration. 

We thank the Hessian Administration for Soil Management and Geo-information 

(HVBG), and the Land Survey office Kiel (LVA) for the 25-m digital elevation model. 

We thank the German Working Group on Water Issues of the Federal States and the 

Federal Government (LAWA), and the State Agency for Agriculture, Environment and 



Chapter 3                                                 Effects of flow alterations on species’ abundance 

 

 59 

Rural Areas Schleswig-Holstein (LLUR) for providing the biomonitoring data and the 

German federal state environmental agencies for providing high-quality discharge data.  



Chapter 4              Uncertainty in assessing climate-change effects on macroinvertebrates  

 

 60 

4. Uncertainty in assessing climate-change effects on stream 

macroinvertebrates resuling from the variability in 

climate model predictions 

 

Karan Kakouei 1,2, Jens Kiesel 1,3, Jochem Kail 4, Sami Domisch 1 and Sonja C. Jähnig 1 

 

1 Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of 

Ecosystem Research, Berlin, Germany 

2 Free University of Berlin, Institute of Biology, Berlin, Germany 

3 Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, 

Department of Hydrology and Water Resources Management, Kiel, Germany 

4 University of Duisburg-Essen, Department of Aquatic Ecology, Essen, Germany 

 

4.1 Abstract 

Climate-change-induced flow alterations potentially affect abundance and functional trait 

composition of stream macroinvertebrates. We modelled flow alterations and its 

variability for horizons 2050 (2046 – 2065) and 2090 (2080 – 2099), and assessed how 

species’ abundance and functional trait composition might be impacted. We used two 

German river catchments as study areas, each showing distinct hydromorphological 

characteristics (Kinzig in the lower mountainous region with 134 species, and Treene in 

the northern lowlands with 60 species). We tested how the variability of flow alterations 

predicted by 16 climate models would cascade into the ecological models, and influence 

the variability in projected abundance of individual species. Our results showed that the 

differences in the projected flow alterations between the climate models indeed cascaded 

down into the ecological models and resulted in respective differences in the predicted 

invertebrate abundance. Variability in the projected species’ abundance in the lowland 

area was lower compared to the lower mountainous region, resulting in a significantly 

larger mean of relative changes in species’ abundance across the 16 climate models. The 

ecological status of the sampling sites was predicted to change most strongly in the 

downstream area of both catchments, while remaining more stable in the upstream area. 
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Though detecting clear effects of flow alterations on the functional trait composition (e.g., 

rhithralisation), the results suggest the important role of decreasing the uncertainty 

inherent in climate models that has been generally neglected in previous studies. The 

results of this study provide a quantitative description of abundance changes of individual 

species due to flow alterations under a variety of climate models, which is valuable for 

predicting potential impacts of climate change on taxa distributions.  

4.2 Introduction 

The abundance of river biota and the functional trait compositions are driven by 

environmental stressors. Especially flow dynamics (Naiman et al., 2008) are known to 

regulate species functional trait composition through determining the structure of physical 

habitat in river ecosystems (Arthington et al., 2006; Dewson et al., 2007; Poff et al., 

1997). Climate change is projected to significantly alter the natural flow regimes and 

dynamics (Alfieri et al., 2015; Kundzewicz et al., 2005; Nilson and Krahe, 2014; Stagl 

and Hattermann, 2016), thus affecting stream macroinvertebrates’ composition and 

diversity (Poff et al., 1997; Poff et al., 2010). Concerns about these effects on river biota 

have increased over the recent decades (Kakouei et al., 2017; Poff and Zimmerman, 

2010; Pyne and Poff, 2017). Only recently, the quantitative long-term observational flow 

data have been used to empirically derive quantitative flow preferences of stream 

macroinvertebrates (e.g., Kakouei et al., 2017; Pyne and Poff, 2017), which has been used 

to predict potential changes in species’ abundance caused by flow alterations (e.g., 

Kakouei et al., 2018). The empirically derived quantitative data might be used to 

investigate the effects of flow alterations on the functional trait composition of river 

organisms and overall ecological assessment of river ecosystems. 

The response of river biota to climate change have usually been derived by future 

projections of species distributions (Wiens et al., 2009). Although modelling of flow 

alterations and potential biodiversity changes (e.g. species’ abundance or probability of 

occurrences) is often used to estimate potential impacts of climate change on stream 

macroinvertebrates (Poff and Zimmerman, 2010; Pyne and Poff, 2017), little has been 

done to assess the uncertainty of projections regarding flow conditions (Stagl and 

Hattermann, 2016) and responses of river biota (Wiens et al., 2009). Potential projected 

changes in flow regime and its effects on river biota have mostly been assessed according 

to either one climate-change scenario (Kakouei et al., 2018; Pyne and Poff, 2017) or by 
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comparing the effects of various Representative Concentration Pathways (RCPs) (Bush et 

al., 2014; Kim et al., 2013; Stagl and Hattermann, 2016; Yan et al., 2015). However, each 

RCP is produced by Global Circulation Models (GCM) and is then downscaled to smaller 

domains using Regional Climate Models (RCM) to provide high-resolution simulated 

data at the regional or even smaller scales (Alfieri et al., 2015). Different GCMs and 

RCMs rely on a variety of parameters, so they may project different consequences for the 

same level of greenhouse gas emissions. Consequently, the projected flow conditions 

(simulated discharge data) markedly differ depending on different combinations of GCMs 

and RCMs (Kiesel et al., unpublished data). Hence, the outcome of biodiversity 

projections might also markedly differ due to strong dependencies on the climate-change 

scenarios (RCPs) and different combinations of climate models (GCMs and RCMs). In 

light of climate change and the variety of GCMs and projections, a burning question at 

present is the potential uncertainties of projected changes in species’ abundance. The 

uncertainty related to the prediction of climate-change effects on biota potentially differs 

depending on the aggregational level of the biological metrics used, i.e. abundance of 

individual species, abundance of functional trait groups, and site specific overall 

ecological assessment according to changes in species’ abundance.   

At the species level and according to the quantitative flow preferences of individual 

species described by Kakouei et al. (2017), it is expected to see very different responses 

(Kakouei et al., 2018) and high variability in projected abundance of individual species 

depending on species habitat needs. For example, species with clear flow preferences are 

likely to be affected most by climate change (Kakouei et al., 2017) and predictions of 

their abundance might differ most between different climate models.  

Investigations on the effects of flow alterations on the functional trait composition are 

very scarce (e.g., Pyne and Poff, 2017), especially on the abundance of the functional 

groups under different climate models. At this aggregational level, even larger 

uncertainties introduced by different climate models are expected as different functional 

trait groups include species with similar habitat needs. However, it is unclear how the 

variability in projected flow conditions according to different climate models is reflected 

by functional traits such as feeding types.  

Despite a wealth of research studies assessing the responses of stream macroinvertebrates 

to climate change (Davies et al., 2014; Kakouei et al., 2018; Poff and Zimmerman, 2010; 

Pyne and Poff, 2017), little has been investigated on the follow-up evaluation of potential 
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ecological effects of changes in species’ abundance caused by flow alterations (Jähnig et 

al., 2017; Webb et al., 2017). The overall assessment of the potential ecological effects 

has generally been lacking or based upon expert opinion (Davies et al., 2014; Kakouei et 

al., 2018; Souchon et al., 2008). At this aggregational level, variability in climate models 

may cause smaller uncertainty in predicting ecological effects since they are levelled out 

by aggregating information on different species or functional traits.  

Investigations on the ecological effects of changing species’ abundance under different 

climate models are an urgent and significant challenge that is of vital importance for river 

management. Therefore, the main goal of this study was to investigate how the variability 

in climate models propagates and affects the uncertainty of the biological metrics at 

different aggragational levels. More specifically, we aimed to (1) quantify variability in 

the predicted effects of climate-change-induced flow alterations on species’ abundance 

with regards to the high variability in climate-change model predictions, which allow to 

(2) assess possible effect of climate change on functional trait composition, and (3) 

evaluate possible changes in the ecological status of sampling sites of rivers of different 

size (i.e., river orders). 

4.3 Methods 

4.3.1 Study area 

The effects of climate change on flow conditions and subsequently on macroinvertebrate 

species’ abundance, functional trait composition, and ecological status were assessed in 

the Kinzig and Treene river catchments located in the lower mountainous region and 

lowland area of central Europe, respectively (Figure 16). 

4.3.2 Modelling flow alterations resulting from different climate models 

Projected daily flow data was modelled by the eco-hydrological model SWAT (Soil and 

Water Assessment Tool; Arnold et al., 1998) using all possible combinations of global 

circulation models and regional climate models, resulting in 16 different climate models 

(Table ST5). The respective 16 datasets of daily precipitation and minimum and 

maximum temperature for the RCP 8.5 scenario were downloaded from the CORDEX 

website (Jacob et al., 2014), bias corrected (for precipitation: power transformation and 

for temperature: variance scaling) and discharge time-series modelled in well-calibrated 

SWAT models (Kiesel et al., 2017) for the three time-periods 1998-2017, 2046-2065, and 
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2080-2099, referred to as basline, horizon 2050, and horizon 2090, respectively (Fig. 

17B). The RCP 8.5 is the scenario that represents the most extreme conditions and hence 

the upper limit for potential flow alterations and related taxa responses (Kakouei et al., 

2018).  

 

 
 
Figure 16 The study area: the Treene catchment in the lowland (a) and the Kinzig catchment in 

the lower mountainous region (b) in Germany. 

 

4.3.3 Predicting flow alterations’ effect on species’ abundance  

Predictive relationships were already set up for all 134 and 60 macroinvertebrate species 

occurring in the 223 and 67 sampling sites in in the Kinzig and Treene catchments, 

respectively by Kakouei et al. (2018) (eHOF models, Figure 17A). They were used here 

to predict the impacts of flow alterations resulting from different climate-change models 

(Figure 17B) on invertebrate abundance (Figure 17C, 17D).  

From the wide range of different IHA flow metrics for which predictive relationships 

were set up by Kakouei et al. (2018), we selected the IHA category of “duration” here. 

Within this category, we chose the dh4-metric to describe the flow alterations. The dh4 

computes the maximum of a 30-day moving average flow (m3/s) for the 12-month period 

prior to the date of the biological sampling and describs the discharge at the largest flood 

event per year (according to Olden and Poff, 2003).  
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Figure 17 Workflow schematic of the analyses for both individual species and species 

assemblages and one climate model. The predictive relationship (A, established by Kakouei et al., 

2018) was set up by calculating each IHA metric for each sample (b) using 12-month time-series 

gauge data before the date of biological sampling (a). Each IHA metric (f) was then calculated for 

each year during baseline (BL, e), horizon 2050 (H2050, e) and horizon 2050 (H2090, e) and then 

used to predict projected abundance values (AV, g) for each species in each year during each 

period. The 20 abundance values per species were averaged to calculate the mean abundance 

value (MAV, D) for each species in each period. Projected changes in species’ abundance (SRs) 

were calculated by averaging the Δ-Responses (D, equation 2) for each species among all 

sampling sites (D, equation 3). All these analyses were repeated for each climate model (e, f) 

(Table ST5). 

 

This IHA metric was selected because (1) it was the only IHA metric that was applied in 

both catchments by Kakouei et al. (2018) and (2) the predictive ability of models – 

according to the area under the receiver operating characteristic curve (AUC) values that 

measures the model’s ability to discriminate between true and false positives (Hosmer Jr 
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et al., 2013) – that was tested by Kakouei et al. (2018) was strongest for all species in 

both catchments (Kinzig: 0.81 – 0.98, Treene: 0.88 – 0.98) for this metric compared to 

the rest of the IHA metrics. The AUC values range from 0.5 to 1, and a higher value, 

especially above 0.7, indicates stronger predictive ability of a model (Hosmer Jr et al., 

2013). 

Using the predictive relationships for the dh4 flow metric, the mean abundance value of 

each individual species (Figure 17D, equation 1) was predicted at each sampling site over 

the 20 values for each 20-year period (for the baseline and two projected horizons of 2050 

and 2090 (Figure 17C). The ∆ ̵𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒s (Figure 17D, equation 2) calculates the 

changes (decrease or increase) in the abundance of individual species in the projected 

periods as compared to the baseline. These values were then used to calculate one single 

value for the mean percent-change in the abundance of individual species among all 

sampling sites (species responses (SRs), Figure 17D, equation 3) for both horizons (2050 

and 2090). Steps C and D in Figure 17 were repeated for each of the 16 climate models, 

resulting in 16 mean valus of changes in species’ abundance (i.e., species responses, SRs) 

for each species for each of the two horizons. Here we show the variability of projected 

percent-changes in species’ abundance to climate-change-induced flow alterations under 

16 climate models. 

Table 9 Functional traits of stream macroinvertebrates 

(freshwaterecology.info-database, Schmidt-Kloiber 

and Hering, 2015). 

Traits Categories 

Current preference 

Limnophil 

Limno- to rheophil 

Rheo- to limnophil 

Rheobiont 

Indifferent 

Unknown 

Stream zonation preference 

Upstream 

Mid- to upstream 

Mid- to downstream 

Indifferent 

Unknown 

Feeding type 

Predator 

Grazer 

Shredder 

Gatherer 

Active filter feeder 

Passive filter feeder 

Grazer-Shredder 

Grazer-Gatherer 

Gatherer-Shredder 

Generalist 
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4.3.4 Assessing flow alterations’ effect on functional trait composition 

We assessed the effects of flow alterations on different species by grouping them 

according to the higher taxa level (i.e. order) or their functional traits (according to 

freshwaterecology.info-database, Schmidt-Kloiber and Hering, 2015). We selected the 

following three flow-related functional traits, for which information was available for at 

least 80% of the species in each catchment: (1) current preference, (2) stream zonation 

preference, and (3) feeding type (Table 9). Furthermore, we assessed whether the most 

extreme projected abundance values can be explained by the higher taxa level (i.e. order) 

or their functional traits (according to freshwaterecology.info-database, Schmidt-Kloiber 

and Hering, 2015).  

4.3.5 Assessing flow alterations’ effect on ecological conditions  

For each of the 16 climate models, the ES of all sampling sites was assessed for each 

time-period (baseline, horizon 2050 and horizon 2090) using the standard assessment 

software ASTERICS, with PERLODES implemented in the ASTERICS software being 

the official German assessment method compliant with the European Water Framework 

Directive (http://www.fliessgewaesserbewertung.de/en/, Hering et al., 2013). The 

assessment follows a stressor-specific multimetric approach; the three main stressors 

considered in individual modules are saprobic pollution, acidification and ‘general 

degradation’. The module for general degradation reflects the impact of various stressors 

like hydromorphological degradation, changes in stream hydrology and impacts of land 

use with values ranging from zero to one. The German saprobic index (GSI, Rolauffs et 

al., 2004) ranges from one to four with higher values indicating higher tolerance of 

macroinvertebrates of a sampling site to organic pollution, i.e. higher saprobic pollution. 

Taxa lists of the sampling sites as input data – with species’ abundance predicted by the 

predictive relationships – were used to assess the ecological condition of sampling sites 

and evaluate the ecological effects of flow alterations on river ecosystems in the 

ASTERICS software.  

All statistical analyses were carried out in R 3.3.2 (R Development Core Team, 2016). 

For significance tests, we used one-way analysis of variance (ANOVA) – if more than 

two groups needed to be compared, and a paired t-test was performed to compare e.g. the 

mean of flow alterations in the Kinzig and Treene catchments. Percent data was arc-sine-

transformed prior to testing (Sokalr and Rohlf, 1981).  
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4.4 Results 

4.4.1 Flow alterations resulting from different climate models 

The 16 different climate models resulted in both, increasing and decreasing trends in the 

maximum 30-day flow (dh4, Figure 18a-d). As the magnitude of flow conditions was 

much higher in the Kinzig catchment, regardless of the climate model, the changes in 

high flows as well as the projected changes in both horizons were significantly larger in 

this catchment compared to the Treene (Figure 18, SF8, Table ST7, t.test, p<0.01).  

 

 

 

Figure 18 Variability in projected abundance of higher taxa and functional groups (a, b, i, j: 

higher taxa, c, d, k, l: current preference, e, f, m, n: stream zonation preference, g, h, o, p: feeding 

type) in the Kinzig (left column, 134 species) and Treene (right column, 60 species) catchments to 

flow alterations over all 16 climate models (i.e. 16 values per species (n)) for horizon 2050 and 

horizon 2090. The red asterisks (*) shows if the overall mean value (black circle in the middle of 

boxplots) of relative change of abundance among all species (n) of each functional group is 

significantly different from zero. 

 

A higher number of climate models predicted an increase of the maximum 30-day flow in 

the Treene catchment (11 and 15) compared to the Kinzig catchment (6 and 7) in horizon 

2050 and 2090 compared to the baseline.  
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Combining the mean of relative changes in maximum of 30-day flows among all 16 

climate models (Figure 18, yellow boxplots) showed a positive overall mean in both 

catchments in both horizons (Kinzig: +1.2% in horizon 2050 and +4.0% in horizon 2090, 

Treene: +7.9% in horizon 2050 and +13.3% in horizon 2090). The overall means were 

predicted to be insignificantly different from zero in the Kinzig catchment (t.test, horizon 

2050: p=0.7, horizon 2090: p=0.3), while it was predicted to be significantly different 

from zero in the Treene catchment (t.test, horizon 2050: p<0.05, horizon 2090: p<0.01). 

4.4.2 Predicting flow alterations’ effect on species’ abundance  

The variability in the predicted changes in species’ abundance (SRs) due to alterations in 

high-flow conditions were larger in the lower-mountain Kinzig catchment compared to 

the lowland Treene catchment (Table ST8). Furthermore, the abundance of 85% of 44 

species that occured in both catchments were predicted to be more variable according to 

the 16 climate models and were predicted to either increase or decrease more strongly in 

the Kinzig catchment compared to the Treene catchment.  

In the Kinzig as well as the Treene catchment, about half to two thirds of the species 

showed an increase in abundance. The overall mean of changes in the abundance of 

individual species over all 16 climate models showed that the abundance of 48% (n = 65) 

and 58% (n = 78) of the species will increase in horizon 2050 and 2090, respectively in 

the Kinzig (Figure 19a, 19b), and 63% (n = 38) of the species in both horizons in the 

Treene (Figure 19c, 19d). However, in the Kinzig catchment, this positive trend was 

significant for only 10% and 6% of the species in horizon 2050 and 2090, respectively, 

while it was significant for the majority of species in the Treene catchment in horizon 

2050 (63%) and horizon 2090 (50%) (red astericks in Figure 19a-d, t.test, p<0.5). 

Moreover, significant negative trends in the abundance of species in the Treene 

catchment were predicted for 33% and 12% of species (red astericks in Figure 19c, 19d, 

t.test, p<0.5).  

Moreover, calculating the range for each species (maximum difference in the predicted 

changes between the 16 climate models shown in Figure 19), the mean range was 

significantly larger for the 134 species in the Kinzig, compared to the 60 species in the 

Treene catchment (t.test, p<0.01). Most of the species occurring in both catchments were 

predicted to change in abundance more strongly in the Kinzig compared to the Treene 

catchment (38 out of 45). 
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4.4.3 Assessing flow alterations’ effect on functional trait composition 

The variability of changes in the abundance of functional groups in response to flow 

alterations under the 16 climate models were significantly higher in the Kinzig compared 

to the Treene catchment (Figure 20). 

The overall mean abundance of the widespread EPT-taxa (Ephemeroptera, Plecoptera and 

Trichoptera) over all 16 climate models was predicted to decrease insignificantly in the 

Kinzig catchment (Figure 20a, 20b).  

In contrast, overall mean abundance of the EPT-taxa of the Treene catchment was 

predicted to increase significantly over all 16 climate models for Ephemeroptera and 

Trichoptera (t.test, p<0.05, Figure 20i, 20j). The species of these three orders in the 

Kinzig and Trichoptera in the Treene were the most susceptible species that were 

predicted to have highest variability in projected abundance to flow alterations under 16 

climate models.  

The limnophilic species were predicted to increase in the Kinzig but decreasing in the 

Treene catchment (Figure 20c, 20d, 20k, 20l). Furthermore, rheophlic species were 

predicted to decrease in the Kinzig but significantly increase in the Treene catchment 

(t.test, p<0.5, Figure 20c, 20d 20k, 20l). These changes in the Treene catchment together 

with increasing abundance of upstream communities (Fig. 20n) may be referred to as the 

rhitralisation effect. 

Furthermore, rheophilic species of the Kinzig and limno- to rheophilic species of the 

Treene catchment were predicted to show highest variability according to the 16 climate 

models. 

The overall mean abundance of species of the upstream region (i.e., upstream and mid- to 

upstream) of the Kinzig catchment will significantly decrease due to flow alterations, 

while significant increasing trends were detected for these species in the Treene 

catchment (t.test, p<0.5, Figure 20e, 20f, 20m, 20n). The overall mean abundance of 

species of the downstream region of the Kinzig catchment are predicted to increase 

significantly (t.test, p<0.5), while the trends in the more downstream area of the Treene 

catchment was predicted to decrease insignificantly. The abundance of species with 

preferences to the upstream and mid- to upstream area of the Kinzig and to mid- to 

upstream area of the Treene catchment were predicted to have the highest variability in 

response to projected flow alterations according to the 16 climate models. 
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Figure 19 The variability in projected abundance of individual species (SRs) for 134 species at 

the Kinzig (a, b) and 60 species at the Treene (c, d) over all 16 climate models (i.e. 16 values per 

species’ box-plot) in horizon 2050 (a, c) and horizon 2090 (b, d). A significantly (t.test, p<0.01) 

different overall mean value from zero is shown by a red asterisks (*) below the boxplots.  
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Figure 20 Variability in projected abundance of higher taxa and functional groups (a, b, i, j: 

higher taxa, c, d, k, l: current preference, e, f, m, n: stream zonation preference, g, h, o, p: feeding 

type) in the Kinzig (left column, 134 species) and Treene (right column, 60 species) catchments to 

flow alterations over all 16 climate models (i.e. 16 values per species (n)) for horizon 2050 and 

horizon 2090. The red astericks (*) shows if the overall mean value (black circle in the middle of 

boxplots) of relative change of abundance among all species (n) of each functional group is 

significantly different from zero. For details see Figure SF9 and SF10. 
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All functional feeding groups (except shredders) of the Treene catchment showed 

significant changes according to the overall mean abundance, which are predicted to be 

an increasing trend for shredders, predators, gatherers and grazers (t.test, p<0.5, Figure 

20o, 20p). Shredders, gatherers and active filter feeders of the Kinzig catchment were 

predicted to have highest variability in response to projected flow alterations according to 

the 16 climate models. 

4.4.4 Assessing flow alterations’ effect on ecological conditions  

Despite significant changes in the abundance of individual species and functional trait 

composition in both catchments over all 16 climate models, the assessment scores for the 

ES and GSI were not predicted to change significantly in both catchments (Figure 21).  

 

 

Figure 21 The ecological effects of flow alterations on stream macroinvertebrates in the Kinzig (a 

and c, 223 sites) and Treene (b and d, 67 sites) catchments over all 16 climate model (for details 

see Figure SF11). Potential changes in the ecological status (a and b: 2 for good, 3 for moderate 

and 4 for unsatisfied ecological status) and German saprobic index (c and d) of each site 

(according to regular monitoring required by the European Water Framework Directive) during 

three periods of baseline (1998 – 2017), horizon 2050 (2046 – 2065) and horizon 2090 (2080 – 

2099). In the Kinzig catchment, site one to 87 is located in river order one, 88 to 135 in order two 

and 136 to 223 in order three. In the Treene catchment, site one to 18 is located in river order one, 

19 to 42 in order two and 43 to 67 in order three. 

 

The ES of the sampling sites of the Kinzig catchment was predicted to improve in horizon 

2050 and worsen in horizon 2090 (Figure 21a), while it was predicted to improve in the 
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Treene catchment in both horizons. The GSI of the Kinzig catchment was predicted to 

increase in horizon 2050 and decrease in horizon 2090, while it was predicted to decrease 

in the Treene catchment in both horizons. In both catchments, ecological changes were 

detected in the downstream sampling sites, while the overall ecological effects of changes 

in species’ abundance were minimal in the upstream region (1st river order) (Figure 21). 

4.5 Discussion 

We tested the ecological effects of the variability in climate model predictions on 

assessing effects of flow alterations on macroinvertebrate abundance and functional trait 

composition. A variety of climate models resulted in strong variability of changes in 

projected flow conditions, which subsequently cascade into the ecological models and 

lead to strong variability in predicted abundance of individual species of stream 

macroinvertebrates. 

Quantifying the range of changes in species’ abundance under 16 climate models yielded 

several key findings: (1) projected flow alterations in the Treene catchment in the lowland 

area is predicted to show more increasing trends in maximum 30-day flows compared to 

the Kinzig catchment in the lower mountainous region of central Europe, (2) the 

projected changes in the abundance of individual species (SRs) are predicted to be 

stronger in the Kinzig catchment, (3) flow alterations is predicted to have contradicting 

effects on the overall abundance of the functional groups of the two catchments, and (4) 

the ecological assessment metrics showed that the ecological status (ES) and saprobic 

index (GSI) of the sampling sites will be affected most strongly in the downstream area, 

while the upstream area will remain more stable.  

4.5.1 Effects of flow alterations on species’ abundance  

Bunn and Arthington (2002) reported the determinant role of flow alterations in 

threatening ecological health of river ecosystems. In this study, the strong variation in 

projected flow alterations reflected high variabilities in the projections of the 16 different 

climate models. The high variability arises from different selections of GCM and RCM 

which are based on different climate model assumptions and algorithms. Considering 

only one model in climate-change studies might cause neglecting the cascading effects of 

variability of projected flows according to a variety of climate models on the variability 

of changes in species’ abundance, which is predicted to be strongly different according to 

our results. 
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Our results showed more significant effects of flow alterations on the overall abundance 

of individual species over all climate models in the Treene catchment compared to the 

Kinzig catchment. This can be due to the fact that climate models perform differently 

among ecoregions. More specifically, the CORDEX climate change dataset for both 

temperature and precipitation shows a better skill in the lowland area as compared to 

mountainous regions (Kotlarski et al., 2014). This is in agreement with the results found 

in this study, where variability of the projected abundance of stream macroinvertebrates 

was higher in the lowland Treene compared to the lower mountainous Kinzig catchment. 

The higher predicted effects of climate change on species’ abundance in the Kinzig 

catchment due to the high variability in the climate models with different trends 

(increasing and decreasing) increase the uncertainty on how flow alterations will affect 

species’ abundance. However, in the Treene, climate change induced flow alterations will 

be smaller but show a clear trend over all investigated climate models.  

Our results showed that high flow conditions were projected to increase according to 

several climate models in the lowland area. Northern lowlands area is subject to face 

more frequent and strong high-flow events (Lehner et al., 2006), while the magnitude of 

high flow events in central lower mountainous region is reported to increase much less 

(Buth et al., 2015) with declining mean annual river flows (Eckhardt and Ulbrich, 2003). 

This suggests a north – south gradient with projected increasing stream flow magnitudes 

in the northern region which declines southward and leads to decreasing projected flows 

in lower mountainous region. Our results showed that these projected changes in flow 

conditions will cause higher variability in the projected abundance of individual species 

of the lower mountainous Kinzig catchment with higher river flows compared to the 

lowland Treene catchment with more stable flow conditions. Furthermore, river flows and 

consequently the abundance of species have been reported to change stronger in rivers 

with higher flow conditions (Buisson and Grenouillet, 2009; Fenoglio et al., 2010; 

Kakouei et al., 2018; Poff et al., 2010).  

Although species might benefit from changes in flow conditions under some climate 

models, which was predicted to lead to e.g. increased abundance, the percent changes in 

the abundance of individual species was calculated by averaging the changes among all 

sampling sites of each catchment (Figure 17D, equation 3). Therefore, decreased 

abundance of a species in a sampling site of a catchment – even up to minus 100% which 

means species loss – might be compensated by strongly increased abundance of that 
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species in other sites of the catchment, which can result in an overall positive abundance 

of a species in a catchment. Furthermore, the mechanisms of climate-change-induced 

impacts on stream macroinvertebrates depend on a variety of factors including species 

qualitative ecological traits such as current preferences and quantitative flow preferences 

(Kakouei et al., 2017; Poff et al., 2010). For example, generalists that accept a wide range 

of flow conditions, e.g. Lype reducta (according to Schmidt-Kloiber and Hering, 2015, 

and Kakouei et al., 2017), are less likely to experience decreasing abundance resulting 

from reduced river flows (Buisson et al., 2008; Poff et al., 2010). Our results showed that 

the abundance of these species is predicted to change slightly, with small variability 

across 16 climate models. 

While redundancy in functional roles diminishes the negative impact of environmental 

change (Rosenfeld, 2002), a decrease in the abundance of species that play particular 

functional roles in communities of sampling sites reduces the resilience of that function in 

river ecosystems. The abundance of some species was predicted to decrease while it was 

predicted to increase for other species; however, a strong increase in the abundance of 

generalists will not compensate for the loss of specialists (Kakouei et al., 2018). 

Furthermore, a species turnover with no change in overall taxonomic richness and 

species’ abundance may not secure ecosystem functioning. Therefore, the increased 

abundance of some species in a sampling site is not identical to a better ecological status 

of that site (according to regular monitoring required by the European Water Framework 

Directive).  

4.5.2 Effects of flow alterations on functional trait composition 

Our results provide empirical evidence that the abundance of a variety of functional traits 

will be affected by flow alterations, and in accordance with results reported by recent 

studies (e.g., Jourdan et al., 2018) showed that the projected changes in species’ 

abundance will vary regionally. Recent long-term quantitative and climate-change 

simulation studies (Jourdan et al., 2018; Pyne and Poff, 2017) showed that the relative 

abundance of functional feeding groups will be affected by climate-change effects on 

flow and precipitation. 

Species ecological traits determine the functional compositions of a community (Poff et 

al., 2006), thus providing insights into the mechanistic link between species responses 

and the processes behind them (McGill et al., 2006). We focused on the individual taxa at 

the species level which allowed observing patterns in extreme, moderate and small 
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changes in species’ abundance of various functional groups to flow alterations for several 

traits (e.g., stream zonation preferences). Interesting patterns were observed according to 

the variability of changes in species’ abundance according several traits e.g. current 

preferences, which reveal e.g. most extreme changes will happen to rheophilic species. 

Furthermore, increasing abundance of rheophilic and tolerant rhithral species with 

upstream preferences in the Treene catchment suggests potential range extensions of 

these species which is referred to as “rhithralisation effect” (Jungwirth et al., 2000; 

Schmutz and Sendzimir, 2018). 

Previous studies on the effects of precipitation on functional feeding groups showed 

either negative impacts on gatherers and shredders or positive effects on predators, which 

might vary regionally (Jourdan et al., 2018; Theodoropoulos et al., 2017). We also found 

that the abundance of predators will increase in our study catchments. These similar 

trends might be due to the fact that river flow conditions are precipitation-driven (Filipe 

et al., 2013; Wenger et al., 2011; Woodward et al., 2010). Furthermore, predators are 

known to be aquatic active with larger body size (according to Schmidt-Kloiber and 

Hering, 2015). They therefore would thrive under increasing flows. However, the 

abundance of other functional feeding groups are predicted to be differently affected in 

each catchment, which might be described by regional differences which has been also 

reported in several studies (e.g., Jourdan et al., 2018; Pyne and Poff, 2017).  

