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Kurzfassung

Theoretischer Fortschritt in den letzten zwei Jahrzehnten hat zu einem stark verbessertem
Verständnis von Magnet-Supraleiter Hybridstrukturen geführt und hat vielversprechende
Anwendungen von diesen Strukturen aufgezeigt. Dazu gehören unter anderem die Spei-
cherung von Quanteninformation oder die Realisierung von Quantenschaltkreisen. Viele
Experimente versuchen diese Vorhersagen umzusetzen. Ein Beispiel sind magnetisierte
Drähte gekoppelt an einen s-Wellen Supraleiter, welche einen topologischen Supraleiter
realisieren sollen. Signaturen dieser Phase wurden gemessen, allerdings sind diese nicht
eindeutig und oft nur in engen Parameterbereichen zugänglich. Naiv erwartet man eine
Stabilisierung dieser Phase für eine starke Kopplung zwischen den Materialien. Allerdings
kann eine starke Kopplung zu einer nichttrivialen Vermischung von supraleitenden und ma-
gnetischen Effekten führen, und ein verbessertes Verständnis der Systeme wird benötigt.

Eine Konsequenz von topologischer Supraleitung in eindimensionalen Systemen sind
Majoranazustände lokalisiert an den Systemenden. Experimente können deren Lokalisie-
rungslänge mittels Rastertunnelspektroskopie oder über die systemlängenabhängige Hy-
bridisierung von Majoranazuständen an gegenüberliegenden Enden auswerten. Einige die-
ser Experimente haben eine überraschend kleine Lokalisierungslänge gemessen, in einigen
Fällen von atomarer Größenordnung. Diese kleine Lokalisierungslänge ist heute als Re-
sultat der starken Kopplung zwischen den Materialien und dem Überlapp der Majorana-
moden in den Supraleiter verstanden. In dieser Arbeit erweitern wir dieses Verständnis
mittels einer semiklassischen Streumethodik, welche unter anderem neue Einsichten in den
Ursprung der Renormierungseffekte in solchen Systemen ermöglicht.

Fortschritte in experimentellen Techniken erlauben das Wachstum epitaktischer Supra-
leiter auf Halbleiterdrähten und haben zur Erstellung von Hybridstrukturen mit Schnitt-
stellen hoher Qualität geführt. Allerdings ist die Dicke dieser epitaktischen Supraleiter oft
nur ein Bruchteil der Kohärenzlänge im Supraleiter. Es stellt sich daher die Frage, ob die-
se endliche Ausdehnung nachteilige Effekte auf die starke Kopplung zum Supraleiter hat,
und ob diese Effekte umgekehrt werden können, insbesondere in ungeordneten Systemen.
Diese Arbeit behandelt diese Fragen mittels analytischer und numerischer Streumethoden.

Eine magnetische Störstelle gekoppelt an einen Supraleiter kann gebundene Yu-Shiba-
Rusinov (YSR) Zustände induzieren. Experimentelle Fortschritte erlauben eine detail-
lierte Abbildung dieser Zustände, so dass YSR Zustände heute in vielen Experimenten
beobachtet werden. Eine potenzielle Anwendung ist es, diese Zustände als Bausteine für
höherdimensionale Systeme zu verwenden. Beispielsweise um topologische Supraleiter in
linearen Ketten zu realisieren. Für solche Anwendungen ist es relevant zu wissen, wie
nichtmagnetische Unordnung YSR Zustände beeinflusst. In der vorliegenden Arbeit un-
tersuchen wir diesen Zusammenhang mittels eines streutheoretischen Ansatzes, und zeigen
dass die spektralen Eigenschaften von YSR Zuständen in zwei- und dreidimensionalen Sy-
stemen eine starke Robustheit gegen moderate Mengen von Unordnung haben.
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Abstract

Over the past two decades, theoretical advances have led to a better understanding of
hybrid structures made of magnetic and superconducting materials, and have uncovered
promising applications, such as the storage of quantum information and the use for quan-
tum computation. Many experimental studies try to implement and verify these findings.
One promising example is that of magnetized wires coupled to an s-wave superconductor,
which is predicted to realize a topological superconductor. Although promising signatures
of this phase have been observed, these signatures remain ambiguous and at times ac-
cessible only in a small parameter range. Naively, one expects the topological phase to
become more stable in the limit of strong coupling between the materials. However, strong
coupling can lead to a non-trivial interplay between superconducting and magnetic effects,
and a better understanding of the systems at hand is required.

A consequence of topological superconductivity in one-dimensional systems is the ap-
pearance of Majorana bound states at the system boundaries. Experiments can access the
localization length of these bound states through the use of scanning tunneling microscopy
or via the hybridization of Majoranas at opposite ends as a function of wire length. Some of
the experiments revealed a surprisingly small localization length, in several cases equalling
atomic length scales. This small localization length is now understood to be a result of
the strong coupling between the materials and the leakage of the Majorana modes into the
superconductor. In this thesis, we extend this understanding by employing a semiclassical
scattering approach that gives novel insights on the origin of renormalization effects in
strongly-coupled superconductor-magnet hybrids.

Advances in fabrication techniques allow for epitaxial growth of superconducting ma-
terials, generating devices that have pristine interfaces between the magnetized normal
conductor and the superconducting material. However, often the epitaxial superconduc-
tors have a small thickness of only a fraction of their coherence length. This raises the
question, whether finite size-effects have detrimental effects on the strong coupling to the
superconductor, and whether these effects can be reversed. This thesis tries to answer these
questions by employing a combination of analytical and numerical scattering approaches,
and by including the effects of disorder.

A magnetic impurity coupled to a superconductor can induce Yu-Shiba-Rusionv (YSR)
states bound to the impurity. Advances in experimental techniques allow for detailed
spatial and spectral imaging of these states, and many aspects of YSR states have been
studied. A potential application of YSR states is to use them as building blocks for higher-
dimensional systems, such as linear chains that may realize a topological superconductor.
To this end, it is relevant to know how robust YSR states are to disorder. This motivates
us to study the impact of non-magnetic disorder on YSR states, within a semiclassical
scattering approach. We show that the spectral properties of YSR states have a strong
robustness to moderate amounts of disorder in two- and three dimensional systems.
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1. Introduction

The interplay of magnetism and superconductivity has a long history. An early experiment
in this field was performed in 1933, when Walther Meissner and Robert Ochsenfeld placed
superconducting tin inside a magnetic field and found that below the critical tempera-
ture of tin, the magnetic field was completely expelled from the superconducting region
[Meis 33], an effect now known as the Meissner effect. Only two years later, the London
equations were proposed, which explain the expelled magnetic field on phenomenological
grounds. But it took more than 20 years until Bardeen, Cooper, and Schrieffer proposed
their BCS theory of superconductivity and explained the Meissner effect at a microscopic
level. Since then, significant advances in both theoretical understanding and experimental
techniques have led to a much improved understanding of the interplay of magnetism and
superconductivity, although many challenges remain.

In this thesis, we investigate superconductor-magnet hybrids with a focus on strong
coupling between the materials, subject to the following specifications. On the one side,
we will restrict ourselves to the discussion of superconductors that are in the weak-coupling
limit and assume a constant pairing potential inside the superconductor. This allows us
to treat the systems of interest on a single-particle level. On the other side, magnetism
can have many origins, and in our case we consider any material a magnet that has a
significant Zeeman-like splitting term for its electrons in the conducting bands. This
splitting may arise due to an internally generated magnetic field, as is present for example
in transition metals and half metals, or due to an externally applied field that is sufficiently
strong to induce a noticeable spin polarization. The use of such superconductor-magnet
heterostructures is a powerful tool, as it allows one to generate effects that may no be
present in a homogeneous material. Naively, the effects are expected to be most prominent
when the coupling between the two material types becomes strongest.

