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1 Introduction and Overview

THERMODYNAMICS is a tremendously useful theory. It can be used to explain the func-
tioning of steam engines, refrigerators, power plants and cars. But at the same time it also
explains the very basic mechanism behind climate-change (together with some basic prop-
erties of the interaction of certain molecules with light), chemical reactions, or why it helps
to put ice-cubes in water if we want to have a cool drink. But it does not stop there: In
fact, today it is also believed that even properties of black holes can and indeed have to
be understood thermodynamically [13–15] to get a consistent physical description of our
universe. Indeed, this is by now one of the guiding principles for obtaining a viable the-
ory of quantum gravity and was essential for the currently much-discussed "Holographic"
approach to quantum gravity [16–20].

The success and universality of thermodynamics is surprising given the fact that it was
invented in the 19th century – long before quantum mechanics and statistical physics were
developed. This was possible since the concepts and principles of thermodynamics can
in fact be developed without any reference to the underlying microscopic physical mech-
anisms that give rise to them: It is essentially a formal framework based on very general
axioms [21–24]. Moreover, these axioms or principles, often called the laws of thermo-
dynamics, can be stated in an operational way. This means that they state that certain
operations or processes on physical objects are impossible to perform (creating energy out
of nothing, lifting arbitrary weights only using a single heat bath, cooling a system to zero
temperature with finite resources). All predictions of phenomenological thermodynamics
can be derived from these basic principles together with experimentally measurable quan-
tities describing matter at the level of thermodynamic quantities (the equations of state).

Of course, today we know that it is quantum mechanics and not thermodynamics that
describes the material world around us on the fundamental level. Once we accept that
quantum mechanics underlies our physical reality at the microscopic level, we must then
also accept that the thermodynamic principles have to follow from quantum mechanics,
even though they can be formulated without referring to it. From a theoretical point of
view it is then most desirable to understand exactly how thermodynamics emerges from
quantum mechanics. In particular, the following questions have to be answered:

1. What exactly is (thermal) equilibrium and how does it emerge?

2. Can we understand the second law of thermodynamics from a microscopic point of
view? In particular, how do the concepts "work" and "heat" emerge?

3. Can we understand the third law from a microscopic point of view?

4. Do thermodynamic principles apply to individual quantum systems?

Unsurprisingly, these questions have been studied and debated intensively over the 20th
and 21st century, providing many interesting insights about physics, particularly the inter-
connections between thermodynamics, statistical physics and quantum mechanics 1. Nev- 1 It is hopeless to reference all

the relevant literature in this
vast field; a small sample of
seminal contributions can be
found in Refs. [13, 16, 25–37]
together with the reviews [38–
42] and references therein.

ertheless, it seems fair to say that the above questions have not been answered conclusively
in general, in the sense that a unique line of reasoning could be found that explains the
emergence of all thermodynamic principles. However, in principle there is also no logi-
cal ground to assume that such a unique explanation would exist. Rather, many different
explanations can be given, which should be considered complimentary as long as they do
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not contradict each other. This is, to some extend, analogous to the emergence of classical
mechanics from quantum mechanics or the use of low-energy effective field theories [43]:
In general, there are many different microscopic quantum systems which give rise to the
same behaviour in a suitable limit. As long as one is only interested in this limit, all the
different microscopic descriptions are equivalent.

Different approaches to deriving statements akin to the thermodynamic laws from more
microscopic principles will in general yield different results, applicable to different set-
tings. For example, when studying the thermodynamics of the processes inside biological
cells, the (classical) statistical mechanical approach to studying the kinetics and dynam-
ics of biomolecules is very useful. In this formulation, the second law is encoded in so-
called "fluctuation relations" [37, 44, 45] and this branch of research has been enormously
successful over the last years, in particular in also explaining non-equilibrium aspects of
thermodynamics. At the same time it operates essentially in a semi-classical description,
which does not need to make reference to the underlying quantum mechanical description
of matter.

On the other hand, if we study what can be done in experiments on individual, small
quantum systems, which became doable due to astonishing experimental progress over the
last years, this approach might not be the most useful one. Over the last years, however,
a very fruitful approach to (quantum) thermodynamics has emerged, which shows that, at
least in principle, thermodynamic laws also exist for individual quantum systems which
can be brought in contact with thermal systems (in the sense of quantum statistical me-
chanics), which can be large but do not have to be large. Indeed, this new approach, known
under the name of "(quantum) resource theory of thermodynamics" (see Refs. [46–49] and
chapter 2), directly operates on the level of usual unitary quantum mechanics and makes
only three fundamental assumptions: i) the validity of energy-conservation on the level of
probability distributions, ii) the existence and availability of thermal heat baths in the sense
of (quantum) statistical mechanics, i.e., Gibbs-states, and iii) that we can assume that heat
baths are uncorrelated to other systems of interest. This approach has recently provided
strong bounds on work-extraction in so-called single-shot settings [47, 49–53], has eluci-
dated the role of coherences in quantum thermodynamics [54–58], provided new quantum
fluctuation relations [59, 60], and provided a quantitative formulation of the unattainability
principle [61].

IN THE RESEARCH PRESENTED IN THIS THESIS2 we employ (variants of) this new2 The content of this the-
sis is based on the pub-

lications [1–4, 6–12].
approach to thermodynamics to provide new perspectives on questions 1.–4. To start, in
chapter 2 I first review the resource theoretic approach to the thermodynamics of individual
quantum systems. Then I explain how basic (quantum) information theoretic tools can be
used to derive a set of second laws of thermodynamics without any additional assumptions.
I also illustrate this approach with several applications, re-deriving well-known results in
statistical mechanics.

In the following chapter 3, I show how to use the machinery developed in chapter 2 to
derive an operational version of the third law of thermodynamics. More precisely, I quan-
tify the non-equilibrium resources that are both necessary and sufficient to cool a system
close to absolute zero temperature and quantify how these resources diverge as the final
temperature approaches absolute zero. This provides a quantification of the third law of
thermodynamics from basic principles, however from a perspective that is complementary
to Ref. [61]. To arrive at this result, I introduce a novel state function on non-equilibrium
states, called vacancy. The vacancy is formally closely related to the non-equilibrium free
energy, but its physical interpretation is very different. The main result of this chapter
essentially shows that the vacancy controls thermodynamic behaviour at very small tem-
peratures.

If thermodynamic principles apply to small quantum systems, then it is interesting to
study whether phenomenological concepts such as "work" and "heat" can also be trans-
ferred in a meaningful way to this setting. This is interesting since energy is in general a
fluctuating quantity for small systems: first due to thermal fluctuations, but ultimately due
to quantum fluctuations, since we cannot expect that a small quantum system resides in
an energy-eigenstate. Imagine, for example, a small quantum system undergoing a state
transition form an energy-eigenstate to a super-position of two energy-eigenstates in the
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presence of a heat bath. This is a basic elementary operation in a quantum computer [62].
Can we meaningfully associate a certain amount of "work" or "heat" to such a transition?

This broad problem is the topic of chapter 4, where we discuss how the performance of
quantum machines can be quantified in the presence of thermal baths from an abstract point
of view. The results in this chapter are derived by introducing an axiomatic, operational
framework and putting special emphasis on the connection between a consistent definition
of "thermodynamic work", the second law of thermodynamics and correlations between
quantum systems. As a side-result we obtain a new axiomatic characterization of the quan-
tum relative entropy and non-equilibrium free energy related to the build-up of correlations
in thermodynamic processes. This characterization is detailed in the following chapter 5.

The results in chapters 3–5 assume the availability of heat baths well described by Gibbs
states, i.e., states of the form

ωβ(H) :=
e−βH

Zβ(H)
, Zβ(H) := Tr(e−βH). (1.1)

This description for states in thermal equilibrium can be justified from many different per-
spectives. The most common ones use some version of a typicality argument, i.e., the
statement that most microstates, according to some reasonable measure, give the same
measurement statistics for physically relevant observables. Alternatively, one can make
use of an ergodic hypothesis together with an argument about the equivalence of ensem-
bles [38]. Quite distinct from these approaches is that of Jaynes’ Maximum Entropy Prin-
ciple. It states that one should always assign that probability distribution (density matrix)
to a (quantum) system which is compatible with all the information that one has about its
state and otherwise maximizes the Shannon entropy (von Neumann entropy in the quan-
tum case) [31, 32]. Apart from the reasoning based on ergodicity, which, however, seems
difficult to translate to the quantum setting since there is no clear notion of ergodicity and
non-integrability [63], on the conceptual side these approaches suffer from introducing ei-
ther some probability measure or an information theoretic entropy measure in an ad-hoc
way.

In chapter 6, I show a new way of deriving the canonical ensemble, which does not
rely on any probability measure and entropy measure. Instead, it follows from an opera-
tional formulation of thermodynamics under partial information, analogous to the resource
theoretical approach to thermodynamics. This approach works by assuming that one only
knows the expectation value of certain observables about any system and asks what kind of
state-transformations are possible to implement on such a system. It thus does not operate
on quantum states, but on macrostates. Nevertheless, it does not assume that the system on
which one acts is macroscopic and is thus also applicable to single quantum systems under
a setting of partial information.

Although the functional form that quantum states in thermal equilibrium take is derived
and not assumed in chapter 6, the results in chapters 2 to 6 assume the existence of thermal
equilibrium in some form from the beginning. How such thermal equilibrium is attained
dynamically is completely left open, however. This is discussed in chapters 7 and 8. First, I
discuss general results about equilibration of complex many body systems. Then I provide
intuition on how such equilibration behaviour can be understood more "mechanically" and
why we can expect that equilibration in fact happens quickly, even though general bounds
on equilibration times diverge with the system size. Following up, in chapter 8, I present
arguments that quantitatively show that it is difficult to prepare a quantum system in a state
that does not equilibrate. These arguments provide a novel link between the resource the-
oretic approach to thermodynamics and the problem of equilibration in complex quantum
systems. We also discuss in detail the role of correlations and their connection with the
existence of a "second law of equilibration". This closes the first part of the thesis that
deals with fundamental questions in thermodynamics from an abstract point of view.

From an operational point of view, the success of phenomenological thermodynamics is
partly based on the fact that macroscopic systems only need to be controlled on a macro-
scopic level to be able to saturate the thermodynamic bounds arbitrarily well. For example,
the movement of the piston in a heat engine does not need to depend on the microscopic
motion of each of the molecules in the gas to achieve high thermodynamic efficiency. It
is thus interesting whether this feature persists on the level of thermodynamics of quantum
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systems.
In the second part of the thesis, in chapters 9 – 11, I discuss the thermodynamic bounds

for thermal machines whose working system is made up of individual quantum systems.
In particular, I focus on how such thermodynamic bounds are modified when experimen-
tal restrictions are introduced. Examples of such restrictions are limited control over the
coupling to the heat bath, limitations in terms of available field strengths or the inability to
control the fundamental interactions between particles. To discuss these questions, a more
hands-on model of thermodynamics is required, which is introduced first in chapter 9. This
chapter also discusses the above mentioned control restrictions. I also discuss in detail the
example of a situation in which an experimenter can only bring a many-body system in
contact with either a hot or a cold bath and control external magnetic fields, but not the
inter-particle interactions. I derive general bounds of the efficiency of such a model as a
function of the interaction strengths in the system and apply them to the example of an
Ising model. I find that in the limit of strong interactions, thermodynamic properties de-
pend strongly on whether the coupling between the individual spins is ferro-magnetic or
anti-ferro-magnetic and provide explanations for this behaviour.

The discussion in chapters 7 and 8 provided an understanding of the equilibration be-
haviour of many-body systems, which we now use to study thermal machines from the
point of view of closed quantum systems. First, in chapter 10, I develop a general frame-
work to discuss thermodynamics of closed, equilibrating many-body systems from a gen-
eral point of view. This framework uses an effective description of equilibrium states in
terms of so-called Generalized Gibbs ensembles and we discuss in great detail the emer-
gence of reversible transformations, entropy production and the validity of the minimum
work principle.

The results in chapter 9 are derived under the assumption that the working system in
a thermal machine is coupled only weakly to thermal baths. For small systems, however,
this assumption is in general not justified and it is of great interest to study how thermo-
dynamic bounds behave under strong coupling to heat baths. In the next chapter 11, we
apply the framework developed in chapter 10 to discuss in detail the thermodynamics of
thermal machines that are strongly-coupled to heat baths. First, we derive general and
tight corrections for the fundamental work-extraction bounds and the efficiency of a ther-
mal machine. These bounds hold for arbitrary interaction strengths and can in principle
be evaluated for any model. However, in general the bounds are complicated functions of
the involved Hamiltonians. Therefore, we also derive the fully general, explicit correction
to leading order in the coupling strength. This correction takes a surprisingly simple form
and can nicely be interpreted in terms of a "dressed interaction". All these results show
that strong coupling is detrimental for thermodynamic efficiency. However, the general
form of the corrections allows us to argue that a finite interaction strength is optimal in
terms of the power of thermal machines, as is expected, and discuss general bounds on the
power in leading orders of the coupling strength. Finally, the results are illustrated in an
explicit model of quantum Brownian motion [64, 65], showing very good agreement with
the theoretical predictions. This closes the discussion of thermal machines.

IN THE LAST CHAPTER of this thesis, chapter 12, I come back to a classic problem in
quantum statistical mechanics, namely the emergence of spontaneous symmetry breaking
in lattice models. Usually, spontaneous symmetry breaking in quantum statistical mechan-
ics is discussed mostly in terms of kinematics by showing that thermal equilibrium states
of certain systems in the thermodynamic limit are not unique and that the different equilib-
rium states break a symmetry of the Hamiltonian. This can, for example, be done by adding
an infinitesimal small symmetry-breaking field which is removed after the thermodynamic
limit has been taken. In such an approach, the actual dynamics that thermalizes the system
is not modelled explicitly.

Here, I discuss the emergence of spontaneous symmetry breaking from a dynamical per-
spective of Markovian open system dynamics. The main result can informally be stated in
the following way. Suppose that local, purely dissipative dynamics acts on a lattice system
and that this dynamics is in detailed balance with some state which has finite fluctuations
in the density of an order parameter. Furthermore suppose that this order parameter van-
ishes in this state, i.e., the state is symmetric. Then the main result from this chapter shows
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that there necessarily also exist steady states in which the order parameter takes a finite
value. Hence, these steady-states break the symmetry associated to the order parameter.
As a simple example of the implications of this result, the existence of spontaneous sym-
metry breaking in the Glauber-dynamics of a two-dimensional Ising model [66] follows
as a corollary by noting that the Gibbs-state of the two-dimensional Ising model has finite
fluctuations in the magnetization density on any finite lattice with periodic boundary con-
ditions below the critical temperature. However, the result also generalizes to continuous
symmetries and in this case implies the existence of dissipative Goldstone-modes. I also
derive explicit bounds on the equilibration time-scale of the symmetry-breaking states in
finite systems.

Many of the results in this thesis are (or can be) proven mathematically fully rigor-
ously. However the main ideas can usually be understood without referring to the full
technical proofs. To prioritize accessibility I therefore took the liberty of omitting techni-
cal arguments or proofs in the main-text whenever I felt that they deviate too much from
the important points at hand. The technical proofs missing in the main-text can be found in
chapter 14 and are referenced in the main-text. Unless stated explicitly otherwise, I choose
units such that h̄ = 1 and kB = 1 throughout the thesis.
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TO DERIVE FUNDAMENTAL BOUNDS in quantum thermodynamics we need to find a
model which allows us to formulate thermodynamic problems in a very general way, while
at the same time allowing us to obtain concrete results. In this chapter I will introduce the
model that we will work with in the following chapters.

After formalizing the model I will then exemplify the usefulness of the model using
operational tasks such as Landauer’s principle, extraction of energy from non-equilibrium
systems or inducing population inversion. Importantly, the model will not postulate the
existence of quantities such as entropy or free energy – these will be derived notions, using
ideas from information theory, and will play major roles in the chapters 3 and 4.

To motivate the model, imagine an extremely capable experimenter called Alice living
and experimenting in an environment at inverse temperature β. She has full quantum con-
trol over arbitrary quantum systems, i.e., she can implement any unitary evolution. The
only constraint is energy-conservation, so that the energy is always exactly conserved on
the systems that she is acting upon.

If Alice wants to implement a state-transition between two quantum states on some
system and the final state does not have the same energy as the initial state, she therefore has
to involve a second system and take energy from it. Since Alice is living in an environment
of inverse temperature β, a particularly convenient way to obtain this energy is by simply
using systems in thermal equilibrium, which are essentially provided for free to her. In
case Alice can implement the state-transition on her system by only using systems from the
thermal environment we will therefore say that the transition is a "free transition" – free in
the sense that she has not used up any valuable "resources": Since the environment is by
assumption macroscopic, while Alice acts on small systems, she could repeat the transition
on another small system. Using words from classical thermodynamics, we could say that
she only used "heat" from her environment to induce the state transition.

At this stage one might ask: If Alice has full quantum control over her systems and
the macroscopic thermal environment, that is any single particle in the air around her, in
fact all the particles making up her lab, couldn’t she prepare any state that she wants to
prepare? Maybe surprisingly, the answer is no, if she does not also has a large amount of
systems which are not in thermal equilibrium that she can use up (bring to equilibrium) in
the process.

In fact we will see that Alice is highly constrained in which state transitions she can im-
plement. An interesting question is then to ask: How many and which kind of "resources",
that is systems in certain states out of equilibrium, does she need to be able to implement
processes? Which resources can be inter-converted to which other states? How does the
concept of "work" come into play? And can we derive only from the above assumptions
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restrictions akin to the second and third law of thermodynamics?
All these questions will be answered, at least partially, in the rest of this and the fol-

lowing chapters. The model that I have described in words above has been introduced at
least two times in the literature [46, 47] and is now commonly called the framework of
"thermal operations". As we will see, it is particularly useful to obtain fundamental lim-
itations, while other, more simplified and less abstract models, which will we will use in
chapters 9–11, are sometimes better suited to study more specific problems with additional
physical constraints.

2.1 Formalizing the model

To obtain concrete answers from the model of thermal operations, we first have to formalize
it into a mathematical model. To do this we have to specify what we mean by the fact that
Alice has access to systems in thermal equilibrium at a given inverse temperature β and
what we mean by energy-conservation.

In the model of thermal operations we formalize energy-conservation in the strict sense
that the exact probability distribution of energies of the system of interest is preserved.
Mathematically this is guaranteed if Alice acts on systems S and B, with Hamiltonians HS
and HB, and the overall time evolution is described by a unitary operator U that commutes
with the total Hamiltonian:

[U, HS ⊗ 1 + 1⊗ HB] = 0. (2.1)

It is important that U describes the entire physical process that Alice implements. It does
not mean, that this condition has to be fulfilled at every instant of time. Alice can let the two
systems interact very strongly using some time-dependent interaction Vt for some time, as
long as the total evolution

U = T e−i
∫
(HS+HB+Vt)dt (2.2)

conserves the energy in the above sense. Here, T denotes the time-ordering operator.
The second assumption that we need to formalize is the access to systems in the thermal

environment. We formalize this by assuming that Alice can include arbitrary systems
described by some Hamiltonian HB and the corresponding Gibbs-state

ωβ(H) :=
e−βH

Zβ
, Zβ = Tr(e−βH). (2.3)

There are several ways to argue why we allow Alice to choose arbitrary Hamiltonians
HB. First, if we want to derive fundamental bounds, we can never exclude that Alice
indeed simply has access to the one particular Hamiltonian in the environment that she
needs since we do not want to make very specific assumptions about her environment.
Second, we assume that Alice has access to a macroscopic thermal environment and has
full quantum control. From the fact that she can implement arbitrary energy-conserving
unitaries, it follows then that the only important property of HB is its energy spectrum (with
degeneracies). But because Alice has full quantum control she can in principle choose to
only make her system of interest interact with some hand-picked energy-eigenstates of
her macroscopic environment. Since one can find essentially any combination of energy-
eigenstates with any wished-for degeneracies in a macroscopic environment, Alice can
then effectively make her system interact with arbitrary Hamiltonians. This works due to
the special property of Gibbs-states that the normalized probability distributions on a subset
of energy-eigenstates is the Gibbs-state of the Hamiltonian made up by only taking those
energy-eigenstates. Formally, if P is the projector onto a subset of energy-eigenstates, then
we have:

ωβ(H)
∣∣
P

Tr(Pωβ(H))
= ωβ(H|P),

where |P means that the preceding operator is restricted to the subspace P.
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Finally, we also assume that the thermal environment is uncorrelated with the system
she wishes to act on. This can be justified by arguing that any correlations of the thermal
environment with a specific, small system should be diluted quickly over the whole envi-
ronment, so that any finite subsystem of the bath is essentially uncorrelated with the given
small system. While this assumption seems quite innocent at first, it is in fact crucial to
obtain a second law of thermodynamics [67] and similar to a modern form of Boltzmann’s
"Stosszahlenansatz" [25, 38, 39].

Combining the unitary operations with the access to uncorrelated thermal systems, we
then see that the operations, or quantum channels, that Alice can implement for free are all
the operations of the form

ρ 7→ G(ρ) = TrB

(
Uρ⊗ωβ(HB)U†

)
. (2.4)

In the following I will often call a transition ρ → σ = G(ρ) of the above form a free
transition and denote it by ρ  σ. It is an important property of the free transitions that
they are Gibbs-preserving, meaning that when acting on a state in thermal equilibrium with
the environment, it cannot be changed:

G(ωβ(H)) = ωβ(H). (2.5)

This follows immediately from (2.4) and energy-conservation:

Uωβ(HS)⊗ωβ(HB)U† = Uωβ(HS + HB)U† = ωβ(U(HS + HB)U†) (2.6)

= ωβ(HS + HB). (2.7)

It is of course not true if the system starts initially in a Gibbs-state at a different temperature
than the environment.

In fact the free transitions as stated so far are arguably still too restrictive: Imagine Alice
would, in performing the state-transition, use a third auxiliary system, which is mapped
back exactly to its initial condition at the end. Clearly, in this case she also has not used
up any resource, and nobody could tell afterwards that she had used this auxiliary system
as a tool. This tool then plays the role that "cyclic machines" play in phenomenological
thermodynamics and we should clearly allow the use of such tools in the definition of
free transitions. In the literature of quantum thermodynamics, these tools are usually called
"catalysts" [49, 68], since they may allow for free transitions that are otherwise not possible,
and the corresponding transitions are called catalytic free transitions. Formally, I will write

ρ 
c

σ if ρ⊗ χ σ⊗ χ, (2.8)

for some auxiliary system described by the density matrix and Hamiltonian (χ, HC). Here,
we assume that the catalyst remains uncorrelated with the system of interest and does not
change at all during the process. In chapters 4, 5 and 8, we discuss the consequences
of allowing for a built-up of correlations between the catalyst and system of interest in
different situations. Similarly, once can also consider what happens if one only requires
the catalyst to be returned approximately [49, 68]. This will be discussed in some detail in
chapter 3 in the context of ground state cooling.

After formulating in a mathematically precise way the model of catalytic thermal op-
erations, let us begin to study what Alice can and cannot achieve using such operations.
Before exploring the general limitations that arise, let us consider a simple example.

2.2 Example: Anomalous heat-flow

In this section we will discuss a simple example 1 that illustrates some of the features of the 1 This example was first
developed in [1] and will be
used again in Chapter 9.

model of thermal operations. The example works as follows. We imagine that Alice has a
two-level system with energy gap ∆ that is initially isolated from the environment and at a
thermal state much colder than the environment. For simplicity we can imagine it to be in
the ground state |0 〉. For some reason, however, Alice needs a very hot two-level system.
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We can then ask: How hot can Alice make the two-level system? By letting it interact
in a weak and arbitrary way for a sufficiently long time with the environment, she could
clearly achieve inverse temperature β. A simpler way to achieve this, in the set-up of
thermal operations, is to simply swap the system with a two-level system (with the same
energy-gap) from the environment. Similarly, she could achieve any temperature in the
range 0 to 1/β: One way to do this is by letting the system interact with the environment for
a time that only brings the system to an intermediate temperature. More formally, she can
do this by using the fact that thermal operations are convex. If G1 and G2 are two quantum
channels representing thermal operations, then pG1 + (1− p)G2 is also a quantum channel
representing a thermal operation. This follows from the fact that one can use a further
thermal system as a source of randomness and condition a thermal operation on events of
this source of randomness using a controlled unitary operation. Therefore, if one can reach
a state ρ′ from some initial state ρ, then it is also possible to reach the state pρ + (1− p)ρ′.
In the case of a two-level system, all states of the form p |0 〉〈0 | + (1 − p)ωβ(H) are
thermal states with temperatures between 0 and 1/β.

On the other hand, one might think that she cannot go all the way to T = +∞ or even
to negative temperatures, that is, achieve a population inversion. I will now show that,
depending on the energy-gap ∆ and the environment temperature β, the latter is in fact
possible and then explain why this is not problematic from a thermodynamic perspective.

If we disregard possible coherences, i.e., off-diagonal elements of the density matrix in
the energy eigenbasis, any state of the two-level system can be parametrized by a single
quantity, namely the probability p to find the system in the excited state |1 〉 upon mea-
suring the energy. The state-space of such systems is thus given by the pairs (p, ∆) (see
Figure 2.1).

Figure 2.1: The state-space
of a two-level system and il-
lustration of anomalous heat
transfer. The red line shows
the thermal excitation prob-

ability at the environment
temperature. Anomalous
heat flow (AHF) allows a

system to reach a state with
higher excitation probabil-
ity than the thermal one by

interacting in an energy-
and entropy-preserving

way with a heat bath.

In this description, Alice’s goal is to maximize the final excitation probability p′ of her
working system using a thermal operation. In Fig. 2.2, I describe an algorithm to achieve
maximum final excitation probability. This algorithm uses n thermal two-level systems
with the same energy gap ∆ as the working system. When implemented, the algorithm has
the following effect: If applied to an initial state with p < pβ, it maximizes p′. If applied
to a state p > pβ it minimizes it. As p→ pβ, we of course get p′ → pβ.

What is the largest excitation probability (and hence temperature) that can be achieved
with this algorithm? A detailed analysis (see section 14.1.1) shows that the final probability
of Alice’s system to be excited is given by

p′ = p∗n(β)− p

(
p∗n(β)

pβ
− 1

)
, (2.9)

with the function p∗n(β) given by

p∗n(β) =
n

∑
m=1

(
2n

m− 1

)
e−β∆m

Zβ
+

2n

∑
m=n+1

(
2n
m

)
e−β∆m

Zβ
. (2.10)

Let us analyse this expression. First, we see that if the initial inverse temperature of the
system is equal to β, i.e., p = pβ , the final excitation probability will be unchanged. This
has to be the case because a thermal operation cannot bring a system out of equilibrium
(see (2.5)). Let us now suppose the system is initially in the ground state. In this case we
obtain p′ = p∗n(β). It is then easy to check that for n = 2,∆ = 1 and β = 0 we already
obtain p∗n(β) = pβ=0 + 1/8 = 5/8 > 1/2. More interestingly, we can consider the limit
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0 1 2 3 4 1 2 3 4 5

Qubit in groundstate Qubit excited

Qubit in groundstate Qubit excited

Initial distribution

Final distribution

Figure 2.2: Illustration of the algorithm for anomalous heat flow if the system-qubit is initially in the ground state. The heat bath consists of 2n
two-level systems with the same gap ∆ (here n = 2). The top row shows the initial configuration, with the left figure illustrating the energy levels
E0

k of the total system conditioned on the system-qubit being in the ground state and the right figure the energy levels E1
k conditioned on the system-

qubit being in the excited state. We have E0
k = k∆ and E1

k = (k + 1)∆ with k = 0, . . . , 2n. The energy-levels E0/1
k have degeneracy (2n

k ). The red
balls denote occupied energy-levels of the full system, the numbers below give the total energy E0

k and E1
k of the corresponding states, respectively,

in units of the gap of the qubits ∆. Initially, only states in which the qubit is in the ground state are occupied. Using an energy-preserving unitary,
as many balls as possible are moved to the subspace in which the system-qubit is excited, resulting in the lower row. In the given example, the balls
circumscribed by rectangles are mapped to states where the system-qubit is excited, while the remaining balls are untouched. The choice depicted
maximizes the final excitation probability for the given size of the bath (note that each of the red balls has a different initial probability, depending
on its energy, due to the thermal distribution on the bath). As n→ ∞ the final excitation probability approaches e−β∆.

n→ ∞, in which we obtain

lim
n→∞

p∗n(β) = e−β∆ (2.11)

and therefore p′ = e−β∆(1− p). This result shows that i) the final temperature of the
system becomes larger as the initial temperature becomes colder and ii) that we can obtain
a population inversion, and therefore a negative temperature, as long as

∆ < kBT log(2). (2.12)

We can also easily prove that the final excitation probability p′ = e−β∆(1− p) is optimal
in the sense that no thermal operation can achieve p′ > e−β∆(1− p). As explained in
the previous section, any thermal operation is Gibbs-preserving, i.e. maps thermal states
to thermal states (at the environment temperature). On the energy-distribution it therefore
acts as a stochastic matrix2 which has the Gibbs-distribution as a fixed-point. In the case 2 A stochastic matrix is any

matrix that maps probability
distributions to probability
distributions. Equivalently,
it is any matrix with positive
entries whose columns sum to
one.

of a two-level system any such matrix can be written as

Gβ(r) = r1 + (1− r)
(

0 e−β∆

1 1− e−β∆

)
, 0 ≤ r ≤ 1. (2.13)

Such a map is always a mixture of the identity map and Gβ(0). Since the excitation proba-
bility is a linear function of the state, its final value is extremized by the extremal operation
Gβ(0), which yields exactly p′ = e−β∆(1− p).

Let me finally argue heuristically why it is in fact not too surprising that it is possible to
bring the system to a higher temperature than the heat bath if it was at a colder temperature
before. We may imagine that Alice’s two-level system is a regular thermodynamic system.
If it is initially very cold, this means that its non-equilibrium free energy with respect to
the environment (exergy) ∆F = E− S/β− (Eβ − Sβ/β) is large. Here, E and S denote
the initial energy and entropy, respectively, and Eβ and Sβ the corresponding quantities at
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thermal equilibrium with the environment. We can therefore in principle use a thermody-
namic machine to perform an amount of work W = ∆F while bringing the system into
thermal equilibrium. We can then use this amount of work to run a heat-pump and heat up
the system above the environment’s temperature. It is clear, that by this procedure the free
energy of the system cannot increase, since otherwise we could repeat the procedure and
could extract work cyclically from a heat bath.

To make connection to the example, let us define the non-equilibrium free energy as

∆Fβ(ρ, H) := Fβ(ρ, H)− Fβ(ωβ(H), H), (2.14)

with Fβ(ρ, H) = Tr(ρH)− S(ρ)/β and the von Neumann entropy S(ρ) = −Tr(ρ log ρ).
If, for simplicity, we assume that Alice’s system starts in the ground state and ends in a state
with p′ = e−β∆ we can then easily see that ∆Fβ decreases: Since the thermal parts of the
free energies cancel, we have (denoting the final state as ρ′ and writing HS = ∆ |1 〉〈1 |)

∆Fβ( |0 〉〈0 | , HS)− ∆Fβ(ρ
′, HS) = Fβ( |0 〉〈0 | , HS)− Fβ(ρ

′, HS)

= −p′ log(p′)/β− (1− p′) log(1− p′)/β− p′∆

= −(1− e−β∆) log(1− e−β∆)/β > 0.

In the next section we will see that this is a general feature of (catalytic) free transitions:
The non-equilibrium free energy, defined as ∆Fβ, can never increase under a (catalytic) free
transition.

To summarize, we have seen in this simple example how thermal operations can be
used to obtain non-trivial effects, such as population inversions, without having to invest
additional "resources". The decisive property of the initial state for this to be possible is
that it is far from being in thermal equilibrium with the environment – a property which is
in general neither measured by the energy nor the entropy alone. In the next section, we
will return to the general setting and discuss general laws for free transitions akin to the
second law of thermodynamics.

2.3 Monotones, the data-processing inequality and the second laws

IN THE ABOVE EXAMPLE, we have seen that even though it was possible to prepare
a population inversion from a ground state using free transitions, it was not possible to
increase the non-equilibrium free energy ∆Fβ. I will now show that this is a general feature
of free transitions and show that their are in fact infinitely many functions that can only
decrease under (catalytic) free transitions.

Such functions are called monotones of the free transitions, since if ρ  
c

σ, we have

f (ρ) ≥ f (σ) for every monotone f . Hence, they are monotonic with respect to the par-
tial order  

c
induced on states by catalytic free transitions. The importance of mono-

tones comes from the fact that every monotone gives necessary conditions for whether a
transition ρ → σ can be realised as a free transition, i.e., without use of additional non-
equilibrium resources. They can therefore be interpreted as second laws of thermodynamics
[49].

But how can we find such monotones? In fact, using concepts of information theory, it
is not difficult. To explain these concepts, let us first consider the case of classical infor-
mation, represented by probability distributions over some set of events X. Suppose we
have two such distributions p and q, inferred from some measurement statistics, and want
to quantify how different the two distributions are. By applying a (possibly probabilistic)
function to X we can obtain new distributions p′ and q′ on a, possibly different, space
of events Y. Such a transformation is called a post-processing or coarse-graining of the
data and clearly it cannot increase the distinguishability between p and q. On the level
of the probability distributions, the post-processing is represented by a stochastic matrix
T such that p′ = Tp and q′ = Tq. Therefore, an important property of any measure of
distinguishability D between probability distributions p and q is that it fulfills the data-



A QUANTUM OF THERMODYNAMICS 23

processing inequality:

D(p‖q) ≥ D(Tp‖Tq)

for every stochastic map T. Similarly, in the case of quantum information, the distinguisha-
bility between two quantum states ρ and σ can only decrease under any quantum channel
T . We therefore ask that any sensible measure of distinguishability of quantum states
fulfills the corresponding quantum version of the data-processing inequality:

D(ρ‖σ) ≥ D(T (ρ)‖T (σ)). (2.15)

We can use this fact to obtain monotones in thermodynamics (or other resource theories)
in a quite general fashion. Intuitively, for a system to be out of equilibrium it means that
its quantum state is far from being the Gibbs-state – where the distance is measured with
respect to some distinguishability measure between quantum states. Making use of the
data-processing inequality, we can now show that this property can only decrease under
free transitions:

D(ρ‖ωβ(H)) ≥ D(G(ρ)‖G(ωβ(H))) = D(G(ρ)‖ωβ(H)), (2.16)

where we have used the fact that free transitions always map Gibbs-states to Gibbs-states.
If we furthermore assume that the measure D is additive over tensor-products we can also
show the same for catalytic free transitions:

D(ρ‖ωβ(H)) +D(χ‖ωβ(HC)) = D(ρ⊗ χ‖ωβ(H)⊗ωβ(HC))

≥ D(G(ρ)⊗ χ‖ωβ(H)⊗ωβ(HC))

= D(G(ρ)‖ωβ(H)) +D(χ‖ωβ(HC)). (2.17)

Cancelling the terms involving the catalyst3 χ then again shows D(G(ρ)‖ωβ(H)) ≤ 3 We are assuming that the
distinguishability is always
finite or the catalyst can be
chosen in such a way.

D(ρ‖ωβ(H)). Catalytic free transitions can therefore only bring a system closer to equi-
librium if this distance is measured by a proper distinguishability measure. As we have
seen in the previous example, the change of temperature is in fact in general not a good
indicator for whether a system has gotten closer to equilibrium.

Any distinguishability measure that fulfills the data-processing inequality automatically
defines a monotone of free transitions by setting f (ρ, H) = D(ρ‖ωβ(H)). Important
examples of such measures are given by (quantum) Rényi-divergences. I will now give the
basic definitions that are important for the rest of the thesis, but omit many details. For a
detailed treatment, see, for example. Ref. [69] and the references therein.

The case that will be most important for us in the following are the (Petz) Rényi-
divergences defined as

Dα(ρ‖σ) :=
1

α− 1
log Tr

(
ρασ1−α

)
. (2.18)

For 0 ≤ α ≤ 2, they fulfill the data-processing inequality for arbitrary quantum states
when they are well defined. If ρ and σ commute and hence share a common eigenbasis,
they fulfill the data-processing inequality for any channel G such that G(ρ) and G(σ) also
commute. In this case, this holds for any α.

For general quantum states, we can also define the minimal quantum Rényi-divergences

D̃α(ρ‖σ) :=
1

α− 1
log Tr

((
σ

1−α
2α ρσ

1−α
2α

)α)
. (2.19)

Both Dα and D̃α diverge if the support of ρ is not contained in the support of σ and α > 1
and we define them to be equal to +∞ in this case. Similarly, Dα diverges for α < 0 if the
support of σ is not contained in the support of ρ. While these definitions might at first seem
a little bewildering, they have the nice property that

lim
α→1

Dα(ρ‖σ) = lim
α→1

D̃α(ρ‖σ) = D(ρ‖σ), (2.20)
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with the quantum relative entropy D defined as

D(ρ‖σ) =
{

Tr(ρ log(ρ))− Tr(ρ log(σ)) if ρ� σ

+∞ otherwise.
(2.21)

Here, ρ� σ means that the support of the operator ρ is contained in that of σ.
In fact, the quantum relative entropy is nothing but the non-equilibrium free energy in

disguise:

D(ρ‖ωβ(H)) = β∆Fβ(ρ, H), (2.22)

as can be checked by a simple direct calculation. All the quantum Rényi-divergences are
additive over tensor-products and hence also provide monotones of catalytic free transi-
tions. We thus arrive at the important insight that the non-equilibrium free energy ∆Fβ, and
its cousins defined using (quantum) Rényi-divergences for different values of α, are mono-
tones of catalytic free transitions. They can never increase in a free transitions. We have
seen a particular example of this in the case of anomalous heat flow, which also showed that
both the excitation probability in a qubit and the temperature are in general not monotones
of free transitions. Of course, the monotonicity of the free energy does not imply that we
can never increase the free energy, but if we want to do so, we have to take it from other
"resource" systems.

In many applications, we can make the simplifying assumption that all states in ques-
tion commute with the Hamiltonian, i.e., are time-invariant. In this case, drastic simpli-
fications occur. First, the minimal quantum Rényi-divergences simplify to the classical
Rényi-divergences:

Dα(ρ‖σ) = D̃α(ρ‖σ), if [ρ, σ] = 0. (2.23)

Second, we have the following important result, which shows that the Rényi-divergences
not only imply necessary conditions for a catalytic free transition, but also provide sufficient
conditions:

Theorem 2.1 (Necessary and sufficient conditions for catalytic free transitions [49]). Let
ρ and ρ′ commute with the Hamiltonian H. Then ρ 

c
ρ′ if and only if

Dα(ρ‖ωβ(H)) ≥ Dα(ρ
′‖ωβ(H)) (2.24)

for all α ∈ R.

This theorem allows to check whether a transition between quasi-classical states can be
achieved as a catalytic free transition using only the Rényi-divergences. In chapter 3, we
will see how these conditions can be used to study the general problem of ground state
cooling.

The conditions given by theorem 2.1 can further be simplified if we slightly modify the
concept of catalytic transitions. Suppose we do not require that a catalyst has to be returned
exactly, but that the error can be made arbitrarily small. In this case, we can include in the
catalyst a pure state and return it in any full-rank state that approximates the pure state
to arbitrary accuracy. Then for negative α the initial Rényi-divergence Dα of the whole
compound diverges while it is finite in the final state. In this way we can get rid of the
conditions for negative α.

Let us now illustrate thermal operations in a few examples. First, we discuss how ther-
mal operations and the non-equilibrium free energy can be used to easily re-derive a famous
result: Landauer’s bound on the production of heat when erasing information.

2.4 Illustration: Landauer Erasure and side-information

INFORMATION IS PHYSICAL in the sense that it has to be represented by states of phys-
ical systems. Landauer argued that this implies that the erasure of information then in
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general leads to irreversible dissipation of heat by an amount kBT log(2) [33, 35], where
T is the environment temperature. I will now explain how this bound follows from the
previous considerations about monotones. This is of course not a new result, but serves as
a simple illustration of the framework.

The setting is the following: We imagine a physical two-level systems (with Hamiltonian
HS), whose levels encode a single bit of information. To erase the information encoded
in the system means to reset its state to |0 〉 (or any other fixed, pure reference state),
independent of the initial state. We want to achieve this using a (catalytic) free transition.
On the one hand, using such a thermal operation, we can always thermalize the system to
the environment’s temperature for free, for example by swapping first the system with an
identical, but thermalized two-level system from the environment. On the other hand, the
bit erasure also has to work if the system is initially already thermalized. We will therefore
consider without loss of generality the situation in which the initial state of the system is a
thermal state.

The first observation that we make is that since the system is initially in equilibrium
with the bath, a thermal operation without any additional system cannot be used to erase
the bit, because thermal operations cannot bring a system out of equilibrium. We thus have
to have access to an additional system, which we call "resource", with a quantum state
ρR and Hamiltonian HR. I will assume that this resource is initially uncorrelated with the
bit. Later, I will also discuss the case where side-information about the initial state of the
system is available. Let the final state of the resource be ρ′R. From the monotonicity and
additivity of the free energy we then get:

∆Fβ(ρR ⊗ωβ(HS), HR + HS⊗) = ∆Fβ(ρR, HR)

≥ ∆Fβ(ρ
′
R ⊗ |0 〉〈0 | , HR + HS)

= ∆Fβ(ρ
′
R, HR) + ∆Fβ( |0 〉〈0 | , HS), (2.25)

where we have used that a system in a pure state cannot be correlated to another system.
Since ∆Fβ( |0 〉〈0 | , HS) = 0− Eβ + Sβ/β we thus obtain:

Fβ(ρR, HR)− Fβ(ρ
′
R, HR) ≥ kBTSβ − Eβ. (2.26)

Here, Sβ and Eβ denote the thermal entropy and energy of the bit to be erased. Let us
consider some special cases:

• If the Hamiltonian of the bit does not discriminate between the two levels (HS ∝ 1), we
obtain Fβ(ρR, HR)− Fβ(ρ

′
R, HR) ≥ kBT log(2).

• In the case where the state of the resource system does not change its entropy, we may
want to interpret the change of energy on it as "work" provided by the resource (see,
however, chapter 4). In this case we get W ≥ kBT log(2).

• In the case where the resource system does not change its energy, but only its entropy,
we see that its entropy has to increase at least by the thermal entropy of the bit Sβ. We
can then say that an amount of heat Q = TSβ has been generated in the resource.

Intuitively, it should be easier to erase the information, if we have some knowledge
about the state of the bit before we want to erase it. For example, if the bit is known to be in
state |1 〉 and HS is trivial, then we can simply flip the spin and no resource is necessary. I
will now demonstrate in general how such correlations affect the erasure bound in a simple
example.

Since information is physical, having prior knowledge means that there exists a physical
system which is correlated with the bit. We will call this system a memory M. The memory
and system together are initially in some correlated state described by the density matrix
ρSM. To simplify the problem, let us assume HS ∝ 1 and HM ∝ 1 and assume that the
initial state on S is maximally mixed, ρS = 1/2. The final state of the system definitely
is |0 〉 and is hence uncorrelated with the memory. I will now make the restriction that the
memory ends up in the same internal state ρM since I want to highlight only the effect of
the correlations. In principle, if ρM is not given by the maximally mixed state, we could
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use the "non-equilibriumness" in the memory later on to perform further thermodynamic
tasks. Summarizing, we thus find that the initial entropy of SM is given by S(ρSM) and
the final entropy by S(ρM). Arguing as above by regarding the compound SM as a single
system, we then find

Fβ(ρR, HR)− Fβ(ρ
′
R, HR) ≥ kBT (S(ρSM)− S(ρM))

= kBTH(S|M)ρ, (2.27)

where we have introduced the conditional entropy H(S|M)ρ := S(ρSM)− S(ρM), which
is a measure for the information about S contained in M. Interestingly, in quantum mechan-
ics, the conditional entropy can be negative if the initial state ρSM is entangled. In such a
case, one can in principle extract non-equilibriumness by erasure instead of investing non-
equilibriumness to erase information. For a more thorough discussion of this problem, see
Ref. [70].

We have seen how the formalism of thermal operations allows us to derive in a simple
way the fundamental Landauer bound including side-information. However, we have only
derived necessary conditions for erasure. In particular, we did not make use of theorem 2.1,
which tells us that we should check the infinite family of second laws given by the Rényi-
divergences. We will come back to this problem in chapter 3, where we will find that there
are much more stringent conditions then just Landauer’s bound when we want to bring a
system to the ground state, which can be interpreted as a quantitative version of the third
law of thermodynamics.

2.5 Illustration: The infinite ladder battery and fluctuations of energy

In recent years, the concept of fluctuation relations [37, 44, 45, 71, 72] had big impact on
the field of statistical mechanics. It originates from studying stochastic thermodynamics,
which is concerned with the thermodynamic properties of individual particles which can
come in contact with heat baths. In stochastic thermodynamics, the particle in question
undergoes dynamical trajectories under influence of stochastic forces, leading to stochas-
tic notions of basic properties in thermodynamics, such as entropy production (see sec-
tion 2.6), heat dissipation or work being done by or on the particle. Fluctuation relations
provide, under quite general assumptions, detailed and universal relations for the probabil-
ity distributions of various quantities, such as the work being done by the particle along a
trajectory.

In the context of quantum mechanics, a simple fluctuation relation is concerned with the
energy fluctuations when a system that is initially in thermal equilibrium undergoes unitary
dynamics. To understand the relation, consider the following operational protocol. Assume
you have a system initially in a thermal state. First you perform an energy measurement,
obtaining an outcome E(i) and projecting the state of the system to the energy eigenstate
|E(i)〉. Then you let the system undergo unitary dynamics U, which possibly changes the
Hamiltonian over time and is not required to conserve the energy. Then you measure again
the final energy to obtain some outcome E( f ). Repeat the experiment many times and
determine the distribution P(∆E) of the random variable ∆E = E(i) − E( f ). Then the
distribution P(∆E) fulfills the Jarzysnki equation

E(eβ∆E) =
Zβ(H( f ))

Zβ(H(i))
, (2.28)

where E(·) denotes the expectation value of a random variable. For a simple derivation of
this relation, see Ref. [73]. Often, the energy-difference ∆E is interpreted as fluctuating,
mechanical work being done by the system. Indeed, using Jensen’s inequality, we can
obtain the inequality E(∆E) ≤ Fβ(H(i))− Fβ(H( f )), which can then be interpreted as an
expression of the second law of thermodynamics relating work to free energy changes. On
the other hand, (2.28) is an equality which contains information about higher cumulants
of ∆E and hence provides more detailed information about possible fluctuations of work.
Fluctuation relations can, however, also be de-rived under different assumptions in the
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quantum regime and there is by now a vast body of literature dealing with fluctuation
relations in the quantum setting (for a selection, see Refs. [71–79] and references therein).

It is then probably not surprising that similar relations can also be derived in the frame-
work of thermal operations [59, 60]. I will now sketch how this can be done. Clearly, to
derive such relations in the framework of thermal operations, it is necessary to introduce an
auxiliary system W which can take up energy from the system of interest or give energy to
it. Here, we will take the stance that this external energy is supposed to model intuitively
what one considers to be mechanical work. Such a system should then have the property
that it resembles the classical notion of "lifted weight", being able to take up and release
arbitrary amounts of energy. Furthermore, the weight should not act as an entropy sink.
Finally, at least the average work provided by the weight or done on the weight should not
be dependent on the initial state of the weight.

Indeed, there is a simple, but highly idealized model which achieves all these demands
[60, 61, 80]. It is given by a continuous one-dimensional degree of freedom whose energy
is simply proportional to the position operator X: H = mgX. The additional constraint
on the unitary U that implements the thermal operations and ensures that the weight does
not act as an entropy sink is that the unitary commutes with the momentum operator P on
the weight. This has the consequence that the operation on the system and heat bath is a
mixture of unitaries [80]:

ΓSB(ρS ⊗ωβ(HB)) := TrW(UρS ⊗ωβ(HB)⊗ ρWU†)

=
∫

USB(p)ρS ⊗ωβ(HB)U†
SB(p)PW(p)dp, (2.29)

where ρW is the initial density matrix on the weight, PW(p) is the initial momentum dis-
tribution on the weight and USB(p) is a momentum-dependent family of unitaries on SB.
Such a mixture of unitaries cannot decrease the von Neumann entropy of a system4 and 4 This can easily be seen by

considering a mixture of
unitaries as a Gibbs-preserving
map for a trivial Hamiltonian.

therefore, the weight does not act as an entropy sink. In particular, this assumption implies

ΓSB(1SB) = 1SB. (2.30)

Note that if the initial state on the weight is (approximated arbitrarily well by) a momentum-
eigenstate, the dynamics on the system together with the heat-bath is simply (approximated
arbitrarily well by) unitary dynamics.

As shown in Ref. [60], the classical Jarzynski relation (2.28) can then be recovered if
one additionally assumes that the induced map on the system and weight ΓSW maps energy-
eigenstates to mixtures of energy-eigenstates. I will now present a formal derivation of this
result. In this classical case, the action on SW for states diagonal in the energy-eigenbasis
can be represented by conditional probabilities P(Es′ , w|Es):

ΓSW( |Es 〉〈Es | ⊗ |x 〉〈x |) = ∑
s′ ,w

P(Es′ , w|Es) |Es′ 〉〈Es′ | ⊗ |x + w 〉〈x + w | , (2.31)

where |x 〉 denote (generalized) energy-eigenstates of the weight and {Es} is the spec-
trum of HS

5. Due to the commutation constraint [U, P] = 0, the conditional probabilities 5 We assume that the Hamilto-
nian on S remains unchanged,
see [60] for a generalization
which allows for changing the
Hamiltonian on HS.

P(Es′ , w|Es) are in fact independent of the initial state on the weight as long as the initial
state on W is diagonal in the position basis (this excludes the possibility of a purely uni-
tary dynamics on the system and bath and is analogous to the requirement of performing
energy-measurements before and after a protocol in different frameworks). One can thus
choose without loss of generality that this state is |0 〉 and refer to the event that this state is
changed to a state |w 〉 as extracting an amount of work w. The quantity P(Es′ , w|Es) then
denotes the conditional probability that the system goes from an energy eigenstate |Es 〉 to
an energy eigenstate |Es′ 〉 while an amount of work w is extracted.

The Jarzynski relation follows by making use of the explicit definition of ΓSW . First, we
can use that U conserves the energy in form of the relation

Ue−βHB = e−β(HS+HB+HW )Ueβ(HS+HW ). (2.32)

With this relation we can write

P(Es′ , w|Es) = 〈Es′ , w |TrB

(
Uωβ(HB)⊗ |s 〉〈s | ⊗ |0 〉〈0 |U†

)
|Es′ , w 〉

= 〈Es′ , w | e−β(Es′−Es+w)TrB

(
ωβ(HB)U1B ⊗ |s 〉〈s | ⊗ |0 〉〈0 |U†

)
|Es′ , w 〉 .
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Re-arranging and summing over s and w, we then obtain (using (2.30))

∑
s,w

P(Es′ , w|Es)e−β(Es−w) = e−βEs′ 〈Es′ |TrB

(
ωβ(HB)TrW

(
U1SB ⊗ |0 〉〈0 |U†

))
|Es′ 〉

= e−βEs′ . (2.33)

Dividing both sides by the partition function of HS and summing over s′, this yields the
Jarzynski relation for thermal initial states:

E
(

eβw
)
= ∑

s,s′ ,w
P(Es′ , w|Es)

e−βES

Zβ(HS)
eβw = 1. (2.34)

In fact, in the setting of thermal operations, more general quantum fluctuation relations can
be de-rived using similar methods as presented above. For details, see Ref. [59, 60].

2.6 Connection to thermodynamics in terms of open system dynamics

Before concluding this chapter, let me briefly comment on the connection between the
monotones as defined in this section and more conventional models of quantum thermo-
dynamics in terms of open system dynamics. Often dynamics of open systems in contact
with heat baths are modelled by general Markovian dynamics, which need not be unitary.
For example, in classical statistical mechanics one often describes the dynamics of an open
system by a Markov chain or its continuous time analogues. Similarly, in the context of
quantum mechanics, the dynamics of open systems is frequently modelled by a so-called
dynamical semi-group (see, for example, Refs. [71, 81, 82]). Such a dynamical semi-group,
which is simply the most general form of Markovian dynamics in quantum mechanics, for
example arises if one weakly couples a small system to a reservoir. Formally, the dynamics
then takes the form

ρ(t) = Et(ρ(0)), Et+s = Et ◦ Es, E0 = 0. (2.35)

Here, Et is a quantum channel for every t ≥ 0 and is generated by a Lindbladian or
Liouvillian L∗:

Et(ρ) = etL∗(ρ). (2.36)

The general form of L∗ has been derived by Lindblad in Ref. [83], but is not important for
the present discussion (see chapter 12 for the explicit form of a Liouvillian). This formula-
tion naturally includes the description of classical systems by embedding them diagonally
in any arbitrarily chosen orthonormal basis of the Hilbert space. The action of the channel
Et in this basis is then simply given by a stochastic matrix.

If the dynamics Et is supposed to describe dynamics that occurs while the system is
immersed in a thermal bath at temperature β, it is a very natural assumption that after suffi-
ciently long time the system reaches a thermal state ωβ(H). Indeed, in the case mentioned
above, where a finite system is weakly coupled to a heat bath, one can show under very
general assumptions show that this is true [84]. This then leads to the conclusion that the
channels Et have the thermal state as a fixed-point. They are hence examples of the Gibbs-
preserving maps that we discussed earlier, although here derived from a different point of
view. In the field of open system dynamics, a seminal observation was that one can in this
case define an entropy production function as [85–88]

σ(t) := − d
dt

D(ρ(t)‖ωβ(H)), (2.37)

which is always non-negative due to the data-processing inequality: σ(t) ≥ 0. It is natural
to interpret this inequality as an expression of the second law of thermodynamics.

From the modern perspective of quantum thermodynamics as a resource theory, the
definition of the entropy-production σ(t) is completely natural, although maybe the name
non-equilibrium free energy decrease would be more appropriate. Indeed, we could now
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introduce an infinite family of entropy-production functions σα(t) using the (quantum)
Rényi-divergences introduced in section 2.3. The question is then rather: Which property
singles out the entropy-production function defined through the quantum relative entropy
σ(t)? The answer will be given in chapter 5, where we will see that only the quantum
relative entropy remains as a monotone of catalytic thermal transitions if we allow the
system to become correlated with potential catalysts. This is a natural assumption in any
open-system framework, since the bath and potential catalysts are not even included in the
description. Note that a connection between entropy production and the fact that a system
becomes correlated with its surroundings has been made before, however from a different
point of view, see for example [89].

2.7 Conclusions and Outlook

IN THIS CHAPTER I have reviewed the framework of catalytic thermal operations as a
way to model thermodynamics in a general way.

Even though this framework allows for arbitrary quantum mechanical control over arbi-
trary systems, we have seen that it nevertheless puts tight constraints on possible physical
processes that involve thermal systems. It thus establishes a non-obvious fact: Namely
that thermodynamic laws (or rather, restrictions) also play an important role for individual,
small quantum systems. At the same time we have seen, in the example of anomalous heat
flow, that it allows for processes that might seem unintuitive at first sight.

In this chapter, I only discussed the basics of this framework in the most idealized set-
ting. Recently, progress has been made in deriving conditions that arise from finite heat
baths [90] as well as deriving explicit ways to implement a given thermal transition using a
small set of "elementary operations", somewhat similar to a universal gate set in the theory
of computation [91]. It is also possible to include more conserved quantities than the en-
ergy, such as angular momentum, using Generalized Gibbs ensembles instead of canonical
ensembles (see Refs. [53, 92, 93] and chapter 10).

The framework of catalytic thermal operations has the structure of what is today known
in general as a "resource theory" [94–100]: It consists of a set of "free operations" (in our
case: energy preserving unitaries or, more generally, Gibbs-preserving maps) and "free
states" (systems in thermal equilibrium with the environment). The free operations always
map free states to free states. Hence if one wants to prepare a state that is not a free state
out of a free state, one has to have access to a non-free state and apply a free operation to
the whole compound. Thus states that are not free (in our case any state that is not a Gibbs
state at the environment temperature) can be used to implement non-free operations and
are therefore considered to be "resources".

In the context of quantum physics, and especially quantum information theory, the con-
cept of a resource theory is best known from the theory of entanglement, where the free
states correspond to product states and the free operations to local operations with classi-
cal information [62]. It was noticed fairly early in the field of quantum information theory
that this formulation of entanglement theory resembles the theory of thermodynamics [101,
102], which of course fits naturally in the language of a resource theory (see, in particular,
the approach of Lieb and Yngvason to thermodynamics as an abstract axiomatic frame-
work [23, 24, 103]). The explicit formulation of thermodynamics as a resource theory in
the formal framework of quantum mechanics nevertheless only took place fairly recently
and lead to a rich body of work on the formal resource theoretical aspects of quantum ther-
modynamics (see, for example, [46, 48, 53, 103–105]) Indeed, very recently results from
thermodynamics have now found a way back into the theory of entanglement, providing
"fluctuation relations of entanglement" [106].

By now, it is common place in quantum information theory to formulate problems in
terms of a resource theory. As examples, let me mention here the formulation as resource
theories of such diverse fields as coherence, reference frames and (a-)symmetry [54, 57, 58,
107–115], steering [116] or stabilizer quantum computation [117]. Recently, also (quan-
tum) cryptography has been cast into a formulation which closely resembles a resource
theory [118].
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An important concept in almost any resource theory is that of a monotone, namely any
function on the set of all possible states that can only decrease under free transitions and
thereby provides necessary conditions for state transitions. Any monotone also provides
a measure for the "resourcefulness" of a state. We have seen in our examples how such
monotones can be used to derive fundamental bounds in a simple way. Unsurprisingly,
they will continue to play important roles in the rest of this thesis.

The generality of the resource theoretical framework of quantum thermodynamics is at
the same time a drawback: While it allows to derive fundamental bounds in a simple way,
it does not tell us exactly how these bounds can be realized in concrete physical terms.
Furthermore it is not so easy to include possible additional physical restrictions. That is
why we will have to adapt and simplify the model in chapter 9, where I will discuss the role
of additional experimental restrictions on thermodynamic bounds for thermal machines.

Before, however, we will now use the more general framework to discuss fundamental
problems in thermodynamics from the point of view of resource theories. First, in chapter 3
we derive in a rigorous way quantitative bounds on the sufficient and necessary amount of
resources needed to bring a system close to its ground state. In other words, we will see
how the third law of thermodynamics emerges. Then, in chapter 4 we discuss whether and
how one can generalize the concept of thermodynamic work to quantify in a meaningful
way how useful a transition between two states of a system is. This will be followed up
by a new axiomatic derivation of the relative entropy and non-equilibrium free energy in
chapter 5. In chapter 6, we will see that a resource theoretical approach to thermodynamics
can in fact be used to derive maximum entropy ensembles like the Gibbs state. Finally, in
chapter 8 we discuss the problem of equilibration in closed many-body systems using tools
inspired by the resource theory of thermal operations.
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QUANTUM INFORMATION PROCESSING requires highly pure quantum states as a re-
source to perform computational tasks [62]. In this chapter I will discuss the fundamen-
tal limitations to prepare very pure quantum states from a thermodynamic point of view.
To make the problem more concrete, I will focus on bringing the system to an energy-
eigenstate. In the framework of catalytic thermal operations, any energy-eigenstate may be
converted to the ground state without requiring additional resource since for any α ≥ 0 we
have

Dα( |Ei 〉〈Ei | ‖ωβ(H)) = βEi + log(Z) ≥ Dα( |E0 〉〈E0 | ‖ωβ(H)), (3.1)

where Ei denote the energy-eigenlevels of H and E0 the ground state energy.
Thus, the ground state is the energy-eigenstate that is easiest to prepare from a thermo-

dynamic perspective. It is therefore sensible to first study the problem of bringing a system
to its ground state, or, in other words, the problem of ground state cooling 1. 1 This chapter is based on

joint-work with Rodrigo
Gallego, published in [8].

But then we face a problem from the point of view of thermodynamics: The third law
of thermodynamics, or more precisely, the unattainability principle, states that cooling a
system exactly to its ground state requires infinite resource, being it in the form time, space,
work or other resources [61, 119–122]. Similar no-go theorems have been derived for the
task of bit-erasure (see section 2.4): They show that no unitary process on a system plus a
finite dimensional heat bath can bring the system from a mixed state to a pure state [123–
125]. This ultimately follows since the rank of a matrix cannot be decreased by a unitary
operation, since unitary operations preserve the spectrum of any operator. Thus we can
conclude that if we do not already have access to a pure quantum state, we cannot prepare
a pure quantum state exactly.

From a more practical perspective the only sensible question is then to ask how many
resources are necessary to approximate a pure state arbitrarily well. Indeed, recently a
sizable number of studies deal with different protocols to cool a small quantum system by
unitarily acting on heat bath and a certain number of systems out of equilibrium to be “used
up” (known under the name of algorithmic or dynamical cooling) [126–130] or studying
particular models of refrigerating small quantum systems [131–137], including ones that
claim to challenge the unattainability principle in terms of required time (see Ref. [138–
145] for such claims and counter-claims).

In this chapter, I will address the problem ground state cooling from a resource-theoretic
perspective as introduced in chapter 2. There have been previous studies on cooling using



32 CHAPTER 3. GROUND STATE COOLING AND THE UNATTAINABILITY PRINCIPLE

(parts of) the resource-theoretic framework, but focussing on very specific resources such
as time, work-fluctuations or Hilbert-space dimension [61, 121, 122]. Here, instead of
asking how long it takes to cool a system to a certain temperature, e.g., as measured by
the cycles of a periodically working machine, or how much work is needed to do so, the
discussion will be phrased in more abstract terms.

The task of cooling that I will be considering can be phrased as finding a cooling pro-
tocol that, given a resource (ρR, HR) and a target system with Hamiltonian HS initially in
thermal equilibrium with the environment at inverse temperature β, brings the system to
a thermal state ρS at a temperature TS as low as possible. I will assume that the density
matrix of the resource has full rank. Indeed if this was not so, for example if the resource
was pure, the problem would trivialize. In the simplest case, one could simply swap the
resource and the target and bring the system exactly to a pure state 2.2 Similar arguments can be

made for other states without
full rank. For example two

copies of a rank-2 state in a
4- dimensional system can

be written as a pure state in
tensor product with a full-

rank state. Such a resource
therefore already contains a

pure state which can then be
mapped to the ground- state.

The cooling protocol consists of finding a catalyst (σC, HC) and a corresponding cat-
alytic thermal operation on the resource and the target which has the desired effect on the
target system. It is therefore a unitary operation on the compound of heat bath, resource,
target and catalyst and can therefore be seen as an instance of heat-bath algorithmic cooling.
In the notation established in chapter 2 we ask when the following transition is possible:

ρR ⊗ωβ(HS) c
ρ′RS, TrR(ρ

′
RS) = ωβS(HS), (3.2)

with βS = 1/TS as large as possible.
From theorem 2.1 and the discussion below it, we know that, in the case of states that

are diagonal in the energy-eigenbasis, to check whether such a transition is possible, in
principle we have to check the infinite set of inequalities

Dα(ρR ⊗ωβ(HS)‖ωβ(HR)⊗ωβ(HS)) ≥ Dα(ρ
′
RS‖ωβ(HR)⊗ωβ(HS)), α ≥ 0.

If we trace out the resource in the final state we then get the set of inequalities

Dα(ρR‖ωβ(HR)) ≥ Dα(ρ
′
S‖ωβ(HS)), α ≥ 0. (3.3)

Here, we allowed for a catalyst that changes by an arbitrarily small amount to get rid of the
conditions for negative α as discussed below theorem 2.1. We will later also discuss the
case where the catalyst cannot change at all and the case where the catalyst is returned with
a finite error. The functions Dα depend in a complicated way on the density matrices and
Hamiltonians. Therefore it is in general difficult to decide for which final temperatures TS
the cooling task can be achieved. In this chapter, I will introduce a new monotone of thermal
operations, called the vacancy Vβ, and show that it alone determines whether a cooling
protocol can be found if TS is very small. In rough terms we will see that the necessary and
sufficient condition expressed in the infinite set of inequalities (3.3) essentially collapses to
a single necessary and sufficient condition for cooling:

Vβ(ρR, HR) ' Vβ(ωβS(HS), HS). (3.4)

Moreover, as the target temperature approaches zero, TS → 0, the vacancy diverges,
Vβ(ωβS(HS), HS) → ∞. Hence, an infinite amount of resources, as measured by the
vacancy, are required to cool exactly to zero temperature. The fact that the vacancy is an
important quantity for ground state cooling has been found previously in the very particular
case where the target system is a qubit and the resources are i.i.d., i.e., many copies of the
same system [46]. Using a completely different approach, we will see that the vacancy is
the crucial quantity also in the general setting.

As a very simple example, we can consider as resource a collection of N identical har-
monic oscillators (with Hamiltonian Hosc.), each initially in a thermal state at a temperature
TR hotter than the environment. We want to use the temperature difference to the environ-
ment to cool one of them to a very low temperature. Then our results show that this is
possible in the above sense if and only if

N ≥
Vβ(ωβS(Hosc), Hosc)

Vβ(ωβR(Hosc), Hosc)
. (3.5)
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Thus, as the target temperature TS approaches absolute zero, the number N of the resource
oscillators out of equilibrium has to diverge.

The results in this chapter show that to cool a system to zero temperature, it has to
effectively interact with infinitely many (or one infinitely large) resource systems. This
implies that also an infinite amount of time is needed, since each such interaction takes
a finite time (see [61] for a detailed discussion of this point). We thus also recover the
unattainability principle in terms of the time that it takes to bring a system to its ground
state exactly.

In the following, I first properly define the vacancy, establish its basic properties and
derive the necessary condition for cooling expressed in terms of the vacancy. After that I
state the main result, which shows that the vacancy also provides the sufficient condition
for cooling. Then I discuss special cases of particular physical interest and discuss how
the vacancy scales with various parameters. Finally, I discuss in more detail the role of the
catalysts and come back to the problem of Landauer erasure. All proofs can be found in
section 14.2 unless they are provided in the main text of the chapter.

3.1 Definition and basic properties of the vacancy

The vacancy is simply defined as

Vβ(ρ, H) := D(ωβ(H)‖ρ), (3.6)

where D is the quantum relative entropy defined in (2.21). From the definition of the
relative entropy, it follows immediately that Vβ(ρ, H) = +∞ if ρ does not have full rank.
Thus the vacancy is in fact a highly discontinuous function when considered as a function
of arbitrary quantum states. It is, however, continuous over the set of full-rank states on a
finite dimensional Hilbert-space.

Let us now show that the vacancy is an additive monotone of catalytic thermal transi-
tions.

Lemma 3.1 (Monotonicity). The vacancy is an additive monotone under catalytic thermal
transitions.

Proof. First note that the vacancy is only defined on full-rank states. From the additivity
of the relative entropy under tensor-products it follows that the vacancy is additive over un-
correlated and non-interacting subsystems. Now let ρ be any full-rank state with associated
Hamiltonian HS and consider a thermal operation involving a catalyst that maps ρ to ρ′.

From the results in chapter 2, we know that the Rényi-divergences for 0 ≤ α ≤ 2 can
only decrease under such an operation:

Dα(ρ‖ωβ(HS)) ≥ Dα(ρ
′‖ωβ(HS)), 0 ≤ α ≤ 2. (3.7)

We can now expand this equation around α = 0. A direct calculation shows that

lim
α′↘0

dDα(ρ‖ωβ(HS))

dα

∣∣∣∣
α=α′

= D(ωβ(HS)‖ρ) = Vβ(ρ, HS). (3.8)

Since D0(ρ‖ωβ(HS)) = 0 by the assumption that ρ has full rank, we then get

Vβ(ρ, HS)α + O(α2) ≥ Vβ(ρ
′, HS)α + O(α2). (3.9)

Dividing by α and taking the limit α → 0, we then obtain Vβ(ρ, HS) ≥ Vβ(ρ
′, HS) as

required.

Note that the monotonicity holds for arbitrary quantum states, not only states that are
diagonal in the energy basis. We can now easily derive a necessary condition for cooling
by applying the vacancy to the resource and system together:

Vβ

(
ρR ⊗ωβ(HS), HR + HS

)
≥ Vβ

(
ρ′RS, HR + HS

)
≥ Vβ

(
ωβ(HR)⊗ ρS, HR + HS

)
.
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The last inequality follows from the fact that one can always replace the state on any system
by an uncorrelated thermal state at the heat bath’s temperature using a thermal operation.
Using additivity of the vacancy and the fact that Vβ(ωβ(H), H) = 0, we then find that a
completely general necessary condition for cooling is given by

Vβ(ρR, HR) ≥ Vβ(ρS, HS). (3.10)

The vacancy Vβ was in fact first introduced (under a different name) in Ref. [46], where its
use for cooling was discussed in the special case of a two-level system as a target system.
In this chapter, we go beyond the results in Ref. [46] by treating arbitrary systems.

From the necessary condition (3.10) the relevance of the vacancy for the unattainability
principle is clear: Since a ground state does not have full support and the vacancy diverges
in this case, it shows that infinite resources, as measured by the vacancy, are necessary to
cool a system to zero temperature. In particular, if the resource is given by n independent
systems, then n has to diverge as long as each of the systems has a finite vacancy.

We will now see that the decrease in vacancy is not only a necessary condition, but that
in many cases it is also a sufficient condition for cooling. It thus completely characterizes
the problem of approximate ground state cooling.

3.2 Sufficiency: A general theorem

As alluded to before, the vacancy not only captures the necessary but also the sufficient
condition for cooling in the case where the target temperature is extremely low. Further-
more, we need the additional assumption that the resource state is diagonal in the energy-
eigenbasis. This is made precise in the following general theorem.

Theorem 3.2 (General sufficient condition for cooling). For every choice of β and HS
there is a critical βcr > 0 such that for any βS > βcr and any diagonal full-rank resource
(ρR, HR) the condition

Vβ(ρR, HR)− K(βS, β, ρR, HR, HS) ≥ Vβ(ωβS(HS), HS) (3.11)

is sufficient for cooling. The function K is positive semi-definite and has the property
K(βS, β, ρR, HR)→ 0 as βS → ∞ for any fixed β, HR, ρR > 0 and HS.

The actual proof of this result is somewhat involved and can be found in section 14.2.1,
but a sketch of the main ideas involved in the proof is given at the end of this section. The
function K is given by

K(βS, β, ρR, HR, HS) = max
{

0,− min
α≤δ(βS)

D′′α (ρR‖ωβ(HR))

}
δ(βS),

where
δ(βS) := log(Zβ(HS))/Vβ(ωβS(HS), HS).

The bound (3.11) is completely general and applies for any diagonal resource state. In
practice, however, it can be difficult to compute K(βS, β, ρR, HR, HS) since it involves an
optimization over a small range of α.

It is therefore important to study whether one can find general physical conditions for
resource systems (ρR, HR) such that K(βS, β, ρR, HR, HS) = 0. In such a case, the general
sufficient condition (3.11) taken together with the necessary condition (3.10) implies that a
necessary and sufficient condition is given by

Vβ(ρR, HR) ≥ Vβ(ωβS(HS), HS), (3.12)

In the next section, I will show that this indeed holds true for large classes of thermal
resources.

From the additivity of the Rényi-divergences, it follows that K(βS, β, ρR, HR, HS), just
as the vacancy, is additive over non-interacting and uncorrelated resources. This property
will be important in section 3.3, where I discuss the setting of identically and independently
distributed (i.i.d.) resources.
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Sα Figure 3.1: The figure shows
the behavior of Dα(ρS =
ωβS (HS)‖ωβ(HS)) (orange)
and Dα(ρR‖ωβ(HR)) (blue).
The top plot shows a target
state that is not very cold
together with an insufficient
resource. The transition is not
possible since the blue line
is below the orange line for
α . 1.25. The bottom plot
shows the behavior when βS
is very cold. The function
becomes more similar to a
step function. The fact that
Dα(ρR‖ωβ(HR)) (blue curve)
is larger than the orange curve
implies that the transition is
possible. In the limit where βS
is very large, this is already
determined by the behavior
for very small values of α. Up
to a small error, this follows
then from the fact that the
derivative is larger at α = 0.
(Figure from Ref. [8].)

The result given above is tailored to thermal target states. This is in fact not neces-
sary. With much more technical effort, it is possible show (see Ref. [8]) that a completely
analogous result holds for states of the form

ρε = (1− ε) |0 〉〈0 |+ ερ⊥, ε� 1, (3.13)

where ρ⊥ is any density matrix which has full rank on the subspace orthogonal to the
ground state |0 〉 and commutes with HS. Nevertheless, for the rest of the chapter I will for
simplicity only consider thermal target states.