Our results showed high variability and strong – depending on the climate model – 

changes in the projected abundance of shredders in the Kinzig catchment. Even low 

variability and small changes in the abundance of this functional feeding group in the 

Treene catchment might have significant effects on ecosystem functioning as they 

accelerate leaf fragmentation that is of vital importance for the aquatic nutrient transfer 

and food webs (Dangles and Malmqvist, 2004; Jourdan et al., 2018). 

The qualitative data compiled in comprehensive databases (e.g., 

www.freshwaterecology.info-database), usually cover the information from wide ranges 

of spatial scales from headwater small streams to large rivers according to the concept of 

river continuum (Schmidt-Kloiber and Hering, 2015). We found that catchment-scale 

quantitative studies may sometimes result in contradicting outcomes as compared to the 

existing qualitative data, as they do not match spatially. However, these contradictions do 

not mean that one is rejecting the other one. For example, assessing the ecological effects 

of changes in the abundance of individual species (SRs) on ecological metrics of 

http://www.freshwaterecology.info/


Chapter 4              Uncertainty in assessing climate-change effects on macroinvertebrates  

 

 78 

sampling sites showed more changes in the downstream river reaches of 3rd orders 

compared to the 1st order river reaches in the upstream region (Figure 21); however, 

species functional traits revealed stronger changes in the abundance of species with 

preferences to the upstream and mid- to upstream river reaches (Figure 20e, 20f, 20m, 

20n). This can be explained through the fact that 3rd river order, considered as 

downstream in this study, is still defined as mid-to upstream river sections in the trait 

databases. 

Observing clear patterns in changes in species’ abundance and distribution according to 

their qualitative traits-based suitability to particular environmental conditions (mainly 

flow) has often failed due to assessing univariate relationships between a single 

qualitative trait and environmental gradients (e.g., Pyne and Poff, 2017). This might raise 

the importance of traits interrelationships (Pilière et al., 2016) which has yet been rarely 

investigated (Pyne and Poff, 2017). We may not group all species based on a single 

qualitative trait and expect a clear response to a particular stressor (here flow alterations), 

because single-trait responses may vary based on other associated traits (Pilière et al., 

2016). Therefore, looking at the individual species according to their functional traits 

might be more meaningful than comparing groups of species with similar traits. 

Furthermore, focusing on flow alterations and its effects on individual species might 

reveal the reason behind the extreme, moderate or low abundance changes, which might 

be caused by traits interrelationships (Pilière et al., 2016). For example, a rheophilic taxon 

occurring in the upstream area might have a specific feeding type (e.g., predator) that 

helps the species to survive lower current velocities due to increased food availability.  

4.5.3 Assessing flow alterations’ effect on ecological conditions  

Relatively few studies have investigated the quantitative effects of flow alterations on 

riverine species (Pyne and Poff, 2017), especially the effects on the abundance of 

individual species of stream macroinvertebrates (Jourdan et al., 2018; Kakouei et al., 

2018; Kakouei et al., 2017).  

The results of our analysis on the metric describing the ES of sampling sites sites revealed 

positive changes in species’ abundance in the Treene catchment for most species and 

stream-type specific functional groups. In the Kinzig catchment, the reduced ES of 3rd 

order sampling sites might be due to decreasing abundance of stream-type specific 

species in horizon 2050, while improving ES of these sampling sites in horizon 2090 

might be due to increasing abundance of these species. Furthermore, flow alterations are 
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likely to be associated with other stressors such as change in temperature or oxygen 

concentrations, which further affects the functional groups and subsequently the 

ecological status of river ecosystems  

The GSI is reported to be explained by the antecedent climatic patterns in Germany 

(Jourdan et al., 2018). Our results showed decreasing trends in projected high flow 

conditions of the Kinzig catchment according to the second climate model in horizon 

2090 (Figure 18, SF8, Table ST7), which is likely to significantly increase the GSI values 

of sampling sites in the 3rd river order. This is meaningful since reducing river flows is 

associated with concentrating pollutants, and consequently loss of pollution-sensitive taxa 

(Jones et al., 2013). Despite insignificant changes, decreasing GSI values in the Treene 

and partly in the Kinzig (except horizon 2050) catchments indicates increased abundance 

of pollution-sensitive taxa due to flow alterations. Slightly increasing trend in the GSI 

values of the Kinzig catchment shows loss of pollution-sensitive taxa with changing flow 

conditions in the lower mountainous region, which reveals that these values are strongly 

impacted by catchment-scale specific conditions.  

In addition, the abundance of some functional groups or species is predicted to show 

contradicting trends (decreasing or increasing) in several studies focusing on different 

climate models or different regions (Jourdan et al., 2018; Poff and Zimmerman, 2010 and 

references therein). We showed that the effects of flow alterations on species’ abundance 

might be not only due to the regional differences according to catchment characteristics 

(as suggested by Jourdan et al., 2018, and Lawrence et al., 2010), but also due to the 

variety of climate models used in different studies. Though detecting clear effects of flow 

alterations over all 16 climate models on the functional trait composition (e.g., 

rhithralisation), the results suggest the important role of decreasing the uncertainty 

inherent in climate models that has been generally neglected in previous studies.  

Our approach allowed an estimation of uncertainties of climate-change induced flow 

alterations on river ecosystems in central Europe. The results of this study highlight the 

importance of maintaining natural flow conditions for riverine biota, providing of which 

is a challenging water management issue (Davies et al., 2014).  
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5. General discussion 

5.1 Rationale and research aims 

Climate change is predicted to affect flow regimes of rivers and streams (Ormerod et al., 

2010), resulting in a increased frequency of extreme events (Döll and Zhang, 2010). 

Changing flow regimes has been reported for European rivers and streams (Nilson and 

Krahe, 2014; Stagl and Hattermann, 2016) and this trend is expected to continue in the 

future (Alfieri et al., 2015). Although any changes in flow can alter the composition and 

diversity of e.g. stream macroinvertebrates (Domisch et al., 2017; Kuemmerlen et al., 

2015; Kuemmerlen et al., 2014; Poff and Zimmerman, 2010; Pyne and Poff, 2017), flow 

has usually been neglected in assessing the impacts of climatic changes. Much of our 

science efforts and investigations have been directed primarily at qualitative data (e.g., 

Brooks et al., 2011; Chessman, 2013, 2015; Hering et al., 2009) or modelling changes in 

community structure and diversity (Konrad et al., 2008; Worrall et al., 2014), with less 

attention given to the quantitative assessment of changes in river flow regimes and 

evaluation of the follow up ecological effects on individual taxa. Given the crucial role 

that river flows play in governing the physical habitat conditions and parallel processes 

such as chemical conditions and habitat connectivity, understanding the consequences of 

changing flow regime is of prime importance. To understand to which extent stream 

macroinvertebrates are affected by climate-change-induced flow alterations, there is a 

need to gain further insights into potential changes in e.g. species’ abundance. 

The main objectives of this thesis were to highlight (1) the lack of quantitative assessment 

of species responses to flow alterations, and (2) the missing connection between current 

trends in flow-ecology studies and ecological effects of climate-change-induced flow 

alterations. This thesis aimed to address these gaps by determining and quantifying 

species flow preferences - thereby defining predictive relationships for individual taxa, 

and using it as a basis to predict potential changes in species’ abundance under the effects 

of projected flow alterations in Germany. In Chapter 2, species flow preferences along the 

range of different flow conditions were quantified. This approach was used as foundation 

for further analyses of the effects of flow alterations on potential changes in species’ 

abundance in Chapter 3 and 4. In Chapter 3, the predictive relationships between species’ 

abundance and flow conditions were established and used as the basis to predict potential 

changes in the abundance of individual species and species assemblages in two 
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contrasting German river catchments. In Chapter 4, the variability in species projected 

abundance in response to flow alterations according to 16 climate models was observed. 

Furthermore, the effects of variability in climate model predictions on functional trait 

composition (i.e., functional feeding groups, current preferences and stream zonation 

preferences) were assessed. In addition, the rarely investigated follow up evaluation of 

flow alterations’ effect on ecological status of sampling sites was assessed. 

5.2 Key research findings and potential effects of flow alterations on 

stream macroinvertebrates 

The novelty of the research presented in this thesis lies in: (1) conducting the first 

quantification of flow preferences of stream macroinvertebrates according to a German-

wide dataset and identifying the hydrological thresholds of changes in species’ abundance 

and presence along the range of flow conditions, (2) Applying this methodology in two 

contrasting German river catchments, the preference curves and thresholds were used as a 

basis for analysing the potential changes in abundance of stream macroinvertebrates 

according to climate-change-induced flow alterations in two projected periods of horizons 

2050 (2046-2065) and 2090 (2080-2099), and (3) assessing the potential effects of 

variability in projected changes in flow conditions according to 16 climate models on 

species’ abundance, functional trait composition and the ecological conditions of 

sampling sites. The key research outcomes are as follows: 

1) Chapter 2: In this chapter, we investigated whether invertebrates show a clear 

response to river flow and have an optimum response value along the gradient of 

different flow conditions - described by IHA metrics, and hence have specific flow 

preferences. We also quantified the hydrological thresholds at which species’ 

abundance and presence change. The analyses yielded the following key findings:   

i. On average, more than one-third (18-40% of 120 taxa depending on the IHA 

metric) of the taxa can be considered as ubiquitous as they have a broad 

hydrological tolerance, while about two-thirds of the taxa (35-53% of 120 taxa 

depending on the IHA metric) either responded to a specific range of flow 

conditions with detectable optima for their occurrence or showed monotone 

increasing/decreasing trends (23-41% of 120 taxa depending on the IHA 

metric). The habitat suitability for the taxa with preferences to specific ranges 
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of flow conditions may be potentially affected by global change-induced 

hydrological changes,  

ii.  “Duration of high flow events” represented the flow parameter that correlated 

most with the abundance of individual taxa, followed by “rate of change 

average event”, with 41 and 38 % of the taxa showing a peak in their 

abundance at specific ranges of these metrics, respectively.  

2) Chapter 3: Assessing the quantitative impact of possible flow alterations on species’ 

abundance yielded several key findings:  

i. Climate change was predicted to change flow conditions significantly 

(p<0.05). The magnitude and frequency of low-flow events in the lowlands 

area and frequency of low-flow events in the lower mountainous region were 

predicted to decrease strongly,  

ii. Even small changes in flow conditions showed a strong increase or decrease in 

species’ abundance, and 

iii. Increasing/decreasing abundance values were significantly larger in the lower-

mountainous region (Kinzig catchment) compared to the lowland area (Treene 

catchment).  

iv. The overall abundance of species assemblages over all IHA metrics were 

predicted to increase in 100% and 98% of the sampling sites in the lower-

mountainous and lowland catchment, respectively.  

3) Chapter 4: Quantifying the Uncertainty in assessing climate-change effects on 

stream macroinvertebrates resutling from the variability in climate model predictions 

yielded several key findings: 

i. Projected flow alterations in the lowland area (Treene catchment) are 

predicted to show more increasing values in the duration of high flow events 

compared to the lower mountainous region (Kinzig),  

ii. The variability in the abundance of individual species are predicted to be 

higher in the lower mountainous region, which caused a less significant effect 

on species overall abundances,  

iii. Flow alterations are predicted to have contradicting effects on the overall 

abundance of the functional groups within the two catchments. For example, 

increasing abundance of rheophilic and tolerant rhithral species with upstream 

preferences in the lowland area suggested potential range extensions of these 

species which is referred to as “rhithralisation effect”, and 
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iv. The ecological assessment metrics (i.e., ecological status and German saprobic 

index) showed that insignificant changes will still affect the downstream area 

of both catchments, while the upstream area will remain more stable. 

In this thesis, the effects of climate change on species’ abundance were assessed 

according to a variety of climate models, which revealed significantly variable ecological 

effects of flow alterations on stream macroinvertebrates (Chapter3 and 4) and functional 

trait composition, i.e. functional feeding groups, current preferences and stream zonation 

preferences (Chapter 4), which has been assessed for the first time. This task has been 

particularly challenging since the quantitative data on flow preferences (“hydrological 

traits”) and projected abundance of vast majority of stream macroinvertebrates was still 

unknown.  

The quantitative data on flow preferences of stream macroinvertebrates is a valuable 

addition to the already existing qualitative data (i.e., ecological traits), and enable to 

assess species’ responses to climatic changes. While occurrence data at large spatial 

scales are still limited, the quantitative flow preferences of relatively common taxa can be 

stored as species’ hydrological traits in large databases such as the freshwaterecology.info 

platform (Schmidt-Kloiber and Hering, 2015). This method can be applied on any taxa at 

any spatial scale once adequate sample data is available spatially and temporally.  

The results of this research showed that the magnitude of changes in flow conditions is 

higher in the lower mountainous region than in the northern lowlands (Chapter 3 and 4). 

This outcome could be due to lower mountainous rivers with high flow conditions, such 

as the kinzig, facing stronger flow alterations than lowland rivers with less variability in 

flow conditions (Chapter 3 and 4). Moreover, river flow conditions are strongly driven by 

precipitation patterns (Woodward et al., 2010). According to the potential changes 

predicted for regional runoff depth in Germany (Nilson and Krahe, 2014), flow 

conditions of a large amount of lowland rivers including the Treene are predicted to 

increase in the future (Chapter 1, Figure 2). These increasing trends were detected by the 

majority of climate models (11 and 15 of 16 climate models in horizons 2050 and 2090, 

respectively) in the lowland area (Chapter 4). Moreover, the decreasing trends (predicted 

according to 10 and 7 of 16 climate models in horizons 2050 and 2090, respectively) 

(Chapter 4) were also predicted by Nilson & Krahe (2014) in the lower mountainous 

region (Figure 2), where the regional runoff depth is predicted to decrease as far as 20% 

for the projected period (2021-2050).  

http://www.freshwaterecology.info/
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The results of catchment-scale study showed that increasing or decreasing abundance 

values as well as changes in functional trait composition is more variable in the lower 

mountainous region (Kinzig) compared to the lowland (Treene) (Chapter 3 and 4). This 

might also be due to the variability in catchment characteristics and flow regimes. Only a 

handful of studies used quantitative data such as species’ abundance (e.g., Jourdan et al., 

2018) or richness (e.g., Pyne and Poff, 2017) to assess the effects of climate change on 

e.g. functional trait composition. Jourdan et al. (2018) analysed the catchment-scale long-

term observation data in four European countries, and Pyne and Poff (2017) modelled the 

effects of projected changes in flow and temperature on future trends of species richness 

at an ecoregional scale in Western US. They both reported profound changes in either 

species’ abundance, species’ richness or the functional trait groups, which are regionally 

highly variable. Despite the regional variations, it must be taken into account that even 

small changes in flow conditions could lead to strong changes in the abundance of stream 

macroinvertebrates (Chapter 3 and 4), which might also vary regionally in space and over 

time due to differences in catchment characteristics and climatic patterns.  

Over half of European freshwater species (60% of 1648 species) might lose their suitable 

habitats across their current distribution range by 2050 due to climate-change impacts 

(Markovic et al., 2014). The results of the German-wide study revealed that a rather large 

number of stream macroinvertebrate species (35-53% of 120 taxa depending on the IHA 

metric) have clear preferences to specific ranges of flow conditions (Chapter 2). These 

species can be considered as specialists, which are prone to being affected by any 

climate-change-induced flow alterations (Chapter 3). While any changes in flow will 

cause the abundance of specialists to decline, especially in the lower mountainous region, 

generalists would benefit from projected flow alterations (Chapter 3 and 4). Recent 

studies reported a compensatory turnover in the composition of stream macroinvertebrate 

communities under the effects of climatic changes (e.g., Jourdan et al., 2018). This is due 

to stream macroinvertebrates being able to carry out range shifts as a response to 

changing climates (Heino et al., 2009).  Observed (Bowler et al., 2017; Parmesan and 

Yohe, 2003) and predicted (Bálint et al., 2011; Domisch et al., 2013; Shah et al., 2012) 

range shifts in species distributions provide signs of changes at different scales. Although 

species range shifts may be contingent on habitat connectivity (Radinger et al., 2017) and 

dispersal ability (Heino et al., 2009) of individual species, decreasing abundance of some 

species in a sampling site might be compensated by new occurrences. The structure and 
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composition of macroinvertebrate communities of river reaches can thus be strongly 

affected by changes according to species turnover (Buisson et al., 2010; Hole et al., 

2009). The results of this thesis showed species’ abundance would decrease (species loss) 

or increase by up to 100% in each sampling site (Chapter 3 and 4). Although species 

range shifts were not considered in this thesis, it is possible that local extinctions might be 

compensated by new occurrences. However, climate change has been shown to facilitate 

the establishment of non-indigenous species (Daufresne et al., 2007), and range 

expanding of habitat generalists and invasive species with large ecological niches is 

typically at the expense of native species and specialists (Hobbs and Mooney, 1998; 

Mooney and Cleland, 2001). Therefore, although increasing biodiversity or at least 

halting biodiversity loss is one of the main targets of EU and international biodiversity 

strategies (e.g., European Commission, 2011), projected increase in the abundance of 

generalists might not correspond to better environmental conditions (Chapter 3). Each 

species plays a functional role within its environment, thus a loss of species with 

redundant functional roles might reduce the impacts of climate change (Rosenfeld, 2002). 

However, a loss of species with specific functional roles would affect the functioning of 

river ecosystems. For example, a loss of shredders as an important functional feeding 

group was shown in this study (Chapter 4) and previous studies (Jourdan et al., 2018; 

Pyne and Poff, 2017). Decreased abundance of these species would significantly affect 

ecosystem functioning as they drive nutrient transfer via leaf fragmentation (Dangles and 

Malmqvist, 2004; Graça, 2001; Jourdan et al., 2018; Pyne and Poff, 2017; Wallace et al., 

1997). Indeed, potential changes in community structure and composition, i.e. increasing 

richness and abundance of generalists versus loss of specialists with important functional 

roles, may help to visualise the impacts of flow alterations as a habitat degradation issue 

(Christian et al., 2009).  

The rather large number of stream macroinvertebrates with clear flow preferences in both 

the German-wide (35-53% of 120 taxa depending on the IHA metric, Chapter 2) and the 

catchment-scale studies (75-91% of 134 taxa in the lower mountainous region, and 85-

98% of 60 taxa in the lowland area depending on the IHA metric, Chapter 3 and 4) show 

that climate-change-induced flow alterations can have potentially strong influences on 

stream macroinvertebrate communities. Strong responses of stream macroinvertes to flow 

alterations have been reported by previous studies (e.g., Domisch et al., 2013; Jourdan et 

al., 2018; Pyne and Poff, 2017). The effects of variability in climate projections was 
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found to cascade into the ecological models and lead to strong uncertainties in predicted 

abundance of individual species and changes in functional trait composition (Chapter 4). 

Therefore, among wide variety of causes such as inherent uncertainties in ecological 

models induced by e.g. data availability, the ability to predict these changes is also 

limited by the uncertainty in predicting climate change itself.  

5.3 Mediating flow changes through river management  

Studies have mostly investigated the effects of non-climatic stressors such as small or 

large dams and hydropower plants on river flow conditions and subsequent ecological 

effects on river biota (Lehner et al., 2011; Leitner et al., 2017; Poff and Zimmerman, 

2010; Young et al., 2011). Low-flow conditions or hydropeaking caused by these barriers 

or other non-climatic stressors such as stormwater runoff from urban areas (Kaushal and 

Belt, 2012) modify the natural flow regime, e.g. by altering seasonal flow patterns, 

reducing average or base-flow conditions and decreasing flow variability (Arthington et 

al., 2006; Thompson et al., 2017). Earliest efforts to mitigate the impacts of flow 

alterations caused by non-climatic stressors and to restore instream flow conditions 

appeared in the 1970s by releasing minimum flows to maintain physical habitat 

conditions for species inhabiting downstream river reaches (Acreman and Dunbar, 2004; 

Tennant, 1976). Several measures such as dam removal or promising approaches to 

manage environmental flows have been suggested in the literature to prevent the impacts 

of barriers on the natural flow regime, habitat connectivity and sedimentation (Chen and 

Olden, 2017; Dyson et al., 2003; Fox et al., 2016; Maclin et al., 2002; O’Hanley, 2011). 

Due to increasing water demands, and a consequent increase in the number of dams, 

environmental flow management that considers multi-objective optimisations may better 

navigate the competing social and ecosystem demands for water and flow (Acreman et 

al., 2014; Poff et al., 2016). Natural flow mimicry and designing flow conditions - which 

may deviate from natural flow regime - are suggested to promote key ecosystem 

processes, thus remaining the most appropriate management goal for conserving 

freshwater biodiversity and ensuring functioning ecosystems (Chen and Olden, 2017).  

The results of this thesis revealed that the abundance of stream macroinvertebrates can be 

affected by climate-change-induced flow alterations (Chapter 3 and 4). As climate is 

changing in space and over time, maintaining the natural flow conditions might be of 

most importance to provide physical habitats for specific purposes such as conserving and 
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recovering endemic and specialist species which are expected to be endangered due to 

projected changes in flow conditions. However, even though dams provide the prospect 

to design flow conditions through their downstream release of water (Chen and Olden, 

2017), designing river flow to mitigate climate-change impacts may be more of a  

challenge. Therefore, an interesting but challenging restoration measure could be the 

manipulation of flow conditions by e.g. (1) designing flow in river catchments using 

water stored in upstream reservoirs, (2) designing wastewater discharge into rivers, (3) 

reducing urban storm water runoff in case of extreme events or increasing it in case flow 

alterations would decrease peak flows or increase low flows, and most importantly (4) 

improving the groundwater discharge and recharge to generate river flow, e.g. base flow 

generation, especially in groundwater dominated rivers. Designing river flow helps to 

mimic the natural flow regime and has the potential to support freshwater conservation 

goals and protect critical ecosystem functioning (Auerbach et al., 2014), thus offering 

multiple ecological and socio-economic benefits in altered rivers (Chen and Olden, 2017).  

Beyond that, climate-change-induced flow alterations might be considered less important 

than continually increasing non-climatic stressors such as dams, which are reported to 

have strong effects on stream macroinvertebrates (e.g., Holzapfel et al., 2017; Kaushal 

and Belt, 2012; Leitner et al., 2017). However, the large spatial scale of climatic impacts, 

and the low possibility of in situ management options (e.g., designing downstream flow 

conditions) make it more important for water managers. Potential mitigation strategies 

should thus focus on the reduction of multiple stressors in river ecosystems (Heino et al., 

2009; Ormerod et al., 2010) in order to minimise simultaneous drivers that are potentially 

altering river flow and consequently river ecology. Balancing multiple priorities remains 

challenging (Chen and Olden, 2017) however, another highly interesting issue for water 

managers is to provide frameworks to balance the cost of restoration measures between 

different causes of impacts, without neglecting stressors such as climate-change-induced 

flow alterations.  

5.4 Conclusions and outlook 

Species flow preferences have proven to be a promising basis for assessing possible 

effects of climate-change-induced flow alterations on stream macroinvertebrate 

abundance. However, to further improve the understanding of changes in stream 

macroinvertebrate abundance due to changing climates, several challenges still remain.  
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Most importantly, to gain further insights into possible consequences of flow alterations 

on stream macroinvertebrate abundance, there is a need to assess species’ dispersal 

abilities (Kappes and Haase, 2012) and life history characteristics and adaptation 

potential to novel flow conditions (Bonada et al., 2007; Mulholland et al., 1997).  

Furthermore, management actively seeks to increase heterogeneity of communities of 

river organisms and aims to increase abundance of native species (Hines, 2014); however, 

heterogeneity of functional trait composition has been scarcely investigated (e.g., Bonada 

et al., 2007). Although it can be hypothesised by some traits such as temperature 

preferences that e.g. cold stenothermic species tend to move to either higher altitudes or 

latitudes (Domisch et al., 2013; Shah et al., 2012), homogenisation of the functional trait 

composition according to projected flow alterations and species’ e.g. current preferences 

at different spatial scales has yet been rarely investigated. For example, flow alterations 

may cause extinctions of native species that have preferences to very high- or low flow 

conditions, which could lead to establishment of generalists or invasive species, resulting 

in communities as a whole, being less resistant to environmental stressors. Such 

investigations would provide valuable information on how functional trait composition 

will be affected by flow alterations in space and over time. 

The studies provided in this thesis underline the feasibility of determining and 

quantifying flow preferences of stream macroinvertebrates. The methods used in this 

study can be applied to any flow conditions, i.e. described by IHA metrics, depending on 

research interests (e.g., high-/low-flow conditions, extreme events, zero-flow days). It can 

even be applied in other regions such as Alpine territory, where flow conditions are 

influenced by snow-melt, or at different spatial or temporal scales. Moreover, the 

methods can be applied to a wide variety of environmental variables from different 

categories such as climate (e.g., temperature), agricultural (e.g., pesticides, pollutants), 

water quality (e.g., pH) or other variables such as oxygen that might be of interest for 

water managers to assess the effects of global changes on river ecosystems.  

Furthermore, the results of this thesis highlight the importance of underlying climate 

models in terms of the potential ecological effects of flow alterations, e.g. changes in 

stream macroinvertebrate abundance and functional trait composition. Therefore, a very 

clear recommendation for future research in the quantification approach and prediction of 

projected changes in e.g. species’ abundance is to reduce the uncertainty in climate model 

predictions.  
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Although flow alterations are not suggested to be the sole stressor in rivers, it is a rather 

important driver of physical habitat conditions in river ecosystems (Vörösmarty et al., 

2010). However, river ecosystems are subjected worldwide to a variety of anthropogenic 

stressors, such as water regulations and land-use change (Miserendino et al., 2011), 

changes in substrate conditions (Schröder et al., 2013) and altering climatic patterns such 

as temperature (Pyne and Poff, 2017), which might add to the profound effects of flow 

alterations and lead to substantial physical and biogeochemical alterations of these 

ecosystems (Hering et al., 2015; Olden et al., 2006). Corresponding with future climatic 

changes, suitable habitats will be detrimentally impacted by multiple environmental 

stressors, including flow alterations, thus they may not exist in the future (Ormerod et al., 

2010). Highlighting the severe impacts of flow alterations on the abundance of stream 

macroinvertebrates, further research is needed to assess the effects of climate change on 

stream macroinvertebrate abundance in a multi-stressor context, including flow 

alterations. With regards to the challenge of reducing uncertainty in climate model 

predictions, a multivariate analysis may reduce the uncertainty inherent in ecological 

models and further improve the predictions of species’ projected abundance.  

By building on existing knowledge and continuing to develop quantitative models and 

robust predictive relationships, we can improve our ecological understanding of river 

ecosystems which will lead to wiser decision making with regards to river management.  
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Appendix A: Supplementary material for chapter 2 

 

The best statistical model among the five eHOF models is selected based on its deviance 

from log-likelihood predictions, which contribute significantly to the given set of data. As 

values of log-likelihood and deviance can be nearly or totally equal between some model 

types for some taxa, this may result in different outcomes when re-running the analysis. 

The stability of model type selection was therefore analyzed via bootstrapping with 100 

re-sampling events and then selecting the most frequently selected model with a 

significantly higher sum of bootstrapped weights over the model with highest weighted 

AIC value.  

 

Figures 

 

   

Figure SF1 Congruency in model selection between log-likelihood compared to bootstrapping 

selected models (abbreviations in Table 3). 
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Tables 

 

Table ST1 The list of 120 benthic invertebrate taxa and the response model selected for 

individual taxa per hydrological variable. Inflection points are the gradient value of 

maximum change along the response curve, i.e., hydrological thresholds. 
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I 

2
0
9
.6

 
 II
   

Proasellus 

coxalis 

DOLLFUS, 

1892 
Crustacea 

II
   II
   II
   II
   I   I   II
   

Antocha sp. 

