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Abstract. New species often invade ecosystems already dominated by previous invaders. Ornamental
freshwater crayfish, particularly parthenogenetic marbled crayfish (Procambarus virginalis), increasingly
establish in European water bodies where they interact with resident native and non-native species. Behav-
ioral traits and behavioral syndromes can influence the outcome of these species interactions. The behavior
of non-native crayfish is often studied in notorious invaders but rarely in new and emerging species,
although those provide the best opportunity for management. Activity, aggressiveness, and boldness have
repeatedly been associated with invasion success and species displacement. Further, crayfish can adapt
their behavior after they have established in the new range. We investigated whether marbled crayfish can
displace the widely established spiny-cheek crayfish (Orconectes limosus). Specifically, we compared their
behavioral traits and evaluated whether these traits differ, using marbled crayfish populations from aqua-
ria and the field and spiny-cheek crayfish from the field. We staged agonistic encounters, measured activity
levels, and recorded the response to a simulated threat of both species and both origins (field and aquar-
ium) in laboratory trials. We found that in agonistic encounters, marbled crayfish were on average more
aggressive than spiny-cheek crayfish, even against larger opponents. Aggressiveness and activity were
positively correlated, which is indicative for an aggression syndrome. Marbled crayfish from the field were
less active than those from aquaria, but there was no difference in aggressiveness. Marbled crayfish often
froze in response to a simulated threat, whereas spiny-cheek crayfish reacted either offensively or defen-
sively. These results from the laboratory illustrate potentially important behavioral mechanisms behind
crayfish over-invasions and show behavioral plasticity in a species where all known individuals are geneti-
cally identical. To better understand the invasion process in nature, the species’ reproductive biology and
interactions with other members of the community should be considered. We conclude that the recent suc-
cess of marbled crayfish in establishing new populations could be influenced by their behavioral flexibility
and their potential to competitively persist in the presence of established invasive crayfish.
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INTRODUCTION

Species invasions have already massively
altered aquatic communities and are still increas-
ing worldwide (Gallardo et al. 2016, Seebens
et al. 2017). Consequently, more and more inva-
sive species compete with already established,
functionally similar invasive species, a process
that has been termed over-invasion (Russell et al.
2014). In novel communities, such over-invasions
and species introduction dates are of great rele-
vance and allow for more detailed analyses than
a simple, dichotomous distinction between
native vs. non-native species that ignores species
residence times (Dornelas et al. 2014).

The consequences of multiple species inva-
sions are largely unknown (Hewitt and Huxel
2002), but the invasion outcome and interaction
strength between invading and resident species
can be assessed by behavioral differences and
correlated suites of behavioral traits (i.e., behav-
ioral syndromes; Chapple et al. 2012, Sih et al.
2012, Penk et al. 2017). Some behavioral traits
such as activity, aggressiveness, and boldness
have repeatedly been associated with invasion
success (Weis 2010, Chapple et al. 2012). Further-
more, the ability to behaviorally adapt to a new
environment, that is, behavioral flexibility, pro-
motes invasion success (Wright et al. 2010).
Naive non-native species have to adapt to new
prey, competitors, or predators by means of evo-
lution or learning (Saul and Jeschke 2015, Wong
and Candolin 2015). Comparative studies across
invading species can help elucidate what makes
some invaders more successful than others (van
Kleunen et al. 2010).

Ornamental crayfish invasions

Particularly since the beginning of the 20th
century, decapod crayfish invasions have
resulted in a decline of native crayfish popula-
tions and severe changes to ecosystems, for
example, in Europe (Holdich et al. 2009, Lodge
et al. 2012). Nowadays, increasing numbers of
new non-native crayfish species are imported by
the pet trade from North America and Aus-
tralasia to Europe, and some species have
already been released in nature (Chucholl 2013,
Chucholl and Wendler 2017). As more of these
recently arrived species have started to establish
populations, interactions with other invasive
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species will shape future crayfish distributions
and novel species communities (Kouba et al.
2014). However, the propagule pressure of the
new invaders and the incumbent advantage of
the old invaders will be decisive for potential
competitive displacement in these over-invasion
scenarios (Lockwood et al. 2005, Russell et al.
2014). Crayfish from the pet trade have the dis-
advantage that they are naive to prey, predators,
or competitors when they are released from
aquaria (Hazlett 1994, Martin 2014). For exam-
ple, aquaria or other hatchery-reared fish are
more vulnerable to predation than those that
have experienced predation (Kellison et al. 2000,
Yokota et al. 2007). Some studies looked at ago-
nistic behaviors among competing old and new
invasive crayfish species (Chucholl et al. 2008,
Hudina et al. 2011, James et al. 2016), but
broader behavioral comparisons are necessary to
investigate the invasive potential of species
before or at an early stage of invasion.

Invasive crayfish: behavioral differences and
flexibility

Non-native crayfish are model organisms in
invasion ecology and are also frequently used in
behavioral studies (Gherardi et al. 2012, Lodge
et al. 2012). Evidence suggests that highly inva-
sive crayfish typically display stronger interspeci-
fic aggression toward resident congeners, in that
way limiting access to critical resources for com-
petitors (e.g., Gherardi and Cioni 2004, Klocker
and Strayer 2004, Chucholl et al. 2008). Also, lar-
ger body and chela size are advantageous in these
agonistic interactions (Garvey and Stein 1993,
Vorburger and Ribi 1999). Invasive crayfish spe-
cies are often more active (Bubb et al. 2006), per-
ceive more predation cues (Hazlett et al. 2003), or
avoid predation more effectively (Garvey et al.
1994) than native crayfish. Activity, aggressive-
ness, and boldness in crayfish are often correlated
and thought to be part of an aggression syndrome
(Pintor et al. 2008, 2009). These behavioral syn-
dromes can be explained by state variables (such
as growth) that often covary with sets of behav-
iors (Biro et al. 2014). Furthermore, invasive cray-
fish adapt behavioral traits after introduction in
response to resident crayfish species and the com-
munity of invaded water bodies (Pintor et al.
2008, Hanshew and Garcia 2012). For example,
native crayfish that had experience with an
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invasive competitor were more aggressive toward
the opponent than naive native individuals
(Hayes et al. 2009). Also, the presence of preda-
tors alters the activity of invasive and native cray-
fish (Hirvonen et al. 2007, Aquiloni et al. 2010). It
has been shown that invasive crayfish and crabs
can learn how to respond to newly emerging
threats after invading new territories (Hazlett
et al. 2002, Roudez et al. 2008). By looking at mul-
tiple behavioral traits and integrating behavioral
flexibility and new concepts like behavioral syn-
dromes (Gherardi et al. 2012), species displace-
ments and ecological invasions might be better
understood and managed.