3.2.1 Sketch of the proof of theorem 3.2

Let us now sketch the proof of theorem 3.2. The essential idea behind the proof is that for
sufficiently low target temperatures (βS > βcr) the general sufficient conditions in (3.3)
only give non-trivial constraints for very small values of α: for βS > βcr the right-hand
side of (3.3), given by Dα(ωβS(HS)‖ωβ(HS)), quickly saturates to its maximum value
as we increase α and it is concave (see Fig. 3.1). To check the conditions (3.3) we can
therefore perform a Taylor expansion around α to get

Dα(ρR‖ωβ(HR)) ≈ D0(ρR‖ωβ(HR)) +
∂Dα(ρR‖ωβ(HR))

∂α

∣∣∣∣
α=0
α

+ kα2

= Vβ(ρR, HR)α + kα2. (3.14)

On the other hand, one can show that the divergences Dα(ωβS(HS)‖ωβ(HS)) are concave
in α for small enough βS. One can then upper bound them simply using the linear approx-
imation at the origin, which is given by Vβ(ωβS(HS), HS)α. Properly taking account of
the errors made in the Taylor approximation then yields the theorem.

3.3 i.i.d. resources and the scaling of the vacancy

So far results did not depend explicitly on any structure of correlations in the resource
systems. In this section, I will discuss the paradigmatic case where an experimenter simply
has a large number n of uncorrelated copies of some resource system. This setting also
allows us to study in a simple way how the vacancy scales with the system size of the
resource and what are other important scales in the problem.

Thus, in this section the resource takes the form ρR = $⊗n
R with Hamiltonian HR =

∑i hi
R where hi

R = 11 ⊗ · · · ⊗ 1i−1 ⊗ hR ⊗ 1i+1 ⊗ · · · ⊗ 1n. Let us then consider the
following task: Given fixed $R, HR, β, HS, find the minimum number of copies n so that
it is possible to cool down the target state to inverse temperature βS. Already the neces-
sary condition for cooling (3.10) together with additivity of Vβ poses lower bounds on the
necessary number of copies nnec(βS) as

nnec(βS) ≥
Vβ(ωβS(HS), HS)

Vβ($R, hR)
. (3.15)
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We can now use the sufficient condition obtained from theorem 3.2

n[Vβ($R, hR) + K(βS, β, $R, hR, HS)] ≥ Vβ(ωβS(HS), HS)

to also obtain a sufficient number of copies nsuff. This condition is sufficient, but not always
necessary. We therefore obtain

nsuff(βS) ≤
Vβ(ωβS(HS), HS)

Vβ($R, hR) + K(βS, β, $R, hR, HS)
. (3.16)

Since the correction K goes to zero as βS → ∞ (the target temperature going to zero), we
see that

lim
βS→∞

nsuff(βS)

nnec(βS)
= 1. (3.17)

It is then interesting to know how nnec scales with the target temperature. I will now show
that nnec and nsuff scale as βS for large βS and calculate the prefactors.

In the special case of thermal resource and target states, we can reformulate the vacancy,
and hence the necessary and sufficient number of copies, also in terms of non-equilibrium
free energies. The vacancy of a thermal state at temperature βS then takes the form

Vβ(ωβS(H), H) = βS∆FβS(ωβ(HS), HS). (3.18)

The necessary condition (3.10) then reads:

∆FβR(ωβ(HR), HR) ≥
βS
βR

∆FβS(ωβ(HS), HS). (3.19)

From (3.18) we see that for large βS we have (assuming vanishing ground state energy)

Vβ(ωβS(HS), HS) = βSEβ − Sβ, as βS → ∞. (3.20)

Here, Eβ and Sβ denote the average thermal energy and entropy of the system S at inverse
temperature β. Assuming, as above, a resource system of n non-interacting identical parti-
cles each described by (ωβR(hR), hR), we obtain that the minimum achievable temperature
scales as

nkBTS =
ES

β

Vβ(ωβR(hR), hR)
, TS � 1. (3.21)

This result is similar to the asymptotic result of Janzing et al. [46] in the special case of
a target qubit. We thus see that the minimum target temperature scales as 1/n to leading
order.

In applications related to quantum information processing, a figure of merit that is ex-
pected to be more important than the temperature is the final probability p to find the system
in the ground state upon an energy measurement. The above scaling relation implies that p
increases exponentially to 1 with n. For example, if the target system is a d+ 1 dimensional
system with gap ∆ above a unique ground state, we have (for large n)

p ≥ 1/(1 + de−βS∆) ≈ 1− de−nVβ(ωβR
(hR),hR)∆/ES

β .

Thus, the optimal ground state probability converges exponentially to unity in the number
of resource systems.

The above analysis fundamentally rests on the fact that the resource systems are uncor-
related. However, it seems reasonable to expect that similar results hold true in the case
where the resource system is a many-body system with exponential decay of correlations
in space. To rigorously proof this, one would be need to show that the error term K also
scales extensively with the system size if the subsystems are weakly correlated. I leave this
problem for future work.
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3.4 Thermal resources

While the setting of i.i.d.-resources is very relevant, our results allow us to consider settings
far outside this regime. In general, the error term K in theorem 3.2 can be quite difficult
to analyze in concrete set-ups. It would therefore be nice to know that it vanishes for
general classes of resources. I now discuss general results that allow us to decide whether
K vanishes by evaluating more physically accessible quantities. In the following, I always
consider resources that are initially in a thermal state at inverse temperature βR. In this
case we can derive a general sufficient condition which ensures that K vanishes identically.
This is based on showing that the function

α 7→ Dα(ωβR(HR)‖ωβ(HR)) (3.22)

is convex for a range of values of α < 1, which implies that K vanishes at low enough target
temperatures. It is possible to show convexity of (3.22) by checking whether the average
energy

x 7→ ER
x = Tr(HRωx(HR)) (3.23)

is convex as a function of the inverse temperature. In particular, if βR < β and the function
x 7→ ER

x is convex in [βR, β], the function Dα(ωβR(HR)‖ωβ(HR)) is convex for all
α < 1.

Theorem 3.3. For resources of the form (ωβR(HR), HR) that are hotter than the bath,
that is with βR ≤ β, if ER

x = Tr(ωx(HR)HR) is convex in the range x ∈ [βR, β], then
(3.10) is a sufficient and necessary condition for low temperature cooling.

Proof. The proof is given in section 14.2.3.

This theorem drastically simplifies showing that the error-term K vanishes in many
cases, since the average energy is a much more accessible quantity then the Rényi-divergences.
In particular, we can formulate the condition on ER

x in terms of the heat-capacity of the re-

source system. To do that, let us define the heat capacity Cx := dER
x

dT , with T = 1/x. Then
the condition on ER

x in theorem 3.3 is equivalent to

1
β2

R
CβR ≥

1
β′2

Cβ′ (3.24)

for all βR ≤ β′ ≤ β. Since in most thermodynamic systems the heat capacity increases
monotonically with the temperature, this inequality is usually fulfilled for thermodynamic
systems. However, it is not necessarily fulfilled for small systems with non-generic density
of states. In the next section 3.4.1, I will discuss a large class of models for which the
energy is indeed always convex.

Before we come to that, it is important to mention a different way to make sure that K
vanishes. Indeed, for a fixed value of βR, one can always find a critical value of β such
that K vanishes if the environment is colder than the temperature given by that critical
value. Thus, if an experimenter manages to pre-cool the environment to sufficiently low
temperatures, the error term vanishes. This is proven in section 14.2.3. Unfortunately,
however, it is not easy to give precise bounds on how cold the critical temperature for the
heat bath is if we are given some resource. Finding such bounds which can be expressed in
terms of meaningful physical quantities is an interesting open problem.

3.4.1 Systems for which the average energy is convex

I will now present a large class of models for which the average energy is a convex function
of the inverse temperature. Thus, for all such resources (3.10) is both a necessary and
sufficient condition. The examples are based on the following simple result (the proof is
given in section 14.2.4).

Lemma 3.4 (Equidistant levels). Consider any Hamiltonian with equidistant and non-
degenerate energy levels. Then the function β 7→ Eβ is convex.
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Examples of systems with equidistant energy levels are given by two-level systems and
harmonic oscillators. This seems at first like a very small class of systems. However,
we can make use of the fact that the vacancy is unitarily invariant (does not depend on a
choice of basis in the Hilbert-space) and additive over uncorrelated and non-interacting sub-
systems. Then the following corollary follows immediately from the existence of normal-
mode decompositions in quasi-free systems:

Corollary 3.5. The average thermal energy ER
x is convex for any non-interacting (quadratic)

fermionic or bosonic Hamiltonian. Thus, for any such resource with βR < β, the condition
(3.10) is both sufficient and necessary.

While these models formally only cover fairly simple systems, they nevertheless can
show interesting physical properties. For example, their thermal states can be arbitrarily
correlated and even entangled. In fact, as is widely known, they can serve as effective mod-
els for many interesting physical effects, such as superconductivity or topological phases of
matter [146]. Thus, we can expect that the condition (3.10) is both sufficient and necessary
for large classes of physical resources. A particularly interesting resource that is included
by these results is that of hot thermal light, which has been considered before as a valuable
resource for cooling [135]. Also note that these results hold without any thermodynamic
limit. They therefore apply far outside the asymptotic limit of i.i.d.-resources considered
in Ref. [46].

Finally, many interacting many-body systems have a density of states which, in the bulk
of the spectrum, can be well approximated by a Gaussian for large system sizes [147]. It
is easy to check that if one considers an energy density of the form µ(ε) ' eγε−αε2

, the
average thermal energy of the corresponding Gibbs-state is convex as a function of the
inverse temperature.

3.5 Exact and approximate catalysts

In this chapter, I have assumed catalytic thermal operations, where the catalyst has to be
returned with an arbitrarily small error. This allowed us to consider only Rényi-entropies
for positive α. In general, this assumption is very reasonable, since in practice it is impos-
sible to distinguish between arbitrarily small errors and zero errors. However, as explained
in section 2.3, below theorem 2.1, to reduce the sufficient conditions to positive α one
formally introduces a catalyst that does not have full rank but is returned with full rank.
Therefore the change of vacancy on this catalyst is infinite. It is thus desirable to develop
an understanding about whether demanding absolutely exact catalysts changes the picture.
First note that only the sufficient condition can change by changing this assumption since
the necessary assumption was derived from the monotonicity of Rényi-divergences with
positive α, which holds in both cases.

Regarding the sufficient condition, it turns out that one can indeed prove a similar theo-
rem as Theorem 3.2:

Theorem 3.6 (Sufficient condition for absolutely exact catalysts). Assume thermal opera-
tions with exact catalysts. Then for every choice of β and HS there is a critical βcr > 0 such
that for any βS > βcr and full-rank resource (ρR, HR) (diagonal in the energy eigenbasis)
the condition

Vβ(ρR, HR)− K(βS, β, ρR, HR, HS) ≥ r(β, HS)Vβ(ωβS(HS), HS) (3.25)

is sufficient for cooling. The positive semi-definite function K is identical to that in theo-
rem 3.2 and the constant r(β, HS) is independent of ρR, HR and βS and given by

r(β, HS) = 1 + 2
Emax − Eβ

Eβ
, (3.26)

where Emax is the largest eigenvalue of HS and we assume that the ground state energy of
HS is zero.

Proof. The proof is given in section 14.2.5.
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The implication of this theorem is most easily understood in the case of n indepen-
dent resource systems. In this case it simply says that instead of the nsuff(βS) resource
systems that are sufficient to cool a system to temperature βS using catalytic thermal op-
erations given in (3.16), in the case of exactly catalytic operations one requires at most
r(β, HS)nsuff(βS) of the same resource systems. Note that the factor r(β, HS) is indepen-
dent of the target-temperature and the resource. While quantitatively, this result is different,
qualitatively the picture does not change much: The vacancy still determines the resource
scaling for approximate ground state cooling. Furthermore, there is good reason to be-
lieve that the factor r(β, HS) can be made much closer to unity by more elaborate proof
techniques.

One might be worried that also in the case of exact catalysis an infinite vacancy might
be required on the catalyst. This is not true and can be seen by the following argument: Let
σC denote the state of the catalyst in a given process. Then, in the case of exact catalysis,
the unitary that implements the process has to map the subspace HBRS ⊗ supp(σC) into
itself. The result on the system S is then completely unchanged if we simply consider as
catalyst only the state σC restricted to its support, which is then a state with full rank and
hence a finite vacancy.

A further natural question to ask is what happens if we go in the opposite direction and
allow for a fixed finite error in the catalyst instead of an arbitrarily small error. In this case,
the first observation to make is that it is then crucial how we measure this error. It has been
shown in Ref. [49] that if we allow the state of the catalyst to change by a finite amount ε
as measured by the trace-distance, then no matter how small we fix this error, one can in
fact prepare any state with such an approximately catalytic thermal operation. This is due
to the fact that the size of the catalyst is not bounded. It then would be sensible to allow
the error on the catalyst in terms of trace-distance to be of the order ε/ log(dC), where dC
is the Hilbert-space dimension of the catalyst. In this case one finds that one can prepare
any state ρ from a resource ρR to arbitrary precision if the free energy of ρ is smaller than
that of ρR. This would imply that one can cool a system to arbitrarily small temperatures
with finite resources and hence would imply, in a sense, a violation of the unattainability
principle in terms of resources.

In Ref. [49], the authors also suggest a potential solution to this problem. The idea is
that the error on the catalyst should be measured by the natural measure associated to the
operational task at hand. In our example, this would suggest to allow that the vacancy of
the catalyst changes by at most ε. If we adopt this notion of approximate catalyst, we see
that the necessary condition for cooling is indeed stable: If the initial state of the catalyst is
ρC and the final state is ρ′C, we obtain the necessary condition

Vβ(ρR, HR) ≥ Vβ(ρS, HS) + (Vβ(ρ
′
C, HC)− Vβ(ρC, HC)), (3.27)

where ρR and ρS denote the initial state of the resource and final state of the target, re-
spectively. Thus, Vβ(ρR, HR) ≥ Vβ(ρS, HS)± ε. Regarding the sufficient condition, note
that allowing for a change of ε in the vacancy of the catalyst in principle allows for much
more freedom. It is therefore conceivable that the sufficient condition in this case exactly
simplifies to Vβ(ρR, HR) ≥ Vβ(ρS, HS). Proving this statement would potentially allow
us to get rid of all the assumptions on the resource system. It constitutes a very interesting
open problem for future work to try to prove this relation.

3.6 Coming back to Landauer erasure and energy measurements

In chapter 2 we derived the necessary condition

∆Fβ(ρR, HR)− ∆Fβ(ρ
′
R, HR) ≥ ∆Fβ( |0 〉〈0 | , HS) (3.28)

for resetting a system S to |0 〉, independent of the initial condition and using access to a
heat bath at inverse temperature β. Here, the system R serves as a thermodynamic resource,
just as in this chapter. From a formal point of view, the problem of resetting a qubit into
an energy-eigenstate and cooling the qubit to the ground state are completely equivalent.
Hence, a further necessary condition for information erasure is provided by the vacancy
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and we see that perfect erasure without side information is in fact impossible under the
assumptions of our framework. As shown in section 3.3, approximate erasure can in fact
be done with an exponentially small error, explaining why this result is not in conflict with
the obvious fact that in practice we can erase bits. However, for small error probabilities,
erasure is governed not by the free energy, but by the vacancy.

How is the setting where we have side-information compatible with this statement?
Consider the setting of a qubit that is correlated with a memory system M:

ρSM = p |00 〉〈00 |+ (1− p) |11 〉〈11 | (3.29)

and assume that HSM = 0. In this case, we can erase the system S using the conditional
unitary

Uerasure = 1⊗ |0 〉〈0 |+ σx ⊗ |1 〉〈1 | . (3.30)

In the process, the state on M is unaltered. Similar conclusions hold if the initial state on
SM is an entangled state, although in this case the state on M changes in the process. From
our necessary condition in terms of the vacancy, we then have

Vβ(ρSM, HSM) ≥ Vβ( |0 〉〈0 | ⊗ ρM) = Vβ( |0 〉〈0 | , HS) + Vβ(ρM, HM) = +∞.

Thus, the state of SM needs to have infinite vacancy if it allows for erasure of S, as ex-
pected. Indeed this can be seen explicitly by noting that ρSM cannot have full rank in such
a case.

Finally, let me discuss briefly an apparently obvious way to cool a system to the ground
state from an abstract point of view. First note that the sufficient condition (3.3) allows
to map any energy-eigenstate to the ground state by a (catalytic) thermal operation. It
would thus seem that we could simply perform an energy-measurement and bring the sys-
tem to the ground state by a thermal operation that depends on the measurement outcome.
However, from a thermodynamic perspective, energy measurements are very costly oper-
ations and cannot be done as thermal operations. Suppose to the contrary that we could
do energy-measurements "for free" by somehow utilizing the thermal environment in an
energy-preserving and entropy-preserving way. If we would perform a projective measure-
ment (with post-selection) of the energy of a thermal system, the system would be mapped
to an eigenstate |Ei 〉 and we would be sure about the system’s state after the measurement
(by the definition of a measurement). We could then use a thermal operation to extract an
amount ∆Fβ( |Ei 〉〈Ei | , HS) > 0 of work into an auxiliary system (see chapter 9 to see
concrete ways to do this). After this operation, the system would again be in thermal equi-
librium and we could repeat this process. Since the extracted work would be positive in
every run of the process, we would cyclically extract positive work form a heat bath – this
is clearly impossible by the second law of thermodynamics.

Using the vacancy, we can understand this more clearly: The vacancy on the system
S changes by an infinite amount upon the energy-measurement. Thus the vacancy of an
ideal measurement device has to be infinite. This can be understood by observing that
an ideal measurement device requires an empty memory or pointer in a perfectly known,
deterministic state to record the measurement outcome. This requires that the initial state
of the measurement device does not have full rank and hence infinite vacancy. Indeed, once
such a state |0 〉 is available, an energy-measurement and later erasure can be done in the
following way: If ρS is the initial state, we can first use a thermal operation to dephase ρS
in the energy-eigenbasis. This is always possible using a thermal operation. Once ρS is
diagonal, we can "copy" it into the register of the measurement device using the unitary

Umeasure = ∑
i
|Ei 〉〈Ei | ⊗Vi, (3.31)

where Vi are unitaries such that Vi |0 〉 = |i 〉 are ortho-normal states. This produces a state
of the form (3.29) and we can use the procedure explained above to erase the system. The
overall outcome of this procedure is that we simply swapped the known state |0 〉 from the
memory with the dephased version of the state ρS on the system – an operation which is
obviously possible using a thermal operation directly.
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3.7 Conclusion and outlook

In this chapter, I have shown how to derive novel necessary and sufficient conditions for
cooling a system close to the ground state. The conditions are expressed in terms of a
new monotone of catalytic thermal operations, called vacancy, and relate the amount of
non-equilibrium resources (measured in terms of the vacancy) to the vacancy of the sys-
tem to be cooled in its target state. Since the vacancy diverges as the target temperature
approaches zero, the unattainability principle in terms of non-equilibrium resources is re-
covered naturally.

Importantly, for a large class of resource states, the necessary and sufficient condition
coincide. This shows that the vacancy is the unique measure of non-equilibrium that con-
trols the problem of ground state-cooling. However, there remain many open questions.
Firstly, it can be expected that it can be proven that the necessary and sufficient condition
coincide for a much larger class of systems then shown here by introducing more concrete
physical assumptions. Secondly, it is necessary to study the scaling of the vacancy in more
detail under concrete physical assumptions on the non-equilibrium resources. For example,
it should be investigated if the vacancy is extensive for any resource controlled by a local
Hamiltonian and a state that fulfills clustering of correlations. There are good reasons to
believe that this is true. As an example, if the resource is a thermal resource at inverse
temperature βR, then the relation

Vβ(ωβR(HR), HR) = ∆FβR(ωβ(HR), HR) = Eβ − EβR −
1

βR
(Sβ − SβR) (3.32)

shows that the vacancy is extensive if the energy and entropy are extensive for both the
temperatures β and βR and the different terms do not cancel. Nevertheless, a general proof
that the vacancy is an extensive quantity remains as an open problem.

The strategy that we used in this chapter to study the problem of ground state cooling is
a quite general one in any resource-theoretic approach: One simply tries to find the right
monotone that describes the problem at hand. In chapter 8, we use the same strategy to
study the problem of equilibration of many-body systems from the resource theoretic point
of view.

In many resource theories, a natural family of monotones is provided by Rényi-divergences
of the form Dα(σ‖τ), where τ is a "free state" that is associated to the resource theory. For
example, in the resource theory of asymmetry [107–109, 111], τ are symmetric states. In
this chapter, we have seen that strengthened conditions on state-transitions can be derived
by also considering monotones of the form Dα(τ‖ρ) (provided that they are well-defined).
In particular, D(τ‖ρ) controls the behaviour of the monotones Dα(ρ‖τ) for small α. We
can expect that this quantity becomes important in physical processes where ρ is close to a
pure state, but τ is not. As a further example, a standard measure of correlations in quantum
information theory is given by the mutual information [62]

I(A : B)ρAB := D(ρAB‖ρA ⊗ ρB), (3.33)

as it cannot be increased by local operations. In terms of the resource theory of local oper-
ations, states of the form ρA ⊗ ρB are free states since they are uncorrelated. However, any
"Rényi mutual information" Dα(ρAB‖ρA ⊗ ρB) also provides a measure for correlations
since it cannot be increased under local operations. Then for small α these quantities can
be expected to be controlled by D(ρA ⊗ ρB‖ρAB), which indeed also cannot be increased
by local operations and thus provides a correlation measure. In chapter 11, we will find
that a quantity similar to this quantity plays an important role in thermodynamics in the
strong-coupling regime. It is an interesting open problem to study such "reversed relative
entropies" in the context of other resource theories than thermodynamics in more detail.
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IT IS VERY SIMPLE to check whether a given macroscopic machine is useful from a ther-
modynamic point of view: We just see whether we can somehow make it lift a weight.
We might have to add some extra gear, but in principle it is always possible if the machine
is able to do work on some system in some sense. If we consider smaller and smaller
machines, at some point this will no longer be true. First, the energy scale at which the ma-
chine operates will at some point be no longer comparable with that of a macroscopic body
in a gravitational potential. Second, at some point energy will be a fluctuating quantity, first
due to thermal noise and ultimately due to quantum mechanical fluctuations.

For example, while it is quite clear that a biological cell in a human being must do some-
thing akin to "thermodynamic work" to produce a gradient in the concentration of certain
molecules, which in turn makes sure that the transcription (copying) of (parts of) the DNA
into messenger RNA occurs in the right direction1, it is not so easy to connect this with 1 See, for example, Refs. [35,

148, 149] for a detailed
discussion of this process
from a thermodynamic point
of view and its relation to
reversible computing.

raising a weight in a gravitational potential. Once we get to the quantum scale, where only
few atoms are involved, and which is happening in experiments nowadays, it becomes even
less clear when we can claim that a quantum thermal machine does something thermody-
namically "useful" and how to quantify this.

In this chapter 2, I want to discuss the problem of how one can possibly define a notion 2 This chapter is based on
work together with Rodrigo
Gallego and Jens Eisert,
published in [2].

of "thermodynamic work" in processes where it is not obvious how to isolate a determin-
istic degree of freedom in a potential, but which occur in a thermal environment of some
temperature. The copying of information in the example above, or the erasure of informa-
tion like in Landauer erasure (see chapter 2) are examples of such processes. The results
presented in this chapter will not only be useful in the microscopic domain, but in princi-
ple always when it is not obvious how to single out "work-like" degrees of freedom. For
example, the process of changing the state in some system from an energy-eigenstate to
a coherent super-position of two energy-eigenstates is a very important and useful basic
operation in a quantum computer, but is difficult to connect to the classical definition of
mechanical or chemical work. It is thus difficult to associate a "thermodynamic cost" with
such a process. In particular it is impossible to associate a fluctuating work-variable in the
sense of fluctuation relations to such a process [79].

We will see that it is indeed possible in great generality to find quantifiers for such ther-
modynamic usefulness, and, importantly, these can be derived from very general principles,
which in fact do not need to make reference to the underlying precise physical theory. They
thus can be applied to the case of quantum mechanics, but can also be applied to macro-
scopic systems, recovering the notion of work as energy stored in a deterministic degree of
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Figure 4.1: A work-storage
device A with a unique ground

state and a g-fold degener-
ate excited level undergoing

a transition which results
in a deterministic increase
of energy, but an increase

in entropy. Such a protocol
exists for every value of ∆
and β if g is large enough.

(Figure taken from Ref. [2].)

∆

freedom under the influence of a conservative force.
Before explaining our approach to this problem, let me first explain in an example and

in more detail why it is difficult to define work in the quantum regime and why even a
deterministic change of energy cannot always be considered as thermodynamic work.

4.1 Deterministic changes of energy as heat

Let us consider a simple Gedankenexperiment. Suppose you had some small quantum
mechanical system, initially in the ground state with energy zero. Then you hand it to
a friend and some time later she returns it. Furthermore she promises that its probability
distribution of energy is now completely deterministic, that is, it is completely concentrated
on a single energy-eigenvalue ∆. In such a situation, it would be tempting to say that from
a thermodynamic point of view, your friend had performed an amount of work given by ∆.

I will now argue why this need not be so. Indeed, there are situations of this form where
all the change of energy should be attributed to heat and not work. The argument is very
simple. Suppose your system only has two energy levels. Assume that the ground state
is unique, but the excited state has a large degeneracy g � 1 (see Fig. 4.1). In such a
case, if your friend simply lets the system thermalize with the environment at temperature
β, the system is almost surely in the excited state at the end. The probability is given by
ge−β∆/(1 + ge−β∆), which can be made as close to 1 as one wishes by increasing g.

In fact one can achieve more. I will now show that by acting with an energy-preserving
unitary on the system and heat-bath together (and possibly a catalyst), one can remove all
uncertainty in energy from the system and put it into a state with a deterministic energy-
distribution supported on the excited energy-level.

To do that we will use theorem 2.1 and the fact that the Rényi-divergences are monotonic
in α [69]: Dα(ρ‖σ) ≥ Dα′(ρ‖σ) if α ≥ α′ ≥ 0. If the final state is ρ′, the theorem thus
tells us that it is sufficient to check that D0( |0 〉〈0 | ‖ωβ(HS)) > D∞(ρ′‖ωβ(HS)). A
simple calculation shows that

D0( |0 〉〈0 | ‖ωβ(HS)) = log(Zβ),

D∞(ρ′‖ωβ(HS)) = lim
α→∞

1
α− 1

log

(
g1−α e−β∆(1−α)

Z1−α
β

)

= log

(
eβ∆Zβ

g

)
, (4.1)

with Zβ = 1 + ge−β∆. This shows that as long as g > eβ∆, the transition is possible
exactly. At the same time the Shannon entropy of the system increases from 0 to log(g) >
β∆. Thus we have kBT∆S > ∆. In particular the free energy decreases, as it has to.

This simple example shows that for small quantum systems, even a purely deterministic
increase of energy cannot always be accounted for as "work" as it can sometimes in prin-
ciple be reliably achieved by only having access to a heat bath. Of course, the example is
very special in that it assumes a small system with a very particular density of states. But
we cannot in general rule out such density of states for small individual systems.

We should therefore see the example as a motivation to explore new ways of how we
should quantify work. In the following sections, we will present exactly such an attempt
which is based on operational principles. The basic guiding principle that we will have in
the back of our mind is the following, which we already implicitly used above:

Consider a machine inducing a transition on some system A. If such transition could have
been also done by having the machine only using systems in thermal equilibrium with the
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environment and leaving any other system involved in the process in the same state as it was at
the beginning; then we conclude that the machined did not induce a thermodynamically useful
transition on A. In this case, we say that the machine did not perform positive work on A.

This statement paraphrases the second law of thermodynamics, which states that a machine
cannot perform positive work in a cyclic process (leaving any other system in the same
state in the formulation above) by using a single heat bath (systems in thermal equilibrium
with the environment). We will thus essentially use the second law of thermodynamics to
define what we mean by "work" instead of seeing the second law of thermodynamics as a
constraint on possible processes in terms of a pre-defined notion of what "work" is.

4.2 Thermodynamic tasks and work-storage devices

Motivated by the previous discussions and the example in the last section, I will now present
an operational approach to quantify the "thermodynamic usefulness" of state transitions
that a machine implements. Here, I will use the word machine in a very general sense
as a system that acts (or is made to act) on a different system and thus induces a state-
transition on this additional system. For example, in macroscopic thermodynamics, the
machine might perform mechanical work on a suspended weight, it might charge a battery
or it might cool down or heat up some system. In the following, I will, to simplify the
language, in all such cases say that the machine performs work. Similarly, I will call the
system that the machine acts upon (e.g., the weight or the battery) a work-storage device.

I will use Latin letters p = (ρ, H) to describe the pair of state and Hamiltonian of
systems 3 and denote a state-transition by an arrow such as p→ q. Furthermore, I will call 3 It will be clear that additional

information such as additional
conserved quantities can be in-
corporated in this framework.
For simplicity I leave them out
of the discussion.

the pairs p objects to make clear that they contain more information than just the state of
the system.

Typically, we will be interested only in transitions between objects in a given set of ob-
jects which encode an operational task. We will call this set P . In the macroscopic world,
the set P would include arbitrary states with a well-defined temperature with respect to the
Hamiltonian when we are interested in the task of cooing/heating. Or we could be inter-
ested in the task of performing mechanical work, in which case the set P would include, for
example, deterministic states of mechanical systems in a gravitational or electric potential.

For microscopic systems, it is less clear what P should look like. First, clearly one can
incorporate microscopic analogues of tasks such as cooling/heating or performing mechan-
ical work in this framework. As an example, recently, the so-called single-shot approach
to work extraction in small quantum systems has received a lot of attention [47, 49, 50, 52,
60, 150–153]. Here, the idea is that one only allows for processes where the fluctuations in
the extracted work are arbitrarily small. One can capture this by saying that the probability
that the extracted work (which is here defined as a transition between energy-eigenstates)
deviates by more than δ from a given value is less than ε. In the framework of this chapter,
this can be captured by letting P only contain states of the form

ρε
δ(E) := pεσ + (1− pε)ρδ(E), (4.2)

where pε < ε and ρδ(E) is supported on energy-eigenstates whose energy deviates at
most δ from the energy E. Since in our framework thermodynamic protocols have to map
states from P into states from P , such a choice constitutes a model for single-shot work-
extraction as discussed above.

Nevertheless, as argued above, tasks such as work-extraction will not necessarily be the
important task for a microscopic machine. In the following let us hence leave the set P
completely unspecified. All the results will either hold for arbitrary such sets or will be a
function of this set.

Hence, our task now is to quantify, from a thermodynamic perspective, the value of a
transition p→ q ∈ P in an environment of inverse temperature β.

4.3 An operational approach

To introduce our approach to the problem of quantifying work, I will use a language that
might be unfamiliar from the usual physics literature. It is inspired from computer science
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and tries to describe a problem as an interaction between two agents, one of which, called
Merlin, is very powerful and the other one, called Arthur, is limited in his capabilities. I
want to stress, however, that the language captures the usual thermodynamic setting and
bounds the very same quantities usually under consideration in thermodynamics. This will
become clear in the later sections.

Consider the two players, Arthur and Merlin living in a world of inverse temperature β.
They both agree upon the fact that the environment has inverse temperature β. They also
agree that this fact implies the existence of a set of "(catalytic) free transitions", i.e., a set
of transitions on physical systems that can be implemented without additional resources.
This should be understood in the sense of chapter 2, but in fact all our results will be a
function of the choice of model for the free transitions and therefore other models than
thermal operations can be considered as well (in section 14.3 I discuss in detail which are
the minimal properties of the free operations that are explicitly needed to derive our results).
For the purpose of this chapter, let us introduce the following notation. We will denote by
F (p) the set of objects that can be reached from p by any free transition. Similarly, we
will denote by FC(p) the set of objects that can be reached by a catalytic free transition.
In mathematical terms, this means that q ∈ FC(p) whenever there is a catalyst c such that
q⊗ c ∈ F (p⊗ c). Here, we introduced the notation

(ρ, H)⊗ (σ, K) := (ρ⊗ σ, H ⊗ 1 + 1⊗ K). (4.3)

Merlin now claims to own a machine which can perform thermodynamically useful tasks
and trades quantum systems for a living. Arthur is one of his customers whose system takes
the role of the work-storage device.

We then imagine that Arthur hands to Merlin his system described by p = (ρ, H) ∈ P
and leaves again. Later, Arthur comes back and Merlin returns the system described by a
different object q ∈ P (along with the classical description of the state). The new state
might be more or less useful for Arthur. In general Arthur will have to pay some money to
Merlin (or vice-versa if Merlin made the system less useful for Arthur). The two thus have
to find a fair agreement on how they value such state-transitions. We will denote this price
by

W(p→ q, β) ∈ R. (4.4)

Note thatW is a function that associates a real number only to a transition between valid
work-storage devices, that is objects in P . No price is associated if Merlin does not return
a valid work-storage device. We will make the convention thatW ≥ 0 if Arthur has to pay
money to Merlin and will refer toW as a work quantifier.

Importantly, Arthur does not know how exactly Merlin performed the transition and it is
completely unimportant to him as he is only interested in what happens to his system. This
is in analogy to the case of mechanical work or cooling: One can check whether (and how
much) work a machine performs without knowing the internal details of the machine by
simply looking at how the machine acts on auxiliary systems. It is important to understand
that this is not in contradiction with the fact that thermodynamic work is a path-dependent
quantity from the viewpoint of the machine, as is explained in Fig. 4.2.

As stated above, Arthur and Merlin have to agree on a "fair" agreement on the work-
quantifierW . Such an agreement is of course subjective in principle and hence has to be
assumed. The rest of this chapter will be devoted to establishing natural and mathematically
precise Axioms that any valid work-quantifier should fulfill and derive from these Axioms
a series of properties for any such work-quantifier. Before we come to the precise Axioms,
however, we have to introduce a few more important concepts.

4.3.1 Work of transition, work cost and work value

The work-quantifier W evaluates transitions on Arthur’s work-storage device. It is easy
to confuse this quantity with other quantities in thermodynamics. After having definedW
one is often interested in the optimal transition (as measured by W) that one can imple-
ment on a work-storage device given some non-equilibrium resource p(i)M . In other words,

suppose that Merlin has, inside of his lab, a system described by the object p(i)M but no other
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Figure 4.2: Left: Phenomenological analogy of the setting in the case of a machine that burns fuel to perform mechanical work. The catalyst
corresponds to the machine that returns to its initial state, using up burning fuel to lift a weight. The burning fuel corresponds to Merlin’s non-
equilibrium system and the lifted weight corresponds to Arthur’s work-storage device. Right: Work from two points of view. Path-dependent work
obtained by looking at the time-dependent thermodynamic state of the thermal machine at the top and operational path-independent work obtained
by looking at the weight (work-storage device) at the bottom. All processes happen at some background-temperature T. The work of transition
Wtrans of the fuel corresponds to the maximal height that the weight can be lifted by arbitrary machines leaving the fuel in the corresponding final
state and operating at background-temperature T. (Figure from Ref. [2].)

resources. Then it is interesting to know how much money he can earn if a customer comes
with a work-storage device. This corresponds to what is often called the "extractable work"
or "work value" in the literature [47, 49, 50, 70, 150]. Similarly, we could not only fix the
initial, but also the final object p( f )

M and ask how much Merlin can in principle earn from a
transition between the two states. We will call this quantity the work of transition [47].

Definition 4.1 (Work of transition). Given a work-quantifierW , an inverse temperature β,

a class of work-storage devices P , and initial and final objects p(i)M and p( f )
M , the work of

transition is defined as

Wtrans(p(i)M → p( f )
M , β) := sup

p(i)A ,p( f )
A ∈P ;

p( f )
M ⊗p( f )

A ∈FC(p(i)M⊗p(i)A )

W(p(i)A → p( f )
A , β). (4.5)

According to our convention, if the work of transition is positive, then Merlin receives
money from Arthur. It is important to realize that the work of transition depends on all
possible catalytic free transitions with all possible work-storage devices that can be im-
plemented in such a way that the transition on Merlins non-equilibrium resource matches
the given one. In contrast toW , the work of transition Wtrans is not defined on the work-
storage device, but on the transition on Merlin’s system. Its input objects thus do not have
to be in P . In fact the work (as measured by W on the work-storage device) associated
to some process can never be deduced from the initial and final state on M alone. Thus it
is impossible to define W as a function on transitions p(i)M → p( f )

M . One either needs to
specify the precise process including the work-storage device or, if one has only access to
M, consider the optimal possible value as in (4.5). It is precisely in this sense that work, as
a function of transitions on M, is a path dependent quantity when evaluated in transitions
on M, and a path-independent quantity when evaluated in transitions on A. This is also the
case in phenomenological thermodynamics: work can be specified by knowing only the
initial and final height of the lifted weight, however it is path-dependent as function of the
state of the machine (see Fig. 4.2).

After having defined the work of transition, we can also define the work value and the
work cost as the maximum possible value that Merlin can obtain from pM and the minimum
possible value that he has to pay to be able to create pM, respectively:

Wvalue(pM, β) := Wtrans(pM → ωβ, β), (4.6)

Wcost(pM, β) := −Wtrans(wβ → pM, β), (4.7)



48 CHAPTER 4. WHAT IS WORK?

where wβ denotes an object representing a system in thermal equilibrium. While both these
quantities are important in thermodynamics, it is clear that they can only be defined once
a work-quantifier W has been established, which is the primary concern in this chapter.
We will however see, that our Axioms imply Wvalue ≤ Wcost, which can be seen as an
expression of the second law of thermodynamics.

Finally, note that in (4.5), it is assumed that the work-storage device and the system of
Merlin are uncorrelated both in the beginning and the end of the transition. This is in fact
important and in section 4.7 we will discuss in detail the role of correlations between M
and A.

4.4 The Axioms

We are finally in position to formulate and discuss the two Axioms that will be the basis for
the rest of the analysis. While they might seem at first technical, they are very natural when
viewed in the language of Arthur and Merlin. In that language they simply say that neither
Arthur nor Merlin can get arbitrarily rich without spending resources. However, below I
will also discuss the meaning and implications in more physical terms.

Axiom 1 (Cyclic transitions of the work-storage device). For any cyclic sequence of tran-
sitions of the work-storage device p(1)A → p(2)A → · · · → p(n)A = p(1)A , such that
p(i) ∈ P ∀i, the sum of the work-values of the individual transitions is larger than or
equal to zero,

n−1

∑
i=1
W(p(i)A → p(i+1)

A , β) ≥ 0. (4.8)

Remembering that a positive value of W means that Arthur pays money to Merlin,
the previous axiom ensures for example, in the simplest case, that Arthur cannot get rich
by demanding Merlin to first do a transition p(1) → p(2) and then asking from him to
undo the transition. If this principle was violated, Arthur could get infinitely rich just
by repeatedly interacting with Merlin. Note that since it is always Merlin that actually
implements transitions in our framework, Arthur, by definition, never spends any resources.

Axiom 2 (Cyclic transitions of the fuel). For any cyclic sequence of transitions of the fuel
(Merlin’s system) p(1)M → p(2)M → · · · → p(n)M = p(1)M , the sum of the optimal work that
Merlin can obtain in each sequence (this is given by Wtrans in (4.5)) is smaller or equal to
zero,

n−1

∑
i=1

Wtrans(p(i)M → p(i+1)
M , β) ≤ 0. (4.9)

This second Axioms says, again in the simplest case where n = 2, that Merlin cannot get
money from Arthur if he simply does not use up any resource, for in that case Wtrans ≤ 0.
Thus also Merlin cannot get rich without "burning" resources. While the two Axioms
seems completely symmetric, it is important to note that the first Axioms is concerned
with the work-quantifierW , which is only evaluated on valid work-storage devices, while
the second Axiom is concerned with the function Wtrans, which can be evaluated on all
objects4.4 Of course, Wtrans implic-

itly also depends on P ,
since it depends onW .

Summarizing, the two Axioms together provide a precise formulation of the second law
of thermodynamics in terms of work. As noted before, however, unlike its usual interpreta-
tion as a restriction on possible processes with a pre-defined notion of work, here we use the
Second Law of Thermodynamics to figure out what could be a sensible measure of work.
In this sense it is impossible to violate the Second Law in terms of work in our set-up: If
somebody claimed to violate the Second Law by extracting work in a cyclic proccess from
a single heat bath, whatever the person considered as work would not be accounted for as
work in this approach.
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4.5 Functions that fulfill the Axioms

After having stated the two Axioms, it is time to discuss what kind of functions constitute
valid work-quantifiers, i.e., fulfill the Axioms. From the generality of the Axioms, it may
seem that they should not provide strong conditions on possible work-quantifiers. In the
following, we will see however that they in fact provide strong conditions. Under certain
additional assumptions they in fact allow to essentially uniquely specify possible work-
quantifiers.

In the following chapters, I will try to keep the discussion as informal as possible, defer-
ring essentially all technical proofs to section 14.3. Nonetheless, some level of technicality
is necessary to state and discuss the results.

In the following, we assume that not having any work-storage device at all constitutes a
valid work-storage device as well. From the point of view of Merlin and Arthur, this just
means that Arthur does not have any system, for example because he handed it to Merlin.
Formally, we introduce the empty object ∅. It has the properties p⊗ ∅ = ∅⊗ p = p for
all p ∈ P 5. Also recall that F (p) and FC(p) denote the set of states that can be reached 5 Technically, it can be

represented by the state
given by the real number 1
with Hamiltonian 0 on the
Hilbert-space C.

from p by free and catalytic free transitions, respectively. It is then possible to prove the
following theorem.

Theorem 4.2 (Form of work quantifiers). A function W respects Axioms 1 and 2 if and
only if it can be written as

W(p→ q) = M(q)−M(p), (4.10)

for a function M such that M(∅) = 0 and that fulfills the property of additive monotonic-
ity: For all p(1), . . . , p(m) and q(1), . . . , q(m) in P such that

⊗m
i=1 q(i) ∈ FC(

⊗m
i=1 p(i))

m

∑
i=1

M(q(i)) ≤
m

∑
i=1

M(p(i)). (4.11)

The above result has many implications. First, it implies that the work, as measured on
the work-storage device, is a path-independent quantity, in the sense that

W(r → p) +W(p→ q) =W(r → q), (4.12)
W(p→ q) = −W(q→ p). (4.13)

Since this might seem at first surprising, given that work is usually thought of as a path-
dependent quantity, it is important to emphasize that this by no means implies that the
function Wtrans also fulfills properties 4.12 and 4.13. In particular, Eqs. (4.12) and (4.13)
are perfectly compatible with irreversibility, i.e., the fact that Wvalue(p) < Wcost(p).

Second, the theorem implies that no work can be done without investing resources:

W(p→ q) ≤ 0, if q ∈ FC(p). (4.14)

In other words, this means that the function M appearing inW is a monotone of the free
catalytic transitions, in the sense of Chapter 2: M(q) ≤ M(p), if q ∈ FC(p).

Both properties will be discussed in more detail later. For now, it is useful to note the
similarity with a weight in a gravitational potential. The properties highlighted above in-
deed say that the work-storage device can be treated similarly to the case of a massive body
under the influence of a conservative force in classical mechanics: There is a state-variable
M and its difference along a transition determines the work-value of the transition. Using
catalytic free operations, which generalise the concept of putting a system in contact with
a heat bath in phenomenological thermodynamics, this state-variable cannot be increased.
This is even true when considering tasks such as heating or cooling in which the system un-
dergoes a transition between two states with fluctuating energy and possibly large amounts
of entropy.

Let us now discuss in more detail the consequenecs of the property of additive mono-
tonicity as stated in the theorem. By considering particular free transitions, it is easy to
derive the following properties of M.
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Lemma 4.3 (Consequences of additive monotonicity). If a function M fulfills additive
monotonicity and M(∅) = 0, then it also fulfills the following properties.

• Monotonocity: M(q) ≤ M(p) ∀ p, q ∈ P , such that q ∈ F (p).

• Additivity: M(pA ⊗ pB) = M(pA) + M(pB) ∀ pA, pB, pA ⊗ pB ∈ P .

• Positivity: M(p) ≥ 0 ∀ p ∈ P .

These properties only hold true for objects that describe valid work-storage devices, i.e.,
objects p ∈ P . In particular, if P imposes restrictions on what constitutes a valid work-
storage device, they are in general not sufficient to guarantee that a function M provides a
valid work-quantifier. In the special case that P contains all quantum states and Hamiltoni-
ans, however, Monotonicity and Additivity do indeed imply that M induces a valid work-
quantifier. Furthermore, it should be clear then that if a function M fulfills Monotonicity
and Additivity for all quantum states and Hamiltonians, then it also fulfills these properties
for any subset P . This allows us to make connection to previous results from the resource
theory of quantum thermodynamics and see that many of the monotones of catalytic ther-
mal transitions and catalytic Gibbs-preserving transitions induce work-quantifiers:

Lemma 4.4 (Work quantifiers from Rényi-divergences). If the free transitions F are given
by Gibb-preserving transitions or any subset of them, then the work quantifier Wα(p →
q, β) := ∆Fα

β (q)− ∆Fα
β (p) with

∆Fα
β

(
ρ, H

)
=

1
β

Dα

(
ρ‖ωβ(H)

)
, (4.15)

where Dα are the quantum Rényi-divergence (see chapter 2), fulfills Axioms 1 and 2 for
any set P of quantum states and Hamiltonians that admit finite-temperature Gibbs-states.

From all the functions ∆Fα
β , the usual non-equilibrium free energy ∆Fβ = ∆F1

β , will
play a crucial role later. It can, in a sense, be seen as a "universal" work-quantifier in this
framework (if we apply it to quantum mechanical systems or work in classical statistical
mechanics). Nevertheless, it is crucial to understand that the functions ∆Fα

β are not the
only possible work-quantifiers. For example, if P consists of all possible Hamiltonians,
but only accepts energy-eigenstates as quantum-states, then the energy would provide a
valid function M, independent of the value of β. The precise set of valid work-quantifiers
thus always depends on the precise structure of P .

4.6 Irreversibility and the second law

When introducing the Axioms, I wrote that they encode the second law of thermodynamics.
Let us now turn to how exactly a quantitative Second Law emerges from the Axioms. In
the language of this chapter, a Second Law should be expressed in terms of the quantities
Wvalue and Wcost as Wvalue ≤Wcost. Indeed, we can easily derive this inequality from the
Axioms and the definition of the two quantities (eqs. (4.6) and (4.7)). To do that, simply
consider a cyclic sequence of the form p → ∅ → p in Axiom 2. The empty object can of
course also be replaced by any object in thermal equilibrium, since transitions of the form
∅→ wβ and p→ wβ are "for free" by assumption. By Axiom 2, we then have

0 ≥Wtrans(p→ ∅, β) + Wtrans(∅→ p, β). (4.16)

Applying the definitions of the work value and work cost, Eqs. (4.6) and (4.7), we then
obtain

Wvalue(p) ≤Wcost(p). (4.17)

Importantly, this inequality holds for all objects and not just valid work storage devices
p ∈ P . Let us now discuss when equality can be reached in this inequality. Unravelling
the definitions of the work value and work cost, we see that the two can only be equal if it
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is possible to find a catalytic free transition which takes the system described by p together
with an uncorrelated work-storage device, extracts the maximum amount of work possible
into a work-storage device while bringing p to thermal equilibrium and then reverses this
transition using a free catalytic transition while creating p from thermal equilibrium again.
In other words there has to be a physical process in the free transitions that reversibly
extracts all "non-equilibriumness" of p into a valid work-storage devices. This is always
possible if p ∈ P from the beginning, because in this case Merlin can simply swap p with
work-storage device. Thus, we see that

Wvalue(p) = Wcost(p), if p ∈ P . (4.18)

On the other hand, if p /∈ P we expect that such a process is not possible: By trying to
convert the "non-equilibriumness" of p into some valid work-storage device, there will be
unavoidable dissipation, which results in irreversibility:

Wvalue(p) < Wcost(p). (4.19)

Such irreversibility has indeed shown up in many analyses of deterministic work extraction
(or single-shot work extraction) [50, 52, 70, 150, 151, 154]. From a heuristic point of
view, this is obvious: If Merlin had some sort of "burning fuel" (or other non-equilibrium
resource), he couldn’t simply give this burning fuel to Arthur, if Arthur demanded that
Merlin raises Arthur’s weight. Merlin had to actually use the burning fuel to lift the weight,
which would result in at least some amount of dissipation.

On the other hand, if the set P would be completely unrestricted, Arthur would accept
the burning fuel as a work-storage device and the best strategy for Merlin would indeed be
to simply hand the burning fuel to Arthur without doing anything with it, because any free
transition can only reduce the non-equilibriumness in a system.

These points highlight again the importance of formulating precise operational tasks,
encoded in non-trivial sets P , for the emergence of thermodynamic properties.

Finally, observe that the fact of whether irreversibility occurs is not a property of the
work-quantifier, but of the set of free transitions and P . The work-quantifier merely quan-
tifies how much reversibility is violated.

4.7 The role of correlations and super-additivity

We now turn to discussing the role of correlations between the fuel (Merlin’s system) and
the work-storage device (Arthur’s system). The correct treatment of correlations is subtle,
but will turn out to be essential for the validity of the second law. In the definition of the
work of transition (Definition 4.1), it is assumed that Merlin’s and Arthur’s systems end
up uncorrelated. To investigate what effect such an assumption has, let us now define a
correlated work of transition in the following way.

Definition 4.5 (Correlated work of transition). Given a work quantifier W and inverse
temperature β, a set of restrictions P , and initial and final objects of M, denoted by p(i)M

and p( f )
M , respectively, the correlated work of transition Wcorr

trans(p(i)M → p( f )
M , β) is defined

as

Wcorr
trans(p(i)M → p( f )

M , β) := sup
p(i)A ,p( f )

A ∈P ;

p( f )
MA∈FC(p(i)M⊗p(i)A )

W(p(i)A → p( f )
A , β).

The only difference to the previous definition is that the fuel and the work-storage device
are now allowed to become correlated in the process implemented by Merlin. We can also
define the correlated work cost and value as

Wcorr
value(pM, β) := Wcorr

trans(pM → ωβ, β), (4.20)

Wcorr
cost (pM, β) := −Wcorr

trans(wβ → pM, β). (4.21)
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These modifications might seem a bit pedantic in the beginning. But we will shortly see
that by allowing the built-up of correlations one can violate the "correlated" second law in
the sense that there are work-quantifiers that fulfill Axioms 1 and 2, but Wcorr

value(p, β) >
Wcorr

cost (p, β) for some objects p. To see this, we make use of the absence of super-additivity
in work-quantifiers. Super-additivity is concerned with the value of a function on bipartite
objects with non-interacting Hamiltonians, but possibly correlated states. A function is
called super-additive if it fulfills

M(pAM, β) ≥ M(pA, β) + M(pM, β) (4.22)

for all objects such that pA, pM, pAM ∈ P . Here pA and pM denote the local objects of
systems A and M, when the combined system is described by object pAM. While the non-
equilibrium free energy ∆Fβ fulfills super-additivity, the Rényi-divergences for 0 6= α 6= 1
do not.

Now assume a work-quantifier such that M does not fulfill super-additivity for some
bipartite object pAM, i.e., M(pAM, β) < M(pA, β) + M(pM, β). Furthermore assume
that Arthur’s system is initially described by pAM and he simply gives subsystem M to
Merlin. This puts an upper bound on the work cost of pM as

Wcorr
cost (pM, β) ≤ M(pAM, β)−M(pA, β). (4.23)

On the other hand, assume that Merlin initially has pM (as a standalone ) and Arthur does
not have any system. If Merlin simply gives pM to Arthur, we obtain a lower bound on the
work value as

Wcorr
value(pM, β) ≥ M(pM, β)−M(∅, β) = M(pM, β). (4.24)

But using the assumption M(pAM, β) < M(pA, β) + M(pM, β) we then obtain

Wcorr
cost (pM, β) < Wcorr

value(pM, β). (4.25)

Let us now discuss what would happen if Merlin would like to use this result to become
arbitrarily rich, or in other words, create a perpetuum-mobilé. Clearly, he can do this if he
has access to a "stream of Arthurs", each of whom possesses a copy of pAM. First he ob-
tains a copy of pM, which he sells and earns Wcorr

value(pM, β). He then simply buys pM from
one of the Arthurs who own a correlated system pAM, which finishes the transaction cycle.
Merlin’s system is thus returned to its initial state after each cycle. In this sense Merlin is
not using up resources. On the other hand, Merlin is responsible for correlating both his
system with that of the Arthurs and the system of the different Arthurs among themselves.
Even though in this particular example he merely "shifts around" the correlations, since he
only swaps subsystems, in more general scenarios he might in fact create new correlations.
This means that he is spending the "absence of correlations". A similar, but non-equivalent,
effect has been discussed in Ref. [105], where the correlations are established among dif-
ferent parts of the catalyst. Thus, one possible viewpoint is to state that in order to account
properly for resources, correlations cannot be created. Hence, the second law would take
the form of the "uncorrelated" Second Law (4.17) which is indeed fulfilled for any work
quantifier satisfying Axioms 1 and 2.

One can, however, also consider a complementary view in which it is allowed to create
correlations between a catalyst (or Merlin’s system) and the work-storage device. In this
case, the possible work-quantifiers have to be modified accordingly and the second law
would take the form Wcorr

cost (pM, β) ≥Wcorr
value(pM, β). This can be achieved by introducing

a reformulation of the second Axiom in terms of the correlated work of transition:

Axiom 3 (Correlated cyclic transitions of the fuel). For any cyclic sequence of transitions
of the “fuel” (Merlin’s system) p(1)M → p(2)M → · · · → p(n)M = p(1)M , the sum of the optimal
work that Merlin can obtain in each sequence when correlations with the work-storage
device are allowed (this is given by Wcorr

trans in (4.5)) is smaller or equal to zero,

n−1

∑
i=1

Wcorr
trans(p(i)M → p(i+1)

M , β) ≤ 0. (4.26)
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The intuition behind this Axioms is exactly the same as that behind Axiom 2, with the
only difference that Merlin is now allowed to create correlations with the work-storage
device. As expected, one can now easily show that any valid work-quantifier fulfills the
second law in the form

Wcorr
cost (pM, β) ≥Wcorr

value(pM, β). (4.27)

Let us explore how this comes about. From Axiom 3 it follows directly that Wcorr
trans(pM →

pM) ≤ 0. Unravelling definition 4.5, we can see that this implies

W(pA → qA, β) ≤ 0 (4.28)

for all qA, pA in P such that qA ∈ FCorr.
C (pA). Here, we define FCorr.

C (p) to be the set
of objects that can be reached from p by using thermal baths and an axuiliary system that
is left, after the interaction with the bath, with the same marginal state and Hamiltonian,
but possibly correlated with the system. We will refer to this transitions as correlated
catalytic free transitions. It is easy to see that pA ⊗ pB ∈ FCorr.

C (pAB)) for pA, pB, pAB ∈
P . We can now use Additivity together with Axioms 1 and 3 to show that valid work-
quantifiers have to take the formW(p→ q, β) = M(q, β)−M(p, β) with M, apart from
the properties stated in theorem 4.2, also fulfilling super-additivity:

M(pAB, β) ≥ M(pA, β) + M(pB, β), (4.29)

where pAB describes a bipartite and non-interacting, but possibly correlated system. This
property has important consequences. From all the monotones of catalytic thermal tran-
sitions induced from Rényi-divergences (see again chapter 2), only the non-equilibrium
free energy ∆Fβ remains to be a valid and non-trivial monotone that induces a valid work-
quantifier for arbitrary sets P .

Indeed, in the next chapter, we will show the following much stronger result:

Theorem 4.6. If we consider as free transitions those induced by Gibbs-preserving maps,
then the non-equilibrium free energy ∆Fβ is (up to a constant) the only possible function
that is continuous on the quantum state and induces a valid work-quantifier for arbitrary
sets P of quantum states and Hamiltonians under respecting Axioms 1 and 3.

Properly accounting for the built-up of correlations therefore allows us to essentially
show that there is only one sensible universal work-quantifier, namely the non-equilibrium
free energy. Importantly, we have singled out the free energy without making any refer-
ence to a thermodynamic limit, but it followed from considerations about how to take into
account correlations.

4.8 Probabilistic work

From a general point of view, the results in this chapter can be used to constrain possi-
ble work-quantifiers in almost arbitrary resource theories once operational tasks can be
described as state-transitions within specified sets of states P . In this last section, let me
briefly comment on how the notion of probabilistic work fits into the framework.

Probabilistic work, with which fluctuation theorems are concerned (see, e.g., section 2.5),
is concerned with associating a probability distribution of work to a given process. This
requires that there is some probabilistic component to this process and it furthermore re-
quires that in every run of the process a definite work-value can be associated. In the
usual example of fluctuation relations, the probabilistic component is given by the energy-
measurements that are being done before and after a previously specified protocol is im-
plemented on a system. The definite work-value that is associated to a single run is simply
the difference of the outcomes of the measurements.

In the language of this chapter, such a scenario can be translated as Arthur giving to Mer-
lin a system in a known state ρα with some probability P(α) and Merlin returning to Arthur
the system in state ργ with conditional probability P(γ|α). For example, Merlin could ran-
domly choose a process that he implements in his lab, with the probability for the different
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process depending on α. Or he could implement a process, which contains a probabilistic
element such as an energy measurement. In any case, the work-valueW(ρα → ργ) occurs
with probability P(γ, α) = P(γ|α)P(α) and the average work-value is given by

〈W〉 = ∑
α,γ

P(γ, α)W(ρα → ργ). (4.30)

Probabilistic work is thus incorporated completely naturally in the framework independent
of the set P . Note however, that the average work-value 〈W〉 cannot be calculated as an
"average transition". In particular

〈W〉 6=W
(

∑
α

P(α)ρα →∑
γ

P(γ)ργ

)
. (4.31)

In general, the right-hand side need not even be defined since P is in general not a convex
set and therefore ∑α P(α)ρα is in general not contained in P . As an example, suppose
P only contains energy-eigenstates and Arthur always comes with the ground state |E0 〉
to Merlin. Then Merlin returns the system in the energy-eigenstate |Ei 〉 with probability
wi := e−γEi /Zβ

6. Furthermore suppose that the work-quantifier is simply given by the6 For example, Merlin simply
thermalizes the system and

then measures the energy.
non-equilibrium free energy ∆Fβ. Then in every run, Arthur pays an amount of money Ei
to Merlin with probability wi. In particular, on average Arthur pays to Merlin the amount
of money Eγ = ∑ Eiwi. However, the average outcome state of Merlin’s action is sim-
ply a thermal state at the environment temperature. Thus, for Merlin to be able to claim
the money, he has to make sure that Arthur’s system is in a known energy-eigenstate at
the end of each run of the process, which forces him to implement a projective energy
measurement. Otherwise, Arthur would demand compensation for the thermalization of
his valuable work-storage device. Since projective energy measurements are costly from a
thermodynamic point of view, Merlin cannot get rich using this strategy (see section 3.6).

4.9 Summary

As miniaturization of machines progresses forward it is becoming increasingly interesting
to ask how to quantify the performance of machines on the micro-scale. In this chap-
ter, I discussed an operational approach to this problem by formulating it as a transaction
between two players in the language of a resource theory. To make the discussion more
concrete I worked in the resource theory of thermodynamics and considered the problem
of measuring "thermodynamic work" from the microscopic perspective. Demanding that
a possible work-quantifier fulfills natural Axioms then allowed us to derive surprisingly
stringent conditions on such work-quantifiers, such as additivity and monotonicity under
free transitions. A particular example of a possible work-quantifier in the setting of thermo-
dynamics is given by the non-equilibrium free energy. Nevertheless, this does by no means
imply that it is the only such quantifier. Indeed, possible quantifiers depend crucially on
the set P that encodes the operational task at hand.

We discussed in detail the role of correlations for the emergence of the second law of
thermodynamics. In the next chapter, we will see that this approach yields a new axiomatic
derivation of the relative entropy and free energy. This discussion will also become impor-
tant again in chapter 8, where we discuss quantitative arguments that show that it is difficult
to prepare complex systems in states that do not equilibrate.

The general Axioms put forward in this chapter, as well as the stringent conditions on
possible quantifiers for state-transitions in resource theories, are broadly applicable also
to other resource theories that allow for catalysts. It is an interesting avenue for further
research to explore the results in this chapter in the context of different resource theories.
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THE NON-EQUILIBRIUM FREE ENERGY ∆Fβ is one of the central quantities in non-
equilibrium thermodynamics. We have already seen it appearing frequently in the previous
chapters, and it will continue to show up in later chapters related to work extraction and
the minimum work-principle. From the perspective of resource theories, this is surprising,
since it is just one of many possible monotones. Indeed, the results of chapter 3 show
that other monotones play important roles for fundamental thermodynamic tasks such as
low-temperature cooling.

It is sometimes argued that the non-equilibrium free energy ∆Fβ only plays an important
role in the thermodynamic limit. The reason is given by the following argument. Suppose
one wants to prepare a large number n of copies of ρ. In such a setting it is often reasonable
to allow for an arbitrary small error in the final state, i.e., allow for protocols that prepare a
state ρ′n that is ε close to ρ⊗n in trace-norm. In such a setting, the densities of the Rényi-
divergences Dα of the final state ρ′n all converge to the non-equilibrium free energy density
if one first takes the limit n → ∞ and then the limit ε → 0 [49, 69]. Thus, it seems
that only the non-equilibrium free energy remains as a valid monotone. Similar results are
expected to hold true if one weakens the assumption that the final state is uncorrelated to
assuming that it is weakly correlated. 1 1 Strictly speaking, even

for very large n it is not the
densities of the monotones that
determine the possibility of a
transition in the framework of
thermal operations, but their
absolute value. It could thus
in principle be the case that
contributions in the monotones
that scale sub-linearly with n
indeed play important roles in
some cases. This constitutes
an interesting open problem.

On the other hand, the discussion about the role of correlations and the second law in
chapter 4 showed that the non-equilibrium free energy can be singled out from the other
monotones based on Rényi-divergences by an argument on how one treats the build-up of
correlations in models of free transitions. This choice in turn determines whether mono-
tones have to be super-additive or not. No thermodynamic limit is required to make this
argument, but it essentially rests on the subjective choice of what an experimentalist con-
siders natural.

In this chapter2, I will present a rigorous argument which uniquely singles out the non-

2 This chapter is based on
work together with Rodrigo
Gallego and Jens Eisert
published in [7].

equilibrium free energy based on arguments similar to those which entered the discussion
of the role of correlations for valid work quantifiers. From a technical perspective, the
result is based on results by Matsumoto [155] about the quantum relative entropy, which
were proven using concepts from quantum hypothesis testing [156, 157]. The result by
Matsumoto allows us to prove the following new axiomatic characterization of the quantum
relative entropy on finite dimensional Hilbert-spaces.

Theorem 5.1 (Uniqueness theorem). Let f (ρ, σ) be a function on pairs of density matrices
such that supp(ρ) ⊆ supp(σ). Furthermore, let f have the following properties:

1. Continuity: For fixed σ, the map ρ 7→ f (ρ, σ) is continuous.
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2. Data-processing inequality: For any quantum channel T we have,

f (T(ρ), T(σ)) ≤ f (ρ, σ). (5.1)

3. Additivity:
f (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = f (ρ1, σ1) + f (ρ2, σ2). (5.2)

4. Super-additivity: For any bipartite state ρ1,2 with marginals ρ1, ρ2 we have

f (ρ1,2, σ1 ⊗ σ2) ≥ f (ρ1, σ1) + f (ρ2, σ2). (5.3)

Then f (ρ, σ) = CD(ρ‖σ), with C ≥ 0 and D the quantum relative entropy.

Before giving the proof of this result in section 5.4, I will discuss in detail how it can
be related to thermodynamics to single out the non-equilibrium free energy. An essential
step in this argument will be to broaden our class of free transitions from the model of
thermal operations to the class of correlated-catalytic transitions using Gibbs-preserving
maps [1, 2, 46, 158]. In the next section, I will first describe these generalized transitions
as well as related transitions, which have been introduced in [56] and which I will call
marginal-catalytic transitions. Then I will use the above result about the relative entropy
to prove that the only continuous and additive monotone of such transitions is given by the
non-equilibrium free energy.

5.1 Gibbs-preserving maps

So far, we have used the model of thermal operations to treat thermodynamics as a quan-
tum mechanical resource theory. From a fundamental perspective, thermal operations are
indeed very natural, since they essentially only rely on energy-conservation and unitarity
of quantum mechanics together with the fact that thermal systems are well-described by
Gibbs-states. As an important consequence thermal operations have the property that they
cannot bring a system out of equilibrium: Any thermal operation at environment tempera-
ture 1/β, represented by a quantum channel Gβ, has the property that it leaves the Gibbs
state of the system Hamiltonian invariant:

Gβ(ωβ(HS)) = ωβ(HS). (5.4)

This is indeed a necessary property for any sensible class of free operations in a resource
theory that is supposed to model thermodynamics. If it were not true, but Gibbs states at
the environment temperature were considered free states, it would be possible to produce
an arbitrary amount of non-equilibrium states for free from the environment, obviously
violating the second law of thermodynamics.

It is, however, known that thermal operations are not the largest class of free operations
that are Gibbs-preserving with respect to the system Hamiltonian [158]. This is due to the
fact that they commute with the time-evolution on the system and hence cannot increase
the degree of coherence of the state on the system. We will now enlargen our class of
free operations by simply allowing for all quantum channels that leave Gibbs-states of the
system Hamiltonian invariant. Furthermore, as in chapter 4, we will allow not only changes
of the quantum state but also of the Hamiltonian. From the level of thermal operations this
can be motivated by considering a situation where we apply the energy-conserving unitary
U on the system and bath, but instead of tracing out the bath afterwards, we trace out the
system and some part of the bath, leaving us with a new state on this part of the bath, which
evolves according to its own Hamiltonian.

To implement the possibility to change a Hamiltonian formally in the framework of
Gibbs-preserving maps, we can define a Gibbs-preserving map (GP-map) as a function
(ρ, H) 7→ (σ, K) = Gβ(ρ, H) such that

Gβ(ωβ(H), H) = (ωβ(K), K). (5.5)

The function thus maps Gibbs-states to Gibbs-states, preserving the temperature but possi-
bly modifying the Hamiltonian. This condition can also be expressed as follows: We can
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define GP channels as GH
β (ωβ(H)) = ωβ(K(H)) for all H, and a corresponding map

between Hamiltonians as Ḡβ(H) = K so that

Gβ(ρ, H) = (GH
β (ρ), Ḡβ(H)). (5.6)

With this notation, condition (5.5) is given by

GH
β (ωβ(H)) = ωβ

(
Ḡ(H)

)
. (5.7)

GP-maps Gβ are not only a natural extension of GP-channels Gβ for the case where Hamil-
tonians are modified, but one can also see that any GP-map can be implemented if one
is given access to a GP-channels and arbitrary ancillary systems in Gibbs states. This is
formalized by the following Lemma.

Lemma 5.2 (Implementation of GP maps [2]). Any map Gβ fulfilling (5.5) acting on a
system S can be implemented by adding an ancillary system A in the Gibbs state (ωβ,K, K)
and applying a GP channel Gβ to the entire compound. More formally, we find that

Gβ(ρS, HS) := (σ, K) =
(
TrS(Gβ(ρ⊗ωβ(K))), K

)
. (5.8)

For the rest of the chapter, I will say that there is a free transition p  q between two
objects p = (ρ, H) and q = (σ, K) if there is a GP-map Gβ such that Gβ(ρ, H) = (σ, K).

The concept of GP-maps in fact allows us to interpret any quantum channel T as a GP-
map. Suppose a quantum channel maps the Gibbs-state ωβ(H) to the density matrix ρ and
for simplicity also assume that ρ has full rank. We can always define the Hamiltonian

Hβ
ρ := − 1

β
ln ρ + C(ρ)1, (5.9)

where C(ρ) is any real-valued function. With this definition, any object of the form (ρ, Hβ
ρ )

is a Gibbs-object representing a system in thermal equilibrium. Similarly, given any quan-
tum channel T we can define a derived map on Hamiltonians given by

T̄ (H) := Hβ

T (ωβ(H))
. (5.10)

Then T(ρ, H) = (T (ρ), T̄ (H)) defines a Gibbs-preserving map. The above argument
only works if ρ = T (ωβ(H)) has full rank. There clearly are quantum-channels T that
reduce the rank of full-rank states. This is not a problem, however. To see this, we can
make use of the following fact about quantum channels:

Lemma 5.3 (Rank-decreasing quantum channels). Let T : B(H)→ B(H′) be a quantum
channel and σ any full-rank state. If T(σ) is only supported on a subspace P ⊆ H′, then
T(ρ) is supported only within P for any ρ.

Proof. The proof is given in section 14.4.1.

By the previous Lemma, any quantum channel that maps a full-rank state σ into a
state T (σ) without full rank simply maps all states to the smaller Hilbert space P =
supp(T (σ)) and should be considered as a map from states on H to states on P instead.
Thus, we can simply take the position that quantum channels which decrease the rank on
some state map from a larger Hilbert-space to a smaller one but always map full-rank states
to full-rank states.

Above we have generalized the concept of thermal operations and Gibbs-preserving
channels to Gibbs-preserving maps, which also allow to change the Hamiltonian. We have
also seen how any quantum channel can be interpreted as a GP-map by adjusting Hamil-
tonians accordingly. In the rest of the chapter, free transitions will always be interpreted
as those induced by GP-maps. I will now go on to also broaden the notion of catalytic
free transitions and to catalytic free transitions where it is allowed to build up correlations
between the system and catalyst or within the catalyst. This will be an essential step to
single out the non-equilibrium free energy.



58 CHAPTER 5. UNIQUENESS OF THE RELATIVE ENTROPY AND FREE ENERGY
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Figure 5.1: Illustration of correlated-catalytic and marginal-catalytic free transitions. Triangles denote catalysts and rectangles the system of interest.
Grey, dashed lines indicate the possibility of correlations between the systems connected by the lines. Left figure: In the case of correlated-catalytic
free transitions the system can become correlated with the catalyst, while the catalyst remains unchanged. Right figure: In the case of marginal-
catalytic free transitions no correlations are established between the system and the catalyst, but correlations may be established between parts of
the catalyst while the parts remain unchanged.

5.2 Catalysts and Correlations

Just as in previous chapters, in what follows a catalytic free transition is a free transition of
the form p⊗ r q⊗ r and denoted by p 

c
q. Here, I use the same notation as in the last

chapter, i.e.,
(ρ, H)⊗ (χ, R) = (ρ⊗ χ, H ⊗ 1 + 1⊗ R). (5.11)

We have already seen in the last chapter, that in some situations it might be natural to con-
sider also a larger class of free transitions in which the catalyst can become correlated with
the system. Let us now define such transitions formally (see Fig. 5.1 for an illustration).

Definition 5.4 (Correlated-catalytic free transition). A transition

(ρS, HS)→ (σS, KS) (5.12)

is called a correlated-catalytic free transition if there exist a GP map G and a system A
described by the object (γA, RA) such that

G
(
(ρS, HS)⊗ (γA, RA)

)
= (η, KS + RA), (5.13)

where TrA(η) = σS and TrS(η) = γA. In the following such a transition will be denoted
by

(ρS, HS) cc
(σS, KS). (5.14)

Correlated-catalytic free transitions have the property that the catalyst remains unchanged,
but there is a possible build-up of correlations between the catalyst and the system at hand.
This allows for a strictly larger set of transitions, which are considered "free".

The importance of the careful treatment of correlations related to catalysts has in fact
been found before in the literature. In Ref. [105], the authors introduced a notion of mul-
tipartite catalysts, in which the different parts of the catalyst remain unchanged, but can
become correlated. Formally, they can be defined in the following way.

Definition 5.5 (Marginal-catalytic free transition [105]). A transition

(ρS, HS)→ (σS, KS) (5.15)

is called a marginal-catalytic free transition if there exist a GP map G and systems A1, . . . , Ak
described by the object (γA, RA) =

⊗k
i=1(γ

i, Ri) such that

G
(
(ρS, HS)⊗ (γA, RA)

)
= (σS, KS)⊗ (γ̃A, RA), (5.16)

where Tr|Ai
(γ̃A) = Tr|Ai

(γA) for all i ∈ (1, . . . , k). In the following such a transition
will be denoted by

(ρS, HS) mc
(σS, KS). (5.17)
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In the case of marginal-catalytic free transitions the system A does not remain un-
changed, but only its local marginals. In this sense, it is not truly a catalyst, but a catalyst
on its reduced states.

In the case of correlated-catalytic transitions, on the other hand, the catalyst truly re-
mains unchanged, however it builds up correlations with the system at hand. There is
therefore no guarantee that it can be used to implement transitions on the system again.
But it can be used as a catalyst for transitions implemented on different system with which
it is still uncorrelated.

