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Abstract

Structural variations (SVs) are a phenomenon that have a tremendous impact on
all species. SVs are the result of fundamental rearrangement mechanisms but can
lead to severe human diseases like cancer. Rearrangement events also provide means
that enable bacteria to adapt to environmental pressures where they can also hap-
pen across species boundaries in events called horizontal gene transfer (HGT). The
incorporation of foreign genes from a donor into an acceptor genome can be inves-
tigated on the genomic level, the activity and protein expression changes, however,
are better revealed on the proteomic level.

This thesis contributes four computational methods for the detection of complex
SVs of various types and sizes including HGT events from genomic next-generation
sequencing (NGS) data and proteomic shotgun mass-spectrometry (MS) data. Con-
cerning HGT events, our methods address the questions of what organisms are
involved in the transfer, what genes are exactly transferred and to what position,
and what are the implications on proteomic level.

First, we present the generic SV detection tool Gustaf. Gustaf improves the size
and type resolution compared to previous SV detection methods. A further specific
advantage is the characterisation of translocations and dispersed duplications as a
combination of simple, delocalised variants that have to be inferred from separate SV
calls. With this basis for a more in-depth focus on HGT detection, we developed two
mapping-based methods, Daisy and DaisyGPS. Daisy facilitates Gustaf and further
SV detection strategies to precisely identify the transferred region within the donor
and its insertion site in the acceptor genome. DaisyGPS uses metagenomic profiling
strategies to identify suitable acceptor and donor references. In contrast to previous
approaches based on sequence composition patterns or phylogenetic disagreements,
our methods provide a detection based on sequence comparison and hence offer novel
means of evidence. In the last project, we present a method for HGT detection,
called Hortense, that is based on proteomic MS data. Hortense extends a standard
database peptide search with a thorough cross-validation to ensure HGT properties,
and is the first dedicated proteomics HGT detection method. Results from Hortense
can also serve as supporting evidence and functional confirmation for HGT events
proposed by our genomic-based methods. Taken together, the three HGT methods
provide a full view of the transfer event that was not be possible before or with one
of the methods alone.
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1 Introduction

1.1 Integrating omics - From genomics to proteomics

The deduction of the three-dimensional double helix structure of DNA by Watson
and Crick (Watson and Crick, 1953), based on the crystallographic work of Rosalind
Franklin and Maurice Wilkins (Franklin and Gosling, 1953; Wilkins et al., 1953),
lay the foundation of nowadays genomics research. The DNA of each cell in every
DNA-based organism contains the hereditary information of the individual organism
and the order of the nucleotides in the double helix determines the blueprint for all
kinds of cell functions and biochemical properties. The size and composition of a
genome varies largely between organisms: The human genome, e.g., has 3.2 billion
bases and is structured in stretches of coding and non-coding segments, where the
coding sequences - the genes - consist of introns and exons. Bacteria are way smaller,
the Escherichia coli (E. coli) genome, e.g., has only about 4.5 million bases, without
a distinct exon-intron structure.

The genome with its genes is important concerning inheritance and foundation
for all processes within a cell. But it is the proteins that are the functional units
in a cell to facilitate cell functions. Each protein is created in the cells’ ribosome.
The blueprint lies in the genomes’ DNA sequence located in the nucleus. To get
the blueprint from nucleus to ribosome, a DNA transcript made of RNA is created
and send as a messenger to the ribosome, therefore called messenger RNA (mRNA).
There the mRNA is translated into the corresponding protein code made of amino
acids and a protein is synthesised. It was again Crick in 1958 who summarised the
genetic information flow from DNA over RNA to protein, a concept later denoted as
the ”central dogma of molecular biology” (see also Figure 1.1). This dogma has been
revolutionised since (Portin, 2014). RNA has manifold additional functionality, e.g.
for gene regulation, and further important mechanisms are continuously discovered.

Many research areas and technologies spin around the three fields of genomics,
transcriptomics and proteomics. But also the interplay of these fields, like e.g. pro-
teogenomics, with integrative methods is important: Results from genomics methods
unravel the tremendous potential but only proteomics tells us what genes are actu-
ally expressed at a particular point in time, cellular location or other circumstances.

All of these fields are relevant in some way or the other for public health. The
most common definition that has also been taken up by the WHO, and that is
also one of the primers at the Robert Koch Institute, is the one by Acheson in
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1988: Public Health is "the art and science of preventing disease, prolonging life
and promoting health through the organized efforts of society”. The overall vision
for public health stated by the WHO extends this aim to be sustainable and to also
reduce inequalities. The WHO also emphasises that public health means not only
treatment or eradication of diseases but strengthening all interdisciplinary efforts to
improve the entire spectrum of health and disease.

The focus among these many facets of public health within the scope of this the-
sis is on the aspects of research of human health concerning inheritance, cancer and
infectious diseases from genomic and proteomic data with the help of bioinformat-
ics methods. A common important problem in both human health and infectious
diseases from viruses and bacteria is variant analysis, especially structural varia-
tions (SVs). SVs can cause inheritable diseases and are a prominent phenomenon
in cancer genomes. SVs are also due to the large variability in viruses and bacteria,
where they facilitate also pathogenic potential in both bacteria and viruses, or are
patterns of viral recombination. In bacteria, a special type of SV is caused by hori-
zontal gene transfer (HGT), a concept where genes are transferred between different
species. These genes can carry important functions like, e.g., antibiotic resistances.

The core task of bioinformatics is to derive actionable information from the
tremendous amount of biological data. The goal within the scope of SVs relevant for
public health is to develop a method for SV detection that is generic enough to be
applicable to several types of SVs in human inheritance diseases but also applicable
to SVs in bacteria or viruses. Here, the focus is on HGT events in bacteria as an ex-
ample for a specific SV. To show the importance of integrative analysis of genomics
and proteomics, we investigate HGT events further by providing methods that facil-
itate complement approaches and results for HGT events from next-generation DNA
sequencing and mass spectrometry-based proteomics. The application of these SV
and HGT detection methods will help to decipher the general SV landscape and
in particular help to enlighten the origin and consequences of HGT events. The
foundation for the addressed research questions is explained throughout this intro-
duction.

1.2 Technologies and computational methods for genomic
and proteomic research

The era of genome sequencing brought new technologies and opened up a completely
new field of research and computational method development. The first complete
bacterial genome was reported in 1995 (Fleischmann et al., 1995), shortly followed
by the first eukaryotic genome in 1996 (Goffeau et al., 1996). The first report of
a human genome draft in 2001 (Lander et al., 2001; Venter et al., 2001) was a
turning point for research of human genomics. It took another three years before
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Figure 1.1. Central dogma of molecular biology and the corresponding technologies and data considered
within the scope of this thesis. DNA is transcribed into mRNA and then translated into protein se-
quences. Next-generation sequencing (NGS) means produce billions of short DNA fragments, reads,
that reveal potential features and gene of the sequenced organisms. Proteins can be captured by mass
spectrometry (MS) technologies and the produced spectra of the peptides of each proteins can be anal-
ysed to reveal the expressed proteins of a cell under defined conditions.

the complete finished genome was reported in 2004 (International Human Genome
Sequencing Consortium, 2004), further updates - published under the 1000 Genomes
Project Consortium - of it are still used as the common reference genome for human
sequencing data. Subgroups of the 1000 Genomes Project also aim to bring light
into the structural variation landscape (Mills et al., 2011; The 1000 Genomes Project
Consortium., 2012, 2015; Sudmant et al., 2015). In addition to the 1000 Genomes
Project, several more consortia covering a diverse spectrum of fields and applications
provide valuable resources for the research community, e.g. the Genome of the
Netherlands project (Boomsma et al., 2013) (see also Table 2 in Reuter et al. (2015)).
While the cost for the first sequenced human genomes ranges between a half and one
billion dollars and was only done for research purposes, nowadays efforts go toward
the vision of personalised genomes that offer precision medicine at low costs per
genome. The National Human Genome Research Institute (NHGRI) tracks these
costs and estimates the current cost at around 1000 dollars (Institute, 2018).

The clinical relevance and public health importance of genome sequencing is man-
ifold. Starting from fundamental basic research to understand evolution, heredity
and functionality of a genome, the list of possible applications is seemingly end-
less with, e.g., studies of alzheimers disease, diabetes, or disfunctionality in cancer
in human, viral and bacterial transmission pathways and pathogenicity, infections
from parasites and fungi, resistance characterisation and outbreaks of bacteria and
so forth.

At the same time, genome characterisation can only reveal the potential of any
organism whereas proteomic methods help to elucidate the functional impact from
that potential (Tyers and Mann, 2003). In recent years, mass spectrometry (MS) has
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seen tremendous improvements both technology and computational analysis meth-
ods wise that allows for sensitive detection of disease relevant proteins (Radhouani
et al., 2012; Lima et al., 2013; Van Oudenhove and Devreese, 2013). Matrix-assisted
laser desorption ionisation—time of flight (MALDI-TOF) based proteomics is seen
already in clinical applications for several years, e.g., in cancer diagnostics (Kriegs-
mann et al., 2014) or fingerprinting of pathogens for classification and identification
(Wang et al., 2014; Dworzanski and Snyder, 2005). Increasing demands to under-
stand and analyse antimicrobial resistance prompted a rising number of proteomics
studies that investigate resistance properties and mechanisms (e.g. Pérez-Llarena
and Bou (2016); Tomazella et al. (2012); dos Santos et al. (2010)). With tandem
MS, one can further infer the amino acid sequence of proteins by a database search
against in silico peptides (see also Figure 1.2).

Many technologies and computational methods exist to analyse genomics- and
proteomics-based research questions. This thesis focusses on methods for the anal-
ysis of highthroughput sequencing and shotgun proteomics.

1.2.1 From Sanger to high-throughput sequencing technology

The first sequencing attempts were done on RNA molecules from, e.g., bacterio-
phages, as these were already single-stranded and comparatively shorter than ge-
nomic DNA. In 1965, 12 years after the deduction of the double helix structure,
Holley et al. produced the first whole nucleic acid sequence from the alanine tRNA
from Saccharomyces cerevisiae (Holley et al., 1965). In 1977, Frederick Sanger and
colleagues developed a related technique now commonly referred to as Sanger Se-
quencing that is based on the natural chain elongation by a DNA polymerase dur-
ing replication. In Sanger’s ”chain-termination” or dideoxy technique, dideoxynu-
cleotides (ddNTPs) are used for chain reaction instead of dNTPs. Compared to
dNTPs, ddNTPs lack a hydroxyl group that is necessary to perform a bond with
the next dNTP to produce a chain. Hence, chain formation is terminated after a
ddNTP (hence ”chain-termination” technique). Via combination of multiple but
separate reactions using radio-labelled - and later fluorescently labelled - versions
of all four types of ddNTPs, the single chain reactions terminate at different po-
sitions according to the ddNTP used for that reaction and the inserted base can
be inferred. If a wrong ddANTP has been inserted during sequencing, the variation
from the reference due to the wrong insertion is called a sequencing error in order
to distinguish them from naturally occurring point mutations (see section about
structural variations below). Sanger sequencing usually produces high-quality reads
with a low error rate.

Sanger Sequencing, especially after further technical improvements, became the
hallmark of the first generation sequencing techniques and was also used to sequence
the first human genome, which was estimated to cost 0.5—1 billion dollar (see, e.g.,
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Heather and Chain (2016), Metzker (2010) or Morey et al. (2013) for a comprehensive
review on the history of sequencing).

Sanger Sequencing, however, is limited in throughput, high cost, and read length.
The upper length boundary for Sanger Sequencing is 1 kb, which is too short to span
large scale rearrangements (see Chapter 1.3). The low throughput combined with
high cost prevented Sanger Sequencing to be established for diagnostic purposes and
personal medicine. The NHGRI’s Advanced DNA Sequencing Technology program
in 2008 (Schloss, 2008), that aimed to reduce the cost to $ 1,000 per human genome,
set the starting point for emerging high-throughput sequencing (HTS), later also
termed next-generation sequencing (NGS), technologies.

The general procedure of all technologies consists of a template preparation step
followed by clonal amplification, and then cyclical rounds of massively parallel se-
quencing that provides the high sequencing depth (Reuter et al., 2015). Illumina is
the mostly used sequencing technology throughout the NGS community. For a while,
only 454 Life Science (later taken over by Roche Diagnostics) could compete with
INlumina and hence, most methods and tools - including those developed within this
thesis - were developed tailored to the sequencing properties of both technologies.
Albeit the most prominent technology, Illumina did not produce the first sequencer
on the market.

454 Life Science released the first NGS sequencer in 2005 (Margulies et al., 2005),
i.e. even before the NHGRI program. The sequencing-by-synthesis reaction couples
base insertion with luciferase-based light emission where one of the four ANTP types
is added at a time to correlate the emission to the correct base. A camera records
the emitted light and the inserted base is inferred with the signal strength being
- theoretically - proportional to the number of bases. To start the next cycle, the
unused dNTPs are washed away and a new dNTP mixture is added. This process
shows disadvantages when synthesising the same base multiple times in a row, so
called homopolymers, as the exact number of inserted bases is hard to determine
from the light intensity profile when the homopolymer reaches a certain length (nor-
mally around 8 bp). This produces the typical error profile of small insertions and
deletions of 454 reads (Metzker, 2010). Owing to the advantages of the longer, albeit
single-end, reads of 400-500 bp, 454 was thought to dominate the future market.
Unfortunately, Roche shut down the sequencing unit in 2013 deeming the technology
not competitive.

Mumina (after acquiring Solexa) released the first sequencer in 2006 (Reuter et al.,
2015). In Solexa/Illumina machines, the template strand is sequenced in a cyclic
process of fluorescently labeled base insertion, imaging, and cleavage, based on a
concept invented by Canard and Sarfati (1994). Compared to 454, only one nu-
cleotide is inserted at a time using reversible terminator bases. After imaging, the
dye and terminal blocker are removed and a new cycle starts. This process avoids
homopolymer errors but produces typical error profiles of single base substitution
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errors if a wrong base is being inserted.

During DNA library preparation before the actual sequencing, DNA is first cut
into many small pieces (hence also termed shot gun) that are rigorously amplified
by PCR and then hybridised in a so-called bridge amplification step onto a flow cell,
creating clusters of billions of fragments. Since the fragments in each cluster are the
same, the fluorescent signal during sequencing is amplified according to the large
fragment number, thereby multiplying the signal. Depending on the size of the
flow cell and amplification rate during PCR and bridge amplification, this allows
for billions of reads being sequenced at the same time - giving the technique the
description of massive parallel sequencing.

Error rates of Illumina reads are still commonly below 0.1%. Reads produced
by Illumina technologies were much shorter in comparison to Roche/454 pyrose-
quencing reads with ~75bp length in the first years and up to 300 bp today. Their
smaller error rate made downstream analysis easier and more robust though. In
later sequencers, introduced paired-end sequencing. Here the amplified fragment is
sequenced from both sides in two sequential steps, creating a so called forward and
reverse read. Because forward and reverse read are sequenced from the end towards
the middle, both have opposite orientations. Both reads have distinct adapters such
that they can be separated afterwards. Depending on the fragment and read sizes,
there is a gap of defined size between forward and reverse read that can be used,
together with the fixed orientation of forward and reverse read, by downstream
analysis to determine the correct origin in case of ambiguities. Detected deviation
from the expected insert size or read orientation can also be a sign for structural
variations (see Section 1.3).

Other important sequencing technologies such as Ion Torrent, that also does
sequencing-by-synthesis like 454 but where the base insertion is detected through
change in pH level (Rothberg et al., 2011), or ABI’s SOLiD (Valouev et al., 2008),
are not the focus of this thesis and are well covered elsewhere (e.g., Metzker (2010);
Morey et al. (2013)). Sanger is still a valuable alternative to NGS. Albeit the low
throughput, Sanger reads have a high quality, much higher than NGS reads, and
are up to 1kb long. They are therefore often used for targeted validation on top
of NGS results. For some applications where a high quality sequence of short frag-
ments without high throughput is required, Sanger is still the preferred sequencing
technology.

Despite the huge breakthroughs NGS has brought, there are caveats and limita-
tions that hamper NGS as a one for all strategy especially in diagnostic settings
where high quality results are necessary. During sequencing, PCR artefacts can
result in chimeric reads. Short fragments and regions without GC bias result in a
better amplification frequency, and hence an over- or underrepresentation of certain
fragments. NGS technologies still provide rather short reads - even shorter than
Sanger Sequencing. Reconstructing or assigning the short reads is difficult and error
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prone in complex or repetitive regions (Snyder et al. (2010), see also Chapter 1.3).
Haplotype resolution is nearly impossible as long range connectivity information be-
tween variants is lost. Existing, highly computationally intensive methods are only
feasible in smaller regions for now (Topfer et al., 2014).

In recent years, so called third generation sequencing technologies are revolutionis-
ing the sequencing market again. Compared to the high amplification of many short
fragments, third generation sequencing technologies amplify fewer, single but long
molecules. Currently, the single-molecule real-time (SMRT') sequencing technology
by Pacific Biosciences (PacBio) (Eid et al., 2009) and the nanopore sequencing tech-
nology by Oxford Nanopore Technologies (Clarke et al., 2009) dominate the market.
Both produce reads up to several thousand base pairs, i.e. much longer also com-
pared to Sanger sequencing. However, compared to the Illumina error profile, third
generation error rates are even worse and are still around 11%. Similar to the 454
error profile, errors consist to a large amount of insertions and deletions. The long
reads are able to span SVs or also complete virus genomes that are prone to recom-
bination, but the high error profile deems them not suited for SNP and short indel
discovery (< 15bp) (Chaisson et al., 2017). Hence, despite the advantage in read
lengths, this high error rate together with high sequencing costs has prevented these
technologies from taking the lead on the sequencing market so far. But with better -
and also cheaper - developments these technologies are slowly coming of age (Ardui
et al., 2018).

Independent from the technology of choice, sequencing reads can be either de novo
assembled to reconstruct the original sequence, or they can be aligned - also called
mapped or assigned - to a reference sequence. There are many possible fields and
applications for NGS, including transcriptomics, genome structure characterisation,
or population scale analysis, and many more that have been reviewed elsewhere. The
focus within this introduction is on methods and applications relevant for research
questions addressed in this thesis.

1.2.2 Methods for assembly of sequencing reads

Given a set of reads from a genome, the goal of a de novo assembly is to reconstruct
the complete original genome. This is usually done if there is no reference sequence
available or the reconstruction is in the interest of the research question. Denovo
assembly is usually done graph-based to ensure feasibility. A graph consists of nodes
and edges connecting the nodes. These edges can be either undirected, i.e., they can
be passed in both directions, or directed, i.e., only one direction is allowed to pass.
A path through a graph between two nodes is then the collection of all nodes and
edges that are passed through on the way from the first to the second node. If there
are two nodes marking the start and end of a genome, a complete genome assembly
then corresponds to a path from start to end. To create the graph, either nodes or
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edges are labelled with sequences.

The most common assembly graph is the de Bruijn graph. Here nodes are la-
belled with sequences of length k, also called k-mers. Each unique k-mer has only
one node, i.e. each sequence containing this k-mer is represented by and passing
through this node. Nodes are connected by a directed edge if their sequences over-
lap by a length of k — 1. Pevzner et al. (2001) proposed an algorithm to construct a
de Bruijn graph from short read sequencing data, and all following assemblers build
up on that. Velvet (Zerbino and Birney, 2008), SOAPdenovo (Li et al., 2009b) and
EULER-SR (Chaisson and Pevzner, 2008) were among the first assemblers based on
de Bruijn graphs. Velvet is still one of the mostly used short read assemblers today.
ALLPATHS (Butler et al., 2008) and ALLPATHS-LG (Gnerre et al., 2010) use a
variation of the de Bruijn graph notion, an unipath graph, for assembly represen-
tation. Consecutive, non-branching collections of edges (and nodes) are collapsed
to produce so called unipaths (i.e. path without a branch). To facilitate assembly
for large genomes, paired-end reads are joined in ALLPATHS-LG if they overlap
to produce longer reads with a longer range connectivity. ABySS (Simpson et al.,
2009) uses a distributed representation of de Bruijn graphs that allows parallel com-
putation of billions of reads. One of the most recent and also still most widely-used
assemblers is SPAdes (Bankevich et al., 2012).

It has been shown, however, that the quality of an assembly not only depends on
the chosen assembler but also on read sequence quality and the sequenced genome
(Salzberg et al., 2012). So there is no simple answer to the question of what is the
best assembly tool or method. Tools like QUAST (Gurevich et al., 2013; Mikheenko
et al., 2018) aim to provide comprehensive statistical assessments and quality metrics
to help evaluate and compare assemblies. The Assemblathon competition (Earl
et al., 2011) marks the first benchmarking efforts but, unfortunately, assembler
parameters and settings were not made available to serve as a guide for the user.
Salzberg et al. (2012) offered a more usable comparison by publishing all settings and
preprocessed data sets. Still, this can only be a static snapshot and the comparison
becomes outdated with recent software versions, new tools or advanced sequencing
technologies.

Limitations of all assemblers are repetitive regions and heterozygosity for polyploid
organisms, where the assembler cannot uniquely resolve read or segment/contig
order. Most assemblers are tailored to the deep sequencing coverage and low error
profile from the short NGS reads and are often not suited for long read sequencing
data. Pacific Bioscience offers their own assembly tools as part of the SMRT Suite
(see SMRT Analysis). Canu (Koren et al., 2017) is an open source alternative
derived from the Celera Assembler (wgs-assembler, Myers (2000)). So called hybrid
assembler such as SPAdes incorporate short read information from NGS data into
the assembly to correct the long reads. In addition, tools such as LoORDEC (Salmela
and Rivals, 2014) provide methods for long read correction using NGS reads.


https://www.pacb.com/products-and-services/analytical-software/smrt-analysis/analysis-applications/de-novo-assembly/
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Assembly is still not a solved task and draft genomes from automatic assembly
have to be considered with great care as especially repeats can lead to - in the worst
case undetected - misassemblies (Salzberg and Yorke, 2005).

1.2.3 Methods for read assignment and read mapping

Many research questions do not require the complete genome to be fully assembled
if a meaningful reference genome is already available. Determining the origin of the
read in the reference - called mapping - is hence one of the fundamental bioinfor-
matics tasks. Mapping or aligning of reads to a reference genome also establishes
similarity - or distance - information between the sequenced organism and a reference
sequence.

Similarity information is usually used for identification (see also next subsection
for metagenomic applications) or characterisation of gene content, strain level sim-
ilarity and so on. Distance information is usually further analysed in follow-up
variant detection methods that is used for all kinds of functional analysis and char-
acterisation (see next section 1.3).

Read mapping usually requires an alignment of the read to the reference where
every base of the read is matched to a part of the reference. In an error-free align-
ment, no mismatches or missing bases - called gaps - are allowed. However, errors
in terms of wrong bases or indels (missing or additional bases) are likely introduced
by the sequencer or present due to evolutionary distance between reference and se-
quenced sample. An error-free alignment would hence often result in a poor amount
of reads being mapped. Alignments can be determined by dynamic programming
(DP), where the best path, under a given a score model, of matching bases from
read and reference or introduced gaps is traced in a matrix, e.g., using the Smith-
Waterman (Smith and Waterman, 1981) or Needleman-Wunsch (Needleman and
Wunsch, 1970) algorithm. These methods produce very exact alignments but are
computationally very expensive, which deems them not suited for applications for
large amounts of NGS data.

If the exact alignment is not needed for further analysis because one is only inter-
ested in the origin, i.e., position of the reads, one can fall back to read assignment
methods, which are much faster. These are alignment free or rather do a pseu-
doalignment, e.g. based on k-mers (see below). Mapping can be seen as a trade off
between alignment and assignment: common read mappers first identify candidate
positions for the reads and then align them but without exploiting a full DP matrix.
A plethora of mappers exists with different strategies: Some are based on a two-pass
strategy of first indexing and then lookup. Some do a full alignment including exact
positions to determine the best or all mappings of a read, e.g, Stampy (Lunter and
Goodson, 2010), MOSAIK (Lee et al., 2014), BWA and BWA-MEM (Li and Durbin,
2009, 2010), Bowtie and Bowtie2 (Langmead et al., 2009; Langmead and Salzberg,
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2012), Yara - the follower of MASAI (Siragusa et al., 2013), SOAP and SOAP2
(Li et al., 2008, 2009a). Read mappers can be grouped according to their indexing
strategy: some use hash tables, or prefix or suffix trees, often using the Ferragina-
Manzini (FM) index (Ferragina and Manzini, 2000) based on the Burrows-Wheeler
transformation (Burrows and Wheeler, 1994).

To improve upon runtime, heuristics are often employed. Paired-end sequencing
was developed to overcome the limitations from single reads: in regions with local
similarities or regions characterised by structural variations, a single read can map
ambiguously to multiple locations, or wrongly, or not at all if the read crosses the
boundary of such SVs. Methods designed to exploit these signatures are able to
detect these SVs and are explained in more detail in Section 1.3. The number
of available read mappers is seemingly endless but still new mappers are being
published that are either faster or more memory and space efficient, or that are
tailored to specific applications, e.g., RNA-seq specific mappers that account for
exon-intron structure in eukaryotic genomes, or organisms, e.g. viruses that have a
much higher variability such that the mapper has to account for more possible errors
but that are also smaller, which makes the utilisation of more expensive algorithms
feasible.

1.2.4 Methods for metagenomic applications

In contrast to a sample with a single organism produced in the lab, metagenomics
studies environmental or human samples with a complex ensemble of different com-
munities. A prominent example is the human microbiome, its characterisation re-
vealed startling insights into the influence the gut microbial composition has on
human health and also disease traits. It is also highly depended on personal dietary
characteristics, drug intake and personal life style, even to that extend that every
individual has practically his or her own microbiome. Especially the gut microbiome
is also a hotspot for horizontal gene transfer (Liu et al., 2012).

The number and quantity of organisms in the sample is often not known in ad-
vance, which presents additional challenges to the classical assembly and mapping
problems. Hence, reads are generally mapped or compared to databases of various
complexity instead of single references. Hence, exact read alignments are often not
feasible. Depending on the sequence similarity of the organisms within the sample,
reads could be mapped to more than one candidate reference. Also, despite a rea-
sonable total sequencing coverage, the single organisms in the sample are usually
only low and locally covered. First methods, when only short reads from 25-76 bp
could be achieved, focussed on 16S rRNA regions in bacteria. Longer reads of sev-
eral hundred base pairs make whole genome analysis possible. Methods to analyse
metagenomics samples can be grouped into (i) identification or classification, and
(ii) quantification or abundance estimation methods (Breitwieser et al., 2017). Iden-
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tification approaches aim to classify the present organisms in the sample. Based on
that taxon classification, abundance estimation methods aim to quantify the taxa
in the sample in relation to each other. Tools for abundance estimation include, e.g.
GASiC (Lindner and Renard, 2013), MetaPhlAn2 (Truong et al., 2015), Bracken
(Lu et al., 2017), kallisto (Bray et al. (2016), Schaeffer et al. (2017)) or DiTASiC
(Fischer et al., 2017).

Metagenomic classification methods can be taxonomy dependent or taxonomy
independent (Lindgreen et al. (2016), Sedlar et al. (2017)). In both cases, reads
are binned into groups where reads in one group belong to the same organism.
Taxonomy independent approaches bin the reads by means of clustering methods
based on sequence features. Taxonomic dependent binning approaches assign the
reads to specific taxonomic groups, thereby inferring the occurrence of these taxa
in the sample. Similar to general read mapping and assignment strategies, these
methods use sequence composition patterns such as k-mers, e.g. Kraken (Wood and
Salzberg, 2014), or they assign reads based on mapping similarities. MEGAN (Huson
et al., 2007) is one of the first alignment-based taxonomic profilers and assigns reads
to the ”lowest common (taxonomic) ancestor”. Compared to that, DUDes (Piro
et al., 2016) aims for the "deepest uncommon descendent”. Although the latter
approach may induce ambiguous taxonomic assignments, the liberal approach allows
for identifications in lower taxonomic levels. MicrobeGPS (Lindner and Renard,
2015) tries to account for species not present yet in a reference database. Instead of
assigning reads to fixed taxa, MicrobeGPS tries to infer the distance of the reads to
references in the database. If no reference fits - more or less - perfectly, the distances
are used to describe the composition of the organism in the sample. In addition, it
also provides an abundance estimation.

The tool Clinical Pathoscope (Byrd et al., 2014) focusses on identifying pathogens
in clinical samples such as blood where a high amount of host contamination can be
expected. Because the human genome is quite large compared to the smaller viral
or bacterial genomes, the amount of reads from the human genome can dominate
the sample after a sequencing run, which makes identification even more difficult.
Hence, it is important to remove host contamination to then do a reliable pathogen
detection. Like MicrobeGPS, Clinical Pathoscope also identifies and reports the
nearest relative in case the sample contains novel or highly mutated strains. But
since Clinical Pathoscope is tailored for pathogen identification, it also removes reads
from non-target and non-pathogenic genomes.

Due to all the challenges mentioned above, metagenomic identification methods
were for a long time not able to reliably resolve composition beyond species level
to identify strains. Strains of the same species can have crucial differences when it
comes to the presence of anti-microbial resistance genes or pathogenicity properties
and is hence important for diagnostic applications. Ditasic and kallisto are a few
methods to have shown to be able to identify on strain level.
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1.2.5 Mass spectrometry-based proteomics

Proteomics comprises the study of all proteins - the proteome - and their isoforms
together with their structures, modifications, functions and interactions (Tyers and
Mann, 2003). Mass spectrometry (MS) is one of the fundamental methods in pro-
teomics to identify proteins by deduction of their amino acid (AA) sequence.

The first step is usually the digestion of proteins to peptides using a protease
such as Trypsin. The peptides are then separated, e.g. on a high-performance liquid
chromatography column, and ionised to be analysed in the MS. The analysis process
can be either one-step, where information is analysed on the so called MS1 level, or
two-step, also termed tandem MS or MS/MS or MS2 (Steen and Mann, 2004).

A prominent method to process information on all levels is matrix-assisted laser
desorption ionisation-time of flight (MALDI-TOF) (Karas and Hillenkamp, 1988).
With the help of a matrix of crystallised molecules (matrix-assisted), peptides are
first fixed onto a plate and then vaporised (desorption) with the help of a laser into
a co-crystalised, ionised state. The ionised molecules are accelerated in the MS and
their time of flight (TOF) is measured. From the TOF, the mass-to-charge ratio of
the molecule can be induced, and from that the protein can be identified (Dworzanski
and Snyder, 2005). A prominent application of MALDI-TOF is fingerprinting on the
MS1 level. An alternative to MALDI is electrospray ionisation (Fenn et al., 1989).
Here, the separated peptides from the column are electrostatically dispersed by a
high electrical potential that also causes the ion containing droplets to solve over
time. The analyte ions are again analysed in the MS by, e.g., TOF. MALDI-TOF
is usually used for intact, single large molecules where the identification is sufficient
and resolving the AA sequence not needed (Steen and Mann, 2004).

Tandem mass spectrometry (MS/MS) proteomics is capable of deciphering AA
sequences on top of protein identification. This in turn allows the deduction of
functional properties and taxonomical classification (Muth et al., 2016).

1.2.6 Tandem mass spectrometry

Methods for MS/MS have gained a growing popularity that also helped to improve
protein identification (Tyers and Mann, 2003). After a peptide was analysed at
the MS1 level, it can be further isolated and analysed in a second round of MS.
The peptide ion is broken apart through collision with an inert gas, and the pep-
tide sequence can be inferred from the mass spectrum of the resulting fragments,
the MS/MS spectrum (see also Figure 1.2) (Steen and Mann, 2004). The isolated
peptide ion before the collision is often called the precursor ion, the fragmented
ions measured in the tandem MS are called product ions. The peptide spectra are
searched in a database of in silico spectra from in silico peptides.

This general procedure of peptide digestion, separation and analysis in the MS
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Figure 1.2. Tandem mass spectrometry peptide and protein identification. The spectra of peptides from
a measured protein can be compared to a database of spectra from in silico peptides for peptide and
follow-up protein identification.

is also called bottom-up MS (Karlsson et al., 2015). Disadvantages of the bottom-
up approach are miscleavages during digestion, or undetected peptides that are
lost during chromatography or not detected by the mass spectrometer. This can
lead to a low total protein coverage, i.e. the protein may still be identified but
possible post-translational modifications (PTMs) or isoforms may remain hidden.
Alternative isoforms or PTMs render identification difficult as they change the mass
of the protein and, hence, alter the proteins mass-to-charge ratio in the spectrum.
On the one hand, this can be used to detect such modifications. Ambiguous spectra
and mass-to-charge ratios, one the other hand, lead to false positive identifications.

One alternative to the bottom-up approach is the top-down approach (Chait,
2006). In the top-down approach, the protein is not cleaved before analysis, which
preserves the complete structure including modifications. So application-wise and
concerning a possible resolution, top-down is superior to the bottom-up strategy. On
the downside, a complete protein is harder to analyse during chromatography and in
the mass spectrometer since complete proteins differ much more in their properties
such as solubility, size and detectability. Hence, there is no fit-all treatment for all
proteins like it is possible for all peptides in the bottom-up approach. Due to the
resulting low throughput, top-down analysis has been mainly used to analyse single
proteins. A more practical alternative is targeted proteomics. Here, the goal is to
focus on a few - targeted - proteins instead of aiming for a broad discovery. This
is done by a target-specific assay that selects fragments according to the defined
ratios in the MS (Doerr, 2013). Targeted proteomics is especially applied to detect
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bacteria (e.g. Peters et al. (2016); Ebhardt et al. (2015)).

1.2.7 Computational methods for tandem mass spectrometry data
analysis

Much like what de novo assembly and mapping is for NGS reads, peptides and
their sequences can be inferred de novo from the spectra, e.g., with PepNovo (Frank
and Pevzner, 2005), or the spectra can be searched against databases of known
proteins and peptides that allow inference of their presence given certain threshold
criteria. De novo sequencing is dependent on high quality spectra and needs to
be able to resolve modifications, which would be achieved best by having different
fragmentation modes (Guthals et al., 2013). The mass difference between peaks
in a MS/MS spectrum corresponds to a particular amino acid (AA). Except for
leucin and isoleucin, all AAs have distinct masses and from all peaks and their
mass differences, the AA sequence can be inferred. In a low quality spectrum,
noisy peaks can lead to false positive inferences. Compared to de novo sequencing,
database search approaches are still more reliable and widely applied (Muth and
Renard, 2017).

A database contains a comprehensive list of theoretical spectra from in silico
digested peptide sequences from all open-reading frames (Vaudel et al., 2012). That
means, the contained sequences are way smaller than genome sequences, namely
only few AAs. Hence, the number of entries is huge and the chance of a random
match, especially considering modifications such as PTMs, quite high. In addition to
that, many proteins share certain peptide sequences, e.g. from housekeeping genes,
which requires rigorous quality assessment and scoring of the PSMs to infer which
protein is actually present. Popular search engines for database search are, e.g.,
MS-GF+ (Kim and Pevzner, 2014) and X!Tandem (Craig and Beavis, 2004) (see
Muth et al. (2016) for a holistic list of database search algorithms). PeptideShaker
(Vaudel et al., 2015) is an extensive software suite that provides reanalysis methods
by integrating various established tools like MS-GF—+.

For downstream analysis such as taxonomic classification, a number of approaches
and tools is available (McHugh and Arthur, 2008), e.g., BACid (Jabbour et al. (2010,
2011), based on work by Dworzanski et al. (2004)). TCUP (Boulund et al., 2017)
aims to quickly determine the presence and characteristics of disease causing bac-
teria. To do that, TCUP facilitates a database comparison to then automatically
detect peptides from which it is possible to characterise not only taxonomic compo-
sition but also expressed antimicrobial resistance genes.

Akin to the metagenomics application of NGS, there are methods for species
identification from tandem mass spectrometry data of metaproteomic samples, e.g.,
MetaProteomeAnalyzer (MPA) (Muth et al., 2015, 2017) or Pipasic (Penzlin et al.,
2014) that also aims to estimate the relative abundance of the species in the sample.
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Figure 1.3. Structural variations: Shown are possible variations of two genome sequences with segments
labelled 1-5. In case of an insertion, e.g., the first genome has segments 1 and 3 (blue), the second genome
below an additional segment 2 (green). The breakpoint of the insertion is between segments 1 and 3.
Insertions, deletions and inversions are classified as simple SVs as they have only one or two breakpoints
indicating novel adjacencies. Complex SVs like tandem or dispersed duplications or translocation have
more than two (reused) breakpoints. A translocation can also be defined as the combination of two
simple SVs, namely a deletion signature of segment 2 between segments 1 and 3, combined with an
insertion signature of segment 2 between segments 4 and 5. The dispersed duplication is missing the
deletion signature of segment 2.
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On top of information gained from genomics, metaproteomics allows insides into
the functional role that the individual members of an economic community play
(Wilmes and Bond, 2006). Muth et al. (2016) comprehensively review computational
approaches and means for metaproteomic data analysis.

While there are studies that investigate the functional impact and expression
of potentially acquired proteins, e.g., Tomazella et al. (2012), dos Santos et al.
(2010), or Sirichoat et al. (2016), structural variations in general and HGT events
in particular have not been directly addressed by methods or studies so far.

1.3 Structural variations in the human genome

Not every individual genome has exactly the same sequence, not even the genomes
of twins. Alterations in sequence composition are hence a natural consequence of
evolution and the basis for the large variety in shape, size, colour and more between
individuals of the same species. But some alterations can lead to all kinds of dis-
eases, intolerances, resistances and so forth. Hence sequence variations nurtured a
whole field of research trying to decipher the meaning behind sequence alterations.
Variations are usually defined in comparison to a certain reference sequence. The
smallest variations are single nucleotide variations (SNVs), i.e. single bases are mu-
tated between ’A’, °C’, G’ or "I’ compared to a reference. If a SNV is not only
seen in a single individual but manifests in a part of the population, it is referred
to as a single nucleotide polymorphism (SNPs) (usually the threshold is 1% of the
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population). Next to mutations, stretches of nucleotides can be missing between
otherwise similar genomes. Depending on the declaration of the reference sequence,
these stretches are defined as deletions or insertions or, more general, as indels.
These indels comprise one up to few bases, with 'few’ currently being defined as
around 50 bp. To distinguish them from larger insertions and deletions over 50 bp
in the context of structural variations (SVs), they are also often referred to as small
indels. Compared to SNPs and small indels, SVs or rearrangements affect up to sev-
eral thousands of base pairs and vary largely in shape and composition (see below
for detailed definitions). Detection methods and discoveries around SNPs and small
indels are reviewed elsewhere (e.g., Li et al. (2012b); Altmann et al. (2012); Kumar
et al. (2014); Mielczarek and Szyda (2015)). At a local scale, SNPs are studied to
characterise diversity in genes or regulatory regions that lead to a broad variety in
functions. The study by Timmermann et al., e.g., is the first to analyse whole exome
454 sequencing data to identify somatic variants in colorectal cancer (Timmermann
et al., 2010). At a global scale across the complete genome, SNPs and indels are
exploit to reconstruct haplotypes, also called phasing, that is used in turn to charac-
terise organisms with more than one genome copy (diploid or more) or also to study
quasispecies in virus populations (Zagordi et al., 2011; Topfer et al., 2014; Jayasun-
dara et al., 2014; Barik et al., 2017). The possible resolution for global haplotyping,
i.e., the maximal possible reconstructable length, highly depends on the variability
of the genome, its ploidy and mostly on the available read lengths. Methods that
combine long read information to connect local haplotypes are still to come.

According to results from the different genome sequencing projects (see, e.g.,
Table 2 in Reuter et al. (2015)), individuals harbour several million SN'Vs and several
hundred thousand indels (The 1000 Genomes Project Consortium., 2010). High-
throughput sequencing made it possible to study these variants on a genome-wide
scale, identifying pathogenic mutations and linking them to Mendelian diseases (e.g.,
Ng et al. (2010); Mullaney et al. (2010)).

1.3.1 Relevance of structural variations for human health

With the broadened detection spectrum from modern technologies and methods,
SVs were recognised to account for more differences in terms of the amount of bases
between individual genomes than the well studied SNP variations (Redon et al., 2006;
Alkan et al., 2011; Berger et al., 2011; Baker, 2012). Some efforts like the study by
de Koning et al. (2011) estimate that over 50% if the human genome is repetitive,
to some extend involving large duplications. Thanks to NGS, it was shown that
SVs not only affect more bases than SNPs but also that they are involved in many
disorders (Stankiewicz and Lupski, 2010). Lupski et al. (1991), e.g., discovered that
a duplicated gene is the reason for the Charcot-Marie-Tooth disease, and Sebat et al.
(2007) were the first to report the role that copy number variations (CNVs) play in a
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complex neuropsychiatric disease. Further associated conditions include autism (e.g.
Sebat et al. (2007), Sanders et al. (2011), Levy et al. (2011), Pinto et al. (2014)),
schizophrenia (Walsh et al., 2008), Hunter Syndrome (Bondeson et al., 1995), or
haemophilia A (Lakich et al., 1993).