OSTEN-

SACKEN, 

1860 

Diptera I   II
   II
   I   II
   

II
I 

1
9
8
.2

 
 V
 

0
.6

7
 

0
.7

3
 

Apsectrotanypus 

trifascipennis 

ZETTERSTE

DT, 1838 
Diptera 

V
  

1
.5

 

I   II
 

1
.9

 
 II
   II
   II
   II
   

Atherix ibis 
FABRICIUS, 

1798 
Diptera 

V
 

1
.3

7
 

4
.5

1
 

I   II
   II
   II
   V
 

7
5
.9

 
 II
   

Dicranota sp. 
ZETTERSTE

DT, 1838 
Diptera 

II
   I   I   I   I   II
   V
 

0
.6

 

0
.7

 

Eloeophila sp. 
RONDANI,1

856 
Diptera 

II
   I   

II
I 

9
.4

 
 II
   I   I   II
   

Ibisia marginata 
FABRICIUS, 

1781 
Diptera 

V
 

0
.2

5
 

2
.5

 

IV
 

5
.0

2
 

7
3
.8

4
 

II
I 

9
.5

5
 

 

IV
 

9
.7

2
 

9
3
.9

5
 

II
   

IV
 

1
3
2
 

2
2
4
.2

 

II
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IHA variables 
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o
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Micropsectra sp. - Diptera 

II
   II
   II
   I   I   II
   II
   

Prodiamesa 

olivacea 

MEIGEN, 

1818 
Diptera 

II
   II
   

II
I 

9
.9

 
 II
   V
 

0
.3

 

0
.7

 

II
   II
   

Simulium 

ornatum 

MEIGEN, 

1818 
Diptera 

II
   II
   V
 

9
.9

2
 

1
1
.2

 

II
   II
   II
   I   

Simulium reptans 
LINNAEUS, 

1758 
Diptera 

V
 

6
.1

3
 

 II
   II
   V
 

1
7
.5

 

6
3
 

II
   II
   V
 

0
.3

 

0
.4

6
 

Simulium 

variegatum 

MEIGEN, 

1818 
Diptera 

II
   II
   

II
I 

1
1
 

 II
   II
   II
   II
   

Tipula sp. 
LINNAEUS, 

1758 
Diptera 

II
   I   I   II
   II
   I   I   

Baetis alpinus 
PICTET, 

1843-1845 

Ephemerop

tera I   V
  

4
0
.9

 

V
  

2
.5

 

II
   II
   II
   

II
I 

0
.1

9
 

 

Baetis buceratus 
EATON, 

1870 

Ephemerop

tera I   

II
I 

7
1
.0

9
 

 V
 

3
.5

1
 

1
0
.7

4
 

II
I 

1
4
1
.4

 
 II
   V
 

1
3
9
.5

 

1
7
5
.6

 

I   

Baetis lutheri 

MULLER -

LIEBENAU, 

1967 

Ephemerop

tera I   V
 

2
.1

5
 

1
0
.6

 

II
   I   

II
I 

0
.3

6
 

 

II
I 

2
1
0
 

 V
 

0
.6

2
 

0
.7

5
 

Baetis muticus 
LINNAEUS, 

1758 

Ephemerop

tera I   II
   II
   I   II
   V
 

2
1
9
.1

 

2
4
0
.9

 

I   

Baetis niger 
LINNAEUS, 

1761 

Ephemerop

tera I   I   I   II
   II
   

II
I 

1
0
6
.7

 
 

II
I 

0
.2

2
 

 

Baetis rhodani 
PICTET, 

1843-1845 

Ephemerop

tera I   II
 

8
.8

9
 

 V
 

8
.6

5
 

1
3
.8

 

II
 

2
.4

6
 

 II
 

0
.7

9
 

 I   I   

Baetis scambus 
EATON, 

1870 

Ephemerop

tera I   I   II
   

II
I 

1
4
1
.1

 
 V
 

0
.5

6
 

0
.8

1
 

II
   I   

Baetis 

vardarensis 

IKONOMO

V, 1962 

Ephemerop

tera I   

II
I 

7
1
.5

 
 II
   II
   

II
I 

0
.4

1
 

 V
 

1
7
4
 

1
9
0
 

V
 

0
.1

9
 

 

Baetis vernus 
CURTIS, 

1834 

Ephemerop

tera I   II
   II
   II
   II
   II
   II
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IHA variables 

dh4 dl9 fh9 fl2 ml17 ra2 ta1 
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Centroptilum 

luteolum 

MULLER, 

1776 

Ephemerop

tera I   I   I   I   I   

IV
 

1
0
2
.7

 

2
0
9
.1

 

II
   

Ecdyonurus 

dispar 

CURTIS, 

1834 

Ephemerop

tera V
  

5
.7

 

II
   II
   

II
I 

1
0
6
.4

 
 I   II
   I   

Ecdyonurus 

torrentis 

KIMMINS, 

1942 

Ephemerop

tera V
  

5
.7

 

II
   I   I   II
   

II
I 

1
0
8

 
 I   

Ecdyonurus 

venosus 

FABRICIUS, 

1775 

Ephemerop

tera V
  

5
.7

 

II
I 

6
9
.2

5
 

 I   V
 

2
8
.3

3
 

5
8
.1

3
 

II
   V
  

2
4
0

.3
 

I   

Epeorus assimilis 
EATON, 

1885 

Ephemerop

tera IV
 

  II
   I   II
   I   

II
I 

1
0
3
 

 I   

Ephemera danica 
MULLER, 

1764 

Ephemerop

tera IV
 

  II
   

IV
 

2
.6

2
 

1
2
 

I   II
   II
   I   

Habroleptoides 

confusa 

SARTORI & 

JACOB, 

1986 

Ephemerop

tera V
 

2
.3

1
 

3
.6

5
 

I   V
 

1
1
.1

4
 

1
2
.7

 

II
   I   V
 

2
1
3
.3

 

2
3
3
.1

 

II
   

Habrophlebia 

lauta 

EATON, 

1884 

Ephemerop

tera V
 

2
.3

 

3
.7

 

IV
 

  V
 

3
.2

 

4
.4

 

II
   V
 

0
.5

 

0
.7

 

II
   II
   

Heptagenia flava 
ROSTOCK, 

1877 

Ephemerop

tera V
 

2
.3

1
 

3
.6

5
 

IV
 

3
0
.2

5
 

9
7
.2

1
 

II
   II
   I   

II
I 

1
7
0
.8

 
 

II
I 

0
.2

3
 

 

Heptagenia 

sulphurea 

MULLER, 

1776 

Ephemerop

tera V
 

2
.3

1
 

3
.6

5
 

II
   II
   II
   II
   V
 

2
1
8
.7

 

2
3
7
.3

 

II
   

Paraleptophlebia 

submarginata 

STEPHENS, 

1835 

Ephemerop

tera V
  

0
.0

8
 

II
   

II
I 

1
3
.1

 
 I   V
 

0
.3

 

0
.3

8
 

II
I 

9
2
 

 I   

Potamanthus 

luteus 

LINNAEUS, 

1767 

Ephemerop

tera V
  

0
.0

9
 

II
   V
 

9
.8

3
 

1
2
.1

6
 

II
   II
   V
 

1
0
5
.5

 

1
2
7
.9

 

II
   

Rhithrogena 

semicolorata 

CURTIS, 

1834 

Ephemerop

tera V
 

0
.5

4
 

1
.7

6
 

II
   II
   V
  

1
1
5
.5

 

V
 

0
.3

1
 

0
.8

 

I   II
   

Rhithrogena 

semicolorata 

EATON, 

1885 

Ephemerop

tera V
 

0
.5

4
 

1
.7

6
 

II
   II
   V
  

1
1
5
.5

 

V
 

0
.3

1
 

0
.8

 

I   II
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Taxon Author Group 

IHA variables 

dh4 dl9 fh9 fl2 ml17 ra2 ta1 
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Serratella ignita PODA, 1761 
Ephemerop

tera V
 

3
.5

6
 

4
.1

4
 

V
  

7
0
.7

 

II
   V
 

3
6
.2

3
 

1
1
6
.1

 

I   

IV
 

  V
 

1
  

Torleya major 
KLAPµLEK, 

1905 

Ephemerop

tera V
 

0
.4

4
 

2
.6

9
 

II
I 

7
4
.5

1
 

 II
   II
   V
  

0
.2

1
 

II
I 

1
0
1
.8

 
 I   

Ancylus 

fluviatilis 

O.F. 

MULLER, 

1774 

Gastropoda 

II
I 

0
.1

 
 V
 

3
.1

9
 

5
8
.3

 

II
   V
 

5
4
.8

 
 I   II
   I   

Bithynia 

tentaculata 

LINNAEUS, 

1758 
Gastropoda I   

II
I 

8
3
.1

1
 

 I   V
 

1
9
.1

2
 

1
0
1
 

I   I   II
   

Potamopyrgus 

antipodarum 
GRAY, 1843 Gastropoda I   II

   

II
I 

1
1
.0

8
 

 II
   V
 

0
.2

7
 

0
.3

7
 

IV
 

8
7
.1

8
 

1
6
7
.6

 

V
  

0
.7

2
 

Radix balthica 
LINNAEUS, 

1758 
Gastropoda I   I   I   

IV
 

  I   I   V
 

0
.7

 

0
.7

 

Aphelocheirus 

aestivalis 

FABRICIUS, 

1794 
Heteroptera 

IV
 

0
.5

4
 

5
.8

3
 

II
   II
   II
   II
   V
 

1
6
4
.7

 

1
8
9
.5

 

II
   

Erpobdella 

octoculata 

LINNAEUS, 

1758 
Hirudinea 

II
   II
   II
   I   II
   I   I   

Glossiphonia 

complanata 

LINNAEUS, 

1758 
Hirudinea 

V
 

2
.3

 

3
.7

 

I   I   I   I   II
   I   

Sialis fuliginosa 
PICTET, 

1836 

Megalopter

a II
I 

3
.0

5
 

 I   II
   I   V
 

0
.4

2
 

0
.8

2
 

II
I 

9
4
.9

 
 I   

Sialis lutaria 
LINNAEUS, 

1758 

Megalopter

a II
   II
   II
   

II
I 

2
3
.4

 
 

IV
 

0
.2

9
 

0
.7

1
 

I   I   

Calopteryx 

splendens 

HARRIS, 

1782 
Odonata I   I   I   II

   II
   I   I   

Calopteryx virgo 
LINNAEUS, 

1758 
Odonata I   I   I   I   I   V

 

2
1
4
.1

 

2
3
2
.7

 

I   

Eiseniella 

tetraedra 

SAVIGNY, 

1826 

Oligochaet

a II
   II
   II
   I   I   I   I   

Lumbriculus MULLER, Oligochaet II
   II
   II
   I   I   I   I   



 Appendix A 

 

 110 

Taxon Author Group 

IHA variables 

dh4 dl9 fh9 fl2 ml17 ra2 ta1 
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variegatus 1774 a 

Stylodrilus 

heringianus 

CLAPARED

E, 1862 

Oligochaet

a V
 

4
.1

1
 

4
.6

9
 

V
  

0
.2

 

V
 

1
2
 

1
3
.2

 

II
   V
 

0
.5

8
 

0
.8

6
 

II
   II
   

Dinocras 

cephalotes 

CURTIS, 

1827 
Plecoptera 

II
   

II
I 

1
8
.2

 
 I   V
 

8
3
.9

4
 

1
3
0
 

II
   I   II
   

Isoperla 

grammatica 
PODA, 1761 Plecoptera I   I   

IV
 

4
.6

5
 

1
1
.3

5
 

I   

II
I 

0
.3

6
 

 

II
I 

2
9
1
.7

 
 II
   

Perla marginata 
PANZER, 

1799 
Plecoptera 

II
   I   II
   

IV
 

2
0
.2

3
 

1
0
2
.7

 

I   I   II
   

Protonemura sp. - Plecoptera 

II
I 

0
.3

7
 

 I   V
 

1
0

 

1
2

 

II
   V
 

0
.3

7
 

0
.7

6
 

I   V
 

0
.1

 

0
.2

5
 

Adicella reducta 
McLACHLA

N, 1865 
Trichoptera I   I   V

 

4
.9

6
 

7
.3

3
 

II
   

II
I 

0
.4

2
 

 V
 

2
0
3
 

2
1
8
.5

 

II
I 

0
.2

5
 

 

Agapetus 

ochripes 

CURTIS, 

1834 
Trichoptera I   

II
I 

7
4
.6

 
 II
   II
   

II
I 

0
.4

2
 

 I   II
   

Allogamus 

auricollis 

PICTET, 

1834 
Trichoptera 

II
   II
   II
   

II
I 

2
1
.0

6
 

 II
   V
 

1
9
6
 

2
1
4
.6

 

I   

Anabolia nervosa 
CURTIS, 

1834 
Trichoptera 

V
  1
 I   II
   II
   I   II
   I   

Anomalopterygel

la chauviniana 
STEIN, 1874 Trichoptera 

V
 

0
.2

 

2
.2

 

I   II
   I   II
   II
   I   

Athripsodes sp. - Trichoptera I   I   II
   V
 

1
1
.8

 

6
1
.2

 

II
I 

0
.4

2
 

 II
   I   

Brachycentrus 

maculatus 

FOURCROY 

, 1785 
Trichoptera I   I   II
   II
   II
   V
 

1
5
1
 

1
7
5
.9

 

II
   

Brachycentrus 

subnubilus 

CURTIS, 

1834 
Trichoptera I   V

 

2
5
.2

 
 V
 

7
.9

8
 

9
.3

7
 

V
 

1
1
.8

 

3
6
.3

 

V
 

0
.3

9
 

0
.4

4
 

II
   II
   

Chaetopteryx 

villosa 

FABRICIUS, 

1789 
Trichoptera I   I   

II
I 

1
1
.1

 
 I   V
 

0
.3

7
 

0
.4

4
 

I   II
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IHA variables 

dh4 dl9 fh9 fl2 ml17 ra2 ta1 
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Cheumatopsyche 

lepida 

PICTET, 

1834 
Trichoptera I   V

 

3
.6

5
 

6
4
.5

5
 

II
   I   V
 

0
.4

1
 

0
.4

7
 

II
I 

2
9
1
.7

 
 II
   

Goera pilosa 
FABRICIUS, 

1775 
Trichoptera 

V
 

2
.3

1
 

3
.6

5
 

I   II
   

IV
 

3
.1

7
 

1
1
5
.9

 

I   II
   II
   

Halesus digitatus 
SCHRANK, 

1781 
Trichoptera 

V
 

2
.3

 

3
.7

 

II
   II
   II
   I   II
   II
   

Halesus radiatus 
CURTIS, 

1834 
Trichoptera 

V
 

2
.3

1
 

3
.6

5
 

II
   II
   I   II
   

II
I 

2
0
9
 

 II
   

Hydropsyche 

angustipennis 

CURTIS, 

1834 
Trichoptera 

II
   II
   II
   II
   I   II
   I   

Hydropsyche 

incognita 

PITSCH, 

1993 
Trichoptera 

V
 

2
.3

2
 

3
.2

5
 

V
 

1
2
.2

7
 

3
0
.7

3
 

II
   II
   V
 

0
.2

6
 

 V
 

9
9
.9

6
 

1
8
6
.8

 

I   

Hydropsyche 

instabilis 

CURTIS, 

1834 
Trichoptera 

V
 

0
.7

 

2
.8

 

I   V
   II
   II
   II
   I   

Hydropsyche 

pellucidula 

CURTIS, 

1834 
Trichoptera 

V
 

0
.2

2
 

0
.8

5
 

II
   V
 

2
.9

2
 

5
.6

1
 

II
   II
   V
 

2
4
1
.2

 

2
6
5
.1

 

II
   

Hydropsyche 

saxonica 

McLACHLA

N, 1884 
Trichoptera I   

II
I 

1
3
.7

 
 V
  

6
.4

3
 

I   I   II
   II
   

Hydropsyche 

siltalai 

DOEHLER, 

1963 
Trichoptera 

II
   II
   II
   II
   II
   II
   V
 

0
.4

 

0
.8

 

Hydroptila sp. - Trichoptera 

V
 

3
.3

4
 

4
.2

6
 

V
 

6
.6

6
 

2
7
.9

 

II
   I   

II
I 

0
.3

3
 

 II
   I   

Lasiocephala 

basalis 

KOLENATI, 

1848 
Trichoptera 

IV
 

  V
 

6
6
.2

5
 

7
3
.9

2
 

I   I   

II
I 

0
.7

7
 

 V
 

1
0
8
.2

 

2
4
0
.5

 

II
   

Lepidostoma 

basale 
- Trichoptera 

II
   I   I   II
   V
 

0
.3

 

0
.3

 

I   I   

Lepidostoma 

hirtum 

FABRICIUS, 

1775 
Trichoptera 

II
I 

3
.8

6
 

 II
   II
   

IV
 

1
2
.7

 

9
7
 

I   II
   I   

Limnephilus 

lunatus 

CURTIS, 

1834 
Trichoptera 

II
   I   II
   II
   I   II
   II
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IHA variables 

dh4 dl9 fh9 fl2 ml17 ra2 ta1 
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Lype reducta 
HAGEN, 

1868 
Trichoptera 

II
   II
   II
   I   I   I   I   

Micrasema 

longulum 

McLACHLA

N, 1876 
Trichoptera 

V
  

1
.8

8
 

II
I 

9
.6

8
 

 

II
I 

1
2
.2

 
 

IV
 

3
9
.2

7
 

1
1
9
 

II
   II
   I   

Micrasema 

minimum 

McLACHLA

N, 1876 
Trichoptera 

II
   V
 

7
0
.1

 

7
7
.4

3
 

II
I 

1
0
.2

2
 

 

IV
 

2
6
.6

7
 

1
1
7
.6

 

II
   V
 

1
9
5
.2

 

2
1
2
.5

 

II
   

Mystacides 

azurea 

LINNAEUS, 

1761 
Trichoptera 

IV
 

  I   II
   I   II
   

II
I 

1
9

4
.7

 
 I   

Odontocerum 

albicorne 

SCOPOLI, 

1763 
Trichoptera 

II
   I   I   II
   I   I   II
   

Plectrocnemia 

conspersa 

CURTIS, 

1834 
Trichoptera 

II
I 

3
.4

 
 I   II
   II
   II
   I   V
 

0
.1

 

0
.2

 

Polycentropus 

flavomaculatus 

PICTET, 

1834 
Trichoptera I   I   I   

IV
 

  I   

II
I 

2
4
1
.5

 
 I   

Polycentropus 

irroratus 

CURTIS, 

1835 
Trichoptera 

II
   I   I   II
   I   I   I   

Potamophylax 

cingulatus 
- Trichoptera 

II
   I   

IV
 

2
.8

9
 

1
0
.7

 

I   I   I   

II
I 

0
.2

4
 

 

Potamophylax 

latipennis 

CURTIS, 

1834 
Trichoptera 

II
   II
   

IV
 

4
.3

8
 

1
0
.8

 

II
   II
   I   II
   

Potamophylax 

luctuosus 

PILLER & 

MITTERPA

CHER, 1783 

Trichoptera 

II
   II
   I   II
   II
   I   II
   

Psychomyia 

pusilla 

FABRICIUS, 

1781 
Trichoptera 

V
 

3
.3

 

3
.8

 

I   I   I   

II
I 

0
.4

 
 II
   I   

Rhyacophila 

dorsalis 
- Trichoptera I   II

   I   II
   I   II
   V
 

0
.5

 

0
.7

 

Rhyacophila 

fasciata 

HAGEN, 

1859 
Trichoptera 

II
   I   V
 

4
.3

 

5
.7

 

II
   

II
I 

0
.4

 
 II
   

II
I 

0
.5

 
 

Rhyacophila ZETTERSTE Trichoptera 

V
 

0
.5

 

3
.2

 

II
   

IV
 

5
.1

 
 II
   II
   II
   I   
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Taxon Author Group 

IHA variables 
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nubila DT, 1840 

Sericostoma 

personatum 

KIRBY & 

SPENCER, 

1826 

Trichoptera I   

IV
 

2
1
.6

 

8
0
 

II
I 

9
.8

9
 

 II
   

II
I 

0
.7

8
 

 II
   I   

Silo nigricornis 
PICTET, 

1834 
Trichoptera 

II
   V
 

9
9
.2

 
 II
   II
   I   I   II
   

Silo pallipes 
FABRICIUS, 

1781 
Trichoptera 

II
   I   V
 

8
.1

7
 

1
1

.6
8
 

II
   I   

II
I 

1
0

5
.7

 
 II
   

Silo piceus 
BRAUER, 

1857 
Trichoptera 

V
 

0
.6

3
 

2
.3

5
 

I   I   II
   II
   V
 

1
9
3
.5

 

2
3
1
.9

 

V
 

0
.1

5
 

0
.2

6
 

Dendrocoelum 

lacteum 

O.F. 

MULLER, 

1774 

Turbellaria I   I   

II
I 

1
0
.9

 
 II
   I   I   I   

Dugesia 

gonocephala 

DUGES, 

1830 
Turbellaria 

V
  6
 I   II
   II
   II
   II
   I   

Polycelis felina 
DALYELL, 

1814 
Turbellaria 

V
 

0
.3

2
 

2
.1

4
 

II
I 

1
0
.3

5
 

 II
   

II
I 

1
1
5
.4

 
 II
   V
 

1
8
9
.4

 

2
0
2
.4

 

I   

 



          Appendix B 

 114 

Appendix B: Supplementary material for chapter 3 

Potential changes in flow conditions 

The flow conditions during the baseline period (1998 – 2017) were compared to the two 

projected periods of horizons 2050 (2046 – 2065) and 2090 (2080 – 2099). Figures SF3 

and SF4 show the potential changes in flow conditions for each metric in the Treene and 

Kinzig catchments. 

Potential worst overall species assemblage responses (WOSARs, worst 

scenario) 

The worst scenario assumes that the IHA metric with the worst impact on 

macroinvertebrate communities would be the determining factor in the species response 

to flow alteration, regardless of whether positive values were detected for the other 

metrics. Therefore, the lowest value of 𝐶𝑅𝑟𝑖
 among the five metrics represented the 

overall species assemblage response (WOSAR) of individual river reaches in each 

horizon:  

{𝑊𝑂𝐶𝑅𝑟𝑖

𝑚𝑎𝑙𝑙 = 𝑀𝐼𝑁(𝑆𝐴𝑅𝑟𝑖

𝑚1 ,  𝑆𝐴𝑅𝑟𝑖

𝑚2 ,  𝑆𝐴𝑅𝑟𝑖

𝑚3 ,  𝑆𝐴𝑅𝑟𝑖

𝑚4 ,  𝑆𝐴𝑅𝑟𝑖

𝑚5)}
𝑠𝑖

𝑠𝑛
 Eq. 6 

In addition, we tested how proportional weights of each IHA metric, given their potential 

impact, would affect the outcome. Furthermore, we analysed the results separately for 

three river orders in each river catchment to assess whether different species responses to 

flow alteration would be expected in different river orders.  

This method obviously resulted in a different pattern for macroinvertebrate species 

assemblage responses in river reaches in both catchments (Figure SF7). The differences 

between the two methods in both horizons and both catchments were assessed to be 

significant (ANOVA, p < 0.01, Tukey HSD, p < 0.01).  

Similar to the SARs, the absolute WOSARs were significantly larger in the Kinzig 

(13.4% in both horizons) compared to the Treene catchment (9.9% in horizon 2050 and 

9.3% in horizon 2090, t-test, p<0.01). 

In the Kinzig, positive WOSARs were only predicted for 3% of the river reaches in 

horizon 2050 (Figure SF7g) and 14% in horizon 2090 (Figure SF7h). Negative WOSARs 

meant that at least one out of the five metrics predicted a decrease in mean species’ 

abundance and were most often due to changes in low flow condition metrics (ml18). The 
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negative WOSARs in 56% of the river reaches in horizon 2050 and 65% of the river 

reaches in horizon 2090 were related to changes in the magnitude of low-flow events 

(ml18, Figure SF7e, SF7f). The magnitude of flow events is widely reported to have 

strong effects on macroinvertebrate assemblage metrics (Monk et al., 2006; Poff and 

Zimmerman, 2010), e.g., through lower base flow, higher temperature and lower oxygen 

content.  

In the Treene, negative WOSARs were predicted for all river reaches for both horizons 

(Figure SF7c, SF7d). The timing of high-flow events (ta3, 45% in horizon 2050 and 58% 

in 2090) and duration of high flow events (dh4, 52% in horizon 2050) were the most 

frequent reasons for negative WOSARs for one or both horizons (Figure SF7a, SF7b). 

In the Kinzig catchment, the magnitude of low flow events (ml18) caused decreased 

abundance values mainly in higher river orders and main stream in both horizons, while 

frequency of low flow events (fl1) and duration of high flow events (dh4) caused 

decreased abundance values in far upstream region in horizon 2050 and 2090, 

respectively. 

In the Treene catchment, decreased abundance values of the upstream area were mostly 

caused by timing of high flow events (ta3) and duration of high flow events (dh4) in 

horizon 2050, or timing of high flow events (ta3) and frequency of low flow events (fl2) 

in horizon 2090. 
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Figure SF2 The boxplots (bar – median; red triangular – mean; box – 1st and 3rd interquartile range) show the potential changes in the IHA metrics at the 

sampling sites of the Treene (a-e) and Kinzig (f-j) catchments for the three defined 20-year periods of baseline (1998 – 2017), horizon 2050 (2046 – 2065) 

and horizon 2090 (2080 – 2099). The characters above each box shows whether the values would change significantly (p < 0.05; dissimilar characters) in 

the future or not (similar characters).   
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Figure SF3 Potential changes in flow conditions according to each IHA metric, comparing the values 

during the baseline period with two projected periods in the Kinzig catchment (abbreviations in Table 2). 
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Figure SF4 Potential changes in flow conditions according to each IHA metric, comparing the values 

during the baseline period with two projected periods in the Treene catchment (abbreviations in Table 2).  
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Figure SF5 Potential response of species assemblages (SARs) in river reaches in horizons 2050 (left side) 

and 2090 (right side), according to changes in each IHA metric, in the Kinzig catchment.  
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Figure SF6 Potential response of species assemblages (SARs) in river reaches in horizons 2050 (left side) 

and 2090 (right side), according to changes in each IHA metric, in the Treene catchment.  
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Figure SF7 The worst overall species assemblage response (WOCR, eq. 5) in each river reach (c, d, g and 

h) according to the metric with the worst impact (worst scenario) on macroinvertebrates (a, b, e and f). All 

sub-figures on the left side (a, c, e and g) show the results for horizon 2050, while sub-figures on the right 

side (b, d, f and h) show the results for horizon 2090.  
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Tables 

Table ST2 List of all 60 and 134 species of stream macroinvertebrates in respectively the Treene and Kinzig catchments, respectively, and 

the author and higher taxonomical unit. 
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Pisidium amnicum 
O.F. MÜLLER, 

1774 
Bivalvia X X 

0.94 0.91 0.89 0.86 0.93 0.89 0.88 0.90 0.80 0.84 0.95 0.91 0.91 0.86 0.91 0.87 0.88 0.88 0.78 0.84 

Pisidium 

casertanum 
POLI, 1791 Bivalvia - X 

- 0.85 - 0.86 - 0.88 - 0.92 - 0.87 - 0.89 - 0.83 - 0.90 - 0.91 - 0.86 

Pisidium 

subtruncatum 
MALM, 1855 Bivalvia X X 

0.95 0.82 0.91 0.79 0.94 0.85 0.88 0.87 0.78 0.82 0.96 0.86 0.92 0.84 0.94 0.90 0.92 0.90 0.76 0.85 

Pisidium supinum 
A. SCHMIDT, 

1851 
Bivalvia X - 

0.95 - 0.89 - 0.95 - 0.89 - 0.82 - 0.94 - 0.90 - 0.94 - 0.90 - 0.80 - 

Sphaerium 

corneum 
(LINNAEUS, 1758 Bivalvia X X 

0.98 0.92 0.91 0.88 0.96 0.93 0.89 0.92 0.75 0.87 0.96 0.95 0.93 0.91 0.94 0.95 0.88 0.94 0.72 0.89 

Elmis aenea MÜLLER, 1806 Coleoptera X X 0.97 0.88 0.91 0.84 0.92 0.88 0.88 0.90 0.80 0.84 0.95 0.91 0.90 0.87 0.93 0.93 0.87 0.93 0.76 0.88 

Elmis maugetii LATREILLE, 1798 Coleoptera X X 0.97 0.88 0.91 0.84 0.91 0.89 0.87 0.88 0.82 0.84 0.96 0.92 0.91 0.88 0.93 0.93 0.86 0.93 0.78 0.88 

Elmis rietscheli STEFFAN, 1958 Coleoptera X X 0.97 0.94 0.88 0.88 0.90 0.94 0.88 0.94 0.82 0.89 0.94 0.89 0.90 0.85 0.92 0.91 0.90 0.94 0.75 0.87 

Elmis rioloides KUWERT, 1890 Coleoptera X X 0.97 0.94 0.89 0.88 0.89 0.94 0.88 0.94 0.84 0.89 0.96 0.88 0.90 0.85 0.92 0.90 0.87 0.93 0.78 0.89 

Elodes minuta LINNAEUS, 1767 Coleoptera X - 0.95 - 0.91 - 0.97 - 0.86 - 0.69 - 0.95 - 0.92 - 0.97 - 0.83 - 0.66 - 

Hydraena dentipes GERMAR, 1844 Coleoptera - X - 0.88 - 0.81 - 0.89 - 0.92 - 0.76 - 0.83 - 0.79 - 0.90 - 0.86 - 0.79 

Hydraena gracilis GERMAR, 1824 Coleoptera - X - 0.85 - 0.86 - 0.87 - 0.89 - 0.86 - 0.90 - 0.87 - 0.89 - 0.92 - 0.88 

Hydraena 

minutissima 
STEPHENS, 1829 Coleoptera - X 

- 0.81 - 0.78 - 0.85 - 0.88 - 0.77 - 0.83 - 0.81 - 0.86 - 0.87 - 0.83 

Limnius perrisi DUFOUR, 1843 Coleoptera - X - 0.90 - 0.88 - 0.90 - 0.90 - 0.86 - 0.93 - 0.90 - 0.93 - 0.94 - 0.89 

Limnius volckmari PANZER, 1793 Coleoptera X X 0.93 0.89 0.91 0.84 0.92 0.88 0.90 0.88 0.81 0.85 0.95 0.91 0.91 0.88 0.94 0.92 0.91 0.93 0.80 0.89 

Orectochilus MÜLLER, 1776 Coleoptera X X 0.93 0.81 0.91 0.82 0.93 0.83 0.81 0.85 0.72 0.82 0.95 0.87 0.90 0.87 0.92 0.88 0.80 0.89 0.71 0.86 
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villosus 

Oulimnius 

tuberculatus 
MÜLLER, 1806 Coleoptera X X 

0.95 0.88 0.91 0.86 0.94 0.90 0.83 0.91 0.78 0.84 0.94 0.91 0.92 0.87 0.93 0.91 0.82 0.93 0.71 0.87 

Platambus 

maculatus 
LINNAEUS, 1758 Coleoptera - X 

- 0.78 - 0.84 - 0.85 - 0.82 - 0.75 - 0.89 - 0.86 - 0.89 - 0.86 - 0.81 

Asellus aquaticus LINNAEUS, 1758 Crustacea X X 0.97 0.89 0.88 0.85 0.91 0.88 0.87 0.88 0.75 0.86 0.98 0.93 0.91 0.89 0.94 0.92 0.90 0.92 0.79 0.90 

Gammarus 

fossarum 

KOCH in 

PANZER, 1836 
Crustacea - X 

- 0.92 - 0.91 - 0.93 - 0.94 - 0.91 - 0.96 - 0.92 - 0.95 - 0.97 - 0.92 

Gammarus pulex LINNAEUS, 1758 Crustacea X X 0.98 0.94 0.93 0.90 0.96 0.94 0.88 0.93 0.74 0.90 0.97 0.95 0.93 0.92 0.95 0.95 0.88 0.95 0.73 0.92 

Gammarus 

roeselii 
GERVAIS, 1835 Crustacea - X 

- 0.94 - 0.90 - 0.94 - 0.94 - 0.91 - 0.96 - 0.93 - 0.96 - 0.96 - 0.93 

Proasellus coxalis DOLLFUS, 1892 Crustacea X - 0.93 - 0.87 - 0.93 - 0.89 - 0.77 - 0.91 - 0.92 - 0.91 - 0.88 - 0.72 - 

Atherix ibis FABRICIUS, 1798 Diptera X X 0.97 0.94 0.92 0.88 0.92 0.91 0.83 0.94 0.73 0.92 0.94 0.94 0.92 0.88 0.95 0.87 0.91 0.91 0.83 0.88 

Atrichops 

crassipes 
MEIGEN, 1820 Diptera - X 

- 0.89 - 0.86 - 0.87 - 0.90 - 0.87 - 0.88 - 0.86 - 0.82 - 0.85 - 0.85 

Chironomus 

riparius 
MEIGEN, 1804 Diptera - X 

- 0.97 - 0.90 - 0.95 - 0.95 - 0.93 - 0.96 - 0.86 - 0.91 - 0.90 - 0.88 

Prodiamesa 

olivacea 
MEIGEN, 1818 Diptera X X 

0.96 0.86 0.88 0.85 0.93 0.85 0.84 0.88 0.77 0.88 0.95 0.91 0.94 0.88 0.92 0.90 0.88 0.92 0.78 0.90 

Ptychoptera 

paludosa 
MEIGEN, 1804 Diptera X - 

0.94 - 0.93 - 0.94 - 0.90 - 0.71 - 0.90 - 0.95 - 0.90 - 0.89 - 0.70 - 

Simulium 

argyreatum 
MEIGEN, 1838 Diptera - X 

- 0.94 - 0.82 - 0.90 - 0.94 - 0.85 - 0.92 - 0.81 - 0.86 - 0.91 - 0.83 

Simulium 

cryophilum 
RUBZOV, 1959 Diptera - X 

- 0.91 - 0.87 - 0.89 - 0.89 - 0.83 - 0.92 - 0.87 - 0.90 - 0.91 - 0.85 

Simulium equinum LINNAEUS, 1758 Diptera X - 0.97 - 0.91 - 0.94 - 0.81 - 0.72 - 0.94 - 0.94 - 0.94 - 0.82 - 0.71 - 