The structure of this thesis is as follows. In chapter 2, we place this thesis into a broader
context and introduce relevant concepts. This includes the theoretical discussion of Majo-
rana quasiparticles and topological superconductivity, as well as a review of experimental
progress to detect Majorana quasiparticles. Furthermore, we review the field of magnetic
adatoms coupled to a superconductor. In particular, basic theoretical models and recent
developments are discussed. In chapter 3, we introduce scattering theory on which much
of our later calculations are based, apply it to wires with s- and p-wave pairing potentials,
and review a concatenation scheme that allows us to calculate the S-matrix of a scattering
region. The main part of the thesis consists of chapters 4 to 6. In chapter 4, we apply
a semi-classical scattering approach to a spin-polarized normal metal strongly coupled
to an s-wave superconductor. Due to the strong coupling, one expects renormalization
effects reflecting that the wavefunctions living in the normal metal strongly extend into
the superconductor. In chapter 5, we consider a related setup, where a normal metal is
coupled to a superconductor with a finite thickness. We investigate the effects of the finite

1



1. Introduction

thickness with a focus on the limit of strong coupling between the two materials. Chapter
6 considers the case of a single magnetic adatom in contact with a superconductor, which
induces a bound state that lives deep inside the superconductor’s gap for a sufficiently
strong coupling to the adatom. We investigate the effects of nonmagnetic disorder inside
the superconductor on this bound state. Finally, we conclude in Sec. 7.

2



2. Heterostructures of magnetic and
superconducting materials

2.1. Majorana quasiparticles

During the past decade, much attention has been drawn to the field of topological super-
conductivity and the appearance of Majorana quasiparticles in condensed matter systems.
The idea of Majorana particles dates back to 1937, when Ettore Majorana found that the
Dirac equation, which describes elementary fermionic excitations, has a special type of
solution that is invariant under charge conjugation. Hence, in contrast to electrons and
positrons which are each other’s antiparticles, these new types of particles are their own
antiparticles [Majo 37]. Particles possessing this property are now referred to as Majorana
particles [Elli 15]. Formally, Majorana particles are defined as operators γ̂i, that follow
the relations

γ̂i = γ̂†i , {γ̂i, γ̂j} = 2δi,j , (2.1)

where the braces denote the anticommutator and δi,j is the Kronecker delta.
In high energy physics, the search for elementary particles that are of Majorana type

is an ongoing quest and among the known particles in the standard model, neutrinos are
a prime candidate as they are charge neutral. However, so far no sufficient experimental
evidence has been produced to verify this hypothesis [Elli 15].

On the other hand, a variety of strategies for realizing Majorana quasiparticles in con-
densed matter systems have been investigated so far [Elli 15]. While in this case, the basic
components consist of fermions that are not of Majorana type, such as electrons, one
can still define emergent quasiparticles that are their own antiparticles. For example, the
excitations of superconductors are superpositions of electrons and holes. If both particle
types are of the same spin species, superpositions exist that are of Majorana type. As we
will see later, these emergent Majorana quasiparticles can appear over a wide parameter
range in systems with certain symmetries.

A large number of theoretical proposals for systems hosting Majorana quasiparticles
exist. In the early 2000s, Read and Green proposed that fractional quantum Hall states
at filling factor ν = 5/2 [Read 00] can host Majorana quasiparticles, and elucidated the
relation to the BCS theory of superconductivity. Furthermore, it was shown that braiding
of these Majorana quasiparticles follows nonabelian statistics [Ivan 01]. As an important
technological application, these nonabelian statistics allow one to perform basic quantum
gate operations by braiding Majoranas, although additional gates are required to achieve
universal quantum computation [Kita 03, Naya 08]. Another influential contribution to
the field was made by Kitaev, who provided a minimal model of a one-dimensional p-
wave superconductor that hosts Majorana quasiparticles at its end and is now known as
the Kitaev chain [Kita 01]. The Kitaev chain is an instructive model to understand the

3



2. Heterostructures of magnetic and superconducting materials

basic physics of Majorana quasiparticles in one-dimensional systems, and we will treat a
continuum version in Section 3.2. Many more proposals followed including materials with
intrinsic p+ ip superconductivity [Berg 03, Mack 03], 3D topological insulator surfaces in
proximity to an s-wave superconductor [Fu 08], superfluid 3He–B [Volo 03, Sila 10], 2d
topological insulator edge states proximitized by alternating ferromagnetic and supercon-
ducting sections [Nils 08] and two dimensional semiconductor systems placed in between
an s-wave superconductor and magnetic thin film [Sau 10].

A breakthrough came in 2010, when two groups proposed a setup based on semicon-
ductor nanowires in proximity to a superconductor that was less challenging to implement
experimentally [Lutc 10, Oreg 10]. This proposal led to an ongoing series of experiments
that produced promising signatures of Majorana quasiparticles in condensed matter sys-
tems and which we will discuss in section 2.1.2. Before that, we introduce the mathematical
framework of topology that hopefully gives the reader a better understanding of why and
when to expect the appearance of Majorana quasiparticles.

2.1.1. Topological superconductivity

The proposals for realizing Majorana bound states can be viewed from another perspective,
that of topology. The field of topology studies properties of objects that are invariant
under certain continuous transformations, such as deformations. A common illustration
is that of a doughnut which can be continuously transformed into a coffee cup, so that
both are in the same topological class, that of objects with one hole. On the other hand,
a doughnut cannot be continuously transformed into a pretzel, which has three holes. In
analogy, topology can become relevant in quantum mechanical systems when families of
systems can be separated into multiple topological classes that are robust to continuous
deformations such as the addition of disorder.

A prominent example is the quantum Hall effect, in which two dimensional electron
systems under strong magnetic fields show a conductance that is exactly quantized to
multiples of e2/h [Klit 80]. It was realized soon after its discovery that the exact quan-
tization has a topological origin, and that the Hall conductivity is a Chern number
[Thou 82, Kohm 85]. About two decades later, in 2005, the quantum spin Hall effect
that occurs in systems with time reversal symmetry was shown to be classified by a Z2

topological index [Kane 05]. Soon afterwards, three dimensional insulators that are in-
variant under time reversal symmetry were predicted to enter a topological phase leading
to the formation of boundary modes, and the term topological insulator was introduced to
describe these systems [Fu 07, Moor 07]. Considering only particle-hole symmetry, time
reversal symmetry and their combination, it was found that for a fixed dimension and a
noninteracting, gapped system ten different symmetry classes arise. Each class is asso-
ciated with a topological index that is invariant under continuous transformations which
keep the gap open and preserve the symmetries. Furthermore, by incrementing the di-
mension a periodic pattern arises which is summarized in the periodic table of topological
insulators and superconductors [Kita 09, Ryu 10]

In the context of this thesis, we are interested in superconducting and magnetic materi-
als, that is systems that possess particle-hole symmetry but break time reversal symmetry.
In one dimension, this family of systems is in symmetry class D and has a Z2 topological

4



2.1. Majorana quasiparticles

invariant, splitting the materials into a trivial and a topological phase. Superconductors
in the topological phase are referred to as topological superconductors [Sato 17].

As an example, consider the subset of spinless p-wave superconductors in one dimension.
These can be described by the second-quantized Hamiltonian [Sato 17]

Ĥp-wave =
1

2

∑
k

(
ĉ†k ĉ−k

)
Hp-wave(k)

(
ĉk
ĉ†−k

)
, (2.2)

with the Hermitian Bogoliubov-de-Gennes (BdG) Hamiltonian

Hp-wave(k) = ξkτz + ~k∆′τy. (2.3)

Here, τα with α = 1, 2, 3 are the Pauli matrices in particle-hole space, ~k is the quasimo-
mentum, ξk is the dispersion in the absence of superconductivity, which we take symmetric
in k for the sake of simplicity, and ĉ†k and ĉk are fermionic creation and annihilation oper-
ators, respectively, that follow the usual anticommutation relations.

Equation (2.3) describes a spinless superconductor with p-wave pairing potential ~k∆′,
where ∆′ is real and we consider finite ∆′ only.

The spectrum has the form

ε = ±
√
ξ2
k + (~k∆′)2. (2.4)

Hence, the energy gap can only close at the Γ-point, that is at k = 0.
This allows us to define the topological invariant ν ∈ {0, 1} by the relation [Sato 17]

(−1)ν = sgn(ξΓ), (2.5)

where sgn denotes the signum function and ξΓ = ξk=0. Any Hamiltonian described by
Eq. (2.3) that has a negative ξΓ (ν = 1) cannot be continuously transformed into a
Hamiltonian with a positive ξΓ (ν = 0) while keeping the gap open. Hence, there exist
two separate phases.

Topology does not define which of these phases is trivial. For realistic systems, the
trivial phase is usually defined as the one which can be smoothly transformed to the atomic
limit or vacuum. In the case of (2.3), this corresponds to a fully depleted normal state
Hamiltonian with ξk � 0 for all k. On the other hand in the topological phase, the Fermi
surface encloses the Γ-point, and ν = 1. Employing a similar argument, multichannel odd-
parity superconductors can be shown to be in the topological phase when they enclose an
odd number of time reversal invariant points [Sato 17].