It has been also observed that DNA in cancer cells show significant larger amounts
of SVs, which tends to also be heterogenic among different cells of the same tumor.
SVs in cancer genomes are also referred to as somatic SVs. A direct contribution
of SVs for carcinogenesis is given if, e.g., the SVs alter the expression of tumor
suppressor or oncogenes (Liu et al., 2015), or create new oncogenes like, e.g., the
BCR-ABL gene (MacConaill and Garraway, 2010).

Despite the growing recognition of the importance of SVs they are still less well
studied than SNPs. This is mostly due to the complex nature SVs can inhabit.
Nevertheless, understanding mechanisms of SVs and being able to detect them opens
up new paths for early on detection of human health related SVs and therapeutic
treatment possibilities.

1.3.2 Definition of structural variations

Due to their complexity, SVs are nowadays commonly defined via their breakpoints.
Breakpoints define novel adjacencies between former unrelated sequence segments
that are now in closer proximity due to the rearrangement events (see Chapter 2 for
formal definitions of segments and breakpoints). Knowing the precise breakpoint
is important to characterise the novel adjacency, e.g., novel fusion genes that bring
novel functions - or disfunctions - with them. Breakpoints can also affect promoter
or suppressor functionality, which has been observed, e.g., for some types of cancer.
So called simple SVs have one or two breakpoints and define large insertions (one
breakpoint), deletions, and inversions (both two breakpoints), i.e. segments that
are inverted compared to a reference sequence. In contrast, complex SVs have three
or more breakpoints. Figure 1.3 shows some types of complex SVs: a duplication
is a segment that is copied and then inserted at a distinct position in the genome.
A tandem duplication is a special type of duplication in the sense that the copy
of the segment is located right next to the original segment. A translocation is
similar to a duplication event except that the original segment is missing. Signature
wise, a translocation can be seen as a combination of a deletion signature of the
original segment (two breakpoints) and an insertion event (one breakpoint). Mobile
elements - also mobile genetic elements (MGEs) - are elements that change their
location within the genome actively and frequently. With respect to the netto gain
of sequence content, SVs are also categorised as balanced (inversions, translocations)
or unbalanced (insertions, deletions, duplications, see Figure 1.3). The extend of
complexity is even not fully understood yet. Combinations of simple and complex
events, such as inverted duplications or combined deletion and inversion events that
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share breakpoints, have already been observed. The most severe event observed so
far is termed chromothripsis and describes a catastrophic event that results in the
rearrangement of complete chromosomes (Stephens et al., 2011).

The variation in size and complexity in turn renders the detection of SVs difficult.
The size definition also changed with the development of new technologies that
offered a higher base pair resolution for sequence analysis methods. SV sizes starting
from > 50bp where first mentioned in Alkan et al. (2011), but at this point in time
no tools were able to detect them (see below for more details). Kloosterman et al.
(2015) describe mutation rates for SVs starting even from 20 bp.

1.3.3 Graph representations of rearrangements in whole-genome
alignments

Whole-genome alignments (WGAs) are used to represent homologies between ge-
nomes and are a prerequisite for downstream analysis such as rearrangement studies.
Hence, methods for WGA are designed to handle fully assembled reference genomes
and not NGS data directly. Considering rearrangements or SVs, a WGA is not triv-
ial, especially with more complex rearrangements. So called segments of a genome
might align well to segments of another genome but they can be in a different order,
duplicated or inverted.

Similar to de Bruijn graphs for genome assembly, graphs have proven to be an
efficient way to handle the complexity in representing a WGA with rearrangements.
A graph G has a set V of nodes and a set E of edges. The edges can be divided
in groups of directed and undirected edges and may also contain weights. A path
through the graph is then a series of nodes and edges through the graph where
undirected edges can be passed in both directions but a directed edge in only one
direction. Special graph types have defined properties. A directed acyclic graph
(DAG), e.g., has only directed edges and must not contain cycles, i.e. each node
may only be passed once on a path. Such properties allow to define special paths
such as the shortest path. A shortest path from one node to another has the minimal
total weight compared to other possible paths connecting these two vertices, and can
be determined by established algorithms such as Dijkstra’s algorithm.

Representing a WGA in a graph then works as follows. Matching segments or syn-
teny blocks between two genomes are identified through local alignments as locally
collinear blocks (LCBs) that have only SNPs and small indels, and are represented
as nodes in a graph. The order and relationship of the segments is then captured
by edges between segments within the graph, and each genome is a path through
the graph. The edges therefore represent breakpoints from rearrangement events of
segments. The amount and kind of constraints for connecting LCBs in the graph
make up the most essential differences between the common methods and graph
structures for WGA. In Kehr et al. (2014), we compared four common graph data
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structures, namely Alignment graphs (Kececioglu, 1993), A-Bruijn graphs (Pevzner
et al., 2004), Enredo graphs (Paten et al., 2008) and Cactus graphs (Paten et al.,
2011b,a). In that paper we could show that these graph structures can actually be
converted into each other with regards to labels (Kehr et al., 2014).

It is important to note that a pairwise WGA can only reveal rearrangements
apparent from the two compared genomes. In case gene loss events in a genome
coincide with other rearrangements, some breakpoints only become detectable in a
comparison of more than two genomes. These breakpoints are referred to as hidden
breakpoints (Kehr et al., 2012) as they are not detectable by pairwise comparisons.
Multiple WGAs are computationally expensive since the size of segments and blocks
is not known beforehand and also varies depending on allowed errors for the synteny.
They may also be in conflict between rearrangements of pairs of genomes. So there
usually needs to be a tradeoff between breakpoint and SV type resolution, and
computational expenses.

1.3.4 Detection from pre-NGS technologies

Early on, SVs were defined as variants larger than 1,000 bp because smaller variants
could not be detected by pre-NGS methods. Before NGS, microarrays have been the
state-of-the-art experimental methods to study CNVs, and have been used exten-
sively before they were slowly replaced by NGS (Alkan et al., 2011). Comparative
genomic hybridisation (CGH) was the first efficient technique for genome-wide lo-
cation of CNVs between a sample and a reference. Sample and reference DNA are
fluorescence labelled and competitively hybridised to an array (aCGH). The relative
intensity signals of the sample and reference DNA for specific locations indicates the
corresponding relative copy number for that location (Pinkel et al., 1998). Early
aCGH technologies were able to reliably detect CNVs from about 1kb to several
100kb. So called high-density arrays extended this range to CNVs starting from
500kb (Alkan et al., 2011).

Iafrate et al. (2004) were the first to report CNVs in the human genome using
aCGH. This technique was used early on to associate copy number variations in
cancer (Pinkel and Albertson, 2005) and other diseases. Unfortunately, it is not
possible to determine exact breakpoints with microarray techniques, and hence ac-
curate assessment of the altered sequence and gene content is impossible.

Compared to these early methods, NGS-based SV detection made it possible to
detect also other types of SVs such as novel insertions and inversions with base
pair resolution, resolving variants starting from 50bp. Albeit this advantage in
resolution, NGS was comparatively expensive and only slowly replaced microarray
experiments. In 2007, Korbel et al. (2007) presented the first study that uses NGS
for SV discovery. Also, the first NGS-based methods focussed on single types of SV
like, e.g., indels (Emde et al., 2012) and only later evolved to include multiple SV
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types.

1.3.5 Methods for structural variant detection from NGS data

When it comes to SVs, especially complex rearrangements such as translocations
or combinations of inversions and deletions, even modern read mappers reach their
limit to accurately place reads spanning boundaries of such variations. The larger
the variant and the more breakpoints it has, the less likely it gets that a single read
spans the complete variant. Hence, the core objective of SV detection is to identify
all breakpoints and segments belonging to a particular SV.

SNPs and small variants could be detected if they were smaller than the common
read length, and hence, for some time there was a size gap between small variants
(about <50bp) and large variants (>1kb). The most recent methods closed the
gap and are able to detect SVs with 50 or more bases, and with this the definition
adjusted accordingly. Today, a plethora of methods exists that exploit various sig-
natures and that have hence also different advantages and limitations (Medvedev
et al. (2009), Alkan et al. (2011), Abel and Duncavage (2013), Pabinger et al. (2014)).
These signatures are discordant read pairs, read depth, and split-reads, and will be
explained in detail in the following section.

The first methods focused on analysing discordant read pairs and later discordance
in sequencing depth. The study by Tuzun et al. (2005) was the first to implement
a paired-end sequencing approach to study SVs (Alkan et al., 2011). As described
before, paired reads originate from different ends of the same DNA molecule and
therefore have an expected distance and orientation. A discordant read pair is a pair
that aligns with aberrant orientation or distance between the reads or to different
chromosomes. Although discordant read pairs span at least one breakpoint (albeit
not like split-reads, see below), methods exploring these signatures do not identify
precise breakpoints. Tools based on discordant read pairs include, e.g., BreakDancer
(Chen et al., 2009), PEMer (Korbel et al., 2009) VariationHunter (Hormozdiari
et al., 2009, 2010), GASV (Sindi et al., 2009), SVDetect (Zeitouni et al., 2010), and
inGAP-sv (Qi and Zhao, 2011).

Read depth refers to the mapping coverage of the reads versus a reference genome.
Local pileups or sinks in coverage are indications for duplications or deletions, there-
fore these variants are also called CNVs. The most common methods exploiting
read depth variations include, e.g., SegSeq (Chiang et al., 2008), EWT (Yoon et al.,
2009a), CNVnator (Abyzov et al., 2011), CNV-seq (Xie and Tammi, 2009), Read-
Depth (Miller et al., 2011), Genome STRiP (Handsaker et al., 2011), and GROM-RD
(Smith et al., 2015). These methods heavily depend on the overall sequencing cov-
erage and artificial fluctuations hamper their resolution. Also, balanced SVs such as
inversions or translocations cannot be detected with these methods as they do not
result in coverage profile changes. The precise breakpoint determination of deletions
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and duplications is also usually not possible with these methods.

Sequencing reads spanning borders of SVs allow the precise detection of SV break-
points. A so-called split-read has one part of the read mapping to one site of the
breakpoint and the other, with a potential long gap in between, to the other site
of the breakpoint at a distant location in the genome. The tool Pindel (Ye et al.,
2009) was among the first split-read aligner. It uses the normal mapping read of a
read pair as an anchor to limit the search space for the split-read. Early methods
arbitrarily split the read in two - sometimes three - parts, assuming that the break-
point will roughly match the middle of the read, and then try to map the smaller
parts of the read. Mapping can be further complicated by microindels around the
breakpoint and the error-prone ends of a read. These mapping locations are then
reported without breakpoint refinement. Prominent examples are the tools SVSeq
(Zhang and Wu, 2011), PRISM (Jiang et al., 2012), CLEVER and MATE-CLEVER
(Marschall et al., 2012; Marschall and Schénhuth, 2013; Marschall et al., 2013), and
especially Delly (Rausch et al., 2012). There are also dedicated split-read aligner
like AGE (Abyzov et al., 2011) or SplazerS (Emde et al., 2012) that solve a DP
matrix around the breakpoint to really pin-point the most likely position accord-
ing to the chosen scoring scheme also under consideration of gaps and mismatches
(see Section 1.1 for details on read alignment). These (re-)alignments are, however,
usually computationally expensive.

Split-read methods have the advantage, compared to, e.g, methods exploiting
read depth fluctuations, to be able to precisely determine the breakpoint of an SV.
Having only the exact mapping information from a fraction of the original read,
however, made it a difficult task to really unambiguously map the read part to
its origin, especially considering repetitive regions. Split-read approaches without
realignment are also hampered by the presence of microindels around breakpoints.
This was a particular issue in the first phase of NGS when read lengths from Illumina
were still only 76 bp. Hence, split-read signatures need additional information from
paired-end signatures to be able to resolve SVs in repetitive regions. There are also
split-read based tools dedicated to RNA-seq data such as FusionHunter (Li et al.,
2011), deFuse (McPherson et al., 2011) or Splitread Karakoc et al. (2012).

A similar principle to split-reads are soft-clipped reads or open end anchors (OEA),
but here the aligned parts of the read are restricted to the 5" and 3’ end of the read,
i.e. they are always a prefix or suffix of the read. Soft clipping (SC) is often done
by modern read mappers that use a seed and extend approach. Tools like ClipCrop
(Suzuki et al., 2011), CREST (Wang et al., 2011), Socrates (Schrdder et al., 2014),
or NovelSeq (OEA) (Hajirasouliha et al., 2010) then build upon these SC or OEA
reads to call SVs.

At early stages of SV detection, there appeared to be poor agreement between
the called SVs based on different methods, often owing to the distinct strengths and
weaknesses of each method or the restriction to certain SV types. So called hybrid
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SV detection tools hence aimed to integrate two - sometimes three - approaches.
Also future releases of previously mentioned tools aimed to incorporate additional
information to improve their results. Examples for the combination of discordant
read pairs and read-depth include, e.g. CNVer (first method to combine both,
Medvedev et al. (2010)) and Genome STRiP. Most tools actually combine split-
read with paired-end information, like e.g., later versions of Delly , SVMerge (Wong
et al., 2010), SVSeq (Zhang and Wu, 2011), Meerkat (Yang et al., 2013), SMUFIN
(Moncunill et al., 2014), or forestSV (Michaelson and Sebat, 2012). LUMPY offers
another approach to combine the different strengths. As a meta caller, LUMPY
combines the results of various tools (Layer et al., 2014) .

Apart from mapping, some tools also facilitate assembly strategies. Apart from
complete genome assembly, this is usually done by a local assembly for larger, novel
insertions, e.g., with MindTheGap (Rizk et al., 2014) or Anis and Basil (Holtgrewe
et al., 2015). Poplns uses the assembler Velvet to facilitate a population scale in-
sertion assembly that also implements a follow up genotyping (Kehr et al., 2015).
To place the insertions during genotyping, Poplns uses split-reads and read pairs.
Rearrangements between whole genomes can again be discovered with methods for
whole genome alignments. Local assembly usually starts at SC positions. Unmapped
reads are then assembled anchored to the identified 5’ or 3’ end of the breakpoint
in an iterative fashion until the gap between two breakpoints is closed (targeted as-
sembly Manta (Chen et al., 2015), SVMerge, TIGRA (Chen et al., 2013a), window-
based assembly SOAPindel (Li et al., 2012a), DISCOVAR (Weisenfeld et al., 2014)).
GRIDSS uses de Bruijn graphs for their targeted assembly (Cameron et al., 2017).

To date, plethora of papers exists presenting different SV detection methods and
tools. The latest study performs haplotype-resolved SV detection in human genomes
integrating multiple platforms (Chaisson et al., 2017). Fortunately, there are also
joint community efforts toward a better understanding of the human SV landscape
(Redon et al., 2006; Mills et al., 2011; The 1000 Genomes Project Consortium., 2012,
2015; Sudmant et al., 2015) that also aim to resolve complex SVs.

The list of tools mentioned in this section is by no means exhaustive owing to
the huge number of available software that is sometimes tailored to specific SV
types, sequencing technologies, read lengths or error profiles and so forth. While the
aforementioned tools were mainly designed for human sequencing data, there are also
tools designed for other organisms, e.g., breseq for bacteria (Barrick et al., 2014).
While breseq accounts for traits specific for bacteria such as higher recombination
rates and repeats, the tool focusses on variants within the genome and does not
detect horizontal gene transfer events between bacteria.
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Figure 1.4. HGT overview and evidence. (I) Via horizontal gene transfer (HGT), genetic material is
transferred from the donor cell to the acceptor cell by one of three possible ways. The genetic material
can be part of a plasmid (A) that is exchanged directly between the acceptor and donor cell. Bacteria
can also take up free genetic material from the environment (B). The gene(s) can also be part of a
donor bacteriophage that transfers the gene(s) when it integrates into the genome after infection of the
acceptor (C). (IT) Regarding its gene - or protein - content, the HGT organism consists therefore mainly
of the acceptor genome, and the transferred proteins should be unique within the acceptor and donor
(light blue). Reprinted from Trappe et al. (2017).

1.4 Horizontal gene transfer in bacteria - variants across
species boundaries

Traditionally, evolution is viewed as a bifurcation process: changes are only vertically
inherited from parent to offspring and hence, only slow divergence leads to new
species over time (Olendzenski and Gogarten, 2009). Along this line of thought, we
view all species relations and their history as a "tree of life”, depicted as bifurcating
phylogenetic trees. Any genetic relation between distant lineages in the tree were
regarded as a strange coincidence due to orthologous evolution.

The parent to offspring inheritance and the integrity of a phylogenetic tree was
unquestioned until proof for a concept known as horizontal gene transfer (HGT) was
established (Syvanen, 1985; Sprague, 1991; Lawrence, 2002). HGT is defined as the
movement of genetic information between distantly related organisms (Crisp et al.,
2015). Before genome sequencing shed light into the frequency and prominence of
HGT, such events were considered to happen only rarely, and hence, the impact
considered irrelevant (Koonin et al., 2001). Now, HGT is even thought to be the
dominating factor in microbial evolution, at a gene gain and loss rate similar to
point mutation rates (Koonin, 2016). Some extreme views even go that far to deny
vertical tree-like evolution.

HGT is not limited to, but probably best studied in, bacteria. HGT happens
wherever various bacteria live in close proximity like, e.g., in the human gut, or are
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brought in frequently from different sources like, e.g., in hospitals. Liu et al. (2012)
claim to have identified over ten thousand high confidence HGT genes in human
microbes.

Transferable genes are also referred to as mobile genetic elements (MGEs). These
are loosely defined as DNA that is able to move within or between genomes (Siefert,
2009), and make up the unique mobilome of every genome. Bacterial MGEs are
commonly classified into transposons, plasmids, and bacteriophages. Bacteriophages
are viruses that infect bacteria. There are at least three known mechanisms for
bacterial HGT through which the so called acceptor cell receives genetic material
from the donor cell (see Figure 1.4). The acceptor cell can take up nascent DNA from
the environment in a process called transformation (Mazodier and Davies, 1991).
The acceptor can also gather packed DNA in form of plasmids or bacteriophages.
For the direct transfer of a plasmid from donor to acceptor via conjugation, a cell-
cell contact is established through a pilus. Bacteriophages are transferred from the
donor cell through transduction.

The recognition of HGT has led to a postulation of a "net of life” with fusing
branches compared to the traditional ”tree of life” where fusions are only seen as
inconsistencies (Hilario and Gogarten, 1993).

1.4.1 Relevance and impact of HGT for public health

In the past years, HGT in bacteria became a widely accepted mechanism but the
impact concerning public health has only recently been fully acknowledged. Bacteria
are prominent in basically every multi-cellular organism and various environments.
Some are essential for our survival and hence harmless, e.g., considering the human
gut microbiome (Eckburg, 2005; Backhed, 2005). Here they synthesise important
vitamins or other nutrients, and protect us from invading pathogens. But they
also pose maybe the greatest health risk when it comes to disease causing bacteria
(Guarner and Malagelada, 2003), according to the WHO to some extent even more
than viruses or cancer.

Upon the discovery of the first antibiotic penicillin in 1929 by Alexander Fleming,
a new era began where humans were actually able to efficiently combat bacterial
infections. For a long time, modern medicine thought to have even defeated death
due to bacterial infections. But only few decades later, bacteria started to over-
come antibiotics. And those who did would sometimes be even more aggressive,
posing a greater risk and demand for stronger antibiotic alternatives. The problem
of resistance was more prominent in hospitals where the use of antibiotics is more
frequent. The essential question was, how can bacteria adapt to these antibiotics so
quickly? Bacteria have a high evolutionary rate, but this could not explain the high
rate of adaptation and resistance. Observations from acquired resistances of former
susceptible bacterial strains that lived in close proximity to strains with known an-
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timicrobial resistances (AMRs) led to suspicions about underlying, unknown transfer
mechanisms. In 1960, Akiba et al. (1960) demonstrated such a transfer of resistances
from Shigella to E. coli in a mixed cultivation. The underlying mechanism, called
horizontal gene transfer (HGT), has been acknowledged over the years. AMR can
also arise through point mutations as in the beta-lactamase resistance gene, in fact
beta-lactamase can undergo both, HGT and evolution through point mutation.

AMR genes are also only one example of the importance of HGT events in bacte-
ria for public health. Either through a natural HGT event or an artificially induced
event - i.e. a forced genetic modification - virulence factors that increase pathogenic-
ity can be introduced into former harmless organisms. Pathogenicity islands (PIs)
are conserved, mobile sequence stretches that can be transferred by conjugation or
transduction. Despite conservation, they are often modular such that new genes
can be incorporated into the island. Salmonella Pathogenicity Island-7 (SPI-7),
e.g., is the largest island identified so far with a size of 134kb. SPI-7 is specific
to Salmonella enterica subsp. enterica serovar Typhi, a human pathogen (Seth-
Smith, 2008). Yersinia pestis that causes the disease plague that resulted in several
epidemics throughout history including the Black Death, e.g., hosts two plasmids
that are not carried by other Yersinia species but that contain the virulence factors
responsible for the high pathogenicity. Transduction of these two plasmids could
cause a pathogenicity increase in other Yersinia species, which also poses a poten-
tial thread in the context of biological warfare (Parkhill et al., 2001). Yu et al.
identified a gene cluster in Burkholderia pseudomallei, a human pathogen causing
melioidosis, that is similar to a gene cluster from Y. pestis and that appears to be
horizontally transferred (Yu et al., 2006). This gene cluster is absent in the avirulent
B. thailandensis strain.

These are just a few examples for the great potential that comes with the ability
of HGT, and more will certainly be discovered with improved methods and tech-
nologies. Important for method developments in the context of public health is also
the distinction of a single infection by a modified organism in contrast to double -
or multi-infections - with distinct organisms or pathogens that may have conflicting
resistance patterns and cause additional symptoms when treated inappropriately.

1.4.2 Computational methods for HGT detection and analysis

Pre-NGS genomic HGT methods can be roughly categorised into three approaches,
namely sequence composition-based, phylogenetic based or BLAST based (Ravenhall
et al., 2015). All of them work on fully or at least partially assembled sequences.
In any case, the common assumption to identify a probably horizontally transferred
gene is that the foreign gene has measurable features that distinguishes the gene from
the remaining genes and sequence content. In a way, with the sequence composition
and BLAST based methods, one can identify candidate regions or genes that can -
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or rather should - then be further analysed and validated by phylogenetic methods
or other means.

Each genome has unique patterns of sequence signatures such as, e.g., the GC con-
tent. A foreign gene thus has a theoretically detectable different signature compared
to its new host genome (Karlin, 2001; Putonti et al., 2006; van Passel et al., 2005).
Different studies or methods use one or more of these sequence signatures, e.g.,
the nucleotide composition (Daubin et al., 2003), k-mer frequency (Lawrence and
Ochman, 1998), codon usage (Lawrence and Ochman, 2002) or also other structural
features (Worning et al., 2000). Over time through the natural evolutionary process,
the transferred genes loose their previous host specific signatures, a process called
amelioration (Lawrence and Ochman, 1997), and become unrecognised by compo-
sition based methods. Cortez et al. (2009) compared different composition-based
approaches on an in silico HGT organism to show the need for control method-
ologies concerning the assessment of false positive prediction, which they claim has
been missing in the studies employing these approaches before. Methods that rely
on the distinct sequence pattern between the host genome and introduced, foreign
sequence content can only reliably identify newer HGT events. These signatures are
also less distinct between closely related species. A drawback of composition-based
methods is also that pattern changes can also have other reasons than HGT events
(Ravenhall et al., 2015). For example, GC content has been shown to be higher in
highly expressed genes (Wuitschick and Karrer, 1999).

The goal of BLAST-based methods is to identify homologous genes in a distantly
related organism. This can be done either with a candidate gene or in an all versus
all search. The hits are usually ranked by blast identity scores such as the bit
score, where the highest ranked candidate gene, i.e. the best match, is identified
for every query gene. If the best match is then in a distantly related organism it
is categorised as potentially horizontally transferred. Tools implementing BLAST
strategies are, e.g., Pyphy (Sicheritz-Ponten, 2001) PhyloGenie (Frickey, 2004), or
DarkHorse (Podell and Gaasterland, 2007). BLAST-based approaches also have
limitations. The best hit does not necessarily have to be the nearest neighbour
and could be caused also by other means than HGT, e.g., unfinished genomes in
databases with missing sequence information, gene loss events, or other database
errors (Zhu et al., 2014). These methods are also challenged by HGTs in closely
related species, or in case there are orthologs or paralogs that can be mistaken to
have horizontal origin. HGTector (Zhu et al., 2014) facilitates a standard all-vs.-all
BLASTP search with an additional, phylogenetically informed grouping that aims to
normalise BLAST hit scores according to the phylogenetic category, thereby trying
to circumvent some of these limitations. A downstream phylogenetic validation is
integrated into the pipeline as well.

Both BLAST and sequence composition methods can only identify pattern ab-
normalities and possible candidates for horizontally transferred genes. Evidence,
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however, can only be established in the phylogenetic context (Eisen, 2000).

Phylogenetic HGT detection or validation procedures are based on the reconcilia-
tion between phylogenetic trees from different genes in a fixed set of genomes. If the
genomes have an established relationship that confers with most of their genes, a
foreign gene would fall out of line and suggest a different relationship. Explicit phy-
logenetic methods directly compare the phylogenetic trees to infer HGTs whereas
implicit methods make use of other metrics that correlate with the gene tree his-
tory (Ravenhall et al., 2015). In the implicit tool DLIGHT, e.g, the authors use
a likelihood ratio based on pairwise evolutionary distances (Dessimoz et al., 2008).
Ravenhall et al. (2015) discuss both kinds of methods extensively.

One of the downsides is that phylogenetic analysis itself is a task with still un-
solved challenges and pitfalls. Also, HGT is not the only mechanism or cause that
can result in phylogenetic conflict patterns. Some causes for false positive predic-
tions include poor data quality, ambiguous alignments that in addition might also
lead to misinterpretation of genes with paralogy and orthology relation, or simply
misapplication of (unsuitable) phylogenetic methods (Eisen, 2000). Hence, there is
need for HGT detection methods based on other kind of evidence.

The mentioned approaches often detect HGT events at different phylogenetic dis-
tances and age. Similar to the phenomenon of early SV detection approaches, there
is often a low overlap or agreement between the reported HGT events of different
HGT detection methods on the same dataset (Lawrence and Ochman, 2002; Raven-
hall et al., 2015). At the same time, HGT rates estimated upon different methods
vary sometimes largely, causing again controversies about the frequency of HGT.
Large scale HGT analysis without follow-up, supporting investigation is still viewed
critically as many of such reported genes have proven to be false positives due to
manifold reasons (Koonin et al., 2001).

NGS facilitates new means for HGT detection methods that can provide other
evidence, e.g., in a mapping-based fashion. An example, although limited to the
detection of AMR genes, is KmerResistance (Clausen et al., 2016) that uses k-mer
profiles directly from sequencing reads to infer AMR genes. Large sequencing efforts
are also stocking up and hence also improving the reference content in databases.

1.5 Terminology
I here define and clarify some important terms and phrases used throughout my

thesis. Some of them have ambiguous meanings, others are not commonly used yet
in the literature.

Coverage The term coverage has at least two important meanings when it comes
to genomic sequencing technologies and data. Sequencing coverage, also called se-
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quencing depth, refers to the theoretical, average number of reads generated for each
base of the sequenced genome. So for a 100x coverage, each base is represented by an
average of 100 reads. Note that one read covers more than one base, depending on
the read length. The desired sequencing coverage can be defined before sequencing
to obtain the number of fragments and cycles needed for the experiment.

When the sequenced reads are mapped to a reference genome, we can define the
mapping coverage as the number of reads mapping to the reference at one position
or also as the percentage of the reference covered by the reads. I refer to a genomic
region as covered if there is one or more reads mapping to this region, thereby
”covering” the base pairs at those positions. Depending on the sequence similarity
of the reference and the sequenced genome, the average sequencing depth and the
mapping coverage of a position in the genome can vary enormously.

When speaking of coverage within the scope of this thesis, I generally refer to the
mapping coverage.

HGT organism During an HGT event, a piece of DNA is transferred from a donor
organism to an acceptor organism. Strictly speaking, there is no biological HGT
organism. It is a term we defined to address the resulting organism after an HGT
event has occurred, i.e., after an acceptor organism has acquired a novel gene. Also,
an HGT event effects both the genome and, if the gene is expressed, the proteome
of an organism. If not distinguished further, I refer to both the genome and the
proteome by the term HGT organism.

1.6 Open research questions

In this section, I want to highlight the open research questions opened up and
motivated by the previous introduction that are addressed within the scope of this
thesis. The first topic addresses the motivation to develop a SV detection tool for
(human) NGS data. Its methods are then adapted to a more specific variation
in bacteria, namely the detection of HGT events from NGS data. The last topic
addresses a proteomic approach for HGT detection that integrates with and further
characterises results from genomic-based HGT detection.

1.6.1 Development of a computational method for SV detection from
NGS data

Structural variations have been shown to play a major role in complex disorders and
diseases such as cancer, and methods are required that are able to detect and charac-
terise even complex types of SVs from NGS data. The project to develop a structural
variation detection method started back in 2011 when the field of SV detection tools
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was still scarce and Delly - the coming state of the art - not published yet. Existing
methods could detect only simpler SV types such as indels and inversions, or CNVs
but without breakpoint precision. The resolution for SV size of >50bp was first
mentioned in Alkan et al. (2011), but no tools were developed so far that addressed
this size span from 50 to 1kb. Technologically wise, lllumina reads were still short
(mostly 76 bp), and the common assumption was that the long 454 reads would be
the future and dominate the sequencing market. Long reads of several hundred or
thousand base pairs are likely to span one or even multiple SV breakpoints, with
the size of the matching segments in between breakpoints unknown beforehand and
likely to vary in size. Both points were still not addressed by existing methods.
Inspired by methods and graph-based data structures for whole genome alignment
under consideration of rearrangements, we wanted to build a method that finds those
matching segments and is able to represent and detect the rearrangements connect-
ing these segments. Representing the segments in a generic way, we aimed to also
expand the types of SVs that can be detected to include inversions, duplications
and translocations next to long indels. Especially duplications and translocations
were not detectable with base pair resolution before. These complex SVs involve
distinct regions within the genome and actually consist of a combination of simpler
SV patterns. The insertion event is taking place at a distinct location from the copy
(duplication) or deletion (translocation) event, creating distantly related events that
are usually not spanned by the same read.

In short, we aimed at filling the size gap from 50-1000 bp - which we termed the
NGS Twilight zone - being generic in variant type and size, and able to span multiple
breakpoints by considering long read lengths. Our approach was not designed as a
read mapper with SV detection on top but focusses on fewer reads spanning SVs
but therefore trying a more sensitive but computational expensive approach.

To do that, we wanted to use the local aligner Stellar (Kehr et al., 2011) to
identify the segments between breakpoints, and then represent these in a graph
data structure. We also wanted to incorporate a dedicated split-read mapping as
proposed in AGE (Abyzov et al., 2011) and used in SplazerS (Emde et al., 2012) to
provide breakpoint precision in the presence of sequencing error or microhomologies.

1.6.2 Development of computational methods for HGT detection from
NGS data

Horizontal gene transfer (HGT) has changed the way we regard evolution. Instead
of waiting for the next generation to establish new traits, especially bacteria are able
to take a shortcut via HGT that enables them to pass on genes from one individ-
ual to another, even across species boundaries. Existing HGT detection methods
usually exploit phylogenetic discrepancies of a particular gene tree compared to a
species tree. To be able to build up a gene tree, one has to identify potential HGT

29



1 Introduction

genes, which can be done using composition-based HGT detection methods. This
approach answers the question of what particular gene is of foreign nature in a cer-
tain organism. What the approach does not answer is, where did the gene come
from, and where exactly did it go? Once candidate genes are identified, phyloge-
netic approaches could offer clues about the whereabouts of their origin but do not
give evidence about the transfer. Moreover, all methods depend on fully assembled
genomes of the HGT organism rather than exploiting NGS data directly, and are
also not consistent in their results. In the context of public health, it is also impor-
tant to characterise HGT events directly from NGS data that enables the distinction
between single infections of novel HGT organisms and double infections from the
potential acceptor and donor organisms.

Given NGS data from an organism with a potential but unknown HGT event,
two research questions can be derived: (i) what are the involved acceptor and donor
organism, and (ii) what sequence - or gene - content from the donor with what
characteristics has been transferred to what position in the recipient. Answering
the second question allows to deduce the functional impact of the transfer and
also, in a more general term, to characterise specific insertion sites. Answering the
identification question of acceptor and donor organism is a prerequisite to define the
search space for potential HGT regions and sites.

In a first proof of principle, we aimed to develop an approach for HGT site de-
tection and characterisation based on read mapping that provides complementary
evidence compared to existing methods at the cost of relying on the acceptor and
donor references of the HGT organism being known. To achieve this, we adapted
methods established for SV detection in human genomes to the more specific HGT
detection problem. In an abstract point of view, an HGT event has the same SV
pattern as an inter-chromosomal translocation, with acceptor and donor genome be-
ing considered as chromosomes. The problem of identifying organisms in a sample
based on sequencing reads is addressed by metagenomic profiling tools. However,
acceptor and donor references have certain properties such that these methods can
not be directly applied. We wanted to develop a mapping-based pipeline that is able
to identify acceptor and donor candidates of an HGT organism based on sequencing
reads. To do that, we aimed to leverage properties of the metagenomic profiling tool
MicrobeGPS, and to refine them for HGT candidate identification.

1.6.3 Development of a computational method for HGT detection from
MS/MS data

The detection of HGT events on the genomic level can only reveal the potential
functional gain but the expression also depends on where the gene has been in-
serted and further means of expression like, e.g., promotors. Proteomics is also
an orthogonal type of evidence supporting genomic based clues. However, despite
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studies addressing impact and functionality of potentially horizontally transferred
genes such as specific antibiotic resistances, there is no MS-based method or study
investigating HGT events as such in an independent and detailed manner. Akin to
the approach on the genomic level, one can investigate the two research questions
of (i) involved acceptor and donor organisms identification and (ii) characterisation
of the transferred gene separately in a two-stage process. Building on our genomic
approach, we first wanted to further investigate the characterisation of transferred
proteins from shotgun MS data.

To do that, we aimed to develop a computational workflow that can automatically
detect a unique donor protein by an extended, standard database search. A rigorous
cross-validation ensures that the protein conforms to the characteristics of a HGT
protein, namely that it is not present among the acceptor database and that no
other donor proteins are detected. In preparation for future integration with our
genomic approach, we also aimed to determine the genomic origin in a proteogenomic
fashion.

1.7 Thesis outline

In this thesis, I present my contributions to the research questions described in the
previous section. Chapter 2 addresses the problem of SV detection from NGS data.
Anne-Katrin Emde, Knut Reinert and I developed the concept of using local align-
ments and a graph data structure to present generic breakpoints of SVs, and to use
these to detect SVs from NGS data. I further developed a combinatorial method
to combine the patterns of simple SVs to infer complex translocations and duplica-
tions, and implemented that with the concept in the software Gustaf. Anne-Katrin
Emde and I designed the evaluation, and Christian Ehrlich helped implementing the
evaluation in an automised benchmark. I analysed the data and wrote the paper
together with Anne-Katrin. Chapter 2 is based on the following publication:

Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.
K. Trappe, A. K. Emde, H. C. Ehrlich, and K. Reinert. Bioinformatics,
Ozford University Press (OUP), 30 (24): 3484-90, 2014.

Presented at the Conference for High Throughput Sequencing (Hit-Seq), ISMB
2014, Boston, USA.

While Gustaf is a tool for generic SV detection, the concept can be adapted to
tailored variant detection. A HGT event is in a way an SV event involving genomes
across species boundaries. The HGT detection problem involves two questions, (i)
what are the involved acceptor and donor species, and (ii) what part of the donor
genome has been transferred to what position in the acceptor genome.
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Chapter 3 describes how we applied SV detection methods to the second problem,
the detection and characterisation of the HGT site. Tobias Marschall, Bernhard
Renard and I developed the concept of integrating these established methods to a
distinct across-species event, and together designed a benchmark to evaluate our
approach. I implemented the concept in the software Daisy and analysed the data.
I wrote the paper together with Tobias Marschall, and Bernhard Renard helped in
writing the manuscript and gave valuable advice during data analysis. Chapter 3 is
based on this publication:

Structural Variant Detection across Species Boundaries: Mapping-Based Hori-
zontal Gene Transfer Detection from Sequencing Data. K. Trappe, T. Marschall,
and B. Y. Renard. Bioinformatics, Ozford University Press (OUP), 32 (17):
1595-1604, 2016.

Presented at the European Conference for Computational Biology (ECCB)
2016, The Hague, Netherlands, and the NGS’17 conference, Barcelona, Spain.

The problem of acceptor and donor identification was further investigated and
a method to solve this problem implemented in DaisyGPS. These investigations
are described in Chapter 4. I designed and conceived the general approach together
with Bernhard Renard, and I had the lead in evaluation and in the data analysis and
interpretation process. Enrico Seiler developed the scoring and ranking for acceptor
and donor candidates under my supervision, and implemented it in the DaisyGPS
software. Enrico and I did the evaluation and wrote the paper together. Chapter 4
is based on this preprint:

Where did you come from, where did you go: Refining Metagenomic Analysis
Tools for HGT characterisation. E. Seiler!, K. Trappe!, and B. Y. Renard.
bioRziv, preprint, 2018.

In Chapter 5, the concept behind Daisy is partly transferred to the field of pro-
teomics and implemented in the tool Hortense. I designed the overall workflow
with Thilo Muth and Bernhard Renard, where Thilo and Bernhard contributed to
adapting the concept to the characteristics of proteomic MS/MS data. Ben Wulf
developed and implemented the database search procedure and ranking in Hortense
under Thilos and my guidance and critical supervision. Joerg Doellinger (ZBS 6,
Robert Koch Institute) and Sven Halbedel (FG 11, Robert Koch Institute) provided
biological data for the validation, and gave valuable proteomic and bacteriological
insights for evaluation and interpretation of Hortense. Thilo Muth and I wrote, and
Bernhard Renard contributed to writing, the manuscript, Ben Wulf designed the fig-
ures. The chapter is based on the following publication that was reviewed through
the submission process for the German Conference on Bioinformatics, 2017:

1 Joint first authors
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Hortense: Horizontal gene transfer detection directly from proteomic MS/MS
data. K. Trappe, B. Wulf, J. Doellinger, S. Halbedel, T. Muth, and B. Y.
Renard. PeerJ, preprint, 2017.

Presented at the German Conference on Bioinformatics (GCB) 2017, Tiibin-
gen, Germany.

1.8 Further contributions

Besides the research I conducted as part of my PhD that is presented in the following
chapters, I also contributed to the following research project. In this project, Birte
Kehr and I conducted a theoretical comparison of available graph data structures for
whole genome alignments in terms of their ability to represent alignment informa-
tion. I contributed to establishing analogous structures and properties between the
chosen graphs, and helped to define rules by which one graph can be transformed
into another without loss of alignment information. This work greatly inspired the
concept behind the SV detection tool Gustaf presented in Chapter 2.

Genome alignment with graph data structures: a comparison. B. Kehr, K. Trappe,
M. Holtgrewe, K. Reinert. BMC' Bioinformatics, 9: 15-99, 2014.
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2 Detecting complex structural variants
with Gustaf

Variation in the human genome remains only partially characterized. Theoretically,
whole genome sequencing (WGS) data carries the potential to identify all genomic
variation, including small variants such as single nucleotide variants (SNVs) and
small indels, as well as larger structural variants (SVs, typically defined as >50 bp),
such as large deletions, inversions, duplications and translocations. However, the
difficulty lies in computationally analyzing the large-scale data obtained from WGS
and reliably identifying the whole range of genomic variation.