Simulium ornatum MEIGEN, 1818 Diptera X X 0.97 0.92 0.91 0.83 0.95 0.91 0.83 0.92 0.75 0.89 0.94 0.93 0.95 0.86 0.93 0.93 0.84 0.91 0.74 0.87 

Simulium 

variegatum 
MEIGEN, 1818 Diptera - X 

- 0.93 - 0.82 - 0.89 - 0.94 - 0.85 - 0.91 - 0.81 - 0.84 - 0.90 - 0.83 

Simulium vernum 
MACQUART, 

1826 
Diptera - X 

- 0.86 - 0.84 - 0.88 - 0.88 - 0.86 - 0.89 - 0.86 - 0.91 - 0.90 - 0.87 

Baetis alpinus PICTET, 1843- Ephemeroptera - X - 0.88 - 0.84 - 0.91 - 0.90 - 0.87 - 0.89 - 0.87 - 0.87 - 0.90 - 0.87 
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1845 

Baetis atrebatinus LEACH, 1815 Ephemeroptera X - 0.95 - 0.91 - 0.86 - 0.83 - 0.78 - 0.96 - 0.92 - 0.93 - 0.86 - 0.73 - 

Baetis fuscatus LINNAEUS, 1761 Ephemeroptera X X 0.95 0.92 0.92 0.91 0.86 0.93 0.83 0.91 0.77 0.86 0.96 0.95 0.93 0.92 0.92 0.95 0.85 0.94 0.73 0.88 

Baetis lutheri 
MÜLLER-

LIEBENAU, 1967 
Ephemeroptera - X 

- 0.89 - 0.87 - 0.89 - 0.90 - 0.86 - 0.93 - 0.87 - 0.90 - 0.92 - 0.88 

Baetis muticus LINNAEUS, 1758 Ephemeroptera - X - 0.94 - 0.84 - 0.92 - 0.94 - 0.88 - 0.94 - 0.85 - 0.92 - 0.94 - 0.89 

Baetis niger LINNAEUS, 1761 Ephemeroptera - X - 0.90 - 0.82 - 0.86 - 0.92 - 0.87 - 0.90 - 0.85 - 0.90 - 0.93 - 0.88 

Baetis rhodani 
PICTET, 1843-

1845 
Ephemeroptera X X 

0.95 0.90 0.90 0.88 0.91 0.90 0.84 0.90 0.72 0.89 0.95 0.95 0.93 0.92 0.93 0.95 0.89 0.95 0.70 0.93 

Baetis vernus CURTIS, 1834 Ephemeroptera X X 0.95 0.93 0.91 0.88 0.86 0.92 0.83 0.92 0.78 0.89 0.96 0.94 0.92 0.91 0.91 0.93 0.86 0.93 0.75 0.91 

Caenis horaria LINNAEUS, 1758 Ephemeroptera X - 0.94 - 0.93 - 0.92 - 0.84 - 0.62 - 0.94 - 0.92 - 0.93 - 0.86 - 0.63 - 

Caenis rivulorum EATON, 1884 Ephemeroptera X - 0.97 - 0.92 - 0.91 - 0.84 - 0.76 - 0.95 - 0.92 - 0.94 - 0.86 - 0.74 - 

Centroptilum 

luteolum 
MÜLLER, 1776 Ephemeroptera - X 

- 0.91 - 0.87 - 0.94 - 0.89 - 0.89 - 0.93 - 0.88 - 0.94 - 0.92 - 0.91 

Ecdyonurus dispar CURTIS, 1834 Ephemeroptera - X - 0.92 - 0.87 - 0.91 - 0.93 - 0.87 - 0.90 - 0.86 - 0.88 - 0.91 - 0.85 

Ecdyonurus 

macani 

THOMAS & 

SOWA, 1970 
Ephemeroptera - X 

- 0.87 - 0.81 - 0.86 - 0.84 - 0.85 - 0.85 - 0.82 - 0.86 - 0.83 - 0.85 

Ecdyonurus 

submontanus 
LANDA, 1969 Ephemeroptera - X 

- 0.90 - 0.85 - 0.90 - 0.92 - 0.90 - 0.90 - 0.84 - 0.90 - 0.92 - 0.87 

Ecdyonurus 

torrentis 
KIMMINS, 1942 Ephemeroptera - X 

- 0.88 - 0.83 - 0.89 - 0.87 - 0.85 - 0.92 - 0.87 - 0.92 - 0.93 - 0.88 

Ecdyonurus 

venosus 
FABRICIUS, 1775 Ephemeroptera - X 

- 0.91 - 0.88 - 0.92 - 0.94 - 0.86 - 0.90 - 0.84 - 0.90 - 0.92 - 0.88 

Electrogena affinis EATON, 1886 Ephemeroptera - X - 0.91 - 0.80 - 0.90 - 0.90 - 0.70 - 0.95 - 0.87 - 0.94 - 0.95 - 0.73 

Epeorus assimilis EATON, 1885 Ephemeroptera - X - 0.92 - 0.87 - 0.92 - 0.92 - 0.89 - 0.94 - 0.88 - 0.92 - 0.94 - 0.89 

Ephemera danica MÜLLER, 1764 Ephemeroptera X X 0.98 0.85 0.92 0.83 0.93 0.84 0.82 0.85 0.66 0.84 0.97 0.88 0.92 0.87 0.93 0.87 0.84 0.88 0.68 0.86 

Ephemerella 

mucronata 

BENGTSSON, 

1909 
Ephemeroptera - X 

- 0.95 - 0.87 - 0.94 - 0.95 - 0.88 - 0.92 - 0.86 - 0.91 - 0.92 - 0.87 

Habroleptoides 

confusa 

SARTORI & 

JACOB, 1986 
Ephemeroptera - X 

- 0.95 - 0.88 - 0.93 - 0.95 - 0.89 - 0.96 - 0.88 - 0.94 - 0.96 - 0.90 

Habrophlebia EATON, 1884 Ephemeroptera - X - 0.87 - 0.84 - 0.87 - 0.90 - 0.86 - 0.92 - 0.87 - 0.90 - 0.92 - 0.88 
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lauta 

Heptagenia 

sulphurea 
MÜLLER, 1776 Ephemeroptera X X 

0.94 0.91 0.90 0.88 0.91 0.94 0.80 0.91 0.69 0.89 0.96 0.93 0.90 0.90 0.90 0.93 0.81 0.89 0.68 0.87 

Leptophlebia 

submarginata 
LINNAEUS, 1767 Ephemeroptera X - 

0.96 - 0.89 - 0.88 - 0.82 - 0.78 - 0.96 - 0.91 - 0.91 - 0.84 - 0.73 - 

Paraleptophlebia 

submarginata 
STEPHENS, 1835 Ephemeroptera - X 

- 0.84 - 0.82 - 0.84 - 0.87 - 0.82 - 0.87 - 0.84 - 0.88 - 0.91 - 0.86 

Rhithrogena 

semicolorata 
CURTIS, 1834 Ephemeroptera - X 

- 0.91 - 0.86 - 0.93 - 0.93 - 0.88 - 0.95 - 0.88 - 0.95 - 0.95 - 0.90 

Serratella ignita PODA, 1761 Ephemeroptera - X - 0.96 - 0.92 - 0.95 - 0.94 - 0.89 - 0.98 - 0.93 - 0.98 - 0.96 - 0.88 

Torleya major KLAPÁLEK, 1905 Ephemeroptera - X - 0.91 - 0.84 - 0.91 - 0.92 - 0.86 - 0.94 - 0.86 - 0.93 - 0.94 - 0.88 

Ancylus fluviatilis 
O.F. MÜLLER, 

1774 
Gastropoda X X 

0.94 0.88 0.92 0.84 0.85 0.87 0.78 0.85 0.67 0.83 0.97 0.91 0.94 0.88 0.93 0.91 0.86 0.90 0.73 0.88 

Anisus vortex LINNAEUS, 1758 Gastropoda X - 0.94 - 0.87 - 0.96 - 0.88 - 0.76 - 0.95 - 0.91 - 0.94 - 0.89 - 0.77 - 

Bithynia leachii SHEPPARD, 1823 Gastropoda X - 0.90 - 0.88 - 0.91 - 0.85 - 0.74 - 0.91 - 0.89 - 0.92 - 0.89 - 0.70 - 

Bithynia 

tentaculata 
LINNAEUS, 1758 Gastropoda X X 

0.97 0.95 0.91 0.89 0.95 0.93 0.90 0.92 0.78 0.88 0.97 0.96 0.91 0.90 0.93 0.93 0.90 0.93 0.73 0.86 

Planorbarius 

corneus 
LINNAEUS, 1758 Gastropoda X - 

0.85 - 0.90 - 0.96 - 0.91 - 0.75 - 0.89 - 0.92 - 0.96 - 0.90 - 0.71 - 

Planorbis 

planorbis 
LINNAEUS, 1758 Gastropoda X - 

0.95 - 0.85 - 0.94 - 0.92 - 0.67 - 0.93 - 0.90 - 0.92 - 0.92 - 0.67 - 

Potamopyrgus 

antipodarum 
GRAY, 1843 Gastropoda - X 

- 0.95 - 0.87 - 0.93 - 0.94 - 0.89 - 0.95 - 0.91 - 0.95 - 0.94 - 0.90 

Radix balthica LINNAEUS, 1758 Gastropoda X X 0.94 0.84 0.89 0.82 0.94 0.85 0.83 0.84 0.53 0.82 0.90 0.87 0.90 0.85 0.92 0.87 0.85 0.89 0.59 0.85 

Radix labiata 
ROSSMÄSSLER, 

1835 
Gastropoda - X 

- 0.85 - 0.85 - 0.89 - 0.88 - 0.87 - 0.88 - 0.86 - 0.87 - 0.90 - 0.85 

Aphelocheirus 

aestivalis 
FABRICIUS, 1794 Heteroptera - X 

- 0.96 - 0.91 - 0.95 - 0.93 - 0.87 - 0.97 - 0.92 - 0.96 - 0.95 - 0.87 

Erpobdella 

nigricollis 
BRANDES, 1900 Hirudinea X X 

0.94 0.88 0.91 0.87 0.92 0.90 0.91 0.90 0.81 0.88 0.88 0.92 0.92 0.89 0.92 0.91 0.88 0.92 0.77 0.88 

Erpobdella 

octoculata 
LINNAEUS, 1758 Hirudinea X X 

0.92 0.86 0.89 0.85 0.92 0.88 0.88 0.85 0.70 0.84 0.94 0.91 0.92 0.89 0.94 0.91 0.88 0.91 0.69 0.89 
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Erpobdella 

vilnensis 

LISKIEWICZ, 

1925 
Hirudinea - X 

- 0.89 - 0.85 - 0.89 - 0.87 - 0.86 - 0.89 - 0.88 - 0.88 - 0.90 - 0.89 

Glossiphonia 

complanata 
LINNAEUS, 1758 Hirudinea X X 

0.94 0.84 0.90 0.84 0.94 0.87 0.88 0.90 0.73 0.88 0.94 0.86 0.90 0.87 0.93 0.88 0.88 0.90 0.71 0.89 

Glossiphonia 

nebulosa 
KALBE, 1964 Hirudinea X X 

0.82 0.84 0.86 0.84 0.95 0.86 0.93 0.90 0.82 0.84 0.90 0.88 0.91 0.85 0.96 0.89 0.94 0.93 0.72 0.85 

Helobdella 

stagnalis 
LINNAEUS, 1758 Hirudinea - X 

- 0.88 - 0.84 - 0.86 - 0.87 - 0.86 - 0.91 - 0.87 - 0.89 - 0.89 - 0.87 

Sialis fuliginosa PICTET, 1836 Megaloptera - X - 0.75 - 0.72 - 0.81 - 0.81 - 0.78 - 0.86 - 0.83 - 0.88 - 0.89 - 0.84 

Sialis lutaria LINNAEUS, 1758 Megaloptera X X 0.90 0.89 0.87 0.88 0.89 0.89 0.84 0.88 0.80 0.81 0.91 0.92 0.92 0.90 0.92 0.90 0.86 0.90 0.77 0.85 

Calopteryx 

splendens 
HARRIS, 1782 Odonata X X 

0.91 0.88 0.88 0.87 0.88 0.87 0.79 0.89 0.75 0.90 0.95 0.93 0.91 0.88 0.92 0.92 0.87 0.91 0.75 0.89 

Calopteryx virgo LINNAEUS, 1758 Odonata - X - 0.87 - 0.79 - 0.83 - 0.79 - 0.76 - 0.89 - 0.85 - 0.87 - 0.85 - 0.82 

Eiseniella 

tetraedra 
SAVIGNY, 1826 Oligochaeta - X 

- 0.80 - 0.79 - 0.81 - 0.82 - 0.81 - 0.87 - 0.86 - 0.89 - 0.89 - 0.88 

Lumbriculus 

variegatus 
MÜLLER, 1774 Oligochaeta X X 

0.90 0.87 0.82 0.87 0.94 0.89 0.86 0.85 0.79 0.85 0.91 0.90 0.90 0.90 0.92 0.90 0.86 0.91 0.76 0.90 

Stylodrilus 

heringianus 

CLAPAREDE, 

1862 
Oligochaeta - X 

- 0.92 - 0.87 - 0.93 - 0.94 - 0.90 - 0.93 - 0.88 - 0.93 - 0.93 - 0.90 

Brachyptera risi MORTON, 1896 Plecoptera - X - 0.88 - 0.83 - 0.87 - 0.89 - 0.85 - 0.94 - 0.87 - 0.93 - 0.93 - 0.89 

Brachyptera 

seticornis 
KLAPALEK, 1902 Plecoptera - X 

- 0.90 - 0.82 - 0.90 - 0.93 - 0.84 - 0.88 - 0.82 - 0.88 - 0.91 - 0.83 

Isoperla 

grammatica 
PODA, 1761 Plecoptera X - 

0.96 - 0.91 - 0.91 - 0.82 - 0.63 - 0.93 - 0.91 - 0.92 - 0.82 - 0.64 - 

Leuctra hippopus KEMPNY, 1899 Plecoptera - X - 0.85 - 0.85 - 0.87 - 0.88 - 0.85 - 0.91 - 0.86 - 0.87 - 0.88 - 0.85 

Leuctra nigra OLIVIER, 1811 Plecoptera - X - 0.97 - 0.91 - 0.95 - 0.96 - 0.94 - 0.94 - 0.88 - 0.92 - 0.92 - 0.91 

Nemoura cinerea RETZIUS, 1783 Plecoptera X - 0.92 - 0.87 - 0.91 - 0.78 - 0.68 - 0.93 - 0.90 - 0.92 - 0.82 - 0.64 - 

Siphonoperla 

torrentium 
PICTET, 1841 Plecoptera - X 

- 0.92 - 0.90 - 0.96 - 0.95 - 0.91 - 0.90 - 0.87 - 0.93 - 0.92 - 0.89 

Spongilla lacustris LINNAEUS, 1758 Porifera - X - 0.92 - 0.86 - 0.85 - 0.85 - 0.81 - 0.96 - 0.84 - 0.88 - 0.87 - 0.87 

Anabolia nervosa CURTIS, 1834 Trichoptera X X 0.96 0.82 0.88 0.80 0.93 0.82 0.84 0.87 0.75 0.84 0.95 0.91 0.90 0.88 0.92 0.89 0.86 0.91 0.80 0.87 
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Anomalopterygella 

chauviniana 
STEIN, 1874 Trichoptera - X 

- 0.89 - 0.84 - 0.90 - 0.88 - 0.86 - 0.93 - 0.88 - 0.92 - 0.93 - 0.89 

Athripsodes 

albifrons 
LINNAEUS, 1758 Trichoptera X X 

0.97 0.88 0.90 0.81 0.93 0.85 0.85 0.88 0.78 0.87 0.94 0.89 0.92 0.83 0.93 0.87 0.90 0.88 0.78 0.87 

Athripsodes 

bilineatus 
LINNAEUS, 1758 Trichoptera - X 

- 0.91 - 0.90 - 0.86 - 0.89 - 0.88 - 0.91 - 0.86 - 0.87 - 0.89 - 0.86 

Athripsodes 

cinereus 
CURTIS, 1834 Trichoptera X X 

0.96 0.94 0.90 0.91 0.93 0.91 0.86 0.94 0.76 0.90 0.96 0.95 0.93 0.88 0.92 0.93 0.86 0.90 0.72 0.88 

Brachycentrus 

subnubilus 
CURTIS, 1834 Trichoptera - X 

- 0.97 - 0.92 - 0.95 - 0.94 - 0.88 - 0.97 - 0.92 - 0.96 - 0.95 - 0.86 

Ceraclea 

albimacula 
RAMBUR, 1877 Trichoptera - X 

- 0.96 - 0.93 - 0.92 - 0.92 - 0.90 - 0.95 - 0.91 - 0.91 - 0.87 - 0.87 

Ceraclea 

dissimilis 
STEPHENS, 1836 Trichoptera - X 

- 0.94 - 0.89 - 0.91 - 0.92 - 0.85 - 0.96 - 0.89 - 0.92 - 0.90 - 0.86 

Chaetopteryx 

villosa 
FABRICIUS, 1789 Trichoptera - X 

- 0.86 - 0.80 - 0.88 - 0.85 - 0.79 - 0.89 - 0.85 - 0.90 - 0.90 - 0.84 

Cyrnus 

trimaculatus 
CURTIS, 1834 Trichoptera - X 

- 0.92 - 0.87 - 0.89 - 0.89 - 0.81 - 0.95 - 0.87 - 0.92 - 0.92 - 0.82 

Drusus annulatus STEPHENS, 1837 Trichoptera - X - 0.90 - 0.87 - 0.86 - 0.95 - 0.87 - 0.89 - 0.84 - 0.84 - 0.92 - 0.83 

Goera pilosa FABRICIUS, 1775 Trichoptera - X - 0.89 - 0.87 - 0.90 - 0.92 - 0.85 - 0.88 - 0.87 - 0.88 - 0.89 - 0.87 

Halesus digitatus SCHRANK, 1781 Trichoptera - X - 0.85 - 0.83 - 0.90 - 0.90 - 0.81 - 0.87 - 0.85 - 0.92 - 0.91 - 0.86 

Halesus radiatus CURTIS, 1834 Trichoptera X X 0.92 0.79 0.90 0.79 0.95 0.83 0.82 0.82 0.67 0.79 0.95 0.87 0.90 0.85 0.94 0.89 0.85 0.90 0.64 0.86 

Hydropsyche 

angustipennis 
CURTIS, 1834 Trichoptera X X 

0.97 0.93 0.91 0.89 0.95 0.94 0.83 0.93 0.70 0.92 0.93 0.94 0.91 0.89 0.93 0.94 0.84 0.93 0.69 0.92 

Hydropsyche 

incognita 
PITSCH, 1993 Trichoptera - X 

- 0.96 - 0.84 - 0.90 - 0.95 - 0.90 - 0.92 - 0.85 - 0.87 - 0.92 - 0.92 

Hydropsyche 

instabilis 
CURTIS, 1834 Trichoptera - X 

- 0.94 - 0.92 - 0.92 - 0.92 - 0.89 - 0.91 - 0.88 - 0.90 - 0.89 - 0.88 

Hydropsyche 

pellucidula 
CURTIS, 1834 Trichoptera X X 

0.95 0.81 0.91 0.79 0.94 0.82 0.83 0.81 0.68 0.82 0.95 0.90 0.91 0.88 0.93 0.90 0.84 0.89 0.66 0.89 

Hydropsyche 

saxonica 

McLACHLAN, 

1884 
Trichoptera - X 

- 0.87 - 0.83 - 0.87 - 0.86 - 0.84 - 0.90 - 0.85 - 0.91 - 0.89 - 0.86 
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Hydropsyche 

siltalai 
DÖHLER, 1963 Trichoptera X X 

0.96 0.91 0.93 0.87 0.93 0.90 0.83 0.91 0.72 0.88 0.96 0.94 0.91 0.89 0.91 0.93 0.85 0.93 0.72 0.91 

Lepidostoma 

basale 

F. KOLENATI, 

1848 
Trichoptera - X 

- 0.89 - 0.82 - 0.89 - 0.91 - 0.86 - 0.94 - 0.83 - 0.92 - 0.94 - 0.88 

Lepidostoma 

hirtum 
FABRICIUS, 1775 Trichoptera X X 

0.97 0.89 0.93 0.84 0.84 0.89 0.84 0.90 0.86 0.91 0.97 0.90 0.92 0.86 0.92 0.90 0.84 0.92 0.81 0.89 

Limnephilus 

lunatus 
CURTIS, 1834 Trichoptera X - 

0.94 - 0.86 - 0.92 - 0.83 - 0.56 - 0.94 - 0.90 - 0.90 - 0.82 - 0.61 - 

Lype phaeopa 
J.F. STEPHENS, 

1836 
Trichoptera - X 

- 0.94 - 0.85 - 0.89 - 0.89 - 0.84 - 0.91 - 0.84 - 0.88 - 0.90 - 0.85 

Lype reducta HAGEN, 1868 Trichoptera X X 0.95 0.82 0.86 0.85 0.85 0.83 0.88 0.83 0.84 0.81 0.97 0.81 0.93 0.85 0.89 0.88 0.85 0.82 0.77 0.84 

Micrasema 

longulum 

McLACHLAN, 

1876 
Trichoptera - X 

- 0.84 - 0.85 - 0.85 - 0.91 - 0.79 - 0.88 - 0.84 - 0.86 - 0.91 - 0.79 

Mystacides azurea LINNAEUS, 1761 Trichoptera - X - 0.91 - 0.83 - 0.91 - 0.90 - 0.83 - 0.88 - 0.83 - 0.89 - 0.89 - 0.79 

Mystacides nigra LINNAEUS, 1758 Trichoptera - X - 0.92 - 0.85 - 0.92 - 0.90 - 0.85 - 0.90 - 0.86 - 0.92 - 0.88 - 0.86 

Neureclipsis 

bimaculata 
LINNAEUS, 1758 Trichoptera - X 

- 0.99 - 0.87 - 0.96 - 0.96 - 0.90 - 0.97 - 0.86 - 0.92 - 0.92 - 0.85 

Odontocerum 

albicorne 
SCOPOLI, 1763 Trichoptera - X 

- 0.91 - 0.89 - 0.92 - 0.93 - 0.86 - 0.90 - 0.87 - 0.90 - 0.92 - 0.85 

Philopotamus 

montanus 

E. DONOVAN, 

1813 
Trichoptera - X 

- 0.94 - 0.83 - 0.89 - 0.91 - 0.84 - 0.90 - 0.82 - 0.85 - 0.89 - 0.86 

Plectrocnemia 

conspersa 
CURTIS, 1834 Trichoptera - X 

- 0.85 - 0.85 - 0.88 - 0.90 - 0.87 - 0.88 - 0.87 - 0.88 - 0.90 - 0.88 

Polycentropus 

flavomaculatus 
PICTET, 1834 Trichoptera - X 

- 0.86 - 0.82 - 0.88 - 0.88 - 0.87 - 0.89 - 0.84 - 0.89 - 0.89 - 0.87 

Polycentropus 

irroratus 
CURTIS, 1835 Trichoptera X X 

0.94 0.95 0.86 0.86 0.90 0.95 0.82 0.93 0.71 0.90 0.95 0.94 0.91 0.88 0.95 0.94 0.83 0.91 0.67 0.88 

Potamophylax 

cingulatus 
STEPHENS, 1837 Trichoptera X X 

0.95 0.80 0.87 0.82 0.94 0.81 0.87 0.86 0.70 0.82 0.95 0.89 0.92 0.86 0.92 0.88 0.83 0.91 0.65 0.84 

Potamophylax 

latipennis 
CURTIS, 1834 Trichoptera X X 

0.95 0.81 0.88 0.84 0.95 0.85 0.87 0.86 0.70 0.84 0.92 0.86 0.92 0.87 0.91 0.87 0.84 0.89 0.68 0.85 

Potamophylax PILLER & Trichoptera X X 0.94 0.81 0.87 0.84 0.92 0.84 0.84 0.86 0.70 0.85 0.90 0.88 0.90 0.85 0.91 0.87 0.85 0.89 0.70 0.84 
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luctuosus MITTERPACHER, 

1783 

Potamophylax 

rotundipennis 
BRAUER, 1857 Trichoptera - X 

- 0.88 - 0.86 - 0.88 - 0.92 - 0.90 - 0.90 - 0.83 - 0.89 - 0.85 - 0.85 

Psychomyia 

pusilla 
FABRICIUS, 1781 Trichoptera - X 

- 0.93 - 0.91 - 0.93 - 0.93 - 0.87 - 0.94 - 0.90 - 0.93 - 0.94 - 0.86 

Rhyacophila 

dorsalis 
CURTIS, 1834 Trichoptera - X 

- 0.89 - 0.80 - 0.87 - 0.90 - 0.84 - 0.90 - 0.83 - 0.90 - 0.93 - 0.86 

Rhyacophila 

evoluta 

McLACHLAN, 

1879 
Trichoptera - X 

- 0.84 - 0.78 - 0.85 - 0.83 - 0.81 - 0.89 - 0.83 - 0.89 - 0.90 - 0.83 

Rhyacophila 

fasciata 
HAGEN, 1859 Trichoptera - X 

- 0.88 - 0.83 - 0.90 - 0.91 - 0.85 - 0.87 - 0.81 - 0.84 - 0.88 - 0.89 

Rhyacophila 

nubila 

ZETTERSTEDT, 

1840 
Trichoptera - X 

- 0.91 - 0.86 - 0.91 - 0.86 - 0.83 - 0.85 - 0.79 - 0.86 - 0.78 - 0.81 

Rhyacophila 

obliterata 

McLACHLAN, 

1863 
Trichoptera - X 

- 0.89 - 0.78 - 0.91 - 0.90 - 0.87 - 0.89 - 0.80 - 0.91 - 0.88 - 0.85 

Rhyacophila tristis PICTET, 1834 Trichoptera - X - 0.86 - 0.76 - 0.85 - 0.87 - 0.79 - 0.86 - 0.78 - 0.87 - 0.88 - 0.83 

Sericostoma 

flavicorne 

SCHNEIDER, 

1845 
Trichoptera - X 

- 0.93 - 0.90 - 0.92 - 0.94 - 0.92 - 0.86 - 0.89 - 0.90 - 0.86 - 0.90 

Sericostoma 

personatum 

KIRBY & 

SPENCER, 1826 
Trichoptera - X 

- 0.90 - 0.85 - 0.90 - 0.94 - 0.85 - 0.89 - 0.85 - 0.90 - 0.93 - 0.86 

Silo nigricornis PICTET, 1834 Trichoptera - X - 0.89 - 0.86 - 0.92 - 0.90 - 0.88 - 0.86 - 0.80 - 0.85 - 0.82 - 0.88 

Silo pallipes FABRICIUS, 1781 Trichoptera - X - 0.87 - 0.87 - 0.87 - 0.90 - 0.82 - 0.88 - 0.88 - 0.87 - 0.92 - 0.86 

Silo piceus BRAUER, 1857 Trichoptera - X - 0.90 - 0.86 - 0.91 - 0.87 - 0.86 - 0.89 - 0.84 - 0.87 - 0.86 - 0.84 

Dendrocoelum 

lacteum 

O.F. MÜLLER, 

1774 
Turbellaria - X 

- 0.88 - 0.87 - 0.91 - 0.84 - 0.84 - 0.91 - 0.90 - 0.92 - 0.88 - 0.90 

Dugesia 

gonocephala 
DUGES, 1830 Turbellaria X X 

0.96 0.89 0.93 0.86 0.91 0.90 0.86 0.89 0.68 0.86 0.94 0.93 0.94 0.89 0.93 0.92 0.85 0.93 0.69 0.90 

Dugesia lugubris SCHMIDT, 1861 Turbellaria - X - 0.90 - 0.87 - 0.86 - 0.92 - 0.87 - 0.92 - 0.88 - 0.90 - 0.92 - 0.88 

Dugesia polychroa SCHMIDT, 1861 Turbellaria - X - 0.90 - 0.87 - 0.87 - 0.92 - 0.86 - 0.93 - 0.89 - 0.91 - 0.91 - 0.88 

Polycelis felina DALYELL, 1814 Turbellaria - X - 0.91 - 0.87 - 0.90 - 0.91 - 0.83 - 0.90 - 0.85 - 0.90 - 0.88 - 0.86 

Polycelis nigra MUELLER, 1774 Turbellaria - X - 0.91 - 0.88 - 0.83 - 0.89 - 0.82 - 0.92 - 0.89 - 0.89 - 0.89 - 0.83 
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Polycelis tenuis IJIMA, 1884 Turbellaria - X - 0.90 - 0.87 - 0.83 - 0.87 - 0.84 - 0.90 - 0.88 - 0.86 - 0.90 - 0.86 
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Table ST3 Mean species assemblage responses (SARs) to five IHA metrics and overall species assemblage responses (OSARs) according to 

the weighted mean aggregation method in two projected periods of Horizons 2050 and 2090 in the Kinzig river catchment. 