To infer the existence of bound states, we can employ the powerful concept of bulk-
boundary correspondence. If a system in a topological phase is spatially connected to a
trivial one, for example by cutting the wire and connecting it to vacuum, the topological
index has to change from trivial to topological at the boundary. This is only possible if the
gap closes, and a gapless boundary modes has to appear. The concept of bulk-boundary
correspondence can be applied to any symmetry class in the periodic table for topological
insulators and superconductors [Ando 13]. For superconductors, particle-hole symmetry

states that for every excitation γ†ε at energy ε, there exists a particle-hole conjugated
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2. Heterostructures of magnetic and superconducting materials

excitation γ−ε. Hence, for a single boundary state, this state has to be invariant under
particle-hole conjugation and has to live at zero energy. Consequently it is of Majorana
type [Pien 14a].

In this thesis, we are especially interested in the case when only particle-hole symmetry
is present (referred to as class D). The Hamiltonian in Eq. (2.3) is invariant under particle-
hole symmetry of the form

τxH
∗
p-wave(k)τx = −Hp-wave(−k), (2.6)

where the asterisk denotes complex conjugation. It also obeys a time-reversal symmetry

H∗p-wave(k) = Hp-wave(−k), (2.7)

and actually belongs to another symmetry class (referred to as BDI). However when gen-
eralizing the model to multi-channel wires, this time-reversal symmetry can be broken, for
example by adding the term ~k⊥∆′τx to the Hamiltonian (2.3), where k⊥ is the momen-
tum in the transverse direction. When the transverse direction is sufficiently narrow so
that only a few channels are occupied, we can consider the system quasi-one dimensional
[Pien 14a].

The emerging Majorana quasiparticles are robust because deformations of the Hamil-
tonian that preserve particle-hole symmetry and do not close the gap cannot change the
topological invariant [Kita 09]. In realistic systems, a sizable gap in the bulk is needed to
provide good topological protection. Furthermore, bulk-boundary correspondence requires
the presence of a bulk, that is the system has to be large enough to provide a clear dis-
tinction between boundary and bulk. Finally, even if a large gap is present and the wire is
long, the detection of the boundary modes can remain challenging because bulk-boundary
correspondence does not prohibit additional surface states at or close to zero energy.

In conclusion, topology is a powerful tool to predict which symmetries a system has to
possess in order to be in a topological phase. However, more detailed studies are required
to understand for which parameter configurations a topological phase appears, how stable
these are in the presence of perturbations such as disorder, and how the emergent boundary
modes can be detected and possibly distinguished from nontopological boundary modes.

2.1.2. Weakly-coupled magnet-superconductor hybrids

In this section, we discuss a basic model that describes one-dimensional magnetic wires
weakly coupled to an s-wave superconductor. In 2010, two groups proposed that these
systems host Majorana bound states, and that they can be realized using semiconductor
nanowires [Lutc 10, Oreg 10]. Since then, promising signatures of Majorana bound states
have been observed in these systems, as we will see in Sec. 2.1.3.

The two proposals [Lutc 10, Oreg 10] consider a BdG-Hamiltonian of the type

Ĥ1d-wire =

(
p̂2

2m
− µ+Bσz

)
τz + αsop̂σx + ∆σyτy (2.8)

in one dimension, where τα and σα are the Pauli matrices in particle-hole and spin-space,
respectively, and α = x, y, z. The BdG spinor reads (u↑, u↓, v↑, v↓)

T , where u and v describe

6



2.1. Majorana quasiparticles

Figure 2.1.: Top view of a nanowire placed on top of a three dimensional superconductor.
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Figure 2.2.: Dispersion of a proximitized nanowire for strong spin-orbit coupling (left)
and a large magnetic field (right). On the left, the lines show Eq. (2.9) for
m~2α2

so/∆ = 5, B/∆ = 0.5 (blue) and B/∆ = 1 (orange), and µ = 0. On the
right, the lines show B/µ = 2, ∆/µ = 0.5 and m~2α2

so/µ = 0.25 (blue) and
αso = 0 (orange).

particles and hole wavefunctions, respectively, and the arrows index the spin components.
Equation (2.8) describes the electronic excitations of a nanowire with momentum p̂ =
−i~∂x, mass m, chemical potential µ = ~2k2

F/2m, Fermi wavevector kF, intrinsic spin-
orbit coupling αso and Zeeman splitting 2B.

The wire is assumed to be placed in proximity to an s-wave superconductor, as shown
in Fig. 2.1. If the coupling to the superconductor is weak, the system is well described
by Eq. (2.8) with constant pairing potential ∆ and the superconductor integrated out. In
chapters 4 and 5 we will extend this model and consider several aspects that change in
the case of strong coupling between wire and superconductor.

The Hamiltonian 2.8 has been solved in detail in Refs. [Lutc 10] and [Oreg 10]. Based
on these two references, we now give a basic derivation of the results that are relevant for
our later discussion.

The eigenenergies of Eq. (2.8) read

ε(k) = ±
√
B2 + (αso~k)2 + ∆2 + ξ2

k ± 2
√
B2∆2 + (Bξk)2 + (~kαsoξk)2, (2.9)
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2. Heterostructures of magnetic and superconducting materials

−2 −1 0 1 2

µ/∆

0

1

2

3

B
/
∆

topological phase

trivial phase

Figure 2.3.: Phase diagram for a nanowire weakly coupled to an s-wave superconductor.

for a wavenumber k and ξk = (~k)2/2m − µ. Examples of the spectrum are shown in
Figure 2.2. For the case of strong spin-orbit coupling (left plot, blue line), the dispersion
corresponds to two horizontally shifted parabolas, mirrored at the ε = 0 line, and split at
their crossing points. For the case of a strong magnetic field (right plot, blue line), the
dispersion corresponds to two vertically shifted parabolas, also mirrored at ε = 0, and
split at their crossings.

In order to detect potential topological phases, we first calculate where the gap closes.
After setting ε(k) = 0 and applying some algebra, we obtain the condition

ξ2
k = B2 + (~kαso)2 −∆2 − 2i~kαso∆. (2.10)

Up to the last term, all terms are real; the gap closes at k = 0 only and one requires
B2 = µ2 + ∆2. (Here we assume that αso and ∆ are always finite). This defines the
boundary between two phases, as shown in Fig. 2.3. The upper phase is disconnected
from the vacuum (µ→ −∞) and hence referred to as the topological phase.

For the case µ = 0 and large spin-orbit coupling, the closing of the gap is shown in
Fig. 2.2 (left plot, orange lines). In this case, the low-energy physics is described by a
massive, spinless Dirac equation [Pien 14a]. One can tune across the phase transition by
tuning the magnetic field.

For a large magnetic field compared to the chemical potential and no spin-orbit cou-
pling, the wire is spin polarized. Since the pairing potential pairs opposite spins, the
dispersion becomes gapless, as can be seen from the right plot in Fig. 2.2 (orange lines).
Turning on spin-orbit coupling slightly rotates the spins at opposite momenta in opposite
directions and thus allows for pairing within the spin-polarized wire. Because this pairing
is within the same spin-species, it is referred to as triplet pairing and is of p-wave type.
Consequently, the low-energy physics becomes equivalent to that of the Hamiltonian (2.3).

Bulk-boundary correspondence ensures that when terminating the wire in the topolog-
ical phase, Majorana bound states appear at the boundary at zero energy. In section 3.2,
we give an explicit derivation of the boundary states in the limit of large B.
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2.1.3. Majorana bound states in experiments

In this section, we discuss experimental progress towards observing Majorana quasiparti-
cles in heterostructures consisted of superconducting materials and magnetic or strongly
spin-orbit coupled normal metal wires. These experimental developments motivate the
work presented in the later chapters of this thesis.

In order to confirm that bound states of Majorana type are indeed present in ex-
periments one would ideally verify that they follow the exchange statistic of Majorana
particles in Eq. (2.1). However, this is experimentally challenging and instead one re-
lies on signatures that are available without braiding Majorana bound states. Two sig-
natures that received much attention are zero-bias peaks in the conductance spectrum
[Seng 01, Law 09, Akhm 11] and the 4π Josephson effect [Kita 01, Fu 09]. In the follow-
ing, we focus on the former.