With current algorithms and methods, only small variants, up to 30bp, can
be identified rather confidently, while larger variation still poses a major challenge
(Alkan et al., 2011). Large and complex rearrangements are often accompanied
by micro-homologies or microindels (Onishi-Seebacher and Korbel, 2011)) around
their breakpoints which makes them even harder to detect, particularly with base
pair resolution. Many bioinformatics tools have been developed in recent years that
address SV detection through identification of certain signatures in the sequencing
data (Alkan et al., 2011). Mainly, they rely on one or multiple of the following four
approaches: 1) identifying discordant read pairs that span SV breakpoints (Chen
et al., 2009; Marschall et al., 2012; Hormozdiari et al., 2009; Tuzun et al., 2005), 2)
detecting regions of unexpectedly low or high read depth (Abyzov et al., 2011; Xi
et al., 2011; Yoon et al., 2009b), 3) identifying split reads that span SV breakpoints
(Ye et al., 2009; Emde et al., 2012) or 4) local reassembly of SV candidate regions
(Chen et al., 2013b). Typically, overlap between different tools is low (Alkan et al.,
2011). This is partially due to the fact that most tools are geared towards certain
types of data, e.g. for specific read lengths, or towards certain SV size ranges and
types, e.g. mid-size indels. Also, the different strategies suffer from various biases
and sources of errors. Read depth methods are vulnerable to read depth fluctuations
leading to non-uniform coverage, e.g. due to GC content and mappability issues.
Even after successfully normalizing for coverage biases, the spectrum of SVs that
can be identified through read depth signatures is limited to copy number variable
regions, i.e. deletion and amplification. Read pair methods are vulnerable to mis-
mappings caused by repetitive regions in the genome and are furthermore susceptible
to chimeric read pairs (Maher et al., 2009).

Both read depth and read pair methods have problems identifying small SVs, i.e.
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2 Detecting complex structural variants with Gustaf

less than a few hundred base pairs, which we here term the NGS twilight zone of
SVs. For read depth methods, it is hard to discern coverage changes in small regions
from natural read depth fluctuations. For read pair methods, such relatively small
deletions are difficult to identify since paired read spacing may still lie within the
variance of the insert size distribution.

Of the four strategies, only split-reads and assembly-based methods yield single
nucleotide resolution, by identifying reads or reconstructing contigs that directly
span SV breakpoints. When correctly mapped onto the reference genome, the read-
(or contig-)to-reference alignment of an SV-spanning read (contig) will be split into
partial alignments at the breakpoint positions, hence yielding base pair resolution.

The split-read approach has been primarily used in conjunction with read pair
methods that identify potential SV-spanning reads through abnormal paired read
distance or orientation (Ye et al., 2009; Rausch et al., 2012; Marschall et al., 2013).
This significantly reduces the search space for split mapping, which is computation-
ally expensive to apply to the whole genome.

However, with increasing read lengths (and improved local reassembly approaches
that generate contigs), the split mapping approach becomes more and more powerful,
since it yields highest confidence and base pair resolution.

Therefore, we aimed to develop a method that can generically split-map contigs or
reads of arbitrary length. Our tool Gustaf (Generic mUIlti-SpliT Alignment Finder)
allows for multiple splits at arbitrary locations in the read, is independent of read
length and sequencing platform, and supports both single-end and paired-end reads.

Gustaf is based on finding local alignments of a read, and then essentially chaining
local alignments into a semi-global read-to-reference alignment. Similar approaches
are used in the context of whole-genome alignment, where large rearrangements
between locally collinear blocks are maintained in graph or graph like structures
like, e.g., the alignment graph (Kececioglu, 1993), the A-Bruijn graph (Pevzner
et al., 2004) or the Enredo graph (Paten et al., 2008), or in the SHUFFLE-LAGAN
glocal alignment algorithm (Brudno et al., 2003).

Local alignments are identified with Stellar (Kehr et al. (2011), www.seqan.de/
projects/stellar), an edit distance local aligner, which guarantees to find all local
alignments of a given minimal length, maximal error rate and maximal X-drop. In
theory, however, our approach can take local alignments from any aligner as input,
making it versatile and adaptable. Since local alignments are allowed to be anywhere
in the reference genome, it allows for non-collinearity of chained local alignments,
and hence has the power to identify all types of structural variation.

In contrast to other SV callers, Gustaf furthermore attempts to correctly classify
SV events leading to multiple breakpoints such as translocations and dispersed du-
plications including the actual length of the duplication (see also Figure 2.3). These
complex SV patterns incorporate pseudodeletions that make them harder to classify
and that are often wrongly reported by other methods.
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2.1 Determining breakpoints and shortest paths in a breakpoint graph

In the following, we introduce our method Gustaf, and compare it with two other
popular methods that are able to report SVs with base pair resolution, Pindel (Ye
et al., 2009) and Delly (Rausch et al., 2012).

2.1 Determining breakpoints and shortest paths in a
breakpoint graph

Gustaf is an SV detection tool that uses a split read approach to detect exact break-
points of SVs including indels, inversions, duplications and translocations. Gustaf
uses the local aligner Stellar to detect partial alignments of a read and stores com-
patibility information of these partial alignments in a graph data structure.

We will first give a brief overview of Gustaf’s general approach, and then define all
important steps such as local alignments, adjacency of local alignments, breakpoints
of different types and our split-read graph together with the necessary methods such
as the split-alignment in the following subsections.

2.1.1 Gustaf’'s workflow

Gustaf takes as input a set of reads and optionally a set of local alignments for these
reads. If no local alignments are supplied, they will be computed using Stellar. Our
approach is based on maintaining all local alignments of a read within a graph struc-
ture so that we can use standard graph algorithms to evaluate relationships of the
alignments. We call this graph split-read graph and will completely define it below
(see also Figures 2.1 and 2.2). In this graph, each local alignment is represented by
one vertex.

Breakpoints (like positions v, w, z in Figure 2.3) create new sequence adjacencies
in a genome, e.g. block 4 and 5 in Figure 2.3 are adjacent in the reference genome but
formed new adjacencies with the duplicated (or translocated) block 2 in the donor
genome. Vertices of alignments that belong to the same variant, i.e. that span a
breakpoint, are connected by an edge so that the edge represents the breakpoint.
Each alignment has an edit distance. Roughly, each edge carries as weight the edit
distance of its target vertex (see also Figure 2.2, more details will follow below).

All valid combinations of alignments are represented by their corresponding paths
of vertices in the graph. The sum of the edge weights of each path will correspond
to the edit distance of the individual split alignments, with additional penalties
incurred for each split depending on the type and size of the SV it indicates (see
Figure2.2 for an inversion example inv(w, z) for a;,as with edit distance d*? = 2,
inversion penalty 5 and gained split alignment score d’ = —4). The path with the
lowest total weight represents the most likely combination of local alignments for this
read, and the edges give the breakpoints causing the split in the read-to-reference
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Figure 2.1. Local alignments a; and ag of a read r spanning blocks 1 and 3 in a donor genome d where
block 2 is deleted compared to the upper reference genome g. Alignment a; denotes the local alignment
of the read prefix with block 1, a2 of the read suffix with block 3. Denoted are begin (b) and end (e)
positions of the alignment a; in the reference (bg',eg') and the read (by',er!), and positions of az
analogous to a;. Alignments a1 and as are adjacent in the read and overlap at their sloppy end within
the read (green bases GCTGGAGA). The correct split position of the deletion is indicated by the dotted
line. Both a1, a2 have edit distance 2. The gained score d’ of this split-alignment is —4, as we get rid of
all errors within the sloppy ends when cutting the alignments at the dotted line.

alignment.

2.1.2 Local alighments

Gustaf uses SeqAn’s local aligner Stellar (Kehr et al., 2011) to compute the set of
local alignments A(r) of each read r. Stellar implements a seed and extend approach
based on the SWIFT filter algorithm (Rasmussen et al., 2006), and guarantees to
find all local alignments between two sequences given a minimal match length and
maximal error rate for these alignments. During the extension phase, the seeds are
extended as long as the final alignment is still valid with respect to the allowed
maximal error rate. This produces sloppy alignment ends. In case a read spans
an SV, the alignment is thus likely to extend past the SV breakpoint. This is
an important feature that we use to our advantage in the subsequent split-graph
construction (see also Figure 2.2).

Throughout the paper, we use the following definitions: Let s = (b, ¢) be a segment
of a sequence starting in b and ending in e, i.e. b < e. An alignment a = {sg4, s, 0}
between a reference g and a read r aligns the segment s, = (by,e4) of g to the
segment s, = (b, e,) of r. The orientation o € {+, —} indicates whether the read
mapped to the forward (+4) or reverse (—) strand of the reference. We denote the
read segment positions b, and e, of an alighment a with b? and e, and the reference
positions b7 and eg (see Figure 2.1). Every alignment a has an edit distance d®.

For two alignments aj, a2, we say a; < ag if 0¥ < b%2, i.e. we can sort all
alignments of one read according to their start position in the read. Analogously,
we can impose an ordering of the alignments according to their reference sequence
positions.
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2.1 Determining breakpoints and shortest paths in a breakpoint graph
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Figure 2.2. Gustaf’s workflow detecting an inversion of block 2 in the donor genome d where another
similar block 2 is present in the reference g: A read spanning blocks 1 and 2 results in alignments aj,
a2 and a3 (with o1 = + and 02 = 03 = —) where a3 is an alignment to the region similar to block 2
upstream in the reference. The corresponding split-read graph (top-right) has artificial start (s) and end
(t) vertices, representing start and end of the read, and vertices v1-v3 representing alignments ai-as.
Ingoing edge labels are edit distances of corresponding alignments adjusted by inversion penalty 5 and
the gained split-alignment score (4 for both v2 and v3). The shortest path highlighted in blue from s
over v1 and vz to t represents the most likely alignment combination (a1,a2) of the inversion.

A read that spans a breakpoint is split up in alignments and we identify the
alignments belonging to the same variant according to their adjacency, i.e. we
say that two alignments span a breakpoint if they fulfill the following criteria of
adjacency for alignments. Two alignments can be adjacent regarding their read or
their reference sequence (or both). For read adjacency, two alignments a1, as, a1 <
ag, are adjacent if their read positions overlap such that 0% < e?!, or if the gap
between the read segments is smaller than a predefined threshold Ty, i.e. 072 —eft <
Ty. The gap definition of adjacency accounts for possible microindels around a
breakpoint and is per default 5bp but can be adjusted by the user. For reference
adjacency, ai,as are adjacent if their reference positions overlap such that either
bg? < egt (and b3t < bg?) or byt < eg? (and bg? < bgl), or if the gap between the
reference segments is smaller 7.

The adjacency and relation of two alignments a1, as, indicate a specific type of
SV (see section SV classification). The positions of the SVs are determined by
the begin and end positions of the reference segments in a1 and ao, refined by the
split-alignment method described in the next subsection.

2.1.3 Split-alignment

Two adjacent alignments ai,ae with a; < as that overlap at their sloppy ends
are realigned in their overlapping region to determine the exact breakpoint. This
realignment is in principle similar to the split alignment approach in AGE (Abyzov
et al., 2011) and is implemented as an alignment algorithm in SeqAn (Déring et al.,
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2 Detecting complex structural variants with Gustaf

2008; Emde et al., 2012). Similar to AGE, two alignment matrices for the overlapping
parts of two adjacent alignments aj,as of a read r are computed simultaneously.
That is, we have a segment s, = (b2, e%") denoting the overlapping region in the
read, and two alignments a) = {s],s,,01} and @}, = {s), 55,02} where s is the
subsequence of s, in a; that aligns to s,. The matrices of a/, a5 determine the best
split point p as the position in the read with the best total edit distance score for
both alignments a} and a. The segments sr, 84 of the alignments a; and ay are
trimmed according to p, i.e. s& of a} is st = (b%,p) and st of @} is st = (p,e?),
and 32 of a} and dl, is the subsequence that aligns to s/, respectively. The new edit
distances of a and af, are lower, than the old ones d*' and d®* of the untrimmed
alignments aq, ag, i.e. we have a gain d’ of edit score when we split-align a; and as.

All adjacency and split-alignment information is represented in a graph that we
call split-read graph and that is defined in the following subsection.

2.1.4 Split-read graph

All local alignments A(r) of a read r and their adjacency relation to each other are
represented in a split-read graph G = (V, E, s,t) (see Figure 2.2). When building the
graph, we start with an almost empty graph containing only two artificial vertices
representing start (s) and end (t) of a read, and then add a vertex v € V for each
local alignment a € A of the read. We add directed edges e; = (s,v) and e, = (v, )
for every a (represented by v) that misses t¢ < T base pairs to either start or end
of the read, and weight them with w(es) = d* +t and w(e.) = t¢.

We then add directed edges e = (v1,v2) between all pairs of alignments a1, as that
fulfill the criteria of adjacency defined above and weight the edge with d*2 — d’, the
edit score of ao adjusted by the gained score of the split-alignment of a; and as.
Based on the type of split that an edge supports, an additional penalty is added
to the weight of the edge. Splits that agree with a collinear alignment of adjacent
local alignments, i.e. are suggesting a simple insertion or deletion event, receive a
penalty of 0. All other splits, i.e. suggesting translocation, inversion or duplication,
receive a higher penalty. We set all penalties to 5 here, i.e. for a 100bp read,
a non-collinear split will be weighted equivalently to 5 mismatches in a read-to-
reference alignment, but these penalties can be adapted by the user depending on
the application. Edges reflect adjacency of the alignments either within the read or
within a reference genome. The direction of the edge depends only on the alignment
order in the read, such that if a; and ao with a1 < as are adjacent, then there is an
edge e = (v1,v2), independent of whether the adjacency is in the read or reference.
This definition guarantees that we have a directed acyclic graph (DAG) for which
we use common graph algorithms like the DAG shortest path algorithm.

The adjacency edges create zero to multiple paths through the graph from start
to end where the sum of the edge weights of each path correspond to the total edit
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distance of the alignments on the path plus penalties incurred for the indicated SV
types (see Figure 2.2 for an inversion example with two alternative paths). Adjust-
ing thresholds T; and 7; for gaps allowed at beginning or within reads influences
sensitivity and specificity when adding edges and therefore also the number of paths.
We identify the most likely path using a DAG shortest path algorithm.

2.1.5 Paired-end data

We described the workflow for single-end reads so far. The paired-end version is
an extension to the described approach. By joining both mates and treating them
as a single read, we obtain a graph with an expected split at the joining position
of the mates. Edges in the graph that stem from this artificial split and are in
agreement with the library insert size, receive an edge weight bonus that makes
any path through this edge more likely to be the best path, i.e. the shortest path.
The benefit from this version lies in the higher probability of choosing the correct
alignments of a split read and thereby increasing the specificity of the SV calling.

2.2 Inference of complex variants

2.2.1 SV classification

We define the different SV types according to the positions and sequence content
affected by the variation. A deletion del(b,e) is then a segment s = (b,e) in the
reference g that is absent in the donor genome (see absent block 2 in Figure 2.2).
An inversion inv(b,e) is a segment s that is inverted in g (see inverted block 2 in
Figure 2.2). A dispersed duplication dup(b, e, t) is a segment s = (b, e) that appears
again at position ¢ in g (see duplicated block 2 at position z in Figure 2.3). If
position e of s could not be inferred by the classification described below, we refer to
the duplication as imprecise, denoted by dup_impr(b,t) (see imprecise duplication
indicated by read 1 in Figure 2.3). A translocation is usually annotated by the
new adjacencies formed by the translocation process. We denote a translocation
tra(b,m,t) by the three positions b, m,t involved in the new adjacencies, i.e. there
is either a segment s; = (b, m) translocated to positions t or a segment sy = (m,t)
translocated to position b (see translocated block 2 at position z in Figure 2.3).
The adjacency and relation of two alignments a; and ag indicate a specific type
of SV. If ¢1,g92 of a1, as are different, both alignments are from different chromo-
somes indicating an inter-chromosomal translocation. When the orientation of both
alignments is different, i.e. 01 # 02, a1 and a9 are spanning an inversion breakpoint
(like a; and ag, or a; and ag, in Figure 2.2). If ay,a2 are adjacent in the read
and there is a gap bg? — eg? > T between the reference positions then the donor
genome is missing sequence content at this breakpoint caused by a deletion event
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Figure 2.3. Duplication and translocation alignment patterns: On the left hand side, we show alignment
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patterns of a reference g (upper sequence) with a donor genome d where sequence block 2 is either
duplicated (upper figure) or translocated within the donor genome. In a read-to-reference alignment, read
r1 (green) indicates the duplication or translocation event (dup_impr(v, z)) through the different order
of the read parts within the reference. We also observe pseudodeletions for both variants (highlighted
on right hand side) through read 2 (blue) and 3 (red): An upstream duplication of block 2 creates
a pseudodeletion del(w, z), an upstream translocation pseudodeletions del(w, z) and del(v,w). From
observing both dup_impr(v, z) and del(w, z), we infer the duplication dup(v,w, z). If we also observe
del(v,w), we infer the translocation tra(v,w, z).



2.3 Experimental setup

del(egt,bg?). After an insertion event, ai,az are adjacent in the reference but not
the read. Adjacency in both reference and read can indicate small indels or tandem
duplications.

Tandem duplications, dispersed duplications, and intra-chromosomal transloca-
tions cause a change in the order of the alignments between read and reference,
e byt < by2 and b3 < byt (like alignments for read 1 in Figure 2.3). From
this observation, we can only infer an imprecise duplication dup,impr(bSQ, egl). We
therefore cross validate observed deletions and possible duplications to infer the
missing middle coordinate of the duplication or to distinguish a duplication from an
intra-chromosomal translocation. The difference between a duplication and an intra-
chromosomal translocation event is an additional deletion pattern of the translocated
region (see pseudodeletions and read 2 and 3 in Figure 2.3), upstream or downstream
of the read containing the duplication pattern which can usually not be observed by
a single read. So given a dup_impr(bg?,egl), if we observe a dely(b3?, m) we infer a
dup(m, egt, bg?). If we observe a dela(m, eg'), we infer dup(bg?, m,eg'). Only if we
see both dely and dels, we know one of them is the upstream or downstream deletion
marking the event as a translocation tra(bg?, m,eg!) (see also Figure 2.3).

Sometimes a read reaches over a breakpoint, with one end being mappable whereas
the other is not, e.g. if the non-mappable part belongs to a large insertion or is simply
too short for a mapper to be found. We refer to these breakpoints which can only
be observed from one end as breakends. Breakends that do not support already
observed and classified SVs are reported as unrefined (due to the missing second

alignment) single breakends.

2.3 Experimental setup

The analysis of the benchmark results consists of the following three parts. In a
first stage, we want to compare all tools on even ground independent of their SV
classification. Therefore, we compare all predicted single breakpoints, i.e. all novel
adjacencies in the donor genome, of all three tools with the simulated variants from
Mason without considering the called SV type. A single breakpoint here is a single
position of an SV, e.g., for a called deletion del(b, e) which starts in position b and
ends in position e, we would compare the positions b and e separately to the set of
all single positions simulated by Mason and for now also ignore that both positions
belong to a deletion. We count a predicted single breakpoint as true positive (TP)
if the difference to the simulated single breakpoint is at most 10 bp.

Next, we want to evaluate the SV classification of all tools and therefore compare
the called SVs according to their SV type including a classification for deletions,
inversions and duplications, i.e. we compare a called deletion del; (b1, e1) to a simu-
lated deletion dely(by, €2) considering both positions b; and e;. Here, we consider all
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predicted duplications as imprecise denoted as dup_impr (b, t). This way, we compare
the begin and target positions b, t predicted by all tools to the begin and target posi-
tion of the dispersed duplications dup(b, m,t) simulated by Mason but disregarding
the known length so that we can directly compare Gustaf with Pindel and Delly.

In contrast to Delly and Pindel, Gustaf classifies and fully annotates dispersed
duplications and intra-chromosomal translocations. In the last part, we therefore
compare the dispersed duplications dup(b, m,t) and translocations tra(b, m,t) pre-
dicted by Gustaf considering also the predicted length of the duplication.

For the second and third analysis part, we require a reciprocal overlap of 80% of
the simulated SV length and the predicted SV length to count the predicted SV as a
TP. All predicted SVs not in the simulated set are counted as false positive (FP), all
not recovered simulated SVs as false negative (FN). We compare the results using
sensitivity values S = TP/(TP + FN) and positive-predictive-values (or precision)
PPV =TP/(TP+ FP). The results for coverages 5, 10, 15 (default run), 30, insert
sizes for paired-end data (u,0) = (600,60) and (u,o0) = (1000,100), read length
150bp (with (p,0) = (600, 60) to avoid read overlaps) and different SV size range
from 500 to 5000 bp are reported in Table 2.1.

2.4 Results and discussion of Gustaf

In general, we want a well performing tool to have both a high sensitivity and
precision for a given set of parameters. We will first evaluate the results of all
methods on the set of small SVs with the tested parameters settings for coverages,
insert size and read length, and then evaluate the set of large SVs below.

Gustaf has the highest sensitivity for the small SVs usually over 95% over all
tested parameter settings usually with a PPV over 90%. Note that Gustaf requires
a support of three reads for coverage 10, and only two for support 5. Therefore,
Gustaf’s sensitivity for coverage 5 is higher (97.9% to 70.8%) but at the cost of a
lower PPV (26.3% to 35.4%).

For high enough coverage, Gustaf yields a perfect sensitivity with a PPV of about
92.1%, and Pindel and Delly improve towards their highest single breakpoints sensi-
tivities of 92.8% and 71.8%, respectively. Otherwise, Delly’s and Pindel’s sensitivity
values vary with coverage, insert size and read length. We observe a slightly higher
precision for Pindel for the single breakpoints (>99.2%) and inversions (>97.6%)
compared to Gustaf (>92.1%, >92%) and Delly (>57.8%,>59.7%), but almost al-
ways at the cost of a lower sensitivity. Regarding the single breakpoint evaluation,
Gustaf always has both high sensitivity and precision for all tested parameter set-
tings whereas Delly and Pindel have a high variability with varying parameters and
between sensitivity and precision.

For deletions, Gustaf has also high sensitivity values (reaching 100% for coverage
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Coverage Insert Size Read Length Large SVs

Tool 5 10 15 30 600,60 1000,100 150 bp > 500, < 5000 bp

S/PPV S/PPV S/PPV S/PPV S/PPV S/PPV S/PPV S/PPV
Single BP
Gustaf 0.988/0.955  0.961/0.971  0.988/0.966  0.999/0.921  0.988/0.966  0.988/0.966  0.996/0.963 0.991/0.948
(se)
Gustaf 0.993/0.946  0.948/0.961 0.986/0.962  1.000/0.929  0.983/0.962  0.983/0.965 0.993/0.966 0.989/0.966
(pe)
Delly 0.627/0.578  0.706/0.611 0.715/0.603  0.718/0.578  0.374/0.353  0.191/0.266  0.430/0.414 0.994/0.913
Pindel 0.349/0.992  0.717/0.996 0.837/0.997  0.928/0.981  0.829/0.997  0.830/0.997  0.626/0.987 0.899/0.991
Deletion
Gustaf 0.938/0.804  0.792/0.864  0.938/0.849  1.000/0.774  0.938/0.849  0.938/0.849 1.000/0.923 1.000/0.920
(se)
Gustaf 0.979/0.855 0.833/0.909 0.938/0.865 1.000/0.828 0.938/0.882 0.917/0.880 0.979/0.870 0.957/0.846
(pe)
Delly 0.583/0.173  0.688/0.205 0.688/0.204  0.646/0.190  0.583/0.204  0.438/0.231 0.458/0.172 1.000/0.187
Pindel 0.208/0.164  0.625/0.200  0.833/0.208  0.958/0.198  0.729/0.183  0.812/0.197  0.562/0.205 0.696/0.163
Inversion
Gustaf 0.978/0.968  0.978/0.978  0.978/0.978 1.000/0.920 0.978/0.978  0.978/0.978  1.000/0.968 0.977/0.935
(se)
Gustaf 0.978/0.978  0.967/0.967  0.978/0.978  1.000/0.929  0.989/0.978  0.978/0.947  1.000/0.963 1.000/0.978
(pe)
Delly 0.707/0.596  0.783/0.610  0.772/0.597  0.793/0.598  0.293/0.172  0.011/0.007  0.370/0.239 1.000/0.880
Pindel 0.467/1.000  0.696/1.000 0.783/0.986  0.880/0.976  0.739/0.986 0.707/0.970 0.576/1.000 0.955/1.000
Dupl. impr.
Gustaf 0.990/0.866 0.959/0.887  0.990/0.890  1.000/0.790 0.990/0.890 0.990/0.890 0.980/0.881  1.000/0.796
(se)
Gustaf 1.000/0.838  0.939/0.860  1.000/0.891 1.000/0.803  0.969/0.856  0.990/0.866  0.980/0.873 1.000/0.896
(pe)
Delly 0.724/0.568  0.806/0.560  0.806/0.534  0.786/0.513  0.245/0.273  0.000/0.000  0.388/0.384 1.000/0.589
Pindel 0.265/0.788  0.704/0.726  0.786/0.694  0.898/0.667  0.827/0.692  0.806/0.664  0.551/0.659 0.930/0.645
Duplication
Gustaf 0.980/0.941 0.939/0.920 0.980/0.941 1.000/0.867 0.980/0.941 0.980/0.941 0.969/0.905 0.977/0.857
(se)
Gustaf 0.990/0.874  0.918/0.882  0.990/0.907  1.000/0.860  0.949/0.903  0.990/0.907 0.969/0.922 0.977/0.894
(pe)
Translocation
Gustaf 0.980/0.961 0.940/0.940 0.980/0.961 0.960/0.889 0.980/0.961 0.980/0.961 0.980/0.925 0.929/0.963
(se)
Gustaf 0.920/0.885  0.880/0.898  0.920/0.902  0.980/0.875  0.920/0.902  0.920/0.920  0.960/0.941 0.929/0.897
(pe)

Table 2.1. Sensitivity (S) and positive-predictive value (PPV) for variants (> 30bp, < 500 bp) simulated
onto chr22, shown for different coverages. Variants > 500 bp are shown separately (last column). Read
length is 100 bp and mean insert size 300, except in the 'Insert Size’ and 'Read Length’ column where
these parameters are varied separately. The ’Single Breakpoint (BP)’ category measures how well the
tools can identify individual breakpoints relative to the reference genome with nucleotide precision.

Predicted breakpoints are allowed to vary by up to 10bp from simulated breakpoints.

For all other

categories, the predicted variant is required to have at least 80% reciprocal overlap with the simulated

variant.
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30) although at lower PPVs (usually >80%). Delly and Pindel have moderate sen-
sitivities of up to 68.8% (Delly) and up to 95.8% (Pindel) for sufficient coverage.
The drastically low PPVs of Delly and Pindel were surprising. A deeper analysis
showed that Delly and Pindel call the aforementioned pseudodeletion patterns as
deletions. We therefore validated the assumption of called pseudodeletions by in-
cluding all pseudodeletions into the set of simulated deletions for which Delly and
Pindel reached much higher precisions (Delly up to 77.6%, Pindel up to 99.5%, data
not shown). This supports our approach of using these deletions to resolve dispersed
duplication and translocation patterns. It also explains why the PP Vs for the single
breakpoints are so much higher (over 91%) and why Rausch et al. (2012) report
much higher precision values (over 95%) for Delly and Pindel in their own bench-
mark where they only simulate deletions, tandem duplications and inversions. As
one conclusion from these observations, we can say that especially deletions should
be treated with care and be cross examined in case they are part of more complex
variants. Maybe this observation even rises an issue with already annotated and not
cross validated deletions.

Inversions are generally recovered well by all tools with Gustaf always having
the highest sensitivity of 97-100% with very high PPVs (92-97.8%), and Pindel
usually having the highest precision of 97-100% although with comparatively low
sensitivity (46-88%) depending on the coverage. Delly has robust sensitivities (70-
79.3%) and PPVs (around 60%) over the tested coverages but these values decrease
with increasing insert size or read length (sensitivities under 40%, PPVs under 25%).

For high coverage > 15, Gustaf always has the highest sensitivity and precision
for duplications, even when considering the precise duplications. Pindel can recover
almost 90% of the duplications as an imprecise duplication, Delly recovers 80.6%.
The precision for both tools, however, is below 78%.

None of the duplications Delly found for an insert size of (u,0) = (1000, 100)
could be confirmed by the set. Since the recovery rate for duplications is quite high
for Delly given sufficient coverage and smaller insert sizes, this must be an artefact
for this particular data set given the high insert size.

Gustaf can recover over 94% of the small translocations over the whole tested
parameter range with a precision value of almost always over 90%. Gustaf yields the
best sensitivity (98%) and precision (94.2%) for the default setting with coverage
of 15 and insert size (u,0) = (300,30). On the set of small SVs, Gustaf almost
always outperforms Delly and Pindel having equally high sensitivities and precisions.
In addition, Gustaf called the dispersed duplications and translocations with high
sensitivity and PPVs.

Gustaf can still compete for the large variant set of 500 < z < 5000bp SVs
with sensitivity and PPV rates usually over 90%, showing Gustaf’s ability to also
handle larger SVs quite well. Compared to the small SV set, results for Pindel and
Delly improve in terms of sensitivity and precision. Delly is geared towards larger
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SVs > 300 bp and has generally much higher sensitivity values and PPVs, having the
highest sensitivity (100%) together with Gustaf for single breakpoints, deletions and
inversions but with Gustaf having a higher PPV. If we include the pseudodeletions
again for validation, both Delly and Pindel here reach a precision of up to 98% (data
not shown). Pindel recovers 95.5% of the inversions with full precision (100%).

Delly and Gustaf recover all duplications when evaluated as imprecise where Pin-
del recovers 93.0% but with Gustaf having a much higher PPV (89.6%) than Delly
(58.9%) and Pindel (64.5%). When evaluating duplications including the actual
length, Gustaf still recovers 97.7% while keeping a high PPV of 85.7%. Gustaf
recovers 92.9% of the large translocations with high precision (96.3%).

In summary, Gustaf compares favorably with Delly and Pindel. In addition, it is to
our knowledge the only tool that can call dispersed duplications and translocations
including their length. Those two types of SVs are detected with high sensitivity
and precision for the tested SV size ranges and parameters, exceeding even the
values for Delly and Pindel where both tools call duplications only as an imprecise
type. Moreover, Delly and Pindel call the pseudodeletions of these complex variants
resulting in a generally low precision for deletions. Considering this benchmark set,
Gustaf is well suited for small and large SVs independent of the coverage or read
length.

2.4.1 Conclusion

Compared to other state-of-the-art split-read based methods, Gustaf improves de-
tection of small SVs up to 500 bp, including the NGS twilight zone (SVs from 30 to
100 bp). For larger SVs from 500 to 5000 bp, Gustaf’s results are comparable. On
our simulated data set, Gustaf consistently gives good results on the tested ranges
of coverage, fragment size distribution, and read length, with PPV and sensitivity
mostly above 90%.

One of Gustaf’s unique strengths is its ability to detect SVs that are hard to clas-
sify including dispersed duplications and translocations with exact breakpoints. On
our high coverage simulated data set, Gustaf recovered up to 100% of the dispersed
duplications and 98% of the translocations, both with high specificity.

Our approach is flexible in that it allows multiple splits per read. This feature
will gain importance with increasing read lengths or when using Gustaf for mapping
contigs. That flexibility even allows an application in mapping RNA-seq reads which
may span multiple exons (for preliminary evaluation, see Trappe (2012)).

Performing a local alignment search over a whole reference genome can get compu-
tationally expensive depending on the genome size and number of reads. However,
local alignment computation can be easily parallelized and can furthermore be run
independently of the core of the Gustaf algorithm.

In summary, the benefit of Gustaf is its generic multi-split mapping approach
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which makes it flexible and versatile in terms of SV types and sizes, and the length,
protocol and technology of reads.
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3 Mapping-based horizontal gene transfer
detection with Daisy

In bacteria, genetic material is commonly exchanged between organisms, a process
known as horizontal gene transfer (HGT) or lateral gene transfer (Ochman et al.,
2000; Boto, 2009; Wiedenbeck and Cohan, 2011). In contrast to vertical gene trans-
fer, i.e. from one generation to the next, HGT enables the exchange of genetic
material even between distant species mediated usually by transduction, transfor-
mation, or conjugation (Gyles and Boerlin, 2013). Via transduction or conjugation,
the foreign DNA is carried in a plasmid or a bacteriophage, respectively, whereas
via transformation, the recipient takes up nascent DNA from the environment. By
means of HGT, complete genes and functional units, called insertion sequences (IS)
or genomic islands (GIs), can be incorporated into the recipients’ genome. Each
bacterium can also carry several phages at distinct phage insertion sites. Phages of
the same type, e.g. A\ phages, can also carry diverse genes in their replaceable region
with the result that one bacterium can have multiple highly similar phages but with
different gene content.

Not surprisingly, HGT greatly contributes to bacteria’s ability to adapt to chang-
ing environments (Hu et al., 2011; McElroy et al., 2014; Gyles and Boerlin, 2013).
It has been demonstrated to play a major role for the acquisition of resistance to
antibiotics (Barlow, 2009; Warnes et al., 2012). Moreover, HGT is not limited to
bacteria but can also occur in vertebrates, including primates (and humans) (Crisp
et al., 2015). However, the focus of the bioinformatics community with respect to
HGT has mainly been on methods for detecting past HGT events (Ravenhall et al.,
2015) from phylogenetic trees (e.g. Boc et al., 2010; Bansal et al., 2012) or based on
genome composition (e.g. Metzler and Kalinina (2014); Jaron et al. (2013)). Com-
position properties such as GC content or k-mer frequencies usually deviate between
different organisms and can therefore be used to detect sequence content of foreign
origin. However, over time the foreign sequence signature ameliorates to its new
host. Alien_Hunter (Vernikos and Parkhill, 2006), e.g., therefore combines vari-
ous compositional characteristics or motifs in a variable fashion, called Interpolated
Variable Order Motifs (IVOM), to improve sensitivity. Their IVOM approach does
not require gene annotation or gene position information and can hence be applied
to newly sequenced genomes.

Common methods aim to retrace evolutionary history of finished bacterial genomes
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Figure 3.1. Daisy evidence and workflow. (A) Mapping evidence based on read signature: For an acceptor
genome (green) and a donor genome (dark blue) with the transferred region (light blue), we evaluate read
mapping information from split-reads (yellow arrows) crossing the transfer boundaries, pairs exclusively
mapping within the transferred region (light blue arrows), and read pairs spanning the boundary, i.e.
they have one read on either side of the boundary (dark red arrows). (B)Mapping evidence based on
coverage: We evaluate the coverage based on acceptor reads (green arrows) and donor reads (dark blue
arrows). We expect the coverage of the acceptor genome to be high and homogeneous (green lines)
except for the HGT insertion site (light green line). The coverage in the transferred region (light blue
line) should be comparable to the acceptor genome and higher than the coverage in the remaining donor
region (dark blue lines). (C) Workflow overview: After initial read mapping (1), unmapped reads are
split mapped to determine single HGT boundaries (2). Single boundaries are paired up to form candidate
regions according to size constrains (3), and evaluated in accordance with mapping information regarding
coverage and read pair signatures (4).
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Figure 3.2. Phage composition. (A)Basic genetic map of a A phage: Each A phage has mosaic like
coding regions for head, tail (blue), and lytic functions (green). In addition, the phage may contain
an interchangeable region (orange). HGT related split-reads (yellow) cross the border between these
regions. (B) The acceptor is likely to carry similar phages (variants of blue and green) with another
replaceable content (red). This can make the split-read mapping ambiguous between the blue and green
parts, respectively. (C) The donor very likely carries the transferred HGT region (orange) in a similar
phage (blue and green) as the HGT organism.
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and have mostly been developed before next-generation sequencing (NGS) became
available, and hence, do not directly use NGS data. NGS technologies are well
established and widely used by now, and enormous amounts of NGS data are avail-
able in public repositories. NGS also offers the chance to detect HGT events early
in analyses which can be important in outbreak scenarios. One prominent exam-
ple is the EHEC outbreak in Germany back in 2011 (Frank et al., 2011). Here, a
non-pathogenic strain of Fscherichia coli bacteria that resides in the gut of every hu-
man suddenly acquired two new toxins from another bacterium leading to excessive
and often dangerous hemorrhagic gut infections. Especially here, identification and
characterization of the pathogen causing the outbreak is highly important. Fast and
reliable pathogen identification or detection of antibiotic resistance are generally of
particular interest (Byrd et al., 2014). Important applications in diagnostics in the
context of HGT are the detection of novel bacterial strains evolved through HGT or
the distinction of a single infection with such a strain from a parallel infection by two
different strains (Fricke and Rasko, 2013). This distinction is important for treat-
ment and to prevent spreading of the disease, especially with the more frequently
occurring cases of antibiotic resistances. With a special focus on these applications,
we developed an HGT detection tool that directly uses NGS data.

While methods that directly address the detection of HGT events from NGS
data are lacking, various methods for finding structural variations (SVs) in human
exist, as for instance reviewed by Medvedev et al. (2009), Alkan et al. (2011), and
Pabinger et al. (2014). Furthermore, first systematic attempts are being made to
transfer methods for SV discovery to other species, including plants (Leung et al.,
2015) and bacteria (Barrick et al., 2014; Hawkey et al., 2015). The latter approaches
focus on detecting SVs within a genome and do not aim to detect the transfer of
genetic material between species. To our knowledge, no such method exists to date
(Ravenhall et al., 2015).

Conceptually, detecting an HGT event has similarities to identifying an inter-
chromosomal translocation in an organism with multiple chromosomes (such as hu-
man). Nonetheless, a number of differences render existing methods not directly
applicable for the purpose of detecting HGT events. On the one hand, the under-
lying mechanisms are different, e.g. phage-mediated transfers versus integration of
nascent DNA, which potentially leads to other breakpoint signatures. On the other
hand, bacteria are subject to much higher mutation rates than humans and can
undergo faster evolution (Lee et al., 2012). This usually also implies fast divergence
of sequences acquired via HGT (Iranzo et al., 2014). Besides sequence deviation
due to evolution, reference databases still contain a number of draft genomes or
mis-assemblies (Salzberg and Yorke, 2005; Kuhring et al., 2015), adding sequence
deviation due to technical artifacts. Usually, the peformance of methods for calling
structural variations from human NGS data deteriorates in the presence of large
amounts of sequence divergence. Despite these issues, structural variant detection
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3 Mapping-based horizontal gene transfer detection with Daisy

methods, which we briefly survey below, provide an excellent starting point to ap-
proach HGT detection when we combine their individual strengths.

The most commonly used methods to detect structural variants from NGS reads
are based on mapping reads to reference genomes. To this end, three different
paradigms exist: (i) Coverage information can be used to detect copy number vari-
ants (e.g. Abyzov et al. (2011); Miller et al. (2011)). This allows finding regions
that are covered by significantly more or less reads than the background genome
in order to predict copy number gains or losses. Such approaches are effective for
large events, usually starting from approximately 5kb, and work best if multiple
samples are available for comparison, allowing for properly handling coverage bi-
ases (Dohm et al., 2008). (ii) The second class of approaches leverages read pair
information. Here, the idea is to detect deviation from the expected relative map-
ping positions of two paired reads generated by mate pair or paired-end sequencing.
This technique allows for uncovering also copy neutral events such as inversions, or
copy-neutral translocations. The accuracy in terms of breakpoint placement and
event length strongly depends on the insert size distribution of the library. In prac-
tice, approaches that first classify read pairs as concordant or discordant and then
make predictions based on the discordant reads (e.g. Chen et al. (2009); Hormozdi-
ari et al. (2010)) are usually effective for events of approximately 250 bp and larger,
while approaches that use all reads (e.g. Lee et al. (2009); Marschall et al. (2012))
can predict variants starting from approximately 30bp. (iii) Finally, it is possible
to align reads across SV breakpoints, which is often referred to as split alignment or
split-read mapping (Trappe et al., 2014; Emde et al., 2012; Ye et al., 2009; Marschall
and Schonhuth, 2013; Karakoc et al., 2012). Such approaches can deliver single base
pair resolution, but have limitations with respect to repetitive regions: Splitting the
reads makes alignment ambiguity even more likely to occur than for full length reads.
Especially split-read approaches then have to trade sensitivity for high numbers of
false positive calls.

The different paradigms outlined above have different strengths and weaknesses
and use different information sources. Therefore, many hybrid techniques that use
more than one of these ideas have been developed in the past years (e.g. Rausch
et al. (2012); Marschall et al. (2013); Jiang et al. (2012)). In contrast to these
hybrid approaches, which integrate different techniques into one algorithm, meta
tools provide a unifying platform to integrate the results of complementary methods
into a unified variant call set (Lin et al., 2014; Leung et al., 2015).