Model organisms

Spiny-cheek crayfish (Orconectes limosus) and
marbled crayfish (Procambarus wvirginalis) are
examples for invaders with a high functional
similarity. They can thus be used as comparator
organisms sensu Penk et al. (2017): Comparing
marbled crayfish to resident spiny-cheek crayfish
allows assessing the invasive capacity of marbled
crayfish. Furthermore, both species are included
in the List of Invasive Alien Species of Union
Concern (EU Regulation 1143/2014). They co-
occur in some lakes in Germany, but differ in
their invasion history and morphology (Chucholl
and Pfeiffer 2010, Chucholl et al. 2012).

Spiny-cheek crayfish have been spread across
Central Europe since the late 19th century, now
being one of the most common European cray-
fish species (Kouba et al. 2014). They display sex-
ual dimorphism with males having larger chelae
than females (Souty-Grosset et al. 2006). In parts
of their native range, spiny-cheek crayfish were
outcompeted by other invasive species from the
genus Orconectes (Klocker and Strayer 2004). The
interactions of spiny-cheek crayfish with other
crayfish in their invasive range, however, have
rarely been studied (Musil et al. 2010).

The peculiar marbled crayfish are triploid
descendants of the sexually reproducing slough
crayfish (Procambarus fallax; Martin et al. 2010,
Lyko 2017, Gutekunst et al. 2018). Marbled cray-
fish represent the only known decapod crus-
tacean capable of apomictic parthenogenesis
(Scholtz et al. 2003, Seitz et al. 2005). What
makes marbled crayfish even more unique is the
fact that no native population has been recorded
so far (summarized in Chucholl et al. 2012 and
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citations therein). The obscure origin of marbled
crayfish lies in the tanks of traders or breeders of
crayfish, and neither behavior nor ecology of the
species within invaded lakes is yet understood
(Chucholl et al. 2012). The first naturalized mar-
bled crayfish population (i.e., in the field) was
reported near Freiburg, Germany, in 2003 (Mar-
ten et al. 2004). In recent years, sightings from
the Netherlands, Italy, Slovakia, Sweden, and
other German lakes followed (see Chucholl et al.
2012 for review). Since these populations stem
from marbled crayfish previously reared in
aquaria, they can be considered to have been
naive to interspecific competition and predators
before they were released. The aquarium origin
and the beginning establishment of isogenic pop-
ulations in pre-invaded lakes provide a unique
opportunity to study behavioral mechanisms of
species displacement and behavioral flexibility in
the natural environment.

Goals and hypotheses

We compared the behavior of marbled and
spiny-cheek crayfish to assess competitive inter-
action strength, flexibility in behavior of an inva-
der, and possible species displacement in crayfish
(over-)invasions. Specifically, we assessed inter-
specific aggressiveness, activity, and boldness of
the two focal species. In addition, we compared
naive, aquarium, and naturalized populations of
marbled crayfish that are sympatric to spiny-
cheek crayfish with each other to elucidate
changes in behavior that result from naturaliza-
tion. Finally, we looked for correlations between
aggressiveness and activity, associated with agg-
ression syndromes in individuals of both crayfish
species.

We hypothesized that crayfish species differ in
behavioral traits that are important for invasion
success, for example, agonistic behavior. Resi-
dent spiny-cheek crayfish were expected to dom-
inate marbled crayfish because their males have
large chelae in contrast to the all-female marbled
crayfish. The latter were thought to be more
active than spiny-cheek crayfish and respond less
appropriately to a threat since they originate
from aquaria without natural selection regimes.
Marbled crayfish should generally exhibit less
variability in behavior since they are isogenic.
We further hypothesized that after marbled cray-
fish came in contact with spiny-cheek crayfish
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and predators in a natural environment, they
will adapt their behavior. Marbled crayfish from
invaded water bodies were expected to be more
aggressive than aquarium crayfish to compete
and coexist with spiny-cheek crayfish. Finally,
marbled crayfish experiencing predation in the
field should be less active and more responsive
to threats than aquarium marbled crayfish.

MATERIALS AND METHODS

Study sites

Spiny-cheek crayfish were collected in Lake
Miggelsee in front of the institute (52°26'6" N,
13°38'6" E), Germany, with crayfish traps (type
PIRAT, 610 x 315 x 250 mm, mesh width 40 x
10 mm, Rapurosvo, Parainen, Finland) between
April 2015 and June 2016. The traps were baited
with dog food or dead fish and were set over-
night and checked on the next day. Aquarium
stocks of marbled crayfish were provided by
Peer Martin (Comparative Zoology, Humboldt
University, Berlin, Germany). Additional mar-
bled crayfish that live in sympatry with spiny-
cheek crayfish were mostly hand-collected or, to
a minor degree, caught by traps in the littoral
zone from lakes (1) Moosweiher (48°01'51" N,
7°48'17" E) in Baden-Wurttemberg, Germany,
and (2) Krumme Lanke (52°27'0" N, 13°13'52" E)
in Berlin, Germany. Crayfish were transported in
Styrofoam boxes filled with water 30 mm deep
and macrophytes in excess.

