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Abstract

Vortices play a crucial role in atmospheric dynamics across all scales. An-
ticyclonic and cyclonic rotating vortices, also known as high-and low pres-
sure systems, determine our weather on the larger, synoptic scale. Such
larger-scale vortices have horizontal radii of about 1000 km and their ver-
tical extend is much smaller. Therefore, their motion can be described by
quasi-two-dimensional fluid dynamics. Rotating supercells are examples
of vortices on smaller scale that occur and influence our weather more lo-
cally. The radius of a supercell is about 10 km. Therefore, the horizontal and
vertical length scales have about the same order of magnitude and three-
dimensional fluid dynamical models are used to describe vortex motions
on the smaller, convective scale.

In order to gain a comprised description of vortices on different scales,
this thesis concerns the Nambu representation for two- and three-dimen-
sional vortex dynamics. Nambu mechanics can be seen as a generaliza-
tion of Hamilton’s formulation. The equations of motion are represented
in terms of two constitutive conserved quantity: the energy and a vortex-
related conserved quantity. In the first part of this thesis, we will show how
this concept allows for a novel, geometric classification of planar point vor-
tex motions. Furthermore, we will use the idealized point vortex model to
explain atmospheric blockings.

Regarding further conserved quantities, the Nambu representation of
the Helmholtz vorticity equation provides an algebraic structure for incom-
pressible, inviscid fluids. We will explore this algebraic approach in the
second part of this thesis. First, we will introduce a novel matrix represen-
tations for the Lie algebra for two- and three-dimensional vortex dynamics.
From these Lie algebra representations we will derive novel Lie group rep-
resentations for two- and three-dimensional vortex flows. This approach
can be seen as a structural integration of the vorticity equation, because
the vortex group is directly derived from the Helmholtz vorticity equation.
Now, we can regard incompressible, inviscid vortex dynamics from a dif-
ferent perspective leading to a better understanding of various problems.

As an example for the applicability of the here derived algebraic ap-
proach, we will show how splitting storms can be explained by analyz-
ing helicity density fields with respect to their sign structure. Moreover,
the explanation of splitting storms and the associated breakup of vortices
might lead to a better understanding of turbulent structures. Finally, we
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will show how the vortex algebra allows for the investigation of shortest
paths of point vortices. Such vortex geodesics can be compared to special
point vortex constellations that we will have discussed in the first part of
the thesis. We will also outline a concept for the derivation of 3D vortex
geodesics.

In summary, this thesis will concern algebraic and geometric studies of
fluid dynamics combining the different disciplines of mathematics, physics
and meteorology. In this way, based on Nambu mechanics, we will investi-
gate new perspectives on fluid dynamics and show several applications to
atmospheric dynamics.
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Zusammenfassung

Auf allen Skalen in unserer Atmosphäre haben Wirbel einen Einfluss auf
unser Wettersystem. Auf den größeren Skalen bestimmen die Antizyklo-
nen und Zyklonen, welche auch unter dem Namen Hoch- und Tiefdruckge-
biet bekannt sind, unser Wetter in den mittleren Breiten. Sie entscheiden, ob
es stürmisch, sonnig oder regnerisch ist. Weil die horizontalen Radii solch
großskaliger, synoptischer Wirbel ca. 1000 km misst, kann deren Dynamik
mathematisch mit dem Gleichungssystem der quasi-zweidimensionalen Hy-
drodynamik ausgedrückt werden. Superzellen hingegen sind Beispiele von
Wirbeln auf kleinerer Skala, die unser Wetter lokal beeinflussen. Die hor-
izontale Ausdehnung einer Superzelle beträgt ca. 10 km. Somit haben
die horizontalen und vertikalen Skalen solcher kleiner skaligen Wirbel die
gleiche Größenordnung und es müssen dreidimensionale Modelle verwen-
det werden, um die Dynamik von Wirbeln auf der kleineren, konvektiven
Skala bestmöglichst zu erfassen.

Um Wirbel auf den verschiedenen Skalen zu beschreiben, werden wir in
dieser Arbeit die Nambu-Darstellungen der zwei-und dreidimensionalen
Wirbeldynamik betrachten. Nambu-Mechanik kann als Verallgemeinerung
der Hamilton’schen Sichtweise aufgefasst werden, wobei als konstituieren-
de Größen neben der Energie auch Wirbelerhaltungsgrößen fungieren. Im
ersten Teil der Arbeit werden wir zeigen, wie die zusätzliche Wirbelerhal-
tunsgröße in der diskreten Nambu-Darstellung eine neue, geometrische
Klassifikation von Punktwirbelbewegungen ermöglicht. Zudem werden
wir das idealisierte Konzept der Punktwirbel auf Hoch-und Tiefdruckgebi-
ete übertragen und blockierende Wetterlagen erklären.

Im zweiten Teil dieser Arbeit werden wir die kontinuierliche Nambu-
Mechanik und die daraus abgeleitete algebraische Struktur der Wirbeldy-
namik erörtern und auf sich teilende Superzellen anwenden. Aus der Helm-
holtz’schen Wirbelgleichung kann eine Nambu-Klammer abgeleitet wer-
den, die eine Lie algebra erzeugt. Wir werden eine Matrixdarstellung der
Lie Algebra einführen und daraus verschiedene Gruppendarstellungen für
zwei- und dreidimensionale Wirbelbewegungen ableiten. Dies ermöglicht
eine neue, algebraische Sichtweise, mit der die Mechanismen verschiedener
atmosphärische Prozesse neu verstanden werden können. Als Beispiel wer-
den wir den Zerfall von Superzellen mithilfe der neuen Gruppe für inkom-
pressible, dreidimensionale Wirbeldynamik erklären. Hierbei werden wir
Helizitätsfelder hinsichtlich deren Vorzeichenstrukturen analysieren und
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aus den verschiedenen Vorzeichen der Helizität Rückschlüsse auf den Zer-
fallsmechanismus von Wirbeln ziehen. Damit könnte der algebraische An-
satz auch für ein besseres Verständnis in Bereichen der Turbulenztheorie
herangezogen werden.

Im letzten Kapitel erläutern wir, wie die im Rahmen dieser Arbeit herge-
leitete Gruppe angewendet werden kann, um Wirbelgeodedäten abzuleiten.
Dabei werden wir zeigen, dass in zwei Dimensionen die Geodäten mit aus-
gezeichneten Punktwirbelsystemen verbunden sind, die wir bereits im er-
sten Teil dieser Arbeit diskutiert haben werden.

Zusammengefasst betrachten wir in dieser Arbeit sowohl algebraische
als auch geometrische Aspekte der Wirbeldynamik, die durch Anwendung
der Nambu-Mechanik sichtbar werden. Dabei versuchen wir mithilfe math-
ematischer Konzepte physikalische Mechanismen atmosphärischer
Phänomene zu erklären.
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Chapter 1

INTRODUCTION

Vortices play a crucial role in atmospheric dynamics across all scales. Larger-
scale anticyclonic and cyclonic rotating vortices, also known as high- and
low pressure systems, determine our weather in the midlatitudes – if it is
stormy, sunny or rainy. Sometimes these vortices are arranged such that
they form persistent blocked weather situations causing droughts or floods
that last for several days or even for weeks. On this larger, so-called syn-
optic scale the typical horizontal length scale of vortices is about 500-1000
kilometers, whereas the vertical extend only yields a few kilometers. For
synoptic processes, the horizontal wind speed is much larger than vertically
such that for larger scale weather simulations the equations of motions are
mainly determined by horizontal dynamics.

Rotating supercells are examples of vortices on smaller scale that occur
and influence our weather locally in the midlatitudes. Here, the vertical
height of the vortices has about the same length scale as their horizontal ex-
tension, and the vertical motion plays a crucial role for 3D vortex dynamics.
Therefore, for smaller scales, three-dimensional models are usually consid-
ered to describe small-scale vortex motions. Thus, two-dimensional as well
as three-dimensional vortex dynamics are essential to describe and simu-
late the different processes in our atmosphere (see, e.g., Kuo, 1949; Gage,
1979; Boer and Shepherd, 1983; Pedlosky, 2013; Müller et al., 2018). The
aspect of different equations of motions on different scales plays an impor-
tant role in recent research. Klein (2010) introduced a multiscale asymptotic
approach for a transition between the equations of motions for different
scales.

In this thesis we will consider Nambu mechanics to discuss atmospheric
vortex motions across the different scales. Nambu (1973) introduced a for-

1
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mulation for the Euler equation for a rigid rotator for classical mechannics.
Roughly speaking, the equations of motions are expressed by the consti-
tutive quantities. In his example, Nambu (1973) formulated the equations
of motion with respect to the energy and the squared angular momentum.
Névir and Blender (1993) adapted this concept to introduce a Nambu rep-
resentation for vortex motions in terms of the fluid dynamical constitutive
quantities. The Nambu formulation for fluids was also regarded by e.g.
Takhtajan (1994), Guha (2001), Guha (2004), Bihlo (2008), Salazar and Kur-
gansky (2010), Sommer et al. (2011), Blender and Lucarini (2013), or Blender
and Badin (2015).

What are the advantages of formulating the fluid dynamical equations
in terms of the Nambu representation? To give one answer, we will regard
the different perspectives of the descriptions. We can describe fluids from
the Lagrangian as well as from the Eulerian perspective. The first analysis
of fluid dynamics were based on the Lagrangian representation providing
a canonical Hamilton structure similar to classical mass point dynamics.
The first approach to represent fluids from the field perspective is based on
the Clebsch representation in the Eulerian reference frame (Clebsch, 1859;
Bateman, 1929). This leads to a representation of the Eulerian field equa-
tions, where the Lagrangian conservation of the particles are shifted to the
constrains. The Clebsch representation is endowed with a canonical Hamil-
tonian structure. A formulation of vortex dynamics that is based on the Lie-
Poisson bracket and the corresponding non-canonical structure was intro-
duced by Arnold (1966) and further studied by e.g. Salmon (1982), Marsden
and Weinstein (1983), Arnold and Khesin (1992), Holm et al. (1998), or Shep-
herd (1990); The non-canonical Hamilton structure provides a Lagrangian
formulation for the Euler equation of incompressible fluids. Some authors
also consider the Helmholtz vorticity equation, where the vorticity (and not
the energy) acts as a dynamical variable. But so far, all representations for
fluid flows are endowed with an Hamiltonian structure.

Névir and Blender (1993) showed that the Helmholtz vorticity equation
can also be formulated in terms of Nambu mechanics, which can be seen
as a generalization of Hamiltonian dynamics. They introduced a Nambu-
field-representation for vortex dynamics that – compared to the Hamilto-
nian view – is based on more than one conserved quantities: The energy
and a vortex related quantity! Five years later, Névir (1998) showed how
the primitive equations can be represented in terms of the Nambu formu-
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lation and the corresponding conserved quantities. The Lagrangian as well
as the Eulerian reference frame provide advantages. The Lagrangian view
is useful for theoretical investigations, because it has a more simple, canon-
ical structure. However, the Eulerian perspective allows for better practical
investigation, since it requires less computer efforts.

In this thesis, we will regard the Nambu formulation for vortex dynam-
ics introduced by Névir and Blender (1993). Compared to the Hamilto-
nian formulation, the Nambu representation is directly based on the vortic-
ity equation and expressed in terms of vortex-related conserved quantities.
Therefore, we think that the Nambu formulation allows for a more direct
analysis of vortex motions compared to the classical description of fluids
that are based on Hamiltonian structures.

We will explore atmospheric phenomena regarding the discrete as well
as the continuous Nambu formulation for hydrodynamical systems. Both
descriptions of atmospheric dynamics exhibit benefits compared to the di-
rect analysis of the classical equations of motion. The discrete Nambu for-
mulation allows for a geometric view on vortex dynamics such as the classi-
fication of planar point vortex motions. Continuous Nambu mechanics al-
lows for algebraic studies of hydrodynamical systems such that a Lie group
and a Lie algebra for 2D and 3D vortex dynamics can be found. Using this
algebraic approach, we will search for an explanation of vortex splits and
derive vortex geodesics, i.e. shortest paths of vortex motions. To inves-
tigate both formulations and their atmospheric applications this thesis is
structured into two parts as sketched in fig. 1.1.

First, we will examine discrete Nambu mechanics and the idealized
point vortex model; in the second part we will use continuous Nambu
mechanics to analyze vortex dynamics from an algebraic point of view.
Nambu mechanics can be seen as a generalization of Hamilton’s descrip-
tion. But in contrast to Hamilton mechanics, Nambu’s formulation is based
on more than one conserved quantity. This allows for an illustrative ge-
ometric study: each three-dimensional phase space trajectory can be rep-
resented as intersection of two surfaces, where the two surfaces are given
by two conserved quantities. After an introduction to discrete Nambu me-
chanics in chapter 2, in chapter 3 we will apply discrete Nambu mechan-
ics in a three-dimensional state space to two dimensional vortex dynamics.
We will follow Müller and Névir (2014) and show how the application of
Nambu mechanics leads to a geometric approach to classify the motions
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Figure 1.1: Thesis structure: In the first part of this thesis we will consider discrete
vortex dynamics and in the second part we will explore vortex dynamics from an
algebraic point of view.

of three point vortex systems. A geometric approach was introduced by
Synge (1949), and further analyzed by e.g. Blackmore et al. (2007) or Aref
(2009) considering a different phase space. Point vortices are an idealized,
discrete model for planar vortex motions, where the equations of motion
only depend on the local coordinates and the circulations. The latter quan-
tity is a global measure of the strength of vortex rotations.

In chapter 4 we will see that the order of magnitudes of the circulations
and the relative distances of the theoretical, idealized point vortex model
coincide with our calculations of the circulations and distances of atmo-
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spheric vortices on synoptic scale. This motivates us to apply point vortex
theory to high- and low pressure areas. We will show, how point vortex the-
ory can be used to explain atmospheric blockings. This concept is published
in Müller et al. (2015). Usually, persistent weather situations are explained
by continuous Rossby waves. Therefore, point vortex theory can be seen
as a complementary discrete approach to explain atmospheric blockings.
Thereby, we will apply our concept to two case studies, where we compare
the wind velocity from reanalysis data sets with the theoretical point vortex
velocity. These case studies are currently statistically corroborated by Hirt
et al. (2018), where we analyzed more than 300 blockings.

While in part I we will consider a discrete model of atmospheric dynam-
ics, in part II, we will regard continuous Nambu mechanics and explore
vortex dynamics from an algebraic point of view. The steps are sketched
in fig. 1.1. In part II, we will start with a short summary of the basic def-
initions and properties of Lie groups and the corresponding Lie algebras
in chapter 6. In chapter 7 we will give an overview on the continuous
Nambu representation for 2D and 2D incompressible vortex flows. The
Nambu formulation for the Helmholtz vorticity equation was introduced
by Névir and Blender (1993). The key difference to the Hamiltonian repre-
sentation are the constitutive conserved quantities that determine the dy-
namics. Regarding Nambu mechanics vortex dynamics is determined by
the energy and vortex-related constitutive quantities. Previous works on
algebraic fluid dynamics explored Hamiltonian structures that are mainly
based on the kinetic energy. The Nambu formulation for two-dimensional
inviscid, incompressible fluids is based on the kinetic energy and the en-
strophy. And in three dimensions, the constitutive conserved quantities
that determine the dynamics of vortex flows are the kinetic energy and the
helicity.

The Nambu bracket for hydrodynamic systems generates a Lie algebra
for vortex dynamics. In chapter 8 we will introduce matrix representations
for the vortex Lie algebra for two- as well as for three-dimensional vortex
flows. Moreover, starting from this matrix representation we will derive
different group representations for two- and three-dimensional vortex dy-
namics. The Vortex-Heisenberg group operation itself was communicated
with Névir in private communication with Schober in 2010. In this thesis,
we will derive the Vortex-Heisenberg group and introduce a novel matrix
representation of the group and the algebraic structure for two- and three-
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dimensional vortex flows. A group is a set of elements, and these elements
can be combined by a corresponding group operation. We will regard at-
mospheric states as group elements and interpret the mathematical group
operation as their interaction. We will further apply group theory to in-
vestigate splitting storms in chapter 9. In this way, we will show how the
algebraic formulation of incompressible, inviscid fluid dynamics leads to
the conditions of the onset of splitting storms. Thereby, we will define vor-
tex splits with respect to the plus-minus structure of helicity density fields,
because splitted vortices rotate in opposite directions which is reflected by
different signs in the helicity field. Furthermore, we will show how an ex-
tension of the vortex group can be introduced by including more physical
information. Then, this extended vortex group can be used to show the ex-
istence of further vortex breakups to smaller scales. We will shortly discuss,
why the algebraic approach based on Nambu mechanics for fluid dynamics
might lead to a better understanding of turbulent vortex flow structures.

A further field of vortex dynamics concerns the search for variational
principles. In chapter 10 we will search for geodesics of vortices, i.e. we
will tackle the question: What is the shortest path of a vortex in a con-
strained system? In which space can we find vortex geodesics? So far,
the Hamiltonian view and Riemannian geometry has been applied to find
geodesics for hydrodynamic systems. A special property of the Vortex-
Heisenberg Lie algebra provides the applicability of sub-Riemannian ge-
ometry to find geodesics for incompressible, inviscid 2D and 3D vortex
dynamics as we will discuss in chapter 10. Compared to Riemannian ge-
ometry sub-Riemannian geometry can be applied to search for geodesics
of constrained systems such as vortex flows, where the vortex motion is
restricted by vortex-related conservation laws. We will show how the de-
rived 2D vortex geodesics correspond to point vortex equilibria, which we
will have discussed in the first part of the thesis.

The discrete as well as the continuous Nambu representation for hydro-
dynamical systems is directly based on the Helmholtz vorticity equation.
The dynamics is not only formulated by energy, it is also based on further
conserved quantities that are expressed with respect to the vorticity. Classi-
cal algebraic representations of the vortex equations are based on Hamilto-
niann structures and the Euler equations, some authors also derived Hamil-
ton structures for the vorticity equation. But Hamiltonian structures are
always related to the energy and not to a quantity that takes vortex rota-
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tions into account. Therefore, we think that Nambu mechanics seems to be
a suitable choice for the investigation of vortex dynamics.

Because of the approach to unify interdisciplinary concepts of mathe-
matics, physics and meteorology in this doctoral research study (point vor-
tices, blocked weather situations, Nambu mechanics, Lie groups, Lie al-
gebras, splitting storms, turbulence, differential geometry) we will give an
introduction to each topic in the beginning of each chapter and a short sum-
mary at the end of each chapter.
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Part I

Geometric aspects of discrete fluid
dynamics

9





Chapter 2

Introduction to discrete Nambu
mechanics and its application to
atmospheric dynamics

In 1973 Nambu introduced a generalization of canonical Hamiltonian me-
chanics of discrete systems. He generalized the bilinear, antisymmetric
Poisson bracket to a trilinear, twice antisymmetric bracket – today called
Nambu bracket. Regarding Nambu’s formulation the dynamics of a system
of N degrees of freedom is described by N − 1 conserved quantities such
that the dynamics in a phase space is described in terms of more than one
conserved quantity. This is in contrast to Hamilton’s formulation who only
regarded the energy. Therefore, more physical information can be captured
using Nambu’s formalism. Moreover, in contrast to classical Hamiltonian
dynamics, Nambu mechanics can be used to describe conservative systems
with odd or even degrees of freedom.

Nambu (1973) discusses his bracket for the Euler-equation for a rigid
rotator. He showed that Liouville’s Theorem is satisfied such that the state
space can be regarded as an incompressible fluid. Twenty years later, Névir
and Blender (1993) adapted Nambu’s trilinear asymmetrical bracket to con-
tinuous fluid mechanical models. As in Hamiltonian dynamics, the kinetic
energy is needed to describe the time evolution of the physical systems. To
apply Nambu’s concept more than one conserved quantity needs to be re-
garded. And – considering vortex dynamics – the importance of the two
conserved vortex quantities, the enstrophy (in even dimensions) and the
helicity (in odd dimensions), becomes apparent, they even obtain an equal
status likewise to the energy.

11
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Figure 2.1: The solution of the Lorenz equations (2.2) with r = 28, σ = 10 and
b = 8

3 are shown. The trajectory is often called ’Butterfly wings’.

For an general introduction to Nambu mechanics see Nambu (1973)
or Takhtajan (1994). The authors Névir and Blender (1993), Guha (2001),
Guha (2004), Bihlo (2008), Salazar and Kurgansky (2010) or Blender and
Lucarini (2013) applied Nambu mechanics to different hydrodynamic sys-
tems. In order to demonstrate the advantage of Nambu’s formulation,
we will apply Nambu-mechanics to the well known fluid dynamical set
of equations introduced by Lorenz (1963). Their solution trajectory forms
the well-discussed ’butterfly wings’ shown in fig 2.1 indicating the unpre-
dictability of weather systems.
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2.1 Nambu mechanics in atmospheric dynamics:

the non-dissipative Lorenz equations

Lorenz (1963) discovered that there are systems that behave unpredictably,
such as the weather. He found an idealized model for dissipative flows.
The phase space trajectories move around a fix point and are often called
’butterfly’ wings. These butterfly wings are shown in fig. 2.1. Lorenz rec-
ognized that the ’jump’ from one wing to the other wing is not predictable.

We will follow Névir and Blender (1994) and show how the Lorenz
equations can be formulated from the Hamiltonian point of view and also
show the benefits, representing equations regarding Nambu’s formalism.
The dissipative Lorenz equations provide an idealized model of thermal
convection. They are given by the following set of equations:

dX

dt
= σY − σmX

dY

dt
= rX −XZ −mY

dZ

dt
= XY −mbZ,

(2.1)

where X and Y are proportional to the velocity and the temperature and
Z is proportional to the difference in vertical temperature profile from lin-
earity, where the fluid is heated from below; r, σ and b denote the three
dimensionless numbers, r the Rayleigh number, σ the Prandtl number and
b the ratio of the vertical and horizontal length. The parameter m is in-
troduced by Névir and Blender (1994) and controls the magnitude of the
dissipative terms. For m = 1 the classical set of Lorenz equations is ob-
tained. Névir and Blender (1993) discussed the case of vanishing dissipa-
tion, i.e. m = 0. This leads to an integrable set of equations which can
be formulated with two conserved quantities, H and C. These conserved
quantities where introduced by Tabor (1989) and applied to the Lorenz sys-
tem by Névir and Blender (1994). Considering a conservative system, the
non-dissipative Lorenz equations for m = 0 are given by:

dX

dt
= σY,

dY

dt
= rX −XZ, dZ

dt
= XY. (2.2)

From these equations Névir and Blender (1994) show that the conserved
quantities H and C with respect to the phase space coordinates X, Y, Z can
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be derived by integrating dy/dt
dz/dt

and dz/dt
dx/dt

:

H(Y, Z) =
1

2
Y 2 +

1

2
Z2 − rZ = const.

C(X,Z) =
1

2
X2 − σZ = const.

(2.3)

where the solutions can be obtained using elliptic integrals:

dX

Y (X)
= σdt, Y (X) =

[
2H −

(
X2

2σ
− C

σ

)2

+
rX

σ

] 1
2

. (2.4)

See Tabor (1989) for detailed calculations.

2.1.1 A Hamilton view on the Lorenz equations

The non-dissipative Lorenz equations (2.2) can be formulated with respect
to the conserved quantityH as Hamilton function leading to a non-canonical
Hamilton representation (Shepherd, 1990; Névir and Blender, 1993, 1994):ẊẎ

Ż

 =

 0 σ 0

−σ 0 −X
0 X 0

 ·


∂H
∂X
∂H
∂Y
∂H
∂Z

 . (2.5)

Denoting a state vector X = (X, Y, Z), we can formulate the last expression
as follows:

Ẋ = P(X) · ∂H
∂X

(2.6)

with the anti-symmetric Poisson-Tensor P(X). We notice that P(X) is sin-
gular, i.e. det(P(X)) = 0. Therefore, a Casimir function Ĉ exists, because
Casimir functions are the solution of P(X) · ∇Ĉ = 0. Moreover, Casimir
functions are conserved. Here, it turns out that the Casimir is given by the
conserved quantity C. See Névir (1998) for further readings on the role of
Casimir functions, in particular related to Nambu mechanics.

The dynamics (2.5) in the phase space (X, Y, Z) can be represented geo-
metrically, if we consider a surface that depicts C and the transformations

(X, Y, Z)→ (p, q, C) (2.7)

with q = Xand p = σy. The Casimir function allows for a transformation of
a singular system to a canonical Hamilton representation and a canonical
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representation for the non-dissipative Lorenz equations is derived:

q̇ =
∂H∗

∂p
, ṗ = −∂H

∗

∂q
, (2.8)

where H∗ denotes the conserved quantity H scaled by σ:

H∗ = σH = Ekin(p) + Epot(q) + c∗. (2.9)

where the kinetic and potential energy depend on the momentum p and the
local coordinate q. The energies and the constant c∗ are defined by:

Ekin(p) =
1

2
p2

Epot(q) = −1

2
(σr + C)q2 +

1

8
q4

c∗ = rσC +
1

2
C2.

(2.10)

Here, the non-dissipative Lorenz equations were formulated in terms of
the Hamiltonian view with respect to one conserved quantity, the energy.
Next, we will discuss the Nambu formulation of the Lorenz equations that
is based on the energy and an additional conserved quantity. Considering
two conserved quantities provides a geometric representation of the solu-
tion of the Lorenz equations.

2.1.2 Nambu formulation of the Lorenz equations

As we will discuss in section 2.2, regarding Nambu mechanics, we can rep-
resent the dynamics in a three dimensional phase space in terms of two
conserved quantities. Here, we will consider a three dimensional phase
space using the above notation of the Lorenz equations (2.2) and denot-
ing the state space vector X = (X, Y, Z). We will summarize the results of
(Névir and Blender, 1994) who formulated the Lorenz model with respect
to Nambu mechanics. Ten years later, Blender and Lucarini (2013) extended
this idea for a larger state space to demonstrate the impact of viscous heat-
ing on energies in a truncated model of convection. As an example for the
atmospheric applicability of Nambu-mechanics, the Lorenz equations for
non-dissipative systems (2.2) can be written in Nambu formulation in terms
of the two quantities that are conserved with respect to the non-dissipative
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Figure 2.2: a)The surfaces of the conserved quantities H (red) and C (blue) (2.12)
are shown. The intersection of the two surfaces is the phase space trajectory and
depicts the set of system states of the Lorenz equations (2.2). In b) the surfaces
are shown from the bottom, and the trajectory is marked by a white line. The
parameters r = 28, σ = 10 and H = −377, C = −237 are chosen.

Lorenz system: the energy H , and the Casimir C (see (2.3)):

dX

dt
= ∇C ×∇H. (2.11)

The two conserved quantities (2.12) can be discussed geometrically:

H =
1

2
Y 2 +

1

2
Z2 − rZ Tube in X-direction

C =
1

2
X2 − σZ Gutter.

(2.12)

The energy- and the C-surface are illustrated in fig. 2.2.

From (2.11) it follows that the phase space trajectory is given by the
intersection of surfaces with constant H and C. There are two cases of the
position of the surfaces:

Case 1: min(H) < min(C). The slowest motion is in the lower part of
the curve because the angles between the two surfaces are smaller there
compared with the upper part; which is mathematically expressed by the
cross product of the gradients of C and H in (2.11). The intersection und
thus the trajectory has the shape of a dog bone, as shown in fig. 2.2 b).

Case 2: min(H) > min(C). If the red tube in fig. 2.2 is shifted upwards
the z-axis, the intersection of the surfaces become two separated, nearly el-
liptic, closed curves. These two curves indicate the two ’butterfly wings’
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of the Lorenz attractor for the dissipative Lorenz equations in fig. 2.1 The
trajectories represent the motion around the steady state. For further dis-
cussions of the dissipative Lorenz equations see Névir and Blender (1994)
or Névir (1998).

We have seen that Nambu mechanics provides a geometric illustration
of trajectories. It can be used to find geometrically trajectories that reflect
the set of system states attained by the solution in the course of time of
dynamical non-linear systems. In the next section we will give a brief
summary of discrete Nambu mechanics in order to find geometrically so-
lutions of three point vortex systems. The transition to continuous Nambu-
mechanics will be discussed in the beginning of the second part of this the-
sis.

2.2 Discrete Nambu mechanics

Here, we follow Müller and Névir (2014). For a more detailed description
of discrete Nambu mechanics the reader is also directed towards Nambu
(1973), Névir and Blender (1993), or Blender and Lucarini (2013).

We consider a classical mechanical system with n degrees of freedom

x(t) = (x1, . . . , xn) (2.13)

and denote S the phase space of the system with n− 1 conserved quantities
H1(x),H2(x), . . . , Hn−1(x),Hj : S −→ R, j = 1, . . . , n−1. Then, the equation
of motion can be written in terms of Nambu’s formalism:

dxi
dt

=
∂(xi, H1, . . . , Hn−1)

∂(x1, . . . , xn)
, i = 1, . . . , n. (2.14)

with respect to the Jacobi determinant. We recall that the Jacobi determi-
nant is the determinant of the Jacobi matrix. Inserting the time derivative
of an arbitrary time dependent function F (x1, . . . , xn), F : S −→ R in (2.14)
we obtain:

dF
dt

=
∂F

∂x1

∂x1

∂t
+
∂F

∂x2

∂x2

∂t
+ · · ·+ ∂F

∂xn

∂xn
∂t

(2.15)

We can now define the Nambu bracket that describes the time evolution of
the function F :

{F,H1, H2, . . . , Hn−1} :=
dF
dt

=
∂(F,H1, H2, . . . , Hn−1)

∂(x1, . . . xn)
, (2.16)



CHAPTER 2. GEOMETRIC ASPECTS OF VORTEX DYNAMICS 18

which was introduced by Nambu (1973). Thus, the time derivative of the
functionsHj, j = 1 . . . n−1 vanishes, because the Jacobi-determinant of two
identical arguments becomes zero:

dHi

dt
= {Hi, H1, H2, . . . , Hn−1} = 0. (2.17)

Therefore, they are indeed conserved quantities. The Nambu bracket is
multilinear, antisymmetric in all arguments. and the so-called Takhtajan
identity that can be seen as generalization of the Jacobi-identity holds. For
the proofs see (Névir and Blender, 1993; Takhtajan, 1994; Névir, 1998).

2.2.1 Nambu mechanics for n = 2 degrees of freedom:

Transition to canonical Hamiltonian dynamics

For two degrees of freedom, Nambu’s representation coincides with classi-
cal Hamiltonian dynamics. Take a system with n = 2 degrees of freedom
and one conserved quantity given by the total energy H = H(x). If we
apply (2.14)

dxi
dt

=
∂(xi, H)

∂(x1, x2)
. (2.18)

and identify x1 and x2 with the local coordinate q and the momentum p,
i.e. x1 = q and x2 = p, we obtain the well known formula of the canonical
conjugated Hamiltonian differential equations:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (2.19)

These Hamiltonian equations can also be expressed by an antisymmetric,
second-order Poisson tensor P:

dxi
dt

= Pij ·
∂H

∂xi
, P =

(
0 1

−1 0

)
. (2.20)

The characteristic properties of this canonical Poisson tensor are its inde-
pendence from the phase space coordinates and its non degeneracy (det(P) 6=
0).



19 2.2. DISCRETE NAMBU MECHANICS

2.2.2 Nambu mechanics for n = 3 degrees of freedom

In his first physical application Nambu discussed the Euler equation for
a rigid rotator (Nambu, 1973) for n = 3 degrees of freedom. Névir and
Blender (1993) used the Nambu representation to analyze the non-dissipative
Lorenz equations, considering n = 3 degrees of freedom, too. In the follow-
ing, we will shortly summarize the main equations for the three dimen-
sional phase space, i.e. n = 3, to apply this concept in the next section,
where we will show that Nambu mechanics provides a geometric approach
for the classification of three point vortex motion.

Consider a system with n = 3 degrees of freedom, state space coordi-
nates x = (x1, x2, x3) and let H1(x) and H2(x) denote two conserved quan-
tities, Hi : S :−→ R, i = 1, 2. Now, we can apply formula (2.14) leading to
the following three equations:

dx1

dt
=
∂(H1, H2)

∂(x2, x3)
=
∂H1

∂x2

∂H2

∂x3

− ∂H1

∂x3

∂H2

∂x2

dx2

dt
=
∂(H1, H2)

∂(x3, x1)
=
∂H1

∂x3

∂H2

∂x1

− ∂H1

∂x1

∂H2

∂x3

dx3

dt
=
∂(H1, H2)

∂(x1, x2)
=
∂H1

∂x1

∂H2

∂x2

− ∂H1

∂x2

∂H2

∂x1

(2.21)

which can be summarized as follows:

dxi
dt

=
∂(xi, H1, H2)

∂(x1, x2, x3)
(2.22)

with i = 1, 2, 3. The coordinates x are state space coordinates and therefore,
the three-dimensional gradient in the state space S is given by:

∇ =

(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)T
. (2.23)

Considering a three dimensional phase space the canonical Nambu repre-
sentation of the time evolution can be written in terms of the cross product
of the state space gradients of the two conserved quantities H1 and H2:

dx

dt
= ∇H1 ×∇H2. (2.24)

As for n-dimensions (2.15), this definition can be extended to describe
the dynamics of an arbitrary function F : S −→ R leading to the triple
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product:
dF
dt

= {F,H1, H2} := ∇F · (∇H1 ×∇H2). (2.25)

We notice that a triple product is equivalent to the determinant of a 3 × 3-
matrix having three vectors either as its rows or its columns. Because of the
triple product, we immediately see that the Nambu bracket is antisymmet-
ric and also triliniear. Moreover, the divergence of (2.24) generates Liou-
ville’s theorem of Nambu mechanics:

∇ · ẋ = ∇ · (∇H1 ×∇H2) = 0 (2.26)

Therefore, the state space has the properties of an incompressible fluid.
The central property of Nambu mechanics is that more than one con-

served quantity have equal status, whereas in Hamiltonian mechanics only
one conserved quantity (the energy) determines the equations — a second,
or more conserved quantities, does not appear explicitly. But the singular-
ity of the Poisson tensor, i.e. the vanishing determinant, leads to the second
conserved quantity, which is called distinguished, or Casimir-, function in
terms of Hamiltonian dynamics. Considering three degrees of freedom, the
main advantage of the equality of two conserved quantities in Nambu for-
mulation is the representation of the phase space trajectory as intersection
line of two surfaces based on the conserved quantities. Therefore, this geo-
metric application illustrates the kind of motion without explicitly solving
the equations of motion.

Non-canonical Nambu mechanics for n = 3

In contrast to Hamiltonian dynamics that is characterized by the general
antisymmetric second-order Poisson tensor (2.20), Nambu’s formulation is
based on an antisymmetric, third-order tensor (Névir, 1998). This tensor
is called Nambu tensor and denoted by Nijk, i, j, k = 1, 2, 3. Additional
conserved quantities determining the dynamics increase the order of the
tensor by one dimension.

Let F (xi), G(xi) and H(xi) now denote three arbitrary functions, map-
ping from the phase space to R. Then, the canonical Nambu bracket is
defined by:

{F,G,H} = εijk
∂F

∂xi

∂G

∂xj

∂H

∂xk
, i, j, k ∈ {1, 2, 3}, (2.27)
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where the Einstein summation convention is used and εijk is the Levi-Cevita
Tensor defined by:

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if i = j, or j = k, or k = i

(2.28)

meaning that εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), and εijk =

−1 if it is an odd permutation, and εijk = 0 if any index is repeated. But for
general Nambu systems, the total antisymmetric tensor of third order can
depend on the phase space coordinates leading to a non-canonical formu-
lation. Therefore, we will introduce the non-canonical tensor Nijk, i, j, k ∈
{1, 2, 3}, which we published in Müller and Névir (2014). This idea goes
back to Névir (1998), where a hierarchy of general antisymmetric dynamics
is outlined comparing the classical Poisson-tensors with the Nambu ten-
sors. Let now Λ be the regular transition matrix transforming the ten-
sor Nabc to the tensor Nijk applying the well known transformation law
Nijk = Λi

aΛ
j
bΛ

k
cNabc with Λi

aΛ
a
j = δij and Λa

iΛ
i
b = δab . Here, δij denotes the

Kronecker-Delta symbol which is one if i = j and zero if i 6= j. Since
every antisymmetric tensor with three indices in a three- dimensional vec-
tor space is proportional to the Levi-Civita-symbol we set Nijk = cεijk and
calculate c such that we can write the non-canonical form in terms of the
Levi-Cevita symbol and compare it to the canonical form.

Nijk = cεijk = Λi
aΛ

j
bΛ

k
c εabc = det(Λa

i )εijk =⇒ c = det(Λi
a). (2.29)

Substituting εijkl by Nijk in (2.27) we obtain the canonical Nambu bracket
for det(Λa

i ) = 1 and det(Λa
i ) 6= 1 leads to the non-canonical Nambu bracket

which we denote with the subscript c:

{F,G,H}c = Nijk
∂F

∂xi

∂G

∂xj

∂H

∂xk
= cεijk

∂F

∂xi

∂G

∂xj

∂H

∂xk
. (2.30)

The dependency on the phase space variables of the Nambu tensor is a
generalization of the mechanics introduced by Nambu (1973). This gener-
alization is relevant for the motion of three point vortices.

IfH(xi) and C(xi) denote two conserved quantities, then the above gen-
eralized Nambu bracket describes the dynamics w.r.t. the function F . i.e.



CHAPTER 2. GEOMETRIC ASPECTS OF VORTEX DYNAMICS 22

dF
dt = {F,G,H}. Then,

dxi(t)
dt

= {xi, C,H} = Nijk(xi)
∂H

∂xj

∂C

∂xk
(2.31)

provides the equations of motion for the phase space coordinates xi.

Summary

In this chapter we gave an introduction to discrete Nambu mechanics, the
canonical form as well as the non-canonical representation. In the next
chapter we will show how this representation can be applied to illustrate
the kind of motion of three point vortices without explicitly solving the
equations of motion.



Chapter 3

Nambu mechanics of point vortex
theory

Point vortices are an idealized concept to understand basic vortex motion
that has been applied to many disciplines and different spatio-temporal
scales: DNA-strings, magnetic flows, atmospheric dynamics. The set of
equations for point vortex motions provides a solution of the barotropic,
inviscid, incompressible Navier-Stokes equation. This set of equation for
perfect fluids is called Euler equations. First, we will summarize the main
definitions and equations for point vortex theory as we have published
in Müller and Névir (2014) and Müller et al. (2015). Second, we will ap-
ply discrete Nambu mechanics to introduce a novel approach to classify
point vortex motion without explicitly solving the differential equations of
point vortex motion. Similar to the previously discussed Lorenz equations,
where we have discussed that Nambu’s formulation allows for a geometric
view on the equations of motion in the state space, we will apply discrete
Nambu mechanics for a geometric view on point vortex dynamics. We have
introduced this concept in Müller and Névir (2014). Third, based on Müller
et al. (2015), we will show, how the idealized concept of point vortices can
be applied to atmospheric motion on the synoptic scale. More precisely, we
will use point vortex theory to explain blocked weather situations.

3.1 Introduction to point vortex dynamics

The first investigations on the dynamics of point vortices in the plane can
be ascribed to Helmholtz (1858). Twenty years later, Kirchhoff (1876) in-
troduced the general Hamiltonian structure of N point vortices and Gröbli

23
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Figure 3.1: An example of the time evolution of collapse motion is shown.

(1877) analysed in detail the motion of three point vortices. He introduced
the equations of motions in terms of the intervortical distances, i.e. the rel-
ative distances between the vortices. In his pioneering work he studied i.a.
the self-similar contraction of triangles spanned by three point vortices. To-
day, this self-similar contraction is known as collapsed motion, as shown in
fig. 3.1.

Since then, numerous papers have been published on the motion of
three point vortices considering different aspects of point vortices, see for
example the works of Novikov (1975), Newton (2001) or Aref (2007). Three
point vortices forms integrable systems. The motion can be classified as
periodic motion, as shown in fig. 3.2, collapsed or expanding systems, see
fig. 3.1, or they form an equilibrium vortex system, that either rotates or
translates depending on the initial conditions. See fig. 3.3 and fig. 3.4.

In this classical analysis of three point vortex motion, the relevant con-
servation laws are not considered as equitable quantities. In 1949 Synge
introduced trilinear coordinates based on the three relative distances to de-
scribe the motion of three point vortices in terms of Hamiltonian dynamics
(Synge, 1949; Aref, 1979; Blackmore et al., 2007; Newton, 2001; Obukhov
et al., 1984). Also Aref used these trilinear coordinates to describe trajec-
tories in a phase space (Aref, 2010). Thereby, the phase space coordinates
represent the distances from the three sides of the triangle. Synge and Aref
show that the physical regions of the vortex motions in this trilinear coor-
dinate plane are bounded by conic sections (ellipse, parabola or hyperbola)
(Aref, 1979; Synge, 1949).

In chapter 2, we have introduced discrete Nambu mechanics, which, in
1998, Névir and Makhaldiani simultaneously applied to three point vor-
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Figure 3.2: An example of the time evolution of a three point vortex system is
shown.

tices (Makhaldiani, 1998; Névir, 1998). Whereas Makhaldiani picked up
Nambu’s general idea to represent the equations of motion in terms of the
conserved quantities, we build on Névir’s non-canonical classification and
analysis of Nambu mechanics in the context of point vortex motion. In con-
trast to Hamiltonian mechanics, where the time evolution in any dimen-
sion is only based on one conserved quantity, the kinetic energy, we need
a second conserved quantity to describe the time evolution in a N = 3-
dimensional phase space in terms of Nambu mechanics. Based on the idea
to formulate the time evolution in terms of the cross product (2.25), we will
look for a suitable three dimensional phase space and two conserved quan-
tities depending on the phase space coordinates for point vortex systems.
That way, the point vortex trajectory is given by the intersection of two sur-
faces and the type of motion can be determined without explicitly solving
the system of nonlinear differential equations.

Let v be a solenoidal vector field, i.e. ∇ · v = 0 and denote ξ =

∇×v the vorticity vector. An important quantity in two-dimensional vortex
dynamics is the circulation Γ that is defined by:

Γ =

∮
C

v · ds =

∫
A

ξ · n dS, (3.1)

where C is a closed curve on a material plane. To achieve the right hand
side with area A and normal vector n, Stokes theorem was applied. More-
over, assuming ideal incompressible fluids with conservative forces, Kelvin’s
circulation theorem states that the circulation Γ around a closed material
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Figure 3.3: An example of the time evolution of a three point vortex equilibrium
is shown.

curve moving with the fluid is constant, i.e.

dΓ

dt
= 0 (Conservation of the circulation). (3.2)

Denote xi = (xi yi)
T , i = 1, . . . N the local coordinates of the i-th point

vortex of aN -point vortex system in the plane. Each vortex is characterized
by its circulation Γi, i = 1, 2, . . . , N . Further, denote rij = ((xi − xj)

2 +

(yi − yj)
2)1/2 the relative distance of the i-th and j-th point vortex (i, j =

1, . . . , N ). Then, the equations of motion derived by Helmholtz (1858) are
given by:

dxj
dt

= − 1

2π

N∑
i 6=j
i,j=1

Γi(yj − yi)
r2
ij

,

dyj
dt

= +
1

2π

N∑
i6=j
i,j=1

Γi(xj − xi)
r2
ij

.

(3.3)

Kirchhoff (1876) established the Hamiltonian representation of these equa-
tions of motion as non-linear coupled system of 2N ordinary differential
equations:

Γi
dxi
dt

=
∂H

∂yi
,

Γi
dyi
dt

= −∂H
∂xi

.

(3.4)
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Figure 3.4: Three point vortex systems that form an equilateral triangle with van-
ishing total circulation translate.

where the total energy H of a N -vortex system is given by

H = − 1

4π

N∑
i 6=j
i,j=1

ΓiΓj ln(rij). (3.5)

Because the energy depends on the relative distances, the relative distances
seem suitable phase space coordinates to apply Nambu-mechanics. A sec-
ond conserved quantity depending on the relative distances is needed to
apply Nambu-mechanics to a three-dimensional phase space.

Kirchhoff showed the conservation of the zonal momentum Px, the merid-
ional momentum Py and the vertical component of the angular momentum Lz

(Kirchhoff, 1876)

Px(xi, yi) =
N∑
i=1

Γiyi (3.6)

Py(xi, yi) = −
N∑
i=1

Γixi (3.7)

Lz(xi, yi) = −1

2

N∑
i=1

Γi(x
2
i + y2

i ). (3.8)

Moreover, Kelvin’s circulation theorem allows us to conclude that the fol-
lowing scalars, the total circulation Γ and the double sum of all circulations,
are conserved:

Γtot :=
N∑
i=1

Γi, V :=
1

2

N∑
i,j=1
i6=j

ΓiΓj. (3.9)
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Fortak (1965) shows that the constant quantity V can be formulated with
respect to the local coordinate r and the velocity dr/dt . Let k = (0, 0, 1).
Then V is equivalent to:

V = 2π
N∑
j=1

Γjk ·
(

rj ×
drj
dt

)
=

1

2

N∑
i,j=1
i 6=j

ΓiΓj. (3.10)

Moreover, deriving the point vortex equations (3.4) by a variational prin-
ciple, the corresponding Lagrange-function is given by the sum of V and
the total energy H (Chapman, 1978). Thus, the conservation of V is a non-
trivial aspect of point vortex dynamics. A composition of Px, Py and Γ leads
to a further important conserved quantity called the center of circulation C:

C =

∑N
i Γixi∑N
i Γi

. (3.11)

Assuming that the total circulation is not equal to zero, point vortices move
around their common center of circulation C. Thereby, the orientation of a
rotating N -vortex system depends on the sign of the total circulation. But a
whole point vortex system can also have zero total circulation. For a vortex
system with Γtot → 0, C approaches infinity. Therefore, if Γtot = 0, each
vortex may rotate, but the geometric central point of the N -vortex system
translates. A point vortex system with vanishing total circulation will later
be applied to describe blocked weather situations. Because of the conser-
vation of the center of circulation, one single point vortex always remains
in its initial condition.

Following for example Newton (2001), we can also define a Poisson
bracket for point vortex dynamics.

Definition 1. Canonical Possion bracket for point vortex dynamics
The canonical Poisson bracket of two functions f = f(xi, yi) and g = g(xi, yi),
i = 1, . . . , N of position variable (xi, yi) with respect to the i-th vortex with
circulation Γi is defined by:

{f, g} =
N∑
i=1

1

Γi

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
. (3.12)

The bracket satisfies the properties of symmetry, linearity, Jacoby iden-
tity and Leibniz identity.
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Definition 2. Casimir functions
Elements commuting with all other elements in the bracket are called Casimir
functions.

Therefore, Casimir functions also commute with the energy. Thus, they
are always conserved quantities. While, for general systems, the equations
of motion are determined by the energy, the spatial conservation laws such
as the momenta give further informations on the spatial structure of the
systems. With respect to point vortex theory, the Kelvin momenta Px, ,Py,
the angular momentum Lz and the energy H are the conserved quantities
that further act as constraints on the systems. Moreover, Px, Py and Lz

form the conserved quantity M (cf. Aref (1979)), which can be identified as
Casimir function of the system.

The non-trivial Poisson brackets of the global quantities Px, Py and Lz of
the n-point vortex systems are summarized in the left column in table 3.1.
They are compared with the mass-point bracket relation in the right column
in table 3.1, where the Poisson-bracket and the conserved quantities for
mass point dynamics can be derived from the canonical conjugate equation
2.19. It is defined as follows:

Definition 3. Poisson bracket for mass point dynamics
For two functions F (p,q) and G(p,q) the Poisson brackets for mass points
reads as:

{F,G}P =
N∑
i=1

(
∂F

∂qi
· ∂G
∂pi
− ∂G

∂pi
· ∂F
∂qi

)
, (3.13)

where qi and pi are the 3D-local coordinate and 3D-momentum of the i-th
mass point of a N -mass point system.

P =
N∑
i=1

pi (linear momentum)

L =
N∑
i=1

qi × pi (angular momentum)

(3.14)

Comparing the bracket relations of the constitutive quantities of point
vortex systems with the bracket relations of classical mechanics in table
3.1, a major difference can be found for the bracket of the linear momenta.
In classical mass point mechanics the momenta commute, but they do not
commute regarding point vortex dynamics. This difference is important,
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Point vortex dynamics Mass point dynamics

{Lz, Px} = Py {Lz, Px}P = Py

{Lz, Py} = −Px {Lz, Py}P = −Px
{Px, Py} = Γ {Px, Py}P = 0

Table 3.1: The Poisson-bracket of point vortex dynamics compared to the Poisson-
bracket of mass point dynamics (see def. 8.2, chapter 8), where Lz are the angular
momenta and Px and Py are the momenta of the corresponding system

because it shows that a different algebraic description is needed for fluid
dynamical systems regarding vortex dynamics. We will explore the alge-
braic view on fluid dynamics in part II of this thesis.

The total energy H commutes with these three quantities. A Casimir
function of point vortex dynamics is the quantity M and given by:

M = −ΓLz −
1

2
(P 2

x + P 2
y ) =

1

2

N∑
i,j=1

ΓiΓjr
2
ij. (3.15)

This quantity commutes with the linear momenta Px and Py, the angular
momentum Lz and the Hamilton function H , i.e.:

[M,Px] = 0, [M,Py] = 0, [M,Lz] = 0, [M,H] = 0. (3.16)

Because of the last relation, [M,H] = 0, M is a conserved quantity. 1 The
energy H as well as the relative angular momentum M depend on the rel-
ative distances rij of the vortices. We recall that two conserved quantities
are needed to describe a system of three degrees of freedom in terms of
Nambu’s formulation. Therefore, considering a three point vortex system
in the phase space of their relative distances, the energy and the relative an-
gular momentum can be chosen for a geometric classification of the motion
of three point vortices. Moreover, three point vortices form an integrable
system (see, e.g. Aref, 1979) and we will discuss the possible solutions of
three point vortex systems in the following.