Besides mapping reads to reference genomes for SV detection, it is also possible
to subject them to de novo assembly (Luo et al., 2012a; Bankevich et al., 2012;
Zerbino and Birney, 2008). There are many advantages to this approach, including
that biases due to the choice of reference are avoided, all classes of SVs can be
addressed, and 1bp resolution is attained. However, these advantages only apply
if the reads can be assembled into sufficiently long contigs, which cannot always
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be achieved from short read data. Although long read sequencing technologies can
drastically improve the ability to assemble difficult regions (Chaisson et al., 2015a),
short read technologies are still more prevalent, more cost effective and will thus
continue to play a major role in the coming years. This holds in particular for the
application to fast evolving genomes such as bacteria since here the low technical
error rates of short reads is of clear advantage. Hence, short read technologies are
most likely the method of choice in outbreak situations.

We introduce Daisy, a novel mapping-based HGT detection tool using NGS data.
Daisy facilitates HGT detection in outbreak scenarios such as the EHEC outbreak
2011 in Germany. Outbreak situations require fast and reliable characterization
of novel or unknown pathogens, or the distinction of such a novel pathogen from
double infections to prevent disease spreading and to apply proper treatment. We
incorporate all three paradigms of mapping-based SV detection: We identify HGT
boundaries with split-read mapping and then filter candidate regions using coverage
and read pair information (see Figure 3.1). The identification part ensures sensitivity
in the presence of sequence divergence whereas the filtering part removes unspecific,
non-HGT related events. We show the utility of mapping-based techniques for HGT
detection by applying our approach to one simulated data set and two different
bacterial case studies, each showing that mapping can help beyond what can be
achieved with assembly for HGT detection. With Daisy, we provide an easy to use
open source software relying on community standards such as VCF files and readily
usable output.

3.1 Determining and sampling HGT regions with Daisy

Daisy is a comprehensive, mapping-based tool for HGT detection using sequencing
data of an HGT organism, i.e. an organism with an acquired HGT. The input is a
set of reads from the organism with the suspected HGT event, and the references
of the acceptor genome (the parent genome of the HGT organism acquiring the
HGT sequence) and the donor genome (the parent donating the HGT sequence).
Determining acceptor and donor genomes from the read set is a separate pre-step
not addressed by Daisy, so for now, we assume that donor and acceptor references
are known.

First, we use Yara (successor of Masai, Siragusa et al. (2013)) to simultaneously
map the reads against the acceptor genome reference and the donor genome refer-
ence (see Figure3.1). In this read mapping step, Daisy identifies possible split-read
candidates and also acquires mapping information around the HGT boundaries that
is later incorporated for HGT support (step 1 of the workflow in Figure 3.1C, details
below). We use a dedicated split-read mapper to determine the single boundaries
(step 2), then pair up the boundaries to HGT regions according to size constraints
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(step 3), and integrate the mapping information of read pairs spanning and map-
ping within the HGT region (step 4). We further filter the results by a bootstrap
based approach where we resample coverage and the number of reads spanning or
within the HGT boundaries from random regions in acceptor and donor. As an
additional step, we map the read pairs of candidate donor regions against a bac-
teriophage database, and flag those candidates having relevant hits. All candidate
regions meeting a pre-defined support threshold are reported in VCF format. Daisy
has two modes. The automated mode supports single acceptor and donor refer-
ences with full filtering options. The manual mode gives the possibility to examine
multiple donor genomes (see data set KO11FL for an example), although without
filtering.

3.1.1 Split-read mapping

In an HGT event, a part of the donor genome has been integrated into the acceptor
genome. Given a set of reads of the HGT organism, we expect to see reads mapping
across the HGT boundary where one part of a read maps to the acceptor and the
other part to the HGT origin in the donor (see yellow reads in Figure3.1). When
these reads are split-read mapped concurrently to both acceptor and donor, we can
identify the breakpoints of an HGT event because the signature of an HGT in SV
terms then resembles an inter-chromosomal translocation.

These HGT breakpoints are also the main evidence for an actual integration of the
possible transferred region in contrast to potential contamination or co-existences of
both donor and acceptor. We use the SV detection tool Gustaf (Trappe et al., 2014)
for a dedicated split-read mapping of unmapped reads. Gustaf works with single-
end data but also incorporates paired-end information from paired-end data. It can
handle multiple splits per read and alignment gaps at the read ends or in the middle
of the read which is an important property in view of the high bacterial evolutionary
rate and common micro-homologies at breakpoint locations. The expected number of
split-reads depends on the read coverage and the evolutionary distance between the
sequenced organism and its putative acceptor and donor genomes used for analysis.
The default value of the user definable parameter for the required number of split-
reads is therefore set to 3 (very sensitive but avoiding random split-reads).

3.1.2 Candidate identification

The single breakpoints from the split-read mapping give possible start and end po-
sitions, in both acceptor and donor, of an HGT event. The combination of these
start and end positions is subject to size constrains regarding the regions delim-
ited in the acceptor and donor genomes in order to sensibly restrict the number of
candidate regions. Depending on whether only single genes, operons, or complete
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bachteriophages are transferred, these regions can vary largely in size and range
from a few hundred to several thousand base pairs. The delimited region in the
acceptor genome can also be equally large as the designated HGT region if, e.g., an-
other bacteriophage is occupying the destined phage insertion site there. The values
for minimal and maximal HGT size are therefore parameterized and user definable.
Default values used in the benchmarks are 500 bp and 55,000 bp for minimal and
maximal HGT size, respectively. We also reduce duplicate entries. Once we iden-
tified a valid candidate, we remove any further identified candidates within a base
pair range of a specified tolerance (default 20 bp) around acceptor and donor start
and end positions.

3.1.3 Coverage and read pair integration

Each candidate region is then examined for additional mapping support regarding
mean coverage, number of pairs spanning and within HGT boundaries (see ”Mapping
Evidence” in Figure 3.1). Coverage can vary due to extreme GC content, sequencing
efficiency or rearrangement events such as induced by a HGT. Theoretically, the
expected coverage of the acceptor genome should be equal to and as homogeneous
as the sequencing coverage of the HGT organism (depicted as "High coverage” in
Figure 3.1), except for the HGT insertion site. The coverage of the HGT insertion
site should be much lower because the sequence content is unrelated to the HGT
organism or donor. Exceptionally, the coverage could be equally high when the
insertion site is occupied by another related phage (see below). The coverage of the
donor HGT region should, again theoretically, resemble the sequencing coverage of
the HGT organism. On the contrary, the coverage of the remaining donor should
be low (depicted as "Low coverage” in Figure3.1) because the sequence content is
unrelated to the HGT organism.

Depending on the evolutionary distance between HGT organism, donor and accep-
tor, the observed coverage properties of the region can deviate. A direct statistical
comparison, e.g. using the framework proposed in Lindner et al. (2013), may lead to
insignificantly small values, even for the true HGT regions. We therefore introduced
a bootstrap like resampling method where we test the candidate regions compared
to equally sized random regions in acceptor and donor. The default sampling size is
100 random regions. As stated earlier, the donor region coverage should be higher
than the coverage of the remaining donor. Per default, we require the donor region
mean coverage to be higher than the coverage of the random donor regions in at
least 95% of the cases, i.e. to have a bootstrap result of > 95. Again, the acceptor
region should be unrelated (low coverage) or also have phage origin (high cover-
age). Hence, we require the mean coverage to be either higher (alternative phage)
or lower (unrelated sequence) than the random region coverages in at least 95%, i.e.
the bootstrap value has to be (> 95 or < 5).
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In addition to coverage evidence, we also incorporate mapping evidence from read
pairs that are spanning the HGT boundaries (dark red reads in Figure 3.1) and those
that map completely within the HGT boundaries of the donor (light blue reads).
For the spanning pairs, one mate is mapping on one site of the boundary outside
the HGT region in the acceptor whereas the other is mapping on the other site
of the boundary inside the HGT region in the donor. For the spanning pairs, we
require that both reads have to map within a range of half the defined maximal
HGT size from the boundary (i.e. a total range of the maximal HGT size around
the boundary). For the pairs within, we compare the number of pairs within the
boundaries to the number within equally sized random regions where we expect the
HGT region to have more such pairs than the random regions. We apply the same
idea of a resampling method from the coverage evidence (using the same random
regions) for the evidence from mapped read pairs spanning and within the HGT
boundaries. The required resampling value is also 95.

3.1.4 Bacteriophage screening

If the HGT was phage mediated and HGT organism and acceptor contain, and
maybe share, several similar phages, the results obtained via split-read mapping can
be ambiguous (see Figure3.2). After filtering the HGT candidates, we therefore
screen the EBI phage database (Brooksbank et al. (2014)) from the European Nu-
cleotide Archive (ENA) (Leinonen et al., 2011) for evidence of the candidates’ donor
HGT regions. We first map all reads against the phage references and during the
screening, we evaluate if the reads mapping within or across the donor HGT region
also map to any database entry and report this percentage in the TSV output file
(see below). This step is not a filter step but intended as an additional flag for each
candidate.

The filtered candidates are written to a VCF output file (Danecek et al., 2011), all
candidates with bootstrap information are written to a TSV file.

3.2 Experimental setup

Datasets

We tested our method on one simulated and two real data sets, each containing an
HGT event with distinct challenges.

H. pylori. The Helicobacter pylori data set is a simulated set. Here, we chose Fs-
cherichia coli K12 as the acceptor and H. pylori strain HPMLO1 (Acc.-Nr.AP014710.1)
(Wang et al., 2015) as the donor. E. coli K12 substr. DH10B has no A phages and its
wrbA insertion site is at 1120263 - 1120859. H. pylori HPMLO1 has a Helicobacter
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Figure 3.3. KO11FL composition of HGT region. (A) HGT organism E. coli KO11FL: The transgenic
KO11FL has 20 copies of the transferred HGT region enclosed by the purple rectangle. (B) HGT region
composition of KO11FL: Shown are positions of the transgenic genes (green), adhB (red) and cat
(blue) and adjacent segments (I-IX) within E. coli KO11FL. Reads enumerated 1-5 span HGT related
adjacencies of segments I-IX, two dashes on a read imply multiple adjacencies or gaps, resulting in
multiple splits of the read. (C) Acceptor & donor HGT region composition: Shown are positions of ,
adhB, and cat in the donor references Z. mobilis and pBEN77, and the HGT insertion site in acceptor
reference . Note the different order and orientation of some of the segments I-IX compared to
(B). All positions in (A)-(C) were determined with BLAST.

phage 1961P-like sequence at about 1322000 - 1350000 (Helicobacter phage 1961P
Acc.-No. NC_019512.1, Luo et al. (2012Db))).

Before inserting the phage-like sequence at the F. coli K12 wrbA insertion site,
we introduced SNPs (rate 0.01), small indels (1-6 bp, rate 0.001) and large indels
(50-1,000 bp, rate 0.00001) using the simulator Mason2 (Holtgrewe, 2010, 2014) into
E. coli K12 as well as SNPs (rate 0.001) and small indels (1-4 bp, rate 0.0001) into the
phage-like sequence. Evolutionary rates and variant sizes were chosen according to
Lee et al. (2012) and were also intended to account for multiple generations, i.e. with
larger evolutionary distance between HGT organism and acceptor and donor but
conserved HGT boundaries. The location of the modified phage within the modified
E. coli K12 is then 1117289 - 1145 285. We simulated 150 bp paired-end reads with
Ilumina error profile from 500 bp fragments with 10%sd and 100x coverage with
Mason2. The simulated data set is available in the Daisy github repository. The
paper results can be reproduced following the usage guidelines and using default
parameters as stated in the repository readme.
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3 Mapping-based horizontal gene transfer detection with Daisy

KO11FL. The first real data set includes FE. coli W as the acceptor and Zymomonas
mobilis as the donor genome as well as the cloning vector pBEN77 as a second
donor, the resulting genome is the transgenic E. coli KO11FL (Turner et al., 2012).
The KO11FL is a laboratory version of the original transgenic KO11 (Ohta et al.,
1991). E.coli W is the parent strain of KO11FL which contains a cloned operon
pcl including the genes pdc and adhB from Z. mobilis, and a cat gene not present
in Z. mobilis. We therefore chose pBEN77 as a donor genome for the cat gene.
This transgenic biotechnology scenario resembles a natural HGT event and gives
the necessary ground truth on real data.

Figure 3.3 depicts the composition of E. coli KO11FL with the transferred genes
pde (green), adhB (red) and cat, the target site of the acceptor genome E. coli W
(insertion breakpoint framed purple), and excerpts of the donor genomes Z. mobilis
and cloning vector pBEN77 indicating the positions of the transferred genes. The
purple framed HGT region in E. coli KO11FL has 20 consecutive copies. The exact
order, orientation and positions of the segments enumerated with I-IX has been de-
termined with BLAST (megablast, default parameters). The adjacency of segments
I and II defines the first HGT boundary and the adjacency of V and VI defines the
second boundary number. The important and challenging part is that II and VI
belong to two different donors, i.e. we have a transition within the HGT region and
cannot define a single candidate region by pairing up single boundaries as we did for
the H. pylori data. However, since the transfer was very recent and the boundaries
are still clear enough, we will aim to detect all HGT related boundaries via split-read
mapping alone.

The read types numbered 1-5 in Figure 3.3 are the expected split reads relevant
for or related to HGT detection. Reads 3-5 have multiple splits indicated by two
dashes, i.e. the split read mapper must be able to handle multiple split reads. For
read 4, the middle part of the read, 137 bp, is covered by neither acceptor nor donor
genomes, i.e. the split-read mapper has to also handle such scenarios. Reads 3-5 are
multiply split and read 4 spans a gap of over 130 bp, which shows the necessity of a
sensitive and versatile split-read mapper. Adjacencies II-IIT and IV-V reflect intra-
chromosomal rearrangements in Z. mobilis (II-111) and pBEN77 (IV-V) and are not
part of this evaluation. KO11FL has been originally assembled from Roche 454 reads
(Turner et al., 2012). Contig gaps have been filled by PCR and Sanger sequencing,
and then resequenced Illumina short read paired-end data has been assembled using
the Roche 454 assembly as a template. However, only the Roche 454 reads are
available via the SRA (SRX022824) and have been used in our benchmark.

EHEC. For the second real data set, we use the E. coli O157:H7 Sakai strain as an
HGT organism. The F. coli O157:H7 serotype is associated with diseases most often
and the Sakai strain has been sequenced from an outbreak in Japan (Zhang et al.,
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2007). E. coli O157:HT arose from the enteropathogenic E. coli O55:H7, the acceptor,
acquiring Shiga-Toxins (Stx) via HGT of a lamdoid phage in the sequential evolution
from its progenitor (Kyle et al., 2012). E. coli strains that have both Stx1 and Stx2
have been shown to carry them in two separate and distinct (Herold et al., 2004)
lambdoid phages (Allison et al., 2003). The Shigella dysenteriae, the assumed donor,
is the only Shigella serotype carrying Stx (Yang, 2005). Stx1 is almost identical to
the Shigella dysenteriae toxin (Shaikh and Tarr, 2003), whereas Stx2 only shares up
to 60% with Stx1. Stx in S. dysenteriae at positions 1283705 - 1285203 is carried
by the lambdoid stx-phage P27 (all Stx phages are lambdoid bacteriophages (Smith
et al., 2012)).

In E. coli O157:H7 Sakai, the Stx1 phage Splb occupies the insertion site yehV,
Stx2 phage Sp5 insertion site wrbA (Kyle et al., 2012). In E. coli O55:H7, yehV
is occupied by another lambdoid phage (Cpl0, see Table S1 in Kyle et al. (2012)),
whereas wrbA is still intact (i.e., there is no phage at this insertion site, and the
wrbA protein coding gene is intact (Shaikh and Tarr, 2003)).

The reads (SRX172546) are from a Illumina MiSeq paired-end whole genome
shotgun sequencing run of E. coli O157:H7 Sakai. The read length is 151 bp with
fragment length 535, the coverage is approximately 105x. As acceptor reference, we
used the E. coli O55:H7 strain RM12579 (Acc.-No. of chromosome is NC_017656.1).
The donor reference genome is S. dysenteriae SA197 (Acc.-No. CP000034.1).

Assembly Approach

A comparable approach for HGT detection is de novo assembly with subsequent
whole-genome analysis. We chose SOAPdenovo2 (Luo et al., 2012¢) as a suitable
assembler, in particular for short-read Illumina data (GAGE, Salzberg et al. (2012)).
We assembled the reads of all data sets with parameters SOAPdenovo-127mer all
-R-F -u-K 31 -m 91.

We applied BWA-MEM (Li and Durbin, 2009) in order to detect possible HGT
breakpoints directly on the scaffolds. We further applied Alien_Hunter (Vernikos and
Parkhill, 2006) to detect possible GIs on the assembly. Alien_Hunter exploits com-
positional sequence biases using k-mer motifs of variable length. Since Alien_Hunter
is designed for fully sequenced genomes, we also applied Alien_Hunter to the HGT
organism reference genomes (i.e., the simulated H. pylori genome, E. coli O157:H7,
and E. coli KO11FL) for evaluation purposes. In our general use case however, we
assume that the HGT organism has not been sequenced yet or is unknown.

The detected regions from Alien_Hunter have a score and are ranked in descending
order. The higher the score, the more likely the region matches a foreign genomic
island. Daisy and BWA-MEM candidate regions are not scored and therefore not
ranked. For Daisy, we consider valid HGT candidates passing the 95% sampling
threshold. For BWA-MEM, we consider all regions conforming the same size con-
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3 Mapping-based horizontal gene transfer detection with Daisy

straints as for Daisy.

Settings

Daisy and SOAPdenovo2 are run on a 120 Core Linux server with 1024 GB RAM
and 1.5 TB SSD with the following parameters. For Daisy, the runtime is around
103 min for the H. pylori data, 176 min for the KO11FL data, and 14.3 hours for the
large EHEC data set.

Daisy. As part of Daisy, we ran Yara in all-mapper mode (-a) with high error
tolerance (-e) of 10%, thread number (-t) of 5, and the appropriate values for library
length and library error for paired-end data, i.e. -11 500 -le 50 for H. pylori and -11
535 -le 50 for EHEC.

We ran Stellar with default parameters except for minimal match length (-1 30).
To account for the higher evolutionary rate with frequent small indels, we chose
generous gap-related parameters for Gustaf as the default values in Daisy. We allow
initial gap lengths of a read of 50 bp (-ith 50) where breakends are only called when
larger 70 bp (-bth 70), and gaps up to 100 bp within the read, i.e. between split parts
(-gth 100). For the KO11FL, we set -gth 150 to account for the larger artificial gaps.
Required read support is set to 3 (-st 3). Library length and error (-1l and -le) as
well as thread number for I/O (-nth) are set as in Yara.

The automated HGT evaluation is run with HGT minimal size 500 bp and maxi-
mal size 55000 bp, tolerance for duplicate removal 20 bp, 100 sampling regions and
95% sampling sensitivity (default parameters). For the KO11FL with its two donors,
the manual mode of Daisy is run and we manually investigated the single boundaries
reported by Gustaf.

3.3 Results

H. pylori

Daisy finds one true positive (TP) HGT candidate with base pair precision without
any false positives (FPs) (see Table3.3 (A) H. pylori). Of the spanning read pairs
and pairs within, 53% are mapping to the bacteriophage database. This indicates a
phage-natured origin of the donor-region which conforms with the ground truth of
the inserted Helicobacter phage 1961P-like sequence.

Assembly. Assembly of the simulated reads resulted in 23 936 contigs, 6 484 of them
covered by one of the 17452 scaffolds (N50 of 89 444). BWA-MEM also only reports
the correct breakpoints with base pair precision and without FPs. Alien_Hunter
detects the region on both the complete genome and the respective assembly scaffold
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but finds another 63 alternative hits on the assembly and 62 on the complete genome.
The regions depicted by Alien_Hunter deviate over 2200 and up to 5 108 bp regarding
the true start and end positions. All three tools detect the HGT region as the best
(Alien_Hunter) or only candidate but only Daisy and BWA-MEM with base pair
precision.

KO11FL

The transgenic E. coli KO11FL is a case study with a very recent artificial transfer
and, due to the transgenic origin, two donor references. The composition of the
HGT region is shown and explained in Figure3.3. The read types labeled 1-5 in
Figure 3.3 cover the HGT related boundaries which leaves adjacencies I-1I, TII-IV,
V-VI, VI-VII, and VII-VIII as ground truth. To handle two donor genomes, we
ran the split-read mapping step with all three genomes, i.e. the acceptor and both

Table 3.1. Daisys KO11FL results. References are coloured according to Figure3.3. Column TP (true
positives) states which of the adjacencies between segments I-IX in Figure3.3 the boundary covers, if
any. Column FP (false positives) states possible adjacencies when considering alternative repeat region
compositions within the 20 copies in E. coli KO11FL, empty entries are unrelated FPs. The column
Reads states the number of split-reads supporting the translocation.

Single Boundaries TP FP  Reads
E.coli W 1058889 Z. mobilis 1996084 I-1I 3294
pBENT7 520 E.coli W 1061186 VII-VIII 872
pBENT7 597 E.coli W 1058886 V-VI 836
pBENT7 459 E.coli W 1056308 VI-VII 737
pBENT7 3795 Z.mobilis 1749333  III-IV 170
Z.mobilis 1996090 FE.coli W 1059365 II-VI 57
Z.mobilis 1996090 pBENT7 1410 1I-V 46
E.coli W 1060453 Z. mobilis 1750071 ITI-I1X 35
pBENT7 1643 E.coli W 1058666 V-VI 33
pBENT7 828 Z. mobilis 1750690 II1-v 32
E.coli W 2206429 Z. mobilis 1996 084 30
Z.mobilis 1750302 pBEN77 1127 II1-v 25
E.coli W 1056310 Z.mobilis 1996992 1I-VI 24
E.coli W 1059006 Z. mobilis 1996681 24
Z.mobilis 1996090 FE.coli W 1059283 1I-VI 22
E.coli W 1060926 Z. mobilis 1996277 20
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3 Mapping-based horizontal gene transfer detection with Daisy

AS AE MC  BS:MC DS DE MC  Split PS-S PS-W Phage BS:MC BS:PS-S BS:PS-W
1736996 1739268 21.21 2 1320842 1322115 133.9 81 95 229 0.3272 100 100 98
1741535 1744926 157.74 98 1283673 1283079 64.72 45 6 820  0.9746 99 100 98
1958870 1982375 35.74 5 4034933 4035782 358.52 45 26 677  0.9801 100 100 100
1992115 1992955 176.61 99 1320883 1322056 136.67 19 136 227 0.2397 99 100 97
3607310 3630353 43.35 4 4189799 4198011  201.3 82 6 4901 0.9762 100 100 100
3607310 3632993  39.53 4 4189799 4206818  99.88 16 4 4967  0.9624 100 99 100

Table 3.2. Evaluation results of Daisy for EHEC data set: The listed entries show acceptor (AS-AE) and
donor (DS-DE) positions, mean coverage (MC), split-read support (Split), pair support - spanning (PS-
S) and within (PS-W) and bacteriophage database hits (Phage), bootstrap (BS) results for thresholds
< 5 or > 95 for acceptor and > 95 for donor regions. The upper results are filtered candidates of Daisy.
Daisy identifies only six candidates where all acceptor positions match alternative phage insertion sites
(blue background, Asadulghani et al. (2009); Kyle et al. (2012)). One candidate matches the true
donor position (green background) but not the correct acceptor side according to literature. The lower
grayed-out entries closest resemble the true insertion site in the acceptor according to literature (green
background) but the low sampling values (BS) indicate otherwise. Taken together, these results suggest
an alternative Stx-phage insertion in E. coli O55:H7 at position 1741535-1744926 rather than at 2.67
million bp.

donors, and omitted the coverage and read pair filtering.

A summary of the reported breakpoints is listed in Table 3.1 with references col-
ored according to Figure 3.3 for easier reference. The five highest ranked TPs cover
all adjacencies stated above, and, likely due to the 20 copies, have distinct high
support of over 170 up to 3294 reads whereas the FPs attain support values only
up to 59, allowing perfect separation by a simple cutoff. Furthermore, most FPs
can be assigned to an adjacency not expected based on the ground truth shown in
Figure 3.3. We cannot assess whether some of these additional adjacencies reflect
alternative compositions of the respective components in some of the 20 copies.

Table 3.3 (B) states the total number of breakpoints (16) as the number of hits
with a total of five true positives. As breakpoint distances on donor and acceptor,
we calculated the mean distance of all true positive breakpoints involving acceptor-
donor boundaries (adjacencies I-II and V-VI) since these enclose the region and can
therefore be compared with Alien_Hunter.

We could successfully detect all of the five possible split-read types including the
multiple split ones (reads 3-5 in Figure 3.3) and the one read type covering a gap of
over 130bp (read 4). However, we could not verify the results with the HGT filter
due to the two-donor scenario. Still, this case study shows that, given sequencing
data of recent HGTSs, it is possible to determine the correct boundaries with accurate
base pair resolution and high confidence even by split-read mapping alone.
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Tool & Data True Region Number Breakpoint Distance Breakpoint Distance Breakpoint Distance
Detected TP/FP HGT Organism (start/end) Acceptor (start/end)  Donor (start/end)

(A) H. pylori

Daisy (reads) yes 1/0 n/al 0/0 0/0

Alien_Hunter (genome) yes 1/62 2289/2215 n/al n/a!

Alien_Hunter (assembly) yes 1/63 5108/2 888 n/al n/al

BWA-MEM (assembly) yes 1/0 n/al 0/0 0/0

(B) KO11FL

Daisy (reads) yes 5/16 n/al 39/14 22/8

Alien_Hunter (genome) yes 15/109 1732/1174 n/al n/al

Alien_Hunter (assembly) assembly failed

BWA-MEM (assembly) assembly failed

(C) EHEC

Daisy (reads) yes 1/5 n/al 0/0 * 32/2876

Alien_Hunter (genome) ves (Stx142)  2/91 0/0 * n/al n/al

Alien_Hunter (assembly) no 0/382 — — —

BWA-MEM (assembly) yes 1/176 n/al 0/0 * 1864/39049

Table 3.3.

Results for Daisy compared to Alien_Hunter and BWA-MEM: For evaluation purposes,

Alien_Hunter has been applied to both the assembly and the full reference genome. Column True

Region Detected states if the method was able to find the correct HGT region. Column Number TP/FP
reports the number of true positive (TP) and false positive (FP) hits with regard to the sought HGT
event. In the last three columns, we state the precision of the correct candidate in terms of breakpoint
distance!. For Alien_Hunter, we calculate the base pair distance of the correct candidate region to the
ground truth on the HGT organisms reference (column distance true region), for Daisy and BWA-MEM,
we calculate the base pair distance on acceptor and donor (columns breakpoint distance acceptor and
donor) (in the form start distance/end distance). Due to the ambiguous positioning of the HGT genes
within the phage(s), columns with * state zero distance if breakpoints lie within the designated phage
region. (A) For the simulated H. pylori data set, all three methods are able to detect the HGT region
as the best (Alien_Hunter ) or only candidate, but only Daisy and BWA-MEM with base pair precision.
(B) For KO11FL, an assembly using SOAPdenovo2 did not produce any scaffolds, and Alien_Hunter was
applied to the KO11FL genome only. Both Daisy and Alien_Hunter then both detect the region. (C)
For the EHEC data set, Daisy finds the true candidate. Alien_Hunter finds 382 candidate regions when
applied to the assembly but none match the scaffold with the HGT region. With BWA-MEM, we find
177 candidate regions, the closest is overlapping the true HGT region but without breakpoint precision.
INote that Alien_Hunter reports candidate regions with regard to the reference HGT organism whereas
Daisy and BWA-MEM report breakpoints on acceptor and donor.
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Assembly. Assembly of the 454 reads from the KO11FL data set with SOAPde-
novo2 resulted in 455419 contigs (singletons) of up to 1011bp. No scaffold was
constructed, likely due to the repetitive nature of the genome. Turner et al. (2012)
also pointed out the long gaps between contigs in their assembly of this data set
which they had to fill with PCR and additional Sanger sequencing. Due to the
failed assembly, we did not apply Alien_Hunter or BWA-MEM to the contigs. When
applied to the finished full KO11FL genome instead of the assembly, Alien_Hunter
finds a total of 109 potential GIs where 15 of them overlap with 15 of the 20 copies
of the transferred genes pde, adhB, and cat in KO11FL (see also Figure 3.3 A - HGT
organism and B - HGT region). The mean distance for start and end position of this
4442 bp region, however, is 1732 (start) and 1174 (end). This is much higher than
the mean distances for Daisy. Since we assume that the full genome is not available,
Daisy outperforms the assembly approach even for the longer 454 single-end reads.

EHEC

For the EHEC data set, the true transfer according to literature (Kyle et al., 2012)
and BLAST hit examination is 2643 556-2 694691 in FE. coli O55:H7, where the A
phage Cpl0 occupies the phage insertion site yehV, to positions 1283 705-1 285203
in S. dysenteriae Sd197 where a defective prophage carries the Stx genes.

Applying Daisy, we created 145 HGT candidates of which six passed the resam-
pling filter. Table3.2 lists the result values for these six candidates. The true
acceptor positions from E. coli O55:H7 stated above are not among them, and only
one pair of donor positions matches the stated S. dysenteriae positions. The true ac-
ceptor positions are among the remaining filtered out candidates but have very low
bootstrap values (table 3.2 lower, greyed-out reports). So at first glance, it seems as
if Daisy created the correct candidates but then too strictly filtered them out while
keeping unrelated hits.

However, O55:H7 contains other A\ phages (Kyle et al., 2012), two of them (Cp7
and Cp9) have high similarity (up to 99% BLAST identity) to Sp15 (Stx1) at the
yehV phage insertion site in FHEC O157:H7. When we look more closely at the six
identified candidates, we observe that all of them have acceptor positions matching
an alternative phage insertion site (see Table S1 in Kyle et al. (2012) for details on
the phage insertion sites). Among these six candidates, there is the one true candi-
date regarding the donor positions (1283 673-1288079). The acceptor coordinates
(1741535-1744926) belong to the A phage CpT7.

The candidate with the true donor positions encloses a region that is 2876 bp
larger than the actual Stx part. A BLAST search of this additional part yields hits
on shiga toxin genes and ORF's, and Stx phage and prophage genes, as well as four
further hits to S. dysenteriae SA197 (CP000034.1) that match the donor regions of
the remaining five candidates. These hits suggest a phage-origin of this additional
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2876 bp (1285203-1288079) as well as these donor regions. This is supported by
the high percentage of donor region read pairs matching an entry in the bacterio-
phage database (up to 97%). The percentage of phage database hits of the one
remaining candidate is also around 97%, suggesting another alternative phage-site
in S. dysenteriae SA197 as well. The donor positions of all of the filtered out candi-
dates with matching acceptor positions also all fall within the phage-region ranging
from position 1288585 to 1329490 (data not shown).

So the true challenge in this case study is the fact that the HGT was phage medi-
ated, and that both acceptor and donor have several alternative and occupied phage
insertion sites. According to Asadulghani et al. (2009), the same set of bacterio-
phages can also occupy different phage insertion sites between individuals of the
same bacterial strain, making it possible that our candidate (1741 535-1744926 to
1283 673-1288079) actually is the true or most likely candidate in this case. Given
the currently available information, we cannot verify that the six phage-related can-
didates are correct, but there is also sufficient evidence to consider them as such.

Assembly. SOAPdenovo2 assembled 100601 contigs, 14897 of them covered by
one of the 93905 scaffolds (N50 of 150). E. coli O157:HT7 carries Stx1 and Stx2 at
distinct locations. However, assembly examination with BLAST suggests that both
toxins have been assembled on the same scaffold.

Both toxin HGT regions lie within a phage so it is difficult to ascertain the specific
positions of the genes carried by the phage. For Alien_Hunter this is difficult because
the tool already (correctly) recognizes the phage sequence itself as a GI. We therefore
count true region found as yes, if the candidate region is overlapping the phage
carrying the toxins. Alien_Hunter finds both Stx regions when applied to the HGT
organism, but one is the region with the lowest rank (see Table 3.3, (B) EHEC). The
tool finds 382 candidate regions when applied to the assembly but non is matching
the scaffold with the HGT region. With BWA-MEM, we find 177 candidate regions.
One region is overlapping the true HGT region but without breakpoint precision
on the donor. The region is reaching into the repetitive genome part following the
shiga-toxin region in S. dysenteriae Sd197. The results acquired via BWA-MEM
also support our hypothesis of an alternative phage insertion site: The acceptor
region of this hit is 1741 843-1742439. For all three tools, the true HGT candidate
is integrated into a phage and, hence, we assign breakpoint distance zero (0/0).

3.4 Discussion of results from Daisy
To the best of our knowledge, Daisy is the first approach that allows HGT detection

directly from NGS data without requiring a de movo assembled genome. It rather
relies on detecting HGT boundaries via a split-read mapping approach. It uses the
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acceptor and donor genomes of the HGT as reference, and integrates coverage and
read pair information for HGT candidate evaluation. Daisy facilitates applications
related to outbreak scenarios of HGT related pathogens like, e.g., detection of novel
bacterial strains evolved through HGT or the distinction of a single infection with
such a strain from a parallel infection by two different strains.

We critically evaluated Daisy on three data sets. It has been often noticed that
SV detection methods are hard to evaluate since the existence and exact positions of
breakpoints are often not known. This is particularly true also for HGT events. In
this study, we therefore focused on one simulated and two real data sets for which
we also provide partial ground truth for future comparison. The data sets were
chosen to both show the power of the approach but also to explore the limitations
and provide guidance for other experiments. On the simulated H. Pylori data, Daisy
produced the correct true positive candidate without false positives. For the real
KO11FL data, the five single boundaries with the highest total split-read support
already cover all five HGT related boundaries and have a distinctly higher support
than the first false positive hit. For the real EHEC data, we called six candidates
which all fall into alternative phage insertion sites in both acceptor and donor. The
alternative assembly only produced meaningful assemblies for H. pylori and EHEC.
On the H. pylori data set, Alien_Hunter and BWA-MEM both found the HGT region
as the best candidate, but Alien_Hunter with low breakpoint precision and many
alternative hits. On the EHEC data set, only BWA-MEM found the true candidate
on the assembly data but with more FPs than Daisy. Our mapping-based HGT
detection approach, which integrates several SV detection methods, is therefore a
highly useful strategy. The EHEC example, where we reduced the 145 pure split-
based candidates to a few candidates with required HGT signatures, shows how our
candidate evaluation successfully filters out false positive hits. Although these use
cases were overall successful, the results also show some remaining challenges and
need for future development, which we outline below.

One prerequisite of the current approach is that all involved acceptor and donor
genomes are known. Selecting these candidate genomes given a set of reads from
the HGT carrier genome is a challenging task of its own. It is closely related to the
metagenomics problem of finding all occurring species contained in a sample given
a set of reads, and is a crucial pre-step for applications in diagnostics. Thus, tools
such as MicrobeGPS (Lindner and Renard, 2015) or Kraken (Wood and Salzberg,
2014) can serve to identify candidates for follow-up analysis with our tool.

In this first version of Daisy, we focused on the idea of using mapping-based
evidence such as coverage and read pair signatures. Existing parametric HGT de-
tection methods use genome signatures such as differing GC content (Daubin et al.,
2003), atypical codon usage (Lawrence and Ochman, 2002) or k-mer frequencies
(like Alien_Hunter) for identification. In a more comprehensive future version, these
genome signatures are possible further filtering options of candidate regions.
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Currently, automated filtering and HGT candidate evaluation is only available
for a single donor genome. More complex, decomposite HGT regions, consisting of
multiple genes from various donor genomes such as in the KO11FL example, require
more sophisticated combination and evaluation of candidates and paired support
across the donors. An automated extension could benefit the application also in the
context of, e.g., genetically modified organisms. While the detection is possible with
our approach, as seen in the KO11FL, more manual investigation is required.

As a mapping-based approach, Daisy naturally depends on available reference
genomes. Also, in recent HGT events or artificial gene transfers, mapping to refer-
ence genomes is easier than for longer evolutionary time spans. As a result, HGT
boundaries are more obvious and identifiable with higher confidence without strong
influences of evolution. The EHEC data example shows that the ongoing fast evolu-
tion of bacteria makes HGT boundaries fuzzy, parallel HGT events obscure bound-
aries, and HGTs mediated by phages make the area around the target gene am-
biguous and evaluation difficult. In general, our approach should be seen as a step
towards a more comprehensive analysis pipeline of sequencing data where multiple
complementary methods are integrated. The goal of such a pipeline would be a full
investigation of a bacterial genome with, e.g., genome annotation and classification,
SNP and SV characterization, HGT detection and more.

With our tool Daisy, we present the first mapping-based HGT detection approach
known so far. Our approach shows sound results with base pair precision for sim-
ulated and real data sets. Alternative assemblies give supportive results but were
not successful for all data sets. Daisy was built for and evaluated on bacteria, but
should in principle also be applicable for HGT detection in other organisms such as
plants.
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For a long time, evolution in terms of gene transfer was thought to happen only along
the tree of life, i.e. from parent to offspring generation. The discovery of horizontal
gene transfer (HGT) (Ochman et al., 2005; Boto, 2009; Wiedenbeck and Cohan,
2011; Daubin and Szo6llési, 2016) has revolutionised this dogma, and revealed the
mechanism that enables bacteria to quickly adapt to environmental pressure (Hu
et al., 2011; McElroy et al., 2014; Gyles and Boerlin, 2013). Via HGT, bacteria can
directly transfer one or multiple genes from one individual to another across species
boundaries. The known and prominent mechanisms of HGT are transformation
(uptake of nascent DNA from the environment), conjugation (direct transfer from
cell to cell), and transduction (transfer via bacteriophages) (Gyles and Boerlin,
2013). In all cases, a piece of DNA sequence is - directly or indirectly - transferred
from the so called donor organism to the acceptor organism and integrated into the
genome (see also Figure 4.1). Especially conjugation and transduction facilitate the
transfer of pathogenicity islands and mobile genetic elements involving antimicrobial
resistance (AMR) genes (Barlow, 2009; Warnes et al., 2012; Juhas, 2013). Today,
we are facing the rise of so called ”superbugs” (Juhas, 2013; Perry et al., 2014) as a
result of bacterial adaptation and gain of resistance to antibiotic treatment, showing
the need for methods to identify, characterise and trace HGT events.

The discrepancy to phylogenetic evolution inspired existing genome-based HGT
methods. For a fixed set of species and a potential horizontally transferred gene,
these methods detect HGT events by looking at inconsistencies between the gene
tree and a phylogenetic tree built for the set of species (Ravenhall et al. (2015)).
As a prerequisite, a candidate gene for which to run the calculation and comparison
has to be known. Sequence content based methods aim to identify genes of foreign
origin in a given genome by exploiting sequence pattern such as k-mer frequencies
or GC content which vary between different species (Jaron et al. (2013), Metzler
and Kalinina (2014)). All methods are based on an assembled HGT organism,
meaning they are also prone to the problems of misassemblies. Although AMRs are
a prominent example for horizontally transferred genes, methods to directly identify
antimicrobial resistance (AMR) genes do not necessarily connect the presence of an
AMR gene to an HGT event (e.g., KmerResistance Clausen et al. (2016)).

In previous work, we developed an approach that aims to call HGT events directly
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Figure 4.1. HGT overview and evidence. The sequence of an HGT organism consists mainly of the
sequence of the acceptor genome (green), and only the transferred part (blue gene) is represented by the
donor genome. Hence, reads from the HGT organism should mainly map homogeneously to the acceptor
(green arrows), only few reads should map locally to the donor (blue arrows), and some read pairs (red
arrows) will span the boundary between the green parts from the acceptor and the blue part from the
donor. These mapping patterns can be represented by scores based on the mapping coverage profile. An
acceptor with a homogeneous coverage has a high validity score and a low heterogeneity score, a donor
has opposite score ranges (low validity and high heterogeneity). Based on these scores, the DaisyGPS
acceptor-score is € [0, 1] and donor-score is € [-1,0).

from next-generation sequencing (NGS) data (Trappe et al., 2016) in a tool called
Daisy. Instead of focusing on the sequence content of the HGT organism, Daisy
examines the origin of the transfer, namely the prespecified acceptor and the donor
organisms, and directly maps the NGS reads to these references. By facilitating
structural variant detection methods, we can thereby identify the transferred region
from the donor and the insertion site within the acceptor. A prerequisite for Daisy
is therefore that both acceptor and donor references are known. This, however, is
not always the case, and hence requires methods that are able to infer acceptor and
donor candidates from the NGS reads of the HGT organism. Such methods are not
yet available.