Maintenance of test animals

All crayfish were sexed and measured manu-
ally with a sliding caliper to the nearest millime-
ter. The length was measured as carapace length
(CL) from the tip of the rostrum to the posterior
edge of the carapace. Tanks were set up on
shelves in a climate chamber with a constant tem-
perature at 17°C under a photoperiod of 14:10 h
light:dark. All crayfish were kept in the laboratory
for at least one month before being used in experi-
ments. All aquarium marbled crayfish, natural-
ized marbled crayfish from Lake Krumme Lanke,
and all spiny-cheek crayfish used for individual
measurements (>3 replicates) in behavioral exper-
iments were kept individually in tanks (300 x
200 x 200 mm) filtered by air-driven sponge fil-
ters. Naturalized marbled crayfish from Lake
Moosweiher and additional spiny-cheek crayfish
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that have been used only as opponents in agonis-
tic encounters were marked and housed in filtered
single-species community tanks separated by sex
(800 x 400 x 200 mm). All housing tanks were
filled with 30 mm of fine gravel, and PVC pipes
(150 mm, diameter 50 mm) were provided for
shelter. Communal tanks were provided with a
surplus of shelters (>2 per crayfish) to minimize
aggression. To differentiate among the crayfish
kept in communal tanks, we used the non-inva-
sive, numerical marking system of Abrahamsson
(1965) where crayfish were marked with a point-
code on top of their carapace. The crayfish were
marked with a white outdoor marker (Edding
8055, Ahrensburg, Germany). After molts, we
waited for the exoskeleton to be hardened com-
pletely and measured the new length before
remarking the animals. Tanks were cleaned once
a week and around 75% of water was exchanged
with fresh tap water. Individual crayfish were fed
half a ring of commercial crayfish food (Crabs nat-
ural, sera, Heinsberg, Germany) daily. Dried and
blanched oak leaves were provided ad libitum as
additional food and environmental enrichment.
After the end of the study, crayfish were used for
further experiments on their prey choice and feed-
ing mechanics.

The protocol and procedures employed were
ethically reviewed and approved by the Lan-
desamt fur Gesundheit und Soziales (LAGeSo),
Berlin, Germany. All experiments were per-
formed in accordance with Directive 2010/63/EU
of the European Parliament and of the Council of
22 September 2010 on the protection of animals
used for scientific purposes.

Setup and standard procedure

All experiments were conducted in the climate
chamber to reduce handling and guarantee mini-
mal disturbance from outside. Two tanks mea-
suring 400 x 400 x 200 mm were set up in the
chamber, each filmed by two cameras (one verti-
cally above the tank and another one at the side
of the tank). All experiments were recorded or
photographed with network cameras (Dinion HP
1080p, Bosch, Stuttgart, Germany) capable of
recording under infrared illumination. Videos
and photographs were recorded and saved with
VLC player (version 2.2.1.0). Each setup was cov-
ered with an opaque, black plastic tarpaulin to
further minimize disturbances.
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All crayfish used for the experiments were in
good condition (no obvious diseases, all appen-
dages present and intact). Each crayfish was used
only for one experimental trial per day. Intermolt
individuals of both male and female sex (22—
50 mm CL) were used in experiments. Females
carrying eggs or larvae were excluded from
experiments up to at least one week after the
release of the brood. Test animals were randomly
chosen among available crayfish with a pair of
ten-sided dice.

In each experiment, the tanks were filled with
20 mm of fine gravel and 150 mm of tap water
of 15°C temperature. Crayfish were released into
experimental tanks and allowed to acclimatize
for 30 min prior to the experiment. After each
trial, the tank was completely drained before set-
ting up another experiment to avoid a potential
bias by remaining pheromones in the water (Bre-
ithaupt 2011).

Allometry

Since larger chelae can be advantageous in
agonistic encounters, we measured chela length
of the right cheliped (in mm) for a random set of
crayfish from three groups: male spiny-cheek
crayfish (N = 52), female spiny-cheek crayfish
(N = 28), and marbled crayfish (N = 81) with
CLs between 20 and 50 mm. We fitted linear
regression models (command Im()) in R version
3.4.0 (R Core Team 2017) to predict chela size
depending on CL in each of these groups. To test
for differences in intercept and slope in the three
regression lines, we fitted three models for each
pair of two of the three groups accounting for
CL, the group, and their interaction.

Aggressiveness

We tested agonistic behavior against size-
matched opponents (£1 mm CL) in interspecific
encounters of individual spiny-cheek crayfish
males (N = 12), spiny-cheek crayfish females
(N =7), aquarium-reared marbled crayfish
(N =14), and naturalized marbled crayfish
(N = 13). Three encounters were staged for each
individual against three different opponents. The
availability of matching pairs was reduced by
egg-bearing females and molting individuals
and resulted in uneven numbers of replicates. To
better discriminate species and size effects, we
later staged confrontations of the same
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individuals with smaller (<4 £ 2 mm CL
[mean =+ standard deviation, SD]; N =15 for
spiny-cheek crayfish, N = 13 for marbled cray-
fish) and larger opponents (>4 £2 mm CL
[mean + SD]; N = 16 for spiny-cheek crayfish,
N = 14 for marbled crayfish; modified from Vor-
burger and Ribi 1999).

Experimental tanks were separated into two
sides with a removable opaque divider (PVC).
The corners were rounded with plastic glass to
avoid that submissive animals become trapped.
For each trial, one crayfish was transferred into
each compartment. After acclimatization, the
divider was lifted and the encounter recorded on
video to later assess and score each interaction.
The experiments were conducted in the dark
when crayfish are most active and illuminated
by infrared headlights (Holdich and Black 2007,
Luna et al. 2009).

Each confrontation was recorded with both
cameras. The recording time was set at 35 min.
The first 30 min after opening the divider was
analyzed for agonistic behavior, and 5 min was
added as buffering time. If fewer than five inter-
actions took place within the 30 min, the buffer-
ing time was checked for more interactions. If
there were still fewer than five interactions
including the buffering time, the experiment was
repeated with another opponent for each crayfish
on another day.

To quantify interaction strength during the
confrontations, the observed behavior was
scored with the system developed by Atema and
Voigt (1995; Table 1). For every five-seconds,
each member of the pair was assigned an aggres-
sion score. The scoring system was modified by
giving ignoring, which was not originally
included in the system, the score 0. Ignoring was
observed when crayfish were within one body
length of one another or had physical contact,
but did not show any visible response (i.e., taxis)
toward the opponent’s presence (e.g., crawling
along the aquarium pane, crawling over or under
the body of the opponent). The opponent could
show another agonistic behavior at the same
time and was scored, respectively. The term sepa-
rate includes all situations where the individuals
were apart for more than one body length and
no score was applied. When more than one ago-
nistic behavior was shown within five-seconds,
higher scores outranked lower (positive) scores
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Table 1. Definitions of agonistic behaviors observed in crayfish and their designated score (modified from Atema

and Voigt 1995).
Score Behavior Definition
—2  Fleeing Walking away (rapidly), walking backward (rapidly), tail-flipping (rapid

contraction of the abdomen)

-1  Avoidance
0 Ignoring
contact
1 No physical contact (initiation)
No physical contact (threat display)

3 Physical contact (claws not used to

grasp)
4 Physical contact (claws used to grasp) claw lock
5 Unrestrained use of claws

n/a  separate

Walking away (slowly), walking backward (slowly), turning away
Indifference toward each other within less than one body length, or even in

Facing, approaching, turning toward, following
High on legs, claw open, meral spread, claw forward, antenna point

Antenna touching, claw touching, claw tapping, claw pushing, antenna
whipping, claw boxing, claw scissoring

Claw snapping, claw ripping
Opponents one body length or more apart

(0-5). Score —2 outranked —1 and both flight
behaviors (scores —1 and —2) outranked score 0
or positive scores. The interactions ended with
one crayfish fleeing or separating itself from the
counterpart by more than one body length.