Briefly after the first theoretical proposals on semiconductor nanowires [Lutc 10, Oreg 10],
several groups reported experimental signatures of Majorana bound states [Mour 12,
Will 12, Rokh 12, Deng 12, Das 12]. Several of these reports included the observation
of zero-bias peaks in the conductance spectra. Ideally the zero energy conductance should
be quantized to 2 e

2

h , however in many experiments the conductance peak has been far be-
low the quantized value [Mour 12, Deng 12, Das 12, Chur 13, Albr 16, Deng 16, Gul 18].

On the one hand it was pointed out that these lower peaks can generically appear even
if the system is in a topologically trivial phase, for example due to scattering from disorder
in multichannel wires [Liu 12]. On the other hand, several effects have been proposed that
could lead to a reduced peak height even if a Majorana bound state would be present.
First, thermal broadening would naturally lead to a flattened peak, if temperature exceeds
the zero-temperature width of the zero-bias peak [Pien 12, Lin 12] and early experiments
indeed showed that the observed zero-bias peaks have a strong dependency on tempera-
ture [Mour 12]. Theoretical studies show that the intrinsic width of the zero-bias peak
can be enhanced by increasing the tunnel coupling between lead and wire, as well as in-
creasing the proximity induced gap [Pien 12]. Another effect that is believed to flatten the
zero-bias peak is a series of dissipation effects, among which is the dissipation into other
subgap states through interactions [Liu 17]. The appearance of such subgap states is of-
ten referred to as a soft gap, and experimental effort has been put into hardening the gap
[Chan 15, Gul 17]. Possible explanations for the soft gap are Andreev bound states as well
as a density of states induced by inhomogeneities at the semiconductor-superconductor
interfaces [Take 13].

Majorana bound states have been predicted to exist in another type of system, chains
of magnetic adatoms coupled to a superconductor. These systems do not require the
application of an external magnetic field and make it easy to combine three relevant in-
gredients for topological superconductivity: An s-wave pairing potential, spin polarization
intrinsic to the adatoms, and spin-orbit coupling that is intrinsic to the superconductor
or is emulated by a helical magnetic ordering of the impurity chain [Nadj 13, Pien 14b].
After the first theoretical proposals of these systems, experiments used scanning tunneling
microscopy (STM) tips to probe the local density of states for Fe chains deposited on
Pb, revealing zero-energy peaks localized at the ends of the chain in accordance with the
predicted Majorana bound states [Nadj 14, Ruby 15a, Feld 17, Kim 18]. Further studies
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claimed that the bound states also appear in atomic force microscopy [Pawl 16] and that
the zero-bias peaks carry a spin polarization [Feld 17].

An initially surprising characteristic of the observed bound states was their very small
localization length of the order of a few adatom sites. Naively, one might expect that
given a velocity v inside the effective one-dimensional system, created by the adatom
chain, and an induced gap ∆ind ≤ ∆, where ∆ is the gap in the host superconductor, the
Majorana wave is exponentially localized at a scale of at least ~v/∆, the coherence length
inside the superconductor. However, this length scale is typically much larger than the
distance between the adatom sites. This discrepancy was first resolved by a theoretical
study [Peng 15], showing that Majorana bound states are strongly localized at the end of
adatom chains due to the wavefunction hybridization with the superconductor.

As noted earlier, it is desirable to have a large induced gap when realizing systems
hosting Majorana bound states. Apart from the choice of the superconducting material,
a strong coupling between the superconductor and the normal region is beneficial. In
chapter 4 we discuss such a system and consider renormalization effects caused by the
high transparency.

For the experiments involving adatom chains, the strong coupling regime is believed to
be naturally present as the coupling strength is fixed by atomic scales [Peng 15]. In the
case of the semiconductor nanowires, one can think of strong coupling as resulting from
an interface with a high transparency and a small gap so that modes decay slowly into
the superconductor. In particular, a transparency of order unity can be achieved if the
velocities of quasiparticles propagating on both sides are comparable, and the interface
is homogeneous and involves no potential barrier. Hence, apart from a high interface
quality, two materials with approximately matching Fermi velocities should be chosen.
One such combination that is used in experiments is that of Al as a superconductor and
the semiconductor InSb [Gul 17, Gul 18]. InSb has an effective mass mInSb = 0.014me

where me is the mass of the electron [Vurg 11]. A quick parameter estimate shows that
these materials are in the regime of approximately matching Fermi velocities: The Fermi
velocity of most metals, including Al, is of order 106 m/s [Ashc 76]. Assuming a quadratic
dispersion for InSb, ε = p2/2mInSb with momentum p, a Fermi velocity matching the one
in Al can be achieved by applying a gate voltage such that the Fermi level inside InSb
lies at ∼ 50 meV relative to the band bottom. Such a value seems feasible, as it is small
compared to the band gap in InSb ∼ 235 meV [Vurg 11] and a Fermi level sufficiently high
to reach a finite conductance has been achieved in experiments, see for example [Wepe 13].
Another popular choice of semiconductor material is InAs, which has properties similar
to InSb [Krog 15, Deng 16, Kjae 17].

Advances in experimental growth techniques allow for the fabrication of high-quality
samples and improved control. In particular, it has become possible to create semicon-
ductor nanowires surrounded by a superconducting shell using epitaxial growth, and the
resulting samples exhibit fewer inhomogeneities inside the nanowire as well as at the su-
perconductor nanowire interface [Krog 15, Chan 15, Deng 16, Albr 16, Zhan 18]. Further-
more, the in-gap conductance at zero magnetic field is orders of magnitude smaller than
the out of gap conductance, hinting at hard gaps without any sub-gap states [Chan 15].

However, there have been some concerns on whether finite-size effects could be detri-
mental to the induced energy gap and the extent of the topological phase in parameter
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space [Reeg 17]. In particular, the widths of the superconducting Al shells used are below
50 nm, a size which is much smaller than the superconducting coherence length that is of
order µm in Al. In chapter 5, we consider this setting and show that disorder, either in
the bulk or at the surface of the superconductor, is a relevant ingredient that diminishes
the detrimental finite-size effects.

Very recent experiments on semiconductor nanowires with superconducting shells show
conductance peak heights of 2e2/h, robust to changes in gate voltages and magnetic field
[Nich 17, Zhan 18]. This provides further evidence that the produced samples may host
Majorana bound states.

2.2. Yu-Shiba-Rusinov states

Chapter 6 investigates a system consisting of a single magnetic impurity placed on top
of or inside a superconductor. These systems have drawn much attention over the past
decades, starting with theoretical investigations by Yu, Shiba, and Rusinov (YSR) [Yu 65,
Rusi 68, Shib 68] in the late 1960s, about a decade after the development of the BCS
theory of superconductivity [Bard 57]. YSR found that the presence of a single magnetic
impurity in contact with a superconductor induces states that lie within the gap of the
superconductor and that are spatially bound to the impurity. Nowadays, these states are
referred to as YSR- or Shiba states and are of great interest for fundamental research.
Furthermore, chains of magnetic adatoms may realize a topological superconductor as
discussed in Sec. 2.1.3.

2.2.1. Derivation for a simple model

In this section, we give a brief derivation of the YSR energies that is strongly related to
Shiba’s original derivation [Shib 68] and follows the lines of Ref. [Pien 13]. Rusinov gave
an alternate derivation in terms of scattering phase shifts [Rusi 68], which we will discuss
in chapter 6. Those readers already familiar with Shiba’s derivation may directly jump to
Eq. (2.18).

An impurity embedded in the bulk of a three dimensional superconductor can be mod-
eled by the BdG Hamiltonian

ĤYSR = ξk̂τz + ∆τx + JSσδλ(r), (2.11)

with the BdG spinor (u↑, u↓, v↓,−v↑), made up of electron (u) and hole (v) wavefunctions
with ↑ and ↓ indexing the electron spin, and τj are the Pauli matrices in particle-hole
space with j = x, y, z. The first two terms describe a superconductor with a dispersion
ξk = ~2(k2 − k2

F)/2m, mass m, wavenumber kF at the Fermi level, and uniform s-wave
pairing potential ∆. The last term describes the exchange coupling J > 0 between the
electronic states of the superconductor and a classical impurity with spin S. The electronic
spin is described by the vector of Pauli matrices σ = (σx, σy, σz)

T . The spatial extent of
the exchange coupling is described by a short-range function δλ(r) with unit integral and
range λ . 1/kF.

