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ABBREVIATIONS AND ACRONYMS 
 

ADC Alcohol dehydrogenase 

ALDH Aldehyde dehydrogenase isoform 

bFGF Basic fibroblast growth factor 

CFU Colony-forming units 

CSCs Cancer stem cells 

DEAB Diethylaminobenzaldehyde 

DNA      Deoxyribonucleic acid 

DMEM Dulbecco’s modified eagle medium 
DSF Disulfiram 
EOC Epithelial ovarian cancer 
EGF Epidermal growth factor 

ER Endoplasmic reticulum 

FACS Fluorescence-activated cell sorter 

FBS Fetal bovine serum 

FIGO International Federation of 
Gynecology and Obstetrics 

FITC Fluorescein-isothiocyanate 

FOXO Forkhead box O 

GSH Glutathione 
HIF1 Hypoxia-inducible transcription 

factor 1 

H2O2 Hydrogen peroxide 
O2•−   Superoxide free radicals 
HO• Hydroxyl free radicals 

MDC   Monolayer-derived cells 
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MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide 

NADP+ Nicotinamide-adenine dinucleotide 
phosphate positive 

NADPH Nicotinamide adenine dinucleotide 
phosphate hydrogen 

PBS Phosphate-buffered saline 
PE P-phycoerythrin 
PerCP Peridinin chlorophyll protein 
PI   Propidium iodide 

RA Retinoic acid 

ROS Reactive oxygen species 

SC Stem cells 
SDC Spheroid-derived cells 
SDS Sodium dodecyl sulfate 
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Summary 
 
Background: Cancer stem cells (CSCs) are quiescent and slow-cycling cell populations with 

increased tumorigenicity, unlimited self-renewal ability, and multipotent capacity. They present 

an explanation for the recurrence and metastasis of cancer. Aldehyde dehydrogenase (ALDH) is 

a widely accepted CSC marker. Disulfiram (DSF), which is an inhibitor of ALDH, is inexpensi- 

ve, accessible worldwide, and an approved drug. It is a potentially novel chemotherapeutic agent 

targeting CSCs. 

Methods: The cytotoxic effect of DSF on ovarian cancer cells was demonstrated by MTT assay. 

Spheroid formation, colony formation, and ALDH activity assay were performed to investigate 

the inhibitory effect on ovarian cancer stem cells. Cell cycle, cellular apoptosis, and intracellular 

reactive oxygen species (ROS) were detected by flow cytometry to further explore the mechanis- 

m of DSF. The potential of DSF in combination with other chemotherapeutic agents for ovarian 

cancer treatment was quantitatively assessed. 

Results: DSF displayed dose-dependent and time-dependent cytotoxic effects on ovarian cancer 

cells, and Cu2+ significantly enhanced the cytotoxicity. DSF with or without Cu2+ significantly 

inhibited spheroid formation. The average number of spheroids per 200 seeded cells was reduced 

from 71 to 0 in IGROV1; 16 to 0 in SKOV3; 38 to 0 in SKOV3IP1 (P<0.01) in controls and 

treated cells, respectively. Colony formation capacity was reduced from around 700 cfu in 

controls to 200 cfu in SKOV3 cell line and from around 1000 cfu to 500 cfu in IGROV1 and 

SKOV3IP1 cell lines (P<0.05). ALDH activity expressed as the proportion of ALDH+ cells was 

reduced from 21.7% to 0.391% in IGROV1; 8.4% to 0 in SKOV3; 6.88% to 0.05% in 

SKOV3IP1 (P<0.05). DSF induced more intracellular ROS generation in a dose-dependent 

manner and typically triggered cellular apoptosis. DSF sensitized cisplatin treatment on ovarian 

cancer cells even at its low concentration (0.3 µM) and significantly enhanced cisplatin-induced 

cellular apoptosis. DSF showed synergistic effects combined with cisplatin as well as 

DSF/cisplatin/paclitaxel drug combinations. The concentration of each chemotherapeutic agent 

in the combinations could be reduced up to hundreds-fold due to this synergistic effect.  

Conclusion: Our findings provided strong evidence that DSF modulates ALDH activity and 

intracellular ROS generation and is enhanced by the addition of Cu2+. It could be a noval 

candidate adjuvant chemotherapeutic agent in ovarian cancer treatment. Our results indicate 

synergistic effects of DSF when used in combination with other chemotherapeutic agents, 

offering hope for patients undergoing traditional chemotherapy who are in dire need of novel 

treatments that could reduce adverse side effects due to high doses. 
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Zusammenfassung 
Hintergrund: Tumorstammzellen (engl. Cancer stem cells, CSC) sind proliferativ quieszente 
and langsam proliferierende Zellpopulationen mit erhöhter Tumorigenität, unbegrenzter 
Selbsterneuerungskapazität und multipotenter Plastizität. Sie stellen eine Erklärung für die 
Wiedererkrankung an und Metastasierung von Krebs dar. Aldehyddehydrogenase (ALDH) ist 
ein allgemein akzeptierter CSC Marker. Disulfiram (DSF) ist ein Inhibitor von ALDH, ist billig, 
weltweit verfügbar und ein zugelassenes Medikament. Potentiell ist es ein neues 
chemotherapeutisches Agens für CSC.  
Methoden: Der zytotoxische Effekt von DSF auf Ovarialkarzinomzellen wurde durch MTT Test 
gezeigt. Spheroidbildung, Koloniebildung und ALDH Aktivitätstests wurden durchgeführt, um 
den inhibitorischen Effekt auf Ovarialkarzinomstammzellen zu untersuchen. Zellzyklus, 
Apoptose und intrazelluläre reaktive Sauerstoffspezies (ROS) wurden mittels 
Durchflußzytometrie gemessen, um die Wirkmechanismen von DSF weiter zu untersuchen. 
Mögliche Wirkungen von DSF in Kombination mit anderen Chemotherapiewirkstoffen für 
Ovarialkarzinombehandlung wurden quantitativ bestimmt. 
Ergebnisse: DSF zeigte dosisabhängige und zeitabhängige zytotoxische Effekte auf 
Ovarialkarzinomzellen, und Cu2+ verstärkte die Zytotoxizität signifikant. DSF mit oder ohne 
Cu2+ inhibierte die Spheroid-Bildung signifikant. Die durchschnittliche Anzahl von Spheroiden 
pro 200 ausgesäter Zellen wurde in IGROV1 Zellen von 71 auf 0 reduziert; 16 auf 0 in SKOV3 
Zellen; 38 auf 0 in SKOV3IP1 Zellen (P<0.01), jeweils in Kontroll- und in behandelten Zellen. 
Koloniebildungsfähigkeit wurde von ca. 700 cfu in Kontrollzellen auf 200 cfu in SKOV3 Zellen 
und von ca. 1000 cfu auf 500 cfu in IGROV1 und in SKOV3IP1 Zellen reduziert (P<0.05). 
ALDH Aktivität, ausgedrückt als der Anteil von ALDH+ Zellen, wurde von 21.7% auf 0.391% 
in IGROV1; 8.4% auf 0 in SKOV3; 6.88% auf 0.05% in SKOV3IP1 (P<0.05) reduziert. DSF 
induzierte mehr intrazelluläres ROS in einer dosisabhängigen Weise und löste typischerweise 
Apoptose aus. DSF sensibilisierte Ovarialkarzinomzellen für Cisplatin-Behandlung sogar bei 
niedrigen Konzentrationen (0,3 µM) und erhöhte Cisplatin-induzierte Apoptose signifikant. DSF 
zeigte synergistische Effekte in Kombination mit Cisplatin wie auch mit 
DSF/Cisplatin/Paclitaxel Kombinationen. Die Konzentration eines jeden Chemotherapeutikums 
konnte in den Kombinationen bis zu 100-fach reduziert werden, Dank des synergistischen 
Effekts. 
Schlußfolgerung: Unsere Ergebnisse liefern starke Hinweise darauf, dass DSF die ALDH 
Aktivität und intrazelluläre ROS Generierung moduliert, was durch die Zufügung von Cu2+ 
verstärkt wird. Es könnte ein Kandidat für ein neues adjuvantes Chemotherapeutikum für 
Ovarialkarzinombehandlung sein. Unsere Ergebnisse zeigen synergistische Effekte von DSF in 
Kombination mit anderen Chemotherapeutika auf, was Hoffnung für traditionelle 
Chemotherapiepatienten gibt, die einen dringenden Bedarf an neuen Behandlungsoptionen 
haben, welche unerwünschte Nebenwirkungen durch hohe Dosierung reduzieren könnte.  
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1. Introduction 
1.1 Epithelial ovarian cancer treatment 
Epithelial ovarian cancer (EOC) is a highly fatal gynecologic malignancy with the 5-year 

survival for all stages estimated at 45.6% [1]. This high mortality and morbidity associated with 

ovarian cancer is mostly due to late diagnosis and resistance to treatment [2]. Around 70% of 

EOC cases are diagnosed at an advanced FIGO stage(International Federation of Gynecology 

and Obstetrics) that has already spread within the abdomen, resulting in poor 5-year survival 

rates [6]. Although many patients initially benefit from surgery and chemotherapy [3,4], 

recurrence develops in more than 80% of patients with advanced stage and in 25% with early 

stage disease [5]. 

 

Currently, the standard therapy in primary ovarian cancer is surgery followed by systemic 

administration of a platinum-based chemotherapy (cisplatin or carboplatin) combined with a 

taxane (paclitaxel or docetaxel) [6,7]. Firstly, cytoreductive surgery remains an accepted 

standard treatment for primary ovarian cancer. The complete cytoreduction rates range from 9% 

to 100% in patients with recurrent ovarian cancer [8,9]. However, the benefit of surgery on 

progression-free survival and overall survival in recurrent ovarian cancer is still controversial. 

Secondly, platinum-based chemotherapy is commonly used for ovarian cancer, and the major 

breakthrough in the last decade is the addition of paclitaxel [10]. A combination with platinum 

and paclitaxel showed higher therapeutic efficacy compared to platinum alone [10]. 

 

Although great progress has been made in the chemotherapy of ovarian cancer, obstacles are still 

there preventing the further development. One problem is the development of resistance to 

cisplatin. It has been observed that around 50% of the patients relapse within 5 years although 

they may have achieved good initial response to cisplatin treatment [11]. Another problem is the 

high cytotoxicity of chemotherapy in patients which limits the wide use in clinic. Cisplatin is a 

platinum compound that was found to induce DNA damage and arrest cell division [12]. 

