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Abstract

Clouds play a vital role in the Earth’s energy balance through their interaction with
radiation. Depending on the cloud properties the net effect on the climate can be
either cooling or warming. In order to assess the role of clouds in a changing climate
long-term measurement of clouds on a global scale are necessary. Satellite remote
sensing meets the requirements to deliver such data sets, resulting in long term
climate data records including more than 30 years of satellite measurements.
In this work the O2 A band technique for the retrieval of cloud properties will be
studied in regard to the vertical extinction profile of clouds. Therefore, a sensitiv-
ity study is performed, which focuses on the influence of cloud vertical extinction
profiles towards the satellite measured signal. A parametrization of the vertical
profile, decomposed into extent and distribution of cloud optical depth (mode), is
introduced, leading to a measurement algorithm with four retrievable parameters:
cloud top pressure/height, cloud optical depth, cloud vertical extent and distribution
of cloud optical depth/mode.
The signal sensitivity is, for both newly introduced parameters, of a similar mag-
nitude as for the cloud top height. However, the analysis of degree of freedom
demonstrates that a simultaneous retrieval of all four variables is not feasible.
Further, a preprocessor to the cloud property retrieval is developed with the purpose
to support the retrieval through better a priori knowledge of the measurement.
Therefore, the texture of an imager pixel and its vicinity is analysed using the
grey-level co-occurrence method. In a second step the derived textural features
are utilized in a random forest classifier to assign a class, which is either based on
classical cloud types or discrete groups of cloud vertical extent or mode.
On top of that, the newly developed cloud property retrieval was evaluated with the
help of cloud radar measurements in the form of a case study. Special focus was
on the quality of the retrieved cloud parameters under differing restraints for the
retrieval. The impact of a priori known cloud top heights was compared to cases
of no a priori knowledge and a retrieval with non-variable cloud vertical extinction
profile. Here, the technique shows promising results for the retrieval of cloud vertical
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extinction profiles, when the cloud top height is known from the start.
Also, a validation study regarding the top of atmosphere flux retrieval included in
CC4CL against CERES measurements was performed, showing the impact of differing
cloud properties on the retrieved fluxes.
Overall, this work studies the significant impact of vertical extinction profiles on the
retrieval of cloud top heights as well as the possibility of a derivation of said profiles
through passive remote sensing instruments.
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Zusammenfassung

Wolken spielen, durch ihre Interaktion mit Strahlung, eine wichtige Rolle in der
Energiebalance der Erde. Ob der Effekt von Wolken auf das Klima kühlend oder
wärmend ist, hängt dabei von den jeweiligen Wolkeneigenschaften ab. Um die
Auswirkungen von Wolken im Klimawandel zu beurteilen sind globale, Langzeitmes-
sungen notwendig. Die Satellitenfernerkundung ist in der Lage diese Zeitreihen
zu liefern, was bereits zu Klimadatensätzen geführt hat die mehr als 30 Jahre an
Satellitenmessungen beinhalten.
In dieser Arbeit wird die Methode zur Ableitung von Wolkeneigenschaften mithilfe
der O2 A Bande untersucht, vor allem hinsichtlich des Einflusses des vertikalen
Extinktionsprofils der Wolke.
Dafür wird zunächst eine Sensitivitätsstudie durchgeführt, die speziell den Einfluss
der vertikalen Verteilung der Wolke hinsichtlich des Messsignals am Oberrand der
Atmosphäre untersucht. Das Vertikale Profil wird dafür parametrisiert dargestellt
durch die vertikale Ausdehnung der Wolke und die Verteilung der optischen Dicke.
Zeitgleich wird ein neues Ableitungsverfahren eingeführt, das im Gegensatz zum
Klassischen O2 A Band verfahren vier Parameter bestimmt: den Wolkenoberkanten-
druck, die optische Dicke, die vertikale Ausdehnung und die Verteilung der optischen
Dicke dargestellt durch die Mode.
Hierbei zeigt sich, dass die Sensitivität des Signals zu den neu eingeführten Pa-
rametern eine ähnliche Größenordnung aufweist wie zum Wolkenoberkantendruck.
Jedoch zeigt die Untersuchung der Freiheitsgrade, dass nicht alle vier Variablen mit
dieser Methode gleichzeitig bestimmt werden können.
Außerdem wurde ein Präprozessor entwickelt, der das neue Ableiteverfahren mit
besseren a priori Wissen über die Messung unterstützen soll. Dafür wird für
jeden Messpunkt und seine direkte Umgebung eine Texturanalyse mithilfe der
Grauwertematrix-Methode durchgeführt. Die somit erhaltenen Textureigenschaften
dienen als Eingabe für einen "Random-Forest" Klassifikator, der jeder Messung eine
Klasse zuweist, die entweder auf klassischen Wolkentypen basiert oder durch diskrete
Werte von vertikaler Ausdehnung oder Mode gegeben ist.
In einem nächsten Schritt wird das neue Ableiteverfahren für Wolkeneigenschaften
unter Zuhilfenahme von Messungen eines satellitenbasierten Wolkenradars evaluiert.
Vor allem wird hierbei das Augenmerk auf die Qualität der abgeleiteten Wolkenpa-
rameter für verschiedene Einschränkungen des Verfahrens gerichtet. Dafür wird zum
einen die Höhe der Wolkenoberkante durch das a priori Wissen als bekannt voraus-
gesetzt, zum anderen wird das Verfahren mit nur zwei veränderlichen Parametern
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durchgeführt, indem die Variabilität des vertikalen Profils entfernt wird. Als dritte
Variante wird das Ableiteverfahren ohne Einschränkungen und Vorwissen durchge-
führt. Die Ableitung des vertikalen Extinktionsprofils zeigt dabei vielversprechende
Ergebnisse falls die Wolkenoberkantenhöhe vorher bereits bekannt ist.
Außerdem werden die Strahlungsflüsse, die durch das Verfahren von CC4CL hergeleitet
werden, am Oberrand der Atmosphäre mit CERES Messungen validiert. Dabei wird
der Einfluss von unterschiedlichen Wolkenprodukten auf die Ableitung von globalen
Strahlungsflüssen verdeutlicht.
Insgesamt handelt diese Arbeit von dem Einfluss vertikaler Wolkenextinktionsprofile
auf die Ableitung von Wolkenoberkantendrücken, verbunden mit der Untersuchung
nach einer Ableitung jener Profile mit Satellitenfernerkundungsmessungen.

x



Contents

1 Introduction 1

1.1 Earth’s Energy Budget . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Representation of Clouds in Climate Models . . . . . . . . . . . . . . 3

1.3 Climate Data Records . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Fundamentals 9

2.1 Satellite Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 MODIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Cloud Profiling Radar . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 CALIOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 AATSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 MERIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.6 OLCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Radiative Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Mie-Theory and Cloud properties . . . . . . . . . . . . . . . . . . . . 15

2.4 Radiative Transfer Model . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 O2 A Band retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Sensitivity Study 27

3.1 Parametrization of Vertical Extinction Profile . . . . . . . . . . . . . . 27

3.2 Jacobian and Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Radiative Transfer Simulation . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Central Wavelength of the Instrumental Channels . . . . . . . . . . . 32

3.5 Cloud Vertical Extinction Profile . . . . . . . . . . . . . . . . . . . . . 36

3.6 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Central Wavelength and Cloud Top Pressure . . . . . . . . . . 42

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



4 Classification of Clouds based on Texture Analysis 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Grey-Level Co-Occurrence Matrix . . . . . . . . . . . . . . . . 49

4.2.2 Random Forest Classification . . . . . . . . . . . . . . . . . . 50

4.3 Data Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Window Size and Resolution . . . . . . . . . . . . . . . . . . 54

4.4.2 Maximum Number of Grey-Levels . . . . . . . . . . . . . . . . 56

4.4.3 Inter-Pixel Distance . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.4 Importance of Texture Features . . . . . . . . . . . . . . . . . 58

4.4.5 Classification into Cloud Types . . . . . . . . . . . . . . . . . 59

4.4.6 Estimating Cloud Vertical Extinction Profile . . . . . . . . . . 60

4.5 Impact of Surface Types . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Intercomparison of Cloud Property Retrievals and Evaluation of an
OLCI Prototype Algorithm 71

5.1 Cloud Top Pressure Retrieval . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Validation of FAME-C . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Validation of Cloud Fraction . . . . . . . . . . . . . . . . . . . 74

5.2.2 Validation of Cloud Top Height . . . . . . . . . . . . . . . . . 75

5.3 Evaluation of OLCI Cloud Retrieval . . . . . . . . . . . . . . . . . . . 78

5.3.1 Qualitative Analysis of OLCI Cloud Properties . . . . . . . . . 79

5.3.2 Points of Non-Convergence . . . . . . . . . . . . . . . . . . . 85

5.3.3 Quantitative Evaluation of Cloud Properties . . . . . . . . . . 86

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Validation of CC4CL Top of Atmosphere Fluxes 93

6.1 CERES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 CC4CL & BUGSrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Point Spread Function . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Shortwave and Longwave TOA Annual Means . . . . . . . . . . . . . 96

6.5 TOA Instantaneous Shortwave and Longwave Fluxes . . . . . . . . . 100

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Summary & Outlook 105

A Appendix 109

xii



Bibliography 117

List of Figures 131

List of Tables 139

Danksagung 141

xiii





1Introduction

„Warming of the climate system is unequivocal, and since the
1950s, many of the observed changes are unprecedented
over decades to millennia. The atmosphere and ocean have
warmed, the amounts of snow and ice have diminished, sea
level has risen, and the concentrations of greenhouse gases
have increased.

— IPCC 2013
(Summary for Policy Makers)

The warming of Earth’s atmosphere, due to rise in anthropogenic greenhouse gases,
has various effects which can not be ignored. Changes in weather systems can lead
to the destruction of ecosystems, coupled with extinction of animal and plant species.
Regional food and water shortages and natural disasters are possible outcomes.
In the last decades monitoring climate change and understanding the driving fac-
tors has become one of the most important tasks for earth observation scientist
worldwide.

1.1 Earth’s Energy Budget

Ideally, the Earth is in an equilibrium of incoming and outgoing radiation and
connected with it thermal energy. When this equilibrium is disturbed by human
actions, less energy is emitted from Earth than is incoming from the sun, causing a
warming of the coupled earth-atmosphere-system. In the last decades, satellite based
instruments Earth Radiation Budget Experiment (ERBE, Barkstrom et al. (1990)),
Scanning Radiometer for Radiation Balance (ScaRab, Kandel et al. (1998)) and
Clouds and the Earth’s Radiant Energy System (CERES, Wielicki et al. (1996)) moni-
tored the Earth’s energy budget, increasing the knowledge about the driving forces
of climate. A recent study by Stephens et al. (2012) determined the annual mean
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Fig. 1.1.: Global annual mean energy budget of Earth for the years 2000-2010. All fluxes
are in W/m2 (Stephens et al., 2012).

global imbalance of the energy budget, based on the years 2000-2010, to be at
(0.6± 0.4)W/m2, which was inferred from ocean heat content (OHC) information.
That means, on average 0.6W/m2 more radiative energy enters the Earth’s system
than is emitted. The detailed radiative fluxes are presented in figure 1.1. The
imbalance is constructed of the total incoming solar radiation (340.2W/m2) minus
the reflected solar (100W/m2) and the outgoing longwave radiation (239.7W/m2).
The total uncertainty of satellite measured top of atmosphere (TOA) fluxes is around
±4W/m2, which mainly is a result from calibration errors of the associated instru-
ments and is nearly 10 times the magnitude of the imbalance from OHC.
Clouds play an important role for the energy balance of the Earth. They cover around
70% of the globe at all times (Stubenrauch et al. (2013): 68%; Wylie et al. (2005):
75%) and impact transport of heat in the atmosphere and ocean as well as being a
major part in the earth’s hydrological cycle trough condensation and precipitation
of water vapour. Due to their high reflectivity in the visible spectrum, they are
responsible for 47.5W/m2 (or 47.5%) of the directly reflected shortwave radiation,
which is called the cloud albedo effect. However, clouds also trap longwave radiation
in the atmosphere, which is their greenhouse effect with a mean annual magnitude
of 26.7W/m2. The greenhouse effect is determined through difference between the
outgoing radiation without clouds (clear-sky) and the outgoing radiation in the
presence of clouds (all-sky). In total, clouds are estimated to reduce the Earth’s
energy budget by −21.1W/m2 and thus have a cooling effect on the Earth’s system.
This is called the cloud radiative forcing (CRF) or cloud radiative effect (CRE). The
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CRF of each individual cloud is dependent on its properties. Optical properties of a
cloud are generally described by the following parameters:

• cloud top and bottom heights/pressure/temperature

• cloud optical thickness

• cloud liquid/ice water path

• cloud droplet effective radius

• cloud thermodynamic phase

• cloud fraction/cover

Regarding the global radiation budget, high and optically thin clouds have a warming
effect on the atmosphere. Clouds emit radiation as a black body, i.e. the emitted
energy is dependent on the temperature of the cloud. Thermal radiation from the
surface is absorbed by clouds and due to their low temperature high clouds re-emit
less thermal radiation into space. Low clouds on the other hand have a temperature
closer to the surface temperature and therefore posses a similar thermal emission
as the surface. Additionally, low clouds often have a higher optical depth, which is
the decisive property for the amount of reflected shortwave radiation. Ramanathan
et al. (1989) used ERBE measurements and found, that the CRF can reach values
of 50− 100W/m2 in regions with extensive cirrus clouds. Additionally, their study
showed that the cloud radiative effect can exceed−100W/m2 in the mid-latitudes for
regions with deep convective clouds and extensive stratus decks. Hence, longwave
radiative forcing is mainly determined by the cloud height, while the shortwave CRF
is a function of the ice- and water content of the clouds. It is still uncertain how
the changing climate affects the distribution and properties of clouds on a global
change.

1.2 Representation of Clouds in Climate Models

An important tool to understand and predict climate change are global climate
models (GCM). However, the representation of clouds and their processes in GCMs
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Fig. 1.2.: IPCC AR5: Global average radiative forcing estimates for 2011 relative to 1750.
The cloud adjustments due to aerosols form the largest uncertainty in the deter-
mined radiative forcing (IPCC, 2013).

are still a source for uncertainty. Usually, global climate model have a horizontal
spatial resolution of 100km, while clouds can vary considerably on a much smaller
scale. Thus, cloud processes cannot be resolved by those models and have to be
included by parametrizations. Gleckler et al. (1995) found, that the poor resolution
of clouds leads to inaccuracies in the poleward transport of heat in the ocean for
numerous climate models, i.e. the implementation of parametrizations is decisive
for the performance of the model. Here, the global coverage of cloud measurements
provided by satellites is vital for improving the representation of cloud processes in
models.
Another problem of clouds in models is the poor representation of vertical distribu-
tion. Passive satellite sensors only provide optical cloud properties as an integral over
the atmospheric column, but the vertical distribution of clouds and therefore radiant
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energy is important information for climate models. Since 2006, the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the CloudSat mis-
sion provide near global coverage of vertical profiles of clouds and aerosols. Taking
advantage of this unprecedented information, the vertical distribution of hydromete-
ors in models is evaluated in several studies (Stein et al. (2015), Bodas-Salcedo et al.
(2011), Naud et al. (2010)). Presently, both mission are far beyond their planned
lifetime of 22 months for CloudSat and 36 months for CALIPSO and are coming
to an end. Since February 2018 CloudSat is no longer operational, prohibiting the
availability of vertical profiles of the atmosphere from combined lidar and cloud
radar measurements. Therefore, it is of interest to develop techniques using the
numerous passive imagers orbiting Earth to retrieve vertically resolved climate data.

Another source for uncertainties in models is the interaction between clouds and
aerosols, known as the aerosol indirect effect. The aerosol indirect effect can be
separated into two contributors. The first aerosol indirect effect refers to the increase
of low level cloud albedo due to an increase of cloud droplet numbers coupled with
a decrease in droplet radii, caused by aerosol contamination providing an increased
number of condensation nuclei (Twomey, 1977). The second aerosol indirect effect
describes the change in precipitation characteristics caused by the increased cloud
droplet number and the accompanied change in liquid water path, cloud lifetime
and cloud cover (Albrecht, 1989). According to the Intergovernmental Panel on Cli-
mate Change (IPCC, 2013) the aerosol-cloud radiative forcing is the most uncertain
parameter when considering climate change, with a net effect of −0.55W/m2 and
an uncertainty ranging between −1.33W/m2 and 0W/m2 (see fig. 1.2).
Another, much discussed topic are feedback effects in global climate models. A
feedback effect is here defined as a change in an atmospheric parameter caused
by the increase in global mean surface temperature, which entails an amplification
or attenuation of said temperature change. For some climate variables the GCMs
agree in the sign of the feedback, whether positive or negative, e.g. for the increase
in water vapour due to rising global mean surface temperatures. Water vapour is
a greenhouse gas and rising concentrations in the atmosphere will have a positive
effect on Earth’s radiation budget, i.e. increase in the rate of warming. Similarly, the
shrinking of Earth’s cryosphere leads to less reflected shortwave radiation, further
increasing the temperatures. The impact of other atmospheric properties on the
global mean temperature response, differs between GCMs. The temperature lapse
rate in the troposphere can have either a positive or negative feedback depending
on the vertical distribution of the atmospheric warming. For example, if the upper
levels of the troposphere experiences a stronger warming than the lower levels, the
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radiative feedback will be negative, since the emission of longwave radiation into
space will be more effective. Regarding clouds, the value of the feedback effect can
be either positive or negative depending on the caused changes in cloud properties
by an increase in global mean temperature, which are still uncertain. As mentioned
in section 1.1, an increase in global mean cloud height would lead to a positive
feedback, whereas an increase in mean cloud albedo contributes to negative ra-
diative forcing. Moreover, the magnitudes of the mentioned feedback effects show
large spreads in climate models, which was studied by Colman (2003). Therefore,
the feedback effects in several global circulations models were examined and the
standard deviation of some feedback effects was found to be at 120% (for the lapse
rate) of the mean feedback value, including changes in the sign for cloud and lapse
rate feedback.

1.3 Climate Data Records

Improvement of climate models is largely based on insights in atmospheric processes
gained by satellite measurements. Especially, sustained satellite observations are
important to find tendencies in data and constraint models with realistic feedback
mechanisms. To identify reliable climate trends the quality of the time-series has to
be consistent. Stability inside long-term satellite climate data records is the decisive
property, causing several challenges. On the one hand, single satellite data records
often only cover time spans of up to 10 years, which can be to short a period to
indentify climate trends. On the other hand, climate variable data sets from several
satellites have to overcome the difficulties of intercalibration, degradation of the
satellites over time, different orbit overpass times (including orbital drifts during the
satellite lifetimes) and spatial resolutions as well as alternative retrieval techniques.
Several projects are working towards creation of such long-term climate data records.
International Satellite Cloud Climatology Project (ISCCP) started in 1983 with the
aim "to collect and analyze satellite radiance data to infer the global distribution
of cloud radiative properties in order to improve the modeling of cloud effects on
climate" (Rossow and Schiffer, 1999). ISCCP provides spatially averaged data on
various grid sizes (for clouds: 30km mapped pixel as well as 280km equal-area grid)
with 3-hourly or monthly temporal resolutions depending on the product.
The creation of long time series of essential climate variables (ECVs) is also the aim
of the European Space Agency’s Climate Change Initiative (ESA_CCI) (Hollmann
et al., 2013). For 13 out of 50 ECVs, defined by the Global Climate Observing System
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Fig. 1.3.: Time frames for the different satellite based instruments contributing to ESA’s
Cloud_CCI climate data record, from Stengel et al. (2017). The NOAA (AVHRR)
morning and afternoon satellite measurements are also collected in the PATMOS-x
dataset.

(GCOS), a project in the CCI framework exists, covering atmosphere, ocean and
land. The climate data record of Cloud_CCI includes 30 years (see fig. 1.3) of cloud
parameter retrievals, based on five different instruments mounted on several Earth
observing satellite generations. The Pathfinder Atmospheres-Extended (PATMOS-x,
Foster and Heidinger (2013)) is part of the climate data record of National Oceanic
and Atmospheric Administration (NOAA) and is a collection of the Advanced Very
High Resolution Radiometer (AVHRR) data sets concerning atmospheric parameters
(clouds and aerosols) starting in 1978. Those climate data records are an important
contribution to the understanding of the Earth’s climate, while providing large
amounts of data for instrument inter-comparison and evaluation exercises.

1.4 Thesis Outline

This thesis is dedicated towards the improvement of satellite remote sensing algo-
rithms for cloud property retrievals with the O2 A band method. This passive remote
sensing technique in the near infrared spectrum has shown to be sensitive towards
the assumed vertical profile of the cloud (Fischer and Grassl, 1991). Therefore, pro-
viding improved a priori knowledge of the retrieved atmospheric state can support
the determination of cloud properties significantly and will reduce uncertainties.
Moreover, previous work by Carbajal Henken et al. (2015) has shown that the cloud
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top height retrieved in the near infrared spectrum carries some information about
the vertical structure of clouds when compared to the cloud top height from infrared
measurements, caused by differing penetrations depths into the cloud. The approach
of this work will be based on two different principles. First, to improve cloud top
height retrievals by simultaneously retrieving a parametrized cloud vertical profile
by including additional spectral information into the known O2 A band cloud top
height retrieval, made possible by the increased number of spectral measurements
by the Ocean and Land Colour Instrument (OLCI).
Second, development of a preprocessing algorithm to support the retrieval with a
priori estimates about the profile of vertical extinction inside the cloud. Most of this
work was done within the framework of the ESA Cloud_CCI project.