We now solve the eigenvalue problem

ĤYSRψ(r) = εψ(r) (2.12)

11
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for energies |ε| < ∆. We choose the z-axis to be parallel to S, such that the Hamiltonian
(2.11) becomes block diagonal and restrict ourselves to the block ψ(r) = (u↑, 0, v↓, 0)T .
After rearranging the terms involved in Eq. (2.12) we obtain(

ε− ξk̂τz −∆τx
)
ψ(r) = σJSδλ(r)ψ(r), (2.13)

where σ = +1. The solutions of the block (0, u↓, 0,−v↑) follow from particle-hole-symmetry

iτyKĤYSR(iτyK)† = −ĤYSR, which keeps Eq. (2.13) invariant up to the change σ → −1.
In the following, we consider the block with σ = 1.

We map the problem to k-space via the Fourier transform

ψ(r) =

∫
dk

(2π)3
eikrψk, (2.14)

which transforms Eq. (2.13) to

ψk =
JS

ε− ξkτz −∆τx

∫
dre−ikrδλ(r)ψ(r). (2.15)

By integrating both sides of Eq. (2.15) with
∫
dk/(2π)3, we obtain

ψ(r) =

∫
dk

(2π)3

JSeikr

ε− ξkτz −∆τx
ψ(0). (2.16)

Here, we assume that ψ(r) is approximately constant for |r| . λ, we approximate the last
integral in Eq. (2.15) by ψ(0), and take the k-space integral to have a high-energy cutoff
kc ∼ 1/λ. For a more formal introduction of a cutoff we refer to Ref. [Pien 13].

The k-space integral in Eq. (2.16) for r = 0 can be solved by applying the replacement∫
dk/(2π)3 → ν0

∫
dξk and linearising ξk, where we define the density of states per energy,

spin and volume ν0 = mkF/2π
2~2. By performing contour integration, the ξk-integration

is solved by evaluation at the poles. In principle, one has to add the Cauchy principal value,
however as we will show in chapter 6, the Cauchy principal value leads to a renormalization
of J and does not qualitatively alter our results. Due to this and for the sake of simplicity,
in the following, we neglect the Cauchy principal value. At the origin, Equation (2.16)
then evaluates to [Pien 13]

ψ(0) = −πν0JS
ε+ ∆τx√
∆2 − ε2

ψ(0), (2.17)

which has the subgap solutions

εYSR = −∆
1− α2

1 + α2
, (2.18)

where α = πν0JS.
As expected, in the absence of the impurity no subgap states are present. Upon increas-

ing J , a state detaches from ε = −∆ and enters the gap. This type of state is referred
to as a YSR or Shiba state. At a critical Jc = 1/πν0S the state crosses zero energy and
beyond Jc asymptotically reaches ε = ∆.
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The sign of the energy (2.18) has important consequences in terms of the many-body
ground state, as was discussed by Sakurai [Saku 70]. Recall that a state with negative en-
ergy corresponds to a state that is occupied in the ground state, and that in the derivation
of the YSR state, we restricted ourselves to the subspace of u↑ and v↓. For 0 < J < Jc,
we have εYSR < 0, the YSR state is occupied. This can be interpreted as a ground state
in which the magnetic impurity binds a spin-up electron and a spin-down hole. The total
electronic spin is Selec = 0, as the ground state is connected to the case of no impurity
(J = 0) where it is formed by spin-singlet Cooper pairs. In contrast, for Jc < J , the YSR
energy becomes positive and the ground state changes to one where a spin-up electron
and spin-down hole are unoccupied. Consequently, the total spin changes to Selec = −1
and the magnetic impurity binds a localized state constituted of a spin-down electron and
a spin-up hole.

We now turn to the YSR wavefunction. At r = 0, we have ψ(0) ∼ (1,−1)T . At distances
|r| � λ, the integral (2.16) yields [Pien 13]

ψ(r) ∼ e−r/ξε

kFr

(
sin
(
kFr − tan−1 α

)
− sin

(
kFr + tan−1 α

)) , (2.19)

where ξε = ~2kF/
√

∆2 − ε2. The YSR wavefunction is localized near the magnetic im-
purity, with a power-law decay at short distances from the impurity and an exponential
decay beyond ξε. Another important feature is the asymmetry of the particle- and hole
components of wavefunction due to the phase shift tan−1 α. As we will see in chapter 6,
this phase shift corresponds to the scattering phase that a normal-state electron picks up
when it scatters from the magnetic impurity.

In this section, we discussed a simple model of a magnetic adatom embedded in a super-
conductor. Following YSR’s initial proposal, many aspects of YSR states have been theo-
retically considered in more complex models. Examples include the local variation of the
pairing potential in the vicinity of the magnetic impurity [Rusi 69, Morr 06, Meng 15], the
interplay of a small number of magnetic impurities [Morr 06, Yao 14, Meng 15, Hoff 15],
the relation to the Kondo effect [Zitk 11], and the realization of a topological supercon-
ductor in YSR-chains [Nadj 13, Pien 13].

In Chapter 6, we investigate another aspect of YSR states, the impact of weak non-
magnetic disorder on their spectral properties. The impact of non-magnetic disorder on
time-reversal symmetric superconductors has been studied by Anderson [Ande 59]. He
showed that the critical temperature and the spectral gap of an s-wave superconductor
is robust to weak disorder, even if the mean free path becomes small compared to the
coherence length in the superconductor. However, in the presence of a magnetic impurity
time-reversal symmetry is broken. Still, as we will see in chapter 6, an argument similar
to Anderson’s can be applied to attribute YSR states a strong robustness against weak
disorder.

2.2.2. YSR states in experiments

In the early years after YSR’s prediction, experimental progress was hindered by the lack of
techniques to control and measure the local properties near the adatom site. In 1997, Eigler
et al. employed a new set of techniques to study YSR states, such as the preparation of
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clean superconductor surfaces and the deposition of adatoms at low temperatures [Yazd 97,
Hein 18]. Furthermore, scanning tunneling microscopy became available, which uses a tip
to scan across the surface and to probe the local density of states on an atomic scale, with
energy resolution below the gap of the superconductor [Binn 83, Yazd 97]. The resulting
conductance spectrum is shown in Fig. 2.4, at a temperature of about a quarter the size of
the superconducting gap. Although subgap peaks in the conductance difference spectrum
(right plots) are visible at the sites of magnetic adatoms, the peaks are washed out and
do not show delta-like peaks that one would expect at very small temperatures.

More recent experiments on YSR states use lower temperatures and superconducting
tips to improve the energy resolution [Ji 08, Ji 10, Fran 11, Mena 15, Ruby 15b, Hatt 15,
Ruby 16, Choi 17, Kezi 18, Hein 18]. While lower temperatures trivially reduces the ther-
mal broadening, the use of superconducting tips is more involved and is studied in detail
in Ref. [Ruby 15b]. In the following, we give a brief summary of Ref. [Ruby 15b], which
hopefully allows the reader to better understand the resulting scanning tunneling images
using superconducting tips.

Consider the quasiparticle spectrum shown in Fig. 2.5 with a YSR state at a finite
energy, and for temperatures small compared to the gap. The spectral distance between
the Fermi levels (dashed lines) and the band gap edges is of magnitude ∆ in both materials.
Reminiscent of the tunneling between normal state metals, at a sample bias eV > 2∆
electrons from the occupied quasiparticle continuum in the tip (left for each plot) can
directly tunnel into the unoccupied continuum of the substrate (right), and similarly a
current flows for eV < −2∆.

For −2∆ < eV < 2∆, we first consider processes that do not involve YSR states. On
the one hand, thermally excited electrons and holes can tunnel directly between substrate
and tip continua. These processes are suppressed for small temperatures compared to the
gap. On the other hand for 0 < eV < 2∆, electrons in the occupied continuum of the tip
can be multiply Andreev reflected, with a voltage threshold that depends on the number
of reflections. Andreev reflection processes correspond to processes where an electron from
the tip tunnels into the substrate, forms a Cooper pair and a counter propagating hole
tunnels back into the tip. These processes require the tunneling of two quasiparticles and
are only relevant at strong tunneling. The same arguments apply for Andreev reflection
of tip-holes into tip-electrons at negative sample bias.