However, due to higher incidence of nephrotoxicity, peripheral nerve toxicity, and inner ear 

toxicity in patients, its use is still limited [13]. Paclitaxel is a microtubule poison which arrests 

cells in mitosis [14,15,16], and its dose-limiting toxicity are hypersensitivity, neutropenia, and 

peripheral neuropathy [17]. Above all, it remains a priority of research to increase the sensitivity 

to chemotherapy or to better target cancer cells for antitumor drug activity. 
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1.2 Characteristics of CSCs 
Although most ovarian cancer cells initially show a good response to chemotherapy, there is a 

small subpopulation of cells (generally less than 2% of cells) that are more resistant to initial 

therapy and could give rise to more differentiated progeny that comprise most of the ovarian 

tumor mass, leading to a clinical recurrence [18,19,20]. This subpopulation of cells, like normal 

stem cells, which are responsible for tumorigencity, metastasis, invasion, and chemotherapy 

resistance, are referred to as cancer stem cells (CSCs). 

 

It is widely accepted that CSCs are a quiescent and slow-cycling cell population possessing self-

renewal capacity and giving rise to non-tumorigenic progeny that make up the bulk of the tumor 

[21,22]. Lapidot and colleagues first isolated a tumorigenic stem cell population in 1994, and 

showed that one single CSC isolated from acute myeloid leukemia was able to completely 

reinitiate leukemia in mice [18]. It has also been shown in many types of solid cancer that this 

small subpopulation of cells is clonogenic both in culture and in vivo [23,24,25,26]. Bapat and 

colleagues were among the first researchers to demonstrate stem cell properties in ovarian cancer 

cells in 2005 [27]. It is now generally accepted that cancer stem cells have three basic 

characteristics: (1) increased tumorigenicity which is responsible for the generation and 

regeneration of a tumor; (2) unlimited self-renewal which allows CSCs to persist for long 

periods of time, instead of differentiation and dying after short periods of time like bulk tumor 

cells; (3) multipotency, whereby tumors that form after CSC injection are composed of both 

marker-positive and marker-negative cells (ALDH+/-) [28,29]. 

 

The existence of CSCs in ovarian cancer makes sense. Firstly, from the aspect of the clinic; 

although most tumor cells can be killed by the first period by chemotherapy, almost all patients 

will suffer a recurrence after the outgrowth of a chemotherapy-resistant subpopulation. However, 

most of these patients at first recurrence will respond well to the secondary therapy, implying 

that the recurrent tumor is again composed of bulk tumor cells which are sensitive to 

chemotherapy and CSCs which are more resistant to chemotherapy [29]. Secondly, from the 

aspect of pathology; epithelial ovarian cancer encompasses numerous histological phenotypes, 

including papillary serous, endometrioid, clear cell, and mucinous subtypes, implying a 

pluripotent differentiation capacity. The high rate of multiple “mixed” histological phenotypes 

within the same tumor suggests either a common cell of origin with capacity to differentiate into 

several phenotypes or multiple CSC phenotypes [29,30].  
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Some experiments have also shown that the stemness of CSCs can be induced by chemotherapy 

or radiation therapy, suggesting the possibility that cells responsible for recurrence might arise 

from the mutagenic effect of therapy [31]. However, this can’t explain why most recurrent 

tumors are genetically and histologically similar to the primary tumor. In addition, lots of groups 

have isolated subpopulations and demonstrated that the resistance was present before 

chemotherapy was given [29]. Above all, these subpopulations of CSCs are closely associated 

with recurrence, therefore agents specifically targeting these cells may offer a way to minimize 

the risk of recurrence or maximize the efficacy of chemotherapy. 

 

1.3 Aldehyde dehydrogenase (ALDH) as possible target for novel treatment 

approaches 
Aldehyde dehydrogenases (ALDHs) are a group of nicotinamide-adenine dinucleotide phosphate 

(NADP+)-dependent enzymes that are critical for detoxification of endogenous aldehyde 

substrates [32,33]. Endogenous aldehydes arise from the metabolism of amino acids, alcohols, 

and lipids. Nineteen different ALDH genes with biological functions, including cellular 

detoxification, have been characterized. They have been found expressed in multiple different 

tissues and in various cellular subcompartments including cytosol, nucleus, mitochondria, and 

endoplasmic reticulum [34]. 

 

ALDHs play important roles in retinoid signaling, reactive oxygen species (ROS) and 

acetaldehyde metabolism.  In retinoid metabolism, retinol is first oxidized by retinol 

dehydrogenases to retinal which is then oxidized to retinoic acid (RA) and catalyzed by 

ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1. RA can bind RA receptor and regulate 

stemness-related marker expression, cellular differentiation and cell cycle arrest [35]. Therefore, 

the retinoid signaling pathways together with ALDHs play significant roles in stem cell and 

cancer cell regulation [36,37]. Ethanol is metabolized to acetaldehyde by alcohol dehydrogenase 

(ADH) which interferes with the antioxidative defense system and generates ROS. Acetaldehyde 

is then metabolized to acetate by ALDH1A1 and ALDH2.  Additionally, studies have shown that 

ALDH1 can decrease intracellular oxidative stress as it functions as ROS scavenger [38,39]. 

Thus, ALDHs activity is required to reduce reactive aldehydes and maintain ROS levels 

sufficiently low, thereby promoting tumor growth and initiating tumorigenesis in CSCs as well 

as preventing the triggering of CSC apoptosis [40]. 
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There is growing support for the use of ALDH as a CSC marker. Tumor cells with higher ALDH 

activity have been demonstrated to have enhanced motility and ability to metastasis in many 

types of cancers [41-46]. ALDH-positive cells have also been reported to exhibit increased 

capacity to form spheroids in breast cancer, ovarian cancer, brain tumor, prostate cancer, head 

and neck squamous cell carcinoma, non-squamous cell lung cancer, esophageal cancer, and 

cervical cancer [47-51]. In addition, ALDH-positive cells display stem-like behavior such as 

differentiation and resistance to chemotherapy. All the evidence implies that ALDH could be 

used as a CSC marker and have an important functional role in tumor cell self-protection, 

expansion, differentiation, and therapy resistance. Therefore, it is expected that novel, potent and 

ALDH-specific inhibitors could enter the experimental and clinical assessment in cancer therapy 

in coming years. This suggests that ALDH-specific targeted therapy might be useful for CSC 

elimination and for combination with traditional chemotherapy. 

 

1.4 Potential anti-tumor effect of DSF 
Disulfiram (DSF), a member of the dithiocarbamate family, has been an FDA-approved drug in 

clinical alcoholism treatment for over 60 years. Initially, the compound had been used in the 

process of rubber manufacturing.  In 1937, workers who were regularly exposed to DSF 

exhibited flu-like symptoms when they ingested alcohol [52]. DSF, also known as Antabuse, was 

approved for used in the clinic as an anti-alcoholic treatment since the year of 1948 [53]. 

 

With the more recent discovery of stem cell populations in cancer, new purposes and uses were 

found for DSF. It has been proven that DSF reacts with redox-sensitive sulfhydryl groups (thiols) 

and binds copper (Cu2+). Thiols are a class of organic sulphur derivatives (mercaptans), 

distributed ubiquitously in aerobic life forms, and characterized by the presence of sulfhydryl 

groups (-SH) at their active center which contribute to antioxidant defense mechanisms [54,55]. 

Cu2+ plays an important role in biological pathways in the human body such as to activate some 

critical proteins like superoxide dismutase, tyrosinase, and cytochrome oxidase [56]. Therefore, 

Cu2+ concentrations in the human body is tightly regulated. However, the concentration of Cu2+ 

in cancerous tissues, such as breast, prostate, lung, and brain, is higher than normal tissues [57]. 

Thus, it would be useful and practical to study DSF’s cytotoxicity in conjunction with 

intracellular Cu2+ participation. 
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Recent studies have already demonstrated that DSF has strong anticancer activity in vitro and in 

cancer xenografts [58-61], highlighting it as a potential novel chemotherapeutic agent. DSF is 

interesting not only because it is a specifically targeting agent which has potential efficacy 

against the chemo-resistant CSC population but also because it is inexpensive, accessible 

worldwide and its safety profile has been verified for decades. However, the mechanism of DSF 

as an ALDH inhibitor for anti-cancer treatment is still unclear. In addition, DSF may support 

current chemotherapy that is in dire need of novel treatments that could reduce adverse side 

effects due to high doses. Therefore, investigations need to establish dosing schedules and 

chemotherapeutic combinations which will generate the greatest response in tumor cells. 

 

1.5 Regulation system of intracellular ROS 
Reactive oxygen species (ROS) are broadly defined as oxygen-containing chemical species with 

reactive properties. These include the superoxide (O2•−) and hydroxyl (HO•)-free radicals as 

well as non-radical molecules such as hydrogen peroxide (H2O2) [63]. ROS are constantly 

generated from the oxygen that is consumed in various metabolic reactions with or without 

enzymatic catalysis [62]. 

 

It is fundamental to maintain the redox homeostasis for ensuring cell survival and functions, and 

this balanced redox status is exerted by ROS that accumulate as a result of ROS generation and 

elimination. ROS generation systems include the mitochondrial respiratory chain, where a large 

amount of superoxide is produced by NADPH oxidase complexes [63], or the endoplasmic 

reticulum (ER) where proteins are engaged to fold into correct conformation and where 

misfolded proteins will result in ROS accumulation [64]. Hypoxia is also known to stimulate the 

accumulation of ROS by which the depletion of molecular oxygen could in turn activate 

hypoxia-inducible transcription factor 1 (HIF1) which has a strong correlation with tumor 

progression and metastasis [65,66]. ROS-scavenging systems are mainly glutathione (GSH) 

which is the most abundant non-enzymatic antioxidant molecule in the cell [67], and 

nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) which is essential for the 

regeneration of GSH and thioredoxin which have an important role in the elimination of H2O2 

[62]. Other ROS scavengers such as tumor suppressor genes and ALDH have been proven 

equally important in response to oxidative stress [39, 68-70]. 
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In biological systems, cellular metabolism is balanced to maintain a stable redox state by ROS 

generation systems and ROS elimination systems. Once this balance is destroyed, different 

biological responses will be induced. For example, when ROS is increased at relatively low 

levels, it could act as a signaling molecule to promote the activation of  stress-responsive 

survival pathways and could be involved in cellular proliferation and differentiation [71,72]. 

However, a sustained increase in ROS accumulation, regardless of whether it is endogenously or 

exogenously derived, can be detrimental to cells. Excess amount of ROS causes oxidative 

damage of lipids, nucleic acids, and amino acids which will lead to cellular dysfunction and 

death [73]. Therefore, regulating ROS level by ROS generation and elimination systems is 

critical for cellular function and survival. 

 

1.6 ROS in cancer cells and CSCs 
Due to rapid growth and limited availability of nutrients, cancer cells have a high demand for 

ATP and thus have large consumption of oxygen, and high levels of oxidative stress, resulting in 

the accumulation of ROS. Numerous studies have proven that compared with their normal 

counterparts, many types of cancer cells have increased levels of ROS [74,75]. For example, 

leukaemia cells freshly isolated from blood samples from chronic lymphocytic leukaemia 

patients showed increased ROS production compared with normal lymphocytes [76].  