It is natural to expect that both kinds of transitions indeed allow for a larger set of free
transitions, since the initial lack of correlations is "used up". Indeed, it was shown in
Ref. [105] that marginal-catalytic free transitions provide an advantage over catalytic free
transitions. By now, we know that in fact both sets of free transitions are identical. I will
comment in more detail on this later.

There is one kind of transition which is both a correlated-catalytic free transition as
well as a marginal-correlated catalytic free transition and which plays a crucial role in the
following. Suppose we have a bi-partite, but non-interacting system which is initially in a
correlated state ρ12. Then

(ρ12, H1 + H2)  cc,mc
(ρ1 ⊗ ρ2, H1 + H2). (5.18)

In the case of correlated-catalytic transitions this follows by simply swapping a copy of ρ1
with the corresponding sub-system. In the case of marginal-catalytic operations it follows
by simply having as initial catalyst ρ1 ⊗ ρ2 and swapping the whole catalyst with the sys-
tem. In both models of catalytic free transition it is hence for free to de-correlate a system.
This has importnat consequences for possible monotones.

5.3 Monotones and the free energy

Having properly defined the free transitions that we will consider for the rest of the chapter,
let us now turn to the monotones. In the end we want to argue that any reasonable mono-
tone of correlated-catalytic free transitions and marginal-catalytic free transitions has to be
proportional to ∆Fβ by using theorem 5.1. So far we have defined montones Mβ as func-
tions on pairs of quantum states and Hamiltonians, which we called objects. The relative
entropy is a function on pairs of quantum states instead. We therefore have to first pass to
monotones defined as functions on pairs of quantum states. To do that, in the following we
will only consider monotones that are additive, i.e., they fulfill

Mβ(ρ1 ⊗ ρ2, H1 ⊗ 1 + 1⊗ H2) = Mβ(ρ1, H1) + Mβ(ρ2, H2).

Such monotones automatically have three very natural properties:

Lemma 5.6 (Normalization,positivity and gauge-invariance). Let Mβ be an additive mono-
tone. Then:

1. Mβ(ωβ(H), H) = 0 for all H.

2. Mβ(ρ, H) ≥ 0.

3. Mβ(ρ, H) = Mβ(ρ, H + λ1) for all λ ∈ R, ρ and H,

Proof. We first prove property 1. Since tracing out and attaching thermal states are free
transitions, we have by additivity that

Mβ(ωβ(H1), H1) ≥ Mβ(ωβ(H1), H1) + Mβ(ωβ(H2), H2) ≥ Mβ(ωβ(H1), H1).
(5.19)

But then
Mβ(ωβ(H1), H1) = Mβ(ωβ(H1), H1) + Mβ(ωβ(H2), H2) (5.20)

for arbitrary H1, H2. We thus conclude Mβ(ωβ(H), H) = 0 for all H. Positivity then
follows immediately, since bringing the system to thermal equilibrium is a free transition:
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Mβ(ρ, H) ≥ Mβ(ωβ(H), H) = 0. To prove property 3 we use a similiar trick. First note
that

(H1 + λ1)⊗ 1 + 1⊗ H2 = H1 ⊗ 1 + 1⊗ (H2 + λ1), (5.21)

and ωβ(H) = ωβ(H + λ1). This allows us to use additivity and Mβ(ωβ(H), H) = 0 to
prove property 3:

Mβ(ρ, H + λ1) = Mβ(ρ⊗ωβ(H), (H + λ1)⊗ 1 + 1⊗ H)

= Mβ(ρ⊗ωβ(H), H ⊗ 1 + 1⊗ (H + λ1))

= Mβ(ρ, H) + Mβ(ωβ(H + λ1), H + λ1) = Mβ(ρ, H). (5.22)

We can now make use of gauge-invariance to pass from functions defined on pairs of
quantum states and Hamiltonians to monotones Mβ defined on pairs of quantum states.
We now simply defineMβ using the modular Hamiltonian (5.9) as

Mβ(ρ, σ) := Mβ(ρ, Hβ
σ ). (5.23)

Since Mβ is gauge-invariant, this mapping is one-to-one andMβ inherits additivity in the
sense of theorem 5.1. So far,Mβ(ρ, σ) is only defined on all pairs of quantum states with
σ being full-rank. However, we can naturally define it whenever supp(ρ) ⊆ supp(σ) by
setting

Mβ(ρ, σ) =Mβ(ρ|supp(σ), σ|supp(σ)).

In the following, I will say thatMβ is a monotone of (correlated,marginal)-catalytic free
transitions if Mβ is such a monotone.

So far we have only made use of the fact that we require our monotones to be monotonic
under free transitions but not under (correlated,marginal)-catalytic free transitions. Let us
now make use of that.

Lemma 5.7 (Super-addivity from correlations). Let Mβ be an additive monotone of free
transitions. Then it is a monotone of (correlated,marginal)-catalytic free transitions if and
only if it is super-additive, i.e., fulfills

Mβ(ρ12, H1 ⊗ 1 + 1⊗ H2) ≥ Mβ(ρ1 ⊗ ρ2, H1 + H2). (5.24)

Proof. The free transition (ρ12, H1 + H2)  cc,mc
(ρ1 ⊗ ρ2, H1 + H2) immediately im-

plies monotonicity under (correlated,marginal)-catalytic free transitions requires super-
additivity. For the converse direction, consider first the case of correlated-catalytic tran-
sitions. Suppose that (ρS ⊗ ρC, HS + HC) (ρ′SC, H′S + HC) with ρ′C = ρC. Then

Mβ(ρS, HS) + Mβ(ρC, HC) = Mβ(ρS ⊗ ρC, HS + HC) (5.25)

≥ Mβ(ρ
′
SC, H′S + HC) (5.26)

≥ Mβ(ρ
′
S, H′S) + Mβ(ρC, HC). (5.27)

Cancelling Mβ(ρC, HC) we thus obtain Mβ(ρS, HS) ≥ Mβ(ρ
′
S, H′S). The proof for

marginal-catalytic free transitions follows in complete analogy by using super-additivity
on the sub-systems of the catalyst.

Again, the function Mβ inherits super-additivity from Mβ, but now in the sense of
theorem 5.1.

In section 5.1 we have seen that any quantum channel T can be interpreted as a GP-map.
Let us now calculate the consequence of this observation. Using the definition ofMβ and
(5.10) we obtain

Mβ(T(ρ), T(σ)) = Mβ(T(ρ), Hβ

T(σ))

= Mβ(T(ρ), T(Hβ
σ )) ≤ Mβ(ρ, Hβ

σ )

=Mβ(ρ, σ). (5.28)
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We can therefore conclude thatMβ fulfills the data-processing inequality. Let us summa-
rize our findings in a lemma.

Lemma 5.8 (Properties of monotones). Let Mβ be an additive monotone of (correlated,marginal)-
catalytic free transitions. Then the associated function Mβ on pairs of quantum states
(with the support of the first argument contained in that of the second argument) has the
following properties:

1. Positivity:Mβ(ρ, σ) ≥ 0 andMβ(ρ, ρ) = 0,

2. Data-processing inequality: For any quantum channel T, we haveMβ(ρ, σ) ≥Mβ(T(ρ), T(σ)).

3. Additivity:Mβ(ρ1 ⊗ ρ2, σ1 ⊗ σ2) =Mβ(ρ1, σ1) +Mβ(ρ2, σ2),

4. Super-additivity: For any bipartite state ρ1,2 with marginals ρ1, ρ2 we have

Mβ(ρ1,2, σ1 ⊗ σ2) ≥Mβ(ρ1, σ1) +Mβ(ρ2, σ2). (5.29)

Comparing with theorem 5.1 we can then finally conclude our main result.

Corollary 5.9 (Uniqueness of the free energy). Let Mβ a monotone of (correlated,marginal)-
catalytic free transitions that continuously depends on the quantum state. Then Mβ(ρ, H) =
C∆Fβ(ρ, H) for some C ≥ 0.

Proof. By continuity in the first argument, we obtain from theorem 5.1 thatMβ(ρ, σ) =
CD(ρ‖σ). But then Mβ(ρ, H) =Mβ(ρ, ωβ(H)) = C∆Fβ(ρ, H).

5.4 Proof of theorem 5.1

To prove the uniqueness theorem 5.1, we first have to set up a definition. Let (ρ, σ) be a
pair of states on a finite-dimensional Hilbert space H and {ρ′n} be a sequence of states on
the Hilbert spaces H ⊗n. Let us define a function f on pairs of quantum states to be lower
asymptotically semi-continuous with respect to σ if

lim
n→∞

∥∥ρ⊗n − ρ′n
∥∥

1 = 0 (5.30)

implies

lim inf
n→∞

1
n
( f (ρ′n, σ⊗n)− f (ρ⊗n, σ⊗n)) ≥ 0. (5.31)

In Ref. [155], Matsumoto proved results about the quantum relative entropy, which can
be summarized as follows.

Theorem 5.10 (Matsumoto). Let f fulfill the data-processing inequality, additivity and be
lower asymptotically semi-continuous with respect to all σ. Then f ∝ S.

theorem 5.1 then follows if we can deduce that any continuous and additive monotone
of (correlated,marginal)-cataltic transitions is lower asymptotically semi-continuous. This
is shown in the subsequent Lemma, which finishes the proof.

Lemma 5.11 (Lower asymptotic continuity from super-additivity). . Let f be a function
on pairs of quantum states with the following properties,

• The map ρ 7→ f (ρ, σ) is continuous for any fixed σ.

• Additivity: f (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = f (ρ1, σ1) + f (ρ2, σ2).

• Super-additivity:
f (ρ12, σ1 ⊗ σ2) ≥ f (ρ1 ⊗ ρ2, σ1 ⊗ σ2). (5.32)

Then f is lower asymptotically semi-continuous with respect to any σ.
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Proof. Let {ρ′n} be a sequence of states such that ‖ρ′n − ρ⊗n‖1 → 0. Since the trace norm
fulfills the data-processing inequality, we know that ||ρ′n,i − ρ||1 → 0, where ρ′n,i denotes
the marginal of ρ′n on the i-th tensor-factor. Hence, the marginals converge to ρ. From the
properties of f , we furthermore see that

1
n
(

f (ρ′n, σ⊗n)− f (ρ⊗n, σ⊗n)
)
≥ 1

n ∑
i

(
f (ρ′n,i, σ)− f (ρ, σ)

)
≥ min

i
{ f (ρ′n,i, σ)} − f (ρ, σ)

n→∞−→ 0, (5.33)

where the limit follows from continuity and the second line from additivity and super-
additivity.

5.5 Conclusions and outlook

The quantum relative entropy is an ubiquitious quantity in quantum information [159] and
related fields, appearing in as diverse situations as quantum hypothesis testing [156, 157,
160], entanglement theory [161], recovery of quantum information [162] and even quantum
gravity [163].

In this chapter, I presented an axiomatic way to derive the quantum relative entropy and
non-equilibrium free energy from the point of view of resource theories. The essential prop-
erties which single out the quantum relative entropy is the monotonicity under (quantum)
channels together with extensivity and super-additivity. We have seen how super-additivity
follows once we allow catalysts to become correlated in any resource theory that allows for
swapping of sub-systems. To uniquely single out the usual von Neumann free energy thus
in a sense requires the forgetting of correlations between systems and simply treating them
as uncorrelated. This is interesting from several point of views.

First, note that we never required that any of the systems is macroscopic in any sense.
Thus, the standard von Neumann free energy, and consequently the von Neumann entropy,
can be derived without referring to macroscopic systems. Rather, we have to forget infor-
mation about the systems of question. This theme will be picked up in the next chapter.
Nevertheless, note that the idea that correlations can be disregarded fits very well to the
case of macroscopic physics: Macroscopic systems usually have a finite correlation length.
Two macroscopic bodies are therefore only correlated roughly in the region where they
are in contact, which is usually very small compared to their volume. Thus, for practical
purposes one can usually neglect the correlations between macroscopic bodies.

Second, from an historical point of view, it is also interesting to note that disregarding
correlations between particles was precisely the assumption that Boltzmann needed (in the
"Stosszahlenansatz") to derive his famous H-theorem [25, 38, 39].

Third, as we have seen, the non-equilibrium free energy seems to be the only monotone
of catalytic thermal operations with natural properties such as extensivity and continuity
once we allow catalysts to become correlated. It is then natural to ask whether a decrease
of the non-equilibrium free energy is also a sufficient criterion for a state transition under
these operations. In the case of marginal-catalytic free transitions, this is indeed the case
for quasi-classical states, as was shown in Ref. [105]. We conjectured that this was true also
for correlated-catalytic transitions in Ref. [7], where we published the results described in
this chapter. By now this question has been answered in the affirmative for quasi-classical
states in Ref. [164]: Whenever ∆Fβ(ρ) ≥ ∆Fβ(σ) is fulfilled for two states ρ and σ that
are diagonal in the energy-eigenbasis, then ρ can be mapped to σ by a correlated-catalytic
operation arbitrarily well. Thus, correlated-catalytic free transitions completely character-
ize the non-equilibrium free energy and vice-versa. In chapter 8 we will see that this result
also has important implications for the problem of equilibration in many-body physics: It
precludes the existence of a "second law of Equilibration" in a well-defined sense.
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IN THE PREVIOUS CHAPTERS, we have used the framework of catalytic thermal op-
erations to derive the respective results. This approach operates on the level of quantum
states of all the involved systems: all the thermodynamic state functions and thermody-
namic bounds derived in this formalism are functions of the actual, microscopic quantum
state. This leads to additional, more restrictive laws of thermodynamics when compared
to the case of phenomenological thermodynamics. In particular, we found that if one pre-
cisely accounts also for the build-up of correlations, many different entropy functions play
a significant role. Of course, such a treatment is extremely idealized. In many situations, it
would be both infeasible as well as undesirable to keep track of the exact microstates of the
systems at hand, but one would only have partial information about the physical systems at
hand.

In this chapter 1, I introduce and discuss a resource-theoretic formulation of such a sce- 1 This chapter is based on
joint-work with Paul Boës,
Jens Eisert and Rodrigo Gal-
lego, published in Ref. [11].

nario under partial information. We assume that the underlying physical dynamics is given
by unitary quantum mechanics as before and explore what kind of thermodynamic laws
emerge when an experimentalist, which we again call Alice, only has limited knowledge
about the quantum systems at hand, in the form of the expectation values of a small set of
observables, and is constrained by the conservation of energy on the level of expectation
values. Since the precise microstates of the systems are unknown to Alice, any thermal
machine that she builds then has to work for all the microstates that are compatible with
the partial information. In other words, such thermal machines shall be independent of the
precise microstates, both for the working system as well as for any heat bath that she uses.

To make this more explicit, imagine Alice having some thermal machine that can trans-
form a system in one particular state ρ with average energy e to a state ρ( f ) with average
energy e( f ). To achieve this, the thermal machines uses access to a thermal environment at
some temperature. But for some reason, Alice cannot know the precise quantum state of
the system, but at any time only knows the average energy of the system. It can then happen
that the actual state of the system is σ, still with the same average energy e, Alice inputs
the system into the machine and the machine produces a state σ( f ), which is completely
different from ρ( f ). In particular, the state σ( f ) could have a different average energy than
e( f ). In such a case, the thermal machine would be completely useless for Alice, since she
would never know what the machine would do to a system that it acts upon.

In this chapter, we therefore demand that the machine has to produce the same outcome
for all states ρ that have the same average energy e. This introduces an additional restric-
tion on what such machines can do. Furthermore, we also do not assume that the thermal
environment is described by Gibbs states, but that the machine also has to work if only the
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average energy of the systems from the environment corresponds to the energy of thermal
systems at the corresponding temperature. We then derive what kind of state transforma-
tions can be implemented by Alice using such thermal machines. The main result in this
chapter can be stated informally in the following way:

Alice can do exactly those state-transformations that she could do if the microstates of all
the systems at hand were given by maximum entropy ensembles compatible with the partial
information.

From this statement then the usual phenomenological laws of thermodynamics can be de-
rived on the basis of maximum entropy ensembles.

For example, in the case discussed above, where only the average energy is known, it
would then be completely equivalent, in terms of a precise, operationally defined notion of
equivalence that I will introduce below, to assign thermal states of the form

ωβ(e)(H) (6.1)

to the system, where the inverse temperature β(e) is chosen such that Tr(ωβ(e)(H)H) = e.
This result provides a new justification of assigning maximum entropy ensembles, like
ωβ(e)(H), to systems of which one only has partial information about and with which one
wants to implement thermodynamic operations. As an immediate consequence we will see
that Alice can bring a system from one macrostate (e, H), described by the average energy
e with respect to the Hamiltonian H, to a different macrostate (e′, H) if and only if the
Clausius inequality is fulfilled, where the entropy is given by the von Neumann entropy of
the corresponding thermal states ωβ(e)(H) and ωβ(e′)(H).

6.1 Macrostates and macrostate operations

I now formalize the notion of thermodynamic operations under partial information. For
simplicity, I only discuss the case where the partial information about the system is given
by the expectation value of the average energy. The formalism can straight-forwardly be
generalized to situations in which a macrostate is defined by the expectation value of some
commuting set of observables (for details see Ref. [11]). In this case the thermal states
ωβ(H) are replaced by the Generalized Gibbs ensemble (GGE)

ω~λ({Q
(j)}) = e−∑j λjQ(j)

Z
, (6.2)

where the operators Q(j) denote the commuting, conserved quantities (charges) and λj take
the role of generalized inverse temperatures, which have to be chosen in such a way that the
expectation values of the charges Q(j) match with prescribed values q(j) (see chapter 10 for
an introduction to Generalized Gibbs ensemble and a discussion of thermodynamics under
Generalized Gibbs ensembles in closed quantum systems).

In the following we consider finite-dimensional quantum systems. We assume that ev-
ery system has assigned to it a Hamiltonian H. A macrostate is then the assignment of an
energy expectation value e to the system. We can always view a macrostate as an equiva-
lence class of microstates, namely all those microstates that have energy-expectation value
e. A macrostate can hence be considered as the set

(e, H) := {ρ | Tr(ρH) = e } , (6.3)

where ρ runs over normalised density matrices. We now wish to formulate a precise
resource-theoretical framework of thermodynamic operations on the level of macrostates,
similar to the thermal operations of the previous chapters. We therefore again assume that
an experimentalist has access to arbitrary systems of her choice from the environment, i.e.,
can choose a Hamiltonian HE. The average energy of this system is of course fixed since
we assume that the system is in equilibrium with the rest of the environment. There is hence
some function on Hamiltonians eβ(HE) that determines the energy of systems taken from
the environment. I furthermore assume that systems that are taken from the environment
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are uncorrelated from the working system on the level of microstates, i.e., on the level
of their density-matrices. By iteratively taking systems from the environment, the most
general initial macrostate for a thermodynamic operation is then given by

(e, H)
⊗

i
(eβ(HEi ), HEi ). (6.4)

Note that the function eβ is completely unspecified so far. In particular, we have not made
the assumption that it is given by the energy of a Gibbs state at some inverse temperature
β.

Given initial macrostates of the above form, we now first ask which macrostates on the
system can be reached by acting with a unitary that preserves the total average energy.
Importantly, since we only know the initial macrostates of the systems, all compatible
microstates have to be mapped to the right macrostate to arbitrary precision. Formally, we
can then define macrostate-to-macrostate operations in the following way.

Definition 6.1 (Macrostate-to-macrostate operations). We say that a macrostate (e, H) can
be mapped to a macrostate (e′, H) by a macrostate-to-macrostate operation if for any ε > 0
and any δE > 0 there exist N(ε, δE) environment systems with Hamiltonians HEi and a
unitary U (depending on ε and δE) such that∣∣∣∣∣Tr

(
H U (e, H)

⊗
i
(eβ(HEi ), HEi )U†

)
− e′

∣∣∣∣∣ < ε, (6.5)

and the energy is conserved to arbitrary precision:∣∣∣∣∣Tr

(
(H + ∑

i
HEi )U (e, H)

⊗
i
(eβ(HEi ), HEi )U†

)
− (e′ + ∑

i
eβ(HEi ))

∣∣∣∣∣ < δE.

(6.6)

In the definition we used set notation, which means that the inequalities have to hold
for every member of the macrostates with the same unitary U. It is in fact a priori not
clear from the definition that any non-trivial state transition on the level of macrostates is
possible. In fact, quite the contrary is true. It is possible to show that unless

eβ(HE) = Tr(ωβ′(HE)HE) (6.7)

for some β′, any macrostate can be reached. This result already shows that the only valid
choice of function eβ is given by choosing eβ(HE) = Tr(ωβ(HE)HE), since any other
choice completely trivializes the resource theory. The proof-sketch of this result is given in
section 14.5.3. Intuitively, the proof works by showing that one can distill from the envi-
ronment two heat baths at different temperatures and use these to perform any macrostate-
to-macrostate transition by running a thermal machine between these two heat baths.

We use this result to fix the energy-function eβ(H) = Tr(ωβ(H)H) for the follow-
ing considerations and investigate what kind of state-transitions are possible under this
assumption. For concreteness, we also assume that β > 0.

To investigate in more detail what can be done by having initial knowledge only about
macrostates, we now introduce a further kind of operations. These are operations that map
to microstates by requiring that the unitary U not only maps the system always to the same
macrostate, but also to the same microstate.

Definition 6.2 (Macrostate operations). We say that a macrostate (e, H) can be mapped
to the microstate (ρ( f ), H) by a macrostate operation, if for any ε > 0 and any δE > 0,
there exist N(ε, δE) environment systems with Hamiltonians HEi and a unitary U, which
in general depends on ε and δE, such that∥∥∥∥∥TrE

(
U (e, H)

⊗
i
(eβ(HEi ), HEi )U†

)
− ρ( f )

∥∥∥∥∥
1

< ε, (6.8)

and the energy is conserved to arbitrary precision:∣∣∣∣∣Tr

(
(H + ∑

i
HEi )U (e, H)

⊗
i
(eβ(HEi ), HEi )U†

)
− (e + ∑

i
eβ(HEi ))

∣∣∣∣∣ < δE. (6.9)
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Figure 6.1: The figure illustrates the difference between macrostate operations and microstate operations. Left: Illustration of macrostate operations.
Closed boxes represent macrostates, i.e., systems where the microstate is unknown. Macrostate of the system and the environment are processed by
the energy-preserving unitary U which is required to output a fixed microstate for all possible microstates compatible with the macrostates (i.e., the
possible microstates inside the boxes) to arbitrary precision. Right: Illustration of microstate operations. In this case one knows the exact microstate
of all systems involved and systems from the environment are represented by Gibbs-states at fixed inverse temperature β. Again, we ask whether
the initial microstate (ρ(i), H) can be mapped to the final state (ρ( f ), H) by an energy-preserving unitary Umicro. The main result in this section is
that U exists if and only if Umicro exists for ρ(i) = ωβ(e)(H). (Figure adapted from Ref.[11].)

Figure 6.1a) provides an illustration of macrostate operations. If a macrostate (e, H) can
be mapped to the microstate (ρ( f ), H) by a macrostate operation, I will in the following
write

(e, H)
macro

// (ρ( f ), H). (6.10)

The definition of macrostate operations is stricter than that of macrostate-to-macrostate
operations. That is, if (e, H)

macro
// (ρ( f ), H) is possible with Tr(ρ( f )H) = e′, then

clearly the macrostate (e, H) can be mapped to the macrostate (e′, H) by macrostate-to-
macrostate operations.

6.2 Microstate operations and operational equivalence

The main result in this chapter will show that macrostate operations are operationally equiv-
alent to certain situations in which one exactly knows the microstates of the systems at
hand. To state the result exactly, I now introduce a further class of operations, which op-
erate on the level of microstates. They are essentially identical to thermal operations, with
the only difference that we only require that the energy is preserved on average.

Definition 6.3 (Microstate operations). We say that a microstate (ρ(i), H) can be mapped
to the microstate (ρ( f ), H) by a microstate operation, if for any ε > 0 and any δE > 0,
there exist N(ε, δE) environment systems with Hamiltonians HEi and a unitary Umicro,
which in general depends on ε and δE, such that∥∥∥∥∥TrE

(
Umicro ρ

⊗
i

ωβ(HEi )U†
micro

)
− ρ( f )

∥∥∥∥∥
1

< ε, (6.11)

and the energy is conserved to arbitrary precision:∣∣∣∣∣Tr

(
(H + ∑

i
HEi )Umicro ρ(i)

⊗
i

ωβ(HEi )U†
micro

)
− (e + ∑

i
eβ(HEi ))

∣∣∣∣∣ < δE.

(6.12)

Figure 6.1 illustrates microstate operations and compares them to macrostate operations.
In the following I write

(ρ(i), H)
micro

// (ρ( f ), H), (6.13)
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Figure 6.2: Sketch of the proof of theorem 6.5. The proof shows one way how to construct a macrostate operation from a given microstate
operation (represented by the unitary Umicro). First, the environment is used to distill microstates in the maximum entropy ensemble to arbitrary
precision from many more thermal macrostates. This can be achieved by first randomly mixing in the highly degenerate energy-eigenspaces of
many non-interacting systems and then using a central limit theorem together with typicality results for such energy-eigenspaces. The latter step
is essentially the usual derivation of the canonical ensemble: The maximally mixed state on a energy-eigenspace of many non-interacting systems
is a microcanonical state that locally looks like a canonical state. In the second step, some of these thermal microstates from the environment are
used to bring the system from the macrostate (e, H) to the microstate ωβ(e)(H) by choosing a suitable environment Hamiltonian and performing a
macrostate operation. Finally, the microstate operation Umicro is implemented. (Figure adapted from Ref. [11].)

if the microstate (ρ(i), H) can be brought to the microstate (ρ( f ), H) by a microstate oper-
ation. Note that microstate and macrostate operations can be composed: If we have

(e, H)
macro

// (ρ(i), H) and (ρ(i), H)
micro

// (ρ( f ), H), (6.14)

then we also have

(e, H)
macro

// (ρ( f ), H). (6.15)

In the following, I call a macrostate (e, H) and a microstate (ρ(i), H) operationally equiv-
alent if any microstate that can be reached from (ρ(i), H) by microstate operations can also
be reached from (e, H) from macrostate operations.

Definition 6.4 (Operational equivalence). A macrostate (e, H) is operationally equivalent
to a microstate (ρ(i), H) if for all microstates (ρ( f ), H)

(ρ(i), H)
micro

// (ρ( f ), H) implies (e, H)
macro

// (ρ( f ), H). (6.16)

This equivalence is denoted by (e, H) ∼ (ρ( f ), H).

If a macrostate (e, H) is operationally equivalent to a microstate (ρ(i), H), then in par-
ticular we can map the macrostate to (ρ(i), H):

(e, H) ∼ (ρ(i), H) implies (e, H)
macro

// (ρ(i), H).
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Therefore, one can implement on (e, H) and using macrostate operations exactly the same
thermodynamic transitions as on (ρ(i), H) using microstate operations. Since macrostate
operations have to work for all compatible microstates, we further have

(e, H)
macro

// (ρ( f ), H) implies (ωβ(e)(H), H)
micro

// (ρ( f ), H).

Our main result shows that also the converse to the last statement is true.

Theorem 6.5 (Macrostates are operationally equivalent to maximum entropy ensembles).
For any β 6= 0, macrostates are operationally equivalent to the corresponding maximum
entropy ensembles:

(e, H) ∼
(

ωβ(e)(H), H
)

. (6.17)

The proof-sketch of this statement is given in section 14.5.2, but figure 6.2 provides a
rough illustration of how the proof works.

The theorem shows that macrostate operations are exactly equivalent to microstate op-
erations on maximum entropy ensembles in the sense of thermodynamic transformations.
Since microstate operations are simply operations that preserver the average energy and
the entropy, we can now use this result to derive the usual laws of phenomenological ther-
modynamics. To illustrate this, we now derive two standard results: First, the fundamental
bound on work extraction in terms of free energies and second the Clausius inequality.

6.3 Example application: Work extraction bounds

Let us consider the following task: We are given a system S and have access to an envi-
ronment E at temperature T = 1/β. We want to use the fact that S is not in equilibrium
with E to extract work from SE. In phenomenological thermodynamics, such a scenario
is described by assigning a temperature TS to S. The optimal amount of work that can be
extracted is then given by

W = (eTS − eT)− T(STS − ST), (6.18)

where ST and eT are the entropy and energy of the system at temperature T, respectively 2.2 Here, eT and ST are quanti-
ties in phenomenological ther-

modynamics that are a priori
unrelated to quantities based

on a microscopic description.

We can now derive the same bound using macrostate operations. According to the-
orem 6.5, for this it suffices to consider the situation in terms of maximum entropy en-
sembles and microstate operations. We therefore assume that S and E are described by
maximum entropy ensembles and look for the unitary on SE that reduces the energy on SE
as much as possible. We then assume that this change of energy can be extracted as work
(a more detailed construction using an explicit work-storage device is of course possible,
see [80]). More explicitly, we look for the unitary V and the environment Hamiltonian HE
that maximizes the work

Wvalue(e, H) = Tr
[
(H + HE)

(
ωβ(e)(H)⊗ωβ(HE)−VωβS(H)⊗ωβ(HE)V†

)]
.

The resulting optimal work is given by (see, e.g., Ref. [80])

Wvalue(e, H) = ∆Fβ(ωβ(e)(H), H). (6.19)

We can extract this amount of work using macrostate operations in the following way:
First, we bring the system from the macrostate (e, H) to the microstate (ωβ(e)(H), H) and
distill the optimal thermal state (ωβ(HE), HE) from the environment. This does not re-
quire any work. Then we use the optimal unitary V to extract the work Wvalue(e, H) =
∆Fβ(ωβ(e)(H), H). A similar procedure may, in principle, be used for any thermodynamic
task that can be described as a state transformation between microstates. As mentioned be-
fore, these results can further be generalized to situations involving more conserved quan-
tities, such as the particle number (see Ref. [11]).
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6.4 Example application: Deriving the Clausius inequality

As a second illustration, let us discuss how the second law of thermodynamics and the
free energy arises in macrostate operations not involving work extraction. More precisely,
we will discuss what kind of state transitions are possible under macrostate operations.
This can be seen as a generalization of the previous section, by including the work-storage
device into the system S. We are thus wondering what is the set of achievable final states
(ρ( f ), H) under macrostate operations, i.e., for which microstates is it true that

(e, H)
macro

// (ρ( f ), H)? (6.20)

theorem 6.5 shows that this set of states coincides exactly with the states that are achievable
from the microstate ωβ(e)(H) using microstate operations. This set of achievable states has

been studied in Ref. [80], where it was shown that a transition to (ρ( f ), H) is possible if
and only if the free energy decreases, i.e.,

(e, H)
macro

// (ρ( f ), H) ⇔ ∆Fβ(ωβ(e)(H), H) ≥ ∆Fβ(ρ
( f ), H). (6.21)

This is the precise expression of the second law as expressed on macrostate-to-microstate
operations. In particular, we can also use this result to derive the possible macrostate-
to-macrostate transitions. Let us define the macrostate non-equilibrium free energy by
Fβ(e, H) := Fβ(ωβ(e)(H), H), which is a family of state functions on macrostates. Then
we can define the derived macrostate entropy as

S(e, H) := β(e)(e−Fβ(e)(e, H)) = S(ωβ(e)(H)), (6.22)

which is also a state function on macrostates 3. Using macrostate quantities, we can then 3 We can also interpret the
definition of the macrostate
entropy as the Legendre-
transform of the equilibrium
macrostate free energy
Fβ(e)(e, H) and hence as a
function of the inverse tem-
perature and the Hamiltonian
instead of the average energy
and the Hamiltonian.

use (6.21) to express the condition for macrostate-to-macrostate transitions using the Clau-
sius inequality:

(e, H)
macro

// (e′, H) ⇔ Q ≤ T∆S , (6.23)

with the heatQ := e′− e and the change of macrostate entropy ∆S = S(e′, H)−S(e, h).
Again, similar relations can be derived in the case of more conserved quantities [11].

6.5 Conclusions and relation to Jaynes’ principle and typicality results

In this chapter, we showed that for the purpose of deriving bounds on what can be done
with a quantum system using thermodynamic operations, macrostates are equivalent to
maximum entropy ensembles. This provides a novel justification for the use of maximum
entropy ensembles.

Importantly, our derivation does not rely on arbitrary probability measures on microstates
like the postulate of equal a priori probabilities in statistical mechanics or similar measures
in other approaches that derive maximum entropy ensembles from typicality arguments
[26, 27, 29, 38, 39, 165–168].

On first sight, our approach seems closely connected to Jaynes’ maximum entropy prin-
ciple [31, 32], which very roughly asserts that the best prediction one can make about a
system is by assigning the maximum entropy state compatible with the information one
has about the system.

There are important differences between the two approaches, though. First, Jaynes had
to first make a definition of the entropy functional that ought to be maximized. While he
gave very good reasons to choose the Shannon entropy (or the von Neumann entropy in the
quantum case), in principle, it is nevertheless an arbitrary choice. In the approach presented
in this chapter, the entropy emerges naturally.

The key idea that makes this possible is that we do not wish to claim that measure-
ment statistics of observables are well predicted by maximum entropy ensembles, but that
the laws of state transformations are identical to situations in which one would assign
maximum entropy ensembles to the respective states. This is hence a different kind of
justification and can be done under a different set of assumptions.
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As a second point, in the approach presented in this chapter, we never need to actu-
ally assign a concrete microscopic state to the system, since we require that macrostate
operations work for all compatible microstates. The results simply show that, from a ther-
modynamic perspective, macrostates could equivalently be described by maximum entropy
ensembles and that they are the only microstates with this property.

In the derivation of this chapter, we have assumed that the energy is conserved on av-
erage only. One might wonder, whether the results can also be recovered if one assumes
that the unitary U that implements a macrostate operation commutes with the Hamilto-
nian of the system and environment as in the framework of thermal operations. This is
impossible, because it is possible to show that if one demands exact commutation with the
Hamiltonian, then the possible macrostates that can be reached from a given macrostate
(e, H) are characterized by a polytope. This in turn implies that if we look for the largest
energy emax(e) that can be achieved from a given macrostate (e, H) using such commuting
macrostate operations, then this functions is piecewise linear.

On the other hand, we know that for macrostate operations, which preserve energy on
average, emax(e) is determined by the Clausius inequality and hence by the thermal free
energy, which is a non-linear function of the average energy. Therefore, demanding ex-
act energy conservation on the level of probability distributions is too strict a constraint
to derive the equivalence between macrostates and maximum entropy ensembles in this
framework. For details of this argument see Ref. [11].

Nevertheless, in the case of macroscopic systems, we can argue that the energy fluctu-
ations that are necessary to implement macrostate operations can in practice be very small
on the relevant energy scale if we allow ourselves to make additional assumptions, which
are beyond the formal framework introduced in this chapter. For large systems one may
implement a macrostate operation as many independent macrostate operations on the parts
of a system. For example, to extract work form a system, we may extract a small amount
of work from everyone of the N subsystems independently. If we choose the subsystems
to be small on a macroscopic scale, but large on a microscopic scale, we can expect them
to be weakly interacting and weakly correlated on the level of microstates. Then one can
use a central limit theorem to argue that the fluctuations in work will only grow like

√
N

instead of N and are hence vanishingly small when compared to the total extracted work.
In this chapter, and also in the previous chapters, we have always assumed the existence

of thermal equilibrium in some form. In the following two chapters, let us now discuss
when and how such equilibrium actually comes about from a dynamic point of view.
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In the previous chapters, we already discussed a large variety of aspects of thermody-
namics. To do so, we employed to large extend a resource theoretic point of view. In
these approaches, we simply assumed the existence of thermal equilibrium. For most parts,
we furthermore assumed that systems in thermal equilibrium are well described by statis-
tical ensembles – apart from chapter 6, where we derived statistical ensembles using an
argument based on thermodynamic operations.

Similarly as in phenomenological thermodynamics we therefore did not take into ac-
count any considerations about the actual time-dependent dynamics involved in any of the
processes. In particular, we did not discuss how systems actually reach thermal equilibrium
in a dynamical way and when we can expect that such thermal equilibrium can indeed be
described by Gibbs states from a dynamical perspective.

In the following two chapters, I discuss in more detail when and how complex quantum
systems can be said to reach a state of equilibrium from different point of views. Apart from
being interesting in its own right from the point of view of non-equilibrium dynamics, the
first chapter (in particular the first two sections), also provide the necessary background to
understand chapters 10 and 11 that deal with thermodynamics in closed quantum systems
using Generalized Gibbs ensembles and thermodynamics in the strong coupling regime.
I first briefly review some general results about equilibration in complex many-body sys-
tems. Then, in section 7.2 I describe in much more detail how this equilibration behaviour
can be understood as a mechanism of dephasing. These discussions are illustrated using
numerical simulations of well-known models and I also connect the necessary assumptions
with rigorous results in mathematical physics. The aim of this chapter is to provide an in-
tuitive understanding of the mechanism of equilibration and connect it with general results
in many-body theory.

In the next chapter, I will connect the problem of equilibration to a resource theoretic
view (although not in the framework of thermal operations): I will provide arguments that
show in a quantitative way that it is difficult to prepare a large complex many-body system
in a state that does not equilibrate. Furthermore, I will discuss in how far such a resilience to
equilibration can be seen as a thermodynamic resource with an appropriate corresponding
"second law of equilibration".

7.1 Brief review of equilibration and thermalization in closed quantum
systems

When a large many-body system is brought out of equilibrium, physically relevant observ-
ables usually quickly come to a rest again. This process, called equilibration, is ubiquitous
in nature. A typical example in the context of quantum physics is nowadays studied in
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so-called quench-experiments [169–174]. In such an experiment, a quantum system is pre-
pared in a stationary state of some Hamiltonian. Then the Hamiltonian is suddenly modi-
fied, leading to a situation in which the quantum system is not in equilibrium with respect
to the Hamiltonian anymore. After this sudden change of Hamiltonian, called quench, the
relaxation dynamics back to equilibrium can be studied. For example, in optical lattices the
quench could simply be a sudden change of the lattice-depth.

Despite the fact that equilibration is ubiquitous, it is somewhat surprising from a purely
quantum mechanical point of view: After all, a closed system evolves unitarily and hence
there are always observables which never approach a stationary value. How can it then be
that physically relevant observables do indeed show equilibration? And can one understand
and characterize in which kind of systems this behaviour takes place?

This question has in fact already been considered early on by some of the founders
of quantum mechanics, von Neumann [29] and Schrödinger [27]. They already observed
that such equilibration behaviour should be a very typical behaviour of large interacting
systems. Nevertheless, general and rigorous results that prove equilibration behaviour un-
der general assumptions mostly only emerged over the last decade [42, 167, 168, 175–191].
These results have been backed up by numerous numerical studies (see the reviews [40, 41]
and references therein) and a large body of work on integrable systems [192–202] showing
that equilibration is indeed a very generic feature. The revival of the problem of equili-
bration can be seen as caused both by new analytical tools that became available leading
to rigorous proofs of equilibration behaviour as well as the new possibilities to probe such
behaviour experimentally in quench experiments as described above.

In this section, I want to briefly review the simplest general results showing equilibration
under general assumptions 1. For the remainder of this and the following two sections,1 For a very thorough re-

cent review see Ref. [42]. we consider a large quantum system described by a Hamiltonian H = ∑dE
i=1 EiPi on a

d-dimensional Hilbert-space H . Here, the Ei denote the energy eigenvalues and Pi the
projectors onto the corresponding eigenspaces. When discussing equilibration, I usually
have in mind a local, interacting Hamiltonian on a lattice of spins, but the general results
in this section do not depend on that. Therefore for now I will not specify the Hamiltonian
much further to keep the discussion as general as possible.

It is clear that for a system to equilibrate, there must not be any part of the system that
completely decouples from the rest of the system. One way to ensure this is to demand
that the Hamiltonian has non-degenerate energy-gaps, meaning that not only are there
no degeneracies in the spectrum of the Hamiltonian, but also every difference of energy
eigenvalues Ei − Ej is unique. Let us denote by G(∆) the set of pairs of energies whose
difference is ∆:

G(∆) :=
{
(Ei, Ej) | Ei − Ej = ∆

}
. (7.1)

Then formally the non-degenerate energy-gaps condition means that every set G(∆) has at
most one element as long as ∆ 6= 0. Let us, for later convenience, also define the set of
non-zero gaps

Gaps(H) :=
{

Ei − Ej | i 6= j = 1, . . . , dE
}

. (7.2)

The condition of non-degenerate energy-gaps implies that it is impossible to find a partition
of the Hilbert-space H into tensor-factors H1 and H2 which makes the Hamiltonian non-
interacting over this partition, i.e., for which

H = H1 ⊗ 1H2 + 1H1
⊗ H2. (7.3)

Indeed, if we could find such a partition, then every energy gap of the Hamiltonian H1
would have to have a degeneracy of at least the dimension of the Hilbert-space H2, and
vice-versa. For the results in the rest of the subsection, I assume for simplicity that the
Hamiltonians in question all have non-degenerate energy gaps. While this condition is
generically fulfilled (i.e., can be assured by an arbitrarily small random perturbation), it is
often too strong. Indeed, much of the following results can be generalized to situations
where the degeneracy of energy-gaps is not too large [42, 182]. That the condition of non-
degenerate energy-gaps is not always necessary for the equilibration of many physically
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relevant observables can also be seen from the fact that local observables in non-interacting
systems, described by local Hamiltonians of free fermions or free bosons, often also show
equilibration behaviour [194, 196–199].

Now consider an arbitrary initial state ρ(0), which might in fact be a pure state ρ(0) =
|Ψ 〉〈Ψ |. The state evolves unitarily under the dynamics generated by H, evolving along a
trajectory ρ : t 7→ ρ(t). Suppose we consider an arbitrary observable A. If the expectation
value of the observable 〈A〉ρ(t) = Tr(Aρ(t)) equilibrates, then it has to equilibrate to its

time-average Et

[
〈A〉ρ(t)

]
given by

Et

[
〈A〉ρ(t)

]
= lim

T→∞

1
T

∫ T

0
〈A〉ρ(t)dt = lim

T→∞

1
T

∫ T

0
Tr(Aρ(t))dt = 〈A〉ω(ρ), (7.4)

where we have defined the time-averaged state ω(ρ) given by

ω(ρ) = Et [ρ(t)] = lim
T→∞

1
T

∫ T

0
ρ(t)dt =

dE

∑
j=1

Pjρ(0)Pj. (7.5)

Since we consider a finite system, however, perfect equilibration in the sense that ρ(t)
becomes stationary is impossible, due to recurrences [203]. Nevertheless, ρ(t) can be
very close to ω(ρ) for most times. In this case the expectation value 〈A〉ρ(t) would be
very close to the time-average 〈A〉ω(ρ) for most times, possibly with occasional larger
deviations for short times. This behaviour is indeed what happens provided that the initial
state has overlap with sufficiently many energy-eigenstates.

To quantify this behaviour, let us introduce the effective dimension as a measure for how
many energy-eigenstates participate in the initial state. It is defined as [177]

deff(ρ) := deff(ρ(0), H) :=
1

∑j Tr(Pjρ(0))2 =
1

Tr(ω(ρ)2)
. (7.6)

This quantity is typically extremely big. For example, consider a micro-canonical state
on a large many-body system, which is evenly distributed (coherently or as a statistical
mixture) over an interval of energies [E − δE, E + δE]. For a fixed energy-uncertainty
δE, the number of energy-eigenstates that contribute to this initial state will in general
grow exponentially with the system size for local many-body systems. Hence, the effec-
tive dimension will also grow exponentially with the system size. At the same time, the
uncertainty in terms of the energy-density will go to zero. This is even true if δE grows
sub-linearly with the system-size, which would further increase the effective dimension.

For a second example, it has been shown that essentially any state with a finite cor-
relation length that is not an eigenstate has an effective dimension that diverges with the
system-size [190] (this will be discussed in more detail in section 7.2).

The following theorem then rigorously shows that equilibration indeed happens in the
sense discussed above.

Theorem 7.1 (Equilibration on average [204]). Let ρ(t) evolve under an Hamiltonian H
with non-degenerate energy-gaps. Then for any observable A we have

Et

[
(〈A〉ρ(t) − 〈A〉ω(ρ))

2
]
≤ ‖A‖2

deff(ρ)
. (7.7)

For large many-body systems and "natural" initial states, we thus see that for most times,
the state ρ(t) is practically indistinguishable from ω(ρ) by observables with a finite norm
(bounded by a constant independent of the system size).

A particular case of physically relevant observables are those that only act on a sub-
system S of the total system. They are completely characterized by the reduced density
matrix ρS(t) = TrB(ρ(t)). The following theorem shows that this state is effectively in-
distinguishable from the corresponding reduced density matrix of the time-averaged state
TrB(ω(ρ)) as measured by the trace-distance D(·, ·).
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Theorem 7.2 (Average equilibration of subsystems [177]). Let ρ(t) evolve under an Hamil-
tonian H with non-degenerate energy-gaps. Then for any subsystem S we have

Et [D (ρS(t), TrB(ω(ρ)))] ≤

√
d2

S
deff(ρ)

. (7.8)

The trace-distance D(ρ, σ) measures the theoretical statistical distinguishability of ρ
and σ in a single shot, i.e., it gives the maximum probability that the two can be correctly
distinguished by performing a single measurement.

Given the above comments about the effective dimension, we thus conclude that bounded
and local observables in large, complex quantum systems equilibrate in a very stringent
sense. Similar theorems can also be shown for more general measurements in terms of
POVMs [188]. Furthermore, it can be shown that the fluctuations around equilibrium are
slow [179].

As a side remark, note the effective dimension is effectively a measure of the amount of
entropy in the probability distribution of energy in a quantum system. Indeed, it can also
be expressed as

deff(ρ) = eS2(ω(ρ)), (7.9)

where S2 is the Rényi-2 entropy. The Rényi entropies are defined as

Sα(ρ) := log(d)− Dα(ρ‖1/d) =
1

1− α
log(Tr(ρα)), (7.10)

where Dα are again the Rényi-divergences. From an information theoretic point of view it
is then interesting to ask why it is not the von Neumann entropy of ω(ρ) that appears in
the equilibration bounds, which is a more natural entropy measure. It is thus tempting to
try to prove similar equilibration bounds expressed in terms of the von Neumann entropy
of ω(ρ). We will see in chapter 8 that this is in fact impossible: There are states which do
not equilibrate, but where the von Neumann entropy of ω(ρ) diverges with the system size.
This also has interesting consequences relating to the role of correlations in the process of
equilibration, which we will discuss in chapter 8.

The above results clearly establish that we should expect equilibration to be a generic
phenomenon. However, it is also important to note what these results do not show. First,
they don’t say anything concrete about the equilibrium state ω(ρ). In particular, they do
not imply that this equilibrium state is well described by a thermal state of H. Additional
assumptions are necessary to formally prove such behaviour [190, 205]. Even in this case,
usually referred to as thermalization, it is important to observe that equilibration to a ther-
mal state only implies that local subsystems equilibrate to the reduced state of a thermal
state,

ρS(t) ≈ TrB

(
e−βH

Zβ

)
, (7.11)

but not to the thermal state of the Hamiltonian HS of the subsystem S. Indeed, for strongly
interacting systems it is not even clear how one would unambiguously define such a local
system Hamiltonian HS (see, however, Ref. [206]). In chapter 11, we will explore the
consequences of this for thermal machines in the strong coupling regime.

Second, the above theorems do not rule out the possibility of having initial states for
which relevant observables do not equilibrate. All one needs is an initial state with a small
effective dimension that is not diagonal in the energy-eigenbasis. However, as the examples
for the effective dimension given above already suggest, it seems difficult to prepare such
states, since it would seem to require extremely high control over a large, complex quantum
system. In chapter 8, I will provide quantitative arguments which show that it is indeed very
difficult to prepare quantum states on complex quantum systems that do not equilibrate.

Third, the above equilibration bounds do not say anything about how long it actually
takes to reach equilibrium. While general bounds on such an equilibration time can be de-
rived [186], the general bounds diverge exponentially with the size of the total system.
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Moreover, one can construct counter-examples which essentially saturate these bounds
[183]. Therefore, it is impossible to prove, without making more concrete physical as-
sumptions, that bounded observables equilibrate in finite time also when one takes the
thermodynamic limit. In the next sections, we will therefore discuss this problem of equili-
bration times in more detail. In particular, I will argue for a simple mechanism that suggests
that generic systems in fact equilibrate very rapidly, in a time independent of the total sys-
tem size, whereas the precision with which they equilibrates increases with the total system
size.

7.2 Equilibration as dephasing and the problem of timescales

In remainder of this chapter2, I discuss the problem of equilibration from a more concrete 2 The following sections in
this chapter are based on work
together with Marcel Goihl,
Christian Krumnow and Jens
Eisert, published in Ref. [10].

point of view. The aim of this section is to give an intuitive understanding of equilibration
and to make plausible that in many relevant cases the expectation value of an observable
indeed equilibrates in a time that is essentially independent of the system size.

I will not present any rigorous theorem about equilibration times, but I will connect the
intuitive discussion to rigorous results in mathematical physics and illustrate the arguments
using numerical examples.

In this section, I focus on the equilibration of expectation values of some observable A,
given an initial state ρ and a Hamiltonian H. The figure of merit that we will be considering
to discuss equilibration is given by the instantaneous deviation from the equilibrium value,
measured by the quantity

∆Aρ(t) := 〈A〉ρ(t) − 〈A〉ω(ρ). (7.12)

Roughly speaking, we can say that the system equilibrates if ∆Aρ(t) becomes very small
after some time and remains to be small afterwards. Of course, by varying the Hamiltonian
H, the initial state ρ and the observable A we can in principle describe a vast range of
different physical situations. We should therefore first specify more clearly in what kind of
phenomena we are interested in.

In the following sections, we will be concerned mostly with the equilibration of expec-
tation values of locla observables in a many-body system that is initially not at equilibrium.
After such a local equilibration, which we expect to happen rather quickly, different parts
of the system might in general still be out of equilibrium on macroscopic length and time
scales. The remaining equilibration on these scales, which can be expected to be effectively
described by a semi-classical, hydrodynamic approach [207, 208], is not in focus in this
section. We therefore simply assume that the system is initially homogeneous and evolves
under a roughly translational invariant Hamiltonian.

We thereby exclude all physical phenomena that happen on macroscopic length- and
time-scales, including transport effects on such scales, such as heat conduction or electrical
currents. This might seem like an overly strong restriction, but even this restricted scenario
is not yet completely understood from a theoretical point of view. In particular, there exist
no rigorous proofs that show that such an equilibration happens after a time that does not
diverge with the system size under a general, but reasonable set of assumptions.

Indeed, such a proof can be expected to be extremely difficult, if not impossible, due
to the fact that there are very reasonable interacting Hamiltonians, with reasonable initial
states and simple observables, which seem to stubbornly refuse to equilibrate. We will see
such an example later.

Nevertheless, in the following I will argue that the basic mechanism of equilibration is
in fact quite simple and this mechanism suggests that such a refusal to equilibrate should
only happen in very peculiar circumstances, while local equilibration generically happens
quickly.

It is important to emphasize that this restriction to somewhat homogeneous systems is
not due to the fact that it is expected that systems which are not translational invariant would
not equilibrate. The following simple argument suggests that the basic picture of local equi-
libration also holds for systems which are not homogeneous on larger scales. If we know
that a local observable equilibrates in time teq in a translational invariant system, then Lieb-
Robinson Bounds (see section 7.5.4) show that the observable (in the Heisenberg-picture)
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Figure 7.1: Time evolution of an equilibrating system. The model is the transverse field Ising model with Hamiltonian HIsing = ∑L
j=1(Jσx

j σx
j+1 +

hxσx
j + hzσz

j ) with periodic boundary conditions. Here, L = 15 sites with parameters J = 4, hx = 1, hz = −2.1. The initial state Ψ is a random
product state with a spin-up state in the middle of the chain and the observable is a σz in the middle of the chain as used in Ref. [211]. The
lower panel shows the evolution of the individual terms contributing to the Fourier transform of the distribution zT in the complex plane. For
numerical reasons zT(λ) (here T ≈ 33) is evaluated at 5000 points λi which linearly interpolate the minimal and maximal gap occurring for the
respective system size. The discretization of zT is hereby ensured to approximate the regularized function well and we verified, for instance, that
∑i zT(λi) agrees up a relative error of 10−8 with ∆A(0)ρ. Therefore no significant weight of the distribution is lost. The lower figures show the
values of zT(λi)eiλi t at the times marked in the evolution in the upper panel. For the computation of zT(λ) all values z∆ with |∆| < 10−13 are
discarded in order to account for the subtraction of the infinite time averaged expectation value. While initially strongly localized and anisotropic,
the time evolved zT(λi)eiλi t quickly relaxes into a roughly isotropic distribution that is, up to small fluctuations, constant in time. The plot of the
distribution zT over λ shown in Fig. 7.3 (top) accordingly shows a large number of different gaps (and therefore angular velocities) that carry about
equal weights of the distribution zT . This is directly reflected in the time evolution of ∆A(t)ρ which decreases in time as the distribution spreads.
(Figure from Ref. [10].)

has essentially only "visited" a sub-system of size vLRteq, where vLR is the maximum group
velocity in the system implied by the Lieb-Robinson bounds. Thus, if the system is inho-
mogeneous on scales larger than vLRteq, we can expect that rapid, local equilibration still
holds, possibly followed by a much slower equilibration/homogenization on larger scales.

For example, many-body localized systems equilibrate (but not thermalize), although
they break translational invariance [209, 210].

7.3 The basic mechanism

We now discuss equilibration from the point of view of dephasing (see Ref. [213] for a sim-
ilar exposition that appeared simultaneously with our manuscript [10]). To understand this
basic mechanism behind equilibration, it is useful to re-express the instantaneous deviation
from equilibrium ∆Aρ(t) in the energy-eigenbasis as

∆Aρ(t) = ∑
Ei 6=Ej

Tr
(

Pi APjρ
)

ei(Ej−Ei)t = ∑
0 6=∆∈Gaps(H)

z∆ei∆t, (7.13)

where we have introduced the complex numbers

z∆ = ∑
(Ei ,Ej)∈G(∆)

Tr
(

Pi APjρ
)

. (7.14)

Since A is hermitian and the time-evolution is unitary, the numbers z∆ fulfill the relation
z−∆ = z∆, where the overline denotes complex conjugation.

With this expression at hand, we can now develop a basic understanding of how equi-
libration comes about. In a large quantum system, the number of different gaps ∆ grows
exponentially with the system size. For generic observables and states, we can therefore
expect that the number of terms in the sum in ∆Aρ(t) is huge. We can visualize this, by
drawing a point for each z∆ in the complex plane. We then obtain a cloud of points in the
complex plane, each rotating with a different angular velocity ∆ on a circle of radius |z∆|
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Figure 7.2: Time evolution in a system failing to equilibrate. We show the exact time evolution of ∆A(t)ρ. The model is the transverse field Ising
defined as in Fig. 7.1 on L = 15 sites, but with parameters J = 1, hx = 0.5, hz = −1.05. The initial state Ψ is a product state composed of only
spin-up states and the observable is a σz operator in the middle of the chain as used in Ref. [212]. As in Fig. 7.1, the lower plot shows the evolution
of the contributions to the Fourier transform of the smoothed distribution zT in the complex plane at the times marked in the evolution. We apply the
same scheme as described in the caption of Fig. 7.1, again with 5000 interpolation points, T ≈ 33 and treating gaps |∆| < 10−13 as zero. Initially,
the smoothed zT is strongly localized and anisotropic. When evolved in time, we find two distinct and large contributions that revolve around the
zero without canceling out one another. These contributions stay approximately in phase and do not disperse strongly as their parts revolve with
roughly the same angular velocity. This agrees well with the result shown in Fig. 7.3, which displays the distribution zT in dependence of λ and
shows two distinct peaks concentrating most of the weight of the distribution. As a result, the deviation from the steady-state expectation value
shows strong oscillations, which only weakly decay. (Figure from Ref. [10].)

(see Fig. 7.1). If the system is initially out of equilibrium, ∆A(0)� 0, this cloud of points
is not distributed isotropically. Since each point moves with a different angular velocity,
the cloud of points necessarily starts to spread and distribute more isotropically. But an
isotropically distributed cloud of points in the complex plane has a small total absolute
value, hence |∆A(t)| � 1 and the system equilibrated.

Once the points are spread out approximately isotropically, we can expect that they re-
main so for a long time: There are vastly more configurations which remain approximately
isotropic for some time under the following time-evolution than configurations which yield
a sudden anisotropic distribution again. Nevertheless, there will be rare fluctuations and,
importantly, a recurrence time like in any finite system [203], which sometimes bring the
system out of equilibrium again. As the system size, and hence number of points, increases,
however, we can expect that the fluctuations will become increasingly rare and small and
the recurrence time will diverge with the system size, explaining why in large systems,
equilibration is essentially perfect.

In finite systems with local interactions, besides the recurrence time there is an ad-
ditional time-scale which yields a recurrence-like behaviour and which dominates in any
finite-system numerics: information can be transported ballistically and when it reaches the
boundaries of the system it is backscattered. This can be seen in ∆A(t) as a perturbation
on time-scales which increases linearly with the system size.

On the other hand, the time teq it takes until the system has equilibrated to precision ε,
i.e., |∆Aρ(teq)| ≤ ε, essentially only depends on the distribution of ∆ and the shape of the
distribution of the z∆ as a function of ∆. If these distributions become roughly independent
of the system size as it increases, also the equilibration time teq should become roughly
independent of the system size as the system size increases. Similarly, we can then expect
that for a fixed time larger than teq, the size ε of the remaining oscillations of ∆Aρ(t)
should decrease with the system size, while the recurrence-time increases with the system
size.

To make these claims clearer, it is useful to consider a very simple toy-model for the
mechanism described above. The assumptions that we will make for this toy-model can
be motivated from the general results in many-body theory that we will review in the later
sections. Let us choose a large number N of gaps ∆i uniformly at random from some
interval [−∆max, ∆max] (this choice will be motivated in sections 7.5.1 and 7.5.3) and for
simplicity assume that the corresponding z∆i are real and follow a Gaussian distribution
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G1/τ(∆) with variance 1/τ � ∆max. In the following we assume that we chose a typical
distribution of the gaps ∆i. We then normalize the z∆i to ensure ∑i z∆i =: ∆Ã(0)ρ is fixed
and of order one (independent of N)3. Here, we have invented an imaginary observable Ã3 With this construction,

∑i z∆i can be a complex
number. But its imagi-

nary part will be extremely
small for large N, we

hence ignore this problem.

and a state ρ that realize the distribution of z∆i . Of course this is only to keep the notation
in analogy to the previous and the subsequent sections.

As we increase N, the time-dependent expectation ∆Ã(t), given by

∆Ã(t)ρ = ∑
i

z∆i e
i∆it, (7.15)

then approximates to higher and higher precision the Fourier-transform of the Gaussian
G1/τ(∆), since we are essentially sampling the corresponding integral. Thus

∆Ã(t)ρ ≈
∫
G1/τ(∆)e

i∆td ∆. (7.16)

This approximation will have some error, and for any given error ε there will be a maximum
time TN(ε) such that this approximation remains valid. For small times t < TN(ε) we then
get

∆Ã(t)ρ ≈ε ∆Ã(0)e−(t/τ)2
, t < TN(ε). (7.17)

The time TN(ε) increases with increasing N for any fixed ε. We can hence identify the
equilibration time-scale as τ and define the equilibration time teq as teq = Cτ for any
constant C > 0 which controls the precision of equilibration that we demand.

In more realistic set-ups, the distribution of z∆ also has features on smaller scales than
1/τ, resulting in correspondingly longer equilibration times. However, many of these
features can be expected to have small weight, and hence only yield small and slow oscil-
lations before they equilibrate. Importantly, while the equilibration times for these features
is much longer, they are still largely independent of N as long as the distribution z∆ is
essentially independent of N. In particular, they should not diverge with the system size.
The actual problem of explaining equilibration is therefore to explain when and why the
distribution of z∆ becomes essentially independent of the system size for large systems.

In the previous discussion, we used a very simplistic model with various implicit as-
sumptions. With this intuition we can now start to discuss the problem of equilibration
in more detail and develop some formal machinery. We then discuss the various assump-
tions that go into the analysis and connect them with known rigorous results in many-body
theory.

7.4 Refining the notion of equilibration

As we have seen before, to sensibly discuss equilibration we need to consider different
time-scales and always have to consider a finite precision of equilibration: The system will
only equilibrate to some finite precision and only stay equilibrated for a finite but long time
(which we expect to diverge with the system size). In the following, we therefore only
ask whether equilibration occurs to precision ε before some chosen cut-off time T. Both
quantities in general depend on the system size and we expect that for a fixed ε, the cut-off
time T diverges with the system size.

We can formalize this procedure by introducing regularized quantities. The crucial
quantity that governs the dynamics of the chose observable is the distribution of the z∆,
which is a discrete distribution for any finite system. We now regularize this quantity into
a smooth distribution by convoluting it with a Gaussian of variance 1/T, where T is the
cut-off time. We hence define the function

zT(λ) := ∑
0 6=∆∈Gaps(H)

z∆G1/T(λ− ∆). (7.18)

Note that we can recover the non-reguralized distribution as

z∞(λ) = ∑
0 6=∆∈Gaps(H)

z∆δ(λ− ∆). (7.19)
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Figure 7.3: System size scal-
ing of the regularized zT dis-
tribution. At all system sizes

the distribution zT is again
evaluated at 5000 points in-

terpolating the extremal gaps
linearly for T ≈ 33. Top:

Equilibrating model discussed
in Fig. 7.1. With growing sys-

tem size, the resulting distri-
bution zT spreads its weights

more and more evenly leading
to the equilibrating behav-

ior of the considered system
as shown in Fig. 7.1. Bot-

tom: non-equilibrating model
discussed in Fig. 7.2. The

resulting distribution zT con-
centrates most of the weight

in two localized peaks which
yield the non-equilibrating be-
havior shown in Fig. 7.2. (Fig-

ure adapted from Ref. [10].)

With this notation we have zT(λ) = [z∞ ∗ G1/T ](λ), where ∗ denotes the convolution op-
erator. The deviation from equilibrium ∆A(t)ρ can then be bounded, using the convolution
theorem of Fourier analysis, as

|∆A(t)ρ| ≤
∣∣∣∣∫ zT(λ)eiλtdλ

∣∣∣∣+ ∣∣∣∣∫ (z∞(λ)− [z∞ ∗ G1/T ](λ)) eiλtdλ

∣∣∣∣
≤
∣∣∣∣∫ zT(λ)eiλtdλ

∣∣∣∣+ 2 ‖A‖
∣∣∣1− e−(t/T)2

∣∣∣
≈ |∆AT(t)ρ|+ 2 ‖A‖ (t/T)2, t� T, (7.20)

with the regularized deviation from equilibrium

∆AT(t)ρ :=
∫

zT(λ)eiλtdλ. (7.21)

The regularized quantity ∆AT(t)ρ always decays to zero on the time-scale of the cut-off
time T. It is therefore essential that we only consider times much smaller than T once we
use this regularized quantity.

Once we have introduced regularized quantities, we can meaningfully compare different
system sizes. In particular we can formalize what it means that the distribution of z∆
becomes independent of the system size N by saying that there exists a bounded function
λ 7→ z(λ) such that

lim
T→∞

lim
N→∞

∫
|zT(λ)− z(λ)|dλ = 0. (7.22)

We will later see (in section 7.4.1) that if such a function z(λ) exists for a local observ-
able and a local Hamiltonian, then equilibration (in a time independent of the system size)
follows.

To see an example of such behaviour, see Figs. 7.1 and 7.3 (top). Fig 7.1 shows the time-
evolution of a local observable in an equilibrating system and the corresponding dynamics
of the z∆i . Fig 7.3 (top) shows the behaviour of zT(λ) in the same system for different
system sizes, indicating the emergence of a well-defined function z(λ).

Conversely, we can also argue that equilibration is expected to fail if λ 7→ z(λ) is not
bounded. We now argue that in this case there will be remaining oscillations with finite
amplitude for all times. This can be seen in the following way. For any cut-off time T and
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for any system size we have

∆A(0)ρ = ∑
0 6=∆∈Gaps(H)

z∆ =
∫

zT(λ)dλ. (7.23)

Hence, z(λ) needs to have a finite integral, but is unbounded by assumption. The function
will therefore have a finite contribution to the integral from some singularities. Such singu-
larities concentrate a finite weight into an arbitrarily small region. As a consequence, they
lead to a non-dispersing evolution of the z∆. In the simplest example, assume that these
contributions originate from a finite number of δ-distributions. Since z(λ) = z(−λ), they
need to come in pairs of gaps {−∆i, ∆i}. In the time-evolution this leads to a contribution
of the form

∆A(t)ρ
t→∞−→ ∑

i
ri cos(∆it), (7.24)

with ri some real constants.
An example of a system that seems to show such a behaviour was found in Ref. [212]

and its dynamics is illustrated in Figs. 7.2 and Fig. 7.3 (bottom). This example is given
by a non-integrable, translational invariant, and local Hamiltonian with a local observable
and a pure product-state as initial state. One would hence usually expect that the system
equilibrates. In the numerics presented here and in Ref. [212] this does not seem to be the
case. However, there is some debate about whether the oscillations indeed persist forever
in the infinite system or whether they can be understood to originate from quasi-particles
with very long, but finite lifetime [214, 215].

7.4.1 A simple argument from harmonic analysis

Let us now argue that equilibration of a local observable in a time independent of the system
size is inevitable if the dynamics is generated by a local Hamiltonian and z(λ) exists as a
bounded function. To do this, we make use of recent rigorous results in many-body theory,
which show that local observables can only connect energy-eigenstates corresponding to
energy-eigenvalues that differ by a small amount. If a local Hamiltonian has eigenstates
|Ei 〉, then [216] ∣∣ 〈Ei | A

∣∣Ej
〉∣∣ ≤ ‖A‖ e−α(|Ei−Ej |−2R). (7.25)

Here, α > 0 and R > 0 are constants independent of the system size and R is proportional
to the size of the region on which A acts.

In the case of a generic, interacting Hamiltonian, neither the gaps ∆ nor the eigenvalues
Ei are expected to be highly degenerate (potentially after restricting to a super-selection
or symmetry sector). We then see from (7.14) and (7.25) that for large ∆, all z∆ have to
fall off exponentially, independent of the system size. Hence, also z(λ) has to fall off
exponentially for large |λ|. The function z(λ) therefore has the following properties:

1. It is bounded (by assumption),

2. it has a finite integral,

3. and it falls off exponentially with |λ|.
These three properties together imply that the function is absolutely integrable,

∫
|z(λ)|dλ <

∞. The rest of the argument is then essentially given by the Riemann-Lebesgue Lemma
[217]. An absolutely integrable function can always be approximated, to an arbitrary error
δ > 0, by a smooth function of compact support gδ:∫

|gδ(λ)− z(λ)|dλ < δ. (7.26)

Then the Fourier transform of z(λ), which gives ∆A(t)ρ in the thermodynamic limit, can
be approximated by the Fourier-transform ĝδ of gδ:

|∆A(t)ρ| ≤
∣∣∣∣∫ gδ(λ)eiλtdλ

∣∣∣∣+ δ = |ĝδ(t)|+ δ. (7.27)
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Figure 7.4: Illustration of finite-size effects: Equilibration in the XX chain with Hamiltonian HXX = ∑L
j=1(σ

x
j σx

j+1 + σ
y
j σ

y
j ) on L = 15 sites with

periodic boundary conditions. The top-left plot shows the evolution of the deviation of the instantaneous expectation value from the infinite time
average of a σz operator acting on the first site. The initial state is a charge density wave state, i.e., |Ψ 〉 = |1, 0, 1, 0, . . . , 0, 1 〉, with |0 〉 and |1 〉
denoting the spin up and down state respectively. Up to time t ≈ 3, the system seems to equilibrate to an expectation value such that ∆A(t)Ψ ≈ 0.1.
Thus, the physically relevant equilibrium value in the thermodynamic limit does not coincide with the time-average in the finite system. The right
plot shows a finite-size scaling of the actual expectation value 〈A(t)〉Ψ, indicating that finite-size effects indeed seem to become relevant at about
t ≈ 3. The bottom-left panel again shows the contribution to the Fourier transform of zT by plotting the evolution of zT(λi) in the complex plane
at the times marked in the evolution, where T ≈ 33 and λi interpolate the between the larges and smallest gap in 5000 steps. Again gaps of the
size |∆| < 10−13 are considered to be zero and discarded in order to account for the subtraction of the steady-state value. (Figure adapted from
Ref. [10].)

But the Fourier-transform of a compactly supported smooth function decays faster than any
power. Therefore, for any fixed precision of equilibration δ, t 7→ ∆A(t)ρ equilibrates to
this precision faster than any power. This means that for any δ > 0 and k ∈N, there exists
a constant Ck(δ) such that

|∆A(t)ρ| ≤ min
{
‖A‖ ,

Ck(δ)

tk

}
+ δ. (7.28)

The constants Ck(δ) can, however, be very large and in fact diverge for δ → 0. This
explains why this bound is not in conflict with equilibration in terms of a slow power-law
like t−1/2, as seen, for example, in integrable models (see, for example, [189, 196, 199,
200]).

7.4.2 A brief comment on finite-size effects

The above results concern the dynamics in the thermodynamic limit. In numerical inves-
tigations, these dynamics are in principle not accessible exactly, but one has to restrict
oneself to finite systems. It is then important to keep in mind how the two settings are
related. Suppose an observable equilibrates in a time teq (w.r.t. some suitable state) to the
value Aeq in the thermodynamic limit. Now suppose that one runs a numerical situation
on a large but finite system (with the corresponding reduced state as initial state). It then
follows from Lieb-Robinson bounds that the observable should also evolve to the (approx-
imately) the same value Aeq in time teq. However, in the finite system, this value Aeq does
not necessarily coincide with the equilibrium value in the finite system, which is given by
the time-average of 〈A(t)〉ρ on the finite system. The difference between these two values
will become arbitrarily small when one considers increasingly large systems, but can be
observably large in system sizes that are amenable to numerical simulations.

So, while it is true that if a finite system equilibrates, it equilibrates to the time-average
(as discussed in section 7.1), this equilibrium value might not be the physically relevant
one, if one is interested in what would happen in arbitrarily large systems. For an example
of such behaviour, see Fig. 7.4.

7.5 Connecting the discussion to general results

In the previous sections, we have discussed the equilibration of local observables in com-
plex quantum systems and argued that rapid, local equilibration is a generic feature. To do
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this, we made several implicit and explicit assumptions. In this section, we discuss these
assumptions in more detail and connect them with known rigorous results and conjectures
in quantum many-body theory.

From the definition of z∆ we find that essentially three properties are important for
how a system equilibrates: The distribution of energy gaps and how local observables
and physically relevant initial states look in the energy-eigenbasis. I now discuss these
properties in more detail. After that I further discuss the role of the finite group velocity
implied by Lieb-Robinson bounds for equilibration.

7.5.1 The energy spectrum

When discussing local many-body systems, it is important to keep in mind that the number
of energy levels in a system of N degrees of freedom and local dimension d is given by
dN . However, the energy-range of a local Hamiltonian grows only linearly with the system
size, ‖H‖ ∝ N. This implies that typical energy-differences between consecutive energy
levels becomes exponentially small in the system size. In the thermodynamic limit, this
essentially leads to a continuous spectrum. The same is true for the gaps ∆: The number of
gaps increases exponentially, while the largest gap only increases linearly with the system
size, leading to an essentially continuous distribution for large system sizes.

For a systems with local interactions, the distribution of energy levels follow roughly a
Gaussian distributions with a standard deviation that diverges as

√
N with the system size.

Intuitively, this can be seen in the following way. The distribution of energy-eigenstates
of the local Hamiltonian H = ∑x hx can be seen as the measurement statistics of the
observable H in the maximally mixed state 1/dN . Here, the Hamiltonian terms hx only act
on subsystems of some finite size and only overlap with finitely (uniformly bounded) many
other terms. Hence the measurement statistics can be understood as that of a large number
N of identical and almost independent random variables, yielding a Gaussian distribution
with standard deviation of order

√
N.

This argument can be made precise using the following theorem [147]. A similar state-
ment can be proven in one-dimensional systems more directly, see Ref. [218].