In Chapter 2 the used instruments for the studies are presented, together with
the theoretical basis of radiative transport in the atmosphere. Also, the basics behind
the retrieval algorithm and the radiative transfer simulations are introduced.

In Chapter 3 the sensitivities of OLCI are analyzed. Main emphasis is the sen-
sitivity towards the vertical profile of the cloud and the amount of information that
is obtainable through measurements in the oxygen absorption band A. This study is
based solely on synthetic data from radiative transfer simulations.

In Chapter 4, the texture of clouds is studied regarding cloud classification pur-
poses. Cloud are classified into well-known cloud types as well as into classes based
on the vertical structure through a second order statistical analysis with the grey-
level co-occurrence matrix and a random forest classification algorithm.

The performance of the advanced cloud property retrieval for OLCI as well as
the established Freie Universität Berlin AATSR MERIS Clouds (FAME-C) algorithm
are evaluated with the help of data products from active instruments in chapter 5.

Chapter 6 presents the comparison of a top of the atmosphere radiative flux re-
trieval by Christensen et al. (2016) against fluxes retrieved by NASA’s CERES, for
instantaneous retrievals as well as annual global means.

Finally a summary and brief outlook for further research activities is given in chapter
7.
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2
Fundamentals

In this chapter the theoretical foundation of this thesis is presented. Each of the
following sections is important for more than one chapter. Specialized information
regarding a single part of this work will be introduced separately at the necessary
time.

2.1 Satellite Remote Sensing

Since the dawn of meteorological satellites, starting in 1961 with the first Television
and InfraRed Observation Satellite-1 (TIROS-1), the amount of Earth observing
weather satellites and thus the variance of remote sensing instruments has greatly
increased. Today, most national and international space agencies maintain various
satellite systems orbiting Earth for weather and climate applications, monitoring
land masses, ocean and atmosphere.
Earth observing satellites are usually categorized into two types based on their
respective orbits. Polar-orbiting satellites are on a low Earth orbit, i.e. the altitude
is below 1200km. They circle the Earth from north to south and vice versa and
achieve global coverage through Earth’s rotation. Often, the orbit is chosen to be
sun-synchronous, meaning the satellite crosses the equator when ascending (south
to north) and descending (north to south) at the same local time.
The second type are geostationary satellites on a high Earth orbit at approximately
35.786km, viewing the same region on the Earth at all times and providing important
insights into dynamic processes.
In the following, the remote sensing instruments on weather satellites employed in
this work are introduced. All of the utilized instruments are based on polar-orbiting
satellites.
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2.1.1 MODIS

One of the most known passive remote sensing instruments is the Moderate-Resolution
Imaging Spectroradiometer (MODIS) onboard NASA’s two earth-observing Satellites
Aqua and Terra. NASA’s Terra satellite was launched on December 18, 1999 and
two and a half year later on May 4, 2002 Aqua followed. Both satellites are on a
sun synchronous, near polar orbit at 705km height, from where MODIS with a ±55◦

scanning pattern covers a swath of 2330km. Terra has a descending orbit with equa-
tor crossing at 10:30 a.m. and Aqua an ascending orbit with a crossing time around
1:30 p.m. This leads to a global coverage in 1-2 days for each MODIS instrument.
Both instruments are essentially identical, featuring 36 spectral bands ranging from
0.4 − 14.4µm with a spatial resolution of either 250m, 500m or 1km, depending
on the spectral band. Based on the MODIS measurements NASA provides several
official data products including Earth system variables for land, water, cryosphere
and atmosphere in temporal resolution of instantaneous measurements as well as
daily and monthly averages.
While the MODIS Terra instrument provides the science community with important
climate measurements, the Aqua satellite is of special interest, because of its part in
the afternoon train (A-Train). The A-Train is a constellation of, at this moment, six
earth observing satellites (EOS) on the same orbital track. All satellites cover the
same ground track within seconds to minutes of each other with different measure-
ment principles, but overlap in the retrieved climate variables. Thus, allowing in
depth studies of Earth’s climate, synergy based products as well as validation studies
and comparison of different retrieval techniques for various properties of the Earth
system.

2.1.2 Cloud Profiling Radar

The Cloud profiling radar (CPR) on board the CloudSat satellite is one of the ac-
tive remote sensing instruments in the A-Train. CloudSat was launched on 28th
of April 2006 and joined the A-Train shortly after. The CPR was the first satellite-
based millimeter radar ever. It operates at a frequency of 94 − GHz with a nadir
viewing angle close to 0◦. With an integration time of 0.16sec the resolution is at
1.7km × 1.4km (along- × across-track) with a vertical resolution of 240m and a
minimum detectable signal of −30dBZ. The objective of the CloudSat mission is
to further the understanding of clouds and precipitation in order to improve their
representation in weather prediction and climate models (Stephens et al., 2002).
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Special focus is hereby on the vertical distribution of clouds, which is still a source
of uncertainty in those models.
The official CloudSat products are supported by MODIS and CALIOP measurements,
which can be found in detail in the respective process description and interface con-
trol document (PDICD) of each data set at http://www.cloudsat.cira.colostate.
edu/data-products/.

2.1.3 CALIOP

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
was launched together with CloudSat in 2006 and trails it with a few seconds of delay
in the A-Train. CALIPSO features a nadir viewing lidar measuring at 532nm and
1024nm: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). CALIOP
has a footprint size of 333m × 100m and a vertical resolution of 30m−60m. Similar
to CloudSat, CALIPSO’s advantage is to resolve the atmosphere vertically, whereby
the mission is more oriented towards aerosol, clouds and their interaction. The
LIDAR is more sensitive towards small optical depth, allowing the detection of
aerosol clouds, which are optically thinner than water clouds. The sensitivity comes
with the disadvantage of a saturated signal for higher optical depth which can be
caused by optically thick clouds, leading to no information for parts of the vertical
column.

2.1.4 AATSR

The Advanced Along-Track Scanning Radiometer (AATSR) on board of the Envi-
ronmental Satellite (ENVISAT) was designed to establish continuity of the Along
Track Scanning Radiometer (ATSR) 1 and 2 with measurements of the sea surface
temperature during the day and night. ENVISAT was operational far beyond its
nominal lifetime of 5 years, from 2002 until 2012. The secondary scientific objective
was to perform land observations, giving estimates of the state of vegetation. Further,
the thermal infrared channels at 10.85µm and 12µm as well as the visible channel at
665nm and the near infrared at 1.6µm are suited for the retrieval of cloud macro-
and micro physical properties.
The instruments was designed to have two near simultaneous viewing directions
through a conically scanning mirror, channeling radiation from the nadir and forward
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viewing apertures into the radiometer. The multi-viewing instrument was a design
choice, in order to remove atmospheric effects from the sea surface temperature
measurements. At nadir, the spatial resolution was approximately 1km × 1km and
the total swath width was 512 pixels.

2.1.5 MERIS

The Medium Resolution Imaging Spectrometer (MERIS) was a so called "push-broom"
radiometer on board of ENVISAT, measuring radiation in 15 spectral channels in
the visible and near infrared spectrum. It consisted of 5 cameras, spanning a field
of view of 68.5◦, which corresponds to a swath width of 1150km. The full spatial
resolution at nadir is dependant on the surface. For soundings over coastal zones and
land surfaces at 300m resolution is achieved, while the reduced resolution of 1.2km
(4x4 pixel binned) is generated continuously. Main objective for MERIS were ocean
colour observations, retrieving information about organic and inorganic materials
in the oceans. However, some spectral bands were chosen to be also viable for
atmospheric and land observations. Utilizing MERIS channels 10 (753.75nm) and
11 (760.625nm) enables the retrieval of cloud top height and cloud optical depth by
the O2 A band method.

2.1.6 OLCI

The Ocean and Land Colour Instrument (OLCI) is a push-broom imaging spectrom-
eter and the successor to MERIS. OLCI is flying on the European Space Agencie’s
(ESA) EOS Sentinel-3A since February 16, 2016 and was joined y Sentinel-3B with
OLCI-B on the 6th of April 2018 in the same orbit for the time of the commissioning
phase (around 4 month). The tandem configuration will enable calibration of the
B-units based on the already aquired knowledge from Sentinel-3A. OLCI consists of 5
identical cameras spanning a field of view of 68.5◦, which is tilted by 12◦ westwards
to reduce sun-glint over the ocean, leading to an effective swath of 1300km. OLCI
products are provided in a sub-satellite point spatial resolution of approximately
300m × 300m (FR) for land and coastal regions. If no charted land is in 300km
distance to the nominal swath, the products are provided in reduced resolution
mode (RR) of approximately 1.2km × 1.2km. Each OLCI camera is equipped with
an optical grating leading to 21 simultaneous spectral measurements in the visible
and near-infrared. The spectral bands are programmable in flight. All operational
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spectral band of OLCI-A are shown in table 2.1. While mainly designed as an ocean
colour and land sensor OLCI’s spectral bands allow remote sensing of Earths atmo-
sphere. For clouds parameter retrievals, the channels 12-15, situated at and in the
oxygen absorption band A (O2 A band), can be used.

2.2 Radiative Transfer Equation

The retrieval of atmospheric variables through satellite remote sensing is complicated
by signal contributions from differing sources, which are not easily separated. When
studying clouds the measurement is always contaminated by radiation reflected at
the surface, contributions from gaseous absorption and scattering in the atmosphere.
The measurement can not be directly related to the sought atmospheric state, making
a two-step approach necessary. Therefore, in a first step a suitable forward model is
used to simulate possible measurements and in a next step an inversion technique
is employed to find the best approximation of the real measurement from all the
prepared simulations. The applied forward model can be a radiative transfer model,
which is provided with all the necessary atmospheric parameters to simulate the
measurement.
In Order to simulate the radiative transfer with a satisfactory accuracy several
processes have to be considered. Incident light interacts with the particles in our
atmosphere, which can change the light. Comparing the incident towards the altered
light field can yield information about the kind of matter that took part in the
interaction. This process of light travelling through the atmosphere is described
by the radiative transfer equation (RTE). In this work, the presentation of the
RTE is limited to the 1-dimensional plane parallel atmosphere, which discards any
variation of the atmospheric state in the horizontal plane. Only vertical variations
are of importance in this model, which is a good approximation in most cases since
variations along the horizontal usually appear on a much larger scale than vertical
variations. Therefore, highly horizontally variable cloud fields like cumulus clouds
are not as well represented by the plane parallel assumption as others. Also, the
plane parallel atmosphere has no earth curvature, which only holds if the angle of
incoming radiation is far from 90◦ towards the zenith (Petty, 2006).
The plane parallel radiative transfer equation yields:

µ
∂I(µ, φ)
∂τ

= I(µ, φ)− J(µ, φ) (2.1)
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Band λ centre [nm] Width [nm] Function
Oa1 400 15 Aerosol correction, improved water con-

stituent retrieval
Oa2 412.5 10 Yellow substance and detrital pigments

(turbidity)
Oa3 442.5 10 Chl absorption max., biogeochemistry, veg-

etation
Oa4 490 10 High Chl, other pigments
Oa5 510 10 Chl, sediment, turbidity, red tide
Oa6 560 10 Chlorophyll reference (Chl minimum)
Oa7 620 10 Sediment loading
Oa8 665 10 Chl, sediment, yellow sub-

stance/vegetation
Oa9 673.75 7.5 For improved fluorescence retrieval and to

better account for smile together with the
bands 665 and 680 nm

Oa10 681.25 7.5 Chl fluorescence peak, red edge
Oa11 708.75 10 Chl fluorescence baseline, red edge transi-

tion
Oa12 753.75 7.5 O2 absorption/clouds, vegetation
Oa13 761.25 2.5 O2 absorption band/aerosol corr.
Oa14 764.375 3.75 Atmospheric correction
Oa15 767.5 2.5 O2A used for cloud top pressure, fluores-

cence over land
Oa16 778.75 15 Atmos. corr./aerosol corr.
Oa17 865 20 Atmos. corr./aerosol corr., clouds, pixel

co-registration
Oa18 885 10 Water vapour absorption reference band.
Oa19 900 10 Water vapour absorption/vegetation moni-

toring (max. reflectance)
Oa20 940 20 Water vapour absorption, atmos./aerosol

corr.
Oa21 1020 40 Atmos./aerosol corr.

Tab. 2.1.: Operational spectral bands of Sentinel-3A OLCI. Taken from https:
//sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/
overview/heritage/.
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with I(µ,Φ) being the scalar intensity of the radiation, without polarization. J(µ,Φ)
is the source function for scattering and emission and µ is given by cos(θ), θ being
the angle of incoming radiation. On the left side, the partial derivative of the
intensity I(µ,Φ) to the optical depth τ is formed. The optical depth, also called
optical thickness, is given by:

τ(z) =
∫ ∞
z

βe(z′)dz′ (2.2)

with βe as the volume extinction coefficient, which is defined as the sum of absorption
βa and scattering βs coefficients. The source function can be expressed as a part for
emission and one for scattering and is given by:

J(µ,Φ) = (1− ω)B(λ, T ) + ω

4π

∫ 2π

0

∫ 1

−1
P (µ, φ;µ′φ′)I(µ′φ′)dµ′dφ′. (2.3)

The single scattering albedo ω is given by the ratio of scattering- to extinction
coefficient.

ω = βs
βe

= βs
βs + βa

(2.4)

B is the temperature dependent emission of black body radiation given by the Planck
law as:

B(λ, T )dAdλ = 2πhc2

λ5
1

e( hc
λkT

) − 1
dAdλ (2.5)

and P (µ, φ;µ′φ′) is the phase function, which describes the angular redistribution of
light due to scattering. The phase function is normalized, meaning that in the case
of purely elastic scattering all light will be scattered into some angular direction.

2.3 Mie-Theory and Cloud properties

Clouds consist of concentrated liquid or solid water in form of droplets or crystals,
respectively. Light interaction with those particles can, for liquid cloud droplets, be
described by the Mie theory for scattering and absorption of light with spherical
particles. A full derivation of the Mie theory can be found in (Bohren and Nevitt,
1983). One, important result of the Mie theory is the phase matrix Pij(θ) describing
the wave scattering amplitudes as a function of the scattering angle θ between
incident and scattered light. The phase matrix is reduced to the so called phase
function, P (θ), when polarization is neglected. The form of P (θ) depends on the
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Fig. 2.1.: Scattering phase function for different size distributions for water clouds.

size of the scattering particle r and the wavelength λ of incident light, which is
combined to the size parameter χ.

χ ≡ 2πr
λ

(2.6)

The radius of the hydrometeor is usually between 1µm−50µm for liquid particles and
20µm− 2000µm for ice particles, whereby ice can occur in different shapes, where
the Mie-theory is no longer valid. All clouds are made up by a mixture of different
sized drops, described by the droplet size distribution n(r), which integrated over
all droplet radii gives the droplet number concentration N :

N =
∫ ∞

0
n(r)dr (2.7)

The droplet number concentration is restricted by the number of cloud condensation
nuclei (CCN) and the amount of available water vapour in the atmosphere. Aerosols
function as condensation nuclei, and the size distribution is largely given by the
amount and type of aerosols. If the amount of available water in the atmosphere
is constant, a pristine atmosphere, has smaller number of nuclei and therefore the
formed cloud droplets are larger. The higher the pollution of the atmosphere the
smaller the resulting cloud droplets will be.
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It is not feasible to treat a cloud analytically including each cloud droplet radius
in the calculations, i.e. compute a phase function for each particle size and each
wavelength of interest. However, it is common to describe a distribution by statistical
parameters like mean, variance or the moments of the function. According to Hansen
and Travis (1974) the particle size distribution can be described by an effective radius
reff given by:

reff =
∫∞

0 r3n(r)dr∫∞
0 r2n(r)dr , (2.8)

which is the ratio of the third moment to the second moment of the particle size
distribution. Using the effective radius, the optical depth of a liquid cloud can be
described by:

τ ≈ 3LWP

2ρlreff
. (2.9)

Here, LWP is the so called liquid water path and is the special case of the cloud water
path (CWP) for liquid phase clouds. The CWP measures the condensed water in the
atmospheric column and is given by:

CWP =
∫ ztop

zbase

ρw(z)dz =
∫ ∞

0

4π
3 n(r)ρlr3dr. (2.10)

Here, ρw(z) is the cloud water density or cloud water content and ρl is the density of
water ∼ 1000kg/m3. The optical depthτ of equation 2.9 can either be representative
for the complete cloud or only for a part of it, depending on the integral limits in
equation 2.10 and the related particle size distribution for the respective part of
the cloud. This means every cloud can be divided into N adjacent cloud layers,
not to be confused with multi-layer clouds, where the individual cloud layers are
separated by cloud free atmosphere. Each of the N cloud layers has it’s own particle
size distribution and liquid water content and therefore a specific optical depth τi.
The sum of all τi yields the total optical depth of the cloud:

τ =
N∑
i

τi. (2.11)

That goes to show, that the optical properties of a cloud don’t have to be uniform
throughout the cloud’s vertical extent and generally will vary strongly. In the
following, this vertical profile of cloud optical depth will be referred to as the vertical
extinction profile.
In figure 2.1 the phase function of liquid particles of different size distributions is
presented. The droplet size distribution is given by a gamma-Hansen distribution
(Hansen, 1971) and characterized by the effective radius reff . Water and ice clouds
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Fig. 2.2.: Schematic of adding and doubling in MOMO. Each original layer is divided in
2n elementary layers, which are than added to retrieve R, T and J. By applying
the adding method for each original layer the matrix operators for the complete
atmosphere are retrieved.

(not shown here), exhibit a strong forward peak at θ ≈ 0◦ and a smaller backward
peak at θ ≈ 180◦ in the phase function. Liquid particles also have the characteristic
primary and secondary rainbows, visible at 137◦ and 130◦, respectively. Clouds are
highly reflective in the visible spectrum making them appear white to the human eye.
This is caused by the imaginary part of the refractive index for water in this spectral
region being close to zero, i.e. most of the incident light is scattered and only a
small portion will be absorbed, which is in terms of the single scattering albedo (see
eq. 2.4) ω ≈ 1. In the near infrared spectrum ω < 1, meaning the absorption of
radiation from cloud particles can not to be neglected. For example at a wavelength
of λ = 1.7µm the single scattering albedo for liquid clouds is higher as for ice clouds
leading to distinctive differences in the intensity of reflected radiation because of
the higher absorption by ice clouds.
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2.4 Radiative Transfer Model

All radiative transfer simulations used in this work were performed by the Martix
operator model (Plass et al., 1973) (MOMO) by Fell and Fischer (2001). MOMO is a
monochromatic radiative transfer model assuming a 1-D plane parallel atmosphere
developed and constantly improved by the Institute for Space Sciences of the Freie
Universität Berlin. The radiative transfer calculations are vertically and angularly
resolved. MOMO is able to numerically solve the radiative transfer equation for
wavelength between 0.2nm− 100µm (Doppler et al., 2014a) and is able to account
for processes like Raman-scattering (Von Bismarck, 2016), polarization (Hollstein,
2013) and fluorescence. The method is based on the interaction principle stating, that
the outgoing light field at the boundary layer of a scattering, absorbing and emitting
medium is linearly related to the incident light and the radiation generated inside
the medium. For upward (-) and downward (+) facing radiation the interaction
principle gives:

L−0 = R01L
′+
0 + T10L

′−
1 + J−10 (2.12)

L+
0 = R10L

′−
1 + T01L

′+
0 + J+

01, (2.13)

where R, T and J are the reflection, transmission and source operators for the
medium with boundary optical depth τ0 and τ1. Incident radiation is denoted by a
prime. Each operator is given by a k × k Matrix, where k is given by the angular
resolution chosen for the simulations. Also, derived from the interaction principle is
the doubling and adding method. The doubling algorithm dictates how the reflection,
transmission and source operators are combined for two identical homogeneous
vertical layers. For MOMO an arbitrary number of vertical layer is defined for which
the radiative transfer is calculated. Every vertical layer can differ from its neighbours
but is in itself assumed to be homogeneous, i.e. the optical properties are constant
within each layer. Each individual layer is divided into 2n elementary layers, with τ
being small enough that multiple scattering can be neglected (see also figure 2.2).
Through the doubling algorithm the matrix operators for two adjacent elementary
layers is derived from the single layers properties. This step is repeated n-times,
resulting in Rn, Tn and Jn of the original layer. Afterwards the adding method is
applied to retrieve the combined matrix operators from two layers with arbitrary
optical properties. In the end the radiation field at each layer interface can be
computed. The matrix operator model has to treat the radiative transfer from the
bottom of the atmosphere, since for the radiation field at the boundary between two
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layers the up-welling radiance from the lower layer has to be known.
To simulate the radiation field several input parameters are necessary:

• The vertical profile of the atmosphere has to be known. This includes tem-
perature and pressure profile as well as gas and particle concentrations. The
vertical profiles can either be user defined or taken from the well-known stan-
dard atmospheres by McClatchey et al. (1972). In a pre-processing step, the
standard atmospheres are interpolated on the desired vertical resolution.