 

A diversity of mechanisms is involved in this ROS increase in cancer cells. The intrinsic factors 

may result from the activation of oncogenes, loss of functional p53, aberrant metabolism, and 

mitochondrial dysfunction [77-80]. Other factors such as inflammatory cytokines, an imbalance 

of nutrients and abnormal microenvironment are extrinsic factors known to cause increased ROS 

accumulation in cancer cells [77,81,82]. 

 

Compared with cancer cells, CSCs which are quiescent and slow-cycling cell populations are 

hypothesized to have low levels of intracellular ROS to maintain their functions such as 

resistance to radiotherapy and chemotherapy. It has been shown that central nervous system stem 

cells and hematopoietic stem cells contain lower levels of ROS than their more mature progeny 

[83,84,85]. Recently, many experiments have proven that CSCs, similar to tissue stem cells, 

contain lower ROS levels than cancer cells. For example, CD44+CD24-/lowLin- breast CSC-

enriched populations contain significantly lower levels of ROS than their non-tumorigenic 

progeny [86]. Lower levels of ROS are also observed in CSCs in head and neck tumors. As 
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cancer cells with increased levels of ROS are likely to be more vulnerable to further ROS 

increase, lower levels of ROS in CSCs and their regulating and detoxification mechanisms 

would protect them from endogenous and exogenous ROS-mediated damage. 

 

Lower ROS levels in CSCs are associated with increased expression of scavenging systems. For 

example, glutathione (GSH) which is a critical cellular ROS-reducing agent has been proven to 

be overexpressed in CSCs [86]. When GSH is depleted by pharmacologic methods, these CSCs 

become more sensitive to ROS elevation [86]. ALDH has also been shown to be a ROS 

scavenger that could protect cancer stem cells against oxidative stress induced by alcohol, UV 

radiation, and some chemotherapeutic agents [87]. In another experiment, the higher 

mitochondria mass in CSCs may also help to explain the enhanced ROS-scavenging systems as 

the exposed protein thiols in mitochondrial membranes and in complex I can protect against 

oxidative damage [88,89]. 

 

1.7 Conclusion 
Cancer cells with increased oxidative stress are more vulnerable to be damaged by further ROS 

accumulation. Various drugs that directly or indirectly regulate ROS levels have been used as 

effective anticancer therapy to selectively kill cancer cells. Here, we focus on DSF which is an 

inhibitor of ALDH, a functional marker for CSCs, and discuss the inhibitory effect of DSF on 

ovarian cancer stem cells and its potential modulation of ROS. 

 

Further, as the major problem with chemotherapy is the high toxicity due to high dosage, it is 

promising to investigate a regimen that could sensitize ovarian cancer cells to cisplatin or 

maximize cytotoxic effects of chemotherapy while minimizing the side effects on normal tissues. 

Thus, it is important to investigate the potential of DSF in cancer treatment in combination with 

other adjuvant therapeutic drugs. 
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2 Aim of the study 
The objective of this thesis was to investigate the cytotoxic effect of DSF on ovarian cancer cells 

and the possible mechanisms in order to identify the potential of DSF in combination with other 

chemotherapeutic agents for ovarian cancer treatment. Therefore, the following aims were 

pursued: 

 

1. To investigate the cytotoxicity of DSF on ovarian cancer cell lines.  

 

2. To investigate the inhibitory effect of DSF on ovarian cancer stem cells in particular, and to 

further explore its potential cytotoxicity mechanisms. 

 

 3. To assess the potential synergism of DSF in combination with other chemotherapeutic agents 

in ovarian cancer cell lines. 

 

4. To model a new regimen for the treatment of ovarian cancer cells by carrying out 

computerized quantitative assessment in vitro with combinations of these drugs. 
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3 Materials  
 

3.1 Laboratory Equipment 
 

Axiovert 40 CFL Carl Zeiss, Jena, Germany 

BD FACSCalibur System   BD Bioscience, Heidelberg, Germany 

Freezer, -80°C    Heraeus, Hanau, Germany 

Incubator, HERA cell 150 Heraeus, Hanau, Germany 

Multicentrifuge Heraeus, Hanau, Germany 

Nanodrop Peqlab, Erlangen, Germany 

Pipettes     Eppendorf AG, Hamburg, Germany 

Smart SpecTM Plus Spectrophotometer BioRad, München, Germany 

Thermocycler Eppendorf AG, Hamburg, Germany 

Vortexer Scientific Industries, N.Y., USA 

 

3.2 Chemicals and Reagents 
 

Agarose Biozym, Oldendorf, Germany 

BD FACSflowTM BD Sciences, Franklin Lakes, USA 

Dimethyl Sulphoxide (DMSO) Sigma, Deisenhofen, Germany 

Ethanol, 70% Biochrom, Berlin, Germany 

Epidermal Growth Factor (EGF) Biochrom, Berlin, Germany 

Fetal bovine serum (FBS) Gibco BRL, Karlsruhe, Germany 

Fibroblast Growth Factor-basic (bFGF) Biochrom, Berlin, Germany 

Penicillin/Streptomycin Biochrom, Berlin, Germany 

Phosphate-buffered saline (PBS) without 

Mg2+/Ca2+ 

Biochrom, Berlin, Germany 

Trypsin/EDTA Solution Biochrom, Berlin, Germany 
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3.3 Cell Culture Media 
 

Dulbecco’s modified Eagle’s Medium with 

GlutaMAXTM-I (DMEM) 

Invitrogen, Heidelberg, Germany 

 

Quantum 263 medium   PAA, Cöllbe, Germany 

RPMI 1640 Invitrogen, Heidelberg, Germany 

 

 

3.4 Kits and other Materials 
 

ALDEFLUOR assay Kit StemCell Technologies, Köln, Germany 

FLUOS-conjugated annexin-V and Propidium 

iodide Kit 

Roche, Mannheim, Germany 

 

Mitosox Red Kit    Invitrogen, Paisley, UK 

BD FalconTM Cell Culture Flasks BD Bioscience, Franklin Lakes, USA 

BD FalconTM Propylene Conical Tubes BD Bioscience, Franklin Lakes, USA 

BD FalconTM Tissue Culture Dish 

(100*200mm)  

BD Bioscience, Franklin Lakes, USA 

Cell Culture Plates (6-, 24-, 96-well) BD Bioscience, Franklin Lakes, USA 

Ultra-Low Attachment Cell Culture Plate (96-

well) 

Corning, NY, USA 
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4 Methods  
 
4.1 Cell lines and cell culture 
 

The ovarian cancer cell lines IGROV1, SKOV3 and SKOV3IP1 were cultured in RPMI 1640 

medium with L-glutamine supplemented with 10% fetal bovine serum (heat-inactivated at 56°C 

for 30 min) and 1% penicillin/streptomycin in a humidified incubator at 37°C and 5% CO2. All 

of our experiments were performed on cultures that were 70% confluent. 

 

4.2 Drugs 
 

Free DSF was dissolved in dimethyl sulfoxide (DMSO) at a stock concentration of 10 mM, 

stored at −20°C and diluted into working concentrations in a corresponding cell culture medium 

before use. 

Cisplatin was kept at a stock concentration of 3.3 mM at room temperature and Paclitaxel was 

kept at a stock concentration of 7 mM at 4°C. All drugs were diluted into working concentrations 

with a medium before use. 

 

4.3 Spheroid formation assay 
 

4.3.1 Preparation of ultra-low attachment plates 

 

Agarose was dissolved in PBS at a concentration of 1.5% (w/v). Then, 8 ml of 1.5% agarose was 

filled into a 75 cm2 cell culture plate. The plate was gently swirled to make sure that all the 

agarose covered the plate entirely without any bubbles. Agarose was allowed to solidify and cool 

down to room temperature for 20 minutes. Thereby, an ultra-low attachment surface on the inner 

bottom of the plate was prepared. 

 

4.3.2 Preparation of cell suspensions 

 

Adherent monolayer cells were expanded firstly in normal 75 cm2 culture flasks in RPMI 1640 

containing 10% heat-inactivated FBS and 1% penicillin/streptomycin, until 70% confluency. 

Cells were washed twice with PBS without Ca2+/Mg2+ and detached using 3 ml Trypsin/EDTA 
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for 5-7 minutes until all the cells were detached. The reaction was stopped by addition of 2 ml of 

complete culture medium. The solution was poured into a 15 ml Falcon tube and centrifuged at 

1500 rpm for 5 min. Cells were washed again twice with PBS without Ca2+/Mg2+, followed by 

resuspension in Quantum 263 medium (PAA) supplemented with 10 ng/ml Epidermal Growth 

Factor (EGF) and 10 ng/ml Fibroblast Growth Factor-basic (bFGF) and 1% 

penicillin/streptomycin.  

 

4.3.3 Spheroid formation 

 

The cell number was counted and diluted to 1×104 cells/ml in Quantum 263 medium. 10-12 ml 

of the cell suspensions was transferred into ultra-low attachment cell culture plates. The plates 

were incubated in a humidified atmosphere with 5% CO2 at 37°C. Half of the medium was 

replaced every 3 days. Cell suspensions were left for 10 min to sediment and supernatant was 

carefully aspirated, leaving the spheroids at the bottom. The same volume of fresh medium was 

filled into the plates. Movement of the plates was minimized, particularly during spheroid 

initiation. Cells were allowed to grow for 5-8 days to form spheroids. 

 

4.3.4 Passaging of spheroid 

 

For passaging, all spheroids were collected into a 40 µm mesh filter. They were then washed into 

a 50 ml Falcon tube, and centrifuged at 1500 rpm for 5 min. Medium was aspirated and 

spheroids were dissociated into single cells using 500 µl tryspin/EDTA at 37°C 5% CO2 for 5 

min, followed by washing with PBS twice. Single cells were filtered through a 40 µm mesh filter 

and reseeded in fresh culture medium under same condition. For the experiments generally, 2nd 

and 3rd generation spheroids were used. 

 

4.3.5 Evaluation of spheroid 

 

Spheroid formation and growth was evaluated and recorded using a HBO50 Microscope. 

Visualization of spheroid formation, growth, and photographing was done with an AxioCam 

MRC Zeiss Camera using the AxioVision Rel 4.8 software. 

 

4.4 MTT assay 
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Adherent cells were harvested using Trypsin/EDTA. A single-cell suspension was prepared as 

described above and diluted at a concentration of 4×104 cells/ml. Cells were reseeded in 96-well 

plates at a density of 4000 cells per well in 100 µl drug-free medium and incubated overnight. 

The outer wells of the 96-well plate were filled with 200 µl PBS to create an evaporation barrier. 

 

Serial dilutions of DSF working concentrations were prepared with cell culture medium. The cell 

culture medium in 96-well plate was removed gently and 100 µl fresh medium was added with 

various drug concentrations. Each drug concentration was in triplicate. Cells without any drug 

treatment were used as controls. The 96-well plate was placed in the cell culture incubator for 72 

h incubation. 