Theorem 7.3 (Berry-Esseen theorem [147]). Let H be a k-local Hamiltonian in Λ = [L]D

with N = LD particles and ρ a state with correlation length ξ > 0. Let

µ = Tr(ρH), σ = Tr(ρ(H − µ)2)1/2, s =
σ√

NkD/2
. (7.29)

Then

sup
y
|F(y)− G(y)| ≤ Γ

log2D(N)√
N

, (7.30)

where

F(y) := ∑
k:Ek≤y

〈Ek | ρ |Ek 〉 , (7.31)

and

G(y) :=
1√

2πσ2

∫ y

−∞
e−

(z−µ)2

2σ2 dz (7.32)

is the Gaussian cumulative distribution with mean µ and variance σ. The quantity Γ is
given by

Γ = CD
(max{k, ξ})2D

σ/
√

N
max

{
1

max{k, ξ} ln(N)
,

1
σ2/N

}
, (7.33)

where CD only depends on the dimension of the lattice.
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Using this theorem, the above intuition can be made precise in the following way. Since

Γ→ CD
k2D

σ/
√

N
max

{
1

k ln(N)
,

1
σ2/N

}
(7.34)

as ξ → 0, it is sufficient to consider a sequence of states ρ(m) that converges to the max-
imally mixed state to obtain that the distribution of energy levels (the density of states)
converges to a Gaussian (in distribution).

As a consequence of the distribution of energy levels being roughly Gaussian, the dis-
tribution of all energy gaps ∆ = Ei − Ej also has to follow a roughly Gaussian distribution
with standard deviation of order

√
N. In particular, we can expect that the distribution of

gaps smaller in absolute value than some ∆max becomes more and more uniform as the
system size increases.

7.5.2 The state

The second important ingredient in the distribution of z∆ is the initial state ρ. As can
be seen from the expression for z∆, only the off-diagonal elements of its density matrix
in the energy eigenbasis play a role for the equilibration behaviour. To obtain a smooth
distribution of z∆ for large systems, it is necessary that there are sufficiently many and
densely distributed off-diagonal elements in the density matrix that contribute to the z∆.
In particular there should not be very few and large off-diagonal elements but many small
ones.

The off-diagonal elements are not independent of the diagonal elements, due to positiv-
ity and normalization of the density matrix. In particular, we can bound the off-diagonal
elements by their corresponding diagonal elements:

| 〈Ei | ρ
∣∣Ej
〉
|2 ≤ 〈Ei | ρ |Ei 〉

〈
Ej
∣∣ ρ
∣∣Ej
〉

. (7.35)

If the state is sufficiently non-diagonal in the energy-eigenbasis, we can therefore expect
that there are many non-zero entries 〈Ei | ρ |Ei 〉, namely a number that diverges as the
system size increases. Since they have to add up to unity, most of them will be very small.
In turn, the off-diagonal elements will also be small.

In the case of product states and more general states with a finite correlation length,
theorem 7.3 shows that the energy-distribution 〈Ei | ρ |Ei 〉 falls off (sub-)exponentially
for energies that differ macroscopically from the mean value, i.e., for energies that differ
by more than a sub-linear function in the system size from the mean. More precisely, the
distribution of the energy-density is highly peaked around its mean in the sense that the total
probability of energies whose density differs from the mean energy-density decays sub-
exponentially with the system-size. This is made more explicit by the following theorem.

Theorem 7.4 (Finite correlation length implies peaked energy distribution [219]). Let ρ be
a quantum state with correlation length ξ > 0 in a D-dimensional system and 〈H〉ρ =

tr(Hρ) be the average energy of ρ. For any a ≥ (2O(D)/nξ)1/2, it holds that

tr(ρΠ[〈H〉ρ+na,∞)) ≤ O(ξ) exp

(
− (na2ξ)1/(D+1)

O(1)Dξ

)
(7.36)

and

tr(ρΠ[0,〈H〉ρ−na]) ≤ O(ξ) exp

(
− (na2ξ)1/(D+1)

O(1)Dξ

)
. (7.37)

While at first this theorem and the above Berry-Esseen theorem might be interpreted
as saying that only few energy levels contribute to the state ρ, this is not true: remember
that the total number of energy levels in any interval of energies of non-decreasing width
increases exponentially with the system size. Thus the total number of energy levels that
contribute to a state with a finite correlation length can be expected to diverge exponentially
with the system size.
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As explained in section 7.1, a particularly useful measure for how many energy levels
participate in a given state in the context of equilibration is given by the effective dimension:
A high effective dimension ensures that a system equilibrates to high precision in infinite
time, which is clearly a pre-requisite for equilibration in finite time.

Recently, it was indeed proven that states with a finite correlation length have an effec-
tive dimension that diverges with the system size. The results in Ref. [190] show that in
such a case

1
deff(ρ)

≤ C
ln2d(N)

s3
√

N
, (7.38)

where C > 0 is a constant independent of the system size and s = σ/
√

N. Here, σ is the
standard-deviation of the energy of ρ. The quantity s is always upper bounded independent
of the system size, but since σ can be expected to be of order

√
N, it is usually also lower

bounded by a constant (as long as we are not dealing with an energy eigenstate). We thus
see that Eq. (7.38) shows that an ever-increasing number of energy levels participate in the
initial state. We can conclude that the probability distribution of energies is spread out over
many energy levels, each of which only carrying a small amount of probability.

Together with (7.35), these arguments make it plausible that in natural initial states the
off-diagonal elements of the density matrix are sufficiently small. This implies that if the
initial deviation from equilibrium ∆A(t)ρ is large, then there have to be many off-diagonal
elements with small absolute value each. On the other hand, if ∆A(t)ρ is small, then the
system can be expected to already be equilibrated. To add further plausibility to rapid
equilibration, let us now discuss the role of the observable.

7.5.3 The observable

Let us finally discuss the shape of a local observable in the energy-eigenbasis. We have
seen before already that a local observable only has significant off-diagonal entries for
gaps of the order of the size of the support of the observable, which is independent of the
system size. Therefore only gaps of the size of the order of the support of the observable
are relevant for the distribution of z∆. We also know from the previous section that the
distribution of energy gaps has a standard deviation that grows sublinearly with the system
size. Combining this fact with the assumption that the distribution of gaps becomes es-
sentially smooth in large systems we conclude that the distribution of gaps should become
essentially uniform on the relevant scale, the size of the support of the observable. This jus-
tifies the assumption of a uniform distribution of gaps within some interval [−∆max, ∆max]
in the toy-model discussed in section 7.3.

While there is little known rigorously about the shape of local observables in the energy
eigenbasis, in the study of thermalization of closed quantum systems a strong conjecture
(backed up by numerical evidence) about the shape of local observables in the energy eigen-
basis has taken a prominent role over the last years: this conjecture is called the eigenstate
thermalization hypothesis (ETH) [41, 220–222]. The ETH states that when we consider
expectation values of local observables, individual eigenstates of H already give predic-
tions very similar to those of Gibbs states, due to the fact that eigenstates of interacting
many-body systems are highly entangled (at least in the bulk of the spectrum).

One requirement for such a behaviour is that the diagonal matrix-elements 〈E | A |E 〉
depend smoothly on the energy E since thermal expectation values depend smoothly on the
temperature. In addition, it is often argued that also the off-diagonal elements of A obey
a smooth distribution up to small fluctuations. There are several technical formulations of
the ETH. A particularly strong formulation is the following one from the review in Ref.
[41].

Assumption 7.5 (Eigenstate equilibration hypothesis [41]).

〈Ei | A
∣∣Ej
〉
= g(Ē)δi,j + e−S(Ē)/2 fA(Ē, ω)Ri,j (7.39)

where Ē := (Ei + Ej)/2, ω = Ei − Ej, and E 7→ S(E) is the micro-canonical entropy
associated to energy E. g and fA are both assumed to be smooth functions of their argu-
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ments, g(Ē) being the expectation value of the microcanonical ensemble at energy Ē, and
Ri,j being a random (real or complex) variable with zero mean and unit variance.

Of course, it is only expected that the ETH is fulfilled by generic, sufficiently interacting
systems, the random variables Ri,j being fixed by the particular choice of local observable
and Hamiltonian. If we accept the ETH, we can therefore expect that the local observable,
and hence the z∆, approach a smooth distribution for large systems and initial states with
energy densities in the bulk of the spectrum. This is true despite of the fluctuations Ri,j: In
the limit of large systems they should average to smooth distributions after we regularize
with any Gaussian of finite width (as is always required, compare with section 7.4).

Summarizing the above discussions, we can conclude that we should generically expect
that in a situation where we consider an initial state with a finite correlation length and
a local observable in a generic interacting many-body system, one of the following two
alternatives is true: i) the system is already at equilibrium or ii) the system equilibrates in a
time independent of the system size.

7.5.4 Implications of the finite group velocity

Let us now discuss the implication of the finite group velocity in many-body systems in
the context of equilibration. As mentioned several times in this chapter already, in ev-
ery local quantum many-body system with finite-dimensional local Hilbert-spaces, there
is a finite velocity vLR with which information and excitations can propagate through the
system. This is similar to a light-cone in relativistic physics. However, in the case of many-
body systems, this "light-cone" is not strict, but processes which violate the "light-cone"
condition are exponentially suppressed. This result is known as Lieb-Robinson bounds
(LR-bounds) and the corresponding "light-cone" is usually called the Lieb-Robinson cone
(LR-cone). Mathematically, one way to express this result is [223]

‖[A(t), B]‖ ≤ c ‖A‖ ‖B‖ e−a(d(A,B)−vLR|t|), (7.40)

where A, B are local observables, a, c > 0 are constants and d(A, B) is the distance (mea-
sured by the lattice-distance) between the observables A and B. Due to the exponential
surpression of the tails, one can neglect the tails of the LR-cone in exchange for an arbi-
trarily small error in many applications. The group velocity vLR is essentially determined
by the interaction strength. Since the bound is expressed as a bound on the norm of the
commutator of observables in the Heisenberg-picture, it is independent of the initial state
of the system.

Since information can only travel with a finite velocity, a local observable A only sees
a small part of the full system in a given time t. If it is necessary to sense a length-scale
l for the local system to equilibrate, the finite group velocity therefore puts a lower bound
on the equilibration scale as teq ≥ l/vLR.

In many cases we therefore do not need simulate arbitrarily large system sizes when
we do numerical checks of equilibration times. The LR-bounds imply that if we see rapid
equilibration for small system sizes, we know that it will also happen for larger system
sizes. Similarly, if we are interested in effects that should be independent of the boundary
conditions then if we can simulate a system up to linear system size L, we should only
consider the time-evolution up to a time of about t = L/vLR.

If we would let the simulation run for a time longer than L/vLR, information could
travel across the system and come back to the local subsystem we were interested in. This
leads to a similar effect as a recurrence time. Thus, only simulations up to times of the
order of L/vLR should be considered. If we do not see equilibration in such a simulation,
we have to increase the system size. Lieb-Robinson bounds hence allow us to confirm but
not to falsify equilibration on small systems.

In this chapter, we were only interested in systems that are translationally invariant to
some degree. As emphasized before, however, much of the arguments given should also
hold for systems that deviate from this assumptions. As mentioned before, disordered, but
strongly interacting systems, so-called many-body localized systems, indeed also equili-
brate. These systems fulfill stronger bounds than the LR-bounds, in which the light-cone
is deformed away from a linear cone into a logarithmic cone. There is still a spread of
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information (but not of quasi-particles) throughout the system and dephasing in the sense
as we have explained it can happen [224–226]. Contrarily, in non-interacting disordered
systems, like Anderson insulators [227], not even information can propagate across length-
scales larger than the localization length [228, 229]. As a consequence, local excitations
effectively live in small, finite systems and no local equilibration is observed.

7.5.5 Typicality results

In this chapter, I have emphasized a "mechanistic" notion of equilibration, avoiding any
notion of probabilities and putting in focus assumptions which can be expected to be ful-
filled due to the locality of the Hamiltonians and observables and finite correlation lengths
in initial states. This is in contrast to a notion of equilibration in terms of "typicality" [188,
230]. In this approach, inspired from random matrix theory, the focus is on the unitary
transformation U that transforms the eigenbasis of the observable A into that of H. As in
random matrix theory, it is argued that one should expect that the overwhelming majority
of randomly sampled U (according to the Haar measure) should typically also apply to
the particular, non-random actual system of interest. Assuming this, one can indeed derive
rigorous bounds on equilibration times, yielding suprisingly accurate predictions for some
systems. On the other hand, it is not easy to argue why any given fixed system should
indeed be typical. The discussion in this chapter should thus be seen as complementary to
that in Ref. [230]. Both discussions support the view that rapid local equilibration is indeed
a generic feature of complex quantum systems.

7.6 Conclusions and Outlook

How statistical mechanics follows from unitary dynamics in quantum mechanics is one of
the big questions in the sudy of complex quantum systems. For a long time, statistical
mechanics was motivated through the notion of ensembles, as introduced by Gibbs [26].
Today, we know that thermal equilibrium can be explained from the fact that interacting
quantum systems entangle their microscopic parts over time and that this entanglement
naturally leads to a notion of entropy and statistical ensembles on parts of the whole sys-
tem – this is the point of view advocated in the field of pure state statistical mechanics
[231]. A necessity for this is that complex quantum systems indeed equilibrate. In this
chapter, I have reviewed general results that show that generic, complex quantum systems
are expected to equilibrate in a well defined sense. An important figure of merit that mea-
sures how well a given quantum state equilibrates relative to a given Hamiltonian is the
effective dimension. While progress has been made on showing that natural states have a
large effective dimension, it remains to be an important open problem to find strong lower
bounds on the effective dimension from well-motivated physical assumptions.

Going beyond equilibration on average, in this chapter I have put forward arguments
that help to explain why complex quantum systems do not only equilibrate, but that they
also equilibrate in a time that is not astronomically large. These arguments are supposed to
provide intuition on how this happens and what kind of figures of merit are relevant for the
problem; clearly they are not rigorous arguments proving equilibration in the mathematical
sense.

The real work for the future lies in connecting the figures of merit laied out in this
chapter with concrete physical properties. It is an intriguing open problem to formulate
precise, physical conditions that allow us to prove equilibration in finite time from first
principles.
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In the previous chapter, we have discussed in great detail the mechanism of equilibration
and have argued that for many "natural" initial states we can expect that a sufficiently com-
plex many-body system equilibrates in a reasonable time. We can therefore expect that it is
not easy to prepare a large interacting system in a state that does not equilibrate. Neverthe-
less, we have not given any quantitative argument that really proves that such a preparation
is difficult in some well-defined measure. In this chapter1, I will provide a quantitative 1 This chapter is based on

joint-work with Rodrigo
Gallego, Jens Eisert and
Christian Gogolin, published
in Ref. [12]

way to establish that it is indeed extremely difficult to prepare a large system in a state that
does not equilibrate. To achieve this, we will combine reasoning of resource theories (see
chapter 2) with the general results about equilibration from the previous chapter.

The problem that we will consider is the following: Suppose Alice has a large system Q
that is initially in equilibrium, i.e., its initial state σQ commutes with the Hamiltonian and is
therefore stationary. Now she wants to bring the system to a state that does not equilibrate.
This requires to bring it to a state that has small effective dimension, due to theorems 7.1
and 7.2. To achieve this, Bob gives to Alice a second system R in state σR, which is also
stationary. Alice then acts with a unitary operation on the joint-system QR with the aim to
produce a state on Q with small effective dimension. For example, she introduces a time-
dependent interaction between the system, or implements quenches on the systems. In fact,
we can be more generous and assume that Alice can implement any quantum channel Λ
that is unital, i.e., leaves the maximally mixed state invariant. She thus has arbitrary high
control over the microscopic degrees of freedom of QR and is not even subjected to energy-
conservation or entropy-conservation. In particular Alice can first bring the system R into
a non-stationary state using a unitary transformation and if the initial effective dimension
is small, this non-stationary state can be chosen so that the system does not equilibrate.
Thus, the assumption that R is initially at stationary is not as strong as it may at first seem.
Nevertheless, we will relax this condition later on.

In the following sections, I will show that Alice can only bring the system Q to a state
with small effective dimension if R itself had low effective dimension from the beginning.
Thus, to bring a state of a large system into a state that has the potential to withstand
equilibration, it is necessary to have another large system that already has this property.

As we will see, the essential property that is responsible for this mechanism is that given
a quantum state with a certain effective dimension, there are in general many more state
with higher effective dimension than with lower effective dimension. In particular, if the
state is stationary, all states that can be reached by a unital channel have a higher effective
dimension. For example, if a local many-body system is initially thermalized and its global
state is a Gibbs state, then its effective dimension is very large. It is then impossible to
bring the system to a state that does not equilibrate to high precision by acting with any
unitary transformation on this system.

The main result in this chapter shows that a (large) system R that has the potential to
withstand equilibration is necessary to bring another (large) system out of equilibrium. We
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will also see that this mechanism is, in principle, catalytic: Provided that we assume that R
and Q are initially uncorrelated but can become correlated in the process of bringing Q out
of equilibrium, we will see that R can be re-used to bring further systems out of equilibrium.
In this sense R is not being "used up". This is in close analogy to the discussions in
chapters 4 and 5.

8.1 Formalization of the problem and main result

To formalize our approach, let us define the resilience (to equilibration) R of a system
initially in state ρ and evolving under the Hamiltonian H as

R(ρ, H) := log
(

d
deff(ρ, H)

)
, (8.1)

where d is the Hilbert-space dimension of the system. Recall that the effective dimension
is defined as

deff(ρ, H) =
1

Tr(ωH(ρ)2)
, (8.2)

where ωH(ρ) = ∑k PkρPk and Pk are the energy-projectors of H. Here, we have implicitly
defined ωH as the dephasing-channel that maps an initial state to its time-average.

The resilience R measures the potential to withstand equilibration. For example, if ρ is
the maximally mixed state, which is always perfectly equilibrated, we haveR(1/d, H) =
0. On the other hand, ρ is a super-position of very few energy-eigenstates, which in general
does not equilibrate, thenR(ρ) ≈ log(d) = n, where n is the system size.

Thus, a large resilience is a necessary condition to withstand equilibration, but it is not
a sufficient condition to withstand equilibration. For example, energy-eigenstates have a
very large resilience, but are perfectly stationary. This will, however, not be a problem in
the following, because we want to show that all states that do not equilibrate are difficult
to prepare. It is then not problematic that it is also difficult to prepare certain states that do
equilibrate.

As stated in the introduction, we consider the situation where we have initially a system
Q with Hamiltonian HQ and a system R with Hamiltonian HR. We will assume that the
systems Q and R are fully interacting systems and the Hamiltonians HQ and HR have non-
degenerate energy-gaps (see chapter 7). Let us denote the total Hamiltonian by HQR =
HQ ⊗ 1 + 1⊗ HR. The initial state of RQ is given by

σQR = σQ ⊗ σR. (8.3)

For now, let us assume that the state σQR is stationary, i.e., we have

σQ(t) = Tt(σQ) := e−iHQRtσQReiHQRt = σQR. (8.4)

Then, we allow to change the Hamiltonian on Q and R arbitrarily over time for some period
of time T. The only condition that we impose is that the final Hamiltonian H̃QR at time T
again does not couple Q and R and that the final local Hamiltonians H̃Q and H̃R are fully
interacting Hamiltonians with non-degenerate energy gaps again. Such a time-dependent
trajectory of Hamiltonians results in some overall unitary transformation U on QR.

Going beyond that, we can imagine that we could randomly implement different trajec-
tories of Hamiltonians, which all end with the final Hamiltonian H̃QR. If the i-th trajectory
occurs with probability i and leads to the unitary Ui, then the resulting quantum channel on
QR is simply given by

Λ(·) = ∑
i

piUi ·U†
i . (8.5)

Note that any such transformation is unital, i.e., it leaves the maximally mixed state 1/dQR
invariant.
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To summarize, the process of bringing the system out of equilibrium can be described
abstractly as

(σQR, HQR) 7→ (Λ
(
σQR

)
, H̃QR) =: (ρQR, H̃QR), (8.6)

with Λ(1) = 1. The systems Q and R continue to evolve under their respective Hamil-
tonians H̃Q and H̃R after this process, leading to trajectories of states ρQ(t) and ρR(t).
Then the question is whether the trajectory ρQ(t) can be made to be non-equilibrating by a
suitable transformation Λ and Hamiltonian H̃QR. The first result is the following theorem.

Theorem 8.1 (Large change of resilience requires large resilience). Let two systems Q
and R with Hamiltonians HQ and HR in a stationary state σQ ⊗ σR be given. Then every
trajectory ρQ(t) generated according to the above procedure fulfills

∆RQ := R(ρQ, H̃Q)−R(σQ, HQ) ≤ R(σR, HR) (8.7)

for every final Hamiltonian H̃Q ⊗ 1 + 1⊗ H̃R.

The theorem expresses that to increase the resilience on Q by some amount, this amount
of resilience needs to have been present in the system R. Hence, the system R should be
viewed as a resource to prepare states that do not equilibrate. To get a better understanding
of this result, let us consider an example. Suppose the initial state on Q is a microcanonical
state, which has equal overlap with K(n) energy-eigenstates. For a usual micro-canonical
state we expect that K(n) ≈ eαn for some constant α > 0. This leads to a finite entropy-
density and for thermal states the constant α would control the temperature of the initial
state. Suppose that the system R is a m-partite system with local Hilbert-space dimension
dR. Then the theorem tells us that

deff(ρQ, H̃Q) ≥
K(n)
dm

R
≈ eαn

dm
R

. (8.8)

Therefore, as the system size of Q increases, the size of the system R also has to increase
at least linearly with the size of Q to have any hope of bringing the system Q to a state that
does not equilibrate very well.

We can also use theorem 8.1 to show that local quenches cannot bring a system far out of
equilibrium. Imagine a system Q that is initially in a stationary state σQ of the Hamiltonian
HQ. Then quench the system locally by applying an arbitrary quantum channel Φ to a
subsytem X ⊂ Q with Hilbert-space dimension dX . Then theorem 8.1 implies that the
change of resilience is bounded as

∆RQ = R(Φ(σQ), H̃Q)−R(σQ, HQ) ≤ log(dX). (8.9)

Thus, a local quench, for example a local spin-flip, cannot significantly change the re-
silience on stationary initial states. Importantly, there is no restriction on the channel Φ
apart from acting only locally on X. This result follows from the fact that every quantum
channel can be dilated to a unitary [62]: If Φ acts on a system of dimension dX , there exists
a state σR of dimension at most dX and a unitary UΦ such that

Φ(σQ) = TrR(UΦσQ ⊗ σRU†
Φ). (8.10)

Since we can choose the Hamiltonian on R freely, we can assume that σR is stationary and
the result follows directly from theorem 8.1.

Proof. Let us now prove the theorem. The proof follows similar ideas as the proofs in the
resource theory of thermodynamics (see chapters 2–5) and is surprisingly simple. To prove
the theorem, we first express the resilience in terms of Rényi-divergences (see chapter 2):

R(σQR, HQR) = D2

(
ωHQR(σQR)‖1/dQR

)
. (8.11)
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Now note that the map ωH̃QR
is unital. We can now use the data-processing inequality for

the unital map ωH̃QR
◦Λ:

R(σQR, HQR) = D2(σQR‖1/dQR) (8.12)
≥ D2(ωH̃QR

◦Λ(σQR)‖1/dQR) (8.13)

= R(Λ(σQR), H̃QR) = R(ρQR, H̃QR). (8.14)

Furthermore, TrR is also a unital map and we have TrR ◦ ωH̃QR
= ωH̃Q

◦ TrR. We thus
obtain

R(ρQR, H̃QR) ≥ R(ρQ, H̃Q). (8.15)

We now make use of the fact that the resilience is additive if the initial state on QR is
stationary:

R(σQR, HQR) = R(σQ, HQ) +R(σR, HR) (8.16)

This follows directly from the additivity of Rényi-divergences under tensor products. Putting
together Eqs. (8.12),(8.15) and (8.16) we obtain the desired result.

8.2 Non-stationary initial states

In the previous section, we assumed that the initial states on Q and R are stationary. This
is a natural assumption, since it asks whether we can create non-equilibrium states from
perfectly equilibrated states, and we see that this can only be possible if at least one of
the systems R or Q already has small effective dimension. Let us nevertheless now also
discuss a way of relaxing this assumption by replacing it with an assumption on the possible
operations. To motivate this assumption, consider for now a single system, say Q, which is
initially in a pure state of the form

|ψ 〉Q :=
1√
dQ

∑
i
|Ei 〉 , (8.17)

where |Ei 〉 denote the energy eigenstates of the Hamiltonian HQ on Q. Provided that the
Hamiltonian HQ has non-degenerate spectrum, this state has zero resilience to equilibrate,
since its time-average is simply the maximally mixed state.

Nevertheless, it is clear that we can bring it to any pure state with arbitrary large re-
silience by a single unitary operation. Hence it can be brought to a state that does not
equilibrate, for example an equal superposition of two energy eigenstates. In this case it
is therefore, in principle, perfectly possible to bring the system to a state that does not
equilibrate, even without using any resource.

Since the state |ψ 〉Q fluctuates rapidly, however, the final state after the operation has
been applied will in general depend very sensitively to the time tinit after which the opera-
tion is applied:

Λ
(
T Q

tinit
( |ψ 〉〈ψ |Q)

)
6= Λ

(
|ψ 〉〈ψ |Q

)
= ρQ. (8.18)

Thus, in an experiment, one would have to have very precise control over the timing to
consistently prepare the same trajectory ρQ(t) to gather statistics and verify that the oper-
ation indeed produces the non-equilibrating trajectory ρQ(t). Due to the time-scale of the
fluctuations, such a degree of control is in many situations unrealistic. We can incorporate
this formally into our set-up by assuming that for every time t there exists a (potentially
different) time t′ such that

Λ ◦ Tt(σQR) = T̃t′ ◦Λ(σQR), (8.19)

where T̃t denotes the time-evolution under the post-quench Hamiltonian H̃QR. In partic-
ular, this contains the special case that σQR is already stationary, but also different well-
known classes of maps. Clearly, in the case HQR = H̃QR the condition holds for covariant
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maps, which fulfill Λ ◦ Tt = Tt ◦ Λ [107], which do not require any timing precision.
It also holds for phase-invariant maps, which fulfill Λ ◦ Tt = Λ. In general, however,
condition (8.19) is much weaker than any of the two, since it only has to hold for the par-
ticular initial state σQR and t′ can be any function of t. However, we leave a more detailed
investigation of this condition for future work.

The second assumption that we will make is that the dephasing-map with respect to
HQR does not create any correlations between Q and R:

ωHQR = ωHQ ⊗ωHR . (8.20)

This condition is fulfilled as long as there are no distinct energies EQ 6= E′Q and ER 6= E′R
such that ER + EQ = E′R + E′Q. In particular it is fulfilled if HQR is non-degenerate. Note
that for the equilibration bounds, we anyway assume that HQ and HR are non-degenerate.
It is then generically true that also HQR is non-degenerate. However, the condition (8.20)
can also be true if HQ and HR have degeneracies, as long as no new degeneracies are
created by adding them. It is, however, not fulfilled if HQ = HR.

Under these assumptions, we can now proof the following generalization of theorem 8.1.

Theorem 8.2. Let two systems Q and R with Hamiltonians HQ and HR in the state σQ ⊗
σR be given. Assume that ωHQR = ωHQ ⊗ ωHR . Then for every state ρQ generated using
a unital map Λ that fulfills (8.19) with respect to H̃QR = H̃Q ⊗ 1 + 1⊗ H̃R we have

∆RQ := R(ρQ, H̃Q)−R(σQ, HQ) ≤ R(σR, HR). (8.21)

Proof. The proof of the theorem is the same as that of Theorem 8.1 once we have shown
monotonicity and additivity of the resilience. Additivity follows straightforwardly from the
assumption ωHQR = ωHQ ⊗ ωHR . For monotonicity we use assumption (8.19). First we
compute

ωH̃QR
◦Λ ◦ωHQR(σQR) = lim

T→∞

1
T

∫ T

0
ωH̃QR

◦Λ ◦ Tt(σQR)

= lim
T→∞

1
T

∫ T

0
ωH̃QR

◦ T̃t′ ◦Λ(σQR)

= lim
T→∞

1
T

∫ T

0
ωH̃QR

◦Λ(σQR)

= ωH̃QR
◦Λ(σQR), (8.22)

where we have used ωH̃QR
◦ T̃t′ = ωH̃QR

for all t′. We then have

R(Λ(σQR), H̃QR) = D2

(
ωH̃QR

◦Λ(σQR)‖1/dQR

)
= D2

(
ωH̃QR

◦Λ(ωHQR(σQR))‖1/dQR

)
≤ D2

(
ωHQR(σQR)‖1/dQR

)
= R

(
σQR, HQR

)
, (8.23)

which shows monotonicity.

8.3 Correlations and the second law of equilibration

The result in the previous section shows that to bring a system into a non-equilibrating
state, it is necessary to have at our disposal a system which can withstand equilibration to
a sufficient degree. It is natural to ask, whether in the process of bringing the system Q out
of equilibrium, the system R is automatically brought into equilibrium, i.e., whether the
resilience on R is spent in the process. We can thus ask whether a relation of the form

∆RQ ≤ −∆RR (8.24)

holds true. In this case, we would obtain a "second law of equilibration", since the resilience
to equilibrate could never be created but only re-shuffled. In general, this re-shuffling would
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diminish the resilience, so that after sufficiently long time, all systems would have small
resilience and equilibrate. Let us first discuss a case in which this relation holds. Suppose
that after the application of the map Λ the systems Q and R are uncorrelated, i.e.,

ρQR = ρQ ⊗ ρR (8.25)

and that ωH̃QR
= ωH̃Q

⊗ωH̃R
. We can now use the following property of the resilience.

Lemma 8.3 (Super-additivity on product-states). For any bipartite, non-interacting system
we have

R(ρQ ⊗ ρR, H̃QR) ≥ R(ρQ, H̃Q) +R(ρR, H̃R). (8.26)

Proof. A direct calculation using the formulation of ωH̃QR
as time-averages yields

ωH̃QR
◦ωH̃Q

⊗ωH̃R
= ωH̃Q

⊗ωH̃R
◦ωHQR . (8.27)

But clearly, ωH̃QR
◦ ωH̃Q

⊗ ωH̃R
= ωH̃Q

⊗ ωH̃R
. Using the data-processing inequality

and the fact that maximally mixed states are product-states, we then get

R(ρQ ⊗ ρR, H̃QR) = D2

(
ωH̃QR

(ρQ ⊗ ρR)‖1/dQR

)
≥ D2

(
ωH̃Q

⊗ωH̃R
◦ωH̃QR

(ρQ ⊗ ρR)‖1/dQR

)
= D2

(
ωH̃QR

◦ωH̃Q
⊗ωH̃R

(ρQ ⊗ ρR)‖1/dQR

)
= D2

(
ωH̃Q

⊗ωH̃R
(ρQ ⊗ ρR)‖1/dQR

)
= R(ρQ, H̃Q) +R(ρR, H̃R).

Using this Lemma we now get

R(σQ, HQ) +R(σR, HR) = R(σQR, HQR)

≥ R(ρQ ⊗ ρR, H̃QR)

≥ R(ρQ, H̃Q) +R(ρR, H̃R). (8.28)

Hence, (8.24) is fulfilled. However, the assumption that ρQR is uncorrelated is in general
unjustified. Indeed, we will now see that (8.24) can be violated in an extreme way even if
the correlations are arbitrarily small in terms of the mutual information.

Theorem 8.4 (No second law of equilibration). Consider a family of n-partite many-body
systems with increasing n. For large enough n, there are stationary states σ(n)Q and
initial and final non-interacting Hamiltonians HQR = ˜HQR such that for any ε > 0 there

exists a corresponding stationary resource state σ
(n)
R and a mixture of unitaries Λ(n), such

that

(1) The resulting trajectory ρQ(t) on Q does not equilibrate.

(2) The state of the resource remains unchanged upon application of the channel:
ρ
(n)
R := TrQ(Λ(n)(σ

(n)
Q ⊗ σ

(n)
R )) = σ

(n)
R .

(3) The change in resilience of the systems ∆R(n)
Q diverges with n→ ∞.

(4) The correlation between R and Q as measured by the mutual information remain ar-
bitrarily small:

I(Q : R) = D1(Λ(n)(σ
(n)
Q ⊗ σ

(n)
R )‖ρ(n)Q ⊗ ρ

(n)
R ) ≤ ε. (8.29)
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Let us discuss the implication of this theorem. Put into words, it states that we can
find arbitrary large many-body systems Q and R and operations on RQ with the following
properties: i) Q is initially stationary, ii) Q finally does not equilibrate, iii) the state on R
does not change in the process, i.e., in the words of chapter 2 it is a catalyst, iv) arbitrary
little correlations between Q and R are established (as measured by the mutual informa-
tion). We thus conclude that it is, in principle, not necessary to spend the resilience in R in
order to bring Q to a state that does not equilibrate.

Now suppose that Alice initially has M copies Qj of Q which are initially uncorrelated.
Then she can repeat this procedure: According to the theorem, she can use a single system
R to bring all of the systems Qj out of equilibrium by first applying the channel R to R
and Q1, then to R and Q2 etc. In other words, it is, in principle, possible to bring arbitrary
many systems out of equilibrium without spending any resilience to equilibrate.

How is this result compatible with theorem 8.1? After all it seems that the total change
of resilience of all the M systems Qj is arbitrarily large. However, this is not true. In the
process of bringing all the systems Qj out of equilibrium, these systems become correlated
with each other. Furthermore due to the fact that the systems Qj are copies of the same
system, the total Hamiltonian HQ1···QM is non-interacting and has huge degeneracies in
the spectrum. This results in the fact that time-averaging all the copies Q1 . . . QM creates
a large amount of correlations and we have

ωHQ1 ···QM
6= ωHQ1

⊗ωHQ2
⊗ · · · ⊗ωHQM

. (8.30)

This in turn implies that

∆RQ1···QM 6= ∑
j

∆RQj = M∆RQ1 . (8.31)

Put in different words: It makes a huge difference if one tries to bring out of equilibrium
many non-interacting systems, considered as one large system, which is easy in the sense of
theorem 8.4, or to bring out of equilibrium one large, interacting system, which is extremely
difficult as shown by theorem 8.1.

It is important to note that theorem 8.4 is an "in principle" result, since we allowed for
arbitrary channels Λ that can be applied with arbitrary precision. Considering the results in
chapter 7, it seems plausible that essentially any small perturbance or imperfection in the
implementation of the operation Λ would result in a state on Q (or the Qj) that equilibrates.
Similarly, if there would be any, even arbitrarily small, interaction between the systems Qj
it would not be possible to bring any of the M systems out of equilibrium with a single
copy of R. Nevertheless, it shows that a "second law of equilibration" in the sense of (8.24)
cannot be proven in general. Importantly, theorem 8.4 is independent of the measure that
is used to quantify the resilience to equilibration. Thus, the violation of the "second law of
equilibration" is not an artefact of the choice of equilibration measure.

Proof of theorem 8.4. The proof of theorem 8.4 rests on a result by Markus P. Müller,
which states that a state σ can be brought to a state ρ with the help of a catalyst that can
become correlated to the system if and only if the von Neumann entropy increases: S(ρ) ≥
S(σ) (see chapter 5 for a thorough discussion of catalysts that can be come correlated with
a system). In the form that is relevant for the purpose here, we can state it in the following
way.

Theorem 8.5 (von Neumann entropy characterizes correlated catalytic transitions [164]).
For any two finite-dimensional states σQ and ρQ of same dimension and with S(σQ) ≤
S(ρQ), any δI > 0 and any ε > 0, there exists a finite-dimensional state σR and a mixture
of unitaries Λ such that

(a) The channel produces the state ρQ on Q to accuracy ε:∥∥ρQ − TrR(Λ(σQ ⊗ σR))
∥∥

1 < ε,

(b) The state on R after Λ coincides with the state in which it was originally given:
σR = TrQ(Λ(σQ ⊗ σR)) =: ρR,

(c) The mutual information between R and Q after Λ has acted is upper bounded by δI:
D1(Λ(σQ ⊗ σR)‖ρQ ⊗ ρR) ≤ δI.
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The Hilbert-space dimension of R may in general depend on both ε and δI.

Note that in the theorem we can choose the eigenbasis of σR as we wish. In particular, if
we pick some arbitrary Hamiltonian H(n)

R on R, we can always choose the state σR to be di-
agonal in the energy basis. In the following construction, the initial and final Hamiltonians
coincide, but they can also be chosen differently.

Consider a sequence of n-partite systems with Hamiltonians H(n)
Q of dimension dn and

the sequence of states

ρ
(n)
Q := a |Ψ 〉〈Ψ |Ψ + (1− a)

Π
dn − 2

. (8.32)

Here, Ψ = 1√
2
( |E1 〉+ |E2 〉) with |E1 〉 and |E2 〉 two arbitrary energy eigenstates of

H(n)
Q and Π the projector onto the subspace orthogonal to |E1 〉 and |E2 〉. These states

clearly do not equilibrate, since there are persistent Rabi-oscillations with amplitude a and
frequency E2 − E1. Furthermore, the entropy of these states is given by

S
(

ρ
(n)
Q

)
= aS( |Ψ 〉〈Ψ |) + (1− a)S

(
Π

d− 2

)
+ H2(a)

= (1− a) n log(d) + (1− a) log(1− 2d−n) + H2(a)
≈ (1− a) n log(d) + H2(a), (8.33)

where H2(a) = −a log(a)− (1− a) log(1− a) denotes the binary entropy and the last
equation holds with an error exponentially small in the system size. Thus the entropy
diverges with the system size. The effective dimension approaches a constant, on the other
hand:

deff

(
ρ
(n)
Q , H(n)

Q

)
=

1

a2 + (1−a)2

dn−2

≤ 1
a2 . (8.34)

The states ρ
(n)
Q will be the final states on the system Q. Let us now construct a sensible

class of initial states. From theorem 8.5, we see that it is sufficient to have any states σ
(n)
Q

that are stationary and fulfill

• Sufficiently small entropy: S(σ(n)
Q ) < S(ρ(n)Q ),

• Diverging effective dimension: deff(σ
(n)
Q , H(n)

Q ) diverges with the system size.

To achieve this, we can simply consider any micro-canonical state with a microcanonical
window of dimension dγn for some γ < a. Such a state has both entropy and effective
dimension given by γn log(d). The constant γ depends on the effective temperature of the
micro-canonical state, but as long as γ < a, both conditions are fulfilled. Another possible
choice is given by stationary states with a finite correlation length with entropy-density
smaller than a log(d), since it has been proven that states with finite correlation length
have an effective dimension that diverges with the system-size (see section 7.5.2).

To complete this section, let us also discuss the behaviour of the resilience of R as a
function of the correlations. We will see that the resilience of R has to diverge as ε → 0.
To understand this, suppose that this was not true. Then there would exist constants C(n)

such that

R(σ(n)
R , H(n)

R ) ≤ C(n) for all ε ≥ 0. (8.35)

Let us now fix a system-size and drop the n-labels everywhere for notational simplicity.
Then we can use one system σR to bring m identical systems Qj to a final state ρQ1···Qm
that does not equilibrate. Using theorem 8.1 we then have

C ≥ R(ρQ1···Qm , HQ1···Qm)−mR(σQ1 , HQ1). (8.36)
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Now, all the systems Qj have pair-wise correlations that are bounded by ε in terms of mu-
tual information, since the correlations have been established through R and R is correlated
only by an amount ε with each of the systems. Thus I(Qi : Qj) ≤ ε. We can now take the
limit ε→ 0. Since the mutual information vanishes only for product-states we then obtain

lim
ε→0

ρQ1···Qm = ρQ1 ⊗ · · · ⊗ ρQm . (8.37)

We can now use the super-additivity of the resilience on product-states to obtain

C ≥ m
(
R(ρQ1 , HQ1)−R(σQ1 , HQ1)

)
. (8.38)

Since m is arbitrary we obtain a contradiction.

8.4 Impossibility equilibration bounds in terms of von Neumann entropy

In the previous chapter, I briefly mentioned that the results in this chapter show that we
cannot find similar equilibration bounds in terms of the von Neumann entropy instead of
the Rényi-2 entropy of the time-averaged state ωH(ρ). Let us now discuss this in some
more detail.

Imagine that we could find an equilibration bound akin to (7.1) in terms of the von Neu-
mann entropy. In this case it would be sensible to define a corresponding resilience

R̃(ρ, H) := D (ωH(ρ)‖1/d) , (8.39)

where D = D1 again notes the quantum relative entropy. Due to the super-additivity of the
relative entropy (see chapter 5), we would then find that the resilience R̃ is super-additive
even for correlated states:

R̃(ρ12, H1 ⊗ 1 + 1⊗ H2) ≥ R̃(ρ1, H1) + R̃(ρ2, H2). (8.40)

This in turn implies that the corresponding "second law of equilibration" would always be
fulfilled:

∆R̃Q ≤ −∆R̃R. (8.41)

But this is in conflict with theorem 8.4. Indeed, we can also see directly from the proof
of theorem 8.4 that the states ρ

(n)
Q constructed in the proof have the property that they do

not equilibrate but the von Neumann entropy of the corresponding time-averaged states
diverges linearly with the system size.

In fact, theorem 8.4 shows that there cannot be any meaningful measure of resilience to
equilibrate, which is also super-additive.

8.5 Conclusions and Outlook

Equilibration is an ubiquitous feature of complex of physical systems. In the previous
chapter, we saw that this fact can be explained if natural quantum states have large overlap
with many energy eigenstates. Heuristically, this follows from the fact that the density of
states grows exponentially with the system size for reasonable energy densities and generic
many body systems. Any, ever so small, uncertainty in the energy density is then com-
patible with an exponentially large effective dimension. Nevertheless, this argument is
neither really quantitative, nor is it formulated in an operational manner. In this chapter
we showed that one can indeed derive quantitative bounds from an operational perspective
that establish that it is extremely difficult to prepare large quantum systems in states that
do not equilibrate. We also elucidated the role of correlations that can be established with
resource systems. As a side result, we found that it is impossible to formulate equilibration
bound in terms of the Shannon entropy of the energy distribution and showed that this fact
is intimately connected to the role of correlations in a "second law of equilibration".

From a formal point of view, we used techniques from the resource theory of coherence
and purity. The results in this chapter show that the quantities studied in these resource
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theories [56, 57, 107–111, 113–115] are indeed useful to study fundamental problems in the
foundations of statistical mechanics by providing a link between the resource theoretical
formulation of quantum thermodynamics and the problem of emergence of equilibrium
statistical mechanics in complex quantum systems.

This finishes the first part of this thesis, dealing with fundamental problems. We will
now turn to more practically relevant problems by studying how limited control abilities
and strong interactions with heat baths influence fundamental thermodynamic bounds on
work extraction and efficiencies of thermal machines.
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IN THE PREVIOUS CHAPTERS , I discussed thermodynamics from a fundamental per-
spective in the framework of resource theories. Fundamental here means that the focus
of the discussion was not given by concrete physical models or concrete physical effects
in certain situations, but by the basic conceptual and mathematical structure of thermody-
namic laws that can be derived from minimal assumptions. The framework of resource
theories allowed us to take an operational stance while discussing such abstract questions.
And indeed we have seen that we can answer a great variety of questions: how the second
law of thermodynamics arises and can be quantified; how the third law of thermodynamics
arises and can be quantified; how we can define work from an operational point of view
in settings that do not adhere to the traditional assumptions; how the non-equilibrium free
energy emerges as a unique figure of merit and how this is related to neglecting correla-
tions; and finally, how one can rigorously derive statistical ensembles and the associated
laws of phenomenological thermodynamics by forgetting about the detailed microscopic
description of systems.

While such general results are very satisfying from a theoretical and conceptual perspec-
tive, they also have the downside that they are indeed "only" fundamental laws of thermo-
dynamics, assuming perfect experimental capabilities (within certain limits). In concrete
experimental situations, experimentalist can never implement arbitrary energy-preserving
unitary operations, as assumed in the framework of thermal operations. Instead, they will
usually be able to control only a few parameters and face additional physical restrictions.
For example, an experimenter usually cannot modify the inherent interaction between par-
ticles in a many-body system directly and arbitrarily, but only apply external fields. But this
might not be enough to implement optimal protocols and saturate thermodynamic bounds.

It is thus an interesting question to study how thermodynamic bounds are modified if
such additional restrictions are taken into account. This will be the topic of this and the
following chapters1. 1 This chapter is based on

work together with Rodrigo
Gallego, Jens Eisert and
Jaqueline Lekscha, published
in Refs. [1, 6].

Unfortunately, the resource-theoretical framework of thermal operations is not particu-
larly suited for such a study. This is due to the fact that it requires to always incorporate all
physical systems into the description. But if we consider an experiment in a, say, quantum
optics laboratory we clearly do not want to (and cannot) describe every laser in the room
and the power plant (work-storage device) which supplies the necessary electrical power
explicitly as quantum mechanical systems.

It is thus desirable to resort to a more effective model, which only explicitly accounts for
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the degrees of freedom under study and can hence be analyzed in concrete situations. We
will thus first be faced with setting up a basic framework in which we can study such ques-
tions. Our aim will be to be as concrete as possible while still being as model-independent
as possible. That means that we want to end up with a framework that can be applied to
a multitude of concrete physical situations, but is broad enough to allow to derive general
results.

I will then discuss within this simplified model, which is however still quite general,
how limited control capabilities influence basic thermodynamic tasks. The focus will be on
how such limitations influence how much work can be extracted from a non-equilibrium
system – either in the case of a single run using a single heat bath, which ends with the
system that was initially in thermal equilibrium reaching thermal equilibrium, or in the
case of a thermal machine operating cyclically between two heat baths. In this chapter,
we will essentially assume that the contact of systems to heat baths is "weak" in a certain
sense. In the later chapter 11, I will discuss in detail how strong coupling to heat baths and
the possibility of non-thermalizing heat baths influence thermodynamics.

9.1 Simplifying the model

Let us now begin to develop an effective model in which we can describe the task of work
extraction. Just as before, we will describe this model in terms of the operations that
an experimenter is allowed to perform. To obtain non-trivial thermodynamics and work-
extraction we need to be able to couple the system to a heat bath and we need to be able
to perform operations which in some way allow for performing work on the system. In the
following, we will distinguish these two kind of operations as

1. Thermal contacts: bringing the system at hand in contact with a heat bath for some
amount of time,

2. Adiabatic evolution: changing the Hamiltonian of the system in a time-dependent way
while it is not coupled to a heat bath.

Since the above operations include changing the Hamiltonian over time, we need to keep
track of both the Hamiltonian and the quantum state of the system over time. The basic
objects that we will be working with will thus again be pairs of quantum states of Hamilto-
nians, which I will write as (ρt, Ht). I will now describe each of these classes of operations
in more detail. For the moment, this will still be on a very general level and to simplify the
description, I will for now only consider a single heat bath at inverse temperature β. The
generalization to several heat baths or additional particle reservoirs etc. is straight-forward.

9.1.1 Thermal contacts

The first kind of operation that we consider is that of bringing the system in contact with
the heat bath for some amount of time. From an abstract point of view the effect of such
a coupling is described by some quantum channel G acting on the quantum state of the
system, but leaving the Hamiltonian unchanged:

(ρt, Ht) 7→ (G(ρt), Ht). (9.1)

The precise form of the channel G depends on how exactly, and for how long the system
is coupled to the heat bath. At any time, there will thus in general be a whole set Gt of
possible channels G that could correspond to a valid thermal contact. The defining feature
of any such thermal contact is that if the system is already at thermal equilibrium, its state
cannot change. We thus require that all the channels in Gt preserve the Gibbs-state:

G(ωβ(Ht)) = ωβ(Ht), ∀G ∈ Gt. (9.2)

We can distinguish different levels of control that an experimenter has over the heat bath
and the coupling between the heat bath and the system by restricting the set Gt. For ex-
ample, we could assume that the experimenter has extremely little control, in which case it
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would be reasonable to assume that the only channel she can implement is the thermalizing
map Tt:

Tt(ρt) = ωβ(Ht) ∀ρt. (9.3)

Such thermalization happens if the experimenter couples the system weakly to a heat bath
for a sufficiently long, random time. We could also assume that the experimenter can
weakly couple the system to the heat bath for a well-defined time and that during this time
the dynamics of the system is described by a Markovian master equation. Then the system
would evolve towards a thermal state but maybe not thermalize completely. We could also
consider the extreme situation where the experimenter has arbitrary quantum control over
system and bath, in which case she could implement arbitrary Gibbs-preserving channels.
For example, she could implement the anomalous heat flow, described in chapter 2. We
will later see when and how such different levels of control influence how much work can
be extracted from a system out of equilibrium in certain situations.

In the above description, I have always labelled states, Hamiltonians and sets of channels
with the letter t, suggesting that they are time-dependent quantities. It is important to
recognize that the sets Gt depend on t, but only implicitly through the Hamiltonian Ht,
Gt = G(Ht). This is due to the fact that the condition (9.2) depends on the Hamiltonian
and therefore is time-dependent.

In this chapter, I will not account for the time it takes to couple the system to the heat
bath. That is, we treat the thermalizing maps G ∈ Gt as happening instantaneously, even
though in reality they take a finite time to be implemented. This is not problematic, since
in this chapter we are not considering the power of thermal machines.

Coupling the system to the heat bath with channel G will in general lead to a change of
energy on the system, which we interpret as heat since no other systems than a heat bath
and the working system are involved. We will interpret energy absorbed from the heat bath
as positive heat Qt:

Qt = Tr(Ht(Gt(ρt)− ρt)), (9.4)

where Gt is the channel that describes the thermal contact at time t. This completes the
general description of thermal contacts. Let us now turn to adiabatic evolutions.

9.1.2 Adiabatic evolution

The second kind of operations that I will consider adiabatic evolutions, in which the exper-
imenter modifies the Hamiltonian of the system in a time-dependent way, for example, by
altering external fields. The effective evolution then acts as

(ρt, Ht) 7→ (ρt+τ , Ht+τ) = (Ut→t+τρtU†
t→t+τ , Ht+τ), (9.5)

where

Ut→t+τ = T exp
(
−i
∫ t+τ

t
Ht′ dt′

)
. (9.6)

As discussed above, in general an experimenter cannot modify the Hamiltonian Ht arbitrar-
ily. Similarly as the set of of possible thermal contacts, there will therefore also be a setH
of possible Hamiltonians that can be implemented. We will thus assume that Ht ∈ H in the
following and assume that every to Hamiltonians inH can be connected by a smooth curve
in H. The set H, reflecting the control capabilities of the experimenter during adiabatic
evolution, will have important consequences on the possible thermodynamic protocols that
can be implemented by the experimenter. Furthermore, since the set of possible thermal
contacts depend on the current Hamiltonian, the set H also indirectly influences the possi-
ble thermal contacts. This will turn out to be crucial in certain situations.

As in the case of thermal contacts, adiabatic evolutions in general do not preserve the
energy of the system. But since in this case no coupling to heat baths is involved, we
consider the change of average energy as work W(t→ t + τ) in this case:

W(t→ t + τ) := Tr (Htρt − Ht+τρt+τ) . (9.7)
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This definition is subject to the condition that no thermal contact has occurred between
times t and t + τ. I will say that work is extracted if W(t → t + τ) ≥ 0. These defini-
tions ensure the first law of thermodynamics in terms of average energy; denoting the total
change of average energy between t and t′ by ∆E(t → t′) and the total absorbed heat as
Q(t→ t′), we then have

∆E(t→ t′) := Tr(Htρt)− Tr(Ht′ρt′) = W(t→ t′)−Q(t→ t′). (9.8)

As discussed in detail in chapter 4, when we say "work", in principle we have to specify in
detail what we mean by this, that is, what kind of physical work-storage devices we have in
mind and what kind of transformations of them we allow for. How is this compatible with
the above ad-hoc definition of work?

It turns out that it is always possible to use an auxiliary system, which models an ide-
alization of a lifted weight, and apply an energy-conserving unitary on the working sys-
tem together with this idealized weight such that the dynamics on the working system is
given to arbitrary precision by a prescribed unitary Ut→t+τ (also see section 2.5). By
energy-conservation, the average change of energy on the weight is then given by the work
W(t → t + τ). Furthermore, this change of average energy does not depend on the ini-
tial average2 "height" of this weight and its entropy remains approximately constant. The2 In the sense of the expec-

tation value of the position
operator in the initial state.

change of free energy on this weight then therefore coincides with its change of aver-
age energy and W(t → t + τ) can be seen as measured by this idealized weight as a
work-storage device. The construction of such an idealized weight and the corresponding
energy-preserving unitaries are, for example, discussed in detail in Refs. [54, 60, 80, 232].
A further way to motivate this definition is from classical mechanics, where the mechanical
work associated to a trajectory (q(t), p(t)) undergoing evolution under a time-dependent
Hamiltonian with control parameter λ can be written as

W =
∫

∂H
∂λ

(q(t), p(t))
∂λ

∂t
dt. (9.9)

Eq. (9.7) is simply the verbatim translation of this quantity to the quantum setting when a
probability distribution over trajectories is included in the description.

9.1.3 Thermodynamic protocols and isothermal processes

After having discussed the possible operations, we can combine them to construct a ther-
modynamic protocolP . This is simply a prescription of an arbitrary sequence of alternating
adiabatic evolutions and thermal contacts to one (or more) heat baths. Let us adopt the con-
vention that every such protocol begins with an adiabatic evolution and ends with a thermal
contact 3. To every protocol there correspond initial and final Hamiltonians H(i)(P) and3 This is without loss of gen-

erality if we assume that the
sets Gt always include the

identity channel, i.e., the
operation of doing nothing.

H( f )(P), respectively.
Let ti denote the time right before the i-th thermal contact. Then we can label the chan-

nels representing thermal contacts by Gi = Gti and the unitary time-evolution that results
from the driving between ti−1 and ti as Ui = Uti−1→ti . Any thermodynamic protocol P
can then be specified as a list of triples (ti, Ui, Gi) together with the initial Hamiltonian
H(i)(P). I will call a protocol cyclic if H(i)(P) = H( f )(P).

A thermodynamic protocol P maps any initial state ρt0 to some final state P(ρt0). As-
sociated to any protocol and initial state ρt0 are the total work W(P , ρt0 , Ht0) and heat
Q(P , ρt0 , Ht0). In the case of multiple heat baths at different temperatures we can fur-
thermore split up the heat into the contributions from the different heat baths. To prevent
further notational overload, I will not introduce further special notation for such cases for
now.

Let us now discuss a specific example of a thermodynamic protocol, which will turn
out to be of great importance. Suppose our system is initially in thermal equilibrium with
respect to the initial Hamiltonian H(i) = Ht0 . Then we want to extract as much work as
possible using a protocol that changes the initial Hamiltonian H(i) to some final Hamilto-
nian H( f ) = HtN in N steps with the state of the system ending as the equilibrium state
of the final Hamiltonian ρtn = ωβ(H( f )). To achieve this we mimic an isothermal quasi-
static process from phenomenological thermodynamics. Pick any sufficiently smooth curve
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Ht : [0, 1] 7→ H such that H0 = H(i) and H1 = H( f ). Since we assumed H to be path-
connected this is always possible. Now discretize the curve into N steps ti = i/N. In each
step, we first quickly change the Hamiltonian from Hti−1 to Hti . Then we let the system
thermalize completely. In the i-th step, we hence extract the amount of work

W(ti−1 → ti) = Tr
(
ωβ(Hti−1)Hti−1

)
− Tr (ρti Hti ) , (9.10)

with ρti = Uti ωβ(Hti−1)U
†
ti

. Since entropy is conserved in this process, we can rewrite
this work-value using non-equilibrium free energies as

W(ti−1 → ti) = Fβ(ωβ(Hti−1), Hti−1)− Fβ(ρti , Hti ). (9.11)

Summing over i and re-arranging we can then write the total extracted work as

W(0→ 1) =
N

∑
i=1

Fβ(ωβ(Hti−1), Hti−1)− Fβ(ρti , Hti )

= Fβ(ωβ(H0), H0)− Fβ(ωβ(H1), H1)−
N−1

∑
i=1

Fβ(ρti , Hti )− Fβ(ωβ(Hti ), Hti )

= Fβ(ωβ(H0), H0)− Fβ(ωβ(H1), H1)−
N−1

∑
i=1

∆Fβ(ρti , Hti ) (9.12)

≤ Fβ(ωβ(H0), H0)− Fβ(ωβ(H1), H1), (9.13)

where we have used that ∆Fβ is a positive semi-definite quantity. In the limit N → ∞, the
protocol changes the Hamiltonians only in an infinitesimal way in every step, keeping the
system essentially at equilibrium while changing the Hamiltonian. It is then not surprising
that it is possible to show that the correction term can be made arbitrarily small in this limit:

lim
N→∞

N−1

∑
i=1

∆Fβ(ρti , Hti ) = 0. (9.14)

The proof of this is given in section 14.6.1. The optimal protocol that achieves this bound is
the one simply quenching the Hamiltonians between the thermalization processes, so that
Uti = 1 for all ti. In the following, I will refer to this protocol between two equilibrium
states as an isothermal proccess.

It is important to note that the calculation for the upper bound (9.13) on the work did
not depend on the particular protocol connecting the initial and final equilibrium states.
Furthermore, we have only used fully thermalizing contacts to the heat bath.

In phenomenological equilibrium thermodynamics, it is well known that the optimal
amount of work is achieved by a reversible protocol. That is any protocol that returns the
system to its initial condition when run backward on the final condition of the system after
the system was subjected to the protocol. In this case the extracted work is only a function
of the initial and final states and Hamiltonians.

The isothermal process and its analysis shows that (arbitrarily) reversible protocols be-
tween equilibrium states also exist in this framework and that the optimal work that can be
extracted by a protocol connecting two equilibrium states is given by the value obtained by
the isothermal protocol.

This finishes the basic introduction of the framework. We will from now on also consider
non-equilibrium states. In the rest of the chapter, we will discuss questions of the following
kinds: Given some arbitrary initial state, sets Gt and H, how much work can be extracted
using cyclic protocols using a single heat bath? Given access to two heat baths, what is
the maximum efficiency that can be achieved by cyclic thermal machines? How do these
quantities depend onH and Gt? Are the restrictions onH and Gt independent?

9.2 The fundamental bound for a single heat bath

Let us now begin to analyze the fundamental thermodynamic bounds that arise in this
framework. First, we consider the case of a single heat bath and ask for the largest value of
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total work W(P , ρ, H) that can be extracted from (ρ, H) using only cyclic protocols, i.e.,
those whose final Hamiltonian coincides with H. In general, this value is a function of the
sets H and Gt as well as ρ and H. In analogy to chapter 4, let us denote this optimal work
by

Wvalue(ρ, H|H,G) := sup
P|H,H,G

W(P , ρ, H), (9.15)

where supP|H,H,G denotes optimization over all cyclic protocols starting with Hamiltonian
H and subject to the constraint of being compatible with the givenH and Gt.

Before considering non-trivial restrictions on the set of allowed Hamiltonians, let us
first investigate Wvalue(ρ, H|H,G), when H is fully unrestricted. This corresponds to the
second law of thermodynamics in terms of work extraction and the bound that we will
obtain is well-known, although under different sets of assumptions (see, for example, [54,
233–235]). To state the corresponding result, recall that Tt denotes the thermalization map
with respect to Hamiltonian Ht.

Theorem 9.1 (second law). IfH is unrestricted and Tt ∈ Gt for all t, we have

Wvalue(ρ, H|H,G) = ∆Fβ(ρ, H). (9.16)

Proof. Here, I will only show how the above value can be achieved. For optimality of the
protocol, I refer to section 14.6.2. Any full-rank state can be thought of as a thermal state
of the modular Hamiltonian Hρ, introduced in chapter 5. If ρ does not have full rank, it
can be arbitrarily well approximated by such a thermal state. Then construct the following
protocol: First change ("quench") the Hamiltonian H to Hρ very quickly, such that the first
unitary coincides with the identity: Ut1 = 1. This can be done to arbitrary accuracy and
has the result that the system is in equilibrium. The step has work-cost Tr(ρH − ρHρ) =
Fβ(ρ, H)− Fβ(ρ, Hρ). Then perform an isothermal process back to Hamiltonian H, with
work-cost Fβ(ρ, Hρ) − Fβ(ωβ(H), H), again to arbitrary accuracy. The total extracted
work is hence given by ∆Fβ(ρ, H).

Note that the optimal protocol constructed in the proof is in fact reversible. This re-
sult has three important implications. First, no protocol can ever extract more work than
the non-equilibrium free energy. In particular, no work can be extracted from a state at
thermal equilibrium. The framework we have constructed thus indeed allows us to derive
fundamental thermodynamic bounds.

Second, if the Hamiltonians are unrestricted this optimal value can already be reached
if an experimenter has very poor experimental control on the coupling to the heat bath.
Indeed it is completely sufficient to be able to let the system thermalize.

Third, it shows that letting the system fully thermalize is universal for work-extraction
if Hamiltonian control on the working system is unrestricted: For example, even if an
experimenter were capable of controlling in detail the microscopic interactions between all
the heat bath degrees of freedom and the system’s degrees of freedom with arbitrary energy-
preserving unitaries (that is, she could implement any thermal operation), this would not
yield any advantage from the point of view of work-extraction.

9.3 Thermalizing contacts are not universal

Let us now investigate how the bound (9.16) changes when we restrict the set of Hamil-
tonians H. To do that it is useful to first restrict thermal contacts to only allow for full
thermalizations. Let us denote the corresponding sets of channels by Tt := {1, Tt}. In
this case, we can derive a general and tight bound as a function of H. To state it, let UH
denote the unitary group generated by all time-dependent Hamiltonians within H and let
UH[ρ] be the set of states that can be reached from ρ by all such unitaries. Then we have
the following result.

Lemma 9.2 (Restricted second law).

Wvalue(ρ, H|H, T ) = ∆Fβ(ρ, H)− inf
σ∈UH [ρ],

Ht∈H

∆Fβ(σ, Ht). (9.17)



A QUANTUM OF THERMODYNAMICS 103

p

∆
∆max∆min

p

∆
∆max∆min

a) b)
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Figure 9.1: An example exhibiting a constraint on field-strengths. p is the excitation probability of the two-level system and ∆ is the energy
in the excited state. The light red region corresponds to field-strength that cannot be experimentally achieved. a) Example of a protocol using
thermalizing contacts only. The system starts at maximum energy gap ∆max. The first transition (p0, ∆max) → (p0, ∆1) gives a positive amount
of work equal to the red dashed area. Then, the system is put in contact with the heat bath, leaving the system in state (p1, ∆1). The last step is to
come back to the original Hamiltonian (in this example using an isothermal reversible process). The minimum work that is spent in this last step
corresponds to the area of the blue solid region. Clearly, the total work is negative and this is true for any protocol that only uses thermalizing maps
and does not cross the light red region. b) The black arrow denotes an anomalous heat flow (see 2) as initial thermal contact. Then the transition
(p∗, ∆max)→ (p∗, ∆1) takes place, followed by an isothermal reversible process back to the initial Hamiltonian with gap ∆max. The total extracted
work is positive and corresponds to the red solid area. (Figure adapted from Ref. [1].)

Proof. Again, here I only proof achieveability, but not optimality (see section 14.6.3).
Consider the following protocol. First evolve the system to some Hamiltonian Ht us-
ing a unitary U, resulting in the state σ = UρU† with work-cost tr(ρH) − Tr(σHt) =
Fβ(ρ, H)− Fβ(σ, Ht). Then thermalize the system, which will result in some dissipation,
and come back to H using an isothermal process. The total work is given by:

W(P , ρ, H) = Fβ(ρ, H)− Fβ(σ, Ht) + Fβ(ωβ(Ht), Ht)− Fβ(ωβ(H), H)

= ∆Fβ(ρ, H)− ∆Fβ(σ, Ht). (9.18)

Since ∆Fβ(σ, Ht) ≥ 0, minimizing over all U and Ht yields the desired result.

It is now natural to ask, whether the fully thermalizing thermal contacts Tt are also
universal in the case of restricted Hamiltonians. I will now illustrate that this is not the
case. To do that I will discuss two examples in which Wvalue(ρ, H|H, T ) = 0 but
Wvalue(ρ, H|H,GTO) > 0, where GTO denotes all thermal operations.

9.3.1 The general argument for non-universality

Before discussing the specific examples, let me explain the general argument that underlies
both of them. Again assume that the initial condition is given by (ρ, H). To understand
the argument, recall that the optimal protocol in the case of fully thermalizing maps Tt
consists of two steps: First, we quench the Hamiltonian to the modular Hamiltonian Hρ.
Then we implement an isothermal. The first step is not possible if Hρ /∈ H and results in
the penalty term in (9.17). However, if we have access to more general thermal contacts,
we might be able to first apply some thermal contact G with the effect that the final states
modular Hamiltonian is indeed inside H, i.e., HG(ρ) ∈ H. This would have the advantage
that we could then implement the optimal protocol to extract an amount of work given by
∆Fβ(G(ρ), H). On the other hand, this first thermal contact will cost some amount of heat
compared to the fundamentally optimal value ∆Fβ(ρ, H), given by F(ρ, H)− F(G(ρ), H).
Only if this dissipated heat is smaller than the correction term in (9.17) will this procedure
outperform the protocol developed in the proof of lemma 9.2.

9.3.2 Example: Non-universality from restrictions on field strengths

Let us now illustrate the previous argument in a simple way. The first example explores
the setting where an experimenter only has limited field strengths available. To keep the
problem as simple as possible, consider a two-level system and consider as set of allowed
Hamiltonians the set

Hfield =
{

∆ |e 〉〈e | |∆min ≤ ∆ ≤ ∆max, |e 〉 ∈ C2, 〈e|e〉 = 1
}

. (9.19)
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This set is unitarily invariant, and the set of unitaries it generates is the full special unitary
group SU(2). Each such Hamiltonian can be thought of as the Hamiltonian of a single
spin-1/2 in some arbitrarily oriented magnetic field, where the field strength is restricted to
lie between ∆min and ∆max.

Now assume that the density matrix of the initial state ρ0 commutes with the initial
Hamiltonian H0 = ∆ |e 〉〈e |. Thus ρ0 = p0 |e 〉〈e |+ (1− p) |g 〉〈g |. For concreteness
assume that the initial Hamiltonian H0 has ∆ = ∆max and that the excitation probability
p0 is smaller than the thermal one of H0, given by exp(−β∆max)/Zβ(∆max). The initial
condition then corresponds to a non-equilibrium thermal state that is colder than the heat
bath.

We will now first show that no work can be extracted if only fully thermalizing maps
Tt are available. The bound in lemma 9.2 in this setting is always achieved for a Hamil-
tonian and density matrix after the first adiabatic evolution which are still diagonal in the
same basis and where the state remains unchanged. It therefore suffices to show that no
work can be extracted if we further restrict the Hamiltonians to only those of the form
∆ |e 〉〈e |, where the state |e 〉 is now fixed. Then the problem is fully classical and we
can describe the system and the Hamiltonian right before the first thermal contact by the
pair (p0, ∆1). The work-cost of this first step is given by W1 = p0(∆max − ∆1) with
∆1 ≤ ∆max. The second part of the optimal protocol implements an isothermal process
back to the initial Hamiltonian, with work-cost W2 = Fβ(ωβ(∆1 |e 〉〈e |), ∆1 |e 〉〈e |) −
Fβ(ωβ(∆max |e 〉〈e |), ∆max |e 〉〈e |). It is easy to see in a picture (see Fig. 9.1) that the
total work extracted in this process is negative for any ∆1 < ∆max. Hence we have

Wvalue(ρ0, H0|Hfield, T ) = 0. (9.20)

The specific initial condition that we chose has the property that no work can be extracted
from it, despite being out of equilibrium. Such initial conditions are commonly called
passive with respect to the given set of operations [236–238].

Having shown passivity of the initial condition with respect to fully thermalizing maps,
I will now show that the initial condition looses its passivity when we allow for thermal
operations as thermal contacts. To see this, we make use of the anomalous heat flow, that I
introduced in section 2.2. Using anomalous heat flow, we can first map the initial state to a
state G(ρ0) that is hotter than the heat bath (see Fig. 9.1). After having done this, we can
now find a modular Hamiltonian HG(ρ) ∈ H, because the modular Hamiltonian of G(ρ)
now has a smaller gap than ∆max. We can then use the usual optimal protocol to extract a
positive amount of work.

9.3.3 Example: Non-universality from restrictions on locality and interactions

For the second example, consider two spin-1/2 particles which interact through an inter-
action of the form H = σz ⊗ σz, where σz is the Pauli-matrix in z-direction. Suppose
an experimenter can only apply external magnetic fields, but she is capable to do so inde-
pendently on the two spins and also with arbitrary field strength. She can then reach any
Hamiltonian of the form

Hlocal =
{

σz ⊗ σz + ~B1 ·~σ⊗ 1 + 1⊗ ~B2 ·~σ
}

, (9.21)

with~σ = (σx, σy, σz) and ~Bi ∈ R3. I will now show that also in this case there are passive
states for thermalizing contacts, i.e., initial conditions such that no work can be extracted.
After showing passivity, I will then also show that those initial conditions are not passive if
we consider arbitrary thermal operations as initial conditions.

To show the existence of passive states, we make use of the Peierls-Bogoliubov inequal-
ity [34], which can be reformulated as in the following Lemma.

Lemma 9.3 (Upper bound to free energies). For any two Hamiltonians H1 and HB, we
have

Fβ(ωβ(H1 + H2), H1 + H2) ≤ Fβ(ωβ(H1), H1) + Tr(ωβ(H1), H2). (9.22)

Proof. A short proof can be found in section 14.6.4.
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Now imagine that there exists a Hamiltonian H0 inHlocal with the property

Fβ(ωβ(H0), H0) ≥ Fβ(ωβ(Ht), Ht) for all Ht ∈ Hlocal. (9.23)

Since the maximally mixed state 1/4 is invariant under unitary operations, Lemma 9.2 then
implies that no work can be extracted from (1/4, H0). I will now prove that H0 = σz ⊗ σz
indeed has this property. First, since Z is traceless it follows that Tr(H0~B ·~σ⊗ 1) = 0 and
the same is true for the other spin. Second, since σ2

z = 1, the Gibbs-state of H0 takes the
form C(1 + tanh(β)H0) for some constant C. Because all Pauli-matrices are traceless, we
therefore also have

Tr
(

ωβ(H0)
(
~B1 ·~σ⊗ 1 + 1⊗ ~B2 ·~σ

))
= 0 (9.24)

for any fields ~B1, ~B2. Using, Lemma 9.3 we obtain Fβ(ωβ(H0), H0) ≥ Fβ(ωβ(Ht), Ht)
for all Ht ∈ Hlocal, which proves the claim.

From the arguments given, it is clear that a similar argument can be made in larger
multi-partite systems. Clearly, the maximally mixed state 1/4 is out of equilibrium for
every β 6= 0. Thus, work can be extracted from it if arbitrary Hamiltonian control can be
achieved. What is left to show, is that also under restricted Hamiltonian control, but with
thermal operations as maps for thermal contact, some work can be extracted.

Using a technique called thermo-majorization [46, 47, 239], it is possible to show that
for β = 1 and s ≤ sc := tanh−1(e2 − 1/(2e2)) ' 0.46 it is possible to find a thermal
operation that maps the maximally mixed state 1/4 to ωβ(Hs) with Hs = H0 + s1⊗ σz.
Since this technique is somewhat technical, I refer to section 14.6.5 for more details.

Knowing that we can reach the state ωβ(Hs) and that Hs ∈ Hlocal, we can now use the
optimal protocol to extract an amount of work given by

Fβ(ωβ(Hs), Hs)− Fβ(ωβ(H0), H0) = s tanh(s)− log(cosh(s)) > 0.

This shows again that improved control over thermal contacts is useful if Hamiltonian
control is restricted.

This finishes the discussion of work-extraction from non-equilibrium states with respect
to a single heat bath. We will now move on to discuss thermal machines that cyclically
extract work from the temperature difference between two heat baths.

9.4 Thermal machines and efficiencies

So far, we have treated only thermal contacts to a single heat bath. From now on will
consider the possibility to put the system in contact with heat baths at two different in-
verse temperatures βc and βh with βc > βh and study machines which extract work by
alternatingly combining adiabatic evolution and thermal contact to one of the heat baths.
Furthermore, we will consider cyclic protocols – where now a cyclic protocol means that
after a given number of steps of the protocol the system returns to both its initial state
and Hamiltonian, whereas previously only the Hamiltonian returned to its initial condition.
Note that in such a setting, a protocol P is independent of initial conditions: any pair of
state and Hamiltonian (ρt, Ht) during the protocol returns to its initial state after one cycle
of the protocol.

Let us first make some general observations about any such protocol. In particular, we
will be interested in the efficiency of the process, which we define in the traditional way as

η(P) :=
W(P)
Qh(P)

, (9.25)

where W(P) is the total work extracted during one cycle and Qh(P) is the total heat ab-
sorbed from the hot reservoir. Unsurprisingly, we obtain Carnot’s bound for the efficiency
for any cyclic protocol:

Theorem 9.4 (Carnot efficiency). For any cyclic protocol P between two heat baths at
inverse temperatures βc > βh > 0 the efficiency fulfills

η(P) ≤ ηc := 1− βh
βc

. (9.26)
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Furthermore, if the set of HamiltoniansH is unrestricted, the bound can be saturated.