The presence of a YSR state (solid line) enables the resonant tunneling processes shown
in Fig. 2.5: At a bias eV = ±(∆ + εYSR), quasiparticles from the tip can (a) hop into the
YSR state and subsequently relax into the substrate continuum, (b) quasiparticles can
be Andreev reflected via a YSR state, and (c) at a bias eV = ±(∆ − εYSR), thermally
excited quasiparticles in the substrate can relax into the Shiba state and then tunnel into
the tip. The processes (a)-(c) are strongest when the YSR states are resonant with the
high spectral density at the band edge of the tip. This is expected to lead to pronounced
peaks in the conductance spectrum.

The tunneling processes (a) and (c) involve tunneling of a single electron between tip
and substrate, and their relative strength at positive and negative bias reflects the ratio
of electron and hole components of the YSR state. Because process (b) involves tunneling
of an electron and a hole, the processes (a) and (c) are dominant at a weak normal-state
conductance. For larger normal-state conductances, a crossover to a regime dominated by
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Figure 2.4.: STM conductance spectra of superconducting Nb. From [Yazd 97]. Reprinted
with permission from AAAS. On the left, the conductance spectrum over bare
Nb and on top of a Mn impurity is shown. A change in the conductance is
visible. On the right, the difference of the conductance over an adatom to
that over bare Nb is shown. For each plot, the different lines show different
distances from the adatom, and each line has a constant offset. The adatoms
are Mn, Gd and Ag, the former two are magnetic and show sub-gap peaks,
while Ag is nonmagnetic and no signifiant change in the conductance spectrum
is visible.
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Figure 2.5.: Principal tunneling processes involved in probing a YSR state (solid line,
enclosed by BCS quasiparticle peaks) with the quasiparticle peaks of a super-
conducting tip (left in (a), (b) and (c)). The dashed lines indicate the chemical
potential in the tip and the substrate. Reprinted figure with permission from
[Ruby 15b] at doi. Copyright 2015 by the American Physical Society. Single
particle-tunneling from tip to substrate is shown in (a): An electron from the
substrate continuum tunnels into the YSR state at a rate Γe and subsequently
relaxes into the substrate continuum at a rate Γ1. In (b), resonant Andreev
reflection is shown, which transfers a cooper pair from the tip to the substrate.
This involves tunneling of an electron at a rate Γe and a hole Γh. In (c), a
thermally-excited substrate-electron relaxes into the YSR state at a rate Γ2

and subsequently tunnels into the tip at a rate Γe.
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Figure 2.6.: STM conductance spectra of clean Pb (orange) and on top of a Mn
adatom (black) using a superconducting tip. Reprinted figure with per-
mission from [Ruby 16] (https://doi.org/10.1103/PhysRevLett.117.186801).
Copyright 2016 by American Physical Society. Two strong subgap resonances
are visible in (a) denoted by ±β, the zoom in (b) reveals additional peaks ±γ
and shoulders ±α. The inset in (a) shows the topography in the vicinity of
the Mn adatom.

process (b) is found, with a sublinear or even decreasing dependence on the conductance,
and an inverted dependence on the electron and hole components [Ruby 15b].

An example of STM spectroscopy images using superconducting tips is shown in Fig. 2.6.
The scan over clean Pb (orange line) shows a suppressed conductance for |eV | . 2.6 mV,
indicating a gap ∆ ∼ 1.3 mV. The subgap resolution is improved compared to the early
experimental data shown in Fig. 2.4. For the new data, clear resonances are visible when
the STM tip scans above Mn adatoms (black line).

The scan in Fig. 2.6 shows data at a sample bias |eV | & ∆ and naively one might expect a
pair of peaks at eV = ±(∆+εYSR) due to a single YSR state. However, in the experimental
data, multiple peaks are visible. These peaks have been the focus of several studies and
are attributed to different magnetic-adatom orbitals that couple to the superconducting
substrate, each of which can induce a YSR state [Moca 08, Hatt 15, Ruby 16, Choi 17].

In the case of Fig. 2.6, a Mn impurity is used, and due to to its S-state nature only
the l = 2 conduction electrons scatter from the impurity, which leaves five different or-
bitals [Schr 67, Ruby 16]. The resulting conductance spectrum has been explained in Ref.
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[Ruby 16] as follows. The degeneracy of the five l = 2 orbitals can be lifted by the crystal
fields at the absorption site, which makes the exchange interaction and the local potential
shift orbital dependent, and shifts the energy of the resulting YSR states. Due to the high
symmetry of the absorption site scanned in Fig. 2.6, the degeneracy is predicted to be
only partially lifted by the crystal field, leaving three degenerate and two non-degenerate
orbitals. The partially lifted degeneracy explains the presence of the three shoulders and
peaks in Fig. 2.6, and the difference of their peak heights can be explained by the different
tunnel coupling strengths for different orbitals, which is dependent on the extension of the
orbitals perpendicular to the substrate surface.

Besides the material combination shown in Fig. 2.6, many other combinations have been
investigated. A popular choice of superconducting substrate is Pb [Ji 08, Ji 10, Fran 11,
Ruby 15b, Hatt 15, Ruby 16, Choi 17, Hatt 17, Ruby 18, Fari 18], but other choices have
been explored as well [Yazd 97, Mena 15, Choi 17, Kezi 18]. Notably, for the case of
two-dimensional superconducting substrates, an increased range of the YSR wavefunction
has been found in agreement with the theoretically predicted change of the power-law
decay [Mena 15]. Materials for the magnetic impurities include single atoms such as the
transition metals Co, Cr, Fe, and Mn, and the lanthanide Gd [Yazd 97, Ji 08, Ji 10,
Mena 15, Ruby 15b, Ruby 16, Choi 17, Choi 18, Ruby 18], as well as magnetic molecules
[Fran 11, Hatt 15, Hatt 17, Fari 18].

The excellent control over the magnetic impurities has been demonstrated in a recent
experiment. Farinacci et al. used the interplay between the STM tip and a magnetic
molecule deposited on the surface of a superconductor to control the vertical position
of the molecule above the substrate [Fari 18]. This allows for a continuous control of the
exchange coupling strength J and the spectral position of the YSR state [see Eq. (2.18)]. As
we discussed in Sec. 2.2.1, when the YSR state crosses zero energy, the electronic ground-
state switches from one with total spin zero to one with total spin one. This quantum
phase transition can be probed by measuring the asymmetry between the particle and
hole components of the wavefunction, that is inherent to the YSR state. Because the
quasiparticle associated with the YSR state switches from occupied to unoccupied at
the transition, the asymmetry between electron and hole components is predicted to be
discontinuous, and this discontinuity has been reported in the experiment [Fari 18].

In conclusion, magnetic adatoms can be used to induce YSR states in the spectral gap
of a superconductor. We have explored several theoretical properties of YSR states that
have been discussed since YSR’s original papers about half a century ago, and we have
reviewed the tremendous experimental progress that has been made over the past two
decades.
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In this chapter, we introduce relevant concepts of scattering theory, employ some of these
concepts to analyze toy models of superconducting wires, and review a concatenation
method that is used in later chapters.

Scattering theory can be applied in many contexts. In this thesis, we are interested in
geometries similar to the one shown in Fig. 3.1, where two leads are attached to a scattering
region. We assume that the leads are noninteracting and coherent. Furthermore, up to
chapter 6, we assume that the leads are translationally invariant along x, in which case
the solutions are plane waves. In section 6, we generalize this picture to two (three)
dimensional leads with a circular (spherical) interface between the scattering region and
the leads.

Scattering theory has been discussed extensively in the literature, including the deriva-
tions and results presented in this chapter, see for example [Datt 97, Saku 94, Thom 15].
Here, our goal is provide an introduction that covers the aspects that are relevant for the
later chapters.

3.1. Definition of the S-matrix for linear geometries

In order to define the scattering matrix of the scattering region shown in Fig. 3.1, we
define the Hamiltonian

Ĥlinear = Ĥlead + V̂ (r), (3.1)

where Ĥlead describes the leads and V̂ is a scattering potential that has support in the
scattering region only, that is for 0 < x < L. We assume that Ĥlead has the left- and
right-propagating solutions φ−,α(r, ε) and φ+,α(r, ε), respectively, and the index α runs
over the available propagating modes. Furthermore, we choose φ±,α to be normalized to
unit probability current in the longitudinal direction. The system described by Eq. (3.1)
covers the models used in chapters 4 and 5.

Figure 3.1.: Sketch of a scattering region of length L contacted by two leads, one to the
left (L) and one to the right (R).