 

All the cells were checked under the microscope after 72 h incubation. 10 µl of MTT Reagent 

was added to each well, including controls, and the 96-well plate was incubated at 37°C for 4 

hours. When the purple precipitate was clearly visible under the microscope after 4 h incubation, 

100 µl stop solution reagent (SDS-HCL) was added to all wells, including controls, and mixed 

gently.  The 96-well plate was left with cover in the incubator overnight. The solution absorbance 

was measured at wavelength of 590 nm with a Bio-Rad microplate reader. 

 

The average values were determined from triplicate reading wells. Cellular relative viability (%) 

was calculated according to the equation: Relative viability (%) = (A sample / A control) *100%, 

where “A sample” and “A control” was the absorbance of the “sample” and “control” wells, 

respectively. Dose response curves and IC50 was calculated using GraphPad Prism 5.04. 

 

4.5 Flow cytometric analysis of the cell cycle 
 

Cells were seeded in 24-well plates at a density of 3×104 cells in 1 ml medium per well and 

incubated overnight. Cells were checked after overnight incubation to make sure the cells were 

adherent to the bottom of the plates and proliferating. Cells were treated by indicated 

concentration of DSF and Cu2+ for 72 h. Each concentration was in triplicate. Cells without 

treatment were used as controls. 
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Cells were harvested after 72 h of incubation as described above, and a single cell suspension 

was prepared. Cells were washed twice with PBS to remove any residual drug in the medium. 

Cells were resuspended in 100 µl PBS and fixed by addition of 900 µl 70% ethanol at 4°C 

overnight. Cells were washed twice with PBS and centrifuged at 3000 rpm for 5 min. Cell loss 

was carefully avoided when discarding the supernatant especially after ethanol fixation. The cells 

were then incubated with RNaseA (final concentration 100 µg/ml) and propidium iodide (final 

concentration 50 µg/ml) for 30 min in the dark at room temperature. 

 

Analysis of cell cycle progression and detection of apoptosis was performed using flow 

cytometric analysis of DNA staining. The data from 10000 cells for each sample were collected 

by FACS Scan (BD Bioscience, Heidelberg, Germany) and DNA content and cell cycle was 

analyzed. First it was gated on the single cell population using pulse width and pulse area, then 

this gate was applied to forward scatter (FS) and side scatter (SS) to gate out obvious debris. The 

gates were combined and applied to the PI histogram plot. FlowJo software (Treestar, Ashland, 

OR, USA) was used to quantitate the percentage of cells in each cell cycle phase (Figure 1).  

 

 
 
Figure 1: Gating strategy for cell cycle analysis. A) gating a single cell population. B) gating 
out the debris. C) combining A and B to PI histogram plot. D) cell cycle phases were quantitated 
by FlowJo software. 
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4.6 Flow cytometric analysis of cellular apoptosis 
 
4.6.1 Preparation of cells 

 

Cells were seeded in 24-well plates at a density of 4×104 cells per well and incubated overnight. 

Cells were treated with different drugs at different concentration for further 72 h and harvested 

as described above. Each concentration was in triplicate. Cells without treatment were used as 

control. 

 

4.6.2 Staining the cells and flow cytometry analysis 

 

The Annexin-V-FLUOS labelling solution was prepared as described in the FLUOS-conjugated 

annexin-V and propidium iodide Kit (Roche). Cells were washed with PBS twice. The 

supernatants were discarded, and cells were resuspended in 100 µl of Annexin-V-FLUOS 

labelling solution at a density of 1×106 cells/ml. Cells were incubated in the dark at room 

temperature for 15 min. 

 

Cellular apoptosis and necrosis were evaluated immediately by flow cytometry with FL3 

(propidium iodide) and FL1 (Annexin-V-FLUOS). All cells were divided into four populations: 

living cells (Annexin V-/ PI-), early apoptotic cells (Annexin V+/ PI-), late apoptotic cells 

(Annexin V+/ PI+) and necrotic cells (Annexin V-/ PI+). 

 

4.7 Clonogenic assay 

 
Cells were exposed to DSF (1 µM), Cu2+ (1 µM), or DSF (1 µM)/Cu2+ (1 µM) for 24 h. Cells 

were harvested after treatment, and washed with PBS twice to make sure all of the residual drug 

medium was removed. A single cell suspension in fresh medium was prepared and cell numbers 

were counted. Cells were reseeded in a new 6-well plate at a density of 2000 cells per well with 

3 ml fresh cell culture medium in each well. Non-drug-treated cells were included as controls. 

Each concentration was tested in triplicate. 

 

The 6-well plates were placed in an incubator for 7-10 days until cells in control wells had 

formed sufficiently large colonies. A cell population was defined as a colony if it consisted of at 
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least 50 cells. Fixation and staining of colonies was done by adding 2-3 ml of a mixture of 6.0% 

glutaraldehyde and 0.5% crystal violet. The number of colonies was counted with a microscope. 

 

4.8 Flow cytometric analysis of ALDH activity and cell sorting 
 

4.8.1 ALDEFLUOR kit 

 

ALDH activity is measured by quantifying the ALDH-mediated intracellular retention of 

fluorescent compound BODIPY-aminoacetate (BAA-) using flow cytometry-based methods 

[90]. ALDEFLUOR kit was used in the experiment which depends on the conversion of the 

uncharged ALDH substrate BODIPY amino acetaldehyde (BAAA) into BAA- which is retained 

inside viable cells. As BAAA could diffuse in and out of the cell freely, after addition of BAAA, 

cells with elevated activity of ALDH become highly fluorescent and can be identified using flow 

cytometry gating criteria. Cells treated with diethylaminobenzaldehyde (DEAB) which is a 

specific ALDH inhibitor, were used as controls. 

 

4.8.2 Treatment of cells 

 

The manufacturer’s instructions of ALDEFLUOR kit were closely followed. All tubes were 

labelled as “test” tubes and one “control” tube. Cells exposed to DSF (10 µM), Cu2+ (1 µM), 

DSF (10 µM) plus Cu2+ (1 µM) were all test sample tubes. Cells treated with 

diethylaminobenzaldehyde (DEAB), which is a specific ALDH inhibitor, were used as control. 

Then, 1 ml of adjusted test cell suspension (4*104/ml) was placed into each test sample tube. 

Then, 5 µl of ALDEFLUOR™ DEAB Reagent was added to the “control” tube, and 5 µl of the 

activated ALDEFLUOR™ Reagent was added to the “test” tubes. The mixture in the “test” tubes 

was mixed and 0.5 ml of the mixture was immediately transferred to the DEAB “control” tube. 

All samples were incubated at 37℃ in the dark for 30 min. After incubation, all tubes were 

centrifuged at 250*g for 5 min and the supernatant was removed. Cells were resuspended in 0.5 

ml of ALDEFLUOR Assay Buffer and stored on ice. Flow cytometric analysis was performed 

immediately.  

 

4.8.3 Cell sorting 
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For FACS sorting, cells were suspended in PBS buffer at a concentration of 1×107 cells/ml and 

sorted on an Aria cell sorter (BD Biosciences). The sorted cells were exposed to DSF for 30 min 

and ROS activity was analyzed by FACS. The sorting gates were established with negative 

controls which were treated with DEAB. 

 

4.9 Measurement of ROS 
 

Mitochondrial ROS were measured using MitoSOX Red kit (Thermofisher). MitoSOX Red 

reagent is a novel fluorogenic dye for highly selective detection of superoxide in the 

mitochondria in live cells. Oxidation of MitoSOX Red reagent by superoxide produces red 

fluorescence. This fluorescence can be recorded and quantified by flow cytometry.  

 

Following the manufacturer’s instructions, cells (4 × 104 cells/well) were seeded in a 24-well 

attachment plate and incubated overnight. After 24 h plating, tested cells were treated with Cu2+ 

(1 µM), DSF (10 µM), DSF (10 µM) plus Cu2+ (1 µM), DSF (100 µM), or DSF (100 µM) plus 

Cu2+ (1 µM) for 30 min at 37 °C. All the medium was removed after drug treatment. Cells were 

harvested and washed twice with warm PBS. Cells were then incubated with fresh medium 

containing MitoSOX Red Reagent at a final working concentration of 5 µM for 15 minutes at 

37°C. Cells were then washed gently three times with warm buffer. 

 

Mean fluorescence intensity was determined by flow cytometry. Cells without MitoSOX Red 

Reagent were used as the background. Cells with MitoSOX Red Reagent, but no drug treatment, 

were used as controls. Mean fluorescence intensity was determined and all samples were 

normalized to untreated control groups (Figure 2).  
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Figure 2: Measurement of ROS by flow cytometry. A) gating out the debris. B) applying to PI 
histogram plot. C) gating the relative ROS activity. D) drug treated cells were normalized to 
untreated control cells. 
 
 

4.10 Drug sensitivity assay 
 
Drug sensitivity assay was done in order to determine whether DSF could sensitize cisplatin 

treatment. Cells were seeded in 96-well plates at a density of 4000 cells per well in 100 µl drug-

free medium and incubated overnight. The outer wells of the 96-well plate were filled with 200 

µl PBS to create an evaporation barrier. Cell culture medium was removed and the cells were 

treated with cisplatin alone at 1 µM or 5 µM, DSF alone at 1 µM or combinations in fresh cell 

culture medium. Each drug concentration was in triplicate. Cells without any treatment were 

used as control. The 96-well plate was left with cover in the incubator for 72 h incubation. MTT 

assay was performed after 72 h incubation. 

 

In another dose-response relationship for this sensitivity assay, cells were treated with cisplatin 

alone at 0.5 µM, 1 µM, 1.5 µM and 2 µM. Each concentration of cisplatin combined with DSF at 

0.3 µM and 0.6 µM. Cells without drug treatment were used as control. Each sample was tested 

in triplicate. MTT assays were performed after 72 h of drug exposure. 
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4.11 Double and triple drug combination treatment 
 
The drug combination experiment was designed according to a method published by Chou-

Talalay et al. which has been widely accepted and cited in papers [91]. The combination index 

isobologram method provides the common link between single drug and multiple drug 

treatments. It is based on the median-effect equation and is used for computerized data analysis 

which is more accurate and more flexible. This method was selected because it takes into 

account both the potencies of each drug and the combinations of these drugs. 

 

For each cell line, the dose ranges were selected to cover the concentrations below and above the 

IC50 values of each drug to include the wide concentration ranges for each drug. The 

combination ratio was designed at a constant ratio which was approximately IC50 concentration 

for each of the component drugs, so that the contribution of the effect by each drug to the 

combination would be equal [91]. Cells were treated with every single drug or every two drug 

combinations or all three drugs combination for 72 h and then subjected to MTT assay as 

described above (Table 1). Each concentration or each combination was tested in triplicate.  