• The gaseous absorption in the atmosphere is provided by the Coefficient of Gas
Absorption (CGASA, Doppler et al. (2014a)) algorithm. CGASA uses the de-
fined vertical profile of the atmosphere and calculates the transmission spectra
in the desired wavelength regime. The basis is formed by the High-Resolution
Transmission molecular absorption database (HITRAN, Rothman et al. (2013)),
providing position of molecular absorption lines as well as the full-width at
half maximum and the amplitude. The transmission for each atmospheric level
is then calculated by fitting a Voigt line to each absorption line of HITRAN.
The water vapour continuum absorption is handled by the Mlawer, Tobin-
Clough, Keizys-Davies (MT-CKD, Mlawer et al. (2012)) coefficients. In order
to speed up the runtime of MOMO line-by-line simulations are avoided. The
k-distribution of the Institute for Space Sciences (KISS) (Bennartz and Fischer
(2000), Doppler et al. (2014b)) is used to perform radiative transfer simula-
tions for larger spectral intervals. In the case of line-by-line calculations each
spectral subinterval (of reasonable width, no change in optical properties in
the subinterval) has to be simulated individually. When using the uncorrelated
k-distribution through KISS the spectral dependent transmission coefficients
are sorted by the absorption strength and divided into the so called k-bins. The
absorption inside each k-bin are assumed to be the same and the number of
k-bins for the spectral interval depends on the targeted accuracy. The spectral
interval of the radiative transfer simulations can not be too large, since the
uncorrelated k-distribution assumes no interaction between the gases and
optically relevant and spectral dependent parameters. Therefore, the spectral
interval has to be chosen in a way that the solar irradiation and the surface
albedo can be assumed as constant.

• The phase function, single scattering albedo and normalized extinction coeffi-
cient of all scattering particles in the atmosphere has to be known. This can be
done using a Mie algorithm for spherical particles, resulting in the Rayleigh
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Fig. 2.3.: CGASA transmission calculations of the oxygen absorption band A.

scattering properties of the atmosphere as well as the optical characteristics of
water clouds.

The output of a MOMO simulation are the up- and downwelling radiances at each
layer boundary as well as at the top and bottom of the atmosphere. The output
is in terms of radiances for each calculated k-bin and a mapping function, which
is given by KISS, can be used to convert back into the wavelength representation.
MOMO can be used including the solar irradiance or not, leading to true radiances
or normalized radiances as a result. In this work, only normalized top of atmosphere
radiances are used.

2.5 O2 A Band retrieval

The application of remote sensing for the retrieval of the cloud top pressure was
already proposed by Hanel (1961) after the TIROS campaign sparked the interest of
scientists for satellite remote sensing. Hanel suggested to make use of a CO2 band at
2µm. In a response Yamamoto and Wark (1961) suggested the use of the O2 A band.
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As mentioned before, radiation interacts with the particles in different ways leading
to light containing the information about the atmospheric state. The O2 absorption
band A (see. figure 2.3) starting at λ ≈ 760nm and going to λ ≈ 775nm is a spectral
region where, due to interaction with oxygen, the remote sensing of cloud properties
is possible.
Oxygen, in molecular form, is a well mixed gas in the atmosphere, i.e. there are
almost no variations, vertically as well as horizontally, in the proportion of oxygen
in the air (20.9%). No other gases absorb in this spectral region, thus the radiance
measurements in the O2 A band are governed by the surface albedo and the total
airmass along the path sun-target-satellite. The amount of absorption by oxygen is a
good measure for the mean photon path length l and is therefore directly related
to the mean position in the atmosphere, where most of the radiation is reflected
in the direction of the measuring instrument. The retrieval principle for cloud top
pressure is a differential absorption technique, which makes use of the ratio between
at least one measurement inside the absorption band and one at a close wavelength,
without considerable atmospheric absorption. The absorbed radiance is reduced
as a function of the traversed air mass, given by the sun and viewing zenith angle
(sza/vza), while the window channel shows no dimming beyond scattering effects.
When the surface albedo is well-known or the cloud optical depth is high enough to
suppress surface influences the ratio between window and absorbing measurement

r = La
Lw

, (2.14)

can be indirectly related to a cloud top pressure. The ratio r is always r < 1 and
is a function of the viewing geometry, surface albedo and cloud properties. For a
non-reflective surface, r is smaller the lower the cloud is in the atmosphere, but
cloud properties create ambiguities in the retrieval. Cloud optical depth τ controls
the mixing between signal associated with the surface and cloud, while cloud vertical
extinction profile, consisting of cloud geometrical thickness and vertically resolved
cloud extinction, determines the penetration depth of radiation inside the cloud.
While the cloud optical depth can be retrieved with a good accuracy from the intensity
of the window channel alone, the retrieval of the vertical profile is problematic for
passive imagers, which as a result leads to larger uncertainties and errors in the
retrieved cloud top height. The O2 A band method was shown to be effective,
when retrieving low and optically thick clouds, where the variations on the vertical
extinction profile are potentially on a smaller scale as for high clouds. Sensitivity
studies of the MERIS cloud top pressure retrieval by Preusker and Lindstrot (2009)
showed, that the geometrical extent is the most important cloud property besides
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Fig. 2.4.: Schematic of photon path length extension due to in cloud multiple scattering.
The penetration depth determines the probability of multiple scattering taking
place

the cloud top pressure and the cloud optical depth for the top of atmosphere signal.
Further, the problematic case of multi-layer clouds was studied, yielding that this
method fails when more than one cloud layer is apparent. Only in cases where
one of the two cloud layers was optically very thin a satisfactory CTP was retrieved.
Airplane measurements by Lindstrot et al. (2006) using a LIDAR revealed that the
cloud top pressure of low level single-layer clouds over Germany could be retrieved
with MERIS O2 A band channels, with an accuracy of 24hPa and a systematic
bias of −22hPa. However, for optically thinner and geometrically thicker clouds
the retrieval tend to yield cloud top pressure inside the actual cloud. The cause
was found by Saiedy et al. (1967) to be multiple scattering inside the clouds. In
figure 2.4 the process is shown schematically. The cloud vertical extinction profile
determines the mean penetration depth of photons into the cloud. With deeper
penetration depths, the probability of multiple scattering rises and the photon path
length becomes larger than in the assumed single scattering event. In most retrievals
the cloud is either assumed to be vertically homogeneous or multiple scattering
inside the cloud is neglected. Theoretical studies have shown that the impact of
the cloud vertical profile is important when retrieving the CTP with the oxygen
A band method(Fischer and Grassl (1991), Rozanov and Kokhanovsky (2004)).
Other retrieval methods for the cloud top pressure exhibit different sensitivities.
Cloud radar and lidar are active instruments, which are employed for cloud property
retrievals. Those kind of instruments show a higher sensitivity to hydrometeors than
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passive remote sensing instruments. Therefore, already optically very thin parts of
clouds can be detected, leading to a retrieved cloud top height which is generally
higher than the retrieved by passive imagers. In addition, the signal from active
sensors contains more information enabling a direct derivation of the vertical profile
of clouds. Other common methods for the determination of cloud top height are
based on measurements in the spectral region of the thermal infrared, where the
penetration depth of radiation into the cloud is smaller than in the visible/near-
infrared spectrum. Thus, the sensitivity towards the vertical extinction profile of
those methods is smaller than the O2 A band methods sensitivity. On one hand this
reduces the information about the vertical structure contained in the signal, but on
the other hand knowledge about this vertical structure is not as necessary for an
accurate retrieval of the cloud top height. One drawback of those techniques are their
sensitivity towards the assumed vertical profile of atmospheric temperature, from
which the O2 method does not suffer. Those differences in the retrieval techniques
leads also to different understandings in the cloud top height. While for active sensor
the cloud top will be found at very small optical depths, thermal infrared based
techniques will place the top of the cloud generally lower, which is even more true
for the O2 A band method when the penetration depth is not taken into account.
The measured cloud top pressure is therefore an instrument specific CTP, where the
radiation has penetrated an optical depth τ inside the cloud, where τ depends on
the sensitivity of the instrument and the spectral region.

2.6 Inverse Problem

This section is based on description of inverse theory by Rodgers (2000) and for a
complete review of inverse problems in atmospheric soundings the source material
should be considered.
Scientific observations are an inverse problem, which describes the derivation of a
state ~x from a measurement ~y. In the terms of atmospheric remote sensing, one or
multiple atmospheric parameters are retrieved by measuring the electromagnetic ra-
diation. The function relating the state of the atmosphere towards the measurement
is called the forward model F (x):

~y = F (~x) + ε. (2.15)

ε denotes the measurement error, combining errors from the forward model, due to
approximations, systematic errors and random errors (signal noise). The forward
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model describes the process of the state leading to the measurement and in this case
it is given by the radiative transfer model and the measurement vector consists of
the combination of measured radiances and auxiliary data like viewing geometry,
surface albedo, surface pressure and others. The sensitivity of the measured signal
towards the state vector is given by the Jacobian also known as weighting function
matrix K.

K = ∂F (~x)
∂~x

(2.16)

K maps the state ~x onto the measurement ~y

~y = K~x+ ε (2.17)

and has the form m × n. When m < n the problem is under determined since
there are fewer measurements than unknown states. Problems with m > n are over
determined, having more measurements than unknowns. The aim is to find the
inverse mapping function, which relates the measurement to the state. Therefore,
the measurement is described by its probability density function (pdf) P (y), of
Gaussian form with mean ȳ and variance σ2

y , which is mapped by the inversion onto
the state space. Similarly, the state is defined by P (x) and the forward model maps
the state pdf into the measurement space. The error covariance matrix Sε can be
defined with the components:

Sij = ε[(yi − ȳi)(yj − ȳj)] (2.18)

with ε being the expected value operator. The diagonal elements of Sy contains
the variances of each measurement, while the off diagonal elements describe the
correlation between errors. The mapping in both direction between measurement
space and state space is ambiguous, i.e. a point in the measurement space can
originate from an entire area in the state space due to the measurement error. Also,
two different points in the state space can map to the same measurement by under-
determination of the problem. Since we made the change to a probability density
function we can apply Bayes’ theorem to derive the most likely ~x for the given ~y. The
sought quantity is the probability of x given y P (x|y). From the forward model we
know the pdf P (y|x) of ~y given an ~x and can make an estimate of the state before
the measurement is done, the so called prior state P (x). Bayes’ theorem gives us:

P (x|y) = P (y|x)P (x)
P (y) , (2.19)
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with P (y) being the prior knowledge of the measurement, which is in most cases
only necessary for normalization. Applying Bayes’ theorem for Gaussian pdfs yields
the cost function χ2:

χ2 = [~y −K~x]TS−ε 1[~y −K~x] + [~x− ~xa]TS−a 1[~x− ~xa], (2.20)

with index Sε denotes the measurement covariance matrix and xa and Sa are the a
priori state and its error covariance matrix respectively. This relation only holds, if the
environment of the state is linear. The aim is to minimize χ2,which in turn maximizes
P (x|y) and yields the state ~x, which most-likely belongs to the measurement ~y.
There are several ways to iterate through the states to reduce the cost function. In
this work the Gauss-Newton method is used.

xi+1 = xi + (S−1
a KT

i S
−1
ε Ki)−1[KT

i S
−1
ε (y − F (xi))− S−1

a (xi − xa)] (2.21)

Here, the iteration starts at point xi and is corrected by the second term in each step.
The iteration runs for a predefined number of steps or until a convergence criterium
is fulfilled. The method using the inverse theory to find the best state to a respective
measurement assisted by a priori knowledge is called optimal estimation.
The application of the forward, model for remote sensing, at each iteration step in
order to find the state corresponding to the measurement can be computationally
expensive depending on the employed radiative transfer model. Hence, the look
up table (LUT) approach is often applied. Here, a limited amount of simulations
is performed and all the results are saved in a multidimensional table. The ra-
diative transfer model is then replaced as forward model by an multidimensional
interpolation in the look up table.
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3A Sensitivity Study Regarding
Remote Sensing of Cloud
Properties using the Oxygen A
Band

The vertical structure of clouds can impact the retrieval of cloud top height and
cloud optical depth. Therefore, the impact of small changes in cloud parameters
towards the measured top of atmosphere signal (TOA) has to be considered. This
quantity is known as the sensitivity of the signal towards an input parameter. The
interaction of those cloud properties regarding the top of atmosphere signal can be
quite complex, but can be studied through radiative transfer simulations. In the
following study, OLCI’s sensitivities to changes in cloud properties are examined.

3.1 Parametrization of Vertical Extinction Profile

The retrieval in the O2 A band is based on the relation of mean photon path length
towards the cloud top pressure. However, the cloud top pressure is not the only
property influencing the path length. The amount of in-cloud scattering depends
on the vertical extinction profile, which can lead to a significant increase of mean
photon path length and therefore has to be considered in the framework of a cloud
top pressure retrieval.
A cloud property retrieval including an extinction profile with CloudSat like vertical
resolution is beyond the capabilities of the O2 A band. Therefore, a suitable sim-
plification of the vertical profile has to be found, which is a satisfactory reflection
of reality while describing the variations with few free variables. The conceived
parametrization in this work is given by two variables representing the geometrical
extent and the distribution of the cloud vertical extinction profile, which will be
called extent and mode/mode of optical depth. In figure 3.1 both parameters are
visualized. In this representation the extent is given by a real number ext = (0, 1]
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Fig. 3.1.: Visualization of cloud extent and cloud mode. The extent (red) is the relative part
of the atmosphere ranging from cloud top to surface covered by the cloud. The
mode (blue) is the relative coordinate of the maximal optical depth inside the
cloud, h denotes the height.

and characterizes the relative part between cloud top and surface occupied by the
cloud, i.e. ext ≈ 0 denotes an infinitely narrow cloud, while ext = 1 represents a
cloud ranging from the respective cloud top to the Earth’s surface. Similarly, the
mode represents the vertical position of maximal optical depth inside the cloud. It
is given by the relative position between cloud top and bottom (mode = [0, 1]) and
defines the applied beta probability distribution function for the distribution(βpdf ):

βpdf = xa−1(1− x)b−1

B(a, b) (3.1)

mode = a− 1
a+ b− 2 (3.2)

with B being the beta function depending on the relative position x inside the cloud
and a and b as the two shape parameters. For the applied distribution b = 3 and a
is given through the chosen mode according to eq. 3.2. For extent and mode the
abbreviations ext and moi (mode index) will also be used.
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3.2 Jacobian and Sensitivity

Quantification of the sensitivity of the top of atmosphere radiance in the O2 A band
to changes in cloud parameters is based on radiative transfer simulations, performed
with MOMO. The produced LUTs are also the basis to the cloud parameter retrieval,
which is applied in the following chapters. As already mentioned in section 2.6,
the Jacobian introduced in equation 2.16 gives the sensitivity of the signal towards
the state and can be retrieved directly from the LUT by the partial derivative of the
signal towards each forward model parameter. The produced look up table has nine
dimension containing the viewing geometry (sun zenith angle, viewing zenith angle
and relative azimuth angle), the central wavelength of the instrument channel, the
surface albedo and surface pressure, and the cloud properties (cloud top pressure,
cloud optical depth, cloud vertical extent and mode of cloud optical depth).
The sensitivities from the Jacobian depend on the absolute scale of each parameter,
complicating the direct quantitative comparison. For this reason, the sensitivity
in this study is defined similar to Preusker and Lindstrot (2009), as the partial
derivative of the natural logarithmic of signal to the natural log of the parameter
value times the change of the examined parameter in relative magnitude,

ξP = ∂ ln(r)
∂ ln(P )δP. (3.3)

and for absolute changes of the parameters

ξP = ∂ ln(r)
∂ P

∆P (3.4)

Here, the studied signal is given by the ratio r of window and absorbing channel,
P denotes the examined parameter and δP and ∆P are the relative and absolute
change of the parameter, respectively. The studied parameters are the cloud top
height, cloud vertical extent, optical depth and mode of optical depth as wells as
surface albedo. Further, to increase comparability all sensitivities towards properties,
that can be expressed in pressure units, are based on a change of +10hPa. The
sensitivity toward changes of cloud optical depth and the surface albedo are based
on an increase by 10%. Therefore, the sensitivity of both is subject to the respective
absolute value. This work will mainly focus on the sensitivity towards the vertical
profile of the cloud, i.e. the sensitivity towards cloud vertical extent and mode
of optical depth will be compared to ξctp. All variations underlying the calculated
sensitivities are summarized in table 3.1.
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parameter δP/∆P
cloud top pressure 10hPa
cloud optical depth 10%
mode 10hPa (absolute position)
extent 10hPa (absolute extent)
suface albedo 10%

Tab. 3.1.: Summary of the changes in each parameter underlying the calculated sensitivities.

Slight misalignments as well as imperfections of the optical parts of an instrument
can lead to displacements of the beam path, which subsequently can affect the
bandwidth and centre wavelength of a channel. A change of the centre wavelength
of a channel over the detector array (spatial pixel) is often referred to as "smile
effect", which also affects OLCI as can be seen in figure 3.2. Since the variation of
the bandwidth along the across-track directions for the O2 A band channels is rather
small this particular sensitivity was not examined here. However, the variations in
centre wavelength are around 1nm and has to be considered, when studying all
other sensitivities.

3.3 Radiative Transfer Simulation

Basis for the sensitivity study are the radiative transfer simulations with MOMO.
The vertical resolution of the atmosphere was set to 50 levels between the surface
and 65km or in pressure units from 1013hPa to 0.1hPa, whereby the tropospheric
levels are evenly spaced in the pressure space with ∆p = 20hPa. Pressure and
temperature gradient as well as gas concentrations are according to the US-Standard
Atmosphere (McClatchey et al., 1972). The Rayleigh optical depth of the atmosphere
is at τr = 0.026. Only water clouds were simulated with an effective radius of cloud
droplets at reff = 10µm emerging from a modified Gamma Hansen distribution
for the cloud droplet size with r ∈ [0.12µm, 80µm]. The surface was assumed to
be a Lambertian reflector with varying albedo. The simulations were split into two
spectral intervals, one for the window channel ranging from 745nm to 760nm and
a second part from 753nm to 773nm for the absorption band channels. The gas
absorption coefficient by CGASA were distributed into 6 and 70 k-bins for window
and absorption channels, respectively. The simulations were performed without the
solar constant, resulting in normalized TOA radiances for the 19 azimuth as wells as
35 solar- and viewing zenith angles. The mapping of the k-bins onto the wavelength
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Fig. 3.2.: Left: OLCI central wavelength of instrument response function for channels 12
to 15 (top to bottom) as a function of the spatial ccd column for all 5 camera
modules (M1-M5). Right: full width at half maximum for the same channels.
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parameter unit simulation points
cloud top pressure hPa 975, 900, 750, 500, 350, 100
cloud optical depth - 1, 10, 50, 100, 150
mode of optical depth - 0.1, 0.3, 0.5, 0.7, 0.9
vertical extent - 0.1, 0.3, 0.5, 0.7, 0.8
surface albedo - 0.02, 0.1, 0.6, 0.7
surface pressure hPa 850, 950, 1013, 1050

Tab. 3.2.: Simulation points for MOMO as basis for the OLCI cloud parameter retrieval.
Every permutation of the shown grid points was used for a simulation.

are done in a post processing step, where also the convolution with the instrument
response functions is performed.
The aforementioned smile effect is considered during the convolution of the sim-
ulations and the instrument’s spectral response by shifting the central wavelength
of each OLCI channel. A consolation of the smile effect as exhibited by OLCI is the
nearly constant behaviour for all camera modules, i.e. the same spatial pixel demon-
strates a nearly identical spectral shift for all cameras and all channels. Therefore,
all bands can be convoluted with the same spectral shift, reducing the number of
dimensions in the LUT greatly. The full list of simulated scenarios can be found in
table 3.2.

3.4 Central Wavelength of the Instrumental
Channels

The central wavelength of the respective OLCI channels can have a large impact
on the signal, since the amount of absorbed radiation by oxygen can vary strongly
over a small spectral interval. For OLCI, four of the five modules exhibit a nearly
constant displacement of the channel position with spatial pixel number, except for
module 4, where the strength of the smile is reduced for pixel number > 350 (see
fig. 3.2), which was neglected in the underlying simulations. The smile effect causes
a shift in central wavelength of up to 1.0nm for the O2 A band channels. Therefore,
the central wavelength has to be considered when studying the sensitivities of the
signal towards the atmospheric state. To gain a qualitative understanding of the
impact of central wavelength towards the measurement sensitivities several cases
close to the LUT’s edges are studied. A variation of the central wavelength ranging
between −1nm and +2.4nm, towards the nominal wavelength of each channel, was
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assumed. The interval of possible wavelength shifts was prepared larger than strictly
necessary, since early calibration results of OLCI-A showed ongoing changes in the
spectral response during commissioning phase.
In figure 3.3, the sensitivity depending on the central wavelength, for a low cloud
at ctp = 700hPa, with an optical depth of τ = 10, a vertical extent ext = 100hPa
and a mode of moi = 0.1 over dark ocean surface with α = 0.02 is depicted, which
are typical values for prevalent low-level water clouds like stratocumulus. For
such a cloud, the top of atmosphere signal is most sensitive towards the cloud
top pressure, with a change of up to −1.2% in the measured 13/12 channel ratio
caused by a change of +10hPa in cloud top. Followed by the mode of optical depth
with ξmoi(λ) ≥ −0.95% and the cloud vertical extent with a sensitivity of up to
ξext(λ) ≥ −0.5%. There is only small sensitivity towards the albedo and the cloud
optical depth. However, these low sensitivities are partly caused by the fact, that
albedo and cod are varied by a relative amount and have low values to begin with. As
expected, all sensitivities are reduced with increasing wavelength due to decreasing
absorption by oxygen. For channel 15, the sensitivity to each property is very small
and with a shift of the central wavelength by +1nm nearly at zero. The cause is the
channel’s position close to the end of the O2 A band, where the absorption of oxygen
is greatly diminished. The cloud top pressure, extent and mode all cause a decrease
in TOA signal with increasing values, since the pressure is inverse proportional
towards the height and a change by +10hPa corresponds to a lowering of the cloud.
The negative sensitivity of the signal towards the surface albedo can be explained by
the enhancement of the mean photon path length in the presence of a thin cloud.
A brighter surface reflects more sunlight in the window and absorption channel,
leading to the TOA signal having a larger contribution from the surface, which leads
to an increase in the mean photon path length. Simplified, the total mean photon
path length ltot can be expressed as a mixture of surface and cloud contribution.
When ls is the mean photon path length for light reflected at the surface and lc

reflected at the cloud:
ltot = wc ∗ lc + ws ∗ ls (3.5)

where wc and ws are the proportions of the measured signal originating from the
cloud and surface respectively and are mostly determined by the optical depth of
the cloud and the surface albedo. Hence, an increase in cloud optical depth acts as a
counterpart to the variations in surface albedo, by increasing the cloud’s contribution
to the signal. This effect more pronounced in the comparison of the same cloud
above dark surface and bright surface with an albedo of α = 0.6 as presented in
figure 3.4.
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Fig. 3.3.: Sensitivity of the channel ratios (13/12; 14/12; 15/12, from left to right) to-
wards changes in the atmospheric state, dependent on the central wavelength
of the absorbing channels. The grey dashed line represents the nominal centre
wavelength.