 

Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

1 3 69.36 23.48 -12.64 -7.01 33.82 37.24 52.98 -1.29 -9.01 0.08 25.85 25.05 

2 3 37.20 13.33 0.54 11.14 5.73 17.52 19.43 2.84 -11.53 8.47 11.14 6.07 

3 1 -0.72 13.33 0.54 4.16 5.73 4.61 -0.23 2.84 -11.53 4.82 11.14 1.41 

4 3 20.00 2.54 17.16 -0.88 11.76 11.76 13.58 6.85 2.32 3.01 21.65 11.51 

5 3 19.66 2.54 17.16 -2.90 11.76 9.65 13.46 6.85 2.32 4.94 21.65 11.81 

6 3 13.48 -1.98 19.72 3.47 23.52 13.62 10.87 5.83 5.28 14.95 28.59 15.68 

7 3 12.88 -1.98 19.72 1.02 23.52 13.11 10.46 5.83 5.28 9.46 28.59 14.70 

8 3 6.90 -1.98 19.72 0.04 23.52 11.95 6.28 5.83 5.28 12.19 28.59 14.46 

9 3 6.90 -1.98 19.72 1.06 23.52 12.12 6.28 5.83 5.28 13.03 28.59 14.60 

10 2 0.93 -1.98 19.72 0.49 23.52 11.03 0.93 5.83 5.28 16.76 28.59 14.33 

11 2 0.42 -1.98 19.72 -5.21 23.52 10.00 0.26 5.83 5.28 14.36 28.59 13.82 

12 1 -0.83 -1.98 19.72 6.67 23.52 11.77 -0.52 5.83 5.28 13.01 28.59 13.47 

13 1 -0.83 -1.98 19.72 6.67 23.52 11.77 -0.52 5.83 5.28 13.01 28.59 13.47 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

14 1 -0.83 -1.98 19.72 6.67 23.52 11.77 -0.52 5.83 5.28 13.01 28.59 13.47 

15 1 -0.89 -1.98 19.72 13.27 23.52 12.86 -0.50 5.83 5.28 5.82 28.59 12.27 

16 1 -0.89 -1.98 19.72 13.27 23.52 12.86 -0.50 5.83 5.28 5.82 28.59 12.27 

17 1 -0.89 -1.98 19.72 13.27 23.52 12.86 -0.50 5.83 5.28 5.82 28.59 12.27 

18 1 -0.89 -1.98 19.72 12.25 23.52 12.69 -0.56 5.83 5.28 2.45 28.59 11.70 

19 1 -0.89 -1.98 19.72 12.25 23.52 12.69 -0.56 5.83 5.28 2.45 28.59 11.70 

20 1 -0.89 -1.98 19.72 12.25 23.52 12.69 -0.56 5.83 5.28 2.45 28.59 11.70 

21 1 -0.94 -1.98 19.72 -8.37 23.52 9.24 -0.54 5.83 5.28 8.87 28.59 12.77 

22 2 0.47 -1.98 19.72 -5.21 23.52 10.01 0.33 5.83 5.28 11.71 28.59 13.39 

23 2 0.51 -1.98 19.72 -5.77 23.52 9.92 0.33 5.83 5.28 11.65 28.59 13.38 

24 2 0.45 -1.98 19.72 -6.85 23.52 9.73 0.31 5.83 5.28 11.33 28.59 13.32 

25 2 0.50 -1.98 19.72 -4.85 23.52 10.07 0.34 5.83 5.28 11.78 28.59 13.40 

26 1 -0.90 -1.98 19.72 14.69 23.52 13.10 -0.53 5.83 5.28 13.58 28.59 13.56 

27 1 -0.90 -1.98 19.72 14.69 23.52 13.10 -0.53 5.83 5.28 13.58 28.59 13.56 

28 1 -0.85 -1.98 19.72 11.57 23.52 12.58 -0.52 5.83 5.28 8.93 28.59 12.78 

29 2 5.99 7.04 -3.95 0.67 7.97 3.54 6.40 7.64 1.79 22.81 25.73 16.13 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

30 2 13.54 -2.66 16.28 6.13 1.12 6.88 10.29 2.98 1.34 10.36 17.75 8.54 

31 2 -0.31 9.19 -16.90 16.98 6.34 3.06 0.13 1.42 -8.95 -1.05 21.14 5.64 

32 2 -0.31 9.19 -16.90 16.98 6.34 3.06 0.13 1.42 -8.95 -1.05 21.14 5.64 

33 2 20.33 -1.64 -4.01 5.79 19.61 10.07 9.47 6.00 -10.31 5.18 41.24 19.15 

34 2 1.02 23.75 0.23 -3.53 20.91 12.43 1.02 -3.03 -11.48 8.41 31.48 9.65 

35 1 -0.76 23.75 0.23 1.82 20.91 12.94 -0.16 -3.03 -11.48 17.01 31.48 10.88 

36 1 -0.86 12.22 -18.91 6.62 37.76 12.43 -0.17 0.58 -15.17 3.03 33.09 9.07 

37 1 -0.47 11.58 -17.34 -9.08 34.66 9.00 -0.15 -8.09 -13.36 -14.18 30.10 4.07 

38 1 -0.49 11.58 -17.34 -15.99 34.66 7.85 -0.11 -8.09 -13.36 -8.12 30.10 5.09 

39 1 -0.40 11.58 -17.34 -8.80 34.66 9.06 -0.12 -8.09 -13.36 -14.57 30.10 4.01 

40 1 -0.47 11.58 -17.34 -4.22 34.66 9.81 -0.12 -8.09 -13.36 -4.08 30.10 5.76 

41 1 -0.57 11.58 -17.34 -13.16 34.66 8.31 -0.17 -8.09 -13.36 -3.25 30.10 5.89 

42 1 -0.61 11.58 -17.34 -5.11 34.66 9.64 -0.13 -8.09 -13.36 5.47 30.10 7.35 

43 1 -0.60 11.58 -17.34 -5.39 34.66 9.60 -0.12 -8.09 -13.36 6.62 30.10 7.54 

44 2 9.66 7.50 4.02 -8.27 30.45 12.30 3.06 9.40 8.96 -2.69 22.72 10.69 

45 2 1.23 7.50 4.02 -9.23 30.45 10.74 -0.90 9.40 8.96 -0.55 22.72 10.39 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

46 2 5.12 7.50 4.02 -4.20 30.45 12.22 1.74 9.40 8.96 3.74 22.72 11.55 

47 1 -1.04 2.03 -3.33 8.48 35.15 12.74 -0.38 12.59 -1.02 -5.66 27.95 10.24 

48 1 -1.05 2.03 -3.33 -6.05 35.15 10.32 -0.38 12.59 -1.02 4.89 27.95 12.00 

49 1 -0.94 2.03 -3.33 -6.99 35.15 10.18 -0.30 12.59 -1.02 -2.53 27.95 10.77 

50 1 -0.89 2.03 -3.33 5.58 35.15 12.28 -0.25 12.59 -1.02 1.31 27.95 11.42 

51 1 -0.76 18.23 -13.10 -14.30 33.82 9.62 -0.12 -8.93 -8.93 10.54 33.55 9.94 

52 1 -0.76 18.23 -13.10 -13.15 33.82 9.81 -0.15 -8.93 -8.93 14.55 33.55 10.61 

53 1 -0.76 18.23 -13.10 -13.15 33.82 9.81 -0.15 -8.93 -8.93 14.55 33.55 10.61 

54 1 -0.89 18.23 -13.10 8.03 33.82 13.32 -0.16 -8.93 -8.93 -2.20 33.55 7.81 

55 1 -0.87 18.23 -13.10 17.19 36.01 15.58 -0.19 -8.93 -8.93 16.00 33.55 10.84 

56 1 -0.80 18.23 -13.10 -6.35 33.82 10.94 -0.18 -8.93 -8.93 19.72 33.55 11.46 

57 1 -0.85 18.23 -13.10 17.01 33.82 14.82 -0.13 -8.93 -8.93 16.27 33.55 10.90 

58 1 -0.79 18.23 -13.10 -7.55 33.82 10.74 -0.13 -8.93 -8.93 21.85 33.55 13.26 

59 1 -0.79 18.23 -13.10 -8.65 33.82 10.55 -0.13 -8.93 -8.93 21.46 33.55 13.15 

60 1 -0.77 18.23 -13.10 -15.57 33.82 9.40 -0.14 -8.93 -8.93 8.79 33.55 9.65 

61 1 -0.78 18.23 -13.10 -14.57 33.82 9.57 -0.17 -8.93 -8.93 9.70 33.55 9.79 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

62 1 -0.78 18.23 -13.10 -14.57 33.82 9.57 -0.17 -8.93 -8.93 9.70 33.55 9.79 

63 1 -0.78 18.23 -13.10 -14.57 33.82 9.57 -0.17 -8.93 -8.93 9.70 33.55 9.79 

64 3 67.03 18.23 -13.10 -7.97 33.82 36.99 53.80 -8.93 -8.93 0.60 33.55 26.40 

65 3 66.96 18.23 -13.10 -8.03 33.82 36.95 53.71 -8.93 -8.93 0.73 33.55 26.39 

66 3 60.42 11.58 -17.34 -7.11 34.66 33.12 47.79 -8.09 -13.36 3.03 30.10 23.14 

67 3 60.41 11.58 -17.34 -7.12 34.66 33.12 47.78 -8.09 -13.36 3.13 30.10 23.15 

68 3 60.42 11.58 -17.34 -7.12 34.66 33.12 47.76 -8.09 -13.36 3.15 30.10 23.15 

69 3 60.42 11.58 -17.34 -7.12 34.66 33.12 47.76 -8.09 -13.36 3.15 30.10 23.15 

70 3 60.46 11.58 -17.34 -6.57 34.66 33.20 47.78 -8.09 -13.36 3.22 30.10 23.16 

71 3 60.46 11.58 -17.34 -6.57 34.66 33.21 47.77 -8.09 -13.36 3.23 30.10 23.16 

72 3 60.46 11.58 -17.34 -6.57 34.66 33.21 47.77 -8.09 -13.36 3.23 30.10 23.16 

73 3 60.46 11.58 -17.34 -6.57 34.66 33.21 47.77 -8.09 -13.36 3.23 30.10 23.16 

74 3 61.06 11.58 -17.34 -6.60 34.66 33.47 49.11 -8.09 -13.36 2.36 30.10 23.55 

75 3 61.06 11.58 -17.34 -6.60 34.66 33.47 49.11 -8.09 -13.36 2.36 30.10 23.55 

76 3 61.06 11.58 -17.34 -6.60 34.66 33.47 49.11 -8.09 -13.36 2.36 30.10 23.55 

77 3 62.32 11.58 -17.34 -6.93 34.66 33.99 53.70 -8.09 -13.36 2.67 30.10 25.31 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

78 3 62.32 11.58 -17.34 -6.93 34.66 33.99 53.70 -8.09 -13.36 2.67 30.10 25.31 

79 3 62.32 11.58 -17.34 -6.93 34.66 33.99 53.70 -8.09 -13.36 2.67 30.10 25.31 

80 3 69.17 23.48 -12.64 -7.40 33.82 37.12 53.01 -1.29 -9.01 -0.41 25.85 25.00 

81 3 69.01 23.48 -12.64 -7.30 33.82 37.07 53.00 -1.29 -9.01 -0.47 25.85 24.99 

82 3 62.29 12.22 -18.91 1.16 37.76 35.46 52.73 0.58 -15.17 2.33 33.09 26.51 

83 3 62.29 12.22 -18.91 1.16 37.76 35.46 52.73 0.58 -15.17 2.33 33.09 26.51 

84 3 62.29 12.22 -18.91 1.16 37.76 35.46 52.73 0.58 -15.17 2.33 33.09 26.51 

85 3 62.29 12.22 -18.91 1.16 37.76 35.46 52.73 0.58 -15.17 2.33 33.09 26.51 

86 3 62.36 12.22 -18.91 1.29 37.76 35.51 53.08 0.58 -15.17 3.54 33.09 26.80 

87 3 62.36 12.22 -18.91 1.29 37.76 35.51 53.08 0.58 -15.17 3.54 33.09 26.80 

88 3 62.36 12.22 -18.91 1.29 37.76 35.51 53.08 0.58 -15.17 3.54 33.09 26.80 

89 3 62.37 12.22 -18.91 0.65 37.76 35.44 53.33 0.58 -15.17 3.48 33.09 26.88 

90 3 62.37 12.22 -18.91 0.65 37.76 35.44 53.33 0.58 -15.17 3.48 33.09 26.88 

91 3 62.37 12.22 -18.91 0.65 37.76 35.44 53.33 0.58 -15.17 3.48 33.09 26.88 

92 3 62.37 12.22 -18.91 0.65 37.76 35.44 53.33 0.58 -15.17 3.48 33.09 26.88 

93 3 62.46 12.22 -18.91 0.92 37.76 35.51 54.08 0.58 -15.17 3.02 33.09 27.10 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

94 3 62.46 12.22 -18.91 0.92 37.76 35.51 54.08 0.58 -15.17 3.02 33.09 27.10 

95 3 62.77 4.48 -20.84 -3.48 36.61 28.36 54.51 4.25 -17.79 15.75 37.13 30.00 

96 3 62.83 4.48 -20.84 -3.23 36.61 28.41 54.53 4.25 -17.79 15.48 37.13 29.97 

97 3 62.83 4.48 -20.84 -3.23 36.61 28.41 54.53 4.25 -17.79 15.48 37.13 29.97 

98 3 62.83 4.48 -20.84 -3.23 36.61 28.41 54.53 4.25 -17.79 15.48 37.13 29.97 

99 3 62.74 4.48 -20.84 -3.15 36.61 28.38 54.55 4.25 -17.79 16.03 37.13 30.05 

100 3 62.65 4.48 -20.84 -2.99 36.61 28.36 54.42 4.25 -17.79 15.80 37.13 29.97 

101 3 62.65 4.48 -20.84 -2.99 36.61 28.36 54.42 4.25 -17.79 15.80 37.13 29.97 

102 3 62.65 4.48 -20.84 -2.99 36.61 28.36 54.42 4.25 -17.79 15.80 37.13 29.97 

103 3 62.55 4.48 -20.84 -2.48 36.61 28.37 53.76 4.25 -17.79 15.28 37.13 29.66 

104 3 62.60 4.48 -20.84 -3.20 36.61 28.32 53.66 4.25 -17.79 15.99 37.13 29.71 

105 3 62.52 4.48 -20.84 -3.61 36.61 28.25 53.65 4.25 -17.79 15.43 37.13 29.64 

106 3 62.57 4.48 -20.84 -3.31 36.61 28.30 53.66 4.25 -17.79 16.01 37.13 29.71 

107 3 62.53 4.48 -20.84 -3.72 36.61 28.24 53.68 4.25 -17.79 15.37 37.13 29.64 

108 3 62.83 4.48 -20.84 -3.34 36.61 28.40 53.63 4.25 -17.79 15.06 37.13 29.58 

109 3 62.95 4.48 -20.84 -2.82 36.61 28.50 53.63 4.25 -17.79 15.28 37.13 29.61 



 

 

1
3
8

 

Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

110 3 62.93 4.48 -20.84 -2.83 36.61 28.49 53.58 4.25 -17.79 15.26 37.13 29.59 

111 2 21.34 3.23 -21.20 5.55 32.26 9.20 -1.59 9.57 -3.79 11.78 32.43 13.47 

112 2 21.34 3.23 -21.20 5.55 32.26 9.20 -1.59 9.57 -3.79 11.78 32.43 13.47 

113 3 55.80 23.75 0.23 -6.16 20.91 27.86 56.16 -3.03 -11.48 8.15 31.48 28.13 

114 3 55.80 23.75 0.23 -6.16 20.91 27.86 56.16 -3.03 -11.48 8.15 31.48 28.13 

115 3 54.95 23.75 0.23 -5.98 20.91 27.60 54.92 -3.03 -11.48 8.31 31.48 27.69 

116 3 55.63 23.75 0.23 -6.32 20.91 27.79 56.00 -3.03 -11.48 7.77 31.48 28.03 

117 3 54.85 23.75 0.23 -6.11 20.91 27.55 54.77 -3.03 -11.48 8.87 31.48 27.70 

118 3 54.85 23.75 0.23 -6.11 20.91 27.55 54.77 -3.03 -11.48 8.87 31.48 27.70 

119 3 50.13 23.75 0.23 -5.47 20.91 26.05 47.15 -3.03 -11.48 8.21 31.48 24.76 

120 3 50.13 23.75 0.23 -5.47 20.91 26.05 47.15 -3.03 -11.48 8.21 31.48 24.76 

121 3 51.16 9.19 -16.90 -4.95 6.34 21.02 42.65 1.42 -8.95 -9.64 21.14 19.13 

122 3 51.16 9.19 -16.90 -4.95 6.34 21.02 42.65 1.42 -8.95 -9.64 21.14 19.13 

123 3 51.15 9.19 -16.90 -6.02 6.34 20.87 42.91 1.42 -8.95 -9.80 21.14 19.21 

124 3 51.15 9.19 -16.90 -6.02 6.34 20.87 42.91 1.42 -8.95 -9.80 21.14 19.21 

125 3 51.18 9.19 -16.90 -5.94 6.34 20.89 42.96 1.42 -8.95 -9.41 21.14 19.28 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

126 3 42.20 12.44 -25.71 6.31 21.21 15.15 27.96 -2.36 -2.02 -5.74 10.27 9.34 

127 3 41.86 12.44 -25.71 6.48 21.21 15.06 27.03 -2.36 -2.02 -4.24 10.27 9.28 

128 3 41.86 12.44 -25.71 6.48 21.21 15.06 27.03 -2.36 -2.02 -4.24 10.27 9.28 

129 3 41.86 12.44 -25.71 6.48 21.21 15.06 27.03 -2.36 -2.02 -4.24 10.27 9.28 

130 3 41.86 12.44 -25.71 6.48 21.21 15.06 27.03 -2.36 -2.02 -4.24 10.27 9.28 

131 3 41.68 12.44 -25.71 5.75 21.21 14.92 26.34 -2.36 -2.02 -3.25 10.27 9.22 

132 3 40.47 12.44 -25.71 4.67 21.47 14.45 24.52 -2.36 -2.02 -5.48 10.27 8.24 

133 3 40.47 12.44 -25.71 4.67 21.47 14.45 24.52 -2.36 -2.02 -5.48 10.27 8.24 

134 3 37.92 13.33 0.54 10.05 5.73 17.58 20.41 2.84 -11.53 13.46 11.14 9.45 

135 3 19.44 2.54 17.16 -3.07 11.76 9.57 13.42 6.85 2.32 4.74 21.65 11.77 

136 3 14.70 -1.98 19.72 -0.30 23.52 13.20 11.69 5.83 5.28 11.88 28.59 15.31 

137 3 12.95 -1.98 19.72 0.48 23.52 13.03 10.50 5.83 5.28 14.34 28.59 15.52 

138 2 0.97 -1.98 19.72 -3.60 23.52 10.36 0.97 5.83 5.28 13.48 28.59 13.79 

139 2 0.29 -1.98 19.72 7.35 23.52 12.07 0.15 5.83 5.28 14.88 28.59 13.89 

140 1 -0.97 -1.98 19.72 5.63 23.52 11.57 -0.53 5.83 5.28 25.01 28.59 16.83 

141 1 -0.86 -1.98 19.72 7.33 23.52 11.88 -0.44 5.83 5.28 27.09 28.59 17.43 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

142 2 0.64 -1.98 19.72 6.84 23.52 12.04 0.47 5.83 5.28 19.20 28.59 14.66 

143 1 -0.85 -1.98 19.72 6.67 23.52 11.77 -0.52 5.83 5.28 13.01 28.59 13.46 

144 1 -0.88 -1.98 19.72 11.38 23.52 12.55 -0.56 5.83 5.28 8.94 28.59 12.78 

145 1 -0.92 -1.98 19.72 11.76 23.52 12.60 -0.56 5.83 5.28 2.29 28.59 11.67 

146 1 -0.93 -1.98 19.72 -3.85 23.52 10.00 -0.58 5.83 5.28 9.57 28.59 12.88 

147 1 -0.89 -1.98 19.72 8.06 23.52 11.99 -0.47 5.83 5.28 27.98 28.59 17.68 

148 1 -0.91 -1.98 19.72 9.70 23.52 12.26 -0.52 5.83 5.28 -1.07 28.59 11.12 

149 1 -0.89 -1.98 19.72 5.71 23.52 11.60 -0.47 5.83 5.28 26.25 28.59 17.19 

150 3 20.05 2.54 17.16 -0.76 11.76 11.80 13.60 6.85 2.32 3.15 21.65 11.54 

151 1 -0.26 7.04 -3.95 -1.33 7.97 1.89 0.31 7.64 25.04 19.41 25.73 18.41 

152 2 3.66 7.04 -3.95 1.52 7.97 3.25 5.32 7.64 19.85 16.59 25.73 16.81 

153 1 -0.50 13.33 0.54 -2.37 5.73 3.35 -0.09 2.84 -11.53 5.06 11.14 1.48 

154 2 15.58 2.88 -6.69 14.86 -6.07 4.11 11.73 3.68 8.73 10.69 9.14 8.79 

155 2 15.52 -2.66 16.28 10.22 1.12 8.10 11.71 2.98 7.74 15.64 17.75 11.16 

156 2 16.12 2.88 -6.69 14.11 -6.07 4.07 12.16 3.68 13.78 8.86 9.14 9.52 

157 2 1.53 4.26 -9.73 -0.80 17.36 2.52 2.99 10.48 -7.15 1.95 28.46 10.86 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

158 2 1.39 4.26 -9.73 -5.88 17.36 1.48 2.75 10.48 -7.15 -2.95 28.46 10.01 

159 2 1.23 4.26 -9.73 -10.38 17.36 0.55 2.33 10.48 -7.15 1.80 28.46 10.73 

160 2 1.01 4.26 -9.73 3.21 17.36 3.22 1.93 10.48 -7.15 1.19 28.46 10.56 

161 1 -0.71 4.26 -9.73 0.20 17.36 2.28 0.03 10.48 -7.15 11.06 28.46 11.89 

162 1 -0.20 4.26 -9.73 -6.11 17.36 1.12 0.65 10.48 -7.15 1.02 28.46 10.32 

163 2 1.29 23.75 0.23 7.71 20.91 14.08 1.40 -3.03 -11.48 17.71 31.48 11.26 

164 2 1.01 23.75 0.23 -8.23 20.91 11.76 0.98 -3.03 -11.48 6.58 31.48 9.34 

165 1 -0.69 23.75 0.23 -7.79 20.91 11.58 -0.16 -3.03 -11.48 -1.79 31.48 7.75 

166 1 -0.69 23.75 0.23 -7.79 20.91 11.58 -0.16 -3.03 -11.48 -1.79 31.48 7.75 

167 1 -0.69 23.75 0.23 -7.79 20.91 11.58 -0.16 -3.03 -11.48 -1.79 31.48 7.75 

168 2 -0.57 5.15 -16.03 8.71 19.38 3.33 -0.47 6.76 -4.37 5.75 30.76 11.53 

169 1 -1.02 5.15 -16.03 5.23 19.38 2.54 -0.14 6.76 -4.37 13.59 30.76 12.89 

170 1 -1.02 5.15 -16.03 5.23 19.38 2.54 -0.14 6.76 -4.37 13.59 30.76 12.89 

171 2 20.93 3.23 -21.20 3.37 32.26 8.82 -1.38 9.57 -3.79 9.25 32.43 13.09 

172 1 -1.02 5.15 -16.03 2.17 19.38 1.93 -0.16 6.76 -4.37 2.89 30.76 11.11 

173 1 -1.02 5.15 -16.03 2.17 19.38 1.93 -0.16 6.76 -4.37 2.89 30.76 11.11 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

174 1 -1.02 5.15 -16.03 2.17 19.38 1.93 -0.16 6.76 -4.37 2.89 30.76 11.11 

175 1 -1.06 5.15 -16.03 -2.04 19.38 1.08 -0.26 6.76 -4.37 12.65 30.76 12.71 

176 1 -1.04 5.15 -16.03 14.28 19.38 4.35 -0.21 6.76 -4.37 24.28 30.76 16.04 

177 1 -1.06 5.15 -16.03 9.75 19.38 3.44 -0.17 6.76 -4.37 10.21 30.76 12.32 

178 1 -0.94 5.15 -16.03 13.85 19.38 4.28 -0.10 6.76 -4.37 18.83 30.76 13.77 

179 1 -1.05 5.15 -16.03 13.25 19.38 4.14 -0.21 6.76 -4.37 22.57 30.76 15.55 

180 2 -0.69 12.22 -18.91 0.16 37.76 11.38 -0.18 0.58 -15.17 12.26 33.09 10.61 

181 2 -0.68 12.22 -18.91 -12.72 37.76 9.24 -0.18 0.58 -15.17 0.86 33.09 8.71 

182 1 -0.86 12.22 -18.91 10.18 37.76 13.02 -0.19 0.58 -15.17 5.03 33.09 9.40 

183 1 -0.59 11.58 -17.34 -2.34 34.66 10.11 -0.18 -8.09 -13.36 -0.02 30.10 6.42 

184 1 -0.70 11.58 -17.34 1.12 34.66 10.67 -0.18 -8.09 -13.36 8.66 30.10 7.87 

185 2 0.57 2.03 -3.33 -1.59 35.15 11.33 -0.95 12.59 -1.02 -4.81 27.95 10.29 

186 2 0.57 2.03 -3.33 -3.05 35.15 11.09 -0.92 12.59 -1.02 1.11 27.95 11.28 

187 2 0.46 2.03 -3.33 -5.28 35.15 10.70 -0.92 12.59 -1.02 2.72 27.95 11.55 

188 2 9.43 7.50 4.02 -7.58 30.45 12.38 3.15 9.40 8.96 0.93 22.72 11.31 

189 2 11.58 7.50 4.02 -8.33 30.45 12.61 3.83 9.40 8.96 1.89 22.72 11.59 



 

 

1
4
3

 

Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

190 2 4.80 7.50 4.02 -4.83 30.45 12.07 1.28 9.40 8.96 1.12 22.72 11.03 

191 1 -1.00 2.03 -3.33 -3.12 35.15 10.81 -0.32 12.59 -1.02 7.47 27.95 12.44 

192 1 -0.80 2.03 -3.33 20.41 35.15 15.57 -0.22 12.59 -1.02 -2.29 27.95 10.83 

193 1 -0.79 18.23 -13.10 -15.20 33.82 9.46 -0.16 -8.93 -8.93 11.82 33.55 10.15 

194 1 -0.78 18.23 -13.10 -15.51 33.82 9.41 -0.15 -8.93 -8.93 11.80 33.55 10.15 

195 1 -0.37 7.50 4.02 2.26 30.45 12.38 -0.54 9.40 8.96 -3.70 22.72 9.93 

196 2 1.04 7.50 4.02 0.72 30.45 12.36 -0.76 9.40 8.96 0.11 22.72 10.53 

197 1 0.48 7.50 4.02 -2.52 30.45 11.73 -0.55 9.40 8.96 -1.59 22.72 10.28 

198 1 -0.10 7.50 4.02 -4.05 30.45 11.38 -0.47 9.40 8.96 5.20 22.72 11.42 

199 1 -0.10 7.50 4.02 -4.05 30.45 11.38 -0.47 9.40 8.96 5.20 22.72 11.42 

200 1 -0.10 7.50 4.02 -4.05 30.45 11.38 -0.47 9.40 8.96 5.20 22.72 11.42 

201 2 1.06 7.50 4.02 1.72 30.45 12.53 -0.69 9.40 8.96 0.91 22.72 10.67 

202 2 4.31 7.50 4.02 -0.85 30.45 12.65 1.05 9.40 8.96 2.65 22.72 11.25 

203 2 1.67 7.50 4.02 -1.30 30.45 12.13 -0.73 9.40 8.96 4.61 22.72 11.28 

204 1 1.01 7.50 4.02 -1.97 30.45 11.91 -0.66 9.40 8.96 2.00 22.72 10.86 

205 3 68.13 23.48 -12.64 -6.65 33.82 36.78 50.81 -1.29 -9.01 0.09 25.85 24.24 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

206 3 68.13 23.48 -12.64 -6.90 33.82 36.76 50.80 -1.29 -9.01 -0.04 25.85 24.22 

207 3 66.96 18.23 -13.10 -8.02 33.82 36.95 53.71 -8.93 -8.93 0.71 33.55 26.38 

208 3 69.21 23.48 -12.64 -6.67 33.82 37.21 53.01 -1.29 -9.01 0.16 25.85 25.07 

209 3 68.37 18.23 -13.10 -7.67 33.82 37.62 53.68 -8.93 -8.93 0.24 33.55 26.31 

210 1 -0.86 13.33 0.54 1.88 5.73 4.12 -0.32 2.84 -11.53 5.54 11.14 1.53 

211 2 3.08 -2.66 16.28 10.92 1.12 5.75 8.15 2.98 0.62 13.81 17.75 8.66 

212 2 9.68 -2.66 16.28 6.98 1.12 6.28 8.45 2.98 -5.25 12.64 17.75 7.31 

213 1 0.64 4.26 -9.73 0.65 17.36 2.64 1.43 10.48 -7.15 3.58 28.46 10.88 

214 2 1.54 4.26 -9.73 1.71 17.36 3.03 3.00 10.48 -7.15 3.88 28.46 11.19 

215 1 -0.82 23.75 0.23 10.66 20.91 14.20 -0.17 -3.03 -11.48 8.86 31.48 9.52 

216 1 -1.01 5.15 -16.03 16.76 19.38 4.85 -0.23 6.76 -4.37 13.92 30.76 12.93 

217 1 -0.39 11.58 -17.34 -8.70 34.66 9.08 -0.10 -8.09 -13.36 -14.69 30.10 3.99 

218 1 0.54 7.50 4.02 -2.55 30.45 11.74 -0.55 9.40 8.96 3.50 22.72 11.12 

219 1 0.47 7.50 4.02 -2.22 30.45 11.78 -0.58 9.40 8.96 -1.42 22.72 10.30 

220 1 0.35 7.50 4.02 2.69 30.45 12.58 -0.59 9.40 8.96 2.19 22.72 10.90 

221 2 1.05 7.50 4.02 -0.62 30.45 12.14 -0.73 9.40 8.96 -4.28 22.72 9.80 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing Weighted mean 

222 2 1.40 7.50 4.02 -13.06 30.45 10.13 -0.74 9.40 8.96 1.60 22.72 10.78 

223 1 0.56 7.50 4.02 -3.11 30.45 11.65 -0.59 9.40 8.96 3.58 22.72 11.13 
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Table ST4 Mean species assemblage responses (SARs) to five IHA metrics and overall species assemblage responses (OSARs) according to 

the weighted mean aggregation method in two projected periods of Horizons 2050 and 2090 in the Treene river catchment. 

Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing 

Weighted 

mean 

1 2 -3.14 8.74 0.16 18.27 -6.26 3.56 -0.11 5.33 18.31 -1.38 -3.15 3.80 

2 2 -2.85 9.87 4.49 33.85 0.00 13.20 -0.75 12.55 16.16 24.61 3.43 13.43 

3 2 -2.85 9.87 4.49 33.85 0.00 13.20 -0.75 12.55 16.16 24.61 3.43 13.43 

4 1 -0.97 4.60 2.76 35.83 -16.74 10.22 -0.26 -10.51 0.47 36.16 -8.19 8.97 

5 1 -0.72 2.09 -0.41 -2.05 -6.71 -1.56 -0.10 12.96 19.05 11.76 -0.17 8.70 

6 1 -0.72 2.09 -0.41 -2.05 -6.71 -1.56 -0.10 12.96 19.05 11.76 -0.17 8.70 

7 1 -0.72 2.09 -0.41 -2.05 -6.71 -1.56 -0.10 12.96 19.05 11.76 -0.17 8.70 

8 2 -5.17 12.83 -2.19 40.76 -12.61 16.45 -1.55 15.97 8.38 39.27 -5.31 16.00 

9 2 -5.17 12.83 -2.19 40.76 -12.61 16.45 -1.55 15.97 8.38 39.27 -5.31 16.00 

10 2 -5.17 12.83 -2.19 40.76 -12.61 16.45 -1.55 15.97 8.38 39.27 -5.31 16.00 

11 2 -4.41 12.83 -2.19 40.76 -12.61 16.56 -1.44 15.97 8.38 39.27 -5.31 16.02 

12 2 -4.41 12.83 -2.19 40.76 -12.61 16.56 -1.44 15.97 8.38 39.27 -5.31 16.02 

13 2 -4.41 12.83 -2.19 40.76 -12.61 16.56 -1.44 15.97 8.38 39.27 -5.31 16.02 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing 

Weighted 

mean 

14 2 -3.19 12.83 -2.19 40.76 -12.61 16.73 -1.05 15.97 8.38 39.27 -5.31 16.09 

15 2 -3.19 12.83 -2.19 40.76 -12.61 16.73 -1.05 15.97 8.38 39.27 -5.31 16.09 

16 2 -3.19 12.83 -2.19 40.76 -12.61 16.73 -1.05 15.97 8.38 39.27 -5.31 16.09 

17 3 -3.27 3.53 2.08 13.28 3.93 3.91 -0.47 -1.28 11.88 1.43 -1.86 1.94 

18 3 -3.27 3.53 2.08 13.28 3.93 3.91 -0.47 -1.28 11.88 1.43 -1.86 1.94 

19 3 -3.27 3.53 2.08 13.28 3.93 3.91 -0.47 -1.28 11.88 1.43 -1.86 1.94 

20 3 12.00 9.87 4.49 33.85 0.00 15.68 8.56 12.55 16.16 24.61 3.43 14.99 

21 3 12.00 9.87 4.49 33.85 0.00 15.68 8.56 12.55 16.16 24.61 3.43 14.99 

22 2 -4.70 4.60 2.76 35.83 -16.74 9.60 -1.21 -10.51 0.47 36.16 -8.19 8.81 

23 1 -0.85 4.60 2.76 35.83 -16.74 10.24 -0.22 -10.51 0.47 36.16 -8.19 8.98 

24 1 -0.62 5.03 -0.22 6.92 14.38 5.10 -0.14 2.41 11.33 -8.68 13.44 3.67 

25 2 -5.74 7.25 4.27 1.38 -3.39 0.75 -1.35 -2.70 5.59 -1.07 -1.68 -0.24 

26 2 -5.74 7.25 4.27 1.38 -3.39 0.75 -1.35 -2.70 5.59 -1.07 -1.68 -0.24 

27 2 -5.74 7.25 4.27 1.38 -3.39 0.75 -1.35 -2.70 5.59 -1.07 -1.68 -0.24 

28 1 -0.82 5.03 -0.22 6.92 14.38 5.06 -0.18 2.41 11.33 -8.68 13.44 3.67 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing 

Weighted 

mean 

29 1 -0.63 8.74 0.16 18.27 -6.26 4.06 -0.06 5.33 18.31 -1.38 -3.15 3.81 

30 1 -0.63 8.74 0.16 18.27 -6.26 4.06 -0.06 5.33 18.31 -1.38 -3.15 3.81 

31 2 -1.90 8.74 0.16 18.27 -6.26 3.80 -0.12 5.33 18.31 -1.38 -3.15 3.80 

32 2 -4.40 13.44 3.20 15.73 0.22 5.64 -1.02 7.69 -2.51 16.31 -5.70 2.96 

33 2 -4.40 13.44 3.20 15.73 0.22 5.64 -1.02 7.69 -2.51 16.31 -5.70 2.96 

34 2 -4.40 13.44 3.20 15.73 0.22 5.64 -1.02 7.69 -2.51 16.31 -5.70 2.96 

35 2 -4.40 13.44 3.20 15.73 0.22 5.64 -1.02 7.69 -2.51 16.31 -5.70 2.96 

36 3 11.76 6.99 3.89 31.66 1.72 14.61 8.50 14.36 14.77 15.80 5.29 11.75 

37 3 11.76 6.99 3.89 31.66 1.72 14.61 8.50 14.36 14.77 15.80 5.29 11.75 

38 3 11.76 6.99 3.89 31.66 1.72 14.61 8.50 14.36 14.77 15.80 5.29 11.75 

39 3 11.76 6.99 3.89 31.66 1.72 14.61 8.50 14.36 14.77 15.80 5.29 11.75 

40 3 -2.95 3.53 2.08 13.28 3.93 3.97 -0.53 -1.28 11.88 1.43 -1.86 1.93 

41 3 -2.95 3.53 2.08 13.28 3.93 3.97 -0.53 -1.28 11.88 1.43 -1.86 1.93 

42 3 -2.95 3.53 2.08 13.28 3.93 3.97 -0.53 -1.28 11.88 1.43 -1.86 1.93 

43 3 -2.95 3.53 2.08 13.28 3.93 3.97 -0.53 -1.28 11.88 1.43 -1.86 1.93 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing 

Weighted 

mean 

44 3 -1.08 5.03 -0.22 6.92 14.38 5.01 -0.91 2.41 11.33 -8.68 13.44 3.52 

45 3 -1.08 5.03 -0.22 6.92 14.38 5.01 -0.91 2.41 11.33 -8.68 13.44 3.52 

46 3 -1.08 5.03 -0.22 6.92 14.38 5.01 -0.91 2.41 11.33 -8.68 13.44 3.52 

47 3 -1.08 5.03 -0.22 6.92 14.38 5.01 -0.91 2.41 11.33 -8.68 13.44 3.52 

48 1 -0.76 4.60 2.76 35.83 -16.74 10.25 -0.20 -10.51 0.47 36.16 -8.19 8.98 

49 1 -0.76 4.60 2.76 35.83 -16.74 10.25 -0.20 -10.51 0.47 36.16 -8.19 8.98 

50 1 -0.76 4.60 2.76 35.83 -16.74 10.25 -0.20 -10.51 0.47 36.16 -8.19 8.98 

51 1 -0.64 18.90 2.75 -4.72 15.71 6.40 -0.15 1.58 8.34 7.56 1.83 3.83 

52 1 -0.64 18.90 2.75 -4.72 15.71 6.40 -0.15 1.58 8.34 7.56 1.83 3.83 

53 1 -0.69 5.03 -0.22 6.92 14.38 5.08 -0.15 2.41 11.33 -8.68 13.44 3.67 

54 1 -0.69 5.03 -0.22 6.92 14.38 5.08 -0.15 2.41 11.33 -8.68 13.44 3.67 

55 3 -4.85 18.90 2.75 -4.72 15.71 5.56 -0.51 1.58 8.34 7.56 1.83 3.76 

56 3 -4.85 18.90 2.75 -4.72 15.71 5.56 -0.51 1.58 8.34 7.56 1.83 3.76 

57 3 -4.85 18.90 2.75 -4.72 15.71 5.56 -0.51 1.58 8.34 7.56 1.83 3.76 

58 3 -4.85 18.90 2.75 -4.72 15.71 5.56 -0.51 1.58 8.34 7.56 1.83 3.76 
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Site Stream order 

Horizon 2050 Horizon 2090 

Duration Frequency Magnitude Rate Timing Weighted mean Duration Frequency Magnitude Rate Timing 

Weighted 

mean 

59 3 -4.85 18.90 2.75 -4.72 15.71 5.56 -0.51 1.58 8.34 7.56 1.83 3.76 

60 3 -4.85 18.90 2.75 -4.72 15.71 5.56 -0.51 1.58 8.34 7.56 1.83 3.76 

61 1 -0.62 4.60 2.76 35.83 -16.74 10.28 -0.17 -10.51 0.47 36.16 -8.19 8.99 

62 1 -1.28 13.44 3.20 15.73 0.22 6.26 -0.31 7.69 -2.51 16.31 -5.70 3.10 

63 2 -2.05 13.44 3.20 15.73 0.22 6.11 -0.49 7.69 -2.51 16.31 -5.70 3.06 

64 2 -2.98 13.44 3.20 15.73 0.22 5.92 -0.69 7.69 -2.51 16.31 -5.70 3.02 

65 2 -5.25 12.83 -2.19 40.76 -12.61 16.44 -1.50 15.97 8.38 39.27 -5.31 16.01 

66 3 -3.20 3.53 2.08 13.28 3.93 3.92 -0.48 -1.28 11.88 1.43 -1.86 1.94 

67 3 -3.20 3.53 2.08 13.28 3.93 3.92 -0.48 -1.28 11.88 1.43 -1.86 1.94 
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Figure SF9 Variability in the mean responses of individual species (SRs, 134 species) to flow alterations according to 

16 climate scenarios and relationships grouped according to species functional traits (a and b: higher taxa, c and d: 

current preference, e and f: stream zonation preference, g and h: feeding type) in the Kinzig catchments for horizon 

2050 (left column: a, c, e, g) and horizon 2090 (right column: b, d, f, h).  
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Figure SF10 Variability in the mean responses of individual species (SRs, 134 species) to flow alterations according to 

16 climate scenarios and relationships grouped according to species functional traits (a and b: higher taxa, c and d: 

current preference, e and f: stream zonation preference, g and h: feeding type) in the Treene catchments for horizon 

2050 (left column: a, c, e, g) and horizon 2090 (right column: b, d, f, h). 
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The ecological status of Kinzig sampling sites will improve significantly according to 

only two (climate model six and 11) climate models in horizon 2090 (Fig. 6a). The 

German Saprobic Index (GSI) of the Kinzig sampling sites will increase significantly 

according to only one (climate model two) and decrease according to two (climate model 

six and 11) climate models in horizon 2090 (Fig. 6b). The ES and GSI of the Treene 

sampling sites are predicted to change insignificantly in the projected periods (Fig. 6c, 

6d).  

 

 

Figure SF11 The ecological effects of flow alterations on stream macroinvertebrates in the Kinzig (a and b, 223 sites) 

and Treene (c and d, 67 sites) catchments for each of 16 climate model. Potential changes in the ecological status (a and 

c) and German saprobic index (b and d) of each site (according to regular monitoring required by the European Water 

Framework Directive) during three periods of baseline (1998 – 2017), horizon 2050 (2046 – 2065) and horizon 2090 

(2080 – 2099). In the Kinzig catchment, site one to 87 is located in river order one, 88 to 135 in order two and 136 to 

223 in order three. In the Treene catchment, site one to 18 is located in river order one, 19 to 42 in order two and 43 to 

67 in order three.  
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Tables 
 

Table ST5 EURO-CORDEX models and versions used in this study (from Kiesel et al., 

unpublished data). 

 
ID GCM GCMshort RCM RCMshort 

1 CNRM-CERFACS-CNRM-CM5 CNRM CLMcom-CCLM4-8-17 CLMcom 

2 CNRM-CERFACS-CNRM-CM5 CNRM CNRM-ALADIN53 ALADIN 

3 CNRM-CERFACS-CNRM-CM5 CNRM SMHI-RCA4 SMHI 

4 ICHEC-EC-EARTH ICHEC CLMcom-CCLM4-8-17 CLMcom 

5 ICHEC-EC-EARTH ICHEC DMI-HIRHAM5 DMI 

6 ICHEC-EC-EARTH ICHEC KNMI-RACMO22E KNMI 

7 ICHEC-EC-EARTH ICHEC SMHI-RCA4 SMHI 

8 IPSL-IPSL-CM5A-MR IPSL IPSL-INERIS-WRF331F INERIS 

9 IPSL-IPSL-CM5A-MR IPSL SMHI-RCA4 SMHI 

10 MOHC-HadGEM2-ES MOHC CLMcom-CCLM4-8-17 CLMcom 

11 MOHC-HadGEM2-ES MOHC KNMI-RACMO22E KNMI 

12 MOHC-HadGEM2-ES MOHC SMHI-RCA4 SMHI 

13 MPI-M-MPI-ESM-LR MPI CLMcom-CCLM4-8-17 CLMcom 

14 MPI-M-MPI-ESM-LR MPI MPI-CSC-REMO2009v1 REMO1 

15 MPI-M-MPI-ESM-LR MPI MPI-CSC-REMO2009v2 REMO2 

16 MPI-M-MPI-ESM-LR MPI SMHI-RCA4 SMHI 
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Table ST6 List of all 134 and 60 species of stream macroinvertebrates in the Kinzig and 

Treene catchments, respectively, and the author and higher taxonomical unit. 

 

 

Species Author Higher taxa Treene Kinzig 

Pisidium amnicum 
O.F. MÜLLER, 

1774 
Bivalvia X X 

Pisidium 

casertanum 
POLI, 1791 Bivalvia - X 

Pisidium 

subtruncatum 
MALM, 1855 Bivalvia X X 

Pisidium supinum 
A. SCHMIDT, 

1851 
Bivalvia X - 

Sphaerium 

corneum 
(LINNAEUS, 1758 Bivalvia X X 

Elmis aenea MÜLLER, 1806 Coleoptera X X 

Elmis maugetii LATREILLE, 1798 Coleoptera X X 

Elmis rietscheli STEFFAN, 1958 Coleoptera X X 

Elmis rioloides KUWERT, 1890 Coleoptera X X 

Elodes minuta LINNAEUS, 1767 Coleoptera X - 

Hydraena dentipes GERMAR, 1844 Coleoptera - X 

Hydraena gracilis GERMAR, 1824 Coleoptera - X 

Hydraena 

minutissima 
STEPHENS, 1829 Coleoptera - X 

Limnius perrisi DUFOUR, 1843 Coleoptera - X 

Limnius volckmari PANZER, 1793 Coleoptera X X 

Orectochilus 

villosus 
MÜLLER, 1776 Coleoptera X X 

Oulimnius 

tuberculatus 
MÜLLER, 1806 Coleoptera X X 

Platambus 

maculatus 
LINNAEUS, 1758 Coleoptera - X 

Asellus aquaticus LINNAEUS, 1758 Crustacea X X 

Gammarus 

fossarum 

KOCH in 

PANZER, 1836 
Crustacea - X 

Gammarus pulex LINNAEUS, 1758 Crustacea X X 

Gammarus roeselii GERVAIS, 1835 Crustacea - X 

Proasellus coxalis DOLLFUS, 1892 Crustacea X - 

Atherix ibis FABRICIUS, 1798 Diptera X X 

Atrichops crassipes MEIGEN, 1820 Diptera - X 

Chironomus 

riparius 
MEIGEN, 1804 Diptera - X 

Prodiamesa 

olivacea 
MEIGEN, 1818 Diptera X X 

Ptychoptera 

paludosa 
MEIGEN, 1804 Diptera X - 

Simulium 

argyreatum 
MEIGEN, 1838 Diptera - X 

Simulium 

cryophilum 
RUBZOV, 1959 Diptera - X 

Simulium equinum LINNAEUS, 1758 Diptera X - 

Simulium ornatum MEIGEN, 1818 Diptera X X 

Simulium 

variegatum 
MEIGEN, 1818 Diptera - X 

Simulium vernum 
MACQUART, 

1826 
Diptera - X 

Baetis alpinus PICTET, 1843- Ephemeroptera - X 
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Species Author Higher taxa Treene Kinzig 

1845 

Baetis atrebatinus LEACH, 1815 Ephemeroptera X - 

Baetis fuscatus LINNAEUS, 1761 Ephemeroptera X X 

Baetis lutheri 
MÜLLER-

LIEBENAU, 1967 
Ephemeroptera - X 

Baetis muticus LINNAEUS, 1758 Ephemeroptera - X 

Baetis niger LINNAEUS, 1761 Ephemeroptera - X 

Baetis rhodani 
PICTET, 1843-

1845 
Ephemeroptera X X 

Baetis vernus CURTIS, 1834 Ephemeroptera X X 

Caenis horaria LINNAEUS, 1758 Ephemeroptera X - 

Caenis rivulorum EATON, 1884 Ephemeroptera X - 

Centroptilum 

luteolum 
MÜLLER, 1776 Ephemeroptera - X 

Ecdyonurus dispar CURTIS, 1834 Ephemeroptera - X 

Ecdyonurus macani 
THOMAS & 

SOWA, 1970 
Ephemeroptera - X 

Ecdyonurus 

submontanus 
LANDA, 1969 Ephemeroptera - X 

Ecdyonurus 

torrentis 
KIMMINS, 1942 Ephemeroptera - X 

Ecdyonurus 

venosus 
FABRICIUS, 1775 Ephemeroptera - X 

Electrogena affinis EATON, 1886 Ephemeroptera - X 

Epeorus assimilis EATON, 1885 Ephemeroptera - X 

Ephemera danica MÜLLER, 1764 Ephemeroptera X X 

Ephemerella 

mucronata 

BENGTSSON, 

1909 
Ephemeroptera - X 

Habroleptoides 

confusa 

SARTORI & 

JACOB, 1986 
Ephemeroptera - X 

Habrophlebia lauta EATON, 1884 Ephemeroptera - X 

Heptagenia 

sulphurea 
MÜLLER, 1776 Ephemeroptera X X 

Leptophlebia 

submarginata 
LINNAEUS, 1767 Ephemeroptera X - 

Paraleptophlebia 

submarginata 
STEPHENS, 1835 Ephemeroptera - X 

Rhithrogena 

semicolorata 
CURTIS, 1834 Ephemeroptera - X 

Serratella ignita PODA, 1761 Ephemeroptera - X 

Torleya major KLAPÁLEK, 1905 Ephemeroptera - X 

Ancylus fluviatilis 
O.F. MÜLLER, 

1774 
Gastropoda X X 

Anisus vortex LINNAEUS, 1758 Gastropoda X - 

Bithynia leachii SHEPPARD, 1823 Gastropoda X - 

Bithynia 

tentaculata 
LINNAEUS, 1758 Gastropoda X X 

Planorbarius 

corneus 
LINNAEUS, 1758 Gastropoda X - 

Planorbis 

planorbis 
LINNAEUS, 1758 Gastropoda X - 

Potamopyrgus 

antipodarum 
GRAY, 1843 Gastropoda - X 

Radix balthica LINNAEUS, 1758 Gastropoda X X 

Radix labiata 
ROSSMÄSSLER, 

1835 
Gastropoda - X 

Aphelocheirus 

aestivalis 
FABRICIUS, 1794 Heteroptera - X 

Erpobdella 

nigricollis 
BRANDES, 1900 Hirudinea X X 
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Species Author Higher taxa Treene Kinzig 

Erpobdella 

octoculata 
LINNAEUS, 1758 Hirudinea X X 

Erpobdella 

vilnensis 

LISKIEWICZ, 

1925 
Hirudinea - X 

Glossiphonia 

complanata 
LINNAEUS, 1758 Hirudinea X X 

Glossiphonia 

nebulosa 
KALBE, 1964 Hirudinea X X 

Helobdella 

stagnalis 
LINNAEUS, 1758 Hirudinea - X 

Sialis fuliginosa PICTET, 1836 Megaloptera - X 

Sialis lutaria LINNAEUS, 1758 Megaloptera X X 

Calopteryx 

splendens 
HARRIS, 1782 Odonata X X 

Calopteryx virgo LINNAEUS, 1758 Odonata - X 

Eiseniella tetraedra SAVIGNY, 1826 Oligochaeta - X 

Lumbriculus 

variegatus 
MÜLLER, 1774 Oligochaeta X X 

Stylodrilus 

heringianus 

CLAPAREDE, 

1862 
Oligochaeta - X 

Brachyptera risi MORTON, 1896 Plecoptera - X 

Brachyptera 

seticornis 
KLAPALEK, 1902 Plecoptera - X 

Isoperla 

grammatica 
PODA, 1761 Plecoptera X - 

Leuctra hippopus KEMPNY, 1899 Plecoptera - X 

Leuctra nigra OLIVIER, 1811 Plecoptera - X 

Nemoura cinerea RETZIUS, 1783 Plecoptera X - 

Siphonoperla 

torrentium 
PICTET, 1841 Plecoptera - X 

Spongilla lacustris LINNAEUS, 1758 Porifera - X 

Anabolia nervosa CURTIS, 1834 Trichoptera X X 

Anomalopterygella 

chauviniana 
STEIN, 1874 Trichoptera - X 

Athripsodes 

albifrons 
LINNAEUS, 1758 Trichoptera X X 

Athripsodes 

bilineatus 
LINNAEUS, 1758 Trichoptera - X 

Athripsodes 

cinereus 
CURTIS, 1834 Trichoptera X X 

Brachycentrus 

subnubilus 
CURTIS, 1834 Trichoptera - X 

Ceraclea 

albimacula 
RAMBUR, 1877 Trichoptera - X 

Ceraclea dissimilis STEPHENS, 1836 Trichoptera - X 

Chaetopteryx 

villosa 
FABRICIUS, 1789 Trichoptera - X 

Cyrnus 

trimaculatus 
CURTIS, 1834 Trichoptera - X 

Drusus annulatus STEPHENS, 1837 Trichoptera - X 

Goera pilosa FABRICIUS, 1775 Trichoptera - X 

Halesus digitatus SCHRANK, 1781 Trichoptera - X 

Halesus radiatus CURTIS, 1834 Trichoptera X X 

Hydropsyche 

angustipennis 
CURTIS, 1834 Trichoptera X X 

Hydropsyche 

incognita 
PITSCH, 1993 Trichoptera - X 

Hydropsyche 

instabilis 
CURTIS, 1834 Trichoptera - X 

Hydropsyche 

pellucidula 
CURTIS, 1834 Trichoptera X X 
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Species Author Higher taxa Treene Kinzig 

Hydropsyche 

saxonica 

McLACHLAN, 

1884 
Trichoptera - X 

Hydropsyche 

siltalai 
DÖHLER, 1963 Trichoptera X X 

Lepidostoma 

basale 

F. KOLENATI, 

1848 
Trichoptera - X 

Lepidostoma 

hirtum 
FABRICIUS, 1775 Trichoptera X X 

Limnephilus 

lunatus 
CURTIS, 1834 Trichoptera X - 

Lype phaeopa 
J.F. STEPHENS, 

1836 
Trichoptera - X 

Lype reducta HAGEN, 1868 Trichoptera X X 

Micrasema 

longulum 

McLACHLAN, 

1876 
Trichoptera - X 

Mystacides azurea LINNAEUS, 1761 Trichoptera - X 

Mystacides nigra LINNAEUS, 1758 Trichoptera - X 

Neureclipsis 

bimaculata 
LINNAEUS, 1758 Trichoptera - X 

Odontocerum 

albicorne 
SCOPOLI, 1763 Trichoptera - X 

Philopotamus 

montanus 

E. DONOVAN, 

1813 
Trichoptera - X 

Plectrocnemia 

conspersa 
CURTIS, 1834 Trichoptera - X 

Polycentropus 

flavomaculatus 
PICTET, 1834 Trichoptera - X 

Polycentropus 

irroratus 
CURTIS, 1835 Trichoptera X X 

Potamophylax 

cingulatus 
STEPHENS, 1837 Trichoptera X X 

Potamophylax 

latipennis 
CURTIS, 1834 Trichoptera X X 

Potamophylax 

luctuosus 

PILLER & 

MITTERPACHER, 

1783 

Trichoptera X X 

Potamophylax 

rotundipennis 
BRAUER, 1857 Trichoptera - X 

Psychomyia pusilla FABRICIUS, 1781 Trichoptera - X 

Rhyacophila 

dorsalis 
CURTIS, 1834 Trichoptera - X 

Rhyacophila 

evoluta 

McLACHLAN, 

1879 
Trichoptera - X 

Rhyacophila 

fasciata 
HAGEN, 1859 Trichoptera - X 

Rhyacophila nubila 
ZETTERSTEDT, 

1840 
Trichoptera - X 

Rhyacophila 

obliterata 

McLACHLAN, 

1863 
Trichoptera - X 

Rhyacophila tristis PICTET, 1834 Trichoptera - X 

Sericostoma 

flavicorne 

SCHNEIDER, 

1845 
Trichoptera - X 

Sericostoma 

personatum 

KIRBY & 

SPENCER, 1826 
Trichoptera - X 

Silo nigricornis PICTET, 1834 Trichoptera - X 

Silo pallipes FABRICIUS, 1781 Trichoptera - X 

Silo piceus BRAUER, 1857 Trichoptera - X 

Dendrocoelum 

lacteum 

O.F. MÜLLER, 

1774 
Turbellaria - X 

Dugesia 

gonocephala 
DUGES, 1830 Turbellaria X X 

Dugesia lugubris SCHMIDT, 1861 Turbellaria - X 
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Species Author Higher taxa Treene Kinzig 

Dugesia polychroa SCHMIDT, 1861 Turbellaria - X 

Polycelis felina DALYELL, 1814 Turbellaria - X 

Polycelis nigra MUELLER, 1774 Turbellaria - X 

Polycelis tenuis IJIMA, 1884 Turbellaria - X 
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Table ST7 The Mean±SD of percent change of high flow conditions (dh4) for each of 16 

climate models in the Kinzig and Treene catchment in each horizon of 2050 and 2090. 

According to Fig. 18. 

 

Catchment Climate model Horizon Mean±SD 

Kinzig 1 Horizon 2050 -15.3±3.4 

Kinzig 2 Horizon 2050 -1.7±6.3 

Kinzig 3 Horizon 2050 -2.2±3.6 

Kinzig 4 Horizon 2050 16.8±3.5 

Kinzig 5 Horizon 2050 -3.6±4.6 

Kinzig 6 Horizon 2050 -7.6±3.6 

Kinzig 7 Horizon 2050 23.1±3.9 

Kinzig 8 Horizon 2050 7.6±4.3 

Kinzig 9 Horizon 2050 -3.1±2.1 

Kinzig 10 Horizon 2050 -9.6±1.4 

Kinzig 11 Horizon 2050 2.5±1.9 

Kinzig 12 Horizon 2050 -2.1±3.5 

Kinzig 13 Horizon 2050 -10.9±2 

Kinzig 14 Horizon 2050 -17.7±3.8 

Kinzig 15 Horizon 2050 26.1±4 

Kinzig 16 Horizon 2050 16.8±8.2 

Kinzig 1 Horizon 2090 -19.6±2.8 

Kinzig 2 Horizon 2090 -13±5.9 

Kinzig 3 Horizon 2090 -11.9±2.1 

Kinzig 4 Horizon 2090 6.5±2.2 

Kinzig 5 Horizon 2090 -1.8±4 

Kinzig 6 Horizon 2090 4.6±7.3 

Kinzig 7 Horizon 2090 15±2.8 

Kinzig 8 Horizon 2090 15.5±3.5 

Kinzig 9 Horizon 2090 26.6±7.2 

Kinzig 10 Horizon 2090 -0.7±2.5 

Kinzig 11 Horizon 2090 -3.7±2.9 

Kinzig 12 Horizon 2090 3.1±4.5 

Kinzig 13 Horizon 2090 2.6±1.3 

Kinzig 14 Horizon 2090 -15.1±3.8 

Kinzig 15 Horizon 2090 35±5.5 
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Catchment Climate model Horizon Mean±SD 

Kinzig 16 Horizon 2090 20.1±3.8 

Treene 1 Horizon 2050 -6.2±1.8 

Treene 2 Horizon 2050 22.2±1.3 

Treene 3 Horizon 2050 7.2±0.7 

Treene 4 Horizon 2050 3.2±2 

Treene 5 Horizon 2050 -0.4±1.7 

Treene 6 Horizon 2050 11.4±1.8 

Treene 7 Horizon 2050 8.6±2.5 

Treene 8 Horizon 2050 -2.8±2.7 

Treene 9 Horizon 2050 -1.6±1.4 

Treene 10 Horizon 2050 7.5±2.7 

Treene 11 Horizon 2050 19.7±2.9 

Treene 12 Horizon 2050 -21.2±2.3 

Treene 13 Horizon 2050 4±1.7 

Treene 14 Horizon 2050 20.5±3.5 

Treene 15 Horizon 2050 35.6±2.4 

Treene 16 Horizon 2050 19.3±0.9 

Treene 1 Horizon 2090 -2.1±2.2 

Treene 2 Horizon 2090 18.5±1.3 

Treene 3 Horizon 2090 5.3±4.2 

Treene 4 Horizon 2090 8.4±2.9 

Treene 5 Horizon 2090 14.6±3.2 

Treene 6 Horizon 2090 20.1±3.2 

Treene 7 Horizon 2090 15.2±2.6 

Treene 8 Horizon 2090 7.5±1.8 

Treene 9 Horizon 2090 11.4±1.6 

Treene 10 Horizon 2090 6.5±2.2 

Treene 11 Horizon 2090 15.6±3.3 

Treene 12 Horizon 2090 6.1±1 

Treene 13 Horizon 2090 4.8±1.3 

Treene 14 Horizon 2090 15.3±1.9 

Treene 15 Horizon 2090 42.8±1.4 

Treene 16 Horizon 2090 22.4±1.3 
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Table ST8 The Mean±SD of changes in species’ abundance in the Kinzig and Treene 

catchment in each horizon of 2050 and 2090. 