 

For the combination effect analyses, description of synergism or antagonism was based on 

computer software by Chou and Martin [92]. Briefly, the combination index (CI) value in a 

combination is a quantitative measure of the degree of drug interaction in terms of synergism or 

antagonism for a given measurement effect. CI ＜ 1, ＝1, and ＞1 indicate synergism, additive 

effect, and antagonism, respectively [91]. The smaller the number, the stronger the synergism. 

Dose-reduction index (DRI) values is a measure of how many fold the dose of each drug in a 

synergistic combination may be reduced at a given effect level when compared with the doses of 

each drug alone [91]. 
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Table 1: Double and triple drug combination design 

 
Drug 1 Drug 2 Drug 3 

0.25 * IC50 0.25 * IC50 0.25 * IC50 
0.5 * IC50 0.5 * IC50 0.5 * IC50 

 IC50   IC50   IC50  
2 * IC50 2 * IC50 2 * IC50 
4 * IC50 4 * IC50 4 * IC50 

                                   Drug 1  +  Drug 2  
0.25 * IC50 + 0.25 * IC50  
0.5 * IC50 + 0.5 * IC50  

  IC50 + IC50    
2 * IC50 + 2 * IC50  
4 * IC50 + 4 * IC50  

                                Drug 2         +        Drug 3 
 0.25 * IC50 + 0.25 * IC50 
  0.5 * IC50 + 0.5 * IC50 
   IC50 + IC50   
 2 * IC50 + 2 * IC50 
 4 * IC50 + 4 * IC50 
                                                        Drug 1     +      Drug 3 

0.25 * IC50 + 0.25 * IC50 
 0.5 * IC50 + 0.5 * IC50 

  IC50 + IC50   
2 * IC50 + 2 * IC50 
4 * IC50 + 4 * IC50 

                     Drug 1           +                         Drug 2                   +           Drug 3 

   0.25                  * IC50 + 0.25 * IC50 + 0.25 * IC50 
   0.5                  * IC50 + 0.5 * IC50 + 0.5 * IC50 

                    IC50 +   IC50 +   IC50 
2                  * IC50 + 2 * IC50 + 2 * IC50 
4                 * IC50 + 4 * IC50 + 4 * IC50 
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4.12 Experiments to verify calculated DRI values 

  
To further verify the capability of DSF in potentiating chemotherapy, ovarian cancer cell lines 

were treated with traditional anti-tumor agents Cisplatin and Paclitaxel or their combination in 

conjunction with or without DSF. Cisplatin (original IC50), and Paclitaxel (original IC50), DSF 

(original IC50) were determined firstly from MTT assay for each of the cell lines. According to 

DRI in the quantitative combination measurement, “reduced IC50” for each drug could be 

calculated as well, which means that “reduced IC50” of Cisplatin or Paclitaxel could reach the 

same cytotoxic effect once combined with DSF.  

 

Series of concentrations for single drug and drug combinations were chosen for testing the cells. 

Cisplatin (original IC50), Cisplatin (reduced IC50), Paclitaxel (original IC50), Paclitaxel (reduced 

IC50), Cisplatin (original IC50) + Paclitaxel (original IC50), Cisplatin (reduced IC50) + Paclitaxel 

(reduced IC50), as well as all the single drug or two drug combinations in conjunction with DSF-

IC50. All the samples were treated in 96-well plates in an incubator for 72 h, and then MTT assay 

was performed. Untreated control groups were included in all experiments. 
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5 Results 
 
5.1 Disulfiram exhibits dose-dependent cytotoxicity in ovarian cancer cell lines 
 

Initially, the cytotoxic effect of DSF on three ovarian cancer cell lines was examined using MTT 

assay in order to determine the IC50 of cytotoxicity for each cell line. As shown in Figure 3, the 

proliferation of cells was significantly inhibited after exposure to concentrations of DSF between 

0.001 µM to 100 µM for 72 h. A dose-dependent cytotoxicity was observed in all three ovarian 

cancer cell lines. DSF showed linear higher cytotoxicity with increasing concentration of the 

drug in SKOV3 cell line, and biphasic cytotoxicity in IGROV1 and SKOV3IP1 cell lines, with 

the relative viability of cells increasing slightly at 10 µM DSF. 

IC50 values for these three cell lines were calculated:  

 IC50-IGROV1: 2.01 ± 0.11 µM;  

 IC50-SKOV3:  0.19 ± 0.09 µM;  

 IC50-SKOV3IP1: 10 ± 2:48 µM. 

 

 
 
Figure 3: Disulfiram displays dose-dependent cytotoxic effects on ovarian cancer cell lines.  
The ovarian cancer cell lines were exposed to different concentrations of DSF from 0.001 µM to 
100 µM for 72 h followed by MTT assay. One representative of three independent experiments is 
shown. 
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5.2 Disulfiram exhibits time-dependent cytotoxicity in ovarian cancer cell lines 
 
We next examined the relationship of time and apoptosis induced by DSF in a time course 

experiment. The cells were exposed to a certain concentration according to their IC50 (IGROV1 

and SKOV3IP1: DSF 1 µM; SKOV3: DSF 0.1 µM) for 4-72 h. Flow cytometric analysis with 

Annexin-V/PI dual staining was performed to determine the percentage of apoptotic cells. As 

shown in Figure 4, both early apoptosis (Annexin-V+/PI−, lower/right quadrant) and late 

apoptosis (Annexin-V+/PI+, upper/right quadrant) increased with longer time of treatment. The 

control cells which were cultured for 72 h without any drug treatment showed less apoptosis than 

drug-treated cells. Taken together, these results indicate that DSF itself is cytotoxic in a dose-

dependent and time-dependent manner around the concentration of their IC50 with some 

variation between the three investigated cell lines. 

  

 
 
Figure 4: Disulfiram displays time-dependent cytotoxic effects on ovarian cancer cell lines. 
Ovarian cancer cell lines were exposed to DSF for different duration of treatment time, followed 
by flow cytometric analysis with Annexin V/PI staining. Cells cultured for 72 h without drug 
treatment were used as control. One representative of three independent experiments is shown. 
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5.3 DSF/Cu2+ synergistically enhance cytotoxicity on ovarian cancer cell lines 
 
Cells were treated with DSF alone (concentration range from 0.001 µM to 100 µM), Cu2+ alone 

(1 µM), or DSF (concentration range from 0.001 µM to 100 µM) combined with Cu2+ (1 µM) in 

a 96-well plate and incubated for 72 h, followed by MTT assay. Cells without drug treatment 

were used as control. Each concentration was applied in triplicate. 

 

As shown in Figure 5A, DSF alone showed a significant cytotoxic effect on the three ovarian 

cancer cell lines as described above. Relative viability of the cells had a sharp decrease at a 

concentration of 1 µM DSF and all cells died at 100 µM DSF. When 1 µM of Cu2+ was added to 

the DSF, the cytotoxicity of DSF was significantly enhanced. Relative viability started to 

decrease even at 0.01 µM DSF and a sharp decrease was observed at 0.1 µM DSF when 

combined with 1 µM Cu2+. At a concentration of 1 µM DSF supplemented with 1 µM Cu2+, 

almost all the cells died. There was a rebound at 10 µM DSF alone in SKOV3IP1 cell line, and 

this “protective” effect at 10 µM was totally overcome when DSF was combined with copper, 

leaving all cells dead at this concentration. No cytotoxicity of Cu2+ alone was observed in 

ovarian cancer cell lines until the cells were treated with 100 µM Cu2+. The results indicated that 

although DSF alone had significant effects, the cytotoxicity of DSF was significantly enhanced 

in Cu2+ (1 µM)-supplemented medium in all ovarian cancer cell lines. 

 

We then tested the apoptosis of cells treated with DSF alone (1 µM), Cu2+ alone (1 µM), and 

DSF (1 µM)/ Cu2+ (1 µM). Cells were treated in 24-well plates and incubated for 72 h. Cells 

without treatment after 72 h incubation were used as control. Annexin V/PI assay was used to 

determine apoptosis of cells as described above. 

 

As shown in Figure 5B, both early apoptosis (Annexin V+/PI−, lower right quadrant) and late 

apoptosis (Annexin V+/PI+, upper right quadrant) as well as necrosis (Annexin V−/PI+, upper 

left quadrant) increased significantly with DSF/Cu2+ treatment compared to DSF alone in three 

ovarian cancer cell lines. 
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Figure 5: DSF/Cu2+ synergistically enhance the cytotoxicity on ovarian cancer cell lines. A). 
MTT assay. The ovarian cancer cell lines were exposed to different concentrations of DSF 
combined with 1 µM Cu2+ for 72 h. Relative viability (%) was expressed as a percentage relative 
to the untreated control cells. B). Annexin V/PI assay. Ovarian cancer cells were exposed to 1 
µM DSF alone, or 1 µM Cu2+ alone, or 1 µM DSF plus 1 µM Cu2+ for 72 h. Cells after 72 h 
culture without treatment were used as control. One representative of three independent 
experiments. 
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5.4 No significant cell cycle changes are induced by DSF/Cu2+ 
 
As the mechanisms of the cytotoxic effect of DSF with or without Cu2+ are still not fully 

understood, we first tested the damaging effect of DSF on DNA to see if DSF could affect the 

cell cycle and trigger cell death via apoptosis like other antitumor agents such as cisplatin. Cells 

were treated with subtoxic doses of DSF alone (0.01 µM) or Cu2+ alone (1 µM) or DSF (0.01 

µM) plus Cu2+ (1 µM) in 24-well plates for 72 h. Cells cultured for 72 h without any treatment 

were used as control. Analysis of cell cycle was performed using flow cytometric analysis of 

DNA staining as described in the methods section. 

 

As shown in Figure 6, G1 phase which represents the growth phase starts from the end of the 

previous M phase until the beginning of DNA synthesis. During this phase, cells grow by 

increasing their content of proteins and the number of organelles. After DSF/Cu2+ treatment, 

there was a slight decrease in G1 phase in the IGROV1 cell line (from 72.8% to 60.9%) and in 

the SKOV3 cell line (from 35.2% to 28%). However, there are almost no significant changes in 

DSF-treated groups in any cell lines. S phase is the DNA replication phase. During this phase, 

the amount of DNA in the cells is doubled. There was a slight increase in the SKOV3 cell line 

after DSF treatment (from 30.2% to 38.5%) and DSF/Cu2+ treatment (from 30.2% to 34.5%) as 

well as in the SKOV3IP1 cell line after DSF treatment (from 5.49% to 10.5%) and DSF/Cu2+ 

treatment (from 5.49% to 8.56%). For all other groups treated by DSF+/- Cu2+, there were almost 

no changes. G2 phase and M phase is a period of protein synthesis and the cellular mitosis phase. 