However, the problem of acceptor and donor identification directly from NGS data
of the HGT organism is akin to the problem tackled by metagenomic profiling studies
that aim to unravel metagenomic samples. Here, so called metagenomic classification
approaches aim at identifying all organisms present in a sample by directly analysing
sequencing data with a complex mixture of various organisms (Breitwieser et al.,
2017). While in this classical scenario all reads of a single organism in the sample
can theoretically be assigned to one reference organism during identification, this
is not the case for an organism that carries foreign genes acquired via HGT. Most
reads will be assigned to the acceptor genome but only a fraction can map to the
donor genome (see mapped reads in Figure 4.1). Hence, we have to account for this
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Figure 4.2. Workflow of DaisySuite. The input NGS reads are first processed by DaisyGPS. The reads are
mapped to the NCBI RefSeq and then analysed by MicrobeGPS which also incorporates taxonomic infor-
mation acquired through the NCBI taxonomy database. Based on that, DaisyGPS calculates two scores
for acceptor and donor classification (see methods part). Depending on these scores, the highest-ranked
candidates are selected as suitable acceptor and donor candidates. Daisy then uses these candidates to
identify HGT region candidates.
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two mapping properties of the reads during analysis. Another requirement is the
resolution of classification on strain level, if possible, since two strains of the same
species can already significantly differ in their sequence content.

Metagenomic classification approaches follow either a taxonomy dependent or tax-
onomy independent approach (Lindgreen et al. (2016), Sedlar et al. (2017)). The
general procedure for both approaches is to assign sequencing reads stemming from
the same organism in the sample into the same group, a process also referred to
as binning. Taxonomic dependent binning approaches assign the reads to specific
taxonomic groups, and hereby infer the presence of these taxa in the sample. These
methods either also make use of sequence composition patterns, e.g., Kraken (Wood
and Salzberg, 2014), or they determine mapping-based sequence similarities for the
read assignment, e.g., MEGAN (Huson et al., 2007), Clinical PathoScope (Byrd
et al., 2014) or DUDes (Piro et al., 2016). Both approaches will most likely iden-
tify the acceptor reference of an HGT organism due to the homogeneous coverage
and comparatively high number of reads. The drawback of all read assignment ap-
proaches is the limitation in the presence of mobile genetic elements, e.g., integrated
via HGT or of hitherto unknown - or unsequenced - organisms in the sample. Reads
belonging to these genes or unknown organisms are either assigned to a similar but
incorrect taxa or not assigned at all, leading to wrong identifications and biases in
abundance estimation. To ensure robustness, many approaches deliberately discard
taxonomic candidates with only low and local coverage. Hence these approaches will
likely discard any donor candidate references. Composition-based methods such as
Kraken would also perform poorly pinpointing the correct donor based on evidence
of only few reads given the fairly large number of usually detected species.

In our group, we developed MicrobeGPS (Lindner and Renard, 2015), a metage-
nomics approach that accounts for sequences not yet present in the database. Instead
of reporting fixed taxa with assigned reads, MicrobeGPS in turn uses the candidate
taxa to describe the organisms in the sample in terms of a genomic distance mea-
sure. That is, it uses available references to model the composition of the organisms
present in the sample in terms of coverage profiles and continuity, instead of directly
assigning reference organisms to characterize the sample. If the organism in the
sample is present in the database and covered homogeneously then the distance ap-
proximates to zero. If not, MicrobeGPS identifies the closest relatives by positioning
the organism among references with the lowest genomic distance. Hence, the tool
considers scores and metrics that reflect a donor-like, in-homogeneous coverage but
filters out false positive candidates with inhomogeneous coverage for the purpose of
species assignment. From the perspective of HGT detection, these may be highly
relevant and should not be excluded.

Here we present DaisyGPS, a pipeline building on concepts of MicrobeGPS and
tailored to the identification of acceptor and donor candidates from sequencing reads
of an HGT organism. DaisyGPS uses genome distance metrics to define a score that
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allows the classification into acceptor and donor among the reported organisms.
Owing to the properties of these scores, we still find the closest relatives of acceptor
and donor in case these references are not present in the database. DaisyGPS further
offers optional blacklists and a species filter to refine the search space for acceptor
and donor candidates. DaisyGPS and Daisy are integrated into one pipeline called
DaisySuite to offer a comprehensive HGT detection, and publically available at
https://gitlab.com/rki_bioinformatics/DaisySuite. We validate DaisySuite
on a large scale simulation where we show sensitivity and specificity of our approach
and the robustness when applied to non-HGT samples. On a real data set from
an MRSA outbreak, we demonstrate the ability of the DaisySuite to distinguish
between the outbreak associated and unassociated samples in terms of sequenced
content potentially acquired through HGT events.

4.1 ldentifying acceptor and donor candidate identification
with DaisyGPS

The problem of mapping-based HGT detection from NGS data is twofold: First, the
acceptor (organism that receives genetic information) and donor (organism that the
information is transferred from) references have to be identified. Based on that, the
precise HGT region and its insertion site within the acceptor can be characterised.
We presented a method to solve the second task in Trappe et al. (2016). Here,
we propose the tool DaisyGPS (see also Figure 4.2) with the objective to identify
possible acceptor and donor candidates given reads of a potential HGT organism.
We provide Daisy and DaisyGPS in an integrated pipeline that we call DaisySuite.

The genome of the HGT organism consists mainly of the acceptor genome (see
Figure 4.1). When the reads of the HGT organism are mapped against the acceptor
reference, most reads should map properly. Therefore a high and continuous map-
ping coverage pattern of the acceptor genome can be expected. In contrast to that,
only a small part of the donor genome is present within the genome of the HGT
organism, hence only a small fraction of the reads should map against the donor ref-
erence and then only within a zoned part (i.e. the part that has been transferred).
This results in a discontinuous mapping coverage pattern where only a small part
of the reference shows a high mapping coverage (see Figure 4.1).

In a first step, we need to define metrics that represent the expectations we have,
i.e. how much of the genome is covered by reads (mapping coverage) and how uni-
formly these reads are distributed across the genome (discontinuous vs. continuous
patterns). Given only the reads of the HGT organism, the acceptor and donor
candidate identification problem is similar to aspects of metagenomic profiling. A
standard problem in metagenomics is the identification of organisms in a sample
using a read dataset of this sample. At first glance, it may appear that the methods
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designed to solve this problem can also be applied to our identification objective, i.e.
we have the read dataset of the HGT organism and we are looking for two organisms
(acceptor and donor) that are in the sample. However, because the HGT organism
consists mainly of the acceptor genome, such an approach works only well for the
identification of the acceptor. For the donor, additional information is needed to
guarantee a reliable identification because references with only local or discontinuous
coverage are usually dismissed by the profiler. We use the metagenomic profiling
tool MicrobeGPS to obtain a coverage profile of our given HGT organism from map-
ping coverage metrics. MicrobeGPS fits our requirements as it can be configured
to not filter any organisms and reports additional metrics that we use to represent
acceptor and donor attributes. Next, we evaluate the gathered metrics and establish
a score that reflects our defined acceptor or donor coverage properties. Then, the
candidates are ranked by this score and a list of acceptor and donor candidates is
generated. These acceptor and donor candidates can then be further analysed with
tools such as Daisy.

DaisyGPS scores. For the purpose of HGT detection, we aim to define a scoring
that reflects the mapping coverage properties of the acceptor and donor references:
The acceptor has a continuous, homogeneous coverage over the complete length of
the genome. The donor has a local, but still homogeneous coverage in the area
where the transferred genes are originated but should have nearly no coverage at all
otherwise. The score should further allow a clear distinction between acceptor and
donor candidates and provide a meaningful ranking according to the likelihood of
being the most suitable candidate.

As a basis for our scoring, we use the Genome Dataset Validity defined in Lindner
et al. (2013) and homogeneity metric defined in Lindner and Renard (2015). The
Genome Dataset Validity, or short validity, describes the fraction of the reference
genome for which there is read evidence. In contrast, the homogeneity reflects how
evenly the reads are distributed. Both have a range € [0, 1]. The validity is defined
such that a genome that is covered - either low or high - over the full length has a high
validity (= 1). We define a heterogeneity metric based on the Kolmogorov-Smirnov
test statistic defined in Lindner and Renard (2015) such that an evenly covered
genome has a low heterogeneity (=~ 0) and a genome with local, high coverage a
high heterogeneity (=~ 1).

An acceptor is a genome with a continuous, high coverage that then has a high
validity (= 1) and a low heterogeneity (a 0) score whereas a distantly related donor
genome with only local, discontinuous coverage has a low validity (= 0) and a high
heterogeneity (= 1) score.

As can be seen above, both validity and heterogeneity are complementary for
acceptors and donors, and hence the relation of both metrics infers the property of
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a candidate between being an acceptor or a donor candidate.

We define:

score = validity — heterogeneity with score € [-1,1]

Therefore, the value for a completely covered acceptor with uniform read distribution
would approach +1. Likewise, the value for a donor that is only covered in a small
region would approach -1. In addition to the coverage profile, there is a high evidence

by sheer read numbers for acceptors:

#mapped reads
Ftotal reads

where w is the fraction of all mapped reads that mapped to the specific acceptor
candidate. For the donor, however, the size of the transferred region is not known
in advance. Hence, we do not expect a specific read number evidence and therefore
omit the weighting and define

donor-score = score

Both acceptor-score and donor-score are determined for every candidate and they
have a codomain of [-1,1]. Acceptor candidates have a homogeneous coverage and
hence high validity and low heterogeneity, i.e. validity > heterogeneity. Hence,
we classify the candidates with acceptor-score > 0 as acceptor and rank them from
highest to lowest score. Donor candidates have a high heterogeneity and low validity,
i.e. validity < heterogeneity. Therefore, we classify candidates with donor-score <
0 as donor candidates and rank them from lowest to highest score.

acceptor—score = W * score, W =

There is a special case if acceptor and donor are very similar. Here, the donor
might not express the attributes we are looking for. In particular, the donor might
have a significant read number evidence arising from acceptor reads also mapping
to the donor. These shared reads lead to more regions of the donor genome being
covered (higher validity) and to a less local, more homogeneous coverage pattern
across the donor genome (lower heterogeneity), hence validity ~ heterogeneity and
donor-score ~ 0. We classify candidates with a donor-score > 0 as acceptor-like
donors and rank them from lowest to highest.

Candidate selection with blacklist filter (optional). There are scenarios where it is
necessary to exclude certain results from being reported. For example, in a reanalysis
case, the assembled sequence from the sample reads might already been added to
the reference set of your choice. For HGT detection from such reads, however,
there is no information gain if DaisyGPS reports this entry as a suitable acceptor.
Other examples include cases, where one can exclude certain species or taxa due
to preanalysis information that nevertheless could be reported by DaisyGPS due to
their high sequence similarity to the sampled organism or the presumed acceptor or
donor candidates. To make the search for acceptor and donor candidates adaptable
for such cases, DaisyGPS features the blacklisting of certain taxa. It is possible to
exclude single taxa, a complete species taxon or a complete subtree below a specified
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taxon. For a default run, the filter is turned off.

Candidate selection with species filter (optional). DaisyGPS generally considers
candidates on different taxonomic levels, e.g. species and strain level, and reports
the candidate level with the best scores. Often the strain references contain addi-
tional sequences compared to the species level reference representative, and hence,
the species reference will mostly have a homogeneous coverage that will then lead
to a high acceptor score. Usually identification on species level is sufficient. There
are however species such as, e.g., F.coli, where a high number of strains have been
sequenced already and differ in their properties such as pathogenicity among the
strains (e.g. E.coli K12 versus EHEC strain O157:H7). In these cases, a mere de-
tection of the acceptor or donor on a species level might not be precise enough.
For these situations, we implemented a species filter. If this filter is activated, only
candidates below species level are reported. In case no candidate would be reported
with an active species filter, the filter is disabled and the user informed that for
further analysis also candidates on species level are used. For a default run, this
filter is also turned off.

Daisy inference and integration with Snakemake. Snakemake is a common work-
flow management system (Koster and Rahmann, 2012) which we used to implement
the different steps of DaisyGPS. We generated the alignment file required for Mi-
crobeGPS by mapping the reads of the HGT organism against the NCBI RefSeq
(complete RefSeq, no plasmids, downloaded March 15th 2017) (O’Leary et al., 2016)
using Yara (Siragusa et al., 2013; Dadi et al., 2018). To ensure compatibility, we
reimplemented the Daisy workflow in Snakemake as well, and integrated both into
a combined suite (called DaisySuite, see also Figure 4.2). DaisyGPS yields a config-
urable number of acceptors, donors and acceptor-like donors (default: 2, 3, 2). For
each possible pair of acceptor and donor, a Daisy call is inferred. Both pipelines can
still be run independently. To unburden installation, we provide a setup script and
provide DaisySuite components as Conda (Con) packages. The simulations are also
integrated into the DaisySuite pipeline (see DaisySuite documentation for details).

4.2 Experimental setup

Data sets

We tested the complete DaisySuite on three types of data sets to validate both
DaisyGPS and the integration with Daisy. The first type comprises the H.pylori data
set, the KO11FL data set and the EHEC data set. All three were used in the Daisy
publication (see Trappe et al. (2016) for detailed data set description) and are chosen
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True condition (ground truth)
Simulation contains HGT  Simulation does not contain HGT

(positive setting) (negative setting)
Predicted condition Run reports HGT TP FP
(DaisyGPS) Run does not report any HGT FN TN

Table 4.1. Confusion matrix for DaisyGPS classifications. If the simulation contains an HGT and DaisyGPS
reports at least one candidate pair that corresponds to the correct acceptor/donor pair, the run is
considered a TP. If DaisyGPS fails to report the correct acceptor or donor, the run is deemed a FN (note
that all reported, wrong pairs will still undergo follow up analysis by Daisy). In a negative test setting,
a FP occurs if DaisyGPS reports any pair where the acceptor does not equal the donor and a TN means
that either no pair was reported or acceptor and donor of the pair are the same organism.

True condition (ground truth)
Pair represents HGT  Pair does not represent HGT

(DaisyGPS TP) (DaisyGPS FP)
Predicted condition Pair reports HGT TP FP
(Daisy) Pair does not report any HGT FN TN

Table 4.2. Confusion matrix for Daisy classifications. If a pair represents an HGT and Daisy reports an
HGT, the pair is classified as TP, otherwise as FN. If a pair is a DaisyGPS FP, a FP occurs if Daisy
reports any HGT and a TN whenever nothing is reported.

as suitable ground truth and for the purpose of showing reproducibility. The second
type comprises a large-scale simulation analogous to the H.pylori simulation. Both
positive (simulated HGT) and negative (no HGT) simulations are used to estimate
sensitivity and specificity of the DaisySuite. In a third part, we use real data from
an outbreak data set with 14 MRSA samples to elucidate further applicability of
both DaisySuite. The details of the data sets and in silico experiments are explained
below.

H. pylori. The data set Helicobacter pylori presents a simulated data set for a proof
of principle already used for validation in the Daisy paper (see Trappe et al. (2016)
for details of genomic simulation). The acceptor is Escherichia coli K12 substr.
DH10B (NC_010473.1), the donor is H. pylori strain M1 (NZ_AP014710.1). The in
silico transferred phage region of the H. pylori comprises genomic positions 1 322 000
- 1350 000.

EHEC. The HGT organism in the EHEC data set is E.coli O157:H7 Sakai (Zhang
et al., 2007) that derived from FE.coli O55:H7 and is assumed to have acquired
the Shiga-Toxins (Stx) via transduction from Shigella dysenteriae. According to
literature, the bacteriophage carrying Stx is supposedly positioned at 2643556 -
2694691 in E.coli O55:H7. In Trappe et al. (2016) we proposed an alternative
phage insertion site at 1741535 - 1744 926.
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KO11FL. The KO11FL data set comprises the transgenic E.coli KO11FL (Turner
et al., 2012). The acceptor is E.coli W, and the two donors are Zymomonas mobilis
and the cloning vector pBENT7.

Large-scale simulation. We designed a large-scale simulation analogous to the
H.pylori data set with positive and negative simulations. For each positive sim-
ulation, first an acceptor and a donor organism are randomly chosen among the
available RefSeq sequences (date of retrieval: March 21, 2017, plasmids are ignored
for sake of size consistency). A random 28 Kbp region is selected from the donor and
inserted at a random position in the acceptor. SNPs and indels are introduced into
acceptor and donor region (SNP rate: 0.01 , indel rate: 0.001). For each negative
simulation, only an acceptor is randomly chosen, and SNPs and indels are introduced
with the same rates as above. 150 bp reads are simulated from 500 bp fragments with
50 bp standard deviation with the Mason simulator (Holtgrewe, 2014). The positive
and negative simulations are repeated automatically 100 times.

MRSA outbreak. The MRSA data set consists of 14 samples of methicillin resis-
tant Staphylococcus aureus strains obtained during a MRSA outbreak at a neonatal
intensive care unit (ENA accession number ERP001256, Koser et al. (2012)). Seven
samples are associated with the outbreak, labeled O1-O7 in this manuscript, the
other seven samples N1-N7 are not associated with the outbreak. Sample descrip-
tion and run accession numbers are stated in Table 4.6. Phylogenetic analysis by
Késer et al. (2012) separated the 14 samples into distinct groups according to their
outbreak association. The reference isolate used in that study is the EMRSA-15 rep-
resentative HO 5096 0412, and we use this as ground truth for acceptor candidates
reported by DaisyGPS. The seven outbreak related MRSA samples have a distinct
antimicrobial resistance pattern, and it is believed that the related resistance genes
have been introduced via HGT. With DaisySuite we want to investigate if the out-
break strains share the same HGT regions and if they can be distinguished from the
non-outbreak strains.

Structure of validation

The setup of the validation is according to the types of data sets. In a first phase,
we want to show a proof of concept given data with sufficient ground truth. The aim
is to predict the correct acceptor and donor candidates with DaisyGPS and at the
same time to reproduce the results obtained from Daisy. We therefore use the data
sets already shown in the Daisy paper for sake of consistency. We set DaisyGPS to
report a total of two acceptor candidates, four donor candidates, and two acceptor-
like donor candidates for every data set and we evaluate if the correct acceptor and
donor candidates are among them. For incorrect candidates of acceptor and donor,
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Daisy should not report HGT candidates unless the transferred region is present in
multiple strains or there are multiple possible acceptors present with high sequence
similarities as, e.g., among F.coli strains. For the EHEC data set, we activate the
species filter since we are interested in strain candidates, and further blacklist taxa
from the HGT organism to be analysed (E.coli O157:H7, taxon 83334) and the
complete O157 lineage (parent taxon 1045010). For the KOFL11 data set, the HGT
organism is blacklisted as well (E.coli KOFL11, taxon 595495). In a second part,
we want to estimate the rate of sensitivity and specificity of the DaisySuite. We
designed a large-scale simulation analogous to the H.pylori data set with positive
and negative simulations (100 simulations each). From the positive simulations, we
calculate the sensitivity for both DaisyGPS and Daisy (see below for definitions on
metrics). DaisyGPS is designed with high sensitivity in mind and always reports
the closest fitting candidates given sequencing data, even for non-HGT organisms.
Hence, also for the negative simulations, DaisyGPS will report candidates and we
expect a low specificity here. Daisy, however, should then report only few - if any -
HGT candidates from the acceptor-donor pairs. In the last evaluation part, we test
the DaisySuite on real data with unknown or uncertain ground truth. The MRSA
outbreak data set consists of 14 samples, seven outbreak related and seven unrelated.
Here we want to test if DaisySuite is able to distinguish between the outbreak and
non-outbreak samples according to their reported acceptor, donor and HGT region
candidates.

Definition of evaluation metrics

The interpretation of various statistics depends on the hypothesis to be tested. In
our analysis in the large-scale simulations, we differentiate between two scenarios:
in the first one we expect to detect an HGT event (positive test), while in the other
one we assume the absence of an HGT event (negative test). For each simulation
or run, a DaisyGPS call will lead to multiple pairs to be evaluated by Daisy. We
therefore distinguish between statistics on runs and statistics on pairs that we will
explain in the following.

For DaisyGPS, we consider during a positive test a single run as a true positive
(TP) if the correct acceptor/donor pair is reported. Accordingly, a false negative
(FN) occurs when the correct pair is not reported. Since the number of reported
pairs is set by our settings, we will almost always have a fixed number of downstream
verifications (except if there are not enough candidates to report) and thus we report
the number of runs instead of pairs. Consequently, we can define the sensitivity as
TP / #Runs. In a negative test setting, we deem those runs as true negatives (TNs)
where either no pairs are reported or acceptor and donor of the pair are the very same
organism. All other pairs are regarded as FP that will each trigger an unnecessary
verification in the downstream tools. Since we are interested in how many runs did
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not cause verifications, we can characterize the specificity by TN / #Runs. While
it is obvious in both settings to rely on an exact match of the reported results and
the ground truth, a reported organism still may be very close to the ground truth
organism in terms of sequence similarity (negative and positive settings) and even
include the very regions involved in the HGT event (positive setting). To account
for this, we also use BLAST in the case that no TP was reported and compare the
FP to the ground truth. If the Blast identity of the FP to the ground truth is above
80% we change the classification from FP to BLAST-supported TP (Blast TP) since
Daisy might still be able to infer the correct HGT region from these Blast TPs given
the sufficient sequence similarity.

In Daisy, we evaluate acceptor/donor pairs and therefore the statics are defined
based on the condition of a pair reported by DaisyGPS. In a positive simulation,
Daisy TP pairs are those that represent the correct pair and are detected by Daisy.
It directly follows that each correct pair that is not supported by Daisy can be seen
as a false negative (FN). Given that the pair is incorrect, i.e. a FP from DaisyGPS
where the acceptor or donor is wrong, we count a rightly not supported pair as
true negative (TN) and an erroneously detected pair as FP. To measure how many
pairs are correctly identified, we define the sensitivity as (TP + TN) / #Pairs.
Considering a negative test setting, we are mainly interested in the pairs that are
wrongly reported as being involved in an HGT event. We declare those pairs as FP
and describe the specificity as (#Pairs - FP) / #Pairs. It also follows that all the
pairs that are not detected are TN.

Lastly, in the context of the complete DaisySuite pipeline, we evaluate the com-
bined results of DaisyGPS and Daisy. Each pair reported by DaisyGPS for a single
simulation induces an evaluation by Daisy. Since the overall result of the pipeline
should indicate whether a simulation contains an HGT event or not, the classifi-
cation of a DaisySuite run depends exclusively on the consolidated results of each
Daisy evaluation for a single simulation. In a positive test setting, we want to find
exactly the one pair that represents the HGT event. From that follows that a com-
plete DaisySuite run can be classified as TP if Daisy supports solely the correct
pair, i.e. Daisy reports the TP and no FP. This also implies that DaisyGPS needs
to detect the TP. Similarly, in a negative test setting, a TN occurs if Daisy reports
no HGT candidates at all.

Settings and pre-/post-processing

DaisySuite is run with default parameters as of version 0.0.1 unless stated otherwise.
The parameter to combine potentially overlapping HGT candidates within Daisy is
set to 20 bp, hence, overlapping regions with start and end positions differing by
more than 20bp are reported as separate candidates. For the comparison of the
number and content of HGT sequences, we clustered overlapping HGT candidates
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DaisyGPS DaisySuite
TP Blast TP FP sensitivity ‘ TP Blast TP TN FP Blast FP FN sensitivity
79 22 21 0.79 ‘ 55 13 14 27 27 4 0.69

Table 4.3. Positive HGT simulation. DaisyGPS calls correct acceptor and donor candidates with a
sensitivity of 79%. The total sensitivity for DaisySuite from 100 HGT simulations regarding correct
acceptor and donor candidates with a follow up correct HGT site call is 69%.

DaisyGPS pairs TP Blast TP TN FP Blast FP FN Blast FN sensitivity
818 74 22 656 32 32 56 51 0.89

Table 4.4. Positive HGT simulation. Daisy evaluates 818 pairs reported by DaisyGPS and calls the correct
HGT region or correctly no HGT region with a sensitivity of 89%.

with the tool usearch9 (v9.1.13_i86linux32) with identity 1.0 (Edgar, 2010).

For validation, we determine the true presence of a HGT region in the samples by
mapping the sample reads to all suggested, clustered regions with Bowtie2 (version
2.2.4). For comparison, we take the mean coverage of every region and apply a
sigmoidal function to map all mean coverages to the [0.5,1] space for displaying a
meaningful heatmap. The application of a sigmoidal function and the heatmap is
computed in R (Rscript version 3.3.3). The heatmap function in R uses a hierarchical
clustering with complete linkage as default, and we turned of the dendrogram for
the columns. In addition, we perform a whole-genome alignment using the Mauve
plugin (version 2.3.1) as part of the Geneious software (version 10.0.5) to to establish
shared HGT regions among the samples. To do this, we concatenate all HGT regions
of a sample and separate the regions with segments of 1000*’N’ to avoid fragmented
regions or overlapping LCBs.

DaisyGPS DaisySuite Daisy
TN  specificity ‘ FP  specificity ‘ DaisyGPS pairs FP  specificity
6 0.06 | 3 097 | 743 6 0.99

Table 4.5. Negative HGT simulation. For the 100 negative simulations, DaisyGPS correctly reports
no acceptor and donor candidates for six simulations. From the 94 simulations causing a downstream
evaluation with Daisy, only three lead to a FP call considering all outcomes from DaisySuite (summarised
over the 100 simulations). Daisy evaluates 743 pairs and only has six FP HGT region calls in total over
all those pairs.
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4.3 Results

4.3.1 Acceptor and donor identification with DaisyGPS.

In the first part of the validation, we test DaisyGPS on three data sets from simulated
and real data with sufficient ground truth and already previously evaluated with
Daisy. Since DaisySuite combines both tools, DaisyGPS and Daisy, the aim is
to support our previous results even when now the donor and acceptor are not
prespecified.

The H.pylori data set was simulated from F.coli K12 substr. DH10B as acceptor
and H. pylori strain M1 as donor. DaisyGPS successfully reports both as such (see
Supplement Tables A.1 and A.2), and the subsequent Daisy run also reports the true
HGT site. In addition to the only true HGT candidate previously already reported
in the Daisy paper, DaisySuite reports another, FP HGT site for a region from
Haemophilus ducreyi. The HGT region reported for H. ducreyi strain GHA9 has no
continuous similarity with the HGT region from H.pylori (no blast hits longer than
15 bp, data not shown). However, the region on H. ducreyi shares the first 1200 bp
and the last 1300 bp with the acceptor E.coli K12 substr. DH10B on multiple sites,
and since beginning and end of the region are covered, almost six times as many
split-reads are found as for the true acceptor site. The total coverage of the region is
relatively low with 30x compared to 95x of the H.pylori but obviously high enough
to pass the coverage filter.

The EHEC E.coli O157:H7 Sakai is supposedly derived by an HGT event where a
defective prophage has been transferred from Shigella dysenteriae to E.coli O55:HT7.
Both are reported by DaisyGPS as candidates (see Supplement Table A.3). In line
with its strong sequence similarity to the F.coli species, S.dysenteriae is labeled as
an acceptor-like donor candidate. The proposed alternative HGT insertion site from
our previous Daisy paper is still reported (see Supplement Table A.4).

The KO11FL data set comprises a transgenic FE.coli W variant with transferred
genes from Zymomonas mobilis and a plasmid that was not analysed here. DaisyGPS
successfully reports E.coli W and Zymomonas mobilis as acceptor and donor candi-
dates (see Supplement Table A.5). Daisy does not report any FP HGT candidates.

4.3.2 Estimating sensitivity, specificity and robustness of DaisySuite
through large-scale simulations.

After validating DaisyGPS on data previously evaluated with Daisy as a proof of
principle, we analyse DaisySuite in terms of robustness and sensitivity by performing
a large-scale simulation. We perform the simulation for the H.pylori data set in a
randomised and automated fashion generating 100 simulations with a transferred
HGT region. To evaluate robustness, we also perform 100 negative simulations
where an acceptor genome is simulated but no HGT region is inserted. With the
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positive simulations, we can estimate the sensitivity of the complete DaisySuite. For
DaisyGPS, we evaluate how many from the 100 simulations have the correct acceptor
and donor genome identified. Since DaisyGPS reports more than one potential
acceptor-donor pair, we count a TP hit if the true pair is among them, and only
count a FN if the true pair was not reported at all. In addition, we consider pairs
with Blast sequence identity > 80% also as a potential HGT candidate pair, and also
count them as a TP. To evaluate Daisy, we consider all pairs proposed by DaisyGPS.

For a true pair reported by DaisyGPS, Daisy can either report a TP HGT region
or a FN if the region could not be identified. For an acceptor-donor pair wrongly
proposed by DaisyGPS, Daisy can either report no HGT candidate region (TN) or a
FP hit. When we summarise the DaisySuite results over all pairs of one simulation,
we only count a TP for that simulation if Daisy did not report any FPs (despite any
TPs or TNs).

Table 4.3 states the resulting counts for DaisyGPS and for the complete DaisySuite
summarised over the 100 simulations. DaisyGPS yields a sensitivity of 79%. From
the 79 TPs, 22 are based on either a wrong acceptor, or donor, or both but have
still sufficient Blast similarity to the original acceptor or donor to be counted as TP
according to our scoring. 69% of the TPs and FPs resulted in a TP or TN call from
Daisy. It is noticeable that all DaisySuite FPs are Blast FPs.

Table 4.4 states the number of reported pairs proposed by DaisyGPS and a de-
tailed count based on each pair for Daisy. From the resulting 818 pairs, Daisy then
reports the correct HGT region, or correctly no HGT region from a DaisyGPS FPs,
with a sensitivity of 89%.

In addition to the positive simulations, we performed another 100 negative sim-
ulations where we randomly selected and variated an acceptor genome but did not
insert any foreign region from a donor. DaisyGPS can now either produce a TN hit,
i.e. report no candidates at all, or FP candidates. Since DaisyGPS is very sensitive
by design, we expect it to report candidates most of the time and, hence, we want
to estimate if these negative HGTs trigger reports by a Daisy follow-up call. As ex-
pected, the specificity for DaisyGPS is very low with 6% (see Table 4.5). However,
Daisy reports only six FPs on all pairs in total, i.e. three simulations produced a FP
HGT report.

From these results we can infer that DaisySuite is able to distinguish HGT from
non-HGT organisms and is very robust if no HGT is present.

4.3.3 Exploration of HGT detection with DaisySuite from MRSA
outbreak data

MRSA strains are generally assumed to undergo HGT events frequently (Lindsay,
2010, 2014). The MRSA data set considered here consists of 14 samples with seven
of them related to an MRSA outbreak (O1-O7) and seven MRSA samples not asso-
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Label Isolate  Accession EMRSA-15 HGT regions EMRSA-15 as acceptor
as acceptor HGT regions for HGT regions

01 1B ERR103401 be 4 4
02 6C ERR103403 X 4 3
03 7C ERR103404 X 5 3
04 8C ERR103405 X 3 3
05 10C  ERR101899 X 4 4
06 11C ERR101900 X 1 1
o7 12C ERR103394 X 5 3
N1 14C ERR103395 - 5 -
N2 15C ERR103396 X 2 2
N3 16B ERR103397 - 4

N4 17B ERR103398 - 4 -
N5 18B ERR159680 - 5 -
N6 19B  ERR103400 X 7 5
N7 20B ERR103402 X 2 2

Table 4.6. Acceptor and number of HGT region candidates. For 10 of the 14 samples, EMRSA-15
(HO 5096 0412) was reported as acceptor candidate. This includes all outbreak samples. Column HGT
regions states the number of reported HGT regions, and column EMRSA-15 as acceptor for HGT regions
the respective number that were reported with HO 5096 0412 as acceptor.

Reported donors

Outbreak and S.pseudointermedius ED99 and HKU10-03
non-outbreak  S.warneri SG1

S.epidermidis RP62A
S.haemolyticus JCSC1435
S.aureus COL
S.lugdunensis HKU(09-01

Non-outbreak S.epidermidis ATCC 12228 (N1,N6 only)

only

and PM221 (N4 only)
E.faecium Aus0004 (N1 only)

Table 4.7. Reported donors summarised for all samples. Both outbreak associated and unassociated
samples mostly report the same donor candidates with only few variations (see supplementary tables A.6-
A.33 for details). The only unique donors are reported for the unassociated samples N1, N4 and N6.
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Figure 4.3. Mauve alignment of concatenated HGT regions. The HGT regions of all samples are aligned
with Mauve to establish shared regions between them. The outbreak associated samples (01-O7) in the
lower part share most of their regions whereas the unassociated samples (N1-N7) in the upper part do

not.
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Figure 4.4. Heatmap of HGT region coverages. The mean coverages of HGT regions from all samples
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are calculated across every sample, and compared after application of a sigmoidal function. Solid green
spots indicate no coverage, solid ochre high coverage. Regions 34 and 37 are not covered in any sample
and hence FP calls. Sample O6 shows presence of multiple HGT regions called by DaisySuite for other
samples but missed here. There is a distinct presence of HGT regions between the outbreak samples in
the upper part and the unassociated samples in the lower part.
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ciated with the outbreak (N1-N7) but that occurred in the same time frame (Koser
et al., 2012). Koser et al. (2012) analysed all 14 samples and compared them to
the EMRSA-15 representative HO 5096 0412 as the supposedly closest relative of
the outbreak strains. We first evaluate acceptor and donor candidates reported
by DaisyGPS in relation to the proposed HO 5096 0412 reference and then investi-
gate HGT region candidates reported by Daisy regarding a possible distinction of
outbreak vs. non-outbreak samples. We activate the species filter as we are again
interested in strain level candidates.

For all outbreak samples O1-O7, S.aureus HO 5096 0412 was reported as acceptor
candidate by DaisyGPS (see Table 4.6 and supplementary tables A.6 - A.33). The
same acceptor was also reported for non-outbreak samples N2, N6 and N7. Acceptor
candidates for sample N1 are S.aureus ECT-R-2 and N315, for N3 and N4 S.aureus
MSSA476 and MW2, and for N5 S.aureus MRSA252. Although not associated with
the outbreak, samples N3 and N4 are from patients that shared the same room in the
hospital where the outbreak occurred and hence are possibly related (Koser et al.,
2012).

The reported donors are largely the same for both outbreak and non-outbreak sam-
ples (see Table 4.7). No donor was reported exclusively for the outbreak samples but
three donors only for non-outbreak strains N1, N4 and N6. These are S.epidermidis
strains ATCC 12228 and PM221 as well as Enterococcus faecium Aus0004. Although
S.aureus HO 5096 0412 was reported for all outbreak samples, there is no clear dis-
tinction in acceptor and donor candidates reported by DaisyGPS apart from the
non-outbreak only donors.

Table 4.6 states the total number of clustered HGT regions and the number of the
clustered regions where HO 5096 0412 is the acceptor that are found by DaisySuite.
Most HGT regions hence have the EMRSA-15 representative as acceptor.

Figure 4.3 shows a Mauve alignment of the concatenated HGT regions of all 14
samples. There is a clear connection between the HGT regions from the lower seven
samples O1-O7 that are the outbreak related samples. Samples N1-N7 also share
some regions but do not have a clear connection as among the outbreak related
strains. The overlap between outbreak and non-outbreak HGT regions is also low.

Figure 4.4 shows the presence of the 41 HGT regions determined by mapping
coverage called by Daisy among all samples. The purpose of the coverage analysis is
to evaluate again if the HGT regions differ between the outbreak and non-outbreak
strains but also to estimate if there are regions shared by all outbreak strains that are
FN candidates of Daisy, or regions not covered at all that are likely FP candidates.

The clustering of samples according to the dendrogram shown in figure 4.4 was
done automatically (see settings part), and hence reflects the relation of the samples
according to the mapping coverage of the proposed HGT regions.

All outbreak strains are clustered together and share most of their HGT regions.
All non-outbreak strains for which DaisyGPS did not report EMRSA-15 as an ac-
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ceptor candidate are clustered away furthest from the outbreak strains (N1, N3 -
N5). The likely related samples N3 and N4 are clustered together. Regarding a
distinction of outbreak and non-outbreak strains, DaisySuite is able to determine
the outbreak-related HGT regions which differ from the HGT candidates for the
non-outbreak strains. Hence, a distinction is possible. Although DaisySuite only
called one HGT region for O6, we can deduce from the coverage profile that more
HGT regions called for the other outbreak samples are present as well but were
missed by DaisySuite. As can be seen in the heatmap, clusters 34 and 37 are not
covered by any sample and hence likely FPs. We detected the AMR. gene mecA on
Cluster 0, however, resistance is shared among all 14 samples according to Koser
et al. (2012). No further AMR genes tested by Késer et al. (2012) are detected on
the other clusters. However, most of these AMR genes are on plasmids that were
not analysed here.

4.4 Discussion of results from DaisyGPS

We presented DaisyGPS, a pipeline that facilitates metagenomic profiling strategies
to identify acceptor and donor candidates from NGS reads of a potential HGT organ-
ism. DaisyGPS, together with Daisy, is part of the comprehensive HGT detection
suite DaisySuite. We successfully validated DaisyGPS on simulated and real data
previously analysed in Trappe et al. (2016). We further demonstrated robustness
of the DaisySuite on a large-scale simulation with 100 negative HGT tests, showing
that DaisySuite correctly reports no HGT events with a specificity of 97%. On a
large-scale simulation with 100 positive HGT simulations, DaisySuite reports the
correct HGT event with a total sensitivity of 69%. From the 818 pairs reported by
DaisyGPS among the 100 simulations, Daisy called the TP and TN regions with a
sensitivity of 89%. Lastly, we evaluated DaisySuite on an MRSA outbreak data set
with seven outbreak associated samples and seven not associated with the outbreak
but that occurred during the same time frame. Here we could show that DaisySuite
successfully distinguishes between associated and not associated samples regarding
their suggested HGT regions, i.e. the outbreak samples show a distinct number and
content of reported HGT regions.

One has to acknowledge that all outbreak strains have a high sequence similarity to
the EMRSA-15 strain, which is not necessarily the case for the non-outbreak strains.
This is also reflected in the results from DaisyGPS where S.aureus HO 5096 0412 is
the best acceptor candidate for all outbreak strains but not reported at all for some
non-outbreak strains. It directly follows that a sequence comparison based analysis
as done with DaisySuite will likely find different patterns for the outbreak and non-
outbreak strains, and a difference in HGT region candidates might seem obvious.
However, starting from having established such a difference, there is value in then
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analysing the shared HGT region candidates among the outbreak-related strains.
For this proof of concept, we performed a relatively simple evaluation by performing
a coverage analysis of all HGT regions across all samples and investigating the
presence of AMR genes within the HGT regions. But a future thorough follow-up
analysis of the origin and functionality provided by the potential HGT sites could
benefit our understanding of the risk and pathogenicity of these outbreak strains.
The observed FP and FN candidates, however, also reveal weaknesses of the se-
quence comparison approach. DaisyGPS is designed with a focus on sensitivity and
hence inevitably leads to FP acceptor and donor candidate pairs to be examined
by Daisy. Since these FPs are still due to a sufficient degree of mapping coverage,
spurious split-reads and spanning reads can cause downstream FP calls as observed
for the simulated data set from E.coli K12 DH10 and H.pylori. The reported HGT
site from H.ducreyi has only similarities in the start and end part of the proposed re-
gion compared to the transferred H.pylori region though. Insertion sites can also lie
within repeat regions which enhances the negative impact of ambiguous mappings.
This emphasises that a critical evaluation of HGT predictions is always crucial.
From the missing HGT region calls for sample O6 that could be inferred from
the coverage analysis, we can deduce that DaisySuite does not detect all HGT re-
gions due to insufficient evidence. A potential cause could be that DaisyGPS did
not report the correct donor reference. Even if DaisyGPS could find an appropriate
donor genome, it is still likely that the genome content differs between the region
present in the donor and the region actually present in the HGT organism. An
alternative, complementary approach to cope with this problem of a lack of a suit-
able donor candidate could be to facilitate local, insertion sequence assembly. By
offering identified insertion sequences, we can still provide the content of a poten-
tial HGT sequence and thereby enable downstream analysis. This approach would
also support the detection of novel HGT sequences not present in current reference
databases, and therefore also the detection of, e.g., novel antimicrobial resistance
genes. Popins (Kehr et al., 2015) is a tool for population-based insertion calling
developed for human sequencing data (see, e.g., Kehr et al. (2017)). Popins only
locally assembles unmapped reads (same input as for Daisy) with Velvet guided by
a reference, thereby minimising the risk of potential misassemblies. On top of the
assembly, Popins first uses spanning pairs (see red read pairs in Figure 4.1) to place
an insertion in the (acceptor) reference, and then performs a local split-read align-
ment around the potential breakpoint. If multiple samples are provided, Popins
merges contigs across samples into supercontigs, assuming that the same insertion is
present in multiple samples. Although different bacterial samples do not represent
a population as given for human populations, outbreak related samples still resem-
ble a population such that one could use Popins for this purpose and gain valuable
information. However, local insertion assembly only gives evidence for an insertion
compared to the chosen acceptor reference, that does not necessarily mean that the
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insertion resulted from an HGT event. Hence, means to sophistically include inser-
tion assembly results into the HGT context need to be defined first. Despite the
evidence for an HGT event that DaisySuite can provide, the results should always
be tested for alternative causations such as gene loss. With DaisyGPS, we present
a tool for acceptor and donor identification from NGS reads of an HGT organism.
To do that, DaisyGPS refines metrics already defined and used for metagenomic
profiling purposes to account for the acceptor and donor specific coverage profiles.
We integrated DaisyGPS with Daisy into a comprehensive HGT detection suite,
called DaisySuite, that provides an automatic workflow to first determine accep-
tor and donor candidates and then identify and characterise HGT regions from
the suggested acceptor-donor pairs. We successfully evaluated DaisyGPS on data
previously analysed with Daisy, and demonstrated sensitivity and robustness of the
DaisySuite in a large-scale simulation with 100 simulated positive and negative HGT
events. We could further show the benefits of an HGT analysis with DaisySuite on
an MRSA outbreak data set where DaisySuite reported HGT candidates that help
to distinguish between outbreak associated and unassociated samples and therefore
also provide information for outbreak strain characterisation.
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5 Horizontal gene transfer detection from
MS/MS data with Hortense

The recognition of horizontal gene transfer (HGT), also called lateral gene trans-
fer, has changed the way we regard evolution. Compared to the established notion
of parent to offspring inheritance of genes and functions, HGT enables the direct
transfer between individuals of the same generation, and, more importantly, across
species boundaries (Ochman et al., 2005; Daubin and Szo6ll6si, 2016). Bacteria have
at least three commonly known mechanisms for this transfer (see Figure 1.4). They
can take up naked DNA from the environment (transformation), transfer DNA di-
rectly from cell to cell via a pilus (conjugation), or receive DNA through an infection
by a bacteriophage (transduction) (Gyles and Boerlin, 2013). The impact of this
powerful mechanism was only recently recognized with the advent of genome se-
quencing (Daubin and Szoll6si, 2016). While HGT has been previously assumed to
be a sporadic event with low relevance to the recipient organism, nowadays, it is
common knowledge that HGT occurs frequently, and that pathogenic components
such as toxins and antimicrobial resistance genes are prominent examples for HGT
(Liu et al., 2012; Juhas, 2013; Perry et al., 2014). In the era of ”superbugs” and fast
spreading resistances (Juhas, 2013), methods are urgently required that can identify,
characterize and also trace the origin of HGT events.