 

Catchment Horizon Species Mean±SD (%) 

Kinzig Horizon 2050 Anabolia nervosa 2.97±4.89 

Kinzig Horizon 2090 Anabolia nervosa 4.25±5.73 

Kinzig Horizon 2050 Ancylus fluviatilis 1.37±6.21 

Kinzig Horizon 2090 Ancylus fluviatilis 1.07±7.92 

Kinzig Horizon 2050 Anomalopterygella chauviniana 0.16±12.94 

Kinzig Horizon 2090 Anomalopterygella chauviniana 2.24±16.8 

Kinzig Horizon 2050 Aphelocheirus aestivalis 1.16±13.36 

Kinzig Horizon 2090 Aphelocheirus aestivalis 4.63±12.89 

Kinzig Horizon 2050 Asellus aquaticus 2.48±4.01 

Kinzig Horizon 2090 Asellus aquaticus 2.41±2.83 

Kinzig Horizon 2050 Atherix ibis 1.37±8.63 

Kinzig Horizon 2090 Atherix ibis 5.08±13.43 

Kinzig Horizon 2050 Athripsodes albifrons 2.42±8.61 

Kinzig Horizon 2090 Athripsodes albifrons 0.01±8.75 

Kinzig Horizon 2050 Athripsodes bilineatus 4.06±6.41 

Kinzig Horizon 2090 Athripsodes bilineatus 1.57±9.02 

Kinzig Horizon 2050 Athripsodes cinereus 1.73±7.14 

Kinzig Horizon 2090 Athripsodes cinereus 1.77±9.25 

Kinzig Horizon 2050 Atrichops crassipes 3.22±6.71 

Kinzig Horizon 2090 Atrichops crassipes 0.34±6.03 

Kinzig Horizon 2050 Baetis alpinus -8.01±23.4 

Kinzig Horizon 2090 Baetis alpinus -3.95±28.16 

Kinzig Horizon 2050 Baetis fuscatus 0.16±4.68 

Kinzig Horizon 2090 Baetis fuscatus 0.32±6.36 

Kinzig Horizon 2050 Baetis lutheri 5.11±16.78 

Kinzig Horizon 2090 Baetis lutheri 1.04±20.31 

Kinzig Horizon 2050 Baetis muticus -6.66±26.52 

Kinzig Horizon 2090 Baetis muticus -5.81±27.6 

Kinzig Horizon 2050 Baetis niger -7.48±25.36 

Kinzig Horizon 2090 Baetis niger -5.07±27.03 

Kinzig Horizon 2050 Baetis rhodani 0.36±8.94 

Kinzig Horizon 2090 Baetis rhodani 4.26±7.91 

Kinzig Horizon 2050 Baetis vernus 0.78±8.67 

Kinzig Horizon 2090 Baetis vernus 3.23±9.2 

Kinzig Horizon 2050 Bithynia tentaculata 2.51±8.25 

Kinzig Horizon 2090 Bithynia tentaculata -0.75±9.3 

Kinzig Horizon 2050 Brachycentrus subnubilus 2.14±15.77 

Kinzig Horizon 2090 Brachycentrus subnubilus 6.19±15.19 
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Catchment Horizon Species Mean±SD (%) 

Kinzig Horizon 2050 Brachyptera risi -0.26±20.63 

Kinzig Horizon 2090 Brachyptera risi 1.58±23.27 

Kinzig Horizon 2050 Brachyptera seticornis -6.16±27.4 

Kinzig Horizon 2090 Brachyptera seticornis -2.69±30.01 

Kinzig Horizon 2050 Calopteryx splendens -0.46±3.93 

Kinzig Horizon 2090 Calopteryx splendens 0±4.13 

Kinzig Horizon 2050 Calopteryx virgo 0.26±7.84 

Kinzig Horizon 2090 Calopteryx virgo 1.04±12.17 

Kinzig Horizon 2050 Centroptilum luteolum -0.11±4.79 

Kinzig Horizon 2090 Centroptilum luteolum -0.77±6.28 

Kinzig Horizon 2050 Ceraclea albimacula 12.39±21.4 

Kinzig Horizon 2090 Ceraclea albimacula 17.27±24.71 

Kinzig Horizon 2050 Ceraclea dissimilis 2.74±7.73 

Kinzig Horizon 2090 Ceraclea dissimilis 1.68±9.31 

Kinzig Horizon 2050 Chaetopteryx villosa 2.42±4.34 

Kinzig Horizon 2090 Chaetopteryx villosa 5.07±7.51 

Kinzig Horizon 2050 Chironomus riparius 1.4±15.15 

Kinzig Horizon 2090 Chironomus riparius 3.91±15.13 

Kinzig Horizon 2050 Cyrnus trimaculatus 1.93±11.98 

Kinzig Horizon 2090 Cyrnus trimaculatus 5.41±11.32 

Kinzig Horizon 2050 Dendrocoelum lacteum 2.95±5.26 

Kinzig Horizon 2090 Dendrocoelum lacteum 2.47±4.77 

Kinzig Horizon 2050 Drusus annulatus -8.98±35.12 

Kinzig Horizon 2090 Drusus annulatus -7.39±37.32 

Kinzig Horizon 2050 Dugesia gonocephala 1.91±7.42 

Kinzig Horizon 2090 Dugesia gonocephala 2.31±8.23 

Kinzig Horizon 2050 Dugesia lugubris -0.52±3.96 

Kinzig Horizon 2090 Dugesia lugubris -0.25±6.66 

Kinzig Horizon 2050 Dugesia polychroa -0.12±3.13 

Kinzig Horizon 2090 Dugesia polychroa -1.43±3.62 

Kinzig Horizon 2050 Ecdyonurus dispar -0.94±20.38 

Kinzig Horizon 2090 Ecdyonurus dispar 0.7±23.46 

Kinzig Horizon 2050 Ecdyonurus macani -6.97±26.72 

Kinzig Horizon 2090 Ecdyonurus macani -6.06±27.84 

Kinzig Horizon 2050 Ecdyonurus submontanus -1.13±22.46 

Kinzig Horizon 2090 Ecdyonurus submontanus 0.36±25.72 

Kinzig Horizon 2050 Ecdyonurus torrentis -2.75±22.11 

Kinzig Horizon 2090 Ecdyonurus torrentis 0.36±25.59 

Kinzig Horizon 2050 Ecdyonurus venosus -1.65±23.94 

Kinzig Horizon 2090 Ecdyonurus venosus -0.34±26.73 

Kinzig Horizon 2050 Eiseniella tetraedra 1.71±5.12 

Kinzig Horizon 2090 Eiseniella tetraedra 0.36±4.3 
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Catchment Horizon Species Mean±SD (%) 

Kinzig Horizon 2050 Electrogena affinis 7.45±15.16 

Kinzig Horizon 2090 Electrogena affinis 7.11±19.58 

Kinzig Horizon 2050 Elmis aenea -0.74±21.5 

Kinzig Horizon 2090 Elmis aenea 0.79±24.5 

Kinzig Horizon 2050 Elmis maugetii -0.46±15.34 

Kinzig Horizon 2090 Elmis maugetii 2±18.91 

Kinzig Horizon 2050 Elmis rietscheli -0.84±21.2 

Kinzig Horizon 2090 Elmis rietscheli 0.92±25.01 

Kinzig Horizon 2050 Elmis rioloides -0.84±21.2 

Kinzig Horizon 2090 Elmis rioloides 0.92±25.01 

Kinzig Horizon 2050 Epeorus assimilis -2.1±21.58 

Kinzig Horizon 2090 Epeorus assimilis -0.55±23.39 

Kinzig Horizon 2050 Ephemera danica -0.11±4.42 

Kinzig Horizon 2090 Ephemera danica 1.45±4.23 

Kinzig Horizon 2050 Ephemerella mucronata -8.39±41.37 

Kinzig Horizon 2090 Ephemerella mucronata -5.88±45.82 

Kinzig Horizon 2050 Erpobdella nigricollis 2.27±13.27 

Kinzig Horizon 2090 Erpobdella nigricollis 5.13±14.11 

Kinzig Horizon 2050 Erpobdella octoculata 2.08±7.43 

Kinzig Horizon 2090 Erpobdella octoculata -0.38±7.99 

Kinzig Horizon 2050 Erpobdella vilnensis -0.79±18.12 

Kinzig Horizon 2090 Erpobdella vilnensis 1.26±21.52 

Kinzig Horizon 2050 Gammarus fossarum -0.74±20.66 

Kinzig Horizon 2090 Gammarus fossarum 1.09±24.61 

Kinzig Horizon 2050 Gammarus pulex 3.01±10.08 

Kinzig Horizon 2090 Gammarus pulex 5.55±9.33 

Kinzig Horizon 2050 Gammarus roeselii 0.87±9.54 

Kinzig Horizon 2090 Gammarus roeselii 4.8±8.82 

Kinzig Horizon 2050 Glossiphonia complanata -0.58±5.65 

Kinzig Horizon 2090 Glossiphonia complanata -0.19±8.39 

Kinzig Horizon 2050 Glossiphonia nebulosa -0.15±5.08 

Kinzig Horizon 2090 Glossiphonia nebulosa -0.68±6.81 

Kinzig Horizon 2050 Goera pilosa -1.2±22.75 

Kinzig Horizon 2090 Goera pilosa 0.26±25.95 

Kinzig Horizon 2050 Habroleptoides confusa -6.36±25.44 

Kinzig Horizon 2090 Habroleptoides confusa -5.32±25.8 

Kinzig Horizon 2050 Habrophlebia lauta -5.79±24.83 

Kinzig Horizon 2090 Habrophlebia lauta -4.53±26.55 

Kinzig Horizon 2050 Halesus digitatus -8.65±28.79 

Kinzig Horizon 2090 Halesus digitatus -5.19±31.3 

Kinzig Horizon 2050 Halesus radiatus -2.36±25.37 

Kinzig Horizon 2090 Halesus radiatus -1.05±27.89 
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Catchment Horizon Species Mean±SD (%) 

Kinzig Horizon 2050 Helobdella stagnalis 0.34±6.57 

Kinzig Horizon 2090 Helobdella stagnalis -0.06±4.91 

Kinzig Horizon 2050 Heptagenia sulphurea 0.14±3.47 

Kinzig Horizon 2090 Heptagenia sulphurea -0.13±5.23 

Kinzig Horizon 2050 Hydraena dentipes -7.21±38.14 

Kinzig Horizon 2090 Hydraena dentipes -5.86±41.43 

Kinzig Horizon 2050 Hydraena gracilis -6.73±30.45 

Kinzig Horizon 2090 Hydraena gracilis -5.93±32.19 

Kinzig Horizon 2050 Hydraena minutissima -0.06±8.89 

Kinzig Horizon 2090 Hydraena minutissima -0.02±12.99 

Kinzig Horizon 2050 Hydropsyche angustipennis 0.83±13.36 

Kinzig Horizon 2090 Hydropsyche angustipennis 4.54±16.91 

Kinzig Horizon 2050 Hydropsyche incognita -4.17±22.16 

Kinzig Horizon 2090 Hydropsyche incognita 0.47±24.98 

Kinzig Horizon 2050 Hydropsyche instabilis -5.76±32.59 

Kinzig Horizon 2090 Hydropsyche instabilis -4.56±35.48 

Kinzig Horizon 2050 Hydropsyche pellucidula 1.07±5.52 

Kinzig Horizon 2090 Hydropsyche pellucidula -0.25±6.05 

Kinzig Horizon 2050 Hydropsyche saxonica -6.41±34.96 

Kinzig Horizon 2090 Hydropsyche saxonica -5.38±37.79 

Kinzig Horizon 2050 Hydropsyche siltalai 0.24±3.03 

Kinzig Horizon 2090 Hydropsyche siltalai 0.28±4.32 

Kinzig Horizon 2050 Lepidostoma basale -2.04±21.52 

Kinzig Horizon 2090 Lepidostoma basale -0.96±22.77 

Kinzig Horizon 2050 Lepidostoma hirtum 1.61±6.35 

Kinzig Horizon 2090 Lepidostoma hirtum 1.33±7.88 

Kinzig Horizon 2050 Leuctra hippopus -8.84±43.07 

Kinzig Horizon 2090 Leuctra hippopus -5.85±48.14 

Kinzig Horizon 2050 Leuctra nigra -0.06±5.31 

Kinzig Horizon 2090 Leuctra nigra -0.41±7.21 

Kinzig Horizon 2050 Limnius perrisi 0.76±21.08 

Kinzig Horizon 2090 Limnius perrisi 2.44±25.73 

Kinzig Horizon 2050 Limnius volckmari 0.52±2.75 

Kinzig Horizon 2090 Limnius volckmari -0.21±2.88 

Kinzig Horizon 2050 Lumbriculus variegatus 3.87±9.74 

Kinzig Horizon 2090 Lumbriculus variegatus 0.9±9.28 

Kinzig Horizon 2050 Lype phaeopa 3.3±14.89 

Kinzig Horizon 2090 Lype phaeopa 8.19±12.61 

Kinzig Horizon 2050 Lype reducta 0.39±2.13 

Kinzig Horizon 2090 Lype reducta 0.22±2.79 

Kinzig Horizon 2050 Micrasema longulum -4.32±21.56 

Kinzig Horizon 2090 Micrasema longulum -2.32±23.76 
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Catchment Horizon Species Mean±SD (%) 

Kinzig Horizon 2050 Mystacides azurea 0.5±5.09 

Kinzig Horizon 2090 Mystacides azurea 0.54±6.55 

Kinzig Horizon 2050 Mystacides nigra -0.88±6.05 

Kinzig Horizon 2090 Mystacides nigra 0.22±6.27 

Kinzig Horizon 2050 Neureclipsis bimaculata 11.91±20.73 

Kinzig Horizon 2090 Neureclipsis bimaculata 13.66±26.72 

Kinzig Horizon 2050 Odontocerum albicorne -1.99±22.23 

Kinzig Horizon 2090 Odontocerum albicorne 0.15±25.58 

Kinzig Horizon 2050 Orectochilus villosus 0.19±9.97 

Kinzig Horizon 2090 Orectochilus villosus 1.35±14.48 

Kinzig Horizon 2050 Oulimnius tuberculatus 0.22±6.45 

Kinzig Horizon 2090 Oulimnius tuberculatus 2.07±10.6 

Kinzig Horizon 2050 Paraleptophlebia submarginata -0.42±19.23 

Kinzig Horizon 2090 Paraleptophlebia submarginata 1.62±23.67 

Kinzig Horizon 2050 Philopotamus montanus -7.55±26.06 

Kinzig Horizon 2090 Philopotamus montanus -5.14±27.78 

Kinzig Horizon 2050 Pisidium amnicum 7.11±16.57 

Kinzig Horizon 2090 Pisidium amnicum 2.19±15.14 

Kinzig Horizon 2050 Pisidium casertanum -8.59±29.4 

Kinzig Horizon 2090 Pisidium casertanum -6.76±31.83 

Kinzig Horizon 2050 Pisidium subtruncatum -7.46±25.69 

Kinzig Horizon 2090 Pisidium subtruncatum -5.17±26.64 

Kinzig Horizon 2050 Platambus maculatus -0.43±7.79 

Kinzig Horizon 2090 Platambus maculatus -1.41±10.62 

Kinzig Horizon 2050 Plectrocnemia conspersa 2.01±16.57 

Kinzig Horizon 2090 Plectrocnemia conspersa 3.09±19.35 

Kinzig Horizon 2050 Polycelis felina 4.16±19.71 

Kinzig Horizon 2090 Polycelis felina 3.85±20.75 

Kinzig Horizon 2050 Polycelis nigra 2.52±17.94 

Kinzig Horizon 2090 Polycelis nigra 7.79±15.98 

Kinzig Horizon 2050 Polycelis tenuis -0.93±5.16 

Kinzig Horizon 2090 Polycelis tenuis -1.81±5.62 

Kinzig Horizon 2050 Polycentropus flavomaculatus 0.19±5.46 

Kinzig Horizon 2090 Polycentropus flavomaculatus 4.82±10.52 

Kinzig Horizon 2050 Polycentropus irroratus 0.26±8.38 

Kinzig Horizon 2090 Polycentropus irroratus 5.75±13.32 

Kinzig Horizon 2050 Potamophylax cingulatus -6.97±25 

Kinzig Horizon 2090 Potamophylax cingulatus -5.53±28.41 

Kinzig Horizon 2050 Potamophylax latipennis -5.81±25.61 

Kinzig Horizon 2090 Potamophylax latipennis -3.04±27.82 

Kinzig Horizon 2050 Potamophylax luctuosus -6±25.28 

Kinzig Horizon 2090 Potamophylax luctuosus -4.57±27.84 
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Catchment Horizon Species Mean±SD (%) 

Kinzig Horizon 2050 Potamophylax rotundipennis 3.71±11.2 

Kinzig Horizon 2090 Potamophylax rotundipennis 3.35±12.93 

Kinzig Horizon 2050 Potamopyrgus antipodarum 5.56±7.63 

Kinzig Horizon 2090 Potamopyrgus antipodarum 3.46±10.41 

Kinzig Horizon 2050 Prodiamesa olivacea 0.08±2.54 

Kinzig Horizon 2090 Prodiamesa olivacea -0.95±3.41 

Kinzig Horizon 2050 Psychomyia pusilla 1.09±7.85 

Kinzig Horizon 2090 Psychomyia pusilla 2.95±9.17 

Kinzig Horizon 2050 Radix balthica -0.67±6.8 

Kinzig Horizon 2090 Radix balthica -1.97±7.92 

Kinzig Horizon 2050 Radix labiata 1.01±15.8 

Kinzig Horizon 2090 Radix labiata 3.01±17.65 

Kinzig Horizon 2050 Rhithrogena semicolorata -1.13±19.44 

Kinzig Horizon 2090 Rhithrogena semicolorata 0.46±21.59 

Kinzig Horizon 2050 Rhyacophila dorsalis -1.31±9.15 

Kinzig Horizon 2090 Rhyacophila dorsalis 1.43±14.86 

Kinzig Horizon 2050 Rhyacophila evoluta -4.79±23.11 

Kinzig Horizon 2090 Rhyacophila evoluta -1.84±25.32 

Kinzig Horizon 2050 Rhyacophila fasciata -0.13±17.99 

Kinzig Horizon 2090 Rhyacophila fasciata 1.77±22.54 

Kinzig Horizon 2050 Rhyacophila nubila 2.56±11.78 

Kinzig Horizon 2090 Rhyacophila nubila 1.66±13.39 

Kinzig Horizon 2050 Rhyacophila obliterata -7.04±23.53 

Kinzig Horizon 2090 Rhyacophila obliterata -3.47±26.11 

Kinzig Horizon 2050 Rhyacophila tristis -8.86±37.45 

Kinzig Horizon 2090 Rhyacophila tristis -6.92±40.28 

Kinzig Horizon 2050 Sericostoma flavicorne -1.49±19.7 

Kinzig Horizon 2090 Sericostoma flavicorne 0.59±21.77 

Kinzig Horizon 2050 Sericostoma personatum -9.45±25.74 

Kinzig Horizon 2090 Sericostoma personatum -5.55±27.61 

Kinzig Horizon 2050 Serratella ignita 3.2±12.47 

Kinzig Horizon 2090 Serratella ignita 5.74±13.1 

Kinzig Horizon 2050 Sialis fuliginosa 3.76±22.58 

Kinzig Horizon 2090 Sialis fuliginosa 4.65±24.89 

Kinzig Horizon 2050 Sialis lutaria 0.37±2.04 

Kinzig Horizon 2090 Sialis lutaria -0.88±3.08 

Kinzig Horizon 2050 Silo nigricornis -5.79±24.94 

Kinzig Horizon 2090 Silo nigricornis -4.56±26.64 

Kinzig Horizon 2050 Silo pallipes -4.44±25.89 

Kinzig Horizon 2090 Silo pallipes -2.33±27.79 

Kinzig Horizon 2050 Silo piceus -6.64±26.49 

Kinzig Horizon 2090 Silo piceus -4.93±27.99 
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Catchment Horizon Species Mean±SD (%) 

Kinzig Horizon 2050 Simulium argyreatum -0.5±22.84 

Kinzig Horizon 2090 Simulium argyreatum 2.39±25.98 

Kinzig Horizon 2050 Simulium cryophilum -1.5±22.84 

Kinzig Horizon 2090 Simulium cryophilum -0.3±25.34 

Kinzig Horizon 2050 Simulium ornatum 2.18±16.32 

Kinzig Horizon 2090 Simulium ornatum 4.68±18.6 

Kinzig Horizon 2050 Simulium variegatum -6.49±26.88 

Kinzig Horizon 2090 Simulium variegatum -2.96±31.18 

Kinzig Horizon 2050 Simulium vernum 1.96±11.98 

Kinzig Horizon 2090 Simulium vernum -0.6±13.94 

Kinzig Horizon 2050 Siphonoperla torrentium -6.35±24.61 

Kinzig Horizon 2090 Siphonoperla torrentium -3.8±25.22 

Kinzig Horizon 2050 Sphaerium corneum 3.9±5.45 

Kinzig Horizon 2090 Sphaerium corneum 3.55±5.53 

Kinzig Horizon 2050 Spongilla lacustris 6.07±8.03 

Kinzig Horizon 2090 Spongilla lacustris 9.05±10.62 

Kinzig Horizon 2050 Stylodrilus heringianus 4.64±13.46 

Kinzig Horizon 2090 Stylodrilus heringianus 8.52±12.41 

Kinzig Horizon 2050 Torleya major -1.75±20.57 

Kinzig Horizon 2090 Torleya major 0.56±23.54 

Treene Horizon 2050 Anabolia nervosa 0.7±2.02 

Treene Horizon 2090 Anabolia nervosa 1.33±1.97 

Treene Horizon 2050 Ancylus fluviatilis 1.59±2.58 

Treene Horizon 2090 Ancylus fluviatilis 2.66±2.21 

Treene Horizon 2050 Anisus vortex -2.24±4.25 

Treene Horizon 2090 Anisus vortex -3.41±4.1 

Treene Horizon 2050 Asellus aquaticus -0.18±0.32 

Treene Horizon 2090 Asellus aquaticus -0.32±0.26 

Treene Horizon 2050 Atherix ibis 1.41±2.31 

Treene Horizon 2090 Atherix ibis 2.37±1.94 

Treene Horizon 2050 Athripsodes albifrons 1.99±4.3 

Treene Horizon 2090 Athripsodes albifrons 3.46±3.34 

Treene Horizon 2050 Athripsodes cinereus 1.99±4.3 

Treene Horizon 2090 Athripsodes cinereus 3.46±3.34 

Treene Horizon 2050 Baetis atrebatinus 2.3±3.67 

Treene Horizon 2090 Baetis atrebatinus 3.81±3.19 

Treene Horizon 2050 Baetis fuscatus 2.3±3.67 

Treene Horizon 2090 Baetis fuscatus 3.81±3.19 

Treene Horizon 2050 Baetis rhodani -0.72±1.63 

Treene Horizon 2090 Baetis rhodani -1.3±1.24 

Treene Horizon 2050 Baetis vernus 2.21±3.53 

Treene Horizon 2090 Baetis vernus 3.66±3.06 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Bithynia leachii -2.22±4.63 

Treene Horizon 2090 Bithynia leachii -3.85±3.49 

Treene Horizon 2050 Bithynia tentaculata -0.55±0.98 

Treene Horizon 2090 Bithynia tentaculata -0.95±0.77 

Treene Horizon 2050 Caenis horaria 2.97±5.07 

Treene Horizon 2090 Caenis horaria 4.96±3.76 

Treene Horizon 2050 Caenis rivulorum 1.99±3.71 

Treene Horizon 2090 Caenis rivulorum 3.41±2.63 

Treene Horizon 2050 Calopteryx splendens 3.97±7.32 

Treene Horizon 2090 Calopteryx splendens 6.78±5.37 

Treene Horizon 2050 Dugesia gonocephala 3.96±6.24 

Treene Horizon 2090 Dugesia gonocephala 6.36±5.34 

Treene Horizon 2050 Elmis aenea 3.81±6.39 

Treene Horizon 2090 Elmis aenea 6.28±4.73 

Treene Horizon 2050 Elmis maugetii 4.2±7.39 

Treene Horizon 2090 Elmis maugetii 7.05±5.61 

Treene Horizon 2050 Elmis rietscheli 4.05±6.75 

Treene Horizon 2090 Elmis rietscheli 6.66±5.02 

Treene Horizon 2050 Elmis rioloides 4.23±7 

Treene Horizon 2090 Elmis rioloides 6.93±5.22 

Treene Horizon 2050 Elodes minuta 1.98±3.41 

Treene Horizon 2090 Elodes minuta 2.82±3.07 

Treene Horizon 2050 Ephemera danica 0.34±0.61 

Treene Horizon 2090 Ephemera danica 0.59±0.48 

Treene Horizon 2050 Erpobdella nigricollis -0.49±1.15 

Treene Horizon 2090 Erpobdella nigricollis -0.89±1.02 

Treene Horizon 2050 Erpobdella octoculata -1.21±2.23 

Treene Horizon 2090 Erpobdella octoculata -2.11±1.73 

Treene Horizon 2050 Gammarus pulex -0.04±0.49 

Treene Horizon 2090 Gammarus pulex -0.02±0.49 

Treene Horizon 2050 Glossiphonia complanata -0.83±1.49 

Treene Horizon 2090 Glossiphonia complanata -1.44±1.17 

Treene Horizon 2050 Glossiphonia nebulosa -0.08±4.74 

Treene Horizon 2090 Glossiphonia nebulosa -0.55±4.34 

Treene Horizon 2050 Halesus radiatus -2.55±5.21 

Treene Horizon 2090 Halesus radiatus -4.47±3.95 

Treene Horizon 2050 Heptagenia sulphurea 3.46±5.8 

Treene Horizon 2090 Heptagenia sulphurea 5.75±4.39 

Treene Horizon 2050 Hydropsyche angustipennis 2.5±4.79 

Treene Horizon 2090 Hydropsyche angustipennis 4.25±3.36 

Treene Horizon 2050 Hydropsyche pellucidula 2.97±5.71 

Treene Horizon 2090 Hydropsyche pellucidula 5.29±4.48 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Hydropsyche siltalai 0.31±0.55 

Treene Horizon 2090 Hydropsyche siltalai 0.54±0.42 

Treene Horizon 2050 Isoperla grammatica 3.93±7.25 

Treene Horizon 2090 Isoperla grammatica 6.73±5.33 

Treene Horizon 2050 Lepidostoma hirtum 15.64±22.4 

Treene Horizon 2090 Lepidostoma hirtum 22.51±15.98 

Treene Horizon 2050 Leptophlebia submarginata 4.39±7.92 

Treene Horizon 2090 Leptophlebia submarginata 7.46±5.86 

Treene Horizon 2050 Limnephilus lunatus -0.56±0.99 

Treene Horizon 2090 Limnephilus lunatus -0.97±0.79 

Treene Horizon 2050 Limnius volckmari 1.38±2.06 

Treene Horizon 2090 Limnius volckmari 2.3±2.85 

Treene Horizon 2050 Lumbriculus variegatus -2.3±4.53 

Treene Horizon 2090 Lumbriculus variegatus -4.08±3.44 

Treene Horizon 2050 Lype reducta 1.21±2.04 

Treene Horizon 2090 Lype reducta 2.05±1.72 

Treene Horizon 2050 Nemoura cinerea -2.17±3.87 

Treene Horizon 2090 Nemoura cinerea -3.72±3.05 

Treene Horizon 2050 Orectochilus villosus 2.55±4.7 

Treene Horizon 2090 Orectochilus villosus 4.58±3.95 

Treene Horizon 2050 Oulimnius tuberculatus 5.48±8.68 

Treene Horizon 2090 Oulimnius tuberculatus 8.84±6.88 

Treene Horizon 2050 Pisidium amnicum -2.58±5.46 

Treene Horizon 2090 Pisidium amnicum -4.6±4.03 

Treene Horizon 2050 Pisidium subtruncatum -2.71±5.52 

Treene Horizon 2090 Pisidium subtruncatum -4.84±4.17 

Treene Horizon 2050 Pisidium supinum -2.5±5 

Treene Horizon 2090 Pisidium supinum -4.45±3.79 

Treene Horizon 2050 Planorbarius corneus -4.53±11.75 

Treene Horizon 2090 Planorbarius corneus -8.25±9.38 

Treene Horizon 2050 Planorbis planorbis -2.57±5.2 

Treene Horizon 2090 Planorbis planorbis -4.59±3.94 

Treene Horizon 2050 Polycentropus irroratus 3.76±6.21 

Treene Horizon 2090 Polycentropus irroratus 6.2±4.72 

Treene Horizon 2050 Potamophylax cingulatus 1.07±2.66 

Treene Horizon 2090 Potamophylax cingulatus 1.97±2.35 

Treene Horizon 2050 Potamophylax latipennis 1.07±2.66 

Treene Horizon 2090 Potamophylax latipennis 1.97±2.35 

Treene Horizon 2050 Potamophylax luctuosus 1.6±3.53 

Treene Horizon 2090 Potamophylax luctuosus 2.77±2.81 

Treene Horizon 2050 Proasellus coxalis 1.39±2.53 

Treene Horizon 2090 Proasellus coxalis 2.39±1.87 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Prodiamesa olivacea -1.71±6.4 

Treene Horizon 2090 Prodiamesa olivacea -4.39±4.2 

Treene Horizon 2050 Ptychoptera paludosa 1.68±2.46 

Treene Horizon 2090 Ptychoptera paludosa 2.27±2.07 

Treene Horizon 2050 Radix balthica -0.89±1.53 

Treene Horizon 2090 Radix balthica -1.5±1.31 

Treene Horizon 2050 Sialis lutaria -4.46±11.52 

Treene Horizon 2090 Sialis lutaria -8.15±9.13 

Treene Horizon 2050 Simulium equinum 4.17±6.99 

Treene Horizon 2090 Simulium equinum 6.83±5.1 

Treene Horizon 2050 Simulium ornatum 4.15±6.96 

Treene Horizon 2090 Simulium ornatum 6.8±5.07 

Treene Horizon 2050 Sphaerium corneum 1.3±2.51 

Treene Horizon 2090 Sphaerium corneum 2.26±1.77 

Treene Horizon 2050 Anabolia nervosa -16.6±16.43 

Treene Horizon 2090 Anabolia nervosa -4.34±32.61 

Treene Horizon 2050 Ancylus fluviatilis 21.48±21.23 

Treene Horizon 2090 Ancylus fluviatilis 5.95±20.75 

Treene Horizon 2050 Anisus vortex -3.92±21.79 

Treene Horizon 2090 Anisus vortex 2.23±30.45 

Treene Horizon 2050 Asellus aquaticus -9.58±9.84 

Treene Horizon 2090 Asellus aquaticus -0.81±16.31 

Treene Horizon 2050 Atherix ibis -0.6±5.91 

Treene Horizon 2090 Atherix ibis -1.7±5.33 

Treene Horizon 2050 Athripsodes albifrons 14.04±20.93 

Treene Horizon 2090 Athripsodes albifrons 3.88±32.09 

Treene Horizon 2050 Athripsodes cinereus 14.04±20.93 

Treene Horizon 2090 Athripsodes cinereus 3.88±32.09 

Treene Horizon 2050 Baetis atrebatinus 10.47±19.59 

Treene Horizon 2090 Baetis atrebatinus 11.68±17.4 

Treene Horizon 2050 Baetis fuscatus 10.47±19.59 

Treene Horizon 2090 Baetis fuscatus 11.68±17.4 

Treene Horizon 2050 Baetis rhodani 10.11±16.33 

Treene Horizon 2090 Baetis rhodani 9.44±15.32 

Treene Horizon 2050 Baetis vernus 10.34±19.62 

Treene Horizon 2090 Baetis vernus 11.74±17.46 

Treene Horizon 2050 Bithynia leachii -18.46±25.57 

Treene Horizon 2090 Bithynia leachii -1.93±42.46 

Treene Horizon 2050 Bithynia tentaculata -24.84±31.02 

Treene Horizon 2090 Bithynia tentaculata -7.6±53.12 

Treene Horizon 2050 Caenis horaria 6.67±13.32 

Treene Horizon 2090 Caenis horaria 4.34±13.14 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Caenis rivulorum 1.1±9.6 

Treene Horizon 2090 Caenis rivulorum 2.52±7.03 

Treene Horizon 2050 Calopteryx splendens -1.75±14.18 

Treene Horizon 2090 Calopteryx splendens -2.65±11.81 

Treene Horizon 2050 Dugesia gonocephala 8.37±11.04 

Treene Horizon 2090 Dugesia gonocephala 4.34±11.05 

Treene Horizon 2050 Elmis aenea -5.61±8.01 

Treene Horizon 2090 Elmis aenea 0.4±12.04 

Treene Horizon 2050 Elmis maugetii -5.81±7.25 

Treene Horizon 2090 Elmis maugetii -0.04±11.45 

Treene Horizon 2050 Elmis rietscheli -5.63±7.01 

Treene Horizon 2090 Elmis rietscheli -2.93±9.57 

Treene Horizon 2050 Elmis rioloides -5.8±6.53 

Treene Horizon 2090 Elmis rioloides -2.79±9.39 

Treene Horizon 2050 Elodes minuta 13.37±23.78 

Treene Horizon 2090 Elodes minuta 2.87±32.9 

Treene Horizon 2050 Ephemera danica -2.39±20.11 

Treene Horizon 2090 Ephemera danica 2.76±14.67 

Treene Horizon 2050 Erpobdella nigricollis 5.89±22.52 

Treene Horizon 2090 Erpobdella nigricollis 10.57±21.39 

Treene Horizon 2050 Erpobdella octoculata -2.76±8.03 

Treene Horizon 2090 Erpobdella octoculata 1.55±8.97 

Treene Horizon 2050 Gammarus pulex 1.45±12.45 

Treene Horizon 2090 Gammarus pulex 7.67±14.13 

Treene Horizon 2050 Glossiphonia complanata -3.48±13.77 

Treene Horizon 2090 Glossiphonia complanata 3.62±14.44 

Treene Horizon 2050 Glossiphonia nebulosa 1.92±14.3 

Treene Horizon 2090 Glossiphonia nebulosa -3.43±13.57 

Treene Horizon 2050 Halesus radiatus 2.6±27.82 

Treene Horizon 2090 Halesus radiatus 8.02±24.18 

Treene Horizon 2050 Heptagenia sulphurea -6.65±12.3 

Treene Horizon 2090 Heptagenia sulphurea -4.4±14.69 

Treene Horizon 2050 Hydropsyche angustipennis -9.25±30.23 

Treene Horizon 2090 Hydropsyche angustipennis -8.68±32.55 

Treene Horizon 2050 Hydropsyche pellucidula -7.55±22.97 

Treene Horizon 2090 Hydropsyche pellucidula -6.74±24.86 

Treene Horizon 2050 Hydropsyche siltalai 13.01±26.51 

Treene Horizon 2090 Hydropsyche siltalai 1.54±35.02 

Treene Horizon 2050 Isoperla grammatica -11.12±26.57 

Treene Horizon 2090 Isoperla grammatica -7.3±31.61 

Treene Horizon 2050 Lepidostoma hirtum 11.93±21.14 

Treene Horizon 2090 Lepidostoma hirtum 11.88±17.67 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Leptophlebia submarginata -3.36±4.24 