Here, a change in the surface albedo by 10% leads to a signal change of up
to −2.5%. The increase of magnitude of the sensitivity is mainly caused by the
underlying change in albedo being 30 times larger than in figure 3.3. The effect of
changes in the cloud optical depth is also increased by the higher surface albedo,
because now the optical depth also affects the proportion of the upwelling signal
from the surface. The sensitivity towards changes of the cloud top and vertical
profile is decreased slightly, due to a larger portion of the signal not originating from
the cloud itself. Channel 15 is not responding at all to changes in ctp, ext and moi.
If the same cloud is now lifted to a top pressure of 200hPa, the sensitivity for the
surface albedo and cod increases further, due to a larger part of the atmosphere
being below the cloud, as shown in figure 3.5. The sensitivity of the signal towards
changes in the albedo is quite significant with −4% for channel 13 and decreases to
−1% for the nominal wavelength of channel 15.

However, for an optically thicker cloud of τ = 100, shown in figure 3.6, the
sensitivity towards surface albedo is reduced, since a large part of the light is
reflected in the upper cloud layers and never reaches the surface. This is true for
the low (fig. 3.6, top) as well as the high cloud (3.6, bottom), but with weaker O2
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Fig. 3.4.: Similar to figure 3.3, but with an surface albedo α = 0.6.
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Fig. 3.5.: Similar to figure 3.4, but with an cloud top pressure of ctp = 200hPa.
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Fig. 3.6.: Sensitivities for low (700hPA, top) and high (200hPa, bottom) cloud with surface
albedo α = 0.6 and cloud optical depth of τ = 100.

absorption the surface albedo becomes again the most significant parameter for the
measured signal (see channel ratios for 14/12 and 15/12).
For the low cloud at ctp = 700hPa the mode is the parameter with the highest
sensitivity. The impact of the cloud optical depth on the signal is quite low, due to
the saturation of the cloud albedo, i.e. the top of atmosphere radiation is nearly
unchanged for a cloud with τ = 110 compared to a cloud with τ = 100. In this
optically thick regime the actual value of cod does not matter, but its distribution is
quite important.

3.5 Cloud Vertical Extinction Profile

Retrieval of a cloud vertical extinction profile, here parametrized by the cloud vertical
extent and the mode, requires a sensitivity towards these variables. Further, a change
in the vertical extinction profile has to be distinguishable from a change in cloud
top pressure by having different impact on the utilized spectral channels. In section
3.4 we did see, that in the presented cloud scenarios, the sensitivity can be as high
for the mode as for the ctp and roughly half as high for the cloud vertical extent. In
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Fig. 3.7.: Sensitivities of TOA radiances depending on the vertical distribution of cloud
optical depth for a cloud with ctp = 700hPa, τ = 10, a vertical extent ext = 200
and an underlying surface with α = 0.02 (left) and α = 0.6 (right).

a next step, the sensitivity of all parameters is studied as a function of the mode,
which is presented in figure 3.7.
The applied variations underlying the calculated sensitivities are the same as in
section 3.4 and the sensitivities are in regard to the nominal centre wavelength of
the channels, i.e. change of wavelength cwvl = +0.03nm, which is the nearest grid
point in the look up table. All parameter sensitivities exhibit a similar behaviour
across all channels and only differ in magnitude, therefore only the sensitivities for
the ratio of channel 13 to 12 are presented, the other channel ratios are depicted in
the appendix A.1 to A.4. In figure 3.7 a low cloud with top at 700hPa and bottom at
900hPa with an optical depth of τ = 10 is depicted. On the left side the sensitivities
belong to a cloud scenario above dark surface with α = 0.02 and on the right to
a bright surface with α = 0.6. Comparison of both figures emphasizes the impact
of the surface albedo on the sensitivity of cloud optical depth. The impact of the
magnitude of the mode is contrasting for the cloud parameters. For the scenario
with a dark surface, the sensitivity towards cloud vertical extent and mode increases
when the distribution of optical depth is shifted lower in the clouds, i.e. with rising
mode values. While a change of mode and extent by 10hPa induces a change of
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−0.5% at the top of atmosphere signal for a cloud with the bulk of optical depth
in the upper part of the cloud, the same change leads to decrease in TOA signal
by up to 1%, when the optical depth is concentrated in the lower part of the same
cloud. The change of sensitivity to the cloud extent can be explained by the position
of the mode limiting the relative part of the extent affecting the measurement. For
example, in the extreme case of an optically thick cloud with next to all optical depth
concentrated at the coordinate of the mode, nearly all measured radiation would
originate from scattering at this pressure level and therefore the vertical extent of
the cloud below this point would be inconsequential to the measurement.
Moreover, the mode of optical depth is a relative parameter and a small change in
the extent, which defines the sensitivity, also causes a shift in the absolute position of
the mode. Thus, the sensitivity of the extent is made up by two parts, by the change
in extent itself and by causing the mode to change as well, where the magnitude of
the latter depends on the relative position of the mode. The sensitivity towards the
extent for a cloud with mode moi ≈ 0 would be made up solely by the expansion
of the cloud, if the optical depth would allow any of the change in extent to be
recognized. In this study, cloud optical depth is more evenly distributed as in the
thought experiment, whereby the variation of extent not only modifies the mode but
alters the distribution of cod inside the cloud further complicating the sensitivities.
The sensitivity towards cloud top pressure as well as surface albedo is independent
of the mode, while optical depth exhibits a minor decrease in sensitivity up to
moi = 0.6, where the sign of the sensitivity switches. However, it should be noted
that the sensitivity towards the optical depth is nearly non-existent in this scenario.

For the bright surface, the impact of mode on the albedo and cloud optical depth is
more prominent. Both parameters experience a decrease in sensitivity with increas-
ing mode of around ∆ξalb = 0.5% and ∆ξcod = −0.5%. Also, the cloud top pressure
shows a minor decrease in sensitivity by ∆ξctp = 0.05%, while the sensitivity towards
the mode is largely independent of the value itself in the range moi ∈ [0.1, 0.6], fol-
lowed by a small decrease by ∆ξmoi = 0.06 for higher mode values. The sensitivity
to the cloud vertical extent has a smaller dependency on the mode as for the dark
surface scenario with ∆ξext = 0.25%. The sensitivities for a high cloud at 200hPa
show similar behaviour as can be seen in the appendix figure A.5.
In figure 3.8 the sensitivities are depicted in dependence of the cloud vertical extent.
In contrast to the mode of optical depth, when considering sensitivities for different
cloud vertical extents, the cloud top pressure is affected. Where ξctp did show minor
to no response to different distributions of the optical depth, the geometrical thick-
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Fig. 3.8.: Sensitivities of TOA radiances depending on the vertical extent for a cloud with
ctp = 700hPa, τ = 10, a vertical extent ext = 200 and an underlying surface with
α = 0.02 (left) and α = 0.6 (right).

ness has a significant impact on the TOA signal change accompanied by a change
in ctp. In both scenarios, dark and bright surface, ξctp decreases by ≈ 0.5% with in-
creasing geometrical thickness from 70hPa (ext=0.1) to 225hPa (ext=0.75). When
neglecting the vertical extent in the forward model of a cloud top height retrieval
the signal change with height will be overestimated, leading incorrect ctp values.
Further, with increasing cloud extent the signal demonstrates a higher sensitivity
towards a change in mode, but it should be noted again, that the absolute position of
the mode depends on the vertical extent and therefore for each extent the absolute
position of the mode is slightly different, while the relative position is constant at
moi=0.6. Sensitivity ξext shows a small increase at first with the highest sensitivity
at ext = 0.6 and followed by a decrease in signal response. The step like behaviour
of ξext and ξmoi can be contributed to the discrete nature of the atmosphere in the
radiative transfer simulations, resulting in the cloud occupying the same amount of
atmospheric layers for similar extent values. For example, if there are three atmo-
spheric layer between cloud top and surface in the model, extents between 0 and
0.33 would always yield a cloud with an geometrical thickness corresponding to the
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thickness of a single layer. This artefact is more pronounced for low clouds, where
the same relative extent is coupled with a lower absolute geometrical thickness.
The results so far clearly demonstrate, that the measurement have significant sensi-
tivities towards the cloud vertical profile, which depending on the cloud scenario can
even exceed the sensitivity towards cloud top height. In a next step the feasibility
of a retrieval of one or more parameters based on the information content of the
spectral measurements has to be examined.
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3.6 Degrees of Freedom

The degrees of freedom of a measurement indicates the amount of independent
parameters that can be determined by the retrieval method for a specific state of the
atmosphere. It provides information about practicability of a retrieval and can be
used to optimize measurement instruments and the retrieval itself. The theoretical
basis for the calculation of the degrees of freedom is provided by the inverse theory
(see sec. 2.6). Here, only a brief overview of the theoretical basis is presented, for
an exact derivation of the degrees of freedom Rodgers (2000) can be viewed.
Equation 2.17 describes the transition from the atmospheric state ~x to the mea-

surement ~y by the Jacobian K. For the OLCI retrieval, the contents of ~x and ~y are
presented in table 3.3. In a retrieval the aim is to find the state ~x that explains
the measurement the best. Which is, for a Gaussian linear case, the state which
minimizes the cost function:

χ2 = (~x− ~xa)TS−1
a (~x− ~xa) + εTS−1

ε ε. (3.6)

with ~x and ~xa as the state and the prior estimate of the state and Sa and Sε the error
covariance matrix of the prior knowledge and the instrumental noise, respectively.
At the minimum the expected value of χ2 is the degrees of freedom, which can be
split into degrees of freedom for signal and a degrees of freedom for the noise.

ds = ε(~x− ~xa)TS−1
a (~x− ~xa) (3.7)

dn = ε(εTS−1
ε ε) (3.8)

Here, ε denotes the expected value operator. This can be further transformed by
eliminating the state and prior state, yielding:

ds = tr([KTSεK + S−1
a ]−1KTS−1

ε K) = tr(A). (3.9)

vector parameter
~x ctp, cod, moi, ext
~y normalized radiance of channel 12;

radiance ratio of 13/12, 14/12,
15/12

Tab. 3.3.: State- and measurement vector of the OLCI cloud property retrieval.
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The matrix A is called the averaging kernel and the trace of A yields the degrees of
freedom for the retrieval.
The value of ds depends on the prior uncertainties and the presumed noise of the
signal, as well as on the state itself through the Jacobian. In theory, it is possible,
that for some atmospheric states the retrieval can yield more parameters than for
another atmospheric state. In the following results the degrees of freedom will show
a distinct dependency on the underlying atmospheric and instrumental parameters.

3.6.1 Central Wavelength and Cloud Top Pressure

The study of the degrees of freedom for the OLCI cloud property retrieval is based
on a synthetic state vector, where prior knowledge of ctp, cod, ext and moi is given
together with the affiliated uncertainties Sa. In the case of all other parameters
perfect knowledge of their quantity is assumed. The prior information is given by
the arithmetic mean of each dimension, with the standard deviation as variances,
which is not ideal for the cloud top height since mid-level clouds around 500hPa
are the least common type. For the retrieval the cloud optical depth is given in by
the logarithm to the base 10, which yields the as mean τ̄ ≈ 10. In figure 3.9 the
degrees of freedom depending on the position of the central wavelength and the
cloud top pressure are given. The regarded clouds had an optical depth of τ = 1.3
and the surface underneath has an albedo of α = 0.01. In all cases the degrees of
freedom are the highest for low clouds and a shift of the central wavelength by
dwvl = −1nm. Higher values for mode and vertical extent leads to a more uniform
dependence of the degrees of freedom on the wavelength and ctp. The degrees
of freedom are nearly constant around a value of ds = 2, i.e. two independent
parameters can be determined when measuring an optically thin cloud above dark
surface. For an optically thicker cloud with τ = 10, the degrees of freedom are
presented in figure 3.10. Here, ds reaches values of up to 2.3, while the gradient
along the (x,y)-plane is higher than for the thin cloud, ensuing that for optically
thicker clouds the determinable number of parameters strongly depends on the
cloud scenario. For even thicker clouds the degrees of freedom of the measurement
can go as high as 2.4 (see app. A.6).
Analysis of the importance of surface albedo towards ds is performed for two cloud
top heights, at 800hPa and 200hPa, with ext = moi = 0.5 at nearly nominal channel
wavelength (dwvl = 0.03nm) as presented in figure 3.11. Naturally, the impact of
the surface albedo is most pronounced for optically thin clouds and close to non-
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existent for clouds with τ = 100 (purple lines). These results demonstrate, that a
cloud retrieval with the oxygen A band can be complicated for optically thin clouds
over bright surface, e.g. cirrus clouds over snow and ice, where ds(α = 0.6) = 1.2
indicates, that an accurate and simultaneous retrieval of cloud top pressure and
optical depth is not possible.
The degrees of freedom demonstrate clearly, that for most cases a retrieval of more
than two independent parameters will not be feasible. Furthermore, a retrieval
of cloud extent and mode in addition to cloud top pressure and optical depth is
even for the best case scenario impossible. However, since ctp, ext and moi are not
independent properties some knowledge may be estimated if the conditions allow
it. Also, cloud scenarios, where the sensitivity towards extent and mode is at a
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Fig. 3.9.: Degrees of freedom for a measurement of a cloud with τ = 1.3 and surface albedo
α = 0.01 depending on the central wavelength of the OLCI channels as well
as the cloud top pressure. The degrees of freedom are presented for different
combinations of cloud vertical extent and mode of optical depth.
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Fig. 3.10.: Degrees of freedom for a synthetic measurement of a cloud with τ = 10 and
surface albedo α = 0.01 depending on the central wavelength of the OLCI
channels as well as the cloud top pressure. The degrees of freedom are presented
for different combinations of cloud vertical extent and mode of optical depth.

maximum, e.g. ext ≈ 0.6 and high values of moi, have degrees of freedom of ds ≈ 2
with almost no dependency to ctp, cod and central wavelength.

3.7 Conclusion

Sensitivities of the OLCI cloud property retrieval in the O2 A band were studied
regarding the impact of different cloud vertical profiles and central channel wave-
length by means of radiative transport simulations. The applied parametrization
for cloud vertical profiles introduced two additional parameters, mode and extent,
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Fig. 3.11.: Degrees of freedom for a measurement of a cloud with varying τ and ctp de-
pending on the surface albedo α. The degrees of freedom are presented for
ext = moi = 0.5 and nominal channel wavelength (dwvl = 0). Colors represent
different cloud optical depth, while the solid and dashed lines are the cloud top
heights of 200hPa and 800hPa, respectively.

which create additional ambiguity in the retrieval. Here, the sensitivity of the mea-
sured top of atmosphere signal to the distribution of cloud optical depth inside
the cloud was found to be nearly as high as the sensitivity towards the cloud top
height. Both are important parameters, which have to be considered, even if the ctp
is only of interest, since the effective cloud top pressure for OLCI is a combination
of ctp, ext and moi. The sensitivity towards the cloud vertical extent was found to
be in the order of 0.5% − 1% for channel ratio of 13/12 and is, depending on the
cloud scenario, the parameter with the least impact on the top of atmosphere signal.
However, the sensitivity towards the extent of the cloud depends strongly on the
mode of optical depth and can, for high mode values (moi > 0.7), be as large as ξctp
and ξmoi. Also, the sensitivity towards changes in ctp depends on the vertical extent
of the cloud. If the assumed extent is to low in the retrieval and the underlying
radiative transfer simulations, the channel ratio will be underestimated, leading to
errors in the retrieved ctp.
Furthermore, the sensitivity towards surface albedo can be relatively large, especially
for high and optically thin clouds, and thus uncertainties in the surface albedo can
lead to large error in the cloud parameter retrievals. This can be especially a large
source of error for regions with large annual deviations in the albedo. The use of
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climatoligies is insufficient in those cases.
A degree of freedom analysis was performed, to obtain the number of independent
parameters which can be retrieved with this method. The studied cloud scenarios
indicated, that for most scenarios a maximum of two independent parameters can
be retrieved. For low and optically thick clouds the degree of freedom reaches values
of up to ds = 2.4, demonstrating, that even in the best case scenario more than
two independent parameters can not be retrieved. Further, the brightness of the
underlying surface can have a strong effect on the degrees of freedom. Thus, the
retrieval for optically thin clouds over a bright surface with α = 0.6, exhibits degrees
of freedom between ds(200hPa) = 1.2 and ds(800hPa) = 1.5, already complicating
the simultaneous retrieval of cloud optical depth and cloud top height. However,
cloud top pressure, vertical extent and mode are not independent parameters and
some additional information may be retrievable. Also, the retrieval can be supported
by additional measurements, e.g. in the thermal infrared, where the sensitivity
towards the vertical profile is lower, which will be discussed further in chapter 5.
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4Classification of Clouds based on
Texture Analysis

4.1 Introduction

In the last decades, the measurement of essential climate variables with satellite
remote sensing has improved considerably. Thus, providing near real-time weather
observations and long-term climate data records on a global scale with continuously
improving accuracy. Especially, vertically resolved information about the atmosphere
became available, because of the satellite based Cloud Profiling Radar (CPR) and the
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board of CloudSat
and CALIPSO, respectively. These two, combined with several other remote sensing
instruments as payload on the satellite convoy A-train, increased the understanding
of atmospheric processes greatly, supporting the development of weather prediction
and climate models. However, even with ever improving instruments, the develop-
ment of a remote sensing algorithm can be a challenge. The produced retrievals
are still limited by the instrumental constraints as well as ambiguities in the origins
of the signal change and varying sensitivities towards the parameter of interest
depending on the atmospheric state.
The O2 A band method for the retrieval of cloud top height and cloud optical depth
was implemented as a prototype algorithm for the Medium-Resolution Imaging
Spectrometer (MERIS) on board ESA’s Environmental Satellite (ENVISAT)(Preusker
et al., 2010). The accuracy of this remote sensing technique depends on the as-
sumed vertical extent and vertical distribution of water inside the cloud (vertical
extinction profile). In the past, the vertical extinction profile was often, due to a lack
of opposing data, assumed to be homogeneous. This can lead to an incorrect cloud
top pressure, because the proportion of in cloud scattering will be, depending on the
actual profile, under- or overestimated. A study by Carbajal Henken et al. (2013)
showed the impact on cloud top height retrieval when assuming an inhomogeneous
vertical profile of cloud extinction from a CloudSat based climatology. Further, the
possibility to exploit this dependency, by pairing O2 A band measurements with
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cloud top pressures from the thermal infrared, to estimate the vertical profile of the
cloud has been investigated by Carbajal Henken et al. (2015).
MERIS successors the Ocean and Land Colour Instrument (OLCI) A and B on board
ESA’s Sentinel 3A and 3B feature the MERIS heritage channels, at 753.75nm and
761.25nm, necessary for the cloud retrieval. Also, two additional channels inside the
O2 absorption band are available at 764.4nm and 767.5nm (see tab. 2.1).
Therefore a new cloud parameter retrieval using all the available OLCI channels
inside the absorption band is in development. The capabilities of the advanced
OLCI cloud property retrieval are studied in this thesis. In this chapter a predictor
is presented, created to support the OLCI cloud parameter retrieval by delivering
a priori estimates of the cloud vertical structure. This estimation is performed by
the means of texture analysis of the vicinity of cloudy pixels in collaboration with a
classification scheme providing a label related to specific cloud vertical parameters.
This study is based on CloudSat retrievals of the vertically resolved cloud optical
depth as well as CloudSat based cloud classifications and MODIS calibrated and
georeferenced top of atmosphere radiances.
In section 4.2 the texture analysis with the grey-level co-occurrence matrix is de-
scribed and the random forest based classification method will be introduced. The
underlying data products are presented in section 4.3. Further, in section 4.4, the
performance of the classification into well-known cloud types and into cloud vertical
profiles is analysed, with focus on the optimization of the classification accuracy.
Finally, in section 4.6 conclusions are given.

4.2 Method

The texture of an image can be described as the spatial order of colours or intensities
and is a widely used metric for analysis of images as it describes the variation of
physical quantities in optical as well as non-optical, like MRI, images. There are
multiple statistical methods to retrieve parameters describing the texture of an
image and several studies have been performed to detect and distinguish clouds
through one or more of these image statistics in satellite remote sensing (Kittler and
Pairman, 1985)(Ebert, 1987)(Ebert, 1989)(Welch et al., 1988) and with ground
based instruments (Heinle et al., 2010). In the past of satellite remote sensing,
especially grey-level difference vector (GLDV)(Khazenie and Richardson, 1993),
grey-level co-occurrence matrix (GLCM)(Haralick et al., 1973) and Fourier transform
analysis (Augusteijn et al., 1995) were successfully applied to perform land cover
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Fig. 4.1.: Schematic for grey level co-occurrence matrix calculation. The GLCM is always a
quadratic matrix with i=j and maps the co-occurrence of the grey level values at
distance d and angle θ towards each other.

and cloud classifications. The results of this study are based on the grey-level co-
occurrence matrix method. In section 4.2.1 the basic theory of the GLCM will be
presented and in section 4.2.2 the applied classification scheme of a random forest
algorithm is introduced.