For every individual and confrontation, we
counted the total number of each observed score
(for all five-second intervals) during the 30 min
of confrontation for each crayfish. To see relative
frequencies of certain scores among the groups, a
standardized count was calculated by adding up
the scores for each group and dividing it by the
number of tested individuals. For every individ-
ual and confrontation, we calculated an aggres-
sion score by multiplying each score with the
number of observations and adding them up for
all behaviors (Karavanich and Atema 1998). We
then adjusted the aggression score by dividing it
by the number of interactions (5-s intervals) that
were observed during 30 min (adj. AS). We did
this adjustment to obtain a better measure of
average aggression level since the time spent
interacting with the other crayfish differed lar-
gely between trials. A negative or low aggression
score represents a submissive individual or the
loser of the encounter, whereas a high value indi-
cates an aggressive individual or the winner of
the encounter.

We performed analyses using linear mixed-
effects models to detect agonistic score differences
between the groups or species with individual as
random factor (command lmer() from package
Ime4 (Bates et al. 2014)). As fixed effects, we used
species, CL at the time of the fight (molting and
therefore growth can occur between days of the
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experimental period), origin (aquarium or natu-
ralized, only applicable to marbled crayfish), and
sex (only applicable to spiny-cheek crayfish). All
possible combinations of fixed effects and interac-
tions between fixed effects were calculated—ex-
cept between species, origin, and sex as these are
confounded. Models were ranked by Akaike’s
information criterion (AIC) and Akaike’s model
weight. Marginal (fixed factors only) and condi-
tional (fixed factors and random factor) R? values
for the best model were calculated using the
MuMIn package (Barton 2013).

Activity

We tested the activity (time spent outside of
the shelter) of individual spiny-cheek crayfish
males (N = 11), spiny-cheek crayfish females
(N =5), aquarium-reared marbled crayfish
(N =13), and naturalized marbled crayfish
(N = 14). Each individual crayfish was tested in
three trials. The experimental tanks were filled
with gravel 20 mm deep and completely divided
by half with an opaque divider (PVC). A PVC
pipe (I = 150 mm, diameter 50 mm) in each com-
partment was provided as shelter. A crayfish
was transferred into each compartment. After
acclimatization, photographs were taken in the
dark under infrared light every 30 min for 6 h,
starting 30 min after artificial nightfall. Pho-
tographs were later checked for the position of
the crayfish in the tank. Crayfish were consid-
ered to be outside the shelter when all of the
carapace and the pereopods were visible outside
the PVC pipe, as viewed from above. We
summed up the number of observations outside
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the shelter and the number of observations inside
the shelter for each trail.

We then applied a generalized linear mixed-
effects model (GLMM) for binary responses with
R to detect differences in time spent outside and
inside the shelter among spiny-cheek crayfish
males, spiny-cheek crayfish females, aquarium-
reared marbled crayfish, and naturalized mar-
bled crayfish (command glmer; package Ime4).
The individual was included in the model as ran-
dom factor. Similar to the aggression scores, we
calculated all possible combinations of fixed
effects and interactions between fixed effects—
except between species, origin, and sex as these
are confounded. Models were ranked by AIC
and Akaike’s model weight, and we calculated
marginal and conditional R values for the best
model using the MuMIn package (Bartén 2013).

Threat response

The response to a simulated threat as a measure
of boldness was tested for spiny-cheek crayfish
males (N = 15), spiny-cheek crayfish females
(N = 15), aquarium-reared marbled crayfish (N =
13), and naturalized marbled crayfish (N = 19).
Individual crayfish were placed in the experimen-
tal tank with 20 mm of sand as substrate and
allowed to acclimatize. The crayfish were then
approached from the upper front, using an angle
of ~45° by the hand of the experimenter in a
steady but brisk movement. Threat responses
were recorded under dim light conditions from
above the tank. Each individual crayfish was
tested three times but only once per day. The
experiment followed the approach by Pintor et al.
(2008), but with a modification since most cray-
fish in preliminary trials did not show a response
to the hand if its movement was stopped above
the surface. Thus, the movement of the hand was
extended into the water, aiming for the front of
the crayfish until a contact would occur. The hand
was put through a hole in the tarpaulin when the
crayfish was in a suitable position. Before the
crayfish was approached, it needed to be at least
one body length away from the aquarium pane,
so it would not be constrained when displaying a
flight reaction. Hands were washed with warm
water after each trial to avoid a potential bias by
remaining pheromones (Breithaupt 2011).

The first, initial response of the crayfish to the
hand was assessed. Crayfish responded either by
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tail-flipping, that is, shooting backward (flight;
score —1); stop moving and ducking (freezing;
score 0); or by showing a threat display, that is,
lifting their claws (fight; score 1). The scores of
the three trials were summed up, and a general
response score was given to each individual
crayfish. A negative sum resulted in a general
flight response, a positive score resulted in a fight
response, and a sum of 0 was classified as freeze.
We tested for differences between the groups
with a chi-square test in R (command chisq.test)
with 100,000 bootstrap simulations. We also com-
pared all combinations of groups of crayfish and
corrected for multiple testing using the Bonfer-
roni-Holm method. Additionally, all groups of
crayfish were checked for potential effects of CL
using Spearman rank correlations.

REsuLTs

Allometry

Carapace length was a significant predictor of
chela length for crayfish from all groups
(Appendix S1: Fig. S1). The average chela length
was significantly smaller, and the slope was less
steep for marbled than for spiny-cheek crayfish
males (linear regression, f = 8.75, P < 0.001 and
t = —13.49, P < 0.001). There were also signifi-
cant differences in chela length and slope of the
regression lines between spiny-cheek crayfish
females and males (linear regression, t = 4.60,
P <0.001 and t = —7.16, P < 0.001). There was
no significant difference in chela size between
marbled crayfish and spiny-cheek crayfish
females or slope of regression lines (linear regres-
sion, t = 1.55, P = 0.12 and t = —1.3, P = 0.20).