1In Müller and Névir (2014) we suggested to call M squared relative angular momentum
with respect to the center of circulation, because it contains squared relative distances as
well as the circulation as the rotational part. We will hold on to this notation in the follow-
ing.
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3.2 Geometric application of Nambu mechanics:

the motion of three point vortices in the plane

In order to apply Nambu mechanics to three point vortex motion in the
plane, we will consider the time evolution of the intervortical distances, see
for example Aref (2007) or Névir (1998). Denote A123 = A(r12, r23, r31) the
area of the triangle with the intervortical distances as side lengths. Let σ
the orientation of the triangle, where σ = σijk = 1, if the point vortices
with Γi,Γj,Γk are arranged counter-clockwise and σ = σijk = −1 if Γi,Γj

and Γk are ordered clockwise. Further, let i, j, k = 1, . . . , n in cyclic order,
i 6= j 6= k. Then, the time evolution of the squared relative distances r2

ij =

((xi − xj)2 + (yi − yj)2)1/2 of three point vortices is given by

dr2
ij

dt
=

2

π
σΓkA123 ·

(
1

r2
jk

− 1

r2
ik

)
, (3.17)

We apply the chain rule and denote

ρ := ρ(rij, rjk, rki) =
rijrjkrki

4Aijk
, (3.18)

which represents the inscribed circle radius of the triangle with side lengths
rij, rjk and rki. We get:

drij
dt

=
σΓk
4πρ

(
rki
rjk
− rjk
rik

)
, (3.19)

In the following, we will analyze the relative motion of three point vor-
tices spanned by the phase space coordinates r = (r12, r23, r31). Applying
Nambu mechanics to a three-dimensional phase space, we need two con-
served quantities to characterize the motion of three point vortices. We
can find two conserved quantities that depend on the relative distances: M
(3.15) and the total energy H (3.5). They can be formulated as follows:

M = M(r12, r23, r31) =
1

2
(Γ1Γ2r

2
12 + Γ2Γ3r

2
23 + Γ3Γ1r

2
31)

H = H(r12, r23, r31) = − 1

2π
(Γ1Γ2 ln(r12) + Γ2Γ3 ln(r23) + Γ3Γ1 ln(r31))

(3.20)

Using these definitions, the time evolution of the relative distances of three
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Figure 3.5: TheM -surface represents one of the four types of quadrics (from lhs to
rhs) an ellipsoid, a one-sheeted hyperboloid, a cone, or a two-sheeted hyperboloid

point vortices in Nambu representation can be written as:

drij
dt

=
σ

2Γ1Γ2Γ3ρ

(
∂M

∂rjk

∂H

∂rki
− ∂M

∂rki

∂H

∂rjk

)
, (3.21)

with i, j, k = 1, 2, 3 in cyclic order and i 6= j 6= k. In contrast to Makhal-
diani, we scale the time t by a constant factor t′ = αt with α = σ/2Γ1Γ2Γ3.
Because the inscribed circle radius ρ = ρ(r12, r23, r31) depends on the rel-
ative distances, we obtain a non-canonical Nambu representation of three
point vortices:

ρ
dr

dt′
= ∇M ×∇H (3.22)

This formulation of the equations of motion motivates the represen-
tation of the trajectory of three point vortices as intersection of two sur-
faces. The surfaces are given by the conserved quantities M and H lead-
ing to the phase space of intervortical distances, because both conserved
quantities depend on the intervortical distances. Applying the generalized
non-canonical Nambu-bracket (2.30) respectively (2.31), it follows that the
Nambu-tensor for point vortices is given by:

Nijk(r12, r23, r31) =
1

ρ
εijk, i, j, k = 1, 2, 3 (3.23)

Therefore, we classify the relative motion of three point vortices as non-
canonical Nambu dynamics.

Now, we will assign the conserved quantities M and H a surface to
discuss the different kind of motions of three point systems from a geo-
metrical point of view. Regarding (3.22), the time evolution of three point
vortices, that is usually described in the two dimensional local coordinates,
is here formulated in the phase space of the intervortical disctances r =



33 3.2. GEOMETRIC CLASSIFICATION

Sign of circulations Surface of M Possible motion

Γ1,Γ2,Γ3 > 0, c > 0 Ellipsoid Periodic motion

Rel. equilibrium

Γ1,Γ3 > 0,Γ2 < 0, c > 0 One-sheeted hyperboloid Periodic motion

Rel. equilibrium

Γ1,Γ3 > 0,Γ2 < 0, c = 0 Cone Collapse

Expanding

Γ1,Γ3 > 0,Γ3 < 0, c < 0 To-sheeted hyperboloid Periodic motion

Rel. equilibrium

Γ1,Γ2,Γ3 > 0, c < 0 No real solution

Table 3.2: Geometry of the quantity M depending on the sign of the circulations
of the point vortices

(r12, r23, r31) using the relative angular momentum M and the energy H .

Set b := −2πH/(Γ1Γ2Γ3) and c := 2M/(Γ1Γ2Γ3). The energy and the
relative angular momentum determine two surfaces:

H :
ln(r12)

Γ3

+
ln(r23)

Γ1

+
ln(r31)

Γ2

= b, M :
r2

12

Γ3

+
r2

23

Γ1

+
r2

31

Γ2

= c (3.24)

The surface of M represents a quadric and the sign of the circulations
characterizes its topological structure. It can represent an ellipsoid, a one-
sheeted hyperboloid, a cone, or a two-sheeted hyperboloid, see fig. 3.5. The
different circulations and occurring motions are summarized in table 3.2).

Since both conserved quantities depend on the relative distances, we
can apply (3.22) and the intersection M

⋂
H yields the trajectory of the rel-

ative motion of the point vortices in the phase space. Because the relative
distances rij (i, j = 1, 2, 3, i 6= j) are positive, in each case the M-surface
is a subsurface of the surfaces mentioned before. We can summarize the
necessary conditions of the quantities M and H for the different kind of
motions:

M 6= 0, H 6= 0 : Periodic motion

M = λH, λ ∈ R \ {0} : Relative equilibrium

M = 0, H 6= 0, σ > 0 : Collapsed motion

M = 0, H 6= 0, σ < 0 : Expanding motion

(3.25)
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Figure 3.6: Left: the intersection of the M -surface (red surface, representing a
subset of an ellipsoid) with the energy surface (blue) illustrates an example of pe-
riodic motion. Right: time evolution of three relative distances rij of a periodic
three point vortex system.

Thus, the two conserved quantities the relative angular momentum, M ,
and the energy, H , determine the dynamics. In the following sections we
will discuss the different classes of motions of three point vortex systems.

3.3 Periodic motion

Closed intersection lines in the phase space represent periodic point vor-
tex motions. If the signs of the circulations are all positive and if the value
of c is greater than zero, the surface of M becomes an ellipsoid (see (3.24)
and table 3.2). H is an only slight curved surface. The slightly curvature
is due to the logarithm. Therefore, the intersection of M and H is given
by a closed line leading to a periodic motion. One example is given in
fig. 3.6. Moreover, if the circulations have different signs, M represents a
one-sheeted hyperboloid in case of c > 0 and a two-sheeted hyperboloid if
c < 0. In this case, periodic motions can also occur. In fig. 3.6 an example
of a periodic motion with initial circulations Γ1 = 1, Γ2 = 2, Γ3 = 1 and
initial distances r12 = 4, r23 = 3, r31 = 5 is shown. In fig. 3.6 on the left the
point vortex trajectory in the phase space is given by the intersection line
of the two surfaces of M (red surface) and H (blue surface). Because the
signs of all circulations are positive, the M -surface represents a part of an
ellipsoid. Therefore, the intersection line is a closed curve, i.e. the motion is
periodic. Fig. 3.6 on the right represents the classical plot of time evolution
of the relative displacements. To illustrate the temporal change of the inter-
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Figure 3.7: A three point vortex system translates in case of zero total circulation.
Here we set r12 = r23 = r32 = 1 and Γ1 = 1, Γ2 = −3 and Γ3 = 2. The translation
angle α depends on the values of the circulations.

vortical distance in fig. 3.6, we used the Runge-Kutta method of 4. order
to solve the nonlinear differential equations (3.19). We notice one benefit
of the application of Nambu mechanics. Solving differential equations cost
more computer effort than simply illustrating conserved quantities surfaces
to classify different kind of motions.

3.4 Relative equilibrium

In case the two surfaces intersect in one point in the phase space, three point
vortices generate a relative equilibrium configuration.

The relative equilibrium of three point vortices occur either for collinear
initial states or for three point vortices forming an equilateral triangle. A
three vortex system that forms an equilateral triangle and that has non-
vanishing total circulation rotates about its center of circulation. Its rotation
frequency is ω = Γ/2πr2, where r is the triangle side (Newton, 2001). In case
of zero total circulation, the center of circulation (3.11) lies in infinity. In that
case the vortices translate with velocity

v = |v| =
√

2(Γ2
1 + Γ2

2 + Γ2
3)

4πr
(3.26)

This translational velocity can be derived by inserting r12 = r23 = r31 =: r

in (3.3). One exemplary translating three point vortex system is shown in
fig. 3.7. In Müller and Névir (2014) we have derived the formula for the
translational angle α. Let the x-axis be on the line Γ1Γ3, i.e. the straight line
through the vortices of the same sign of circulation passing the origin (see
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fig. 3.7). The point P0 = (x0, y0) with circulation Γ1 lies at the origin. Set
r = r12 = r23 = r31. Applying (3.3), the velocity vector v in P0 and the slope
m of the line lying on the velocity vector are given by:

v =
1

4πr

( √
3Γ2

Γ1 − Γ3

)
, m =

dy/dt

dx/dt
=

Γ1 − Γ3√
3Γ2

. (3.27)

Therefore, the angle of translation α between the velocity vector and the
x-axis is given by:

α = arctan(m) = arctan

(
Γ1 − Γ3√

3Γ2

)
(3.28)

To apply Nambu’s formalism to an equilibrium state we take a look at the
relevant conserved quantities H and M for equilateral triangles:

H = − ln(r)

2π
V, M =

r2

2
V =⇒ H = λ ·M (3.29)

In terms of Nambu mechanics for every energy level and an arbitrary but
fixed V there is a solution of a relative equilibrium if and only if the M -
surface is tangent to the H-surface. Because the intersection is given by a
fixed point, no time evolution is possible.

3.5 Collapse and expanding state

Special cases are the collapse and the expanding motion that are character-
ized by self-similarity. An interesting question is how the self-similar mo-
tion can be expressed in terms of the geometrical view of Nambu mechan-
ics. First, we will discuss the behavior of the conserved quantities. Neces-
sary and sufficient conditions for the self-similar collapse of three vortices
in general are shown in Aref (2010), Newton (2001) or Synge (1949). As first
condition, M needs to be zero, i.e.

M =
1

2

∑
i,j=1,i 6=j

ΓiΓjr
2
ij = 0 (3.30)

Second, the harmonic mean has to be zero, too:

h =
1

3

(
1

Γ1

+
1

Γ2

+
1

Γ3

)
= 0⇐⇒ V =

1

2

∑
i,j=1,i 6=j

ΓiΓj = 0 (3.31)
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And, of course, the initial configuration must not be an equilibrium. Aref
(2010) established the self-similarity of the collapse with respect to the in-
tervortical distances:

rij(t) = f(t)rij(t = 0), i, j = 1, 2, 3, (3.32)

where f(t) =
√

1− t/τ and τ is the collapse time. The energy is con-
served during the whole collapse process, which can be shown using the
self-similarity and the collapse condition V = 0 (Aref, 2010):

H = − 1

4π

N∑
i,j,i6=j

ΓiΓj ln(f(t)rij(0))

= − 1

4π

[
ln(f(t))

N∑
i,j,i6=j

ΓiΓj +
N∑

i,j,i6=j

ΓiΓj ln(rij(0))

]

= − 1

4π

N∑
i,j,i6=j

ΓiΓj ln(rij(0)) = const.

(3.33)

To achieve the second line in (3.33), we used the product rule for logarithms
ln(f(t)rij(0)) = ln(f(t)) + ln(rij(0)). If these constraints are fulfilled and
the vortices Γ1,Γ2 and Γ3 appear counter-clockwise, the vortices expand
(σ = −1). Otherwise they collapse (σ = 1). The orientation of the rotation
of the whole vortex system is determined by the sign of the circulation of
highest absolute value of the three vortices.

We have already derived the Nambu equation of the time evolution of
three point vortices in (3.6):

ρ
dr

dt
= ∇M ×∇H. (3.34)

Before we interpret the right-hand side of this equation for the geometri-
cal Nambu representation, we apply Aref’s self similarity condition of the
relative distances (3.32) to the definition of ρ (3.18):

ρ =
r12(t′)r23(t′)r31(t′)

4A(t′)
= f(t′)ρ0, (3.35)

with ρ0 = ρ(t′ = 0). Therefore, the left-hand side of (3.34) simplifies to:

ρ
dr

dt′
= ρ0f(t′)

dr0f(t′)

dt′
= − ρ0

2τ ′
r0. (3.36)
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Figure 3.8: Left: two lines through the origin represent a collapse in the phase
space given by the intersection of M (red surface, subset of a light cone) and
H (blue surface). Right: time evolution of the intervortical distances with ini-
tial values r12(0) =

√
2.5, r23(0) =

√
4.5 and r12(0) =

√
3. The initial values

r0,1 = (
√

2.5,
√

4.5) for a collapse and r12(0) =
√

3 and r0,2 = (1.84, 1.33,
√

3) for an
expanding are marked on the geometric figure on the lhs.

Thus, the time evolution of the relative distances multiplied by ρ is con-
stant and the phase space trajectory can not be a closed curve, i.e. periodic
motion.

Now, we will analyze the right-hand side of equation (3.34) in terms
of the geometrical interpretation. Because of the necessary condition, the
quantities V and M are equal to zero. Therefore, the circulations have dif-
ferent signs. Then, in case of collapse/expanding the M -surface is given
by

M :
r2

12

Γ3

+
r2

23

Γ1

+
r2

31

Γ2

= 0 (3.37)

representing a cone; more precisely, since the relative distances are all posi-
tive, the upper part of a cone. The intersection of a cone with the H-surface
in the phase space leads to two lines passing the origin representing the
phase space trajectories. Fig. 3.8 shows the intersection lines of the two
surfaces of the energy H (blue surface) and the quantity M (red surface).
The circulations Γ1 = 12,Γ2 = −3 and Γ3 = 4 satisfy the collapse-condition
V = 0. By choosing the initial values of the intervortical distances r12 =√

2.5, r23 =
√

4.5, r31 =
√

3, M is equal to zero, too. Therefore both collapse-
conditions are satisfied. We see in fig. 3.8 that the M -surface represents the
upper light cone and that the trajectory of three point vortices in the phase
space consists of two lines. Since we know that the initial conditions lead
to a collapse, the phase space coordinate r0,1 = (

√
2.5,
√

4.5,
√

3)T moves to-
wards the origin. But why does the geometrical representation shows two
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lines? Set Γ1,Γ2,Γ3 and r31 as above and let r12, r23 two arbitrary variables.
Solving the H-equation (3.24) for r12, we get r12 = exp(4b)r

4/3
23 r

−1/3
13 . Now

we insert r12 into the M -equation (3.37). On condition of M = 0 this leads
to two solutions of r(0) = (r12(0), r23(0), r31(0))T , namely, as expected the
above solution

r1(0) = (
√

2.5,
√

4.5,
√

3) = (r112 , r123 , r131) (3.38)

and a second solution, numerically given by the approximated values

r2(0) = (1.84, 1.33,
√

3) = (r212 , r223 , r231). (3.39)

Therefore, the magnitude relative to the fixed value r31 interchanges, i.e.
it is r112 < r131 < r123 , but r223 < r231 < r212 . Let the orientation of the
vortices of these two solutions be fixed. Then, inserting these values in the
equations of motion (3.17), we obtain:

dr2
1

dt
|t=0 < 0,

dr2
2

dt
|t=0 > 0. (3.40)

Therefore, for fixed Γ1,Γ2,Γ3 and r31 we obtain one solution leading to a
collapse and another solution leading to an expanding of the three point
vortices, see fig. 3.8 on the right-hand side. This explains that there are two
intersection lines.

In contrast to solving a system of differential equations by time-stepping
using a single initial condition, applying Nambu mechanics, we obtain a
whole set of all possible initial conditions and trajectories for the collapse
and expanding motions for fixed values of M and H . Moreover, beyond
the well known effect of σ, we show, as a new aspect, that the order of mag-
nitude of the intervortical distances also differentiates between the collapse
and the expanding motion. In contrast to the change of σ that can be inter-
preted simply as time reversal, interchanging this order of magnitude leads
to two structurally different collapse and expanding motions. In fig. 3.8 the
intersection line on the left-hand side represents the collapse and the other
intersection line represents the expanding state. We conclude that for every
fixed r31 there are two initial configurations leading to a collapsing and an
expanding at every energy level.
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3.6 Nambu formulation for an arbitrary number

of point vortices

It would be interesting to apply Nambu mechanics to N ≥ 4 vortices. But
on the one hand, there are N − 1 conserved quantities needed to describe
the motion of a N -vortex system. And not all needed conserved quantities
might exist. On the other hand, a general N ≥ 4-point vortex system is
not integrable. Since the classical equations of motion (3.17) for a N -point
vortex system depend on the area spanned by three point vortices, it is
quite natural to describe the system by the time evolution of the area. A
further motivation to use the area as dynamical variable is given by the
circulation that is defined by a surface integral over the vortex vector. It is
conserved on any material surface. Contracting this area to a point leads to
the definition of the point vortex. Therefore, the dynamics of point vortices
can also be classified by the evolution of material surfaces. Let now Aijk =

Aijk(rij(t), rjk(t), rki(t)) the area spanned by three vortices. Equation (3.17)
for N vortices can be written as

dr2
ij

dt
=

64

π

N∑
k=1

σijkAijk
∂(M,H)

∂(r2
jk, r

2
ki)
, (3.41)

where ∂(M,H)

∂(r2jk,r
2
ki)

denotes the Jacobi-determinant.

We first derive the time evolution of the area for three point vortices. We
denote A = A123 and apply (3.41) to

dA

dt
=

∂A

∂r2
12

dr2
12

dt
+

∂A

∂r2
23

dr2
23

dt
+

∂A

∂r2
31

dr2
31

dt
(3.42)

leading to:
dA

dt
=

192 σ123A

Γ1Γ2Γ3

∂(A,M,H)

∂(r2
12, r

2
23, r

2
31)

(3.43)

Now we can generalize (3.43) to describe the interaction ofN ≥ 4 point vor-
tices in terms of the two conserved quantities M and H . In this approach,
applying (3.41) the nonlinear dynamics of the area of one triangle is deter-
mined by the time rate of change of all possible triangles spanned by the
fixed ith and jth vortices:

dAijk
dt

=
N∑
k=1

192 σijkAijk
ΓiΓjΓk

∂(Aijk,M,H)

∂(r2
ij, r

2
jk, r

2
ki)

. (3.44)
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Analogously to (3.44), we can also derive the time evolution in dependency
of the non-quadratical distances:

dAijk
dt

=
N∑
k=1

6 σijk
ρΓiΓjΓk

∂(Aijk,M,H)

∂(rij, rjk, rki)
. (3.45)

Even though we lose the information of the local position and the inter-
vortical distances, we can still classify the special kinds of motion given by
the relative equilibrium (Ȧ = 0), collapse and expanding motion (Ȧ < 0,
Ȧ > 0).

The Nambu-representation ofN point vortices based on the area spanned
by three point vortices is quite natural, because the dynamics can be under-
stood as interactions of maximal integrable subsystems

3.7 Summary

In this chapter we have applied Nambu mechanics to three point vortex
systems. Using this approach, only two conserved quantities (H,M) suffice
for the integrability of a three point vortex system in a three-dimensional
phase space. In contrast, using Hamiltonian mechanics, the integrability
of the three point vortex system is assured by three conserved quantities
(H,L, P 2

x + P 2
y ) in a six-dimensional position space.

Applying Nambu mechanics, the phase space trajectory is generated
geometrically by the intersection of two surfaces represented by two con-
served quantities H and M , where both conserved quantities have equal
status. Thus, in order to specify the motion, it is not necessary to solve the
non-linear differential equations of motion. Topologically, the surface rep-
resented by M is a quadric giving rise to the different classes of motion.
The trajectory of a periodic point vortex motion is always a closed line in
the phase space. If the two surfaces intersect in one point, an equilibrium is
given. Moreover, collapse and expanding motions are each represented by
one line passing the origin. Moreover, in Müller and Névir (2014) we have
shown that not only the orientation σ, but also the order of magnitude of
the intervortical distances distinguishes between collapse and expanding
motion.

This geometrical view on point vortex motion allows for a better un-
derstanding of the differences between the initial conditions for a collapse
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and expanding motion. We see that small changes of the initial relative dis-
tances can lead to a change of motion. Systems of differential equations are
typically solved by time-stepping methods with single initial conditions.
Applying Nambu mechanics we obtain a whole set of all possible initial
conditions and trajectories for fixed values of M and H . Especially, this is
interesting for analyzing collapsed and expanding motion. Finally, we pro-
posed an approach to generalize Nambu mechanics for an arbitrary num-
ber of point vortices, where the Nambu representation ofN point vortices is
based on the area spanned by three point vortex subsystems. Independent
of the complexity of the surface, discrete Nambu mechanics offers a change
from local numerical time stepping methods to global geometric solutions
of phase space trajectories. In the next chapter we will apply point vortex
theory to atmospheric blockings.



Chapter 4

Atmospheric blockings explained
by point vortex theory

From a theoretical point of view, the classical and simplest way to describe
motions on synoptic and planetary scale is a two-dimensional, barotropic,
inviscid and non-divergent model that is mathematically represented by
the corresponding vorticity equation; thereby, the property of being diver-
gence-free is realized by the geostrophic wind. One concept that can be
derived from the barotropic, inviscid, non-divergent vorticity equation is
the classical point vortex theory. It is an idealized local and discrete model
for two-dimensional vortex dynamics. Surprisingly, there are rather few
publications on the application of point vortices to understand large-scale
motions in the atmosphere, see for example Charney (1963), Obukhov et al.
(1984), Morikawa and Swenson (1971), Friedlander (1975), Egger (1992),
Polvani and Dritschel (1993) or Newton (2001). In this chapter we will show
the applicability of point vortex theory to blocked weather situations as we
have introduced and published in Müller et al. (2015).

Blockings are weather situations that often have devastating consequen-
ces, such as draughts or floods. Examples of these long lasting weather
situations are blocked events in the extra-tropical regions of the midlati-
tudes that often last for several days up to months. In summer 2003 such
a blocked weather situation caused the West-European heat wave; simul-
taneously there was strong precipitation in East-Europe. Also the heat
wave around Moscow in summer 2010 was caused by a blocked situation
(Friedrich and Bissolli, 2011). During the same time Pakistan had to strug-
gle against floods. A recent blocked weather situation took place in July
2014, where a blocked high over Norway lead to the warmest July since the

43
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beginning of weather recording in 1900 (NMI, 2014).

In general, Rossby-theory, which successfully describes propagating wa-
ves in a zonal flow dominates the thinking of large-scale atmospheric mo-
tions. A first explanation of blocked events is based on stationary Rossby
waves in a zonal mean flow, which can be ascribed to Yeh (1949). A short-
coming of this global explanation is the missing description of non-periodic,
local characteristics of blocked events. Therefore, a modern view on station-
ary patterns is based on Rossby-wave breaking giving rise to more local,
cut-off structures diagnosed by PV-anomalies on isentropic surfaces (Al-
tenhoff et al., 2008). In this context, we propose a physical model based
on first principles considering the large-scale processes as local interactions
of several discrete vortices. This approach is reasonable, because the ob-
servations show that blocked events are realized by two or three isolated
vortices represented by high over low or omega-blocked weather patterns.
In particular, we will use the concept of three point vortices building an
relative equilibrium. We will follow our publication on the explanation of
blockings by the point vortex model (Müller et al., 2015) and first discuss
the atmospheric scales of the circulation (3.1), which measures the strength
of rotation and is constant on material surfaces. Even though the circula-
tion measures the strengths of vortices, this quantity is not often considered
in fluid mechanical models. Then, we will show how the concept of point
vortex equilibria can be applied to explain blocked weather situations and
discuss two case studies. The first example deals with the severe drought
over the European part of Russia in summer 2010, in the second example
we will analyze an omega-block over the North Pacific in March 2011. Here,
the calculations of the circulations are due to Schielicke et al. (2016) and
Schielicke (2017), who introduced the algorithm to identify vortices with
the kinematic vorticity number to calculate the circulation. In the mean-
while, in Hirt et al. (2018) we could corroborate our results statistically.

4.1 Atmospheric scales of circulation

A common approximation of large-scale atmospheric dynamics is to ne-
glect dissipative processes. This approach is used in Rossby-wave theory
as well as in vortex dynamics. However, to relate space and time scales of
different vortex patterns we follow the principal idea of Kolmogorov (1941)
taking dissipation into account.
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Figure 4.1: The order of magnitude of circulations with respect to different lengths
scales for the dissipation of energy ε = 5 · 10−4 m2 s−3 (blue dashed line) and
the dissipation of circulation µ = 264 m2s−2 (red solid line).

One of the most important quantities in vortex theory is the circulation
(3.1) that plays an important role in the point vortex equations (3.3). In or-
der to analyze the atmospheric scales of circulation we regard dimensional
analysis following the principal idea of Kolmogorov (1941). He considered
constant dissipation of energy ε leading to a relation between the character-
istic time T and the characteristic length L: T = ε−1/3L2/3. We now assume
positive values of circulation Γ > 0. The dimension of Γ is given by L2T−1.
Thus, we can also formulate a power law of the characteristic circulation Γ

in terms of L:
Γ = ε1/3L4/3. (4.1)

Motivated by Kolmogorov’s idea, we assume constant dissipation of circu-
lation, i.e. Γ̇ =: µ = const., where the dissipation of circulation can also be
formulated in terms of this characteristic quantities: µ = L2T−2. Thus, we
obtain the relation of the characteristic time and the characteristic length L:

T = µ−1/2L. (4.2)

In contrast to the assumption of a constant dissipation of energy (4.1), (4.2)
represents a linear relation between T and L. Moreover, Γ = L2T−1 and
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(4.2) lead to the linear relationship

Γ = µ1/2L (4.3)

which is illustrated in fig. 4.1. The dashed line indicates the circulation
with respect to the characteristic lengths in terms of the dissipation of en-
ergy (ε = 5 · 10−4 m2s−3, Brunt (1939)) and the solid line illustrates the
linear relation given in (4.3) in terms of the dissipation of circulation (with
µ = 264 m2s−2). This estimation of the dissipation of circulation follows
from Schielicke et al. (2016). Fig. 4.1 indicates circulations in the order of
magnitude 107 − 108 m2s−1 for omega blockings and larger circulations for
the polar vortex (108 − 109 m2s−1). Both lines show similar values of circu-
lation for systems on the synoptic scale. In the following, we will see that
these orders of magnitude coincide with our calculations of the circulations
and distances of the real atmospheric vortices on this scale.

4.2 Relative point vortex equilibria

Point vortex motions can be classified into two different kinds of motions.
For most initial conditions, the relative distances vary in time but in special
cases they are constant in time. These cases are named relative equilib-
ria. The first investigations of related equilibria took place more than one
hundred years ago. Mayer (1878) studied equilibrium configurations of the
interactions of floating magnets within a strong magnetic field. These con-
figurations turned out to correspond to point vortex equilibria. Since then
numerous studies on point vortex equilibria have followed, for example see
Novikov (1975), Aref (1979), Dritschel (1985) or Aref et al. (2012).

In chapter 3, sec. 3.4 we have already discussed point vortex equilibria
for a three point vortex system in terms of Nambu mechanics. In the follow-
ing we will apply point vortex equilibria to flow patterns on synoptic and
planetary scale characterized by a small number of distinguished vortices.
On synoptic scale, dipole and tripole structures can be described as two or
three point vortex systems. Denote Γ1 and Γ2 the circulations of a two vor-
tex system. For |Γ1| 6= |Γ2| the two point vortex system rotates around its
center of circulation, while each vortex moves along a different circle. In
case Γ1 = Γ2, both vortices rotate on the same circle. If Γ1 = −Γ2 the centre
of circulation lies in infinity, and therefore, the two vortex system translates
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Figure 4.2: Translational velocity of a three point vortex system as function of the
intervortical distances r for three different vortex configurations with vanishing
total circulation is shown. For typical distances on synoptic scale of 2500-3500
km the absolute value of the analytical translation velocity of 5 − 10 ms−1 of a
three point vortex equilibrium which coincides with the typical basic westerly flow
velocity.

with constant velocity. These two last cases are called relative equilibria
and can be applied to atmospherical dipole structures (see Kuhlbrodt and
Névir, 2000).

We will extend this idea and discuss Omega blocks by three point vor-
tex equilibria. A first approach to study droughts was given by Obukhov
et al. (1984) (in Russian) who realized the idea in terms of climatological
geopotential anomalies. The relative equilibrium of three point vortices oc-
cur either for collinear initial states or for three point vortices forming an
equilateral triangle. In case of an equilateral triangle and total circulation
unequal to zero, the three vortex system rotates about its center of circu-
lation with rotation frequency ω = (Γ1 + Γ2 + Γ3)/2πr2, where r is the tri-
angle side (Newton, 2001). In case of zero total circulation, the centre of
circulation lies in infinity. Let now ∆123 be an equilateral triangle with the
local point vortex coordinates as vertices and equal intervortical distances
r := r12 = r23 = r31. Applying (3.3) leads to the following translation veloc-
ity:

v = |v| =
√

2(Γ2
3 + Γ2

1 + Γ2
2)

4πr
. (4.4)

For Γ1 = Γ2 the system translates along the straight line through vortex 1
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and vortex 2. As we have derived in Müller and Névir (2014), varying the
circulations leads to the following translation angle:

α = arctan

(
Γ1 − Γ2√

3Γ3

)
. (4.5)

In fig. 4.2 the velocity of a three point vortex equilibrium (4.4) with respect
to the intervortical distance is illustrated indicating the applicability of the
idealized point vortex concept to vortex systems on the synoptic scale. For
intervortical distances of about 2500-3500 km the translation velocity of a
three point vortex equilibrium coincides with the typical basic flow velocity.
In section 4.4 we will use the translation velocity (4.4) of a three vortex
system to explain the stationarity of blocked weather situations. Omega
blocks are characterized by two low pressure areas south-east and south-
west of an high pressure area (see figure 4.4). Thus, if both lows have equal
circulations and are located on the same latitude and if the circulation of
the high is twice as large as each low, the total sum of circulation is equal to
zero. Therefore, the vortex system translates along a latitude.

4.3 Methods and data

To apply point vortex theory to large-scale atmospheric flow patterns, we
discretize the dynamics by contracting the high and low pressure areas to
points. Furthermore, to use the analytical equations of motion (3.3) we need
to determine the circulations and the relative distances of the vortices. If
the centers of the vortices are known, the relative distances can be easily
measured. But the determination of the circulations Γ is more complicated
and we will use both, a geometrical and a numerical method to calculate
the circulations. Moreover, we use reanalysis data to apply the method to
determine the circulation and to calculate the basic flow.

Geometrical method to calculate the circulations

To calculate the circulation Γi of a vortex geometrically to apply the point
vortex concept, we use a method to estimate the circulation by integrating
a loop around the geopotential field of the blocking high/low:

Γi =
g

f

∑
k

|δZk| sin(αk) (4.6)
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with the Coriolis parameter f , the gravity acceleration g, the geopotential
height Z and the angles αk, where the sin(α) is the line k-th line segment.
For a more detailed description see Kuhlbrodt and Névir (2000).

Kinematic vorticity number method to calculate the circula-

tions

Following Schielicke et al. (2016), the circulation of a vortex can also be
determined numerically. The size of a vortex is estimated with help of the
velocity gradient tensor and its invariants which describe the local motion
around a point. The velocity gradient tensor∇v in two dimensions is given
by

∇v =

(
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

)
, (4.7)

where u and v are the horizontal wind components in zonal and merid-
ional direction, respectively. The velocity gradient tensor can be decom-
posed into the sum of a symmetric tensor S (rate-of-strain tensor) and an
antisymmetric tensor Ω (vorticity tensor):

∇v = S + Ω (4.8)

with
S = 1/2(∇v + (∇v)T ) , Ω = 1/2(∇v − (∇v)T ) (4.9)

While the rate-of-strain tensor S describes the deformation of the flow field
composed of expansion, shearing and stretching deformation, the vorticity
tensor Ω describes the rotation of the flow. A vortex is identified as a con-
nected region of grid points where the local rate of rotation ‖Ω‖ prevails
over the local strain rate ‖S‖. Truesdell (1954) introduced the kinematic
vorticity number Wk as ratio of the local rate-of-strain and the local rate-of-
rotation:

Wk =
‖Ω‖
‖S‖

. (4.10)

In case of Wk > 1, the local rate of rotation exceeds the local strain rate,
Wk = 1 in case of a pure shearing motion and Wk < 1 if the deformation
is larger than the rotation. With help of Wk the boundary of a vortex core
is defined by Wk = 1 around a vorticity extremum. The circulation of the
vortex is calculated by the integral (3.1).
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Russia/Europe (Summer 2010)
Points of initial trapezoid (10◦E, 80◦N) (80◦E, 80◦N)

(10◦W, 35◦N) (100◦E, 35◦N)
Adjustment of northern line 80◦ N→ 70◦N by 2.5◦

Adjustment of southern basis 25◦N→ 45◦N by 2.5◦

Final averaged height 32.5◦N − 75◦N

Table 4.1: Initial and final (averaged) configurations of the trapezoids of for the
omega blocks over Russia in summer 2010 .

North Pacific (March 2011)
Points of initial trapezoid (160◦E, 85◦N) (220◦E, 85◦N)

(140◦E, 45◦N) (240◦E, 45◦N)
Adjustment of northern line 85◦N→ 75◦N by 2.5◦

Adjustment of southern basis 35◦N→ 55◦N by 2.5◦

Final averaged height 46.9◦N − 80◦N

Table 4.2: Initial and final (averaged) configurations of the trapezoids of for the
omega block over North Pacific in March 2011.

Numerical implementation to determine omega blockings in

gridded data

Schielicke et al. (2016) introduced a method to estimate the circulations of
cyclonic and anticyclonic vortices such as low and high pressure systems.
In the following we will summarize her method after Müller et al. (2015). In
regularly gridded data (mercator projection), the shape of the tripole point
vortex configuration is approximated by an isosceles trapezoid which at
least includes parts of the polewards located high and of the two equator-
wards located low pressure systems. The parallel sides of the trapezoid are
aligned with two latitudes with the smaller side located polewards. Fol-
lowing Schielicke (2017), the aim of this pattern recognition method is to
minimize the absolute value of the total circulation |Γ|. The circulations
of the local coordinates of the centers of circulations and the intervortical
distances are derived systematically by the following steps:

(1) A trapezoid is fixed to the lat-lon grid such that the vertical centerline
of the trapezoid coincides with the approximated centre of the high
pressure system and its West-East (width)/North-South (height) ex-
tent includes (at least most) of the high pressure area as well as parts
of the two lows. See table 4.1 and 4.2 for more details on the initial
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Figure 4.3: Trapezoid approximating the region of the omega block. In the green
area the total cyclonic circulation ΓLow1 is calculated and in the yellow area the
total cyclonic circulation ΓLow2 is determined. The total anticyclonic circulation
ΓHigh is calculated in the striped area (Müller et al, 2015, Schielicke, 2016).

configuration of the trapezoids for two real cases.

(2) We will use an ensemble of 45 trapezoid shapes derived by moving
the southern baseline of the trapezoid by ±10◦ latitude in 2.5◦ steps;
and by moving the position of the northern line equatorwards by four
steps each 2.5◦ latitude (summarized in tables 4.1 and 4.2).

(3) At each time step, the total circulation and the centre of positive and
negative circulations associated with the three vortices inside the trape-
zoids are determined under the following conditions: Only positive
circulations located south of the high pressure centroid and west (east)
of the trapezoid centerline contribute to the southwesterly (southeast-
erly) low; only negative circulations polewards of the low pressure
centroids contribute to the high (see fig. 4.3).

(4) For every time step the minimum absolute value of the total circula-
tion, the centre of circulation, the trapezoid configuration, the trans-
lation velocity and the relative distances between the circulation cen-
ters are determined. Thereby, the local coordinates of the highs and
lows are determined by calculating the centers of circulation (3.11) of
each high and low pressure regions. An example is given in figure 4.6
where the local coordinates of the centers of the high and low pressure
systems are indicated by the red/blue circles.

Finally, averaged values of the variables derived in step (4) are calcu-
lated for the whole blocked period. Moreover, the North-South extent of
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Figure 4.4: A three point vortex equilibrium describes an omega block (geopoten-
tial mean over North Pacific 01-12 March 2011).

the averaged trapezoid configuration is used to calculate the mean global
wind speed averaged over the same latitudes and period.

Reanalysis data

In this chapter, we apply the concept of the explanation of blockings re-
garding three point vortex systems for two case studies. For the analysis
of blocked weather events in summer (June-August) 2010 and March 2011,
the horizontal wind field (u, v) and the geopotential height on the 500 hPa
level from the NCEP/DOE Reanalysis 2 (R2) Project was used (NCEP, 2000;
Kanamitsu et al., 2002). The data is available on a regular 2.5× 2.5 degrees
grid with a temporal resolution of 6 hours. In order to respect the differing
perimeter of the latitudes on the sphere, we weight the velocity of the zonal
mean flow in terms of its latitude, i.e. for the zonal mean flow u on the lat-
itude ϕi with radius Ri = R · cos(ϕi) and the earth radius R the weight is
given by (

∑
i u(ϕi) ·Ri) · (

∑
iRi)

−1.

4.4 Application on synoptic scale:

Atmospheric blockings

We will give two examples of the applicability of point vortex theory to
omega blocks. During blocked events the basic flow is usually divided
into different branches caused by a low number of isolated and persis-
tent vortices. This large-scale feature of the atmospheric flow field was
already recognized by Garriott (1904). In 1947, Namias (1947) mentioned
that blocked situations are associated with a retardation in the zonal cir-
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Figure 4.5: Regarding point vortex theory a three point vortex equilibrium trans-
lates, if the total circulation Γ = Γ1 + Γ2 + Γ3 vanishes. In a) we see that the
direction of translation depends on the local coordinate of the point vortices, and
also on the strengths of the single circulations, as we have discussed in chapter 3.
b) The idea of translating vortex systems can be transferred to atmospheric omega
blocks. Stationarity can be explained, if the translation velocity v∆ westwards is
equal to the velocity of the zonal mean flow u eastwards denoted as westerlies in
the meteorological context (Müller et al., 2015).

culation. Yeh (1949) explained blocking situations by the dispersion of an
initial solitary wave and Elliott and Smith (1949) discussed the effects of
large blocking highs on the general circulation in the northern-hemisphere
westerlies. One year later, Rex (1950a,b, 1951) characterized in detail dif-
ferent blocked situations: the zonal basic flow should be divided into two
branches at which each of the branches needs to transport mass. Moreover,
following his definition, the block should remain for at last 6-10 days. Usu-
ally, during blocked situations a very strong high pressure area appears.

Bluestein characterizes three kinds of blocks (Bluestein, 1992): The sim-
plest blocked event consists of a single high pressure area, another blocked
event is described by a high pressure area north of a low pressure area
(high-over-low). A further arrangement consists of a high pressure area
and two low pressure areas located south-west and south-east. The latter
weather situation is called omega-block, one example of such a weather sit-
uation is illustrated in figure 4.4, see also fig. 4.5. High temperatures and
droughts can be caused by those persistent high pressure areas that can be
stationary for several days or even for months. Moreover, the persistence
of the low pressure areas can lead to heavy rainfalls and floods. See also
the works of Pelly and Hoskins (2003) or Bott (2012). The first application
to describe stationary, blocked weather situations by three point vortices
was established by Obukhov et al. (1984) followed by Kuhlbrodt and Névir
(2000), who applied blocked dipole structures to point vortex motion.
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We will discuss analytically stationary solutions of a three point vortex
system. The general applicability of two-dimensional point vortex theory
to blocked events is indicated in fig. 4.2, where the analytical translation
velocity (4.4) of a three point vortex equilibrium with respect to its inter-
vortical distances is shown. Thereby, each curve represents a three point
vortex system. We chose circulations that are typical for the synoptic scale
and that sum up to zero. A main result of our approach is that the point
vortex velocity of 5-10 m/s on the typical synoptic scale of 2000-3500 km
coincides with the characteristic velocity of the atmospheric basic flow. This
result leads to a natural explanation of the whole omega block consisting of
the three vortices regarding the orientation. The tripole moves westwards
with velocity v∆ and the remaining interaction of vortices is parameterized
as zonal mean flow leading to the eastwards velocity u. If their absolute
values coincide such that

v∆ = −u, (4.11)

the stationarity of blocked events can be explained (see figure 4.5(b)). Be-
cause the point vortex constellation should be a relative equilibrium, the
total circulation of an ideal blocked event should vanish and therefore it
should satisfy:

ΓLow1 + ΓLow2 = −ΓHigh. (4.12)

If the local coordinates of the two lows, ΓLow1 and ΓLow2 , are lying on the
same latitude, the whole three vortex system translates along this latitude
with velocity (4.4). We do not explain the formation of blocked events, such
as Rossby waves do, but we explain the stationarity by considering the local
character, whereas wave theory is based on global features.

To include the β-effect the earth rotation has to be added. Therefore,
from inertial-system perspective the absolute vorticity should be used lead-
ing to an absolute circulation (according to (3.1)) and to modifications of
the equations of motion (3.3) considering the absolute point vortex veloc-
ity. Moreover, we have to add the effect of the earth rotation to the velocity
of the basic flow. By applying (4.11) both terms considering the effects due
to earth rotation would cancel. Therefore, in the following examples we
calculate circulations and the velocities in terms of the relative frame of ref-
erence.
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Figure 4.6: a) Temporal averages (24 July 2010 00 UTC – 7 August 2010 18 UTC
and b) 1 March 2011 00 UTC – 11 March 2011 12 UTC of geopotential height (black
contours) and relative vorticity (in 10−5s−1, colored contours). The vorticity is
shown in the field of kinematic vorticity number Wk > 1. The trapezoids encircle
the area of zero total circulation and the blue and red circles mark centers of the
low and high pressure areas, respectively. Note the different ranges of vorticity in
the plots (Schielicke et al., 2016; Müller et al., 2015)

4.4.1 Example 1: Omega-block over Russia 2010

We will examine the blocked situation in summer 2010, where the blocked
high caused a heat wave in the European part of Russia and surrounding
countries. During this summer, low precipitation, low wind velocities and
fatal forest fires were observed. In Moscow, more than 30 degrees Celsius
were measured on more than 40 days; even on 15 days the temperature
exceeded 35 degrees Celsius (Friedrich and Bissolli, 2011). Even though
2010 was one of the warmest years since weather recording, large parts
of West-and Central Europe were colder than the average which could be
ascribed to the two stationary low pressure areas.

During the time period 18 June 2010 until 23 July 2010 we recognize a
blocked dipole structure followed by an omega block from 24 July 2010 un-
til 07 August 2010. Even though the dipole structure can also be explained
by a (two) point vortex equilibrium, we will concentrate on the omega block
and explain the persistent structure by point vortex theory.

Thereby, to determine the circulations we first search for the trapezoidal
area of approximately zero circulation as we described in section 4.1. The
vertices of the initial trapezoid and the enlargement of the trapezoid-boundary
are summarized in table 4.1. Figure 4.6a) shows the determined final con-
figuration. To identify the low pressure systems ΓLow1 and ΓLow2 we use the
lower part of the trapezoid, i.e. the area south of 60◦N. And for the deter-
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Russia/Europe (2010)
Circulation in m2s−1 Location (◦N ;◦E)

ΓLow1 7.543 · 107 (45.8; 17.7)
ΓLow2 5.424 · 107 (45.1; 70.9)
ΓHigh −1.306 · 108 (60.7; 48.9)

Table 4.3: Values of the circulation of the tripole and the locations of the centers
over Russia and Europe in summer 2010

North Pacific (2011)
Circulation in m2s−1 Location (◦N ;◦E)

ΓLow1 7.090 · 107 (51.7; 166.7)
ΓLow2 8.322 · 107 (53.0; 214.3)
ΓHigh −1.546 · 108 (67.8; 186.0)

Table 4.4: Values of the circulation of the tripole and the locations of the centers
over North Pacific in March 2011

mination of the high pressure vortex we consider the area north of 45◦N.

The values and local coordinates of the finally determined circulations
are summarized in table 4.3. These values add up to the total circulation
Γ = −0.009 · 108m2s−1, which is only 0.71% of ΓHigh. Thus, the total circu-
lation is still small enough to apply formula (4.4). The averaged triangle
side length, that means the intervortical distances are given by r = 2910km.
Applying formula (4.4) leads to the analytical solution of the tripole trans-
lation:

v∆ = −(6.3± 2)
m

s
, (4.13)

where the error tolerance is estimated by the calculated minima/maxima
intervortical distances of the system. In the same time period, the zonal
mean flow averaged in the area 32.5◦N − 75◦N 1 is given by:

u = (6.5± 1)
m

s
. (4.14)

The sum of the mean flow and the analytical dipole velocity vanishes which
explains the stationarity of the tripole.

1The error tolerance of the basic flow results from the calculation of the max-
ima/minima mean wind speeds.
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4.4.2 Example 2: Omega-block over North Pacific 2011

As second example we will analyze an omega block during the time period
01-12 March 2011 that is shown in figure 4.6b). The circulations are again
determined by the numerical method and its values and local coordinates
are summarized in table 4.4. Here, the circulations of the two lows and the
high sum up to Γ = −0.005 108m2s−1 which is 0.32% of the value of ΓHigh.
The averaged intervortical distance, i.e. the side length of the equilateral
triangle is r = 2490 km. Applying formula (4.4) and including the error
estimation provides the tripole velocity

v∆ = −(8.8± 2)
m

s
. (4.15)

On the other hand, the mean flow (45◦N − 80◦N ) is given by:

u = (8.3± 1)
m

s
. (4.16)

Again, the sum of the flow velocity and the analytically determined point
vortex velocity vanishes explaining the stationarity of the block.

4.5 Modes of disturbed equilibria

In principle, it is necessary to consider deviations of the perfect equilibrium
tripole with vanishing total circulation and equal side lengths, because of-
ten we do not observe such perfect omega blocks. First, we disturb the
equilateral triangle in terms of its side lengths by shifting one vertex by ε.
This does not influence the circulations, i.e. the centre of circulation still lies
in infinity. Therefore, the three vortex system still translates. But in case of
perturbations of the local coordinate, the three vortices do not build a per-
fect equiangular triangle anymore; therefore, the trajectories of the vortices
are given by cycloids with small amplitudes, which is simplified illustrated
in figure 4.7. Here, the translational motion is superimposed by an addi-
tional pulsating mode. For ε → 0, these amplitudes approach zero, i.e. the
cycloid approaches a straight line. Moreover, the translation angle (4.5) is
affected by the perturbation ε. Both effects, the pulsating mode and the
varying angle only rarely affect the tripole velocity and therefore do not
spoil the over all explanations of the persistence of blocked situations.

Second, we disturb one circulation leading to a non-vanishing total cir-
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Figure 4.7: a) shows the equilibrium state for the initial states x1 = (1, 0), x2 =
(0.5,

√
.75), x3 = (0, 0) and Γ1 = 1, Γ2 = −2, Γ3 = 1, which builds an equilateral

triangle with total sum of circulations equals zero. b) Small perturbations of x3

lead to cycloid motions (Müller et al., 2015).

culation. Thus, the center of circulation does not lie in infinity anymore.
But for a small perturbation the centre of circulation still lies far away from
the three point vortex system and therefore, the vortices move along a large
circle, which locally can be assumed as linear translation.

We can summarize that small variations of both, the local coordinates
and the circulations do not affect the applicability of point vortex theory to
atmospheric blocked events.

4.6 Statistical corroboration of the applicability

of the point vortex model

To corroborate the applicability of point vortex theory to blockings (Hirt
et al., 2018) have automatized the algorithm we have discussed in section
4.3. In the first step blocking periods were identified using the instanta-
neous blocking index, short IBL. This blocking index was first introduced
by Tibaldi and Molteni (1990) and, at the Institut für Meteoreologie, imple-
mented by Richling et al. (2015). By applying this index to the Euro-Atlantic
sector (90◦W − 90◦E and 30− 85◦N ) for the time period 1990 to 2012 at the
500 hPa level, 347 blocking periods could be identified. In the next step,
the positions of the high and low pressure system were determined by ap-
plying the kinematic vorticity number (Schielicke et al. (2016), Schielicke
(2017), Müller et al. (2015)). Then, the blockings were further classified into
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Figure 4.8: The circulation and the intervortical distances of the identified omega
blockings are shown (Hirt et al., 2018)

high-over-low systems and omega blocks. In the last step the circulations
and intervortical distances of the identified vortices were determined such
that the point vortex tripole velocity for equilibria could be estimated. We
will shortly discuss the identified omega blocks and their velocities that
result from the trapezoid method, because it can be seen as a statistical cor-
roboration of the results we have shown earlier in this chapter. For further
details, e.g. the statistical results of the velocities of the high over low sys-
tems, the contour method, and the stability analysis see Hirt et al. (2018).