4.2.1 Grey-Level Co-Occurrence Matrix

The GLCM (Haralick et al., 1973) method is a second order statistical measure
mapping the paired grey-level occurrences of an image, or part of an image, resulting
in an (m × m) Matrix. The dimension m of the quadratic matrix M is given by
the number of possible grey-levels in the image. The individual matrix elements
Pi,j(d, θ) are representing the frequency of intensity i occurring next to intensity j
under the condition of distance d and angle θ between both points in the image(see
figure 4.1). Depending on the applied convention, the GLCM can be calculated
considering the spatial order of the pixel i.e. θ 6= θ+π. If the spatial order is ignored,
the GLCM is always a symmetrical matrix Pi,j = Pj,i. The main diagonal of M
represents image pixels of the same intensity appearing under the set conditions,
while each parallel running diagonal at a distance k contains all pixel with grey-level
difference of i− j = k. In the literature one often finds the normalized grey-level
co-occurrence matrix, which normalizes the co-occurrence frequencies with the
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number of image pixels, yielding values between 0 and 1. An advantage of this form
is, that co-occurrence values can be interpreted as probabilities.
Another variable impacting the texture parameters is the window size w, defining the
part of the image for which a GLCM is calculated. In this context window size means
the size of the applied mask around the examined pixel. Is the chosen window size
too small, large scale textural features of clouds may be omitted. A window, which is
to large, can include other cloud types contaminating the texture parameters. Both
cases can lead to misinterpretation by the classification algorithm. There seems to
be no window size which is effective for every scene. Different window sizes were
tested in this study. For convenience, quadratic window sizes were used. The results
will be presented in section 4.4.1.
The co-occurrence matrix records the texture of an image but is too bulky for
further evaluation. Instead, several texture properties can be calculated for a GLCM,
condensing the amount of information in a suitable form:

energy =

√√√√m−1∑
i,j=0

P 2
i,j (4.1)

contrast =
m−1∑
i,j=0

Pi,j(i− j)2 (4.2)

homogeneity =
m−1∑
i,j=0

Pi,j
1 + (i− j)2 (4.3)

correlation =
m−1∑
i,j=0

Pi,j [
(i− µi)(j − µj)√

(σ2
i )(σ2

j )
] (4.4)

dissimilarity =
m−1∑
i,j=0

Pi,j |i− j|. (4.5)

Here, µi, µj denotes the means along the respective column/row and σ2
i , σ

2
j the

affiliated standard deviations.

4.2.2 Random Forest Classification

Classification algorithm are a common tool in science, if it is convenient to sort
data based on a set of features. Several well-established classification techniques
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exist and are supported in the most common software repositories like, naive Bayes,
decision trees, random forest, k-nearest neighbours and support vector machines,
just to name a few examples. Classification methods usually makes use of a set of
training data, which includes the features and the already known labels for each data
point, establishing a model based on the training set, which can be used to predict
new objects. In this study a random forest classifier (Breiman, 2001) was applied
to assign each cloudy pixel a cloud class or a cloud vertical extinction profile based
on associated texture parameters. The random forest algorithm, is an ensemble
learning method for classification and regression based on decision trees. One of
the virtues of this classification method is, that it is robust to overfitting the data.
While for decision trees overfitting can be a problem, the creation method of random
forests prevents it. In principle, for a random forest classifier, n decision trees are
created, each with a random generated subset of the training data. The order of
decision nodes is, similar to decision trees, determined by a best split method like
information gain or gini impurity. However, since only a random subset of features
is used in setting up the forest, the sequence of nodes will vary from tree to tree. In
this study the used split function was the gini impurity, which is defined as:

IG(p) = 1−
J∑
i=1

p2
i . (4.6)

Where J is the number of classes going into the classification and pi is the probability
of an item with label i being chosen. Smaller gini impurities for a feature at a node
means, that the possibility of wrongly classifying the item based on this feature is
lower. Therefore, the feature order for the nodes is going from smallest gini impurity,
for the first node, to largest gini impurity, for the last node.
For training 70% of the available pixel were used, the remaining 30% were reserved
for testing.

4.3 Data Basis

As basis for the study level-1b granules of the MODIS instrument on board the Aqua
satellite were used. The scenes are limited to the northern Atlantic in the year 2008
for the main part of the study, but include different surface types distributed over
the globe for section 4.5, where the influence of the cloud texture background is
evaluated.
The used spectral channels are Band 1 at 620nm− 670nm and a spatial resolution
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of 250m and channel 17 at 890nm − 920nm with a spatial resolution of 1km. In
this study, we limited the spectral region to the visible and near infrared, since
the algorithm, as an OLCI CTP preprocessor, can only make use of the available
wavelength between 400nm− 1020nm.
Information about the vertical structure of the clouds and the cloud class are based
on the CloudSat products 2B-TAU (Polonsky et al., 2008) and 2B-CLDCLASS release
version 4 (Sassen and Wang, 2008), respectively. Both satellites are part of the
Afternoon Train (A-Train) constellation with a temporal shift of 2.5 minutes between
each other. CloudSat’s TAU products provides the total optical depth, the mean
effective radius of hydrometeors in the atmospheric column, as well as optical depth
distributed for 125 atmospheric layers based on the radar back scatter, MODIS
up-welling reflectivity at the top of atmosphere and auxiliary data. The vertical
resolution of the product is at 240m, however it should be noted that for the 4-5
bins above surface, which is normally at bin 104/105, the radar sensitivity is greatly
reduced due to surface clutter. Therefore, measurements up to height of 1km have
to be used with caution, especially over land.
The CLDCLASS product categorizes clouds into in one of the following 8 classes:
stratus (St), stratocumulus (Sc), cumulus (Cu), nimbostratus (Ns), altocumulus (Ac),
altostratus (As), deep convective, or high clouds (cirrus) based on radar backscatter
as wells as MODIS measurements and the European Centre for Medium-Range
Weather Forecasts (ECMWF) predictions. Further product details can be found in
the product process description (Wang and Sassen, 2007). Of important note is,
that the cloud classification is partly based on textural features derived from MODIS.
Therefore, a cloud typing based on texture alone, with CloudSat as truth, can not be
a proof of concept, but will be used as a safety check and benchmark for optimization
of the implementation for further studies. Moreover, in the considered regions for
the time period no clouds were classified as stratus (St) by CloudSat.
Since we are using CloudSat data as reference, we are limited to near nadir viewing
angles for the MODIS radiances and only classifications for the nearest neighbour
pixels are performed. The maximum allowed distance between Cloudsat and MODIS
measurement is given by half the spatial resolution of the latter.
Since the focus of this work is a possible classification of cloudy pixels into a cloud
class and a cloud vertical extinction profile only cloudy pixels were studied. How-
ever, this means that the pixel of interest (center pixel of applied mask) in each
analysis step has to be cloudy, inside the applied mask all pixel, whether cloudy or
not, were included in the analysis. The applicability of this method as means for
cloud detection was already studied extensively in the past e.g. (Schröder et al.,
2002). Therefore, we used the cloud optical depth as provided by the CloudSat
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2B-TAU product as a proxi cloud mask. For processing only points where τ > 0 are
considered.

4.4 Analysis

From the grey-level co-occurrence matrix multiple texture describing features can be
calculated, which is computationally the most time-consuming part of the analysis.
Therefore, a major concern when working with GLCM is computational effort.
In order to speed up processing times and optimize classification performance
the impact of all settings on the performance of the GLCM has to be examined.
Finding a set of optimal parameters means, ensuring good classification results while
shortening algorithm runtime. This can be achieved by either reducing the surveyed
pixels by keeping window sizes for the GLCM small, reducing the employed spatial
resolution of the original image, reducing the radiometric resolution of the raw data
or identifying and removing unimportant texture features for the classification. In
section 4.4.1 the influence of the chosen window size for MODIS Band 1 and 17 is
studied regarding the classification accuracy of image pixels in cloud types. Further,
the impact of spatial resolution is observed by artificially increasing the pixel size of
Band 1 from 250m to 1km.
As mentioned, the maximum number of grey-levels of the image directly scales the
size of the GLCM. A high signal resolution often leads to a large matrix with a small
portion of elements being non-zero. Therefore, a reduction of grey-levels can be
performed with minor loss of information. The impact of grey-level reduction is
examined in section 4.4.2.
The distance between pixel as basis for the calculation of the grey-level co-occurrence
matrix was studied in section 4.4.3. Moreover, the classification into cloud types
is viewed in detail in section 4.4.5 followed by the classification into classes with
distinct cloud vertical extinction profiles in sec. 4.4.6. Performance is rated on the
basis of the average (total) classification accuracy, given by the mean accuracy of
prediction:

R2 = 1−
∑n
i (yi − f(~xi))2∑n
i (yi − ȳi)2 , (4.7)

with y, ȳ being the true labels, mean of true labels and f(~xi) the predicted labels
based on the feature vector ~xi. Furhter, the individual hit rate for the corresponding
classes will be examined in detail.
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Fig. 4.2.: Left: Total classification accuracy for different window sizes. Classification was
performed for Band 1 250m (blue), artificially binned 1km (orange) resolution
and Band 17 (green). All grey-level co-occurrence matrices are calculated with
d = 2, θ = 0 and g = 8. Right: Classification accuracy separated for each cloud
type.

4.4.1 Window Size and Resolution

For the described method of the GLCM an image region for the texture analysis has
to be defined. The used size w has not only an effect on the further classification
accuracy, but also reduces the amount of data to be processed. When applying
this method image pixel at a distance towards the image border, smaller than half
the window size are lost in processing, since the mask can not be applied to these
regions. Thus, the processable image is smaller than the original. In this work only
the nadir view of MODIS and it’s direct vicinity is examined, leading to loss of pixel
only in the along track direction.
Window size investigation has been performed for MODIS band 17 in its 1km spatial
resolution and for band 1 in 250m full resolution as well as a reduced resolution
of 1km. The coarser resolution was acquired through interpolation of the band 1
radiance on the 1km×1km geolocation grid for MODIS Aqua.
Figure 4.2 shows the results for all three spectral channels with regard to the applied
window. The maximum number of grey-levels m was reduced to m = 8 and the
distance between pixels was set to d = 2. All GLCMs in this study were calculated
for θ = 0, since no angular dependency for the classification could be determined in
advance. The angular independence of the grey-level co-occurrence matrix for cloud
classification was also found in another study by Khazenie and Richardson (1993).
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Band 1 (620nm ­ 670nm) Band 17 (890nm ­ 920nm)

Fig. 4.3.: Comparison of grey-level image of MODIS Aqua Band 1 (left) and Band 17 (right)
over snow covered surface. Band 17 exhibits a higher contrast especially around
clouds. Coarse parts of the images are caused by saturation of the instruments
channels.

The spatial resolution of 250m from band 1 demonstrates no classification benefit
at all window sizes towards the 1km binned version. Overall, Band 17 exhibits the
highest total classification accuracy, which we hypothesize to be caused by the water
vapour structures visible through the H2O absorption band around 900nm. When
comparing the grey-level images of band 1 and 17 in figure 4.3 for a cloud scene
above snow, the increased contrast for clouds in the image taken at 900nm is easily
visible with the eye. The higher contrast is attributed to the increased water vapour
in the vicinity of clouds and influence the retrieved texture parameters improving
differentiation between cloud types. The percentage of right predicted classes is
around 50% − 60% for small window sizes of around 25km and increases rapidly
with growing edge length. At a size of around 120km the total hit scores begin
to saturate around 85% − 90% correctly classified clouds, depending on the used
spectral band. With an edge length of 120km already 7.5% of the image have to be
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Fig. 4.4.: Classification accuracy for band 1 and band 17 depending on the maximum
number of grey-levels (left). Individual classification accuracy for each cloud type.
Solid lines represent the classification with texture parameters from band 1 in full
resolution, dashed represent band 17.

disregarded for analysis as border pixels.
In detail, the hit scores for the seven cloud classes varies strongly. On the right
panel in figure 4.2 the classification performance is separated. The solid lines depict
classification based on band 1 (250m), while the dashed lines represent band 17.
The difference between band 1 and band 17 is consistent with behavior of the total
hit scores for all cloud classes. The random forest classifier displays a hit score
around 60% for cumulus clouds, which is by far the smallest for all cloud scenarios.

4.4.2 Maximum Number of Grey-Levels

MODIS provides the radiance measurements for each channel as a scaled integer
ranging between 0−32767, while the employed grey-level co-occurrence Matrix from
the python module sklearn (http://scikit-learn.org/) can only handle a maximum
number of grey-levels of 256. As mentioned above, exploiting the complete range
in grey-levels leads to a matrix of the size 256 × 256 for each pixel of the image.
Therefore, to further reduce computational effort the impact of grey-scale resolution
towards classification is examined. Using the best set of parameters previously found,
the maximum number of grey-levels is artificially reduced to find a compromise
between classification accuracy and algorithm run-time.
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In figure 4.4 the associated classification results are depicted. The impact of grey-
level range is more pronounced for band 1, where a maximum of classification score
is reached when exhausting the algorithms limits. For g < 90 the use of the full
resolution yields no advantage for the classification of cloud types. However, when
using more than g ≈ 90, a minor difference between full and reduced resolution
of band 1 becomes apparent, whereby image statistics on a spatial resolution of
250m leads to a slight increase in classification accuracy by up to 1% at g = 256.
Band 17 on the other hand shows an increase with rising numbers of grey-levels
below g = 64, beyond that the hit score is nearly constant. Looking at the individual
classification accuracy the impact of grey-level resolution is noticeable for band 1
based classifications (solid lines). While for most clouds types the classification
accuracy increases with larger number of grey-levels, with the largest impact for
Ns, As and Ac types, the band 1 classification for cumulus clouds exhibits a local
minimum at g = 64. Based on these results g = 64 is a sufficient brightness resolution
for band 17 and is only slightly worse in terms of classification score (< −1%) as
band 1 with g = 256. For band 1, a resolution of at least 128 different grey-levels
should be chosen, to avoid the drop off in classification for cumulus clouds and still
have a similar total accuracy to band 17. This leads to bigger GLCMs, by a factor of
4, slowing down processing times considerably.
A parameter, which could not be studied in this work is the viewing geometry of
the satellite. Due to CloudSat as reference viewing angles are limited to the nadir
view and a change in observed texture by different viewing angles can therefore
not be observed. The observed cloud texture is not only caused by the horizontal
structure but also by the verticality and 3D effects could impact the dynamic range
of grey-levels for cloudy pixels and can change the optimal number of grey-levels for
the classification depending on the viewing angles.

4.4.3 Inter-Pixel Distance

The last adjustable parameter for the grey-level co-occurrence matrix to be con-
sidered is the spacing between grey-level pairs. For highly structured images the
distance can have strong positive or negative effects based on the orientation of the
texture. In the case of texture analysis of cloud fields the scenes are very variable
with no constant distance in structures visible. Therefore, the distance should have
a negligible influence on the texture parameters and thereby on the random forest
classification. Figure 4.5 left panel depicts the average accuracy in dependence
of the inter-pixel distance. Here, the spatial resolution is the decisive value. The
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Fig. 4.5.: Classification accuracy for band 1 and band 17 depending on the inter-pixel
distance (left). Individual classification accuracy for each cloud type. Solid lines
represent the classification with texture parameters from band 1 in full resolution,
dashed lines represent band 17.

radiance measurements with a spatial resolution of 1km exhibit a stronger decrease
in classification accuracy than the 250m, for which the inter-pixel distance is not as
important. While smaller distances seem to perform better for all spectral bands the
range of variation is around 2% for the 1km data between distances of 1 pixel and 32
pixel. Making the inter-pixel spacing by far the parameter with the smallest impact
in this study. The individual cloud types, as shown in figure 4.5 right panel, depend
only slightly on the inter-pixel distance. The importance of inter-pixel distance is
stronger for cumulus clouds as for the other classes with a difference of up to 5%
between d = 1 and d = 32. For cases with cumulus clouds the results suggest the
use of small spacing to improve classification accuracy by several percents.

4.4.4 Importance of Texture Features

Up to this point all of the texture parameters introduced in equation 4.1-4.5 were
included in training and testing of the random forest. However, not all parameters
may have the same significance to the classification, which is examined in the fol-
lowing.
The importance of a textural feature for the classification can be derived through
the so called gini importance. It is defined as the decrease in impurity (missclassifi-
cations) of a decision node averaged over all trees for each feature. Higher values
represent a more important feature for the decision trees, because those features
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feature importance
Band energy contrast homogeneity correlation dissimilarity
1 (250m) 0.211 0.192 0.193 0.231 0.173
1 (1km) 0.230 0.193 0.197 0.230 0.171
17 0.216 0.198 0.197 0.216 0.183

Tab. 4.1.: Feature importance for the previously found optimal set of window size, inter-
pixel distance and grey-levels. Each feature importance is normalized. The
highest and lowest feature importance of each band is presented in bold.

reduce the number of missclassification the most. The calculated feature importance
are presented in table 4.1 as normalized values, i.e. the sum of all feature impor-
tances is 1. In this study, the order of importance is independent of the used spectral
band. The correlation between grey-levels is always the most important feature,
followed by the energy, the contrast, the homogeneity and the least important feature
is the dissimilarity. Moreover, all features have similar gini importances, i.e. no value
is low enough to warrant dismissal of the feature all together. Therefore, all texture
features (eq. 4.1-4.5) will be included for the remainder of this study.

4.4.5 Classification into Cloud Types

Running the classification algorithm with the previously found set of optimal param-
eters leads to very similar results for band 1 and band 17. In figure 4.6 (left) the
classification results based on band 17 (g = 64, d = 2, w = 125km) are presented.
Prominent features are the missclassification of every type towards stratocumulus
and deep convective clouds (horizontal lines), i.e. in most cases, where the random
forest classifier and the CloudSat cloud class don’t agree, the random forest algo-
rithm tends to classify those scenes to be either Sc or DC. As seen before, the cloud
typing of cumulus clouds is the most uncertain of all classes, where around 22% are
classified as Sc and 6% as deep convective clouds. DC in itself is the second worst
classified cloud type in this study with a classification accuracy of 82%. One possible
explanation for that could be, that deep convective clouds in their dissipating stage,
occur along with cirrus clouds leading to a mix of textural features retrieved from
both types, challenging the classification algorithm.
In figure 4.6 (right) the differences in performance between band 1 and band 17
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Fig. 4.6.: 2D-histogram of texture based cloud typing. Left: classification scores for classifi-
cation by radiation from band 17. The CloudSat cloud type is along the x-axis,
the predicted class through the random forest classifier along the y-axis and the
classification score is shown in colour. The histogram is normalized for each
column. Right: difference in classification accuracy for band 1 and band 17.
Positive values (red) correspond to higher hit scores for band 1 negative (blue) to
higher scores for band 17

classification is visible. For the most part both spectral channels lead to similar
results, except for cumulus clouds, where classification based on band 1 textural
features is 2.4% more accurate. The combination of both spectral channels and the
associated textural features has shown no improvement in classification. Following
the classification is performed into cloud classes based on the vertical extinction
profile, as measured by CloudSat.

4.4.6 Estimating Cloud Vertical Extinction Profile

The cloud typing results demonstrate, that we can reproduce CloudSat’s classifica-
tion without making use of vertical information with a satisfactory accuracy. Cloud
vertical structure is an important property for passive cloud top height/pressure
retrievals and a major source of uncertainty. Active remote sensing techniques have
a high sensitivity to small optical depths and therefore sense the cloud top height
when few hydrometeors being present. Often retrievals of the passive kind refer
to an effective cloud top height taking into account the penetration depth into the
cloud of the respective method. Depending on the vertical extinction profile of a
cloud the effective cloud top height can vary, while the actively sensed cloud top may
remain the same. In order to correct the effective cloud top height, knowledge of
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the vertical structure is needed. While a reliable cloud typing into the ISCCP classes
(Rossow and Schiffer, 1999) and associated standard vertical extinction profiles is
a possibility, all of the 9 ISCCP cloud types show large variations in their vertical
structures (Carbajal Henken et al., 2014). In our proposed method, we skip the
classification into cloud classes and directly link the horizontal structure of clouds to
the vertical profile identical to the work in section 4.4.5.
For this part of the thesis, the cloud vertical extinction profiles are retrieved from

CloudSat’s 2B-TAU product. We included only cases, where at least 3 adjacent verti-
cal bins had a cloud optical depth of τ > 0.1. In order to reduce the dimensionality
of the problem we used the parametrized description of the vertical extinction profile
given by a relative vertical extent and the mode of the distribution of cloud optical
depth based on a beta function (see. section 3.1 for a detailed description). This
representation together with the condition of at least 3 cloudy layer often leads to
clouds with moi = 0.5.
Further simplification is performed by clustering all cases into classes based on their
extent and mode. The clustering was performed using the k-means method as well
as a manual discretization. The difference in clustering of the data points is shown
in figure 4.7 (right column). In the case of 3 distinct classes, rather than separat-
ing classes along cloud modes or along the extent, the k-means method creates
non-intuitive separations: one class for modes ranging from 0 to ≈ 0.5 containing
all vertical extents and 2 smaller classes for moi > 0.5 split into small and large
vertical extents. In contrast to the unsupervised scheme, the manual separation was
performed once at evenly spaced values between minimum and maximum value
of the respective dimension, leading to 0 ≤ C1 ≤ 0.33 < C2 ≤ 0.66 < C3 ≤ 1 in
the case of three classes for the mode. The separation based on the extent was
performed in the same manner on the interval (0, 0.7], containing all extent values
present in the data.
The classifications using optimal parameters for all clustering methods are depicted
in figure 4.7. As before, band 1 and band 17 showed only minor differences in clas-
sification results, therefore only the results for band 17 are presented. Optimization
was performed as shown above. All hit scores (individual and total) are presented in
table 4.2.