Aggression

All linear mixed-effects models were sorted
according to their delta-AIC value and AIC
weights. Models with an AIC weight above 0.05
are presented in Table 2 (see Appendix S1:
Table S1 for all models). The best model includes
species and individual CL (size) as predictors
(marginal R? = 0.16; conditional R* = 0.31). All
other models with a model weight above 0.05
also include species and size plus either origin,
sex, or interaction terms. Species and size thus
seem to be the most important predictors for
aggressiveness, whereas other factors are less
important. Carapace length was positively
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Table 2. Linear mixed-effects models of adjusted
aggression score (adj. AS) analysis.

AIC

Model (fixed effects) delta-AIC  weight
— species(SC) + size 0 0.221
species(SC) + size — species(SC):size 1.3 0.116
—species(SC) + size + origin(aq) 1.7 0.095
— species(SC) + size — sex(m) 2 0.082
—species(SC) + size + sex(m) — size: 2.5 0.063

sex(m)

species(SC) + size + origin(aq) — 29 0.053

species(SC):size

Notes: Listed are the best models according to Akaike’s
model weight (Akaike’s information criterion [AIC] weight).
Indicated positive or negative effects of variables relate to the
values of these variables given in brackets (m, male; SC,
spiny-cheek crayfish; aq, aquarium origin); these are com-
pared to female marbled crayfish from the field as reference.
All models include the individual (IND) as random factor
(Adj. AS ~ intercept + fixed effects + (1[IND)).

correlated with adj. AS. We considered individ-
ual as random factor in the analyses but found
no statistical effect on aggression. In initial
exploratory analyses, we also looked for an effect
of the day of experiment (Ist, 2nd, or 3rd) but
did not find such an effect.

The adj. AS of marbled crayfish was on aver-
age 0.67 £ 0.16 standard error (SE) higher than
the adj. AS of spiny-cheek crayfish (Fig. 1). The
results of the mixed-effects models that neither
(1) sex nor (2) origin is important predictor of
aggression are also illustrated in Fig. 1: adj. AS
of (1) male and female spiny-cheek crayfish, and
(2) aquarium-reared and naturalized marbled
crayfish were similar.

Aggression encounters rarely escalated (scores
4 and 5 were rare; Appendix S1: Fig. S2) and
were mostly resolved by claw pushing or boxing
(score 3). Marbled crayfish rarely initiated fights
with a threat display or responded equally to
spiny-cheek threat displays (score 2). Further-
more, marbled crayfish often ignored their oppo-
nent (score 0). Higher negative scores indicated
that spiny-cheek crayfish lost more encounters
than marbled crayfish.

In agonistic encounters against smaller oppo-
nents from either sex, marbled crayfish differed
significantly from spiny-cheek crayfish and won
all interactions, whereas spiny-cheek crayfish lost
most interactions (Fisher’s exact test, df =25,
P <0.001; Fig. 2). Against larger opponents,
marbled crayfish similarly won 64% of
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Fig. 1. Adjusted aggression scores in pairwise inter-
specific interactions among spiny-cheek crayfish males
(open boxplot), spiny-cheek crayfish females (gray
boxplot), and marbled crayfish from aquaria (light
green boxplot) and naturalized populations (dark
green boxplot).
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Fig. 2. Agonistic encounters won (in percent £
standard error) by marbled crayfish (triangles, light
green) and spiny-cheek crayfish (both sexes; circles,
black) with opponents of unequal size of the other spe-
cies. The left side shows the outcomes against larger
opponents (spiny-cheek crayfish, N =16, marbled
crayfish, N = 14) and the right side against smaller
opponents (spiny-cheek crayfish, N =15, marbled
crayfish, N = 13).
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encounters and spiny-cheek only 31%, but this
difference was not statistically significant (Fish-
er’s exact test, df = 28, P = 0.14).

Activity

The best model (marginal R* = 0.10; condi-
tional R* = 0.21) uses origin and size as predic-
tors: Aquarium marbled crayfish were more
active than all other groups (Table 3, Fig. 3; see
Appendix S1: Table S2 for all models). Activity
was negatively correlated with size for all cray-
fish. Spiny-cheek crayfish males, spiny-cheek
crayfish females, and naturalized marbled cray-
fish spent more time inside than outside the shel-
ter. All models using other predictors along origin
were weaker than the one with origin and size as
the sole predictors, and models not accounting for
origin were negligible in explanatory power (AIC
weights <0.001; Table 3). In conclusion, shelter
use did not differ markedly among sex or species,
but the rearing environment (origin) and size
were meaningful predictors of activity. We consid-
ered individuals as random factor, but these had
no effect on shelter use. In initial exploratory anal-
yses, we also looked for an effect of the day of
experiment but did not find one.

Aggression syndrome

We tested for correlations between activity and
aggression. Therefore, we used the means of indi-
vidual aggression scores and ratios of time spent

Table 3. Generalized linear mixed-effects model
results of activity analysis.
AIC
Model (fixed effects) delta-AIC  weight
origin(aq) — size 0.0 0.161
origin(aq) 0.4 0.131
origin(aq) — size — origin(aq):size 1.4 0.079
origin(aq) + sex(m) — size — sex(m):size 1.5 0.077
origin(aq) + sex(m) — size — 1.8 0.066
sex(m):size — origin(aq):size

origin(aq) + sex(m) — size 1.9 0.062
origin(aq) — size — species(SC) 2.0 0.060
origin(aq) + sex(m) 2.3 0.051

Notes: Listed are the best models with decreasing Akaike’s
model weight. Indicated positive or negative effects of variables
relate to the values of these variables given in brackets (m, male;
SC, spiny-cheek crayfish; aq, aquarium origin); these are com-
pared to female marbled crayfish from the field as reference.
All models include the individual (IND) as random factor (ratio
of time spent outside/inside the shelter ~ intercept + fixed
effects + (1|IND)). AIC, Akaike’s information criterion.
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outside or inside the shelter for all individuals
where we had at least three observations for
aggression and activity. We calculated separate lin-
ear regressions for spiny-cheek crayfish, aquarium
marbled crayfish, and naturalized marbled cray-
fish. Individuals of both sexes of spiny-cheek cray-
fish have been combined in the analysis since we
did not find differences in activity and aggression
(see above). Naturalized marbled crayfish and
marbled crayfish from aquaria have been tested
separately; as they differed in activity (see above).