No significant change was observed in the G2/M phase. Results above indicated that DSF with 

or without Cu2+ had little effect on cell cycle. DSF did not play an important role in altering the 

cell cycle. 
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Figure 6: Flow cytometric analysis of cell cycle. Cells were treated with DSF alone or Cu2+ 
alone or DSF plus Cu2+ for 72 h. Cells without any drug treatment were used as control. The 
percentage of cells in each cell cycle phase was quantitated by FlowJo software. One 
representative of three independent experiments is shown. 
 
 
5.5 DSF inhibits the formation of spheroids 
 
Spheroid formation assay is a useful method to explore the role of CSCs because the spheroid 

culture model better imitates in vivo conditions for the spontaneous aggregation of cancer cells. 

Spheroid-derived cells have been proven to be enriched for CSC or cells with stem cell- related 

characteristics. Thus, spheroid formation assay has gained wide popularity in CSC research. 

Here, we used a spheroid formation assay to explore the effect of DSF on CSCs at the single cell 

level. 

 

Spheroid-derived cells were treated with 0.1 µM DSF or 1 µM Cu2+ or 0.1 µM DSF plus 1 µM 

Cu2+ in a 96-well ultra-low attachment plate (200 cells in 0.2 ml medium/well) for 7-10 days. 

Cells without drug treatment were used as control. Figure 7A shows an abundance of large 
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spheroids was formed by untreated control cells. The size and shape of the spheroids differed 

depending on the cell line. The spheroids were quite irregular and smaller in IGROV1 cell line 

than in the other two cell lines. The ability of ovarian cancer cells to form spheroids was reduced 

when exposed to DSF. Cells only aggregated, indicating reduced proliferative potential of stem 

cells. When DSF was combined with 1 µM Cu2+, only diffuse individual cells were observed in 

DSF/ Cu2+-treated samples and spheroid formation in all three cell lines was completely 

abolished. Figure 7B shows that the number of spheroids was significantly reduced from average 

71 to 0 in IGROV1, from average 16 to 0 in SKOV3, and from 38 to 0 in SKOV3IP1 when the 

cells were exposed to DSF or DSF/Cu2+ (P<0.01). Although the numbers of spheroids were 

slightly reduced in Cu2+-treated cells, there was no significant difference when compared to 

control cells. 

 



	
36	

 

 
Figure 7: Inhibitory effect of DSF/Cu2+ on spheroid formation in ovarian cancer cell lines.  
A) Cells were treated with 0.1 µM DSF or 1 µM Cu2+ or 0.1 µM DSF plus 1 µM Cu2+ in ultra-
low attachment 96-well plates for 7-10 days and photographed at 50-fold magnification. B) Cells 
were exposed to drugs for 10 days, and spheroids with ≥100 µm in diameter were counted, and 
their numbers per well (n=8) were plotted. One representative of three independent experiments 
is shown. 
 
 
5.6 DSF/Cu2+ inhibits clone formation of ovarian cancer cell lines 

The clonogenicity assay was used to detect if the tumor cells retained their reproductive 

stemness capacity after drug treatment. Here, we tested whether DSF could reduce the 

clonogenic capacity of the tumor cells. The effect of DSF on CSCs at the single cell level was 
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determined by the clone formation assay. A colony is defined as a cluster of at least 50 cells 

arising from a single cell that can be detected by microscopy. 

As shown in Figure 8, the colony-forming number in the Cu2+ (1 µM) treated group was 

decreased as compared to control cells which were not treated. This was caused by a slowed 

growth of surviving cells and resulted in small colonies that did not reach the counting threshold 

(50 cells per colony). The colony number was significantly more reduced by DSF (1 µM) 

treatment of cells with colony-forming units from around 700 in control to 200 in the SKOV3 

cell line and from around 1000 in control to 500 in the IGROV1 and SKOV3IP1 cell lines 

(P<0.05). The colony-forming ability of ovarian cancer cells was almost totally eradicated by 

treatment with DSF (1 µM) plus Cu2+ (1 µM) in SKOV3 and SKOV3IP1 cell lines. These results 

indicated that DSF was able to suppress clonogenicity of ovarian cancer cells, and that addition 

of Cu2+ increased the effect.      

 

 
Figure 8: Inhibitory effect of DSF/Cu2+ on clonogenicity in ovarian cancer cell lines. The 
cells exposed to 1 µM Cu2+ alone, or 1 µM DSF alone, or 1 µM DSF plus 1 µM Cu2+ for 24 h 
were cultured further in drug-free medium in six-well plates at a cell density of 2000 cells per 
well for 7-10 days. The colonies were counted microscopically. One representative of three 
independent experiments is shown. * P＜0.05.  ** P＜0.01  
 
 
5.7 DSF/Cu2+ inhibits ALDH activity  
 
As ALDHs are important for maintenance and differentiation of stem cells as well as normal 

development, and increased ALDH activity has been found to relate with stemness of CSCs as 
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well as chemotherapy resistance, we wanted to determine whether DSF or DSF/Cu2+ could 

inhibit the activity of the aldehyde dehydrogenase enzymes measured by ALDEFLUOR assay.  

 

Figure 9 shows that DSF with or without Cu2+ supplementation significantly reduced the 

proportion of ALDH+ cells detected by ALDEFLUOR assay (from 21.7% to 0.391% in 

IGROV1; from 8.4% to 0 in SKOV3; from 6.88% to 0.05% in SKOV3IP1), while Cu2+ alone did 

not affect the ALDH+ population. In comparison with control cells which had not been drug 

treated, the ALDH+ population in cultures with DSF (10 µM)/Cu2+ (1 µM) exposure was 

significantly reduced in ovarian cancer cell lines. It demonstrated that ALDH activity in ovarian 

cancer cells was inhibited not only by diethylaminobenzaldehyde (DEAB), a specific ALDH 

inhibitor, but also by DSF with or without Cu2+ supplementation. Moreover, the inhibitory effect 

by DSF was better than that of DEAB, while Cu2+ supplementation even enhanced this inhibitory 

effect compared to DSF alone. 

 
Figure 9: DSF/Cu2+ inhibits ALDH activity in ovarian cancer cell lines. Cells were incubated 
with DSF (10 µM), or Cu2+ (1 µM), or DSF (10 µM) plus Cu2+ (1 µM), as well as DEAB which 
was used to establish the baseline fluorescence and define ALDEFLUOR-positive cells (gated 
cell population). The inserted numbers in the frame represent the percentage of ALDH+ cells. 
One representative of three independent experiments is shown. 
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5.8 DSF/Cu2+ triggers the generation of ROS, and higher ROS is generated in 
ALDH+ cells 
 
ROS are involved in cancer development and metastasis via cancer-associated pathways. Agents 

that increase or decrease the ROS production could affect cancer treatment, leading to a 

preferential killing of cancer cells. Here, as DSF could inhibit ALDH activity which acts as a 

ROS scavenger, it is logical to investigate the underlying mechanism of DSF effect based on 

ROS production. 

 

Three ovarian cancer cell lines were exposed to Cu2+ (1 µM), or DSF (10 µM), or DSF (10 µM) / 

Cu2+ (1 µM), or DSF (100 µM), or DSF (100 µM) / Cu2+ (1 µM) for 30 min, followed by FACS-

based ROS assay analysis and relative mean fluorescence intensity was calculated and 

normalized to control. As shown in Figure 10A, DSF, with or without Cu2+ supplementation, 

significantly induced ROS activity in all three ovarian cancer cell lines. The relative ROS 

content after normalization to untreated control cells was increased by 19.4-fold in IGROV1 cell 

line, 2.98-fold in SKOV3 cell line and 2-fold in SKOV3IP1 cell line in groups treated with DSF 

10 µM versus the non-treated control group. More ROS was generated when the DSF 

concentration was increased from 10 µM to 100 µM. The relative ROS content after 

normalization to untreated control cells was significantly increased by 64.9-fold in IGROV1, 

99.4-fold in SKOV3 and 51.2-fold in SKOV3IP1 in groups treated with 100 µM DSF. With the 

same concentration of DSF, more ROS was induced by supplementation with Cu2+ (1 µM) as 

compared to DSF treatment alone. 

 

Next, ROS levels in ALDH+ cells and ALDH- cells after DSF treatment were compared to 

further investigate the effect on CSCs. Cells were treated with 10 µM DSF or 100 µM DSF 

immediately after cell sorting by ALDEFLUOR, followed by FACS analysis. As shown in 

Figure 10B, ALDH+ cells exhibited low basal levels of ROS due to higher levels of ALDH 

expression which is generally a ROS scavenger. However, there was even more ROS generated 

in ALDH+ cells after 10 µM DSF treatment than in ALDH- counterparts. When DSF 

concentration was increased to 100 µM, however, ROS levels decreased in ALDH+ cells.  
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Figure 10: DSF/Cu2+ triggers ROS generation in ovarian cancer cell lines.  A) Cancer cells 
were exposed to the indicated reagents and concentrations for 30 min followed by ROS assay. 
The dotted lines represent the untreated cells and the solid lines represent drug-treated cells, 
respectively. The relative ROS activity was calculated and normalized to untreated control cells. 
B) ALDH+ and ALDH- FACS-sorted cells from cell line SKOV3 were exposed to 10 µM DSF 
and 100 µM DSF. The relative ROS activity was gated. One representative of three independent 
experiments is shown. 
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5.9 DSF sensitizes cancer cells to cisplatin treatment 
 
Although cisplatin has been used widely to treat cancers, tumors may develop an acquired 

resistance to cisplatin. One mechanism for cisplatin resistance is insufficient amount of cisplatin 

reaching the targeted DNA [93], which suggests that cisplatin-resistant cells decrease membrane 

transport of cisplatin and enhance cytoplasmic detoxification by increasing levels of thiol-

containing species like glutathione (GSH) which has an important role in ROS elimination 

[94,95]. As DSF could react with thiol-containing molecules and decrease the level of GSH in 

cells [95], we investigated whether DSF could sensitize cancer cells to cisplatin treatment.  

 

Cells were treated with 1 µM DSF, or 1 µM cisplatin, or 5 µM cisplatin, or combinations of DSF 

and cisplatin for 72 h, followed by MTT assay. As shown in Figure 11A, exposure to either DSF 

alone (1 µM) or cisplatin alone (1 µM) for 72 h only slightly reduced cell viability (by less than 

10%), and exposure to cisplatin alone (5 µM) reduced the cell viability by less than 30%. 

However, a dramatic decrease of cell viability was induced by the drug combination with around 

50% decrease in the 1 µM DSF /1 µM cisplatin combination, and around 80% decrease in 1 µM 

DSF /5 µM cisplatin combination in both SKOV3IP1 and IGROV1 cell lines. 