Examining the omega blocks Hirt et al. (2018) found that the condition
of vanishing total circulation is approximately statistically satisfied, see fig.
4.8 left. But it is observed that the triangle spanned by the identified vor-
tices deviates from the equilateral triangle, which is also shown in fig. 4.8
right. In fig. 4.9 the theoretical point vortex velocity and the averaged
mean flow are compared. Here, the x-axis represents the zonal mean flow
u averaged over 20 − 80◦N and the y-axis shows the calculated point vor-
tex velocity. Each dot represents one blocking period. The blue line shows
the regression. Here, a correlation of 0.71 was found which confirms the
applicability of the point vortex model to omega blocks. Moreover, the re-
sult of a multiple linear regression shows that the circulation of the high
system is related to the zonal mean flow. In Hirt et al. (2018) very stable
high pressure areas are observed, whereas the locations of the lows tend to
change, which occasionally lead to a transition of high-over-lows to omega
blocks and vice versa. This is also discussed in Schielicke (2017). Such a
transition from a tripole to a dipole or vise versa happened, for instance,
during the heatwave over the European part of Russia in 2001 that we have
discussed in section 4.4, example 1. However, Hirt et al. (2018) also exam-
ined the effect of the deviations of the relative equilibrium. Based on the
equation of motion for relative distances, the point vortex equilibrium is



CHAPTER 4. ATMOSPHERIC BLOCKINGS 60

Figure 4.9: The x-axis shows the zonal mean flow and the the y-axis the tripole
velocity of the omega block determined by the point vortex equations of motions
for three vortex equilibria. Each dot illustrates a blocking period. A correlation
coefficient of 0.71 was found (Hirt et al., 2018)

here regarded as one fix point in the phase space similar to the last chapter,
where we discussed the three-dimensional phase space of the relative dis-
tances in terms of Nambu mechanics. Hirt et al. (2018) shows that this fix
point corresponds to an unstable saddle point and come to the conclusion
that atmospheric blockings, especially the high pressure systems behave
similar to the idealized point vortex model.

4.7 Summary

We have shown the applicability of point vortex theory for a better under-
standing of atmospheric phenomena on the synoptic scale. By assuming
constant dissipation of circulation, we could show a linear relation of the
characteristic circulation and characteristic lengths on synoptic scale. Since
the point vortex velocity of a three-vortex equilibrium and the mean zonal
wind derived from reanalysis data coincide with respect to their absolute
values, the stationarity of blocked situations can be explained. Evaluat-
ing omega blocks over the European part of Russia and over the North
Pacific affirms the possibility to explain the stationarity of blocked events
by this low-order point vortex model. These results have also been pub-
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lished in Müller et al. (2015) and were further explored in our working
group (Pueltz, 2014; Isernhagen, 2015; Braun, 2016; Schielicke, 2017; Hirt
et al., 2018). Isernhagen (2015) examined further case studies to corrob-
orate our concept to explain omega blocks. Moreover, Hirt et al. (2018)
used data to confirm this concept statistically inventing an automatism to
identify blockings based on the Tibaldi and Molteni (1990) blocking index.
The characteristics (relative distances and circulation) of the high and low
pressure systems are determined by applying Schielicke et al. (2016)’s kine-
matic vorticity number and it is shown statistically that the three point vor-
tex theory is reasonable to describe blocked weather situations. Moreover,
in Newton (2001), Pueltz (2014), Hirt (2016) and Braun (2016) point vortex
dynamics on the sphere are discussed regarding synoptic as well as plan-
etary scales. Pueltz (2014) discusses the differences of the applicability of
point vortex dynamics to blockings on the sphere with the outcome that
the point vortex velocities on the sphere and in the plane negligible differ
from each other. Hirt (2016) analyzed the interaction between the equa-
torial stratosphere and the polar vortex by numerical simulations of 8+1
point vortex equilibria. Concerning the influence of reasonable perturba-
tions, she could confirm instability of the QBO east phase and stability of
QBO west phase during the north hemispheric winter periods. Thereby,
as summarized in Müller et al. (2015), a dynamical explanation of the ob-
served Holton Tan effect during the winter periods by point vortex theory
is proposed. Therefore, point vortex theory seems to be suitable to explain
different atmospheric processes on different scales.
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Part II

Algebraic aspects of continuous
fluid dynamics
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Chapter 5

Introduction to algebraic aspects
of vortex dynamics

So far, we have discussed discrete Nambu mechanics. In chapter 3, it was
applied to the idealized point vortex model to classify planar point vortex
motion. In chapter 4, this idealized point vortex concept was further used
to explain blocked weather situations. In the following, we will consider
continuous Nambu mechanics as basis for an algebraic approach to intro-
duce a new concept to understand the spatial structures of splitting storms.
This also leads to an alternative point of view of classical turbulence with
respect to the helicity density field for conservative systems. Finally, in the
last chapter we will show how continuous Nambu mechanics can be used
to find shortest paths of point vortices moving from one point to another. In
general, shortest routes between two points are called geodesics such that
we call the shortest vortex paths vortex geodesics.

A common way to analyze fluid motions is the numerical examination
of the Navier-Stokes equations. Here, we will discuss vortex dynamics
algebraically, based on continuous Nambu mechanics. Considering the
Nambu formulation, the kinetic energy and a vortex-related quantity play
an equal role for the representation of the vortex motion. The choice of the
vortex-related quantity depends on the spatial dimension. In two dimen-
sions the conserved vortex-related quantity is given by the enstrophy; and
in three dimensions the helicity is conserved. But, we notice that for con-
tinuous dynamics, two conserved quantities do not assure the integrability
of a three-dimensional system.

There are several works addressing fluid dynamics algebraically. Based
on the Hamiltonian structure the Poisson bracket is considered in order to
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Figure 5.1: Thesis structure: In the first part of this thesis we have considered
discrete vortex dynamics and in the second part we will explore vortex dynamics
from an algebraic point of view.

derive variational principles and examine the stability of hydrodynamical
systems. There are different algebraic formulations of fluid mechanical sys-
tems regarding continuous as well as discrete dynamical systems, see e.g.
the works of Arnold (1969a), Arnold (1969b), Salmon (1982), Marsden and
Weinstein (1983), Salmon (1988), Shepherd (1990), or Arnold and Khesin
(1992). The commonly used Poisson brackets for hydrodynamical systems
arose from the algebraic structure of mass point dynamics. The first La-
grangian formulations of mass point mechanics is based on the variational
principles behind Newton’s fundamental laws for force balance F = ma.
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For Lagrangians that are purely kinetic energy, it was already known in
1840 that the corresponding solutions of the Euler-Lagrange equations are
geodesics. Geodesics are shortest routes between two points that depend
on the underlying topology. A summary of Jacobi’s lecture notes are pub-
lished in Jacobi (1866). By applying Legendre transformations, it can be
shown that Hamilton’s principle is equivalent to the Euler-Lagrange equa-
tions. Lagrange and Poincaré were the first who also took rotations – in
terms of rigid body rotations – into account. They considered the Lie alge-
bra of the classical rotation group in R3 leading to a representation of the
Euler-Poincareé equations that can be seen as generalized Euler equations
for rigid body rotations (Lagrange, 1788; Poincaré, 1901; Holm et al., 1998).

A Lagrangian and Hamilton formulation for the Euler equation of in-
compressible fluids, similar to the description for rigid body rotation, was
introduced by Arnold (1966) and further studied, e.g. by Holm et al. (1998).
They adapted the Lagrangian description of mass point dynamics to fluid
mechanics. This leads to a Lagrangian description of vortex flows with a
canonical Hamilton structure. In this approach, the Lie-Poisson-bracket for
fluids is explored on a Poisson-manifold, which is associated to a cotangent
bundle. This provides the natural structure of Lie algebras and Lie groups.
To discuss Lagrangian mechanics the tangent space of the special orthog-
onal Lie group SO(3) is considered. The tangent space of SO(3), denoted
TSO(3), can be regarded as velocity-phase space (Holm et al., 1998; Arnold
and Khesin, 1992). Applying the Legendre transformation this representa-
tion leads to a non-canonical Hamiltonian description on the tangent space.
On this way it can be shown that Euler’s rigid body equations are equiva-
lent to a variational principle, the so-called rigid body action principle. A
further Lie-Poisson representation for discrete dynamics is called Heavy top
(Holm et al., 1998). It describes rigid body rotation with a fixed point in
a gravitational field, where the underlying Lie algebra is the algebra of in-
finitesimal Euclidean motions in three-dimensional Euclidean space. Since
rigid body rotations are considered, the basic phase space is also the cotan-
gent bundle of SO(3). The heavy top Hamiltonian is given by the total en-
ergy. Holm et al. (1998) point out that there are similar structures between
the Poisson-bracket for compressible flow and that for heavy top.

By using the orthogonal decomposition of a wind field into a divergence-
free part and a gradient, Holm et al. (1998) state that the Euler equations for
an incompressible, homogeneous fluid moving in a region D are equiva-
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lent to Poisson-bracket equations. Here, the Euler equations are formulated
similar to the vorticity equation. In this way, the dynamics can be expressed
by the kinetic energy providing a Hamiltonian structure. Holm et al. (1998)
also regards the vorticity equation from an Hamiltonian point of view.

However, the above representation provides Hamilton’s principle such
that the associated curve satisfies the Euler-Lagrange equations, a reduced
variational principle and basic Euler-Poincaré equations (Holm et al., 1998);
Holm et al. (1998) also consider the vorticity as a dynamical variable formu-
lated in the Hamiltonian structure. Additionally, they formulate Kelvin’s
circulation theorem in terms of this Lie-Poisson structure with respect to
the vorticity. It is shown that Lie-Poisson systems can be applied to various
physical problems: heavy top, compressible and stratified incompressible
flow, magnetohydrodynamics as well as shallow water dynamics, and even
quasi-geostrophic theory, see e.g. the works of Sudarshan and Mukunda
(1974), Vinogradov and Kupershmidt (1977), Ratiu (1982), Holm and Ku-
pershmidt (1983), or Marsden and Ratiu (2013).

We note two differences between the fluid mechanical Lie algebras that
are based on Poisson brackets as shown above and the Lie algebras based
on Nambu-mechanics derived by Névir and Blender (1993). On the one
hand, the antisymmetric Poisson-Lie brackets yields a representation of the
fluid dynamical equations in terms of the energy. The Nambu representa-
tion of the equations of fluid dynamics is formulated with respect to the en-
ergy and a vortex conservation law (2D: enstrophy, 3D: helicity) both deter-
mine the Lie-structure (see Névir, 1998). In previous studies, the algebraic
approaches for the analysis of vortex motions are mostly based on Euler’s
equation of motion. Nambu mechanics is derived from the Helmholtz vor-
ticity equation. Thus, we focus here only on those wind components that
are related to vortex motions and express them in terms of vortex-related
conserved quantities. Furthermore, the pressure is not given explicitly, but
the Nambu formulation contains the conservation of mass by the incom-
pressibility condition.

In this way, the Nambu-bracket allows for a compact and direct repre-
sentation of vortex motions. Moreover, as we will discuss later in this the-
sis, the Nambu formulation of Névir and Blender (1993) takes the vortex
rotations into account that differ from rigid body rotations.

After a short summary on the basic group theoretical and algebraic def-
initions in chapter 6, we will give an introduction to the Nambu formu-
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lation of 2D and 3D continuous vortex dynamics in 7. In chapter 8 we
will derive the Vortex-Heisenberg Lie algebra and the corresponding Lie
group. In a second step we will introduce a novel Lie algebra that we will
call Helmholtz Vortex algebra, where we include the angular momentum
to the Vortex-Heisenberg Lie algebra. Based on the Vortex-Heisenberg Lie
group and the Helmholtz Vortex Lie group we will explore the mechanism
of splitting storms in terms of this Lie algebra in chapter 9. Here, we aim
for a better understanding of the spatial structures of the wind fields that fi-
nally lead to splitting storms. Therefore, we will investigate the conditions
on the spatial structures of a flow field that lead to splitted vortices. The
trilinearity of the Nambu-bracket allows for an examination of the helicity
field showing the existence of vortex splits. To the best of our knowledge,
this is the first group theoretical approach to understand atmospheric phe-
nomena. Already Arnold (1966) relates the Euler-Poincaré equations on a
Lie algebra to geodesic motion on the corresponding Lie group. In chap-
ter 10 we will show, how the novel Vortex-Heisenberg group provides a
natural structure to derive point vortex geodesics via sub-Riemannian ge-
ometry. We will also introduce a concept to derive 3D vortex geodesics.

The Lie group operation itself was communicated with Peter Névir in
private communication with Anton Schober in 2010. Based on their work
and the algebraic Nambu formulation of vortex dynamics by Névir and
Blender (1993), the novel contributions in this thesis that we will discuss in
chapter 8 are:

(i.) Introducing a matrix representation of the Vortex-Heisenberg Lie al-
gebra for 2D and 3D vortex dynamics.

(ii.) A derivation of the nilpotent Vortex-Heisenberg Lie group for 2D and
3D vortex dynamics.

(iii.) Extending the Vortex-Heisenberg group for three-dimensional vor-
tex dynamics by the relative angular momentum to obtain a further
spatial information of vortex motion. We will call this novel group
Helmholtz Vortex group.

In chapter 9, based on steps (i)-(iii) we will

(iv.) Introduce a novel approach to understand the conditions for the de-
velopment of splitting storms based on the Vortex-Heisenberg Lie
group.
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(v.) Apply the Helmholtz Vortex group to generate further vortex splits.

(vi.) Shortly discuss the implications of this algebraic approach for turbu-
lence studies.

And, finally, in chapter 10, we will

(vii.) Apply Sub-Riemannian geometry to find vortex geodesics for point
vortices and outline the concept for the derivation of vortex geodesics
in three-dimensional fluids.



Chapter 6

Group theory of vortex dynamics

6.1 How can group theory be applied to atmos-

pheric sciences?

In the following, we will consider an algebraic approach to introduce a new
concept for the explanation of splitting storms and to describe point vortex
geodesics. To this end, we will derive a group that is based on Helmholtz’
vorticity equation. Mathematically, a group is a set M together with an op-
eration ∗ that combines any two elements, say M1 and M2 ∈ M , to find a
third element M3 such that M1 ∗M2 = M3. The closure-property of groups
states that this third elementM3 also lies in the setM . This seemingly harm-
less property is important for the application of group theory to the atmo-
sphere because of the following reason: The vortex groups we will derive in
chapter 8 result from Helmholtz’ vorticity equation, (cf. chapter 7, equation
(7.31)). We consider the group elements M1 and M2 as solutions of the vor-
ticity equation, where each element describes a state of a vortex flow. Then,
the induced group element M3 = M1 ∗M2 can be interpreted as a state, too.
Furthermore, because of the closure-property, it yields an additional solu-
tion of the vorticity equation. Before we summarize the basic definitions of
group theory, we will discuss the group of rotations which is a subset of the
so-called orthogonal group and a classical example that we can observe in
our daily life. We will use the following notations, see e.g. Hall (2003) or
Baker (2012):

Let Mm,n(K) be the set of m × n matrices whose entries are in the field
K (see def. 6). For n × n matrices we will simply write M(n,K). Then, the
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common used notation for the set of invertible n× n matrices is

GL(n,K) = {A ∈M(n,K) | det(A) 6= 0}, (6.1)

where det(A) denotes the determinant of the matrix A. The set of unimod-
ular matrices is given by

SL(n,K) = {A ∈M(n,K) | det(A) = 1} (6.2)

Both sets are groups under matrix multiplication called

GL(n,K) : general linear group

SL(n,K) : special linear group
(6.3)

where we will consider for K in the following the real numbers, the complex
numbers and the quaternions, i.e. K = R, K = C or K = H.

Definition 4. Matrix group
A matrix group is a closed subgroup of GL(n,K).

Examples of Matrix groups are the orthogonal and special orthogonal
groups

The orthogonal group O(n)

The set of all n×n orthogonal matrices together with the usual matrix prod-
uct is called orthogonal group O(n) = O(n,R)

O(n) = {R ∈ GL(n,R)|RRT = RTR = 1}, (6.4)

where 1 denotes the unit matrix and RT transpose of the matrix R.

The special orthogonal group SO(n)

If the determinant of the matrices is one, this set is called special orthogonal
group SO(n,R):

SO(n) = {R ∈ GL(n,R)|RRT = RTR = 1, det(R) = 1}. (6.5)
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Example 1. The special orthogonal group SO(3)
A well known subset of the orthogonal group is the set of three dimensional
rotations. Its basis in matrix representation is given by the rotations around
the x, y and z-axis by the angle φ:

Rx(φ) =

1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

 ,Ry(φ) =

cos(φ) 0 − sin(φ)

0 1 0

sin(φ) 0 cos(φ)


and

Rz(φ) =

cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1


Now, we consider two planar rotations, both around the z-Axis, by the arbi-
trary but fixed angles φ1 and φ2. Since we use the matrix representation, the
group operation (∗) is given by the matrix multiplication (·). Therefore, the
group operation of the two group elements Rz(φ1) and Rz(φ2) induce the
following third state Rz(φ1)Rz(φ2) which, because of the closure-property,
is an element of the orthogonal group, too:

Rz(φ1)Rz(φ2) =

cos(φ1) − sin(φ1) 0

sin(φ1) cos(φ1) 0

0 0 1


cos(φ2) − sin(φ2) 0

sin(φ2) cos(φ2) 0

0 0 1



=

cos(φ1) cos(φ2)− sin(φ1)sin(φ2) − cos(φ1) sin(φ2)− sin(φ1) cos(φ2) 0

cos(φ1) sin(φ2) + sin(φ1) cos(φ2) cos(φ1) cos(φ2)− sin(φ1)sin(φ2)

0 0 1


Applying the trigonometric addition and subtraction theorems leads to:

Rz(φ1)Rz(φ2) =

cos(φ1 + φ2) − sin(φ1 + φ2) 0

sin(φ1 + φ2) cos(φ1 + φ2) 0

0 0 1

 = Rz(φ1 + φ2). (6.6)

Therefore, the group operation of two planar rotations can also be expressed
by one rotation by the angle φ1 + φ2.

Next, we rotate around two axes, i.e. in three dimensions. We rotate by
φ1 about the x-axis and by φ2 about the y-axis and calculate the group oper-
ation. For Matrix groups, the group operation is given by the usual matrix
product. Considering each matrix Rx(φ1) and Ry(φ2) as group elements we
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obtain:

Rx(φ1)Ry(φ2) =

1 0 0

0 cos(φ1) − sin(φ1)

0 sin(φ1) cos(φ1)


cos(φ2) 0 − sin(φ2)

0 1 0

sin(φ2) 0 cos(φ2)

 (6.7)

⇐⇒ Rx(φ1)Ry(φ2) =

 cos(φ2) 0 − sin(φ2)

− sin(φ2) sin(φ1) cos(φ1) − sin(φ1) cos(φ2)

cos(φ1) sin(φ2) sin(φ1) cos(φ1) cos(φ2)

 (6.8)

and leads to a third group element. As an example, we set φ1 = π and
φ2 = π, we obtain:

Rx(π)Ry(π) =

−1 0 0

0 −1 0

0 0 1

 = Rz(π) (6.9)

which is equal to the rotation around the z-axis by the angle π. Both exam-
ples demonstrate the closure property.

In this chapter, we will outline the physical idea of a group for vortex
dynamics and in chapter 8 we will show a mathematical derivation and def-
inition of a vortex group for three dimensional inviscid flows. We regard
two elements A and A′ of the vortex group, where each element describes
the state of an arbitrary but fixed region of a flow field. We assume a me-
teorological, atmospheric basic flow. State A is characterized by its shear
field v ∈ R3 with a vanishing vortex vector ξ = ∇× v = 0 ∈ R3. We assign
A the pair (v, ξ). The second state A′ is characterized by the velocity field
v′ and the vortex vector ξ′, where v′ and ξ′ are parallel causing a strong
helical rotation. Thus, this state is characterized by large helicity density
values, because the helicity density is defined by one and a half times the
scalar product of the velocity and the vorticity vector. Therefore, we can
regard A′ as an idealized updraft in a supercell (we will discuss this case in
more detail in chapter 9.)

The group operation (∗) of these two states induces a further group el-
ement A′′ = A′ ∗ A. Physically, the group operation can be seen as inter-
action, or state change. The outcome of the group operation A′′ is also an
element of the group, which follows from the closure-property of groups;
physically, it shows the change of the state of the fluid. The induced group
element A′′ is also composed of a velocity and a vorticity part and we can
determine the helicity (density) field of this state. In chapter 8 we will ex-
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amine the plus-minus-structure of helicity density fields to investigate the
split of vortices. Our previous two examples, the group of rotations and the
group for atmospheric vortex dynamics can be sketched as follows:

Rotation group (O(3)):(
Rotation by
the angle φ1

)
·

(
Rotation by
the angle φ2

)
=

(
Rotation by

the angle φ1 + φ2

)

Vortex- group:Initial field A :

helicity-free
shear-flow

 ·
 Initial field A′ :

rotating flow
with max. helicity

 =

Induced field A′′ :

Splitted flow field
± helicity.


In chapter 8 we will introduce such a vortex group to explain atmo-

spheric vortex splits by analyzing helicity fields in chapter 9.

6.2 Introduction to group theory

To investigate the Vortex-Heisenberg Lie group we will first introduce the
main definitions and theorems of general group theory, then we will dis-
cuss the so-called Lie groups. Lie groups are groups that are characterized
by an underlying topological structure. Finally, we will derive a matrix rep-
resentation of the Vortex Heisenberg group and prove that the introduced
group is indeed a Lie group. Here, we will follow Hall (2003), Wipf (2016)
and Knapp (2013) and start with the basic definitions.

Definition 5. Group
A group is a set G together with an operation G × G into G. This group
operation ∗ combines two group elements a and b ∈ G by a ∗ b forming
a third element which is also an element of the group. Every group (G, ∗)
satisfies the following properties:

i. Associativity:
(a ∗ b) ∗ c = a ∗ (b ∗ c), a, b, c ∈ G (6.10)

ii. Existence of the identity element e ∈ G:

a ∗ e = e ∗ a = a, a ∈ G (6.11)
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iii. Existence of inverse elements a−1 ∈ G:

a−1 ∗ a = e (6.12)

Moreover, a group is called abelian if the group is commutative, i.e. if all
a, b ∈ G satisfy

a ∗ b = b ∗ a. (6.13)

A classical example of a group is the set of integers with the addition as
group operation. We see that the sum of two integers is an integer, too,
and therefore the generated element lies in the group. Moreover, for three
integers a, b, c it is (a+ b) + c = a+ (b+ c), therefore the associativity holds.
Zero is the identity element and the inverse element of the element k in the
group is −k. Therefore, all group properties are satisfied. We can also see
that the set of integers with addition is an abelian group, because (6.13) is
satisfied.

Definition 6. Field
A field is a set K together with operations + and ∗ such that:

i. (K,+) is an abelian group, the identity element is 0.

ii. (K \ {0}, ∗) is an abelian group with identity element 1.

iii. The distributive law holds: Let a, b ∈ K, then
a ∗ (b+ c) = a ∗ b+ a ∗ c, (a+ b) ∗ c = a ∗ c+ b ∗ c.

In this thesis we will primarily consider the fields R (real numbers) and
C (complex numbers) as well as the quaternions that form a skew field.
To identify and create different representations of the Vortex Heisenberg
group we repeat the most important definitions dealing with maps between
different (representations of) groups:

Definition 7. Group homomorphism, Isomorphism, Automorphism
Let (G, ∗) and (G′, ?) be groups. A map ϕ : G −→ G′ such that

ϕ(g1 ∗ g2) = ϕ(g1) ? ϕ(g2) ∀g1, g2 ∈ G. (6.14)

is called a group homomorphism. If the homomorphism is bijective, i.e. there
exists a one-to-one correspondence1, the map ϕ is called an isomorphism. If

1A bijective function is called one-to-one correspondence , because it is a function that it
is a one-to-one (injective) and onto (surjective) mapping of a setM1 to a set Y and therefore,
it exists a unique inverse function from M2 to M1.
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an isomorphism ϕ : G −→ G′ exists the groups G and G′ are isomorphic,
notation: G ∼= G′. If G′ = G the map is called automorphism.

Moreover, we will define the kernel and image of a group homomor-
phism and use it for the definition of the special linear group. This group
is important because we can find matrix representations for (subgroups of)
the special linear group.

The kernel of a homomorphism ϕ : G −→ G′ is the set

ker(ϕ) = {g ∈ G | ϕ(g) = e′} (6.15)

where e′ is the identity element in G′. The image of a homomorphism is the
set

im(ϕ) = {ϕ(g) | g ∈ G}. (6.16)

We remark that the image is a subgroup of G′ and the kernel a so called
normal subgroup, which we will discuss later. Now, let K be a field, and
let GL(n,K) be the matrix group with elements in the field K. Then the
determinant:

det : GL(n,K) −→ (K∗, ∗) (6.17)

is a homomorphism, mapping from GL(n,K) to the multiplicative group
(K∗, ∗) of the field K. The kernel of the determinant is the special linear
group we have defined in (6.2):

SL(n,K) = ker(det) = {A ∈ GL(n,K) | detA = 1}. (6.18)

Definition 8. Ring
A ring is a set R with two operations R × R −→ R, usually called addition
and multiplication and often denoted (a, b) 7→ a+ b and (a, b) 7→ a ∗ b, such
that

(i) (R,+) is an abelian group

(ii) (R, ·) is a monoid2

(iii) multiplication is associative in the sense that a ∗ (b ∗ c) = (a ∗ b) ∗ c for
all a, b, c ∈ R

2Assume a set S and a binary operation S × S −→ S. Then, S together with the opera-
tion is called monoid if (i) the associativity property holds and (ii) if there exists a identity
element for all elements in S.
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(iiv) the two distributive laws a ∗ (b+ c) = (a ∗ c) + (b ∗ c) and (b+ c) ∗ a =

(b ∗ a) + (c ∗ a) hold for all a, b, c ∈ R.

The sets Z,Q,R and C are examples of rings as well as the set of quadratic
matrices with the usual matrix addition and matrix multiplication (Karpfin-
ger and Meyberg, 2017). We remark that the set Z is a ring, but not a field,
because there do not necessarily exist inverse and identity elements of ring
elements.

Definition 9. Ideal of a ring
An ideal I of a ringR (or two-sided ideal in case of ambiguity) is an additive
subgroup such that a ∗ b and b ∗ a are in I , whenever a is in I and b is in R.

Consider the following example of an ideal after Knapp (2006). Denote
ϕ : R → R′ a homomorphism of rings, where its image is a subring of R′.
Now, we take two elements, one element a from the kernel, i.e. ϕ(a) =

0, and another element from the ring R. We can write ϕ(a ∗ b) = ϕ(a) ∗
ϕ(b) = 0 ∗ ϕ(b) = 0. And analogously, ϕ(b ∗ a) = 0. The kernel of a ring
homomorphism is closed under products of members of the kernel with
arbitrary members of the ring R. Following the definition, an ideal I of R is
an additive subgroup such that a ∗ b and b ∗ a are in I , whenever a in I and
b in I . It follows that the kernel of a homomorphism is an ideal.

Definition 10. Center of a group
The center Z of a group G is defined by the set

Z = {z ∈ G| z ∗ g = g ∗ z ∀g ∈ G} ⊂ G. (6.19)

It is a (non-empty) subgroup of G.

Thus, the center of a group is the set of all elements that commute with
every element of the group and therefore, it is an abelian subgroup. A
group is called centerless, if the center is trivial meaning that only consists
of the identity element. We also introduce a very similar definition, the
centralizer of a group. In contrast to the center, the centralizer of an element
is the set of elements that commute with that element.

Definition 11. Centralizer of a group
The centralizer C of a group (G, ∗) is defined by the set

C = C(g) = {z ∈ G| z ∗ g = g ∗ z} ⊂ G, (6.20)
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where g is in a fixed subset S of G. It is a non-empty subgroup of G.

Therefore, the centralizer always contains the center of the group. More-
over, we compare the definition of the so-called normalizer:

Definition 12. Normalizer
A normalizer of a subset S of the group G is defined to be:

N(S) = {g ∈ G | g ∗ S = S ∗ g} (6.21)

Therefore, the normalizer of of a set S contains the centralizer as a sub-
group. Both the normalizer and the centralizer contain the center of the
group (see e.g. Cohen et al., 1999).

Definition 13. Normal subgroup
A normal subgroup N of G satisfies:

g ∗N ∗ g−1 = N ∀g ∈ G (6.22)

Every group has at least two normal subgroups: the identity element of
G andG itself. The center of a group and the commutator subgroup are fur-
ther examples of a normal subgroup. If ϕ : G −→ G′ is a homomorphism,
then the kernel ker(ϕ) is a normal subgroup of G. We also note that a nor-
malizer is the largest intermediate subgroup in which the given subgroup
is normal.

Definition 14. Commutator subgroup
The commutator subgroup [G,G] is the group generated by all the commu-
tators

{[a, b] ≡ a ∗ b ∗ a−1 ∗ b−1| a, b ∈ G} (6.23)

of the group.

The commutator group [G,G] is a normal subgroup of G. We will use
commutator groups to define central series (see def. 16), which in turn
is a basic ingredient to define the so-called nilpotent group. The group
for vortex dynamics that we will derive in chapter 8 will turn out to be
nilpotent. Nilpotency allows a simple transition between Lie groups and a
Lie algebra and enables us to find vortex geodesics. Moreover, a quotient
group G/N is abelian if and only if N contains the commutator subgroup.
Therefore it can be interpreted as a measure of how far the group is from
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being abelian: the larger the commutator subgroup is, the „less abelian“ the
group is.

After the next definition, we can introduce the so-called nilpotent group,
which is an important characterization of the group that we will derive later
to describe vortex dynamics. A central series for a group can be seen as a
witness for its nilpotency.

Definition 15. Central series,

A central series is a sequence of subgroups

{1} = G0 / G1 / · · · / Gn = G (6.24)

such that [G,Gi+1] 6 Gi, i = 1, 2, ..., n, where the bracket [G,H] denotes
the commutator subgroup generated by all g−1h−1gh for g in G and h in H
as we have defined in (6.23). That means that the successive quotients are
central. Therefore, we can write [G,Gi+1] 6 Gi 6 Gi+1. For each i, Gi+1 is
normal in G.

Definition 16. Lower central series
Given a groupG, a lower central series is the inductively defined descending
sequence

G = G0 D G1 D · · · D Gn (6.25)

such that Gi+1 = [Gi, G], i = 0, 1, 2, ..., n − 1 is the commutator subgroup
generated by all g−1h−1gh for g in G and h in Gi−1 as we have defined in
(6.23). For a nilpotent group (see def. 17 below), this series terminates in
finitely many steps at the trivial subgroup.

Definition 17. Nilpotent group
A group is called nilpotent, if its lower central series terminates in the trivial
subgroup after finitely many steps. If there exist n + 1 different subgroups
in the series (including the trivial subgroup and the whole group), we say
that the length is n.

We remark that not every group has a lower central series, but if a group
has a central series, it is called nilpotent group. And if we can find a lower
central series of length n, where n is the smallest length, then n is called the
nilpotency class of G. For example, the trivial group is the unique group of
nilpotency class 0. Examples of groups of nilpotency class 1 are the non-
trivial abelian groups. In chapter (8) we will introduce a further nilpotent
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group the Vortex-Heisenberg group. The nilpotent group structure of the
Vortex-Heisenberg group implies a nilpotent algebra, which in turn allows
for the search for vortex geodesics. A classical example of a nilpotent group
is the group of upper unitriangular n × n matrices such as the classical
Heisenberg group.

Definition 18. Solvable group
A groupG is a solvable group if there exists a sequence of subgroupsG1, . . . , Gk

of G such that, for each j, 1 ≤ j ≤ k, Gj is a normal subgroup of Gj−1, the
quotient group Gj−1/Gj is abelian, and Gk is the identity.

In other words: A group is called solvable if it has a subnormal series
whose factor groups (quotient groups) are all abelian.

For example, nilpotent groups are all solvable, but there are solvable
groups that are not nilpotent, which underlines the importance of nilpotent
groups. This relation does also hold for algebras, as we will briefly discuss
later.

Definition 19. Simple group
A group G is said to be simple if the normal subgroups, the identity, and G

itself are the only normal subgroups.

The following two definitions allow for combinations of two groups
such that they form a common group. Either by defining the combina-
tion of the two groups component by component (direct product) or more
generalized (indirect product).

Definition 20. Direct product
Let (G, ·) and (H, ◦) be two groups and consider their Cartesian product
G ×H and the set of ordered pairs (g, h) with g ∈ G and h ∈ H . Then, we
define a product operation as follows:

(g1, h1) ∗ (g2, h2) = (g1 · g2, h1 ◦ h2), (6.26)

which can be seen as a component by component composition. This opera-
tion makes the Cartesian product of G and H into a group, called the direct
product of G and H and denoted G×H .

A generalization of this concept ist called semidirect product. In chap-
ter 8 we will introduce two groups that are based on Helmholtz’ vorticity
equation. The semidirect product can be used to show the relation of both
vortex groups. The semidirect product of two groups is defined as:
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Definition 21. Semidirect product
Let (N, ·) and (H, ◦) be two groups and let ϕ : H −→ Aut(N) be a group
homomorphism mapping the group H to the set of all automorphisms of
N . As in our last definition, the Cartesian product G := N × H of the sets
N and H is the set of all pairs (n, h) with n ∈ N and h ∈ H . This product
together with the group operation ∗ defined by:

(n1, h1) ∗ (n2, h2) := (n1 · ϕ(h1)(n2), h1 ◦ h2) (6.27)

forms a group. This product is called semidirect product and denoted by
H ϕ n N , where ϕn is used for the notation of the semidirect product with
respect to the homomorphism ϕ.

In the definition of the semidirect product the homomorphism ϕ has a
large impact on the group structure. As an example, let us consider ϕ to
be the trivial homomorphism, mapping every element of H to the identity
automorphism of N , then HϕnN is equal to the direct product H ×N . But
if ϕ is an arbitrary homomorphism, it has an impact on the structure of the
semidirect product and we say that H acts on N and not vice versa.

So far, we have introduced the basic definitions of groups. But in order
to apply groups to physical problems as atmospheric wind fields, we will
consider matrix representations of groups. In this way, group elements can
be represented as matrices forming a group together with the usual rule
for matrix multiplication. Mathematically, a representation of a group is
a linear map from the group to a K-vector space V , such that each group
element can be described by a matrix. For any finite-dimensional V , the
group GL(n, V ) is isomorphic to GL(n,K) (see e.g. Lorenz, 2018).

Definition 22. Group representation
A representation D of a group G on a linear space V is a group homomor-
phism

D : G −→ GL(n, V ), g 7→ D(g) (6.28)

where the group structure of G with group operation ∗ is respected:

D(g1 ∗ g2) = D(g1) ·D(g2), D(e) = 1 =⇒ D(g−1) = D−1(g). (6.29)

The latter equation (6.29) follows from the assumption that the representa-
tion is a group homomorphism. Considering matrices as representations
for group elements, the corresponding group composition, here denoted
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with ·, is given by the usual matrix product.

A trivial representation maps all group elements to the unit matrix. Rep-
resentations are called faithful if they are injective. (Then D is a group ho-
momorphism G −→ GL(V ), ker(D) = e ∈ G). By Choosing a basis D(G)

become matrices. In case of faithful representations all properties of the
group are conserved.

Definition 23. Left group action
We say a group G acts on a set X when there is a map ϕ : G×X → X such
that the following conditions hold:

i. ϕ(e, x) = x, for all x ∈ X and with identity element e of G.

ii. ϕ(g, ϕ(h, x)) = ϕ(gh, x) for all g, h ∈ G and all x ∈ X .

Then, G is called a transformation group and the map ϕ is called the group
action.

We can also think of a representation as a linear action of a group on a
vector space, because to every group element g in a group G, there exist an
operator D(g), which acts on a vector space V (Hall, 2003). We will use the
definition of group actions in particular in chapter 10, where we will search
for vortex geodesics based on the Vortex-Heisenberg group we will derive
in chapter 8.

Before we introduce Lie groups, that means groups with an underly-
ing topological structure, we discuss two groups that are frequently ap-
plied in physics and other natural sciences. In (6.4) we have discussed
planar and spatial rotations as subgroups of the orthogonal group O(n).
We extend this idea by including translations, too, leading to the Euclidean
group. The Vortex-Heisenberg group that we will derive later also deals
with rigid body rotations and translations, and the concept is quite simi-
lar to the Euclidean group although both groups result from very different
physical concepts. For more details and further physical examples, see Hall
(2003).

Example 2. The Euclidean group E(3)
The Euclidean group has two subgroups, the orthogonal group (see (6.4))

and the group of translations that have a matrix and a vector representation.
As we will see in the next example, the Euclidean group is the semidirect
product of the orthogonal group extended by the group of translations. For
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now, let us consider the three-dimensional Euclidean space. Then, the Eu-
clidean group describes motions that we can observe every day on every
location — translations and rotations. We can define the euclidean distance
between two points x1 and x2 in R3 by d(x1,x2) = ||x1 − x2||, which we
know is a straight line and provides the shortest path between two objects
in the three dimensional euclidean space. If we apply an affine transforma-
tion to x ∈ R3 that is given by

x 7→ Rx + a, (6.30)

the distance of two points is invariant if and only if R is a rotation, i.e. an
element in O(3) and a ∈ R3. Affine transformations (6.30) preserves points,
straight lines and planes.

In chapter 8 we will introduce a group for three dimensional incom-
pressible, inviscid fluids that contains the rigid body rotations and also the
translation. Therefore, we will briefly recall the derivation of the matrix rep-
resentation of the Euclidean group E(3). The three-dimensional Euclidean
group E(3), which is the group of all one-to-one, onto, distance-preserving
maps of R3 to itself, that is, maps f : R3 → R3 such that d(f(x1), f(x2)) =

d(x1,x2) for all x1,x2 ∈ R3. We do not assume anything about the structure
of f besides the above properties. Therefore, f does not need to be linear.
The orthogonal group O(3) that we discussed earlier, is an example for a
subgroup of E(3). It is the group of all linear distance-preserving maps of
R3. Define a further subgroup of E(3): The translation of x by a:

Ta(x) = a + x, a,x ∈ R3. (6.31)

Every element T of E(3) can be written uniquely as an orthogonal linear
transformation followed by a translation of the form

T = TaR with a ∈ R3 and R ∈ O(3). (6.32)

The proof will lead to the group operation. We will prove that every one-
to-one onto, distance preserving map of R3 to itself, which fixes the origin
must be linear. We write an element T = TaR of E(3) as a pair {a,R}. For
x ∈ R3 we obtain:

{a,R}x = Rx + a (6.33)
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and

{a,R}{a′,R′}x = R(R′x + a′) + a = (a + Ra′) + RR′x. (6.34)

Thus, the group operation of E(3) resulting from the latter equation reads
as:

(a,R) ∗ (a′,R′) = (a + Ra′,RR′) := (a′′,R′′). (6.35)

Therefore, the three-dimensional Euclidean group is the semidirect prod-
uct of the abelian group R3 of the translations and the group of rotations
O(3). In chapter 8 we will first introduce a nilpotent group for vortex dy-
namics and later, we will include the Euclidean group into the vortex group
such that the vortex group contains rigid-body rotations. The inverse of an
element in E(3) is given by:

(a,R)−1 = (−R−1a,R−1). (6.36)

Since translations are not linear maps, E(3) is not a subgroup of the
general linear group GL(3, K). But E(3) is isomorphic to a subgroup of
GL(3 + 1,R) via the map that associates (a,R) ∈ E(3) to the following ma-
trix:

(6.37)

Thus, every vector a and every rotation R, (a,R) ∈ E(3) is mapped one-
to-one to a matrix. Moreover, direct computation shows that multiplication
of elements of the form (6.37) follows the multiplication rule in (6.35) so that
this map is a homomorphism. Therefore, E(3) is isomorphic to the group
of all matrices of the form (6.37), with R ∈ O(3). Because the limit of (6.37)
is again of that form, we have expressed the Euclidean group E(3) as so-
called matrix Lie group. We note that the previous calculations also hold
for n-dimensions and we can replace ’3’ by n.

The last example is similar to our approach of the algebraization of
Nambu fluid mechanics resulting in a matrix Lie group that we will dis-
cuss in chapter 8. The Galilei-group is a further physical example. It is
based on Newton mechanics and the group of the Galilei-transformation in
space and time that captures the symmetry properties of inertial systems in



CHAPTER 6. GROUP THEORY OF VORTEX DYNAMICS 86

classical physics.

Example 3. The Galilei-group
Consider a coordinate system formed by three dimensional spatial coordi-
nates and one time coordinate. With (t,x) and (t′,x′) we denote one state
with respect to two inertial systems with origins O and O′ and basis ei, e′i,
i, j = 1, . . . , n, (x,x′, ei, e′i ∈ R3, t, t′ ∈ R). The following transformations
between these two coordinate systems are possible:

Transformation Time coordinate Local coordinate

Translation of the origin t′ = t x′ = x + a

Translation of the time-origin t′ = t+ τ x′ = x

Rotation of the systems t′ = t x′ = Rx

Special Galilei-transformation t′ = t x′ = x + ut

where u is a constant velocity, x, a and u in R3, t and τ denote time, see
(Wipf, 2016). The translation of the origin together with the rotation of
the systems form the three-dimensional Euclidean group that we have dis-
cussed in our previous example. The rotations of the systems together with
the special Galilei transformation provide a similar structure that is usu-
ally denoted Eu(3) The special Galilei-transformations build the so-called
Galilei group. One element of this group is a composition of translations,
rotations and special Galilei-transformations:

t′ = t+ τ und x′ = Rx + ut+ a, x, a ∈ R3, RTR = 1. (6.38)

We note that the Galileo-transformation is determined by 10 parameters:
τ, a,u and R. Now, we change the reference system I to the reference sys-
tem I ′ by the transformations in (6.38); afterwards we switch from I ′ to I ′′.
These transformations from I → I ′′ can be expressed as:

(τ ′, a′,u′,R′) ∗ (τ, a,u,R) = (τ ′ + τ, a′ + R′a + u′τ,u′ + R′u,R′R)

= (τ ′′, a′′,u′′,R′′).
(6.39)

Moreover, Galilei-transformation can be assigned to 5× 5-matrices:x′

t′

1

 =

R u′ a′

0 1 τ

0 0 1


x

t

1

 (6.40)
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which is the matrix representation of the Galilei-group (see e.g Wipf, 2016)).
Thus, the Galilei-group is a subgroup of GL(5,R). It has four normal sub-
groups. For the discussion of all twelve subgroups, especially for the four
normal subgroups, see Lévy-Leblond (1971). Here, we will recall the two
most frequently discussed normal subgroups after Wipf (2016): (1) the pure
translations (0, a,0,E) and (2) the translations and the special Galilei trans-
formations (0, a,u,E). We summarize that the Galilei-group can be formu-
lated as the semidirect product of the group R4 representing the translations
in time and space with elements (τ, a) and the Euclidean group Eu(3) with
elements (u,R):

G = Eu(3) nR4 (6.41)

There are four possibilities to express the Galilei-group in terms of a semidi-
rect product of groups. There are five ideals, but only four ideal can be used
to formulate a semidirect product. Finally, the action of (u,R) ∈ E(3) on
(τ, a) ∈ R4 is given by:

ϕ(u,R)(τ, a) = (τ,Ra + τu). (6.42)

For further details on the Galilei group see e.g. Wipf (2016) or Lévy-Leblond
(1971).

6.2.1 Lie group

Lie groups are groups with topological structure, so-called manifolds. In
order to introduce a Lie group that is based on Helmholtz’ vorticity equa-
tions, we will give a short introduction to differential geometry of mani-
folds, and the structure of Lie groups and Lie algebras.

Definition 24. Differentiable manifold
An n-dimensional manifoldM is a topological space that is a second count-
able Hausdorff space and locally homeomorphic to Rn.

In other words, a n-dimensional manifold looks locally like a piece of
Rn. Let us assume, we are standing on a sphere, for instance, the Earth;
locally, it could feel like standing on a two dimensional surface. This is an
example of a two-dimensional manifold embedded in three-dimensional
Euclidean space. We will follow the definitions and examples given in Hall
(2003).
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Definition 25. (Normal, sub-) Lie group
A Lie group is a differentiable manifold G which is also a group and such
that the group product

G×G→ G (6.43)

and the inverse map g → g−1 are differentiable. A Lie subgroup H of the
group G is a submanifold H of G that also is a subgoup of G. A normal
subgroup N of G is also a Lie subgroup. It is called Lie normal subgroup.

In Hall (2003), p. 313, it is proven that every matrix Lie group is a
smooth embedded submanifold of the vector space V = Mn(C), where
we think of V = Mn(C) as a real vector space of dimension 2n2. Because
the matrix product and the matrix inverse are smooth on the open subset
GL(n,C) of V = Mn(C), every matrix Lie group is indeed a Lie group.

Definition 26. Lie group action, left invariance
An action of a Lie group G on a smooth manifold M is a group homomor-
phism into the group of diffeormorphism on M

G −→ Diff(M) (6.44)

such that the action map
G×M −→M (6.45)

is smooth.

Define the map LG → Diff(G), g 7→ Lg by Lg(g
′) = gg′. Then Lg is a

homomorphism for each g ∈ G and represents the usual action of G on
itself. Let now X be a vector field on a Lie group G, i.e. on the underlying
manifold. X is left invariant if

(dLg)(X(x)) = X(Lg(x)) = X(gx) (6.46)

for each x, g ∈ G.

Left invariance means that the vector field is left invariant under the
derivative of the group action, which means that the vector field is com-
pletely determined by the vector at the unit element of the Lie group. The
main difference of the definition of a Lie group action compared to the def-
inition 23 of a group action is that the Lie group action is defined for (Lie)
groups on smooth manifolds.
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Here, we will give some examples of matrix Lie groups that are often
applied in different fields, especially in physics. In chapter 7, we will intro-
duce the Vortex-Heisenberg matrix Lie group.

Example 4. O(n) and SO(n)
The orthogonal group O(n) and the special orthogonal group SO(n) with
determinant equal to±1, which is a subgroup of the orthogonal group O(n).

Example 5. Symplectic group
Let B[x,y] be the skew-symmetric bilinear form on R2n given by B[x,y] =∑n

k=1(xkyn+k − xn+kyk). Let J be the 2n× 2n matrix

J =

(
0 1n

−1n 0

)
. (6.47)

Then for all x,y ∈ Rn we can write the bilinear form as:

B[x,y] = x · Jy. (6.48)

And the symplectic group is given by:

Sp(2n,K) = {M ∈ GL(2n,K) |MTJM = J} (6.49)

We remark that Sp(n,R) is a subgroup of GL(2n,R) and a matrix Lie group.

A classical physical application of symplectic geometry is given by Hamil-
ton’s equations of motion. Consider a single particle moving in the two-
dimensional real space. The state of the system is given by the two po-
sition coordinates (q1, q2) and the momentum (p1, p2), which build the 4-
dimensional phase space. The so-called Hamiltonian H provides the time
evolution of this system. The Hamiltonian for one particle of mass m in a
potential V (q1, q2) is given by:

H =
1

2m
(p2

1 + p2
2) + V (q1, q2) (6.50)

satisfying Hamilton’s equations:

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H

∂pi
, i = 1, 2. (6.51)

and describing the time evolution of one state of the system. It can be ex-
tended to any 2n-dimensional phase space R2n. In (2.20) we have already
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written the Hamilton equations with respect to the two-dimensional skew-
symmetric tensor J: (

dp
dt
dq
dt

)
=

(
0 1n

−1n 0

)
·

(
∂H
∂p
∂H
∂p

)
. (6.52)

Example 6. (Special) unitary group
The set of unitary matrices:

U(2,C) ≡ U(2) = {U ∈ GL(2,C)|U†U = I} (6.53)

and the special unitary group:

SU(2) = {U =

(
a b

−b a

)
| a, b ∈ C, aa+ bb = 1} (6.54)

are further examples of Lie groups. Here, the overline denotes complex
conjugation. Moreover, SU(2) is a normal subgroup of U(2) and SU(2) can
be identified with S3. The center of SU(2) is Z = {1,−1} and the factor
group SU(2)/Z is isomophic to the group of rotations SO(3) in three di-
mensions.

6.2.2 Lie algebra

The tangent space to a linear Lie group G at the identity3, that we denote
with g = TeG, has special properties. It is equipped with a multiplication
operation – the Lie bracket – such that g can be defined as a Lie algebra.
Because Lie algebras are linear spaces, they can be easier applied to many
problems than Lie groups.

„The miracle of Lie theory is that a curved object, a Lie group G, can be
almost completely captured by a flat one, the Tangent space TeG of G at

the identity.“ (Stillwell, 2008):

We start with the definition of an algebra

Definition 27. Algebra
An algebra A (also called algebraic structure) over a field is a K-vector field
with a K-linear operation (A, ∗): A× A→ A. Let x, y, z ∈ A, λ ∈ K:

3A closed subgroup G ⊆ GL(n;K) is called linear group.
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1. (x+ y) ∗ z = x ∗ z + y ∗ z

2. x ∗ (y + z) = x ∗ y + y ∗ z

3. λ (x ∗ y) = (λx) ∗ y = x ∗ (λy)

We notice that an algebra does not need to be associative. Moreover, an
algebra is called unitary, if the identity element of the corresponding group
is also the identity element of the algebra.

Definition 28. Lie Algebra
A Lie Algebra is a vector space g over some field F together with a binary
operation [·, ·] : g × g → g called the Lie bracket. For ∀a, b ∈ F. ∀x, y, z ∈ g
the Lie bracket satisfies the following axioms:

1. [ax+ by, z] = a[x, z]+ b[y, z], [z, ax+ by] = a[z, x]+ b[z, y] (bilinearity)

2. [x, x] = 0

3. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi identity)

A sub Lie algebra h of a Lie algebra g is a subvector space h ⊆ g that is closed
with respect to the Lie bracket. I.e. for all X, Y ∈ h it is [X, Y ] ∈ h.