Still, there is only a limited number of HGT detection methods and they focus
on the genomic level (Ravenhall et al., 2015) so far, since for the screening and
classification of bacteria, whole genome sequencing technologies have been estab-
lished. Only recently, we developed a first HGT detection method based directly on
next-generation sequencing (NGS) data (Trappe et al., 2016).

However, the genomic level does not reveal any information about gene expression
and involved metabolic pathways. This, in turn, motivates the use of orthogonal
post-genomic analysis methods, such as transcriptomics and proteomics (Radhouani
et al., 2012). In particular, the field of proteomics has recently experienced various
significant developments with respect to accuracy and speed of mass spectrometry
(MS) instrumentation (Van Oudenhove and Devreese, 2013). MS-based proteomics
therefore becomes an increasingly suitable tool which enables to detect and identify
expressed proteins in bacteria. As a prominent example, matrix-assisted laser des-
orption ionization—time of flight (MALDI-TOF), although in use for several decades,
has fairly recently emerged as a rapid and cost-saving method for the identification
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Figure 5.1. Hortense evidence and workflow. (A) In a first step, the MS/MS spectra are searched separately
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against the acceptor and donor databases. (B) The resulting PSMs are classified to be either uniquely
matching to the acceptor or donor, or shared between both. The unique donor PSMs are filtered further
in the following peptide classification (C). Here, the identified peptides are checked if they are unique
within the donor - i.e. can identify only one protein. The peptides are also cross-validated against the
acceptor database to filter shared peptides that were missed in the previous step. Only unique donor
peptides are used for protein identification. (D) Identified proteins can be optionally filtered further by
the homology filter in case the acceptor has a homologous HGT protein. All HGT candidate proteins
can be optionally aligned to the genome to determine their genomic position (F), and are reported with
information on protein coverage (F) (number of peptides and fraction of protein being covered by the
peptides).



of microbial species which has been approved for clinical applications (Sauer and
Kliem (2010), Neville et al. (2011), Clark et al. (2013)). While the latter approach
processes information at the MS1 level, tandem mass spectrometry (MS/MS)-based
proteome analysis techniques decipher amino acid sequences from their fragmenta-
tion pattern by matching tandem mass spectra against a provided sequence reference
database. Besides mere protein identification, MS/MS-based proteomics enables to
detect the taxonomic origin of bacterial species and to infer functional information
of the expressed proteins, e.g. their molecular function or role in enzymatic path-
ways (Muth et al., 2016). For example, bacterial proteins can be identified which are
linked to antibiotic resistance or which constitute virulence factors (Pérez-Llarena
and Bou, 2016). In addition to the important feature of functional annotation, for
accurate HGT detection, the higher resolution at the MS/MS level is required to
unambiguously identify one or multiple proteins of which their genomic templates
have been transferred between different bacterial species. Another important prob-
lem in proteomic workflows presents the occurrence of shared peptide sequences:
such peptides are found in multiple proteins within a proteome database, e.g. link-
ing to sequences which belong to closely related organisms or well-conserved protein
families. Therefore, the identification of shared peptides leads to ambiguities making
it difficult to determine the actual presence of a specific protein within a sample.
This so-called protein inference issue has been previously described (Nesvizhskii and
Aebersold, 2005) and various solutions have been proposed on this topic (Serang and
Noble, 2012). Finally, a recommended practice in proteomics is to disregard so-called
one-hit wonders which refer to protein identifications that are confirmed by a single
peptide hit only. It should be considered, however, that a significant proportion of
identified proteins in an MS experiment might be affected by such a rigorous filtering
and previous studies have shown that a high amount of one-hit wonders are actually
expressed (Gupta and Pevzner, 2009).

The rising importance to investigate antimicrobial resistance led to an increased
number of proteomics studies in which virulence properties and involved molecular
mechanisms of bacterial pathogens have been investigated (Radhouani et al., 2012;
Pérez-Llarena and Bou, 2016). Tomazella et al. (2012), and dos Santos et al. (2010),
e.g., studied relevant mechanisms of multi-resistant Escherichia coli, the most com-
mon bacterial pathogen. Multi-resistant Staphylococcus aureus strains are a severe
issue in hospital related infections with resistant pathogens and hence also subject
of numerous studies investigating resistance targets and patterns (e.g., Sirichoat
et al. (2016)). An important approach to investigate protein functions from - but
not limited to - resistance or resistance related genes presents the creation and use
of transgenic bacteria. In this method, bacteria are engineered through an artifi-
cial HGT event, i.e. genes are deliberately transferred into another organism to
characterise protein functionality under known conditions. For instance, Kaval and
Halbedel (2012), investigate the role of the DivIVA protein homologues in different
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species. They replaced the DivIVA protein in Bacillus subtilis by a homolog DivIVA
variant from the facultative human pathogen Listeria monocytogenes and discovered
a species-specific, diverse role within the cell. Such transgenic bacteria could also
serve as a realistic model organism to study mechanisms and characteristics of HGT.
More recently, transgenic bacteria also gain importance as therapeutic agents, e.g.
for human microbiome related diseases (Mimee et al., 2016).

While the above mentioned studies investigate potential HGT organisms, i.e. an
organism harboring a transferred gene, in terms of gain of pathogenicity or antimi-
crobial resistance, to our knowledge, HGT detection and characterisation has not
been investigated on the proteomic level yet. Such a characterisation involves (i) to
determine the acceptor (the organism acquiring the novel sequence) and the donor
(the organism donating the sequence, see Figure 1), and (ii) to establish evidence
through protein identification that the gain of function did indeed arise from an
HGT event. Such evidence in turn can help understanding the mechanisms and
constraints behind HGT.

In this manuscript, we present a novel approach for MS-based HGT detection.
The main objective is to find unique proteomic evidence of the transferred protein
in the HGT organism. For a proteome analysis, any conventional database search of
MS data from a HGT sample against a comprehensive bacterial reference proteome
can identify the expressed proteins. This strategy, however, lacks information about
whether these proteins have been involved in a HGT event. To investigate this
property, we examine the origin of the HGT organism, namely the acceptor and the
potential donor proteomes (see Figure 1 I). Given that the acceptor proteome and at
least a potential donor proteome candidate is known, the goal is to determine pro-
teins that can be solely attributed to the donor proteome while all remaining protein
identifications have to be linked to the acceptor (see Figure 1.4 II). The presence of
other donor proteins could be an indicator for a mixed probe of acceptor and donor
(like, e.g., in a double infection or co-culture) rather than for a single HGT organ-
ism. In a naive filtering approach, one would try to filter all unique donor protein
hits from a search against a combined acceptor-donor database. This, however, can
lead to a high amount of false positive reports if, e.g., acceptor and donor share at
least part of their proteome. Beyond classic database searching, the post-processing
features of our pipeline and an optional homology-based filtering method remove
false positive detections and thereby ensure the robustness of the approach. In an
optional step, we map identified proteins to their genomic counterpart and thereby
connect our approach to existing genome-based approaches which enables a joint
analysis in proteogenomic fashion, e.g. using iPiG (Kuhring and Renard, 2012).
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5.1 Identifying unique donor proteins as HG'T proteins

5.1 ldentifying unique donor proteins as HGT proteins

The objective for developing our pipeline was to identify unique proteins that sup-
port a previously occurring HGT event. To achieve this goal, we define the HGT
detection problem as follows: In terms of sequence and hence proteome content, an
HGT organism consists primarily of the acceptor organism, i.e., the organism that
has acquired the novel gene(s) (see Figure 1.4). These novel gene(s) stem from the
donor organism, and should not have been present in the acceptor organism before
the transfer. Using MS data acquired from samples of the potential HGT organism,
the goal is to identify proteins that can be solely attributed to the donor proteome
whereas the remaining protein identifications should be assigned to the acceptor
proteome. For the sake of specificity, we only regard unique donor proteins, and
hence, disregard ambiguous protein groups.

Our method is based on database searches against the acceptor proteome and the
donor proteome. The aim is to first identify peptides not belonging to the acceptor
proteome that can be linked to the donor proteome. Protein identifications from
these peptide spectrum matches (PSMs) should only lead to unique donor proteins.
At the same time, no identifications assigned to the remaining donor proteome should
be detected. This uniqueness property corresponds to the characteristic of a HGT
protein, hence any shared peptides are unlikely to identify a HGT protein or to
add further information to characterise such a protein. To ensure the uniqueness
property, filter criteria are applied to the identified PSMs, peptides and proteins,
and the results may be refined with an optional homology filter. Finally, identified
proteins are mapped to their genomic counterpart to pinpoint the genomic region
of the HGT. We explain the steps of our method in more detail in the following
paragraphs.

5.1.1 Database search

The search engine MS-GF+ (Beta (v10089) (7/16/2014)) (Kim and Pevzner, 2014)
is used to search MS/MS spectra acquired from HGT organism samples against two
protein databases, derived from both acceptor and donor proteome. The databases
are searched separately to ensure shared peptides are reported in unbiased fashion
for both acceptor and donor. Our pipeline currently accepts Mascot Generic Format
(MGF) input format, and supports MS-GF+-specific settings, such as parent mass
tolerance (—t, default 10ppm), fragmentation method identifier (—m, default CID),
and required memory limits. For now, static MS-GF+ values for decoy database
search (true), Orbitrap/FTICR, and enzyme identifier (trypsin) are used (—tdal —
inst1l —el). We use the default number of tolerable (tryptic) termini, —ntt2, i.e.
fully-tryptic peptides only are considered. However, if MS-GF+ is executed outside
our pipeline, any parameter settings are possible and the pipeline can be run on
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provided mzldentML files (Jones et al., 2012). All database search hits, i.e. all
PSMs, are examined in various filtering steps which are described in the following
paragraphs.

5.1.2 Unique donor peptides and proteins

The goal of the uniqueness filter is to identify proteins from the spectra that can
be uniquely assigned to the donor proteome. For this purpose, the following filter
criteria are applied to the resulting PSMs and peptides. All identification steps
during the filtering are done by the Hortense pipeline without using another external
search engine such as MS-GF+. After filtering by a stringent false discovery rate
(FDR) threshold (< 1%), the PSMs are first classified into either acceptor or donor
or shared by both. Only peptides from unique donor PSMs are used for protein
identification. Ideally, the unique donor PSMs should lead to only unique donor
peptides being identified. Due to some FDR artifacts, e.g. in case the donor and
acceptor database differ in size, this is not always the case. This might result in
a protein being identified by the supposedly unique donor peptides that can then
be assigned to a protein from the acceptor (whose PSM was filtered out by the
FDR applied to the acceptor database, see e.g. Renard et al. (2010)). Hence,
all supposedly unique peptides are filtered further in a cross validation step: All
peptides are mapped against the set of all possible tryptic peptides derived from
the acceptor proteome. The in silico digestion is also done by the Hortense pipeline
and tryptic peptides have a length between 6 and 40 amino acids. In addition, each
isoleucin is replaced by leucin, and missing start codons are always ignored.

It is also required that an identified peptide is unique within the donor proteome.
Thus, if one peptide can infer multiple proteins, it cannot be assured which of them
is the supposed HGT candidate, and, hence, such a non-unique peptide is excluded
from the following protein identification step. Since only single proteins can hence
be identified, we do not regard protein groups among the reported HGT candidates.
These ambiguous proteins are again identified in another round of cross validation
against the set of all tryptic peptides of the donor proteome. All remaining proteins
are reported as HGT candidates.

5.1.3 Homology filter

The homology filter presents an optional filtering step for the case that the acceptor
and donor organism share homologous proteins that have not been detected by the
previous filtering. Per se, it is unlikely that a suggested HGT candidate actually is
a HGT protein if a homologous counterpart exists in both references. As a default
in our use case, a protein is defined as homologue to another if both share at least
three peptides. This number of shared peptides can also be defined by the user. In
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some cases, however, it makes sense to turn this filter off (see DivIVA data set for
an example).

5.1.4 Genome alignment

To determine the genomic origin of identified proteins, the protein sequences are
mapped to the six frame translation of the donor genome sequence. In case of
multiple transferred proteins, e.g., we can thereby examine if these proteins are
colocated on the genome, and hence may be involved in the same HGT event.

5.1.5 Output of HGT candidates

All proteins that pass the previously described filtering criteria (FDR filter, unique-
ness, homology) are reported as HGT candidates in a custom CSV format featuring
their protein header information, genomic location (if available), protein coverage (in
percentage of sequence content covered by observed peptides), and number of sup-
porting peptides along with their sequence. All protein sequences are also provided
in FASTA format for convenience. Please note that, in the interest of sensitivity and
completeness, we report all candidates including those candidates that are supported
by only one peptide. We leave it to the user to critically evaluate those candidates.

5.1.6 Snakemake wrapper

All pipeline steps are implemented in Python3. To ensure better usability, we
wrapped the single program calls into one pipeline file using the workflow man-
agement system Snakemake (Koster and Rahmann, 2012). Parameter settings are
enabled via a configuration file so that the whole pipeline can be automatically
executed with one program call.

5.2 Experimental setup

5.2.1 Data sets

To validate Hortense, the pipeline is tested on four data sets. H.pylori presents a
simulated data set for a proof of principle. The DivIVA is a real data set from a
transgenic organism. The non-HGT Bacillus data set and a set of mixed spectra
from B.subtilis and Listeria that emulates a co-culture serve as negative controls.
The details of the experiments are explained below.

H. pylori. The Helicobacter pylori data set is a simulated set from a genomic HGT
simulation (see Trappe et al. (2016) for details of genomic simulation). The ac-
ceptor is Escherichia coli K12 substr. DH10B (NC_010473.1), H. pylori strain M1
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(NZ_AP014710.1) the donor. The in silico transferred phage region (genomic posi-
tions 1°322’000-1’350’000) contains a total of 27 proteins. These proteins together
with all E.coli K12 substr. DH10B proteins (retrieved from NCBI 08/06/2016) built
up the HGT proteome, and are digested in silico to tryptic peptides. We defined
the digested peptides to have minimal length six, maximal length 30 and to have
at most three missed cleavages. Using the tool MS?PIP (Degroeve et al., 2015), all
peptides were converted to simulated spectra, yielding a total of 295.539 MS? scans
(i.e., one spectrum for every created peptide). The pipeline was tested with and
without homology filter.

DiviIVA. The HGT organism in this data set is Bacillus subtilis BSN238, a trans-
genic organism that is a chimera of B. subtilis 168 where the DivIVA protein has been
replaced with the DivIVA from Listeria monocytogenes strain EGD-e (van Baarle
et al., 2012). Proteomes of B. subtilis 168 and L. monocytogenes strain EGD-e were
retrieved vom UniProt on 15/11/2016. The Listeria DivIVA protein is located on
the complement strand at positions 2°100°224-2’100’751 (NC_003210.1). Bacterial
cultivation, protein extraction and proteomic sample measurements were performed
in house. The mass spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE (Vizcaino et al., 2016) partner repository
with the dataset identifier PXD007242 and 10.6019/PXD007242. For details on the
isolation of cellular proteins and the nLC-MS/MS, please see Supplement B.

Bacillus negative control. As a negative control, B. subtilis 168 - the acceptor in
the DivIVA data set - is utilised. This Bacillus still has its original DivIVA pro-
tein and no HGT event should be detected in the same setting as for the above
DivIVA data set. Existing MS data from the PRIDE archive is used: project num-
ber PXD003764, raw data files 20130707_VR_Bsu_pWTPtkAPtpZreplicated _F01-6.
Acceptor proteome is again B.subtilis 168, donor proteome L.monocytogenes EGD-e.

Bacillus-Listeria mixed spectra. As a second approach of a negative control, an
in silico experiment was conducted with input spectra that stem from a simulated
co-culture of acceptor and donor instead of a pure culture of the HGT organism.
This data set was created from the B.subtilis 168 spectra used in the first negative
control above and L.monocytogenes EGD-e spectra (PRIDE project PXD001108).
The expected outcome is that all L.monocytogenes EGD-e proteins not shared with
B.subtilis 168 should be reported, as they are represented by the spectra but not
present in the acceptor proteome.
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5.2.2 Experimental Design and Statistical Rationale

The experimental rationale of datasets PXD003764 and PXD001108 has been de-
scribed elsewhere (Shi et al., 2016; Misra et al., 2014). For the DivIVA dataset, as a
proof of principle analysis without quantitative or differential analyses a single repli-
cate was considered sufficient. The successful transfer of DivIVA was already shown
in van Baarle et al. (2012) and the expected behavior of the pipeline for negative
controls and mixed cultures was shown using the aforementioned existing MS/MS
data.

Setup of in silico Experiments

Our (in silico) experiments are based on the aforementioned four data sets and are
separated in two parts. First, we conduct a proof of principle with the simulated
H.pylori data set, and also validate our approach on the two negative control Bacillus
data sets. Here, acceptor and donor references are regarded as known and fixed in
these settings. In the first negative control with a single non-HGT, no HGT proteins
should be reported since there should be no spectra in the data set covering a foreign
protein. In contrast to that, in the second negative control with a simulated co-
culture, many spectra cover the presumed donor. Since our pipeline always assumes
that the data represents a HGT organism, we expect our pipeline to report all
proteins from the presumed donor that are represented by spectra and not present in
the acceptor proteome. The goal of the second in silico experiment is to demonstrate
that it is possible to distinguish a pure culture from a (accidental) co-culture.

To show the advantage of Hortense, we compare our results to a naive filtering
approach. In this case, one would search the spectra from the HGT organism against
a combined database of acceptor and donor, and then filter for the unique donor
protein hits. Here, it can be assumed that all HGT proteins are identified, but the
number of false positive identifications cannot be assessed.

Using a more comprehensive analysis approach in the second part, we want to
emulate a real use case scenario by applying our workflow to the DivIVA data
set under the assumption that only little is known about the transfer in advance.
In a first attempt, one might opt for searching against a comprehensive bacterial
reference database to identify potential references. Once potential acceptor and
donor candidates are known, the search space can be reduced to their respective
proteomes. To account for all possible proteomes, we would aim to search against
a combined database of UniProtKB/Swiss-Prot and UniProtKB/TrEMBL, i.e. the
complete set of available protein sequences. Due to current limitations regarding
database size by MS-GF+, this database had to be reduced to the Listeriaceae
taxonomy level (128’445 proteins, retrieval date 10/03/2017). Thus, we assume that
the acceptor - B. subtilis - is known and that the donor is contained within the
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Listeria lineage. The pipeline is then executed on all pairs of potential Listeria
donor proteomes paired with B. subtilis.

This search is analogous to the database search described in the Methods section
above. We show these results compared to the filtered results of our complete
pipeline. In our experiments, we regard only those reported HGT candidates as
(true) positive that are supported by more than one peptide.

Settings

We run all data sets with default parameters described in the Methods section.
MS-GF+ parameters are as stated in the database search paragraph, and default
otherwise. As per default in MS-GF+, Carboamidomethylation of C (C+57) was
used as fixed modification and no variable modifications were considered. For the
DivIVA and Bacillus data sets, we deactivate the homology filter since the DivIVA
protein in L. monocytogenes is a homolog of the natural B. subtilis 168 DivIVA
protein. For the naive filtering approach, we use the same MS-GF+ settings as for
the evaluation of our pipeline. All reported numbers of protein hits are without
one-hit wonders unless stated otherwise.

5.3 Results

5.3.1 Precision of Hortense for HGT protein detection

The simulated H.pylori data set is based on a genomically simulated HGT organism
for which a phage with 27 proteins was transferred in silico from an H.pylor: to an
E.coli K12. The theoretical proteins of this artificial HGT organism were digested
in silico, and the simulated spectra were used for a proof of concept for our pipeline.
The conventional database search yields 4267 protein hits on the acceptor proteome
(E.coli K12), and 1375 on the donor proteome (see Figure 5.2 B, H.pylori). The
naive filtering approach (see Figure 5.2 A, H.pylori) can reduce this number to
78 seemingly unique donor proteins. But since only the 27 transferred proteins
should be present, the naive filtering resulted therefore in 51 false positive (FP)
reports. This means, without further filtering, one would have to investigate 78
protein candidates regarding a possible HGT property. Applying our pipeline, we
can reduce this number to only true positive HGT proteins. From the 27 possible
HGT proteins, Hortense detected 24 with the homology filter turned on, and all 27
with the homology filter turned off (see Figure 5.2 B and Supplementary Table S1).
Figure 5.3a shows the successful mapping of the HGT proteins to their genomic
positions. No additional protein candidates except one-hit wonders were reported.
This proof of concept shows that our pipeline is able to successfully detect HGT
proteins as such without reporting unwanted non-HGT proteins.
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Figure 5.2. Results for Hortense compared to naive filtering. Column HGT proteins states the number
of known HGT proteins per data set. (A) For the naive filtering, all spectra were mapped against a
combined acceptor+donor database (orange). The resulting MS-GF+ protein hits (orange) were filtered
for unique donor protein hits (no match on the acceptor for this spectrum) resulting in 78 for the
H.pylori, 1744 and 2347 for the negative Bacillus and co-culture data sets, resp., and 848 for the DivIVA
(no one-hit wonder). This means, a lot of FP remained in addition to the HGT proteins. (B) For
Hortense, spectra were matched against separate databases of acceptor and donor (green and blue), and
the MS-GF+ protein hits were filtered by the pipeline. For the HGT organisms in the H.pylori and
DivIVA data sets, only the true HGT proteins were reported without FP hits without homology filtering.
For the negative Bacillus, no candidates were reported. For the simulated co-culture, a high number of
candidates was reported, marking the result as a non-HGT mix of - likely - acceptor and donor. (C)
For the DivIVA data set, a more comprehensive HGT search was emulated. Spectra were first matched
against the Listeriaceae proteome to determine donor proteome candidates. Hortense was applied to all
44 candidates, 30 of them carrying the DivIVA protein. Hortense reported all 30 with two FP. Nothing
was reported for the 14 non-DivIVA candidates.
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Figure 5.3. Genome alignment of Hortense HGT candidates. Shown is a fraction containing only the
genomic HGT region. Protein coverage of all candidates is plotted. (a) For the H.pylori dataset, all
HGT proteins could be successfully aligned to the correct genomic region. The 24 candidates with
homology filter (HF) are marked in blue, the three additional candidates found without HF are marked
in orange. All HGT proteins were reported with a peptide support covering at least 40% of the protein.
(b) The single DivIVA HGT protein has the correct genomic mapping position and a protein coverage
of 67%.

5.3.2 Robustness of Hortense for non-HT organisms

In addition to the proof of concept, we want to show the robustness of our approach
via negative controls, i.e., with data from non-HGT organisms. In the first nega-
tive control, Bacillus, with MS data from B.subtilis 168, database searches against
acceptor (B.subtilis 168) and donor (L.monocytogenes EGD-e) yield 3799 and 2687
protein hits. When removing one-hit wonders (no hit on DivIVA), no HGT candi-
date proteins are reported by our pipeline. The naive filtering approach reports 1744
FP unique donor protein candidates. In the second negative control, we simulated
a double infection by mixing MS data sets from two experiments from B.subtilis
168 and L.monocytogenes EGD-e. We assumed a HGT organism concurrent with
the DivIVA HGT organism, and ran the pipeline with B.subtilis 168 as acceptor
and L.monocytogenes EGD-e as donor. Compared to a single non-HGT run, our
pipeline should report all covered donor proteins that are not also present in the
acceptor proteome. As expected, Hortense reports a plethora of L.monocytogenes
EGD-e proteins (348 without homology filter, 194 with homology filter) as HGT
candidates. This large list contradicts a single HGT event and would be regarded as
evidence for a double infection. The naive filtering reports over 2000 unique donor
proteins. Most are likely present but regarding the question if a HGT event has oc-
curred and the HGT organism is present, this outcome cannot be distinguished from
the pure negative control, and hence, it cannot be directly identified as a non-HGT
co-culture or double infection.
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5.3.3 Application of Hortense in a real HGT detection process

With the DivIVA data set, we wanted to emulate the process of HGT detection
given MS data where only little is known about the transfer and involved acceptor
and donor candidates. That is, in a first step, the goal is to identify potential
acceptor and donor proteomes in a metaproteomic fashion, i.e. by searching against
a large collection of proteome references. Due to MS-GF+ memory limitations, we
had to reduce the reference database to the Listeriaceae taxonomy level, i.e. we
had to assume the acceptor B. subtilis is known. The aim is to identify potential
donor candidates among the Listeriaceae lineage. We ran a MS-GF+ search on these
proteomes and then ran the pipeline on all reported references (see Figure 5.2 C).
Supplementary Table S2 lists all donor candidates together with the pipeline results,
i.e., if the DivIVA protein could be reported, the number of supporting peptides,
and how many hits on other proteins were reported (false positive HGT reports). A
total of 44 donor candidates were processed, 12 proteomes at the species level and
32 proteomes at the strain level. These 12 correspond to the species level proteome
of at least one reported strain. For eight of these 12 candidates, our pipeline did not
report any HGT protein meaning that the DivIVA protein is not part of the species
core proteome. Another six proteomes at the strain level also turned out to not
have the DivIVA protein or any corresponding homologous protein. The real donor,
Listeria monocytogenes serovar 1/2a strain EGD-e, is among the DivIVA positive
hits. Here, the DivIVA protein was reported with a support of 12 peptides. For all
remaining donor candidates, our pipeline reports the DivIVA protein also with 12 or
fewer supporting peptides. For only two donor candidates, our pipeline reported the
same additional false HGT protein. This protein is the GMP synthase (glutamine-
hydrolyzing) for both L. fleischmannii 1991 and subsp.coloradonensis (Uniprot IDs
A0A0J8JA30 and H7F4C6). So even among multiple donor candidates, we could
successfully identify the HGT protein with almost no false positive hits. The number
of donor candidates with a positive DivIVA hit, however, already illustrates the
difficulty that arises if the HGT protein is present in multiple organisms. Although
the real donor was among the candidates with the highest peptide support, this
property alone is not sufficient to distinguish the true donor candidates. For the true
donor candidate Listeria monocytogenes serovar 1/2a strain EGD-e, we examined
the pipeline results in more detail in consistency with our remaining data sets (see
Figure 5.2 A and B, and Table S1). The pipeline drastically reduced the number
of acceptor (3370) and donor (2591) protein hits to one HGT protein candidate
without any additional false positives. The 12 supporting peptides cover 67% of the
protein, and the determined genomic positions 2°100°750 - 2’100°226 from the genome
alignment correspond to the DivIVA protein location (see Figure 5.3b). The naive
filtering reports another 847 FP unique donor proteins in addition to the DivIVA
protein. As a conclusion, also for the real DivIVA data set we could successfully
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apply our pipeline to reduce the number of conventional database hits to single out
the correct HGT protein without reporting false positive hits.

5.4 Discussion of results from Hortense

In the era of multi-resistant bacteria, which frequently acquire specific traits via
horizontal gene transfer, it is important to be able to detect and characterise such
HGT events on a proteomic level. We defined two objectives for such a detection
and characterisation process. First, the acceptor and the donor of the HGT organ-
ism have to be determined. Secondly, we want to establish evidence through protein
identification for the presence of horizontally transferred proteins. Given that ac-
ceptor and donor are known, one would assume that a conventional database search
on a combined acceptor+donor proteome with a following naive filter that reports
only unique donor proteins should be sufficient. We showed that such a naive filter
indeed identifies the HGT proteins but at the cost of many false positive reports.
Even for a non-HGT organism for which no unique donor proteins should be found,
the naive filter reports several 100 false positives. Using an adapted database search
approach as presented in Hortense can be advantageous to pinpoint HGT proteins
represented in the sample. Hortense is able to precisely detect HGT proteins with
few - if any - false positives, and, at the same time, is robust for non-HGT sam-
ples. It should be noted that our results for the simulated data may be somewhat
overly optimistic regarding the number of peptides. This can become problematic if
the detected HGT protein is only found at a low abundance. As with all database
approaches, the limitation is the availability of suitable reference proteomes which
should, however, become less prominent as more and more proteomes are made
available. If the donor proteome is not available at all, one could still opt for a de
novo peptide sequencing approach to assemble the presumed HGT protein from the
spectra that could not be mapped to the acceptor proteome (Muth and Renard,
2017). However, although de novo sequencing has been successfully applied for as-
sembling full-length antibody sequences (Tran et al., 2016), the technique is still not
as reliable as database searching and requires MS/MS spectra of high resolution and
-even better- of different fragmentation modes to achieve a sufficient performance
(Guthals et al., 2013).

In the application of Hortense to a real HGT detection scenario, we addressed
the first objective of acceptor and donor proteome selection. These proteomes can
be identified in a metaproteomic fashion from a database search against a compre-
hensive database. Due to current limitations by MS-GF+, we had to reduce the
search space for the identification from the complete UniProtKB/Swiss-Prot and
UniProtKB/TrEMBL to the Listeriaecae lineage for the donor. Here, we were still
able to successfully identify the DivIVA protein among multiple lineages. Still, this
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application shows difficulties that arise when we allow homologous proteins. We gain
many hits on different strains and the true donor could not be clearly distinguished
from other, biological relevant, hits. Performing an additional functional analysis by
inferring phenotypic knowledge for such ambiguous protein candidates may help to
further refine the reported results. The metaproteomic problem of identifying differ-
ent organisms within a sample is not HGT specific and has already been addressed
in various studies (see review article by Muth et al. (2016)). While computational
approaches evolve, we can expect an increase in the resolution of the bacterial com-
position, and also be better able to handle larger databases. A possible alternative
to the metaproteomic approach could be to determine acceptor and donor candi-
dates on the genomic level first. If also NGS sequencing data of the HGT organism
is available, one could, e.g., leverage metagenomic profiling tools to identify accep-
tor and donor candidates. Here, we show results from simulated and transgenic
organisms where ground truth is clear and without doubt. Few proteomic studies
(e.g. Tomazella et al. (2012), dos Santos et al. (2010), or Sirichoat et al. (2016))
explicitly investigate potential HGT organisms. Since they often have very specific
objectives and since the data is either not suitable for our generic HGT question or
is simply not available, verification is hard to obtain. Better data sets could thus
help to further improve HGT algorithm engineering. By detecting and characteris-
ing horizontal transfers, Hortense can help to increase our general understanding of
HGT events and its implications for public health.
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6 Summary and further discussion

6.1 Summary of contributions

Structural variations (SVs) in general and horizontal gene transfer (HGT) events
in particular have a huge impact on both human health and disease. Especially in
the latter case, SVs play an important role in diseases such as cancer or for the
spread of severe functionality like in the form of antimicrobial resistance genes. It
is important to study such events both on the genomic and proteomic level: the
genome elucidates the enormous potential from the gene content but the presence
of a gene alone does not inevitably correlate with its expression on the protein level.

Existing methods for SV detection from NGS data were limited in their resolution
of SV type, size or complexity. HGT events, a special kind of SV in some terms, have
been investigated from fully assembled genomes by methods that find compositional
patterns in genome sequences corresponding to transferred genes or via phylogenetic
discrepancies. However, so far they have not been detected directly from NGS data,
which can provide a faster and complementary approach to available methods. On
the proteomic level, there are studies investigating potentially transferred genes
like antibiotic resistance genes but HGT events have not been investigated and
characterised as such.

This thesis describes four computational methods for SV detection in general and
HGT events in particular both from genomic NGS data and proteomic mass spec-
trometry (MS) shotgun data. In Chapter 2, we introduced a generic SV detection
method called Gustaf. Gustaf is a split-read aligner that uses paired-end informa-
tion as a second stage of support. Gustaf can identify even complex variants such as
translocations and duplications with base pair resolution and further improves for-
mer available means of SV detection by filling the size gap of SV resolution termed
the NGS twilight zone at that time. A special contribution lies in the identification of
duplication and translocation events as the combination of simpler copy or deletion
events with an insertion at a distinct location. This means that the distantly re-
lated simpler events are usually not spanned by the same read, and hence, separately
called events have to be identified as belonging to the same complex variation.

We then applied and adapted the concepts of SV detection for the special HGT
event. In an abstract point of view, a transferred gene has the same pattern as
an inter-chromosomal translocation, if acceptor and donor genome are treated as
chromosomes that can undergo rearrangements. The problem of HGT identification
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is actually two-staged. First, the acceptor and donor references, if not known in
advance, have to be identified. Based on that, these two references can be used in a
mapping-based SV detection approach tailored to HGTs for HGT site characterisa-
tion and gene identification. In Chapter 3, we presented Daisy, a method that aims
to answer the second question of HGT site characterisation. Here, we use Gustaf to
find HGT candidates as translocation events between acceptor and donor, and then
do a thorough analysis of coverage and paired-end information around the HGT
site candidate to establish further evidence for the transfer. The split-read evidence
provided by Daisy is the first HGT site evidence with base pair resolution while
existing methods all remain to some degree probabilistic. We followed up on that
with the development of a method to answer the question of acceptor and donor
identification. We presented this method, called DaisyGPS, in Chapter 4. The
problem of acceptor and donor identification from NGS reads is akin to the problem
of species identification in metagenomics. Hence, we adapted and applied the tool
MicrobeGPS to the specialised purpose to identify acceptor and donor references
from NGS reads. Both Daisy and DaisyGPS provide novel evidence for the HGT
detection problem since these are the first tools available that enable mapping-based
HGT detection directly from NGS data.

As mentioned above, the incorporation of a novel gene does not inevitably lead
to its expression. Hence, we further investigated HGT events on the protein level.
To provide complementary evidence on an orthogonal level to our NGS approach,
we developed a proteomics HGT detection method from shotgun MS data called
Hortense that we introduced in Chapter 5. Hortense extends the standard database
search routine of MS spectra with a thorough cross-validation to ensure the proper-
ties of the identified proteins that we defined to be characteristic for a transferred
protein and its acceptor and donor proteomes. The proteogenomic feature of Hort-
ense provides the possibility to integrate Daisy, DaisyGPS and Hortense and their
results. Together, all three HGT detection and characterisation methods provide
means of analysis that was not possible before.

6.2 Recent developments, challenges and future research

6.2.1 Gustaf in the context of current SV detection research and
findings

In 2012, Evan Eichler said that ”the strength will be when we can go in and integrate
across all the variation, irrespective of class, type, variant and frequency. [...] I hope
in ten years, people will just be studying the full spectrum of genetic variation”
(Baker, 2012). In my opinion, there is still a long way to go to reach that goal.
The problem of complex variants is still not fully grasped, and the spectrum and
extent of variants are far from resolved. Hence, the discovery of the SV landscape
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is still in its beginnings (Baker, 2012). Almost every tool among the plethora of SV
detection methods available today still tends to only call a fraction of - known - SVs,
specific in size and type. Albeit specialised methods are meaningful when focussing
on single events, hybrid methods such as the new Delly version, meta callers such
as LUMPY (Layer et al., 2014), CLOVE (Schréder et al., 2017) or SV? (Antaki
et al., 2017), or integrative callers such GRIDSS (Cameron et al., 2017) promise
more sensitive and specific SV calling for large scale SV detection. In addition,
tools are developed to compare different call sets of SVs for the same data set (e.g.,
Sedlazeck et al. (2017)), or efforts to create searchable databases of SVs that can
also be directly screened with NGS data (e.g. Lam et al. (2009)).

To really pinpoint the current state of the art and to unveil the next important
directions in SV calling, benchmarks are needed. However, these are not easily done
in an extensive way as ground truth for combined, complex variants is rare and
simulated data tends to not reflect reality very well when it comes to SVs. As an
additional hurdle for benchmarking efforts, different variant call formats have been
used throughout the years, and even the now commonly used VCF format offers
different types of data entries for the same variant.

Another challenge in SV detection regards the choice of the reference. In a pure
mapping based approach and with only a single reference being used, of course only
SVs apparent from this single reference can be detected. With the steadily increas-
ing number of sequenced genomes, the single reference approach will not suffice
and there is need for novel approaches to handle the large amount of data. The
concept of pan-genomes, that was originally defined as the sum of all core genes
of all the strains within a clade, has been revised and expanded to be ”any collec-
tion of genomic sequences to be analysed jointly or to be used as a reference” (The
Computational Pan-Genomics Consortium., 2016). Until the advent of pan-genome
methods, multiple references were usually only handled via whole-genome alignment
methods. Structures such as journaled string trees (Rahn et al., 2014) or PanCake
(Ernst and Rahmann, 2013) first introduced the concept of analysing multiple ref-
erences at once (apart from whole-genome alignment methods) and methods like
seq-seq-pan (Jandrasits et al., 2018) promise to offer efficient, flexible handling and
mapping of a high number of reference genomes. The first SV detection methods
taking advantage of pan-genome structures and methods are already on their way,
e.g. Valenzuela et al. (2015). Other efforts go towards population based variant
calling, e.g. Popins (Kehr et al., 2017), where Popins focuses on insertions so far.

The resolution of translocation and duplication events by Gustaf is also just one
example of possible combinations of simple SVs to form more complex types. An-
other example that has been observed and also incorporated in Gustaf since is the
combination of inversion and deletion events. That means, part of an inverted se-
quence has been deleted around one of the breakpoints during the inversion event,
obscuring the observed SV type around that breakpoint. This is bound to be just

109



6 Summary and further discussion

another example and it is highly like that also more than two types of events could
be combined in a complex SV.

Nevertheless, SV detection is limited for NGS data because of constraints from
short read lengths that prevent full characterisation of SV breakpoints, especially
within the context of repetitive DNA. Chaisson et al. (2015b) even made the point
that short read NGS data is not suited for both full genome assembly and SV detec-
tion because of the lack of long range connectivity. This fact also prevents haplotype
resolution for SV calls. So in the end, everything comes down to incorporating long
reads.

Gustaf was developed when 454 was still rising on the market and it seemed
clear that long read sequencing would lead the market at some point in the future.
Although 454 is not continued any more, [llumina can now produce longer reads as
well. Illumina however, focusses on deep sequencing and produces billions of reads.
Gustaf was not designed for that and does not have the necessary efficiency to handle
this huge amount of data, so at the moment Gustaf is used in combination with a
specific read mapper on umapped reads. Still, the technology landscape is bound to
change again with improved products from both MinlON and PacBio already on the
market. While Illumina short-read technologies with their deep coverage approach
are still prominent, third generation long-read technologies - although still more
expensive with less throughput - gain popularity again.