To prove this theorem, we need to first introduce the notion of a Carnot-like protocol.
Let us assume that the protocol starts with the system in the thermal state of Hamiltonian
H1 at the temperature of the hot heat bath. Then such a protocol consists of four parts:

1. An isothermal in contact with the hot bath from Hamiltonian H1 to Hamiltonian H2,

2. an adiabatic evolution from Hamiltonian H2 to Hamiltonian H3, implementing a unitary
transformation U,

3. an isothermal in contact with the cold bath from Hamiltonian H3 to Hamiltonian H4,

4. an adiabatic evolution back from H4 to Hamiltonian H1, implementing a unitary trans-
formation V.

Importantly, the only dissipation in such a protocol can occur when the system is put in
thermal contact with one of the heat baths after the adiabatic evolution. The condition for
this dissipation to vanish is that the final state of the adiabatic evolution matches the thermal
state at the beginning of the isothermal. Thus, there is no dissipation if and only if

Uωβh(H2)U† = ωβc(H3) and Vωβc(H4)V† = ωβh(H1). (9.27)

Due to the close correspondence between Hamiltonians and thermal states, we can express
this condition as

UH2U† =
βc

βh
H3 and VH4V† =

βh
βc

H1. (9.28)

The heat exchanged with the bath in the first isothermal is given by

Qh(P) = Th∆S1→2
h := Th(S(ωβh(H1))− S(ωβh(H2))). (9.29)

Similarly, the heat exchanged during the isothermal in contact with the cold bath is given
by

Qc(P) = Tc∆S3→4
c = −Tc∆S1→2

h = − Tc

Th
Qh(P), (9.30)

where we have used that the whole protocol is cyclic and the total change of entropy van-
ishes along one cycle. Using the first law of thermodynamics we then obtain the efficiency
of the protocol as

η(P) = W(P)
Qh(P)

=
Qh(P) + Qc(P)

Qh(P)
= 1− Tc

Th
. (9.31)

To see that no protocol can exceed Carnot efficiency, observe that any protocol can be sub-
divided into segments in which only thermal contacts to the hot bath occur and segments in
which only thermal contacts with the cold bath occur. If these segments are not isothermal
processes, the extracted work will be decreased and the heat will be increased. At the same
time, the matching conditions (9.28) will not be matched, with a similar effect. Therefore
the efficiency will be reduced in comparison to the Carnot efficiency.

Given the above result, it is a natural question to ask whether the Carnot-bound can
also be achieved with only limited control over the Hamiltonians. For example, we might
consider as working medium an interacting spin system where the experimenter can only
control external magnetic fields. It is then interesting to know whether Carnot efficiency
can in principle be achieved, and whether this depends on further properties of the model.
We will find in section 9.6 that the achievable indeed strongly depends on the sign and
strength of the interaction in such an example.

Before we come to that example, let us see from a more abstract point of view what
could go wrong. From the above discussion, we see that we need to be able to implement
isothermals and meet the matching conditions (9.28) to achieve Carnot efficiency. Since we
always assume that the set of allowed Hamiltonians H is well-behaved, in particular any
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two Hamiltonians can be connected by a smooth curve, isothermal processes are always
possible. The matching condition, however, cannot always be met, in the same way as for
a single heat bath in Lemma 9.2. The following theorem then gives a similar bound as
Lemma 9.2 for the case of efficiencies of thermal machines.

Theorem 9.5 (Efficiency under control limitations). Let P be any cyclic protocol between
two heat baths at inverse temperatures βc > βh > 0 employing Hamiltonians from the set
H and fully thermalizing maps Tt as thermal contacts. Then there exist four Hamiltonians
H1, . . . , H4 ∈ H such that the efficiency is bounded as

η(P) ≤ 1− βh
βc

∆S + minU D(Uωβh(H2)U†‖ωβc(H3))

∆S−minV D(Vωβc(H4)V†‖ωβh(H1))
, (9.32)

where U, V are unitaries that can be generated by time-dependent Hamiltonians in H,
∆S = S(ωβh(H2))− S(ωβc(H4)) and S the von Neumann entropy. Furthermore, for any
choice of H1, . . . , H4 ∈ H there exists a protocol that saturates the bound.

The formal proof of the theorem is given in section 14.6.6. It roughly works in the same
way as theorem 9.4, but taking care of the dissipation terms. The theorem gives a tight, but
very abstract bound. In particular, at first sight the optimization over all the unitaries that
can be implemented using time-dependent Hamiltonians formH poses a serious challenge
to evaluating it. In the next section, we will see that in generic situations this optimization
can in fact be eliminated.

9.5 Local control: Implications from the theory of quantum control

The tight bound in theorem 9.5 involves an optimization over all unitary transformations
that can be generated from time-dependent Hamiltonians in H. At first sight this seems
like a completely unmanageable object. However, it turns out that quite the opposite is
true. The question of what kind of unitary transformations can be implemented (and how)
given a fixed set of Hamiltonians is the subject of the field of quantum control. One of the
most important insights in that field was that essentially any non-trivial set of Hamiltonians
allows to generate to arbitrary precision all possible unitaries [240].

In particular, this is true in a very strong sense in interacting many-body systems. Sup-
pose for example that we have a finite Heisenberg spin-chain and can control only the mag-
netic field on the last qubit. Then by ingenuineously tuning the magnetic field over time, it
is possible to implement any unitary transformation on the whole chain [241]. The caveat
is of course, that the protocol of how to tune the magnetic field is in general extremely
difficult to find and implement.

But as long as we do not care about such "practical problems", as we do when we
consider optimal thermodynamic efficiencies, it turns out that as long as the spins in a
many-body system interact with a generic nearest-neighbor interaction, any unitary trans-
formation can in principle be implemented by tuning the position-dependent magnetic field
in the right way over time.

Therefore, in many applications, we can replace the optimization over unitaries in the-
orem 9.5 with an optimization over all unitaries from the unitary group. In this case, we
can in fact find the optimal unitaries. To do this, consider one of the correction terms in the
Theorem. We can re-write it in terms of non-equilibrium free energies as

D(Uωβh(H2)U†‖ωβc(H3)) = ∆Fβc(Uωβh(H2)U†, H3)

= Tr
(

H3

(
Uωβh(H2)U† −ωβc(H3)

))
− Tc(S(ωβh(H2))− S(ωβc(H3))).

We see that the unitary U only affects the energy-expectation value in the first term. We
thus have to optimize U in such a way that the energy-expectation in the Hamiltonian H3
is minimized. But this is easy. We simply diagonalize ωβh(H2) and order its eigenvalues
in the energy-eigenbasis of H3 in such a way that they are non-increasing with increasing
energy. This is the procedure to transform the state into a passive state [236, 237].
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To state the resulting bound, let us define the quantity

D↓(ρ‖σ) := D(p↓‖q↓) = ∑
i

pi(log(pi)− log(qi)), (9.33)

where p↓ and q↓ are the vectors of eigenvalues of ρ and σ, respectively, ordered in non-
increasing fashion: p↓i ≥ p↓i+1 and similarly for q↓. The above calculation then shows
that

D(Uωβh(H2)U†‖ωβc(H3)) ≤ D↓(ωβh(H2)‖ωβc(H3)) (9.34)

and that equality is achieved if we optimize over all unitaries U. The bound on the effi-
ciency then simplifies to

η(P) ≤ 1− βh
βc

∆S + D↓(ωβh(H2)‖ωβc(H3))

∆S− D↓(ωβc(H4)‖ωβh(H1))
. (9.35)

To summarize, we have seen that if the working system is an interacting spin system with
a generic interaction all unitaries can in principle be implemented and the bound simplifies
a lot. Nevertheless, the bound is in principle very difficult to evaluate. I will now discuss
one example in the next section, where indeed it can be evaluated and which already shows
a surprisingly rich behaviour.

9.6 Illustration: The classical one-dimensional Ising model

I will now illustrate the implications of the general bound in a concrete example. To sim-
plify the problem, this will be a classical example, i.e., one where all Hamiltonians in the
set Ht commute – namely, the case of the one-dimensional classical Ising model with an
external field. Furthermore, I will assume that we can only control the external field in a
global, translational invariant way. This is indeed a very relevant control restriction, since
usually the external magnetic field cannot be controlled with single-spin resolution.

If we consider a system of N spins, the set of Hamiltonians is then given by all Hamil-
tonians of the form

Ht = −h(t)
N

∑
j=1

σz
j − J

N

∑
j=1

σz
j σz

j+1, (9.36)

where we assume periodic boundary conditions. Since all the Hamiltonians Ht commute,
the unitaries that can be generated from these Hamiltonians are all trivial.

Note that there are three different energy scales in this problem: the two temperatures
from the heat baths and the interaction strength J. I will now discuss in detail how the
efficiency at maximum work density behaves in this model as a function of the interaction
strength J, once we have fixed the temperatures. The qualitative results are independent of
the temperatures of the heat bath and are summarized in Figure 9.2, where we have taken
the thermodynamic limit N → ∞ and plot the efficiency at maximum work per particle.
There are essentially four important features of the resulting efficiency.

1. Carnot efficiency is reached for a vanishing interaction. This has to be the case, since in
the non-interacting case, the field strength simply control the effective temperature and
the matching condition (9.28) can always be fulfilled.

2. In the strongly ferromagnetic regime, the efficiency at maximum work density as well
as the maximum work density vanishes.

3. In the strongly anti-ferromagnetic regime, Carnot efficiency can be achieved to arbitrary
accuracy with finite work per particle.

4. There is a sudden change of behaviour at the critical interaction strength J∗, where the
optimal protocol changes in a non-analytic way.
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J*
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Figure 9.2: Efficiency at maximum work density in the Ising model in the thermodynamic limit when only the global magnetic field can be controlled
(Tc/Th = 1/2). There are three important features to observe: i) In the limit of arbitrarily strong, ferromagnetic interactions J → ∞, the efficiency
vanishes. ii) In the limit of arbitrarily strong, anti-ferromagnetic interactions J → −∞, the Carnot efficiency 0.5 can be achieved arbitrarily well.
iii) There is a sudden change of behaviour at J = J∗. For 0 > J > J∗ the efficiency monotonically decreases with increasing interaction strengths,
while for J < J∗ the efficiency increases with increasing interaction strength. This can be attributed to a sudden change of the optimal protocol.
The detailed explanation of points i) – iii) is the content of the rest of this chapter. (Figure from Ref. [6].)

In the rest of this chapter, I will provide analytical arguments for all of the above be-
haviour. While I will not be working on the level of mathematical physics, all of the
arguments can be made completely rigorous.

As we will see, a particularly subtle behaviour is present in the ferromagnetic case. I will
show that for any finite system it is in fact in principle possible to achieve Carnot efficiency
to arbitrary accuracy (although with vanishing work density), but it is impossible to do so
in the thermodynamic limit. The reasons is that to achieve Carnot efficiency, it is necessary
to control the external magnetic field to a precision which scales like 1/N as the system
size is increased. Any finite error in the magnetic field yields vanishing efficiency in the
thermodynamic limit.

Before discussing the ferromagnetic and anti-ferromagnetic cases, let us make some
general observations. Since we are interested in optimal efficiencies, we will in the follow-
ing only consider Carnot-like protocols, which saturate the bound in theorem 9.5. For any
fixed temperatures and interaction strength J, a protocol is then defined by four choices of
magnetic field strengths h1, . . . , h4. We therefore have to optimize over these four values
of the magnetic field strength to extract the maximum work density per cycle.

The proof of theorem 9.5 shows that the total extracted work per cycle is given by

W(P) = ∆T∆S− ThD(ωβc(H4)‖ωβh(H1))− TcD(ωβh(H2)‖ωβc(H3)), (9.37)

with ∆T = Th − Tc. To maximize the extracted work we therefore have to maximize the
difference in entropy ∆S while we minimize the dissipation terms. In particular, we will be
interested in the limit |J| → ∞ for fixed temperatures of the heat baths. In this limit, the
entropy of a thermal state is given by ground state entropy of the Hamiltonian involving the
external fields. Depending on whether the external fields also diverge with |J|, they can be
treated perturbatively or not. This will be important later.

9.6.1 Ferromagnetic regime: A tale of instability

Let us begin with examining the ferromagnetic regime. We are interested in the limit of
very strong interactions, J → ∞. As noted above, to obtain a finite work density in this
limit, the density in the change of entropy ∆S/N needs to remain finite and larger than
the dissipation terms. It is easy to understand that the optimal protocol (at least for large
J) consists of choosing J � h1 = h4 → ∞ and h2 = h3 = 0. This is due to the fact
that the thermal entropy in the ferromagnetic case is maximized by a vanishing field and
minimized by an arbitrarily strong field, which essentially projects the thermal state into
one of the two ground states (all spins pointing up or all spins pointing down).
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If we choose this protocol we have for any system size

ωβc/h(H1) ≈ ωβc/h(H4) ≈ |↓, . . . , ↓ 〉〈↓, . . . , ↓ | , (9.38)

lim
J→∞

ωβc/h(H2) = lim
J→∞

ωβc/h(H3) =
1
2
( |↓, . . . , ↓ 〉〈↓, . . . , ↓ |+ |↑, . . . , ↑ 〉〈↑, . . . , ↑ |) .

(9.39)

As a consequence, we have limJ ∆S = log(2). Therefore the total work-density vanishes
(the above relations also show that the density of the correction terms vanish). This can
also be verified by a direct calculation using the exact solution of the Ising model in the
thermodynamic limit (see section 9.6.3).

While the above calculation shows that the work-density vanishes, the total work of the
machine remains finite. I will now show, however, that also the efficiency of the machine
vanishes in the limit of large systems and arbitrary strong coupling. This will be done using
a calculation on a finite system.

For this discussion, it will be useful to not consider the actual optimal protocol above,
but to allow for some arbitrary small error ε > 0 in the field strengths h2 = h3, i.e., to allow
them to deviate from 0 by a small amount. This would be the case in any real experiment.
For simplicity, however, we assume that they deviate from zero by the same amount. They
are therefore always equal. It is also useful to keep in mind that the temperature difference
∆T is fixed. Therefore, the ratio ∆T/J → 0 and the parameter ∆T can be seen as a small
parameter when compared to J. Since h1 = h4 is larger than any other scale in the problem
(by assumption) in the optimal protocol, (9.38) implies that the correction term involving
the Hamiltonians H1 and H4 vanishes. Similarly, the entropy in the thermal state of H4
vanishes.

Then the efficiency fulfills

lim
J→∞

η(J) = lim
J→∞

1− Tc

Th

S(2)
h + D(ωβh(H2)‖ωβc(H2))

S(2)
h

 , (9.40)

with S(j)
h/c := S(ωβh/c(Hj)). To prove that the efficiency vanishes, we have to prove that

the second term in the parenthesis vanishes. To see this, first write the relative entropy in
terms of non-equilibrium free energies and cancel entropy terms to get

Tc

Th

S(2)
h + D(ωβh(H2)‖ωβc(H2))

S(2)
h

=
Tc

Th

S(2)
h + 1

Tc

(
E(2)

h − TcS(2)
h − F(2)

c

)
S(2)

h

=
1
Th

E(2)
h − TcS(2)

h − F(2)
c

S(2)
h

= 1 +
1
Th

F(2)
h − F(2)

c

S(2)
h

.

Here, E(j)
h/c denotes the internal energy of Hamiltonian Hj at inverse temperature βh/c and

F(j)
h/c denotes the corresponding equilibrium free energy. It is useful to write the free ener-

gies as

F(2)
h/c = J f (Th/c/J), f (T) := −T log ZT(1, ε/J), (9.41)

where ZT(J, h) is the partition function of the Ising model at temperature T, interaction
strength J and field strength h. In the limit J → ∞, it is then useful to expand the free
energy F(2)

h/c in terms of the small parameter ∆T/J around Tc/J. This yields

F(2)
h − F(2)

c = J

(
∂ f (x)

∂x

∣∣∣∣
x=Tc/J

∆T
J

+ O(1/J2)

)
(9.42)

= −∆TS(2)
c + O(1/J). (9.43)
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Figure 9.3: The efficiency at
maximum work for a system
of six spins as a function of
J and different imprecisions
on the external fields ε =
0.05, 0.1, 0.25, 0.5 (black to
light grey). The temperatures
of the heat baths are chosen
such that Tc/Th = 1/2.
For larger system sizes,
the local minimum on the
ferromagnetic side J > 0
moves to larger values of J and
the value at J = ∞ decreases
exponentially with the system
size for any fixed finite
precision. These curves were
calculated by numerically
finding the optimal protocol
from the exact solution of the
Ising model. (Figure from
Ref. [6].)

Plugging this back into the efficiency, we obtain

lim
J→∞

η(J) = lim
J→∞

(
∆T
Tc

S(2)
c

S(2)
h

+ O(1/J)

)
. (9.44)

We therefore have to understand how the ratio of entropies S(2)
c /S(2)

h behaves as J diverges.
In section 14.6.7, we calculate this limit for arbitrary ferromagnetic Hamiltonians with a
gap, which include the Ising model as a special case. The result is

lim
J→∞

S(2)
c

S(2)
h

{
≤ O(e−(βc−βh)εN), if ε 6= 0
= 1, if ε = 0.

(9.45)

We thus see that if ε vanishes identically, we get Carnot efficiency. However, for any ε > 0,
the efficiency at J → ∞ goes to zero exponentially as N → ∞ (also see Figure 9.3). This
behaviour is also what is seen if one calculates the efficiency directly in the thermodynamic
limit, as was done in Figure 9.2.

9.6.2 Anti-ferromagnetic regime

Let us now discuss the anti-ferromagnetic regime. As explained above, finite work-density
is only possible if finite entropy density can be reached. Suppose that the external field is of
the form h = k(J)J. Then in the limit |J| � 0, the thermal state at any finite temperature
approximates the ground state of the effective Hamiltonian

H̃(J) = −k(J)
N

∑
j=1

σz
j − sign(J)

N

∑
j=1

σz
j σz

j+1. (9.46)

It is therefore necessary to understand in some detail the ground state degeneracy of the
model as a function of the external magnetic fields. In the case of a ferromagnetic interac-
tion this was very easy, since the degeneracy is of order one for any external field.

Let us now discuss the ground state degeneracy in the anti-ferromagnetic case J � 0.
Clearly, for k(J) extremely large, the ground-state of the effective Hamiltonian H̃ is unique.
Similarly, for k(J) = 0, the ground-state is unique for an even number of spins and there is
a ground-state degeneracy that scales linearly with the number of spins for an odd number
of spins. In both cases, the entropy density vanishes since an exponentially large ground-
state degeneracy is necessary to obtain a finite entropy density.

This raises the question whether it is possible to actually achieve a finite entropy density.
I will now show that this is indeed possible. To see this, let us set k(J) to be constant and
equal to the number of nearest neighbors of a spin in the lattice. We are thus slightly gener-
alizing from the one-dimensional case. For example, in a d-dimensional square lattice, we
set k(J) = 2d. Despite the fact that the interaction is anti-ferromagnetic, one of the ground
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state of the effective Hamiltonian H̃(J) is then given by the state |↑ 〉⊗N , where |↑ 〉 is the
local spin-state pointing in the direction of the external field. The state has energy

−(2d)N + N = −(2d− 1)N. (9.47)

Now suppose we flip a single spin in this state. The energy contribution from the external
field increases by an amount 2(2d). On the other hand, there are 2d interaction terms con-
nected to this spin, and each of them decreases its energy by an amount 2. Hence the total
energy is unchanged and we have found a new ground state. We cannot flip a neighbour
of this spin, since this would increase the energy. However, if we flip a next-nearest neigh-
bour, the energy remains unchanged and we have produced yet another ground-state. We
can thus decide for every second spin, whether we want to flip it or not without changing
the energy. In fact we could create even more ground-state configurations by sometimes
moving an odd number of sites before flipping. This shows that the ground-state degener-
acy is at least 2N/2. Hence the entropy at zero temperature of the effective Hamiltonian
H̃(2d) is lower bounded by N/2 log(2). We thus see that in our one-dimensional example
we can obtain a finite entropy density by setting h = 2J for any J.

With this in mind, let us first consider the protocol where we set h2 = h3 = 2J and
h1 = h4 arbitrarily large. We will later see that this protocol is optimal for very large |J|
but not optimal for small |J|.

Then, as J → −∞, the states ωβc(H3) and ωβh(H2) both converge to the ground state
of H2 = H3 and their relative entropy density vanishes. Similarly, ωβh(H1) and ωβc(H4)
both approach the pure state with all spins pointing in the direction of the magnetic field
and their relative entropy also vanishes. Furthermore, also the entropy S(4)

c converges to
zero. We thus see that the total work-density in the protocol fulfills

lim
J→−∞

W(P)
N

≥ ∆T
1
2

log(2). (9.48)

This shows that finite work density can be achieved in the anti-ferromagnetic regime, in
strong contrast to the ferromagnetic case.

The above arguments also show that in the limit of J → −∞ the efficiency fulfills

lim
J→−∞

η(J) = 1− lim
J→∞

Tc

Th

∆S
∆S

= 1− Tc

Th
. (9.49)

Therefore the protocol achieves Carnot efficiency with finite work per particle as |J| di-
verges.

9.6.3 The kink and the optimal protocol

Let us finally also explain how the kink in Figure 9.2 arises. To understand this, we work
directly in the thermodynamic limit and make use of the well-known exact solution of the
Ising model in this case. The free energy density in the thermodynamic limit takes the form

f (β, J, h) = − 1
β

log
(

eβJ cosh(βh) + (e2βJ sinh(βh)2 + e−2βJ)1/2
)

.

From the above discussions, it is clear that to obtain the protocol we have to maximize
the entropy density by varying the magnetic field for a given temperature and interaction
strength. The entropy density can be calculated from the free energy density as s = −∂T f ,
however giving a complicated expression that is not very insightful. To find the optimal
magnetic field, we compute the derivative ∂hs and find its roots. This derivative is then
given by

∂s(β, J, h)
∂h

= −β2 eβJ (h cosh(βh) + 2J sinh(βh))(
e−2βJ + e2βJ sinh(βh)2

)1/2 (1 + e4βJ sinh(βh)2
) . (9.50)

One way to let this expression vanish is to take h→ ∞, which results in a diverging denu-
merator. However, in this case the entropy vanishes since it corresponds to a thermal state
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Figure 9.4: The magnetic field h2(J) that maximizes the entropy as a function of J for inverse temperatures β = 1 (blue), β = 2 (orange) and
β = 3 (green). It is clearly visible that at the critical point 1/(2β) the function is not analytic, similarly to a second order phase transition. For
large values of |J|, the field approaches 2J. (Figure from Ref. [6].)

which approximates the state where all spins are pointing in the direction of the magnetic
field.

The only other way to make the expression vanish is by a vanishing numerator. We thus
look for solutions of the equation

h(J) cosh(βh(J)) + 2J sinh(βh(J)) = 0.

One solution is given by h1(J) = 0. However, remembering that J < 0, we can simplify
the equation to

h(J) = 2|J| tanh(βh(J)). (9.51)

Since h 7→ tanh(βh) is a concave function for h > 0 and anti-symmetric, with the deriva-
tive β > 0 at the origin, a second solution h2(J) always exists if 2|J|β > 1, or in other
words if

|J| > 1
2

kBT. (9.52)

This solution can only exist if J < 0, explaining why the kink only appears in the anti-
ferromagnetic case 4. Furthermore, h2(J) always yields a larger entropy than h1(J) and is 4 This also supports the

optimality of the ferromag-
netic protocol discussed in
section 9.6.1

not continuously differentiable. To illustrate this, h2(J) is plotted in Figure 9.4.
Finally, we can see that h2(J) indeed approaches 2J for very large J since tanh(βh)→ 1

as h→ ∞: Choosing h(J) = 2J approximately solves equation 9.51 in the regime of large
J.

9.7 Conclusions and Outlook

The laws of phenomenological thermodynamics were originally formulated only for macro-
scopic bodies. Today we know that they also hold in a well-defined sense for small systems
that can be brought in contact with heat baths. From this point of view it is very sur-
prising that the fundamental bounds of thermodynamics, such as the Carnot-bound for the
efficiency of a thermal machine, can essentially be saturated by controlling macroscopic
systems only on a macroscopic level: It suffices to move the piston of a container with
gas, but we never seem to need to control the molecules in the gas individually. This can
be largely attributed to the fact that for macroscopic machines, we are also only interested
in the macroscopic work-density and not the absolute value of the work, which in fact
fluctuates widely.

For small machines, however, it is not the work-density but the absolute value of work
that is important. We can then expect that the actual experimental control that one has over
the system becomes more important. In this chapter, we have derived general corrections to
the thermodynamic bound for work-extraction from non-equilibrium systems for situations
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of limited experimental control. We have seen how such limited control can indeed lead to
the fact that non-equilibrium states become passive: An experimenter with limited control
could not extract any work from the states, although the free energy might be large.

We then continued with cyclically working thermal machines and de-rived the corre-
sponding corrections to the efficiency of such machines. As a paradigmatic example, we
discussed in great detail the situation of an Ising model where an experimenter can only
control the external field in a homogeneous way. Surprisingly, we found that the ferromag-
netic and anti-ferromagnetic regimes behave completely differently in the limit of very
strong interactions and large systems: While the anti-ferromagnetic regime essentially
allows to achieve Carnot efficiency with finite work-density even in the thermodynamic
limit, the ferromagnetic model becomes essentially useless in the limit of large systems
and strong interactions – both the work-density per cycle as well as the efficiency go to
zero. All these results could be explained fully analytically.

In this chapter, we have essentially assumed throughout that heat baths are coupled
weakly to working systems – in the sense that the thermal equilibrium of systems coupled
to the heat bath can be defined by the local Gibbs state. For small systems, this assumption
is debatable. It is therefore important to study the case of systems strongly coupled to heat
baths. We will do this in the following two chapters 10 and 11, building up on the notion
of equilibration in complex quantum systems discussed in chapters 7 and 8.
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IN CHAPTERS 7 AND 8, we discussed how complex quantum systems equilibrate. An
important insight from the study of equilibration was that for most times and many phys-
ically relevant observables, the actual time-dependent state of a complex system ρ(t) can
be replaced with the time-averaged state1 1 We introduce the additional

subscript for later conve-
nience.ωt.a.(ρ, H) := ω(ρ, H) = ∑

k
PkρPk, (10.1)

where Pk are the projectors onto the different energy-subspaces with energies Ek. The time-
averaged state hence provides an effective description of the state of the system, without
containing all the time-dependent dynamical information. Depending on the Hamiltonian
and the observables of interest, this effective description can be further simplified, for ex-
ample to Gibbs states or Generalized Gibbs states (this will be discussed in more detail
below).

IN THIS CHAPTER2 we will connect this insight to thermodynamic operations with the 2 This chapter is based
on joint-work with Martí
Perarnau-Llobet, Arnau Riera,
Rodrigo Gallego and Jens
Eisert published in Refs. [3].

goal to obtain interesting results about thermodynamics if we drop the assumptions of i)
weak coupling to heat baths, ii) infinite heat baths, and iii) heat baths that are well described
by Gibbs states. To do this, we will introduce a framework for thermodynamic operations
similar to that of chapter 9, consisting of repeated quenches with subsequent equilibration
steps in a closed quantum many-body system. We will thus explicitly incorporate the "bath"
system in our description. In the sections 10.1 – 10.4 we will then study in great detail
basic thermodynamic questions in this model, namely entropy production and reversibility
as well as the validity of the minimum work principle.

In the next chapter we will then focus on the setting where a good effective description
is given by Gibbs-states of the system and bath together and use this to study the efficiency
and power of thermal machines that are strongly coupled to large heat baths.

10.1 Generalized Gibbs Ensembles as equilibration models

I will now start with discussing the framework that we will be using for the rest of this
chapter. As discussed before for equilibrating systems an effective description of the state
of the system is given by the time-averaged state ω(ρ, H). This state describes to great
precision the measurement statistics of a physically relevant set of observables for most
times. This is the definition of equilibration.
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A particular feature of the time-averaged state is that it is also the state that maximizes
the von Neumann entropy given the expectation value of all conserved quantities (CQ),
i.e., of all observables that commute with the Hamiltonian [242]. This can be seen as a
dynamical emergence of Jaynes’ maximum entropy principle [31, 32]. The proof of this
statement goes as follows: Let ρ be some state with the same expectation value for all the
conserved quantities as some stationary state τ. Then the time-average of ρ has to coincide
with τ: ωH(ρ) = τ. We can now use the data-processing inequality of the relative entropy
to show that the entropy of ρ is smaller or equal to τ (see chapter 2). Since time-averaging
leaves the maximally mixed state invariant, we have

D(ρ‖1/d) ≥ D(ωH(ρ)‖1/d) = D(τ‖1/d), (10.2)

where D is the quantum relative entropy. Since furthermore

D(ρ‖1/d) = log(d)− S(ρ), (10.3)

we find that τ is the maximum entropy state with the given expectation values for all the
conserved quantities.

Despite the fact that the time-averaged state provides an effective description, it is not
very useful as an efficient description since in any many-body system there are exponen-
tially many conserved quantities in the system size (the projectors onto the energy-levels).
Therefore, even for moderately sized systems, one could not even store the classical de-
scription of the time-averaged state on a computer.

For thermalizing systems, a much simpler effective description holds: We can simply
use the Gibbs-state

ωGibbs(ρ, H) := ωβ(ρ)(H) =
e−β(ρ)H

Zβ(ρ)
, (10.4)

where β(ρ) is chosen such that Tr(ρH) = Tr(ωGibbs(ρ, H)H). Similarly to the time-
average state, which maximizes the entropy given all conserved quantities, the Gibbs-state
maximizes the entropy given the expectation value of the Hamiltonian.

For many non-thermalizing systems, we can expect that a behaviour in-between the two
is fulfilled: While it is not sufficient to fix the expectation value of the Hamiltonian alone,
it is also not necessary to know the expectation value of all conserved quantities, but it
suffices to know those of a set of m conserved quantities Qj with m not being exponentially
large in the system size. In this case we obtain the Generalised Gibbs ensemble (GGE)33 See, for example, Refs. [196,

198, 201, 202, 243–247]
for discussions of GGEs
in the context of equili-

bration of closed quantum
systems and Refs. [53, 92,
93, 248] for recent discus-

sions of the role of GGEs in
(quantum) thermodynamics.

ωGGE(ρ, H, {Qj}) :=
e−∑j λj(ρ)Qj

Zλj(ρ)
, (10.5)

where the Lagrange-multipliers λj are chose such that

Tr(ρQj) = Tr
(
ωGGE(ρ, H, {Qj})Qj

)
, j = 0, . . . , m (10.6)

and we have set Q0 := H. Indeed, this description is known to give good predictions after
a single quench in integrable systems, where the Qj can be taken as quasi-local operators
[249]. In general, it is not obvious how the constants of motion Qj should be chosen to get
the best description. In the rest of this chapter we will simply assume that they are chosen
for any Hamiltonian H and study the connection to thermodynamics in full generality.

10.1.1 A simple example

In the next section, I will introduce the precise thermodynamic framework that we will
consider. Before coming to that, let us briefly discuss an example of equilibration towards
GGEs instead of Gibbs states. For simplicity, consider a chain of N fermionic sites f j with
a hopping Hamiltonian of the form

H(0) =
N

∑
j=1

εj f †
j f j + g

N−1

∑
j=1

(
f †
j f j+1 + f †

j+1 f j

)
. (10.7)
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Figure 10.1: Example for equilibration towards a generalized Gibbs ensemble in the free fermionic system of n = 100 sites described in the
main-text. The initial state is a thermal state at inverse temperature β = 2 on the whole system corresponding to a Hamiltonian for which ej = 1
and g = 0.1. A quench on the first site is then applied, changing ε1 from ε1 = 1 to ε1 = 1.15, and the expectation value n1(t) is plotted. Clearly
the system equilibrates to a Generalized Gibbs ensemble and not to a thermal state. (Figure adapted from Ref. [3].)

Suppose the system is initially in thermal equilibrium and described by a Gibbs-state at
inverse temperature β. Then, the potential on the first site is suddenly changed and the
system evolves under the new Hamiltonian H(1) = H(0) + ∆ f †

1 f1. We are interested in
how the population on the first site, given by

n1(t) := Tr
(

f †
1 f1e−iH(1)tωβ(H(0))eiH(1)t

)
, (10.8)

evolves in time. The result is plotted4 in Fig. 10.1. As expected, the population n1(t) 4 Since the Hamiltonian is
quadratic in the fermionic
operators, the time-evolution
can simply be computed
numerically even for large
system size.

relaxes to a steady-state value. Furthermore, this steady-state value is not predicted by
the thermal state of H(1) corresponding to the initial state, but by the GGE of H(1) cor-
responding to the initial state, where the conserved quantities have been chosen as the N
normal-modes of H(1).

10.2 Thermodynamic protocols

We will now use the effective description of equilibrating systems in terms of GGEs to
build up a thermodynamic framework similar to that in chapter 9. Again, we will consider
a sequence of N Hamiltonians H(j) that connect an initial Hamiltonian H(0) with a final
Hamiltonian H(1). We think of these Hamiltonians as taken from a trajectory of Hamil-
tonians H(u) : u ∈ [0, 1] 7→ H(u) such that H(j) = H(j/N). We will assume that all
the Hamiltonians are taken from some set H of Hamiltonians that can be realized. The
paradigmatic example is given by the case where we have a many-body system which we
partition into two parts, a system S and a bath B. The total Hamiltonian is of the form

H(0)
SB = H(0)

S + V + HB, (10.9)

and the set of Hamiltonians H is obtained by varying the local Hamiltonian H(0)
S on the

system while the interaction remains fixed. In the next chapter, will also consider the ability
to turn on and off the interaction V, but in this section most results will be independent of
the specific form of H. This allows us to also study situations where, for example, we can
only control external fields uniformly over the system, but no system-bath partition can be
made.

A thermodynamic protocol then consists of the specification of the N + 1 Hamiltonians
and an initial state ρ(0). Just as before, we will assume that the system first evolves under
Hamiltonian H(0) for some time t0 after which a quench to Hamiltonian H(1) is applied.
After the quench, the system evolves for a time t1 under H(1) until the system is quenched
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to H(2). This procedure is continued until the system reaches the final Hamiltonian H(N) =
H(1) and a consecutive time-evolution for time tN . Importantly, we will assume that
the time-evolution after each quench is long enough so that the system equilibrates. A
thermodynamic protocol thus again is given by an arbitrary combination of two operations:

1. A quench from H(j) to H(j+1).

2. Letting the system equilibrate.

Note that again that here we are considering a closed system, so that equilibration has to be
understood in the sense of chapter 7.

Up to now, we have not made use of the effective description of equilibrium states in
terms of maximum entropy ensembles. We will now introduce an effective description of
a thermodynamic protocol in terms of Generalized Gibbs ensembles. Of course the true
time-evolution of the whole system is always unitary. That means that at physical time ti
in the protocol, right before the (i + 1)-th quench, the true quantum state of the system is
given by

ρ(ti) = UiUi−1 ·U1ρ(0)U†
1 ·U†

i−1U†
i . (10.10)

Here, Ui denotes the unitary evolution under Hamiltonian H(i) for a time ti − ti−1. How-
ever, for large classes of observables, we can expect that the state ρ(ti) can be well approx-
imated by some GGE since we assume that the system equilibrates. We could therefore
think of introducing an effective description in terms of GGEs by replacing

ρ(ti) 7→ ω
(i)
GGE := ωGGE(ρ(ti), H(i), {Q(i)

j }). (10.11)

In fact this prescription would, by definition, always yield a correct description of all con-
served quantities Q(i)

j . However, to compute the effective description, we would have to
keep track of the actual state of the system ρ(ti) to compute the required expectation value.

To avoid this problem, we will make the assumption that the GGE at step i not only
describes correctly the conserved quantities at step i, but that it also gives good predictions
for the expectation value of the conserved quantities at step i + 1. That is, we assume

Tr
(

Q(i+1)
j ρ(ti)

)
≈ Tr

(
Q(i+1)

j ω
(i)
GGE

)
, j = 0, . . . , m. (10.12)

This amounts to saying that the conserved quantities belong to the set of physically relevant
observables that are well described by the effective description. Further note that we also
have

Tr
(

Q(i+1)
j ρ(ti+1)

)
≈ Tr

(
Q(i+1)

j ρ(ti)
)

, j = 0, . . . , m, (10.13)

since ρ(ti+1) is obtained form evolving ρ(ti) under the Hamiltonian H(i+1) with asso-

ciated conserved quantities Q(i+1)
j . Thus, by definition of conserved quantities, the two

states ρ(ti+1) and ρ(ti) must yield the same expectation values for Q(i+1)
j (remember that

Q(i+1)
0 = H(i+1)). Now the state ω

(i+1)
GGE is obtained form maximizing the von Neumann

entropy, subject to the condition that the expectation values of the conserved quantities
Q(i+1)

j . Combining the above two relations we thus arrive at

ω
(i+1)
GGE ≈ ωGGE

(
ω
(i)
GGE, H(i+1), {Q(i+1)

j }
)

. (10.14)

Equality in the above relation provides our working assumption for the rest of the chapter.

Assumption 10.1 (Effective description of thermodynamic protocols). We assume that in
an equilibrating system thermodynamic protocols can be effectively described by calculat-
ing the GGE after a quench from the GGE prior to the quench, repeatedly along the whole
protocol:

ω
(i+1)
GGE = ωGGE

(
ω
(i)
GGE, H(i+1), {Q(i+1)

j }
)

, ∀i = 1, . . . , N. (10.15)



A QUANTUM OF THERMODYNAMICS 119

By assumption, we therefore have

Tr
(

ω
(i+1)
GGE Q(i+1)

j

)
= Tr

(
ω
(i)
GGEQ(i+1)

j

)
, j = 1, . . . , m. (10.16)

Using this assumption, we then arrive at an effective description in terms of a chain of
GGEs:

· · · → ω
(i)
GGE → ω

(i+1)
GGE → · · · , (10.17)

with ω
(i)
GGE denoting the effective description at protocol step i. This procedure, which

determines the new effective description from the previous effective description, is stan-
dard in most treatments of equilibrium thermodynamics since one simply always uses the
Gibbs-equilibration model and never talks about the true microscopic state of the system.
Nevertheless, as emphasized above, there is a crucial assumption involved. Whether this
assumption is fulfilled in concrete situations depends on the concrete models at hand in
the same way as the assumption in usual equilibrium thermodynamics that the Gibbs state
provides an accurate description of the situation. In the rest of the chapter, we will simply
take this for granted and study the consequences of this assumption.

10.2.1 Work-cost of thermodynamic protocols

A thermodynamic protocol is composed of quenches H(i) → H(i+1). Each such quench
has an associated work-cost given by

W(i→ i + 1) = Tr
(

ρ(ti)
(

H(i) − H(i+1)
))

. (10.18)

This is the "true" work-cost as computed from the actual, time-dependent quantum state
ρ(t). In our effective description, however, the associated work-cost of a single quench is
given by

WGGE(i→ i + 1) = Tr
(

ω
(i)
GGE

(
H(i) − H(i+1)

))
. (10.19)

It may at first glance seem that WGGE would coincide with W by definition, since the
Hamiltonians are conserved quantities. Indeed, if the effective description at step i in the
protocol would be computed from ρ(ti) instead of ω

(i−1)
GGE , then we would have

Tr(ω(i)
GGEH(i)) = Tr(ρ(ti)H(i)). (10.20)

However, this would still not justify computing the expectation value of H(i+1) using the
effective description ω

(i)
GGE since there is no guarantee that the two results would coincide.

Note however, that this is exactly what our working assumption, expressed in Eq. (10.12),
predicts. Consistency of our assumptions therefore implies that the actual work W(i→ i+
1) is well approximated by WGGE(i→ i+ 1). Therefore, we will henceforth only consider
the work in the effective description given by WGGE when we discuss work-extraction in
thermodynamic protocols in section 10.4. The total work-cost of a thermodynamic protocol
PN with N quenches is then given by

WGGE(PN) = ∑
i

WGGE(i→ i + 1)

= Tr
(

ω
(0)
GGEH(0)

)
− Tr

(
ω
(N−1)
GGE H(N)

)
+

N−1

∑
i=1

Tr
(

H(i)
(

ω
(i)
GGE −ω

(i−1)
GGE

))
.

(10.21)

We can now use our defining equation (10.16) in the form

Tr
(

H(i)ω
(i)
GGE

)
= Tr

(
H(i)ω

(i−1)
GGE

)
. (10.22)

This yields

WGGE(PN) = Tr
(

ω
(0)
GGEH(0)

)
− Tr

(
ω
(N)
GGEH(N)

)
. (10.23)

We therefore obtain that the total work is simply given by the change of energy. This is
what we should obtain, since we are dealing with a closed system.
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10.2.2 Time-dependent Lagrange multipliers and strong-coupling corrections

The second important point to realize is that we use the effective description in terms of
GGEs for all systems involved. In particular, in the setting where the total system is parti-
tioned into a system S and a bath B (or, more generally, multiple baths), we use the effective
description for S and B together. Since the total system is finite, and quenches inject or ex-
tract energy from the system, this has as a consequence that the Lagrange multipliers λ

(i)
j

are not constant over the protocol. For example, if we are in a situation where we use the
Gibbs equilibration model, the inverse temperature β(i) will generally depend on time. In
particular in the system-bath setting, the state on the system at time ti is given by

ρ
(i)
S = TrB

(
ωβ(i)(H(i)

SB)
)

, (10.24)

whereas usually one associates the thermal state of the local Hamiltonian H(i)
S to the sys-

tem, at a fixed inverse temperature β. That is, one assumes

ρ
(i)
S = ωβ(H(i)

S ). (10.25)

In general the two descriptions (10.24) and (10.25) will differ. However, there are clear
cases in which we expect them to coincide.

First, if the system B is very large and we only operate with quenches on system S,
we can expect that the total work done on the system is negligible compared to the total
energy in S and B together. In this case we can expect that the inverse temperature stays
approximately constant, β(i) ≈ β.

Second, in the limit where the interaction V between S and B is negligibly small, we
can expect that the total state of SB becomes uncorrelated between S and B and ρ

(i)
S ≈

ωβ(i)(H(i)
S ). Combining this weak-coupling limit with the limit of an infinite bath, we then

obtain again (10.25).
We thus see that our framework can be seen as providing corrections to the weak-

coupling, infinite heat bath setting usually considered in thermodynamics. In the next
chapter, we will use this to study in detail strong-coupling corrections to general ther-
modynamic figures of merit, such as work extraction bounds and efficiencies of thermal
machines.

10.3 Entropy production and reversibility

Having introduced the concrete framework, we can now start to analyse thermodynamic
protocols. An important concept in thermodynamics is that of entropy production and re-
versibility. In phenomenological thermodynamics, the second law states that the entropy
of a closed system is non-decreasing over a thermodynamic protocol. If the entropy even
remains constant, then the process is said to be reversible. This is justified by the fact that
if one would actually implement the reversed process starting from the final condition of
the original process, then the total system would return to the initial condition of the orig-
inal process. Thus, reversibility in terms of entropy production coincides with operational
reversibility.

In this section, we will discuss in detail the role of entropy production and reversibility
in closed quantum systems when we use the effective description in terms of GGEs at all
times.

As emphasized above, the actual time-evolution of a closed system is always unitary.
Therefore any (quantum) information-theoretic entropy of the actual quantum state of the
system remains constant over time. This does not mean, however, that the von Neumann
entropy of our effective description, in terms of the states ω

(i)
GGE, also remains constant.

Indeed, in every step of the protocol, the new state ω
(i+1)
GGE is obtained from the state ω

(i)
GGE

by maximizing the von Neumann entropy given the expectation values of the conserved
quantities Q(i+1)

j in the state ω
(i)
GGE. The state ω

(i+1)
GGE thus necessarily has at least as much



A QUANTUM OF THERMODYNAMICS 121

entropy as ω
(i)
GGE. We therefore conclude that the entropy, in terms of the effective descrip-

tion, is indeed non-decreasing over a thermodynamic protocol:

S
(

ω
(i+1)
GGE

)
≥ S

(
ω
(i)
GGE

)
. (10.26)

This relation shows that in terms of the effective description, thermodynamic protocols are
in general irreversible: Suppose we start with some initial state ω

(1)
GGE and then perform a

protocol to arrive at ω
(N)
GGE. If afterwards we implement the reversed protocol (i.e., go back

along the reversed trajectory of Hamiltonians), we will in general not be able to come back
to the initial state ω

(1)
GGE.

From phenomenological thermodynamics, we might expect that thermodynamic proto-
cols become reversible in a quasi-static limit, i.e., when the initial and final Hamiltonian
are connected by a trajectory of infinitely many infinitesimal quenches. More precisely,
in our context, we will say that a quasi-static process consists of an initial Hamiltonian
H(initial), a final Hamiltonian H(final) and a series of N → ∞ Hamiltonians H(i) such that
H(0) = H(initial), H(N) = H(final) and H(i) − H(i−1) = O(1/N). If we take N → ∞,
we can then describe the process simply by a continuous trajectory of Hamiltonians

u ∈ [0, 1] 7→ H(u), (10.27)

with H(i) := H(i/N) and, given some initial condition ρ(0), also a corresponding contin-
uous trajectory of effective descriptions

u ∈ [0, 1] 7→ ωGGE(u), (10.28)

with ω
(i)
GGE := ωGGE(i/N). It is important to keep in mind that a quasi static process as

defined above will in principle take an infinite amount of time since it consists of infinitely
many steps each of which takes a finite amount of time. This is in complete analogy to
phenomenological thermodynamics. This does however not imply that quasi-static cannot
be well approximated by a process that takes place in finite time. If we fix any error ε > 0
on thermodynamic quantities such as the work extracted in the process and the entropy that
is produced, there will be a finite number N(ε) of quenches which reproduces the quasi-
static process to the given approximation in finite time. In general N(ε) will diverge as
ε→ 0.

Nevertheless, it might in fact be possible to perform a quasi-static process in finite time.
This would be possible if the equilibration time after every quench would go to zero as
1/N. Since the change of the Hamiltonian and the corresponding change of the effective
description is only of order 1/N such a behaviour seems conceivable. We will leave this
interesting open question for future work, however.

In the following, we will consider a fixed trajectory of Hamiltonians H(u) and discuss
the behaviour of the entropy along the trajectory given by

S(u) := −Tr (ωGGE(u) log(ωGGE(u))) . (10.29)

In particular, we want to know under which conditions the entropy remains constant. We
will discuss the behaviour of the entropy separately for the three cases of i) time-averaged
states (GGE including all constants of motion), ii) the Gibbs equilibration model and iii)
GGEs with a non-maximal number of conserved quantities. We will find that a quasi-static
process is not automatically reversible in all the equilibration models and discuss examples
of this behaviour which suggest that this only happens if the effective description is also
not a good description of the system. We will also discuss conditions which guarantee that
a quasi-static process has vanishing entropy production.

10.3.1 Entropy production in the time-average model and more general GGEs

We will now start to discuss entropy-production and reversibility in the time-average model.
Let us first discuss a very simple toy-example that shows that there can be entropy pro-
duction in the quasi-static limit. Consider the following Hamiltonian trajectory, which is
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continuous but not differentiable:

u ∈ [−1, 1] 7→ H(u) =

{
uσx, −1 ≤ u < 0,
uσz, 0 ≤ u ≤ 1.

(10.30)

Now suppose the initial state is an eigenstate of σx, e.g. ρ(0) = |+ 〉〈+ |. Then for u ≤ 0,
time-averaging does not alter the change at all and we have ωt.a.(u) = |+ 〉〈+ | for all
u ≤ 0. For any u > 0 the eigenbasis of the Hamiltonian H(u) is constant orthogonal
to |+ 〉. Taking the time-average of the state |+ 〉〈+ | in this new eigenbasis therefore
completely mixes the state and we have ωt.a.(u) = 1/2 for any u > 0. We conclude
that the entropy of the effective description changes from S(−1) = 0 to S(1) = log(2).
This dissipation can be attributed to the fact that while the eigenvalues of the Hamiltonian
can be described by smooth functions, the eigenbasis cannot. It should be clear that in
principle a similar effect can occur in interacting many-body systems (even though it may
be unlikely, e.g., due to the phenomenon of avoided crossings). Thus, the example shows
that we cannot expect to prove the absence of entropy production in general.

But the example also hints at the sufficient condition for absent of entropy production,
namely the smoothness of the Hamiltonian trajectory. This is indeed the case, as shown by
the following lemma.

Lemma 10.2 (Absence of entropy production in time-average model). Let u ∈ [0, 1] 7→
H(u) be a differentiable trajectory of Hamiltonians, in the sense that the eigenvectors
of H(u) are continuous and the eigenbasis of H(u) is differentiable. Then there is no
entropy-production in the time-average equilibration model: For any initial equilibrium
state ωt.a.(0) its spectrum is conserved during the process and therefore S(0) = S(1).

Proof. Let the eigenbasis of H(u) be given by |Ek(u) 〉. Then the eigenvalues pk(u + δu)
of the equilibrium state at parameter value u + δu can be written as

pk(u + δu) = 〈Ek(u + δu) |ωt.a.(u) |Ek(u + δu) 〉 (10.31)

= ∑
l

pl(u) |〈Ek(u + δu)|El(u)〉|2 , (10.32)

because they are simply the diagonal elements of ωt.a.(u) in the new eigenbasis |Ek(u + δu) 〉.
Using differentiability of the eigenbasis, |Ek(u) 〉 we can write them as

|Ek(u + δu) 〉 = |Ek(u) 〉+ |Xk(u) 〉 δu + O(δu2). (10.33)

Since the bases are ortho-normalized, we have Re (〈Ek(u)|Xk(u)〉) = 0. This implies

|〈Ek(u + δu)|El(u)〉|2 = δl,k + O(δu2).

Hence we have pk(u + δu) = pk(u) + O(δu2). Taking the limit δu → 0 we see that the
eigenvalues pk(u) remain constant.

Lemma 10.2 is essentially a consequence of the adiabatic theorem of quantum mechan-
ics. While in the quantum mechanical context, the qualifier "adiabatic" simply means "very
slow", in this context we see that it also indeed acquires the meaning of vanishing entropy-
production.

From the discussion of the time-average model we already learn that in the context of
GGEs, vanishing entropy production in the quasi-static limit requires smoothness condi-
tions on the thermodynamic protocols.

In the general case of arbitrary GGEs, we should expect that such conditions can be
phrased in terms of the Lagrange-multipliers λj(u) determining the equilibrium states.
We will now provide such a characterization. To understand this characterization, first
recall that in the case of a discrete thermodynamic protocol, the Lagrange-multipliers are
implicitly determined by the equation

Tr
(

ω
(i)
GGEQ(i)

j

)
= Tr

(
ω
(i−1)
GGE Q(i)

j

)
, j = 1, . . . , m. (10.34)

We then take a continuum limit to obtain the functions λj(u) in the quasi-static limit.
The following Lemma shows that the entropy production vanishes as long as the functions
λj(u) are smooth.
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Lemma 10.3 (Absence of entropy production in GGEs). Consider a quasi-static process
along a trajectory of Hamiltonians u ∈ [0, 1] 7→ H(u) (with associated m conserved
quantities Qj(u)) giving rise to the equilibrium states ωGGE(u). Then the entropy of
ωGGE(u) in the quasi-static limit if the functions u 7→ λj(u) determined by (10.16) are
smooth.

Proof. If the functions λj(u) are smooth, we can take the continuum limit of equation (10.16)
to obtain

Tr
(

dωGGE(u)
du

Qj(u)
)
= 0, j = 1, . . . , m. (10.35)

But, due to normalization of the states ωGGE(u), the derivative of S(u) is given by

dS(u)
du

= −Tr
(

dωGGE(u)
du

log(ωGGE(u))
)

=
m

∑
j=1

λj(u)Tr
(

dωGGE(u)
du

Qj(u)
)
= 0. (10.36)

Thus the entropy remains constant.

To illustrate this Lemma, let us discuss a simply counter-example in which the quasi-
static limit does not give rise to smooth Lagrange-multipliers. To do this, we will work
in the Gibbs-equilibration model, which is a special case of GGEs and consider again a
two-level system with Hamiltonian trajectory

u ∈ [0, 1] 7→ H(u) = (1− u) |1 〉〈1 | . (10.37)

Let the initial state be given by ωβ(0)(H(0)) with β(0) > 0. We will now see that this
example has the following properties:

1. The inverse temperature β(u) diverges as u→ 1, therefore it is not smooth on the whole
interval [0, 1].

2. The entropy does not remain constant.

3. The Gibbs model does not provide a good description of the system.

First note that all Hamiltonians H(u) have the same eigenbasis. Therefore the actual quan-
tum state of the system remains constant and equal to the initial state ωβ(0)(H(0)). This in
turn implies that the effective description in terms of a Gibbs-state requires that the effective
inverse temperature and the Hamiltonian H(u) fulfill

β(u)H(u) = β(0)H(0). (10.38)

Since H(u) = H(0)(1− u) we then deduce β(u) = β(0)/(1− u), which proves the
first claim. To see that the entropy increases, note that the final Hamiltonian is fully de-
generate. Hence any Gibbs-state of the final Hamiltonian is equal to the maximally mixed
state and has entropy log(2), which shows the second claim. Note that the entropy pro-
duction only happens if we follow the trajectory all the way to u = 1, which is the only
point at which β(u) is not smooth (since it is ill-defined). The reason for this behaviour is
that at u = 1, the Hamiltonian is degenerate and cannot "resolve" the two different eigen-
levels of the actual quantum state of the system. This also explains the last claim: Any
additional, independent observable that commutes with H(1) would distinguish the two
different eigen-levels of the quantum state and would lead to smooth Lagrange-multipliers
and vanishing entropy-production.

Summarizing, we find that quasi-static processes result in a constant entropy if and only
if the process is sufficiently smooth and all Lagrange-multipliers are well-behaved. Let us
now turn to the Gibbs-equilibration model.
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10.3.2 Entropy-production in the Gibbs equilibration model

We have already seen in the toy-example at the end of the last section that also in the
Gibbs-equilibration model entropy-production can happen in the quasi-static limit. In the
particular example, the reason was easy to see: The final Hamiltonian H(1) only admitted
a single Gibbs-state with entropy log(2). Therefore, any initial state with different entropy
necessarily had to lead to entropy-production. In this section, we will derive results that
show that this is essentially the only reason that entropy production can happen in the
Gibbs-equilibration model. The core result is the following Lemma.

Lemma 10.4 (General condition for absence of entropy-production). Consider a quasi-
static process along a smooth trajectory of Hamiltonians H(u) and an initial equilibrium
state ωβ(0)(H(0)) with β(0) 6= 0. Suppose there exists any function u 7→ f (u) 6= 0 with
f (0) = β(0) such that

S
(

ω f (u)(H(u))
)
= S(0). (10.39)

Then the quasi-static process along H(u) has no entropy-production and β(u) = f (u).

The Lemma states that to check whether a given quasi-static process has entropy produc-
tion, we do not need to actually solve the differential equations that define the quasi-static
process. It is enough to check whether it could be possible to keep the entropy constant by
any smooth choice of inverse temperature along the Hamiltonian trajectory. Also note that
the condition f (u) 6= 0 is necessary: If f (u) = 0 for any u, the entropy at this point is
given by log(d), where d is the dimension of the Hilbert-space. Then the only way to keep
the entropy constant would be to have β(u) = 0 for all u, which is impossible since by
assumption β(0) 6= 0.

Proof of Lemma 10.4. In the following proof, we write ω f (u) as a shorthand for the effec-
tive description ω f (u)(H(u)). Then, by the assumption on f , we have

dS(ω f (u)
du

= f (u)Tr

(
dω f (u)

du
H(u)

)
= 0. (10.40)

But since f (u) 6= 0, this implies that ω f (u) is a solution to (10.16) in the continuum limit.
But these solutions are unique and therefore ω f (u) = ωGibbs(u) is the actual solution of
quasi-static process. Hence β(u) = f (u). The uniqueness of the solution can be easily
seen by nothing that for a fixed sign of the inverse temperature, the entropy is in one-to-one
correspondence with β.

In the above Lemma, the Hamiltonian trajectory is fixed. In general, one might only
know the initial and final Hamiltonian. We can use the Lemma to derive general conditions
for Hamiltonian trajectories that ensure that the entropy-production vanishes. Let us discuss
two examples.

Example 10.5 (Entropy-production and ground state degeneracy). Let the ground-state
degeneracy of an Hamiltonian H be given by dg(H) and consider initial and final Hamil-
tonians such that dg(H(0)) ≥ dg(H(1)) and an initial state ωβ(0)(H(0)) with β(0) > 0.
Then any smooth quasi-static process that fulfills

dg(H(0)) ≥ dg(H(u)) ≥ dg(H(1)), ∀u ∈ [0, 1], (10.41)

keeps the entropy constant.

Proof. The entropy of Gibbs-states of the Hamiltonian H(u) can take any value in the
interval [log(dg(H(u)), log(d)]. Therefore, the condition ensures that the entropy can be
made constant by a suitable choice of inverse temperature f (u). Since the Hamiltonian
trajectory is smooth, f (u) can be chosen smoothly. Then Lemma 10.4 proves the claim.
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In fact, we can leverage this example to show that it is essentially only necessary to be
able to find a final inverse temperature that matches the initial entropy. This is shown in the
next example.

Example 10.6 (No entropy-production in Gibbs ensembles). Consider initial and final
Hamiltonians H(0), H(1), respectively, and an initial state ωβ(0)(H(0)) with finite β(0) >
0. Suppose there exists any finite β∗ > 0 such that

S(0) = S
(
ωβ∗(H(1))

)
. (10.42)

Then any smooth trajectory with dg(H(u)) = 1 for all u in the open interval (0, 1) con-
necting the initial and final Hamiltonian results in vanishing entropy-production.

Proof. By the condition on the Hamiltonians, we can find some smooth function f (u) that
matches the entropy for all u < 1. But since by assumption β∗ exists, we know that f (1) =
β∗. Hence f (u) exists for all u ∈ [0, 1] and the claim follows from Lemma 10.4.

The last two examples show that in the case of the Gibbs equilibration model, smooth-
ness of the Hamiltonian trajectory is essentially sufficient to ensure the absence of entropy-
production in the quasi-static limit. Essentially the only condition is that the Hamiltonians
along the trajectory allow for entropies that match the initial entropy. If this condition is
fulfilled, the entropy does not increase in a quasi-static process.

10.3.3 Reversibility of quasi-static processes

In the last two sections we have studied in great detail when we can and cannot expect
that a quasi-static process features entropy-production. In essence we found that there is
no entropy-production as long as all involved quantities become sufficiently smooth in the
quasi-static limit. Let us now discuss how this connects to reversibility.

The essential equation that governs thermodynamic protocols in terms of GGEs is equa-
tion (10.16). The continuum limit of this equation takes the form

Tr
(

dωGGE(u)
du

Qj(u)
)
= 0. (10.43)

Given a trajectory H(u) and an initial state ωGGE(0), it determines the solution ωGGE(u).
This equation is invariant under "time-reversal" of the "parameter-time" u: Consider the
reversed process given by H(ũ) and initial state ωGGE(1) with ũ ∈ [0, 1] 7→ 1− u. If a
process fulfills (10.43), then formally the process ωGGE(ũ) fulfills

Tr
(

dωGGE(ũ)
dũ

Qj(ũ)
)
= 0. (10.44)

Therefore, the final state of the reversed-process is ωGGE(0), the initial state of the origi-
nal process. We therefore conclude that the process is indeed reversible int he operational
sense: If after we have implemented the forward process H(u) quasi-statically we imple-
ment the backward process H(ũ) quasi-statically, then we get back to the initial state. As
emphasized before, this reasoning holds provided that the Lagrange-multipliers λj(u) are
smooth functions on [0, 1], which also ensures that no entropy is produced.

It is also important to remember, that we always operate on the level of effective descrip-
tions. Since thermodynamic protocols include letting the system equilibrate for an arbitrary
time, the actual quantum state at the end of the thermodynamic protocol is not well defined
unless one specifies exactly the equilibration times. Therefore, we cannot claim (or, in fact
know) whether the actual quantum state comes back to its initial state if we reverse the
process unless we precisely match the timing in all of the equilibration steps.

Finally, if we think of a system-bath setting, our results connect reversibility and entropy
production in the same sense as in phenomenological thermodynamics: No entropy is pro-
duced on system and bath together in a reversible protocol and if no entropy is produced,
then the protocol is reversible. Unlike in phenomenological thermodynamics, however, the
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entropy that we consider cannot in general be attributed to either the system or the bath
since the entropy is not additive, but sub-additive (cf. chapter 5):

S(ωGGE) = S(TrB(ωGGE)) + S(TrS(ωGGE))− I(S : B), (10.45)

where I(S : B) ≥ 0 denotes the mutual information between S and B and measures the
correlations between S and B. In our set-up it is perfectly compatible that i) the entropy of
S increases, ii) the entropy of B increases, but at the same time iii) the total entropy remains
constant. This can happen due to the built-up of correlations between SB (which increases
I(S : B)) while increasing the local entropies. Indeed, such behaviour is well-known to
lead to thermodynamic entropy production of the system and is a cause of irreversibility if
one later on cannot control these correlations anymore (also see discussions in chapter 5
and Refs. [89]).

10.4 The minimum work principle

We have seen in the last sections that our framework reproduces, except for pathological
cases, the close links between quasi-static processes, entropy-production and reversibility
known from phenomenological thermodynamics. In phenomenological thermodynamics,
reversibility is also closely linked to work-extraction through the minimum work principle.
We will now discuss the minimum work principle in the context of Generalized Gibbs en-
sembles. To do that, we will use the following formulation of the minimum work principle
[250]:

Given an initial equilibrium state and a path of Hamiltonians, the work performed on the
system is minimal for the slowest realisation of the process.

In our context, this means the following. Given an initial equilibrium state a trajectory of
Hamiltonians H(u) and an initial equilibrium state ωGGE(0), consider the discretization
of the trajectory H(u) into N steps given by H(i) = H(i/N) as thermodynamic protocol
PN . This determines the states ω

(i)
GGE through our usual procedures. Note that these states

are not the same as the states obtained from discretizing the trajectory of states ωGGE(u)
in the quasi-static limit. The minimum work principle then says that the minimum work
cost over all the protocols PN is given in the quasi-static limit N → ∞.

While this formulation of the minimum work principle fits well into our framework, it
is different from the one usually encountered in text-books on thermodynamics [22, 251].
There, the minimum work principle states that among all processes between two fixed equi-
librium states on some system, reversible ones minimize the work-cost (equivalently, maxi-
mize the extracted work). The argument for this statement is fairly simple and it is useful to
have in mind for the following considerations. Let me therefore briefly recapitulate how it
works. Consider a system that can be connected to a heat bath at temperature T and a work-
storage device. First assume that the system undergoes some process from state A to state
B, extracting work W(A→ B) and absorbing heat Q(A→ B). We can now come back to
the initial state A by a reversible process5, extracting work W(B→ A) and absorbing heat5 In phenomenological ther-

modynamics, it is assumed
that this can always be done.

Q(B → A). The total process is then cyclic. Hence, if W(A → B) + W(B → A) ≥ 0,
we could cyclically extract work from a single heat bath, which is forbidden by the sec-
ond law. More formally, we have Q(B → A) = T∆S(B → A) by reversibility and
Q(A → B) ≤ −T∆S(B → A) from Clausius’ inequality (∆S(B → A) denotes the
change of entropy). From the first law we then get

W(A→ B) + W(B→ A) = Q(A→ B) + Q(B→ A) ≤ 0.

Indeed, in phenomenological thermodynamics once we assume the first law, the minimum
work principle is equivalent to the second law. So why can’t we use the usual formulation
of the minimum work principle in our setting? The reason is that in phenomenological
thermodynamics, equilibrium states are in one-to-one correspondence with the thermody-
namic variables, which in our case are given by the Hamiltonian. In such a case, our
formulation and the traditional one are in fact equivalent, since fixing the initial and final
Hamiltonian would fix the initial and final state. This is, for example, the case if one would
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take as equilibration model Gibbs states with a fixed inverse temperature – as is usually
done in thermodynamics. In our context, however, in general the final state of a process
depends on the specific trajectory between the initial and final Hamiltonian. Therefore,
different reversible protocols from H(0) to H(1) can lead to different final states and we
cannot connect them to cyclic protocols. Consequently, the above traditional arguments do
not hold in our context if we consider Generalized Gibbs ensembles in finite systems as
equilibration models. We thus have to study in which sense the minimum work principle
remains true by more specific arguments. This is what we will do in the following sec-
tions. Indeed we will find that the minimum work principle can fail and we will provide a
concrete example where it does.

Before we come to that, however, let us first discuss the minimum work principle in
general in the Gibbs equilibration model and the time-average equilibration model.

10.4.1 Minimum work principle in the Gibbs equilibration model

To discuss the minimum work principle in the Gibbs equilibration model, consider a smooth
trajectory of Hamiltonians H(u) and the initial equilibrium state ωβ(0)(H(0)). Now con-
sider the N-step discretization PN of the process. The work associated to this protocol is
given by (see section 10.2.1)

WGGE(PN) = Tr
(

ωβ(0)(H(0))
)
− Tr

(
ωβ(N)(H(1)

)
. (10.46)

The work-cost is therefore minimized if the energy of the final state is minimized. If
β(N) > 0, this is the case if the von Neumann entropy is minimized, because we are
dealing with Gibbs states. Since the von Neumann entropy can only increase during a ther-
modynamic protocol, we therefore conclude that the work-cost is minimized in a reversible
process. We thus obtain again the minimum work-principle just as in phenomenological
thermodynamics as long as the inverse temperature does not change sign during the pro-
cess. This is the case as long as the final energy fulfills

Tr
(

ωβ(N) H(1)
)
≤ 1

d
Tr(H(1)), (10.47)

where d is the Hilbert-space dimension of the total Hamiltonian H(1). In a system-bath
setting with a large bath, this is fulfilled as long as we do not have a work-cost that scales
extensively with size of the bath. If we fix an initial and final Hamiltonian on the system,
this is true as long as the bath is large enough, since the work cost is bounded by ‖H(0)‖+
‖H(1)‖ but the total energy diverges with the size of the bath.

Also note that if the final temperature in the reversible process β(1) is positive, then the
initial temperature also must have been positive. This is due to the fact that the temperature
β(u) is a smooth function. Thus if it would change sign in the process it would have to
take the value β(u) = 0 in which case the entropy would take the maximum possible value
and therefore cannot be preserved.

If we consider a cyclic process, H(0) = H(1) and the initial temperature is positive,
the above arguments also imply that no positive work can be extracted since the system can
only "heat up" in a cycle by creating entropy. We thus obtain the second law of thermody-
namics in terms of work extraction. The above discussion is not very surprising, but mostly
shows that our framework is adequate and reproduces standard results in the limit where
they should apply. We will now go further and discuss the minimum work principle in the
case of GGEs, starting with the time-average equilibration model.

10.4.2 Minimum work principle in the time-average equilibration model

Let us again fix a smooth trajectory of Hamiltonians H(u) and assume some initial equi-
librium state ωt.a.(0). We already know from Lemma 10.2 that in the quasi-static limit,
the spectrum of the density matrix ωt.a.(u) is conserved. The question is whether this also
implies that the work-cost of the process is minimized. We will now see that this is in
general only the case if the final state of the quasi-static process, ωt.a.(1) is a so-called
passive state with respect to arbitrary unitaries. To explain what this means, consider the
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final Hamiltonian with energies E(1)k. The state ωt.a.(1) is diagonal in this basis. Let
ωt.a.(1)↓ denote the vector with the eigenvalues of ωt.a.(1) ordered in non-increasing or-
der. Then ωt.a.(1) is called passive if its eigenvalues decrease with increasing energies:
(ωt.a.(1))

↓
k ≥ (ωt.a.(1))

↓
l implies Ek(1) ≤ El(1) for all k and l. Passive states have the

property that their average energies can only be increased using arbitrary unitary opera-
tions [236, 237] (however, also see the recent work [238]):

Tr(ρH) ≤ Tr(UρU†H), ∀U ⇔ ρ is passive w.r.t. H. (10.48)

With this definition at hand we can now show the following Lemma.

Lemma 10.7 (Passive quasi-static protocols are optimal). Given a smooth trajectory of
Hamiltonians H(u) and an initial state ωt.a.(0), if the final state in the quasi-static realisa-
tion of the process is passive, then the work-cost is minimized in the quasi-static realisation
of the protocol.

Proof. In the quasi-static limit, the final state ωt.a.(1) is related to the initial state by a
unitary operation W: ωt.a.(1) = Wωt.a.(0)W†. This follows since their spectra are identi-
cal. Now consider any discretization of the process with final state ω

(N)
t.a. and note that the

time-averaging process can be seen as a mixture of unitaries. Since ωta(j+1) is obtained
from ωta(j) by time-averaging and this holds for all j, the final state ω

(N)
t.a. is to the initial

state and to ωt.a.(1) by a mixture of unitaries:

ω
(N)
t.a. = ∑

α

pαVαωt.a.(0)V†
α = ∑

α

pα(VαW†)ωt.a.(1)(VαW†)†, (10.49)

where Uα are some unitary matrices. Since ωt.a.(1) is passive, the state ω
(N)
t.a. can therefore

only have higher energy than ωt.a.(1).

The Lemma establishes that the minimum work principle holds if the final state in the
quasi-static realisation is passive. Given any two Hamiltonians H(0) and H(1) one can in
fact always construct a smooth trajectory such that the final state is passive (for an explicit
construction, I refer to Ref. [3]). Furthermore, if the spectrum of the initial state is non-
degenerate all such trajectories are equivalent in the sense that they have the same work-
cost, since the ordering into a passive state is unique. However, in general, such trajectories
require changing the Hamiltonian over time globally. Thus, in a system-bath setting it
might be impossible to find a trajectory of the local Hamiltonian of the system so that
the final state is passive and in principle it can become beneficial to implement a protocol
rapidly instead of in a quasi-static way to extract the most work.

In the case of cyclic processes, the above considerations show that the optimal protocol
is one where the final state is passive and has the same spectrum as the initial state. We
then conclude from (10.48) that we can extract work in a cyclic protocol if and only if the
initial state is non-passive. Thus non-passive states can be considered "non-equilibrium"
states in the framework of the time-average equilibration model, even if they are diagonal
in the energy eigenbasis: Work can be extracted from them, but only once, since they end
up being passive.

Lemma 10.7 also can be seen as a generalisation of previous results in Ref. [250], where
the minimum work principle was studied for cyclic unitary processes. In Ref. [250], the
authors showed that the minimum work principle is valid if i) the initial state is passive
with respect to H(0) and ii) the trajectory of Hamiltonians does not induce level crossing.
This means that Ei(0) ≥ Ej(0) then also Ei(1) ≥ Ej(1) (due to the smoothness of the
trajectory, the labelling of the basis is fixed throughout the trajectory). Now, if the initial
state is passive then the absence of level-crossings is equivalent to having a final passive
state. Therefore the Lemma naturally generalizes this result from Ref. [250].

Finally, let us note that in the case of the Gibbs-equilibration model, the condition that
the final temperature remains positive can be seen as enforcing passivity of the final state
since Gibbs states are passive if and only if they have a positive temperature. We can then
formulate the results of section 10.4.1 in complete analogy to Lemma 10.7:
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Lemma 10.8 (Passive quasi-static protocols are optimal in the Gibbs equilibration model).
Consider a smooth trajectory of Hamiltonians H(u) and an initial state ωβ(0)(H(0)). If
the final state in the quasi-static realisation of process in the Gibbs equilibration model is
passive, then the quasi-static realisation is optimal.

We can thus summarize that both for the time-average and the Gibbs equilibration
model, we can check whether the minimum work-principle is fulfilled by calculating the
final state of the quasi-static protocol. If it is passive, then the minimum work principle
holds. Let us now connect the minimum work principle to the problem of work-extraction
from non-equilibrium states and then turn to GGEs with an intermediate number of con-
served quantities.