The Lie algebra g of a matrix Lie group G is just the tangent space of
G at the identity. Furthermore, the exponential map as it is defined in the
matrix case coincides with the exponential map for general Lie groups (see
e.g. Hall, 2003). Let now X1, . . . ,Xn a basis of a n-dimensional vector space
g with [Xi,Xj] = fkijXk. Then fkij are called structure constants, where the
Einstein summation convention is used.

Definition 29. Abelian Lie-Algebra
A Lie algebra g is called abelian if [X,Y] = 0 for all X,Y in g.

We notice that abelian Lie algebras are related to abelian connected Lie
groups. They are n-dimensional vector spaces with the trivial Lie brackets.

Definition 30. Ideal
A Lie subalgebra I ⊂ g is called invariant Lie-subalgebra or ideal of g if

[I, g] ⊆ I (6.55)

We remark that a normal subgroup of the Lie group is analogously to
an ideal of a Lie algebra (see e.g. Kühnel, 2011).
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Definition 31. Center
The center of a lie algebra g is the set of elements Z that commutes with all
elements of the Lie algebra, i.e.

z := {Z ∈ g| [Z, g] = 0} (6.56)

Thus, the center is an ideal of g.

Definition 32. Centralizer
The centralizer of a subset m ⊂ g is the set of elements of g with

zg(m) : {X ∈ g| [X,m] = 0} (6.57)

This set is a linear space and it is closed with respect to the Lie-product.
The centralizer of m contains all elements that commute (only) with m.
Whereas the center contains all elements commuting with g. Therefore,
it is easy to proof that

z =
⋂
m∈g

zg(m), (6.58)

where
⋂

denotes the intersection. The centralizer is defined for all elements
and therefore, the centralizer of the whole Lie algebra zg(g) is the center of
the Lie algebra.

Definition 33. Lower central series, nilpotent Lie-Algebra
Let g be a Lie algebra. The lower central series of g is defined recursively as
g = g1 and gn = [g, gn−1]. The Lie algebra gn is called nilpotent if the lower
central series vanishes. The smallest value of m ∈ N for which gm+1 = 0 is
called degree of nilpotency.

We will introduce the vortex-Heisenberg Lie algebra in chapter 8 which
is an example of a nilpotent Lie algebra. This characterization simplifies
the transition of a Lie group to a Lie algebra and it also allows for finding
vortex geodesics by applying sub-Riemannian geometry.

Definition 34. Derived series, solvable Lie Algebra
Let g be a Lie algebra. The recursively defined series g = g(1) and g(n) =

[g(n−1), g(n−1)] is called derived series of g

The Lie algebra g is called solvable if the derived series terminates, i.e.
if there exists a m ∈ N such that g(m) = 0
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We notice that every finite-dimensional Lie algebra has a unique maxi-
mal solvable ideal, the so-called radical and any finite-dimensional real Lie
algebra can be decomposed into the semidirect product of a solvable ideal
and a semisimple subalgebra. This decomposition is called Levi decom-
position. It follows that any finite-dimensional Lie algebra is a semidirect
product of a solvable Lie algebra and a semisimple Lie algebra. We also re-
mark that every nilpotent (solvable) Lie group can be related to a nilpotent
(solvable) Lie algebra (see, e.g. Hall, 2003).

Let us assume that we are looking for a representation of a group G

on a vector space and let this vector space be the tangent vector space at
the identity TeG. It is the Lie algebra of the group and the representation
is called adjoint representation. The elements of the Lie algebra act on a
space as linear transformation represented by the adjoint representation.
The linearization results from taking the differential of the action of a Lie
group G. There is an invariant bilinear form on the Lie algebra that comes
with the adjoint representation. It is the so-called „Killing form“, named af-
ter the mathematician Wilhelm Killing (1847-1823). Especially for nilpotent
Lie groups and Lie algebra this concept leads to a simple transition from
the Lie algebra to the associated Lie group as we will show in terms of the
Vortex-Heisenberg-Lie algebra in chapter 8.

Definition 35. Adjoint representation of a Lie group
Let G be a matrix Lie group with Lie algebra g. For each A ∈ G the adjoint
mapping is a linear map defined by

AdA : G −→ GL(g) (6.59)

with
AdA(X) = AXA−1. (6.60)

The map A → AdA is a Lie group homomorphism from the group G into
the group of invertible operators GL(g) (see e.g. Hall, 2003). Moreover, the
adjoint mappingAd is a representation of the groupG that acts on the space
g. That is the reason, why Ad is called adjoint representation of G. It is a real
representation of the Lie group G.

Definition 36. Adjoint representation of a Lie algebra
Furthermore, if g is a Lie Algebra, the map

ad : g −→ gl(g) (6.61)



CHAPTER 6. GROUP THEORY OF VORTEX DYNAMICS 94

given by
adX(Y) = [X,Y] (6.62)

is a Lie algebra homomorphism that is a representation of g. It is also called
adjoint representation. Here, g is the Lie algebra of some matrix Lie group G

and gl(g) denotes the general linear Lie algebra of the general linear group.

Both representations, Ad and ad are related by exp(adx) = Adex. For
further details, also on the following definitions, see e.g. Hall (2003).

Theorem 1. Engel’s theorem
Let g be a finite-dimensional complex Lie-Algebra. Then the following
statements are equivalent:

1. The Lie algebra g is nilpotent.

2. For all X ∈ g the map adX : g → g with adX(Y ) = [X, Y ] is a nilpo-
tent linear map.

Definition 37. Exponential map
Let G be a Lie group and g be its Lie algebra. The exponential map is the
map

exp: g→ G.

Further, let G be a matrix Lie group and let X be a n × n real or complex
matrix. Then the exponential map coincides with the matrix exponential. It
is defined by the Taylor series:

exp(X) =
∞∑
k=0

Xk

k!
= E + X +

1

2
X2 +

1

6
X3 + · · · (6.63)

with the identity matrix E .

Let us consider a matrix M as representative of a nilpotent algebra (6.63),
where M2 is a matrix that entries are all zeroes leading to a simplified ex-
ponential map and thus, to a simplified transition from the Lie group to
the Lie algebra. We will apply the so-called Baker-Campbell-Hausdorff-
formula based on the exponential map to derive the group operation of the
Vortex-Heisenberg group.

Theorem 2. Baker-Campbell-Hausdorff-formula
Suppose X and Y are finite dimensional complex or real n × n matrices,
then

eXeY = eX+Y+ 1
2

[X,Y]+ 1
12

[X,[X,Y]]− 1
12

[Y,[X,Y]]+.... (6.64)
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Moreover if X and Y commute with their commutator, i.e.

[X, [X,Y]] = [Y, [X,Y]] (6.65)

the last equation simplifies to:

eXeY = eX+Y+ 1
2

[X,Y]. (6.66)

The proof is for example given in Hall (2003). Regarding the matrix
representation of groups, the group operation is given by the usual matrix
product. Last formula (6.66) leads to the group operation, which can be
expressed using the matrix representation for two matrices X and Y and
the usual matrix product:

The matrix group operation X ·Y is given by X + Y +
1

2
[X,Y] (6.67)

Here, the first sum on the right hand side in (6.67) results from the expo-
nential map, because the product of two exponential maps is given by a
sum of the exponents.

We note that Lie algebras are usually non-associative (except if the com-
mutator always vanishes) (Knapp, 2006). Embedding a Lie algebra g into
an associative algebra a leads to the definition of the universal enveloping.

Definition 38. Universal enveloping
Let g be an arbitrary Lie algebra over the field K. An universal enveloping
algebra of g (or simply enveloping algebra of g) is a pair (U(g), ε) where
U(g) is an associative, unital K-algebra4 and ε : g→ Lie(U(g)) a homomor-
phism of Lie algebras such that the following universal property holds: for
any associative unital K-algebra a and any homomorphism of Lie algebras
ϕ : g → Lie(a), there exists a unique homomorphism ϕ̃ : U(g) → a of asso-
ciative algebras such that ϕ = ϕ̃ ◦ ε (Gobet, 2017) as it is summarized in the
diagram below:

g U(g)

a

ε

ϕ ϕ̃

4An algebra is called unital or unitary if it has a unit or identity element for all elements
in the algebra.
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A universal enveloping algebra is unique up to a unique isomorphism.

Definition 39. Casimir elements
The Casimir elements of a Lie algebra are the elements of the center of its
enveloping algebra.

Casimir elements play a crucial role in theoretical physics as well as
in mathematics. Being elements of the center of the enveloping Lie alge-
bra means that they commute with every element in the Lie algebra which
makes them to distinguished elements. Concerning vortex dynamics, we
will see that Casimir elements play a role that is comparable to the role of
the energy (cf. chapter 7).

6.3 Summary

In this chapter, we have repeated the necessary definitions and properties
of groups, Lie groups and Lie algebras such that we can derive Lie groups
and a Lie algebras based on Helmholtz’ vorticity equation. We close this
chapter by summarizing the main differences between the main definitions
of Lie groups and Lie algebras in table 6.1 and 6.2:

Lie group (G) Lie algebra (g)
Commutator subgroup (see (6.23)) Lie bracket (see Def. 28)
{[a, b] = a ∗ b ∗ a−1 ∗ b−1, a, b ∈ G} [A,B] = AB − BA

Center (see (6.19)) Center (see (6.56))
Z = {z ∈ G | z ∗ g = g ∗ z ∀g ∈ G} z = {z ∈ g | [z, g] = 0}

Centralizer (see (6.20)) Centralizer (see (6.57))
Z(g) = {z ∈ G | z ∗ g = g ∗ z} z(m) = {X ∈ g | [X,m] = 0}

Normal subgroup N ⊂ G (see (6.22)) Ideal I (see (6.55))
{g ∗N ∗ g−1 = N ∀g ∈ G} [I, g] ⊆ I

Table 6.1: Main definition for Lie groups and Lie algebras.

We note that there is no analogous concept of the ideals for Lie groups.
Regarding Lie groups, the concept of ideals can be compared to normal
subgroups. There are ideals for rings:
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Ring (R) Algebra (a)
Ideal I (w.r.t. rings R, see Def. 9) Ideal I (see (6.55))
a ∗ b ∈ I, b ∗ a ∈ I, ∀a ∈ I, b ∈ R I · a ⊆ I and a · I ⊆ I

Table 6.2: Comparison of the definition of an ideal for a ring and an algebra.
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Chapter 7

Continuous Nambu mechanics

In the beginning of this chapter, we will follow Névir and Blender (1993)
and derive the Nambu representation of the 2D and 3D vorticity equations.
At the end of this chapter, we will summarize the bracket relations of all
related conserved quantities after Névir (1998). These brackets form a Lie
algebra that is based on the Helmholtz vorticity equation. In chapter 8 we
will start at this Lie algebra for vortex dynamics and derive a Lie group
for vortex dynamics. In chapter 9 we will use this group operation to rep-
resent splitting storms in terms of the helicity field. In this way, we can
propose conditions for a helicity cascade for special initial conditions. Fi-
nally, in chapter 10 we will use this Lie algebra from this chapter to search
for shortest paths of vortices.

7.1 Nambu formulation of 2D vortex dynamics

The 2D-equation of motion for incompressible inviscid fluids in an inertial
system is given by

dvh
dt

= − 1

ρ0

∇hp (7.1)

with the horizontal velocity vh, constant density ρ0 of the fluid and pressure
p. The continuity equation is given by the condition of incompressibility:

∇h · vh = 0. (7.2)

To reformulate (7.1) we first use Euler’s decomposition for the material
derivative:

dvh
dt

=
∂vh
∂t

+ vh · ∇hvh, (7.3)

99
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where the advection can be written as:

vh · ∇hvh = ∇h
1

2
v2
h + ζ k× vh. (7.4)

Using (7.3) and (7.4), the equation for incompressible inviscid flows reads
as:

∂vh
∂t

+ ζ k× vh = −∇h

(
p

ρ0

+
1

2
v2
h,

)
(7.5)

where ζ = k·∇×v denotes the vorticity. Thus, multiplying the last equation
by the cross product k · ∇h× leads to the vorticity equation that can be
formulated as Lagrangian conservation of the vorticity:

∂ζ

∂t
+ vh · ∇hζ = 0 ←→ dζ

dt
= 0. (7.6)

Note that the 2D vorticity equation for incompressible and inviscid flows
states that local vorticity changes are only dedicated to redistributions of
vorticity, i.e. advection. Using the condition of a solenoidal vector field, a
stream function ψ(x, y) can be defined

∇h · vh = 0 ←→ vh = k×∇hψ(x, y). (7.7)

Then, the vorticity ζ can also be expressed via the stream function:

ζ = k · ∇h × vh = ∆hψ, (7.8)

where k denotes the unit-vector (0, 0, 1). Now, we can write the horizon-
tal advection of the vorticity in terms of the Jacobi-operator J(ψ, ζ) of the
stream function and the vorticity:

(k×∇hψ) · ∇hζ = J(ψ, ζ) =
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
(7.9)

We notice the Jacobian-operator of this nonlinear advection term is anti-
symmetric. With the last equations, we can write the 2D incompressible
inviscid vorticity equation as:

∂ζ

∂t
= −J(ψ, ζ) (7.10)

In incompressible, two-dimensional fluids there are two global conserved
quantities that are constitutive for the time evolution of fluids, the kinetic



101 7.1. NAMBU FORMULATION OF 2D VORTEX DYNAMICS

energyH and the enstrophy E :

H =
1

2

∫
F

df vh (Kinetic energy)

E =
1

2

∫
F

df ζ2 (Enstrophy)
(7.11)

The functional derivative of the energy and enstrophy with respect to the
vorticity are given by

δH
δζ

= −ψ, δE
δζ

= ζ. (7.12)

See Névir (1998) for the derivation of the functional derivatives. Using the
functional derivative of the energy, a non-canonical Hamilton representa-
tion of the vorticity equation can be found. First, we define the operator
D(ζ) as

D(ζ) = −J(ζ, )̇ = −
(
∂ζ

∂x

∂

∂y
− ∂ζ

∂y

∂

∂x

)
. (7.13)

Then, we can write the vorticity equation as follows:

∂ζ

∂t
= D(ζ)

δH
δζ

=: {ζ,H}. (7.14)

We note that the operator D(ζ) is singular. There is an infinite number of
Casimirs C that depend on the vorticity ζ . And, using the above represen-
tation the time evolution reads:

∂C
∂t

= D(ζ)
δC[ζ]

δζ
= −J

(
ζ,
δC[ζ]

δζ

)
= 0. (7.15)

Therefore, the Casimirs C[ζ] are conserved. 1

7.1.1 Casimir functionals

Casimir functionals are global conserved quantities. Regarding two-dimen-
sional fluid dynamics, they can be expressed by surface integrals. In this
context they are functionals φ(ζ) depending on the vorticity. Let F denote
a surface. Then, the Casimir functionals are given by:

Cφ[ζ] =

∫
F

df φ(ζ), with
δC
δζ

=
dφ(ζ)

dζ
= φ′(ζ), (7.16)

1We remark that functional derivatives or variational derivatives can be seen as gener-
alized gradients of functions.
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where φ′(ζ) denotes the derivative with respect to the vorticity. We obtain

J

(
ζ,
δφ

δζ

)
=
∂ζ

∂x

∂φ′(ζ)

∂y
− ∂ζ

∂y

∂φ′(ζ)

∂x
= φ′′(ζ)

(
∂ζ

∂x

∂ζ

∂y
− ∂ζ

∂y

∂ζ

∂x

)
= 0 (7.17)

Using φ = ζ (7.16) provides the definition of the circulation and for φ = 1
2
ζ2

we obtain the enstrophy. However, we can raise ζ to any higher power
n ∈ N to derive further Casimir functionals:

Cφ=ζ = Z =

∫
F

df ζ (Circulation)

Cφ= 1
2
ζ2 = E =

1

2

∫
F

df ζ2 (Enstrophy)

Cφ= 1
n
ζn =

1

n

∫
F

df ζn (Further Casimir functionals)

Cφ(ζ) =

∫
F

df φ(ζ) (General Casimir functionals)

(7.18)

(see Névir, 1998). The circulation and the enstrophy are the most known
and most important Casimir functions of the vorticity equation. Casimir
functionals are distinctive functionals, because they commute with every
functional of the bracket:

{F , Cφ} = −
∫
F

df
δF
δζ
J

(
ζ,
δCφ
δζ

)
= 0 (7.19)

Thus, they also commute with the energy and therefore, they are conserved
quantities.

We show, why the above Casimir functionals (7.18) commute with every
functional of the vorticity. First, we use the Lagrangian conservation of the
vorticity (7.20):

dζ

dt
= 0 =⇒ dφ(ζ)

dt
=
dφ

dζ

dζ

dt
= φ′

dζ

dt
= 0 (7.20)

Then, we apply Euler’s decomposition (7.3) and include the horizontal solenoidal
condition∇h · vh = 0, we obtain the local conservation law of the vorticity-
Casimir functionals:

∂φ(ζ)

∂t
+∇h · (vhφ(ζ)) = 0 (7.21)

Integrating the last equation about a closed surface leads to the conserva-
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tion of the vorticity-Casimir functionals:

∂Cφ
∂t

=
∂

∂t

∫
F

df φ(ζ) = 0 (7.22)

as stated above.

Now, we would like to formulate the vorticity equation in terms of the
Nambu formalism with respect to a Casimir functional. Thus we insert
the Casimir functional of the enstrophy in the non-canonical representation
leading to the Nambu formulation of the vorticity equation:

∂ζ

∂t
= −J

(
δE
δζ
,
δH
δζ

)
(7.23)

In contrast to Hamiltonian dynamics Nambu’s formulation for two-dimen-
sional incompressible fluid dynamics is based on two conserved quantities
that characterize 2D turbulence – energy and enstrophy – that have equal
status. Analogously to discrete Nambu mechancis, a Nambu bracket can be
defined. Consider a functional with respect to the vorticity F : Rn → Rn.
Then, the time evolution of the functional F [ζ] can be formulated as:

∂F [ζ]

∂t
=

∫
F

df
δF
δζ

∂ζ

∂t
= −

∫
F

df
δF
δζ
J

(
δE
δζ
,
δH
δζ

)
(7.24)

We summarize: For two-dimensional incompressible, inviscid fluids,
the time evolution of a function F : Rn → Rn is given by the trilinear
Nambu bracket, introduced by Névir and Blender (1993):

{F , E ,H} := −
∫
F

df
δF
δζ
J

(
δE
δζ
,
δH
δζ

)
(7.25)

The Nambu bracket (7.25) is antisymmetric and the calculating the Nambu
bracket of three conserved quantities results in a conserved quantity, too
(see Névir, 1998).

Inserting the vorticity in the above defined bracket, we obtain the Nambu
formulation of the vorticity equation:

∂ζ

∂t
= {ζ, E ,H} (7.26)

We notice that the time evolution of the vorticity depends as well on the
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energy as on the enstrophy. We can also express an arbitrary function F [ζ]

in terms of these two conserved quantities:

∂F [ζ]

∂t
= {F , E ,H} (7.27)

(see Névir, 1998). The Nambu bracket as defined above is trilinear, because
the Jacobi-Operator as well as the functional derivative are (multi-)linear
Moreover, the Jacobi-operator is anti-symmetric. Therefore, the Nambu-
bracket is antisymmetric in all three arguments. The Nambu bracket sat-
isfies the Jacobi identity when they are reduced to a Poisson bracket by
keeping one argument fixed (cf. Névir and Blender, 1993). In the next
section we will derive the Nambu representation of the three-dimensional
Helmholtz equation.

7.2 Nambu formulation of 3D vortex dynamics

Regarding Nambu mechanics, a main difference between two- and three
dimensional fluid dynamics are the vortex-related conserved quantities. In
the last section, we have shown how the conservation of the enstrophy is
used to formulate the 2D-vorticity equation. In three dimensions, the 3D
vorticity equation will be expressed by the Nambu bracket with respect
to the helicity, because the enstrophy is not conserved. Comparing both
quantities, the enstrophy is positive definite, whereas the helicity can also
be negative. The sign structure of the helicity density field will allow for
the investigation of splitting storms in the next chapter.

7.2.1 Equations of motion

The Nambu bracket for three-dimensional vortex dynamics is based on the
Euler equation for incompressible flows that is given by

dv

dt
= − 1

ρ0

∇p−∇φ (7.28)

with velocity vector v, constant density ρ0, pressure p and potential of the
gravitational force φ. For the condition to be incompressible, the second
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equation is given by the continuity equation:

∇ · v = 0. (7.29)

Applying Euler’s decomposition dv
dt

= ∂v
∂t

+ v · ∇v, and dividing the ad-
vection term into two expressions v · ∇v = ∇1

2
v2 + ξ × v with the three-

dimensional vorticity vector ξ = ∇× v, we can formulate Euler’s equation
as follows:

∂v

∂t
+ ξ × v = −∇

(
p

p0

+
1

2
v2 + φ

)
. (7.30)

The rotation of last equation∇× (7.30) leads to the well-known three-dimensional
Helmholtz vorticity equation:

∂ξ

∂t
= −∇× (ξ × v) = −∇ · [vξ − ξv]

∂ξ

∂t
= ξ · ∇v︸ ︷︷ ︸

Twisting term

− v · ∇ξ︸ ︷︷ ︸
Advection term

(7.31)

The Helmholtz equation form the basis of the Lie algebra and the Lie group,
as we will show in the following. For further reading on the vorticity equa-
tion see e.g. Lange (2002) or Hantel (2013).

7.2.2 Formulating the Energy and the Helicity in terms of

the vorticity vector

The condition of incompressibility allows the definition of a vector poten-
tial as solution of the continuity equation (7.29):

∇ · v = 0 −→ v = −∇×A. (7.32)

Which leads to the following formulation of the vorticity vector

ξ = ∇×v = −∇×(∇×A) = −∇·[A∇−∇A] = −∇ (∇ ·A)+∇2A. (7.33)

Assuming ∇ · A = 0 we can write the vorticity as Laplace-operator of the
vector potential:

ξ = ∇2A = ∆A. (7.34)
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Thus, we can formulate the 3D vorticity equation (7.31)

∂ξ

∂t
= ∇× (ξ × (∇×A)) (7.35)

with respect to the vector potential A.

By multiplying the equation of motion (7.30) with the velocity vector v

it can be shown that the kinetic energy is given by the volume integral

H =
1

2

∫
V

dτ v2 (Energy) (7.36)

and conserved in incompressible, inviscid three-dimensional flows. More-
over, multiplying the vorticity equation (7.31) with the velocity vector v and
the equation of motion (7.30) with the vorticity vector ξ leads to the con-
servation of the helicity hV in incompressible, inviscid three-dimensional
flows. The helicity reads as:

hV =
1

2

∫
V

dτ v · ξ (Helicity) (7.37)

The functional derivatives of these quantities are given by (after Névir,
1998)

δH
δξ

= −A and
δhV
δξ

= v. (7.38)

(Névir, 1998). The anti-symmetric matrix differential operator with respect
to the vorticity vector is given by:

D(ξ) = −∇× [ξ × [∇× ( · )]]. (7.39)

Thus, the non-canonical representation of the 3D vorticity equation (7.31)
can be written as

∂ξ

∂t
= D(ξ) · δH

δξ
=: {ξ,H}. (7.40)

We recall that a so-called Casimir element or invariant is an distinguished
element, because they commute with all other basis elements of a Lie al-
gebra. The Casimir functional of three-dimensional vorticity dynamics is
given by the helicity that we defined in (7.37):

C [ξ] =
1

2

∫
V

dτ ξ · v = hV . (7.41)
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Moreover, we note that the helicity is the only existing non-trivial Casimir
functional. For more detailed calculations see Névir and Blender (1993) or
Névir (1998).

7.2.3 The Nambu bracket of 3D vortex dynamics

In this section we will formulate the vorticity equation in terms of the two,
equally treated conserved quantities helicity and energy. This is in contrast
to classical mechanics, where only one conserved quantity, the energy, de-
termines the time evolution of the system. Therefore we write the vorticity
equation formulation (7.40) in terms of the functional derivative of the he-
licity and the energy:

∂ξ

∂t
= −∇×

((
∇× δhV

δξ

)
×
(
∇× δH

δξ

))
. (7.42)

We remark that this representation of the vorticity equation underlines the
equal status of the energy and the helicity.

To simplify the notation, we define a constant bilinear and anti-symmetric
differential operator K

K(a,b) := −∇× ((∇× a)× (∇× b)) (7.43)

for a and b in R3. Finally, we obtain the continuous Nambu representation
of the three-dimensional Helmholtz equation for incompressible, inviscid
flows:

δξ

δt
= K

(
∂hV
∂ξ

,
δH
δξ

)
, (7.44)

see Névir and Blender (1993) and Névir (1998). Then, the trilinear Nambu
bracket can be defined as:

∂F
∂t

= {F , hV ,H} :=

∫
V

dτ
δF
δξ
· δξ
δt

=

∫
V

dτ
δF
δξ
·K
(
δhV
δξ

,
δH
δξ

)
. (7.45)

See Névir and Blender (1993) and Névir (1998) for more details and the
proofs of the algebraic properties of the Nambu bracket for fluid dynamics.
We notice that hV and H denote the helicity and the energy as defined in
(7.37) and (7.36), which are conserved for incompressible, inviscid flows.
Now, the 3D vorticity equation for incompressible inviscid flows can be
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formulated in terms of the Nambu bracket:

∂ξ

∂t
= {ξ, hV ,H}. (7.46)

Last representation shows that Helmholtz’ vorticity equation also contains
the trilinear Nambu structure. Furthermore, the Nambu bracket can be
applied to express the time evolution of any functional that depends on the
vorticity vector F [ξ]:

∂F
∂t

= {F , hV ,H}, . (7.47)

where, under the assumption of suitable boundary conditions, the Nambu
bracket is given by:

{F , hV ,H} = −
∫
V

dτ

((
∇× δF

δξ

)
·
(
∇× δhV

δξ

)
×
(
∇× δH

δξ

))
. (7.48)

The Nambu bracket is antisymmetric in all argument, which follows from
the triple and cross products in (7.48). It is also multilinear. Moreover,
keeping one argument, i.e. hV fixed, it can be reduced to a Poisson bracket
that satisfies the Jacobi identity.

Example 7. Enstrophy’s time evolution
The enstrophy is defined by the integration over the squared vorticity vec-
tor

E = E [ξ] =
1

2

∫
V

dτ ξ2 (Enstrophy) (7.49)

Applying the above defined Nambu bracket (7.48) and using the functional
derivatives (7.38) the time evolution of the enstrophy reads as:

∂

∂t
E = {E , hV ,H} =

∂

∂t

(
1

2

∫
V

dτξ2

)
= −

∫
V

dτ [(∇× ξ )· (ξ × v)] . (7.50)

This expression can be further simplified by applying Gauß’s theorem. As-
suming suitable boundary conditions we obtain a more compact represen-
tation of the time evolution of the enstrophy. But the whole integral does
not vanish, because the enstrophy is not conserved in three dimensions.
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7.3 A Lie algebra for 3D vortex dynamics

In the beginning of this chapter we have summarized how the 2D and 3D
vorticity equations for incompressible, inviscid flows can be formulated
regarding Nambu mechanics. This leads to the definitions of the Nambu
bracket for two- and three-dimensional fluid dynamics. In the second part
of this chapter we will discuss a Lie algebra for vortex dynamics based on
the Nambu bracket (after Névir, 1998). In chapter 8 we will derive the cor-
responding Lie group.

To derive the Lie algebra for 3D inviscid, incompressible vortex dynam-
ics we first need to calculate the Nambu bracket of the basic conserved
quantities. Therefore, in the first step all quantities should be written in
terms of the vorticity vector:

H[v]→ H[ξ], P[v]→ P[ξ], L[v]→ L[ξ], (7.51)

such that in the second step, all functional derivatives with respect to the
vorticity vector can be determined under the assumption of suitable bound-
ary conditions (Névir, 1998). Step one results in the following representa-
tion of the conserved quantities for three-dimensional incompressible, in-
viscid vortex dynamics:

H =
1

2

∫
V

dτ v2 = −1

2

∫
V

dτ ξ ·A (kinetic energy)

P =

∫
V

dτ v =
1

2

∫
V

dτ (r× ξ) (Momentum)

L =

∫
V

dτ (r× v) = −1

2

∫
V

dτ r2ξ (Angular momentum)

hV =
1

2

∫
V

dτ v · ξ (Helicity)

Z =

∫
V

dτ ξ (Total flux of vorticity),

(7.52)

We will follow Majda and Bertozzi (2002) and call Z the total flux of vortic-
ity. The functional derivatives of the quantities that determine the Vortex-
Heisenberg algebra are given by:

δH[ξ]

δξ
= −A (Functional derivative of the kinetic energy)

δhV [ξ]

δξ
= v (Functional derivative of the helicity)

(7.53)
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and

δP [ξ]

δξ
= −1

2
(r× E) (Functional derivative of the momentum) (7.54)

with unit tensor E and local coordinate r. Moreover, in chapter 8, section 8.4
we will extend the vortex Lie algebra generated by the linear momenta by
including the angular momentum. But compared to the Vortex-Heisenberg
algebra, the novel algebra looses its property of nilpotency. We will call it
Helmholtz Vortex algebra, respectively Helmholtz Vortex group, because
it does not hold the typical Heisenberg-structure but it is constructed from
Helmholtz’ vorticity equation. However, to derive Helmholtz Vortex group
we also need the functional derivative of the angular momentum given by:

δL[ξ]

δξ
= −1

2
r2E (Functional derivative of the angular momentum)

(7.55)
Determining the Nambu bracket of the momentum P = (Px, Py, Pz) and
the total flux of vorticity Z = (Zx, Zy, Zz), given in (7.52), with respect to
the helicity hV leads to the following relations:

{Pi, hV , Pj} = εijkZk, {Zi, hV , Zj} = 0, {Zi, hV , Pj} = 0. (7.56)

Moreover, the momentum and the total flux of circulation commute with
the energy:

{Pi, hV ,H} = 0 {H, hV , Zi} = 0. (7.57)

The Nambu bracket of the total flux of vorticity and the momentum with
respect to the helicity (7.56) generate a Lie algebra for vortex dynamics. It
is multi-linear, antisymmetric and the Jacobi-identity

{Zi, hv, {Pi, hV , Pj}}+ {Pj, hv, {Zi, hV , Pi}}+ {Pi, hv, {Pj, hV , Zi}} = 0

(7.58)
is satisfied, because each summand vanishes:

{Zi, hv, {Pi, hV , Pj}} = {Pj, hv, {Zi, hV , Pi}} = {Pi, hv, {Pj, hV , Zi}} = 0.

(7.59)
We also recall that a vector space is a nonempty set with a scalar multi-
plication and a vector addition. Functions X → V that satisfy these two
properties locally, also form a vector space (Akcoglu et al., 2011). There-
fore, all properties of a Lie algebra (28) are satisfied. In the next chapter, we
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will first derive a novel matrix representation of this Lie algebra leading to
a novel matrix representation of the corresponding Lie group.

Moreover, the Nambu brackets of the components Li, i = 1, 2, 3, of the
angular momentum L and the momentum P with respect to the helicity
read as:

{Li, hV , Pj} = εijkPk, {Li, hV , Lj} = εijkLk

{Li, hV ,H} = 0, {Li, hV , Zi} = 0.
(7.60)

For further calculations see Névir (see 1998). This extension of the Lie alge-
bra by the linear momentum (7.60) leads to a novel vortex group. In chapter
9 we will use both vortex groups to explain the split of storms.

For the derivations of the vortex groups for two- and three dimensional
incompressible vortex dynamics, we will use different mathematical con-
cepts and tools. But our objective is to transfer these mathematical repre-
sentations to vortex dynamics and atmospheric processes. Therefore, we
will have to give the novel Lie groups and Lie algebras a physical mean-
ing. Thus, we will shortly recall the Biot-Savart law after Adams (2015) and
Wu et al. (2007) to adapt this concept to our algebraic approach in the next
chapter.

7.3.1 The law of Biot-Savart

In part I chapter 3 (3.1) we have already discussed the circulation, a quantity
that is conserved on two-dimensional material surfaces that can be embed-
ded in higher dimensions. We recall that by applying Stoke’s theorem we
can formulate the circulation with respect to the enclosed domain A or the
boundary S:

Γ(S) =

∮
S

v · ds =

∫
A

(∇× v) · n dA. (7.61)

as it is illustrated in fig. 7.1 a). A vortex line is defined as an integral curve
of the vorticity field ξ = ∇× v, i.e.:

dxξ
ds

= ξ(x(s), t), xξ(s = 0) = x0 (7.62)
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Figure 7.1: a) The quantities that define the circulation Γ are shown. The green
arrows denote the velocity field, the vector n is normal to the surface A und ds
denotes an infinitesimal element of the contour S. b) Assuming a straight vortex
line with finite length. The vector x denotes the reference point and x′ a point of
the volume V ′ of the vortex tube. Then, r′ is the vector from x′ to the reference
point x . The Biot-Savart law provides the velocity du at x induced at x′ [adapted
from Adams (2015)].

It is the line (green line, fig. 7.1 c), or red lines, fig. ??) that is everywhere
tangent to the local vorticity vector satisfying the following relation:

dx

ξx
=
dy

ξy
=
dz

ξz
. (7.63)

A vortex tube is a surface formed by vortex lines, where the vortex lines are
characterized by the circulation Γ. An infinitesimal thin vortex tube can be
seen as a vortex line as indicated in fig. 7.1 c,d and ?? .

Helmholtz (1858) stated that any velocity field can be decomposed into
the sum of a solenoideal (divergence-free: ∇ · vξ = 0) and an irrotational
(curl-free: ∇× vφ = 0) vector field. It is called Helmholtz’ decomposition:

v = vξ + vφ, (7.64)

where the rotational part satisfies the following equation:

∆vξ = −∇× ξ. (7.65)
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Figure 7.2: a) Considering infinitesimal radius of a vortex tube, we obtain a vortex
line (marked in green) characterized by the circulation Γ. x′ is a point on the vortex
line, and r denote distances (blue: blue from x′ to the reference point, black: the
vector perpendicular to the vortex line to the reference point), see also fig. 7.1.
b) The induced velocity depends on the angles α1 and α2 [adapted from Adams
(2015)]

The solution of (7.65) is called the law of Biot-Savart. It can derived with
respect to the Green function (see e.g. Wu et al., 2007). We obtain:

vξ(x) = − 1

4π

∫
V ′

r× ξ′

|r|3
dV ′ (7.66)

for an unbounded domain V ′, under the assumption that ξ = 0 everywhere
else, ξ′ = ξ(x′) and r = x − x′, where x is a fixed reference point and x′

the point of the integration volume V ′, as illustrated in fig. 7.1 b). Consid-
ering a vortex line S ′ instead of a vortex tube with constant circulation, as
illustrated in fig. 7.1 c), equation (7.66) can be reduced to

v(x) =
Γ

4π

∫
S′

ds′ × r

|r|3
(7.67)

(Adams, 2015). In the next step, we consider a straight vortex line segment
with finite lengths r = l tan(α), see fig. 7.1 c) and d). Then, the velocity field
with respect to cylindrical coordinates further simplifies to

uθ = − Γ

4πr
(cos(α2)− cos(α1)) (7.68)

(see fig. 7.1 d)). Thus, for an infinite straight vortex line with α1 → 0 and
α2 → π we obtain

uθ =
Γ

2πr
(7.69)



CHAPTER 7. CONTINUOUS NAMBU MECHANICS 114

We note that point vortex dynamics we have discussed in chapters 3 and
4 can be related to 7.69. We can consider 2D point vortices dynamics as
motion of intersection points of a plane with straight vortex lines. Then,
assuming a point vortex dipole with equal but opposite strength of rotation,
i.e. ±Γ, the vortex pair translates with velocity (7.69). This follows from the
equations of motion (3.3). In chapter 8 we will discuss the Lie group for
vortex dynamics and relate the group elements to the Law of Biot-Savart.

7.4 Summary

In this chapter we have summarized Névir’s and Blender’s (1993) formu-
lation of 2D and 3D vortex dynamics in terms of Nambu mechanics. In
contrast to Hamiltonian dynamics, the Nambu bracket is trilinear, and two
conserved quantities have equal status. This Nambu bracket leads to a Lie
algebra that we will explore further in the next chapters.



Chapter 8

The Vortex groups

8.1 Introduction

In the first part of this thesis we have considered discrete Nambu mechanics
showing that this formulation allows for the classification of point vortex
motions. Then, we have applied the discrete vortex model to explain at-
mospheric blockings. In the last chapters we have explored continuous
Nambu mechanics and showed how the 2D and 3D vorticity equations
for incompressible, inviscid flows can be represented with respect to the
Nambu brackets. As we have explored in the last chapter, these brackets
imply Lie algebras for 2D ans 3D vortex dynamics.

In this chapter, we will start from these algebras and introduce a matrix
representation of these Lie algebras. From these representations we will
derive a vector Lie group representation as well as a matrix Lie group rep-
resentation for two-and three-dimensional incompressible, inviscid vortex
dynamics. The group structure itself was communicated with Peter Névir
in private communication with Anton Schober in 2010. But so far, no matrix
representation of the Lie algebra and Lie group and no derivation has been
introduced.

In the last part of this chapter, we will further extend this Lie group and
derive it from a Lie algebra that additionally contains the bracket of the
angular momentum. In this way, we will obtain a novel group for vortex
dynamics that contains two kinds of rotations, vortical and rigid body ro-
tations. Here, we do not consider the bracket representation with respect
to the energy. Therefore, we only regard the spatial aspect on the dynam-
ics, not the time evolution. We will call it the Helmholtz Vortex group and
show that it can be represented as a semi-direct product of the Lie group

115
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from the first part of this chapter and the rigid body rotations SO(3).

Thus far, the rotational part of the fluid dynamical equations of mo-
tions are – similar to classical mass point mechanics – are included in the
equations as rigid body rotations, see e.g. Arnold (1969a), Arnold (1969b),
Salmon (1982), Marsden and Weinstein (1983), Salmon (1988), Holm et al.
(1998), Shepherd (1990), or Arnold and Khesin (1992). The algebraic repre-
sentations of fluid dynamics are commonly derived from the incompress-
ible Navier-Stokes equations, which are equations for the time evolution of
the velocity.

Here we will start from the equation for the vortex flow itself, from the
Helmholtz vorticity equation, which provides a more direct approach to
describe vortex dynamics. We think that vortical rotations – not just rigid
body rotations – play a crucial role in vortex dynamics. The Helmholtz vor-
ticity equation is derived by the mathematical rotation of the Euler equa-
tion. The rotation of gradients vanish. Therefore, using the Helmholtz
vorticity equation as the basis of our approach, we only regard the rota-
tional part of the velocity field and exclude the divergent part of the ve-
locity field. Thus, we consider an algebra that is directly based on the vor-
ticity field and not on the velocity field. Moreover, the Nambu formula-
tion is based on conserved quantities that are expressed by the vorticity,
we will explore the Nambu bracket with respect to the enstrophy in two-
dimensions and with respect to the helicity to formulate three-dimensional
vortex dynamics. Comparing vortex dynamics to the evolution of mass
points, we see that mass points are characterized by their mass m, a posi-
tive definite quantity. And assuming idealized systems, mass points move
along straight lines. In two dimensions vortices are characterized by the
circulation, a quantity that can have positive and negative sign. In 3D, vor-
tices are characterized by the total flux of vorticity in 3D; both quantities
describe the strength of the vortex rotation. Distinguishing between vortex
rotations and rigid body rotations and regarding the different sign struc-
tures, it seems reasonable that vortex dynamics provides a different group
structure than mass point dynamics.

After the derivations of the vortex groups for two-and three-dimensional
vortex dynamics in this chapter, we will apply these groups to atmospheric
flow fields in chapter 9 to demonstrate the existence of storm splits. Before
we derive the groups for vortex flows, we will discuss the Heisenberg alge-
bra for mass point dynamics to demonstrate a transition from a Lie algebra
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to a Lie group. There are different approaches to represent mass point dy-
namics algebraically. One more mathematical approach starts with the 2n-
dimensional phase space with the n-dimensional position coordinate and
the n-dimensional momentum vector. A more physical approach is given
by the Galilei algebra which can be extended by the mass, algebraically it is
called a ’central extension’. This leads to the nilpotent, so-called Standard-
Heisenberg algebra. Physically, this algebra is formed by the momentum,
the special Galilei transformations and the mass such that it has dimension
2n+ 1. We will discuss this example for n = 3 in subsection 8.1.1.

The vortex algebras and groups that we will derive in this chapter are
also nilpotent. Furthermore, it will turn out that the group for two-dimensional
incompressible, inviscid flows can also be represented as a Heisenberg ma-
trix, where the group operation can be compared with the Standard-Heisen-
berg group operation – although both groups have different physical mean-
ing.

A further physical example of a nilpotent Lie algebra is the algebra for
quantum mechanics. The Lie bracket relations of the state space coordinates
were first discovered by Werner Karl Heisenberg and lead to the beginning
of quantum mechanics. He introduced the uncertainty principle. Already
in 1929 Hermann Weyl derived from this algebra a group for quantum me-
chanical systems that was published 21 years later (Weyl, 1950).

8.1.1 The Heisenberg Algebra and Heisenberg group of mass

point mechanics

In this example, we will discuss the algebraic representation of mass point
dynamics with respect to the Galilei transformation. Consider the six-dimen-
sional phase space given by the position vector p ∈ R3 and the momentum
q ∈ R3 to describe the state of a point with mass m at a given time t. Then,
the Hamiltonian representation of the set of equations is given by:

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H

∂pi
, (8.1)

where the index i = 1, 2, 3 denotes the direction in the three-dimensional
configuration space; H is the Hamiltonian, which is the total energy and
given by the sum of the kinetic and potential energy. This set of equations
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leads to the classical canonical Poisson bracket:

{F,G}P =
3∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
,

)
. (8.2)

which we have already compared to the bracket for point vortices in table
3.1 chapter 3. We consider the special Galilei transformation, where the
local coordinate is now expressed in terms of the total mass m:

qi 7→ g = mqi. (8.3)

Adding the mass to the six-dimensional phase space of the momentum and
position vector the dimension of the phase space becomes seven. Alge-
braically, we can speak of the central extension of the Galilei-group that we
have explored in example 3, chapter 6. We obtain the following relations of
the components of the momentum, position vector and the mass:

{gi, pj}P = δijm, {gi, gj}P = 0, {pi, pj}P = 0, {m, gi}P = 0, {m, pi}P = 0,

(8.4)
for i, j = 1, 2, 3. We can find a matrix representation for states in the phase
space characterized by the momentum q = (q1, q2, q3), the position vector
p = (p1, p2, p2) and the total mass m, such that they satisfy the bracket rela-
tions (8.4) with respect to the matrix commutator as we have discussed in
chapter 6.

Poisson-bracket −→ Matrix commutator

{a, b}P −→ [A,B] = A ·B −B · A
(8.5)

where A and B denote two n× n matrices and ’·’ is the usual matrix multi-
plication. We will use the following notation:

Galilei transformation g → matrix representation G

Momentum p → matrix representation P

Mass m → matrix representation M

(8.6)
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And the matrix representations are given by:

G =

0 1 0

0 0 0

0 0 0

 , P =

0 0 0

0 0 1

0 0 0

 , M =

0 0 1

0 0 0

0 0 0

 , (8.7)

Applying the matrix commutator (8.5), we obtain the same bracket relations
as in (8.4). Then, the linear combination C of the matrix representations (8.7)
reads as:

C := vG + rP + θM =

0 v θ

0 0 r

0 0 0

 , (8.8)

where r is a constant displacement in direction of the momentum, v a con-
stant velocity generated by g and the variable θ is conjugated to the mass
with respect to the action. In this context, it is interesting to note that θ has
the dimension of a circulation. Thus, the dimension in all summands is the
action. Matrices of form C build a subgroup of the so-called Heisenberg
group, which is defined as the set of upper triangular matrices. The above
matrix C is nilpotent, because C3 = 0. Sudarshan and Mukunda (1974)
consider the following componentwise transition from the algebra to the
group:

algebra group

p −→ exp(r̃ · p) −→ r

g −→ exp(ṽ · g) −→ v

m −→ exp(θ̃ ·m) −→ θ,

(8.9)

where the tilde denotes the scaling by the action to obtain dimensionless
exponents.

In order to derive the group operation, we first calculate the Lie bracket
of two states, where each is given by the tuple of the phase space coordinate
and the corresponding mass (r, v, θ) and (r′, v′, θ′) and represented by the
matrices X and Y:. We will use the following notations for the matrices
representation of our physical states

(r, v, θ) 7→

0 v θ

0 0 r

0 0 0

 := X and (r′, v′, θ′) 7→

0 v′ θ′

0 0 r′

0 0 0

 := Y (8.10)
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Calculating the matrix commutator [X,Y] leads to


0 v θ

0 0 r

0 0 0

 ,

0 v′ θ′

0 0 r′

0 0 0


 =

0 0 v · r′ − v′ · r
0 0 0

0 0 0

 . (8.11)

If we calculate the matrix commutator of the last result (8.11) and an ad-
ditional state (r′′, v′′, θ′′), represented by the matrix Z, the outcome will be
zero:

[[X,Y],Z] = 0 (8.12)

Thus, this algebraic structure is nilpotent. And this property allows for a
smooth transition from the bracket, i.e. the algebra, to the group.

Transition from the Lie algebra to the Lie group

We apply the Baker-Campbell-Hausdorff-formula (6.66) to obtain the group
operation directly from the Lie algebra matrix representation. For non-
nilpotent algebras, the exponent of (8.13) would have infinitely many terms.
But, because this algebraic structure is nilpotent (8.12), the Baker-Campbell-
Hausdorff-formula reduces to:

eXeY = eX+Y+ 1
2

[X,Y], (8.13)

with the usual matrix addition and the matrix commutator (8.5).

We obtain the Lie group by regarding the exponents of (8.13) by ap-
plying the matrix representations (8.10) and the matrix commutator (8.11)
to (8.13). Then, the vector representation of the Heisenberg Lie group for
mass point dynamics is given by the exponent on the right hand side of
(8.13): The exponent of (8.13) reads as:

X + Y +
1

2
[X, Y ] =

0 v + v′ θ + θ′ + 1
2
(v · r′ − r · v′)

0 0 r + r′

0 0 0

 (8.14)

Then, ln(exp(X) exp(Y )) provides the associated group operation of the
Heisenberg Lie group for mass point dynamics:

(v, r, θ) ∗ (v′, r′, θ′) =

(
v + v′, r + r′, θ + θ′ +

1

2
(v · r′ − r · v′)

)
. (8.15)
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(see also, e.g. Kisil, 2012). We call this group for mass point dynamics to-
gether with the group operation (8.15) Standard-Heisenberg algebra and
use the notation sh(2). As we will see later in this chapter, last example of
the matrix representation and group operation of mass point dynamics is
isomorphic the two-dimensional Vortex-Heisenberg group that we will de-
rive in the following. Even though both groups are derived from different
sets of equations! This difference is reflected in the physical meaning of the
quantities.

In order to derive the group operations for two-and three dimensional
incompressible and inviscid vortex flows, we will shortly summarize the
concept of the so-called quaternions. We will use the quaternions for the
matrix representation of the Lie algebras and Lie groups and represent the
physical quantities that form the basis of the Lie algebra with respect to
quaternions.

8.1.2 The concept of Quaternions

Quaternions can be seen as a generalization of the complex numbers. The
algebra of quaternions is denoted H to honor William R. Hamilton who
introduced the quaternions in 1843. A quaternion q can be written as q =

ai+ bj + ck + d and its conjugate is given by q = −ai− bj − ck + d. We can
write H as set

H = {(a, b, c, d) | a, b, c, d ∈ R} (8.16)

with basis elements

i = (1, 0, 0, 0)

j = (0, 1, 0, 0)

k = (0, 0, 1, 0)

1 = (0, 0, 0, 1)

(8.17)

Thus, the set H is isomorphic to R4. But, in contrast to multiplication of
real numbers the multiplication of quaternions is not commutative. The
multiplication of the basic elements can be summarized in the following
table
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· 1 i j k

1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

Let now q1 = a1i+b1j+c1k+d1 and q2 = a2i+b2j+c2k+d2 two quaternions.
Then the following compositions of two quaternions hold:

1. Addition:

q1 + q2 = (a1 + a2)i+ (b1 + b2)j + (c1 + c2)k + (d1 + d2) (8.18)

2. The imaginary part of quaternions can be identified with R3. Let us
only consider the imaginary part and set h1 = (a1 b1 c1)T and h2 =

(a2 b2 c2)T . Then, the cross product for the imaginary part reads

h1 × h2 = (b1c2 − b2c1)i+ (c1a2 − c2a1)j + (a1b2 − a2b1)k (8.19)

3. Using the above notation, we again divide a quaternion into a real
part d ∈ R and a imaginary part h ∈ R3. We denote with the symbol
· the usual dot-product and with × the cross product. Then, the mul-
tiplication of two quaternions q1 = (h1, d1) and q2 = (h2, d2) is given
by:

(h1, d1)(h2, d2) = (d1h2 + d2h1 + h1 × h2, d1d2 − h1 · h2) (8.20)

In the next section, we will use this concept of the generalization of the
complex numbers for the derivation of a group for two-dimensional in-
compressible, inviscid vortex flows.
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2D Helmholtz vor-
ticity equation

Nambu bracket
representation

Lie algebra

Matrix representation
of the Lie algebra

Lie group
Matrix representation

Lie group
vector representation

exponential map BCH-formula

Figure 8.1: The steps are sketched, how we will derive the vortex groups for
two dimensional inviscid, vortex dynamics. The Nambu bracket representation
of the 2D Helmholtz vorticity equation were introduced by Névir (1998). The red
boxes mark the novel contributions in this thesis noting that the vector represen-
tation of the vortex Lie group was also communicated with Peter Névir in private
communication with Anton Schober in 2010. Here, we show how different group
representations can be derived.