Evidently, an intuitive clustering along the extent performs the best for classification,
followed by the k-means method. The total accuracy to predict the right class is
14% higher for the extent separated case than for the k-means, which in turn is 8%
more accurate than the classes with discrete modes. In detail the separation into
classes defined by their relative vertical extent has individual classification accuracy
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Fig. 4.7.: Top: 2D-histograms of the classification accuracy for 3 clustered classes. Bottom:
Clustered data points for classification into three classes through (left) k-means
clustering, (middle) manually along the mode of optical thickness and (right)
along the relative vertical extent.
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C1 C2 C3 total
k-means 0.451 0.729 0.737 0.696

mode only 0.584 0.837 0.868 0.777
extent only 0.940 0.916 0.842 0.918

Tab. 4.2.: Classification accuracy of individual classes and total for k-means clustered and
manually clustered data points.

ranging between 84.2% and 94.0%, while classes defined by mode values has high
probabilities to detect C2 and C3 with 83.7% and 86.8%, but fails to consistently
detect C1. The k-means based assignments shows high scores for classes C2 and C3,
both with high values for the mode and separated by the cloud vertical extent. Class
C1, which envelops all possible extents, is most often misplaced. The results for the
manually grouped data-sets are in agreement with the k-means results in so far as
classes separated by the extent are more reliably classified.
When the number of classes is increased for each separation scheme the associated
classification accuracy decreases, as can be seen in figure 4.8. Increasing the number
of possible labels simultaneously increases the possibility to wrongfully classify a
difficult case by chance. For the manually grouped data-sets, a number of two
different classes naturally exhibits even higher classification scores, while k-means
shows a decrease in overall performance for two labels compared to three. The
classification by extent appears to be more robust towards the addition of classes
with a decrease in total classification accuracy by 13% compared to the decrease by
17% and 24% for the k-means and mode clustered cases, respectively. The number of
labels one should use is highly dependent on the intended use of the assigned labels,
e.g. as first guess for an optimal estimation three distinct labels can already have a
positive impact on further retrievals if otherwise there is no vertical information. On
the other hand, if the geometrical thickness of a cloud should be estimated based
on the texture, the cloud top height has to be known, since in this work extent and
mode are defined as relative parameters. Assuming an exemplary cloud with top
at 800hPa, the texture based geometrical thickness for a case with three distinct
classes can only be estimated with an accuracy of 216hPa. Doubling the amount of
classes changes the probability of assigning the right class to approximately 82% and
increases the accuracy of estimated cloud geometrical thickness to 108hPa.
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Fig. 4.8.: The average classification accuracy for increasing number of possible labels.
Division by the extent in blue, by mode in red and through k-means clustering in
green.

4.5 Impact of Surface Types

In a next step the performance of the classification method was examined for different
kinds of surface types. Certain scenarios may complicate the classification, as a
surface, which is nearly as bright as the clouds, or the inhomogeneity of the surface is
imposing on the retrieved texture parameters. This way, the impact of surface albedo
and surface texture can be studied and the applicability of the method estimated.
The studied scenes are presented in figure 4.9 and situated over the Taklamakan
desert in Asia (green), Greenland (orange) and over the South American rain forest
(purple). This aspect of the study was performed with the 1km resolution and
spectral information of band 17, since no major differences between the resolutions
and spectral channels concerning classification were found. The classification was
performed using a window size of 120km edge length, inter-pixel distance d = 2 and
a radiometric resolution of 64 grey-levels. In figure 4.10 a typical scene from the
individual regions as well as the classification scores into cloud types are presented.
For each surface type an individual random forest was trained.

The overall performance is roughly the same between all surface types, but the
individual classification differs strongly. The vegetated surface has the darkest
albedo and is closest to the ocean case but the classification is the worst of all scenes
with a total classification accuracy of 85.3%. Cloud typing above snowy surface is
slightly better with a prediction accuracy of 86.6% and the performance is the best
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Fig. 4.9.: Arrangement of the studied regions. The studied region of the previous sections
is marked in yellow. Scenes above the desert are from the Taklamakan desert in
Asia, marked in green, and snowy surfaces are taken from orbits over Greenland
(orange). The forest scene is situated over South America (purple).

for the desert case with 88.6%. When looking at the individual classification scores
for each cloud type it stands out that the problematic cloud types depend on the
surface type. For the Taklamakan desert cumulus clouds are often misclassified as
stratocumulus and altostratus and deep convective clouds are mostly interpreted as
altostratus. It should be noted that only 188 cumulus pixel (according to CloudSat)
were apparent in the data and 35% of those were misclassified. Since the test
data set should show similar pixel densities for each type as the training data, one
can assume that the amount of cumulus pixel in the training is too small to be
representative. The overall prediction accuracy of the rain forest scene is the lowest
while the two-dimensional histogram in fig 4.10 does not convey that impression.
The classification over south America has no clear worst cloud type and the lowest
prediction score is archived for altocumulus with an accuracy of 79.6%, which is the
highest minimum out of all surface types. The smaller spread in individual accuracy
is accompanied by overall lower classification scores (the highest score is for cirrus
clouds with 89.0%, while all other scenes have maximum between 94% − 95%).
The lower scores are caused by a misclassification of all cloud types toward deep
convective clouds.
In the case over Greenland, for the human observer ass well as satellite remote
sensing it can be hard to distinguish cloud from the snow covered ground, since the
spectral signature is similar and in thermal infrared the cloud temperature can be
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Fig. 4.10.: Right column: RGB image of typical scenes from the studied regions taken
from the NASA Level-1 Atmosphere Archive & Distribution System Distributed
Active Archive Center at Goddard Space Flight Center (LAADS DAAC https:
//ladsweb.modaps.eosdis.nasa.gov/). Left column: Classification scores of
the cloudy pixels into cloud types. From top to bottom: Desert scene over Asia,
South American rain forest and the snowy landscape of Greenland.
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C1 C2 C3 total
k-means 0.746 0.598 0.648 0.665

desert mode only 0.336 0.762 0.706 0.684
extent only 0.840 0.854 0.849 0.848

k-means 0.746 0.597 0.717 0.694
forest mode only 0.361 0.697 0.601 0.597

extent only 0.819 0.727 0.862 0.807
k-means 0.439 0.690 0.833 0.707

snow mode only 0.176 0.620 0.733 0.648
extent only 0.788 0.856 0.706 0.805

Tab. 4.3.: Classification accuracy of individual classes and total for k-means clustered and
manually clustered data points for the three studied surface types.

close to the surface temperature. Nevertheless, the texture based approach is able to
predict the same cloud type as the active instrument in 86.6% of the measurements.
Here, altostratus, cumulus and deep convective clouds are the most difficult to
identify.

When applying the classification into extents, modes of optical depth and k-means
clusters the surface types show similar results to the previously studied water surface.
A classification into different groups of vertical extent is by far the most successful
with a prediction accuracy between 84.5% (for the desert surface) and 80.5% for the
snowy landscape. The two-dimensional histograms can be found in the Appendix
figure A.8- A.10.

4.6 Conclusions

The purpose of this study was the development of a preprocessor for cloud parameter
retrievals in the O2 A absorption band to support the determination of cloud top
height and cloud optical depth with a priori estimates about the vertical structure
of the clouds. We limited the available spectral channels to the visible and near
infrared to conform with OLCI’s capabilities.
In a first step, we showed that cloud typing into 7 distinct cloud classes based on
textural features could reproduce the cloud classification results of CloudSat’s 2-B
CLDCLASS product to a high degree for scenes over the open ocean. Further, the
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impact of variable parameters for the GLCM was studied, finding that the applied
window size is by far the most important parameter in this scope. Also, the difference
in spatial resolution was considered, only resulting in a variation of classification
results, when the radiometric resolution was high enough, i.e. for a maximum
number of grey-levels greater than 90. This texture based method has the most
difficulties for the classification of cumulus clouds, while all other cloud types are
labelled with comparable precision.
Performance of different spectral bands exhibits only minor changes in the classifica-
tion for MODIS band 1 versus band 17, but the optimal parameter set for band 17
comes with a smaller grey-level co-occurrence matrix by a factor of 4 and smaller
window sizes, thus reducing computational effort greatly. This fact should not be
neglected, since the GLCM analysis is generally slower than other common methods,
like grey-level difference vector and Fourier transform analysis.
Furthermore, we studied the classification of clouds into groups with similar vertical
features based on horizontal structures. Three different schemes of clustering the
relative vertical extent and the mode of optical thickness into groups were applied.
In the process horizontal texture features showed a strong relation towards the
relative extent of a cloud while there seems to be a much weaker connection towards
the distribution of optical depth inside the cloud. The k-means clustering algorithm,
basically giving a mixture of extent and mode clustering, confirmed these findings
by displaying good classification results for classes separated by extent values and
a worse accuracy for classes with differing modes. Therefore, the prediction of the
vertical extent of a cloud based on its horizontal structure is possible, and with a
reduced accuracy, the estimation of the distribution of optical depth can also be
achieved. Increasing the number of clusters yielded a decreasing performance of
classification. For the application the number of groups should depend on the use of
the information and requirements for further processing.
Also the impact of different surface types underlying the cloud scene was studied.
All scenes above land surfaces show a decreased classification accuracy, whether for
cloud typing or classification into defined vertical extents, than in the case above
ocean. Suggesting that the dark, nearly non-reflecting water surface is the ideal
background for the classification method. The bright surfaces of desert and snow
covered ground show cloud typing precision of 88.6% and 86.6% respectively, imply-
ing that the impact of a bright but homogeneous surface on the texture parameters
impairs the method only by a small degree. One possible explanation is the used
spectral region inside the water vapour absorption band. The qualitative comparison
of images from spectral band 1 and 17 demonstrated that in band 17 the contrast of
cloudy parts in the image is enhanced, which is attributed to the influence of water
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vapour absorption at this particular wavelength. Therefore, even if the surface has
a similar brightness to the clouds, the texture features should distinctly different.
However, each surface type had its own individually trained random forest, special-
ized in the observed scenario. Applying a generalized classifier for all types will most
certainly yield worse results.
The forest case has the lowest total prediction accuracy, suggesting that the homo-
geneity of the surface albedo can have a stronger impact on the classification than
the actual magnitude, but this effect has to be studied in more detail to make a
meaningful statement.
The classification into distinct vertical extents is 7%− 10% worse compared to the
water surface, depending on surface type.
Moreover, the influence of solar elevation was not isolated during this study, whereas
all available solar zenith angles did enter into the data set. The effect of solar
elevation should be similar to a change in viewing angle, in so far that the contrast
and the accompanied observed texture may vary with solar zenith angle. A possible
way to improve the classification further, is to train the random forest classifiers for
certain solar zenith angles only.
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5Intercomparison of Cloud
Property Retrievals and
Evaluation of an OLCI Prototype
Algorithm

For the Sentinel 3 series of ESA satellites the MERIS cloud top height retrieval in the
O2 A band is expanded for the Ocean Land Colour Instrument, including the two
additional channels number 14 and 15 alongside the MERIS heritage channels 12
and 13 in the retrieval. Evaluation of the retrieval including the new parametrization
for the cloud vertical extinction profile, introduced in chapter 3, is performed. Focus
is on the quality of cloud top height, mode and extent values compared to the active
instrument Cloud Profiling Radar onboard of CloudSat. As a point of reference a
comparable validation study for the MERIS and AATSR ctp product, based on the
algorithm FAME-C, is presented.

5.1 Cloud Top Pressure Retrieval

The retrieval of cloud top heights by satellite remote sensing is an active field in
the earth observation sciences. Besides the actively sensed cloud top by radar and
lidar, several passive cloud top height retrievals are common, which are based
on different spectral and spatial information. The measurement of the thermal
emission from clouds inside an atmospheric window can be compared to the clear
sky thermal emission, yielding, converted through vertical atmospheric temperature
profiles, a cloud top height. Similarly, the CO2 absorption band around 14µm can
be used to infer the cloud top temperature/pressure/height with the so called CO2

slicing method (Menzel et al., 1983), (Wylie and Menzel, 1999). The techniques,
based on thermal infrared radiation, work well for high clouds but suffer from a
decrease in sensitivity for the lower atmospheric regions. Further, with Raman-
scattering techniques (Joiner et al., 2004) and stereoscopic (Ilanthiryan et al., 1992)
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measurements it is also possible to retrieve information about the cloud top height.
More recently, polarimetric methods (Knibbe et al., 2000) (Buriez et al., 1997) and
the O2-O2 absorption technique (Acarreta et al., 2004) have proven to be capable to
retrieve cloud top heights from remote sensing data. These numerous techniques
differ in their sensitivities as well as spatial and temporal coverage leading to
different strengths and weaknesses. Through evaluation and intercomparison of
cloud data products new insights can be gained.
The O2 A band method is known since the 1960s (Yamamoto and Wark, 1961)
and was since then theoretically studied by various authors: Wu (1985), Fischer
and Grassl (1991), Fischer et al. (1991), O’Brien and Mitchell (1992) and Kuze
and Chance (1994). The first operational cloud top height products with the
O2 A band method were based on Global Ozone Monitoring Experiment (GOME)
(Burrows et al., 1999) and POLarization and Directionality of the Earth’s Reflectances
(POLDER) (Buriez et al., 1997) measurements. For the Medium Resolution Imaging
Spectrometer (MERIS) the Insitute for Space Sciences at the Freie Universität Berlin
developed a cloud top height retrieval making use of MERIS’ O2 A Band channel
(Preusker et al., 2010). The retrieval was further advanced by Carbajal Henken et al.
(2014) towards a synergistic cloud property retrieval, using MERIS and the Advanced
Along-Track Scanning Radiometer (AATSR), called FAME-C (Freie Universität Berlin
AATSR MERIS Cloud). Here, in a first step a Bayesian cloud detection scheme based
on several AATSR and MERIS channels is applied (Hollstein et al., 2015). Next,
AATSR’s near-infrared and visible channels are used to retrieve cloud phase, cloud
optical thickness, and effective radius. In a third step the micro physical and optical
cloud properties are input for two subsequent retrievals were the cloud top height is
computed for MERIS and AATSR separately. Underlying the retrieval is an optimal
estimation with pre-computed look up tables from radiative transfer simulations
with MOMO.

5.2 Validation of FAME-C

Validation of the FAME-C algorithm was performed on a Level 2 product basis,
as part of the project Cloud CCI by ESA, where close to 10 years of processed
ENVISAT data is part of the produced climate data record. As a reference data set
the combined product of CloudSat and CALIPSO 2B-GEOPROF-LIDAR was chosen.
The 2B-GEOPROF-LIDAR provides the number of cloud layers, the vertical resolved
cloud fraction as well as the top and base height of each cloud layer. Additionally,
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the 2B-TAU product of CloudSat is utilized for the detection of unsuited co-locations,
based on the optical depth of individual cloud layers. On one hand, does the O2 A
band method have difficulties when retrieving the cloud top pressure of multi-layer
clouds for dual-layer with τ > 2 (Preusker and Lindstrot, 2009) for the upper layer.
On the other hand, surpasses the sensitivity to hydrometeors of both active sensors
MERIS’ capabilities. Therefore, multi-layer clouds with τup < 2 as well as single-
layer clouds with an optical depth of τ < 1 are excluded from the comparison. The
validation study relies on the years 2006-2009, including 326 cross-sections between
ENVISAT and the A-train were the co-location fulfills additional conditions besides
the cloud filtering:

• spatially, the nearest neighbour for each MERIS pixel is chosen under the
condition that the distance between measurements has to be less than 300 m

• temporally, the maximum offset between both satellite orbits at the point of
cross-section can not be more than 3 minutes to ensure that the cloud scene
has not changed significantly. If during a cross-section the limit for the time
difference is exceeded the valid part of the orbit still enters the validation
study.

• highly reflecting and cold surfaces, such as sea ice and snow covered ground
are a known source of uncertainty for the FAME-C retrieval, for AATSR as well
as MERIS. Unfortunately, the orbits of ENVISAT and the A-train limits cross-
sections to the polar region around 70◦ latitude. Therefore, above average
amounts of snow and ice covered surface would enter the comparison, leading
to a systematic bias for the validation. In order to avoid this problem, only bare
ground and water surface are included. Criterium for the surface cover is the
sea-ice and snow cover flag of FAME-C, which is derived from the atmospheric
reanalysis data ERA-interim.

The methods for AATSR and MERIS retrieve different physical properties of the
cloud. AATSR yields a cloud top temperature, while MERIS measurements result in a
cloud top pressure. For easier comparison, ERA-Interim data by the European Centre
for Medium-Range Weather Forecasts (ECMWF) is used in order to convert both
measurements into heights based on the vertical atmospheric profiles of pressure
and temperature at the respective position and point in time.
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5.2.1 Validation of Cloud Fraction

Validation of the cloud detection algorithm in FAME-C is performed against the verti-
cal resolved cloud fraction (cf) from the combined radar-lidar product 2B-GEOPROF-
LIDAR. Therefore, the highest cloud fraction along the column was compared to the
FAME-C cloud area fraction. As metrics, the probability of detection (POD) as well
as the false alarm rate (FAR) and the Hanssen-Kuiper skill score (KSS) are applied,
which are calculated as:

POD+/− =
n(++)/(−−)

n(++)/(−−) + n(+−)/(−+)

FAR+/− =
n(+−)/(−+)

n(++)/(−−) + n(+−)/(−+)

KSS =
n(++) ∗ n(−−) − n(+−) ∗ n(−+)

(n(++) + n(+−)) ∗ (n(−−) + n(−+))

with n being the frequency of occurrence for an event and the indices denoting if the
measurement of FAME-C and CloudSat/CALIPSO are either positive or negative, i.e.
the number of measurements, where both products mark a measurement as cloudy
is given by the hits n(++) and clear by correct negatives n(−−). The frequency of
disagreement is given by false alarms n(+−) and misses n(−+). The Hanssen-Kuipers
skill score accounts for the random chance of a prediction being right and can take
values between -1 and 1, whereby 0 represents no skill. A value of 1 shows absolute
agreement between reference and prediction and has a POD of 1, while -1 means no
agreement coupled with a FAR of 1.
FAME-C as well as CloudSat provide their cloud fractions as a real number between
0 and 1, that is converted into a discrete state of cloudy and clear with the arbitrary
breakpoint at cf=0.5. The results are summarized in figure 5.1 in form of a 2-
dimensional histogram. The agreement between both sets of measurement for the
cloudy instance is good. In approximately 90% of the cloud flagged measurements of
FAME-C CloudSat also detected a cloud. However, for clear labelled measurements
of FAME-C’s cloud detection, the CloudSat cloud detection agrees in approximately
60%, while in the remaining 40% a cloud was detected by CloudSat. The internal
comparison of Cloud CCI data records found similar results for FAME-C. In the
Product Validation and Intercomparison Report (PVIR)(Stapelberg et al., 2018) of
the Cloud CCI project FAME-C has shown the least amount of clouds in the tropics
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Fig. 5.1.: 2D-histogram of CloudSat/CALIOP cloud fraction compared to FAME-C. The
continuous cloud fractions was discretized into clear ≤ 0.5 < cloudy.

POD FAR KSS
cloudy 0.90 0.10

0.57
clear 0.59 0.41

Tab. 5.1.: Probability of detection, false alarm rate and Hanssen-Kuipers skill score for
FAME-C cloud fraction related to the CloudSat/CALIOP measured cloud fraction.

and at the poles, regarding all participating cloud products.
Combining the PODs and FARs of FAME-C yields a Hanssen-Kuipers skill score of
KSS=0.57, which shows a moderate agreement between products. The KSS as well
as the POD and FAR are summarized in table 5.1.

5.2.2 Validation of Cloud Top Height

Because of the applied restrictions, a total of 17732 co-located measurement for
the AATSR cloud top heights and 7649 for MERIS cloud top heights are found. The
number of MERIS measurements is lower, caused by less converged retrievals in this
region, which could be an effect of low solar elevations, where the O2 A band method
is affected by poor lighting conditions. In figure 5.2 the comparison between FAME-C
MERIS and AATSR cth to CloudSat/CALIOP cth is presented. As accuracy metric the

5.2 Validation of FAME-C 75



Fig. 5.2.: Comparison of FAME-C cth based on AATSR (left) and MERIS (right) measure-
ments with CloudSat/CALIOP combined product 2B-GEOPROF-LIDAR. The mea-
surements have a maximal temporal offset of 3min and optically thin (τ < 1)
single-layer clouds as well as multi-layer clouds with an optically thick upper layer
(τ > 2) were filtered out. Bias and RMSD are in units of [km].

Fig. 5.3.: Comparison of FAME-C cth based on AATSR with CloudSat/CALIOP combined
product 2B-GEOPROF-LIDAR. Left for clouds with an AATSR retrieved height
below 4km and right above 4km. The bias and RMSD calculation is based on the
coloured measurements. Bias and RMSD are in units of [km].

76 Chapter 5 Intercomparison of Cloud Property Retrievals and Evaluation of an OLCI

Prototype Algorithm



Fig. 5.4.: Similar to 5.3, but for MERIS. Left for clouds with an retrieved height below 4km
and right above 6km. The heights between 4km and 6km neglected. Bias and
RMSD are in units of [km].

common measure of bias and the bias corrected root-mean-square deviation (RMSD)
are employed.