However, the current computational methods are optimised for Illumina and have
to be adapted for the various challenges like, e.g., different sequencing error profiles,
of the long-read technologies. The first tools focussing on long reads are already out,
e.g. PBHoney (English et al., 2015). Norris et al. (2016) detected SVs in cancer
using nanopore sequencing, Huddleston et al. (2016) explored long read data and
discovered the importance for haplotype resolution. In the most recent study by
Chaisson et al. (2017), the authors combined long and short read technologies for
haplotype resolved SV detection in a trio data set, and also provided a comprehen-
sive real data set available as ground truth for future benchmarking efforts. Only
with improved methods for and further studies from long read incorporations, the
community will reach the next milestones concerning meaningful SV detection.

6.2.2 HGT in microbiome communities and further applications

Jiang et al. (2017) applied a method similar to Daisy to gut microbiome samples
from the Human Microbiome Project, and identified 5600 putative mobile genetic
elements (MGEs) that they also provide via the database ImmeDB. This study shows
the applicability of our HGT detection approach in a large scale study. Yet, in this
large scale approach the focus can only lie in collecting MGEs present - or now absent
- from the bacteria present in the microbiome. According to the authors, there is
also more value for functional analysis and characterisation of MGEs in longitudinal

110



6.2 Recent developments, challenges and future research

studies that analyse microbiomes over a range of time instead of focusing on static
snapshots from onetime samplings. In this context, approaches like Daisy would
benefit from an integration with further evidence, e.g., with a large scale insert
assembly as we tested with Popins for a cohort of related outbreak strains. A
follow-up cross-validation between these insertions and HGT candidates from Daisy
could help to characterise differences between MGEs that relocate within the same
genome and foreign integrated genes.

Such an approach becomes feasible since more and more genomes are sequenced,
hence more references are available. On the downside, massive sequencing can also
become a source for bias. Poorly assembled reference genomes can mislead in the
metagenomic profiling and hence identification of interaction partners when looking
for suitable acceptors and donors. Especially when acceptor and donor are closely
related and have a high sequence similarity, mapping-based identification is chal-
lenging. Unfinished assemblies that are missing sequence content can also lead to
false positive HGT identifications.

For future research, there are bound to be further possibilities and applications
of our HGT detection methods. The next logical step would be to really inte-
grate our genomics methods with our proteomics approach. Also, Daisy has been
used in a study to report horizontally transferred genes in the Daphnia iridescent
virus 1 (Toenshoff et al., 2018), showing that the method is further transferable to
other organisms apart from bacteria. Lab technology wise, breakthroughs such as
CRISPR-cas9 will give new fields of applications. CRISPR~cas9 allows the specific
and precise alteration of genomic sequences. Originally, it is a bacterial defense
mechanism to avoid viral reinfection. From an abstract point of view, introducing
DNA with CRIPSR-cas9 creates somewhat of an artificial HGT event that should
be detectable with the same means. The same holds true for genetically modified
organisms. The former has implications also in the context of human infection bi-
ology that will revolutionise modern medicine at some point. But this also brings
up the need for methods for quality and risk assessment of such artificial transfers,
most likely on all three levels - DNA, RNA and protein.
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A Appendix - DaisySuite

Table A.1. Acceptor and donor candidates for siml1HP run with yara, no species filter and no samflag
filter. Sampling sensitivity = 90. No taxon blacklist. No parent blacklist. No species blacklist. -0.000*
represents absolute values < 0.0004. !Salmonella enterica subsp. enterica serovar Anatum str. USDA-
ARS-USMARC-1676

Candidate MicrobeGPS metrics ———— — DaisyGPS metrics —
Type Name Accession. Version Number Reads  Validity ~Heterogeneity Property Property Score
Acceptor Escherichia coli str. K-12 substr. DHI0B NC_010473.1 197800 0.254 0.082 0.173 0.003
Acceptor Escherichia coli K-12 NZ_CP010445.1 187050 0.237 0.075 0.162 0.003
Donor [Haemophilus] ducreyi NZ_CP015434.1 322 0.001 0.926 -0.924 -0.000*
Donor Salmonella enterica [...] USDA-ARS-USMARC-1676'  NZ_CP014620.1 126 0.001 0.919 0.918 -0.000*
Donor Klebsiella oxytoca KONTH1 NZ_CP008788.1 1791 0.001 0.795 -0.000*
Donor Helicobacter pylori NZ_AP014710.1 9154 0.018 0.79 -0.001
Acceptor-like Donor Escherichia coli NZ_CP016182.1 74580 0.094 0.088 0.000*

Table A.2. Results for siml1HP run with yara, gustaf, no species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— Read Evidence Evidence Filter
Acceptor Donor Start End  Coverage Start End  Coverage Split  Spanning  Within A-Cov  D-Cov Spanning Within
NZ_CP010445.1 NZ_AP014710.1 1880235 1880237 44.0 1322002 1350000 94.62 152 182 8712 7 100 100 100
NZ.CP010445.1  NZ_CPO15434.1 3904873 3904886 40.54 114928 126957 30.41 871 156 884 3 100 100 100
NC_010473.1 NZ_AP014710.1 1120261 1120263 43.0 1322002 1350000 94.62 154 182 8712 3 100 100 100

Table A.3. Acceptor and donor candidates for reallB run with yara, species filter and no samflag filter.
Taxon blacklist: [83334, 1045010]. Parent blacklist: [83334]. No species blacklist. (-)0.000* represents
absolute values < 0.0004.

Candidate ———— MicrobeGPS metrics ——— — DaisyGPS metrics —
Type Name Accession. Version Number Reads ~ Validity Heterogeneity Property Property Score
Acceptor Escherichia coli Xuzhou21 NC_017906.1 1040394 0.846 0.054 0.792 0.018
Acceptor Escherichia coli O55:HT str. RM1257 NC_017656.1 816492 0.723 0.040 0.683 0.012
Donor Cronobacter sak: CMCC 45402 NC 023032 201 0.006 0.861 -0.855 -0.000*
Donor Enterobacter hormaechei subsp. hormaechei Z.CPO10377. 206 0.002 0.78 0778 -0.000*
Donor Citrobacter freundii CFNIH1 NZ_CP007557.1 1443 0.001 0.743 -0.742 -0.000*
Donor Citrobacter koseri ATCC BAA-895 NC_009792.1 93 0.004 0.560 -0.557 -0.000*
Acceptor-like Donor  Corynebacterium humireducens NBRC 106098 = DSM 45392 NZ_CP005286.1 117 0.444 0.078 0.366 0.000*
Acceptor-like Donor Shigella dysenteriae SA197 NC_007606.1 148868 0.193 0.041 0.152 0.001
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Table A.4. Results for reallB run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity
= 95. Split read threshold = 3. Taxon blacklist: [83334, 1045010]. Parent blacklist: [83334]. No species
blacklist. Results (139 HGT candidates) for NC_017656.1 (acceptor) and NZ_CP007557.1 (donor) are
omitted here for sake of simplicity. For all other pairs no HGT candidates were reported.

Organism Acceptor Donor —— Read Evidence Evidence Filter
Acceptor Donor Start End Coverage Start End Coverage Split  Spanning  Within A-Cov  D-Cov Spanning Within
NC_017656.1 NC_007606.1 314439 334641 27.39 2213697 2214454 63.18 39 3 102 0 100 100 100
NC.017656.1 NC_007606.1 1570633 1580081 138.85 1282007 320884 7.51 9 1 714 100 97 96 98
NC.017656.1 NC_007606.1 1570633 1584983 141.99 1282007 1329491 11.14 11 12 973 99 97 98 97
NC_017656.1 NC_007606.1 1580080 1584983 148.04 1320883 1329491 27.6 8 12 261 99 99 99 99
NC_017656.1 NC_007606.1 1589216 1618452 247.73 4032919 4035786 110.69 107 10 576 100 100 100 100
NC_017656.1 NC_007606.1 1738741 1739271 30.87 1321240 88.45 42 73 60 4 100 100 98
NC.017656.1 NC_007606.1 1738741 1739785 157.15 1321240 1322656 58.2 17 5 72 95 100 100 99
NC_017656.1 NC_007606.1 1738741 1740010 134.9 1321240 1322870 51.13 50 3 72 96 100 100 98
NC_017656.1 NC_007606.1 1738741 1740078 129.54 1321240 1322973 49.81 17 6 81 100 98 100 98
NC_017656.1 NC_007606.1 1738741 1745278 119.31 1321240 : 04 23.91 9 52 202 96 98 100 98
NC.017656.1 NC_007606.1 1739270 1739785 287.13 1322114 1322656 9.33 56 5 13 99 96 100 99
NC_017656.1 NC_007606.1 1739270 1740477 130.81 1322114 1323341 21.27 28 3 42 96 98 99 98
NC_017656.1 NC_007606.1 1739270 1745278 127.11 1322114 1331304 17.77 24 52 143 97 99 99 96
NC_017656.1 NC_007606.1 1739784 1741539 10.67 1283675 1322655 11.22 19 294 897 4 97 100 97
NC.017656.1 NC_007606.1 1739784 1745278 112.11 1322655 1331304 18.29 16 51 130 95 100 100 100
NC_017656.1 NC_007606.1 1740009 1740477 6.25 1322869 1323341 42.62 20 3 28 5 97 100 96
NC_017656.1 NC_007606.1 1740009 1745278 115.53 1322869 1331304 18.65 17 52 129 98 99 100 96
NC_017656.1 NC_007606.1 1740077 1740477 1322972 1323341 46.64 16 3 25 4 100 100 100
NC_017656.1 NC_007606.1 1741538 1744925 164.13 1283674 1288080 59.4 18 9 692 99 100 100 100
NC_017656.1 NC_007606.1 1741538 1745278 159.71 1283674 1331304 12.51 9 166 1031 100 97 99 95
NC_017656.1 NC_007606.1 1957909 1958879 132.94 4032919 4035786 110.69 41 7 576 99 99 98 99
NC_017656.1 NC_007606.1 1957909 1982375 118.01 4032919 4035782 110.56 17 12 576 97 100 100 100
NC.017656.1  NC_007606.1 1958870 1982375 117.37 4034933 4035782 356.29 22 35 576 98 100 100 100
NC.017656.1 NC-007606.1 1986050 1986053 726.33 1288361 1331322 747 10 335 319 100 97 100 95
NC_017656.1 NC_007606.1 1986050 1992463 155.63 1321775 1331322 25.25 126 72 197 99 98 100 97
NC_017656.1 NC_007606.1 1986234 1992463 146.03 1321775 1329808 28.06 261 80 190 100 98 100 96
NC.017656.1 NC_007606.1 1986234 1992955 155.68 1320887 1329808 32.55 35 126 308 99 100 100 99
NC.017656.1 NC_007606.1 1992462 1992955 277.57 1320887 1321774 73.17 131 91 106 100 99 100 99
NC_017656.1 NC_007606.1 2431977 2443616 15.53 1282008 1322832 10.76 17 60 897 0 96 100 96
NC_017656.1 NC_007606.1 2435781 2443492 8.8 1282069 1320883 7.51 193 62 714 3 98 98 98
NC_017656.1 NC_007606.1 2469232 2481815 49.5 4032919 4035785 110.66 81 24 576 2 99 100 99
NC.017656.1 NC_007606.1 2486033 2488461 149.98 4298967 4301718 16.95 23 5 67 95 97 100 96
NC_017656.1 NC_007606.1 2486033 2488662 150.6 4298967 4301905 16.19 65 10 68 99 98 100 98
NC_017656.1 NC_007606.1 2486203 2488662 153.24 4299043 4301905 16.62 47 10 68 99 97 100 95
NC_017656.1 NC_007606.1 2486203 2488723 152.86 4299043 4301977 17.39 29 10 69 98 96 100 95
NC.017656.1 NC_007606.1 2487505 2489413 150.49 953376 956244 23.61 10 3 119 98 98 99 99
NC_017656.1 NC_007606.1 2488461 2489413 130.37 953376 954653 52.39 12 4 119 95 99 100 97
NC_017656.1 NC_007606.1 2488601 2488723 136.13 4301842 4301977 32.39 8 11 2 98 97 100 96
NC_017656.1 NC_007606.1 2678766 2679015 44.61 1323123 1323370 29.6 18 4 5 5 97 100 96
NC.017656.1 NC_007606.1 3607310 3629241 31.35 4189699 4189800 491.86 42 24 12 0 100 100 98
NC_017656.1 NC_007606.1 3615738 3630353 153.33 4195901 4198011 700.99 149 6 4245 97 100 98 100
NC_017656.1 NC_007606.1 3615738 3632904 131.04 4195901 4206697 139.78 21 4 4245 96 100 98 100
NC_017656.1 NC_007606.1 3615738 3632993 130.65 4195901 4206818 138.38 19 4 4250 98 100 98 100
NC.017656.1 NC_007606.1 3629240 3 53 1409.38 4189698 4198011 184.22 222 38 4278 100 100 100 100
NC_017656.1 NC_007606.1 3629240 3632904 430.46 4189698 4206697 91.85 30 36 4278 100 100 100 100
NC_017656.1 NC_007606.1 3629240 3632993 421.57 4189698 4206818 91.3 27 36 4283 100 100 100 100

Table A.5. Acceptor and donor candidates for real4 run with yara, no species filter and no samflag filter.
Taxon blacklist: [595495]. No parent blacklist. No species blacklist. (-)0.000* represents absolute values
< 0.0004.

Candidate MicrobeGPS metrics DaisyGPS metrics —

Type Name Accession. Version Number Reads Validity —Heterogeneity Property Property Score
Acceptor Escherichia coli W NC_017635.1 221389 0.852 0.024 0.829 0.026
Acceptor Escherichia coli W NC_017664.1 221570 0.853 0.025 0.828 0.026
Donor Salmonella enterica subsp. enterica serovar Infantis ~ NZ_CP016410.1 83 0.005 0.943 -0.938 -0.000*
Donor [Haemophilus] ducreyi NZ_CP015434.1 119 0.001 0.920 -0.919 -0.000*
Donor Zymomonas mobilis subsp. mobilis NRRL B-12526 ~ NZ_CP003709.1 3067 0.002 0.876 -0.874 -0.000*
Acceptor-like Donor Shigella boydii CDC 3083-94 NC_010658.1 23506 0.150 0.047 0.104 0.000*
Acceptor-like Donor Shigella sonnei 53G NC_016822.1 29127 0.168 0.073 0.095 0.000*
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Table A.6. Acceptor and donor candidates for ERR103401 run with yara, species filter and no samflag
filter. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values

< 0.0004.
Candidate MicrobeGPS metrics —— DaisyGPS metrics —
Type Name Accession. Version Number Reads Validity —Heterogeneity Property  Property Score
Acceptor Staphylococcus aureus subsp. aureus HO 5096 0412 NC_017763.1 440076 0.832 0.04 0.792 0.041
Acceptor Staphylococcus aureus subsp. aureus NZ-CP007659.1 439586 0.824 0.041 0.783 0.040
Donor Staphylococcus pseudintermedius ED99 NC_017568.1 1089 0.002 0.691 -0.689 -0.000*
Donor Staphylococcus warneri SG1 NC_020164.1 523 0.003 0.631 -0.628 -0.000*
Donor Staphylococcus epidermidis RP62A NC_002976.3 5512 0.006 0.540 -0.534 -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 3614 0.005 0.291 -0.285 -0.000*
Donor Staphylos . aureus COL NC_002951.2 49889 0.106 0.233 -0.127 -0.001
Acceptor-like Donor Staphylococcus aureus subsp. aureus NZ-CP012011.1 54992 0.11 0.109 0.001 0.000*

Table A.7. Results for ERR103401 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— Read Evidence ————— Evidence Filter
Acceptor Donor Start End  Coverage Start End  Coverage Split  Spanning  Within A-Cov D-Cov  Spanning Within
NZ.CP007659.1  NC_020164.1 37045 37048 413.0 121379 123703 36.08 5 36 123 100 100 100 100
NZ.CP007659.1  NC_020164.1 37045 37176 220.86 11790 121379 226 20 7 47 100 99 100 100
N NC_020164.1 37047 37125 272.67 121461 123702 24.58 7 36 103 100 100 100 100
NZ_CP007659.1  NC_020164.1 37047 37176 217.84 111790 123702 8.84 19 38 160 100 100 100 100
NZ.CP007659.1  NC_020164.1 37124 37176 134.96 111790 121460 22 7 72 100 100 98 100
NC.017763.1  NZ.CP012011.1 1525462 1554768 130.8 1228087 1251487 4 2 826 100 97 100 97
NZ_CPO12011.1 1554768 130.8 1228087 1251477 10 2 826 100 100 100 100
C_020164.1 37047 412.0 121379 123703 5 36 124 100 100 100 100
20164.1 37175 220.35 111790 121379 20 7 47 100 100 100 100
NC_020164.1 37124 271.83 121461 123702 7 36 104 100 100 100 100
NC_020164.1 37175 217.34 111790 123702 19 38 161 100 100 100 100
NC_017763.1 NC_020164.1 37123 37175 13496 111790 121460 22 7 72 100 100 100 100
NZ.CP007659.1  NC_002951.2 1568261 1575073 129.75 350692 369382 9 3 42 98 98 99 95
NC_002951.2 1568261 1576904  131.71 358442 360382 1 5 87 97 97 100 98
NZ_CP007659.1  NC_002951.2 1568261 1579141 126.48 356047 360382 5 3 264 99 99 100 99
NZ_CP007659.1  NC_002951.2 1568286 1575073 129.72 350692 360358 7 3 42 100 99 100 97
NZ_CP007659.1  NC_002951.2 1568286 1576904 131.69 358442 39 5 87 100 98 100 98
NZ_CP0076 NC_002951.2 1568286 1579141 5 56047 : 3 3 264 97 98 100 98
NZ_CP0076! NC_002951.2 1568948 1575973 32.04 359692 369170 6 1 40 100 99 99 96
NZ_.CP007659.1  NC_002951.2 1568048 1576904  133.9 358442 369170 22 3 85 100 95 100 97
NZ_.CP007659.1  NC_002951.2 1568048 1579141 127.84 356047 369170 4 1 262 100 99 98 97
NZ.CP007659.1  NC_002951.2 1575972 1576904  147.92 358442 359691 58 2 45 100 98 100 99
NZ.CP007659.1  NC_002951.2 1576903 1579141 106.26 356047 358441 13 29 177 9% 99 100 100
NC.017763.1  NC_002976.3 37130 37175 108.33 2256184 2258869 25 206 76 92 99 100 99
NZ.CP007659.1 NZ_CPO12011.1 1530648 1568954 130.85 1228087 1251487 4 26 826 100 94 99 93
NZ_CP007659.1 NZ_CPO12011.1 1530674 1568954  130.85 1228087 1251477 10 26 826 100 97 100 97
NC.017763.1  NC_002951.2 1554075 1561787  129.75 350692 360382 9 3 42 99 98 100 94
NC.01T’ 1 NC_00: 1.2 i 1562718 131.71 58442 82 41 5 87 100 96 100 97
NC_017763.1 NC_002951.2 1554075 1564955 126.48 56047 93 5 3 264 97 97 100 97
NC_017763.1 NC_002951.2 1554100 1561787 129.72 359692 369358 7 3 42 98 99 99 94
NC.017763.1  NC_002951.2 1554100 1562718 131.69 358442 369358 39 5 87 99 96 100 98
NC.017763.1  NC_002951.2 1554100 1564955 12645 356047 369358 3 3 264 99 99 99 99
NC_017763.1 NC_002951.2 1554762 1561787 132.04 350692 369170 6 1 40 99 100 100 96
NC_017763.1 NC_002951.2 1554762 1562718 133.9 358442 369170 22 3 85 99 98 99 97
NC.017763.1  NC_002951.2 1554762 1564955  127.84 356047 369170 4 1 262 98 97 99 97
NC.017763.1  NC_002951.2 1561786 1562718 147.92 358442 350691 58 2 45 100 97 100 98
NC.017763.1  NC_002951.2 1562717 1564955  106.26 356047 358441 13 29 177 95 98 100 99
NZ_CP007659.1 NC_002976.3 37131 37176 108.33 2256184 2258869 25 206 76 93 100 100 100

Table A.8. Acceptor and donor candidates for ERR103403 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate MicrobeGPS metrics —— DaisyGPS metrics —

Type Name Accession. Version Number Reads Validity —Heterogeneity Property Property Score
Acceptor Staphylococcus aureus subsp. aureus HO 5096 0412 NC.017763.1 206493 0.813 0.063 0.750 0.039
Acceptor Staphylococcus aureus subsp. aureus NZ_CP007659.1 206231 0.806 0.066 0.74 0.038
Donor Staphylococcus warneri SG1 NC_020164.1 196 0.003 0.639 -0.636 -0.000*
Donor Staphylococcus pseudintermedius HKU10-03 NC_014925.1 705 0.001 0.582 -0.581 -0.000*
Donor Staphylococcus epidermidis RP62A NC_002976.3 2171 0.005 0.537 -0.532 -0.000*
Donor Staphyloc haemolyticus JCSC1435 NC_007168.1 1398 0.005 0.287 -0.283 -0.000*
Donor Staphylococcus aureus subsp. aureus TW20 NC.017331.1 27837 0.096 0.364 -0.268 -0.002
Acceptor-like Donor Staphylococcus aureus CA-347 NC_021554.1 31231 0.148 0.146 0.003 0.000*
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Table A.9. Results for ERR103403 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— Read Evidence ————— Evidence Filter
Acceptor Donor Start End  Coverage Start End  Coverage Split  Spanning  Within A-Cov D-Cov  Spamning Within
NZ_CP007659.1 NC_021554.1 1568897 57.77 1567257 1577035 3 4 35 98 97 100 97
NC.017763.1  NC_017331.1 1525080 413136 417103 11 6 302 96 98 100 99
NC.017763.1 NC.017331.1 1525080 413114 417103 17 8 302 99 100 100 100
NC.017763.1 ~ NC_017331.1 1525080  15¢ 382045 417103 6 7 1608 99 99 98 100
NC_017763.1 1525466 1559823 382045 413135 5 18 1306 100 100 99 100
NC_017763.1 1525466 1561786 381925 413135 25 11 1306 98 97 100 100
NC.017763.1  NC_017331.1 1525488 1559823 382045 413113 13 18 1306 99 100 100 100
NC.017763.1  NC.017331.1 1525488 1561786 381925 413113 23 11 1306 97 99 99 100
NC.017763.1  NC_014925. 36951 37132 906205 906387 2 10 11 100 100 100 100
NC017763.1  NC_014925.1 36951 37151 906205 906409 20 10 11 96 100 100 100
NC.017763.1  NC_014925.1 37044 37151 906300 906409 4 9 11 100 100 100 100
NZ_CP007659.1 NC_014925.1 36952 37133 906205 906387 2 10 11 100 100 100 100
NZ.CP007659.1 NC_014925.1 36952 37152 906205 906409 20 10 11 100 100 100 100
NZ_CP007659.1 NC_014925.1 : 37152 906300 906409 4 9 11 100 100 100 100
NZ_CP007659.1 1539653 413136 417103 11 6 302 98 98 100 99
NZ_CP007659.1 1539675 413114 417103 17 8 302 100 100 100 100
NZ_CP007659.1 1539266 1574009 382045 417103 6 7 1608 100 100 97 100
NZ_CP007659.1 1539652 1574009 382045 413135 5 18 1306 99 100 100 100
NZ.CP007659.1 NC_017331.1 1530652 1575072 381925 413135 25 11 1306 95 98 99 100
NZ_CP007659.1 NC_017331.1 1530674 1574009 382045 413113 13 18 1306 98 99 100 100
NZ.CP007659.1 NC_017331.1 1530674 1575072 381925 413113 23 11 1306 99 99 99 100
NC_0177 NC_021554.1 1554711 1564768 1567257 1577035 3 4 35 100 98 99 98

Table A.10. Acceptor and donor candidates for ERR103404 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate —————— MicrobeGPS metrics ———— —— DaisyGPS metrics —
Name Accession. Version Number Reads  Validity ~Heterogeneity Property ~ Property Score

Staphylococcus aureus subsp. aureus HO 5096 0412 NC.017763.1 193345 0.812 0.043 0.769 0.041
Staphylococcus aureus subsp. aureus NZ_CP007659.1 193065 0.805 0.044 0.761 0.041
Staphylococcus pseudintermedius ED99 NC_017568.1 459 0.001 0.702 -0.700 -0.000*
Donor Staphylococcus warneri SG1 NC_020164.1 244 0.003 0.631 -0.627 -0.000*
Donor Staphylococcus epidermidis RP62A NC_002976.3 2256 0.005 0.536 -0.531 -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 1441 0.005 0.299 -0.295 -0.000*
Donor Staphylococcus aureus subsp. aureus COL NC_002951.2 20891 0.101 0.233 -0.133 -0.001
Acceptor-like Donor Staphylococcus aureus subsp. aureus DSM 20231 NZ_CP011526.1 16400 0.102 0.084 0.018 0.000*

Table A.11. Results for ERR103404 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— Read Evidence Evidence Filter
Acceptor Donor Start End  Coverage Start  End  Coverage Split  Spanning  Within A-Cov D-Cov  Spanmning Within

NC.017763.1 ~ NZ_CP011526.1 1554767 1561786 52.96 846400 854250 11.47 24 1 254 100 100 100 100

NZ-CP007659.1 NZ_CP011526.1 568953 1575972 52.96 854250 11.47 24 1 254 100 100 100 100
NZ_CP007659.1 ~ NC_002951.2 1568275 1575973 50.88 369368 2.48 7 1 24 98 98 100 95
NZ_CP007659.1 ~ NC_002951.2 1568275 1576904 52.23 369368 2.96 23 2 43 98 98 100 98
NZ_CP007659.1 ~ NC_002951.2 1575972 1576904 63.34 359691 6.72 34 1 19 100 100 100 100
NC_017763.1 NC_002951.2 1561787 50.88 369368 2.48 7 1 24 98 98 100 94
NC_017763.1 NC_002951.2 1562718 369368 2.96 23 2 43 100 98 100 99
NC_017763.1 NC_002951.2 1561786 1562718 359691 6.72 34 1 19 100 98 100 100
NC.017763.1 NC_002951.2 2045963 2074149 397269 12.8 12 10 330 6 100 97 100

Table A.12. Acceptor and donor candidates for ERR103405 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate —————— MicrobeGPS metrics DaisyGPS metrics —

Type Name Accession. Version Number Reads ~ Validity Heterogeneity Property  Property Score
Acceptor Staphylococcus aureus subsp. aureus HO 5096 0412 NC_017763.1 192851 0.811 0.03 0.781 0.041
Acceptor Staphylococcus aureus subsp. aureus NZ_CP007659.1 192626 0.804 0. 0.773 0.040
Donor Staphylococcus pseudintermedius ED99 NC_017568.1 459 0.001 0.698 -0.696 -0.000*
Donor Staphylococcus warneri SG1 NC_020164.1 236 0.003 0.658 -0.655 -0.000*
Donor Staphylococcus epidermidis RP62A NC.002976.3 2006 0.005 0.543 -0.538 -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 1278 0.005 0.293 -0.289 -0.000*
Donor Staphylococcus aureus subsp. aureus COL NC_002951.2 21599 0.097 0.227 -0.13 -0.001
Acceptor-like Donor Staphylococcus aureus subsp. aureus NZ_CP018205.1 20618 0.100 0.091 0.009 0.000*
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Table A.13. Results for ERR103405 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor Read Evidence Evidence Filter

Acceptor Donor Start End  Coverage Start End  Coverage Split  Spanning  Within A-Cov  D-Cov Spanning Within
NC.017763.1 NZ 205.1 1559883 1562718 1959491 1961823 7.95 12 1 38 100 100 100 100
NC.017763.1 NZ_CP018205.1 1561784 1562718 1960572 1961823 9.45 66 1 31 100 100 100 100
NZ_CP018205.1 1574069 1576904 1959491 1961823 7.95 12 1 38 99 99 100 98

007659.1  NZ_CP018205.1 1575970 1576904 1960572 961823 9.45 66 1 31 100 100 100 100
NZ_CP007659.1 NC-002951.2 1568261 1576904 358442 369382 3.13 10 1 50 100 98 100 100
NZ_CP007659.1 NC-002951.2 1575976 1576904 358442 359692 9.25 19 1 29 100 99 100 99
NZ-CP007659.1 NC-002951.2 2059982 2087935 369359 397269 12.87 5 12 341 10 100 100 100
NZ_CP007659.1 NC_002951.2 2059982 2088169 369125 397269 12.79 21 12 341 6 100 98 100
NC_017763.1 NC_002951.2 1554075 1562718 358442 369382 3.13 10 1 50 100 99 100 100
NC_017763.1 NC_002951.2 1561790 1562718 358442 359692 9.25 19 1 29 100 100 100 100
NC.017763.1 NC_002951.2 2045963 2073915 369359 397269 13.02 5 12 355 6 100 99 100
NC.017763.1 NC_002951.2 2045963 2074149 369125 397269 12.94 21 12 355 8 100 97 100

Table A.14. Acceptor and donor candidates for ERR101899 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate MicrobeGPS metrics —— DaisyGPS metrics —

Type Name Accession. Version Number Reads ~ Validity ~Heterogeneity Property  Property Score
Acceptor Staphylococcus aureus subsp. aureus HO 5096 0412 NC_017763.1 206272 0.814 0.047 0.767 0.040
Staphylococcus aureus subsp. aureus NZ-CP007659.1 206076 0.807 0.049 0.759 0.04
Donor Staphylococcus pseudintermedius ED99 NC.017568.1 536 0.001 0.707 -0.705 -0.000*
Donor Staphylococcus warneri SG1 NC_020164.1 263 0.003 0.658 -0.655 -0.000*
Donor Staphylococcus epidermidis RP62A NC_002976.3 2226 0.005 0.537 -0.532 -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 1378 0.004 0.296 -0.291 -0.000*
Donor Staphylo ureus subsp. aureus COL NC_002951.2 22973 0.098 0.236 139 -0.001
Acceptor-like Donor Staphylococcus aureus subsp. aureus DSM 20231 NZ_CP011526.1 18223 0.099 0.085 0.014 0.000*

Table A.15. Results for ERR101899 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— Read Evidence Evidence Filter
Acceptor Donor Start End Coverage Start End  Coverage Split  Spanning ~ Within A-Cov D-Cov Spanning Within
NZ_CP007659.1 ~ NC_002951.2 1568261 1575972 359694 369382 3 2 15 99 100 100 97
NZ_CP007659.1 NC_002951.2 1568261 1576904 358442 369382 8 2 34 99 99 99 99
NZ_CP007659.1 ~ NC_002951.2 1568287 1575972 359694 369357 3 2 15 98 100 99 99
NZ_CP007659.1 ~ NC_002951.2 1568287 1576904 358442 369357 8 2 34 100 100 99 99
NZ_CP007659.1 ~ NC_002951.2 2059982 2087936 369358 397269 9 15 395 10 100 100 100
NZ_CP007659.1 ~ NC_002951.2 2059982 2088169 369125 397269 31 15 396 7 100 94 100
NZ_CP007659.1 NC_020164.1 37045 37177 111789 121379 4 2 20 100 97 100 100
NZ_CP007659.1 NZ_CP011526.1 1568903 1575972 846397 854374 9 1 267 100 100 100 100
NC.017763.1 NZ_CP011526.1 1554717 1561786 846397 854374 9 1 267 98 100 100 100
NC_017763.1 NC_002951.2 1561786 359694 369382 3 2 15 97 98 100 94
NC_017763.1 NC_002951.2 1562718 358442 369382 8 2 34 99 99 100 100
NC.017763.1 NC_002951.2 1561786 359694 369357 3 2 15 98 99 99 93
NC_017763.1 NC_002951.2 1562718 358442 369357 8 2 34 99 98 100 97
NC_017763.1 NC_002951.2 2045963 2073916 369358 397269 9 15 415 8 100 91 100
NC_017763.1 NC_020164.1 37044 37176 87.31 111789 121379 4 2 20 100 100 99 100

Table A.16. Acceptor and donor candidates for ERR101900 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate MicrobeGPS metrics —— DaisyGPS metrics —
Type Name Accession. Version Number Reads  Validity ~Heterogeneity Property  Property Score
Acceptor Staphylococcus aureus subsp. aureus HO 5096 0412 NC_017763.1 162488 0.801 0.049 0.752 0.04
Acceptor Staphylococcus aureus subsp. aureus NZ_CP007659.1 162328 0.794 0.050 0.744 0.03¢
Donor Staphyloc 15 pseudintermedius ED99 NC_017568.1 1521 0.002 0.706 -0.704 -0.000*
Donor Staphylococcus warneri SG1 NC_020164.1 215 0.004 0.654 -0.650 -0.000*
Donor Staphylococcus epidermidis RP62A NC-002976.3 3028 0.005 0.560 -0.555 -0.001
Donor Staphylococcus lugdunensis HKU09-01 NC_013893.1 53 0.002 0.358 0. -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 1116 0.005 0.254 -0.25 -0.000*
Donor Staphylococe: ur subsp. aureus COL NC_002951.2 17868 0.103 0.242 -0.139 -0.001
Acceptor-like Donor  Staphylococcus aureus subsp. aureus NCTC 8325 NC_007795.1 16873 0.107 0.089 0.018 0.000*
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Table A.17. Results for ERR101900 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— Read Evidence Evidence Filter

Acceptor Donor Start End  Coverage Start End  Coverage Split  Spanning  Within A-Cov D-Cov Spanning Within
NC.017763.1  NC_002951.2 1554089 1562718 358442 369368 281 15 1 31 100 100 99 98
NC.017763.1  NC_002951.2 1554762 1562718 358442 369170  2.78 8 1 29 100 100 98 98
NC.017763.1  NC_002951.2 1561790 1562718 358442 359696 5.56 8 1 15 98 99 100 100
NZ_CP007659.1  NC_007795.1 1575971 1576904 1961777 1963027 6.06 57 1 16 99 99 100 99
NC.017763.1  NC_007795.1 1561785 1562718 1961777 1963027 6.06 57 1 16 99 97 99 97
NZ_CP007659.1  NC_002951.2 1568275 1576904 358442 369368 2.81 15 1 31 99 99 100 99
NZ.CP007659.1 NC_0029051.2 1568948 1576904  46.77 358442 369170  2.78 8 1 29 99 99 100 99
NZ_CP007659.1 NC_002951.2 1575076 1576904  53.62 358442 359696 5.56 8 1 15 100 99 100 98

Table A.18. Acceptor and donor candidates for ERR103394 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate —————— MicrobeGPS metrics ————— —— DaisyGPS metrics —
Name ession. Version Number Reads ~ Validity ~Heterogeneity Property  Property Score

Staphylococcus aureus subsp. aureus HO 5096 0412 NC_017763.1 183503 0.807 0.048 0.759 0.040

Staphylococcus aureus subsp. aureus NZ_CP007659.1 183292 0.801 0.05 0.751 0.04

Staphylococcus warneri SG1 NC_020164.1 250 0.004 0.656 -0.653 -0.000*

Donor Staphylococcus pseudintermedius HKU10-03 NC_014925.1 4T 0.001 0.584 -0.582 -0.000*
Donor Staphylococcus epidermidis RP62A NC_002976.3 2358 0.005 0.546 -0.541 -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 1541 0.005 0.301 -0.296 -0.000*
Donor Staphylococcus aureus subsp. aureus COL NC_002951.2 20650 0.100 0.246 -0.146 -0.001

Acceptor-like Donor  Staphylococcus 1hsp. aureus DSM 20231 NZ_CP011526.1 16141 0.102 0.091 0.011 0.000*

aureus s

Table A.19. Results for ERR103394 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— Read Evidence Evidence Filter
Acceptor Donor Start End Coverage Start End  Coverage Split  Spanning ~ Within A-Cov D-Cov Spanning Within
NZ_CP007659.1 ~ NC_014925.1 36953 37046 319.63 906200 906301 89.36 6 17 18 100 100 100 100
NZ_-CP007659.1 NC_014925.1 36953 37133 263.84 906200 906387  137.22 13 20 20 100 100 100 100
NZ_CP007659.1 ~ NC_014925.1 36953 254.4 906200 906409  135.31 9 19 20 100 100 100 100
NZ_CP007659.1 ~ NC_014925.1 36999 2 906256 906387 11 18 20 100 100 100 100
NZ_CP007659.1 ~ NC_014925.1 36999 906256 906409 7 18 20 100 100 100 100
NZ_CP007659.1 ~ NC_014925.1 37045 906300 906409 5 12 19 100 100 100 100
NC.017763.1 NC_002951.2 1554089 369368 16 3 25 99 98 100 95
NC_017763.1 NC_002951.2 1554762 1562718 358442 369170 29 3 25 99 99 100 97
NC.017763.1 NC_014925.1 36952 37045 299.67 906200 906301 7 15 19 100 100 100 100
NC_017763.1 NC_014925.1 36952 37132 22817 906200 906387 21 17 21 100 100 100 100
NC_017763.1 NC_014925.1 36952 37151 217.36 906200 906409 15 16 21 100 100 100 100
NC.017763.1 NC_014925.1 36998 37132 183.81 906256 906387 11 16 21 99 100 100 100
NC_017763.1 NC_014925.1 36998 37151 175.26 906256 906409 8 16 21 100 100 100 100
NC.017763.1 NC_014925.1 37044 37151 145.74 906300 906409 6 10 20 100 100 100 100
NZ_CP007659.1 NZ_CP011526.1 1568903 1575973 55.17 846399 854374 13 3 234 97 99 100 99
NZ_CP007659.1 NZ_CP011526.1 1568903 1579178 54.74 842251 854374 5 3 747 98 100 99 100
NZ_CP007659.1 NZ_CP011526.1 1568953 1575973 55.21 846399 854250 26 3 234 99 98 100 98
NZ_CP007659.1 NZ_CP011526.1 1568953 1579178 842251 854250 10 3 747 100 100 100 100
NC.017763.1 ~ NZ_CP011526.1 1554717 1561787 846399 854374 13 3 234 99 100 100 100
NC_017763.1 NZ_CP011526.1 1564992 842251 854374 5 3 47 99 100 100 100
NC.017763.1  NZ_CP011526.1 1561787 846399 854250 26 3 234 99 100 100 100
NC.017763.1 NZ_CP011526.1 1564992 842251 854250 10 3 747 97 100 100 100
NZ_CP007659.1 ~ NC_002951.2 1576904 358442 369368 16 3 25 99 98 100 96
NZ_CP007659.1 ~ NC_002951.2 1568948 1576904 358442 369170 29 3 25 99 99 100 97

Table A.20. Acceptor and donor candidates for ERR103395 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate MicrobeGPS metrics ————— —— DaisyGPS metrics —
Type Name Accession. Version Number Reads ~ Validity ~Heterogeneity Property  Property Score
Acceptor Staphylococcus aureus subsp. aureus ECT-R 2 NC_017343.1 120322 0.591 0.070 0.521 0.013
Acceptor Staphylococcus aureus subsp. aureus N315 NC_002745.2 121110 0.576 0.069 0.507 0.013
Donor Enterococcus faecium Aus0004 NC.017022.1 471 0.001 0.974 -0.973 -0.000*
Donor Staphylococcus epidermidis ATCC 12228 NC_004461.1 391 0.001 0.971 -0.97 -0.000*

cudintermedius HKU10-03 NC_014925.1 470 0.001 0.806 -0.805 -0.000*

Donor Staphylococeu:

Donor Staphyloco lugdunensis HKU09-01 NC_013893.1 59 0.003 0.765 .762 -0.000*

Donor Staphylococcus warneri SG1 NC_020164.1 294 0.011 0.693 -0.683 -0.000*

Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 362 0.002 0.556 -0.554 -0.000*
Acceptor-like Donor Staphylococcus aureus subsp. aureus NZ_CP009554.1 14824 0.093 0.091 0.002 0.000*
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Table A.21. Results for ERR103395 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— Read Evidence Evidence Filter
Acceptor Donor Start End  Coverage Start FEnd  Coverage Split  Spanning  Within A-Cov D-Cov Spanning Within
NC_002745.2 NC_013893.1 2060607 2069048 16.44 2073055 2083555 11.08 28 8 339 1 100 100 100
NC_002745.2 NC_013893.1 2060607 2069067 16.47 2073055 2083576 11.07 18 6 339 2 100 99 100
NC_002745.2 NC_013893.1 2060762 2069048 16.74 2073192 2083555 11.11 7 8 339 1 100 100 100
NC_002745.2  NZ_CP009554.1 1142176 1142913 0.26 685582 686374 22.86 8 11 52 3 100 100 100
NC_002745.2 NZ_CP009554.1 1142176 1142913 0.26 685582 717267 0.66 12 14 53 5 94 97 94
NC_002745.2 NZ_CP009554.1 1142912 1142913 1.0 685581 716475 0.66 11 12 53 4 93 98 94
NC_002745.2 NZ_CP009554.1 2056699 2058174 0.02 2150234 2162636 10 6 43 2 98 99 94
NC_002745.2  NZ_CP009554.1 2056699 2060475 5.31 2150276 2162636 13 6 43 1 100 99 99
NC_002745.2 NZ_CP009554.1 2056699 2069076 10.31 2158985 2162636 24 34 8 2 99 100 90
NC_002745.2  NZ_CP009554.1 2058173 2069076 117 2150233 2158985 51 5 34 0 97 100 97
NC_002745.2 NZ_CP009554.1 2058173 2069105 11.7 2150233 2159011 7 5 34 3 100 100 98
NC_002745.2  NZ_CP009554.1 2058173 2069324 115 2150233 2159202 27 26 43 0 100 100 99
NC_002745.2 NZ_CP009554.1 2058173 2069355 11.57 2150233 2159253 7 26 43 0 100 100 96
NC_002745.2  NZ_CP009554.1 2060474 2069076 12.5 2150275 2158985 52 5 34 0 99 100 99
NC_002745.2 NZ_CP009554.1 2060474 2069105 125 2150275 2159011 8 5 34 2 100 100 98
NC_002745.2  NZ_CP009554.1 2060474 2069324 12.23 2150275 2159202 28 26 43 5 98 100 97
NC_002745.2 NZ_CP009554.1 2060474 2069355 12.31 2150275 2159253 8 26 43 1 100 100 99
NC_002745.2 NZ_CP009554.1 2060607 2065052 19.41 364874 369569 14 5 133 2 100 100 100
NC_002745.2 NZ_CP009554.1 2060607 2068738 12.04 361186 369569 18 1 154 0 100 100 100
NC_002745.2  NZ_CP009554.1 2065051 2068738 3.16 361186 364873 9 3 21 3 98 99 97
NC_002745.2 NZ_-CP009554.1 2069075 2069324 2.76 2158984 2159202 89 32 8 4 100 100 100
NC_002745.2 NZ_CP009554.1 2069075 2069355 6.49 2158984 2159253 9 38 8 2 100 100 99
NC_002745.2 NZ_-CP009554.1 2069104 2069324 1.65 2159010 2159202 12 32 8 3 100 100 99
NC_017343.1 NZ_CP009554.1 1100697 1101434 0.42 685582 686374 8 11 52 1 100 100 100
NC.017343.1 NZ_CP009554.1 1100697 1101434 0.42 685582 717267 15 14 53 1 99 99 98
NC_017343.1 NZ_CP009554.1 1101433 1101434 1.0 685581 716475 11 12 53 0 98 96 96
NC_002745.2 NC_004461.1 61651 61779 4.23 37793 55322 30 73 392 4 100 99 100
NC_002745.2 NC_004461.1 61651 61799 3.8 37814 55322 14 73 392 4 100 100 100
NC_002745.2 NC_004461.1 61651 61851 2.83 37866 55322 18 73 392 2 100 99 100
NC_002745.2 NC_004461.1 61755 61779 3.04 37793 55383 12 73 392 2 100 100 100
NC_002745.2 NC_004461.1 61755 61799 2.14 37814 55383 8 73 392 5 100 99 100
NC_002745.2 NC_004461.1 61755 61851 1.01 37866 55383 9 73 392 3 100 100 100
NC_002745.2 NC_004461.1 61778 62058 2.57 37792 57274 7 73 392 1 100 100 100
NC_002745.2 NC_004461.1 61778 62354 7.14 37792 57575 7 68 392 2 100 100 100
NC_002745.2 NC_004461.1 61778 62414 7.02 37792 57608 8 64 392 1 100 99 100
NC_002745.2 NC_004461.1 61798 62058 2.68 37813 57274 3 73 392 5 100 100 100
NC_002745.2 NC_004461.1 61798 62354 7.35 37813 57575 3 68 392 1 100 99 100
NC_002745.2 NC_004461.1 61798 62414 7.21 37813 57608 4 64 392 1 100 100 100
NC_002745.2 NC_004461.1 61850 62058 3.34 37865 57274 4 73 392 5 100 99 100
NC_002745.2 NC_004461.1 61850 62354 8.11 37865 57575 4 68 392 4 100 100 100
NC_002745.2 NC_004461.1 61850 62414 7.87 37865 57608 7 64 392 2 100 100 100

Table A.22. Acceptor and donor candidates for ERR103396 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate MicrobeGPS metrics ————— —— DaisyGPS metrics —

Type Name Accession. Version Number Reads ~ Validity Heterogeneity Property  Property Score
Acceptor Staphylococcus aureus subsp. aureus HO 5096 0412 NC_017763.1 222016 0.817 0.042 0.775 0.043
Acceptor Staphylococcus aureus subsp. aureus NZ_CP007659.1 223952 0.815 0.049 0.767 0.043
Donor Staphylococcus pseudintermedius ED99 NC.017568.1 536 0.002 0.708 -0.707 -0.000*
Donor Staphylococcus warneri SG1 NC_020164.1 267 0.003 0.696 -0.693 .000*
Donor Staphylococcus epidermidis RP62A NC_002976.3 1067 0.003 0.582 -0.579 -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 370 0.003 0.492 489 -0.000*
Donor Staphylococcus aureus subsp. aureus COL NC_002951.2 21752 0.098 0.156 -0.058 -0.000*
Acceptor-like Donor Staphylococcus aureus subsp. aureus NZ_CP012012.1 21332 0.097 0.094 0.003 0.000*

Table A.23. Results for ERR103396 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

——— Organism Acceptor Donor ———— —— Read Evidence ——— Evidence Filter
Acceptor Donor Start End  Coverage Start End Coverage Split  Spanning  Within A-Cov. D-Cov  Spanning Within

NC.017763.1 NZ_CP012012.1 98589 98635 95.67 125862 126004 35.02 3 20 5 100 100 100 100

NC.017763.1 NC.017568.1 409730 409775 16.98 2481624 2485653 3.95 14 5 35 1 100 100 100
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Table A.24. Acceptor and donor candidates for ERR103397 run with yara, species filter and no samflag

filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate MicrobeGPS metrics DaisyGPS metrics —

Type Name ion. Version Number Reads  Validity — Heterogenc Property  Property Score
Acceptor Staphylococcus aureus subsp. aureus MSSA476 NC_002953.3 84971 0.634 0.094 0.540 0.017
Acceptor Staphylococcus aureus subsp. aureus MW2 NC_003923.1 83556 0.621 0.089 0.531 0.017
Donor Staphylococcus pseudintermedius HKU10-03 NC_014925.1 3645 0.002 0.744 -0.742 -0.001
Donor Staphylococcus warneri SG1 NC_020164.1 168 0.003 0.69 -0.697 -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 2650 0.004 0.604 -0.600 -0.001
Donor Staphylococcus epidermidis RP62A NC_002976.3 1082 0.002 0.583 -0.581 -0.000*
Donor Staphylococcus lugdunensis HKU09-01 NC_013893.1 3709 0.004 0.356 -0.352 -0.001
Donor Staphylococcus aureus subsp. aureus NZ_-CP009554.1 19819 0.092 0.314 -0.222 -0.002
Acceptor-like Donor Staphylococcus aureus subsp. aureus NZ_CP009361.1 9253 0.097 0.092 0.005 0.000*

Table A.25. Results for ERR103397 run with yara, gustaf, species filter and no samflag filter. Sampling

sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism ——— Acceptor Donor ——— —— Read Evidence ———— Evidence Filter ———
Acceptor Donor Start  End  Coverage Start End Coverage Split  Spanning  Within A-Cov  D-Cov Spanning Within
NC_003923.1 NC_007168.1 44986 45306 40.24 66689 67028 5.47 6 1 2 98 100 100 100
NC_003923.1 NC_002976.3 44776 44988 12.98 2520640 2520803 10.01 4 4 1 6 100 100 100
NC_003923.1 NC_002976.3 44987 45380 36.37 2520639 2561294 0.64 14 58 46 96 95 98 95
NC_003923.1 NC_002976.3 44987 45606 5 2520639 2561094 0.63 4 58 44 95 96 100 97
NC_003923.1 NC_002976.3 45026 45380 37.73 2561294 2561636 10.28 14 3 3 100 99 100 99
NC_003923.1 NC_002976.3 45026 45606 32.0 2561094 2561636 71 4 3 4 92 98 100 98
NC_003923.1 NC_002976.3 45026 45870 27.86 2560793 2561636 6.17 6 4 4 91 99 100 100
NC_003923.1 NC_002976.3 45070 45307 38.1 2561337 2561580 12.23 4 5 3 94 100 100 100
NC_003923.1 NC_002976.3 45070 45380 38.28 2561294 2561580 12.12 40 5 3 98 100 100 100
NC_002953.3 NC_007168.1 41508 57483 26.01 67036 120082 2.7 20 4 471 94 98 95 98

Table A.26. Acceptor and donor candidates for ERR103398 run with yara, species filter and no samflag

filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate MicrobeGPS metrics ———— —— DaisyGPS metrics —
Name Accession. Version Number Reads Validity ~Heterogeneity Property  Property Score

Staphylococcus aureus subsp. aure NC_002953.3 192949 0.671 0.11 0.562 0.017
Staphylococcu NC_003923.1 189418 0.658 0.103 0.555 0.016
Donor Staphylococcus pseudintermedius HKU10-03 NC.014925.1 16866 0.002 0.745 -0.742 -0.002
Donor Staphylococcus warneri SG1 NC_020164.1 461 0.003 0.69 -0.697 -0.000*
Donor Staphylococcus epidermidis PM221 NZ_-HG813242.1 4779 0.001 0.656 -0.655 -0.001
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 12023 0.004 0.636 -0.632 -0.001
Donor Staphylococcus lugdunensis HKU09-01 NC_013893.1 16800 0.004 0.356 -0.351 -0.001
Donor Staphylococcus aureus subsp. aureus NZ_CP009554.1 70966 0.095 0.398 -0.304 -0.003
Acceptor-like Donor Staphylococcus aureus CA-347 NC_021554.1 18666 0.098 0.090 0.007 0.000*
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Table A.27. Results for ERR103398 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— —— Read Evidence Evidence Filter
Acceptor Donor Start  End  Coverage Start End Coverage Split  Spanning  Within A-Cov D-Cov Spanning Within
NC_002953.3 NC_007168.1 27843 41291 63.48 67243 97433 4.35 18 2 436 95 97 99 99
NC.002953.3 ~ NC_007168.1 27843 41907 63.94 66699 97433 4.54 3 4 446 91 99 99 99
NC_002953.3 ~ NC_007168.1 27843 57484 69.06 94688 97433 47.35 7 2 431 99 100 100 100
NC_002953.3 ~ NC_007168.1 41290 41907 73.94 66699 67242 15.3 9 6 14 96 100 100 100
NC.002953.3 ~ NC_007168.1 41290 57483 73.69 67242 120082 6.24 7 6 1105 99 94 99 97
NC_002953.3 NC_007168.1 41290 57484 73.69 30072 67242 0.28 25 7 16 100 93 100 97
NC.002953.3 ~ NC_007168.1 41508 41605 95.51 66925 67036 6.53 17 6 1 97 100 100 100
NC_002953.3 NC_007168.1 41508 41907 90.78 66699 67036 7.76 5 1 2 98 100 100 100
NC_002953.3 ~ NC-007168.1 41508 57483 74.11 67036 120082 6.32 39 10 1111 98 91 94 95
NC_002953.3 NC_007168.1 41508 57484 74.11 67036 94688 0.25 13 8 11 100 93 97 95
NC_002953.3 ~ NC_007168.1 41604 41907 89.3 66699 66924 8.38 9 2 1 97 99 100 99
NC_002953.3 NC_007168.1 41604 57483 73.98 66924 120082 6.32 v 15 1112 100 92 99 94
NC_002953.3 ~ NC_007168.1 41906 57483 73.68 66698 120082 6.33 21 15 1115 100 91 100 94
NC_002953.3 ~ NC_007168.1 41906 57484 73.68 66698 94688 0.34 8 13 15 100 92 100 96
NC_002953.3 NZ_HG813242.1 34149 41829 68.51 35795 85587 4.98 78 19 287 99 99 97 99
NC_002953.3 NZ_HG813242.1 34149 41907 68.57 35721 85587 4.97 50 19 287 95 97 98 97
NC_002953.3 NZ_HG813242.1 34149 57484 71.98 54292 85587 6.1 34 3 280 97 97 97 97
NC_002953.3 NZ_HG813242.1 34149 57484 71.98 57395 85587 5.91 42 2 207 100 97 100 97
NC_002953.3 NZ_HG813242.1 34180 41829 68.6 35795 85647 4.97 240 19 287 93 96 97 96
NC_002953.3 NZ_HG813242.1 34180 41907 68.66 35721 85647 4.96 142 19 287 97 95 96 95
NC_002953.3 NZ_HG813242.1 34180 57484 72.02 54292 85647 6.09 86 3 280 100 96 100 96
NC_002953.3 NZ_HG813242.1 34180 57484 72.02 57395 85647 5.9 114 2 207 100 97 100 97
NC_002953.3 NZ_HG813242.1 41828 56986 72.4 35794 85689 4.98 81 19 287 99 94 97 94
NC_002953.3 NZ_HG813242.1 41828 57484 73.68 35794 57395 3.75 43 2 70 99 94 100 93
NC_002953.3 NZ_HG813242.1 41828 57484 73.68 35794 62757 9.18 15 3 286 100 97 97 97
NC_002953.3 NZ_HG813242.1 41906 56986 72.39 35720 85689 4.97 143 19 287 100 93 98 93
NC_002953.3 NZ_HG813242.1 41906 57484 73.68 35720 57395 3.74 67 2 70 100 98 98 98
NC_002953.3 NZ_HG813242.1 41906 57484 73.68 35720 62757 9.16 11 3 286 100 99 98 99
NC_002953.3 NZ_HG813242.1 56985 57484  112.78 54292 85688 6.1 64 3 280 100 97 98 97
NC_002953.3 NZ_HG813242.1 56985 57484 112.78 57395 85688 5.91 80 2 207 100 98 99 98
NC_003923.1 NC_007168.1 44606 45306 69.87 66689 67411 10.45 29 2 16 95 100 100 100
NC_003923.1 NC_007168.1 45026 45143 97.32 66870 66987 2.7 9 4 2 100 99 100 99
NC_003923.1 NC_007168.1 45026 45306 93.51 66689 66987 17.21 25 6 13 98 100 100 100
NC_003923.1 NC_007168.1 45062 45306 66689 66930 20.85 19 3 11 99 99 100 100
NC_.003923.1  NC_007168.1 45082 45306 66689 66929 20.93 10 4 11 98 100 100 100
NC_003923.1 NC_007168.1 45142 45306 90.77 66689 66869 26.71 10 5 11 97 99 100 99
NC.002953.3 ~ NC_021554.1 41508 41593 91.24 60998 61108 10.47 19 2 5 96 99 100 99
NC.002953.3 ~ NC_021554.1 41508 41884 81.12 60998 61399 20.48 7 1 11 95 99 100 99
NC_002953.3 ~ NC_021554.1 41548 41884 80.93 61045 61399 21.66 4 2 9 96 100 100 100
NC_002953.3 ~ NC_021554.1 41592 41884 78.23 61107 61399 24.23 22 3 8 92 99 100 99
NC_003923.1 NC_021554.1 44986 45384 76.26 61006 61391 27.57 55 2 20 90 100 100 100
NC_003923.1 NC_021554.1 45026 45306 80.71 61045 61347 29.43 7 3 18 95 100 100 100
NC_003923.1 NC_021554.1 45026 45384 76.52 61045 61391 29.23 113 3 18 94 100 100 100
NC_003923.1 NC_021554.1 45062 45306 78.63 61102 61347 35.75 3 1 14 92 100 100 99
NC_003923.1 NC_021554.1 45062 45384 74.48 61102 61391 34.55 109 1 14 92 100 100 100
NC_003923.1 NC_021554.1 45082 45384 72.6 61105 61391 34.9 55 1 14 91 100 100 100

Table A.28. Acceptor and donor candidates for ERR159680 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate ——mM ————— MicrobeGPS metrics ————— —— DaisyGPS metrics —

Type Name Accession. Version Number Reads Validity —Heterogeneity Property  Property Score
Acceptor Staphylococcus aureus subsp. aureus MRSA252 NC.002952.2 236631 0.892 0.047 0.845 0.043
Acceptor Staphylococcus aureus subsp. aureus NZ_CP009554.1 227305 0.871 0.046 0.825 0.041
Donor Staphylococcus pseudintermedius ED99 NC_017568.1 780 0.003 0.946 -0.944 -0.000*
Donor Streptococcus pasteurianus ATCC 43144 NC_015600.1 397 0.001 0.828 -0.827 -0.000*
Donor Staphylococcus epidermidis RP62A NC_002976.3 6553 0.019 0.804 -0.785 -0.001
Donor gallolyticus UCN34 NC_013798.1 453 0.001 0.752 -0.751 -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 1295 0.005 0.516 -0.511 -0.000*
Donor Staphylococcus lugdunensis HKU09-01 NC_013893.1 494 0.003 0.356 -0.353 -0.000*
Acceptor-like Donor Staphylococcus aureus subsp. aureus NZ_AP014652.1 17647 0.096 0.085 0.011 0.000*
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Table A.29. Results for ERR159680 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organi Acceptor Donor —— Read Evidence Evidence Filter

Acceptor Donor Start End  Coverage Start End  Coverage Split  Spanning  Within A-Cov D-Cov  Spanning Within
NZ.CP009554.1  NC_002976.3 34120 34123 12.67 2536574 2584194 38.98 30 19 5752 6 100 98 100
NZ.CP009554.1  NC.002976.3 859613 866305  63.76 1398260 1404973 0.3 27 4 5 100 98 100 98
NZ_CP009554.1  NC_013893.1 2130925 2133716 7.9 2343346 5.05 17 1 10 3 100 100 100
NZ_CP009554.1  NC_013893.1 2131388 2133716 4.04 2343670 6.23 16 1 10 0 100 100 100
NC.0020522  NC_002976.3 906791 906792 120 1308250 1404972 0.3 18 4 5 1 94 100 97
NZ_CP009554.1 NZ_APO014652.1 414814 417301 469 438237 438358 11.31 4 2 5 96 99 100 99
NZ_CP009554.1 NZ_AP014652.1 2110903 16.67 2007772 2020977 17.83 6 4 762 0 98 99 98
NZ_CP009554.1 NZ_AP014f 1 2110903 11.83 2007772 2029781 21.15 3 4 1493 0 100 97 100
NZ_CP009554.1 NZ_AP014652.1 2110903 2134197 10.62 2007772 2030266 20.77 25 3 1493 0 99 99 99
NZ_CP009554.1 NZ_AP014652.1 2123963 2131021 1.86 2020976 2029466 27.01 5 1 729 0 98 100 98
NZ.CP009554.1 NZ_APO14652.1 2123963 2131317 3.23 2020976 2029781  26.14 7 2 731 1 98 100 98
NZ_CP009554.1 NZ_AP014652.1 2123963 2134197 291 2020976 2030266 24.94 51 1 731 0 100 99 100
NZ.CP009554.1  NZ_AP014652.1 2125253 2131317 1.84 2022297 2029781  30.59 3 3 731 0 98 100 98
NZ_CP009554.1  NZ_APO014652.1 2125253 2134197 1.92 2022207 2030266  28.92 25 2 731 0 99 100 99
NZ_CP009554.1 NZ_APO014652.1 2131020 2134197 5.4 2020465 2030266 2.97 25 1 2 2 97 100 97
NZ_CP009554.1 NZ_APO014652.1 2131316 2134197 2.09 2020780 2030266 3.19 19 6 2 1 97 100 96
NC.0020522  NC_013893.1 413772 417366 53.37 2079996 2083590  0.78 5 4 2 100 99 100 100

Table A.30. Acceptor and donor candidates for ERR103400 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*
represents absolute values < 0.0004.

Candidate ————— MicrobeGPS metrics ———— —— DaisyGPS metrics —
Type Name Accession. Version Number Reads Validity —Heterogeneity Property Property Score
Acceptor Staphylococcus aureus subsp. aureus HO 5096 0412 NC_017763.1 484936 0.835 0.037 0.798 0.041
Acceptor Staphylococcus aureus subsp. aureus NZ-CP007659.1 489699 0.832 0.048 0.784 0.041
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 3222 0.006 0.799 -0.792 -0.000*
Donor Staphylococcus pseudintermedius ED99 NC_017568.1 1398 0.002 0.701 -0.699 -0.000*
Donor Staphylococcus warneri SG1 NC_020164.1 583 0.003 0.695 -0.692 -0.000*
Donor Staphylococes lermidis ATCC 12228 NC_004461.1 3245 0.005 0.483 -0.479 -0.000*
Donor Staphylococcus s HKU09-01 NC_013893.1 69 0.005 0.342 -0.337 -0.000*
Donor Staphylococcus aureus subsp. aureus NZ-CP009554.1 132861 0.21 0.254 -0.044 -0.001

Acceptor-like Donor Staphylococcus aureus subsp. aureus T0131 NC_017347.1 50347 0.104 0.103 0.001 0.000*
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Table A.31. Results for ERR103400 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

—————— Organism Acceptor Donor —— Read Evidence Evidence Filter
Acceptor Donor Start End  Coverage Start End Coverage Split  Spanning  Within A-Cov D-Cov Spanning Within
NZ_CP007659.1 NC.017347.1 36952 63749 105.32 2780055 2782476 52.24 24 43 358 92 99 100 99
NC_017763.1 NC_007168.1 44772 58518 112.86 67396 74115 52.21 29 1 1039 96 98 100 98
NC.017763.1 NC_007168.1 44772 58518 112.86 67396 74141 52.36 9 1 1045 94 99 100 99
NC.017763.1 NC_007168.1 44772 58661 113.09 67396 73961 51.35 9 1 1007 94 99 100 100
NC_017763.1 NC_007168.1 44772 58729 113.16 67396 73859 51.65 49 1 991 94 99 100 100
NC.017763.1 NC_007168.1 44772 58751 113.17 67396 73849 51.68 9 1 991 97 100 100 100
NC_017763.1 NC_007168.1 44772 63969 109.85 67396 68656 13.93 9 1 31 96 99 100 99
NC_017763.1 NC_007168.1 45010 58518 113 67122 74115 50.25 41 1 1040 96 99 100 99
NC_017763.1 NC_007168.1 45010 58518 113 67122 74141 50.39 13 1 1046 97 100 100 100
NC_017763.1 NC_007168.1 45010 58661 113.84 67122 73961 49.37 111 1 1008 96 99 100 100
NC.017763.1 NC_007168.1 45010 58729 113.91 67122 73859 49.63 69 1 992 95 99 100 100
NC_017763.1 NC_007168.1 45010 58751 113.91 67122 73849 49.66 13 1 992 97 100 100 100
NC_017763.1 NC_007168.1 45010 63969 110.35 67122 68656 11.81 13 1 32 92 99 100 99
NC.017763.1 NC_007168.1 45149 45440 66689 67061 16.42 94 4 5 95 100 100 100
NC_017763.1 NC_007168.1 45149 58518 67061 74115 49.88 22 1 1040 97 99 100 99
NC.017763.1 NC_007168.1 45149 58518 67061 74141 50.02 10 1 1046 98 100 100 100
NC_017763.1 NC_007168.1 45149 58661 67061 73961 49.0 52 1 1008 97 99 100 99
NC_017763.1 NC_007168.1 45149 58729 67061 73859 49.25 34 1 992 93 98 99 99
NC.017763.1 NC_007168.1 58751 67061 73849 49.29 10 1 992 98 100 100 100
NC_017763.1 NC_007168.1 63969 67061 68656 11.64 10 1 32 91 99 100 99
NC.017763.1 NC_007168.1 58518 66688 74115 48.2 27 8 1045 94 99 99 100
NC_017763.1 NC_007168.1 58518 66688 74141 48.35 7 8 1051 95 100 100 100
NC_017763.1 NC_007168.1 45439 58661 66688 73961 47.34 7 8 1013 97 100 99 100
NC.017763.1 NC_007168.1 45439 58729 66688 73859 47.55 47 8 997 97 99 100 99
NC_017763.1 NC_007168.1 4 58751 66688 73849 47.58 7 8 997 97 96 100 96
NC.017763.1 NC_007168.1 63969 66688 68656 12.57 7 8 37 94 100 100 100
NZ_CP007659.1 NC_004461.1 34165 95612 110079 29.54 150 87 1321 0 100 97 100
NZ_CP007659.1 NC_004461.1 36402 70358 110079 10.93 27 76 1321 95 100 99 100
NZ_CP007659.1 NC_004461.1 36402 70358 95611 0.28 24 42 3 94 98 100 97
NZ_CP007659.1 NC_004461.1 44952 44985 37902 55503 0.48 4 2 6 5 94 99 94
NC_017763.1 NZ_CP009554.1 80759 82440 679.04 690422 696668 404.85 5 179 7590 100 100 100 100
NC.017763.1 NZ_CP009554.1 82439 82964 358.88 690421 696666 405.02 3 22 7591 99 100 99 100
NC_017763.1 NC_004461.1 34159 34164 33.4 95612 110079 29.54 150 87 1321 3 100 100 100
NC.017763.1 NC_004461.1 34159 36401 120.83 70358 110079 10.93 27 76 1321 95 100 98 100
NC_017763.1 NC_004461.1 34163 36401 120.99 70358 95611 0.28 24 42 3 95 99 99 95
NC.017763.1 NC_004461.1 44951 44984 50.7 37902 55503 0.48 4 2 6 5 96 100 92
NZ_CP007659.1 NC_007168.1 44773 58519 112.86 67396 74115 52.21 29 1 1039 96 99 98 100
NZ_CP007659.1 NC_007168.1 44773 58519 112.86 67396 74141 52.36 9 1 1045 97 99 100 99
NZ_CP007659.1 NC_007168.1 44773 58662 113.09 67396 73961 51.35 9 1 1007 97 100 100 100
NZ_CP007659.1 NC_007168.1 44773 58730 113.16 67396 73859 51.65 49 1 991 97 100 100 100
NZ_CP007659.1 NC_007168.1 44773 58752 113.17 67396 73849 51.68 9 1 991 98 100 100 100
NZ_CP007659.1 NC_007168.1 44773 63970 109.85 67396 68656 13.93 9 1 31 92 100 100 100
NZ_CP007659.1 NC_007168.1 45011 58519 113.61 67122 74115 50.25 41 1 1040 95 99 99 100
NZ_CP007659.1 NC_007168.1 45011 58519 113.61 67122 74141 50.39 13 1 1046 96 99 99 100
NZ_CP007659.1 NC_007168.1 45011 58662 113.84 67122 73961 49.37 111 1 1008 96 100 100 100
NZ_CP007659.1 NC_007168.1 45011 58730 113.91 67122 73859 49.63 69 1 992 90 99 100 99
NZ_CP007659.1 NC_007168.1 45011 58752 67122 73849 49.66 13 1 992 98 100 100 100
NZ_CP007659.1 NC_007168.1 45011 63970 67122 68656 11.81 13 1 32 98 97 100 99
NZ_CP007659.1 NC_007168.1 45150 45441 66689 67061 16.42 94 4 5 93 100 100 100
NZ_CP007659.1 NC_007168.1 45150 58519 67061 74115 49.88 22 1 1040 96 100 100 100
NZ_CP007659.1 NC_007168.1 45150 58519 67061 74141 50.02 10 1 1046 96 100 100 100
NZ_CP007659.1 NC_007168.1 45150 58662 67061 73961 49.0 52 1 1008 95 100 99 100
NZ_CP007659.1 NC_007168.1 45150 58730 67061 73859 49.25 34 1 992 99 99 100 99
NZ_CP007659.1 NC_007168.1 45150 58752 67061 73849 49.29 10 1 992 96 98 100 99
NZ_CP007659.1 NC_007168.1 45150 63970 67061 68656 11.64 10 1 32 91 100 100 100
NZ_CP007659.1 NC_007168.1 45440 58519 66688 74115 48.2 27 8 1045 98 100 100 100
NZ_CP007659.1 NC_007168.1 45440 58519 66688 74141 48.35 7 8 1051 96 100 100 99
NZ_CP007659.1 NC_007168.1 45440 58662 66688 47.34 7 8 1013 99 100 100 100
NZ_CP007659.1 NC_007168.1 45440 58730 114.07 66688 47.55 47 8 997 96 100 100 100
NZ_CP007659.1 NC_007168.1 45440 58752 114.07 66688 47.58 7 8 997 94 100 100 100
NZ_CP007659.1 NC_007168.1 45440 63970 110.38 66688 12.57 7 8 37 98 100 100 100
NC.017763.1 NC_017568.1 409726 409769 39.98 2481629 2485653 7.69 41 4 51 1 100 100 100
NC_017763.1 NC_017568.1 409747 409769 42.36 2481607 2485653 7.78 30 4 51 2 100 100 99
NZ_CP007659.1 NZ_CP009554.1 80760 82441 678.48 690422 696668 404.87 5 179 7590 100 100 100 100

Table A.32. Acceptor and donor candidates for ERR103402 run with yara, species filter and no samflag
filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000*

represents absolute values < 0.0004.
Candidate MicrobeGPS metrics —— DaisyGPS metrics —

Type Name Accession. Version Number Reads Validity —Heterogeneity Property Property Score

Acceptor Staphylococcus aureus subsp. aureus NZ-CP007659.1 169032 0.804 0.05 0.754 0.04

Acceptor Staphylococcus aureus subsp. aureus HO 5096 0412 NC_017763.1 167480 0.806 0.052 0.754 0.039
Donor Staphylococcus warneri SG1 NC_020164.1 231 0.003 0.69 -0.697 -0.000*
Donor Staphylococcus pseudintermedius ED99 NC_017568.1 1176 0.002 0.657 -0.655 -0.000*
Donor Staphylococcus epidermidis RP62A NC_002976.3 786 0.003 0.578 -0.575 -0.000*
Donor Staphylococcus lugdunensis HKU09-01 NC.013893.1 676 0.001 0.357 -0.000*
Donor Staphylococcus haemolyticus JCSC1435 NC_007168.1 1123 0.003 0.351 -0.348 -0.000*
Donor Staphylococcus aureus subsp. aureus str. JKD6008 NC.017341.1 18272 0.097 0.19 -0.103 -0.001

Acceptor-like Donor Staphylococcus aureus subsp. aureus NZ_CP009423.1 17888 0.096 0.085 0.011 0.000*
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Table A.33. Results for ERR103402 run with yara, gustaf, species filter and no samflag filter. Sampling
sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism Acceptor Donor —— Read Evidence ————— Evidence Filter
Acceptor Donor Start End Coverage Start End Coverage Split  Spanning ~ Within A-Cov D-Cov  Spanning Within
NZ_CP007659.1 NC_020164.1 2038921 2038922 83.0 121511 123832 2.22 48 24 12 100 100 100 100
NC_017763.1 NC_020164.1 2024903 2024904 83.0 121511 123832 2.22 52 24 12 99 100 99 100
NZ_CP007659.1 NC_0. 1.1 2036785 2038062 62.16 2760130 2761402 6 48 540 99 100 100 100
NZ_CP007659.1 NC_013893.1 2036709 2038062 66.05 1722127 1723472 10 10 2 100 100 100 100
NZ_CP007659.1 NC_013893.1 2036785 2038063 62.02 949399 950670 9 1 3 99 100 100 100
NZ_CP007659.1 NC_013893.1 2036785 2038062 62.03 1722127 1723395 18 51 2 100 100 100 100
NC_017763.1 NC_013893.1 2022691 2024044 66.05 1722127 1723472 10 10 2 100 100 100 100
NC.017763.1 NC_013893.1 2022767 20240: 62.02 949399 950670 9 1 3 99 100 100 100
NC_017763.1 NC_013893.1 2022767 2024044 62.03 1722127 1723395 18 51 2 100 100 100 100
NC.017763.1 NC.017341.1 2022767 2024044 62.16 2760130 2761402 6 48 540 99 100 100 100
NC_017763.1 NC_007168.1 2022767 2024044 62.16 1828214 1829486 10 48 540 99 100 100 100
NZ_CP007659.1 NC_007168.1 2036785 2038062 62.16 1828214 1829486 10 48 540 100 100 100 100
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Experimental details DivIVA dataset

The HGT organism in this dataset is Bacillus subtilis BSN238, a transgenic organism
which is a chimera of B. subtilis 168 where the DivIVA protein has been replaced with
the DivIVA from Listeria monocytogenes strain EGD-e (van Baarle et al., 2012). The
Listeria DivIVA protein is located on the complement strand at positions 2’100°224-
2’100°751 (NC_003210.1). Bacterial cultivation, protein extraction and proteomic
sample measurements were performed in house.

Isolation of cellular proteins

B. subtilis strain BSN238 (AdivIVA::tet amyE::Pxyl-divIVALmo spc) was cultivated
in LB broth containing 0.5% xylose at 37°C and harvested by centrifugation at
an optical density (A=600nm) of 1.0. Cells were washed with ZAP buffer (10 mM
Tris/HCI pH 7.5 and 200 mM NaCl), resuspended in 1 ml ZAP buffer also containing
1mM phenylmethylsulfonyl fluoride and disrupted by sonication. Cell debris was
removed by centrifugation (1 min, 13000 rpm in a table top centrifuge). The resulting
supernatant was used as total cellular protein extract.

nLC-MS/MS

Proteins were precipitated at —20°C for 24 h using four volumes of acetone. Pel-
lets were resuspended in 1M Urea, 50 mM Tris-HCI (pH 8.5) and digested for 18 h
at 37°C using Trypsin Gold, Mass Spectrometry Grade (Promega, Fitchburg, WI,
USA) at a protein/enzyme ratio of 50:1. The peptides were desalted using 200 pL
StageTips packed with four Empore™ SPE Disks C18 (3 M Purification, Inc., Lex-
ington, USA) (Ishihama et al., 2006) and were further quantified by measuring
the absorbance at 280 nm using a Nanodrop 1000 (Thermo Fisher Scientific, Rock-
ford, IL, USA). Proteome analysis was performed on an Easy-nanoL.C (Proxeon,
Odense, Denmark) coupled online to an LTQ Orbitrap Discovery™ mass spec-
trometer (Thermo Fisher Scientific, Rockford, IL, USA). 1 ug peptides were loaded
directly on a Reprosil-Pur 120 C18-AQ, 2.4 ym, 300mm x 75 um fused silica cap-
illary column (Dr. Maisch, Ammerbuch-Entringen, Germany), which was kept at
60 °C using a butterfly heater (Phoenix S&T, Chester, PA, USA). Peptides were
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separated using a linear 240 min gradient of acetonitrile in 0.1% formic acid and 3%
DMSO from 0 to 29% at 200nL/min flow rate. The mass spectrometer was oper-
ated in a data-dependent manner in the m/z range of 400-1400 with a resolution of
30000 in the orbitrap. Up to the seven most intense 2+ and 3+ charged ions were
selected for low-energy CID type fragmentation in the ion trap with a normalized
collision energy of 35% using an activation time of 10ms. The m/z isolation width
for MS/MS fragmentation was set to 2Th. Once fragmented, up to 500 isolated
peaks were dynamically excluded from precursor selection for 90s within a 20 ppm
window. The ion selection threshold for MS/MS spectra was 1000 counts, and the
maximum allowed ion accumulation times were 500 ms for full scans and 100 ms for
MS/MS spectra. Automatic gain control was set to a target value of le6 for full
scans and 5e3 for MS/MS.
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Zusammenfassung

Strukturvariationen (SVs) haben eine immense Bedeutung im Genom sémtlicher
Spezies. Sie sind das Ergebnis fundamentaler Rekonstruktionsmechanismen und ver-
leihen gleichzeitig Bakterien die Fahigkeit, sich an ihre Umgebung anzupassen. In
Bakterien gibt es zudem das Phénomen des horizontalen Gentransfers (HGT), bei
dem Gene iiber Speziesgrenzen hinweg von einem Donor-Individuum zu einem an-
deren Akzeptor iibertragen werden. Die Integration eines neuen Gens kann auf ge-
nomischer Ebene untersucht werden. Die Aktivitdt und Expression hingegen lisst
sich nur auf Proteinebene bestimmen.

In dieser Doktorarbeit werden bioinformatische Methoden zur Detektion von kom-
plexen SVs unterschiedlichen Typs und Grofle anhand von Next- generation Se-
quencing Daten und proteomischen Massenspektrometriedaten mit einem Fokus auf
HGT-Events vorgestellt. Bei einem HGT-Event muss zunéchst bestimmt werden,
zwischen welchen Organismen der Transfer stattgefunden hat und welche Gene aus
dem Donor an welcher Stelle im Akzeptor eingefiigt wurden. Anschlielend kann man
untersuchen, ob das transferierte potentielle Protein auch funktionell ist.

Als erstes wird das SV-Detektionstool Gustaf vorgestellt, welches eine bessere
Auflésung bezogen auf Grofle und Typ von SVs im Vergleich zu vorherigen Me-
thoden ermoglicht. Einen besonderen Vorteil bietet Gustaf in der Charakterisierung
von komplexen Translokationen und Duplikationen als Kombination von simpleren,
im Genom voneinander entfernten Varianten. Mit dieser generischen Methode als
Basis wurden zwei mapping-basierte Methoden, Daisy und DaisyGPS, zur HGT-
Detektion entwickelt. Daisy verwendet Gustaf und weitere SV-Detektionsstrategien
um die transferierte Region im Donorgenom und ihre Insertionsstelle im Akzep-
torgenom prézise zu bestimmen. DaisyGPS verwendet etablierte Strategien fiir die
metagenomische Bestimmung von Mikroorganismen in einer Probe, um eine passen-
de Akzeptor- und Donorreferenz zu identifizieren. Daisy und DaisyGPS basieren auf
Sequenzvergleichen und heben sich damit von den bisher existierenden Methoden
ab, welche HGTs anhand von Sequenzkompositionsmustern und phylogenetischen
Inkonsistenzen bestimmen. Im letzten Projekt wird die proteomische Methode Hor-
tense vorgestellt. Hortense erweitert die Standarddatenbanksuche von Spektren um
eine umfassende Kreuzvalidierung, um definierte Eigenschaften eines HGT-Proteins
sicher zu stellen. Alle drei Methoden zur HGT-Detektion ermdoglichen eine ganzheit-
liche Analyse von HGT-Events, welche vorher oder nur mit einer einzelnen der drei
Methoden nicht moglich wére.

157






Eigenstandigkeitserklarung

Ich versichere, dass ich die hier vorgelegte Dissertation selbststdndig angefertigt habe
und die benutzten Quellen und Hilfsmittel vollstdndig angegeben sind.

Ein Promotionsverfahren wurde zu keinem fritheren Zeitpunkt an einer anderen
in- oder ausldndischen Hochschule oder bei einem anderen Fachbereich beantragt.
Die Bestimmungen der Promotionsordnung sind mir bekannt.

Kathrin Trappe, Berlin, 27.08.2018

159



	Introduction
	Integrating omics - From genomics to proteomics
	Technologies and computational methods for genomic and proteomic research
	Structural variations in the human genome
	Horizontal gene transfer in bacteria - variants across species boundaries
	Terminology
	Open research questions
	Thesis outline
	Further contributions

	Detecting complex structural variants with Gustaf
	Determining breakpoints and shortest paths in a breakpoint graph
	Inference of complex variants
	Experimental setup
	Results and discussion of Gustaf

	Mapping-based horizontal gene transfer detection with Daisy
	Determining and sampling HGT regions with Daisy
	Experimental setup
	Results
	Discussion of results from Daisy

	HGT acceptor and donor identification with DaisyGPS
	Identifying acceptor and donor candidate identification with DaisyGPS
	Experimental setup
	Results
	Discussion of results from DaisyGPS

	Horizontal gene transfer detection from MS/MS data with Hortense
	Identifying unique donor proteins as HGT proteins
	Experimental setup
	Results
	Discussion of results from Hortense

	Summary and further discussion
	Summary of contributions
	Recent developments, challenges and future research

	Appendix - DaisySuite
	Appendix - Hortense
	Bibliography