8.2 A vortex algebra and group for 2D flows

In the last section we have discussed the Heisenberg group for the dynam-
ics of discrete mass points. Now, we will derive a group based on the con-
tinuous 2D incompressible vorticity equation. Névir (1998) has shown that
the bracket relations for continuous, incompressible flows are comparable
to the bracket relations of the discrete point vortex model of incompress-
ible flows in two dimension. Therefore, a group for 2D vortex dynamics
can be derived that provides a structure similar to the Heisenberg group
for mass points. Because of the isomorphic structures, we call the vortex
group Vortex-Heisenberg group, short VH(2), and the corresponding Lie al-
gebra Vortex-Heisenberg Lie algebra (vh(2)). In fig. 8.1 the steps are sum-
marized how we will proceed to derive the group for 2D incompressible,
inviscid fluids. In chapter 7 we have shown the Nambu formulation of the
vorticity equation. The resulting bracket formulation generates the Vortex-
Heisenberg Lie algebra. The brackets are introduced by Névir and Blender
(1993) and Névir (1998). The novel aspect in the thesis is the introduction
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of a basis matrix representation of the physical quantities that satisfy the
bracket relation. First, we will introduce matrices that represent conserved
quantities for two-dimensional, inviscid incompressible flows given by the
linear momenta Px and Py and the circulation Γ. In this way, we can easily
calculate the matrix commutator to obtain the corresponding bracket rela-
tions.

Nambu-bracket −→ Matrix commutator

{F , E ,G} −→ [F ,G]
(8.21)

We will obtain a matrix representation of the Vortex-Heisenberg algebra
such that we can derive a matrix representation as well as a vector repre-
sentation of a Lie group for vortex dynamics.

8.2.1 Introducing a matrix representation of vh(2)

To derive the matrix representation of a an algebra for two-dimensional in-
compressible, inviscid fluids, we first recall the formulation of the following
conserved quantity via the vorticity ζ :

H[ζ] = −1

2

∫
F

df ζψ (Energy)

E [ζ] =
1

2

∫
F

df ζ2 (Enstrophy)

Px[ζ] =

∫
F

df ζy (zonal momentum)

Py[ζ] = −
∫
F

df ζx (meridional momentum).

(8.22)

Névir (1998) shows that the Nambu bracket of these global, continuous
conserved quantities with respect to the enstrophy E results in the same
relations that we obtained for the discrete point vortex model regarding
discrete vortex quantities and the Lie-Poisson bracket for point vortex dy-
namics, see chapter 3.

In the first part of this thesis, we have already discussed the conserved
quantities for two-dimensional discrete point vortex dynamics and com-
pared the different Lie brackets for mass points and point vortices (see
chapter 3). In contrast to the algebraic structure of mass point dynamics,



125 8.2. A VORTEX ALGEBRA AND GROUP FOR 2D FLOWS

the momenta do not commute:

{Px, E , Py} = Γ, {Γ, E , Px} = 0, {Γ, E , Py} = 0. (8.23)

where the bracket here is the Nambu bracket for two-dimensional incom-
pressible vortex dynamics.

We compare the Vortex-Heisenberg algebra VH(2) with the Standard
Heisenberg algebra that we discussed in the last example.

Vortex-Heisenberg algebra VH(2) ∼= Standard Heisenberg algebra sh(1)

{Px, E , Py} = Γ {g, p}P = M

(8.24)

Thus, the two-dimensional vortex algebra is isomorphic to the Heisenberg
structure of the Galilei algebra.

We will first introduce the following novel matrix representation of the
two linear momenta and the circulation with respect to the quaternions
with i, j, k in H. We will denote the corresponding matrix representations of
the momenta and the circulation by Px, Py and Γ. Then, we will show that
these matrix representations satisfy the bracket relations (8.23) with respect
to the matrix commutator.

Nambu-bracket −→ Matrix commutator

{F , E ,G} −→ [F ,G]
(8.25)

The novel matrix representations of the conserved quantities are given by:

Px =

0 i 0

0 0 0

0 0 0

 , Py =

0 0 0

0 0 j

0 0 0

 , Γ =

0 0 k

0 0 0

0 0 0

 . (8.26)

We see that determining the bracket in terms of these matrix representa-
tions leads to the same relations as in (8.23):

[Px, Py] = PxPy − PyPx =

0 i 0

0 0 0

0 0 0


0 0 0

0 0 j

0 0 0

−
0 0 0

0 0 j

0 0 0


0 i 0

0 0 0

0 0 0


(8.27)
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⇐⇒ [Px, Py] =

0 0 k

0 0 0

0 0 0

 = Γ (8.28)

and

[Py, Px] = PyPx − PxPy =

0 0 0

0 0 j

0 0 0


0 i 0

0 0 0

0 0 0

−
0 i 0

0 0 0

0 0 0


0 0 0

0 0 j

0 0 0



=

0 0 −k
0 0 0

0 0 0

 = −Γ.

(8.29)

Thus, these matrices satisfy the bracket relations (8.23)! Their linear combi-
nation reads as:

A = αPx + βPy + γΓ =

0 αi γk

0 0 βj

0 0 0

 , α, β, γ ∈ R (8.30)

which satisfies the Heisenberg structure and can be compared with the
above example of the matrix Standard-Heisenberg algebra sh(2) for mass
point dynamics.

8.2.2 Derivation of the Vortex-Heisenberg Lie group VH(2)

To derive the matrix representation of the Vortex-Heisenberg Lie group, we
recall the exponential map (6.63), which maps the matrix algebra (8.30) to a
matrix group:

expA =
∞∑
k=0

Ak

k!
= I +A+

1

2
A2 +

1

6
A3 + · · · (8.31)

Using the quaternionian relations ij = k we obtain for A2 = 0 and A3 = 0:

A =

0 αi γk

0 0 βj

0 0 0

 −→ A2 =

0 0 αiβj

0 0 0

0 0 0

 =

0 0 αβk

0 0 0

0 0 0

 (8.32)
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and

A3 =

0 0 0

0 0 0

0 0 0

 . (8.33)

Thus, we obtain the following matrix representation of a group for vortex
dynamics:

expA =

1 0 0

0 1 0

0 0 1

+

0 αi γk

0 0 βj

0 0 0

+
1

2

0 0 αβk

0 0 0

0 0 0



=

1 αi γ′k

0 1 βj

0 0 1

 ,

(8.34)

where the property of quaternions ij = k was used in the third term on
the right hand side and γ′ = (γ + 1

2
αβ). From physical perspective, group

elements have a different meaning than the elements of the Lie algebra that
’live’ on the tangent space of the neutral element of the group. In order to
interpret the coefficients physically, we will rename the constants α, β and
γ in (8.34):

α→ ax, β → ay, γ′ → A, (8.35)

where a denotes the vector tangent to the streamlines of an infinitesimal
vortex tube, indicating a local displacement, and A is the change of the area
enclosed by the vortex. Here, we focus on the mathematical formulation
of the vortex algebra group and vortex group for two-dimensional flows.
After the derivation of the 3D vortex group we will explain the physical in-
terpretation more in detail in section 8.5. We can formulate the basis matrix
representation of a vortex Lie group for two-dimensional fluid dynamics:

(a, A) = (ax, ay, A) 7→

1 axi Ak

0 1 ayj

0 0 1

 , (8.36)

This representation is isomorphic to the matrix group representation of
the Heisenberg algebra of classical mass point dynamics that we have dis-
cussed in the beginning of this chapter.
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But we also aim for the group operation for group elements represented
as vectors. To achieve this goal, we start again from the matrix representa-
tion of the Lie algebra (8.30). Then, the group operation can be derived by
applying the Baker-Campbell-Hausdorff-formula (6.66)

eAeB = eA+B+ 1
2

[A,B]. (8.37)

to our matrix representation (8.36). Let A and B be two elements of the
vortex group given by:

A =

0 axi Ak

0 0 ayj

0 0 0

 and B =

0 a′xi A′k

0 0 a′yj

0 0 0

 . (8.38)

Now, we apply the Baker-Campbell-Hausforff-formula (8.37) to A and B
and obtain:

A+ B +
1

2
[A,B] =

0 (ax + a′x)i A+ A′ + 1
2
(axa

′
y − aya′x)

0 0 (ay + a′y)j

0 0 0

 . (8.39)

We compare the entries of the matrix (8.39) with the entries in A. We see
that the components that denote the displacement add: (ax + a′x), (ay + a′y)

and the A-entry becomes A + A′ + 1
2
(axa

′
y − aya

′
x). Therefore, we obtain

the the following group operation for 2D incompressible, inviscid vortex
dynamics:

(a, A) ∗ (a′, A′) = (a + a′, A+ A′ +
1

2
(axa

′
y − aya′x)) =: (a′′, A′′). (8.40)

This representation is isomorphic to the matrix group representation of the
Heisenberg group of classical mass point dynamics that we have discussed
in the previous section. Because of this isomorphic structure, we call the
here derived group Vortex-Heisenberg group and denote it VH(2).

In the next section, we will analogously derive a group for three-dimen-
sional incompressible, inviscid vortex flows. To compare the group op-
erations of the two-and three-dimensional Vortex-Heisenberg groups, we
reformulate (8.40) as follows:

(a, A) ∗ (a′, A′) = (a + a′, A+ A′ +
1

2
k · (a× a′)) (8.41)
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where k denotes the unit vector in z-direction, and the displacement vectors
(ax, ay) and (a′x, a

′
y) are embedded in three dimensions a = (ax, az, 0) and

a′ = (a′x, a
′
z, 0). We will see that the Vortex-Heisenberg group VH(3) for

incompressible, inviscid three-dimensional vortex dynamics has the same
structure as (8.41).

Claim 1. We state that the Vortex-Heisenberg group with operation (8.41)
is indeed a group, where the identity element is given by e = (0, 0) and the
inverse of an element (a, A) ∈ VH(2) by (−a,−A) ∈ VH(2)

Proof.

(a, A) ∗ (0, 0) = (a + 0, A+ 0 +
1

2
k · (a× 0)) = (a, A) (8.42)

and

(a, A) ∗ (−a,−A) = (a− a, A− A+
1

2
k · (a× (−a))) = (0, 0)

(−a,−A) ∗ (a, A) = (−a + a,−A+ A+
1

2
k · (−a× a)) = (0, 0)

(8.43)

Moreover, the associative property is satisfied:

(a′′, A′′)∗ ((a′, A′) ∗ (a, A))

=

(
a′′ + a′ + a, A′′ + (A′ +

1

2
a′ × a) + A+

1

2
a′′ × (a′ + a)

)
=

(
a′′ + a′ + a, A′′ + A′ + A+

1

2
(a′ × a + a′′ × a′ + a′′ × a)

)
= ((a′′, A′′) ∗ (a′, A′)) ∗ (a, A)

(8.44)

Therefore, VH(2) with group operation (8.41) forms a group.
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Figure 8.2: The steps, how we will derive the different vortex group representa-
tions for three-dimensional inviscid, incompressible vortex flows are shown. The
Lie algebra was derived by Névir (1998). The red boxes mark the novel contribu-
tions in this thesis noting that the vector representation of the vortex Lie group
was also communicated with Peter Névir in private communication with Anton
Schober in 2010. Here, we show the derivation of the vortex group operation.

8.3 A vortex algebra and group for 3D flows

8.3.1 Introducing a matrix representation for vh(3)

In the following, we will derive the group for incompressible, inviscid three-
dimensional vortex dynamics and proceed analogously to last section. The
steps are sketched in fig. 8.2. In chapter 7 we have introduced the Nambu
bracket for the 3D Helmholtz vorticity equation that generate a Lie algebra
for fluid motion. Here, will introduce a matrix representation of the Lie
algebra such that we can derive (i) a matrix Lie group for 3D incompress-
ible, inviscid fluids, and (ii) a vector-valued Lie group representation 3D
incompressible, inviscid fluids. A group is always defined by a set together
with an operation. For matrix Lie groups, such as (i), the group operation is
simply given by the matrix product. Here, the challenge is to find a matrix
that represents the elements. Whereas the challenge of (ii) is the derivation
of the vector valued group operation itself. Regarding application-oriented
aspects, the matrix representation might be useful for numerical investi-
gations of the group, whereas the vector representation of the group and
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the corresponding group operation might be helpful for a better process-
related understanding of vortex flows.

First, we will introduce a matrix representation of the basis elements
of the Vortex-Heisenberg algebra vh(3) with respect to the basis of quater-
nions H. For this approach, we recall the definitions of the helicity hV , the
momentum P = (Px, Py, Pz) and the total flux of vorticity Z = (Zx, Zy, Zz):

hV =
1

2

∫
V

dτ v · ξ (Helicity)

P =
1

2

∫
V

dτ (a× ξ) (Momentum)

Z =

∫
V

dτ ξ (Total flux of vorticity),

(8.45)

As we have discussed in chapter 7, the Vortex-Heisenberg algebra for three-
dimensional incompressible, inviscid vortex flows is based on the Nambu-
bracket, expressed with respect to the helicity:

{Pi, hV , Pj} = εijkZk, {Zi, hV , Pj} = {Zi, hV , Zj} = 0. (8.46)

We propose matrix representations for the momentum and the total flux
of vorticity for three dimensional fluids, where we will denote the corre-
sponding matrix representations of the components of the momentum and
the total flux of vorticity by Px, Py, Pz and Zx, Zy, Zz. We will represent these
quantities with respect to quaternions. We will show that these matrices to-
gether with the matrix commutator satisfy the bracket relations (8.46) for
3D incompressible vortex dynamics, i.e.

Nambu-bracket −→ Matrix commutator

{F , hV ,G} −→ [F ,G]
(8.47)

The matrices that represent the components of the momentum and the total
flux of vorticity are given by:

Px =
1√
2



0 0 0 0 0 0 i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −i 0 0 0 0

0 i 0 0 0 0 0

0 0 0 0 0 0 0


, Zx =

1√
2



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(8.48)
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Py =
1√
2



0 0 0 0 0 0 0

0 0 0 0 0 0 j

0 0 0 0 0 0 0

0 0 j 0 0 0 0

0 0 0 0 0 0 0

−j 0 0 0 0 0 0

0 0 0 0 0 0 0


, Zy =

1√
2



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 j

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(8.49)

Pz =
1√
2



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 k

0 −k 0 0 0 0 0

k 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, Zz =

1√
2



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 k

0 0 0 0 0 0 0


(8.50)

Applying the matrix commutator [A,B] = A ·B−B ·A to n×n matricesA
and B with matrix product · to the basis representation introduced above,
we obtain:

[Px, Py] =
1

2



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 ij − ji
0 0 0 0 0 0 0


=

1

2



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 2k

0 0 0 0 0 0 0


= Zz

(8.51)

[Py, Pz] =
1

2



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 2i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


= Zx, (8.52)
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[Pz, Px] =
1

2



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 2j

0 0 0 0 0 0 0

0 0 0 0 0 0 0


= Zy (8.53)

Thus, we can summarize the bracket relations with respect to the matrix
commutator [·, ·]:

[Pi, Pj] = εijkZk, [Pi, Zj] = 0, and [Zi, Zj] = 0 (8.54)

for i, j, k ∈ {x, y, z}. These relations coincide with the Nambu-bracket (7.56)
with respect to the helicity hV :

{Pi, hV , Pj} = εijkZk, {Zi, hV , Zj} = 0 and {Zi, hV , Pj} = 0 (8.55)

Thus, the above proposed basis is indeed a basis and yields a matrix rep-
resentation of the vortex-Heisenberg Lie algebra. To the best of our know-
ledge, the above presented matrix representations are the first matrix repre-
sentations for the momentum and the circulation. The linear combination
of the basis elements reads:

A = αxPx + αyPy + αzPz + γxZx + γyZy + γzZz (8.56)

with αx, αy, αz, γx, γy, γz ∈ R. In terms of the matrix representation, insert-
ing (8.48), (8.49) and (8.50) in (8.56) results in:

A =
1√
2



0 0 0 0 0 0 αxi

0 0 0 0 0 0 αyj

0 0 0 0 0 0 αzk

0 −αzk αyj 0 0 0 γxi

αzk 0 −αxi 0 0 0 γyj

−αyj αxi 0 0 0 0 γzk

0 0 0 0 0 0 0


(8.57)

We relate the coefficients in (8.57) to the components of the global momen-
tum and the components of the flux of vorticity:

(αx, αy, αz) −→ (vx, vy, vz) and (γx, γy, γz) −→ (ξx, ξy, ξz). (8.58)
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We will discuss the physical meaning of the group and the algebra at the
end of this chapter in section 8.5. For now, we use these notations to formu-
late the matrix representation of the Vortex-Heisenberg algebra as follows:

Av,ξ =
1√
2



0 0 0 0 0 0 vxi

0 0 0 0 0 0 vyj

0 0 0 0 0 0 vzk

0 −vzk vyj 0 0 0 ξxi

vzk 0 −vxi 0 0 0 ξyj

−vyj vxi 0 0 0 0 ξzk

0 0 0 0 0 0 0


(8.59)

In the next step, we will start from this matrix algebra and derive a matrix
Lie group representation for three dimensional vortex flows.

8.3.2 Derivation of the matrix vortex Lie group VH(3)

In order to apply Baker-Campbell-Hausdorff’s formula (6.66) to derive the
Vortex-Heisenberg group operation, we first calculate the Lie bracket in
terms of the matrix commutator. We recall that a n × n-matrix X is called
nilpotent if Xm = 0 for some m ∈ N,m > 0. Such a matrix X is called m-th-
order nilpotent. Therefore, the matrices of form A representing the linear
combination of the basis elements of the Vortex-Heisenberg Lie algebra as
given in (8.57) are second-order nilpotent, i.e.:

A2 = 0.

For A and A′ in the Vortex-Heisenberg Lie algebra vh(3) the matrix com-
mutator reads as:

[A′,A] = A′ · A − A · A′ = 1

2



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 (v′y · vz − vy · v′z)i
0 0 0 0 0 0 (v′z · vx − vz · v′i)j
0 0 0 0 0 0 (v′x · vy − vx · v′y)k
0 0 0 0 0 0 0


, (8.60)

where the quaternion multiplication of the basis elements ij = −ji =

k, ik = −ki = j and jk = −kj = i is used. We notice that the non-
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vanishing terms can be summarized as cross product v′ × v. Moreover, if
we calculate the bracket of last outcome (8.60) and a further element of the
Vortex-Heisenberg Lie algebra, the bracket will vanish, i.e. the Lie algebra
is nilpotent.

In the first step, we will apply the exponential map (6.63) to the Vortex-
Heisenberg algebra representation to derive the matrix representation of
the Vortex-Heisenberg group. Then, the group elements, given by the ma-
trices, together with the usual matrix product form the Vortex-Heisenberg
group VH(3). In the second step, we will start again from the matrix repre-
sentation of the Vortex-Heisenberg algebra and derive the the vector repre-
sentation of the group.

Let A be of form (8.57). We recall that A is second-order nilpotent, i.e.
A2 = 0. Then, the exponential map reduces to

expA =
∞∑
m=0

Am

m!
= I +A+

1

2
A2 +

1

6
A3 + · · ·

= I +A.
(8.61)

And we obtain the matrix:

expA =



1 0 0 0 0 0 α̂xi

0 1 0 0 0 0 α̂yj

0 0 1 0 0 0 α̂zk

0 −α̂zk α̂yj 1 0 0 γ̂xi

α̂zk 0 −α̂xi 0 1 0 γ̂yj

−α̂yj α̂xi 0 0 0 1 γ̂zk

0 0 0 0 0 0 1


(8.62)

with α̂i = αi√
2
, γ̂i = γi√

2
,∈ R. Thus, we have derived a matrix representa-

tion of the Vortex-Heisenberg Lie group. In order to apply this algebraic
representations to atmospheric phenomena in the next chapter, we set

(α̂x, α̂y, α̂z) −→ (ax, ay, az) and (γ̂x, γ̂y, γ̂z) −→ (Ax, Ay, Az), (8.63)

where (Ax, Ay, Az) = A and a = (ax, ay, az). After the mathematical deriva-
tions of the vortex group we will outline our physical interpretation more
in detail in section 8.5.

We summarize that each element of the Vortex-Heisenberg Lie group
is given by a tuple (a,A). Furthermore, we can assign each element to a
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matrix:

(a,A) = (ax, ay, az, Ax, Ay, Az) 7→



1 0 0 0 0 0 axi

0 1 0 0 0 0 ayj

0 0 1 0 0 0 azk

0 −azk ayj 1 0 0 Axi

azk 0 −axi 0 1 0 Ayj

−ayj axi 0 0 0 1 Azk

0 0 0 0 0 0 1


,

(8.64)
respectively,

A : V H −→ SL(7,H), (a,A) 7→ A((a,A)), (8.65)

where SL is the set of special linear matrices (6.3). Therefore, we have de-
rived a matrix representation for the Vortex-Heisenberg group VH(3). As
we have outlined in fig. 8.2, we will show next how the vector representa-
tion of VH(3) can be derived from the Vortex-Heisenberg Lie algebra vh(3).

8.3.3 Derivation of the vector representation of VH(3)

After the introduction the matrix representation of the Vortex-Heisenberg
group we again start from the Vortex-Heisenberg algebra to derive the group
operation vie the Baker-Campbell-Hausdorff-formula (6.66). Let nowA,A′

represent two elements of the Vortex-Heisenberg Lie algebra as in (8.57) :

A =
1√
2



0 0 0 0 0 0 αxi

0 0 0 0 0 0 αyj

0 0 0 0 0 0 αzk

0 −αzk αyj 0 0 0 γxi

αzk 0 −αxi 0 0 0 γyj

−αyj αxi 0 0 0 0 γzk

0 0 0 0 0 0 0


(8.66)

and
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A′ = 1√
2



0 0 0 0 0 0 α′xi

0 0 0 0 0 0 α′yj

0 0 0 0 0 0 α′zk

0 −α′zk αyj 0 0 0 γ′xi

α′zk 0 −αxi 0 0 0 γ′yj

−α′yj αxi 0 0 0 0 γ′zk

0 0 0 0 0 0 0


. (8.67)

Since the Vortex-Heisenberg algebra is nilpotent we can apply the Baker-
Campbell-Hausdorff-formula (6.66)

eA
′
eA = eA

′+A+ 1
2

[A′,A]. (8.68)

Applying the matrix commutator (8.60) the exponent on the right hand side
of (8.68) reads as:

A′ +A+
1

2
[A′,A] (8.69)

Applying (8.67), (8.67) and the matrix commutator to (8.69) we obtain:

with scaled α̂i = 1√
2
αi and γ̂i = 1√

2
γi, i = x, y, z. To obtain the vector

representation of the group, we compare (8.66) with the above result of
(8.69). We notice that the entries in the blue and red box add. For k = x, y, z

we obtain α̂′k + α̂k. In order to endow the group elements with a physical
meaning, we set

α̂k −→ ak, and α̂′k −→ r′k (8.70)

and define the vector a and a′ as

a = (ax, ay, az) and a′ = (a′x, a
′
y, a
′
z) (8.71)

and summarize that the red and blue box reflect the sum a′ + a. Now, we
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regard the green box in (8.69) and set

γ̂k −→ Ak and γ̂′k −→ A′k (8.72)

Denoting
A = (Ax, Ay, Az) and A′ = (A′x, A

′
y, A

′
z) (8.73)

we can formulate the entries of the green boxed matrix as a vector compo-
sition:

A + A′ +
1

2
a× a′. (8.74)

Thus, comparing 8.66 with 8.69 and using the notations and leads to the
following Vortex-Heisenberg group operation:

(a,A) ∗ (a′,A′) =

(
a + a′,A + A′ +

1

2
a× a′

)
. (8.75)

We will discuss the physical meaning of the vectors a and A in section 8.5.
We will interpret a as a displacement vector and A as an vector that is re-
lated to the area enclosed by a vortex. Finally, we have to prove that the set
M = {(a,A) | a,A ∈ R3} together with (8.75) is indeed group, the Vortex-
Heisenberg group. Therefore, it needs to satisfy the group properties: we
have to show the existence of the identity and the inverse element and that
the associativity holds.

Claim 2. The identity element of the VH(3) is given by e = (0,0) ∈ R6

which corresponds to the unit matrix considering the matrix Lie group rep-
resentation.

Proof. Let g = (a,A) an arbitrary element in VHG. Applying (8.75) it is:

e ∗ g = (0,0) ∗ (a,A) = (0 + a,0 + A + a× 0) = (a,A) = g

= (a,A) ∗ (0,0) = g ∗ e

or, in terms of the above matrix representation A((ax, ay, az, AxAy, Az)), it
is:

A(ax, ay, az, AxAy, Az)A(0, 0, 0, 0, 0, 0) = A((ax, ay, az, AxAy, Az))

= A(0, 0, 0, 0, 0, 0)A((ax, ay, az, AxAy, Az))
(8.76)
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⇐⇒



1 0 0 0 0 0 axi

0 1 0 0 0 0 ayj

0 0 1 0 0 0 azk

0 −azk ayj 1 0 0 Axi

azk 0 −axi 0 1 0 Ayj

−ayj axi 0 0 0 1 Azk

0 0 0 0 0 0 1





1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



=



1 0 0 0 0 0 axi

0 1 0 0 0 0 ayj

0 0 1 0 0 0 azk

0 −azk ayj 1 0 0 Axi

azk 0 −axi 0 1 0 Ayj

−ayj axi 0 0 0 1 Azk

0 0 0 0 0 0 1



=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





1 0 0 0 0 0 axi

0 1 0 0 0 0 ayj

0 0 1 0 0 0 azk

0 −azk ayj 1 0 0 Axi

azk 0 −axi 0 1 0 Ayj

−ayj axi 0 0 0 1 Azk

0 0 0 0 0 0 1



Claim 3. Let now g = (a,A) an arbitrary element in VHG. Then, the inverse
element g−1 ∈VHG is given by:

g−1 = (−a,−A) (8.77)

Furthermore, it is a left and a right inverse element. Moreover, the associa-
tive property holds.

Proof. Inserting the stated inverse element into the group operation, we ob-
tain:

g ∗ g−1 = (a− a,A−A− a× a) = e = g−1 ∗ g (8.78)

Moreover, we now use the fact that we can assign each state to a matrix.
The group operation is associative, because the matrix multiplication of
a squared matrix is always associative. Therefore, we have shown that
(VH(3), ∗) is a group.
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Claim 4. The map A : VH −→ GL is a group homomorphism, i.e.

A(g′ ∗ g) = A(g′) · A(g) ∀g′, g ∈ VH (8.79)

Proof. Let g′, g ∈VH(3) with g′ = (a′,A′) and g := (a,A). Applying (8.75)
we obtain:

A(g′ ∗ g) =

1 0 0 0 0 0 (a′x + ax)i

0 1 0 0 0 0 (a′y + ay)j

0 0 1 0 0 0 (a′z + az)k

0 −(a′z + az)k (a′y + ay)j 1 0 0 (A′
x +Ax + 1

2 (a′yaz − aya′z))i

(a′z + az)k 0 −(a′x + ax)i 0 1 0 (A′
y +Ay + 1

2 (a′zax − aza′x))j

−(a′y + ay)j (a′x + ax)i 0 0 0 1 (A′
z +Az + 1

2 (a′xay − axa′y))k

0 0 0 0 0 0 1


(8.80)

= A(g′) · A(g) (8.81)

Furthermore it is

A(e) =


1

. . .

1

 . (8.82)

Because of (8.81) and (8.82) the mapA is a group homomorphism and there-
fore a representation of the Vortex-Heisenberg-group VH(3).

Proposition 1. Let M be a (n× n) matrix with limk→∞(In −M)k = 0. Then,
M is regular and the inverse Matrix of M is given by:

M−1 =
∞∑
k=0

(In −M)k (8.83)

Claim 5. Let A the above matrix representation of the VH(3). A satisfies:

A(g−1) = A−1(g) (8.84)

Proof. (of the claim)
Applying proposition 1, since

(I7 −A)2 = 0 (8.85)
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The matrix A is regular and its determinant is one. Let now g ∈ VH(3). It
is

A−1(g) =

∞∑
k=0

(I7 −A)k = (I7 −A)0 + (I7 −A)1 + 0 + 0 + . . .

=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


−



0 0 0 0 0 0 axi

0 0 0 0 0 0 ayj

0 0 0 0 0 0 azk

0 −azk ayj 0 0 0 Axi

azk 0 −axi 0 0 0 Ayj

−ayj axi 0 0 0 0 Azk

0 0 0 0 0 0 0


(8.86)

=



1 0 0 0 0 0 −axi
0 1 0 0 0 0 −ayj
0 0 1 0 0 0 −azk
0 +azk −ayj 1 0 0 −Axi
−azk 0 +axi 0 1 0 −Ayj
+ayj +axi 0 0 0 1 −Azk

0 0 0 0 0 0 1


= A(g−1) (8.87)

Thus, we have derived a vector and a matrix representation of the Vortex-
Heisenberg group VH(3) for three-dimensional incompressible, inviscid vor-
tex dynamics. In the next section we will extend this group by rigid-body
rotations SO(3).
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8.4 The Helmholtz Vortex Lie group V(3)

In this section we will generalize the Vortex-Heisenberg Lie group VH(3)
and include the angular momentum. Thus, the novel group will contain the
circulation as a rotational part as well as rigid-body rotations about a given
angle. In chapter 9, we will first apply the Vortex-Heisenberg group VH(3)
to explain the mechanism of split of storms and at the end, we will show
how the extended group can be applied to show the existence of further
splits.

We will call the extension of the Vortex-Heisenberg Lie group Helmholtz
Vortex group, because it is based on Helmholtz’ vorticity equation. We
can formulate the Helmholtz Vortex group that we will denote V(3) as
semidirect product of the special orthogonal group SO(3) and the Vortex-
Heisenberg group VH(3):

V(3) = SO(3) n VH(3). (8.88)

where, considering the definition of semidirect products (6.27), the corre-
sponding homomorphism ϕ : V H(3)→ V (3) is given by x 7→ Rx, where R

denotes a rotation matrix and is an element in SO(3). But, when we include
the angular momentum, i.e. the Euclidean rotation represented by SO(3)
(see (6.5)), we lose the nilpotency. Therefore, the Helmholtz Vortex group
does not have the typical Heisenberg group structure. We will first intro-
duce the novel group and then show that it satisfies the group properties.

The Helmholtz Vortex group is given by the set

V (3) = {(a,A,R) | a,A ∈ R3, R ∈ SO(3)} (8.89)

together with the following group operation:

(a,A,R) ∗ (a′,A′,R′) =

(
a + Ra′,±1

2
a×R′a + A + RA′,RR′

)
(8.90)

for a, a′,A,A′ ∈ R3 and R,R′ ∈ SO(3). By extending the Vortex-Heisenberg
group by the angular momentum, i.e. including rigid body rotations ex-
pressed by rotation matrices R ∈ SO(3), the Helmholtz Vortex group is a
nine-dimensional group. Noting that we obtain two group operations with
a non-trivial plus-minus sign in front of the cross product, we can distin-
guish between these operation by defining V +(3) and V −(3) with respect to
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the different signs in (8.90).

V +(3) : (a,A,R) ∗ (a′,A′,R′) =

(
a + Ra′,+

1

2
a×R′a + A + RA′,RR′

)
V −(3) : (a,A,R) ∗ (a′,A′,R′) =

(
a + Ra′,−1

2
a×R′a + A + RA′,RR′

)

(8.91)

The terms of the rigid body rotations in the Helmholtz Vortex group op-
eration (8.91) are similar embedded as in the group operation of the three-
dimensional Euclidean group that we have discussed in chapter 6, example
2. The Helmholtz Vortex group has an identity element, an inverse element
and its group operation does satisfy the associative property.

Claim 6. The identity and inverse elements of (a,A,R) of V +(3) and V −(3)

are given by

Identity element: (0,0,E)

Right and left inverse elements:
(
−R−1a,−R−1A,R−1

) (8.92)

where E denotes the unit matrix. Moreover, the associate property holds.

Proof. We show that there is an identity element (0, 0,E):

(a,A,R) ∗ (0, 0,E) = (a,A,R)

(0, 0,E) ∗ (a,A,R) = (E a,E A,R) = (a,A,R)
(8.93)

and the existence of the inverse elements
(
−R−1a,−R−1A,R−1

)
:

(a,A,R) ∗
(
−R−1a,−R−1A,R−1

)
= (a−RR−1a,±1

2
a× (−RR−1a) + A−RR−1A,RR−1)

= (0, 0,E)

(8.94)
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and(
−R−1a,−R−1A,R−1

)
∗ (a,A,R)

= (−R−1a + R−1a,±1

2
(−R−1a)×R−1a−R−1A + R−1A,R−1R)

= (0, 0,E)

(8.95)

Further, we need to prove the associative property of the group opera-
tion. Let (a,A,R), (a′,A′,R′) and (a′′,A′′,R′′) elements in Helmholtz Vor-
tex group.

(a′′,A′′,R′′) ∗ [(a′,A′,R′) ∗ (a,A,R)]

= (a′′,A′′,R′′) ∗
(

a + Ra′,±1

2
a×R′a′ + A + RA′,RR′

)
= (RR′a′′ + Ra′ + a,±1

2
(a + Ra′)× a′′)± 1

2
a×Ra′ + A + RA′ + RR′A′′,

R′′R′R)

= (RR′a′′ + Ra′ + a,±1

2
(a×RR′a′′ + Ra′ ×R′Ra′′ + a×Ra′)

+ A + RA′ + RR′A′′, R′′R′R)

(8.96)

In the last step we applied Ra × Rb = R(a × b) which holds for a,b ∈
R3, R ∈ SO(3). To satisfy the associate property last equation has to be
equal to the following expression:

[(a′′,A′′,R′′) ∗ (a′,A′,R′)] ∗ (a,A,R)

= (RR′a′′ + Ra′ + a,±1

2
(a×RR′a′′ + Ra′ ×R′Ra′′ + a×Ra′)

+ A + RA′ + RR′A′′, R′′R′R)

(8.97)

The associative law is satisfied, because (8.97) = (8.96). Therefore, V +(3)

as well as V −(3) with the operation defined in (8.90) satisfy all group prop-
erties.
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8.4.1 Embedding VH(3) in V(3)

The Vortex-Heisenberg group can be embedded in Helmholtz Vortex group,
which can be seen by considering the neutral element of SO(3), i.e. the iden-
tity E:

(a,A) ∼= (a,A,E) ⊂ (a,A,R) (8.98)

Thus, Helmholtz Vortex group can be seen as generalization of the previ-
ously discussed Vortex-Heisenberg group. And therefore, we see that the
previously discussed VH(3) can also be extended by the group operation
with the minus sign in front of the cross product:

V H(3) : (a′,A′) ∗ (a,A) =

(
a′ + a,A′ + A +

1

2
a× a′

)
(8.99)

and

V H(3)− : (a′,A′) ∗ (a,A) =

(
a′ + a,A′ + A− 1

2
a× a′

)
(8.100)

The group properties for V H(2)− are also satisfied since it is embedded in
V −(3). Moreover, the groups for two-dimensional vortex dynamics VH(2)
can analogously be extended by the planar rotations SO(2).
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t t′
∆t

r′ r′
a = ∆r ∼ ∆v

Figure 8.3: Consider the motion of an particle in a time frame ∆t. During this
time frame, the particle is locally displaced by a = ∆r. If the velocity becomes
larger, the displacement a = ∆r is larger, too.

8.5 Physical interpretation

So far, we considered the Vortex-Heisenberg group elements as pairs (a, A)
with a = (ax, ay) and A ∈ R for 2D inviscid, incompressible vortex dy-
namics, respectively (a,A) with a = (ax, ay, az) and A = (Ax, Ay, Az) for
3D inviscid, incompressible vortex dynamics. Moreover, we introduced
the Helmholtz Vortex group, where the group elements are given by the
triples (a,A,R), where a = (ax, ay, az), A = (A1, A2, A3) and R ∈ SO(3).
The choice of these notations is based on the underlying physical interpre-
tation of the group. The rotational matrix R ∈ SO(3) describes rigid-body
rotations about a given angle, but how can we interpret the tuple (a, A)?

8.5.1 Two dimensional vortex dynamics

In two dimensions, ∆v and ∆ζ describe small spatial local changes of the
two-dimensional velocity vector v and the vorticity ζ . As corresponding
group elements we consider the pair (a, A) with a = (ax, ay) and A ∈ R.
This notation is chosen analogously to the notation for classical mechan-
ics discussed in Sudarshan and Mukunda (1974). We recall the zonal and
meridional momentum with respect to the vorticity ζ :

Px[ζ] =

∫
F

df ζy, Py[ζ] = −
∫
F

df ζx. (8.101)

Now, assume infinitesimal area elements of the momentum (8.101). Similar
to the approach of Sudarshan and Mukunda (1974), we propose the follow-
ing notation of the group elements:

algebra group

vx −→ exp((ζ y · ax)∗) −→ ax = x− x′

vy −→ exp((−ζx · ay)∗) −→ ay = y − y′

ζ −→ exp((ζ · A)∗) −→ A = F − F ′

(8.102)
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where the asteriks denotes the scaling one over the action to obtain dimen-
sionless exponents. Consider a state change. For example, let a state be
characterized by a vortex that encloses a large area F . And consider a se-
cond state characterized by a vortex with a smaller enclosed area F ′. The
scalar quantityA denotes the change of the area element ∆F = F−F ′. And
the vector a = (ax, ay) represents the displacement ax = ∆x = x − x′ and
ay = ∆y = y − y′.

8.5.2 Three dimensional vortex dynamics

In three dimensional vortex dynamics, the elements of the Vortex-Heisen-
berg group are given by the tuple (a,A), where a = (ax, ay, az) and A =

(Ax, Ay, Az). As for two dimensional vortex dynamics, we interpret the
physical meaning of the group elements analogously to classical mechan-
ics suggested by Sudarshan and Mukunda (1974). For incompressible 3D
vortex dynamics, the momentum is given by:

P =

∫
V

dτ v =
1

2

∫
V

dτ (r× ξ) (8.103)

and the flux of vorticity reads as:

Z =

∫
V

dτ ξ. (8.104)

Now, we assume small volume elements of the momentum and the flux
of vorticity leading to the following physical interpretations for the Vortex-
Heisenberg algebra and for the Vortex-Heisenberg group:

algebra group

v −→ exp

((
1

2
(r× ξ) · a

)∗)
−→ a = r− r′

ξ −→ exp((ξ ·A)∗) −→ A = F− F′,

(8.105)

where the asteriks in the exponent denotes the scaling by one over the ac-
tion to obtain dimensionless exponents.

Three idealized, infinitesimal vortex tubes are sketched in fig. 8.4. The
vector A = |∆F | · n denotes the change of the area F with respect to the
direction of the outer normal vector n. The Pirouette effect is sketched, too.
Consider a infinitesimal vortex tube (middle) enclosing a given area. For
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Figure 8.4: Infinitesimal vortex tubes are sketched. The 3D vorticity vector is
parallel to the vortex tube and A denotes the change of the area marked in orange.

the processes of divergence, the radius of the vortex tube enlarges (l.h.s.).
Thus, A points downwards. On the other hand, for the processes of conver-
gence, the vortex tube becomes smaller such that A changes it sign (r.h.s.)
and points into the inner of the vortex tube. The vector A is now parallel to
∆ξ. We recall that the vector v is the velocity tangent to the vortex tube and
related to the momentum. Thus, v is associated with the vector a, which
denotes the displacement tangent to the vortex tube a = ∆r, see fig. 8.3
and fig. 8.5. For a small vortex tube characterized by strong helical rota-
tion, the vectors v and ξ (algebra), respectively a and A (group), become
parallel such that their scalar product increases. It follows that the helicity
density h = 1

2
v · ξ increases and is maximal if v ‖ ξ. This concept can be

transferred to the group theoretical point of view:

h =
1

2
v · ξ → 1

2
a ·A. (8.106)

The helicity changes its sign if the orientation of the rotation changes. Thus,
the sign depends on the orientation of the system, whether it is a left-
handed or a right-handed system, which is reflected in both representations
of the helicity. The notation of the enstrophy can also be transferred to the
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Figure 8.5: Infinitesimal vortex tubes are sketched. Consider the initial state (mid-
dle). If the velocity becomes larger, i.e. ∆v > 0, the displacement a = ∆r is larger
than zero. If the velocity becomes slower, i.e. ∆v < 0 it is a = ∆r < 0. Thus, the
displacement is proportional to the change of the velocity.

group theoretical point of view:

(algebra)
1

2
v2 → 1

2
a2 (group). (8.107)

The notations, the physical meaning, and the mathematical characteriza-
tion of the basic quantities are summarized in table 8.1.

We consider group elements as local quantities describing the state of
a subregion of a fluid - an infinitesimal vortex tube of finite lengths. In
chapter 7, section 7.3.1, we have discussed the law of Biot-Savart, which
can also be related to our group theoretical representation of vortex flows.
While the Bio-Savart law provides the velocity induced at a given point, the
group theoretical approach yields a description of the change of the velocity
expressed by the displacement ∆r = a. The group composition itself can
be regarded as the change of a state. In the next chapter, we will use this
concept and assign VH(3)-group elements to different meteorological wind
fields such as shearing flows and tornados. By analyzing the corresponding
group operation, we will discuss the conditions on the wind fields that lead
to splitting storms. Moreover, we will also see the benefits of the additional
rigid body rotation in the Helmholtz Vortex group and discuss one example
of a splitting storm regarding this novel Helmholtz Vortex group.
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Physical Mathematical Lie algebra Lie group
meaning characterization vh(3) VH(3)
Velocity vector v −→ a
Vorticity pseudo-vector ξ −→ A

Helicity pseudo-scalar 1
2v · ξ −→ 1

2a ·A
density
Enstrophy scalar 1

2ξ
2 −→ 1

2A
2

density
Kinetic energy scalar 1

2v
2 −→ 1

2a
2

density

Table 8.1: The physical meaning and the mathematical characterization as well as
the notations of the algebra and group are summarized.

8.6 Summary

Starting with an introduction to continuous Nambu mechanics, we have
shown a derivation of the Vortex-Heisenberg group for two- and three-
dimensional fluid dynamics. Thereby, we introduced a matrix represen-
tation of the Vortex-Heisenberg Lie algebra which lead to a matrix as well
as a vector representation of the Vortex-Heisenberg group. Moreover, we
introduced the Helmholtz Vortex group, in which the Vortex-Heisenberg
group is embedded. From the physical point of view we included the an-
gular momentum to capture two different kinds of rotations: the flux of
vorticity and the rigid body rotation about a given angle. We are now well
prepared to apply this group to splitting storms.



Chapter 9

Splitting storms: An alternative
explanation

In this chapter we will apply the Vortex-Heisenberg group VH(3) and the
Helmholtz Vortex group V(3) that we have derived in the last chapter to
give an alternative, novel explanation of vortex splits. We will transfer the
abstract, mathematical concept of group elements and group operations to
different, typical atmospheric wind fields and their interaction. Then, we
will propose initial conditions for vortex splits and discuss our assumptions
by analyzing the helicity density fields of five case studies.

This algebraic approach also leads to an alternative perspective on tur-
bulence in terms of the understanding of the mechanism of vortex breakups.
In two-dimensional fluid mechanics the quadratic quantities energy and
enstrophy have two different cascades: the energy flows towards larger
scales and the enstrophy towards small scales, see for example Kraichnan
(1967), Kraichnan and Montgomery (1980), Boffetta and Ecke (2012), or
Mininni and Pouquet (2013). In three dimensions, Kolmogorov’s famous
k−5/3− law states the energy flows towards smaller wave numbers (Kol-
mogorov, 1941). There are many works corroborating Kolmogorov’s theory
either numerically in terms of the Navier-Stokes equations or experimen-
tally, see e.g. Kraichnan and Montgomery (1980), Chorin (1994) or Frisch
(1995). By evaluating atmospheric measurements with airplanes Nastrom
et al. (1984) were the first who could show that Kolmogorov’s and Kraich-
nan’s theories for 2D and 3D turbulence hold for atmospheric data sets.
But, until know, flows are analyzed statistically considering the space of
waves and not the space is regarded, where the flow actually evolves, as it
was recently stated by (Cardesa et al., 2017).

151
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In this chapter, we will consider 3D vortex dynamics. Our studies are
based on the work of Névir and Blender (1993), who formulated the vor-
ticity equation with respect to the energy and the helicity. We recall that
the energy is a quadric quantity, whereas the helicity, given by the scalar
product of the velocity and vorticity vectors, can have positive as well as
negative values. The helicity is related to the rotation of vortex dynamics
we think that it is an interesting and underestimated quantity concerning
turbulence studies. First works on the helicity can be ascribed to Ertel and
Rossby (1949), Betchov (1961), Moreau (1961), Moffatt (1969) and Kraichnan
(1973). The sign-structure of the helicity might be a reason, why only few
authors regard the helicity cascade, as for example Brissaud et al. (1973),
Chen et al. (2003), Pouquet and Mininni (2010), Dallas and Tobias (2016).
Why is the positive definite enstrophy cascade commonly examined, but
not the helicity cascade?

Biferale et al. (2013) point out the importance of the helicity, its sign and
its relation to the energy cascade. They show numerically that in all three-
dimensional flows in nature one can find a subset of nonlinear evolution,
which leads to a reverse energy transfer from small to large scales. The au-
thors use setups with different sign of the helicity and show that the differ-
ent cascades depend on the chosen sign of helicity. So far, energy cascades
to larger scales were related to two-dimensional flows, but they show that
it can also occur in three dimensions. The reversed energy cascade happens
in cases, where the mirror symmetry is broken, underlining the importance
of the quantity helicity itself, and in particular its sign. In these cases, the
helicity cascades towards smaller scales and the energy cascades in oppo-
site direction, to larger scales. Thus, the choice of a fixed sign of helicity
influences the direction of the energy cascade. But in case the helicity field
is zero, it does not influence the energy cascade.

Nambu-mechanics provides the possibility to analyze helicity fields in-
dependently of the energy. In this chapter we will use this advantage of
Nambu mechanics and explore the helicity density field of vortex flows.
We will propose initial conditions for vortex splits. Thereby, we define vor-
tex splits with respect to the sign of the helicity density. A region with
positive helicity density values can be related to a right rotating vortex and
a helicity density region characterized by negative values can be assigned
to a left rotating vortex. We will analyze the helicity field with respect to
the Vortex-Heisenberg group VH(3) and the Helmholtz Vortex group V(3)
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that we have derived in chapter 8. In order to transfer the group theoret-
ical approach to splitting storms, we will first give a short introduction to
tornadoes and splitting supercells. In the last part of this chapter we will
shortly discuss the implications of this alternative, algebraic perspective on
3D vortex flows for (future) turbulence studies. To the best of our knowl-
edge, an analysis of vortex splits based on a group theoretical approach is
not yet known.

9.1 Tornadoes, supercells and splitting storms

Tornadoes are strongly rotating vortices with measured wind speeds rang-
ing from 33 m/s up to 140 m/s. They are characterized by a violent rotating
column of air that extends to the ground from the interior of a cumulonim-
bus cloud (Davies-Jones et al., 2001). Tornadoes can be classified into two
types: Type I is associated with a larger-scale parent circulation. Such torna-
does form within a mesocyclone. Type II is generally a smaller and weaker
vortex away from any mesocyclone. We will consider the large and violent
tornadoes of Type I that occur usually in isolated supercell storms (Davies-
Jones et al., 2001). Supercells are thunderstorms with a lifetime larger than
one hour that have a high degree of spatial correlation between its meso-
cyclone and updraft. Thunderstorms may even produce more than one
tornado, as it was, for instance, observed in Oklahoma, 18. June 1993 by
Moller (1978). For details on the development and analysis of tornadoes
see e.g. the classical works of Morton (1966), Davies-Jones et al. (1974),
Klemp (1987), Snow (1984), or Davies-Jones (1995).

Klemp and Wilhelmson (1978) have studied the split of storms using
three-dimensional cloud models. They state that splittings depend on the
distribution and the intensity of low-level shear; and when storms split,
two storms are generated, one cyclonically rotating updraft moving to the
right of the initial wind and one anticyclonical storm, moving to the left.
Neglecting the Coriolis effects, Klemp and Wilhelmson (1978) show nu-
merically, how one idealized storm splits into two storms that are mirror
images of each other. Moreover, by applying the kinematic vorticity num-
ber and analyzing the vorticity field Schielicke (2017) discusses case studies
of splitting supercells numerically. We will shortly summarize the expla-
nation of splitting storms due to the classical works of Klemp (1987) and
Davies-Jones et al. (2001). We assume that the wind increases with height
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Figure 9.1: The onset of a splitting is shown. The tilting vortex lines produce a
cyclonic vortex to the right of the peak and an anticyclonic vortex to the left of the
peak. From Markowski and Richardson (2011), based on Klemp (1987)

and consider a flat surface as illustrated in fig. 9.1. Such a surface may be
deformed by convection leading to a raising peak in the surface. The tilt-
ing vortex lines produce a cyclonic vortex to the right of the peak and an
anticyclonic vortex to the left of the peak. The cylindrical arrows show the
flow of the storm. It is shown how the updraft can cause a split into a cy-
clonic vortex on its right and an anticyclonic vortex on its left. Such strong
rotating storms are characterized by large helicity.

9.2 Helicity, Beltrami fields and splitting storms

We cite Ertel and Rossby (1949) who already introduced the concept of the
helicity in terms of a Lagrangian conserved quantity as follows: Let v be
the absolute velocity and ξ = ∇ × v the absolute vorticity, further let ρ−1

the specific volume of a barotropic fluid and ∆W the gradient of the action
W (=Hamilton’s principal-function), then

d

dt
{1

ρ
ξ · (v −∇W )} = 0 (9.1)
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where d
dt

denotes temporal differentiation following the motion of the fluid
which provides the Lagrangian conservation.