19



3. Scattering theory

We expand the wavefunction of the system at energy ε as

ψ(r, ε) =
∑
α,s=±

c(L)
s,αφs,α(r, ε) (3.2)

for x < 0,

ψ(r, ε) = ψscatt(r, ε) (3.3)

for 0 < x < L and

ψ(r, ε) =
∑
α,s=±

c(R)
s,αφs,α(r, ε) (3.4)

for x > L. The coefficients c
(L)
s,α and c

(R)
s,α are restricted by the wavefunction matching

conditions at the interfaces at x = 0 and x = L.

The matching conditions relate the modes exiting into the leads to the ones incoming
from the leads. This allows us to define the scattering matrix S as(

c
(R)
+

c
(L)
−

)
= S

(
c

(L)
+

c
(R)
− ,

)
(3.5)

where c
(L/R)
± are vectors over the index α. In the above representation, the scattering

matrix takes the form

S =

(
t r′

r t′

)
. (3.6)

Here t and t′ can be interpreted as the transmission matrices, and r and r′ as the re-
flection matrices for solutions incoming form the left and right, respectively. Because the
wavefunctions are normalized to unit probability current, the scattering matrix has to be
unitary, that is

S†S = 1, (3.7)

where 1 is the identity matrix.

A variety of methods exists to calculate scattering matrices, and in the following we
will detail some of them. A common approach is to divide the scattering region of interest
into subregions, calculate the scattering matrices of the subregions and then combine
the solution into the scattering matrix of the full scattering region. To perform such
a divide-and-conquer approach, it is useful to know how to concatenate the scattering
matrices of two subsequent regions. Let us define two scattering regions A and B located
at 0 < x < LA and LB < x < L, respectively, with LA < LB, and assume that we know

the scattering matrices SA and SB of the two regions. The coefficients c
(R)
±,α from A can

be identified with the coefficients c
(L)
±,α from B, and by using relation (3.5) the scattering

matrix for the combined region reads

SAB = SA ⊗ SB =

(
tBRtA r′B + tBRr

′
At
′
B

rA + t′ArBRtA t′A(1 + rBRr
′
A)t′B

)
, (3.8)
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3.2. Application to the Kitaev chain

with R = 1/(1 − r′ArB). Here, we neglect evanescent modes in between the leads and
adopt the notation from Ref. [Sbie 16].

The factor R can be interpreted as the geometric series of multiple reflections between
A and B. Furthermore, if r′ArB has an eigenvalue 1, an incoming state will be mapped
back to itself after reflecting from A and B and consequently a bound state appears. More
formally the condition for a bound state to appear reads

det
(
r′ArB − 1

)
= 0, (3.9)

where det denotes the determinant.

3.2. Application to the Kitaev chain

In this section, we apply the previously outlined scattering approach to the continuum
version of the Kitaev chain, as well as a one dimensional s-wave superconductor. The
Kitaev chain is a simple model introduced by Kitaev in 2001, which hosts Majorana
bound states at its ends [Kita 01]. In contrast, an s-wave superconductor is expected to
be trivial and generically no zero-energy modes are expected to appear.

The models and results discussed in this section have been extensively analyzed in the
literature, see for example [Andr 64, Kita 01, Duck 11, Brou 11a, Alic 12]. Our goal is
to apply the scattering approach to a simple known model and illustrate central concepts
that we use in the analysis of the low-energy excitations in chapters 4, 5 and 6.

We define the models by the BdG Hamiltonian

Ĥ1d =

(
ξk̂ ∆∗(−k̂)

∆(k̂) −ξk̂

)
(3.10)

where ~k̂ = −i~∂x is the quasi-momentum operator along x, ξk = (~k)2/2m − µ is the
normal metal dispersion with chemical potential µ = k2

F/2m and mass m, and ∆(k) is the
pairing potential. The BdG spinor takes the form (u(x), v(x))T , consisting of electron and
hole components.

We consider two cases of the pairing potential. For case (i), an s-wave superconductor,
we set ∆(k̂) = i∆, which for later convenience makes the gauge choice of a purely complex
pairing potential, and the electron and hole components are from the spin-up and spin-
down bands, respectively. For a physical system a second copy of (3.10) has to be taken
in order to account for spin-down electrons and spin-up holes. For case (ii), a p-wave
superconductor, we set ∆(k̂) = i∆′~k̂ and assume a spin-polarized material with spin-
triplet pairing, in which case we only require a single copy of Ĥ1d. In the following
analysis we set ~ = 1 and consider the case of a superconductor in the weak-coupling
limit, |∆(kF)| � µ. Without loss of generality we choose the gauges ∆ > 0 and ∆′ > 0.

Case (ii) is a special case of Eq. (2.3). Consequently, for µ > 0, the Γ-point lies below
the Fermi level and the system enters a phase of topological superconductivity.

In order to confirm the presence of a Majorana bound state, we require a solution
that is invariant under particle-hole symmetry ĈĤ1dĈ† = −Ĥ1d, with the particle-hole
conjugation operator Ĉ [Kita 09]. For our choice of gauge, Ĉ takes the shape

Ĉ = τxK. (3.11)
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3. Scattering theory

Figure 3.2.: Sketch of a semi-infinite one-dimensional superconductor connected to a lead
of length LLead. Andreev reflection processes are shown for an incoming elec-
tron (top) and an incoming hole (bottom). On the right, the phases picked
up for incoming quasiparticles at ε = 0 are shown. In the case of a p-wave
superconductor a phase shift π has to be added for the bottom process.

Next, we find the eigenstates of Equation (3.10) by using a plane wave ansatz eikx. This
yields the eigenenergies

ε = ±
√
ξ2
k + |∆(k)|2, (3.12)

and upon linearising ξk around the Fermi level the (unnormalized) eigenstates

ψ±,s(x) =

(
1

∆(±kF)
|∆(kF)| e

−isη(ε)

)
e±[ikFx−sx/ξ(ε)], (3.13)

where s = ±1, kF =
√

2mµ is the wave number at the Fermi level in the normal state and

η(ε) = arccos
ε

|∆(kF)| , (3.14)

ξ(ε) =
kF/m√

1− |ε/∆(kF)|2
. (3.15)

Because ξ2
k is large unless k ∼ kF, the dispersion of the bulk has a gap |∆(kF)| for both

s-wave and p-wave superconductors, and the in-gap wavefunctions decay exponentially at
a length scale ξ(ε).

In order to discuss the boundary modes, we terminate the 1d-system as illustrated in
Fig. 3.2. We restrict the superconducting region to x > 0 and connect a lead at x = 0
with a normal state Hamiltonian Hlead = ξk̂τz that is terminated at x = −Llead by the
boundary condition of a vanishing wavefunction for x < −Llead.

Inside the lead, we define the solutions propagating in ±x-direction by

φ±,e(x, ε) =
e±ikFx√
kF/m

(
1
0

)
, (3.16)

φ±,h(x, ε) =
e∓ikFx√
kF/m

(
0
1

)
. (3.17)
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3.2. Application to the Kitaev chain

Here we assume that |ε| . ∆(kF) and short leads with ∆mL/kF � 1 such that we can
approximate the wavenumbers by kF. The wavefunctions (3.16) and (3.17) are normalized
to unit probability current jP[ψ](x) = [ψ∗(x)∂xψ(x)− ψ(x)∂xψ

∗(x)] /2mi. The overall
wavefunction inside the lead takes the shape

ψ(r, ε) =
∑
s=±
τ=e,h

cs,τφs,τ (x, ε). (3.18)

Next, we define the scattering matrix at the left and right side of the lead for in-gap
energies. Because no transmission is possible at both sides, for subgap energies, it is
sufficient to only consider the reflection matrices. At x = −Llead, we have(

c+,e

c+,h

)
= r′N

(
c−,e
c−,h

)
, (3.19)

r′N =

(
e2ikFLlead 0

0 e−2ikFLlead

)
. (3.20)

At the lead-superconductor interface, we take the Andreev approximation, |∆(kF)| � µ.
In this case the wavenumber has to be approximately conserved and one can read off the
reflection amplitudes from (3.13). For subgap energies, we get(

c−,e
c−,h

)
= rS

(
c+,e

c+,h

)
, (3.21)

rS =

(
0 ∆∗(−kF)

|∆(kF)| e
−iη(ε)

∆(kF)
|∆(kF)|e

−iη(ε) 0

)
. (3.22)

Thus at the interface, electrons are reflected as holes, while no normal reflection into
electrons is present, and vice versa holes are reflected into electrons only. The reflection of
electrons into holes and vice versa is known as Andreev reflection. For the case of an s-wave
superconductor it can be interpreted as a spin-up electron entering the superconductor and
forming a cooper pair with another spin-down electron. This process leaves a spin-down
hole that travels back into the normal metal lead [Andr 64].