10.4.3 Minimum work principle and work extraction protocols

The minimum work-principle can also be used to study optimal work-extraction proto-
cols from non-equilibrium states. For the purpose of this section, let us therefore assume
that the equilibration model is given by either the time-average model or the Gibbs model.
Then suppose the system is initially in some initial state ρ(0), which is in general not an
equilibrium state and we want to extract work from the system in a cyclic thermodynamic
protocol. We will assume that it is possible to perform a quench before the system equili-
brates the first time. Then we can decompose any cyclic work-extraction protocol into two
steps. First, the first quench with work-cost

WGGE(0→ 1) = Tr
(

ρ(0)(H(0) − H(1))
)

. (10.50)

After this first quench, the system equilibrates and a thermodynamic protocol back to the
initial Hamiltonian H(0) = H(N) follows. Crucially, for this latter part of the protocol, the
system starts in the equilibrium state

ω
(1)
t.a.,Gibbs = ωt.a.,Gibbs(ρ(0), H(1)) (10.51)

and leads to some work-cost WGGE(1 → N). Here, the notation ωt.a.,Gibbs means that
we either consider the time-average or Gibbs equilibration model. Clearly, after fixing
H(1) we want to minimize the work-cost of this second part of the protocol. In particular,
we know from the last section that if the final state of the reversible realisation of this
protocol has a final passive state, then it is optimal to perform the reversible process back
to the initial Hamiltonian. To optimize the work extraction we then have to optimize the
Hamiltonian H(1) after the first quench and the trajectory back to the initial Hamiltonian.
This shows that the optimal protocol for work-extraction consists of two steps:

1. A quench to some optimal Hamiltonian H∗, which depends on the initial state ρ(0).

2. A reversible process back to the initial Hamiltonian H(0).

We can now use this to show how much work can be extracted in principle from a non-
equilibrium state in both the Gibbs-equilibration model and the time-average equilibration
model (similar results were obtained in [250]) if we assume that all Hamiltonians can be
reached by quenches, i.e.,H consists of all bounded Hamiltonians. First, we obtain for the
total work in the process

WGGE = Tr (ρ(0)H(0))− Tr (ρ(0)H∗)

+ Tr
(

ω
(1)
t.a.,GibbsH∗

)
− Tr (ωt.a.,Gibbs(1)H(0))

= Tr (ρ(0)H(0))− Tr (ωt.a.,Gibbs(1)H(0)) , (10.52)

where ωt.a.,Gibbs(1) is the final state of the reversible process with the initial state

ω
(1)
t.a.,Gibbs = ωt.a.,Gibbs(ρ(0), H∗)
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and initial Hamiltonian H∗ back to the initial Hamiltonian H(0). We therefore have to
minimize the energy of ωt.a.,Gibbs(1) subject to the condition that its entropy is larger or
equal to that of ρ(0). This is achieved if we choose H∗ such that

ρ(0) = ωt.a.,Gibbs(ρ(0), H∗) (10.53)

and such that ρ(0) is passive with respect to H∗. This simply means that the first quench
is such that ρ(0) is an equilibrium state with respect to the Hamiltonian H∗ after the first
quench and no entropy production occurs upon equilibration with respect to this Hamilto-
nian (note the similarity with the optimal work-extraction protocols in chapter 9).

If we define Wmax
t.a.,Gibbs(ρ(0), H(0)) to be the supremum of the work that can be ex-

tracted in the two settings, respectively, then we obtain

Wmax
Gibbs(ρ(0), H(0)) = Tr (ρ(0)H(0))− Tr

(
ωβ(H(0))H(0)

)
(10.54)

= ∆Fβ(ρ(0), H(0)), (10.55)

Wmax
t.a. (ρ(0), H(0)) = Tr (ρ(0)H(0))− Tr

(
ρ(0)↓H(0)

)
, (10.56)

where β > 0 is chosen such that S(ρ(0)) = S(ωβ(H(0)) and ρ(0)↓ is the state that is pas-
sive with respect to H(0) and has the same spectrum as ρ(0). The quantity Tr((ρ(0)H(0))−
Tr
(
ρ(0)↓H(0)

)
is also known as ergotropy [252] and coincides with the amount of work

that can be extracted under purely unitary operations, as discussed in the last section.
In summary we conclude that the maximum amount of work that can be extracted from

a non-equilibrium state is given by the energy-difference to the equilibrium state with the
same entropy. We will now see that this principle fails in the case of arbitrary GGEs.

10.4.4 The minimum work principle and work extraction in the GGE equilibra-
tion model

For the Gibbs equilibration model and the time-average equilibration model, we can check
whether the minimum work principle is valid in a given thermodynamic protocol by look-
ing at whether the final state in the quasi-static realisation is passive. This is possible in
the Gibbs equilibration model due to the close link between energy, entropy and tempera-
ture and in the case of the time-average model due to its close connection to passivity and
random unitary quantum channels. In the case of arbitrary GGEs both these links are not
available to us. It is therefore not surprising that we won’t be able to formulate general
statements in the sense of the previous two sections. In this section, we will therefore dis-
cuss numerical examples using free Fermions instead. In particular, we will see examples
for the following behaviours:

1. Initial conditions and a Hamiltonian trajectory where the minimum work principle re-
mains valid.

2. Initial conditions and a Hamiltonian trajectory where the minimum work principle fails,
even though the effective description in terms of Gibbs states would suggest that it is
valid.

We will further discuss in detail how these behaviours can be understood and connect them,
in the spirit of the last two sections, to the concept of passivity. The reasons for discussing
free fermionic systems plentiful:

i) They are known to be well described by GGEs, but not by Gibbs states, due to their
integrability [40, 42].

ii) They can be efficiently simulated on a computer, even for large system sizes.

iii) They can be simulated with ultra-cold atom in optical lattices, making our predictions
testable in experiments [170, 173, 253, 254].

While focussing on free fermionic systems here, we can expect that similar results can be
derived for free bosonic systems as well, which have a very similar structure. Here, the aim
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is primarily to present examples that show different behaviour, including a violation of the
minimum work principle, and which can be understood conceptually. For more detailed
numerical investigation that appeared as follow-up to the work presented in this chapter
see Ref. [255].

In the following, we will consider a simple one-dimensional chain of n free fermions,
with an initial Hamiltonian of the form

H(0) =
n

∑
j=1

εj f †
j f j + g

n−1

∑
j=1

( f †
j f j+1 + f †

j+1 f j), (10.57)

where the εj denote on-site potentials and g determines the amplitude for hopping between
neighboring sites. Any such Hamiltonian can be brought into the normal-form

H(0) =
n

∑
k=1

µkη†
k ηk =

n

∑
k=1

µknk, (10.58)

where ηk, η†
k are again fermionic operators that are related to the f j by a canonical transfor-

mation (a n× n unitary matrix). The number operators nk mutually commute and hence
also commute with the Hamiltonian H(0). They provide the relevant set of conserved
quantities in the case of initial states that are Gaussian. For a more detailed discussion of
this point see Ref. [249]. Gaussian states are those states that are fully determined by the
correlation functions C(ρ)ij := Tr(ρ fi f j) through Wick’s theorem and include eigenstates
and Gibbs-states of quadratic Hamiltonians such as H(0). Importantly, if we consider the
GGE with the conserved quantities nk it takes the form

ωGGE(ρ, H(0), {nk}) =
e−∑ λknk

Z
. (10.59)

It therefore can be understood as a Gibbs state of the quadratic Hamiltonian ∑k λknk and is
also a Gaussian state. This is even the case if the state ρ from which the GGE is determined
is not Gaussian. This is well in accordance with recent results that show that a non-Gaussian
initial state evolves towards a Gaussian one under the dynamics of a short-ranged quadratic
Hamiltonian [189, 196]. Furthermore, it implies that we can completely focus our attention
to Gaussian states even if the initial state of the thermodynamic protocol is not Gaussian,
since nothing changes on the level of the effective description if we replace this initial
state with the Gaussian state which has the same correlation functions C(ρ)ij. This is
even true on the level of exact, time-dependent, unitary dynamics, since time-evolution
under quadratic Hamiltonians maps Gaussian states to Gaussian states and can be expressed
solely on the level of the correlation matrices in closed form.

Since we can restrict to Gaussian states, all the analysis of thermodynamic protocols can
be reduced to the level of correlation matrices C(ρ). These are n× n-matrices in contrast
to the full density matrices of size 2n × 2n, which enables us to compute the full, unitary
time-evolution of system and bath together in an efficient manner and compare it with the
effective description.

In the following I will discuss two exemplary cases of work-extraction protocols from
different initial conditions. To do that let us split the Hamiltonian H(0) into three parts:
a system Hamiltonian on the first site HS = ε1 f †

1 f1, an interaction term V = g( f †
1 f2 +

f †
2 f2) and the bath Hamiltonian HB = H − HS − V. We now assume that we can only

change the Hamiltonian by adjusting the potential ε1 on the first site and that εj = ε is fixed
for all j 6= 1. The two examples will be optimal work-extraction protocols from different
initial conditions, leading to completely different behaviour. Before discussing the results
in the specific examples, let us first discuss optimal work-extraction protocols in the case
of free fermionic systems with GGEs as effective description.

As discussed above, the whole analysis can be carried out on the level of correlation
matrices. On the level of correlation matrices, going from a state ρ to its associated Gener-
alized Gibbs ensemble corresponds to projecting the correlation matrix C(ρ) to its diagonal
in the basis of the normal-modes ηk. It is therefore very similar from a formal point of view
to the case of the time-average equilibration model on the level of density matrices. To
make this clearer, let us call a correlation matrix C passive with respect to the Hamiltonian
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Figure 10.2: Extracted work with quenches only on a single site of the chain of Fermions in the first example. Dark blue correspond to the work
W computed from the exact unitary evolution, light blue points to the work WGGE computed from the effective description in terms GGE states,
and red points to the effective description using Gibbs states. As an initial state we take, β = 1/2, Tr( f †

1 f1ρ(0)S) = 0.1, n = 100. For the initial
Hamiltonian, ε0 = 0.1, εi = 1 ∀i 6= 1, g = 0.5. The protocol consists of a first quench to ε1 = 4.3, followed by N − 1 equidistant quenches back
to the original Hamiltonian. The exact evolution is obtained by letting system and bath interact for a random time between 20/g and 100/g much
larger than the equilibration time. (Figure adapted from Ref. [3].)

H = ∑k µknk, if it is diagonal in the basis of the normal-modes and the populations of the
normal modes decrease with increasing energy of the mode:

Ckk ≥ Cll =⇒ µk ≤ µl . (10.60)

It then follows by essentially the same arguments as in the time-average equilibration mod-
els that optimal protocols have the property that the final correlation matrix has the same
spectrum as the initial correlation matrix and is passive. Similarly, the minimum work
principle holds in the case that the final correlation matrix in the reversible limit is passive.

Not again however, that optimal protocols in general require being able to quench to
arbitrary free fermionic Hamiltonians and hence one usually cannot expect to reach this
bound in the system-bath setting. Similarly, in the system-bath setting it might be impossi-
ble to find protocols with final states that have a passive correlation matrix.

A further point that will become important later is that a passive correlation matrix does
not imply that the state from which it is calculated is passive as a quantum state with
respect to the Hamiltonian on the full many-particle Hilbert-space. A simple example of
such behaviour is discussed in section 14.7.1. Let us now come to the specific examples.

10.4.5 Example: Work extraction in accordance with the minimum work principle

In the first example, we consider as initial state a state of the form

ρ(0) = ρ(0)S ⊗ωβ(HB), (10.61)

where ρ(0) is out of equilibrium. We will here choose ρ(0) as a thermal state of HS with an
inverse temperature that differs from β. Then, we numerically implement a work extraction
protocol that consists of a first rapid quench before letting the system equilibrate and then
a thermodynamic protocol back to the initial Hamiltonian. We can then calculate both the
actual work done in the process W and the work as calculated from the effective description
in terms of GGEs and Gibbs states. The results are presented in Fig. 10.2 and demonstrate
that the minimum work principle holds in this case.

10.4.6 Example: Work extraction violating the minimum work principle

For the second example, instead of taking a Gibbs state as the initial state of the bath-part
of the system, we choose a GGE initial state ω

(B)
GGE, which we want to choose to find an

example that violates the minimum work principle. From the previous discussions, we
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Figure 10.3: Left: Extracted work with quenches only on a single site of the chain of Fermions in the second example. Green points correspond
to the work W computed from the exact unitary evolution, yellow points to the work WGGE computed from the effective description in terms GGE
states. As an initial state we take the one specified by K = 32, Tr( f †

1 f1ρ(0)S) = 0.1, n = 150. For the initial Hamiltonian, ε0 = 0.1, εi = 1
∀i 6= 1, g = 0.5. The protocol consists of a first quench to ε1 = 1.6, followed by N − 1 equidistant quenches back to the original Hamiltonian.
The exact evolution is obtained by letting system and bath interact for a random time between 20/g and 100/g much larger than the equilibration
time. Right: The entropy production in the same protocol. (Figures adapted from Ref. [3].)

learn that we should try to engineer it such that the final state of the reversible limit is not
passive. We therefore choose the GGE in the following way:

Tr
(

ω
(B)
GGEn(B)

k

)
=

{
1 if k ≤ K,
0 if k > K.

(10.62)

Here, n(B)
k denote the number operators of the normal modes of the bath Hamiltonian HB

and we assume that the corresponding single-particle energies µ
(B)
k are ordered in decreas-

ing fashion. Therefore only the K most energetic normal modes are populated in the initial
state ω

(N)
GGE. This ensures that the initial correlation matrix of the system is not passive.

Note that such behaviour would be impossible to have in a Gibbs state with positive tem-
perature. Nevertheless, if we would use an effective description in terms of Gibbs states,
then the effective temperature of this state would be positive for large enough system sizes
and fixed K since the energy-density in the state ω

(B)
GGE is well below the critical energy den-

sity. This implies that from the point of view of the Gibbs equilibration model, we would
predict that the minimum work principle would be fulfilled in a work-extraction protocol.

Fig. 10.3 shows the results of a work-extraction protocol from these initial condition.
As can clearly be seen, the minimum work principle is violated: the extracted work mono-
tonically decreases with the number of steps in the second part of the protocol and thus
in the reversible limit. Indeed, we find that the final state in the reversible limit is highly
non-passive, explaining the breakdown of the minimum work principle. This finishes our
discussion of entropy production and the minimum work principle in Generalized Gibbs
ensembles.

10.5 Summary

It is generally assumed that sufficiently interacting, non-integrable systems equilibrate and
even thermalize after a quench of the Hamiltonian. This means that local observables
can be described by global Gibbs states with the same energy-density as the initial state.
Nevertheless, there are class of many-body systems for which this is not true, such as
integrable systems [192–202] or many-body localizing systems, which equilibrate but do
not thermalize [224–226]. The equilibrium states of such systems have to be described by
Generalized Gibbs ensembles.

In this chapter, we built up a framework for thermal machines and studied its predic-
tions for different kind of equilibration behaviour of many-body systems on the basis of
an effective description in terms of Generalized Gibbs ensembles. In this framework, we
assume that Generalized Gibbs ensembles provide a good description not only for single
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quenches but, importantly, also for many consecutive quenches. This allowed us to derive
general results about entropy production and the minimum work principle in a unifying
language. Importantly, the statement that the entropy can only increase along a thermody-
namic protocol of several quenches in an isolated system follows straightforwardly without
any additional assumptions.

As expected, systems that thermalize allow us to derive standard statements of phe-
nomenological thermodynamics, such as the minimum work principle. This is even true
for finite baths, where standard thermodynamic arguments fail since the bath changes its
temperature over the course of a thermodynamic protocol. Importantly, these results also
hold true if we cannot clearly separate systems into "working systems" and "heat baths".
What we call "system" and what we call "bath" is simply determined by our control capa-
bilities, as in chapter 9.

For the case of arbitrary GGEs we found that the usual thermodynamic statements are
not automatically true. In particular, we discussed an explicit example where the minimum
work principle fails. This could be attributed to the fact that GGE states need not be passive
states, even though the description on the basis of the constants of motion seems to be
passive. Similarly, in the case of the time-average equilibration model and for Gibbs-states
we also found that the minimum work principle holds, in a suitable formulation, when the
relevant effective descriptions are given by passive states. This suggests that "equilibrium
states", in the sense of the second law, are not simply maximum entropy ensembles, given
the expectation values of the relevant conserved quantities, but also have to be passive. It is
an intriguing open problem to study the role of passivity for Generalized Gibbs ensembles
for more general systems then just free fermionic or free bosonic systems.

As discussed above, the framework introduced in this chapter assumes that we can use
the effective description after a first quench also to predict the new effective description
after a second quench. This goes beyond of what is usually considered in theory and
experiments and deserves further studies both from a theoretical point of view, but also
from the experimental point of view. Indeed, using optical lattices or trapped ion platforms,
it seems entirely plausible that this assumption can be tested experimentally with similar
set-ups as for single-quench experiments [169–174].

I already mentioned above that the results and the framework in this chapter are not
restricted to any weak coupling limit. In the next chapter, we will now use this framework
to study thermal machines in the strong coupling regime and derive general corrections to
work-extraction bounds and efficiencies of heat engines.
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IN MACROSCOPIC THERMODYNAMICS, the interaction energies between different macro-
scopic bodies can usually be safely neglected. This is due to the fact that interactions usu-
ally act locally in space. Therefore the interaction energy between two macroscopic bodies
scales only like the contact area between the two bodies, while thermodynamic quantities
such as the internal energy, entropy, free energy and extractable work scale with the volume
of the bodies. For microscopic systems, this is no longer true and the corrections due to
finite coupling strengths need to be considered. Deriving the thermodynamic bounds that
are applicable in the strong coupling regime is a well-known problem and recently numer-
ous studies dealt with thermodynamics in the strong-coupling regime (see Refs. [3, 76, 77,
235, 256–270]). Nevertheless, general and concrete corrections to thermodynamic bounds
such as the optimal efficiency of a quantum thermal machine which can be evaluated for
arbitrary models have been lacking. In this chapter1, we use the thermodynamic framework 1 This chapter is based

on joint-work with Martí
Perarnau-Llobet, Arnau Riera,
Rodrigo Gallego and Jens
Eisert published in Ref. [9].

developed in the last chapter to derive such corrections for extractable work and the effi-
ciency of a thermal machine operating between two heat baths. In particular, we will obtain
corrections to second order in the coupling strength, which can in principle be evaluated
for any model. To derive the results, we will make the following assumptions:

1. We consider a working system that can be coupled to heat baths.

2. When (and only when) the working system is coupled to a heat bath, it equilibrates.

3. We assume that the Gibbs equilibration model is applicable to any working system in
contact with a heat bath. This assumption should be understood as a condition on possi-
ble heat baths and means that observables on the working system are correctly predicted
by the Gibbs state on the full compound.

4. We consider arbitrarily large heat baths, so that all effective temperatures remain con-
stant. We also assume that all effective temperatures are positive.

5. The interaction operator between the system and each of the heat baths is fixed and can
only be turned on or off.

Apart from these assumptions, we will introduce no general additional assumptions on top
of the framework for thermodynamic operations from the last chapter. We will then derive
the fundamental bounds for the tasks of i) work-extraction from a single heat bath using a
non-equilibrium working system and ii) optimal efficiencies of thermal machines operating
between two heat baths.
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11.1 Work extraction in the strong coupling regime

Since work-extraction bounds are necessary to derive bounds on efficiencies, let us begin
with the task of extracting work from a system that is initially out of equilibrium and
uncoupled from the heat bath with Hamiltonian HB. We can then apply quenches to the
Hamiltonian that consist of either changing the system Hamiltonian or turning on or off the
coupling to the heat bath. The possible Hamiltonians during a work-extraction protocol are
then of the form

H(j) = H(j)
S + HB(+V), (11.1)

where the interaction term V is only present when the system is contact with the bath. As
before we associate a work-cost

W(j→ j + 1) = Tr(ρ(j)
(

H(j) − H(j+1)
)

(11.2)

to a quench of the Hamiltonian. Apart from the quenches that involve turning on or off the
coupling to the heat bath, the work-cost can be computed from the state on subsystem S
only, since we only change the Hamiltonian on S. If the system is coupled to the heat bath
and we let the system and bath equilibrate, the final effective description is given by the
Gibbs-state at temperature β. Thus, after the quench from H(j) to H(j+1), the state of the
system changes according to

ρ
(j)
S 7→ TrB

(
ωβ(H(j+1))

)
. (11.3)

As discussed in the previous chapter, if we fix initial Hamiltonian H(0) and a final Hamilto-
nian H(1) (with interaction turned on) and consider an initial equilibrium state ωβ(H(0)),
we can perform a quasi-static and reversible protocol from H(0) to H(1). This isothermal
reversible process has work cost

W = Fβ(ωβ(H(0)), H(0))− Fβ(ωβ(H(1)), H(1)). (11.4)

The proof is exactly the same as for the isothermal process in the weak-coupling regime as
presented in section 14.6.1 or in Ref. [235], due to the fact that we assume that β is fixed
(since the bath is arbitrarily large). Note however, that the work-cost is here expressed in
terms of the state and Hamiltonian on system and bath together, even though the quenches
only occur on the system S.

We have seen already in chapters 9 and 10 that optimal work-extraction bounds mini-
mize dissipation, which is ultimately due to the minimum work principle. In this context,
this principle implies that an optimal work-extraction protocol from the initial system state
ρ(0) and Hamiltonian HS(0) consists of the following steps:

1. A quench to a Hamiltonian H(1)
S while remaining uncoupled to the bath and turning on

the interaction afterwards. This step has a work-cost

W1 = Tr
(

ρ(0)⊗ωβ(HB)
(

H(0)S − H(1)
S −V

))
. (11.5)

2. An isothermal reversible process to some Hamiltonian H( f )
S with work-cost

W2 = Fβ(ωβ(H(1)), H(1))− Fβ(ωβ(H( f )), H( f )). (11.6)

3. Turning off the interaction and returning to the initial Hamiltonian, with work-cost

W3 = Tr
(

ωβ(H( f ))
(

H( f )
S + V − H(0)S

))
. (11.7)

As we have seen in chapter 9, in the weak coupling limit it is optimal to take H( f )
S = H(0)S

and one obtains, upon optimizing H(1)
S , the weak coupling bound

W(weak)(ρ(0), H(0)S) = ∆Fβ(ρ(0), H(0)S). (11.8)
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We will now express the total work in the optimal protocol of the strong coupling case as
corrections to this weak coupling limit. The result (see section 14.8.1) is

W(ρ(0)S, H(0)S) = W1 + W2 + W3 (11.9)

= W(weak)(ρ(0), H(0)S)− ∆F(irrev)(H(1)
S )− ∆F(res)(H( f )

S ),
(11.10)

with the correction terms

∆F(irrev)(H(1)
S ) =

1
β

D
(

ρ(0)⊗ωβ(HB)‖ωβ(H(1)
S + V + HB)

)
, (11.11)

∆F(res)(H( f )
S ) =

1
β

D
(

ωβ(H( f )
S + V + HB)‖ωβ(H(0)S)⊗ωβ(HB)

)
. (11.12)

Since both terms are expressed as relative entropies, it is clear that they are positive. The
optimal work that can be extracted from the initial state is then given by optimizing the
Hamiltonians H(1)

S and H( f )
S . Further below, we will derive the exact conditions that char-

acterize the solutions of this minimization problem. We will also provide the exact solu-
tions to second order in the coupling strength. Before we come to that, however, let us first
discuss the two penalty terms heuristically.

The first penalty term, given by ∆F(irrev), describes the dissipation that occurs when
the system is coupled to to the bath and compares the state after equilibration with the state
before equilibration. Due to the interaction, there is an unavoidable build-up of correlations,
which are not present in the initial state. Hence, in general this term cannot be made zero
for any finite interaction. In the weak coupling limit, on the other hand, the term can be
made vanishingly small by choosing H(1)

S as the modular Hamiltonian Hβ

ρ(0) (cf. section 5).

The second penalty term, given by ∆F(res), can be interpreted as the residual free energy
with respect to the initial, uncoupled Hamiltonian that is left at the end of the isothermal
protocol. This free energy could in principle be extracted, if the Hamiltonian could be
quenched globally instead of only on the system. Again, in the weak-coupling limit this
term becomes arbitrarily small by taking H( f )

S = H(0)S.
Observe that the above discussion already shows that, if we treat the interaction as a

perturbation, all corrections to the weak coupling bound vanish to first order in the interac-
tion strength. Since the relative entropy vanishes if and only if the two arguments coincide,
we can also expect already that corrections to first order in the coupling strength vanish as
well. We will later verify these statements explicitly. Let us now discuss general properties
of the correction terms.

11.1.1 General properties of the correction terms

The correction terms formally depend on the whole state and Hamiltonian of the system
and bath together. In principle, they could therefore scale extensively with the size of the
bath, as is typically the case for non-equilibrium free energies. The first result that we will
discuss shows that this is not the case.

Lemma 11.1 (Scaling of corrections). For any ρ(0) > 0, H(0)S, V and HB the correction
terms fulfill

∆F(res)(H( f )
S ) ≤ 2

(
‖V‖+

∥∥∥H(0)S − H( f )
S

∥∥∥) , (11.13)

∆F(irrev)(H(1)
S ) ≤ 2

(
‖V‖+

∥∥∥H(1)
S − Hβ

ρ(0)

∥∥∥) . (11.14)

Proof. For any two Hamiltonians A, B, we have

1
β

D(ωβ(A)‖ωβ(B)) = Tr
(
(A− B)(ωβ(B)−ωβ(A))

)
− 1

β
D(ωβ(B)‖ωβ(A))

≤ 2 ‖A− B‖ , (11.15)
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where the last inequality follows from the positivity of the relative entropy, the triangle
inequality and the definition of the operator norm. The claim then follows by inserting the
corresponding Hamiltonians and interpreting ρ(0) as thermal state of the modular Hamil-
tonian Hβ

ρ(0).

In particular, the lemma shows that the optimal corrections fulfill

∆F(res)
min := min

H( f )
S

∆F(res)(H( f )
S ) ≤ 2 ‖V‖ , (11.16)

∆F(irrev)
min := min

H(1)
S

∆F(irrev)(H(1)
S ) ≤ 2 ‖V‖ . (11.17)

These relations show that the strong coupling corrections are indeed negligible in the
macroscopic limit if the interaction between two macroscopic bodies is given by a local
interaction, since in such a case the norm of the interaction ‖V‖ only scales like the con-
tact area between the two bodies. The weak coupling work W(weak), on the other hand,
generally scales like the volume of the system S and hence dominates.

All of the above could be deduced without knowing the exact Hamiltonians that min-
imize the correction terms. We will now derive conditions on the optimal Hamiltonians,
which will be instrumental for determining the perturbative expansion of the correction
terms.

Lemma 11.2 (Minimizing dissipation). Let ρ(0) have full support. Then any Hamiltonian
XS that minimizes ∆F(irrev) has to fulfill

ρ(0) = TrB
(
ωβ(XS + V + HB)

)
. (11.18)

Proof. Since we consider arbitrary large, but finite systems, ∆F(irrev)(H(1)
S ) is a smooth,

positive function of H(1)
S . Let one minimum be attained by XS and consider the Hamilto-

nians

XS(t) := XS + tYS, X(t) = XS(t) + V + HB, (11.19)

where YS is an arbitrary perturbation. Then we have

d∆F(irrev)(X(t))
dt

∣∣∣∣∣
t=0

= 0. (11.20)

Calculating the derivative yields

d∆F(irrev)(X(t))
dt

∣∣∣∣∣
t=0

= Tr
((

ρ(0)⊗ωβ(HB)−ωβ(X(0))
)

YS ⊗ 1
)

= Tr
((

ρ(0)− TrB(ωβ(XS + V + HB))
)

YS
)
= 0. (11.21)

Since this relation has to fold for arbitrary YS, the claim follows.

The lemma can easily be interpreted. It tells us that to optimize the dissipation in the
protocol, we have to do the first quench in such a way that the initial state can be interpreted
as the marginal of the corresponding interacting Hamiltonian. Even though this minimizes
the dissipation, the dissipation does not vanish, but is given by

∆F(irrev)
min =

1
β

D
(
TrB(ωβ(X(0)))⊗ωβ(HB)‖ωβ(X(0))

)
. (11.22)

This quantity vanishes only if ωβ(X(0)) is a product-state and hence non-interacting. It
can thus be seen as a measure of the correlations which are induced by interaction between
S and B. It is, however, not a standard-measure of correlations, even though it might easily
be confused with the mutual information

I(S : B)ωβ(X(0)) = D (ω(X(0))‖ω(X(0))S ⊗ω(X(0))B) . (11.23)
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There are two important differences: First, the order of the arguments in the relative entropy
is reversed, somewhat similar in how the "vacancy" in chapter 3 behaves in comparison to
the non-equilibrium free energy. Second, the first argument in (11.22) is not given by the
product of the marginals of ωβ(X(0)) in contrast to the mutual information.

Similar to the condition on the optimal Hamiltonian to minimize dissipation, we can
also derive a condition on the Hamiltonian H( f )

S that minimizes the residual free energy.
This condition is stated in the following Lemma. Its proof is technically more demanding
and therefore given in section 14.8.2. To state the result, we define the following function
on arbitrary Hermitian operators Y, X:

YX :=
∫ 1

0
e−βτXYeβτXdτ. (11.24)

YX can be interpreted as the operator Y averaged over the imaginary-time evolution under
the operator X.

Lemma 11.3 (Minimizing residual free energy). Let RS be a Hamiltonian that minimizes
the residual free energy ∆F(res)

(
H( f )

S

)
and define R = RS + V + HB. Then R has to

fulfill

TrB
(
ωβ(R)

)
=

TrB
(
ωβ(R) (RS + V − H(0)S)−R

)
Tr
(
ωβ(R)(RS + V − H(0)S)

) . (11.25)

In particular, we find that for V = 0 we can choose RS = H(0)S as expected. Unfortu-
nately, in general and for finite V, the optimal choice RS is much more difficult to interpret
than the corresponding XS minimizing the dissipation. Let us therefore now consider the
perturbative expansion of the correction terms in powers of the coupling strength, which
will yield a clearer interpretation.

11.1.2 Perturbative expansion of correction terms

Since the general expression for the strong coupling corrections are somewhat complicated,
we will now consider their expansion in terms of the coupling strength. We will therefore
replace V with gV and calculate the correction terms to leading order in g. The optimal
Hamiltonians that minimizes the two dissipation terms will of course depend on the cou-
pling strength g. We will denote them by X(g) and R(g), respectively. In particular, we
already know that

X(0) = Hβ

ρ(0) + HB (11.26)

R(0) = H(0)S + HB. (11.27)

Using these results, we can express the dissipation terms as a function of g as

∆F(irrev)(g) =
1
β

D
(
ωβ(X(0))‖ωβ(X(g))

)
, (11.28)

∆F(res)(g) =
1
β

D
(
ωβ(R(g))‖ωβ(R(0))

)
. (11.29)

Unfortunately, the relative entropy is not a symmetric function of its two arguments. There-
fore, in general the two terms show a different behaviour as a function of g. It turns out,
however, that to leading order in g, this is not the case.

This is shown by the following lemma. Since the proof consists of key calculations
which will be used later, we present it here in full generality.

Lemma 11.4 (Perturbative symmetry of relative entropy). Let H(t) be smooth one-parameter
family of Hamiltonians and define

∆(t) := D
(
ωβ(H(t))‖ωβ(H(0))

)
− D

(
ωβ(H(0))‖ωβ(H(t))

)
. (11.30)

Then for small t, ∆(t) = O(t3).
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To prove the result, we will make use of the Duhamel’s formula for the derivative of an
exponential. If H(t) is a smooth, operator-valued function, then

d
dt

e−βH(t) = −β
∫ 1

0
e−βsH(t)H′(t)e−β(1−s)H(t)ds. (11.31)

Here, and in the following we use the notation f ′(t) to denote the derivative of a function
f (t).

Proof. Let us define the partition function Zt := Tr(e−βHt) and introduce the short-hand
ωβ(t)ωβ(H(t)) for the proof. Using (11.31), we obtain log(Zt)′ = −βTr(ωβ(t)H′(t)).
We can then calculate the derivative of D(ωβ(0)‖ωβ(t)) as

D(ωβ(0)‖ωβ(t))′ = −Tr
(
ωβ(0) log(ωβ(t))′

)
= βTr

(
ωβ(0)H′(t)

)
+ log(Zt)

′

= βTr
(
(ωβ(0)−ωβ(t))H′(t)

)
. (11.32)

To compute the derivative of D(ωβ(t)‖ωβ(0)), let us first compute the derivative of the
entropy of ωβ(t):

S(ωβ(t))′ = −Tr
(
ωβ(t) log(ωβ(t))′

)
− Tr

(
ω′β(t) log(ωβ(t))

)
= βTr

(
ωβ(t)H′(t)

)
+ log(Zt)

′ − Tr
(

ω′β(t) log(ωβ(t))′
)

= −Tr
(

ω′β(t) log(ωβ(t))
)

. (11.33)

We then obtain for the derivative of the relative entropy:

D(ωβ(t)‖ωβ(0))′ = −S(ωβ(t))′ − Tr
(
ωβ(t) log(ωβ(0))

)′ (11.34)

= −Tr
(

ω′β(t)
(
log(ωβ(0))− log(ωβ(t))

))
(11.35)

= βTr
(

ω′β(t)(H(0)− H(t))
)

, (11.36)

and for the first derivative of ∆(t):

∆′(t) = β
[
Tr
(
(ωβ(0)−ωβ(t))H′(t)

)
− Tr

(
ω′β(t)(H(0)− H(t))

)]
. (11.37)

From this expression we can easily compute the second derivative as

∆′′(t) = β
[
Tr
(
(ωβ(0)−ωβ(t))′H′(t)

)
+ Tr

(
(ωβ(0)−ωβ(t))H′(t)

)]
− β

[
Tr
(

ω′′β(t)(H(0)− H(t))
)
+ Tr

(
ω′β(t)(H(0)− H(t))′

)]
= β

[
Tr
(
(ωβ(0)−ωβ(t))H′(t)

)
− Tr

(
ω′′β(t)(H(0)− H(t))

)]
. (11.38)

In particular, we get ∆′(0) = 0 and ∆′′(0) = 0, which proves the claim.

The Lemma shows that if we are interested in corrections up to second order in g, it
essentially suffices to calculate one of the two expansions, since the functional form of the
two is identical. We will therefore now calculate the perturbative expansion of ∆F(irrev)(g)
to second order in g.

From the calculation in the proof of the Lemma, we find

∆F(irrev) ′(g) = Tr
((

ωβ(X(0))−ωβ(X(g))
)

X′(g)
)

.

Consequently, the second derivative is given by

∆F(irrev) ′′(g) = −Tr
(
ωβ(X(g))′X′(g)

)
+ Tr

((
ωβ(X(0))−ωβ(X(g))

)
X′(g)

)
.
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In particular, at g = 0 we find

∆F(irrev) ′(0) = 0,

∆F(irrev) ′′(0) = −Tr

(
dωβ(X(g))

dg

∣∣∣∣
g=0

(X′S(0) + V)

)
,

where we have used that X′(g) = X′S(g) + V. Importantly, this second order correction
only depends on the first order corrections to the optimal Hamiltonian. We can now use
(11.31) to obtain

∆F(irrev) ′′(0) = β covωβ(X(0))
(
X′(0), X′(0)

)
, (11.39)

where we have introduced the generalized covariance [206], which for any state ρ and
observables A, B is given by

covρ(A, B) :=
∫ 1

0
Tr
(

ρs Aρ(1−s)B
)

ds− Tr(ρA)Tr(ρB). (11.40)

What is left to do is to determine the first order-correction X′(0) as prescribed by Lemma 11.2.
Using again (11.31) and the fact that ωβ(X(0)) = ωβ(XS(0))⊗ ωβ(HB), we find that
TrB(ωβ(X(g))) is given to first order by

TrB
(
ωβ(X(g))

)
= ωβ(XS(0))

− βg
[
TrB

(
(X′(0))X(0)ωβ(X(0))

)
− Tr

(
(X′(0))ωβ(X(0))

)
ωβ(XS(0))

]
.

Since X(0) = XS(0) + HB, the zero-order solution is given by XS(0) = Hβ

ρ(0) as we

expect. We thus now set XS(g) = Hβ

ρ(0) + gXS and determine XS. The condition in
Lemma 11.2 is satisfied to first order if and only if the first order term in the above equation
vanishes. Since X′(0) = XS + V, we can re-write this condition as

TrB

(
(XS + V)X(0)ωβ (X(0))

)
= Tr

(
(XS + V)ωβ (X(0))

)
ωβ

(
Hβ

ρ(0)

)
. (11.41)

Since XS is supported only on S and X(0) = Hβ

ρ(0) + HB, we can re-write this equation as

(XS)Hβ
ρ(0)
− Tr

(
XSωβ

(
Hβ

ρ(0)

))
1 = −

(
(VS)Hβ

ρ(0)
− Tr

(
VSωβ

(
Hβ

ρ(0)

))
1
)

,

where we defined the operator VS := TrB(Vωβ(X(0)). Introducing the linear operator

L(XS) := (XS)Hβ
ρ(0)
− Tr

(
XSωβ

(
Hβ

ρ(0)

))
1, (11.42)

we then find that any solution XS of the linear equation L(XS) = −L(VS) provides a first-
order solution to the condition in Lemma 11.2. We can thus conclude that Lemma 11.2 is
satisfied up to first order by choosing

X(g) = Hβ

ρ(0) + gV − gTrB
(
ωβ(HB)V

)
+ HB := Hβ

ρ(0) + gṼ + HB, (11.43)

where we have introduced the renormalized interaction

Ṽ = V −VS = V − TrB(ωβ(HB)V). (11.44)

Plugging this solution back into the second order correction of the dissipation, we finally
obtain

∆F(irrev)(g) =
βg2

2
cov

ωβ(Hβ
ρ(0)+HB)

(
Ṽ, Ṽ

)
. (11.45)
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The solution is unique up to additive terms which fulfill L(YS) = 0. This implies

(YS)Hβ
ρ(0)

= Tr(ωβ(Hβ

ρ(0))Y)1

and due to the explicit form of the generalized covariance such terms do not affect the value
of the correction.

We can proceed similarly with the residual free energy ∆F(irrev)(g). Due to Lemma 11.4,
we again obtain

∆F(res)(g) =
βg2

2
covωβ(R(0))

(
R′(0), R′(0)

)
. (11.46)

Remembering the form of R(0), similar calculations as above show that the condition for
a solution at first order in g is now given by L̃(RS) = L̃(VS), with

L̃(RS) := (RS)H(0)S
− Tr

(
RSωβ (H(0)S)

)
1. (11.47)

Hence, the choice RS(g) = H(0)S− gTrB(ωβ(HB)V) solves the equation in Lemma 11.3
to first order in g. We then obtain

∆F(res)(g) =
βg2

2
covωβ(H(0)S+HB)

(
Ṽ, Ṽ

)
. (11.48)

The solution is again unique up to terms which fulfill (YS)H(0)S
∝ 1, which do not affect

the correction.
We conclude that both corrections have the same form, the only difference being the

state with respect to which the generalized covariance is evaluated. In both cases, the states
are given by the optimal weak-coupling choices. Let us summarize these results.

Result 11.5 (Perturbative corrections). To leading order in the coupling strength g, the per-
turbative corrections in the optimal work-extraction protocol from a system (ρ(0), H(0)S),
which can be coupled via the interaction gV to with Hamiltonian HB at inverse tempera-
ture β, are given by

∆F(irrev)(g) =
βg2

2
cov

ωβ(Hβ
ρ(0)+HB)

(
Ṽ, Ṽ

)
+ O(g3), (11.49)

∆F(res)(g) =
βg2

2
covωβ(H(0)S+HB)

(
Ṽ, Ṽ

)
+ O(g3). (11.50)

11.1.3 Interpretation of perturbative corrections

In the context of linear response theory, the generalized covariance is also known as the
Kubo-Mori inner product [271–273] or Bogoliubov inner product [274]. Indeed as these
names suggests, it is an inner product in the proper sense. Therefore the two correction
terms are indeed positive also to leading order in the perturbative expansion. The connec-
tion to linear response theory also allows us to give physical interpretation to the correction
terms. Indeed, the generalized covariances above are the isothermal static admittance to
leading order in g and hence measure the difference of the expectation value of Ṽ in the
Hamiltonians X(g) and X(0) to first order in g (and similarly for R(g)). For example we
have

Tr
((

ωβ(X(g))−ωβ(X(0))
)

gṼ
)
= g2covωβ(X(0))(Ṽ, Ṽ) + O(g3). (11.51)

to leading order in g. Thus, the dissipation terms can be understood to simply measure
the part of the work that is required to turn on or off the renormalized interaction which is
dissipated into the environment – measured in units of the bath’s temperature.
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11.1.4 Heat

So far we have determined the strong-coupling corrections to the extracted work in an
optimal protocol. Below we want to apply these results to the case of a thermal machine
operating between two heat baths and find general corrections to the efficiency. As a pre-
requisite for this, let us now calculate that heat in an optimal work-extraction protocol. We
can define the heat using energy-conservation whenever a quench on the system happens
while the system is coupled to a heat bath. In a quench from H(j)

S to H(j+1)
S , the heat that

flows from the bath into the system is then simply given by the change of energy on the
system due to the equilibration process under the new Hamiltonian H(j+1).

Q(j→ j + 1) = Tr
((

ωβ(H(j+1))− ρ(j)
)

H(j+1)
S

)
. (11.52)

This quantity does in general not vanish since the local energy of S is not conserved in the
equilibration process if the interaction between S and B is chosen such that it actually leads
to equilibration and thermalization.

In the optimal work-extraction protocol, heat flow only occurs after the first coupling
to the heat bath and during the isothermal part of the protocol. We therefore only need to
track the heat until the interaction is turned after the isothermal reversible process. The
final Hamiltonian of the relevant process is then given by H( f ) = H( f )

S + HB. In the

optimal protocol, the Hamiltonian H( f )
S is given by R(g)S in the notation from the previous

section. The process to consider therefore now starts in the non-interacting Hamiltonian
H(0)S + HB and ends in the non-interacting Hamiltonian H( f )

S + HB.
The total absorbed heat can then be calculated from energy-conservation as

Q = W − ∆ES, (11.53)

where ∆ES is the change of energy on the system. The work in this part of the protocol is
given by

W = Fβ

(
ρ(0)⊗ωβ(HB), H(0)S + HB

)
− Fβ

(
ωβ(H( f )

S + V + HB), H( f )
S + V + HB

)
− ∆F(irrev) + Tr

(
ωβ(H( f )

S + V + HB)V
)

= Fβ(ρ(0)⊗ωβ(HB), H(0)S + HB)− Fβ

(
ωβ(H( f )

S + V + HB), H( f )
S + HB

)
− ∆F(irrev)

= ∆ES + ∆EB − T
(

S(ρ(0)) + S(ωβ(HB))− S(ωβ(H( f )
S + V + HB))

)
− ∆F(irrev),

where the change of energy on the system is given by

∆ES = Tr (ρ(0)H(0)S)− Tr
(

ωβ(H( f )
S + V + HB)H( f )

S

)
. (11.54)

Introducing the mutual information in the final state of the isothermal process and free
energies on the bath, a small calculation shows that we can then write the total absorbed
heat as

Q = T∆SS − ∆Fβ(ω
( f )
B , HB)− TI(S : B)

ωβ(H( f )
S +V+HB)

− ∆F(irrev), (11.55)

with ω
( f )
B/S = TrB/S

(
ωβ(H( f )

S + V + HB)
)

the final state on the bath and system at the
end of the isothermal process, respectively, and

∆SS = S (ρ(0))− S
(

ω
( f )
S

)
(11.56)

the change of entropy on the system.
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The result (11.55) can easily be interpreted. First, we have the customary term T∆SS
which relates the heat to the change of entropy on the system. However, the final entropy
is not calculated from the Gibbs-state of the local Hamiltonian H( f )

S but from the reduced
state of the global, interacting Hamiltonian. Apart from the first term, we have three cor-
rection terms:

1. The term ∆Fβ(ω
( f )
B , HB) measures how far the final state of the bath is out of equilib-

rium with respect to its initial equilibrium state.

2. The term I(S : B)
ωβ(H( f )

S +V+HB)
measures the amount of correlations that have been

build up in the isothermal process.

3. The term ∆F(irrev is the same as in the expression for work and measures the amount of
dissipation when the system is brought in contact with the bath.

Let us briefly discuss the general properties of the correction terms. First, all the correction
terms are positive since they are proportional to relative entropies. Since all the correction
terms are positive, the heat fulfills the Clausius inequality

Q ≤ T∆SS. (11.57)

Second, the correction terms are all bounded by 2 ‖V‖ and hence are negligible in the
macroscopic limit (cf. section 11.1.1): The two free energy terms can be bounded by 2 ‖V‖
by the same techniques as the correction terms for the work. The mutual information can
bounded by 2 ‖V‖ using the following general result about area laws in Gibbs states.

Lemma 11.6 (Area Law in Gibbs states[275, 276]). Consider a bipartite system SB with
Hamiltonian H = HS + HB + V, with local Hamiltonians HS and HB and interaction V.
Then

I(S : B)ωβ(HS+V+HB
≤ 2 ‖V‖ . (11.58)

Proof. This follows from the extremality of Gibbs-states, by considering the "reversed"
mutual information:

0 ≤ D
(
ωβ(H)S ⊗ωβ(H)B‖ωβ(H)

)
= −SS − SB − Tr

(
ωβ(H)S ⊗ωβ(H)B log(ωβ(H))

)
= −SS − SB + β

(
Tr(ωβ(H)S ⊗ωβ(H)BH

)
+ log(Zβ(H))

= −I(S : B)ωβ(H) + βTr
((

ωβ(H)S ⊗ωβ(H)B −ωβ(H)
)

V
)

,

where the last line follows by explicit calculation of the mutual information. The triangle
inequality then yields the claim.

Finally, all the correction terms vanish exactly in the weak coupling limit. Since they
are all smooth functions if we consider finite dimensional systems, we can already deduce
that they are of second order in the coupling strength.

We will now use these results on work extraction and the absorbed heat to derive bounds
on the efficiencies of cyclically running thermal machines in the weak coupling regime.

11.2 Efficiency: Thermal machines in the strong coupling regime

We will now derive general bounds on the efficiency of a thermal machine running between
two heat baths at inverse temperatures βc and βh. We will make the following two assump-
tions: i) the system can only brought in contact with one of the baths at a given point in
time and ii) while the system is in contact with one bath, it looses all correlations with the
second bath. The first assumption is simply for technical convenience. We could simulate a
situation where a system is in contact with both baths at once by iterating between the two
baths in many small steps. The second assumption can be justified by noting that in a given
step the system only becomes correlated with a small part of the bath. In the time when the
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system interacts with the other bath, these correlations get distributed throughout the first
bath if it is sufficiently interacting. Since we anyway assume that the bath is interacting,
equilibrating and thermalizing, we therefore do not make a strong additional assumption.

As in the case of chapter 9, where we considered restrictions on the possible Hamilto-
nians in the weak coupling regime, optimal protocols for such machines consists of four
steps:

1. An isothermal process in contact with the hot bath,

2. an adiabatic quench while disconnected from the bath,

3. an isothermal process in contact with the cold bath,

4. an adiabatic quench back to the initial Hamiltonian.

Such protocols optimize the efficiency since they minimize the number of dissipation events
by only coupling and decoupling with each bath once. A formal proof of this statement can
be done using the same arguments as for the case in chapter 9 (see section 14.6.6).

Let us now calculate the efficiency of such protocols. To that, let us assume that our
protocol starts after we have decoupled from the cold bath and denote the final Hamiltonian
on S at the end of the isothermal with the cold bath as H( f ),c

S . We will call the corresponding

initial Hamiltonian H(i),c
S and similarly for the hot bath (H(i/ f ),h

S ). In the following we will
also denote the Hamiltonians and interaction terms of the two baths by Hh/c

B and Vh/c,
respectively. Note that once Hh/c

B and Vh/c are fixed, the efficiency in the optimal protocol

is fixed as a function of the Hamiltonians H( f ),h/c
S . For notational simplicity, let us use the

notation

H( f /i),c/h
SB = H(i/ f ),c/h

S + gVc/h + Hc/h
B (11.59)

in the following.
The total cycle of the thermal machine can be decomposed into two parts, each of which

has the form considered in the previous section: A first part using the hot bath, with initial
Hamiltonian H( f ),c

S and final Hamiltonian H( f ),h
S . The initial state of this part is given by

ρ
(c)
S = TrB

(
ωβc(H( f ),c

SB )
)

. (11.60)

After this part, we have a second part using the cold bath back to Hamiltonian H( f ),c
S with

initial Hamiltonian H( f ),h
S and initial state

ρ
(h)
S = TrB

(
ωβh(H( f ),h

SB )
)

. (11.61)

In the first part, a positive amount of heat Qh is absorbed from the hot bath and in the
second part the heat Qc is exchanged with the cold bath. From energy-conservation we
obtain that the efficiency is given by

η =
W
Qh

=
Qh + Qc

Qh
= 1 +

Qc

Qh
.

Using (11.55), the quantities Qc and Qh are given by

Qh = Th∆S− ∆Fβh(ω
( f ),h
B , Hh

B)− Th I(S : B)
ωβh

(H( f ),h
SB )
− ∆F(irrev),h,

Qc = −Tc∆S− ∆Fβc(ω
( f ),c
B , Hc

B)− Tc I(S : B)
ωβc (H( f ),c

SB )
− ∆F(irrev),c,

with

∆S = S(ρ(c)S )− S(ρ(h)S ) (11.62)
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and

ω
( f ),c/h
S/B = TrB/S

(
ωβc/h(H( f ),c/h

SB )
)

. (11.63)

From the formulas, it is obvious that a positive amount of heat Qh implies ∆S ≥ 0 and
Qc < 0 (and vice versa). Putting all the formulas together, we obtain the following result
for the efficiency.

Result 11.7 (Efficiency in the strong coupling regime). Given bath Hamiltonians Hc/h
B

and interactions Vc/h, respectively, the optimal efficiency is given by

η
(

H( f ),h
S , H( f ),c

S

)
= 1− Tc∆S + Cc

Th∆S− Ch
≤ 1− Tc

Th
. (11.64)

The positive semi-definite correction terms Cc,h are given by:

Cc/h = ∆Fβc/h

(
TrS

(
ωβc/h(H( f ),c/h

SB )
)

, H( f ),c/h
SB )

)
+ Tc/h I(S : B)

ωβc/h

(
H( f ),c/h

SB

)
+ min

H(i),c/h
S

∆F
(

ωβc/h

(
H( f ),h/c

S + HB

)
, H(i),c/h

SB

)
, (11.65)

and the change of entropy by

∆S = S
(

ω
( f ),c
S

)
− S

(
ω
( f ),h
S

)
.

We have arrived at the full, non-perturbative expression for the efficiency of an optimal
thermal machine operating between the given set of Hamiltonians and temperatures. Simi-
larly to the work-extraction setting, let us briefly discuss its behaviour in dependence of the
coupling strength g.

11.2.1 Dependence of efficiency on coupling strength

To discuss the dependence of the efficiency in (11.64), let us assume that the machine
extracts a finite amount of work per cycle, so that ∆S > 0. We can then re-write the
efficiency as

η(g) = 1− Tc

Th

1 + xc(g)
1− xh(g)

, (11.66)

with xc/h(g) = Cc/h(g)/(Tc/h∆S(g)), where we have already inserted the explicit g-
dependence of all the quantities. In particular, the change of entropy ∆S depends on the
coupling strength. In the limit of g→ 0, it is given by

∆S(weak) = S
(

ωβc(H( f ),c
S )

)
− S

(
ωβh(H( f ),h

S )
)

, (11.67)

as expected from the weakly coupled engines in chapter 9. For small but finite g, we can
expand ∆S as

∆S(g) = ∆S(weak) + K(1)g + K(2)g2 + O(g3). (11.68)

We have already remarked in section 11.1.4 that the correction terms Cc/h are of order g2,

Cc/h(g) =
1
2

C(2)
c/hg2 + O(g3). (11.69)

In particular, C(2)
c/h can be lower bounded by the contribution stemming from the dissipation

term ∆F(irrev), which we explicitly calculated in section 11.1.2. Since Cc/h(g) are of
second order in g with Cc/h(0) = 0, the first derivative of xc/h(g) at g = 0 vanishes.
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Therefore, the corrections xc/h(g) are also of second order with xc/h(0) = 0. We then
obtain

1 + xc(g)
1− xh(g)

= 1 +
1
2
(x′′c (0) + x′′h (0))g2 + O(g3)

= 1 +
1
2

(
C(2)

c

Q(weak)
c

+
C(2)

h

Q(weak)
h

)
g2 + O(g3), (11.70)

where Q(weak)
c/h = Tc/h|∆S(weak)| is absolute value of the heat exchanged with the respec-

tive bath in the weak-coupling limit. It is somewhat surprising that the corrections do not
depend on the first-order correction K(1) on the change of entropy on the system. This
has the advantage that, to leading order in the coupling strength, the correction terms can
be minimized almost independently of the term ∆S as long as one ensures that this term
remains positive and finite.

To summarize, we have derived that the Carnot-efficiency remains as the theoretical op-
timal efficiency of any thermal machine, even in the strong coupling regime. For machines
that are coupled to the bath with a finite, but small coupling strength, the corrections to the
Carnot efficiency are of second order in g and we can explicitly calculate a lower bound to
these corrections using the results in section 11.1.2.

11.3 Power

We have seen that a finite coupling strength is detrimental to work-extraction for any ther-
mal machine, because it leads to dissipation and hence irreversibility. Nevertheless, a finite
coupling strength is of course necessary for any thermal machine since the thermal machine
has to be able to thermalize with a heat bath to be able to act as a thermal machine at all.
For practical purposes, one is furthermore often not so much interested in the efficiency of
a thermal machine, but in the power P of the machine, which we can define as the ratio
of the extracted work per cycle W(cycle) divided by the time t(cycle) that it takes to run the
machine for one cycle. Both quantities depend on g in a non-trivial way. Nevertheless, the
optimal power is achieved for some finite value of g. First, the cycle-time t(cycle) has to
scale at least like 1/g since the maximal rate of energy-exchange of the system with the
baths is proportional to g. In particular, as g→ 0, the cycle-time has to diverge. Therefore

P(g)→ 0, as g→ 0. (11.71)

Secondly, in the limit g→ ∞, we can argue that the extracted work becomes at most zero.
To see this, consider the correction term ∆F(irrev), given by

∆F(irrev)(g) = sup
H(1)

S

1
β

D
(

ρ(0)⊗ωβ(HB)‖ωβ(H(1)
S + gV + HB

)
. (11.72)

Let P denote the (projector onto the) ground state subspace of the interaction V. Then in
the limit g→ ∞ we have

lim
g→∞

ωβ(H(1)
S + gV + HB) = ωβ((H(1)

S + HB)P)⊗ 0, (11.73)

where (H(1)
S + HB)P denotes the restriction of H(1)

S + HB onto P and the direct sum is
over P and its complement. Therefore, the support of ρ(0)⊗ ωβ(HB) is not contained in

the support of limg ωβ(H(1)
S + gV + HB). But as we have seen in chapters 2 and 3, the

relative entropy diverges in this case. Therefore, the dissipation ∆F(irrev)(g) diverges as
well as g → ∞ and hence the optimal work per cycle goes to zero. Hence the power goes
to zero as well:

P(g)→ 0, as g→ ±∞. (11.74)
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Since we expect that finite power can be achieved for some value of g, we conclude that
there is some optimal value of g which maximizes power. It should be clear, however,
that we cannot expect to derive the general form P(g) without specific assumptions on the
systems involved, since this would require solving the problem of equilibration time-scales
first (see chapter 7).

We can, however, give a heuristic discussion for the behaviour for small g. First, since
the cycle time is at least of the order 1/g (this will be re-fined below) and the work is of
the form W(0)− Kg2, we find that the power fulfills

P(g) ≤ α|g| −O(g3), (11.75)

for some non-universal constant α ≥ 0. We can refine this bound by observing that the
dominant contribution to the cycle-time has to come from the equilibration process after
each quench. There is a simple heuristic argument, which suggests that the equilibration
time should scale as g2 instead of g from the point of view of perturbation theory: If the
bath is large and its spectral density sufficiently smooth, there are many more second-
order processes that can contribute to the transfer of energy from the system to the bath
than there are first order processes, since these have to be resonant. For example, for a
bath of harmonic oscillators, a process that changes the energy of the system by some
amount has to couple resonantly to a single oscillator of the bath with the corresponding
eigenfrequency. On the other hand, at second order two oscillators of the bath can be
combined to exchange the same amount of energy with the system if their frequencies add
up correspondingly. Hence, we can expect that processes which are at least of second order
in g dominate the equilibration process and lead to an equilibration time that scales as
1/g2. This is consistent with the second-order expansion that one employs in the theory
of open systems to derive Markovian, equilibrating system dynamics in the weak-coupling
regime [81]. The assumption that the equilibration time scales as 1/g2 would lead to an
expansion of the power of the form

P(g) ∼ α|g|2 −O(g3). (11.76)

We will now present an example which shows exactly this behaviour.

11.4 Example: Quantum Brownian Motion

Let us finally discuss a simple example to illustrate our findings. We will consider Quan-
tum Brownian Motion in the Caldeira-Leggett- or Ullersma-model [64, 65]. It consists of
a single central harmonic oscillator which is linearly coupled to a bath of n harmonic os-
cillators. The spectral density of the bath is assumed to be Ohmic with some cut-off ωmax.
The total Hamiltonian takes the form

H(0) = H(0)S + gV(g) + HB + HL, (11.77)

with

H(0)S =
1
2

mω2x2 +
p2

2m
, (11.78)

HB = ∑
k

1
2

mkω2
k x2

k +
p2

k
2mk

, (11.79)

V(g) = x ∑
k

gkxk + HL, (11.80)

HL = gx2 ∑
k

g2
k

mkω2
k

, (11.81)

where the Lamb-shift HL renormalizes the system’s oscillator frequency in presence of
the interactions to the bath. It ensures that the Hamiltonian remains bounded from below
and that the system thermalizes to the Hamiltonian H(0)S in the Markovian dynamics that



A QUANTUM OF THERMODYNAMICS 149

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

g

Work

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g

Power ×104

Figure 11.1: Left figure: The extracted work is plotted versus interaction strength g. The blue dots show the exact extracted work by computing
the unitary evolution of SB for a protocol which becomes optimal in the weak coupling regime. The solid, light blue line shows the corresponding
predictions using our framework. The dashed blue line shows the maximum extractable work as a function of g. The dashed grey line shows the
maximum extractable work in the weak coupling limit W(weak). Parameters are given by ω = 1, mk = m = 1, ωmax = 1.2 and β = 3.5, βS = 1.
The bath consists of n = 165 oscillators. The protocol consists of 200 quenches, with a waiting time 10/g2 when computing the unitary dynamics.
For values of g smaller than the ones shown larger bath sizes are required for proper thermalization of the system and lead to larger errors for the
bath considered here. Right figure: Plot of power versus interaction strength. The blue dots again show the exact results obtained from unitary
evolution and the solid, light blue line the effective description using our framework. The parameters are the same as in the left figure.

results from taking the limit of weak interactions if the bath is thermal. The ohmic spectral
density means that the frequencies ωk and couplings gk take the values

ωk =
k
n

ωmax, gk = ωk

√
2ωmax

πn
. (11.82)

This choice ensures that the spectral density

J(ω) :=
2
π ∑

k

g2
k

ωk
δ(ω−ωk) (11.83)

approaches a linear function J(ω) ∝ ω with cut-off ωmax in the continuum limit N → ∞.
This model is an important in the field of open quantum systems [277], in particular because
it is both exactly solvable and efficiently simulable on a computer, because it is quadratic
in the bosonic annihilation and creation operators (see, e.g., Refs. [278, 279]). Therefore it
is also a good test-bed in quantum thermodynamics and has found numerous applications
there-in (see, e.g., Refs. [256, 258, 261, 267, 269, 270, 280–282]).

Importantly, this model is known to have the property that the state on S equilibrates to
the reduced state of the thermal state of the full system in the limit of large baths indepen-
dently of the coupling strength and hence fulfills our basic assumption of thermalization
after a single quench [283, 284]. Note however, that this does not automatically imply
that the effective description in terms of iterated Gibbs-states is valid. Furthermore, the
interaction is not of the form gV, due to the presence of the Lamb-shift. It formally hence
does not fit our framework developed in the previous sections. It can easily be seen from
the derivations, however, that to leading order in g, this latter discrepancy does not make
a difference. In particular, to leading order the optimal Hamiltonian local Hamiltonians in
work-extraction protocols are again determined by the renormalized interaction Ṽ, which
is now given by

Ṽ = x ∑
k

gkxk − xTr

(
ωβ(HB)∑

k
gkxk

)
= x ∑

k
gkxk, (11.84)

which follows from the reflection-symmetry of the harmonic-oscillator. This result implies
that, to leading order in g, the optimal work-extraction protocols are identical to the weak-
coupling protocols.

Let us now discuss work-extraction protocols in the Caldeira-Leggett model. We assume
an initial state ωβS(HS)⊗ωβ(HB) with βS 6= β. In the weak coupling limit, the optimal
work-extraction protocol first quenches the central oscillator by setting ω 7→ β/βS ω and
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m 7→ βS/β m. Note that often harmonic oscillators appear as effective desciptions in
which the parameter m does not correspond to the actual, physical mass of some particle
and can be modified. Not being able to change the parameter m will naturally result in
protocols that are not optimal. This first quench is then followed by an isothermal process
back to the initial Hamiltonian. This is nicely illustrated in Fig. 11.1, where we calculated
numerically the results obtained from exact unitary time-evolution and the predictions in
our model, showing good agreement. In particular, the extracted work decreases as g2 with
the coupling strength, as expected from our general results.

Turning to the power of this protocol, we then consider the protocol with a fixed num-
ber of steps N and study the power as a function of g. We numerically found that the
equilibration time in this model is proportional to 1/g2 (for g < 1), in agreement with our
considerations in the previous sections. Hence, we expect that the power shows a behaviour
of the form P(g) ∝ W(weak)g2 −O(g3). This behaviour can indeed be seen in Fig. 11.1
as expected. The example thus shows good agreement with our predictions.

11.5 Summary

Standard thermodynamic bounds usually hold for systems that are weakly coupled. This
weak coupling behaviour can be well justified for macroscopic systems which interact lo-
cally, due to the vanishing surface-to-volume ratio. For truly small systems this argument
does not hold and we hence have to study more specifically in how far thermodynamic
bounds remain valid or have to be corrected. In this chapter, we have derived fully gen-
eral expressions for the strong-coupling corrections of a thermal machine coupled to a heat
bath. To arrive at our results, we employed the framework developed in the previous chap-
ter. We have explicitly shown that the corrections to the weak coupling bounds become
irrelevant for macropscopic systems. Our expressions are completely general and only rely
on the assumption that the systems in questions actually thermalize in the sense of closed
systems when coupled to a heat bath. Interestingly, the correction terms can be expressed
succinctly in terms of relative entropies, and essentially measure irreversible dissipation in
terms of correlations which are caused from the interaction between the system and bath.

In the case of weak, but finite coupling strength, we derived the explicit leading correc-
tions to work-extraction bounds and the efficiency of optimal thermal machines as a func-
tion of the system and bath Hamiltonians and their interaction operator. The leading terms
are at second order in the interaction strength and take a fairly simple form. The fact that the
corrections are of second order in the coupling strength may not come as a surprise, since
it can be argued from general grounds: Assuming that the universal weak-coupling bounds
also apply for strongly coupled machines (which is necessary for thermodynamic consis-
tency and matches our results) and that optimal work-extraction bounds vary smoothly in g
already implies that corrections have to be at second order without making any calculation.
The merit of the results in this chapter is thus that they provide the explicit functions which
can in principle be evaluated for any model.

The results in this chapter show that, in terms of efficiency of thermal machines, finite
coupling strength are detrimental when compared to the weak-coupling limit. We also
discussed that our results imply that the power vanishes in the limit of arbitrarily strong
interactions and weak interactions. Hence optimal power is given by a finite coupling
strength as expected.

All our results can be demonstrated in the paradigmatic example of Quantum Brownian
motion, which is an integrable (exactly solvable) model. It would be interesting to study
the explicit corrections for models which are fully interacting. In this chapter, we had to
assume that the thermal machine never interacts with both heat baths at the same time. An
interesting avenue for further research would be to study autonomous thermal machines in
the strong coupling regime, which are simultaneously coupled to both thermal baths and
find out whether similar bounds can be derived.
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In the previous parts of this thesis, I discussed in great detail the thermodynamics of
(potentially small) quantum systems that can be manipulated by acting unitarily and can
be brought in contact with heat baths. The treatment was in parts somewhat unorthodox,
in particular in the strong emphasis of resource theoretic formulations of thermodynamics
and the close connection drawn to results about equilibration in closed many body systems.

IN THIS LAST CHAPTER OF THIS THESIS1, I will come back to a classic question 1 This chapter is based on
joint-work with Michael
Kastoryano, Albert Werner
and Jens Eisert, published in
Ref. [4].

in statistical mechanics, namely the emergence of continuous phase transitions in large
many-body systems; more precisely, I will discuss the dynamical emergence of sponta-
neous symmetry breaking in lattice systems. Unlike in previous chapters, I will not assume
that the system is a closed system, but want to study the dynamical effects of dissipation
on the system.

Traditional treatments of spontaneous symmetry breaking in thermal phase-transitions
mostly work on a kinematic level. They show that in certain systems with internal symme-
tries, such as spin-flip symmetry, the Gibbs state at high temperatures is unique and sym-
metric in the thermodynamic limit [206], but there exists a critical temperature below which
thermal states are not unique in the thermodynamic limit. The different (extremal) thermal
states can usually be distinguished by a local order parameter, such as the magnetization
density in a certain direction. These states thus break the symmetry of the Hamiltonian.

In practice, to show this one usually introduces an arbitrarily small symmetry breaking
field of strength h and shows that a finite magnetization density persists if one first takes
the thermodynamic limit and then sends the field strength h to zero. The direction of the
corresponding magnetization density then depends on the direction of the small symmetry
breaking field. A similar treatment is of course also possible if the order parameter is not
given by the magnetization. For example, in an anti-ferromagnet the order-parameter could
be the staggered magnetization.

In finite systems, the thermal state is always unique. Thus, from a formal perspective,
phase transitions as considered above cannot exist in finite system. However, it is well
known that a phase transition in the thermodynamic limit can be associated to finite fluc-
tuations in the density of an order parameter in large, but finite system. In particular, the
value that an order parameter takes in the symmetry-broken phases that are constructed by
introducing infinitesimal symmetry-breaking fields can be lower bounded by the magnitude
of fluctuations in systems of large but finite volumes in which no symmetry-breaking field
has been applied [285–287]. As a simple example consider the two-dimensional ferromag-
netic Ising model at extremely low temperature. The Gibbs state of this model is essentially
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an equal weight mixture of the state where all spins point up and the state where all spins
point down. This Gibbs state evidently has finite fluctuations in the magnetization density
and infinite correlation length. The individual symmetry-broken phases, on the other hand,
have finite magnetization density, arbitrarily small fluctuations in the magnetization density
and a finite correlation length.

In this chapter, I will connect such finite density-fluctuations with the dynamical emer-
gence of symmetry-breaking states in lattice models, which are described by dissipative
dynamics. Roughly speaking, I will demonstrate that if local, purely dissipative dynamics
(which can, for example, result from a weak coupling to a heat bath) in detailed balance has
a symmetric state with finite fluctuations in the density of an order parameter as a steady-
state, then it necessarily also has states as approximate steady-state that explicitly break the
symmetry associated to the order parameter if the system size becomes big. The survival
time of these approximate steady states diverges with the system size. In the thermody-
namic limit, they therefore behave exactly as steady states.

To remain in the example of the two-dimensional Ising model, any detailed balance
Markovian stochastic dynamics that has the Gibbs state at low temperature as steady state,
also has two symmetry-broken states where all the spins point in a single direction as
approximate steady states.

Suppose now that a system is initialized in a state with very few correlations. Then to
dynamically build up the correlations necessary to have finite fluctuations in an order pa-
rameter at least takes a time that grows linearly with the system size (due to Lieb-Robinson
bounds) as long as the interactions are local. This is true also for dissipative dynamics [223,
288–290]. It therefore seems likely that the dissipative dynamics first quickly brings the
system to a state that explicitly breaks the symmetry but has only short-range correlations.
Once the system reaches such a state, it will remain in this state for a time that diverges
with the system size. This later phenomenon of diverging equilibration time-scales will
be shown explicitly using Lieb-Robinson bounds. The results in this chapter therefore
explicitly show a phenomenon of critical slowing down in connection with spontaneous
symmetry breaking and add to the recent discussions about equilibration time-scales and
the closing of the dissipative gap in open lattice models [291–296].

In other words, the results can also be interpreted by saying that spontaneous symmetry
breaking is in a sense stable to any dissipative dynamics that prepares a symmetric steady-
states with finite fluctuations in the density of an order parameter. Nevertheless, the results
do of course not explain, which one of the symmetry braking states appears as a steady
state.

12.1 Formal set-up

In the following, we consider sequences of systems defined on finite lattices Λ ⊂ ZD of
increasing volume LD. For simplicity, I will only discuss square lattices, but any regular
lattice will do. To every site x of the lattice we associate the local Hilbert-space Hx, so that
the total Hilbert-space is given by ⊗x∈ΛHx. We thus think in terms of spins attached to
the lattice sites. All the results can, however, also be straight-forwardly transferred to the
setting of fermionic lattice systems.

A special role will be played by the magnetization in z direction on a region X ⊆ Λ,
which is defined as

Sz
X = ∑

x∈X
Sz
{x}, (12.1)

where Sz
{x} is the Spin-operator in z direction on site x. For a system of spin-1/2 we

therefore have Sz
{x} = σz

x/2. The magnetization density in a region X is simply the average
value of the magnetization over the region SX/|X|, where |X| denotes the number of sites
in region X. In general, I will call any operator that is a sum of local operators, each
supported around a lattice site, an extensive operator and the corresponding average over a
region the density of the corresponding operator.

As emphasized in the introduction, in this chapter we are interested not in unitary dy-
namics generated by a Hamiltonian as in the previous chapters of this thesis, but in Marko-
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vian dynamics in general. This allows for dissipation effects which are due to a coupling
to an environment (for example a heat bath or the coupling to a weak continuous measure-
ment device). We will assume that the dynamics is local, i.e., assume that it is given by the
sum of many terms acting on a small region of the system. Furthermore, in this chapter we
will work in the Heisenberg-picture, i.e., consider the dynamics on the observables instead
of the states.

The conditions of Markovianity and locality then forces the dynamics to be of the form2 2 In this chapter, we use
square-brackets to indicate
the action of a super-operator
to increase the readability of
some formulas.

A(t) = etLΛ
[A] , LΛ = ∑

x∈Λ
LΛ

x . (12.2)

where square brackets denote the action of a super-operator and each Liouvillian LΛ
x acts

on observables as [83, 84]

LΛ
x [A] = i[Hx, A] + ∑

j
2
(
(Lj

x)
† ALj

x −
{
(Lj

x)
†Lj

x, A
})

, (12.3)

with Lj
x being the so-called Lindblad operators. Throughout this chapter, I will for sim-

plicity assume that the operators Lj
x and Hx are strictly local. This means that they only

act non-trivially on sites within a Ball Br(x) of radius r centered on x, where the radius
is measured in terms of the lattice-distance. However, the general proofs, which appear in
section 14.9, are formulated for more general approximately local Liouvillians.

I will furthermore assume periodic boundary conditions and that the dynamics is uni-
formly bounded, i.e., there is a constant b such that

∥∥LΛ
x [A]

∥∥ ≤ b ‖A‖ for all Λ and
x ∈ Λ.

In the former chapters of this thesis, we have always formalized quantum states as den-
sity matrices. In this chapter, I will stick to the usual formulation in mathematical physics,
where states are understood as positive, linear functions on the algebra observables [297].
A state ω on an algebra of observablesA is then simply any linear functional, which fulfills
the following two conditions:

1. Positivity: ω(A† A) ≥ 0 for all operators A ∈ A,

2. Normalization: ω(1) = 1 for the identity operator 1 ∈ A.

Working with states in this Heisenberg picture will turn out to be more appropriate when
we consider the dynamics in the thermodynamic limit. The reason is that we cannot easily
construct a Hilbert-space in the thermodynamic limit. However, we can define the algebra
of local observables A as the closure of the set of observables that can be approximated
arbitrarily well by local observables [297]. A state in the thermodynamic limit is then
simply a state on the algebra of local observables in the above sense. Note that on a finite
system, any operator is part of the algebra of local observables. In particular, the state ω
can then be represented by a density matrix ρω in the usual way. Its matrix elements in
some basis |i 〉 are given by

ρω
i,j = ω( |i 〉〈j |). (12.4)

A particularly important kind of states are steady states or stationary states with respect
to LΛ. These are states that give rise to static expectation values:

ω(LΛ [A]) = 0, (12.5)

for any observable A supported in Λ. Steady states play a similar role in dissipative dynam-
ics as do ground states in closed systems. The key difference is that in dissipative systems,
the system evolves towards a steady state as long as the latter is unique. In particular, if
we consider a finite system with a unique steady state, then any observable approaches the
operator ω(A)1 in the infinite-time limit.