Twelve years later, Betchov (1961) introduced the term helicity and its
definition as it is known today; Moffatt (1969) was one of the first who
considered the helicity as important quantity in terms of magnetohydrody-
namics. Eight years later Lilly (1986) characterizes supercell thunderstorms
by high helicity. He also proposes that the longevity of supercells is due
to large helicity. Moreover, he shows that the structure and the motion
of supercell storms can be modeled as purely helical flow. Purely helical
flows are characterized by parallel velocity and vorticity vectors. Flows
with this property are called Beltramian flows, which we will discuss more
in detail in this chapter. Regarding observations as well as simulations Lilly
(1986) comes to the result that long-lived isolated storms have nearly coin-
cident updraft and vortex centers and therefore, it is reasonable to represent
storms as Beltrami flows. Moreover, he proposes that helical Eddies have a
longer lifetime, because they resist dissipation. In our simulations that are
based on incompressible ideal fluid equations without dissipation. We will
observe vortex splits in regions, where the storm ’collides’ with its envi-
ronment and show that most interaction takes place in these transitional or
short-lived regions of low helicity. In our approach we will use the Vortex-
Heisenberg groups and define splits as a decomposition of definite helicity
fields into a helicity field with locally changing sign.

In the last chapter we have seen that using Nambu’s formulation for
three-dimensional fluid dynamics helicity is as important as kinetic energy.
The helicity is given by

hV =
1

2

∫
V

dτ v · ξ, (9.2)

and gives a measure of helical rotation. In our analysis, we will mainly

consider the helicity density given by h =
1

2
v · ξ. Webb et al. (2014) point

out that the helicity is a pseudo-scalar that changes sign under 3D space
reversal, i.e. h −→ −h, see table 8.1. Because of the parity transformations
of the velocity and vorticity vectors v and ξ:

v→ −v and ξ → ξ, (9.3)

the helicity density is a pseudo scalar:
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1

2
v · ξ → −1

2
v · ξ. (9.4)

They state that this is an important property of the helicity as it measures par-
ity symmetry breaking. A parity invariant flow has zero helicity. Therefore, flows
with large positive helicity, as our example of the Beltrami flow (defined
as solutions of (9.6)), are strongly symmetry breaking. We note the differ-
ence between the parity invariance of equations and solutions. The vortex
equation is invariant under parity transformations, this property holds for
classical physics in general, such as for the mass point equations. But solu-
tions can break the symmetry, as for example the Beltrami flow field. One
violent rotating vortex that represents a tornado can be represented ideal-
ized by such a symmetry breaking Beltrami field. If one vortex splits into
two vortices as in supercells — that are mirror images of each other and
thus have different sign of helicity — the helicity integrated over the whole
fields will approach zero. Thus, the sum of the local helicity values is nearly
zero and the total system conserves the symmetry. After a cascade of splits,
a helicity-invariant field is obtained, where the symmetry is reestablished.

We shortly summarize the common explanation for splitting storms that
is is based on the three-dimensional inviscid vorticity equation, where the
source/sink term is included:

∂ξ

∂t
= ∇× (v × ξ) +∇× (bk) (9.5)

with buoyancy b = gθ′/θ0, potential temperature θ = θ0 + θ(z) + θ′(x, t),
constant potential temperature θ0, position vector x and time t (see e.g. Ro-
tunno and Klemp, 1982). If the velocity vector v is parallel to the vorticity
vector ξ pointing in the same or in the opposite direction, i.e.

v = λξ, λ ∈ R, (9.6)

the flow is characterized by large helicity. Such flows with parallel vorticity
and velocity fields are called Beltrami flows. Considering Beltrami flows,
the so-called Lamb vector, given by the cross product v × ξ is zero. In this
case, the first term on the right hand side in (9.5) vanishes leading to the
reduced representation of the vorticity equation:

∂ξ

∂t
= ∇× (bk). (9.7)
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Because the vanishing term is related to advection, stretching and tilting,
the source, respectively sink, of vorticity is only given by the buoyancy
production term which is related to the time rate of change of horizontal
vorticity; the energy cascades is prevented by the vanishing non-linear term
and the rotation can be preserved for a longer time. It is argued that in case
the non-linear term v× ξ = 0 in the vorticity equation (9.5) vanishes only a
forcing driven by thermodynamics is possible. Only cases where v × ξ 6= 0

can imply cascades. Since Beltrami flows are flows with large helicity, we
will represent idealized storms as Beltrami-flows.

Definition 40. Beltrami vector field
A three-dimensional vector field v is called Beltrami if

(∇× v)× v = 0 (9.8)

which means that the vector field and its curl are everywhere collinear.
We can also write (9.8) as:

∇× v = λ(x)v (9.9)

where λ(x) is a scalar function depending locally on x. The solutions of
(9.9) can be classified as different types of Beltrami fields (see, e.g., Amari
et al., 2009):

1. Potential fields: λ ≡ 0, v is irrational and can be determined from
a potential, i.e. A = ∇ϕ. This is the simplest case, but we want to
describe tornados with the Beltrami field and therefore, the helicicity
∇× v = λ(x)v must not vanish.

2. Non-linear Beltrami fields with a non-linear function λ(x). So far, un-
der assumptions the existence of non-linear Beltrami fields is proven
(see, e.g., Boulmezaoud, 1999).

3. Linear Beltrami fields are characterized by constant λ ∈ R.

All cases are described in detail in Bjørgum (1951) and Bjørgum (1952). For
the latter case, several solutions exist and the helicity turns out to be ex-
tremal. For Beltrami flows, where ∇ × v = λv, the densities of the most
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important quantities in vortex dynamics are given by:

Kinetic Energy density: H =
1

2
v2,

Helicity density: h =
1

2
v · ξ =

1

2
λv2,

Enstrophy density: ε =
1

2
ξ2 =

1

2
λ2v2,

(9.10)

leading, in case of linear Beltrami fields and v2 > 0, to the following rela-
tionship between these quantities, where the λ is endowed with the corre-
sponding dimension:

a) λ = 1: energy = enstrophy = helicity

b) 0 < λ < 1: 0 <enstrophy < helicity < energy

c) −1 < λ < 0: helicity < 0 < enstrophy < energy

d) λ > 1: 0 < energy < helicity < enstrophy

e) λ < −1: helicity < 0 < energy

Furthermore, the Cauchy-Schwarz inequality that is given by:

(v · ξ)2 ≤ (v · ξ) · (v · ξ) (9.11)

is satisfied for Beltrami flows. We use the index B to mark the Beltramian
property:

(vB · ξB)2 = v2
B · ξ2

B (9.12)

The latter equation holds, because inserting the Beltrami condition ξ = λv

leads to:

(vB · ξB)2 = (vB · (λvB))2 = v2
B · (λv))2 = v2

B · ξ2
B. (9.13)

There are only few solutions of linear Beltrami vector fields satisfying (9.9)
for a constant factor λ. The most popular solution was derived by Arnold
(1965). These flows are called ABC-flows (to honor the three scientists V.
Arnold, E. Beltrami and S. Childress) and as we will show in the follow-
ing, for these solutions λ is equal to one. In this chapter we will explore
helicity fields a the previously discussed equations will be used for their
examination. Arnold (1965) and Childress (1970) conjectured the existence
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Figure 9.2: The stream lines of the ABC (9.14) flow with A = 1, B = C = 1
2 are

shown.

of chaotic paths for Beltrami flows. ABC flows are flows of the form:

vB = vB(x, y, z) =

A sin(z) + C cos(y)

B sin(x) + A cos(z)

C sin(y) +B cos(x)

 , with 1 ≥ A ≥ B ≥ C ≥ 0

(9.14)
see for example Dombre et al. (1986), Hénon (1966), Galloway (2012) or
Arnold and Khesin (1992). In fig. 9.2 we illustrate the streams lines of an
ABC-flow.

Linear Beltrami flows such as the ABC-flows (9.14) are characterized by
local extrema of helicity. For λ = ±1 (λ = 1 for ABC-flows) and normed
velocity fields, i.e. |v|2 = 1 it is:

h =
1

2
v · ξ = ±1

2
v2 = ±1

2
. (9.15)

Locally, the sign of the helicity field of a Beltrami flow does not change. It
depends on the initial field and thus on the factor λ.

We summarize that the helicity density of Beltrami flows (9.15) is ex-
tremal, and for ABC-flow solutions, where λ = 1, the helicity density is
maximal. On the other hand, tornadoes are strongly rotating vortices and
characterized by high values of helicity (Davies-Jones et al., 1990). Com-
bining both facts, it seems reasonable to regard tornadoes as ABC-flows.
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Davies-Jones (2015) used a Beltrami flow as initial condition, because the
Beltrami flow resembles a mid-latitude mesocyclone. Moreover, Raptis and Pa-
pageorgiou (2017) state that Beltrami flows are of a characteristic topology akin
to that of tornado flows [...].

So far, we have explored the helicity density h = 1
2

v · ξ. Another pos-
sibilty to examine helicity fields is the so-called relative helicity density. It is
defined as the cosine of the angle between the vorticity and the vorticity
vector, i.e.:

hrel = cos(v, ξ) =
v · ξ
|v| · |ξ|

. (9.16)

There are at least two advantages using this helicity-representation (9.16).
(i) All values are dimensionless and hrel ∈ [−1, 1] which allows for a good
comparison of the helicity of different states and (ii) we can quantify if the
helicity field is locally a Beltrami field.

Davies-Jones et al. (1990) classified 28 tornadoes by its strength of rota-
tion hsrh in m2

s2
:

150 m2s−2 < hsrh < 299 m2s−2 weak tornadoes
300 m2s−2 < hsrh < 449 m2s−2 strong tornadoes

hsrh > 450 m2s−2 violent tornadoes.

(9.17)

More precisely, hsrh is the so-called storm-relative helicity that can be derived
under the assumption that there is no vertical wind. Here, it is integrated
over the lowest 3 km:

hsrh =

∫ 3km

0

dz (V −C) ·
(

k× ∂V

∂z

)
, (9.18)

where V denotes the environmental wind vector and C is the storm motion
vector that can be approximately estimated by using the pressure-weighted
mean wind in the lowest 5-6 km. The values of the storm-relative helicity
range from approximately 150 m2s−2 to upwards of 1000 m2s−2.

In his recent work, Kurgansky (2017) also points out the significance of
helicity by studying intense atmospheric vortices as tropical meso-scale vor-
tices, tropical cyclones, and turbulence. In Chkhetiani (2005) further inves-
tigations of hurricanes, tornadoes and dust devils in terms of helicity can
be found. Since violent tornadoes are related to large helicity, we think it is
convenient to represent idealized, strong rotating storms by Beltrami flows.
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9.3 Vortex splits induced by the Vortex-Heisen-

berg group

In the following we will use the Vortex-Heisenberg Lie group structure to
explain vortex splits. For this approach, we will analyze the outcome of
the group operation of two group elements with respect to helicity, energy
and enstrophy densities. Each group element represents a certain flow, each
characterized by its displacement a and the vector that is normal to the area
enclosed by the circulation, denoted A. We discussed the physical interpre-
tation of the vectors a and A in chapter 8 section 8.5. We will examine the
helicity density field of the state induced by the group operation as it is
sketched below:Initial State I

helicity-free
shear-flow

 ·
Initial State II

flow with
max. helicity

 =

 Interaction
Splitted flow field
± helicity.


In chapter 6 section 6.1 we have compared this view with the group of ro-
tations. Here, we will relate vortex splits to the sign of the helicity density
because of the following reason: A helicity density field that shows locally
positive as well as locally negative values gives rise to vortex splits, because
different signs within the helicity density fields indicate different orienta-
tions of rotation. One should distinguish between vortex-circulations such
as the vorticity and rigid body rotations about a given angle. Regarding
the Vortex-Heisenberg group, we consider vortex-rotations related to the
vorticity. The Helmholtz-Vortex group additionally contains the rigid body
rotation. We will propose initial conditions for vortex splits and explore
different examples for different flows. Thereby, we will consider a Beltrami
field representing a supercell and different shear flows representing the at-
mospheric environment of the supercell. We will start with four case stud-
ies exploring helicity density fields with respect to the Vortex-Heisenberg
group VH(3):

1. A Beltrami field and an atmospheric shear field with vanishing helic-
ity

2. A Beltrami field and an atmospheric shear field with helicity

3. Two Beltrami fields
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Figure 9.3: Two classical meteorological wind fields are sketched. Whereas the
wind in a) is characterized by a planar rotation such that the helicity vanishes; the
wind field sketched in (b) increases such that helicity can be measured.

4. The two shear fields of case 1 (with vanishing helicity field) and case
2 (with helicity), both wind fields are sketched in fig. 9.3.

And, as a fifth case, we examine the helicity field with respect to the Helmholtz
Vortex group V(3), where the conservation of the angular momentum is ad-
ditionally integrated:

5. A Beltrami field and an atmospheric shear field with vanishing helic-
ity

The cases are summarized in table 9.1. In each example we will consider
two initial flows, represented as group elements A and B and analyze the
helicity density field of state C that results from the group composition
of state A and B. Thus, state C = A ∗ B reflects the interaction of the
atmospheric states A and B, or the change of the state.

One benefit of the group theoretical approach in general is the closure
property. This means that a by group operation induced state is also an ele-
ments of the group. Thus, the group theoretical approach might be seen as
a new conceptual structural integration method of Helmholtz 3D vorticity
equation. Therefore, if the induced state can be related to a splitted helic-
ity field we can state that storm splits yields a solution of Helmholtz’ 3D
vorticity equation. Furthermore, because of the existence of the inverse of
each group element, the process is reversible and also the generation of the
initial states can be explained by and related to the helicity density.
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Group Case Initial State Initial State Induced state

Study A B C = A ∗B

VH(3) 1 Beltrami Shear I Split

(no tilting)

(vB, ξB) (vs1, ξs1) (v′′, ξ′′)

h: extremal h′ = 0 sign(h′′) : +/−
2 Beltrami Shear 2 Split

(tilting)

(vB, ξB) (vs2, ξs2) (v′′, ξ′′)

h: extremal sign(h′) : +/− sign(h′′) : +/−
3 Beltrami 1 Beltrami 2 No split

(vB1, ξB1) (vB2, ξB2) (v′′, ξ′′)

h: extremal h: extremal sign(h′′) =const

4 Shear 1 Shear 2 No additional

(tilting) (no tilting) split

(vs2, ξs2) (vs1, ξs1) (v′′, ξ′′)

sign(h′) : +/− h = 0 sign(h′′) : +/−
V(3) 5 Beltrami Shear I Additional

(tilting) split

(vB, ξB,RB) (vs1, ξs1,Rs1) (v′′, ξ′′,R′′)

h: extremal h′ = 0 sign(h′′) : +/−

Table 9.1: Five cases with initial fields characterized by different helicity fields
are discussed.

We transfer the physical characterizations of the flow from the algebra to
the group representatives as discussed in chapter 8 section 8.5 and use the
notations from table 8.1, where v is the velocity vector and ξ the vorticity
vector. Considering the associated Vortex-Heisenberg Lie group, we denote
a the vector related to the velocity v and A the vector related to ξ, i.e.

(algebra) v −→ a (group),

(algebra) ξ −→ A (group).

Then, the Vortex-Heisenberg group VH(3) is given by the set (a,A) ∈ R6
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together with the following group operation:

(a′′,A′′) = (a′,A′) ∗ (a,A) = (a′ + a,A′ + A′ +
1

2
a× a′). (9.19)

Now, we formulate the helicity, energy and enstrophy densities in terms
of the Vortex-Heisenberg group. Using the VH(3)-group operation (9.19),
we obtain the following expressions for the helicity density:

h′′ =
1

2
a′′ ·A′′ = 1

2
(a′+ a) · (A′+ A +

1

2
a× a′) =

1

2
(a′+ a) · (A′+ A) (9.20)

and the energy density reads

H ′′ =
1

2
a′′2 =

1

2
(a′ + a)2, (9.21)

and the enstrophy density can be formulated as follows

ε′′ =
1

2
A′′2 =

1

2

(
A′ + A +

1

2
a′ × a

)
·
(

A′ + A +
1

2
a′ × a

)
, (9.22)

which can be written as

ε′′ =
1

2

[
(A′ + A)2 + (A′ + A) · (a′ × a) +

(
1

2
a′ × a

)2
]

=
1

2

[
(A′ + A)2 + (A′ · (a′ × a) + (A · (a′ × a) +

1

4
(a′ × a)2

]
,

(9.23)

where the two terms in the middle vanish if we consider Beltrami flows,
because a = λA, a′ = λ′A′. But for non-Beltrami flows we see that the
structure of the enstrophy (9.23) differs from the formulation of the helic-
ity (9.20) and energy (9.21), because the helicity and energy density do not
contain cross product terms. The cross product term reflects the nilpotent
structure and therefore, the nilpotent structure should be reflected in the
enstrophy density field, which will be explored in future studies. Here,
we will discuss case studies, where the different structure of the enstrophy
leads to a faster growth compared to the energy density fields, as it is ob-
served in 3D turbulence studies.

To analyze the helicity field (9.20) in terms of the Vortex-Heisenberg
group operation and examine five cases of different initial states we will
shortly summarize the technical implementation.
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1
2
aijk ·Aijk

j

i

k

Figure 9.4: Calculation of the helicity density field in each three-dimensional grid
box

9.3.1 Numerical implementation

The way atmospheric data sets are evaluated and numerically integrated
depends on the research objectives. Today it is searched for suitable in-
tegration methods and models that take into account the consistency of
’local’ and ’global’ properties of prognostic partial and ordinary differen-
tial equations, as the local spatial or time derivative, conservation prop-
erties (conservation of energy, momentum, mass etc.), symplectic struc-
tures, volume of the phase space and symmetries (Sommer, 2010). Nu-
merical weather prediction models are developed aiming for an exact solu-
tion locally, whereas climate prediction models pursue the aim to analyze
global, characteristic, statistical features. In both cases, complex numeri-
cal schemes and approximations are needed to handle large data sets such
as the DWD’s ICON-model. For a detailed overview on the methods and
equations of numerical weather prediction see e.g. Roulstone and Norbury
(2013).

In this thesis, we show an alternative integration method. We consider
analytical exact solutions of the Helmholtz vorticity equation. This allows
for an illustration of these analytical solutions on a simple regular, Carte-
sian grid. Here, we focus on the representation of the previously discussed
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helicity hV . For this approach we use a simple discretization scheme con-
sidering the regular Cartesian grid:

hV =
1

2

∫
V

a ·A dτ ≈ 1

2

∑
i,j,k

Vijk aijk · Aijk. (9.24)

We assume a constant volume Vijk = V , for all i, j, k in each threedimensional
grid box leading to:

ĥV ≈ V
1

2

∑
i,j,k

aijk · Aijk (9.25)

as sketched in fig. 9.4. We will explore the local changes of the helicity
density fields and shortly discuss the corresponding density fields of the
energy and the enstrophy. In the following examples, we will calculate the
a-and A-streamlines as well as the helicity, enstrophy and energy density
fields for single grid boxes as sketched in fig. 9.4. To represent the results
we show exemplarily two-dimensional hyperplanes.

We used Python to calculate the fields in three-dimensions, where the
x, y- and z-axis range from −2π to 2π. The two-dimensional figures in
this chapter are illustrated on a 1000 × 1000 horizontal grid. For the three-
dimensional representations, as fig. 9.2, the software Amira was used, which
has been designed and developed at the Zuse Institute Berlin (ZIB) for 3D
visualization, geometry reconstruction, and data analysis. Here, we con-
sider idealized flows in a scaled grid. The size of the flow field can be
adapted to the larger, atmospheric scale. Now, we are prepared to dis-
cuss the five cases studies and explore our assumptions on the initial fields,
when vortices split and when no split occurs. The different cases summa-
rized in in table 9.1.

9.3.2 First case study: Simulating vortex splits

To visualize vortex splits, we analyze the helicity density field induced by
the group operation of two group elements, where each group element rep-
resents a meteorological wind field. We interpret the group operation as
state change caused by two wind fields and illustrate the resulting state
change. The sign of the helicity density field gives rise to vortex splits. If
the helicity density field has locally positive as well as negative values, we
speak of a splitted vortex field. In this example, the first field represents a
supercell given analytically by a strongly helical rotating Beltrami field. The



167 9.3. VORTEX SPLITS INDUCED BY VH(3)

Figure 9.5: The helicity density field for an ABC-flow (9.26) with A = 1, B = C =
1
2 is shown.

second field depicts its environment, a shear flow with vanishing helicity.

Both initial fields are characterized by helicity density values greater or
equal to zero. We will show that they induce (by group operation) a helicity
density field with positive and negative values. Such a helicity density field
can be interpreted as a splitted vortex into a right rotating and a left rotating
vortex.

Both fields are represented as elements of VH(3). We will denote the
Beltrami field with (aB,AB) and its environment with (as1,As1), where the
subscript s denotes the shearing flow. As visualized in chapter 8, section
8.5, the vectors a and A are related to the velocity and the vorticity. There-
fore, regarding the group, we transfer the physical characterizations of the
flow from the algebra to the group representatives v → a and ξ → A, see
(8.105).

As Beltrami flow solution we consider the ABC-flow aB of form (9.14)
with A = 1, B = C = 1

2
:

aB = λ ·∇× aB = AB = λ ·

 sin(z) + 1
2

cos(y)
1
2

sin(x) + cos(z)
1
2

sin(y) + 1
2

cos(x).

 (9.26)

Here, the factor λ has the unit lengths 1m; it will be omitted in the following.
The streamlines of this ABC-flow are shown in fig. 9.2.

In fig. 9.5 the helicity density of the Beltrami flow is vizualized. We
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Figure 9.6: The stream lines of the a-field given in (9.27) are shown. The a-field is
related to the wind field v, which is a shear field. The helicity of this field is zero
because it is a rotation in the x− z-plane.

assume that the strong rotating supercell, represented by the Beltrami flow,
is embedded in a typical meteorological shear flow. In our first case study,
we consider a shear flow with non-zero vorticity vector but with a zero-
valued helicity density field. This meteorological wind field is sketched in
fig. 9.3 a). Mathematically, it is given by:

as1 = as1(x, y, z) =

 z − z0

0

−x+ x0

 , with ∇ · as1 = 0 (9.27)

and its rotation, reads as:

∇× as1(x, y, z) =

0

2

0

 =: As1. (9.28)

The stream lines are illustrated in fig. 9.6. In case of planar rotations, as we
find here in the x− z-plane, the three-dimensional vorticity field is orthog-
onal to the wind field. Thus, its scalar product and therefore the helicity
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density vanishes everywhere:

hs1 =
1

2
as1 ·As1 = 0. (9.29)

Physically, we explore the interaction of two different flows in a conserva-
tive system meaning that we assume fluid flows in a system without fric-
tion.

Before we apply the Vortex-Heisenberg group operation to the ABC-
flow and the shear flow, we will show that the shear flow yields a steady so-
lutions of the Helmholtz vorticity equation. The Helmholtz vorticity equa-
tion for 3D dimensional incompressible, inviscid fluids is given by

∂ξ

∂t
= ξ · ∇v − v · ∇ξ. (9.30)

Transferring the notations of the algebra to the notations of the group el-
ements v → a and ξ → A we obtain a formulation for the shearing flow
analogously to (9.30):

∂As1

∂t
= As1 · ∇as1 − as1 · ∇As1 =

0 0 −1

0 0 0

1 0 0

 ·
0

2

0

− 0 = 0. (9.31)

Thus, the shearing flow provides a steady solution of the Helmholtz vortic-
ity equation. The same holds for the Beltrami flow. Using the Beltrami con-
dition for linear Beltrami flows AB = λaB, the Helmholtz vorticity equation
reads as:

∂AB

∂t
= AB · ∇aB − aB · ∇AB = λ aB · ∇aB − λ aB · ∇aB = 0. (9.32)

Therefore, also the linear Beltrami flow is a steady solution of the Helmholtz
equation.

In order to investigate the helicity density fields, we first recall the Vortex-
Heisenberg group operation, using the notation for our two initial flows,
the ABC-flow (9.26) and the shearing flow (9.27):

(a′′,A′′) = (aB,AB) ∗ (as1,As1) = (aB + as1,AB + As1 +
1

2
aB × as1). (9.33)

We first regard the components and insert the two initial fields (9.26) and
the shearing flow (9.27). Then the a′′-field reads as:
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Figure 9.7: The a′′-streamlines are shown. They result from the application of the
Vortex-Heisenberg group operation to a ABC flow and a shear field and can be
related to velocity field. A similarity to the initial shear field shown in fig. 9.6 is
apparent that is ’disturbed’ by the ABC-fow in fig. 9.6.

a′′ = aB + as1 =

 sin(z) + 1
2

cos(x) + z − z0

1
2

sin(x) + cos(z)
1
2

sin(y) + 1
2

cos(x)− x+ x0

 . (9.34)

The streamlines are illustrated from different perspectives in fig. 9.7, where
we set x0 = z0 = π for the shearing flow. As well the helical structure of
the Beltrami flow aB as the planar rotations of the shearing flow as1 can be
recognized. The stream lines of the induced A′′-field that are related to the
vorticity are given by:

A′′ = AB + As1 +
1

2
aB × as1

=

 sin(z) + 1
2 cos(x)

1
2 sin(x) + cos(z) + 2

1
2 sin(y) + 1

2 cos(x)


+

1

2

 (1
2 sin(x) + cos(z))(−x+ x0)

1
2 sin(y) + 1

2 cos(x)(z − z0)− sin(z) + 1
2 cos(x)(−x+ x0)

(1
2 sin(x) + cos(z))(−z + z0)


(9.35)

They are shown in fig 9.8 indicating a more chaotic field than the two ini-
tial A-streamlines. We interpret the generated group element (a′′,A′′) as a
state of the fluid that reflects the interaction of the ABC-flow with large he-
licity and the shearing flow with the vanishing helicity density field. Thus,
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Figure 9.8: The A′′-streamlines are shown. It result from the application of the
Vortex-Heisenberg group operation to a ABC flow and a shear field. A chaotic
structure can be observed.

(a′′,A′′) can also be seen as a the state change of a small, given region of a
flow.

Now, we calculate the helicity density of the induced state (a′′,A′′):

h′′ =
1

2
a′′ ·A′′ = 1

2
(aB + as1) · (AB + As1 +

1

2
aB × as1) (9.36)

which is equivalent to:

h′′ =
1

2

(
aB ·AB + aB ·As1 + as1 ·AB + as1 ·As1 +

1

2
(aB + as1) · (aB × as1)

)
(9.37)

The last summand vanishes, because a spat product of two equal vectors
is zero. Inserting our wind field. The fourth summand is zero, because
it is ’2· helicity density’ of the seharing wind field (9.27), which is zero.
Applying the Beltrami condition with normalized proportionality factor,
i.e. aB = 1 ·AB last expression reduces to

h′′ =
1

2
(aB · aB + aBAs1 + as1aB) = aB · (aB + As1 + as1). (9.38)

Last equation (9.38) is the general expression for a helicity field h′′ that
represents the interaction of a general shear flow and a general Beltrami
flow. The relative helicity density of the two initial fields hB,rel, hs1,rel and
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Figure 9.9: Relative helicity fields of the Beltrami flow (left), of aS (middle) and
of the induced third state (right) for y = π/2.

the relative helicity density of the induced state (9.33) are in fig. 9.9. For
the helicity density field see appendix 12.1. Because we chose a Beltrami
field with λ = 1, i.e. aB = AB, the helicity field of the Beltrami flow is ev-
erywhere positive. Moreover, the helicity (9.29) of the idealized shear flow
field is zero. Therefore, neither initial field has negative helicity density val-
ues. However, combining these two non-negative helicity density fields by
applying the group theoretical approach leads to the generation of a third
field, which shows regions with positive as well as negative helicity densi-
ties. The relative helicity density field of the generated state is also shown
in 3D in fig. 9.10. We recognize different signs of helicity that are marked
in red (positive helicity density) and blue (negative helicity density). These
different colored regions are related to different directions of rotation and
can be interpreted as two different vortices, one vortex rotates clockwise
and the other vortex rotates anti-clockwise.

We recognize that the colliding of different, contrarious characterized
wind fields lead to vortex splits, which becomes apparent in regions, where
the two different flows mostly interact. Thus, in the transitional regions of
helicity free to large helicity the interaction is large which leads to vortex
splits. This is in accordance with the argumentation of Lilly (1986) that most
interaction appears in the transitional regions.

An interesting aspect is the closure property of groups. If the two initial
group elements are solutions of the Helmholtz vorticity equation, and if
we consider the transition from the Vortex-Heisenberg algebra vh(3) to the
Vortex-Heisenberg group VH(3) as a structural integration, the generated
group element (a′′,A′′) can also be regarded as a solution of Helmholtz’
vorticity equation. Moreover, because of the existence of identity elements
in VH(3), we could go backwards and generate ABC-flows that we regard
here as storms. Thus, the group theoretical approach shows, how we can
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describe the generation of single storms, or the merging of storms as well
as the split of storms. Next, we will show analytically that there exists at
least one change of sign in the helicity field.

Claim 7. The helicity density field h′′ given in (9.38) changes its sign locally
at least in one point.

Proof. Let us assume again one wind field with positive helicity and one
wind field with vanishing helicity representing a tornado and a shearing
wind field. We determine the group operation and call the resulting field
(a′′,A′′) with helicity density field which depends on the local coordinates
x, y and z:

h′′ = h′′(x, y, z) =
1

2
a′′(x, y, z) ·A′′(x, y, z). (9.39)

We recall that different signs of the helicity can be related to different di-
rections of rotation. Therefore, finding x-y-z-values, where the helicity
changes its sign locally, would show the existence of a vortex split. In the
first step we look for x-y-z-values with

h′′(x, y, z) =
1

2
a′′(x, y, z) ·A′′(x, y, z) = 0 ⇐⇒ a′′(x, y, z) ·A′′(x, y, z) = 0

(9.40)

neglecting the constant
1

2
in the following.

h′′(x, y, z) =

A sin(z) + C cos(y)

B sin(x) + A cos(z)

C sin(y) +B cos(x)

 ·
A sin(z) + C cos(y) + z − z0

B sin(x) + A cos(z) + 2

B cos(x) + C sin(y)− x+ x0


(9.41)

h′′(x, y, z) =(A sin(z))2 + 2AC sin(z) cos(y) + (C cos(y))2

+ A sin(z)(z − z0) + C cos(y)(z − z0) + (B sin(x))2 + (A cos(z))2

+ 2AB cos(z) sin(x) + 2B sin(x)

+ 2A cos(z) + (C sin(y))2 + (B cos(x))2 + 2 (B sin(y) + A cos(x))

+ (−x+ x0)C sin(y) + (−x+ x0)B cos(x)

=A2 +B2 + C2 + 2AC sin(z) cos(y) + A sin(z)(z − z0)

+ C cos(y)(z − z0) + 2AB cos(z) sin(x) + 2B sin(x)

+ 2A cos(z) + 2 (B sin(y) + A cos(x))

+ (−x+ x0)C sin(y) + (−x+ x0)B cos(x)

(9.42)
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Figure 9.10: Applying the Vortex-Heisenberg Lie group operation to a ABC flow
and a helicity-free field results in a third state. Here, the helicity field of the gen-
erated third state is shown where we see regions of positive and negative helicity
which gives rise to splitted vortices. This is a three-dimensional illustration of the
fig. on the r.h.s. in 9.9. The yellow regions in the figure on the r.h.s shows ’how
Beltrami the flow is’.

Since our vortex rotates in the x-z plane we further simplify the solution
and set y = π

2
. We further assume x0 = z0 = π for the wind field (9.42)

leading to the following expression for the helicity:

h′′(x,
π

2
, z) =A2 +B2 + C2 − 2AB sin(x) + 2B sin(x)− 2A+ 2BC cos(x)

+ (x− x0)C + (x− x0)B cos(x)

=A2 +B2 + C2 + sin(x)(2B − 2AB) + cos(x)(2BC + (x− x0)B)

+ (x− x0)C − 2A

(9.43)

Let now A = 1, B = C = 1
2

and x0 = π. We search for the roots with respect
to the z-value π:

h′′(x,
π

2
, π) = −1

2
+ cos(x)

(
1 + π − x

2

)
+
x− π

2

= (1 + π − x)(cos(x)− 1) = 0 ⇐⇒ x = 2kπ or x = π + 1

(9.44)

with k ∈ Z. By simply inserting values near the roots, we see that the
helicity density field changes its sign locally.

The corresponding energy and enstrophy density fields (9.21) and (9.23)
of the induced state are shown in appendix 12.1. These fields do not show
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distinctive structures. This can be explained by the assumption of inviscid,
incompressible flows.

Moreover, considering the by group operation induced state (a′′,A′′),
we would like to find out, where exactly the splits occur. In fig. 9.10 the
yellow regions mark, where the field is nearly Beltrami. To determine these
regions, we calculated the Lamb vector, i.e. the cross product a′′ ×A′′. The
Lamb vector is zero where the Beltrami-condition holds, i.e. where a′′ =

λA′′. We call this condition Lamb property. It can be expressed in terms of
the densities of the three conserved quantities:

|a′′ ×A′′|2 = |a′′|2 · |A′′|2 − (a′′ ·A′′)2 = 0 (Lamb property). (9.45)

We can also formulate last equation in words:

Energy density · Enstrophy density
(Helicity density)2 − 1 = 0. (9.46)

In the beginning of this chapter we have already discussed the Cauchy-
Schwarz inequality (9.11) for Beltrami flows (9.12), which is equivalent to
last expressions (9.45) and (9.46). In fig. 9.10 the yellow regions mark small
values of the parameter 0.1 > ε > 0 indicating small deviations of the Lamb
property, i.e.

|a′′ ×A′′|2 = ε. (9.47)

Thus, the yellow regions mark the domains, where the flow is nearly Bel-
trami, because for Beltrami flows the velocity and vorticity vectors are par-
allel leading to a vanishing lamb vector. With respect to fig. 9.10, we ob-
serve that splits occur on the boundary of these yellow marked regions, i.e.
where the helicity density field is not extremal. We can show exemplar-
ily that in regions with smaller helicity values, i.e. where the vortex is not
as strongly rotating (assuming non-planar rotations), the effect on distur-
bances (considering the shear flow as disturbance) of the storm is bigger,
which allows for stronger interaction and thus for vortex splits. This is in
accordance to the earlier mentioned work of Lilly (1986) who states strongly
rotating supercells have a longer lifetime.

We summarize: First, we have used Nambu-mechanics to represent
Helmholtz’ 3D vorticity equation. Second, we have derived an algebra. In-
tegrating this algebra led to a Lie group structure, which we have applied to
a strong rotating supercell embedded in a typical atmospheric wind field.
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Figure 9.11: A sketch shows how the group operation can be transferred to de-
scribe the interaction of atmospheric fields. We examine the local interaction on
a grid, where the two coupled states A and B can be seen as lying on each other
as marked by the red boxes inducing state C = A ∗ B. Courtesy of the National
Weather Service for the composite reflectivity image.

Applying the group operation to these initial fields results in a field with
positive and negative helicity density values, which can be interpreted as
vortex split. It is sketched in fig. 9.11, where state A and state B interact
such that they induce state C = A ∗B.

One can further combine the outcome with additional wind fields, but
we assert that splits are best generated if two wind fields are combined
that have different helicity density absolute values, such as one wind field
with very large helicity and one wind field with vanishing helicity. Or, in
other words: Two flows with different grade of Beltramization lead to vor-
tex splits. Thus, by analyzing the helicity density fields with respect to its
different signs, we have shown the existence and generation of vortex splits
in a conservative system. Moreover, because of the closure property of
groups, this splitted field is an element of the Vortex-Heisenberg Lie group
and therefore, it yields a solution of Helmholtz’ incompressible, inviscid
3D non-linear vorticity equation. Furthermore, because of the existence of
the inverse of the group elements and the closure of the Vortex-Heisenberg
group, we can think vice versa leading to the statement that strongly rotat-
ing fields such as Beltrami flows can also be generated. Thus, considering
supercells as Beltrami-flows the existence of splitted vortices as well as the
generation of strongly rotating vortices, e.g. supercells, can be explained
analytically.
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In appendix 12.1 (relative) helicity density, enstrophy density and en-
ergy density fields are shown for further iteratively generated fields. The
group operation does not provide any information about the behavior of
the flow at a specific time step. We analyze the state change of the fluid.
However, applying iteratively the group operation we recognize a growth
of the energy values, although we consider conservative systems. And
increasing enstrophy densities. The enstrophy grows faster of the energy
which can be explained by the non-conservation of the enstrophy for three
dimensional fluids.

Most authors investigate storm splits numerically implementing the Na-
vier-Stokes equation. Here, we introduced an algebraic approach start-
ing with the 3D Helmholtz vorticity equation for incompressible, inviscid
flows, we form an Lie algebra. And, because of its nilpotent structure, we
find a map from the Lie algebra to the Lie group. Since we analyze the
helicity fields regarding the group structure, one could speak of a struc-
tural integration of the Helmholtz equation. We come to the conclusion
that splitting storms can be seen as a solution of Helmholtz’ 3D vorticity
equation, which in turn is given by the mathematical rotation (∇×) of Eu-
ler’s equations for incompressible, inviscid flows.

9.3.3 Second case study: A less distinctive split

In this case study we apply the Heisenberg-group operation to the ABC
flow aB from our last example, see (9.26) and a typical atmospheric wind
field as2 that is characterized by helicity. In the last case study we examined
a Beltrami field and a shear field with vanishing helicity. We have already
shown in (9.32) that the ABC-flow is a steady solution of Helmholtz vor-
ticity equation. In our first case study we examined the interaction of two
steady solutions. Here, we chose a different shearing field denoted with as2

and sketched in fig. 9.3 b). Mathematically, the wind field and the corre-
sponding rotational part are given by:

as2 = as2(x, y, z) =

 0

z − z0

−x+ x0

 , ∇ · as2 = 0, As2 = ∇× as2 =

 1

−1

0

 .

(9.48)
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Figure 9.12: Relative helicity fields of the Beltrami flow (left), of as2 (middle) and
of the generated third state (right) for y = π/2.

Inserting this wind field in Helmholtz vorticity equation, we obtain:

∂As2

∂t
= As2 · ∇as2 − as2 · ∇As2 =

0 0 0

0 0 −1

1 0 0

 ·
 1

−1

0

− 0 =

0

0

1

 .

(9.49)

Compared to the steady solution of the shearing flow in our first example,
here the horizontal part of A does not change in time, but the vertical part of
A increases in time. Thus, vorticity is produced, and this flow describes the
tilting of an vortex. To summarize, in this case study we investigate the in-
teraction of a tilting vortex, which is a non-steady solution of the Helmholtz
vorticity equation, with a strong helical rotating vortex that is represented
by a steady solution of Helmholtz vorticity equation.

In our first case study the helicity density of the initial shearing flow
(as1, as1) was zero. Here, the helicity density of the state (as2, as2) does not
vanish in general:

hs2 = as2 ·As2 = z0 − z 6= 0. (9.50)

The helicity is zero if and only if z = z0. From a meteorological perspective,
the wind field as2 describes the tilting of a tornado, i.e. the process while a
tornado can be developed. See the sketch in fig. 9.3 b). During this process,
where the storm is not completely developed we do not expect a perfect
split.

We apply the group operation for the shear field and the ABC flow (9.26)
leading to the following helicity density field:

h′′ =
1

2
a′′ ·A′′ = 1

2
(aB + as2) · (AB + As2 +

1

2
aB × as2). (9.51)



179 9.3. VORTEX SPLITS INDUCED BY VH(3)

The relative helicity field is shown in fig. 9.12 and the helicity density field
is shown in the appendix 12.2. The positive-negative structure of helic-
ity density field hs2 is due to the choice of z0 that is here chosen to be π.
Compared to the first case study, only slightly changes in the helicity field
around z = π can be observed, some positive and negative helicity struc-
tures are recognized but the split is not as distinctive as in the first case
study. We think this is due to the shear field that does have non-zero helic-
ity values. From meteorological point of view this chosen shear field repre-
sents the tilting of a tornado. During this process a split is not as distinctive
compared to first case, where the helicity of the shear flow was zero.

In appendix 12.2 the energy, enstrophy and helicity density fields of the
induced states are illustrated. We assume incompressible, inviscid flows.
Therefore, for all five cases, we do not expect large changes in the struc-
ture of the energy and enstrophy fields. The value of the energy increases.
This is due to the addition in the group operation. But the enstrophy in-
creases much faster which is in accordance with the non-conservation of
the enstrophy.

9.3.4 Third case study: Interaction of two Beltrami fields

As a third case study we consider the group operation of two Beltrami
flows, say (aB1,AB1) and (aB2,AB2). We recall from (9.32) that linear Bel-
trami fields are steady solutions of the Helmholtz vorticity equation. We
consider two general linear Beltrami flows with λB1aB1 = AB1 and λB2aB2 =

AB2 and λB1, λB2 ∈ R. In order to investigate their interaction in terms of
the helicity density fields, we first calculate the group operation of the ini-
tial states

(a′′ ·A′′) = (aB2,AB2) ∗ (aB1,AB1)

=
1

2

(
aB2 + aB1,AB2 + AB1 +

1

2
aB1 × aB2

)
.

(9.52)

Determining the helicity density field of this induced state leads to:

h′′ =
1

2
a′′ ·A′′ = 1

2

(
aB2 + aB1) · (AB2 + AB1 +

1

2
aB1 × aB2

)
=

1

2
(aB2 + aB1) · (λB2aB2 + λB1AB1)

=
1

2
(λ2

B1a
2
B1 + λ2

B2a
2
B2 + (λB1 + λB2)aB1aB2).

(9.53)
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Figure 9.13: Helicity fields of two ABC-flows with parameters A1 = 1, B1 = 0.9
and C1 = 0.5 for (l.h.s), A2 = 0.5, B2 = 0.4 and C2 = 0.1 (middle), the helicity
field of the by group operation induced state which is also a ABC-flow has the
parametersA3 = (A1 +A2), B3 = (B1 +B2) and C3 = (C1 +C2) set the parameters
(r.h.s), z-x-plane for y = π/2.

Therefore, different signs of λ may lead to different sign-structures in the
helicity density fields. For λB1 = λB2 := λ the helicity density is positive
definite:

h′′ =
1

2
(λ2a2

B1 + λ2a2
B2 + 2λaB1aB2) = (λaB1 + λaB2)2 ≥ 0 (9.54)

For ABC-flow solutions (9.14) the proportionality factor is λ is equal to one
for all parametersA,B and C. Thus, a vortex split can not be caused by two
ABC-flows.

Let now aB1 and aB2 be two arbitrary but fixed ABC-flows (9.14). In-
dependent of the exact choice of the parameters A,B and C, these flows
satisfy the relationship: aB1 = AB1 and aB2 = AB2 which can be directly
shown using the trigonometric properties. Considering both ABC-flows as
elements in VH(3) and denoting the induced state as in (9.52) (a′′,A′′), we
can analyze the helicity density field of the induced state (see (9.54)):

h′′ = (aB2 + aB1)2 =

(A2 sin(z) + C2 cos(y)

B2 sin(x) + A2 cos(z)

C2 sin(y) +B2 cos(x)

+

A1 sin(z) + C1 cos(y)

B1 sin(x) + A1 cos(z)

C1 sin(y) +B1 cos(x)

)2

=

(A3 sin(z) + C3 cos(y)

B3 sin(x) + A3 cos(z)

C3 sin(y) +B3 cos(x)

)2

(9.55)

with A3 = (A1 + A2), B3 = (B1 + B2) and C3 = (C1 + C2). Thus, the result
is a squared ABC-flow. The helicity field of state (aB1,AB1) := A, state
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(aB2,AB2) := B and the helicity field of the by group operation induced
state (A ∗ B) = (a′′,A′′) := C are shown in fig. 9.13, where we set the
parameters A1 = 1, B1 = 0.5 and C1 = 0.5 for aB1, and A2 = 0.5, B2 = 0.4

and C2 = 0.1 to define aB2.

aB1 =

 sin(z) + 0.5 cos(y)

0.5 sin(x) + cos(z)

0.5 sin(y) + 0.5 cos(x)

 , aB2 =

0.5 sin(z) + 0.1 cos(y)

0.4 sin(x) + 0.5 cos(z)

0.1 sin(y) + 0.4 cos(x)

 ,

(9.56)
In fig. 9.13 the helicity fields of the three ABC-flows are illustrated. All
three fields have a similar positive helicity structure such that no split can
occur.

As we have seen in the beginning of this chapter (9.46), for these kind of
Beltrami-flows with λ = 1 it is:

Energy = Helicity = Enstrophy (9.57)

up to dimensional constants equal to one. Since the energy always is pos-
itive definite, the helicity field must be positive definite, too. The helicity
density fields of nine iteratively induced states are shown in appendix 12.3.
All by group operation induced states hold the same structure as the initial
fields in fig. 9.13. This structure can also be recognized in the enstrophy
and energy density fields, also shown in appendix 12.3.
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Figure 9.14: Helicity fields of shearing wind field (l.h.s.), of the wind field with
helicity (middle) and of the induced helicity field (r.h.s.), y = π/2.

9.3.5 Fourth case study: Interaction of two shearing flows

Now, we couple the two atmospheric shear fields from the first and second
examples. The wind fields are illustrated in fig. 9.3. Mathematically, they
are given by:

as2 = as2(x, y, z) =

 0

z − z0

−x+ x0

 , as1 = as1(x, y, z) =

 z − z0

0

−x+ x0

 . (9.58)

We expect that these two fields do not generate a split, because we pro-
pose that a perfect split is induced by two fields with contrary absolute he-
licity values, as we have shown in the first example. But in this fourth case
study, we regard two flows with similar structure, both represent a shear
field. We recall the helicity densities hs1 and hs1 of the first and second case
studies

hs2 = z0 − z, hs1 = 0. (9.59)

And the helicity of the induced state is given by:

h′′ = (as2 + as1) · (As2 + As1 +
1

2
as2 × as1). (9.60)

Inserting the fields (9.58) into the last equation we obtain:

h′′ =


 0

z − z0

−x+ x0

+

 z − z0

0

−x+ x0


 ·


 1

−1

0

+

0

0

0

+

(z − z0)(x− x0)

(z − z0)(x− x0)

−(z − z0)2




= (z − z0)2(−x+ x0)[(z − z0)2 + 2]

(9.61)
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The zero-valued regions of the induced helicity field (9.61) depend on the
choice of x0 and z0. Therefore, the helicity field of the induced state pro-
vides the same plus-minus structure as the initial field given by the group
element (as2,As2) and no further vortex split occurs. The helicity fields for
x0 = π of the initial fields as well as the induces third state are illustrated
in fig. 9.14. In appendix 12.3 additional results of the induced enstrophy
density field (9.23) and energy density field (9.21) are shown in appendix
12.1, where we do not recognize large changes in the enstrophy and energy
fields.

9.4 Vortex splits induced by Helmholtz Vortex Lie

group V(3)

In the last chapter we have introduced Helmholtz’ Vortex Lie group V(3)
which we derived by extending the Vortex-Heisenberg group by the angu-
lar momentum. The group operation of the Vortex-Heisenberg group:

(a,A,R) ∗ (a′,A′,R′) =

(
a + Ra′,A + RA′ ± 1

2
a×Ra′

)
, (9.62)

where a, a′,A,A′ ∈ R3 and R ∈ SO(3). In order to examine the helicity
density fields and, thus, vortex splits, in terms of Helmholtz’ Vortex group,
we will shortly discuss the parity transformation and the helicity density
field for V(3). In the previous case studies we have seen the importance of
the sign of the helicity fields. Thus, we ask if the parity transformation is re-
flected in the Helmholtz vortex group operation. The vector A corresponds
to the vorticity vector that does not change its sign under parity transfor-
mation, whereas the local coordinate vector a does change its sign under
parity transformation:

a −→ −a, A −→ A, and R −→ R (9.63)

And for two elements in V(3) we obtain:

(−a,A,R) ∗ (−a′,A′,R′) =

(
−a−Ra′,±1

2
a×Ra′ + A + RA′,RR′

)
= (−a′′,A′′,R′′) .

(9.64)
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Especially the fact that the discplacement vector a (which is related to the
velocity) changes its sign, but not A might be related to the existence of
left- and right moving storms. In order to explore vortex splits with respect
to the Helmholtz Vortex group, we will now calculate the helicity density
h′′ of the state (a′′,A′′,R′′) induced by the by the Helmholtz Vortex group
operation:

(a′′,A′′,R′′) = (a′,A′,R′) ∗ (a,A,R) (9.65)

Then, the helicity density is given by:

h′′ = a′′ ·A′′

= (a + Ra′) · ±
(

1

2
a×Ra′ + A + RA′

)
= a · (a×Ra′)︸ ︷︷ ︸

=0

+a ·A + a · (RA′) + (Ra′) ·
(
±1

2
a×Ra′

)
︸ ︷︷ ︸

=0

+ (Ra′) ·A + (Ra′) · (RA′)︸ ︷︷ ︸
a′·A′ for R∈SO(3)

= a ·A︸ ︷︷ ︸
h

+ a′ ·A′︸ ︷︷ ︸
h′

+ a · (RA′) + (Ra′) ·A︸ ︷︷ ︸
interaction-term

(9.66)

Analogously to the calculation of the helicity density regarding VH(3), the
cross product term vanishes. Therefore, the helicity density does not de-
pend on the sign in front of the cross product. Thus, the helicity density
field of V(3)+ and V(3)− does not differ. The same holds for the energy den-
sity field. The sign in front of the cross product only affects the calculation
of the enstrophy density field. The enstrophy and energy densities can be
derived analogously to (9.21) and (9.23). We obtain:

H ′′ =
1

2
(a + Ra′)2

ε′′ =
1

2

[
(A + RA′)2 ± (RA′ · (Ra′ × a)± (A · (Ra′ × a)± 1

4
(Ra′ × a)2

]
R′′ = RR′,

(9.67)

where the last line represents the solid rotational part of the flow, i.e. the
angular momentum, represented by rotational matrices in SO(3). We note
that for R = R′ = E we obtain R′′ = E. In this case, the energy, helic-
ity and enstrophy density correspond to the energy, helicity and enstrophy
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Figure 9.15: Helicity density of a fourth state generated by Helmholtz’ Vortex
group. The yellow region illustrates the areas that are (approximately) Beltrami.
The split occurs on the boundary of this region.

densities of the Vortex-Heisenberg group.