We next examined the dose-response relationship for this potentiation by DSF. Different doses of 

DSF (0.3 µM, or 0.6 µM) were added to various concentrations of cisplatin (0.5 µM, 1 µM, 1.5 

µM or 2 µM). The results indicated that DSF sensitized cancer cells to cisplatin treatment even at 

lower doses of 0.3 µM, with decreased cell viability of around 20% in both SKOV3IP1 and 

IGROV1 cell lines. Increased potentiation to sensitize the cells to cisplatin was observed at the 

higher dose of DSF at 0.6 µM (Figure 11B). 
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Figure 11: DSF sensitizes ovarian cancer cells to cisplatin treatment. A) SKOV3IP1 and 
IGROV1 cells were treated with either cisplatin alone (1 µM, 5 µM) or DSF alone (1 µM) or the 
indicated combinations for 72 h. B) IGROV1 and SKOV3IP1 cells were treated with the 
indicated concentrations of cisplatin, DSF and their combinations for 72 h. Cellular viability was 
detected by MTT assay. DSF, Disulfiram; Cis, cisplatin. All data presented are representative of 
three independent experiments. 
 
 
5.10 DSF enhances cisplatin-induced cellular apoptosis 
 
To further determine whether DSF sensitizes cisplatin treatment and suppresses cellular viability 

related to cellular apoptosis, we quantified the apoptotic status of cells after DSF/cisplatin 

treatment. We used flow cytometry with Annexin-V/PI staining after cells had been treated with 

DSF alone (1 µM), cisplatin alone (5 µM), and DSF (1 µM)/ cisplatin (5 µM) for 72 h. Cells 

cultured for 72 h without drug treatment were used as controls. 
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As shown in Figure 12, in the SKOV3IP1 cell line, early apoptosis was increased from 0.462% 

in control cells to 5.87% in cisplatin-only-treated cells, late apoptosis increased from 5.14% to 

6.36%, and necrosis increased from 0.684% to 1.71%. However, a dramatic increase of cellular 

apoptosis and necrosis was induced when 1 µM DSF was combined with cisplatin, with early 

apoptosis, late apoptosis and necrosis increasing to 11.8%, 17.2%, and 4.88%, respectively. 

Similar results were observed in the IGROV1 cell line. Early apoptosis, late apoptosis and 

necrosis was increased from 25.3%, 21%, and 0.846% in cisplatin-only-treated cells to 35.7%, 

35.3% and 1.02%, respectively, in DSF plus cisplatin-treated cells. DSF only (1 µM) treatment 

did not induce significantly more cellular apoptosis and necrosis compared to control cells. 

These results indicated that DSF enhanced cisplatin-induced cellular apoptosis in ovarian cancer 

cell lines. 

 
 
 
Figure 12: DSF enhances cisplatin-induced cellular apoptosis. Flow cytometric analysis 
exhibited the cellular apoptotic status. SKOV3IP1 and IGROV1 were treated with cisplatin (5 
µM), DSF (1 µM) and their combination for 72 h. LL, LR, UR and UL are representative of live, 
early apoptotic, late apoptotic, and necrotic cells, separately. DSF, Disulfiram; Cis, cisplatin. All 
data presented are representative of three independent experiments. 
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5.11 Quantitative analysis of treatments with double and triple drug 
combination 
 
To analyze the interference of different drugs used in this study, we have used a quantitative 

method to determine synergism or antagonism in treatments with two and three drug 

combinations in vitro. This method quantitatively measures the dose-effect relationship of each 

drug alone and its combinations and determines whether or not a given drug combination would 

result in a synergistic effect. The computer software allows automated simulation of synergism 

and antagonism at all dose or effect levels. Based on this algorithm, the combination index (CI) 

was used for quantitative determination of drug interactions, where CI < 1, 1, and > 1 indicate 

synergism, additive effect, and antagonism, respectively. The dose-reduction index (DRI) value 

is a measure of how many fold the dose of each drug in a synergistic combination may be 

reduced at a given effect level when compared with the doses of each drug alone. 

 

 

The doses selected for each drug are described in the methods (see Table 1). All data were 

calculated by the CompuSyn program. The combination index (CI) and dose-reduction index 

(DRI) values at different effect levels are presented in Table 2 and Table 3. These values can be 

different at different effect levels. For the cisplatin and paclitaxel combination, there was a 

synergistic effect at broad effect level ranges from IC50 to IC90 in the IGROV1 cell line, while a 

slightly antagonistic effect was observed at IC90 level in the SKOV3IP1 cell line. However, 

cisplatin and DSF combination showed superior synergistic effects in both cell lines at broad 

effect level ranges from IC50 to IC90, and this combination effect was even stronger than cisplatin 

combined with paclitaxel. For paclitaxel and DSF combination, the effect was quite different in 

different cell lines. There was a synergistic effect in the SKOV3IP1 cell line, while an 

antagonistic effect was observed in IGROV1. Finally, the combination of three drugs continued 

to yield a stronger synergistic effect in the SKOV3IP1 cell line since each two-drug combination 

was synergistic. In IGROV1 cell line, desirable synergistic effects were shown in three drug 

combinations, although there was antagonism between paclitaxel and DSF. Furthermore, due to 

the synergistic effect, the doses of each drug may be reduced by up to hundred-fold while 

maintaining an equal antitumor efficacy once they were in combinations. The combination of 

three drugs continued to yield desirable synergistic effects, while as expected DRI tended to be 

higher with three-drug combination than that in two-drug combinations. 
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Table 2: double and triple drug combination effect at 50%, 75%, and 95% inhibition of 
SKOV3IP1 cell growth. 

A 
 

Drug 
Combination 

Combination Index  
at 

IC50 IC75 IC90 
Cis+Pac 0.104 0.267 3.170 
Cis+DSF 0.123 0.176 0.311 
Pac+DSF 1.021 0.048 0.004 

Cis+Pac+DSF 0.286 0.110 0.196 
 
 
B 
 
 
Drug Combination 

Dose-Reduction Index at 

IC50 IC75 IC90 

Cis+Pac                         Cis 
                             Pac 

51.06 
11.89 

4.02 
54.81 

0.32 
252.58 

Cis+DSF                       Cis 
                                      DSF 

11.74 
37.36 

4.80 
156.08 

1.97 
652.05 

Pac+DSF                       Pac 
                                      DSF 

1.05 
14.36 

29.81 
70.96 

845.61 
350.68 

Cis+Pac+DSF               Cis 
                                      Pac 
                                      DSF 

49.80 
11.60 

158.48 

5.39 
73.59 

175.17 

1 
466.87 
193.61 

 
 
A) Computer-simulated CI values for drug combinations at different levels of inhibition of 
SKOV3IP1 cell growth. B) Computer-simulated DRI values for drug combinations at different 
levels of inhibition of SKOV3IP1 cell growth. IC50, IC75, IC90 is the concentration required to 
inhibit cell growth by 50%, 75%, 90%, respectively. One representative of three independent 
experiments is shown. 
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Table 3: double and triple drug combination effect at 50%, 75%, and 95% inhibition of 
IGROV1 cell growth. 

A 
 

Drug 
Combination 

Combination Index  
at 

IC50 IC75 IC90 
Cis+Pac 0.42 0.36 0.36 
Cis+DSF 0.24 0.33 0.52 
Pac+DSF 2.99 24.49 202.63 

Cis+Pac+DSF 0.32 0.19 0.16 
 
 
B 
 
 
Drug Combination 
 

Dose-Reduction Index at 

IC50 IC75 IC90 

Cis+Pac                         Cis 
                                    Pac 

3.50 
7.38 

3.23 
18.88 

2.97 
48.29 

Cis+DSF                       Cis 
                                    DSF 

5.09 
25.38 

3.15 
57.17 

1.95 
128.76 

Pac+DSF                       Pac 
                                      DSF 

0.47 
1.12 

0.05 
0.17 

0.006 
0.02 

Cis+Pac+DSF               Cis 
                                      Pac 
                                      DSF 

5.28 
11.12 
26.30 

6.24 
36.49 

113.13 

7.38 
119.78 
486.71 

 
A) Computer-simulated CI values for drug combinations at different levels of inhibition of 
IGROV1 cell growth. B) Computer-simulated DRI values for drug combinations at different 
levels of inhibition of IGROV1 cell growth. IC50, IC75, IC90 is the concentration required to 
inhibit cell growth by 50%, 75%, 90%, respectively. One representative of three independent 
experiments is shown. 
 

 

5.12 Experiments to verify calculated DRI values 

To verify experimentally the DRI value in the combination effect calculated from double and 

triple drug combination data of the individual drug applications (Table 2, 3), the IC50 

concentration of each drug was chosen, and compared to the reduced IC50 for the same drug 

combined with DSF. Thereby the synergistic effect was experimentally proven. 

As shown in Figure 13A, for cell line SKOV3IP1, the IC50-cisplatin is at 22 µM; the IC50-paclitaxel is 

at 0.38 µM, and the combination of these two drugs at their original IC50 concentration without 
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DSF further increased cytotoxicity and reduced cellular viability by 20%. As shown in Table 2, 

the combination of cisplatin at a concentration of 0.4 µM, which is a reduction by 51.06-fold 

from 22 µM, with paclitaxel at 0.03 µM, which is a reduction by 11.89-fold from 0.38 µM, 

achieved the same cytotoxic effect with a cellular viability of around 50% (Figure 13A). In 

contrast, either cisplatin alone or paclitaxel alone at the reduced concentration by DRI 

calculation only slightly reduced the cellular viability. However, addition of DSF significantly 

enhanced the cytotoxicity of cisplatin and paclitaxel when IC50-DSF 20 µM was added. 

Importantly, the combination with DSF and low concentration of chemotherapeutic drugs 

reached almost the same cytotoxic effect of the original cisplatin + paclitaxel concentration 

without DSF (cell viability is around 20%). A similar effect was observed on cell line IGROV1 

(Figure 13B). Combination of cisplatin at 0.68 µM which is a reduction by 3.5-fold from 2.4 

µM, with paclitaxel at 0.06 µM which is a reduction by 7.4-fold from 0.46 µM induced the same 

cytotoxic effect as with cisplatin at 2.4 µM alone or paclitaxel at 0.46 µM alone. In conjunction 

with DSF-IC50 3 µM, the combination yielded synergistic interactions with the conventional anti-

tumor therapeutic drugs that had the strongest cytotoxic effect and reduced viability to 10%. This 

finding experimentally verified the previous observation that combination with DSF potentiates 

cytotoxicity, potentially improving a chemotherapeutic effect.  
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A 
 

 

B 

 
 
Figure 13: Experimental verification of calculated DRI values. SKOV3IP1 cells (A) and 
IGROV1 cells (B) were treated at indicated drug concentration or drug combination for 72 h. 
Cellular viability was detected by MTT assay. Untreated control cells were used as controls. One 
representative of three independent experiments is shown. 
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6 Discussion 
 
Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer-related death [1], 

despite the high remission rate reaching 80%, most of the patients develop recurrence [96]. In 

recent decades, increasing evidence suggests that CSCs which are quiescent and slow-cycling 

cell populations with permanent differentiation and proliferative capacities, strong 

tumorigenicity, and high invasive and migratory abilities might be responsible for recurrence and 

metastasis of cancer [97]. Therefore, identification of drugs targeting CSCs as adjuvant treatment 

is urgently needed to improve the outcomes of ovarian cancer therapy. 