The fact that we assume that the Liouvillian LΛ is local ensures that the dynamics
induced on (quasi-)local observables is well defined in the thermodynamic limit as

A(t) = lim
Λ↗ZD

etLΛ
[A] ∈ A. (12.6)
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The proof of this statement follows from Lieb-Robinson bounds [223, 288–290]. A steady
state in the thermodynamic limit then simply fulfills ω(A(t)) = ω(A).

In the following, a particular role will be played by sequences of states that are not steady
states on any finite system, but converge to steady states in the thermodynamic limit. More
formally, they are defined in the following way.

Definition 12.1 (Asymptotically stationary states). A sequence of states ωΛ (one for each
volume Λ) is called asymptotically stationary if it satisfies

lim
Λ↗Zd

ωΛ(LΛ [A]) = 0 (12.7)

for all local operators A.

From the definition it follows that asymptotically stationary states define a steady state
in the thermodynamic limit. In other words, asymptotic stationarity means that the time it
takes to reach the actual steady state in a finite system diverges with the system size.

12.1.1 Detailed balance

In the following, I want to discuss dynamics that is at equilibrium. I will therefore assume
that the system fulfills detailed balance. Furthermore, I will only consider the non-unitary
part of the time-evolution since I do not want to make specific assumptions about the Hamil-
tonian. For such purely dissipative quantum dynamics on a finite system, we will say that
a state ωΛ is in detailed balance (or reversible) with respect to the Liouvillian LΛ if [84,
298–303]

ωΛ(ALΛ [B]) = ωΛ(LΛ [A] B), (12.8)

where A, B are any two local observables. In a finite system, if ρω = ∑j pj |j 〉〈j | is the
spectral decomposition of the steady-state, then the transition-probabilities p(i | j, τ) to go
from state |j 〉 to state |i 〉 in time τ fulfill

pi p(j | i, τ) = pj p(i | j, τ). (12.9)

We thus recover the classical definition of detailed balance in the eigenbasis of the steady-
state. To see this, first note that

p(i | j, τ) = Tr
(
|i 〉〈i | eτLΛ

[ |j 〉〈j |]
)

.

Inserting this into the definition of detailed balance and using the eigen-decomposition of
the steady-state, we then obtain

pi p(j | i, τ) = ωΛ

(
|i 〉〈i | eτLΛ

[ |j 〉〈j |]
)

(12.10)

= ωΛ

(
eτLΛ

[ |i 〉〈i |] |j 〉〈j |
)
= pj p(i | j, τ).

Since any Liouvillian fulfills LΛ [1] = 0, a state that is in detailed balance is automatically
stationary. The property of being in detailed balance is quite common in the literature.
In particular Liouvillians that are derived by a standard weak coupling limit to a thermal
heat baths fulfill this property with the thermal state as steady state (see, for example, [84,
299, 303]). Nevertheless, it is a long-standing open problem to derive local Liouvillians
in detailed balance that have the Gibbs state of a local Hamiltonian as steady state. While
it is solved for local, commuting Hamiltonians [303], it is unsolved for non-commuting
Hamiltonians in general. When we assume both locality and detailed balance, we are thus
making a non-trivial assumption in general.

Similarly to asymptotically stationary states, we can then also define asymptotically
reversible states as those sequences of states that become reversible in the thermodynamic
limit.
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Definition 12.2 (Asymptotically reversible states). Let LΛ be a sequence of Liouvillians
and ωΛ a sequence of states. We call ωΛ asymptotically reversible if

lim
Λ↗Zd

(
ωΛ(LΛ [A] B)−ωΛ(ALΛ [B])

)
= 0 (12.11)

for any two local operators A, B.

Similarly as reversibility implies stationarity, asymptotic reversibility implies asymp-
totic stationarity. The main result of this chapter will be that finite density fluctuations of
an order parameter in a symmetric steady state lead to asymptotically reversible symmetry-
breaking states. Let us now start with the simplest setting, namely that of discrete symme-
tries.

12.2 Discrete symmetries

Consider a system of LD spin-1/2 particles. For example, this could be a system that un-
dergoes Markovian dynamics which bring it to the thermal state of the ferromagnetic Ising
model without external field. If the temperature is below the phase transition temperature
(i.e., we assume D ≥ 2), then we can decompose this state as ω = (ω+ + ω−)/2, where
ω+ describes the spin-up phase and ω− describes the spin-down phase. In particular, at
zero temperature ω+ would correspond to a product-state where all spins point up, while
ω− corresponds to a state where all spins point down. I will now express ω± in a different
way, making use of the fact that the state ω = (ω+ + ω−)/2 has finite fluctuations in
the magnetization density. Then I will show that any local, dissipative dynamics in de-
tailed balance with the state ω = (ω+ + ω−)/2 necessarily also has the states ω± as
asymptotically stationary states.

From the arguments that we will use, it will be clear that a similar conclusion holds for
any state with a discrete symmetry that has finite fluctuations in the density of an order
parameter since no special properties of the Ising model will be used. For concreteness
however, let us assume that ω± are the product-states with all spins up or down, respec-
tively. For notational simplicity I will in the following drop all the explicit system-size
dependence and write LD = N. For example, the total magnetization in the system is now
denoted by Sz instead of Sz

Λ and its spectrum ranges from −N/2 to N/2.
Let us first re-write the states ω±. From the fact that they are the extremal eigenstates

of Sz we have ω±(Sz A) = ω±(ASz) = ±Nω±(A)/2 for any operator A. Similarly,
we have ω±(SZ ASz) = N2ω±(A)/4. In particular, ω((Sz)2) = N2/4 with ω =
(ω+ + ω−)/2. Let us define the operators

Õ± :=
1√
2

(
1± Sz√

ω ((Sz)2)

)
. (12.12)

Then we find

ω(Õ±AÕ±) =
1
2

[
ω(A) +

ω(Sz ASz)

ω ((Sz)2))
± ω ({Sz, A})√

ω ((Sz)2)

]
(12.13)

=
1
2
[
2ω(A)±

(
ω+(A)−ω−(A)

)]
= ω±(A). (12.14)

Now suppose that ω is not given by our specific example, but by any state that fulfills
ω((Sz)2) ≥ µ2N2/4 and that is symmetric with respect to spin-flips. Then we can try to
use (12.13) as a definition of a symmetry-breaking state. Indeed this is possible whenever
the state ω is symmetric and has non-vanishing fluctuations in the magnetization. To see
this, first note that it is clearly positive and in fact it is also already normalized:

ω±(1) := ω(Õ±1Õ±) =
1
2

[
1 +

ω
(
(Sz)2)

ω ((Sz)2))
± 2

ω (Sz)√
ω ((Sz)2)

]
= 1, (12.15)
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where we have used that ω(Sz) = 0 due to symmetry. Let us now calculate the magneti-
zation in the states ω±. We find∣∣ω (Õ±SzÕ±

)∣∣ = 1
2

∣∣∣∣∣ω(Sz) +
ω
(
(Sz)3)

ω ((Sz)2))
± 2

ω
(
(Sz)2)√

ω ((Sz)2)

∣∣∣∣∣ (12.16)

=
√

ω ((Sz)2) ≥ µN/2, (12.17)

where we have again used that the state ω is symmetric while odd powers of Sz are anti-
symmetric under spin-flips. Therefore, the states ω± explicitly break the symmetry and
their magnetization-density is lower bounded by the fluctuations in the magnetization den-
sity in the original state ω.

I will now explain how to see that the states ω± are not only symmetry-breaking, but
also asymptotically stationary provided that ω is reversible with respect to the local Li-
ouvillian L (note that we omit the Λ dependence). Consider equation (12.13) with the
observable A replaced by L [A]. Since ω is, by assumption, reversible, the states ω± are
asymptotically stationary provided that i) ω(SzL [A] Sz) grows slower than N2 and that
ii) ω ({Sz,L [A]}) grows slower than N as we increase the system-size.

Let me show the first statement; the latter follows by a completely analogous argument.
First, we rewrite a product of operators using the commutator:

ω (SzL [A] Sz) = ω (Sz[L [A] , Sz]) + ω
(
(Sz)2L [A]

)
. (12.18)

Now, due to locality of the Liouvillian and the fact that Sz is an extensive operator the first
term on the right hand side is at most of order N. We can therefore neglect it. For the
second term, we will use the following Lemma.

Lemma 12.3 (Approximate Leibniz rule). Let L be a strictly local Liouvillian a on regular
lattice with N sites and A a strictly local operator. Then

L
[
(Sz)2 A

]
= L

[
(Sz)2

]
A + (Sz)2L [A] + O(N). (12.19)

Before giving the proof of the Lemma, let us show how this property implies that
ω(SzL [A] Sz) grows slower than N2. From the above equation and reversibility of ω,
we get

ω
(
(Sz)2L [A]

)
= ω

(
L
[
(Sz)2 A

])
−ω

(
L
[
(Sz)2

]
A
)
+ O(N)

= −ω
(
L
[
(Sz)2

]
A
)
+ O(N)

= −ω
(
(Sz)2L [A]

)
+ O(N). (12.20)

We therefore conclude

ω
(
(Sz)2L [A]

)
= O(N) (12.21)

as desired.

Proof of Lemma 12.3. Let us, by slight abuse of notation, identify an operator A with the
support of it and let Ã be the smallest region such that L [A] = LÃ [A], where LÃ only
contains those terms Lx that are supported inside of Ã. Then the super-operator L − LÃ
does not act non-trivially on any operator inside (the support of) A. In particular, from the
explicit form of the Liouvillians Lx we have

(L−LÃ)
[
(Sz)2 A

]
= (L−LÃ)

[
(Sz)2

]
A.

We can then write

L
[
(Sz)2 A

]
= (L−LÃ)

[
(Sz)2

]
A + LÃ

[
(Sz)2 A

]
= L

[
(Sz)2

]
A + (Sz)2L [A]

+
(
LÃ

[
(Sz)2 A

]
−LÃ

[
(Sz)2

]
A− (Sz)2LÃ [A]

)
,



A QUANTUM OF THERMODYNAMICS 157

where I have added and subtracted (Sz)2L [A] = (Sz)2LÃ [A]. To prove the Lemma, we
thus have to show that the term in parenthesis is of order N. Let us now decompose Sz

as Sz
Ã + Sz

Ãc , where Ãc is the complement of Ã in the lattice Λ. Clearly, only the terms
quadratic in Sz

Ã could pose a problem. But these terms cancel identically:

LÃ

[
(Sz

Ã)
2 A
]
−LÃ

[
(Sz

Ã)
2
]

A− (Sz
Ã)

2LÃ [A]

= (Sz
Ã)

2LÃ [A]− (Sz
Ã)

2LÃ [1] A− (Sz
Ã)

2LÃ [A]

= −(Sz
Ã)

2LÃ [1] A = 0,

since a L [1] = 0 for any Liouvillian. This finishes the proof.

Note that none of the arguments showing asymptotic stationarity required that the mag-
netization transforms in a particular way under a symmetry. The only requirement was
that the original state ω has finite fluctuations in the magnetization density or, equivalently,
that the fluctuations in the magnetization scale like N2. The fact that the magnetization
changes sign under a global spin-flip is only necessary to prove that the states ω± have a
finite magnetization density.

Here, we have only discussed the case of a strictly local Liouvillian and shown asymp-
totic stationarity of the states ω±. By slightly refining the arguments one can further show
that the states ω± are in fact asymptotically reversible and can also incorporate Liouvil-
lians which are not strictly local but decay like a power-law with exponent β, as long as
β > 2D. It thus holds for any purely dissipative, short-range Liouvillian. The full theorem
is then the following:

Theorem 12.4 (Reversibility and discrete symmetry breaking from fluctuations). Let ωΛ
be a sequence of states that has finite fluctuation in the density of some extensive quantity
O:

ωΛ(O2
Λ) ≥ µ2o2, µ > 0, (12.22)

where OΛ = ∑x∈Λ OΛ
{x} and OΛ

{x} are local operators supported in Λ, which are uni-

formly bounded in norm:
∥∥∥O{x}

∥∥∥ ≤ o. Furthermore assume ωΛ(OΛ) = 0 for all system-
sizes and define the states

ω±Λ(A) := ωΛ

((
1 +

OΛ

ωΛ(O2
Λ)

)
A

(
1 +

OΛ

ωΛ(O2
Λ)

))
. (12.23)

Then for any sequence of purely dissipative, short-ranged Liouvillians LΛ which have ωΛ
as reversible steady state, the states ω±Λ are asymptotically reversible.

If furthermore there is a sequence of unitaries UΛ such that UΛOΛU−1
Λ = −OΛ and

ωΛ is symmetric with respect to these unitaries, then the states ω±Λ fulfill∣∣ω±Λ (OΛ)
∣∣ ≥ µoN. (12.24)

Proof. The proof is given in Section 14.9.1.

As a last remark, note that translational invariance is not required for any of the appear-
ing quantities. In particular, the result applies both to ferromagnetic and anti-ferromagnetic
systems (where X is the staggered magnetization). Let us now come to the case of contin-
uous symmetries.

12.3 Continuous symmetries

To discuss continuous symmetries, we assume that there is an extensive quantity C, which
generates a symmetry on the lattice. A particular example to have in mind could be the
case of C = Sz. We will assume that the charge C is a sum of on-site terms, so that the
unitaries that represent the symmetry are tensor-products of unitaries on each site. We will
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require the existence of two extensive order parameters O(1), O(2) that constitute a vector
(O(1), O(2)) which transforms under U(1) in the appropriate way:

[O(1)
Λ , CΛ] = −iO(2)

Λ , [O(2)
Λ , CΛ] = iO(1)

Λ . (12.25)

For example, if we choose C = Sz, then we can choose O(1) = Sx and O(2) = Sy.
In general, we will write O(i)

Λ = ∑x∈Λ O(i)
{x} and assume

∥∥∥O(i)
{x}

∥∥∥ ≤ o. Again, we will
consider symmetric steady-states. Since we are working with finite systems, we can express
the symmetry of the state as

[ρω
Λ, CΛ] = 0. (12.26)

It then follows from the commutation relations above that the associated state ω does not
break the symmetry in the sense that ωΛ(O

(i)
Λ ) = 0 for i = 1, 2. Similarly as before, we

again assume that the steady state ω has extensive fluctuations in the order parameters:

ωΛ

(
(O(i))Λ)

2
)
≥ µ2o2N2, i = 1, 2, (12.27)

with µ > 0 independent of the system size.
Under the assumptions given above, Koma and Tasaki have shown [287] in the context

of spontaneous symmetry breaking of ground states of local Hamiltonians how to construct
states that explicitly break the symmetry. In the following, we will see that in the context
of dissipative systems, this construction gives rise to asymptotically reversible states. To
state the construction, let us introduce the raising and lowering operators

O±Λ = O(1)
Λ ± iO(2)

Λ . (12.28)

Let m, m′ be integers such that |m|, |m′| ≤ M. Then let us define the functionals

χ
(m,m′)
Λ (A) :=

ωΛ

(
(O−Λ)m′A(O+

Λ)m
)

Z(m)Z(m′)
, (12.29)

with Z(m) = ωΛ
(
(O−Λ)m(O+

Λ)m)1/2 and the convention (O+
Λ)m = (O−Λ)−m if m < 0.

In particular, observe that χ
(m,m′)
Λ (1) = δm,m′ if ωΛ is symmetric with respect to the

rotations generated by the charge CΛ. With these definitions at hand, the construction of
Koma and Tasaki yields the following statement3.3 In Ref. [287], the state-

ment is only shown for
pure states. By following
the original derivation, it
can be seen to also hold

for the mixed states ω
(M)
Λ .

Theorem 12.5 (Symmetry breaking states [287]). For any M < |Λ| define the states

ω
(M)
Λ (A) :=

1
2M + 1

M

∑
m=−M

M

∑
m′=−M

χ
(m,m′)
Λ (A). (12.30)

Assume that the ωΛ are represented by density matrices commuting with the charge: [ρω
Λ, CΛ] =

0. If the condition

ωΛ

(
(O(1)

Λ )2
)
= ωΛ

(
(O(2)

Λ )2
)
≥ (µo|Λ|)2 (12.31)

is fulfilled with a constant µ > 0, the states ω
(M)
Λ are asymptotically symmetry breaking in

the sense that

ω
(M)
Λ

(
O(2)

Λ

)
= 0, (12.32)

lim
M→∞

lim
Λ↗Zd

1
|Λ|ω

(M)
Λ

(
O(1)

Λ

)
≥
√

2µo. (12.33)

We thus see that the states ω
(M)
Λ break the symmetry arbitrarily well in the direction of

the operator O(1) as M increases. Clearly, we can rotate the states in any direction in the
plane spanned by the order parameters O(1) and O(2) by acting with the symmetry operator
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generated by the charge C. In the thermodynamic limit, we then get a whole U(1)-manifold
of symmetry-breaking states. As a side-remark, also note that the theorem puts a bound on
the possible values of µ. It is then possible, by a generalization of the techniques used in
the last section and techniques introduced by Koma and Tasaki in Ref. [287] to prove the
following result, which is a direct generalization of the result for discrete symmetries.

Theorem 12.6 (Symmetry breaking from fluctuations for continuous symmetries). Let ωΛ
be a sequence of states that fulfills conditions (12.26) and (12.27). If LΛ is a sequence of
purely dissipative, local Liouvillians in detailed balance with ωΛ, then the states ω

(M)
Λ are

asymptotically reversible for any M.

Similarly to the case of discrete symmetries, the theorem also generalizes to Liouvillians
that are not strictly local, but whose terms decay faster than any power. The basic proof
steps are the same: First we use a generalization of the approximate Leibniz property in
Lemma 12.3 and then we use reversibility of the steady state. The details of the proof are,
however, technically quite involved. They are therefore presented in section 14.9.2.

12.4 Goldstone-modes

In the case of closed systems, Goldstone’s theorem states that a spontaneously broken con-
tinuous symmetry in a system with local interactions gives rise to gapless excitations, which
are often called Goldstone-modes [304, 305]. The basic physical mechanism for this is
quite simple: Suppose the system is in a symmetry-broken ground state and we introduce
a continuous rotation of the spins with a very long wavelength into the system (a magnon).
Since the interactions are local, the energy introduced into the system can be made arbi-
trarily small by increasing the wave-length. This is due to the fact that any local interaction
term only sees an arbitrarily small change in the direction into which the spins point.

Given this explanation, it is natural to ask, whether we can prove the existence "dissi-
pative goldstone modes", i.e., asymptotically stationary states with an order-parameter that
varies over space. Unsurprisingly, we can indeed do this, if we assume that the Liouvillian
LΛ is symmetric in the sense that

LΛ [[CΛ, A]] =
[
CΛ,LΛ [A]

]
. (12.34)

Let me sketch how to see this. Suppose the unitary UΛ inserts a spin-wave with wave-
length L in each space-direction into the system. Such a unitary is a tensor-product over all
the sites in the lattice. Then its restriction UA to a finite region A can be arbitrarily well
approximated, with an error of order 1/L, by a unitary VA that rotates all the spins in the
region A by the same small amount. In particular, we have∥∥∥UÃL

Λ
Ã [A]U†

Ã −VÃL
Λ
Ã [A]V†

Ã

∥∥∥ = O(1/L), (12.35)

Now define the states σ
(M)
Λ (A) := ω

(M)
Λ (UΛ AU†

Λ), which describe states with one

spin-wave on top of the states ω
(M)
Λ . Then we have

σ
(M)
Λ

(
LΛ [A]

)
= ω

(M)
Λ

(
UÃL

Λ
Ã [A]U†

Ã

)
≈ ω

(M)
Λ

(
VÃL

Λ
Ã [A]V†

Ã

)
= ω

(M)
Λ

(
VΛLΛ [A]V†

Λ

)
= ω

(M)
Λ

(
LΛ
[
V†

A AVA

])
≈ 0,

where ≈ means equality up to an error of the order 1/L and the last line follows from
the symmetry of the Liouvillian. Thus the states σ

(M)
Λ are asymptotically stationary as

advertised. Furthermore, for large Λ and M, the local spin rotates by 2π as we transverse
the system. Hence the state describes a spin-wave.
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12.5 Time-scales

In the previous two sections we saw that it is possible to construct asymptotically stationary
states which break a given symmetry from the assumption of finite-fluctuations in an order
parameter together with detailed balance. This shows that in the thermodynamic limit,
there exist stationary states that break the given symmetry. In a finite system, however,
these states will in general not be stationary. It is therefore interesting to discuss how long
it takes for such states to equilibrate to the actual, symmetric stationary state.

In this section, I will show how to estimate these time-scales. For simplicity, we will
work again with strictly local Liouvillians and for concreteness consider the case of discrete
symmetries. The discussion in section 12.2 showed that we can estimate the time-derivative
of a local observables A as ∣∣∣ω±Λ (L [AΛ

])∣∣∣ ≤ k1
‖A‖ |Ã|

N
. (12.36)

Note that for an observable that is supported on the whole lattice, this bound only shows
that the derivative is upper bounded by k1 ‖A‖. To derive a bound on the equilibration time,
we will use Lieb-Robinson bounds, which allow us to approximate time-evolved local ob-
servables by observables that are supported in the Lieb-Robinson cone (cf. section 7.5.4
in chapter 7). Lieb-Robinson bounds also exist in the case of dissipative, local dynamics
[288–290]. To discuss their application let us in the following denote time-evolved observ-
ables in the finite lattice as

AΛ(t) := etLΛ
[A] . (12.37)

Lieb-Robinson bounds give rise to a finite velocity v > 0 with which information can
spread through the system. We can use this to approximate the observable AΛ(t) by an
observable A∨(t) which is supported within a finite region that contains sites at most a
distance ṽt < L away from A, where ṽ controls the error of the approximation. As long as
ṽ > v, the error in the approximation decays exponentially with ṽ. More precisely, there
exists a constant k2, independent of the system size, such that∥∥∥AΛ(t)− A∨(t)

∥∥∥ ≤ k2 ‖A‖ (ṽt)D−1e−(ṽ−v)t. (12.38)

The constant k2 depends on the range and strength of the Liouvillian as well as the spatial
dimension. We combine this bound with the estimate on the time-derivatives above to
obtain∣∣∣ω±Λ (L [AΛ(t)− A∨(t)

])∣∣∣ ≤ k1k2

∥∥∥AΛ(t)− A∨(t)
∥∥∥ (ṽt)D−1e−(ṽ−v)t (12.39)

≤ 2k1k2 ‖A‖ (ṽt)D−1e−(ṽ−v)t, (12.40)

where we have used that both
∥∥AΛ(t)

∥∥ and ‖A∨(t)‖ are upper bounded by ‖A‖ since
both arise from the time-evolution under a Liouvillian. Clearly, the right hand side of the
bound can be made as small as we wish by increasing ṽ.

We can now use these ingredients to derive an estimate of the equilibration time. To do
this, let us ask for the minimum time it takes for the expectation value of A to change by
a given amount ∆A. Denote this time by teq. For simplicity, we consider here an on-site
observable A, like the magnetization of a single spin, however a similar argument holds for
any local observable. We then have

∆A =
∣∣∣ω±Λ(AΛ(teq)− A)

∣∣∣ ≤ ∫ teq

0

∣∣∣∣ω±Λ (dAΛ(s)
ds

)∣∣∣∣ds =
∫ teq

0

∣∣∣ω±Λ (LΛ
[

AΛ(s)
])∣∣∣ds

≤
∫ teq

0

∣∣∣ω±Λ (LΛ
[

AΛ(s)− A∨(s)
])∣∣∣ds +

∫ teq

0

∣∣∣ω±Λ (LΛ [A∨(s)])∣∣∣ds.

Since the Liouvillian is local, and A∨(s) has support on a region of size at most (2ṽs+ 1)D,
we can upper bound the last term as∫ teq

0

∣∣∣ω±Λ (LΛ [A∨(s)])∣∣∣ds ≤ k′1
‖A‖ (ṽteq)D+1

LD ,
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where k′1 is a suitable constant and we have inserted N = LD. For the other term, we use
the Lieb-Robinson bounds to get∫ teq

0

∣∣∣ω±Λ (LΛ
[

AΛ(s)− A∨(s)
])∣∣∣ds ≤ 2k1k2 ‖A‖

∫ teq

0
(ṽs)D−1e−(ṽ−v)sds

≤ 2k1k2 ‖A‖
∫ ∞

0
(ṽs)D−1e−(ṽ−v)ds

= 2k1k2 ‖A‖ (D− 1)!
(1− v/ṽ)D

1
ṽ

:= 2k1k2 ‖A‖ δ(ṽ, v, D) > 0. (12.41)

The function δ(ṽ, v, D) becomes arbitrarily small as ṽ increases. Let us now fix some
ε > 0. Then we can always choose ṽ such that

2k1k2 ‖A‖ δ(ṽ, v, D) < ε∆A. (12.42)

Combining all the estimates, we then obtain

∆A
‖A‖ (1− ε) < k′1

(ṽteq)D+1

LD . (12.43)

Rearranging the terms, we then conclude

teq >
∆A
‖A‖ (1− ε)

1
(k′1)

1/(D+1)ṽ
LD/(D+1) = cLD/(D+1), (12.44)

for some constant c > 0. Thus the equilibration time diverges at last as LD/(D+1) with the
system size.

12.6 Conclusions

Spontaneous symmetry breaking is one of the most interesting phenomena in physics. This
phenomenon is intrinsically connected to fluctuations of order parameters across all scales.
In Hamiltonian systems it has been rigorously shown by Koma and Tasaki that if a symmet-
ric ground state of a local Hamiltonian has finite fluctuations in an order parameter, then
there are also low-lying states that break the symmetry and converge to ground states in the
thermodynamic limit [287]. In this chapter, I built on top of their results and derived the
corresponding results for local, purely dissipative systems in detailed balance. The results
hold for discrete as well as continuous symmetries and I also demonstrated the existence of
dissipative Goldstone modes on top of a symmetry-broken steady-state. In finite systems,
the symmetry-breaking states that we constructed are not steady-states. I explicitly calcu-
lated a lower bound to their lifetime. This adds to the recent discussion on equilibration
times and the role of the gap in dissipative many-body systems [291–296].

Recently, dissipative many-body dynamics has received some attention due to the the-
oretical possibility of engineered dissipation, which could be used to prepare many-body
states that are useful for quantum computation or simulation [306–308]. One aim of quan-
tum simulators is to study the phase diagram of zero-temperature Gibbs states of complex
quantum systems, which are beyond the computational power of classical computers [170,
309]. The results in this chapter show that purely dissipative dynamics can only uniquely
prepare states with strong correlations on large scale if the dynamics is not in detailed
balance with the target state.

To obtain the results in this chapter, we had to assume local dynamics that fulfills de-
tailed balance. While the locality of the dynamics is certainly a necessary assumption, it
is an interesting open question, whether the assumption on detailed balance can be over-
come. In statistical mechanics it is well known that the symmetry-breaking states below
the critical temperature show exponential decay of correlations with a correlation length
that diverges if one approaches a continuous phase-transition (and leads to fluctuations on
all scales at the critical point). A further interesting open question is whether the explicit
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symmetry breaking states that we used – adapted from Ref. [287] – can be proven to show
at least some decay of correlations. Finally it would be interesting to know whether the
construction leads to KMS-states, representing thermal equilibrium, in the thermodynamic
limit if applied to Gibbs-states [275].



13 Conclusions and Acknowledgments

In this thesis, I discussed the basic problem of relating thermodynamics and quantum me-
chanics from a variety of angles. First, using a resource theoretic approach, I presented
novel ways of discussing the emergence of thermodynamic concepts from basic principles
in chapters 2–6. This approach is essentially an information theoretic approach, building
on concepts such as divergence measures for probability distributions. These tools are quite
elegant, but require an existing notion of thermal equilibrium in one way or another. I then
discussed how such equilibrium emerges from the point of view of many-body physics and,
in chapter 8, connected this point of view with a resource theoretic point of view.

Then, we turned to a more hands-on approach to studying the thermodynamics of ther-
mal machines in the quantum regime. We discussed in detail how experimental restrictions
and strong coupling to heat baths influence fundamental thermodynamic bounds. Inter-
estingly, the corrections to thermodynamic bounds can be expressed in terms of purely
information theoretic quantities, namely relative entropies.

Finally, I discussed how the emergence of spontaneous symmetry breaking can be un-
derstood from a point of view of dissipative, open system dynamics – providing a novel
link between equilibration time-scales, fluctuations in intensive quantities and the breaking
of symmetries.

An underlying theme in this thesis is the role of correlations at the microscopic scale in
thermodynamics: In chapters 4 and 5, we saw how they have to be taken into account to
correctly account for the value of state transitions from a thermodynamic point of view and
how correlations to cyclically operating systems can be used to single out the relative en-
tropy and free energy. In chapters 8, we similarly saw that establishing correlations to such
"catalysts" allows to circumvent the existence of a "second law of equilibration". In chap-
ters 9, we saw that the inability to control the interaction between particles that constitute
a working system leads to irreversible dissipation. Such inability to control interactions in
term is another manifestation of an inability to control the correlations between the parti-
cles. In chapter 11, we similarly saw that the dissipation that occurs in thermal machines
due to strong coupling to heat baths is a measure for the uncontrollable correlations that are
build up when coupling the machine to a heat bath. Finally, in chapter 12 we saw how spon-
taneous symmetry breaking emerges from states with statistical fluctuations in the density
of an order parameter. Such fluctuations in turn are simply a statement of the fact that the
spins in the lattice are correlated on all scales.

The results in this thesis thus also contribute to the discussion of the role of correlations
in thermodynamics [310–314]. The microscopic correlations between the particles that
make up a macroscopic body can usually be safely neglected when considering the interac-
tion between macroscopic systems on a macroscopic scale. They hence do not contribute
significantly to the thermodynamic bounds on macroscopic quantities. At the microscopic
scale, however, we have seen that it is essential to take them into account.

Large parts of this thesis, in particular those that deal with the resource theoretical ap-
proach to thermodynamics, are concerned with fundamental bounds, which may require
an experimenter to implement almost arbitrary unitary dynamics on a quantum system to
saturate the bounds. Fifty years ago, implementing arbitrary unitary dynamics on complex
quantum systems was almost unimaginable. Today however, with the possible advent of
scalable quantum computers in the foreseeable future, we enter an era where such bounds
might indeed be experimentally testable in artificial systems. From the point of view of a
quantum computer, different unitary operations can be classified in terms of their quantum



164 CHAPTER 13. CONCLUSIONS AND ACKNOWLEDGMENTS

computational complexity [62]. It would therefore be interesting to study thermodynamics
under restricted (quantum) computational complexity to establish a notion for how difficult
it is to implement thermodynamically optimal operations on quantum computers.

Furthermore, it was recently suggested by Brown and Susskind [315], inspired by ideas
from quantum gravity, that quantum computational complexity itself might follow laws
similar to those of thermodynamics. It would be fascinating if the resource theoretical
approach could be used to understand this relation in more detail.

In the converse direction, we have seen in the example of anomalous heat flow (see
chapter 2), that interesting effects can already occur in the presence of "heat-baths" that are
made up only of a few atoms. It would be interesting to study in more detailed what can
be achieved by microscopic thermal machines having access only to such microscopic heat
baths (see Refs. [90] for progress in this direction).

We have made a long way in understanding how statistical mechanics and thermody-
namics emerges from basic quantum mechanics. Nevertheless, as the many open problems
formulated in the individual chapters of this thesis show, there are still many open problems
left. It is my hope that the contributions in this thesis help to motivate more researchers to
work on this fascinating and interdisciplinary field.
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14.1 Thermodynamics as a resource theory

14.1.1 Proofs for anomalous heat flow

In this section I will prove the formula for the final excitation probability (2.9) in the anomalous heat
flow. Consider the algorithm as described in section 2.2. The final probability is given by

p′ = probability transferred from ground state + initial probability that remains in excited state.

I will first calculate the probability that is transferred from the ground state to the excited state. As
explained in the description of the algorithm, for each of the energies E0

k , exactly min{( 2n
k−1), (

2n
k )}

states are swapped with with states corresponding to E1
k−1. Each of them have initial probability

given by (1− p) e−βk∆

Z(n)
β

, with Z(n)
β = ∑2n

k=0 (
2n
k )e
−βk∆. The total probability that is transferred from

the ground-state to the excited state is then given by

(1− p)P(1← 0) := (1− p)
2n

∑
k=1

min{
(

2n
k− 1

)
,
(

2n
k

)
}e−βk∆

= (1− p)

 n

∑
k=1

(
2n

k− 1

)
e−βk∆

Z(n)
β

+
2n

∑
k=n+1

(
2n
k

)
e−βk∆

Z(n)
β

 .

= (1− p)p∗n(β). (14.1)

Considering now the initial probability that remains in the excited state, we see that in every step of
the algorithm exactly (2n

k )−min{(2n
k ), (

2n
k+1)} states remain in the subspace associated to E1

k . Each

of them have initial probability pe−βk∆/Z(n)
β . We then obtain for the probability that remains in the
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Figure 14.1: The function
p∗n(β) as a function of n for
∆ = 1 and β = 0.1, 0.5, 1

(from light to dark). The
straight, solid lines show
the limiting values (and

upper bounds) e−β∆.
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pP(1← 1) = p
2n

∑
k=0

[(
2n
k

)
−min{

(
2n
k

)
,
(

2n
k + 1

)
}
]

e−βk∆

Z(n)
β

= p

1−
2n

∑
k=0

min{
(

2n
k

)
,
(

2n
k + 1

)
e−βk∆

Z(n)
β


= p

1− eβ∆
2n

∑
k=1

min{
(

2n
k− 1

)
,
(

2n
k

)
e−βk∆

Z(n)
β


= p

[
1− eβ∆ p∗n(β)

]
. (14.2)

Putting everything together, we arrive at the final result

p′ = (1− p)p∗n(β) + p
(

1− eβ∆ p∗n(β)
)

= p∗n(β)− p

(
p∗n(β)

pβ
− 1

)
. (14.3)

What is left to show is the achievable upper bound p∗n(β) ≤ e−β∆. It can be proven fully rigor-
ously, however the derivation is quite technical and offers no additional insight. I hence simply show
a plot for ∆ = 1 and different values of n and β in figure 14.1.
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14.2 Ground state cooling and the unattainability principle

14.2.1 Proof of theorem 3.2

We will now proof theorem 3.2. Before we go to the details, it is important to understand the basic
structure of the proof. It is clear that to obtain a single necessary and sufficient condition for cooling
at low temperatures, we have to show that the infinite set of second laws given by theorem 2.1 collapse
to a single condition. The first important step in the proof is the following Lemma.

Lemma 14.1 (Concavity at low temperatures). Let β > 0 and a Hamiltonian HS be given. Then
there exists a critical inverse temperature βcr such that for all βS > βcr and for all 0 < α < δ(βS)
we have

α 7→ D′′α (ωβS‖ωβ) ≤ 0. (14.4)

and

D∞(ωβS‖ωβ) ≤ log Zβ. (14.5)

Here, the critical value δ(βS) is given by

δ(βS) =
log(Zβ(HS))

Vβ(ωβS (HS), HS)
. (14.6)

Proof. See section 14.2.2.

The Lemma tells us that we can upper bound the Rényi-divergence in the parameter regime pre-
scribed by the Lemma by the linear approximation at the origin, since a concave function is always
upper bounded by the linear approximation at any point of the graph. Since D′0(ρ||ωβ(H)) =

D(ωβ(H)||ρ) = Vβ(ρ, H), we get

Dα(ωβS (HS)||ωβ(HS)) ≤ Vβ(ωβS (HS), HS)α, α ≤ αc. (14.7)

By restricting to small enough target temperatures, we can also make sure that

D∞(ωβS (HS)||ωβ(HS)) ≤ Vβ(ωβS (HS), HS)αc. (14.8)

Now, the function α 7→ Dα is always monotonously increasing. Therefore the sufficient condition

Dα(ρR‖ωβ(HR)) > Dα(ωβS (HS)‖ωβ(HS)), α ≥ 0, (14.9)

are also satisfied if

Dα(ρR||ωβ(HR)) > Vβ(ωβS (HS), HS)α, α ≤ αc. (14.10)

For small temperatures, we can simply restrict the range of α to the interval [0, δ(βS)), where δ(βS)
is given by:

δ(βS) =
D∞(ωβS (HS)||ωβ(HS))

Vβ(ωβS (HS), HS)
. (14.11)

We now turn to the l.h.s. of the sufficient condition. We will show that the Rényi-divergence of the
Dα(ρR||ωβ(HR)) is approximately convex in α for α < δ(βS) in a sense made more precise below.
Note that if it actually was convex we could always lower bound it by Vβ(ρR, HR)α and obtain the
necessary and sufficient condition (3.10) in full generality.

In general Dα(ρR‖ωβ(HR)) is not convex, but we can take advantage of the fact that we only
have to check small values of α. We thus Taylor expand Dα(ρR||ωβ(HR)) and use Taylor’s theorem
to obtain

Dα(ρR||ωβ(HR)) ≥ Vβ(ρR, HR)α− k(βS, β, ρR, HR)α
2. (14.12)

This gives us the new sufficient condition

Vβ(ρR, HR)α− k(βS, β, ρR, HR)α
2 ≥ Vβ(ωβS (HS), HS)α,

for all 0 < α ≤ δ(βS). The function k(βS, β, ρR, HR) ≥ 0 is given by

k(βS, β, ρR, HR) = max

{
0,− min

α≤δ(βS)
D′′α (ρR‖ωβ(HR))

}
.

Dividing by α and replacing α by δ(βS) we arrive at the final sufficient condition

Vβ(ρR, HR)− K(βS, β, ρR, HR, HS) ≥ Vβ(ωβS (HS), HS),

with K(βS, β, ρR, HR, HS) = k(βS, β, ρR, HR)δ(βS).
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14.2.2 Proof of concavity of Rényi-divergence for low temperatures

Let us now prove Lemma 14.1. The first statement to prove is that for small enough temperatures the
Rényi-divergence D∞(ωβS (HS)‖ωβ(HS)) is upper bounded by Zβ(HS). For simplicity of notation,
we will write Zβ instead of Zβ(HS) in the following. We can then write

Dα(ωβS (HS)‖ωβ(HS)) =
1

α− 1
log

(
∑

i
gie
−α(βS−β)Ei (Zβ/ZβS )

α e−βEi

Zβ

)

=
1

α− 1
log

(
e−α(βS−β)E0 (Zβ/ZβS )

α ∑
i

gie
−α(βS−β)(Ei−E0) e−βEi

Zβ

)
,

where Ei denote the different energies of HS, with degeneracies gi. By assuming w.l.o.g. E0 = 0,
we can write this as

Dα(ωβS (HS)‖ωβ(HS)) =
α

α− 1
log(Zβ/ZβS ) +

1
α− 1

log

(
1 + ∑

i>0
e−α(βS−β)Ei

e−βEi

Zβ

)
.

We can now take the limit α→ ∞ and obtain (βS > β)

D∞(ωβS (HS)‖ωβ(HS)) = lim
α→∞

Dα(ωβS (HS)‖ωβ(HS)) = log(Zβ)− log(ZβS ) ≤ log Zβ.

Let us now find the condition for

δ(βS) =
log(Zβ(HS)

Vβ(ωβS (HS), HS)
< 1. (14.13)

To do that we make use of the fact that for thermal states, the vacancy is a non-equilibrium free energy
and can be expressed as

Vβ(ωβS (HS), HS) = βSEβ − Sβ + log ZβS , (14.14)

where Sβ := S(ωβ(HS)). This gives us the condition

βSEβ − Sβ > log Zβ − log ZβS . (14.15)

We can relax this to obtain the sufficient criterion βSEβ − Sβ > log Zβ = Sβ − βEβ and obtain

βS >
2Sβ − βEβ

Eβ
. (14.16)

We are now in position to prove the concavity. To do that we use the following representation of
D′′α , which is proven in section 14.2.3:

D′′α (ωβS‖ωβ) =
2

(1− α)3

(
log ZβS − log Zβ̃(α) + (βS − β̃(α))Eβ̃(α) − (βS − β̃(α))2Var(H)β̃(α)

)
,

(14.17)

where β̃(α) = β(1− α) + αβS. Since we are only interested in α < δ(βS) < 1, we have β ≤
β̃(α) < βS. We thus need to prove that the terms in the parenthesis are negative. To do this, we use
that the average energy is monotonic with β and that Zβ̃(α) > 1. We can then bound these terms as

parenthesis ≤ log ZβS + (βS − β̃(α))Eβ̃(α) − (βS − β̃(α))2Var(H)β̃(α)

≤ log ZβS + (βS − β)Eβ − (βS − β̃(α))2Var(H)β̃(α)

≤ log(d) + (βS − β)Emax − (βS − β̃(α))2 min
x∈[β,β̃(α)]

Var(H)x. (14.18)

We now use that β̃(α) ≤ β̃(δ(βS)) =: β̃∗(βS). If we can bound β̃∗(βS) by a constant, the terms
in the parenthesis become negative for some large enough βS, because the second order term in βS
dominates. To prove that β̃∗(βS) is indeed upper bounded by a constant, we again write the vacancy
as

Vβ(ωβS (HS), HS) = −Sβ + βSEβ + log ZβS . (14.19)

From this we get

β∗ := lim
βS→∞

β̃∗(βS) = lim
βS→∞

β(1− δ(βS)) + δ(βS)βS (14.20)

= β + lim
βS→∞

log Zβ

βSEβ + log ZβS − S(ωβ(HS))
βS = β +

log Zβ

Eβ
. (14.21)

Thus, there will be some βcr which ensures concavity. Note that β̃∗(βS) is monotonically decreasing
for all βS such that β̃∗(βS) < 1. This finishes the proof. The critical value βcr can be upper bounded
if lower bounds on the energy variance for inverse temperatures in the interval [β, β∗] are available.
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14.2.3 Rényi-divergence between thermal states

In this section, we derive results about the Rényi-divergence between two thermal states of the same
Hamiltonian at different temperatures. For concreteness we consider a resource system with Hamil-
tonian HR and inverse temperature βR. By simple rewriting, we first obtain

Dα(ωβR ||ωβ) = −
α

α− 1
log ZβR + log Zβ +

1
α− 1

log Tr(e−βR Hαe−βH(1−α))

= − α

α− 1
log ZβR + log Zβ +

1
α− 1

log Z(βR−β)α+β

= −α− 1
α− 1

log ZβR + log Zβ +
1

α− 1
log(Z(βR−β)α+β/ZβR )

= log(Zβ/ZβR ) +
1

α− 1
log(Z(βR−β)α+β/ZβR ). (14.22)

We can use this representation to show that the Rényi-divergence is convex in α provided that
βR < β and that the function x 7→ EβR+x is convex for 0 ≤ x ≤ β− βR. To do that, we calculate
the second derivative (with β̃ = (βR − β)α + β):

Dα(ωβR ||ωβ)
′′ =

2
(1− α)3 log ZβR −

2
(1− α)3 log Zβ̃ − 2

1
(1− α)2 ∂α log Zβ̃ +

1
α− 1

∂2
α log Zβ̃

(14.23)

=
2

(1− α)3 log ZβR −
2

(1− α)3 log Zβ̃ − 2
1

(1− α)2 (β− βR)Eβ̃ −
1

1− α
(β− βR)

2Var(H)β̃

(14.24)

=
2

(1− α)3

[
log ZβR − log Zβ̃ − (1− α)(β− βR)Eβ̃ −

(1− α)2

2
(β− βR)

2Var(H)β̃

]
.

(14.25)

Utilizing (1− α)(β− βR) = β̃− βR, we can write this as

Dα(ωβR ||ωβ)
′′ =

2
(1− α)3

[
log ZβR − log Zβ̃ − (β̃− βR)Eβ̃ −

(β̃− βR)
2

2
Var(H)β̃

]
.

(14.26)

Here, Eβ denotes the energy-expectation value at inverse temperature β and we have introduced the
variance Var(H)β = 〈H2〉β − 〈H〉2β. The two functions are related by ∂xEx = −Var(H)x. We
can now show theorem 3.3 and another result about about the convexity of Rényi divergences for a
sufficiently large reference temperature β.

Proof of theorem 3.3 We need to show that the r.h.s. of (14.26) is positive under the premise that
x 7→ Ex is convex in x ∈ [βR, β], βR ≤ β and α < 1. Thus we have to show that

log ZβR − log Zβ̃ ≥ (β̃− βR)Eβ̃ +
(β̃− βR)

2

2
Var(H)β̃. (14.27)

To achieve this, we use the following integral representation of the l.h.s:

log ZβR − log Zβ̃ = −
∫ β̃−βR

0

d
dx

log ZβR+x dx =
∫ β̃−βR

0
EβR+xdx. (14.28)

We thus need to show∫ β̃−βR

0
EβR+xdx ≥ (β̃− βR)Eβ̃ +

(β̃− βR)
2

2
Var(H)β̃. (14.29)

Whether this inequality is satisfied, and therefore, whether Dα(ρR‖ωβ(H)) is convex, is entirely
determined by the function x 7→ Ex, because derivative of Ex is given by −Var(H)x. The right
hand side is therefore a linear approximation to the function Ex. Fig. 14.2 provides a geometrical
interpretation which makes clear that the inequality is satisfied whenever Ex is convex.

As a side-remark, note that a completely analogous argument implies that if α < 1, Ex is convex
but in contrast to the previous case βR ≥ β, then we have∫ β̃−βR

0
EβR+xdx ≤ (β̃− βR)Eβ̃ +

(β̃− βR)
2

2
Var(H)β̃. (14.30)

Thus for systems colder than the bath, the function Dα(ρR‖ωβ(H)) is concave whenever Ex is
convex. In particular this is true for qubits as target systems for cooling.
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β̃(α)
x

Ex

βR β

Figure 14.2: The l.h.s. of (14.29) is represented by the light red area under the curve. The r.h.s. corresponds to the area composed of the rectangle
and triangle with blue border. The rectangle of side-lengths β̃(α)− βR and Eβ̃(α) corresponds to the first term of the r.h.s of (14.29). The triangle
corresponds to the second term. If the function is Ex convex, the light red area is always larger than the area of the triangle and rectangle combined.
(Figure adapted from Ref. [8].)

Very cold heat baths We can also show that Dα(ωβR‖ωβ) is convex for very cold environments,
i.e., very large β. Thus in this case (3.10) becomes sufficient and necessary as well.

Theorem 14.2. For any resource of the form (ωβR (HR), HR), given a fixed βR there exist a suf-
ficiently large value of β so that (3.10) is a sufficient and necessary condition for low temperature
cooling.

Proof-sketch. We show that Dα(ωβR‖ωβ) is convex for values of α < αc, where αc < 1 is chosen
arbitrarily. Recalling Eq. 14.29, we have to show that

∫ β̃−βR

0
EβR+xdx ≥ (β̃− βR)Eβ̃ +

(β̃− βR)
2

2
Var(H)β̃. (14.31)

In the limit of large β the scaling of the r.h.s. of (14.31) is such that β̃− βR = (1− α)(β− βR) scales
proportionally to β, while Eβ̃ and Var(H)β̃ scale as e−kβ. Therefore, the r.h.s. of (14.31) approaches
zero as β → ∞ whereas the l.h.s. grows monotonically with β. Hence, (14.31) is fulfilled for some
large enough β.

14.2.4 Equidistant levels

In this section we show that the function Eβ is convex for any system of M + 1 equidistant levels.
We assume that the energy-gap between subsequent levels is ∆ and as always we set the ground state
energy to zero. The energy Eβ is then given by

Eβ =
1

eβ∆ − 1
∆− M + 1

e(M+1)∆β − 1
∆. (14.32)

Note that the limit M → ∞ corresponds to an harmonic oscillator and M = 1 corresponds to a
two-level system. To show that the energy is a convex function of β, we have to show that the second
derivative of the energy is positive. We can express the second derivative as

E′′β =
1
8

∆3

 sinh(β∆)
sinh(β∆/2)4 − (M + 1)3 sinh((M + 1)β∆)

sinh((M + 1)β∆/2)4︸ ︷︷ ︸
=: f (β,M+1)

 . (14.33)

For M = 0 this expression is certainly positive. To prove positivity for arbitrary M, we set M + 1 =:
γ and show that ∂γ f (β, γ) ≤ 0. The derivative ∂γ f (β, γ) is given by

∂γ f (β, γ) = −γ2 1
sinh(γβ∆/2)4 [γβ∆(2 + cosh(γβ∆))− 3 sinh(γβ∆)] . (14.34)

We now set γβ∆ = x. Then it suffices to show

x(2 + cosh(x))− 3 sinh(x) ≥ 0. (14.35)
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This can be done using a Taylor-expansion:

2x + x cosh(x)− 3 sinh(x) = 2x +
∞

∑
n=0

x2n+1
(

1
(2n)!

− 3
(2n + 1)!

)
(14.36)

= 2x +
∞

∑
n=0

x2n+1
(
((2n + 1)− 3)(2n)!

(2n)!(2n + 1)!

)
(14.37)

= 2x− 2x +
∞

∑
n=1

x2n+1
(
((2n + 1)− 3)(2n)!

(2n)!(2n + 1)!

)
(14.38)

≥ 0. (14.39)

14.2.5 Proof of theorem 3.6

In this section we proof the sufficient condition under exact catalysis presented in theorem 3.6. As
explained in section 2.3, a sufficient condition for a state transition using catalytic thermal operations
with exact catalysts is given by the decrease of all Rényi-divergences. We thus need to consider the
inequalities

Dα(ρR‖ωβ(HR)) ≥ Dα(ωβS (HS)) (14.40)

for all α ∈ (−∞,+∞). The case α ≥ 0 is already treated in theorem 3.2. We thus have to show that
by introducing the additional factor r(β, HS), we can also make sure that the inequalities are valid
for α < 0. To do this, we will prove the following two Lemmas.

Lemma 14.3 (Lower bound to Rényi-divergences with negative α). Let [ρ, H] for some finite-dimensional
Hamiltonian H and let ρ be a quantum state with full rank. Then for any β > 0 we have

D−|α|(ρ‖ωβ(H)) ≥ |α|
|α|+ 1

Vβ(ρ, H). (14.41)

Lemma 14.4 (Upper bound to Rényi-divergences with negative α). Let HS ≥ 0 be any finite dimen-
sional Hamiltonian with ground state energy zero and ‖HS‖ = Emax and βS > β > 0. Then

D−|α|(ωβS (HS)‖ωβ(HS)) ≤
|α|
|α|+ 1

Vβ(ωβS (HS), HS)

[
1 +

Emax − Eβ

∆FβS (ωβ(HS), HS)

]
. (14.42)

The proofs for the two inequalities will be given at the end of this section. Let us now first discuss,
how they can be used to prove theorem 3.6. First, we simplify the bound from the last Lemma by
choosing βS small enough so that ∆FβS (ωβ(HS), HS) ≥ Eβ/2. This is always possible and in the
worst case increases the critical value βcr when compared to the conditions for positive α. That this
is possible follows from the fact that

∆FβS (ωβ(HS), HS) = Eβ −
[

EβS +
1

βS
(Sβ − SβS )

]
, (14.43)

where the term in parenthesis can be made arbitrarily small by increasing βS. We then obtain the
bound

D−|α|(ωβS (HS)‖ωβ(HS)) ≤
|α|
|α|+ 1

Vβ(ωβS (HS), HS)

[
1 +

Emax − Eβ

∆FβS (ωβ(HS), HS)

]

≤ |α|
|α|+ 1

Vβ(ωβS (HS), HS)

[
1 + 2

Emax − Eβ

Eβ

]

=
|α|
|α|+ 1

Vβ(ωβS (HS), HS)r(β, HS). (14.44)

Combining this with (14.41), we hence obtain as sufficient condition for negative values of α

D−|α|(ρ‖ωβ(H)) ≥ |α|
|α|+ 1

Vβ(ρ, H)

≥ |α|
|α|+ 1

Vβ(ωβS (HS), HS)r(β, HS) ≥ D−|α|(ωβS (HS)‖ωβ(HS)), (14.45)

which finishes the proof. Note that no correction term K is necessary for negative values of α.
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Proof of Lemma 14.3. Denote the eigenvalues of the states ρ and ωβ(H) by pi and wi, respectively.
We then have

D−|α|(ρ‖ωβ(H)) =
1

|α|+ 1
log

(
∑

i
p−|α|i w1+|α|

i

)
=

1
|α|+ 1

log

(
∑

i

(
wi
pi

)
wi

)
.

From the concavity of the logarithm, we have log(∑i xiwi)∑i wi log(xi) for any probability distri-
bution wi. Hence we obtain

D−|α|(ρ‖ωβ(H)) ≥ |α|
|α|+ 1 ∑

i
wi log

(
wi
pi

)
=

|α|
|α|+ 1

Vβ(ρ, H), (14.46)

which finishes the proof.

Proof of Lemma 14.4. Let us write out the Rényi-divergence as

D−|α|(ωβS (HS)‖ωβ(HS)) =
|α|
|α|+ 1

log(ZβS (HS))− log(Zβ(HS))

+
1

1 + |α| log
(

Tr
(

e(βS−β)|α|HS e−βHS
))

. (14.47)

We will now make use of the log-sum inequality. It states that for any sets of d non-negative numbers
{ai} and {bi} we have

log
( a

b

)
≤∑

i

ai
a

log
(

ai
bi

)
, (14.48)

where a = ∑i ai and b = ∑i bi. Let us define β̃(α) := β− (βS − β)|α| and choose

ai := e−β̃(α)Ei , bi :=
e−βEi

Zβ(HS)
, (14.49)

where Ei denote the eigenvalues of HS. Note that in this case b = 1. We can now use the log-sum
inequality to get

log (a) = log
(

Tr
(

e(βS−β)|α|HS e−βHS
))
≤∑

i

ai
a

log
(

ai
bi

)

= log(Zβ(HS)) + (βS − β)|α|∑
i

e−β̃(α)

Zβ̃(α)(HS)
Ei (14.50)

≤ log(Zβ(HS)) + (βS − β)|α|Emax. (14.51)

Combining this bound with (14.47), we then obtain

D−|α|(ωβS (HS)‖ωβ(HS)) ≤
|α|
|α|+ 1

[
log(ZβS (HS)− log(Zβ(HS)) + (βS − β)Emax

]
.

We now make use again of the relation between the vacancy and the non-equilibrium free energy:

Vβ(ωβS (HS), HS) = βS∆FβS (ωβ(HS), HS) = βSEβ − Sβ + log(ZβS (HS)). (14.52)

Therefore we can write

log(ZβS (HS)− log(Zβ(HS)) + (βS − β)Emax = Vβ(ωβS (HS), HS) + (βS − β)(Emax − Eβ)

≤ Vβ(ωβS (HS), HS)

[
1 +

βS(Emax − Eβ)

βS∆FβS (ωβ(HS), HS)

]

= Vβ(ωβS (HS), HS)

[
1 +

Emax − Eβ

∆FβS (ωβ(HS), HS)

]
. (14.53)

This finishes the proof.



A QUANTUM OF THERMODYNAMICS 173

14.3 What is work?

In the main-text of this chapter, I have focussed on giving intuitive explanations of the framework and
discussing its implications on a physical level. I will now provide the formal definitions and proofs of
all the statements. In doing so, I will stay very close to the appendix of Ref. [2], but simplify at some
points. Apart from proving the results stated in the main-text, the content of this section also serves
to develop a more formal notation to deal with resource theories in general and thus complements
chapter 2.

14.3.1 Transitions and free transitions

Before coming to the actual proofs we need to set up some terminology. Let us consider a pair of
a quantum states and a Hamiltonian p = (ρ, H). In the following, I will call such pairs objects
and denote the associated Hilbert space by H (p), which for most of this work is taken to be finite-
dimensional. A transition is defined by a pair of objects p(i), p( f ) and an ordering between them. I
will refer to a transition as p(i) → p( f ). Such transitions are to be interpreted, in the context of the
present work, as changes on the system state and Hamiltonian of the battery of Arthur as implemented
by Merlin.

If the Hamiltonian in a transition remains constant, that is, if (ρ(i), H)→ (ρ( f ), H), I will refer to
it as a state transition and denote it simply by ρ(i) → ρ( f ) if the Hamiltonian is clear from the context.
We will often have to consider sequences of transitions, which is simply a set of n− 1 transitions of
the form {p(k) → p(k+1)}n−1

k=1 . We will simply denote it by p(1) → p(2) → · · · → p(n).
For any initial object there is a set of objects that can be reached by free operations. Here, I will

treat such free operations completely abstractly. To do that let us first define what is called the free
image.

Definition 14.5 (Free image). A free image is a function F that maps p(i) and a parameter β into
sets of objects {pk} = F (p(i), β). When F is such that the Hamiltonian remains constant, that is,

F (ρ(i), β) = {(ρk, H)}, (14.54)

we will refer to it as free state-image.

A free transition is now simply defined as any transition p(i) → p( f ), where p( f ) ∈ F (p(i), β).
When the parameter β is clear from the context, I will denote a free transition simply as p(i) →
F (p(i)).

Given two objects p = (ρ, H) and p′ = (ρ′, H′), let us define their tensor product as

p⊗ p′ := (ρ⊗ ρ′, H ⊗ I + I⊗ H′). (14.55)

If an object based on a bipartite system of parts A and B has the form

p = (ρAB, HA ⊗ IB + IA ⊗ HB) (14.56)

it is called an non-interacting object, since the Hamiltonian has no interaction between the two sub-
systems. Non-interacting objects are those objects on which a partial trace is defined in the following
way.

Definition 14.6 (Partial traces). Given any two objects pS = (ρS, HS) and p|S = (ρ|S, H|S), we
define the trace Tr|S as an operator acting on objects p of the form

p = pS ⊗ p|S =
(
ρS ⊗ ρ|S, HS ⊗ I|S + IS ⊗ H|S

)
, (14.57)

such that Tr|S(p) = pS. This definition extends to all non-interacting objects by the partial trace on
quantum states.

As is well known, Hamiltonians are only defined up to additive constants and, from a formal
point of view, we should speak only of equivalence classes of Hamiltonians. This will be of some
importance later, but I will nevertheless not incorporate it into the notation explicitly. As it will turn
out, our axioms will imply that any valid work-quantifier is naturally defined on equivalence classes
of Hamiltonians.

As discussed in chapter 2, resource theories contain the concept of free objects. In the context of
thermodynamics, these are usually thermal states at some fixed temperature. In terms of the abstract
notation introduced here, they are simply those objects wβ that fulfill p⊗wβ ∈ F (p) for all objects
p.

We can now define catalytic free transitions in an abstract way, based on the free image.
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Definition 14.7 (Catalytic free image). Given the free image F , we define the catalytic free image
FC as

FC(p(i), β) := {p | ∃ q; p⊗ q ∈ F (p(i) ⊗ q, β)}. (14.58)

A catalytic free transition is then defined as any transition p(i) → p( f ) with p( f ) ∈ FC(p(i), β).
When the parameter β is clear from the context, I will denote a catalytic free transition simply as
p(i) → p( f ) ∈ Fc(p(i)).

Apart from catalytic transitions, we also need a notion that captures the idea of a catalytic se-
quence, where the catalyst is only returned at the end of the sequence. A useful definition in this
direction is that of an assisted sequence.

Definition 14.8 (Assisted transitions and sequences). Two objects p(1), p(2) form a transition assisted
by (c1, c2) if

p(2) ⊗ c2 ∈ F (p(1) ⊗ c1, β), (14.59)

Now consider a sequence of transitions p(i) → p(i+1) for i = 1, . . . , n− 1. If each transition is a
free transition assisted by (ci, ci+1), respectively, then the sequence is assisted by (c1, cn).

In other words, an assisted sequence is a sequence on objects that can be performed by using free
operations and an auxiliary system that is at the end uncorrelated with the system but might have
changed its state.

Although at the moment the definition is fully abstract, let us anticipate that {ci}i are going to
play the role of the fuel employed by Merlin, which he can use to enable a transition or sequence of
transitions (on Arthur’s work-storage device) by changing the state of the ci. Figuratively speaking,
Merlin can "burn the fuel" to be able to run a machine.

Definition 14.9 (Free sequence). A sequence assisted by (c, c) is called a free sequence.

In the words above, a free sequence is a sequence of transitions that can be implemented while
not spending any fuel. It could also be called a catalytic free sequence. In the language of traditional
thermodynamics, a free sequence corresponds to an operation which can be done by only acting with
a heat bath and leaving everything else in the universe unchanged.

14.3.2 Basic assumptions on the free transitions and work-quantifiers

In the main text I have focused on the resource theory of thermodynamics, where the free operations
are, loosely speaking, defined as the energy preserving joint operations on system and bath. These
are mathematically characterised by Gibbs preserving maps, or strict subsets of them, such as the
thermal operations. However, the results also apply to (potentially very different) resource theories
defined by other classes of free operations, which are not motivated by the thermodynamic context. I
will therefore continue to present the examples in a way as abstract as possible, making clear which
assumptions are fundamentally necessary to derive the results.

Let us now discuss the first assumptions on the free operations that are needed in order to derive
the results in the main text of this chapter.

Property 1 (Composability). If p(3) ∈ F
(

p(2), β
)

and p(2) ∈ F
(

p(1), β
)
, then p(3) ∈ F

(
p(1), β

)
.

Property 2 (Swapping products). Given an object of the form p(1) ⊗ . . .⊗ p(n), then

P(p(1) ⊗ . . .⊗ p(n)) ∈ F (p(1) ⊗ . . .⊗ p(n), β), ∀β, (14.60)

where P permutes the labels (1, . . . , n) into (σ(1), . . . , σ(n)).

Property 2 in particular implies that the identity is a catalytic free transition, that is, p ∈ FC(p, β)
for all β. To see this, take as catalyst q = p and perform a swap between the system and the catalyst.

Property 3 (Tracing as free operation). For any subsystem S of A1, . . . , AN of a product object,
tracing out is in the free image. That is,

TrS(pA1 ⊗ . . .⊗ pAN ) ∈ F (pA1 ⊗ . . .⊗ pAN , β). (14.61)

In the case where the entire system is traced out,

S = ∪N
i=1 Ai, (14.62)

let us write TrS(p) := ∅. The object ∅ can be seen as the pair (1, 0) on H = C, representing the
vacuum. Note that it therefore fulfills p ⊗ ∅ = p for every object p. It is therefore a free object
independent of β.

In the following sections, we will frequently use the following lemma, which allows us to "paral-
lelize" sequences of transitions.
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Lemma 14.10 (Mapping time to space). Suppose F fulfills properties 1 and 2 and let p → p′ be
an assisted transition by (c, c′) and q → q′ be an assisted transition by (c′, c′′). Then the transition
p⊗ q→ p′ ⊗ q′ is an assisted transition by (c, c′′).

Proof. By Definition 14.8 of assisted transition and Property 1, the transition p1 ⊗ c → pm ⊗ c′ is
free. Therefore, also the transition pq ⊗ q1 ⊗ c → pm ⊗ q1 ⊗ c′ is free. An equivalent argument
implies that pm ⊗ q1 ⊗ c′ → pm ⊗ qn ⊗ c′′ is also free transition. Composing these two transitions
yields that p1 ⊗ q1 ⊗ c→ pm ⊗ qn ⊗ c′′ is also a free transition.

Once we have specified the transitions and the free transitions by specifying a free image, we
define a quantifier of the value of a given transitions within the set of allowed work-storage devicesP .
In the following I will always assume that the empty object ∅ is an element ofP , which simply means
that having no work-storage device constitutes a valid, trivial work-storage device. This assumption
is purely technical but will simplify some of the arguments later.

Definition 14.11 (Work quantifier). A work quantifier is a functionW that maps a transition within
P and parameter (p(i) → p( f ), β) into the real numbers. If β is clear from the context, we will
simply writeW(p(i) → p( f )).

14.3.3 General axioms

Using the mathematical definitions from the previous section, we can now present the axioms 1 and
2 of the main text more precisely.

Axiom 1 (Cyclic transitions of the work storage device). Given a collection of objects of the work-
storage device{p(1), . . . , p(n)} ⊂ P such that p(n) = p(1), then

n−1

∑
i=1
W
(

p(i) → p(i+1), β
)
≥ 0. (14.63)

Axiom 1 ensures that if a set of states can be arranged in a cyclic sequence, the total work cannot
be negative. If this were not true, Arthur could, in principle, repeat the protocol an arbitrarily number
of times and obtain an arbitrarily large benefit.

In the main text of this chapter, the second Axiom 2 is formulated in terms ofWtrans. It is possible
to reformulate Axiom 2 as being directly expressed in terms ofW for transitions of the work-storage
device. This will make it a more comfortable to work with in the following proofs.

Axiom 2 (Reformulation of “cyclic transitions of the fuel”). Let {p(k)A → q(k)A }
n−1
k=1 be a collection

of assisted transitions of the work-storage device, assisted by (ck, ck+1) respectively, with cn = c1.
Then

n−1

∑
k=1
W(p(k)A → q(k)A , β) ≤ 0. (14.64)

Importantly, the objects p(k)A and q(k)A ∀k in this formulation describe the work-storage device,
contrary to the formulation of Axiom 2 in the main text of the chapter. A very schematic depiction of
the transitions involved in this Axiom is given by Fig. 14.3. This formulation of the axiom might at
first seem somewhat unrelated to that of the main text. But it is indeed equivalent. Before coming to
the proof of this let me state a Corollary of Axiom 2 that will be useful in further proofs.

Corollary 14.12 (Cyclic free sequences). Let p(1)A → p(2)A → · · · → p(n)A a free sequence, then,

n−1

∑
k=1
W(p(k)A → p(k+1)

A , β) ≤ 0. (14.65)

Corollary 14.12 follows simply by the definition of free sequence, which is a particular case of
the conditions of Axiom 2, in the case where q(k)A = p(k+1)

A .

Proof of equivalence between formulations: Let us now see that the version of the Axiom 2 given
in the main text is indeed equivalent to the one given above. Let us first assume the version given in
the main text. We thus assume that for any sequence of Merlin’s system, "the fuel", where p(1)M →
· · · → p(n)M = p(1)M ,

n−1

∑
i=1

Wtrans(p(i)M → p(i+1)
M , β) ≤ 0 (14.66)
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p(1) q(1)

c1 c2 c2 c3

p(2) q(2) q(3)p(3)

c3 c1

Figure 14.3: A set of transitions to illustrate the conditions of Axiom 2. Merlin holds an auxiliary system described by c1 and receives the work-
storage device in p(1). Both systems are initially uncorrelated. Merlin then performs a free transitions so that the final state is described by c2⊗ q(1).
After this process, Arthur comes with a new work-storage device, initially uncorrelated so that Merlin holds now c2 ⊗ p(2). Several sequences of
such transitions are performed as depicted, so that at the final step, the auxiliary system has returned to its initial state c1. Merlin therefore did not
spend any resource and did not establish any correlations. Axiom 2 then states that Merlin cannot obtain benefit (earn money) when adding up the
work value of each transition. (Figure from Ref. [2].)

holds true. Now consider a set of assisted transitions {p(k)A → q(k)A }
n−1
k=1 of the work-storage device,

assisted by (ck, ck+1) respectively, with cn = c1, as in Axiom 2. Using Def. 4.1, we obtain

W(p(k)A → q(k)A ) ≤Wtrans(ck → ck+1), (14.67)

for all k ∈ {1, . . . , n− 1}. But then by identifying ci = p(i)M for all i, we obtain Eq. (14.64).

To show the reverse direction, we have to show that given a sequence p(1)M → · · · → p(n)M = p(1)M ,

Eq. (14.64) implies Eq. (14.66). Each transition p(k)M → p(k+1)
M will also induce a transition on the

marginal of the work-storage device, given by p(k)A → q(k)A ∈ Sk, where Sk is the set of all marginal

transitions on the work-storage device that can happen together with p(k)M → p(k+1)
M on the fuel, and

equivalently for all k. More explicitly,

Sk := {p(k)A → q(k)A | q
(k)
A ⊗ p(k+1)

M ∈ FC(p(k)A ⊗ p(k)M )}. (14.68)

All the p(k)A → q(k)A ∈ Sk are an assisted transition by p(k)M → p(k+1)
M . By the assumption (14.64),

this implies that the total work-value fulfills

n−1

∑
k=1
W(p(k)A → q(k)A ) ≤ 0 (14.69)

for all p(k)A → q(k)A ∈ Sk. This in turn implies

n−1

∑
k=1

sup
p(k)A →q(k)A ∈Sk

(
W(p(k)A → q(k)A )

)
≤ 0. (14.70)

But the supremum in Eq. (14.70) is the same as the one in the Def. 4.1 of Wtrans, which concludes
the proof.

14.3.4 Implications for the work definition

We can now discuss the implications of the Axioms for the work quantifiers. Since the two Axioms
are now re-formulated in such a way that they refer to objects of the work-storage device only, we
can drop the labels M and A. Unless explicitly mentioned, the letters p, q therefore now always refer
to the work-storage device.

Lemma 14.13 (Properties of work quantifiers). Consider a free image F fulfilling Properties 1-3. In
this case, Axioms 1 and 2 are fulfilled if and only ifW satisfies the following properties,

1. For all p(1), . . . , p(m) and q(1), . . . , q(m) in P such that
⊗m

i=1 q(i) ∈ FC(
⊗m

i=1 p(i)),

m

∑
i=1
W(p(i) → q(i)) ≤ 0. (14.71)

2. For all p, q, r ∈ P

W(p→ q) = −W(q→ p), (14.72)
W(p→ q) +W(q→ r) =W(p→ r). (14.73)
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Proof. Let us first see how the properties follow from the Axioms, beginning with properties (14.72)
and (14.73). The two properties follow once we have shown that any cyclic sequence p1 → p2 →
. . . → pn = p1 has a total work-value equal to zero. Given Axiom 1, which already implies that
the total work-value of a cyclic sequence is larger than zero, this only requires to show that such
a sequence has a work-value smaller or equal to zero. We can do this by showing that any cyclic
sequence is a free sequence, which is enough to show the claim given Corollary 14.12. Consider the
catalyst c1 = cn := c given by c =

⊗n−1
i=2 pi. To see that c assists any cyclic sequence from p1 to

pn = p1, consider the object p1 ⊗ c =
⊗n−1

i=1 pi. By swapping, which is a free operation, we arrive
at state p2 ⊗ c′ with c′ = p1 ⊗ p3 ⊗ p4 ⊗ · · · ⊗ pn−1. Repeating the swapping sequentially we see
that the first system goes through the transitions p1 → p2 → · · · → pn−1. Applying a final swap
the fuel is returned to c and the system returns to object p1, proving the claim and thus, Eqs. (14.72)
and (14.73).

Let us now show property (14.71) from the axioms. The premise of (14.71) is that there exists
a catalytic free transition

⊗n
i=1 pi →

⊗n
i=1 qi (taking m = n without loss of generality; the other

cases follow by tensoring a suitable number of empty objects ∅). Then the transition p1 → q1 is a
transition assisted by (

c1 =
n⊗

i=2
pi, c′1 =

n⊗
i=2

qi

)
. (14.74)

Secondly, the transition p2 → q2 is an transition assisted by (c2 =
⊗n

i=2 qi, p2
⊗n

i=3 qi). This can
be seen by just performing a swap between the work-storage system in p2 and the first element of the
fuel in q2. An equivalent swapping can be used to show that pj → qj is a transition assisted bycj =

j−1⊗
i=2

pi

n⊗
k=j

qk, c′j =
j⊗

i=2
pi

n⊗
k=j+1

qk

 (14.75)

for j = 3, . . . , n− 1. Lastly, pn → qn is assisted by (cn =
⊗n−1

i=2 pi ⊗ qn, c′n = ⊗n
i=2 pi). Alto-

gether, this implies that the set of sequences {pi → qi}n
i=1 can be each performed with free opera-

tions assisted by (ci, c′i) as described previously. Note that c′i = ci+1 and c1 = c′n, hence, it meets
the conditions of Axiom 2 which by Eq. (14.64) implies

n

∑
i=1
W(pi → qi) ≤ 0.

Finally, let us show that the properties (14.71)-(14.73) imply the axioms. Axiom 1 is trivially
satisfied since properties (14.72) and (14.73) imply that for any cyclic sequence the total amount
of work is zero. Let us move to Axiom 2, which has as a premise that one has n − 1 assisted
transitions p(j) → q(j), assisted by (cj, cj+1) with j = 1, . . . , n− 1 and cn = c1. Then, we can use
Lemma 14.10 and see that the transition

n−1⊗
j=1

p(j) →
n−1⊗
j=1

q(j) (14.76)

is a transition assisted by (c1, cn = c1). Thus the system c is returned unchanged, hence
⊗n−1

j=1 p(j) →⊗n−1
j=1 q(j) is indeed a catalytic free transition and (14.71) implies that

n−1

∑
j=1
W(p(j) → q(j)) ≤ 0, (14.77)

proving (14.64) and, as a consequence, Axiom 1.