9.4.1 Fifth case study: Splitting storms and the Helmholtz

Vortex group

Now, we will couple the state (a′′,A′′) of the first case study with the shear
field with vanishing helicity, where we extend the shear field by a rigid
body rotation. In order to apply the Helmholtz Vortex group operation, we
consider as first field initial field the outcome (9.33) of the Vortex-Heisenberg
group operation of our first case study (a′′,A′′). We notice that V H(3) is
embedded in V (H) and thus, we can extend (a′′,A′′) by a rotational matrix
R′′ ∈ SO(3):

(a′′,A′′) 7→ (a′′,A′′,R′′). (9.68)

Here, we consider R′′ as rotation around the y-axis about π/2. As second
initial state we consider the shear flow without helicity from our first case
study (9.27) and extend it by the unity matrix to obtain an element in V(3):

(as1,As1) 7→ (as1,As1,E) (9.69)

Now, we apply the Helmholtz Vortex group operation (8.89) to these two
initial states and obtain the state (a′′′,A′′′,R′′′)

(a′′′,A′′′,R′′′) = (a′′,A′′,R′′) ∗ (as1,As1,E), (9.70)
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which is a further element of the Helmholtz’ Vortex group, because of the
closure property of groups. The helicity density of this group element

h′′′ = (a′′′ ·A′′′) (9.71)

is shown in 3D in fig. 9.15. The helicity density fields of all states we con-
sider in this example are summarized in fig. 9.16. We see that a further split
is generated, which was not possible by applying the Vortex-Heisenberg
group operation again. But, extending the Vortex-Heisenberg group to the
Helmholtz Vortex group allows for further vortex breakups.

Regarding fig. 9.15, the yellow region shows the area, where the squared
absolute value of the Lamb vector approaches zero, i.e. |a×A|2 ≈ 0. As we
have discussed in the first case study, the Lamb vector is zero if either the
the vectors a and A are zero or if they are parallel. The last case character-
izes a strongly helical rotating Beltrami field. Similar to our first example
of a vortex split regarding the Vortex-Heisenberg group (see fig. 9.10) we
recognize that the positive-negative structures are located at the boundary
of the Beltrami-like region.

To summarize, by integrating the angular momentum into the Vortex-
Heisenberg group, we could induce further splits, as summarized in fig.
9.16. We think that even more splits can be caused such that a helicity cascade
can be generated even in conservative systems, which has not be shown so
far. We will discuss possible implications for turbulence in the next section.

9.5 Implications for turbulence theory

Classical turbulence studies regard the famous law of Kolmogorov E(k) ∼
ε2/3k−5/3 for the energy cascade in three dimensions and Kraichnan’s law
for the enstrophy cascade in two dimensions E(k) ∼ η2/3k−3. Both are
classically analyzed in the space of wave numbers k Here, ε denotes the
energy dissipation and η the enstrophy dissipation. It was found that the
energy in three dimensions as well as the enstrophy in two dimensions cas-
cade from larger to smaller scale. Furthermore, in two dimensions an anti-
cascade of the energy was found. The first investigations of the different
cascades can be ascribed to Kolmogorov (1941), Onsager (1949), Weizsäcker
(1948), Heisenberg (1948), Obukhov (1941) and Kraichnan (1967). There are
many works corroborating Kolmogorov’s and Kraichnan’s theories either
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Vortex-Heisenber group VH(3)
(a′′,A′′) = (a′,A′) ∗ (a,A)

helicity density

h′′ = a′′ ·A′′

Helmholtz Vortex group V(3)
(a′′′,A′′′,R′′′) = (a′′,A′′,E) ∗ (a′,A′,R)

helicity density

h′′′ = a′′′ ·A′′′

Figure 9.16: Starting with two initial fields, each indicating a state of a meteoro-
logical flow, the induced helicity field is characterized by a plus-minus structure.
Coupling this field again with the initial shear field, further vortex breakups can
be provoked.
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numerically, in terms of the Navier-Stokes equations, or experimentally, see
e.g. the works of Kraichnan and Montgomery (1980), Chorin (1994), Frisch
(1995), Boffetta and Ecke (2012) or Mininni and Pouquet (2013). Nastrom
et al. (1984) were the first, who showed that Kolmogorov’s and Kraichnans
theories holds for atmospheric data sets.

Comparing 2D and 3D flows with respect to their constitutive conser-
vation laws, we recognize that in two dimensions the energy as well as
the enstrophy are both positive definite. In three dimensions, the energy is
positive definite, whereas the helicity can have positive as well as negative
sign, depending on the direction of the vortex rotation and the velocity.
This sign structure seems to be a reason, why the helicity has only rarely
discussed (Kurgansky, 2017). First works concerning the helicity can be as-
cribed to Ertel and Rossby (1949), Betchov (1961), Moreau (1961), Moffatt
(1969) and Kraichnan (1973). Concerning turbulence studies, and especially
the breakup of vortices, we think that it is an interesting and underesti-
mated quantity. On the one hand, the helicity is a constitutive quantity
of the Nambu representation for three-dimensional incompressible fluids.
On the other hand, in contrast to mass points that move on straight lines,
vortices naturally rotate, and the helicity is related to such vortex rotations.

We notice some of the few works that did consider the helicity as an
important quantity besides the energy. Brissaud et al. (1973) discuss the
cascades of energy and helicity as well as a pure helicity cascades with no
energy cascades. By dimensional analysis they obtained a E(k) ∼ k−7/3-
law for a anti-cascade of the helicity. Today, it is known that there is a
joint cascade of helicity and energy (see, e.g., Kurgansky, 2017). Chen et al.
(2003) discussed the cascades of energy and helicity, regarding both signs
of the helicity, see also the works of Pouquet and Mininni (2010) and Dallas
and Tobias (2016). In their recent work, Biferale et al. (2013) show numer-
ically that, in nature, in all three-dimensional flows one can find a subset
of nonlinear evolution, which leads to a reverse energy transfer from small
to large scales. The authors use setups with fixed sign of the helicity and
show that the cascade depends on the chosen sign of helicity. In this way,
the authors show that there exist energy cascades to larger scale in three di-
mensions, too. So far, energy cascades to larger scales were related to two-
dimensional flows. The reversed energy cascade happens in cases, where
the mirror symmetry is broken, underlining the importance of the quantity
helicity itself, and in particular its sign. In these cases, the helicity cascades
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towards smaller scales and the energy cascades in opposite direction, to
larger scales. Thus, the choice of a fixed sign of helicity influences the di-
rection of the energy cascade. In case the helicity field is zero, the energy
cascades to smaller scales.

So far, systems with friction are used to study the different cascades.
Mostly, flows are analyzed statistically considering the space of wave num-
bers leading to a global perspective. In this approach not the physical con-
figuration space is regarded, where the flow actually evolves (Cardesa et al.,
2017). Considering the physical space allows for a local view on vortex dy-
namics. Using direct numerical simulation, Cardesa et al. (2017) follow in-
dividual eddy structures in the physical space. They time-track vortices by
using a technique for the tracking of coherent structures and observed that
vortices often merge with or split from other vortices during its life. The
authors observe the split and merge of vortices.

Considering the technical setup of turbulence studies, we cite Brissaud
et al. (1973) that it is difficult to fed helicity in a fluid without at the same time
injecting no energy. We think that the application of the Nambu formulation
can help to tackle this problem. To examine vortex dynamics, the Nambu
bracket is determined with respect to the helicity. Thus, the helicity and
the energy can be regarded separately. And we think that the Nambu rep-
resentation provides a direct approach to study vortex breakups, or vortex
dynamics in general, because this formulation of the vorticity equation it is
based on vortex-related quantities.

In fig. 9.17 we sketch how our group theoretical approach could be uni-
fied with Kolmogorov’s concept. Kolmogorov did not derive his famous
k−5/3-law from a set of equations, such as the Navier-Stokes equations. It
is derived by dimensional analysis of the energy dissipation. In this thesis,
we consider an algebraic approach, derived from the Helmholtz vorticity
equation, to explain the mechanism of vortex breakups with respect to the
sign structure of the helicity. There are also at least two advantages of the
group theoretical approach for further investigations on turbulence theory.
As we have discussed in chapter 8, a group is a set of elements satisfying
some properties such that the group is closed under the group operation.
Physically, each group element of the Vortex-Heisenberg group VH(3) is re-
lated to a wind and a vorticity field. Starting with two Vortex-Heisenberg
group elements and applying the corresponding group operation results in
a further element which can also be related to a wind and a vorticity field.
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Because of the closure property of groups and recalling that the Vortex-
Heisenberg group is derived from Helmholtz’ vorticity equation, all wind
and vorticity fields that result from the Vortex-Heisenberg group operation
can be seen as solutions of Helmholtz’ vorticity equation. Furthermore, be-
cause of the closure property of groups and the existence of inverse group
elements we can consider a helicity field with a plus-minus-sign structure
and generate a Beltrami flow field characterized by a helicity density field
with one sign, as indicated as Beltramization in fig. 9.17.

In contrast to Kolmogorov, we consider conservative systems. We think
that it seems reasonable that friction is only related to the direction of the
cascade and not to the mechanism of vortex split, as indicated in fig. 9.17.
Such assumptions can only be explored in conservative systems. But to
compare frictional and inviscid processes a future goal is the derivation
of a Nambu bracket for dissipative systems. Our algebraical concept can
be seen complementary to Kolmogorov’s classical point of view that is
sketched in fig. 9.17. He was the first who proposed the vortex breakups. A
unifying concept might be helpful for a better understanding of turbulent
vortex flows.
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9.6 Summary

In the previous chapters we applied Nambu-mechanics to formulate fluid
mechanics from an algebraic point of view. Based on the works of Névir
and Blender (1993) and Névir (1998) we have introduced a novel matrix
representation of the Vortex-Heisenberg algebra vh(3) and derived a vector
and a matrix representation of the Vortex-Heisenberg group VH(3), where
the group operation itself was communicated with Peter Névir in private
communication with Anton Schober in 2010. In this chapter we have ap-
plied the Vortex-Heisenberg group to explain the mechanism of vortex splits.

There are some advantages of the group theoretical approach. A group
is a set together with a group operation. And the elements of the set need
to satisfy some properties such that the group is closed under the group
operation. One important property is the closure-property of groups. Be-
cause of the closure property, we can apply the group operation to generate
further group elements. Consider two initial group elements characteriz-
ing two wind and vorticity fields, combine them by the VH(3)-operation.
Then, we obtain a third group element. And this induced group element
can be seen as solution of the Helmholtz vorticity equation, because VH(3)
is derived from Helmholtz vorticity equation.

We considered the group elements as atmospheric states and interpreted
the outcome of the Vortex-Heisenberg group operation as interaction of two
states. Then, we examined the helicity density fields of the initial states and
the induced state. We represented a supercell by a ABC-flow and chose
this ABC-flow as one initial field and a shear field with vanishing helic-
ity density as second initial field. We define a vortex split in terms of the
sign of the helicity density field. If the helicity density field of the induced
state contains different signs of helicity density that differs from the helicity
density structure of the initial fields, we speak of vortex splits. In this way
we showed the existence of vortex splits as well as the generation of su-
percells in conservative settings. We have discussed four case studies with
respect to the Vortex-Heisenberg group considering different initial flows.
We could corroborate our assumption that vortex splits occur for two initial
fields with contrary absolute values of the helicity density. As a fifth case,
we have applied the novel Helmholtz Vortex Lie group V(3) to show that
further vortex splits can be generated.

Moreover, we can transfer the mathematical group property of the exis-
tence of inverse elements to atmospheric flows. Starting with a helicity field
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with a small-scale plus-minus structure we can apply the VH(3)-group op-
eration and obtain a helicity density field with larger-scale sign structures
up to a helicity density field without a change of sign.

Furthermore, the Nambu bracket is based on the vorticity equation. We
determined the Nambu bracket with respect to the helicity. In this way,
we express the vorticity equation in terms of a vortex-related conserved
quantity. In our algebraic approach to understand the initial conditions
that cause vortex splits we have considered conservative systems leading
to the assumption that the direction of the cascade is determined by the
dissipation. But the mechanism of the vortex breakup might not depend
on friction.

Kolmogorov proposed the decay of vortices independent of the sign
structure of the helicity. Here we related the split of vortices to the helicity
density field regarding conservative systems, i.e. no friction. Thus, our re-
sult can be seen as an extension to Kolmogorov’s theory and the unification
of both concepts might deepen the understanding of turbulent flows.
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Figure 9.17: Comparison of Kolmogorov’s concept of the energy cascade with the
here introduced group theoretical approach based on Helmholtz’ vorticity equa-
tion
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Chapter 10

Sub-Riemannian Geometry
applied to VH(2) and VH(3)

In this chapter we will apply sub-Riemannian geometry to derive shortest
paths of vortices in two-and three dimensions. Shortest paths between two
points are commonly called geodesics. But what are geodesics in terms of
vortex dynamics? For two dimensional dynamics, we will consider the ide-
alized point vortex model we explored in the first part of this thesis. Then,
we can define vortex geodesics by shortest paths of single point vortices. In
three dimensions, we will outline the concept, how sub-Riemannian geom-
etry can be applied to find shortest motions, too, but we will not find one
answer, what 3D-vortex geodesics are.

Applying sub-Riemannian geometry to vortex dynamics we will first
regard pure mathematics of the fields differential geometry and algebra.
Then, we will apply this theoretical concept to fluid dynamics, which fur-
ther can be transferred to atmospheric phenomena. In order to find vortex
geodesics, we first have to find the right spaces, where we can measure
distances. Mathematically, there are many different metric spaces, each de-
fined by a set with a metric. Let us start start with the well-known Eu-
clidean geometry in three dimensions. The Euclidean distance between
two points is given by a straight line segment, which is the shortest path
between two points and therefore the geodesic.

This concept can be generalized to find shortest paths on arbitrary smooth
manifolds, as we have sketched in fig. 10.1. Let us consider a smooth
curved surface M , for example the sphere M = S2 embedded in a three
dimensional space, and denote with A a starting point on this curved sur-
face M . We look for the shortest path from A to another point B on M . In

195
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Figure 10.1: The differences between Euclidean, Riemannian and sub-
Riemannian geometry are shown. All spaces can be endowed with a suitable met-
ric to connect two pointsA andB on a manifold. In case of a non-smooth manifold,
we have to move on so-called horizontal bundles, because the motion is restricted
by singularities. Sub-Riemannian geometry is also called singular Riemannian ge-
ometry.

this case, Euclidean geometry is not an appropriate choice to measure the
distance between A and B, because it would be the secant line; the shortest
path from A to B on the manifold is curved, too, and can not be a segment
of a straight line. We would like to move on the surface, as for example
on the sphere, and we assume that we are not allowed to cross the sphere.
As a first guess, we would use Riemannian geometry, where the so-called
Riemannian metric is defined with respect to the manifold such that the
Riemannian metric can be used to measures lengths of paths on any smooth
manifold. On a sphere it turns out that the shortest path between two points
lies on a great circle, see fig. 10.1, and the geodesics is given by a formula
of the arccosine.

Sometimes the constraints restrict the motion such that the manifold is
not smooth anymore. In this case, we have to measure distances using
tangent spaces. At each point on a Riemannian manifold the tangent space
is endowed with the Euclidean structure. This structure smoothly depends
on the point where the tangent space is attached. Let us assume, we have a
walk on a Riemannian manifoldM and we stop at a point p inM . Then, the
tangent vectors in this point give us the directions where to move. We can
move in all directions on the tangent plane. And we can measure lengths
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of vectors and angles between vectors that are attached at the same point.
These measurements are done using the Euclidean rules.

Let us now assume that we stand on a sub-Riemannian manifold. But
we are not allowed to move in all directions. There are constraints, for
example a physical law, that restrict our motion. A sub-Riemannian space
is a smooth manifold with a fixed admissible subspace in any tangent space
where the admissible subspaces are equipped with Euclidean structures
(Barilari et al., 2016; Agrachev et al., 2016). The distance between two points
in a sub-Riemannian space is the infimum of the length of admissible paths
connecting the points. As we will discuss more in detail later in this chapter,
sub-Riemannian geodesics are measured by moving along curves that are
tangent to so-called horizontal subspaces. For example, we would use sub-
Riemannian geometry if we aim for finding the shortest orbits of satellites
in space, or if we park a car. In the last example our constraint is given by
the fact that we can not drive a car sidewards. Thus, to describe the position
of a car we consider its location (R2) and an angle (S1), i.e. a point on the
manifold R2 × S1. Its shortest path can be determined by the infimum of a
sub-Riemannian path, we call this shortest path sub-Riemannian goedesics.
For further readings see, e.g., Montgomery (2006), Calin and Chang (2009)
or Barilari et al. (2016).

From mathematical perspective, nilpotent groups allow for the appli-
cation of sub-Riemannian geometry. Therefore, the classical Heisenberg
group is an example for the derivation of sub-Riemannian geodesics. Phys-
ically, the group representation for electric charged particles in static inho-
mogeneous magnetic fields is given by a Heisenberg group (Monroy-Pérez
and Anzaldo-Meneses, 1999; Montgomery, 2006). Classical mass points
move on straight lines, therefore, we can find their shortest paths without
applying sub-Riemannian geometry. But charged particles behave simi-
lar to vortices. In chapter 8 we have shown that VH(2) holds the classical
Heisenberg group structure, even though it is derived from the vorticity
equation. We have shown that VH(2) as VH(3) are nilpotent groups pro-
viding a natural structure to apply sub-Riemannian geometry. Physically,
vortex motion is constrained by conservation laws: the conservation of the
linear momentum P, the angular momentum L and the energy can all be
expressed by the vorticity. There are also scale-dependent conservation
laws for incompressible, inviscid fluids such as the enstrophy and circu-
lation in two dimensions and the helicity and the flux of vorticity in three
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dimensions, as we have discussed in chapter 7; Therefore, the motion of
vortices is constrained by vortical rotations. We think that the constraints
on the vortex motions are mathematically reflected in the nilpotent struc-
ture of the Vortex-Heisenberg group that we have derived and explored
in the previous chapters. This nilpotent structure provides a natural sub-
Riemannian applicability.

But, so far, sub-Riemannian geometry has not been considered for the
study of vortex dynamics. Instead, the Riemannian view has been used for
the investigation of extremal principles for hydrodynamic systems, see e.g.
Arnold and Khesin (1992) or Holm et al. (1998). where mostly the energy is
considered to derive extremal principles for fluid dynamical systems. But,
to the best of our knowledge, there are no investigations of the derivation of
vortex geodesics regarding additional vortex-related quantities. The major
difference is the set of equation that provides the underlying structure. The
Euler equation is commonly used as basis for the geometrical as well as for
the algebraical view. In contrast, in this thesis, the algebraic and geomet-
ric views on vortex dynamics are based on the Helmholtz equation. This
means that most authors consider wind field as basis variable and analyze
the kinetic energy and the vortex quantities based on the Euler equations.
The Helmholtz equation results from the rotation of the Euler equations, i.e.
∇× Euler equations, leading to the description of the time evolution of the
vorticity. But, some authors do consider the vorticity equation as basis, but
they still deal with the Hamiltonian structure, which takes only the energy
into account and not the vortex-related conservation laws.

Thus, the use of the Nambu representation to form a Lie algebra for vor-
tex dynamics that is directly based on the vorticity equation can be seen as
an advantage. Moreover, the conservation of mass is implicitly included in
the Nambu formulation, whereas, concerning the Euler equations of mo-
tion and the corresponding Hamiltonian view, the incompressibility condi-
tion, i.e. the conservation of mass, is expressed by an additional equation.
In other words: using the vortex equation, we are already on the appropri-
ate hierarchical level to build a Lie algebra that can be used for the deriva-
tion of shortest paths of vortices.

We will show that the vortex geodesics for two-dimensional vortex dy-
namics is comparable to the sub-Riemannian application of charged parti-
cles in a magnetic field (Monroy-Pérez and Anzaldo-Meneses, 1999). The
vortex geodesics for two-and three-dimensional vortex flows will be de-
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Figure 10.2: How to derive vortex geodesics via sub-Riemannian geometry.

rived after the generalized algorithm of Monroy-Pérez and Anzaldo-Meneses
(2006). The steps for the derivations regarding sub-Riemannian geometry
are summarized in fig. 10.2. Starting with Lie group, which is a group
with an underlying manifold, we can consider a Lie algebra, which can be
regarded as the tangent space at the group identity. The tangent space, de-
noted by TM , is the space that contains all velocity vectors of all possible
curves lying on the manifold M . Further, we denote with TxM the tangent
space of M in a point x ∈ M . As discussed in the previous paragraph, re-
garding the sub-Riemannian structure, standing on the tangent space gives
us the direction where to move, but we have some restriction, where we are
allowed to move. Now, we have to split the tangent space of the tangent
space (short: TTM ) into vertical and horizontal subboundles and use the
isomorphism TTM ∼= TM , see (10.18) and (10.14), because we are only al-
lowed to walk on horizontal planes. From the fluid dynamical perspective,
it is natural that vortices do not move on straight lines, they are restricted
by the rotational part of the motion leading to constraints with respect to
the vortex-related conserved quantities.

A classical example of sub-Riemannian geometry is Dido’s problem (see,
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Figure 10.3: a) Dido’s problem was to enclose a maximal area with a leather
string of fixed length. b) To solve her problem, she had to extend the space by
a z-coordinate, and the projection of the 3D curves leads to a solution. Based on
Montgomery (2006).

e.g. Montgomery, 2006). It goes back to the time of the beginning of Rome.
Queen Dido had to flee, arriving at Africa she was allowed to get as much
land as she could enclose with a leather string of fixed lengths. She got a
piece of land at he coast. Approximating the coast line by a straight line,
she had to tackle the question: What is the shape of the curve that encloses
a maximal area? This problem is called Dido’s problem, illustrated in fig.
10.3, and the solution – a half circle – can be derived by the use of sub-
Riemannnian geometry.

To find shortest paths on a land surface with the constrained of the en-
closure of a maximal area seems like a two-dimensional problem. Consider
the coordinates x, y and the differential 1-form (see def. 43)

ω =
1

2
(xdy − ydx), (10.1)

which satisfies dω = dy ∧ dy. Denote with A the area enclosed by a planar
curve c (the leather string of fixed lengths) and a straight line segment (the
coast line), where the straight line segment and the curve intersect at the
origin. The area A is given by:

A(c) =

∫
c

ω (10.2)
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the curve c is a function c = (x(t), y(t)) with length

l(c) =

∫
c

ds, (10.3)

where ds =
√
dx2 + dy2 = ‖ċ‖dt.

To solve Dido’s problem we construct a three-dimensional geometry
and add a third direction z such that we can find three dimensional curves
of the form (x(t), y(t), z(t)). Therefore, we consider the 1-form

ż =
1

2
(−y(t)ẋ(t) + x(t)ẏ(t)). (10.4)

such that the single planar curve c(t) = (x(t), y(t)) is linked to a family of
three-dimensional curves that we denote with γ(t) = (x(t), y(t), z(t)). We
define the length of this paths γ to be equal to the Euclidean length l of the
two-dimensional curve (10.3). Such three-dimensional paths γ are called
horizontal path. We will give a precise mathematical definition later in this
chapter. Then, each planar curve (x(t), y(t)) has a lift to (x(t), y(t), z(t)) in
R3, where z(t) is given by the integral:

z(t) = z(t)− z(0) =
1

2

∫ t

0

(x(t)dy(t)− y(t)dx(t)). (10.5)

Or in other words, c(t) is the projection of γ(t) to the plane. We apply
Stoke’s theorem, assume the following initial conditions z(0) = 0, x(0) =

y(0) = 0 such that c joins the origin and it also joins (x1, y1). Then, for the
endpoints of the 3D curve γ we obtain (x1, y1, A(c).) Thus, this example
yields the solution of Dido’s problem: Finding a shortest curve between
two points, where the curve together with the straight line between the
points enclose a certain – in this case a maximal – area (see, e.g. Mont-
gomery, 2006). The algebra is hidden in the part, where we considered the
three-dimensional curves as horizontal paths. These paths γ are on tangent
spaces, and Lie algebras can be regarded as tangent spaces at the group
identity. Our motivation of the first example was to illustrate the applica-
bility of sub-Riemannian geometry to a simple problem.

We will begin with an introduction to the basic differential geometric
definitions in section 10.1. The basics are needed for the general algorithm
to find sub-Riemannian geodesics for a 2-step nilpotent Lie algebra that we
will introduce in section 10.2. Thereby, we will consider a tangent boundle
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∆ ⊂ TM that is spanned by vector fields X1, . . .Xn. These vector fields are
associated with Hamiltonian functions that generate the Lie algebra. We
will regard the Vortex-Heisenberg Lie algebras vh(2) and vh(3). For each
Lie algebra we will obtain a pair (h,H) that is composed of a vector h and
a matrix H:

i) For vh(2) we will obtain a vector h ∈ R2 and H ∈Mat(2× 2)

ii) And for vh(3) we will obtain a vector h ∈ R3 and H ∈Mat(3× 3).

Determining the corresponding hauptspace leads to the phase space of the
geodesics. We remark that the Hamiltonian here is not related to the en-
ergy. In this chapter, we are looking for geodesics and therefore, we apply
optimal control theory where the notion Hamiltonian is commonly used
for the function which solution provides extremal trajectories, especially
under constraints. The Russian mathematician Lev Pontryagin introduced
this terminology in 1965.

In section 10.3 we will consider the Vortex-Heisenberg Lie algebra vh(2)
which was derived in chapter 6. The Vortex-Heisenberg Lie algebra vh(2)
provides the structure of a (2,3)-sub-Riemannian geometry. In general, a
(n, n(n+ 1)/2)- sub-Riemannian geometry can be applied to a (n(n+ 1)/2)-
dimensional Lie algebra with a rank n distribution. A distribution ∆ of
rank n is a subspace of the tangent space of a manifold, where there exist
n linearly independent vector fields that form a basis for the distribution
∆. For vh(2), we have seen that the corresponding Nambu brackets of the
momenta Px and Py and the circulation Γ result in the circulation:

{Px, E , Py} = Γ, {Px, E ,Γ} = {Py, E ,Γ} = 0 (10.6)

Thus, the rank of the Lie algebra is three (Px, Py,Γ) with rank of distribution
2, which is the number of elements Px, Pz. We will show, how the from
the Vortex-Heisenberg algebra resulting two-dimensional sub-Riemannian
vortex geodesics can be related to a special point vortex system that we
have discussed in chapters 3 and 4.

Finally, in section 10.5, we will search for geodesics for three-dimensional
vortex flows. The sub-Riemannian geodesics are based on he Vortex-Heisen-
berg Lie algebra vh(3) that we have derived in chapter 6. We recall the
bracket relations of the components of the 3D momentum Px, Py and Pz
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and the flux of vorticity Z = (Zx, Zy, Zz) with respect to the helicity hV :

{Pi, hV , Pj} = εijkZk, {Zi, hV , Pj} = {Zi, hV , Zj} = 0. (10.7)

The dimension of the Vortex-Heisenberg Lie algebra is 6 (6 elements: Px, Py,
Pz, Zx, Zy, Zz) with rank 3 distribution. Therefore, vh(3) yields an example
of a (3,6)-sub-Riemannian geometry. But this application should be seen as
an outlook, which will be more examined in future studies. In two dimen-
sions, we can compare the (2,3)-sub-Riemannian geodesics with a discrete
point vortex model. Such an idealized discrete model does not exist for
three dimensions.

10.1 Basics of differential geometry

We will start with an introduction to the basics of differential geometry. For
more detailed proofs or explanations, see e.g. Kühnel (1999), Berger and
Gostiaux (2012) or Do Carmo et al. (2017).

Definition 41. Tangent space
The tangent space, denoted by TM , is the space that contains all velocity
vectors of all possible curves lying on the manifoldM . With TxM we denote
the tangent space of M in a point x ∈M .

Definition 42. Linear form and dual space
Let V be a vector space over a field K. Then, a linear functional or linear
form (which is also called one-form or covector) is a map from V to K that
is linear and satisfies the following conditions:

ϕ(v + w) = ϕ(v) + ϕ(w) for all v,w ∈ V

ϕ(av) = aϕ(v) for all v ∈ V, a ∈ K.
(10.8)

All linear functionals from V to K form a vector space Hom(V,K) over the
field K. This space

V ∗ := Hom(V,K) = {φ : V −→ K| φ linear } (10.9)

is called the dual space of V .

We notice that dealing with Lie algebras means dealing with linear spaces.
Therefore, to find vortex geodesics based on the Vortex-Heisenberg algebra,
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we need to introduce the following definitions.

Definition 43. Pfaffsche Form
A Pfaffsche Form ω on M (also called 1-Form or differential form) assigns a
linear form ωp : TxM → R to each point x ∈M .

Such linear forms are called cotangent vectors which are elements of the
so-called dual space (or cotangent space) T∗xM with respect to the tangent
space TpM . Therefore, a Pfaffsche Form ω is a map

ω : M →
⋃
x∈M

T∗xM, x 7→ ωx ∈ T∗xM. (10.10)

Example 8. A 1-form φ on R3 is a function on the set of all tangent vectors
to R3 such that φp is is linear using the notation φp := φ(p). This means, for
α, β ∈ R and tangent vectors v,w ∈ R3 it is:

φp(αv + bw) = αφp(v) + βφp(w) (10.11)

We follow for example O’Neill (2006) and emphasize that for every tangent
vector v, φp maps to a real number. Moreover, for each point x ∈ R3, the
resulting function φx : TxR3 → R is linear. That means that at each point x,
φx is an element of the dual space of TxR3

Definition 44. Parallel vector field
A vector field V(t) along a regular parametrized curve γ of constant length
is called parallel if the derivative V′(t) is normal to the tangent plane TxM
at each point x = γ(t) of the curve.

If for all t the parallel field V′(t) is normal to the tangent plane, the
length of the vectors V(t) is constant, which follows immediately from:

d

dt
|V|2 =

d

dt
(V ·V) = 2V′ ·V = 0. (10.12)

Definition 45. Geodesics
A unit speed curve γ on a surface M is a geodesic if and only if its tangent
vectors γ′(t) form a parallel field.

Example 9. Let us consider the great circle on a 2-sphere. If we move along
the geodesic, i.e. along the great circle parametrized as regular curve, we
recognize that the angle of the tangent vector is constant. Therefore, the
tangent vectors of the great circle form a parallel field. Thus, the great circle
is a geodesic curve on the 2-sphere.
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The concept of the covariant derivative can be used to determine direc-
tional derivatives of vector fields, i.e. the infinitesimal transport of a vector
field in a given direction.

Definition 46. Covariant derivative and parallel transport
Let V be a smooth vector field along a curve c : I →M on a manifold. Then
the covariant derivative of V along c at the point p = c(t) is given by

DcV

dt
(p) =

DcV

dt
(c(t)) = lim

s→t

Pc(t),c(s)Vc(s) −Vc(t)

s− t
∈ TpM (10.13)

with parallel transport Pc(t),c(s) of the tangent vector Vc(s) to the tangent
vector at the point c(t).

We can picture the covariant derivative DcV
dt

(c(t)) as the projection of dV
dt

into the tangent plane to the surface. Physically, the covariant derivative
DcV
dt

(c(t)) of a particle trajectory c(t) along the surface with velocity field
represents the acceleration component of the particle along the surface.

Let now TM denote the tangent bundle, TxM the tangent space at the
point x and TTM (TxTM ) the tangent space of the tangent space (at the
point x). Consider the maps θ and dθ:

θ : TM → T and dθ : TTM → TM (10.14)

Using the notation dθ(x) := dxθ the kernel and the image of dθ of dxθ are
given by:

Ker(dxθ) = {N ∈ TxTM | dθ(N) = 1Tθ(x)M ∈ Tθ(x)M}

Im(dxθ) = {dxθ(N) |N ∈ TxM)}
(10.15)

We remark that ker(dxθ) ⊆ TTM and im(dxθ) ⊆ TM such that there exists
an isomorphisms ϕ : TTM → TM such that TTM ∼= TM , TxTM ∼= Tθ(x)M

respectively, as illustrated in the following diagram:

TTM TM

TM TTM

ϕ

dxθ

ϕ−1

Now, we can identify:

ϕ(ker(dxθ)) ∼= ker(dxθ) and ϕ−1(im(dxθ)) ∼= im(dxθ) (10.16)
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and set
Vx := ker(dxθ) and Hx = V ⊥x . (10.17)

Then, we can write:
TxTM = Hx ⊕ Vx (10.18)

Further, denote c‖t0 ∈ Tc(t)M the vector that we obtain by shifting the
tangent vector x parallel along γ|[0,t], where γ is a geodesic. Then we get an
isomorphism

h−1
γ,x : TM → TxTM, v 7→ ∂

∂t

∣∣∣
t=0

(
cx‖t0

)
. (10.19)

And the image of the isomorphism h−1
γ,x can be identified with Hx, i.e.

Im(h−1
γ,x) ∼= Hx (10.20)

leading to the following definition of Hx:

Hx := {ċ(0) | c : I → TM parallel along a geodesic γ,

γ : I 7→M with γ(0) = θ(x) und X(0) = x}.
(10.21)

which corroborates the above representation of TxTM as direct sum of Hx

and Vx.

10.2 Sub-Riemannian geometry of a step-2 nilpo-

tent Lie algebra

In part 2 we have explored the Vortex-Heisenberg Lie algebra and the cor-
responding Vortex-Heisenberg Lie group for two- und three-dimensional
vortex flows. In chapter 9 we have shown how this group theoretical point
of view can be applied to atmospheric phenomena such as splitting storms.

Here, we will use this algebraic analysis to derive vortex geodesics. In
general, sub-Riemannian geometry can be used to study constrained phys-
ical systems. Regarding hydrodynamical systems, the conservation of the
vortex quantities restrict the motion on the tangent space. Furthermore, as
we have shown in chapter 8, vh(2) and vh(3) are nilpotent algebras. Both
together lead to a natural sub-Riemannian structure for vortex dynamics.
In this section we will summarize, how sub-Riemannian geodesics can be
determined for general step-2 nilpotent algebras. In sections 10.3 and 10.5
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we will apply this proceeding to the two- and three-dimensional Vortex-
Heiseberg algebras vh(2) and vh(3).

Denote g a arbitrary step-2 nilpotent Lie-Algebra with respect to the
step-2 nilpotent Lie group G and denote {Xi,Xjk | i = 1, . . . , n, 1 ≤ j <

k ≤ n} the basis of the n(n+ 1)/2-dimensional Lie Algebra g with multipli-
cation table:

[Xi,Xj] = Xij, [Xi,Xjk] = 0, [Xij,Xkl] = 0. (10.22)

In order to derive the (n, n(n+1)/2)-sub-Rimannian geodesics with respect
to the Lie algebra, we consider g as a family of left-invariant vector fields
on the Lie group G. Then ∆ = span(X1, . . . ,Xn) is a left invariant bracket
generating distribution on the Lie group G and of rank n. Further, we as-
sume that the vectors Xi(g), i = 1, . . . , n are orthogonal such that we can
define an inner product on the plane ∆(g) = span(X1(g), . . . ,Xn(g)) that
varies smoothly with respect to g.

Definition 47. sub-Riemannian distance, sub-Riemannian length
Let g : [0, T ] −→ G be a horizontal curve, then ġ ∈ ∆(g) almost everywhere.
Let x,xT ∈ G. Then the sub-Riemannian distance is defined as

d(x,xT ) = inf{ l(g) | g : [0, T ] −→ G is horizontal, g(0) = x, g(T ) = xT}
(10.23)

with the sub-Riemann length l of the curve g:

l(g) =

∫ T

0

‖ġ(t)‖dt. (10.24)

with respect to the inner product defined by Xi(g) as explained before the
definition.

We are looking for the Sub-Riemannian geodesics on the group G, i.e.
for the minimization of the functional in the class of horizontal curves. For
this approach we combine our differential geometry definitions we intro-
duced in the last section with the Lie group and Lie algebra definitions
from chapter 6. We recall the definitions from section 6.1 that a Lie group
is a group with a manifold structure and a Lie algebra corresponds to the
tangent space at the identity group element.

The following paragraph is summarized after Percacci (2017). Let us
call the Lie group G and let the multiplication ∗ : G × G → G and the



CHAPTER 10. SUB-RIEMANNIAN GEODESICS 208

inverse I : G → G are smooth maps. We consider the diffeomorphisms
Lg : G → G defined by Lg(g

′) = gg′ satisfying the composition property
of the Lie group. Then, a vector field v ∈ X(G) is called left-invariant if
TLg(v) = v for all g ∈ G. We note that (i) the Lie bracket of two left-
invariant vector fields is a left-invariant vector field, and (ii) right-invariant
vector fields can be defined analogously. As we have discussed before with
respect to the Lie bracket, the left-invariant vector fields form a Lie algebra
L(G) of the Lie group G. Denote the identity element of the group with e

and with v̄ ∈ TeG the vector tangent to the groupG at the identity such that
can define a unique left-invariant vector field v that coincides with v̄ in the
identity:

v(g) = TLg(v̄) (10.25)

(see chapter 6 section 6.1.) Therefore, there is a one-to-one correspondence
between elements of TeG and left-invariant vector fields such that the di-
mension of the Lie algebra L(G) is equal to dim(G). We recall that a Lie
bracket of two vector fields X and Y is left-translation invariant if X and Y

are left-invariant.

We denote with g 7→ Lg the left-action on the group G that defines tan-
gent and cotangent bundle trivializations. Then we can write:

G× g ' TG, G× g∗ ' T ∗G, (10.26)

with respect to the mappings

(g,X) 7→ deLgX, (g,x)) 7→ deLg−1(g)∗x. (10.27)

We remind that the space of left-invariant vector fields can be identified
with the tangent space of the group identity such that we can relate this
notation to the Lie bracket we have discussed in the previous chapters.
Using the isomorphism ϕ : TTM → TM explained in section 10.1, i.e.
TTM ∼= TM , we obtain the double bundle

TT ∗G ' (G× g∗)× (g× g∗). (10.28)

Now, we can represent any tangent vector as pair ((g, p), (X,Y∗)) and the
symplectic form ω(g,x) is given by:

ω(g,x)((X1,Y
∗
1), (X2,Y

∗
2))) = Y∗1(X2)−Y∗2(X1)− x[X1,X2] (10.29)
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See Monroy-Pérez and Anzaldo-Meneses (2006) for further details.

Let now H : T ∗G −→ R be a Hamiltonian function. As we have no-
ticed in the beginning of this chapter, in this context the Hamiltonian does
not represent the energy. It is a vector field which solution provides the
geodesics. The flow of the Hamiltonian vector field H is given by the sys-
tem:

dg

dt
= (dLg)(dH)

dx

dt
= −(ad∗dH)(x),

(10.30)

Let now Hi be the Hamiltonian function with respect to the vector field
Xi and denote Hij the Hamilton function corresponding to Xij , that means
Hij = HXij

. The Lie Poisson bracket is given by

[Hi, Hj] = Hij, (10.31)

where Hij are central elements of the Lie algebra T ∗g generated by the
bracket relation (10.31). These Hamiltonians depend only on the second
variable x, because of the left invariance of the vector fields.

Further, denote {X∗i ,X∗j} the dual basis of the basis {Xi,Xj}. Applying
(10.30) the dual variable x can be identified with the vector

x '
n∑
i=1

x(Xi)X
∗
i +

n∑
i<j

x(Xij)X
∗
ij =

n∑
i=1

HiX
∗
i +

n∑
i<j

HijX
∗
ij. (10.32)

Moreover, because of the commutator (10.31), x can be identified with the
pair

x ' (h,H) ∈ Rn × so(n) (10.33)

with

h =


H1

H2

...
Hn

 and H =


H11 H12 . . . H1n

H21 H22 . . . H2n

... . . . ...
Hn1 . . . . . . Hnn

 (10.34)

Using the above identification and (10.30) the geodesics are completely
described by the second equation of the following system (Monroy-Pérez
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and Anzaldo-Meneses, 2006):

dg

dt
= H1X1(g) + · · ·+HnXn(g)

dx

dt
= (ḣ, Ḣ) = (Hh,0) (10.35)

Because x can be identified with the pair (h,H), we can take the exponential
ansatz to solve (10.35). Taking the initial condition h0 = h(0) the integral
curves are given by

t 7→ (h(t),H(t)) = exp(tHh0,H(0)). (10.36)

The calculation of the exponential function leads to the geodesic equation.
To solve the exponential function we apply Lagrange’s and Sylvester’s for-
mula that represents an analytic function f(A) of a diagonalizable n × n-
matrix A in terms of the eigenvalues λi and eigenvectors of A:

f(A) =
n∑
i=1

f(λi)Ai (10.37)

The solution depends on the dimension. We need to distinguish between
even and odd dimensions:

1. Even n: H ∈Mat(n× n), non-singular, skew-symmetric with n/2 dif-
ferent eigenvalues.

2. Odd n: H has one zero-valued eigenvalue and the other eigenvalues
are all different. The nonzero eigenvalues appear in ±-pairs and are
imaginary.

For the eigenvalue zero, the projector is real and symmetric. We denote it
π0. For all other eigenvalues µ, the spectral projectors πµ are hermitian ma-
trices. Denote σ the set of eigenvalues. Now, we apply Lagrange-Sylvester-
formula and obtain

exp(tH) =
∑
µ∈σ

etµ πµ (10.38)

which is the spectral formula for exp(tH) in terms of the spectral projectors.
We notice that spectral projectors are orthogonal projections.
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Determining the (n, n(n+ 1)/2)-sub-Riemannian geodesics

Now, we are prepared to calculate the sub-Riemannian geodesics for the
general case of an n-dimensional Lie algebra following the work of Monroy-
Pérez and Anzaldo-Meneses (2006). The notations (n, n(n + 1)/2)-sub-Rie-
mannian geometry is composed by a (n(n + 1)/2)-dimensional Lie algebra
with a rank n distribution. A distribution ∆ of rank n is a subspace of the
tangent space of a manifold, where there exist n linearly independent vec-
tor fields that form a basis for the distribution ∆. Thus, this general case
could be adapted to the n-dimensional Vortex-Heisenberg group VH(n). In
this thesis, we explore VH(2) and VH(3). The rank of the Lie algebra vh(2)
is three (Px, Py,Γ) with rank of distribution n = 2 leading to a (2,3)-sub-
Riemannnian structure for two-dimensional incompressible, inviscid flows.
The Lie algebra vh(3) of three dimensional vortex flows has six dimensions
(6 elements: Px, Py, Pz, Zx, Zy, Zz) with a rank n = 3 distribution. Thus, here
(3,6)-sub-Riemannnian geometry can be applied. In order to apply their
algorithm to two- and three-dimensional atmospheric vortex motions, we
will first summarize the algorithm of Monroy-Pérez and Anzaldo-Meneses
(2006) to find geodesics for n-dimensional algebras.

In the end of the last section, we suggested to apply the Lagrange-
Sylvester formula (10.38) to obtain a solution of the following differential
equation for geodesics xg (see (10.35)):

dxg
dt

= (ḣ, Ḣ). (10.39)

To apply the Lagrange-Sylvester formula, we first calculate the eigenspaces
of the corresponding systems. We will use the following notations for the
eigenvectors, eigenvalues and projectors:

{v1,v−1, . . . ,vbn/2c,v−bn/2c} ⊂ C (Eigenvectors)

{iλ1,−iλ1, . . . , iλbn/2c,−iλ−bn/2c} (Eigenvalues)

{π1,π−1, . . . ,πbn/2c,π−bn/2c} (Projectors)

(10.40)

with v−k = vk and λi ∈ R. Monroy-Pérez and Anzaldo-Meneses (2006)
show that all vi are orthogonal, i.e. vi · vj = δij .

We note that for odd n we obtain an additional (real) eigenvector v0, an
additional eigenwert λ0 = 0 and its projector π0 (v0 ∈ Ker(H)). The orthog-
onality implies: Re(vi) · Re(vj) = δijIm(v) · Im(vj) and Re(vj) · Im(vj) = 0.
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Therefore,
{Re(v1), Im(v1), . . . ,Re(vbn/2c), Im(vbn/2c)} (10.41)

is an orthogonal basis of Rn for even n. And

{Re(v1), Im(v1), . . . ,Re(vbn/2c), Im(vbn/2c),v0} (10.42)

yields an orthogonal basis of Rn for odd n. Because h0 is a real constant
vector it is:

span(Re((h0 · vk)vk), Im((h0 · vk)vk)) = span(Re(vk), Im(vk)). (10.43)

for k = 1, 2, . . . bn/2c. We obtain a basis {αk,βk}with

αk = 2 Im((h0 · vk)vk)), βk = 2 Re((h0 · vk)vk)), γ0 = (h0 · v0)v0.

(10.44)
for k = 1, 2, . . . bn/2c.

We search for the solution for the pair (xg, zg) ∈ Rn × so(n), i.e. the
geodesic arc. Let this geodesic arc be defined in a certain interval with the
following initial condition

(xg(0), zg(0)) = (0,0). (10.45)

Assuming that (xg, zg) is a projection of a normal extremal and all eigen-
values of H are non-zero, we can apply (10.38) leading to the following
geodesic equations:

xg =


∑

µ∈(σ)
1
µ
(eµt − 1) πµv0 for n even∑

µ∈(σ−{0})
1
µ
(eµt − 1) πµv0 + tπ0v0 for n odd

(10.46)

Now, we can formulate the geodesic arc (xg, zg) with respect to the above
basis (10.44) given by {αk,βk} for n even, and by {αk,βk,γ0} for n odd.
We obtain the trajectories:

xg =

bn/2c∑
i=1

1

λi
(cos(λit)− 1)αi +

1

λi
sin(λit)βi (for n even)

zg =

bn/2c∑
i=1

Aijα ∧αj +Bijα ∧ βj + Cijβ ∧ βj (for n even)

(10.47)
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with

Aij =
1− cos(λi − λj)t

2λi(λi − λj)
+

cos(λi + λj)t− 1)

2λi(λi − λj)
− cos(λjt)− 1

λiλj

Bij =
(λj − λi) sin(λi + λj)t

2λiλj(λi + λj)
+

(λj + λi) sin(λi − λj)t
2λiλj(λi − λj)

− sin(λjt)

λiλj
, i 6= i,

(10.48)

Bii =
t

λi
− sin(λt)

λ2
i

Cij =
1− cos(λi − λj)t

2λi(λi − λj)
− cos(λi + λj)t− 1

2λ(λi + λj)
.

(10.49)

For n odd the same equations (10.47) hold but with the additional tγ0 and
with the additional two terms:

bn/2c∑
i=1

(
−t
λi

(cos(λit) + 1) +
1

λ2
i

2 sin(λit)αi ∧ γ0

)

+

bn/2c∑
i=1

(
1

λ2
i

(2(1− cos(λit))− λit sin(λit))

)
βi ∧ γ0

(10.50)

We cite Monroy-Pérez and Anzaldo-Meneses (2006) and summarize that
in even dimensions the projections of the components of xg to the planes
{Re(vk), Im(vk)}, for k = 1, 2, . . . bn/2c, are circles passing through the ori-
gin with radii 1/λk, and centered at span(αk). Furthermore, in odd dimen-
sions, since xg varies linearly in the direction of the vector γ0, the projec-
tions of the component xg to the three-dimensional subspaces span(αk,βk,γ0)

(identical to span(Re(vk), Im(vk))) are helices. In this case we can write ex-
plicitly the parameter t = (h0 · (π0xg))/‖π0h0‖2

10.3 (2,3)-sub-Riemannian geometry

In the last section we have summarized the algorithm the general (n, n(n+

1)/2))-sub-Riemannian geodesics for a n(n + 1)/2-dimensional Lie group
with a rank n distribution. This algorithm could be applied to the n-dimen-
sional Vortex-Heisenberg group, which might be explored in future stud-
ies. Here, we regard the special case of (2,3)-sub-Riemannian geometry,
which was introduced by Brockett (1982), to find geodesics for the two-
dimensional vortex flows. A classical example is given by charged mass
points, (see, e.g., Monroy-Pérez and Anzaldo-Meneses, 1999). Its algebraic
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structure is isomorphic to the two-dimensional Vortex-Heisenberg algebra.

Here, we will first outline the derivation of the general (2,3)-sub-Rie-
mannian geodesic after Monroy-Pérez and Anzaldo-Meneses (2006) in or-
der to apply this algorithm to find geodesics for the idealized point vortex
model that we have discussed in the first part of this thesis. Physically,
the point vortex motion is restricted by the conservation laws, and all of
them can be expressed with respect to the circulation. Mathematically, the
conservation laws imply a nilpotent Lie algebra such that sub-Riemannian
geometry is a suitable choice to find vortex geodesics.

Consider the following nonzero bracket of the three-dimensional, se-
cond-step nilpotent Lie Algebra:

[X1,X2] = X12. (10.51)

We use the same notations as in the last section for arbitrary n ∈ N and
denote with Hi the Hamiltonian functions corresponding to the vector field
Xi, i = 1, 2, respectively Hij to Xij , i, j = 1, 2. Then, we obtain the pair
(h,H) ∈ R2 × so(2) (see (10.33)). Now, we consider the following initial
values

h0 = (H1, H2)T . (10.52)

and solve the equation
dxg
dt

= (ḣ, Ḣ) (10.53)

to derive the vortex geodesics xg.