BIAS =
∑n
i ȳi − yi
n

(5.1)

RMSD =
∑n
i (ȳi − yi + bias)2

n
(5.2)

Here, ȳ is the reference data set of CloudSat/CALIPSO and y the FAME-C product,
while n is the number of co-located measurements.
The comparison shows, that the bias corrected root-mean-square deviation in cloud
top heights between CloudSat and FAME-C AATSR as well as MERIS is around 2 km,
but the data has next to no bias for AATSR and a bias of bias = 0.54 km for MERIS.
Systematically, FAME-C underestimates cloud top heights with MERIS compared to
active sensor, which is expected considering that active sensors can sense optically
very thin parts of the clouds. The low bias of the AATSR cth is an effect of systematic
over estimation of cth for low clouds paired with and under estimation for high
clouds. Separating the data for low and high clouds reveals information about the
actual biases between retrievals. In figure 5.3 the same comparison is presented, but
separated at a height of 4 km. The considered measurements for bias and RMSD are
coloured, the remaining data points are shown in grey. Here, the small negative bias
of −0.28 km for low clouds (left side) becomes visible, which is due to temperature
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inversions, which may lead to ambiguous conversion of cloud top temperature to
cloud top height. Also, a systematic underestimation of cloud top heights for high
clouds (right side) by 0.77 km is apparent, which can be caused by the emission of
lower cloud layers in the signal.
The same analysis is shown in figure 5.4 for the FAME-C MERIS cth retrieval. In the
case of MERIS the underestimation of cloud top heights by 0.54km (see fig. 5.2) is
caused by an under estimation of cth for low clouds between 0 km and 4 km heights
by 0.74 km (left side, fig 5.4), while for high clouds (right side, fig 5.4) a small
negative bias of bias = −0.24 km is found. The region of cloud top heights from
4 km− 6 km is excluded, because few clouds were retrieved by FAME-C MERIS in
this region.
Overall, both retrievals perform reasonably well and have a similar RMSD as the
MODIS cloud top height products to the CloudSat CPR measurements (Weisz et al.,
2007).

5.3 Evaluation of OLCI Cloud Retrieval

As seen in the sensitivity study in chapter 3, the adapted cloud property retrieval for
OLCI has the potential for additional information in the state vector. However, the
amount of degrees of freedom displays, that more than two independent parameters
can only be retrieved for some select cases, i.e. for low optically thick clouds over
dark surfaces. In this evaluation the importance of vertical information about the
cloud extinction profile for the retrieval algorithm will be analysed by comparing
OLCI measurements to CloudSat CPR data. The previously employed combined radar-
lidar product was not continued after a battery anomaly in 2011, where CloudSat
lost formation with the A-Train for some time and is therefore not available for the
OLCI measurement period. Instead, only CPR measurements are used in the form
of the 2B-GEOPROF product. Suitable cross-sections with the A-Train are even less
frequent for OLCI than for MERIS. Combining less frequent satisfactory cross-sections
and additionally a shorter overlap in measurement period for OLCI and the CPR (3
1/2 year for MERIS and the CPR, while OLCI and the CPR provided measurements
for the same period for 1 1/2 years) makes a pure statistical assessment of OLCI
retrieved cloud properties unfavourable. Therefore, this study will evaluate the OLCI
algorithm in a case study. The investigated cross-section happened on the 12th of
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Fig. 5.5.: Case study area for Sentinel-3A OLCI (blue) and CloudSat CPR (green) cross-
section on 11/06/2016. Main focus of this assessment study is on the region
between latitudes of 77◦ and 77.4◦ (red circle).

June 2016 in the northern hemisphere between the coasts of Norway and Greenland
(see figure 5.5).

5.3.1 Qualitative Analysis of OLCI Cloud Properties

The mean temporal offset between both overpasses is 2min. 27sec. and this part of
the study will focus on the region of the cross-section between latitudes of 77◦ and
77.5◦, highlighted with the red circle in figure 5.5. In this region the a high cloud
fraction with an average optical depth could be found, which is ideal for a first study
of the retrieval.

The considered CPR measurement, presented in figure 5.6, is the layer optical
depth. Cloud top height as well as cloud bottom height as a substitute for the vertical
extent are defined as the first and last layer of a single-layer cloud with an optical
depth τ ≥ 0.1. For the position of the mode, the layer optical depth is approximated
with a beta function to be consistent with the radiative transfer simulations, where
the mode is then given by equation 3.2. The comparison between CloudSat and
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Fig. 5.6.: CloudSat CPR layer optical depth measurement for the studied case between
latitudes of 77◦ and 77.45◦. Height (yellow), bottom (green) and mode (red)
are overlayed. Orange dots mark the OLCI cloud fraction for the scene according
to the right axis. The grey sectors mark areas, where retrieved the optical depth
does not agree according to 5.7.

OLCI data is performed on the basis of absolute positions for extent and mode in
the atmosphere. Describing the vertical extinction profile with relative parameters
is a convenient way for the radiative transfer simulations and build up of the LUT
(absolute values would lead to non rectangular LUT or empty grid points), but carries
no physical information without knowledge of the cloud top pressure. A comparison
with absolute values reveals more information about the performance of the retrieval
concerning the vertical structure of the cloud even when the cloud top pressure
differs. Therefore, the extent will be displayed by the cloud bottom height (cbh).
As a first step in the evaluation, the cloud optical depth from CloudSat is compared

to OLCI’s as shown in fig. 5.7. On one hand, the optical depth retrieval from
an atmospheric window channel is quite reliable and should be consistent with
CloudSat. Therefore, deviations for the optical depth can be an indicator for an error
in the retrieval or a significant change in the observed clouds, which as consequence
could mean that the time between satellite overpasses is too high. On the other hand,
when the OLCI retrieved (green dashed line) cloud optical depth for a measurement
is high, while the total optical depth for CloudSat does not show the same trend
the difference can be an indicator for a saturation of the CPR signal. The CPR has
a high sensitivity to optically thin clouds compared to passive imagers, but also
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Fig. 5.7.: CloudSat (orange circles), MODIS (purple dashed line) and OLCI (green dashed
line) cloud optical depth as retrieved for the studied scene between latitudes of
77◦ and 77.5◦. Grey areas mark a significant difference in COD between OLCI
and A-train measurements.

has problems with retrieving the lower layers of clouds when the cloud optical
depth is too high. In order to separate both cases, MODIS cloud optical depth
(purple dashed line) was included in the comparison and measurements, where
τMODIS ≈ τOLCI � τCloudSat are only compared in cloud top height. There is a
good agreement between OLCI and CloudSat/MODIS cloud optical depth for most
of the scene, except for highlighted areas in grey, where the OLCI retrieval yields
higher values for the cloud optical depth. For each highlighted area the MODIS
and CloudSat cod displays similar features shifted to southern latitudes, giving the
impression of being caused by temporal and/or spatial offset between OLCI and the
A-train. Considering figure 5.6, the first difference around 77.25◦ is likely caused by
the thin cirrus cloud, which moved to slightly higher latitudes between the CloudSat
and OLCI overpasses. Similarly, the second and third area, in which a noticeable
difference can be found, corresponds to the region with broken cloud fields in the
CloudSat data. However, the OLCI cloud detection did yield a cloud fraction of 100%
for those regions, implying that the spatial distribution of the cloud is different in
both measurements. When using MODIS pixel, which are positioned 3km more
westwards, both COD measurements agree better, further supporting the assumption
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ctp ± σctp cod ± σcod ext ± σext moi ± σmoi
1 (CldSat±100) hPa 10±100 0.5±0.5 0.5±0.5
2 (500±500) hPa 10±100 0.5±0.5 0.5±0.5
3 (500±500) hPa 10±100 0.5±0.1 0.5±0.1

Tab. 5.2.: A priori state and error co-variance for the three different cloud top retrievals
based on OLCI measurements.

of a minor offset between cross-sections (see appendix, figure A.7). In the following
qualitative analysis, even areas with diverging cod were included, because they can
yield information if one keeps in mind that the prior state vector as well as the
assumption of a single-layer cloud may be incorrect.
The cloud parameter retrieval for OLCI was performed with three different initiation

conditions in the form of a priori state and a priori error co-variance matrix (details
in table 5.2). In the first case the OLCI retrieval was forced to yield ctp in a range
of 100hPa around the CloudSat ctp (yellow dots in figure 5.6), in order to study
the derivation of cloud vertical extinction profiles, when the cloud top height is
known prior to the retrieval. The retrieved cloud properties can be seen in fig. 5.8
in the top most panel. The number of converged retrievals is generally lower for
the first case compared to the others, which indicates that the measured radiance
of OLCI has no match in the LUT at those exact cloud top heights. The detailed
range in normalized radiance compared to the actual measurements are presented
in the section 5.3.2. However, the retrieval tends to place the cloud top height as
low as possible, within the allowed margin of 100hPa for optically thin clouds. Also,
in the optically thin regime, cloud bottom height fits the CloudSat measurement
well, but the maximum of optical depth is placed to low. In the northern part of
the scene, where the clouds optical depth is larger, the moi well as the cth agree
well with CloudSat, but a higher cloud bottom is retrieved. The impact of the cirrus
cloud, marked by the left grey zone, is clearly visible by a small increase in all three
parameters, due to a retrieval of a mixture of both clouds. The same scene with
different prior assumptions yields figure 5.8(case 2). Here, all 4 parameters were
unrestricted due to a large variance as presented in the second row of tab. 5.2.
Now, the cloud top pressure is clearly underestimated, while the mode is placed
in a similar position to the first case. The extent is found to be 0.3 ≤ ext ≤ 0.5,
whereby the lower values appear for optically thicker clouds, which leads to a higher
cloud bottom height as the CloudSat measurements would suggest. Furthermore,
in the right grey zone a retrieval of cloud properties was successful yielding cloud
properties consistent with the neighbouring soundings.
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Fig. 5.8.: CloudSat CPR layer optical depth measurement for the studied case between
latitudes of 77◦ and 77.5◦. Cloud top height (yellow), bottom (green) and mode
(red) of the OLCI cloud property retrieval are overlayed. The degrees of freedom
for each successful measurement is shown in purple. Top, middle and lower panel
represent different initialization conditions for the retrieval (see tab. 5.2).
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Fig. 5.9.: Relative values for the retrieved extent (left) and mode (right). The blue line (1)
is the CloudSat-like measurement, red (2) is for no restrictions on the state vector
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are caused by non-convergence of the optimal estimation algorithm.

In the last studied case of fig. 5.8(case 3) the mode and extent were fixed to a
value of ext=moi=0.5, simulating a retrieval similar to FAME-C for MERIS with ctp
and cod as primary variables. This particular value was a choice based on the ctp
results of the second case, to force the retrieval towards higher cloud top heights.
The resulting ctp are slightly larger in the optical thin part, compared to the second
case, and even higher for the optically thicker part. The bottom height demonstrates
a better agreement with CloudSat, while the mode is almost the same. Interestingly,
in the middle grey zone, cloud optical depth from OLCI deviates by up to +100%
towards the reference, but the agreement in the other cloud properties is the best
for the considered sector in all three retrieval runs.
The degrees of freedom for all three cases are nearly constant at ds = 2 , i.e. two
independent parameters can be retrieved, whereby one degree of freedom is needed
for the retrieval of cloud optical depth leaving one for a combination of ctp, ext and
moi. A consequence of the under determined retrieval is, that the optimal estimation
approach settles at or near the a priori state. During the iteration to find the optimal
state vector, the step direction is given by the largest gradient in the look up table
scaled with the error co-variance matrix (see equation 2.21). As shown in chapter
3, the highest gradient is often along the dimension of cloud top pressure, which is
then the direction of preference for the optimal estimation to find a suitable state.
Coupled with the amplified ambiguity caused by the additional parameters, the
possibility of accomplishing the convergence criterium without the need to vary
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extent and mode is increased, which is why the algorithm retrieves a state more often
around the a priori values of ext and moi. This becomes clearer, when comparing the
dynamic range of extent and mode for the three studied OLCI retrieval runs. The
relative values of mode and extent for all retrieval runs are presented in fig. 5.9.
Here, gaps in the graphs are caused by non converged retrievals as well as cloud
free measurements. Case 3, where mode and extent should be constant behaves
as intended and shows only minor adjustments in both values. However, when
appointing a cloud top height (case 1, blue line) to the retrieval, mode and extent
are varied considerably between values of 0.35 and 0.8 for the extent and 0.5 and
0.9 for the mode. Contrary, without constraints, both parameters associated with the
vertical extinction profile show smaller variations over the scene. Here, the extent
varies between 0.25 and 0.45, while the mode takes values between 0.49 and 0.76. It
is noticeable, that in case 2 both parameters show low variations for the part of the
scene with optically thin clouds (south of 77.4◦), which increases with the optical
depth. In order to obtain cloud vertical extinction profiles through passive remote
sensing the amount of information entering the retrieval has to be increased, either
by including additional radiation measurements from different spectral regions,
e.g. infrared radiation, as used for cloud top temperature retrievals, is a likely
candidate due to its different absorption behaviour in water clouds or by appointing
cloud top pressure and cloud optical depth beforehand as prior knowledge from an
independent instruments’ cloud retrieval based on a different technique. For OLCI
SLSTR would be a likely candidate.

5.3.2 Points of Non-Convergence

In the following the measurements of figure 5.8 (top panel), where no convergence
is achieved will be studied in more detail. As mentioned before, the fact that the re-
trieval did not converge indicates, that the associated combination of radiances from
channels 12-15, for these particular viewing geometries, solar elevation and surface
characteristics, is absent in the look up table. Therefore, the cloud parameters, with
the cloud top height taken from CloudSat measurements and the optical depth from
the MODIS retrieval, are used as input in the forward operator, an n-dimensional
interpolation in the look up table. In figure 5.10 the studied scene is presented, with
converged and not converged measurements as yellow and red circles, respectively.
Below, each channel radiance is given by coloured circles representing the measured
values, which are normalized by the solar constant, while the blue area marks the
possible spread in radiance of the forward model. The spread is achieved by running
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the forward model with the brightest and darkest configuration for this particular
cloud top height and optical depth, i.e. with ext=moi=0.1 and ext=moi=0.9. High
values are related to an idealized cloud with next to no geometrical extent, which
reduces penetration depth and yields higher TOA radiances as the counterpart with
ext=moi=0.9, where the cloud is spread over the whole remaining atmosphere and
the optical depth is concentrated on the bottom. Measurements without conver-
gence outside of the marked grey areas are most likely associated with cloud free
atmosphere at the time of OLCI’s overpass and will not be further discussed here.
The impact of the different forward model runs is visible in channel 13, which has
the highest sensitivity towards the cloud parameters, while channel 14 and channel
15 exhibit smaller/no changes in TOA radiance with changing cloud vertical profile.
Considering only the red circles in the grey areas, the non-converged measurements
can be attributed solely to channel 13, where the measured radiance is lower than
simulated. The overestimation of radiance in this case can have several causes. On
one hand it can be an artefact caused by the offset between satellite overpasses,
leading to forcible retrieval of a wrong cloud top pressure. On the other hand if the
applied distribution of optical depth with a beta function is fundamentally wrong
for those particular points, no suitable radiance will be found in the look up table.
The region with the cirrus cloud is explained by the first scenario, where the offset
between measurements forces the retrieval to detect a cloud top height, which does
not match the signal, because of outdated CloudSat information. Nevertheless, even
without offset the thin cirrus on top of the cloud would be a problem, because ctp
measurements of multi-layer clouds, without a method to detect those beforehand,
is problematic for passive imagery and in this particular retrieval has not been
considered in the underlying radiative transfer simulations.
Also, the impact of the optical depth on the spread of the forward model is apparent,
insofar as for optically thicker clouds the sensitivity to geometrical extent and dis-
tribution of optical depth increases, i.e. for optically thin clouds no impact on the
vertical extinction profile can be detected.

5.3.3 Quantitative Evaluation of Cloud Properties

Additionally, the deviations between OLCI and CloudSat measurements was quan-
tified for the complete cross-section as shown in fig 5.11. For the reminder of the
comparison co-locations are excluded if either a multi-layer cloud, as indicated by
CloudSat, is present or the difference in retrieved cloud optical depth exceeds 10%
of τolci or ∆τ = 1, whichever is larger. The associated results are summarized in
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Fig. 5.10.: Studied cloud scene with retrieved cloud top height (first panel). Normalized
radiance for the Channels 12 (second panel), 13 (third panel), 14 (fourth panel)
and 15 (last panel) of the OLCI retrieval forced to mirror CloudSat cloud top
heights. The blue area represents the possible spread in the LUT’s by variation of
the mode and extent. Converged measurements are presented in yellow, while
not converged ones are marked in red. Not converged measurements outside
the grey zones correspond to cloud free soundings.

5.3 Evaluation of OLCI Cloud Retrieval 87



70 72 74 76 78 80
latitude [ ]

0

1

2

3

4

5

6

7

8
he

ig
ht

 [k
m

]

Fig. 5.11.: Layer optical depth of CloudSat for the entire cross-section with OLCI on the
12th of June 2016.

fig. 5.12. The case number refers to tab. 5.2, as for the qualitative analysis. Case 1
naturally shows the best agreement with CloudSat for the cloud top height, since the
CloudSat measurement was used in the a priori state. However, cloud bottom height
and position of the mode of optical depth also demonstrate the lowest root-mean-
square deviation of all cases. However, including the CloudSat cloud top height
in the prior state vector leads to the largest bias of all bottom heights and modes.
In case 2, the agreement between measurements decreases, especially for cloud
top height, where rmsd = 1.26km and bias = −0.38km, i.e. without constraints
the cloud top height is underestimated for this case. For cloud bottom height and
mode position, the mean difference compared to CloudSat is at 1.50km and 1.52km,
respectively. In this scenario the extent is systematically overestimated by 0.21km,
while the mode has a small bias of −0.03km. In case 3, cloud top height has a similar
agreement with a rmsd of 1.27km, but the top of the cloud is systematically placed
0.32km lower in the OLCI retrieval. Extent and mode have the same values in rmsd
and bias as in case 2.
Comparing case 2 & 3 with the FAME-C validation of the MERIS cth product, shows
a clear improvement in mean difference as well as bias. However, it has to be noted
that the underlying number of data points going into each comparison is significantly
different. Only clouds with a cloud top between 2km and 8km were present in the
evaluation, and most of them had a cloud bottom height below 2km. Especially high
and optically thin clouds were sparse in this study, which is considered to be one of
the more problematic cloud scenarios for the O2 A band method.
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Fig. 5.12.: Comparison of heights for cloud top (left), bottom(middle) and mode(right)
between CloudSat and OLCI for three different OLCI retrieval runs.
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5.4 Conclusion

In this study the cloud fraction as well as the cloud top height of the FAME-C retrieval
by Carbajal Henken et al. (2014) was compared to the CloudSat/CALIOP based
2B-GEOPROF-LIDAR product. Due to the orbital cross-sections of the participating
satellites, the study was limited to cross-sections north of 60◦ latitudes with all its
problems like low solar elevation and snow/ice. The evaluation of cloud fraction
revealed, that FAME-C’s cloud detection misses around 40% of the clouds, which are
detected by the active instruments, but has a low number of falsely classified clouds.
Further, the comparison of cloud top heights for the FAME-C MERIS as well as AATSR
revealed a mean difference for both instruments of around 2 km, with a small bias of
540m for the MERIS based retrieval. Also, when breaking down the comparison into
low and high clouds, contrary offsets could be found for each regime. AATSR has
shown to overestimate low clouds, while underestimating high clouds and MERIS
vice versa.
For a first indication of performance, the evaluation of the adapted cloud top height
retrieval for the MERIS successor OLCI against CloudSat only products was carried
out. Due to sparse cross-sections between Sentinel-3A and CloudSat the study
focused on a single overlap in the North Atlantic ocean. Difference in both measure-
ments could be found, that are attributed to temporal and spatial offset between
measurement, which was considered during the interpretation of the results.
Qualitative analysis of the cross-section revealed, that a higher cloud optical depth
increases the quality of the retrieved cloud parameters, by decreasing signal contami-
nation by the surface and increasing the sensitivity to cloud properties. Furthermore,
cloud top pressure is systematically underestimated, if the retrieval is not forced
to yield a comparable cloud top heights to CloudSat. However, if the cloud top
height is forced onto a certain value the retrieval of the cloud vertical extinction
profile improves. Detailed inspection of the cloud vertical extent and mode during
the retrieval showed, that the algorithm tends to be modest when varying these
parameters, except when those are the only variables available. Extent and mode of
optical depth show a similar mean deviation to the CloudSat measurements as the
cloud top height.
Measurements that had no successful convergence in the retrieval were studied by
employing the retrievals forward model. It was found, that those data points exhibit
smaller top of atmosphere radiances in channel 13 than previously simulated, which
can be an indicator of insufficient model for the distribution of optical depth inside
the cloud for this particular scene.
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Comparing the evaluation results of OLCI to FAME-C an improvement in the mean
difference and systematic bias of cloud top height can be noted. Further improve-
ments, like the optimization of the distribution of optical depth, are promising to
increase the agreement between OLCI and active instruments. Because of the lack of
information content in the measurement, the OLCI retrieval technique may better
suited as a vertical profile retrieval with the cloud top height as auxiliary parameter
taken from a independent instrument with a different retrieval technique like SLSTR.
Otherwise, the amount of information has to be increased by adding radiative mea-
surements in other spectral regions, which is of interest for further studies regarding
the O2 A band technique.
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6Validation of CC4CL Top of
Atmosphere Fluxes

The retrieval of radiative fluxes is a field in remote sensing with high requirements
towards accuracy. The absolute value of the imbalance in energy flux can be as small
as the uncertainties of the retrieval technique, as seen in section 1.1. The radiative
flux is defined as the integral over the amount of power, which is radiated through
an area. In case of the atmospheric radiative flux two quantities are of interest, the
incoming solar flux measured at the top and bottom of atmosphere, yielding the
amount of absorbed energy in the atmosphere and the upward directed radiative
flux yielding the outgoing energy.
Satellite remote sensing measurements are normally limited to one instrument with a
well-defined viewing direction. If the radiance would be independent of the viewing
geometry, the radiative flux would be represented by a single measurement from
an arbitrary viewing direction. However, atmospheric and surface scattering creates
directions of preference, thus rendering the direct measurement of the radiative
flux technically impossible. This so called anisotropy of irradiance is the desired
quantity, to transform a point measurement into a flux. Different techniques have
been developed to retrieve the radiative flux at the top of atmosphere. In this study
the TOA short- and longwave flux products of the Cloud CCI project are validated
against fluxes derived by the Clouds and the Earth’s Radiant Energy System (CERES).
The presented results are also part of the "Validation Report (VAL) - CC4CL TOA
FLUX" for Cloud CCI, at: http://www.esa-cloud-cci.org/?q=documentation

6.1 CERES

CERES is a broadband radiometer operated by NASA on-board the polar orbiting
science satellites Terra (EOS-AM) & Aqua (EOS-PM). CERES measures the radiation
leaving the earth at the top of atmosphere. Its biaxial scan mode provides angular
flux information, which is used to determine the outgoing short- and longwave flux
on a global scale. CERES measures radiation in three different channels, a shortwave
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channel to measure reflected sunlight, a longwave channel to measure Earth-emitted
thermal radiation in the 8-12 µm "window" region, and a total channel to measure
all wavelengths of radiation. In this study the SSF1deg (single scanner footprint,
1◦ x 1◦ resolution) Edition 4 product of CERES Aqua is used, containing diurnally
corrected monthly averages of radiative fluxes at the top of atmosphere, as well as
the SSF (single scanner footprint) level 2 product for individual scene studies. In
the following the short wave and longwave fluxes will be compared to MODIS Aqua
based fluxes retrieved with CC4CL.