One aquarium marbled crayfish had only two
aggression scores because an interspecific mating
took place during the third experiment; thus, the
observation was excluded. Also, one naturalized
marbled crayfish had only two observations for
activity because it was cannibalized during molting
before the third experiment could be conducted.

We found that in naturalized marbled crayfish,
mean adj. AS (aggression) was positively corre-
lated with the ratio of time spent outside or
inside a shelter (activity; Fig. 4). A similar trend
was observed for aquarium-reared marbled cray-
fish, whereas no such correlation was found for
spiny-cheek crayfish.

Threat response
Crayfish groups significantly differed in their
threat response (Pearson’s chi-square test with
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Fig. 3. Percentage of time spent outside the shelter
(£ standard error) over 6 h for spiny-cheek crayfish
males, spiny-cheek crayfish females, and marbled
crayfish from aquarium and naturalized populations.
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Fig. 4. Correlations between mean activity score (ratio
of time spent outside/inside the shelter; ACT) and mean
adjusted aggression score (adj. AS) of spiny-cheek and
marbled crayfish individuals across experiments. Regres-
sion lines: naturalized marbled crayfish, Adj. AS
~0.75 + 2.7-ACT (linear regression, t = 3.09, P = 0.015,
adj. R* = 0.49); aquarium marbled crayfish, Adj. AS
~1.05 + 0.85-ACT (linear regression, t=2.1, P =0.06,
adj. R* = 0.22). No line is shown for spiny-cheek crayfish,
as no trend was observed, Adj. AS: ~0.97 — 0.39-ACT;
linear regression: t = —0.295, P = 0.77, adj. R%Z= 0.08).

simulated P-value, based on 100,000 replicates,
x> = 5491, P <0.001, Fig. 5, Table 4). The CL
was not related to threat response in any of the
groups (spiny-cheek crayfish [male], rs = —0.046,
P = 0.87; spiny-cheek crayfish [female], rs = 0.149,
P =0.60; marbled crayfish [aquarium], rs=
—0.321, P = 0.29; marbled crayfish [naturalized],
rs = 0.217, P = 0.40). Remarkably, marbled cray-
fish frequently stopped and ducked in response
to the approaching threat (37% or 47% for aquar-
ium or naturalized marbled crayfish, respec-
tively), whereas spiny-cheek crayfish did not
show such behavior. Male spiny-cheek crayfish
mainly responded with aggression (93% of all tri-
als), whereas females mostly displayed flight
behavior (93%). If not freezing in response to a
threat, marbled crayfish most often fled from the
threat (62% or 37% for aquarium or naturalized
marbled crayfish, respectively). Aquarium mar-
bled crayfish did not fight, whereas naturalized
marbled crayfish showed fight behavior in about
15% of the trials.
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Fig. 5. The percentage of displayed behaviors in
response to a simulated threat for spiny-cheek crayfish
of either sex and marbled crayfish from aquarium and
naturalized populations. The behaviors displayed
encompass aggressive behavior (dark gray bars), freez-
ing (gray bars), or flight behavior (light gray bars).

Table 4. Chi-square statistics (3%) of all pairwise com-
parisons between groups of crayfish and among all
groups tested for their threat response.

Comparison v P

Spiny-cheek crayfish (female) vs. spiny-cheek 19.29 <0.001
crayfish (male)

Marbled crayfish (naturalized) vs. marbled 320 0.21
crayfish (aquarium)

Spiny-cheek crayfish vs. marbled crayfish 21.96 <0.001
(species)

Marbled crayfish (aquarium) vs. all 720  0.055
naturalized crayfish (origin)

All-female crayfish vs. male spiny-cheek 35.81 <0.001
crayfish (sex)

Comparison between all groups 50.44 <0.001

Note: P-values are corrected for multiple testing using the
Bonferroni-Holm method.

DiscussioN

Differences between species and implications

Our results illustrate some of the key behav-
ioral characteristics in invasion success of crayfish.
In the over-invasion scenario we investigated, the
recently invading marbled crayfish were able to
dominate resident spiny-cheek crayfish of either
sex in agonistic encounters even if their oppo-
nents were larger and had larger claws.

September 2018 *¢ Volume 9(9) ** Article 02385



Aggressiveness has been one of the main
behavioral traits associated with species displace-
ment in crayfish (Capelli and Munjal 1982, Usio
et al. 2001). So far, interspecific aggression has
only been tested for juveniles of marbled crayfish
interacting with red swamp crayfish (Procambarus
clarkii), which were similarly aggressive (Jimenez
and Faulkes 2011). As we demonstrated here, the
lack of sexual dimorphism does not constrain the
ability of marbled crayfish to win agonistic
encounters against another species. Aggressive
dominance also translates to superiority in com-
petition over shelters, an important resource for
crayfish that relieves them from predation pres-
sure (Gherardi and Daniels 2004, Moore 2007).
Thus, we assume that preferred resources of
spiny-cheek crayfish like shelters would be fre-
quently occupied by invading marbled crayfish
where both species co-occur.

In former invasions of North American species
across Europe, interspecific competition between
crayfish was mostly no relevant determinant of
invasion success because the crayfish plague
(Aphanomyces astaci, Leptolegniaceae) often com-
pletely eradicated native competitors before or
shortly after introduction of non-native crayfish
(Gherardi and Holdich 1999). The die-off of
potential competitors and its high tolerance
toward poor habitat quality probably had a
major effect on the former success of spiny-cheek
crayfish. There is surprisingly little work on the
competitive ability of spiny-cheek crayfish in
contrast to other major invasive crayfish in Eur-
ope like the red swamp crayfish or the signal
crayfish (Pacifastacus leniusculus). In the few
available studies on spiny-cheek crayfish aggres-
sion, they were usually inferior in agonistic
encounters (either in their native range against
an invader or against another invader in their
introduced range (Klocker and Strayer 2004,
Hudina et al. 2011). It should be noted that the
average aggression level of the tested spiny-
cheek crayfish might be even lower since they
were caught with traps, which can select for
aggressive individuals (Ogle and Kret 2008).