In order to solve (10.53), we apply Lagrange-Sylvester formula (10.37)
leading to two eigenvalues

{−iλ1, iλ1} (10.54)

with H2 + λ2
1E = 0, where E denotes the 2× 2 identity matrix. The spectral

projector is given by

π1 =
1

2iλ1

(H + iλ1E). (10.55)

And, using (10.44), the basis of the projection plane reads as

β1 = (H1, H2)T , α1 = (−H2, H1)T . (10.56)
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Finally, the geodesic equation is given by:

xg =
1

λ1

(cos(λ1t)− 1)α1 +
1

λ1

sin(λ1t)β1 (10.57)

and
zg =

(
t

λ1

− sin(λ1t)

λ2
1

)
α1 ∧ β1, (10.58)

where ∧ denotes the wedge-product.

10.4 Deriving geodesics for point vortex systems

Now, we will apply the Vortex-Heisenberg Lie algebra to the previous gen-
eral algorithm to derive geodesics for two-dimensional incompressible, in-
viscid flows. We first recall the discretized vortex model resulting in the
point vortex equations that we have explored in chapters 3 and 4. The zonal
and meridional momenta and the total circulation for a N -point vortex sys-
tem are given by:

Px =
N∑
i=1

Γiyi, Py = −
N∑
i=1

Γixi and Γ =
N∑
i=1

Γi (10.59)

Névir (1998) shows that the bracket relations of discrete, two-dimensional
point vortex systems are comparable to the Nambu bracket relations of con-
tinuous, two dimensional, incompressible, inviscid flows with respect to
the enstrophy.

[Px, Py] = Γ, and [Px,Γ] = [Py,Γ] = 0, (10.60)

see also chapter 3. We notice that we do not regard the energy, but the direct
vortex-related quantities.

We obtain a nilpotent algebra which allows for a direct transformation
from the algebra to the group as we have summarized in chapter 8. More-
over, the nilpotent property leads to the choice of the sub-Riemannian space
to represent 2D vortex dynamics. The motion in sub-Riemannian spaces is
always restricted by constrains. Here, the vortex motion is restricted by
conservation laws such as the momentum, the energy, the circulation, the
center of circulation, the relative angular momentum or the angular mo-
mentum. All conservation laws can be expressed by the circulation, as we
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have shown in chapter 3. Because of these restrictions, we can not use Eu-
clidean or Riemannian goemetry to determine vortex paths. This setting
together with the nilpotent structure provides a natural sub-Riemannian
space for the search for vortex geodesics.

We consider the single trajectories of the i-th point vortex of an N -point
vortex system and show examples of two and three point vortex systems.
First, we scale the momentum of the i-th point vortex P(i) = (P

(i)
x , P

(i)
y ) by

the area F :
P (i)
x =

Γ

F
y, P (i)

y = − Γ

F
x (10.61)

such that the unit of Px and Py is m/s, a velocity. We recall that Γ denotes
the circulation. W.o.l.g. we assume that

(
Γ
F

)2
= 1. The (2× 2)-matrix H and

the vector h ∈ R2 form the pair (h,H) which is given by:

H =

(
{P (i)

x , P
(i)
x } {P (i)

x , P
(i)
y }

{P (i)
y , P

(i)
x } {P (i)

y , P
(i)
y }

)
=

(
0 Γ

F

− Γ
F

0

)
, h =

(
H1

H2

)
=

(
P

(i)
x

P
(i)
y

)
(10.62)

with respect to the Nambu-bracket {·, ·}, see also (8.23) in chapter 8.

We recall that the geodesics are the solution of the following differential
equation that was derived in (10.35)

dxg
dt

= (ḣ, Ḣ) = (Hh,0). (10.63)

Here, the components of h are the linear momenta of the single vortices that
form together a N -point vortex system. In contrast to classical mechanical
systems, where the momentum is given by the velocity, here, the linear mo-
menta depend on the local coordinates – one hierarchical level lower than
the mass point momenta. The components of h are given by the linear mo-
menta, and thus, h depends on the local coordinates h = h(x, y) . Therefore,
for the general case, where we do not consider the origin, we can assume
ḣ 6= 0. On the other hand, H is formed by the circulations that are constant,
therefore, it is Ḣ = 0.

In order to solve (10.63), we apply Lagrange-Sylvester-formula, i.e. the
spectral formula in terms of spectral projectors. To derive the eigenvalues,
eigenvectors and projectors, we first calculate the characteristic polynomial
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of the rotational matrix H:

det(H− κE) = det

((
−κ Γ

F

− Γ
F
−κ

))
= κ2 +

(
Γ

F

)2

=

(
κ+ i

Γ

F

) (
κ− iΓ

F

)
= 0.

(10.64)

Thus, the solutions κ1 and κ2 of last equation are the eigenvalues:

κ1 = i
Γ

F
, κ2 = −iΓ

F
⇒ λ =

Γ

F
(10.65)

We will use the following notation:

{κ1, κ2} = {iλ,−iλ} =

{
i
Γ

F
,−iΓ

F

}
(10.66)

The algebraic multiplicity mk of both eigenvalues is one. Further, consider
the hauptspace

Haupt(κk,H) = Kern(H− κkE)mk (10.67)

of the eigenvalue κk. Denote B the block matrix of eigenvectors. Thus, B is
invertible and given by

B︸︷︷︸
n×n

:=

 v1︸︷︷︸
n×m1

| . . . | vk︸︷︷︸
n×mn

 . (10.68)

In our example it is n = 2 and the algebraic multiplicity of both eigenvalues
is one, i.e., m1 = m2 = 1, we summarize:

κ1 = +i
Γ

F
, κ2 = −i Γ

F
, ⇒ λ =

Γ

F
, v1 =

(
i

1

)
, v2 =

(
−i
1

)
, (10.69)

where v1 and v2 are the eigenvectors. The geometric mulplicity here must
be equal to the algebraic multiplicity, because the algebraic multiplicity is
one and the geometric mulplicity is smaller than (or equal to) the algebraic
mulplicity and larger than (or equal to) one. Therefore, the hauptspace
is equals to the eigenspace and thus the basis of the hauptspace can be
represented by the above introduced matrix B given by

B = (v1|v2) =

(
i −i
1 1

)
and B−1 =

1

2i

(
1 i

−1 i

)
=:

(
C1

C2

)
. (10.70)
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Now, we can determine the spectral projectors:

π1 = v1 C1 =
1

2i

(
i

1

)(
1 i

)
=

1

2i

(
i −1

1 i

)

π2 = v2 C2 =
1

2i

(
−i
1

)(
−1 i

)
=

1

2i

(
i 1

−1 i

) (10.71)

and show that:

H2 + κ2E = H2 +

(
Γ

F

)2

E =

(
0 Γ

F

− Γ
F

0

)2

+

(
Γ
F

0

0 Γ
F

)
=

(
0 0

0 0

)
. (10.72)

Then, with (10.44) the basis vectors are given by

α(i) =

(
−H2

H1

)
=

(
−P (i)

y

P
(i)
x

)
, β(i) =

(
H1

H2

)
=

(
P

(i)
x

P
(i)
y

)
. (10.73)

Inserting α,β and λ into the following geodesic equation (see (10.47)):

x(i)
g =

1

λ
(cos(λt)− 1)α(i) +

1

λ
sin(λt)β(i) (10.74)

leads to the sub-Riemannian geodesics for the i-th point vortex of an N -
point vortex system:

x(i)
g =

F

Γ

(
cos

(
Γ

F
t

)
− 1

)(
−P (i)

y

P
(i)
x

)
+
F

Γ
sin

(
Γ

F
t

)(
P

(i)
x

P
(i)
y

)
(10.75)

with respect to the phase space with total circulation Γ, linear momenta P (i)
x

and P
(i)
y and a vortex-surface-parameter F . Here we considered N -point

vortex systems. We hypothesize that sub-Riemannian geodesics in N -point
vortex systems can be regarded as relative equilibria solutions of the point
vortex equations of motions. In this thesis, we will focus on N = 2- and
N = 3-point vortex systems, because point vortex systems formed by one,
two or three point vortices are integrable. Vortex constellations of more
than three point vortices will be investigated in future studies.
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10.4.1 Comparing the sub-Riemannian-geodesics to point

vortex trajectories for N = 2 and N = 3

To compare the (2,3)-sub-Riemannian geodesics (10.75) to point vortex dy-
namics that we have explored in the beginning of this theses, see chapters
3 and 4, we reformulate last expression (10.75) for the geodesic x

(i)
g :

x(i)
g =

F

Γ

(
cos

(
Γ

F
t

)
− 1

)(
−P (i)

y

P
(i)
x

)
+
F

Γ
sin

(
Γ

F
t

)(
P

(i)
x

P
(i)
y

)

=
F

Γ

(
cos

(
Γ

F
t

)
− 1

)( Γ
F
x

Γ
F
y

)
+
F

Γ
sin

(
Γ

F
t

)( Γ
F
y

− Γ
F
ix

)

=
F

Γ

cos
(

Γ
F
t
)

Γ
F
x− Γ

F
x+ sin

(
Γ
F
t
)

Γ
F
y

cos
(

Γ
F
t
)

Γ
F
y − Γ

F
y − sin

(
Γ
F
t
)

Γ
F
x



=
Γ

F

F

Γ

 cos
(

Γ
F
t
)
x+ sin

(
Γ
F
t
)
y

− sin
(

Γ
F
t
)
x+ cos

(
Γ
F
t
)
y

− Γ

F

F

Γ

(
x

y

)

=

 cos
(

Γ
F
t
)

sin
(

Γ
F
t
)

− sin
(

Γ
F
t
)

cos
(

Γ
F
t
)
(x

y

)
−

(
x

y

)
.

(10.76)

Now, we set

R

(
Γ

F
t

)
:=

 cos( Γ
F
t) sin( Γ

F
t)

− sin( Γ
F
t) cos( Γ

F
t)

 . (10.77)

Thus, we can express the geodesic equation:

x(i)
g = R

(
Γ

F
t

)
x− x (10.78)

Therefore, vortex geodesics in the phase space spanned by α and β are
rotations around the initial coordinates that are reflected. The geodesics
pass the origin as shown by the solid lines in fig. 10.4.

Let us now compare this result with a point vortex system that we have
discussed in the first part of this thesis. One point vortex systems always
remains in calm, because they are located in its center of circulation. Thus,
we first consider the simplest non-trivial dynamical system of two point
vortices. Unless their total circulation is equal to zero, two vortices rotate
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Figure 10.4: The solid line are the trajectories of the sub-Riemannian geodesics of
two vortices, whereas the dashed line are the point vortex trajectories. The circu-
lations of the systems where chosen to be equal but the trajectories are calculated
with different models. Their trajectories are congruent.

uniformly around the center of circulation (3.11). See e.g. fig. 10.4, where
the center of circulation is in the origin and the red and blue point vortex
trajectories are shown by the dashed lines. The dots show the initial coor-
dinates of the two point vortices and the arrows indicate the direction of
the rotation. Here, the total circulation (the sum of the circulations of the
single vortices) is three. For systems with total circulation equal zero the
center of circulation would approach infinity and the whole point vortex
system would translate. To illustrate the point vortex trajectories the point
vortex equations (3.3) were calculated using MATLAB’s ode45 solver that
is based on an explicit Runge-Kutta formula. The colored solid lines in fig.
10.5 indicate the corresponding sub-Riemannian geodesics with respect to
the basis α and β. Their projection would lead to a representation in the
space of local coordinates. Regarding (10.77) and (10.78), the center of the
sub-Riemannian geodesics are always given by the coordinate that results
from the point reflection of the initial coordinate of the point vortices. This
is due to the initial conditions given by the starting point (0, 0), because the
Vortex-Heisenberg group identity is in (0, 0) and the Vortex-Heisenberg Lie
algebra is the tangent space at the group identity. The centers of the sub-
Riemannian geodesics are indicated by the crosses in fig. 10.4 and fig. 10.5.
The rotational centers of the sub-Riemannian geodesics lie on the point vor-
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Figure 10.5: The colored trajectories show the sub-Riemannian geodesic of three
vortices based on the Vortex-Heisenberg Lie algebra. The black line illustrates the
point vortex motion. Even though both trajectories are determined with different
models, we see that both trajectories are congruent.

tex trajectory. Thus, the point vortex trajectory and the sub-Riemannian
geodesics have the same radius!

We can transfer the idea of two point vortices moving along shortest
paths to weather situations. One example is a weather situation formed
by a central low pressure system and a high pressure system that rotates
around the low. The motion of the low can be seen as a sub-Riemannian
geodesics.

As second example we consider a three point vortex system. It is called
relative equilibrium if the three vortices forms an equilateral triangle. One
example of a three point vortex equilibrium is shown in fig. 10.6, where the
initial locations of the vortices are marked by the colored dots. In this exam-
ple, the total circulation is unequal to zero, Γ1+Γ2+Γ1 = 3 6= 0. See chapters
3 and 4 for further examples of three point vortex systems. Three point vor-
tex equilibria rotate uniformly around the center of circulation (3.11). If the
total circulation is zero, the center of circulation would approach infinity
and the whole point vortex system would translate. In fig. 10.6 the center
of circulation lies at the origin and the point vortex motion in the x-y-plane
is indicated by the black circle. Here, the equations of motion (3.3) were
solved to illustrate the point vortex equilibrium motion using MATLAB’s
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Figure 10.6: The colored trajectories show the sub-Riemannian geodesics of three
vortices based on the Vortex-Heisenberg Lie algebra. The black line illustrates the
motion of the three-point vortex system forming an relative equilibrium. The black
point vortex trajectory was determined by solving the the point vortex equations
given in chapter 3. Even though the trajectories are determined with different ap-
proaches, we see that the sub-Riemann geodesics and the point vortex trajectories
are congruent.

ode45 solver that is based on an explicit Runge-Kutta (4,5) formula.

The colored solid lines in fig. 10.6 show the sub-Riemannian geodesics
(10.75) with respect to the basis α and β, where each sub-Riemannian vor-
tex trajectory is regarded separately with the common total circulation Γ.
All trajectories pass the Vortex-Heisenberg group identity element (0, 0)

which were chosen as initial condition for the general sub-Riemannian geo-
desics (see (10.45)), because the Lie algebra is the tangent space at the iden-
tity element. Therefore, compared to the point vortex trajectory, each sub-
Riemannian trajectory is shifted to pass the origin. The black line shows
the point vortex motion of the equilibrium. As we found for the two-vortex
systems, the sub-Riemannian geodesics are rotations, where the center is
given by the point reflection of the initial coordinates, see fig. 10.6, where
the centers are marked by the colored crosses. They lie on the point vortex
trajectory. We can conclude that also for the three-vortex equilibrium the
single point vortex trajectories and the sub-Riemannian geodesics have the
same radius!

We have shown examples of two-and three-point vortex systems, where
the sub-Riemannian geodesics and the point vortex trajectories are congru-
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ent. In both examples, the center of circulation of the point vortex sys-
tems lies at the origin. If one choses different center of circulation, the
trajectories become scaled, and a scaling factor need to be respected. If
the total sum of circulation is equal to zero – as we have e.g. discussed for
three point vortices with respect to atmospheric blockings in chapter 4 – the
point vortex system equilibrium would translate. This also coincides with
sub-Riemannian geodesics, because in this case, we obtain an abnormal ex-
tremal which, independent of the applied physical realization, leads to a
straight line as geodesics (see, e.g. Monroy-Pérez and Anzaldo-Meneses,
2006). In part I, chapters 3 and 4, but also in part II of this thesis, we have
seen that a vortex is characterized by its vortical rotation. All physical con-
served quantities contain the circulation. Therefore, it is natural that – in
contrast to mass point dynamics – point vortices usually do not move on
straight lines.

Why are point vortex geodesics congruent with point vortex equilibria
trajectories? Let us regard one point vortex of a two-or three point vortex
system, assuming that the vortex system does not form an equilibrium. We
also assume that the vortex does not expand or collapse. In this case, the
vortex interacts with other point vortices and rotates several times around
the center of circulation until it arrives its starting point again. See e.g.
fig. 3.2 in chapter 3. Sometimes, a strong interaction between the vortices
leads to additional rotations around another point vortex. Now, we mea-
sure and compare the lengths of the paths of the vortex that rotates several
times around the center of circulation and interacts with other vortices of
the point vortex system. We find that a point vortex that is part of an equi-
librium takes the shortest path back to its starting point. Therefore, it is
reasonable that the sub-Riemannian vortex geodesics derived by the alge-
braic approach coincides with the point vortex equilibrium.

10.5 How can 3D vortex geodesics be derived?

In this section we will outline the concept to apply (3,6)-sub-Riemannnian
geometry to the Vortex-Heisenberg algebra vh(3). The question arises what
are geodesics in three-dimensional flows physically? The idealized two-
dimensional point vortex systems can be seen as the intersection of a plane
with (straight) vortex lines. Therefore, regarding three-dimensional vortex
flows, we suggest to relate vortex geodesics to the motion of vortex lines. A
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vortex line is a material line that is composed of many Lagrangian particles
with infinitesimal rotation.

The Vortex-Heisenberg Lie algebra vh(3) representing the dynamics of
three dimensional vortex flows has six dimensions, because it is generated
by three components of the momentum P = (Px, Py, Pz) and three compo-
nents of the total flux of vorticity Z = (Zx, Zy, Zz). The bracket relations
with respect to the helicity hV read as

{Pi, hV , Pj} = εijkZk. (10.79)

See chapter 7 for the definition of the bracket. Thus, the Lie algebra is
endowed with a rank n = 3 distribution. Therefore, we can apply (3,6)-
sub-Riemannnian geometry to vh(3) aiming for the derivation of 3D vortex
geodesics. The fist investigations of (3,6)-sub-Riemannian geometry can be
ascribed to Myasnichenko (2002). Here, we will proceed analogously to the
previously discussed (2,3)-vortex geodesics in section 10.3 after Monroy-
Pérez and Anzaldo-Meneses (2006).

Mathematically, the Lie algebra vh(3) is nilpotent and therefore, it yields
a natural sub-Riemannian structure. We have discussed that sub-Rieman-
nian geometry is used to find geodesics for systems, where the motion is
restricted. Regarding vortex dynamics, the motion is restricted by physical
conservation laws such as the conservation of the flux of vorticity. More-
over, the conservation of the linear momenta, energy and helicity play a
crucial role restrict the motion of the vortices. We have summarized the
conserved quantities for 3D flows in chapter 7, (7.52). But as in the previ-
ous chapters, we do not take the conservation of energy into account, but
the vortex-related conserved quantities to determine the geodesics.

The geodesics are given by the following differential equation (see (10.35))

dxg
dt

= (ḣ, Ḣ) = (Hh,0). (10.80)

Thus, we first have to determine thepair (h,H) (see (10.33)). The tensor H

is given by the Nambu bracket of the linear momenta P = (Px, Py, Pz):

H =

{Px, hV , Px} {Px, hV , Py} {Px, hV , Pz}{Py, hV , Px} {Py, hV , Py} {Py, hV , Pz}
{Pz, hV , Px} {Pz, hV , Py} {Pz, hV , Pz}

 , (10.81)
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where the Nambu bracket of the linear momenta with respect to the helicity
results in the total flux of vorticity (10.79).

The Vortex-Heisenberg algebra is derived for continuous vortex dynam-
ics, but we aim for discrete 3D vortex geodesics. Therefore, we discretize
the global fields of the momentum P = (Px, Py, Pz) that is given by the in-
tegral over the velocity v and the total flux of vorticity Z = (Zx, Zy, Zz) that
is defined by the integral over the vorticity vector ξ. Approximating the
integrals by n summands

Z =

∫
V

dτ ξ ≈
n∑

i=m

∆Vm ξm (10.82)

and

P =
1

2

∫
V

dτ (r× ξ) =

∫
V

dτ v ≈
n∑

i=m

∆Vm vm, (10.83)

we divide the flow field into n pieces, each with unit volume ∆Vi: Then, the
discretized pair (h,H) is given by the anti-symmetric rotational tensor and
the vector of the relative momenta

H =

 0 Zz −Zy
−Zz 0 Zx

Zy −Zx 0

 , h =

PxPy
Pz

 . (10.84)

In two-dimensions, we considered the momenta of each point vortex sepa-
rately, and the common total circulation of the whole point vortex system.
Here, we regard each vortex line separately and use the index (i) to mark
the i-the vortex line. To solve (10.80) for this system we apply Lagrange-
Sylvester formula that is the spectral formula for exp(tH) (10.38). Thus, we
first need to calculate the eigenspaces and projectors. Therefore, we apply
the eigenwert equation and obtain for the i-th vortex line:

det(H(i)−κE) = det

 −κ Z
(i)
z −Z(i)

y

−Z(i)
z −κ Z

(i)
x

Z
(i)
y −Z(i)

x −κ


=− κ3 + Z(i)

z Z
(i)
x Z

(i)
y − Z(i)

y (−Z(i)
z )(−Z(i)

x )− Z(i)
y (−κ)(−Z(i)

y )

− (Z(i)
x )Z(i)

x (−κ) + κ(−Z(i)
z )Z(i)

z = −κ3 − κ(Z(i)
y

2
+ Z(i)

x

2
+ Z(i)

z

2
)

=− κ(κ2 + (Z(i)
y

2
+ Z(i)

x

2
+ Z(i)

z

2
) = −κ(κ2 + |Z(i)2|2).

(10.85)
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Thus,
det(H(i) − κE) = 0⇐⇒ κ = 0 or κ = i|Z(i)|. (10.86)

We summarize the set of eigenvalues

{κ1, κ2, κ3} = {iλ,−iλ, 0} = {i|Z(i)|,−i|Z(i)|, 0}, ⇒ λ = |Z(i)|, (10.87)

where H(i) and λ satisfy the condition H(i)(H(i)2
+ λ2E) = 0 as proposed

in Monroy-Pérez and Anzaldo-Meneses (2006). We now determine the pro-
jectors π(i)

0 and π(i)
1 :

π
(i)
0 =

1

λ2
(H(i)2

+ λ2E) =
1

|Z(i)|2
·

−Z(i)
z

2
− Z(i)

y

2
− |Z(i)|2 Z

(i)
x Z

(i)
y Z

(i)
y Z

(i)
z

Z
(i)
x Z

(i)
y −Z(i)

z

2
− Z(i)

x

2
− |Z(i)|2 Z

(i)
y Z

(i)
z

Z
(i)
x Z

(i)
z Z

(i)
y Z

(i)
z −Z(i)

y

2
− Z(i)

x

2
− |Z(i)|2


(10.88)

and

π
(i)
1 =

1

2λ2
H(i)(H(i) + iλE) =

1

2|Z(i)|2
·

−Z(i)
z

2
− Z(i)

y

2
− i|Z(i)| Z

(i)
x Z

(i)
y Z

(i)
y Z

(i)
z

Z
(i)
x Z

(i)
y −Z(i)

z

2
− Z(i)

x

2
− i|Z| Z

(i)
y Z

(i)
z

Z
(i)
x Z

(i)
z Z

(i)
y Z

(i)
z −Z(i)

y

2
− Z(i)

x

2
− i|Z(i)|


(10.89)

The eigenvector for the zero eigenvalue reads as

v
(i)
0 =

1

|λ|
·

 H
(i)
23

−H(i)
13

H
(i)
12

 =
1

|Z(i)|
·

Z
(i)
z

Z
(i)
x

Z
(i)
y

 . (10.90)
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Thus, the basis vector γ(i)
0 for the i-th vortex line is given by:

γ
(i)
0 =

1

λ
(H

(i)
1 H

(i)
23 −H

(i)
2 H

(i)
13 +H

(i)
3 H

(i)
12 )v

(i)
0

=
1

|Z(i)|2
(P (i)

x Z(i)
x + P (i)

y Z(i)
y + P (i)

z Z(i)
y )

Z
(i)
x

Z
(i)
y

Z
(i)
z


=

1

|Z(i)|2
(P(i) · Z(i))Z(i)

(10.91)

and the basis vectors β(i) and α(i) read as:

β(i) =
1

2

(
P(i) − γ0

)
=

1

2

(
P(i) − 1

|Z(i)|2
(P(i) · Z(i))Z(i)

)
(10.92)

and

α(i) = −1

λ
H(i)β(i)

=
1

−|Z(i)|

 0 Z
(i)
z −Z(i)

y

−Z(i)
z 0 Z

(i)
x

Z
(i)
y Z

(i)
x 0

 · 1

2

(
P(i) − 1

i|Z(i)|2
(P(i) · Z(i))Z(i)

)

=
1

2|Z(i)|
P(i) × Z(i) +

1

2|Z(i)|3
(P(i) · Z(i)) (Z(i) × Z(i))

=
1

2|Z(i)|
P(i) × Z(i)

.

(10.93)

Now, we have derived a basis {α(i),β(i),γ
(i)
0 } for each discrete vortex line.

And we can formulate the geodesics equation (10.47) with respect to the ba-
sis leading to an equation for geodesics for three-dimensional incompress-
ible, inviscid flows.
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Figure 10.7: Three examples of 3D vortex geodesics derived by (3,6)-Sub-
Riemannian geodesics are shown. Because of the initial condition, all three vortex
lines intersect in the origin.

Then, the 3D geodesics are given by:

x(i)
g =

1

2|Z(i)|2
[
cos(|Z(i)|t− 1)

]
(P× Z(i))

+
1

2|Z(i)|
sin(|Z(i)|t)

(
P(i) − 1

|Z(i)|2
(P(i) · Z(i))Z(i)

)
+ t

1

|Z(i)|2
(P(i) · Z(i))Z(i)

(10.94)

One example is shown in fig. 10.7. Here we chose the following local co-
ordinates and vorticity vectors x1 = (1, 0, 1), ξ1 = (2, 1, 5), x2 = (1,−1, 0),
ξ2 = (1, 3, 1) and x3 = (0, 4, 0), ξ3 = (2, 1, 5). We see that all lines are helices
that start from the origin, which is due to the initial condition. The helical
structure is discussed by Monroy-Pérez and Anzaldo-Meneses (2006) for
general nilpotent algebras.

In the last section we explored two-dimensional flows, where vortex
geodesics can be interpreted as motion of Lagrangian particles. Here, we
derived geodesics for three-dimensional vortex flows, where we could think
of frozen vortex lines as three-dimensional discrete vortices indicated by the
colored lines in fig. 10.7. Analogously to the 2D-vortex geodesics, we might
interpret these helical curves as discrete, 3D equilibrium solutions of vortex
flows. From meteorological perspective, examples of vortex lines are the
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centerlines of tropical cyclones.

We conclude that 3D vortex geodesics for incompressible, inviscid flows
can be derived from the nilpotent algebra for vortex dynamics. They are
geometrically given by helices. In three dimensions it is hard to compare
this helical motion with previous studies, since we could not find an ideal-
ized, analogous concept for three dimensions, as we did in two dimensions,
where we could compare the geodesics with point vortex equilibria. But,
we recall that the Vortex-Heisenberg algebra is based on the conservation
laws of the helicity, the total flux of vorticity and the 3D linear momentum.
All of them contain the vorticity as non-rigid rotational vortex-quantity.
Therefore, the helical paths of the vortices seem to be natural, but we will
investigate 3D vortex geodesics more in detail in future studies. In this the-
sis, we only outline a concept to derive 3D vortex geodesics starting from
the Vortex-Heisenberg algebra.

10.6 Summary

The physical conservation laws that restrict the motion of fluid flows as
well as the mathematical, nilpotent structure of the Vortex-Heisenberg al-
gebras vh(2) and vh(3) that we have derived in the previous chapters moti-
vated us to apply sub-Riemannian geometry to find point vortex geodesics.
We have also introduced a concept to derive of vortex geodesics for three-
dimensional flows. The question arose, what are vortex geodesics in three
dimensions? The answer could be: frozen vortex lines.

However, by applying sub-Riemannian geometry to the Vortex-Heisen-
berg algebras that are based on the Nambu formulation for incompressible
fluids we explore vortex dynamics from a reference system, where we sit
on the vortex and move with the vortex. In two spatial dimensions, we can
imagine to move with a point vortex, whereas in three dimensions we con-
sider vortex tubes, or vortex lines that are vortex tubes with infinitesimal
radii, as we have sketched in chapter 8, section 8.5.

So far, the Riemannian view has been used for the investigation of ex-
tremal principles for hydrodynamic systems, where mostly the energy is
considered to derive variational principles for fluid dynamics. This is due
to the system of equations, where the extremal principles are derived from.
For incompressible hydrodynamical systems, most authors consider the
Euler equations which describe the time evolution of the velocity. Then,
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it is an obvious choice to explore further problems in terms of the Hamilto-
nian structure determined by the kinetic energy. Some authors also regard
the enstrophy, but the helicity rarely is taken into account. In this thesis,
our studies are based on the Helmholtz equation that is obtained by the
rotation of the Euler equations and describes the evolution of the vorticity.
The Nambu bracket is directly based on the Helmholtz vorticity equation,
which leads to Lie algebras that are based on vortex-related conservation
laws. These conservation laws determine and at the same time restrict the
vortex motions. Thus, in this chapter we applied sub-Riemannnian geom-
etry to vortex dynamcs. To the best of our knowledge, there have been
no investigations of the derivation of vortex geodesics in terms of sub-
Riemannian geometry before.

In this chapter we started with an introduction to basic differential ge-
ometric definitions which we have used for an examination of the Vortex-
Heisenberg Lie algebra we have derived in chapter 8 and applied to the at-
mospheric phenomena of splitting storms in chapter 9. We then calculated
sub-Riemannian geodesics for two and three-dimensional vortex dynamics.
For this purpose we applied the algorithm of Monroy-Pérez and Anzaldo-
Meneses (2006) to the two- and three-dimensional Vortex-Heisenberg alge-
bras vh(2) and vh(3).

For 2D as well as for 3D the phase space is constructed such that the
sub-Riemannian trajectories pass the origin. But in 2D, a simple translation
of the trajectories shows the congruence of the derived vortex geodesics
and a planar point vortex motion, where the point vortices form an equilib-
rium. We have discussed point vortex systems forming a relative equilibria
in chapters 3 and 4. Why are point vortex equilibria and sub-Riemannian
geodesics congruent? To answer this question, we consider initial local co-
ordinates of one point vortex which is part of a two-or three point vortex
system. This vortex starts moving and wants to arrive its initial position as
soon as possible again. Its motion is restricted by fluid dynamical conserva-
tion laws that contain the rotational aspect, i.e. the circulation. In chapter
3 we discussed three kinds of idealized point vortex motion: (i) Collapse
and expanding motion. In this case, the vortices do not arrive at their initial
points again. (i) Arbitrary periodic motion: Here, the vortices rotate around
the center of circulation several times until they reach their initial position
again. But if the three vortices form (iii) an equilibrium with non-vanishing
total circulation, they only rotate once around the center of circulation until
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they reach the initial coordinates again. Therefore, we think that a vortex
takes the shortest path if and only if it is part of a equilibrium constella-
tion. This explains why the trajectories of a point vortex equilibrium and
sub-Riemannnian vortex geodesics are congruent.

If the total sum of circulation is equal to zero, a case we have discussed
with respect to atmospheric blockings in chapter 4, the point vortex system
equilibrium will translate. This vortex motion also coincides with the sub-
Riemannian view, because in this case, we obtain an abnormal extremal
which mathematically leads to a straight line as geodesic. It would be in-
teresting to investigate sub-Riemannian geometry for N -point vortex con-
stellations, where N ≥ 4. We hypothesize that such geodesics would also
be congruent to relative equilibria.

In three dimensions, we find that the vortex geodesics are geometrically
given by helices. Regarding the conserved quantities for three dimensional
vortex flows, the helicity, the total flux of vorticity and the linear momen-
tum, the helical paths seem to be natural, because all conservation laws
contain the vorticity as rotational part. The geodesics could be thought of
as frozen vortex lines as three-dimensional discrete vortex structures. Analo-
gously to the 2D-vortex geodesics, we might interpret these helical curves
as discrete, 3D equilibrium solutions of vortex flows. We will examine three-
dimensional vortex geodesics more in detail in future studies.

With this approach for the derivation of vortex dynamics we have shown
that the algebraic view on vortex dynamics provides the possibilities for al-
ternative descriptions and point of views on vortex dynamics.
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Chapter 11

SUMMARY

In this thesis we have investigated 2D and 3D atmospheric vortex dynamics
in terms of discrete as well as continuous Nambu mechanics. The discrete
Nambu formulation allows for a geometric view on vortex dynamics such
as the classification of planar point vortex motions. Continuous Nambu
mechanics allows for algebraic studies of hydrodynamical systems. Using
this algebraic approach, we could explain vortex splits and derive shortest
paths of vortices. To investigate discrete as well as continuous Nambu me-
chanics and their atmospheric applications this thesis was structured into
two parts. In the first part, we investigated discrete Nambu mechanics and
the idealized point vortex model and in the second part we developed an
algebraic view to analyze vortex dynamics based on continuous Nambu
mechanics.

In the first part, we started with an introduction to discrete Nambu
mechanics in chapter 2. An advantage of the discrete Nambu formulation is
that we do not have to solve explicitly the differential equations of motion,
we can find solutions geometrically. In chapter 3, we used this geomet-
ric approach to classify point vortex motions by illustrating the surfaces of
two conserved quantities. These results were also published in Müller and
Névir (2014). In case of three point vortices, the phase space is spanned
by their intervortical distances. We could find two conserved quantities
that depend on the phase space coordinates. They are given by the energy
and the relative angular momentum . Using the Nambu formulation, the
intersection curves of these two surfaces give rise to the kind of motion.
We found that an ellipse represents periodic motion, and pairs of nearly
straight lines classify the collapse and expanding of a three point vortex
system; it depends on the initial conditions, which line represents the col-
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lapse and which line represents the expanding motion. Furthermore, the
point vortex system forms a relative equilibrium if the two surfaces only
intersect in one point.

In chapter 4 we regarded such a relative equilibrium of three point vor-
tices and applied the idealized point vortex model to explain atmospheric
blockings. Theoretically, the three point vortex constellation translates west-
wards with constant velocity. Then, stationarity can be explained if the
translation velocity wetwards is equal to the velocity of the mean flow east-
wards denoted as westerlies in the meteorological context. To corroborate
our novel concept, we analyzed two case studies where we showed that the
stationarity of the high and low pressure areas can indeed be explained by
the vanishing sum of the wind speed from NCEP-reanalysis data and the
point vortex translation velocity. These results are represented in Müller
et al. (2015). Recently, we could corroborate this concept to explain atmo-
spheric blockings statistically for 347 cases in the Euro-Atlantic region in
the period 1990–2012 (Hirt et al., 2018). Comparing our conceptional result
with the well-known theories based on Rossby-waves we think that our
discrete view yields an alternative explanation that could further be used
as a concept for an alternative view on atmospheric phenomena. Therefore,
in our working group further atmospheric phenomena were investigated
transferring the point vortex concept to the (rotating) sphere on synoptic
scale (Pueltz, 2014; Braun, 2016), and to the planetary scale investigating the
stability of the QBO confirming and the observed Holton-Tan effect during
winter period (Hirt, 2016; Müller et al., 2015)

In the second part of the thesis we have shown how continuous Nambu
mechanics allows for an algebraic approach to explore atmospheric phe-
nomena such as vortex splits. This algebraic approach is based on the
works of Névir and Blender (1993) and Névir (1998), who introduced the
continuous Nambu bracket for incompressible fluids. These works pro-
vided the basis to derive a group for vortex dynamics. After an intro-
duction to Lie groups and Lie algebras in chapter 6, chapter 8 we started
from the Nambu bracket for two- and three-dimensional vortex flows and
introduced a novel matrix representations for two- as well as for three-
dimensional vortex flows. In the second step, we further used these repre-
sentations to derive novel matrix representation for the Vortex-Heisenberg
groups VH(2) and VH(3). We also derived a vector representation for VH(2)
and VH(3) corroborating the results communicated with Peter Névir in
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private communication with Anton Schober in 2010. The name Vortex-
Heisenberg group was chosen, because the Vortex-Heisenberg group for
two-dimensional vortex dynamics is isomorphic to the Standard-Heisen-
berg group for mass point mechanics, even though it is based on different
sets of equations. In the last section of chapter 8, we introduced a further
group that we named Helmholtz Vortex group. Our goal was to find a
group that captures vortex rotations as well as rigid body rotations about a
given angle. Therefore, we extended the Vortex-Heisenberg group by rigid
body rotations and obtained the Helmholtz Vortex group, which can be ex-
pressed as semi-direct product of the Vortex-Heisenberg group and SO(3).

In chapter 9, we showed an atmospheric application of the algebraic ap-
proach to vortex dynamics. Based on the three-dimensional Vortex-Heisen-
berg group, we could give an alternative explanation of the generation
of vortex splits by examining the sign structure of helicity density fields.
There are some advantages of the group theoretical approach: A group is
a set together with a group operation. And the elements of the set satisfy
some properties such that the group is closed under the group operation.
This seemingly harmless property has major consequences. The Nambu
formulation represents the vorticity equation, and the Nambu bracket gen-
erates the Vortex-Heisenberg Lie algebra. This Lie algebra is the tangent
space at the group identity and thus, the Vortex-Heisenberg Lie group can
be seen as structural integration of the Helmholtz vorticity equation. Then,
calculating the Vortex-Heisenberg group operation of two elements leads
to a third element, where all three elements can be seen as solution of the
Helmholtz vorticity equation, because of the closure property.

We discussed five case studies, where we transferred this concept to
typical atmospheric wind and vorticity fields to investigate their interac-
tion and to analyze the conditions of vortex splits. For this approach, we
gave the group elements suitable, physically and mathematically reason-
able meanings: Each group element is given by a pair of three-dimensional
vector fields that are related to a wind field and the associated vorticity
field. We proposed initial states with positive and vanishing helicity that
induce a third state. The induced state reflects the interaction of the initial
state, and if its helicity density field is divided into positive and negative
regions, it gives rise to vortex splits.

In the first case study, we chose as first initial field an ABC-flow to rep-
resent a supercell, because such flows are solutions of Beltrami flows that
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have extremal helicity fields (Arnold, 1965). As second initial field we con-
sidered an atmospheric shear field representing the environment of the su-
percell. Each initial field defines a Vortex-Heisenberg group element and
we determined the helicity density fields of the initial states as well as
the helicity density field of the state that results from the group operation,
which reflects the interaction of the two initial fields. In the first case, both
initial fields have only positive helicity density values. However, the helic-
ity density field of the induced state shows a plus-minus structure which
can be related to cyclonic and anticyclonic rotating vortices – and thus to
splitted vortices. As a result, the interaction of a Beltrami flow and a pure
shear flow leads to splitting vortex cells. This is in accordance to published
literature (see, e.g. Klemp, 1987), but it is here approached from a novel,
mathematical way of applying group theory.

In our second case study we showed an example of a less distinctive
split, because the helicity density fields of initial flows have similar struc-
tures. In the third case study we regarded two Beltrami flows and in the
fourth case study we examined the interaction of two shear flows. The
third and fourth case studies are examples, where we found no split. All
four example corroborated our assumption that vortex splits are induced
by initial fields with contrary helicity structures. In our last case study we
applied the Helmholtz Vortex Lie group V(3) and showed that further splits
can be generated. In future studies, we will aim for a statistical analysis of
vortex splits to extend and corroborate the here presented conceptual ideas
based on the algebraic approach. We recognize a further advantage of the
group theoretical approach: the existence of inverse group elements. We
considered strongly helical rotating wind fields, such as Beltrami flows, as
initial fields to induce the vortex split. But applying the property of the
existence of inverse elements a helicity transfer to larger scales is also pos-
sible.

The analysis of vortex breakups has implications for turbulence stud-
ies. Compared to Kolmogorov’s work on the energy dissipation caused by
friction, we have explored helicity density fields in conservative systems.
Both together might lead to a unifying concept for a better understanding
of turbulent vortex flows.

Finally, in chapter 10 we have shown how the Vortex-Heisenberg Lie
algebra based on the Nambu-brackets allows for the derivation of 2D point
vortex geodesics. The Vortex-Heisenberg algebra is nilpotent, which leads
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to a natural structure to apply sub-Riemannian geometry for the search for
geodesics. We found that these vortex geodesics are congruent with point
vortex equilibria that we have discussed mathematically in chapter 3 and
applied to explain atmospheric blockings in chapter 4. We also showed the
concept how 3D vortex geodesics can be derived. We have interpreted the
outcome as frozen vortex lines. But this should be more explored in future
studies.

To summarize, in this thesis we have investigated discrete as well as
continuous Nambu mechanics for two- and three-dimensional incompress-
ible, inviscid fluids and applied the geometric as well as algebraic views of
vortex dynamics to different atmospheric phenomena. We think that this
work will inspire a new way of analyzing 2D- and 3D vortex dynamics and
might help deepening the understanding of vortex interactions.
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Chapter 12

Storm splitting – Case studies

In chapter 9 we have applied the Vortex-Heisenberg group operation (de-
noted with ∗) to group elements that are related to different atmospheric
wind and vorticity fields. We have discussed four cases, where we consid-
ered two initial flows as group elements A = (a,A) and B = (a′,A′), and a
third field C that we obtained by applying the group operation C = B∗A =

(a,A) ∗ (a′,A′) = (a′′,A′′). We chose the different flow fields:

1. A Beltrami and an atmospheric shear field with vanishing helicity

2. A Beltrami field and an atmospheric shear field with non-vanishing
helicity

3. Two Beltrami fields

4. The two shear fields from case 1 and case 2

In chapter 9 we mainly discussed the helicity density and the relative helic-
ity fields, here we will also show the enstrophy and energy density fields.
Moreover, we will illustrate how these examples develop if we apply the
Vortex-Heisenberg group operation iteratively to obtain further states. More
precisely, in chapter 9 we considered only the outcome C = A ∗ B, here we
generate more fields in the following way:

A,B : initial fields

C = B ∗ A, D = C ∗B, E = D ∗ C, F = E ∗D

G = F ∗ E H = G ∗ F I = H ∗G,

(12.1)

The fields of the relative helicity density, helicity density, enstrophy density
and energy density of each of the four cases are shown. The notations we
use for the four cases are summarized in table 9.1.
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12.1 Case study 1 - Vortex splits

In section 9.3.2 we have explored the helicity fields of the following ABC-
flow

aB = AB = λ ·

 sin(z) + 1
2

cos(y)
1
2

sin(x) + cos(z)
1
2

sin(y) + 1
2

cos(x).

 (12.2)

with λ = 1 providing an extremal helicity density field that is positive defi-
nite everywhere. As second initial fields we considered the following shear
flow:

as1 = as1(x, y, z) =

 z − z0

0

−x+ x0

 . (12.3)

The helicity density of the shear flow is zero everywhere. The helicity den-
sity field, the relative helicity density field, the enstrophy density field and
the energy density fields are shown in figures 12.1, 12.2, 12.3, and 12.4.
The changing sign structure of the helicity density can be interpreted as
the split of vortices into right an left moving parts. In this example we
consider supercells as ABC-flows, which are solutions Beltrami flows. This
helicity field indicates the existence vortex splits. Moreover, the generation
of supercells can be explained. But the structure of the induced helicity
density only changes slightly by applying further group operations. But if
we extend the Vortex-Heisenberg group by including the angular momen-
tum, we obtain the Helmholtz Vortex group. Applying this group, we can
achieve further splits of the helicity field into regions of negative and pos-
itive helicity. Thus, we state that one can induce a cascade of helicity to
smaller scales, as we have discussed in chapter 9, subsection 9.4.1, see also
fig. 9.15.

Applying the Vortex-Heisenberg group operation (9.62), we can also an-
alyze the energy (9.21). As shown in fig. 12.4, the energy decreases if we
apply the group operation iteratively. This can be explained by the defini-
tion of the energy density given by the sum of states. But compared to the
values of the enstrophy density field in fig. 12.3 the energy does not grow
as fast, which is in accordance with the non-conservation of the enstrophy
in three dimensions. Moreover, the energy field as well in the enstrophy
field do no show significant structural changes.
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Figure 12.1: Relative helicity density fields of the first case study are shown. Two
initial fields: ABC-flow (State A), a flow field with vanishing helicity (State B), and
by group operation induced states C-I of the first case study

Figure 12.2: Helicity density fields of the first case study are shown. Two initial
fields: ABC-flow (State A), a flow field with vanishing helicity (State B), and by
group operation induced states C to I. The group operation leads to a helicity field
that is splitted into positive and negative regions.
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Figure 12.3: Enstrophy fields of the first case study are shown. Two initial fields:
ABC-flow (State A), a flow field with vanishing helicity (State B), and by group
operation induced states C-I.

Figure 12.4: Energy fields of the first case study are shown. Two initial fields:
ABC-flow (State A), a flow field with vanishing helicity (State B), and by group
operation induced states C-I.
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12.2 Case study 2 - A less distinctive split

In the second case study, explored in chapter 9, subsection 9.3.3, the ABC-
flow (12.2) was chosen as initial state A and a shear field given by

ah = ah(x, y, z) =

 0

z − z0

−x+ x0

 , (12.4)

with non-vanishing helicity is here considered as state B. The helicity den-
sity and the relative helicity density fields are shown in fig. 12.5 an fig.
12.6. Already the initial field B is divided into a region with negative he-
licity density values and a region with positive helicity density values. In
the helicity field of state C we recognize further local changes of the signs.
The initial shear fieldB describes a tilting vortex. Therefore, it is reasonable
that the split is not as distinctive as in the first case.

Applying the group operation iteratively, the energy density in fig. 12.7
does not show a change in its structure. And, compared to the enstrophy
density in fig. 12.8 the values do not grow as much as the enstrophy density
values. This is in accordance with the assumption of a conservative system
that does not allow changes in the energy field, but the enstrophy is an
increasing quantity.
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Figure 12.5: The relative helicity density fields of the second case study are
shown. Initial field A is a Betrami flow and the initial shear field B describes a
tilting vortex. Applying the group operation leads to a vortex split that is not as
distinctive as in the first case.

Figure 12.6: Helicity density fields of the second case study are shown. In state C
we recognize only small regions with sign changes in the helicity field.
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Figure 12.7: Energy density fields of the second case study. The structure of the
fields does not change and the values do not increase as much as the enstrophy
values.

Figure 12.8: The results of the enstrophy density fields of the second case study.
A growth of the enstrophy can be observed which is due to the non-conservation
of the enstrophy for three dimensional flows.

12.3 Case study 3 - Two Beltrami fields

Here, we show the results of the VH(3)-group operation of the third case
study, where we chose as initial flows two different, linear ABC-flows aB1
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and aB1 given by:

aB1 = AB1 =

 sin(z) + 0.5 cos(y)

0.5 sin(x) + cos(z)

0.5 sin(y) + 0.5 cos(x)

 , aB2 = AB2 =

 0.5 sin(z) + 0.1 cos(y)

0.4 sin(x) + 0.5 cos(z)

0.1 sin(y) + 0.4 cos(x).


(12.5)

As we have discussed in chapter 9 subsection 9.3.4, see also (9.46) for
these kind of Beltrami-flows it is

Energy = Helicity = Enstrophy (12.6)

up to dimensional unit constants. This relation is reflected in figures 12.9,
12.10 and 12.11, where the density fields of the helicity, energy and enstro-
phy are shown.

The energy is always positive definite, therefore, the helicity and enstro-
phy fields are positive definite, too. As we have shown in subsection 9.3.4
analytically, all by group operation induced states hold the same structure
as the initial fields. And, concerning the sign of the helicity density fields,
we recall (9.54), where we have shown that the helicity density of the ini-
tial states as well as the helicity density of their group operation is positive
definite. Moreover, in (9.55) we have shown that the helicity field of the in-
duced state is a squared ABC-flow, and thus all induced states have positive
helicity density fields. Furthermore, because of the equality of the energy,
enstrophy and helicity densities, all three fields provide the same structure
as the helicity density field. The relative helicity is one everywhere. There-
fore, this field is not represented for this case.

12.4 Case study 4 - Two shearing flows

In the fourth example we discussed the two different shear flows from case
study one and case study two, given by:

ah = ah(x, y, z) =

 0

z − z0

−x+ x0

 , (12.7)
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Figure 12.9: The Helicity fields the third case study are shown. Two ABC-flows
with parameters A1 = 1, B1 = 0.9 and C1 = 0.5 for (State A), A2 = 0.5, B2 = 0.4
and C2 = 0.1 (State B), and the helicity field of the by group operation induced
states C to I . All states have the same structure.

Figure 12.10: The energy density fields of the third case study is shown; They
show the same structure as the helicity density fields.

with non-vanishing helicity field and

as1 = as1(x, y, z) =

 z − z0

0

−x+ x0

 , (12.8)
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Figure 12.11: The Enstrophy density fields of the third case study are illustrated.

with helicity field equal to zero.
The Vortex-Heisenberg group operation of these initial states does not

induce a field that can be interpreted as a vortex split. States C to state
I hold the same structure as the initial field, see figures 12.12 and 12.13.
Comparing the enstrophy density field in fig. 12.14 and the energy density
field in fig. 12.15 we notice a faster increasing of the enstrophy density
compared to the growth of the energy density. We have observed the same
relation in the cases one and two. This effect can be explained by the non-
conservation of the enstrophy leading to a faster growth than the energy.
A disadvantage of the algebraic approach is the non-conservation of the
energy density field, but we think that our algebraic approach can be used
for further examinations of the helicity density structure, for example in
terms of turbulence studies.
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Figure 12.12: The results of the fourth case study is shown. The relative helicity
density fields of a wind field with helicity (State A), of the wind field with vanish-
ing helicity (State B) and of the induced helicity fields are illustrated. We do not
observe a split in this example.

Figure 12.13: The helicity density fields of the fourth case study are shown. Be-
cause of the addition-terms in the group operation, we only recognize a growth of
the values of the helicity density, but not a structural change.
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Figure 12.14: The enstrophy density fields are shown. No structural changes can
be observed.

Figure 12.15: The energy density fields of the fourth case study are shown. A
structural change of the energy density field can not be observed. The energy
value grows not as fast as the values of the enstrophy density, see fig. 12.14.
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