6.2 CC4CL & BUGSrad

The Community Cloud retrieval for Climate (CC4CL, Sus et al. (2017);McGarragh
et al. (2017))is part of the Cloud CCI project for the creation of a Thematic Climate
Data Record (TCDR). CC4CL is a community code used to retrieve cloud properties
from AVHRR, MODIS and (A)ATSR/SLSTR measurements. The cloud and aerosol
properties in CC4CL are derived by the Optimal Retrieval of Aerosol and Cloud
(ORAC (Thomas et al., 2009)). Cloud and aerosol retrievals are radiatively consistent
inside CC4CL, through the simultaneous retrieval of all properties using all available
instrument channels. In a post processing step the cloud and aerosol information is
used to run the BUGSrad algorithm (Stephens et al., 2001).
BUGSrad is a radiative transfer model assuming a plane-parallel atmosphere with a
two-stream approximation and a correlated-k distribution for atmospheric absorption
coefficients. It was initially developed for the use in a community base atmosphere
model (CAM) (Collins et al., 2004). BUGSrad uses the information about cloud and
aerosols together with auxiliary data containing visible and near infrared surface
albedo and surface temperature, vertical profiles of temperature, humidity and ozone
and more (for a full list consult the Algorithm theoretical basis document ATBD,
Christensen et al. (2016)), to compute the broadband top and bottom of atmosphere
radiative flux.

6.3 Point Spread Function

The CERES footprint is defined by the point spread function (PSF), which describes
the CERES instruments response to the radiation field. The PSF is defined in angular
space, which leads to a constant field of view in angular space of 1.3◦ along-track and
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Fig. 6.1.: CERES field of view. δ′ is the along-scan angle, β the cross-scan angle and indices
f and b denote the forward and backward boundaries. From Green and Wielicki
(1997).

2.6◦ cross-track, which varies in surface area. The CERES footprint has an elliptic
form with a size of 32km (along track) and 31km (across track) at nadir for EOS
Aqua and Terra, which corresponds to an equivalent area circle with a diameter
of 32km (Green and Wielicki, 1997). For a viewing angle of θ = 70◦ the footprint
already has a size of 328km × 82km. In order to compare MODIS pixel based TOA
fluxes with CERES derived fluxes the PSF has to be considered, during the averaging
of the high resolved data.
The field of view is presented in fig 6.1. Here, δ′ is the along-scan angle, β the
cross-scan angle and indices f and b denote the forward and backward boundaries,
respectively. With these definitions for the FOV the PSF can be written as:

P (δ′, β) =



0, ‖β‖ > 2a

0, δ′ < δ′f (β)

F [δ′ − δ′f (β)], δ′f (β) ≤ δ′ ≤ δ′b(β)

F [δ′ − δ′f (β)]− F [δ′ − δ′b(β)], otherwise

(6.1)

with the function F being an exponential polynomial (for further details consult
the source material (Green and Wielicki, 1997)). Since CERES and MODIS share
the same satellite the along and across scan angles can be easily calculated for
each imager pixel, followed by the associated PSF. If an imager pixel is inside a
CERES footprint, can be evaluated by testing the PSF against the 95%-energy PSF
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of CERES (footprint of the size that 95% of radiative energy is considered). If
P (δ′, β)imager ≥ P95% an imager pixel is within the CERES footprint and will enter
the weighted sum:

x̄ =
∑
i,j wijxij∑
i,j wij

, (6.2)

whereby x is the parameter from the imager data, that should be averaged over
the CERES footprint and w is the discrete weight given by the PSF. Normally this
equation would be an integral over the FOV, but the spatial resolution of an imager
creates a discrete field of values to be averaged and the integral can be converted
to a sum, where the weight depends on the cross-scan and along-scan angle. The
number of discreet weights depends hereby on the spatial resolution of the imager.

6.4 Shortwave and Longwave TOA Annual Means

The comparison of TOA fluxes between CERES and CC4CL was performed on an
annual level for the year 2008. The monthly means from the SSF1deg product
were averaged and spatially interpolated on a 0.5°x 0.5° grid to accommodate the
CC4CL resolution. Also, a diurnal cycle correction was applied to the CC4CL data,
which is based on diurnal TOA flux cycles observed with the Geostationary Earth
Radiation Budget instrument (GERB), in the form of correction factors to mimic
a 24h sampling (from personal correspondence with Martin Stengel). Individual
correction factors were applied for either clear sky (not part of this study) or all-sky
measurements, separated again into measurements over land and sea. The values
for each correction factor are shown in table 6.1. The presented values are only
valid for equator crossing times similar to the Aqua satellite at 1:30 p.m: Figure 6.2
shows the shortwave outgoing TOA flux of CERES as well as CC4CL. The left column
shows the CC4CL product with diurnal cycle correction, the right one without. Top
row is the ESA CCI product derived with CC4CL, in the middle the CERES product
and the last row shows the difference between both data sets as Cloud CCI – CERES.
When the ESA CCI product is not diurnally cycle corrected, the SW flux estimates are

all-sky land sea
shortwave 0.668 0.795
longwave 0.987 0.998

Tab. 6.1.: All-sky correction factor for short- and longwave to account for the diurnal cycle
in TOA flux (personal correspondence with Martin Stengel).

96 Chapter 6 Validation of CC4CL Top of Atmosphere Fluxes



Fig. 6.2.: Shortwave TOA flux comparison for the annual averages of 2008: On the right
column are diurnally corrected flux estimates, on the left without correction.
From top to bottom are shown the: (1) Cloud CCI MODIS product (2) CERES
SSF1deg (3) Cloud CCI MODIS – CERES SSF1deg.
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more than 100W/m2 higher than the retrieved flux from CERES. An overestimation
of the annual shortwave flux is not surprising since the MODIS Aqua measurements
take place at 1:30 pm local time, near the maximum of short wave flux during a
day and are not representative of an average daily flux. Applying the diurnal cycle
correction produces a better agreement between the ESA CCI product and CERES.
The difference Cloud CCI – CERES is within mostly within 20W/m2 globally, except
for a region in central Asia, where the difference in flux still exceeds 100 W/m2.
While the difference between both products is characterized by a positive bias in the
northern hemisphere and a small negative bias over land in the southern hemisphere,
regions with high temporal snow coverage e.g. Greenland and the Antarctic show
a large negative bias. Comparisons between ESA CCI and CERES longwave TOA
flux show similar patterns globally (fig. 6.3) and with a difference of up to 25W/m2.
The diurnal cycle correction as only a small impact on the flux, since the correction
factors are close to 1, because the dynamic range of the longwave flux is rather
small in comparison to its absolute values. While the uncorrected flux shows positive
biases over Africa, South America and the Antarctic, applying the diurnal cycle
correction almost removes those features completely. In the longwave regime the
ESA CCI product derives smaller TOA fluxes on a global scale as produced by the
CERES SSF1deg data set.
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Fig. 6.3.: Longwave TOA flux comparison for the annual averages of 2008: On the right
column are diurnally corrected flux estimates, on the left without correction.
From top to bottom are shown the: (1) Cloud CCI MODIS product (2) CERES
SSF1deg (3) Cloud CCI MODIS – CERES SSF1deg.
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# surface type
1 evergreen needleleaf forest
2 evergreen broadleaf forest
3 deciduous needleleaf forest
4 deciduous broadleaf forest
5 mixed forest
6 mixed shrubland/grassland
7 shrubland
8 wooded tundra
9 savanna

10 grassland
11 wetland
12 cropland and pasture
13 urban and built-up land
14 cropland/grassland mosaic
15 snow/ice
16 barren or sparsely vegetated
17 water bodies
18 mixed tundra

Tab. 6.2.: Surface types as used in the CERES retrieval. Surface types 1-17 correspond to
those defined by the INternational Geopshere-Biosphere Programme (IGBP)

6.5 TOA Instantaneous Shortwave and Longwave
Fluxes

In order to compare the instantaneous short- and longwave fluxes two case studies
were performed: One MODIS granule from the 20th of February 2008 over Greenland
(see figure 6.4) and another from the 20th of March 2008 above central Africa (fig.
6.5). The collocation was performed according to section 6.3. The scatter plots in
figure 6.4 (left column) show a high correlation between the CERES and ESA CCI
with a Pearson correlation coefficient of 0.93 for the short- and longwave fluxes.
Colourized are the surface types used by CERES as an indicator if any type of surface
causes a systematic bias between both products (see table 6.2 for definitions). In the
middle and right column of figure 6.4 the ESA CCI flux and the difference of ESA
CCI-CERES are depicted. Here, BUGSrad refers to the used radiative transfer model
in the CC4CL retrieval of ESA CCI. As seen in comparison of the annual average,
the shortwave TOA flux of ESA CCI is smaller than the retrieved flux from CERES
for snow covered ground. In the longwave regime the scene shows a prominent
positive bias towards CERES in the inner part of Greenland, while the longwave
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Fig. 6.4.: Shortwave TOA flux comparison between ESA CCI and CERES SSF. The presented
scene is from the 20th of February 2008, covering the southern part of Greenland.

radiative flux from coastal regions and the surrounding water bodies is lower in
the ESA CCI product. In the case of central African scene in figure 6.5, the Pearson
correlation coefficients are also high with c = 0.98 for the shortwave and c = 0.99 in
the longwave. The bias between both products is for the shortwave at 17.15 W/m2

and for the longwave −7.61 W/m2. The shortwave retrieval shows a positive bias
for most of the MODIS granule, with a strong negative bias in the upper left corner.
Looking into the cloud parameters going in the CC4CL retrieval the negative bias
coincides with ice-particle clouds. Due to a bug in the LUT’s of the cloud product
the MODIS Aqua cloud retrieval of ESA CCI yields on average higher cloud effective
radii for ice particles as MODIS collection 6 (see Cloud CCI PVIR, Stapelberg et al.
(2018): figure 4-62), altering the radiative properties of the cloud and therefore
will cause deviations from the CERES product. In the longwave regime the retrieval
yields lower values as CERES, agreeing with the comparison of the annual averages.
In both scenes no specific surface type correlates with the found differences in top of
atmosphere flux.
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Fig. 6.5.: Shortwave TOA flux comparison between ESA CCI and CERES SSF. The presented
scene is from the 20th of March 2008, above central Africa.
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6.6 Summary

In this study, the ESA CCI TOA short- and longwave flux was compared to the CERES
derived values. The annual average of 2008 did show a large positive bias for most
of the globe, with the exception of the Antarctic were a negative bias could be found.
Longwave flux on the other hand are globally dominated by a slight negative bias.
However, applying the simple diurnal cycle correction reduces the bias considerably
for the shortwave flux, while the longwave flux impacted less. After the correction,
the difference in shortwave flux is mostly within 20W/m2, whereby the CC4CL
based flux retrieval yields consistently lower values for regions with a high temporal
snow/ice coverage.
Instantaneous flux retrievals did show a similar behaviour. In the inland of Greenland
the shortwave flux was underestimated compared to CERES, while the longwave
flux was overestimated in this region. For the central African case the shortwave
mainly showed a larger flux as CERES, except in the north-western part of the scene,
where a high coverage of ice clouds was apparent. An error in the underlying cloud
retrievals LUT at the time of this study, yielded higher cloud effective radii, which
then affects the retrieved TOA shortwave flux. Longwave flux correlates well with
the annual comparison, insofar as that the flux is underestimated for the ESA CCI
retrieval.
Overall, the ESA CCI retrieval produces TOA flux values which deviate strongly from
the CERES retrieved values by up to ±10%.
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7Summary & Outlook

The impact on cloud vertical extinction profiles and cloud extent on the retrieval
of cloud top pressure with the O2 A band method are known for more than 20
years (Fischer and Grassl, 1991). Also in climate models the respresentation of
vertical distribution of clouds in the atmosphere has proven to be a large source of
error, which is strongly evaluated in the last years due to the data provided by the
CloudSat and CALIPSO missions (Stein et al. (2015), Bodas-Salcedo et al. (2011),
Naud et al. (2010)). While the active instruments inherently provide vertical profiles
of the atmosphere, it is not as easy to retrieve the vertical structure of the cloud
from passive instruments measurents in the O2 A band. Various studies employing
different instrumental possibilities have been performed in order to improve cloud
property retrievals. Sanghavi et al. (2015) and Richardson et al. (2018) make use of
hyperspectral measurements in the O2 A band with the Orbiting Carbon Observatory-
2 (OCO-2), when retrieving cloud properties. In their works the different strengths
of the individual absorption lines is used, in order to better determine cloud top
pressure and vertical extent and optical depth. Ferlay et al. (2010) made use of the
multidirectional measurements of POLDER-3/PARASOL in order to derive a cloud
vertical extent, which lead combined with their findings that the retrieved cloud
pressure corresponds well with the cloud middle to an improved cloud top pressure
retrieval. This work focused on including cloud vertical extinction profiles into the
established method of the O2 A band retrieval for cloud top heights. The main
questions to be investigated were:

• the impact of cloud vertical profiles on the quality of cloud top heights.

• the possibility of an expansion of the well-known retrieval towards the deriva-
tion of simultaneous cloud top height, cloud optical depth and cloud vertical
profile through the use of additional spectral measurements in the O2 A band,
as featured by the Ocean and Land Colour Instrument on board of the European
Space Agencies satellite series Sentinel-3.
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• the support of such a retrieval by providing a priori information by other
means.

Therefore, a sensitivity study based on radiative transfer simulations was performed,
using a parametrized representation of the cloud vertical extent based on the ge-
ometrical thickness and distribution of cloud optical depth. The study revealed,
that the sensitivity of the top of atmosphere signal, given by the channel ratios
between absorption channel and atmospheric window channel, towards the vertical
extinction profile is similar to the sensitivity towards the cloud top pressure and
when not included in the underlying model is the largest source of uncertainty for
the retrieval.
However, an analysis of the degrees of freedom for the optimal estimation based
retrieval revealed, for most cloud scenarios two independent parameters can be
determined by the information from all four OLCI channels. One of these degrees of
freedom has to be used for the cloud optical depth, leaving one for a combination of
cloud top pressure, extent and mode.
In a next step, a pre-processor was developed to support the proposed cloud prop-
erty retrieval with a priori knowledge of the cloud vertical extinction profile. The
approach uses texture analysis of a cloudy pixel’s vicinity based on a single band
radiance. A random forest classifier then assigns a class label based on the calcu-
lated texture parameters. This method was able to reproduce CloudSat based cloud
classification to a high degree as well as assign labels, based on discrete values of
cloud vertical extent or mode, to clouds. The applied technique is elementary, since
the classification is based on the texture parameters of a single spectral channel
only. Also, the studied spectral bands were limited to the visible and near infrared
spectrum to mimic OLCI’s capabilities. A more advanced technique including the
combination of several spectral channels as well as raw radiances might lead to
further improvements.
Evaluation of the OLCI cloud property retrieval with CloudSat measurements sup-
ported the results of the previous studies. In three variants of the OLCI retrieval the
least agreement with CloudSat for mode, cloud top and bottom height was achieved
when none of the parameters was confined. The best results were achieved, when
the cloud top height, through the a priori state, was forced to yield CloudSat like
values. However, an overall improvement between the agreement of CloudSat and
the O2 A band method could be seen when comparing the results of the FAME-C
MERIS retrieval with OLCI. The amount of data points for OLCI are not comparable
with MERIS’ amount of data, though the better agreement indicates that the inclu-
sion of vertical profile, combined with the additional absorption channels, yields an
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improvement in the cloud top height derivation. Therefore, further studies have to
be performed to better quantify the influence of the retrieval modifications.
In the end, a validation study for the ESA Climate Change Initiative Cloud (CCI
Cloud) top of atmosphere radiative flux product is presented. As reference data
set the Clouds and the Earth’s Radiant Energy System (CERES) was used. The
flux retrieval algorithm is part of the Community Code for Climate (CC4CL). The
comparison of annual global flux estimates pointed out, that the derived shortwave
fluxes are underestimated over snowy surfaces, while globally the flux is slighty
overestimated. Longwave fluxes are generally underestimated in CC4CL. Instan-
taneous flux estimates showed differences in the bias corrected root-mean-square
deviation by up to 35W/m2 in the shortwave and 8.5W/m2 in the longwave regime.
Especially, snow covered surfaces lead to an overestimation of the longwave flux in
the instantaneous data set. Overall, the annual averages show good agreement with
CERES, reproducing the spatial distribution well. However, the instantaneous fluxes
show large deviations in some cases. At least part of the deviations are originating
from the differently retrieved cloud properties underlying the fluxes, showing clearly
that there is still a need to improve cloud property retrievals in order to ensure
accurate radiative flux retrievals.
A possibility for the improvement of cloud data products is a synergistic retrieval
using OLCI and SLSTR similar to the FAME-C algorithm of Carbajal Henken et al.
(2013). Here, either the cloud top height retrieved with SLSTR could be used as an
input parameter of the OLCI retrieval, effectively fixing this parameter in the further
calculation in order to retrieve only information about the vertical extinction profile.
Another approach could be to integrate the SLSTR channels, performing a simulta-
neous retrieval of cloud top height, optical depth and vertical extinction profile. A
well performing cloud property retrieval for the Sentinel-3 series instruments will
yield a high temporal and spatial coverage with the four planned similar satellites
in orbit at the same time, furthering our understanding of the processes in Earth’s
atmosphere.
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Fig. A.1.: Sensitivities of TOA radiances depending on the vertical distribution of cloud
optical depth for a cloud with ctp = 700hPa, τ = 10, an vertical extent ext = 200
and an underlying surface albedo of α = 0.02 for channel ratios 13/12 (left),
14/12 (middle) and 15/12 (right).

Fig. A.2.: Sensitivities of TOA radiances depending on the vertical distribution of cloud
optical depth for a cloud with ctp = 700hPa, τ = 10, an vertical extent ext = 200
and an underlying surface albedo of α = 0.6 for channel ratios 13/12 (left),
14/12 (middle) and 15/12 (right).
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Fig. A.3.: Sensitivities of TOA radiances depending on the vertical extent of a cloud with
ctp = 700hPa, τ = 10, an mode of moi = 0.6 and an underlying surface albedo
of α = 0.02 for channel ratios 13/12 (left), 14/12 (middle) and 15/12 (right).
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Fig. A.4.: Sensitivities of TOA radiances depending on the vertical extent of a cloud with
ctp = 700hPa, τ = 10, an mode of moi = 0.6 and an underlying surface albedo
of α = 0.6 for channel ratios 13/12 (left), 14/12 (middle) and 15/12 (right).
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Fig. A.5.: Sensitivities of TOA radiances depending on the vertical distribution of cloud
optical depth for a cloud with ctp = 200hPa, τ = 10, an vertical extent ext = 200
and an underlying surface with α = 0.02 (left) and α = 0.6 (right).
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Fig. A.6.: Degrees of freedom for a measurement of a cloud with τ = 100 and surface
albedo α = 0.01 depending on the central wavelength of the OLCI channels as
well as the cloud top pressure. The degree of freedom is presented for different
combinations of cloud vertical extent and mode of optical depth.
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Fig. A.7.: CloudSat (orange circles), MODIS (purple dashed line) and OLCI (green dashed
line) cloud optical depth as retrieved for the studied scene between latitudes of
77◦ and 77.5◦. Here, the compared MODIS pixel is shifted by 3km westwards.
Grey areas mark a significant difference in COD between OLCI and A-train for the
unshifted case.

k-means mode extent

Fig. A.8.: 2-D histograms of classification into groups seperated by k-means clustering
(left), mode (middle) and extent(right) for scenes above snow covered surface.
Presented is the classification accuracy of each class.
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k-means mode extent

Fig. A.9.: 2-D histograms of classification into groups seperated by k-means clustering (left),
mode (middle) and extent(right) for scenes above vegetated surface. Presented
is the classification accuracy of each class.

k-means mode extent

Fig. A.10.: 2-D histograms of classification into groups seperated by k-means clustering
(left), mode (middle) and extent(right) for scenes above desert surface. Pre-
sented is the classification accuracy of each class.
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