In the invasion scenarios we are facing today,
crayfish plague-resistant species over-invade
other plague-resistant species, and the traits and
interactions with the community will become
paramount for distribution and impacts of cray-
fish (Russell et al. 2014, James et al. 2016). In
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general, species distributions and impacts in
novel communities and ecosystems can probably
be better understood when considering the time
of introduction of species rather than simply
dividing species into native and non-native ones.
The latter, dichotomous classification is often
based on a reference year, for example, 1492
which is sometimes rounded to 1500 (DAISIE
2009): Species present before this year are consid-
ered native, and species introduced thereafter are
considered non-native. A finer approach consid-
ering the time of introduction and the eco-evolu-
tionary experience of introduced and resident
species (Saul and Jeschke 2015) seems to be a
promising way forward.

Behavioral syndromes

We also explored the flexibility and the correla-
tions among behaviors (i.e, behavioral syn-
dromes). We observed two traits in particular
that are beneficial during the introduction and
spread of species: Higher aggression jointly with
higher activity was observed in marbled as com-
pared to spiny-cheek crayfish. Positive correla-
tions of aggressiveness and activity have been
referred to as so-called aggression syndromes in
invasive species (Sih et al. 2004, Pintor et al.
2009). Our results suggest that marbled crayfish
exhibit such an aggression syndrome which can
lead to more agonistic encounters, but may also
be positively related to attacks on prey, that is,
increased foraging rate (Sih et al. 2004, Sih and
Bell 2008, Pintor et al. 2009). Both would facili-
tate species displacement through either inter-
specific aggression or competition for resources.

Thus far, marbled crayfish have not outcom-
peted spiny-cheek crayfish in water bodies
where both species co-occur (Chucholl and Pfeif-
fer 2010). Trade-offs associated with the aggres-
sion syndrome, for example, higher intraspecific
aggression, might limit the success of marbled
crayfish. Elevated intraspecific aggression levels
might, for example, constrain marbled crayfish
densities. We did not include intraspecific
aggression in our study design, but from our
observations in communal tanks, we suspect
intraspecific aggression to be low. High genetic
relatedness has been shown to lower intraspecific
aggression in insects (Carazo et al. 2014, Jandt
et al. 2014), but marbled crayfish also form domi-
nance hierarchies (Luna et al. 2009).
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Marbled crayfish might also suffer higher pre-
dation rates despite similar activity levels
because their antipredator behavior (i.e., threat
response) is not appropriate or their morphology
makes them easier to attack. After handling both
species for years, we have the impression that
spiny-cheek crayfish have a thinner carapace and
they have, as their name implies, spines in con-
trast to marbled crayfish. To our knowledge, data
on exoskeleton thickness are not available in the
literature for either species. We also noted that, if
lifted up, spiny-cheek crayfish pull their legs
together beneath the carapace and the abdomen
to form a spiny ball that is difficult to swallow
for gape-limited predators like fish. The impor-
tance of the aggression syndrome for population
dynamics and invasion success should therefore
be examined in relation to predators foraging on
marbled crayfish (Pintor et al. 2009).

Species displacement in crayfish can take dec-
ades, as a long-term study on a Finnish lake has
demonstrated (Westman et al. 2002). Higher
reproduction rates, activity, and aggressive behav-
ior were suspected to promote the displacement
of noble crayfish (Astacus astacus) by plague-free
signal crayfish in the Finnish lake, but the mecha-
nisms of displacement have remained unclear.

Individual differences in behavior are often
linked to variation in life-history parameters and
morphology. Biro et al. (2014) found that individ-
ual differences in life-history and behavior of
common yabby (Cherax destructor) express very
early in life, and variation might arise primarily
from genetic or permanent environmental effects.
The limited genetic diversity of marbled crayfish,
however, should not allow for significant effects
on variability in behavior. Permanent environ-
mental effects such as maternal effects, epigenetic
effects, and other effects that influence develop-
ment already before hatching can be the cause for
this variation (Dochtermann et al. 2015). For
example, clonal Amazon mollies (Poecilia formosa)
consistently showed individual variation in
behavior among isogenic individuals reared in
isolation, and social experience during ontogeny
had no effect on individual behavioral variation
(Bierbach et al. 2017). In marbled crayfish, devel-
opmental variation probably explains much of the
variation in coloration, growth, lifespan, repro-
duction, number of sense organs, and behavior,
even when they are reared under identical
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conditions (Vogt et al. 2008). The emergence of
personality and its genetic basis are yet barely
understood, and studies on isogenic marbled
crayfish might help deepen our understanding.

Will these behaviors promote marbled crayfish
invasions?

We presented evidence that marbled crayfish
are more aggressive and active competitors than
spiny-cheek crayfish. Risk assessments confirm
that marbled crayfish have many traits promoting
high invasiveness (Twardochleb et al. 2013, Chu-
choll and Wendler 2017). For example, marbled
crayfish cope well with low water temperatures
despite their origin in warm-water aquaria
(Vesely et al. 2015). High aggression and activity
together with high potential population growth
rates make marbled crayfish exemplary for a fast
pace-of-life species (Réale et al. 2010). Marbled
crayfish have a higher reproductive potential than
most other crayfish, as they lay more clutches and
are not bound to mating seasons due to partheno-
genesis (Scholtz et al. 2003, Souty-Grosset et al.
2006). By parthenogenetic reproduction, marbled
crayfish overcome many challenges that invasive
species face after introduction. For example, small
founder populations of marbled crayfish should
not be impaired by failing to recognize con-
specifics or mate choice (Chapple et al. 2012). A
single marbled crayfish is sufficient to establish a
population. However, parthenogenetic reproduc-
tion also reduces adaptability to cope with para-
sites or changes in the environment.

Predation by native predators, for example,
might limit the spread of marbled crayfish. The
response to threat or boldness that we observed
in marbled crayfish differs from many other cray-
fish species. We expected marbled crayfish to
respond inappropriately to a threat because
organisms from the pet trade should be naive to
threats. Fight-or-flight behavior is most often
observed in crayfish as appropriate responses to
predation threats (Stein and Magnuson 1976).
However, marbled crayfish ducked or seemed to
freeze before the approaching hand. We tried to
minimize contacts with the crayfish during clean-
ing or feeding and never approached them
upfront, but their aquarium legacy might have
made them more used to handling. A comparable
antipredator behavior was found in New Zealand
big-handed crabs (Heterozius rotundifrons) that
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remained immobile when an enemy approached
them (Hazlett and Mclay 2005). Marbled crayfish
have the eponymous marbled pattern and might
rely more on their camouflage, like it was
reported for invasive green crabs (Carcinus mae-
nas; Lohrer and Whitlatch 2002). The camouflage
made marbled crayfish less conspicuous than
spiny-cheek crayfish when we caught them in the
lakes. We also observed freezing when we
approached marbled crayfish in the lakes in a
brisk and steady movement, but they still tail-
flipped when the movement was more sudden.