With this result at our disposal we can now show that Axioms 1 and 2 (equivalently Eqs. (14.71)-
(14.73)) imply very specific properties of the functionW .

Theorem 14.14 (theorem 4.2 in the main text). Given a free image F that fulfils Properties 1-3, the
functionW fulfils Axioms 1 and 2 if and only if it can be written as

W(p→ q) = M(q)−M(p), (14.78)

for a function M such that M(∅) = 0 and that fulfils the following property:

Additive monotonicity: For all p(1), . . . , p(n) and q(1), . . . , q(n) in P such that
⊗n

i=1 q(i) ∈
FC(

⊗n
i=1 p(i))

n

∑
i=1

M(q(i)) ≤
n

∑
i=1

M(p(i)). (14.79)
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Proof. We show this by showing that the above conditions are equivalent to the conditions (14.71)-
(14.73), which in turn are equivalent with Axioms 1 and 2. Consider the function M(p) :=W(∅→
p). By properties (14.72) and (14.73) we have

W(p→ q) = M(q)−M(p) (14.80)

and M(∅) = 0 is true by definition. Then (14.71) is fulfilled if and only if additive monotonicity
holds for M.
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14.4 Uniqueness of the relative entropy and free energy

14.4.1 Rank-decreasing quantum channels

Here, I provide the proof of Lemma 5.3 as presented in Ref. [7]. We have to show that given a
channel T : B(H ) → B(H ′) and a full-rank state σ such that supp(T(σ)) ⊂ P, we also have
supp(T(ρ)) ⊂ P for all states ρ. Here, P is an arbitrary subspace of the total Hilbert space H ′.
Let σ = ∑i qi |i 〉〈i | be the eigen-decomposition of σ. Since T maps positive operators to positive
operators, and the support of the sum of positive operators is the union of the supports of the operators
we conclude that T( |i 〉〈i |) is supported in P for all i. We thus only need to show that also operators
of the form T( |i 〉〈j |) are supported on P. Now consider any density operator ρ = d + r where d is
the diagonal part of ρ (in the eigenbasis of σ) and r the rest. We know that Tr(T(d)) = 1 since T
is trace-preserving. Hence Tr(T(r)) = 0. Let us now assume (to arrive at a contradiction) that T(r)
has support within the subspace Q = 1− P. Since T maps positive operators to positive operators,

0 ≤ QT(ρ)Q = QT(r)Q. (14.81)

Thus we conclude on the one hand that QT(r)Q ≥ 0. On the other hand, we know that

1 = Tr(T(ρ)) ≥ Tr(PT(ρ)) = 1 + Tr(PT(r)). (14.82)

Hence, Tr(P(T(r))) = 0. Since T is trace-preserving we also have

Tr(PT(r)) = −Tr(QT(r)) = 0. (14.83)

Hence QT(r)Q = 0 and also QT(ρ)Q = 0. By positivity and Hermiticity of T(ρ) we also get
PT(ρ)Q = 0 and QT(ρ)P = 0. We thus conclude that T(ρ) = PT(ρ)P, which finishes the proof.
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14.5 Statistical ensembles from thermodynamic operations

In this section, I provide the proofs for the main results in chapter 6.

14.5.1 Distilling thermal states from the environment

The basic results that will allow us to prove our main result is that if we take many copies of macro-
states from the environment, we can distill a thermal microstate to arbitrary accuracy. Furthermore,
this can be done using a unitary that exactly preserves energy. In this section we will prove this result.
In the following sections we will use this result to establish that the only valid choice for the functio
H 7→ eβ(H) is the one that assigns the energy of the Gibbs state and to prove theorem 6.5.

The proof that one can distill thermal microstates from copies of macrostates rests on two steps.
First, we show that we can use macrostates from the environment to implement random unitaries .
Then we show that we can distill thermal microstates using random unitaries.

Random energy-preserving unitaries To see how to implement random energy-preserving unitaries,
we provide the following simple protocol. The idea is that we can use thermal systems from the en-
vironment and apply unitaries conditioned on energy measurements on these systems. To implement
this idea, take from the environment M two-level systems with gap ∆ and energy eβ(∆) for the fixed
function eβ(∆). I.e., we assume that the Hamiltonian is given by H∆ = ∆ |1 〉〈1 |. For a two-level
system, the excitation and ground state probabilities are determined uniquely from the expectation
value eβ(∆):

p1 := Tr( |1 〉〈1 | ρ) = Tr(H∆ρ)/∆, (14.84)

p0 := Tr( |0 〉〈0 | ρ) = 1− Tr(H∆ρ)/∆. (14.85)

Therefore, we have p1 = eβ(∆)/∆ and p0 = 1 − eβ(∆)/∆. If we take many copies M, the
probabilities for the energy-levels on the joint-system (labelled by bit-strings 0110011 etc.) will
become arbitrarily dense on the interval [0, 1]. For any probability distribution qj over K elements
and any error ε, there is therefore a number M such that we can then find a partition P of the bit-
strings (basis states of the M copies) into K subsets Pj such that

|Tr
(

Pj(eβ(∆), H∆)
⊗M
)
− qj| < ε, (14.86)

where Pj is the projector onto the bit-strings in Pj:

Pj = ∑
s∈{0,1}×M ,

s∈Pj

|s 〉〈s | . (14.87)

Now suppose we want to implement the unitaries Uj with probability qj on a different system HE.
Then we can do this (to arbitrary accuracy) by implementing the unitary

V = ∑
j

Pj ⊗Uj (14.88)

on the system (eβ(∆), H∆)
⊗M ⊗ (eβ(HE), HE). Finally, provided that the unitaries Uj commute

with the Hamiltonian HE the unitary V commutes with the total Hamiltonian and hence preserves
the energy. In particular, the M two-level systems as well as the system with Hamiltonian HE will
remain in the same macrostate.

Distilling thermal states Having shown how to implement random energy-preserving unitaries we
can now proceed to discuss how to distill thermal states from the macrostate environment. Suppose
we want to distill a single thermal microstate of the Hamiltonian HE. We will do this using the
following steps:
1. Take a large number N of copies of (eβ(HE), HE).
2. Use a random energy-preserving unitary to dephase the density matrix in the energy-eigenbasis.
3. In each (highly degenerate) energy-eigenspace of the N copies of HE perform a mixture of

unitaries that changes the global density matrix to the maximally mixed state in this energy-
eigenspace. If we label the energy-eigenspaces by α, with being P(N)

α being the projector onto the
energy-eigenspace with energy E(N)

α , this brings the density matrix to a state of the form

Ω(N) = ∑
α

q(N)
α

P(N)
α

d(N)
α

, (14.89)

where d(N)
α is the dimension of the subspace P(N)

α .
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4. We prove that the reduced state of Ω on any of the copies is close to the Gibbs state of HE with
energy eβ(HE).

The only point left to prove is the last point. To see this point, first note that since we assumed that
the many copies are uncorrelated, the global energy distribution of the N copies is highly peaked
around the mean Neβ(HE). This is true despite the fact that the systems might all be in different
microstates. More precisely, from Hoeffding’s inequality it follows that the total probability to find
the system with an energy that deviates from Neβ(HE) by more than O(

√
N) is exponentially small

in N. Let us collect thus collect the energies that differ from Neβ(HE) by less than c
√

N in the

subspaceM(N), where c > 0 is some constant. Then we have

Ω(N) = ∑
α∈M(N)

q(N)
α

P(N)
α

d(N)
α

+ ε(N)σ, (14.90)

where σ is some density matrix and ε(N) decreases exponentially with N. Note that E(N)
αN /N →

eβ(HE) as N → ∞ for any sequence αN ∈ M(N).

Each of the states P(N)
α /d(N)

α is a microcanonical state on N copies of the same system, with the
energy-density eβ(HE) as Ndiverges. Therefore, the standard arguments from statistical mechanics
that show how the canonical state follows from the microcanonical ensemble suffice to show its local
reduction on any of the identical N copies is arbitrary close to the Gibbs-state at energy E(N)

α /N (see
Ref. [11] for a more detailed discussion of the error in the approximation).

Since E(N)
α /N → eβ(HE) as N → ∞ the reduced states of the P(N)

α /d(N)
α converge to the Gibbs

state at energy eβ(HE), i.e., at temperature β. Note that, while the local marginals TrN−1(Ω(N)) are

close to Gibbs states, the global state Ω(N) is highly correlated and hence we cannot expect it to be
close to a Gibbs state. In particular, in principle we have to repeat this process for any uncorrelated
copy of the Gibbs state ωβ(HE) that is required in the protocol.

A similar argument can be made if a set of commuting conserved quantities is fixed instead of only
the Hamiltonian, but requires more care in the details of the derivation (see Ref. [11] for details). In
this case one obtains that the reduced state of the corresponding state Ω(N) is a Generalized Gibbs
ensemble.

14.5.2 Proof of theorem 6.5

The main-result theorem 6.5 can be shown very easily using the distillation protocol above. Note that
to prove the theorem, it is sufficient to show that we can map the macrostate (e, H) to the microstate
ωβ(e)(H). To do this, distill from the environment a thermal state of the re-scaled Hamiltonian

HE =
β(e)

β
H. (14.91)

Then, we simply swap the state on the system with the one that we distilled from the environment.
The final state on the system is then given by

ωβ(β(e)/β H) = ωβ(e)(H). (14.92)

The energy before the swap is given by:

Ebefore = e + Tr
(

ωβ(β(e)/β H)H
)

β(e)/β = e + Tr
(

ωβ(e)(H)H
)

β(e)/β = e(1 + β(e)/β).

(14.93)

The energy after the swap is given by

Eafter = Tr
(

ωβ(β(e)/β H)H
)
+ eβ(e)/β = Tr

(
ωβ(e)(H)H

)
+ eβ(e)/β = Ebefore. (14.94)

The operations is thus a valid macrostate operation and maps the macrostate (e, H) to the microstate
ωβ(e)(H). Further note that this operation would in general be impossible using unitary operations
that preserve the energy on the level of probability distributions: While we could still distill the
thermal state ωβ(β(e)/βH), swapping it with the microstate on the system would in general not
preserve the probability distribution of energy, but only its expectation value.

14.5.3 Non-Gibbsian energies trivialize the resource theory

Let us now use the distillation protocol to sketch the proof-idea for the following result:
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Result 14.15. Assume that eβ(HE) neither assigns the ground state energy nor the energy of the
highest excited state to the system. Then if the function HE 7→ eβ(HE) cannot be expressed as
HE 7→ Tr(ωβ′ (HE)HE) for some β′, any macrostate (e, H) can be transformed to any other valid
macrostate (e′, H) by a macrostate-to-macrostate operation.

Any function eβ(HE) that fulfills the assumption of result 14.15 can be expressed as

eβ(HE) = Tr
(

ωβ̃(HE)
(HE)

)
, (14.95)

for some function β̃(HE) that assigns inverse temperatures to Hamiltonians. Suppose now, that

eβ(HE) is not of the form Tr
(

ωβ′ (HE)
)

for some fixed β′. Then there are at least two Hamiltonians

H(1)
E and H(1)

E such that β̃(H(1)
E ) 6= β̃(H(2)

E ). Let us introduce the short-hands β1 = β̃(H(1)
E ) and

β2 = β̃(H(2)
E ). Using the distillation protocol form the last subsection, we can then distill for free

states of the form (
ωβ1 (H(1)

E )⊗ωβ2 (H(2)
E )

)⊗N
, (14.96)

where N is arbitrary. What we have at our hand then, are two thermal heat baths of arbitrary size
at different temperatures from which we can extract as much work as we wish. We can then use
this work to bring any system into any macrostate. In our framework, this works by introduce a
further system ωβ̃(HE)

(HE) from the environment and applying a global, energy-preserving unitary
operation to bring this system to any macrostate that we want. Using the results of Ref. [80], we can
even prepare any microstate.
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14.6 Thermal machines under control restrictions

14.6.1 Work in isothermal process

In this section, we proof that the work in an optimal isothermal process between two Hamiltonians H0
and H1 is given by Fβ(ωβ(H0), H0)− Fβ(ωβ(H1), H1). It has already been shown in section 9.1.3
that the work in an isothermal process of N steps can be written as

WN(0→ 1) =
N

∑
i=1

W(ti−1 → ti)

=
N

∑
i=1

Tr
(

ωβ(Hti−1 )
(

Hti−1 − Hti

))
, (14.97)

where Hti with ti = i/N are the Hamiltonians along the discretization of the smooth path Ht that
connects H0 with H1. We will now follow the strategy in Ref. [235]: In the limit N → ∞, we can
replace the sum by the integral

W(0→ 1) = lim
N→∞

WN(0→ 1)

= −
∫ 1

0
Tr
(

ωβ(Ht)
∂Ht
∂t

)
dt. (14.98)

To find this integral, consider the derivative of the free energy:

∂

∂t
Fβ(ωβ(Ht), Ht) = −

∂

∂t
1
β

log
(

Tr
(

e−βHt
))

= − 1
β

Tr
(

∂
∂t e−βHt

)
Tr
(
e−βHt

) (14.99)

= Tr
(

ωβ(Ht)
∂Ht
∂t

)
. (14.100)

We thus find

W(0→ 1) = Fβ(ωβ(H0), H0)− Fβ(ωβ(H1), H1). (14.101)

14.6.2 Proof of theorem 9.1

In this section, I prove the upper bound in theorem 9.1. Consider any cyclic protocol P starting
with Hamiltonian H = Ht0 and state ρ = ρt0 . Let the protocol consist of N steps and denote the
quantum state before the i-th thermal contact by ρti and the state after the i-th thermal contact by
σti = Gti (ρti ). Since the protocol is cyclic, HtN = H. The states ρti fulfill

ρti = Uiσti−1 U†
i , σt0 = ρt0 = ρ.

The total extracted work in the protocol is then given by

W(P , ρ, H) =
N

∑
i=1

[
Tr
(

Hti−1 σti−1

)
− Tr (Hti ρti )

]
=

N

∑
i=1

Fβ(σti−1 , Hti−1 )− Fβ(ρti , Hti )

= Fβ(σt0 , Ht0 )− Fβ(ρtN , HtN )−
N−1

∑
i=1

(
Fβ(ρti , Hti )− Fβ(σti , Hti )

)
. (14.102)

Since σti = Gti (ρti ) and Gti is Gibbs-preserving with respect to Hti we obtain from the monotonicity
of the free energy under Gibbs-preserving maps that

Fβ(ρti , Hti ) ≥ Fβ(σti , Hti ). (14.103)

Furthermore, by the extremality of the Gibbs state, we have Fβ(ρtN , H) ≥ Fβ(ωβ(H), H). Therefore
we get the final upper bound

W(P , ρ, H) ≤ Fβ(σt0 , Ht0 )− Fβ(ρtN , HtN ) ≤ Fβ(ρ, H)− Fβ(ωβ(H), H)

= ∆Fβ(ρ, H). (14.104)
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Figure 14.4: The curves g (in
blue, see Eq. (14.114)) and f
(in orange, see Eq. (14.115))

illustrating the thermo-
majorization condition for

the example of breakdown of
universality of thermalizing
contacts in the case of two

spins and local control. Since
the orange curve (correspond-
ing to the thermal state of Hs

for s < sc) lies below the
blue curve (corresponding to

the maximally mixed state)
the transition from the maxi-

mally mixed state to this state
is possible using a thermal
operation. The green curve

(identity function) corresponds
to the thermal state of H0.

(Figure adapted from Ref. [1].)
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14.6.3 Proof of Lemma 9.2

In this section, I prove the upper bound in Lemma 9.2. Consider any protocol P that employs
thermalizing maps as thermal contacts only. First note that it is always sub-optimal to start the
protocol with a thermal contact, since then no work can be extracted anymore. Similarly, we can
always assume that the protocol ends in the thermal state. Then subdivide the protocol into two parts:
The first adiabatic evolution (with unitary U and ending with Hamiltonian Ht) and the rest. The total
work is then given by

W(P , ρ, H) = Tr(ρH)− Tr(σHt) + W((σ, Ht)→ (ωβ(H), H)), (14.105)

where UρU† = σ and W((σ, Ht) → (ωβ(H), H)) denotes the work after the first adiabatic evo-
lution. By essentially the same calculation as in section 9.1.3, the latter part of the work is upper
bounded as

W((σ, Ht)→ (ωβ(H), H)) ≤ Fβ(σ, Ht)− Fβ(ωβ(H), H). (14.106)

Using that the von Neumann entropy is unitarily invariant, using extremality of the Gibbs state and
plugging the above inequality into (14.105), we then get

W(P , ρ, H) = Fβ(ρ, H)− Fβ(σ, Ht) + W((σ, Ht)→ (ωβ(H), H))

≤ Fβ(ρ, H)− Fβ(ωβ(Ht), Ht) + W((σ, Ht)→ (ωβ(H), H))

≤ Fβ(ρ, H)− Fβ(ωβ(H), H)−
[

Fβ(σ, Ht)− Fβ(ωβ(Ht), Ht)
]

. (14.107)

Optimizing over Ht and σ ∈ UH[ρ] yields the final upper bound.

14.6.4 Proof of Lemma 9.3

Consider any two Hamiltonians H1 and H2. Then

Tr(ωβ(H1) log ωβ(H2)) = −βTr(ωβ(H1)H2)− log Zβ(HB).

The relative entropy between the thermal states of H1 and H1 + H2 is always positive and (using the
above equation) given by

0 ≤ D(ωβ(H1)‖ωβ(H1 + H2))

= −βTr(ωβ(H1)H1)− log Zβ(H1) + βTr(ωβ(H1)(H1 + H2)) + log Zβ(H1 + H2).

Cancelling terms and recognising that Fβ(ωβ(H), H) = − 1
β log Zβ(H) finishes the proof:

Fβ(H1 + H2) ≤ Fβ(H1) + Tr(ωβ(H1)H2). (14.108)

14.6.5 Thermo-majorization argument for the example of two spins

In this section I show that the maximally mixed state can be mapped to the thermal state of the
Hamiltonian Hs = H0 + s1⊗ σz (see section 9.3.3) using a thermal operation. To show this, I will
use the technique of thermo-majorization. To simplify the notation discussion, let us assume β = 1
without loss of generality

Denote the (ordered) vectors of eigenvalues of the Gibbs state of H0 and Hs by

ω0 =
1

2(1 + e2)
(e2, e2, 1, 1), ωs =

1
2(1 + e2)

(e2 f+(s)), e2 f−(s)), f+(t), f−(s)), (14.109)
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respectively, with f±(s) = 1 ± tanh(s). Furthermore, denote the vector of eigenvalues of the
maximally mixed state by p = (1, 1, 1, 1)/4. To evaluate the thermo-majorization condition we have
to order the vectors with entries ri = (ωs)i/(ω0)i and r′i = pi/(ω0)i in non-increasing order. Let
σ, σ′ be the permutations that do this, i.e.,

rσ(1) ≥ · · · ≥ rσ(4) (14.110)

and similarly for p and σ′. The vectors r, r′ are given by

r = (1 + tanh(s), 1− tanh(s), 1 + tanh(s), 1− tanh(s)),
(14.111)

r′ =
1 + e2

2
(e−2, e−2, 1, 1). (14.112)

Thus, one possible choice of permutations is given by

σ =

(
1 2 3 4
3 1 4 2

)
, σ′ =

(
1 2 3 4
3 4 1 2

)
. (14.113)

Now construct the curve of straight lines g that connects the points with coordinates k

∑
j=1

(ω0)σ′(j),
k

∑
j=1

pσ′(j)

 , k = 1, . . . , 4. (14.114)

Similarly, construct the curve of straight lines f that connects the points with coordinates k

∑
j=1

(ω0)σ(j),
k

∑
j=1

(ωs)σ(j)

 , k = 1, . . . , 4. (14.115)

The thermo-majorization condition says that the maximally mixed state (represented by the curve
g) can by mapped by a thermal operation to the thermal state of the Hamiltonian Hs if and only if
g(x) ≥ f (x) for all x.

The condition clearly holds for the first points. For the second point, a simple calculation shows
that

g(1/2) =
1
2

(
1 +

e2 − 1
2e2

)
(14.116)

while

f (1/2) =
1
2
(1 + tanh(s)), (14.117)

which yields the condition

s ≤ sc := tanh−1
(

e2 − 1
2e2

)
' 0.46. (14.118)

There are no further constraints (see Fig. 14.4) and the proof is finished.

14.6.6 Proof of theorem 9.5

In this section I provide the proof of theorem 9.5. To do that, let us first define more precisely a
"Carnot-like" protocol. In the following, a Carnot-like protocol will be any protocol that consists of i)
a series of nh consecutive thermal contacts with the hot bath and possible adiabatic evolution between
the contacts; ii) after that nc consecutive thermal contacts with the cold bath, again with possible
adiabatic evolutions in-between; iii) a final adiabatic evolution to return the Hamiltonian back to its
initial value. Both a Carnot-like protocol and a protocol that is not Carnot-like are schematically
depicted in Figure 14.5.

From Figure 14.5, it seems intuitively clear that Carnot-like protocols have higher efficiency than
other protocols since they minimize the number of dissipation-events. Similarly, to every protocol P
we can associate Carnot-like protocols by considering a subset of the involved Hamiltonians. Every
such constructed Carnot-like protocol has higher efficiency than P .

We will prove all of this below. Before that, it is instructive to calculate the efficiency of the
Carnot-like protocol. Let us assume (without loss of generality) that we start thermalized with the
cold bath in Hamiltonian H(4). We then do an adiabatic evolution to the Hamiltonian H(1). After that
we do the first thermal contact to the hot heat bath and then alternate between adiabatic evolutions
and thermal contacts until we arrive at Hamiltonian H(2) in the state ωβh

(H(2)) in nh − 1 steps.
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Figure 14.5: (a) Carnot-like protocol; (b) protocol that is not Carnot-like. Red, dashed arrows symbolize thermalization-events and the wiggly
arrows symbolize corresponding dissipation. (Figure adapted from Ref. [6].)

From essentially the same calculation as in the proof of Lemma 9.2, we obtain that the work in this
process is bounded as

W(4→ 1) ≤ Fβh
(ωβc (H(4)), H(4))− Fβh

(ωβh
(H(2)), H(2))− ThD(Uωβc (H(4))U†‖ωβh

(H(1)))

(14.119)

=: Fβh
(ωβc (H(4)), H(4))− Fβh

(ωβh
(H(2)), H(2))− ThC(1)

h (14.120)

The bound is achieved in an adiabatic evolution followed by an isothermal process. This protocol
also lower bounds the absorbed heat from the hot bath. From the first law of thermodynamics we find
that this heat is upper bounded by

Qh(4→ 1) ≤ Th

(
S(ωβh

(H(2)))− S(ωβc (H(4)))
)
− ThC(1)

h (14.121)

=: Th

(
S(2)

h − S(4)
c

)
− ThC(1)

h . (14.122)

After the contacts with the hot bath, we then do an adiabatic evolution to H(3), followed by nc thermal
contacts with the cold bath, with adiabatic evolutions in-between, back to the initial Hamiltonian
H(4). Completely analogous to the work in the first part, the work done in this part is upper bounded
as

W(1→ 4) ≤ Fβc (ωβh
(H(2)), H(2))− Fβc (ωβc (H(4)), H(4))− TcD(Vωβh

(H(2))V†‖ωβc (H(3)))

(14.123)

=: Fβc (ωβh
(H(2)), H(2))− Fβc (ωβc (H(4)), H(4))− TcC(3)

c (14.124)

and the heat from the cold bath is bounded as

Qc(1→ 4) ≤ −Tc

(
S(2)

h − S(4)
c

)
− TcC(3)

c . (14.125)

The total work is then given by

Qh(4→ 1) + Qc(1→ 4) = W(P) ≤ (Th − Tc)
(

S(2)
h − S(4)

c

)
− ThC(1)

h − TcC(3)
c . (14.126)

If the work W(P) is positive, then the heat from the hot bath is positive and the heat from the cold
bath is negative. Hence the efficiency fulfills

η(P) = 1 +
Qc

Qh
= 1− |Qc|

Qh

≤ 1− Tc

Th

∆S(2,4) + C(3)
c

∆S(2,4) − C(1)
h

 , (14.127)

with ∆S = S(2)
h − S(4)

c . This proves the theorem for Carnot-like protocols.
For non-Carnot like protocols, let us first discuss an example to understand what happens. Con-

sider the protocol in Figure 14.5 b). From the picture we can see that we can understand this protocol
as two Carnot-like protocols, connected by an isothermal at the cold bath: First the lower Carnot-like
cycle is done (with work W(1) and heat Q(1)

h ), then an isothermal from H(8) to H(7) is implemented,

followed by a Carnot-like cycle (with work W(2) and heat Q(2)
h ) and finally an isothermal back from

H(7) to H(8). The total work done by the isothermal process connecting the two cycles is at most
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zero (it is a cyclic process with a single heat bath and initial state in thermal equilibrium) and no heat
is exchanged with the hot bath during these processes. Therefore, the total work and heat fulfill

W(P) ≤W(1) + W(2), Q(P) = Q(1)
h + Q(2)

h . (14.128)

This yields an efficiency bounded as

η(P) ≤ W(1) + W(2)

Q(1)
h + Q(2)

h

≤ max
{

η(1), η(2)
}

, (14.129)

with η(i) = W(i)/Q(i)
h .

In the same way, since we demand that any protocol be cyclic and isothermals are reversible, it
follows that the efficiency of any protocol can be upper bounded by one which can be subdivided
into m Carnot-like cycles connected by isothermal processes at the cold bath – just like in the above
example for m = 2. From the point of efficiencies, these then act like m Carnot-like cycles running in
parallel and the total efficiency is bounded by the maximum efficiency of the m different Carnot-like
cycles.

We thus find that the efficiency of any protocol can be upper bounded

η(P) ≤ max
i

{
η(i)
}

. (14.130)

The optimal cycle η(i) then determines the Hamiltonians H(j) appearing in the theorem. This finishes
the proof.

14.6.7 Ratios of entropies in the strong coupling limit

In this section, we calculate how the ratio of entropies at different temperatures

S(ωβc (H))

S(ωβh
(H))

(14.131)

behaves in the limit of strong interactions for a ferromagnetic Hamiltonian. To keep the discussion as
general as possible, we will only use very general properties of the Ising model, namely the fact that
it has a gap and a two ground states that are couple to an external magnetic field in a macroscopic
way (this will become clearer below).

Let us consider a Hamiltonian of the form

JH(J) = J
(

H0 +
B
J

V
)
= JH0 + BV (14.132)

on a system of N spins. In the following N is fixed. Note that as J → ∞, the Hamiltonian H(J)
approaches H0. We make the following assumptions, which are all fulfilled for the classical Ising
model if V = ∑j σz

j denotes the external field.

1. H0 is a local Hamiltonian with spectral gap ∆.

2. H0 has a two-fold degenerate ground state.

3. V is a local Hamiltonian.

4. For large values of J, the effect of the perturbation B
J V on H0 is to split the ground state degener-

acy by an amount cN B
J , for some constant c > 0. The spectral gap above the two ground states

remains of order unity as J → ∞.

We can then prove the following Lemma.

Lemma 14.16 (Ratios of entropies). Let H(J) fulfill the above assumptions. Define

Sc/h(J) := S(ωβc/h
(JH(J))) = S(ωβc/h

(JH0 + BV)). (14.133)

Then

lim
J→∞

Sc(J)
Sh(J)

{
≤ 2 βc

βh
e−(βc−βh)2cBN +

log(1+e−βc2cBN)

log(1+e−βh2cBN)
, B 6= 0,

= 1, B = 0.
(14.134)

Proof. Let Ei(J) denote the eigen-energies of JH(J) in non-decreasing order, i.e., Ei+1(J) ≥ Ei(J).
Since we are interested in the entropy, we can set the ground state energy of JH(J) to E0(J) = 0
for every J separately. By the assumptions above, we then have E1(J) = 2cNB and E2(J) =

J(∆ + O(1)). Let us also write Zc/h(J) = Tr(e−βc/h JH(J)) for the partition function. Using the
above conventions, it fulfills Zc/h(J) ≥ 1.
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We will use the formula

Sc/h(J) = βc/hEβc/h
(J) + log(Zc/h(J))

with Eβc/h
(J) the thermal energies of JH(J) at inverse temperature βc/h. Since the gap of JH(J)

increases linearly with J, only the levels E0(J) and E1(J) contribute in the limit J → ∞. We hence
obtain

lim
J→∞

Sc/h(J) = βc/h
2cBN

1 + e−βc/h2cBN + log(1 + e−βc/h2cBN).

We can then bound the ratio of entropies as

lim
J→∞

Sc(J)
Sh(J)

=
βc

2cBN
1+e−βc2cBN + log(1 + e−βc2cBN)

βh
2cBN

1+e−βh2cBN + log(1 + e−βh2cBN)
,

≤ 2
βc

βh
e−(βc−βh)2cBN +

log(1 + e−βc2cBN)

log(1 + e−βh2cBN)
. (14.135)

where he have used in the last line that all the terms appearing are positive. For B = 0 we get

lim
J→∞

Sc(J)
Sh(J)

= 1. (14.136)
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14.7 Thermodynamics in closed quantum systems using GGEs

14.7.1 Example of a non-passive state with passive correlation matrix

Consider a three-fermion system with Hamiltonian

H = ε1η†
1 η1 + ε2η†

2 η2 + ε3η†
3 η3 (14.137)

and a state ρ diagonal in the basis of H with Tr(η†
i ηiρ) = pi with i = 1, 2, 3. The correlation matrix

of the state ρ is simply C(ρ) = diag{p1, p2, p3} and is hence passive whenever p1 ≥ p2 ≥ p3.
Let us now choose ε1 = 1, ε2 = 2, ε3 = 2.5 and p1 = 0.4, p2 = 0.3, and p3 = 0.1. Then the
energy level with energy ε3 = 2.5 has probability (1− p1)(1− p2)p3 = 0.042. On the other hand,
the level with energy ε1 + ε2 = 3 has probability p1 p2(1− p3) = 0.108. Hence, the state is not
passive.
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14.8 Corrections to work and efficiency under strong coupling

14.8.1 Derivation of the correction terms to the work

In this section, I provide the explicit calculation leading to the correction terms ∆F(irrev) and ∆F(res).
As described in the main-text, the work that is extracted in the given protocol is given by

W(ρ(0)S, H(0)S) = W1 + W2 + W3, (14.138)
(14.139)

with

W1 = Tr
(

ρ(0)⊗ωβ(HB)
(

H(0)S − H(1)
S −V

))
, (14.140)

W2 = Fβ(ωβ(H(1)), H(1))− Fβ(ωβ(H( f )), H( f )), (14.141)

W3 = Tr
(

ωβ(H( f ))
(

H( f )
S + V − H(0)S

))
. (14.142)

Here, the Hamiltonians H(1)/( f ) = H(1)/( f )
S + V + HB still need to be optimized to maximize the

extracted work. We want to arrive at an expression of the form

W(ρ(0)S, H(0)S) = W(weak)(ρ(0), H(0)S)− ∆F(irrev)(H(1)
S )− ∆F(res)(H( f )

S ), (14.143)

with W(weak)(ρ(0), H(0)S) = ∆Fβ(ρ(0), H(0)S). To arrive at this expression, first note that

Fβ

(
ωβ(H( f )), H( f )

)
= Fβ

(
ωβ(H( f )), H( f )

S + HB

)
+ Tr

(
ωβ(H( f ))V

)
= Fβ

(
ωβ(H( f )), H(0)S + HB

)
+ Tr

(
ωβ(H( f ))(V + H( f )

S − H(0)S)
)

.

Therefore

W2 + W3 = Fβ

(
ωβ(H(1)), H(1)

)
− Fβ

(
ωβ(H( f )), H(0)S + HB

)
(14.144)

= Fβ

(
ωβ(H(1)), H(1)

)
− Fβ

(
ωβ(H(0)S + HB), H(0)S + HB

)
− ∆Fβ

(
ωβ(H( f )), H(0)S + HB

)
(14.145)

We need two further relations. First we have

Fβ

(
ωβ(H(0)S + HB), H(0)S + HB

)
= Fβ

(
ωβ(H(0)S)⊗ωβ(HB), H(1)

)
+ Tr

(
ωβ(H(0)S)⊗ωβ(HB)(H(0)S − H(1)

S −V)
)

.

Second,

Fβ

(
ωβ(H(0)S)⊗ωβ(HB), H(1)

)
= Fβ

(
ρ(0)⊗ωβ(HB), H(1)

)
+ Tr

(
H(1)(ωβ(H(0)S)− ρ(0))

)
+

1
β

(
S(ρ(0))− S(ωβ(H(0)S))

)
= Fβ

(
ρ(0)⊗ωβ(HB), H(1)

)
− ∆Fβ (ρ(0), H(0)S)

+ Tr
(
(H(1)

S + V − H(0)S)(ωβ(H(0)S)− ρ(0))⊗ωβ(HB)
)

,

where we have used Tr(A(ρ− σ)⊗ χ) = Tr(A(ρ− σ)) for any states ρ, σ, χ and any operator A.
Combining these two relations, we obtain

Fβ

(
ωβ(H(0)S + HB), H(0)S + HB

)
= Fβ

(
ρ(0)⊗ωβ(HB), H(1)

)
− ∆Fβ(ρ(0), H(0)S)

+ Tr
(

ρ(0)⊗ωβ(HB)(H(0)S − H(1)
S −V)

)
= Fβ

(
ρ(0)⊗ωβ(HB), H(1)

)
− ∆Fβ(ρ(0), H(0)S) + W1.

Inserting this last result into (14.145), we finally obtain the desired result

W1 + W2 + W3 = ∆Fβ (ρ(0), H(0)S)

− ∆Fβ

(
ρ(0)⊗ωβ(HB), H(1)

)
− ∆Fβ

(
ωβ(H( f )), H(0)S + HB

)
. (14.146)
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14.8.2 Proof of Lemma 11.3: Minimizing residual free energy

In this section we prove Lemma 11.3. The strategy is the same as for the proof of Lemma 11.2: we
simply take the derivative of ∆F(res) and set it to zero. To that end define the operators

RS(t) = RS + tYS, R(t) = RS(t) + V + HB, (14.147)

where RS is one choice of local Hamiltonian that gives a (local) minimum of the residual free energy.
The derivative of ∆F(res)(RS(t)) with respect to t is given by

d
dt

∣∣∣∣
t=0

∆F(res) =
d
dt

∣∣∣∣
t=0

1
β

D
(

ωβ(R(t))‖ωβ(H(0)S + HB)
)

, (14.148)

which we require to vanish, since RS is a local minimum. To compute the derivative of the relative
entropy, we use a similar strategy as in the proof of Lemma 11.4. First, the derivative of the entropy
of ωβ(R(t)) is given by

d
dt

∣∣∣∣
t=0

S(ωβ(R(t)) = −Tr
(

log(ωβ(R(0)))
d
dt

∣∣∣∣
t=0

ωβ(R(t))
)

. (14.149)

Then the derivative of the relative entropy can be expressed as

d
dt

∣∣∣∣
t=0

D
(

ωβ(R(t))‖ωβ(H(0)S + HB)
)

=
d
dt

∣∣∣∣
t=0

(
−S(ωβ(R(t)))− Tr

(
ωβ(R(t)) log(ωβ(H(0)S + HB))

))
= −Tr

((
log(ωβ(H(0)S + HB))− log(ωβ(R(0)))

) d
dt

∣∣∣∣
t=0

ωβ(R(t))
)

= βTr
(
(H(0)S + HB − R(0))

d
dt

∣∣∣∣
t=0

ωβ(R(t))
)

, (14.150)

where we have used that the trace of the derivative of ωβ(R(t)) vanishes. Let us now compute the
derivative of the state ωβ(R(t)). This can be done using Duhamel’s formula (11.31) and yields

d
dt

∣∣∣∣
t=0

ωβ(R(t)) = −β(YS)R(0)ωβ(R(0)) + βωβ(R(0))Tr
(

YSωβ(R(0))
)

= β
(

Tr
(

YSωβ(R(0))
)
− (YS)R(0)

)
ωβ(R(0)), (14.151)

where we have again employed the notation

(YS)R(0) =
∫ 1

0
e−βτR(0) YS eβτR(0)dτ. (14.152)

Using this result and the cyclic nature of the trace, the derivative of the relative entropy then takes the
form

d
dt

∣∣∣∣
t=0

D
(

ωβ(R(t))‖ωβ(H(0)S + HB)
)

= β2Tr
(
(H(0)S + HB − R(0))ωβ(R(0))

)
Tr
(

YSωβ(R(0))
)

− β2Tr
(

ωβ(R(0)) (H(0)S + HB − R(0))−R(0) YS

)
. (14.153)

This expression has to vanish for all operators YS. Identifying R(0) with the operator R in the
statement of the Lemma, we can then reformulate the condition that the derivative vanishes as

TrB(ωβ(R)Tr
(

ωβ(R) (RS + V − H(0)S)
)
= TrB

(
ωβ(R) (RS + V − H(0)S)−R

)
,

which is the desired result.
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14.9 On spontaneous symmetry breaking in dissipative systems

14.9.1 General proof for the case of a discrete symmetry

In the main-text of chapter 12, I only provided the proof of theorem 12.4 for the case of exactly
local Liouvillians. In this section, I will generalize the result to the case of Liouvillians that are only
approximately local. This is more difficult from a purely technical point of view, but the basic steps
of the proof will be exactly the same.

First we need to formalize, what we mean by an approximately local Liouvillian. Intuitively, this
means that each term LΛ

x can be well approximated by a term L̃Λ
x that is strictly local and supported

on a ball Bl(x) of radius l and center x. The error of approximation should decrease with increasing
l according to some function f , which determines how local the Liouvillian LΛ is.

Definition 14.17 ( f -local Liouvillian). Let f : R → R be a given positive semi-definite function
with f (0) = 1. A sequence of Liouvillians LΛ = ∑x LΛ

x is called f -local if there exists a sequence
of Liouvillians L̃Λ = ∑x L̃Λ

x such that

1. Each term L̃Λ
x is supported within Bl(x).

2. L̃Λ approximates LΛ: For any local operator A, we have∥∥∥L̃Λ
x [A]−LΛ

x [A]
∥∥∥ ≤ b f (l) ‖A‖ , (14.154)

for some constant b > 0.

In this section, we can choose f to be any function that decays at least like a short-ranged power-
law.

Definition 14.18 (Approximately local Liouvillian). We call a sequence of f -local Liouvillians LΛ

approximately local if f decays at least as fast as

gβ(l) :=
1

1 + lβ
, (14.155)

for some β > 2D.

Similarly, I will call an operator A approximately local, if it can be approximated by a sequence of
operators Ãl , each supported in a ball of radius l and such that

∥∥A− Ãl
∥∥ ≤ ‖A‖ gβ(l). I will call it

quasi-local if the same holds for a function that decays faster than any power instead of a power-law.
In chapter 12, I formally only considered the magnetization as an order parameter. Here, the order

parameter O can be any extensive quantity

OΛ = ∑
x∈Λ

O{x}, (14.156)

where O{x} is supported within the ball BlO (x) for some constant lO and is uniformly bounded, i.e.,

there exists a constant o such that
∥∥∥O{x}

∥∥∥ ≤ o for all x ∈ ZD. As before, given any sequence of

states ωΛ which fulfill ωΛ(OΛ) = 0, we can formally define the sequence of states

ω±Λ (A) := ω±Λ
(
Õ±Λ AÕ±Λ

)
, Õ±Λ :=

1
2

1± OΛ√
ωΛ

(
O2

Λ
)
 . (14.157)

These states are well defined as long as ωΛ(O2
Λ) > 0, which is true as long as the associated density-

matrix ρω is not completely supported in the kernel of OΛ. We can now state the precise theorem.

Theorem 14.19. Let LΛ be a sequence of purely dissipative, approximately local Liouvillians which
are in detailed balance with a sequence of states ωΛ that fulfill ωΛ(OΛ) = 0 and ωΛ(O2

Λ) ≥
µ2o2|Λ|2. Then the states ω±Λ are asymptotically-reversible.

By the same calculation as in chapter 12, it follows that the states ω±Λ are symmetry-breaking if
there is a sequence of unitaries UΛ such

UΛOΛU−1
Λ = −OΛ, (14.158)

ωΛ is symmetric with respect to UΛ, and ωΛ(O2
Λ) ≥ µ2o2|Λ|2 for some constant µ > 0.

Let us now prove the theorem. To simplify the notation, we will again drop the Λ from all the
operators and states and set N := |Λ|. Since the argument again is based on an approximate Leibniz-
property, it will turn out to be useful to define the function

ΓL(A, B) := L [AB]−L [A] B− AL [B] . (14.159)
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It measures how far the Liouvillian L deviates from fulfilling the Leibniz rule on the operator AB.
Similarly, let us introduce a measure for how far the states ω± deviate from being reversible:

∆±(A, B) := ω±(AL [B])−ω±(L [A] B). (14.160)

We need to show that ∆±(A, B)→ 0 as for N → ∞ for any two local operators A and B. To achieve
this, we again first use that

lim
Λ↗ZD

ω (O(AL [B]−L [A] B)O)

N2 = lim
Λ↗ZD

ω
(
O2(AL [B]−L [A] B)

)
N2 ,

which can be seen by writing OXO = O[X, O] +O2X and using that O[O, X] scales like N for any
approximately local operator X. We then need to prove

lim
Λ↗ZD

ω
(
O2(AL [B]−L [A] B)

)
N2 = 0, (14.161)

lim
Λ↗ZD

ω (O(AL [B]−L [A] B))
N

= 0, (14.162)

lim
Λ↗ZD

ω ((AL [B]−L [A] B)O)

N
= 0. (14.163)

To do this, we will use the following Lemma, whose proof is given further below.

Lemma 14.20 (Approximate Leibniz rule). Let L be an approximately local Liouvillian, let A, B be
local operators and O an extensive quantity (order parameter). Then

lim
Λ↗ZD

∥∥ΓL(O2, A)B
∥∥

N2 = 0, lim
Λ↗ZD

‖ΓL(O, A)B‖
N

= 0, lim
Λ↗ZD

‖AΓL(B, O)‖
N

= 0. (14.164)

Given the statement of the Lemma, we can use reversibility to write

ω
(
O2(AL [B]−L [A] B)

)
N2 =

ω
((
L
[
O2 A

]
−O2L [A]

)
B
)

N2 =
ω
(
ΓL(O2, A)B

)
N2 +

ω
(
L
[
O2] AB

)
N2 .

The first term on the right-hand side vanishes in the thermodynamic limit. For the second term, we
observe that

ω
(
L
[
O2
]

AB
)
= −ω

(
ΓL(O2, AB)

)
+ ω

(
L
[
O2 AB

])
−ω

(
O2L [AB]

)
(14.165)

= −ω
(

ΓL(O2, AB)
)
−ω

(
O2L [AB]

)
(14.166)

= −ω
(

ΓL(O2, AB)
)
−ω

(
L
[
O2
]

AB
)

. (14.167)

But AB is also a local operator. Then we can use the Lemma again with A′ = AB and B′ = 1 and
conclude that

lim
Λ↗ZD

ω
(
O2(AL [B]−L [A] B)

)
N2 = lim

Λ↗ZD

ω
(
L
[
O2] AB

)
N2 = 0. (14.168)

A completely analogous argument can be used to deduce that

lim
Λ↗ZD

ω (O(AL [B]−L [A] B))
N

= lim
Λ↗ZD

ω ((AL [B]−L [A] B)O)

N
= 0.

Proof of Lemma 14.20. To prove the Lemma, we introduce an approximate Liouvillian L̃ whose
terms L̃x are supported within balls BLα (x), where the constant 0 < α < 1 is chosen later. For any
operator X, each such term introduces an error of∥∥Lx [X]− L̃x [X]

∥∥ ≤ ‖X‖ b
1

1 + Lαβ
. (14.169)

Let us writeR := L− L̃. Note thatR has the propertyR[1] = 0. For any operator A let us further
write L̃Ã for the Liouvillian that contains all the terms that have overlap with the support of A. The
support Ã of L̃Ã then can be bounded by k|A|LαD for some constant k in the limit of large L. Using
this notation, we can observe that

ΓL̃(X, A) = ΓL̃Ã
(X, A), (14.170)
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since L̃ − L̃Ã [XA] = L̃ − L̃Ã [X] A. This implies, since Γ is linear in the Liouvillian, that we can
write ΓL(X, A) = ΓR(X, A) + ΓL̃Ã

(X, A). In particular, we find that to prove the Lemma, it is
sufficient to show

lim
Λ↗ZD

∥∥ΓR(O2, A)
∥∥

N2 = lim
Λ↗ZD

∥∥∥ΓL̃Ã
(O2, A)

∥∥∥
N2 = 0, (14.171)

lim
Λ↗ZD

‖ΓR(O, A)‖
N

= lim
Λ↗ZD

∥∥∥ΓL̃Ã
(O, A)

∥∥∥
N

= 0. (14.172)

I will only prove the first line, since the latter follows from completely analogous reasoning. For the
first term, we can use the definition of Γ together with the triangle inequality and sub-multiplicativity
of the norm to obtain∥∥ΓR(O2, A)

∥∥
N2 =

∥∥R [O2 A
]
−R

[
O2] A−O2R

[
O2]∥∥

L2D

≤
3|Λ|

∥∥O2
∥∥ ‖A‖

L2D bgβ(Lα) ≤ 3|Λ|3o2 ‖A‖
L2D bgβ(Lα) (14.173)

=
3L3Do2 ‖A‖

L2D bgβ(Lα) = 3o2 ‖A‖ b
LD

1 + Lαβ
. (14.174)

This term therefore vanishes in the thermodynamic limit provided that αβ > D. For the second term
we decompose O into O = Q + R, such that R is supported on Ã, while Q is supported on the
complement of Ã. In particular, this implies ΓL̃Ã

(Q, X) = QΓL̃Ã
(1, X) = 0, since ΓL(1, X) for

any Liouvillian L and operator X. We can use this property to obtain

ΓL̃Ã
(O2, A) = 2QΓL̃Ã

(R, A) + ΓL̃Ã
(R2, A). (14.175)

Using the triangle inequality and the estimate |Ã| ≤ k|A|LαD, we then obtain∥∥∥ΓL̃Ã
(O2, A)

∥∥∥
L2D ≤ K′o2|Λ| ‖A‖ |Ã|2

L2D ≤ Ko2 ‖A‖ |A|LD L2αD

L2D

≤ Ko2 ‖A‖ |A|L(2α−1)D, (14.176)

where K′ and K are constants independent of the system-size. We thus find that the term vanishes in
the thermodynamic limit if α < 1/2. Combining this bound with the previous bound αβ > D, we
arrive at the final bound β > 2D. The corresponding estimates for the term

∥∥ΓL̃(O, A)
∥∥ /N yields

the same restriction. This finishes the proof of the Lemma.

14.9.2 General proof for the case of a continuous symmetry

In this section, I provide the general proof for theorem 12.6. Similarly as in the previous section, I
will show it for Liouvillians that are not strictly local. Slightly stronger locality properties are needed
in the case of continuous symmetries, though.

Definition 14.21 (Short-ranged Liouvillian). A sequence of f -local Liouvillians LΛ is called short-
ranged if f decays at least as fast as

hβ(l) = e−lβ/ξ , (14.177)

for some β > 0 and ξ > 0.

In the following, we will assume that LΛ is short-ranged.
As discussed in the main-text of chapter 12, the symmetry-breaking states ω

(M)
Λ are linear com-

binations of the functionals χm,m′
Λ defined as

χ
(m,m′)
Λ (A) :=

ωΛ

(
(O−Λ)m′A(O+

Λ)m
)

Z(m)Z(m′)
, (14.178)

which are defined for states that fulfill the conditions

[ρω
Λ, CΛ] = 0, ωΛ

(
(O(i)

Λ )2
)
≥ µ2o2|Λ|2, i = 1, 2. (14.179)

Let us fix some arbitrary M > 0 and assume |m|, |m′| ≤ M in what follows. As before, we will also
drop any explicit Λ-labels on operators and states and set |Λ| = N. Let us define the quantity

∆(m,m′)(A, B) := χ(m,m′)(BL [A])− χ(m,m′)(L [B] A). (14.180)

It measures how reversible the functional χ(m,m′) is with respect to the Liouvillian L.
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Theorem 14.22 (Reversibility from fluctuations for continuous symmetries). Suppose L is a short-
ranged Liouvillian that satisfies detailed balance with respect to ω. Suppose that ω fulfills the con-
ditions (14.179). Then

lim
Λ↗ZD

∆(m,m′)(A, B) = 0. (14.181)

Consequently, the symmetry-breaking states ω(M) are asymptotically reversible.

I will split the proof of this theorem into several Lemmas. The basic proof idea will, however, be
the same as in the case of discrete symmetry-breaking, namely the use of an approximate Leibniz-
rule. The first key Lemma in the proof of the theorem was proven by Koma and Tasaki. The result of
this Lemma is used in the second Lemma, which allows us to make use of detailed balance.

Lemma 14.23 (Koma and Tasaki [287]). Let the conditions in (14.179) be fulfilled for ω. Now let
A be some finite region and decompose O+ as O+ = QA + RA, where QA is supported on the
complement of A and RA is supported on A. Then we have the inequalities

Tr(Qm−k
A ρω(Q†

A)
m−k)

Tr(Qm
Aρω(Q†

A)
m)

≤ (µoN)−2k (14.182)

and

r(M)
A =

∣∣∣∣∣Tr
(
(O+)Mρω(O−)M)

Tr(QM
A ρω(Q†

A)
M)

∣∣∣∣∣ ≥ 2− exp
(

2|A|M
µN

)
≥ 2− eµ/8. (14.183)

for N ≥ 16|A|2
µ2 and |MN | ≤

µ2

16|A| .

Proof. A proof can be found at the end of this section.

Lemma 14.24 (Local observables). Let A be any local observable, ω be represented by the density-
matrix ρω and fulfill (14.179). Then

∣∣∣Tr
(

χ(m,m′)A
)∣∣∣ ≤ O

(
M|A| ‖A‖

N

)
+

∣∣∣∣∣∣
Tr
(

ρω(O−)m′ (O+)m A
)

Tr ((O+)mρω(O−)m)1/2 Tr
(
(O+)m′ρω(O−)m′

)1/2

∣∣∣∣∣∣ .

Proof. Let us first again rewrite a product of operators in terms of the commutator and the reversed
product:

Tr
(

ρω(O−)m′A(O+)m
)
= Tr

(
ρω(O−)m′ [A, (O+)m]

)
+ Tr

(
ρω(O−)m′ (O+)m A

)
.

(14.184)
We have to show that the first term is small enough so that it is of order N−1 when divided by the
denumerator Z(m)Z(m′) in the definition of χ(m,m′). We will do this using the preceeding Lemma
and therefore split up O+ as O+ = QA + RA. Note that QA and RA are not self-adjoint. We can
then use a binomial expansion and obtain

Tr
(

ρω(O−)m′ [A, (O+)m]
)
=

m′

∑
k=0

m

∑
l=0

(
m′

k

)(
m
l

)
Tr
(

ρω(Q†
A)

m′−k(R†
A)

k[A, Qm−l
A Rl

A]
)

=
m′

∑
k=0

m

∑
l=1

(
m′

k

)(
m
l

)
Tr
(

ρω(Q†
A)

m′−k(R†
A)

k[A, Rl
A]Q

m−l
A

)
,

where we used that [QA, A] = 0 and [QA, RA] = 0. We can now use the Schwartz inequality in the
form

|Tr(ρω A†BC)| ≤
[
Tr(ρω A† A)Tr(ρωC†B†BC)

]1/2

≤ ‖B‖
[
Tr(ρω A† A)Tr(ρωC†C)

]1/2
,

and the inequality (14.182). This yields∣∣∣∣∣∣
Tr
(

ρω(O−)m′ [A, (O+)m]
)

Tr(Qm
Aρω(Q†

A)
m)1/2Tr(Qm′

A ρω(Q†
A)

m′ )1/2

∣∣∣∣∣∣ ≤ 2 ‖A‖
m′

∑
k=0

m

∑
l=1

(
m′

k

)(
m
l

)(
|A|
µN

)k+l

≤ 2 ‖A‖ exp
(
|A|m′

µN

)(
exp

(
|A|m
µN

)
− 1
)

≤ 2 ‖A‖ exp
(
|A|M
µN

)(
exp

(
|A|M
µN

)
− 1
)

≤ 2 ‖A‖ 16|A|
µ2 eµ/16(eµ/16 − 1)

M
N

,
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where we assumed N ≥ 16|A|2
µ2 and |MN | ≤

µ2

16|A| . Multiplying with the ratio (14.183) from
Lemma 14.23 yields the desired bound.

With this Lemma at our disposal, we can now start with the proof of the theorem. Let us assume,
without loss of generality that m, m′ ≥ 0 in the following. For the other cases, we merely have to
replace some O+ with O− and some operators with their adjoints in the following derivations.

To simplify the notation and reduce the number of appearances of limΛ↗ZD , let us also write ≈
in the following for any equation that becomes true in the thermodynamic limit.

As in the case of discrete symmetry breaking, let us now introduce a strictly local Liouvillian L̃
that approximate L. As before, we assume that each term L̃x is supported within a Ball of radius l
centered at x. For each term, this introduces an error at most bhβ(l):

∥∥L̃x [A]−Lx [A]
∥∥ ≤ bhβ(l).

In the following we will assume that l scales with the linear size of the system L as Lα for some
0 < α < 1/2. We will collect the error in a Liouvillian R again: R = L− L̃. With this notation at
hand, note that ∣∣ω(XL [Y] Z)−ω(XL̃ [Y] Z)

∣∣ ≤ |Λ| ‖X‖ ‖Y‖ ‖Z‖ bhβ(l). (14.185)

As the system size-increases, the last error term becomes arbitrarily small provided that ‖Z‖ ‖Y‖ ‖Z‖
grows at most like a polynomial in the system-size. This will be crucial in what follows. In particular,
it shows that if L is in detailed balance with ω, then L̃ is approximately in detailed balance with ω:∣∣ω(AL̃ [B])−ω(L̃ [A] B)

∣∣ ≤ 2|Λ| ‖A‖ ‖B‖ bhβ(l). (14.186)

From the Schwarz-inequality (14.185) we have |χ(m,m′)(A)| ≤ ‖A‖. Let us now write ∆̃(m,m′) for
the same quantity as ∆(m,m′), but with L replaced by L̃. Then the above relation also implies∣∣∣∆(m,m′)(A, B)− ∆̃(m,m′)(A, B)

∣∣∣ ≤ 3|Λ| ‖A‖ ‖B‖ bhβ(l). (14.187)

To prove the theorem, it therefore suffices to show that ∆̃(m,m′) vanishes in the thermodynamic limit.
From Lemma 14.24 we see that it suffices to show that

ω
(

Ω(m,m′) (L̃ [A] B− AL̃ [B]
))

:= ω

(
(O−)m′ (O+)m

ω ((O+)m(O−)m)1/2 ω
(
(O+)m′ (O−)m′

)1/2

(
L̃ [A] B− AL̃ [B]

))

= ω

(
(O−)m′ (O+)m

Z(m)Z(m′)
(
L̃ [A] B− AL̃ [B]

))

vanishes in the thermodynamic limit to achieve this, since
(
L̃ [A] B− AL̃ [B]

)
is an observable

whose support grows slower than linearly with the system size.
We will now use that ω is asymptotically reversible with respect to L̃. For any local observable

A, we again denote by L̃Ã the Liouvillian composed of all those terms L̃x that have overlap with A.
The number of these terms is upper bounded by k|A|lD = k|A|LαD for some constant k and each of
them is a bounded Liouvillian. The following Lemma is then the key to the proof.

Lemma 14.25. Let A be a local observable. If ω fulfills condition (14.179) and L is a short-ranged
Liouvillian in detailed balance with ω, we have

ω
(

ΓL̃(Ω
(m,m′), A)

)
= ω

(
ΓL̃Ã

(Ω(m,m′), A)
)
≈ 0, (14.188)

if the approximation L̃ to L is chosen such that l ∝ Lα with 0 < α < 1/2.

Let us first use the Lemma to see that it implies that ∆̃(m,m′) vanishes and then give the proof.
To see that, let A, B be local operators. Then we first use Lemma 14.24 and approximate detailed
balance to write

∆̃(m,m′)(A, B) ≈ ω
(

Ω(m,m′) (AL̃ [B]− L̃ [A] B
))

(14.189)

≈ ω
((
L̃
[
Ω(m,m′)A

]
−Ω(m,m′)L̃ [A]

)
B
)

. (14.190)

We can now use Lemma 14.25 and apply approximate detailed balance again to obtain

∆̃(m,m′)(A, B) ≈ ω
(
L̃
[
Ω(m,m′)

]
AB
)
≈ ω

(
Ω(m,m′)L̃ [AB]

)
. (14.191)
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On the other hand, AB is also a local observable. We can hence also (instead of doing the last step)
use Lemma 14.24 to write

ω
(
L̃
[
Ω(m,m′)

]
AB
)
≈ ω

(
L̃
[
Ω(m,m′)AB

])
−ω

(
Ω(m,m′)L̃ [AB]

)
(14.192)

≈ −ω
(

Ω(m,m′)L̃ [AB]
)

. (14.193)

Combining these two estimates, we conclude

−ω
(

Ω(m,m′)L̃ [AB]
)
≈ ∆̃(m,m′)(A, B) ≈ ω

(
Ω(m,m′)L̃ [AB]

)
. (14.194)

In other words, we have our desired result

lim
Λ↗ZD

∆̃(m,m′)(A, B) = lim
Λ↗ZD

∆(m,m′)(A, B) = 0. (14.195)

Proof of Lemma 14.25. The proof of the Lemma proceeds similarly to the proof of Lemma 14.24.
Split up O+ = Q + R, where Q is supported on the complement of Ã and R collects the remaining
terms inside of Ã. As by now usual, we then have L̃Ã [QX] = QL̃Ã [X] for any operator X.

Using a binomial expansion, we then obtain

∣∣∣ω (ΓL̃Ã
(Ω(m,m′), A

)∣∣∣ ≤ m

∑
k=0

m′

∑
k′=0

(
m
k

)(
m′

k′

) ∣∣∣∣∣∣
ω
(

ΓL̃Ã
((Q†)m′−kQm−k(R†)k′Rk, A)

)
Z(m)Z(m′)

∣∣∣∣∣∣
=

m

∑
k=0

m′

∑
k′=0

(
m
k

)(
m′

k′

) ∣∣∣∣∣∣
ω
(
(Q†)m′−kQm−kΓL̃Ã

((R†)k′Rk, A)
)

Z(m)Z(m′)

∣∣∣∣∣∣ .

Since ΓL̃(1, X) = 0 for any X, we can neglect the term with k = k′ = 0. Together with the Schwartz
inequality we then get

∣∣∣ω (ΓL̃Ã
(Ω(m,m′), A

)∣∣∣ ≤ ∑′
k,k′

(
m
k

)(
m′

k′

)ω
(
(Q†)m′−kQm′−k

)1/2
ω
(
(Q†)m−kQm−k

)1/2

Z(m)Z(m′)

×
∥∥∥ΓL̃Ã

((R†)k′Rk, A)
∥∥∥ , (14.196)

where the primed sum omits the term k = k′ = 0. We now use again Lemma 14.23 to get

ω
(
(Q†)m′−kQm′−k

)1/2
ω
(
(Q†)m−kQm−k

)1/2

Z(m)Z(m′)
≤ (µoLD)−2(k+k′)

2− eµ/8 , (14.197)

which is true as long as LD ≥ 16|Ã|2
µ2 and

∣∣∣ M
LD

∣∣∣ ≤ µ2

16|Ã| , where M ≥ |m|, |m′|. Since we can

bound |Ã| ≤ k|A|LαD, these conditions are fulfilled on large systems provided that α < 1/2, as we
assumed from the beginning. From the locality of the Liouvillian L̃ we can also bound the norm-
factor as∥∥∥ΓL̃Ã

((R†)k̃′Rk̃, A)
∥∥∥ ≤ k3|Ã| ‖R‖k̃+k̃′ ‖A‖ ≤ k4 ‖A‖ |A|LαD(koLαD|A|)k̃+k̃′ , (14.198)

for some constants k3, k4. Combining the two results, we then get

∣∣∣ω (ΓL̃Ã
(Ω(m,m′), A

)∣∣∣ ≤ k4 ‖A‖ |A|LαD

2− eµ/8 ∑′
k̃,k̃′

(
m
k̃

)(
m′

k̃′

)(
k|A|
µ2o

L(α−2)D
)k̃+k̃′

(14.199)

≤ k4 ‖A‖ |A|LαD

2− eµ/8

(
exp

(
kM|A|

µ2o
L(α−2)D

)
− 1
)

. (14.200)

Since we assumed α < 1/2, the expression converges to zero as L→ ∞ for any fixed M and A.

Proof of Lemma 14.23. Let am := Tr(Qm
Aρω(Q†

A)
m). In this notation, we have to prove

am

am−1
≥ (µoN)2. (14.201)
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Let us first bound a1:

a1 = Tr((O+ − RA)ρ
ω(O− − R†

A))

≥ Tr(ρωO−O+)− 2
∥∥∥O+R†

A

∥∥∥ ≤ 2No2|A|

=
1
2
[
Tr(ρωO+O−)Tr(ρωO−O+) + Tr(ρ[O+, O−])

]
− 2o2N|A|

≥ Tr(ρωO(1)2
) + Tr(ρωO(2)2

)− 2o2(1 + |A|)N

≥ 2o2µ2N2
[

1− 1 + |A|
µ2N

]
. (14.202)

We can now use the bound N ≥ 16|A|2
µ2 to obtain

1− 1 + |A|
µ2N

≥ 1− 1 + |A|
16|A|2 ≥ 1− 1

8
> 0, (14.203)

since |A| ≥ 1. Therefore a1 > 0. Let us now use the Schwartz inequality to get

(am−1)
2 ≤ Tr(ρω(Q†

A)
m−2Qm−2

A )Tr(ρω(Q†
A)

m−1QAQ†
AQm−1

A )

= am−2

{
Tr(ρω(Q†

A)
mQm

A) + Tr(ρω(Q†
A)

m−1[QA, Q†
A]Q

m−1
A )

}
≤ am−2

{
am + 4o2Nam−1

}
. (14.204)

Let us now assume am−2 6= 0, am−1 6= 0, which is true for m = 2. We then get

am

am−1
≥ am−1

am−2
− 4o2N. (14.205)

We can now use this relation iteratively to obtain

am

am−1
≥ a1 − 4o2N(m− 2)

≥ 2(µoN)2
[

1− 1 + |A|
µ2N

− 2(m− 2)
µ2N

]
≥ 2(µoN)2

[
1− 1 + |A|

µ2N
− 2M

µ2N

]
≥ 2(µoN)2

[
1− 1 + |A|

16|A|2 −
1

8|A|

]
≥ 2(µoN)2

[
16− 2− 2

16

]
= (µoN)2 3

2
> (µoN)2, (14.206)

where the inequalities N ≥ 16|A|2
µ2 , |MN | ≤

µ2

16|A| and |A| ≥ 1 were used. This proves the first
statement. We can now lower bound the ratio

r(M)
A =

∣∣∣∣∣Tr
(
(O+)Mρω(O−)M)

Tr(QM
A ρω(Q†

A)
M)

∣∣∣∣∣ . (14.207)

To do this, let us use again a binomial expansion:∣∣∣Tr
(
(O+)Mρω(O−)M

)∣∣∣ ≥ |Tr(QM
A ρω(Q†

A)
M)|

−
′

∑
k,l

∣∣∣∣(M
k

)(
M
l

)
Tr
(

ρω(Q†
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kQM−l

A RM−l
A

)∣∣∣∣ .

Here, the primed sum goes again over all k, l = 0, . . . , M except for k = l = 0. A further application
of the Schwartz inequality together with (14.182) then yields

r(M)
A ≥ 1−

′
∑
k,l
(|A|o)k+l(µoN)−(k+l) ≥ 1−

[(
1 +
|A|
µN

)2M
− 1

]

≥ 2− exp
(

2|A|M
µN

)
≥ 2− eµ/8.

Note that r(M)
A > 0 since 0 < µ ≤ 1.
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A Back matter

A.1 Summary of the thesis

To understand in detail the relation between unitary quantum theory that describes our
world at the microscopic scale and thermodynamics, which was long believed only to ap-
ply to macroscopic objects, is one of the most interesting and long-standing problems in
physics. Recently, this problem has received renewed attention, in particular from the com-
munity of quantum information theory, but also from the field of statistical mechanics, in-
spired from stochastic thermodynamics. These results suggest that thermodynamics is also
relevant for individual quantum systems, provided that they can be brought into contact
with thermal baths.

In this thesis, I use recently developed tools to provide new results both on fundamental
questions, but also on questions which are of practical relevance for potential miniaturized
thermal machines. In terms of fundamental questions, the results in this thesis contribute
to understanding how the basic laws of thermodynamics and statistical mechanics can be
understood directly from unitary quantum mechanics. In particular, I discuss and answer
the following questions: i) How can we quantify the third law of thermodynamics us-
ing information theoretic methods? ii) How can we quantify the "thermodynamic value"
of a state-transition in quantum systems? iii) How can we axiomatically characterize the
non-equilibrium free energy and relative entropy? iv) How can we justify statistical ensem-
bles from an operational perspective, without having to introduce either some probability
measures or an information theoretic entropy measure? v) How can we understand the
equilibration of closed quantum systems, how long does it take and how difficult is it to
avoid?

In the second part of the thesis I discuss in detail how experimental restrictions, which
become important at the quantum scale, influence the ultimate thermodynamic bounds for
thermal machines. In particular, the results in this thesis provide thermodynamic bounds
on work-extraction and efficiencies of thermal machines in situations where 1.) an ex-
perimenter only has limited field strengths available, 2.) an experimenter cannot control
the interactions between particles, but external fields arbitrarily well, and 3.) situations in
which a small quantum system can only be strongly coupled to heat baths. These bounds
are tight and I provide explicit examples illustrating the different behaviours.

Finally, I come back to a classic problem in statistical physics: The emergence of spon-
taneous symmetry breaking. Here, I provide general and rigorous new results that show
how symmetry-breaking stationary states emerge from fluctuations in order parameters in
dissipative lattice models.
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A.2 Zusammenfassung

Eines der spannendsten Probleme in der Physik ist zu verstehen wie genau die Thermo-
dynamik aus der mikroskopischen Quantentheorie hervorgeht. Dieses klassische Prob-
lem hat in den letzten Jahren erneute Aufmerksamkeit erfahren, einerseits aus Sicht der
Quanteninformationstheorie, andererseits aus Sicht der statistischen Mechanik, insbeson-
dere motiviert durch Ergebnisse der stochastischen Thermodynamik. Die Ergebnisse dieser
Arbeiten deuten darauf hin, dass thermodynamische Konzepte nicht nur für makroskopis-
che Systeme, sondern auch für ein einzelne Quantensysteme relevant sind, wenn diese in
Kontakt mit Wärmebädern gebracht werden können.

In dieser Dissertation verwende ich kürzlich entwickelte Methoden, um sowohl neue
Resultate in Bezug auf fundamentale Fragestellungen, als auch Resultate welche für po-
tentielle mikroskopische thermische Maschinen relevant sind, herzuleiten. Die Resultate in
Bezug auf fundamentale Fragestellungen helfen dabei zu verstehen wie Thermodynamik
und statistische Mechanik aus der unitären Quantenmechanik heraus verstanden werden
können. Insbesondere diskutiere (und beantworte ich) dabei die folgenden Fragen: i) Wie
können wir den dritten Hauptsatz der Thermodynamik mithilfe von informationstheoretis-
chen Methoden quantifizieren? ii) Wie lässt sich der "thermodynamische Wert" von Zu-
standsänderungen in Quantensystemen aus operationaler Sichtweise quantifizieren? iii)
Wie können wir die freie Energie sowie die relative Entropie für Quantensysteme axioma-
tisch charakterisieren? iv) Wie können kanonische statistische Gesamtheiten aus opera-
tionaler Sichtweise gerechtfertigt werden, ohne Wahrscheinlichkeitsmaße oder informa-
tionstheoretische Entropien einzuführen? v) Wie können wir das Äquilibrierungsverhal-
ten geschlossener Quantensysteme verstehen, wie lange dauert es bis ein solches System
äquilibriert und wie schwierig ist es ein solches Verhalten zu verhindern?

Im zweiten Teil der Arbeit diskutiere ich im Detail welche Auswirkungen zusätzliche
experimentelle Einschränkungen auf die theoretischen thermodynamischen Schranken für
die Effizienz von thermischen Maschinen im Quantenregime haben. Insbesondere disku-
tiere ich theoretische Schranken für die Extraktion von Arbeit und den Wirkungsgrad von
thermischen Maschinen in Situationen in denen 1.) nur beschränkte Feldstärken in einem
Experiment zur Verfügung stehen, 2.) in denen ein_e Experimentator_in in der Lage ist
externe Felder zu kontrollieren, aber nicht die Wechselwirkung zwischen einzelnen Spins
und 3.) Situationen in denen ein Quantensystem nur durch eine starke Wechselwirkung in
Kontakt mit einem Wärmebad gebracht werden kann. Diese neuen Schranken sind strikt
und ich illustriere sie mit mehreren Beispielen.

Schließlich komme ich zurück zu einem klassischen Problem der statistischen Physik:
Das Auftreten von spontaner Symmetriebrechung. Hier präsentiere ich allgemeine und
rigorose Resultate, welche zeigen wie spontane Symmetriebrechung aus Fluktuationen in
lokalen Ordnungsparametern in dissipativen Gittermodellen hervorgeht.
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A.3 Anteil des Autors bei Konzeption, Durchführung und Verfassung der
zugrundeliegenden Arbeiten

Diese Dissertation basiert auf den Publikationen [1–4, 6–12] des Verfassers, welche in
Zusammenarbeit mit anderen Wissenschaftler_innen entstanden sind. Im Folgenden wird
für jede dieser Publikationen der Anteil des Verfasser bei Konzeption, Durchführung und
Verfassung der Publikation aufgeführt.

[1] Der Verfasser war federführend in diesem Projekt. Er hat wesentliche Teile
zur Konzeption, Herleitung der Ergebnisse sowie Verfassung der Publika-
tion beigetragen.

[2] Der Verfasser war maßgeblich an Konzeption des Projekts, der Herleitung
der Hauptergebnisse, sowie der Formulierung der Publikation beteiligt. Ins-
besondere hat er wichtige Beiträge zum Beweis der Hauptergebnisse geleis-
tet, sowie die Abbildungen der Publikation erstellt.

[3] Der Verfasser hat substanzielle Beiträge zur Herleitung der Ergebnisse sowie
zur Formulierung der Publikation beigetragen.

[4] Der Verfasser war federführend in diesem Projekt. Er hat wesentliche Beiträge
zur Konzeption, Herleitung der Hauptergebnisse und der Formulierung weiter
Teile der Publikation beigetragen. Insbesondere hat er die Beweise der
Hauptergebnisse ausgearbeitet.

[6] Der Verfasser hat wesentlich zur Konzeption der Arbeit beigetragen. Weit-
erhin hat er substanzielle Beiträge zur analytischen Herleitung der Ergeb-
nisse für das Ising-Modell beigetragen und wesentlich an der Formulierung
des technischen Anhangs mitgewirkt.

[7] Der Verfasser war federführend in diesem Projekt. Er hat wichtige Beiträge
zur Konzeption des Projektes geliefert, sowie das Hauptergebnis hergeleitet
und an der Formulierung der Publikation mitgewirkt.

[8] Der Verfasser war federführend in diesem Projekt und hat maßgeblich zur
Konzeption, zur Herleitung der Hauptergebnisse sowie der Formulierung
der Publikation beigetragen.

[9] Der Verfasser hat wichtige Beiträge zur Herleitung der Ergebnisse und der
Formulierung der Publikation beigetragen. Insbesondere hat er wichtige
Beiträge für die Herleitung der Störungstheorie der Korrekturterme geleis-
tet.

[10] Der Verfasser war federführend in diesem Projekt. Seine Beiträge waren
wesentlich für die Konzeption, die Herleitung der analytischen Argumente
sowie der Ausformulierung der Publikation.

[11] Der Verfasser hat zur Konzeption des Projektes sowie der Formulierung
der Publikation beigetragen. Weiterhin hat er Beiträge zur Herleitung und
Formulierung der Hauptergebnisse geleistet, insbesondere der technischen
Ausarbeitung des Beweises des Hauptergebnisses.

[12] Der Verfasser hat wichtige Beiträge zur Konzeption, Herleitung der Ergeb-
nisse sowie der Formulierung der Publikation beigetragen. Insbesondere
hat er wesentliche Teile zur Formulierung und zum Beweis von Theorem 3
(Theorem 8.4 in dieser Arbeit) beigetragen.
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