Treene Horizon 2090 Leptophlebia submarginata -1.78±5.45 

Treene Horizon 2050 Limnephilus lunatus 11.05±22.39 

Treene Horizon 2090 Limnephilus lunatus 6.52±17.82 

Treene Horizon 2050 Limnius volckmari 2.07±24.2 

Treene Horizon 2090 Limnius volckmari -4.7±24.42 

Treene Horizon 2050 Lumbriculus variegatus -13.29±15.77 

Treene Horizon 2090 Lumbriculus variegatus -4.06±25.03 

Treene Horizon 2050 Lype reducta -0.61±5.78 

Treene Horizon 2090 Lype reducta 0.08±5.23 

Treene Horizon 2050 Nemoura cinerea -3.68±10.03 

Treene Horizon 2090 Nemoura cinerea 4.9±15.45 

Treene Horizon 2050 Orectochilus villosus -4.62±7.58 

Treene Horizon 2090 Orectochilus villosus -2.15±7.36 

Treene Horizon 2050 Oulimnius tuberculatus 3.78±11.73 

Treene Horizon 2090 Oulimnius tuberculatus -1.11±8.86 

Treene Horizon 2050 Pisidium amnicum -7.86±18.91 

Treene Horizon 2090 Pisidium amnicum -2.13±25.28 

Treene Horizon 2050 Pisidium subtruncatum -8.05±17.94 

Treene Horizon 2090 Pisidium subtruncatum -1.85±22.49 

Treene Horizon 2050 Pisidium supinum -7.74±19.02 

Treene Horizon 2090 Pisidium supinum -2.11±25.5 

Treene Horizon 2050 Planorbarius corneus -3.31±24.85 

Treene Horizon 2090 Planorbarius corneus 3.18±22.89 

Treene Horizon 2050 Planorbis planorbis -5.16±31.64 

Treene Horizon 2090 Planorbis planorbis 15.12±28.46 

Treene Horizon 2050 Polycentropus irroratus -2.9±3.05 

Treene Horizon 2090 Polycentropus irroratus -0.66±4.28 

Treene Horizon 2050 Potamophylax cingulatus -15.13±22.66 

Treene Horizon 2090 Potamophylax cingulatus 3.58±37.69 

Treene Horizon 2050 Potamophylax latipennis -15.13±22.66 

Treene Horizon 2090 Potamophylax latipennis 3.58±37.69 

Treene Horizon 2050 Potamophylax luctuosus -13.96±26.24 

Treene Horizon 2090 Potamophylax luctuosus 4.93±38.07 

Treene Horizon 2050 Proasellus coxalis -6.72±34.89 

Treene Horizon 2090 Proasellus coxalis 4.06±34.76 

Treene Horizon 2050 Prodiamesa olivacea 2.46±15.86 

Treene Horizon 2090 Prodiamesa olivacea 11.45±18.9 

Treene Horizon 2050 Ptychoptera paludosa 18.17±22.44 

Treene Horizon 2090 Ptychoptera paludosa 6.9±30.39 

Treene Horizon 2050 Radix balthica -3.13±7.76 

Treene Horizon 2090 Radix balthica -1.62±6.51 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Sialis lutaria -11.33±22.59 

Treene Horizon 2090 Sialis lutaria 0.24±27.12 

Treene Horizon 2050 Simulium equinum 5.34±5.41 

Treene Horizon 2090 Simulium equinum 1.58±7.45 

Treene Horizon 2050 Simulium ornatum 5.3±5.37 

Treene Horizon 2090 Simulium ornatum 1.57±7.4 

Treene Horizon 2050 Sphaerium corneum -7.18±6.28 

Treene Horizon 2090 Sphaerium corneum -0.61±11.25 

Treene Horizon 2050 Anabolia nervosa 0.14±23.2 

Treene Horizon 2090 Anabolia nervosa -1.61±19.17 

Treene Horizon 2050 Ancylus fluviatilis 5.57±13.51 

Treene Horizon 2090 Ancylus fluviatilis 4.81±20 

Treene Horizon 2050 Anisus vortex -4.18±28.79 

Treene Horizon 2090 Anisus vortex -2.26±25.05 

Treene Horizon 2050 Asellus aquaticus -1.26±5.79 

Treene Horizon 2090 Asellus aquaticus -0.25±4.92 

Treene Horizon 2050 Atherix ibis 5.87±55.35 

Treene Horizon 2090 Atherix ibis 0.83±68.96 

Treene Horizon 2050 Athripsodes albifrons 1.04±27.9 

Treene Horizon 2090 Athripsodes albifrons 17.09±33.65 

Treene Horizon 2050 Athripsodes cinereus 1.04±27.9 

Treene Horizon 2090 Athripsodes cinereus 17.09±33.65 

Treene Horizon 2050 Baetis atrebatinus 2.12±3.35 

Treene Horizon 2090 Baetis atrebatinus 1.73±4.81 

Treene Horizon 2050 Baetis fuscatus 1.95±3.51 

Treene Horizon 2090 Baetis fuscatus 1.76±4.91 

Treene Horizon 2050 Baetis rhodani 2.5±10.72 

Treene Horizon 2090 Baetis rhodani 1.05±8.64 

Treene Horizon 2050 Baetis vernus 1.66±3.42 

Treene Horizon 2090 Baetis vernus 1.03±5.38 

Treene Horizon 2050 Bithynia leachii -2.72±16.46 

Treene Horizon 2090 Bithynia leachii -0.47±16.33 

Treene Horizon 2050 Bithynia tentaculata 5.46±45.23 

Treene Horizon 2090 Bithynia tentaculata -1.62±46.23 

Treene Horizon 2050 Caenis horaria -2.6±11.1 

Treene Horizon 2090 Caenis horaria -1.89±11.46 

Treene Horizon 2050 Caenis rivulorum -0.25±0.55 

Treene Horizon 2090 Caenis rivulorum -0.14±0.82 

Treene Horizon 2050 Calopteryx splendens -5.28±21.46 

Treene Horizon 2090 Calopteryx splendens -0.51±20.34 

Treene Horizon 2050 Dugesia gonocephala 1.79±49.93 

Treene Horizon 2090 Dugesia gonocephala -3.49±57.98 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Elmis aenea -1.65±63.91 

Treene Horizon 2090 Elmis aenea -7.23±67.07 

Treene Horizon 2050 Elmis maugetii 1.51±46.35 

Treene Horizon 2090 Elmis maugetii -2.04±55.27 

Treene Horizon 2050 Elmis rietscheli 5.81±47.06 

Treene Horizon 2090 Elmis rietscheli -2.38±52.34 

Treene Horizon 2050 Elmis rioloides -2.19±19.71 

Treene Horizon 2090 Elmis rioloides 2.7±30.58 

Treene Horizon 2050 Elodes minuta -0.8±1.95 

Treene Horizon 2090 Elodes minuta -0.49±2.58 

Treene Horizon 2050 Ephemera danica -1.58±4.85 

Treene Horizon 2090 Ephemera danica 0.12±7.08 

Treene Horizon 2050 Erpobdella nigricollis 3.36±7.6 

Treene Horizon 2090 Erpobdella nigricollis 1.65±9.68 

Treene Horizon 2050 Erpobdella octoculata 0.25±2.16 

Treene Horizon 2090 Erpobdella octoculata 0.55±2.07 

Treene Horizon 2050 Gammarus pulex -1.19±4.79 

Treene Horizon 2090 Gammarus pulex 0.39±6.65 

Treene Horizon 2050 Glossiphonia complanata 2.55±12.06 

Treene Horizon 2090 Glossiphonia complanata -0.9±11.49 

Treene Horizon 2050 Glossiphonia nebulosa 0.49±4.88 

Treene Horizon 2090 Glossiphonia nebulosa 0.57±6.81 

Treene Horizon 2050 Halesus radiatus 2.49±11.6 

Treene Horizon 2090 Halesus radiatus 3.76±16.66 

Treene Horizon 2050 Heptagenia sulphurea 3.2±52.7 

Treene Horizon 2090 Heptagenia sulphurea -1.76±61.65 

Treene Horizon 2050 Hydropsyche angustipennis 3.53±61.52 

Treene Horizon 2090 Hydropsyche angustipennis -5.82±69.64 

Treene Horizon 2050 Hydropsyche pellucidula 3.49±59.75 

Treene Horizon 2090 Hydropsyche pellucidula -4.47±68.22 

Treene Horizon 2050 Hydropsyche siltalai 4.23±25.2 

Treene Horizon 2090 Hydropsyche siltalai 3.71±33.78 

Treene Horizon 2050 Isoperla grammatica 3.26±56.34 

Treene Horizon 2090 Isoperla grammatica -3.87±64.59 

Treene Horizon 2050 Lepidostoma hirtum 4.56±10.52 

Treene Horizon 2090 Lepidostoma hirtum 3.57±16.07 

Treene Horizon 2050 Leptophlebia submarginata -0.95±40.69 

Treene Horizon 2090 Leptophlebia submarginata 0.04±46.47 

Treene Horizon 2050 Limnephilus lunatus 3.03±12.42 

Treene Horizon 2090 Limnephilus lunatus 0.84±10.33 

Treene Horizon 2050 Limnius volckmari -0.46±1.08 

Treene Horizon 2090 Limnius volckmari -0.28±1.48 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Lumbriculus variegatus 10.49±49.57 

Treene Horizon 2090 Lumbriculus variegatus 4.72±53.96 

Treene Horizon 2050 Lype reducta -0.04±0.08 

Treene Horizon 2090 Lype reducta -0.02±0.13 

Treene Horizon 2050 Nemoura cinerea -2.41±6.29 

Treene Horizon 2090 Nemoura cinerea -0.68±8.37 

Treene Horizon 2050 Orectochilus villosus -1.77±8.55 

Treene Horizon 2090 Orectochilus villosus 1.47±11.51 

Treene Horizon 2050 Oulimnius tuberculatus -2.09±32.55 

Treene Horizon 2090 Oulimnius tuberculatus -1.34±34.02 

Treene Horizon 2050 Pisidium amnicum -0.11±3.42 

Treene Horizon 2090 Pisidium amnicum 0.35±3.55 

Treene Horizon 2050 Pisidium subtruncatum 0.21±4.27 

Treene Horizon 2090 Pisidium subtruncatum 0.54±3.94 

Treene Horizon 2050 Pisidium supinum -0.15±3.42 

Treene Horizon 2090 Pisidium supinum 0.34±3.6 

Treene Horizon 2050 Planorbarius corneus 6.23±24.63 

Treene Horizon 2090 Planorbarius corneus 9.36±27.34 

Treene Horizon 2050 Planorbis planorbis 1.1±5.55 

Treene Horizon 2090 Planorbis planorbis -0.54±4.41 

Treene Horizon 2050 Polycentropus irroratus -2.71±10.62 

Treene Horizon 2090 Polycentropus irroratus -1.95±7.64 

Treene Horizon 2050 Potamophylax cingulatus 0.29±32.62 

Treene Horizon 2090 Potamophylax cingulatus -1.29±34.72 

Treene Horizon 2050 Potamophylax latipennis 0.29±32.62 

Treene Horizon 2090 Potamophylax latipennis -1.29±34.72 

Treene Horizon 2050 Potamophylax luctuosus -2.58±15.33 

Treene Horizon 2090 Potamophylax luctuosus -2.22±14.69 

Treene Horizon 2050 Proasellus coxalis 2.5±5.46 

Treene Horizon 2090 Proasellus coxalis 1.4±7.27 

Treene Horizon 2050 Prodiamesa olivacea 0.84±10.12 

Treene Horizon 2090 Prodiamesa olivacea 1.85±9.91 

Treene Horizon 2050 Ptychoptera paludosa 6.15±17.65 

Treene Horizon 2090 Ptychoptera paludosa 2.25±22.05 

Treene Horizon 2050 Radix balthica -1.32±28.4 

Treene Horizon 2090 Radix balthica 0.01±23.78 

Treene Horizon 2050 Sialis lutaria -0.48±9.87 

Treene Horizon 2090 Sialis lutaria 2.64±12.86 

Treene Horizon 2050 Simulium equinum -1.86±35.33 

Treene Horizon 2090 Simulium equinum -0.98±38.35 

Treene Horizon 2050 Simulium ornatum 3.1±49.37 

Treene Horizon 2090 Simulium ornatum -1.44±57.82 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Sphaerium corneum -0.42±11.94 

Treene Horizon 2090 Sphaerium corneum -1.97±10.51 

Treene Horizon 2050 Anabolia nervosa -2.4±8.41 

Treene Horizon 2090 Anabolia nervosa 0.31±8.64 

Treene Horizon 2050 Ancylus fluviatilis 8.88±28.24 

Treene Horizon 2090 Ancylus fluviatilis 3.04±29.44 

Treene Horizon 2050 Anisus vortex 9.41±23.93 

Treene Horizon 2090 Anisus vortex 2.07±14.8 

Treene Horizon 2050 Asellus aquaticus 9.89±29.24 

Treene Horizon 2090 Asellus aquaticus 2.25±18.44 

Treene Horizon 2050 Atherix ibis 4.91±21.05 

Treene Horizon 2090 Atherix ibis 2.24±18.36 

Treene Horizon 2050 Athripsodes albifrons 3.37±19.31 

Treene Horizon 2090 Athripsodes albifrons 0.16±16.98 

Treene Horizon 2050 Athripsodes cinereus 2.72±19.84 

Treene Horizon 2090 Athripsodes cinereus 0.43±16.7 

Treene Horizon 2050 Baetis atrebatinus 4.19±20.99 

Treene Horizon 2090 Baetis atrebatinus 3.57±16.69 

Treene Horizon 2050 Baetis fuscatus 4.19±20.99 

Treene Horizon 2090 Baetis fuscatus 3.57±16.69 

Treene Horizon 2050 Baetis rhodani -0.69±13.91 

Treene Horizon 2090 Baetis rhodani 1.29±14.91 

Treene Horizon 2050 Baetis vernus 3.78±20.52 

Treene Horizon 2090 Baetis vernus 3.06±16.14 

Treene Horizon 2050 Bithynia leachii 15.32±44.65 

Treene Horizon 2090 Bithynia leachii 5.33±35.29 

Treene Horizon 2050 Bithynia tentaculata 15.86±45.53 

Treene Horizon 2090 Bithynia tentaculata 4.6±36.95 

Treene Horizon 2050 Caenis horaria 2.75±18.97 

Treene Horizon 2090 Caenis horaria -1.03±18.23 

Treene Horizon 2050 Caenis rivulorum 3.23±18.13 

Treene Horizon 2090 Caenis rivulorum -1.42±17.28 

Treene Horizon 2050 Calopteryx splendens -0.68±13.65 

Treene Horizon 2090 Calopteryx splendens 0.69±8.46 

Treene Horizon 2050 Dugesia gonocephala 0.04±12.47 

Treene Horizon 2090 Dugesia gonocephala 0.61±8.33 

Treene Horizon 2050 Elmis aenea 2.61±18.9 

Treene Horizon 2090 Elmis aenea 0.86±15.1 

Treene Horizon 2050 Elmis maugetii 3.27±19.78 

Treene Horizon 2090 Elmis maugetii 1.49±16.35 

Treene Horizon 2050 Elmis rietscheli 2.97±19.29 

Treene Horizon 2090 Elmis rietscheli 1.07±15.64 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Elmis rioloides 2.82±19.22 

Treene Horizon 2090 Elmis rioloides 0.97±15.45 

Treene Horizon 2050 Elodes minuta 6.8±23.5 

Treene Horizon 2090 Elodes minuta 0.89±11.71 

Treene Horizon 2050 Ephemera danica 0.05±9.29 

Treene Horizon 2090 Ephemera danica -0.27±6.08 

Treene Horizon 2050 Erpobdella nigricollis 6.44±23.92 

Treene Horizon 2090 Erpobdella nigricollis 0.88±19.48 

Treene Horizon 2050 Erpobdella octoculata 0.89±14.25 

Treene Horizon 2090 Erpobdella octoculata -0.33±10.99 

Treene Horizon 2050 Gammarus pulex -2.59±8.34 

Treene Horizon 2090 Gammarus pulex 0.17±5.08 

Treene Horizon 2050 Glossiphonia complanata 5.3±23.29 

Treene Horizon 2090 Glossiphonia complanata 0.51±17.88 

Treene Horizon 2050 Glossiphonia nebulosa -0.08±1.15 

Treene Horizon 2090 Glossiphonia nebulosa 0.01±0.88 

Treene Horizon 2050 Halesus radiatus -2.82±13.42 

Treene Horizon 2090 Halesus radiatus 2.49±15.08 

Treene Horizon 2050 Heptagenia sulphurea -1.13±14.17 

Treene Horizon 2090 Heptagenia sulphurea 0.51±9.13 

Treene Horizon 2050 Hydropsyche angustipennis -2.63±6.58 

Treene Horizon 2090 Hydropsyche angustipennis 0.64±5.85 

Treene Horizon 2050 Hydropsyche pellucidula -2.63±8.5 

Treene Horizon 2090 Hydropsyche pellucidula 0.57±5.93 

Treene Horizon 2050 Hydropsyche siltalai 0.77±9.04 

Treene Horizon 2090 Hydropsyche siltalai -0.36±5.55 

Treene Horizon 2050 Isoperla grammatica -0.9±15.28 

Treene Horizon 2090 Isoperla grammatica 0.01±13.52 

Treene Horizon 2050 Lepidostoma hirtum 9.61±26.8 

Treene Horizon 2090 Lepidostoma hirtum 3.88±24.21 

Treene Horizon 2050 Leptophlebia submarginata 1.02±17.35 

Treene Horizon 2090 Leptophlebia submarginata -0.6±13.92 

Treene Horizon 2050 Limnephilus lunatus -0.47±8.73 

Treene Horizon 2090 Limnephilus lunatus 0.6±9.82 

Treene Horizon 2050 Limnius volckmari -0.34±8.51 

Treene Horizon 2090 Limnius volckmari 1.2±6.21 

Treene Horizon 2050 Lumbriculus variegatus 8.2±16.3 

Treene Horizon 2090 Lumbriculus variegatus 2.62±11.11 

Treene Horizon 2050 Lype reducta 14.43±30.53 

Treene Horizon 2090 Lype reducta 1.73±21.83 

Treene Horizon 2050 Nemoura cinerea -3.39±7.86 

Treene Horizon 2090 Nemoura cinerea 1.89±10.64 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Orectochilus villosus -0.54±14.03 

Treene Horizon 2090 Orectochilus villosus -0.44±10.55 

Treene Horizon 2050 Oulimnius tuberculatus 3.5±20.13 

Treene Horizon 2090 Oulimnius tuberculatus 2.21±16.37 

Treene Horizon 2050 Pisidium amnicum 9.8±28.65 

Treene Horizon 2090 Pisidium amnicum 2.1±18.12 

Treene Horizon 2050 Pisidium subtruncatum 5.3±23.68 

Treene Horizon 2090 Pisidium subtruncatum 0.58±18.89 

Treene Horizon 2050 Pisidium supinum 0.7±6.49 

Treene Horizon 2090 Pisidium supinum 0.05±4.26 

Treene Horizon 2050 Planorbarius corneus 13.98±46.76 

Treene Horizon 2090 Planorbarius corneus -2.29±39.38 

Treene Horizon 2050 Planorbis planorbis 15.75±45 

Treene Horizon 2090 Planorbis planorbis 5.39±36.16 

Treene Horizon 2050 Polycentropus irroratus 2.14±18.49 

Treene Horizon 2090 Polycentropus irroratus 1.45±14.18 

Treene Horizon 2050 Potamophylax cingulatus 11.82±43.03 

Treene Horizon 2090 Potamophylax cingulatus 2.87±29.98 

Treene Horizon 2050 Potamophylax latipennis 11.82±43.03 

Treene Horizon 2090 Potamophylax latipennis 2.87±29.98 

Treene Horizon 2050 Potamophylax luctuosus 11.72±43.14 

Treene Horizon 2090 Potamophylax luctuosus 2.65±31.92 

Treene Horizon 2050 Proasellus coxalis 5.75±10.98 

Treene Horizon 2090 Proasellus coxalis 1.92±8.41 

Treene Horizon 2050 Prodiamesa olivacea -3.48±11.14 

Treene Horizon 2090 Prodiamesa olivacea 1.37±11.11 

Treene Horizon 2050 Ptychoptera paludosa 15±41.53 

Treene Horizon 2090 Ptychoptera paludosa 3.19±31.16 

Treene Horizon 2050 Radix balthica 6.23±13.41 

Treene Horizon 2090 Radix balthica 1.27±8.66 

Treene Horizon 2050 Sialis lutaria 10.18±38.5 

Treene Horizon 2090 Sialis lutaria 3.73±26.81 

Treene Horizon 2050 Simulium equinum 0.59±14.77 

Treene Horizon 2090 Simulium equinum 0.85±10.43 

Treene Horizon 2050 Simulium ornatum 0.55±14.65 

Treene Horizon 2090 Simulium ornatum 0.83±10.3 

Treene Horizon 2050 Sphaerium corneum -1.08±4.3 

Treene Horizon 2090 Sphaerium corneum 0.16±3.28 

Treene Horizon 2050 Anabolia nervosa 3.97±6.38 

Treene Horizon 2090 Anabolia nervosa -2.44±7.53 

Treene Horizon 2050 Ancylus fluviatilis 0.96±23.04 

Treene Horizon 2090 Ancylus fluviatilis 12.28±22.78 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Anisus vortex 6.91±14.43 

Treene Horizon 2090 Anisus vortex -2.4±13.64 

Treene Horizon 2050 Asellus aquaticus 0.79±12.16 

Treene Horizon 2090 Asellus aquaticus 0.7±16.82 

Treene Horizon 2050 Atherix ibis 0.72±17.21 

Treene Horizon 2090 Atherix ibis 8.02±25.1 

Treene Horizon 2050 Athripsodes albifrons -0.33±8.94 

Treene Horizon 2090 Athripsodes albifrons 6.13±12.48 

Treene Horizon 2050 Athripsodes cinereus -0.33±8.94 

Treene Horizon 2090 Athripsodes cinereus 6.13±12.48 

Treene Horizon 2050 Baetis atrebatinus -0.89±5.68 

Treene Horizon 2090 Baetis atrebatinus 0.84±8.94 

Treene Horizon 2050 Baetis fuscatus -0.89±5.68 

Treene Horizon 2090 Baetis fuscatus 0.84±8.94 

Treene Horizon 2050 Baetis rhodani -0.16±6.04 

Treene Horizon 2090 Baetis rhodani 3.38±9.8 

Treene Horizon 2050 Baetis vernus -0.85±5.2 

Treene Horizon 2090 Baetis vernus 0.71±8.19 

Treene Horizon 2050 Bithynia leachii 16.25±28.04 

Treene Horizon 2090 Bithynia leachii -2.21±30.94 

Treene Horizon 2050 Bithynia tentaculata 5.97±27.21 

Treene Horizon 2090 Bithynia tentaculata -0.79±34.07 

Treene Horizon 2050 Caenis horaria 13.59±17.49 

Treene Horizon 2090 Caenis horaria 4.51±21.47 

Treene Horizon 2050 Caenis rivulorum -0.75±9.31 

Treene Horizon 2090 Caenis rivulorum 3.33±13.25 

Treene Horizon 2050 Calopteryx splendens 7.65±12.47 

Treene Horizon 2090 Calopteryx splendens -2.75±11.6 

Treene Horizon 2050 Dugesia gonocephala 18.7±23.41 

Treene Horizon 2090 Dugesia gonocephala 0.59±21.2 

Treene Horizon 2050 Elmis aenea 1.93±15.77 

Treene Horizon 2090 Elmis aenea 9.5±23.05 

Treene Horizon 2050 Elmis maugetii 0.79±16.23 

Treene Horizon 2090 Elmis maugetii 7.85±23.48 

Treene Horizon 2050 Elmis rietscheli -0.17±16.98 

Treene Horizon 2090 Elmis rietscheli 8.5±23.83 

Treene Horizon 2050 Elmis rioloides -0.01±17.55 

Treene Horizon 2090 Elmis rioloides 8.81±24.45 

Treene Horizon 2050 Elodes minuta 3.81±8.43 

Treene Horizon 2090 Elodes minuta 0.26±12.89 

Treene Horizon 2050 Ephemera danica 4.38±10.3 

Treene Horizon 2090 Ephemera danica 1.41±15.37 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Erpobdella nigricollis 0.01±0.1 

Treene Horizon 2090 Erpobdella nigricollis -0.01±0.1 

Treene Horizon 2050 Erpobdella octoculata -0.46±5.24 

Treene Horizon 2090 Erpobdella octoculata 2.3±9.02 

Treene Horizon 2050 Gammarus pulex 0.37±2.61 

Treene Horizon 2090 Gammarus pulex -1.08±2.84 

Treene Horizon 2050 Glossiphonia complanata 0.27±2.98 

Treene Horizon 2090 Glossiphonia complanata 0.39±4.65 

Treene Horizon 2050 Glossiphonia nebulosa 1.59±17.94 

Treene Horizon 2090 Glossiphonia nebulosa 4.66±25.91 

Treene Horizon 2050 Halesus radiatus 4.92±11.76 

Treene Horizon 2090 Halesus radiatus 4.19±15.76 

Treene Horizon 2050 Heptagenia sulphurea 1.06±6.81 

Treene Horizon 2090 Heptagenia sulphurea -1.67±7.76 

Treene Horizon 2050 Hydropsyche angustipennis 3.02±8.68 

Treene Horizon 2090 Hydropsyche angustipennis 2.06±13.27 

Treene Horizon 2050 Hydropsyche pellucidula 2.86±6.12 

Treene Horizon 2090 Hydropsyche pellucidula -0.74±9.44 

Treene Horizon 2050 Hydropsyche siltalai 0.36±20.51 

Treene Horizon 2090 Hydropsyche siltalai 3.65±17.24 

Treene Horizon 2050 Isoperla grammatica 18.22±26.13 

Treene Horizon 2090 Isoperla grammatica 0.16±23.01 

Treene Horizon 2050 Lepidostoma hirtum 2.66±24.72 

Treene Horizon 2090 Lepidostoma hirtum 10.86±34.1 

Treene Horizon 2050 Leptophlebia submarginata 0.34±8.99 

Treene Horizon 2090 Leptophlebia submarginata -0.34±12.21 

Treene Horizon 2050 Limnephilus lunatus 0.49±2.79 

Treene Horizon 2090 Limnephilus lunatus 1.23±3.91 

Treene Horizon 2050 Limnius volckmari 0.81±3.93 

Treene Horizon 2090 Limnius volckmari 1.31±5.57 

Treene Horizon 2050 Lumbriculus variegatus 0.17±11.66 

Treene Horizon 2090 Lumbriculus variegatus 8.36±16.92 

Treene Horizon 2050 Lype reducta 1.41±23.87 

Treene Horizon 2090 Lype reducta 12.83±30.89 

Treene Horizon 2050 Nemoura cinerea 0.13±1.96 

Treene Horizon 2090 Nemoura cinerea 0.99±1.96 

Treene Horizon 2050 Orectochilus villosus 6.47±9.58 

Treene Horizon 2090 Orectochilus villosus -2.68±9.67 

Treene Horizon 2050 Oulimnius tuberculatus -0.27±8.31 

Treene Horizon 2090 Oulimnius tuberculatus 0.29±12.14 

Treene Horizon 2050 Pisidium amnicum -0.47±11.83 

Treene Horizon 2090 Pisidium amnicum 2.97±18.49 
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Catchment Horizon Species Mean±SD (%) 

Treene Horizon 2050 Pisidium subtruncatum -0.75±10.82 

Treene Horizon 2090 Pisidium subtruncatum 2.87±17.1 

Treene Horizon 2050 Pisidium supinum -0.46±11.95 

Treene Horizon 2090 Pisidium supinum 3.05±18.7 

Treene Horizon 2050 Planorbarius corneus 0.94±12.45 

Treene Horizon 2090 Planorbarius corneus 8.2±20.88 

Treene Horizon 2050 Planorbis planorbis 19.04±25.22 

Treene Horizon 2090 Planorbis planorbis 0.58±22.9 

Treene Horizon 2050 Polycentropus irroratus 1.06±22.83 

Treene Horizon 2090 Polycentropus irroratus 12.29±22.54 

Treene Horizon 2050 Potamophylax cingulatus 18.62±25.37 

Treene Horizon 2090 Potamophylax cingulatus -0.6±23.83 

Treene Horizon 2050 Potamophylax latipennis 18.62±25.37 

Treene Horizon 2090 Potamophylax latipennis -0.6±23.83 

Treene Horizon 2050 Potamophylax luctuosus 18.79±25.24 

Treene Horizon 2090 Potamophylax luctuosus -0.32±23.63 

Treene Horizon 2050 Proasellus coxalis 4.79±9.66 

Treene Horizon 2090 Proasellus coxalis -2.82±9.2 

Treene Horizon 2050 Prodiamesa olivacea 0.91±9.6 

Treene Horizon 2090 Prodiamesa olivacea 3.18±11.19 

Treene Horizon 2050 Ptychoptera paludosa 19.16±23.89 

Treene Horizon 2090 Ptychoptera paludosa 0.62±21.76 

Treene Horizon 2050 Radix balthica 6±14.03 

Treene Horizon 2090 Radix balthica 3.56±20.07 

Treene Horizon 2050 Sialis lutaria 7.89±17.6 

Treene Horizon 2090 Sialis lutaria -1.39±18.09 

Treene Horizon 2050 Simulium equinum -1.66±6.52 

Treene Horizon 2090 Simulium equinum 1.05±3.37 

Treene Horizon 2050 Simulium ornatum -0.98±7.68 

Treene Horizon 2090 Simulium ornatum 2.27±3.86 

Treene Horizon 2050 Sphaerium corneum -1.03±8.35 

Treene Horizon 2090 Sphaerium corneum 1.79±13.46 
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