Also, chemical stimuli might have been more
important for marbled crayfish to elicit tail flips.
For example, northern-clearwater crayfish (Orco-
nectes propinquus) showed a stronger tail-flip
behavior when chemical and tactile cues were
presented simultaneously (Bouwma and Hazlett
2001). We can only speculate whether natural
enemies like birds or fish are faced in an effective
way. Active predators that can detect the crayfish
might prey more heavily on marbled crayfish
than passive predators that rely on movement of
their prey. Studying predator-prey interactions
with natural enemies would help to shed light on
these questions and could explain population
dynamics in invaded lakes.

In the direct agonistic interactions, marbled
crayfish sometimes did not react to the threat dis-
play of spiny-cheek crayfish and simply ignored
them. Ignoring behavior of competitors or preda-
tors is rarely included in behavioral studies on
crayfish (Bergman and Moore 2003). However,
ignoring was found to be pronounced in marbled
crayfish. It might be related to problems in sens-
ing signals of the opponent. Chemical communi-
cation via the urine plays an important role in
intraspecific recognition and social dominance in
crayfish (Breithaupt 2011); agonistic interactions
last longer when chemical cues are absent
(Zulandt Schneider et al. 2001). Both species are
part of the same family (Cambaridae), but they
are relatively distantly related (Martin et al.
2010). We speculate that marbled crayfish cannot
recognize signals of the opponent and engage
more strongly in agonistic interactions.

Aquarium vs. naturalized populations of marbled
crayfish

We compared a naturalized and an aquarium
population of marbled crayfish to look for
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changes in behavior. In contrast to our predic-
tions, no differences were found in aggressive-
ness, and small differences in boldness toward a
threat. As marbled crayfish are generally more
aggressive than spiny-cheek crayfish, they do not
have to elevate aggressiveness in sympatry to
better compete in agonistic encounters. By con-
trast, resident spiny-cheek crayfish that live in
sympatry with marbled crayfish might have
adapted their aggressiveness. For example,
native populations of virile crayfish (Orconectes
virilis) have been shown to be more aggressive
when they had prior experience with invading
rusty crayfish (Orconectes rusticus; Hayes et al.
2009). Additional trials with sympatric spiny-
cheek crayfish, which we did not test, might
show more elevated aggression levels in these
populations. Hayes et al. (2009) asked whether
behavioral flexibility or evolution of genotypes
in naive and experienced populations underlie
this difference. Marbled crayfish are genetically
uniform due to parthenogenesis (see Martin
et al. 2007), and behavioral differences should
therefore be mostly linked to behavioral flexibil-
ity or learning, respectively. However, the corre-
lation of activity and aggressiveness was not
decoupled by adapting a lower activity in natu-
ralized marbled crayfish, but instead persisted
on a different level. Some individuals seem to be
generally more aggressive and active than others,
but are still flexible enough to adapt their activity
to different environments.

Naturalized marbled crayfish had a lower
activity level than aquarium animals and mim-
icked the activity levels of spiny-cheek crayfish.
Rearing conditions in early juvenile stages might
have had an influence on their activity. However,
the marbled crayfish from the aquarium were
reared under similar, stable laboratory condi-
tions. In the critical phase after introduction of a
new species, flexibility in behavior is crucial for
survival and helps to overcome the problem of
small propagule size (Sagata and Lester 2009).
Invaders often lack experience in ecological inter-
actions with competitors, prey, and predators
(Saul and Jeschke 2015). Invasive signal crayfish,
for example, reduced shelter use and increased
their foraging activity despite the presence of
predator cues (Hirvonen et al. 2007). Behavioral
flexibility can counteract potentially maladaptive
responses (Wright et al. 2010). The lower activity
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in naturalized marbled crayfish could be a
response to predation. For example, European
eels (Anguilla anguilla) reduced foraging activity
in invasive red swamp crayfish (Aquiloni et al.
2010). In a recent study on rusty crayfish, Rei-
singer et al. (2017) found that prior experience
had a strong effect on activity (i.e., time spent
walking or feeding) in the presence of predatory
smallmouth bass, but not when predators were
absent (Micropterus dolomieu). However, they also
found that crayfish raised with predatory fish
exhibited reduced activity levels in general. We
found activity to be lower in experienced indi-
viduals even in the absence of predators, which
can be attributed to a high capacity of flexible
behavior and a notable memory capacity. Inva-
sive crayfish and crabs are behaviorally flexible
and able to learn and memorize new predation
cues quickly (Hazlett et al. 2002, Roudez et al.
2008). Leaving the shelter to forage is very risky
in an environment with predators. Naturalized
individuals that have experienced predation
seem to have adapted their activity and memo-
rized predation threat also under safe laboratory
conditions.

CONCLUSIONS

Ecological consequences of over-invasions,
specifically the interactions of invaders with
other invaders in the community, are largely
unknown (Russell et al. 2014). The recent success
of marbled crayfish in establishing new popula-
tions might be influenced by their superiority in
agonistic encounters and their behavioral flexi-
bility. Marbled crayfish seem to be very adaptive
and have the potential to competitively exclude
or coexist with the most common invasive cray-
fish in Central Europe when competing for lim-
ited resources. Furthermore, experience with
natural conditions can reduce activity of invasive
crayfish. Marbled crayfish that originated in the
aquarium trade showed that they adapt their
behavior to the new environment. This trade-off
between foraging and defense might, however,
limit the impact of marbled crayfish. Behavioral
syndromes in marbled crayfish can occur despite
genetic uniformity and thus should stem from
permanent environmental effects. Our results
from the laboratory explain important behavioral
mechanisms behind crayfish over-invasions and
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reveal large behavioral variability in an isogenic
crayfish. To predict invasion success and assess
ecological risks in nature, the species” reproduc-
tive biology, feeding behavior, and predator—
prey relationships in the community should be
considered. Marbled crayfish (and spiny-cheek
crayfish) have been listed in the new EU regula-
tion on invasive alien species (No 1143/2014).
This regulation lays the foundation for the pre-
vention of further spread and future introduc-
tions of non-native crayfish.
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