 

The standard therapy in primary ovarian cancer is surgery followed by systemic chemotherapy 

with cisplatin plus paclitaxel. Unfortunately, ovarian cancer cells either intrinsically are or 

relatively rapidly become resistant to cisplatin-based chemotherapy, leading to relapse and 

therapeutic failure [1]. Another major problem besides cisplatin resistance is the greater toxicity 

of drug combinations. The main dose-limiting toxicity for cisplatin are nephrotoxicity, peripheral 

nerve toxicity and toxicity to the cochlea (inner ear toxicity) [97] due to the DNA damage 

induced by cisplatin. The dose-limiting toxicity of paclitaxel which binds to microtubules 

stabilizes them and suppresses normal cell division are hypersensitivity, neutropenia, and 

peripheral neuropathy [98,99]. Both drugs suppress cellular dynamics, leading to mitotic arrest 

and apoptosis in dividing cells. Their toxic effects are only partially overlapping. For enhanced 

treatment efficacy, efforts should be made to maximize cytotoxic effects of chemotherapeutic 

agents on tumor cells while minimizing their toxic effects on normal cells [100].  

 

This study confirmed that disulfiram itself exhibits dose-dependent and time-dependent 

cytotoxicity in ovarian cancer cells. Exogenous Cu2+ is not necessary for the mechanism of 

action of DSF. However, the cytotoxicity of DSF was significantly enhanced by addition of Cu2+ 

in ovarian cancer cell lines. It was found that Cu2+ plays an important role in the biological 

pathways in the human body by activating some critical proteins such as superoxide dismutase, 

tyrosinase and cytochrome oxidase [101]; and the concentration of Cu2+ in cancerous tissues, 

such as breast, prostate, lung, and brain, is significantly higher than that of the normal tissues 

[102]. This may help to enable selective treatment with DSF in cancer cells with enhancement of 

cytotoxicity by the higher level of Cu2+ concentrations in cancers while sparing normal tissues. 

One scenario could be that lipophilic DSF penetrates into cancer cells and reacts with 

intracellular Cu2+ to form the DSF/Cu2+ complex (diethyldithio-carbomate (DDC)-Cu2+) which is 
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more cytotoxic and induces cellular apoptosis [103]. Another scenario is that when exogenous 

Cu2+ is added into the medium, an instant and short-term action between DSF and Cu2+ happens, 

producing certain chemical species, such as ROS, which is toxic to cancer cells and causes 

instant cytotoxicity to cancer cells [104]. 

 

Next, we investigated the inhibitory effect of DSF on ALDH activity which is a well-accepted 

marker for CSCs. Elevated expression of ALDHs is not only related to enhanced tumorigenic 

and metastatic potential [105], but also related to chemotherapy resistance of cancer cells 

[106,107,108]. Landen Jr C.N. et al. have proven that ALDH+ ovarian cancer cells are resistant 

to a wide range of classical cytotoxic anticancer drugs. However, these cells can become 

resensitized to chemotherapy by ALDH silencing using nanoliposomal siRNA in ovarian cancer 

cell lines SKOV3TRip2 and A2780cp20 [105]. The current study demonstrated that DSF with or 

without Cu2+ supplementation significantly inhibited ALDH activity which is associated with 

many properties of ovarian cancer stem cells, such as spheroid formation, colony formation and 

chemotherapy resistance. Our present results also showed that DSF with or without Cu2+ 

significantly reduced the number of spheroids and reduced the clonogenic capacity of the tumor 

cells in all ovarian cancer cell lines investigated, indicating the inhibitory effect of DSF on CSCs 

on single cell level. 

 

DSF inhibited ALDH activity. Studies have shown that ALDH acts as a ROS scavenger [109], 

and has the potential to decrease oxidative stress. Thereby, ALDH may protect stem cells against 

oxidative stress. We were interested in investigating the ROS generation after DSF treatment in 

ovarian cancer cells. The results showed that DSF significantly increased intracellular ROS 

levels in a dose-dependent manner and typically triggered cellular apoptosis. DSF combined with 

Cu2+ further enhanced the generation of ROS with higher levels of intracellular ROS than DSF 

treatment alone. Our data demonstrate that ROS which contributes to a wide variety of cell and 

tissue injury may have a key role in DSF/Cu2+-induced cytotoxicity and apoptosis in ovarian 

cancer cell lines. DSF/Cu2+ inhibited ALDH activity which is generally a ROS scavenger, 

leading to a subsequent loss of ALDH-mediated protection against oxidative stress and finally 

triggering CSC apoptosis. Further, we compared the ROS levels in ALDH+ cells and ALDH- 

cells from SKOV3 cell line, and found that ROS levels are higher in ALDH- cells than ALDH+ 

cells. One explanation could be that ALDH- cancer cells need rapid growth, and have a higher 

demand for ATP due to metabolic processes, resulting in accumulation of intracellular ROS, 

while ALDH+ cells which display stem-like behaviors are quiescent and a slow-cycling cell 
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population with higher ALDH expression, thus enhanced ability to detoxify ROS. However, after 

DSF (10 µM) treatment, more ROS were generated in ALDH+ than in ALDH- cells due to the 

inhibition of ALDH which plays a significant role in cancer stem cells survival. When DSF 

concentration was increased to 100 µM, ROS levels decreased in ALDH+ cells. One explanation 

could be that ALDH+ cells were probably more vulnerable to DSF and were killed by this 

concentration.  

 

All results above provide strong evidence that DSF, which modulates ALDH activity and ROS 

generation, and is enhanced by the addition of Cu2+, could be a candidate as a novel adjuvant 

chemotherapeutic agent in ovarian cancer treatment. Moreover, DSF effectively suppressed 

ALDH activity and modulated ROS generation, leading us to conclude that DSF could combine 

with other conventional chemotherapy agents. To establish a new protocol designed to exploit 

both complementary and additive or synergistic effect, cytotoxicity of cisplatin and DSF 

combination was tested. We assessed the potential capability of DSF to combine with other 

chemotherapeutic agents in ovarian cancer treatment. We found that DSF could sensitize 

cisplatin treatment to cancer cells even at lower doses (0.3 µM), and significantly enhanced 

cisplatin-induced apoptosis in the cell lines investigated. Also, increased potentiation to sensitize 

cells to cisplatin treatment was observed at the higher dose of DSF at 0.6 µM. Flow cytometry 

results showed that early apoptosis, late apoptosis, and necrosis were all increased dramatically 

when cells were treated with DSF/cisplatin combination. These results indicated that DSF 

sensitizes cells to cisplatin treatment and suppresses cellular viability by inducing apoptosis in 

the cell lines investigated. Due to its chemo-sensitizing effects, DSF is very promising when 

used in combination with cisplatin-based chemotherapy to improve the therapeutic outcome. 

This is in agreement with the study of Wantong Song et al. study [93]. The fact that DSF 

modifies intracellular sulfhydryl groups could be one of the explanations. Most cisplatin-

resistant tumor cells have increased intracellular sulfhydryl levels (mostly GSH). 75% to 80% of 

the activated platinum drugs are sequestered by the abundant GSH in cytoplasm, preventing 

cisplatin binding to DNA [110]. However, when DSF is combined with cisplatin, reduced GSH 

will react with DSF, the effectiveness of cisplatin is consequently improved [93]. 

 

Further, quantitative assessment of DSF combinations with cisplatin and paclitaxel was done in 

this study. The results showed that cisplatin and DSF combination yielded superior synergistic 

effects in the cell lines investigated at broad effect level ranges from IC50 to IC90, and this 

synergistic effect was even stronger than cisplatin/paclitaxel combination. The effect of 



	
52	

paclitaxel/DSF combination, the effect was different in different cell lines. There was a 

synergistic effect in the SKOV3IP1 cell line, while in the IGROV1 cell line, the effect was 

antagonistic. Finally, the combination of three drugs continued to yield a superior synergistic 

effect in the SKOV3IP1 cell line as each of the two drugs was synergistic. In the IGROV1 cell 

line, desirable synergistic effects were shown in three drug combinations, although there was 

antagonism between paclitaxel and DSF. This DSF synergistic effect in multiple drug 

combinations may provide lots of therapeutic benefits in clinical treatment regimens against 

ovarian cancers. Firstly, it could increase or at least maintain the same efficacy but decrease the 

doses of each drug to reduce toxicity [91]. In our verification experiments, we found that relative 

cellular viability was around 20% when cells were treated with 22 µM cisplatin and 0.38 µM 

paclitaxel in the SKOV3IP1 cell line. However, in the presence of DSF, very low concentration 

of cisplatin at 0.4 µM which is a reduction by 51.06-fold from 22 µM, with paclitaxel at 0.03 µM 

which is a reduction by 11.89-fold from 0.38 µM reached almost the same cytotoxic effect as the 

original cisplatin + paclitaxel concentration without DSF. Similar results were observed in the 

IGROV1 cell line. Secondly, for cisplatin-resistant patients, DSF may increase the therapeutic 

efficacy by sensitizing cancer cells to cisplatin treatment [110]. Thirdly, it could minimize or 

slow down the development of drug resistance in patients. One explanation for this synergistic 

effect of DSF combined with cisplatin could be that DSF suppresses the outgrowth of the 

ALDH+ population which are therapy-resistant CSCs populations, modulating ROS generation, 

while conventional anticancer agents such as cisplatin target the disulfiram-insensitive, ALDH- 

population by modulating cell cycle or by other mechanisms. The result of the combination is 

that more cellular apoptosis is induced due to interaction of drugs exerting different toxic 

mechanisms. 

 

In conclusion, although the cisplatin/paclitaxel combination has brought some benefits for 

ovarian cancer treatment, this regimen fails in many ovarian cancer patients due to the 

development of resistance to chemotherapy. In this in vitro model study, our findings support 

that DSF, which has a strong anti-tumor effect, inhibits ALDH activity, modulates ROS 

generation, and could be used as potential chemo-sensitizing agent to enhance the treatment 

efficacy of ovarian cancer cell lines. Due to its synergistic effect in combinations, the 

concentration of each chemotherapeutic agent may be reduced, thereby reducing the toxicity to 

normal tissues, while maintaining efficacy. Our present quantitative data analyses also provide 

evidence and strategies for a potential protocol design in clinical studies in the future. However, 

mechanisms of this synergistic effect still need further investigation, and more experiments are 
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also needed to further explore the effect of DSF on tissues from patients. For clinical trials, 

pharmacological limitations such as first-pass-effects have to be overcome. 
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