Possible bound states are obtained by the bound state condition (3.9) upon identifying
r′A and rB with r′N and rS , respectively. Evaluating the determinant leads to

1 =
∆(kF)∆∗(−kF)

|∆(kF)|2 e−2iη(ε). (3.23)

Intuitively, Eq. (3.23) can be understood as the requirement that a phase that is a multiple
of 2π has to be picked up during the closed cycle where an electron is Andreev reflected
at the interface as an hole, makes a round trip in the lead, is Andreev reflected back into
an electron and makes a final round trip as an electron to the initial state. The phases
±(2kFL+ π) picked up by the electron and hole during the round-trip in the lead cancel
each other.

Next, we solve Eq. (3.23) for the two types pairing potentials. In case of an s-wave
pairing potential we have ∆(k) = ∆ and obtain ε = ±∆, hence no in-gap states are
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3. Scattering theory

present. However, for a p-wave superconductor the fraction in Eq. (3.23) yields a minus
sign and a single solution emerges at ε = 0. In the limit Llead → 0, the bound state
wavefunction reads

|ψ0(x)〉 =

(
1
1

)
sin(kFx)e−x/ξ(0), (3.24)

for x > 0 and zero elsewhere.

The wave function (3.24) has the special property of being invariant under particle-hole
conjugation (3.11) and hence is a Majorana quasiparticle. Its amplitude rapidly oscillates
at the Fermi-wave number and decays exponentially at a scale of the coherence length ξ(0).

In conclusion, while we found a zero-energy Majorana bound state for the p-wave pairing
case, no in-gap states are present in the s-wave case. The appearance of the Majorana
bound state can be traced back to a closed cycle of two normal reflections and two Andreev
reflections. While the quasiparticles pick up cancelling phases during normal reflections,
the phases picked up in the Andreev process do not cancel. In the s-wave case this leads
to no in-gap states, while in the p-wave case an additional π-phase is picked up because
the pairing potential is odd in momentum, and a zero-energy state becomes possible.

3.3. Thin-slice concatenation method

In section 3.2 we obtained the scattering matrix by calculating the eigenstates in the
scattering region and matching these eigenstates with the modes in the leads. Often the
eigenstates of a scattering region are not easily accessible, for example in the presence of
disorder, and other approaches are required. In this section, we review an approach that
perturbatively calculates the scattering matrix of thin slices of the scattering region, and
then concatenates these slices to obtain the total scattering matrix. This type of integra-
tion scheme has been previously used to tackle a variety of problems, such as the study of
disordered wires with unconventional superconductivity [Brou 03], the conductivity scal-
ing in graphene [Bard 07] and Weyl semimetals [Sbie 14], and the phase diagram of the
Hamiltonian (2.8) in the presence of disorder [Brou 11b].

Consider a system described by the Hamiltonian (3.1), with a geometry as shown in
Fig. 3.1. We cut the scattering region 0 < x < L into N slices according to Fig. 3.3, and
in between the gray slices the scattering potential V̂ (r) is absent. This system is described
by the Hamiltonian

Ĥslice = Ĥlead +
1

2

N−1∑
j=0

{
δslice,j(x), V̂ (r)

}
, (3.25)

where the braces denote the anticommutator and δslice,j(x) = 1 for xj < x < xj + δL− δx,
with xj = jδL, and δL = L/N ; and δslice,j(x) = 0 elsewhere. The anticommutator is

required because V̂ (r) may include derivatives due to effects such as spin-orbit coupling.
The thickness of the white slices is δx. Inside these slices, the left- and right-propagating
modes are φ±,α(r, ε), as introduced below Eq. (3.1), and we neglect evanescent modes
within a semiclassical approximation, assuming that these decay sufficiently fast on the
relevant scattering length scales such as the coherence length in Sec. 3.2. The white slices
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3.3. Thin-slice concatenation method

Figure 3.3.: Slicing of the scattering region. The scattering potential V̂ (r) is present in the
grey areas only. The gray slices have a thickness δL−δx, and the white region
in between a thickness δx. Taking the limit δx→ 0 recovers the geometry of
Fig. 3.1.

are present in order to define the propagating modes, and we take the limit δx/δL → 0
later.

Denote the scattering matrix of the jth gray slice by Sj . If δL is sufficiently small, Sj
can be calculated perturbatively in lowest-order Born approximation. We give a derivation
of this approximation in Appendix A, which yields

Sj = 1− iT (j), (3.26)

where

T (j)
ν,µ =

1

2

∫
drφ†ν(r, ε)

{
δslice,j(x), V̂ (r)

}
φµ(r, ε), (3.27)

and µ, ν are multi indices over (±, α). Because the scattering matrices have to be unitary,
Eq. (3.26) can be recast into the unitarized Born approximation

Sj =
1− T (j)/2

1 + iT (j)/2
. (3.28)

The scattering matrix S(L, ε) across the full scattering region 0 < x < L is obtained by

S(L, ε) = lim
N→∞

S0 ⊗ S1 ⊗ · · · ⊗ SN−1, (3.29)

in the limit δL→ 0 and for δx = 0.
In order to guarantee numerical convergence of the limit in Eq. (3.29), we choose δL

small compared to the involved longitudinal scattering length-scales.
In chapters 4 and 5, we will make use of the thin-slice concatenation method described

here.
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4. Renormalization effects in spin-polarized
metallic wires proximitized by a
superconductor: A scattering approach

This chapter has been published as Ref. [Kien 18].

As we discussed in Sec. 2.1.3, experimental realizations of systems that host Majorana
bound states make use of the proximity effect by coupling a superconductor to an ef-
fectively spin-polarized normal wire, such as a semiconducting wire in a large magnetic
field [Mour 12, Das 12, Chur 13, Deng 16, Albr 16, Chen 17, Zhan 18] or a ferromagnetic
wire formed by a linear chain of magnetic adatoms placed on a superconducting substrate
[Nadj 14, Ruby 15a, Pawl 16, Feld 17]. In both cases, a crucial ingredient is spin-orbit cou-
pling, because it allows spin-singlet s-wave Cooper pairs in the superconducting substrate
to be converted into spin-polarized p-wave pairs in the proximitized wire.

Besides the zero-energy peaks that we discussed in Sec. 2.1.3, experiments can also access
the localization length of the Majorana bound states. In case of the adatoms chains,
scanning tunneling microscopy is used to detect the zero-bias peaks at the chain ends,
and the localization length can be inferred from the spatially resolved conductance maps
[Nadj 14, Ruby 15a, Pawl 16, Feld 17]. For the case of semiconductor-based experiments,
the hybridization of Majorana bound states at the opposite ends can be used to infer
the localization length [Albr 16]. In Sec. 3.2 we saw that for an energy gap of size εgap

and a Fermi velocity v, a naive expectation for the localization length is that the product
εgaplmaj ∼ ~v. Surprisingly, in the experiments based on adatom chains and some of
the semiconductor-based experiments [Das 12], the observed value of this product was
significantly below this value [Dumi 15].

The anomalously small value of εgaplmaj could be explained by strong coupling between
the wire and the superconductor, which leads to a renormalization of the properties of
the Majorana bound states in adatom-chain–based setups [Peng 15, Das 15] as well as
semiconductor-based setups [Stic 17, Stan 17]. In both cases, the qualitative picture for
this renormalization is that a significant part of the spectral weight of the Majorana is
shifted into the superconductor and as a result the velocity along the wire is renormalized
towards small values.

In this chapter, we investigate the renormalization effects for a superconductor strongly
coupled to a spin-polarized wire — where the spin polarization can be a consequence of
the use of half-metallic materials [Groo 83, Schw 86, Park 98, Son 06], the use of chains
of magnetic adatoms [Nadj 14, Ruby 15a, Pawl 16, Feld 17], or of the application of a
magnetic field. We show that the renormalization of the velocity exists independently of
the existence of a proximity-induced minigap εgap in the wire and the Majorana bound
states. Renormalization effects are present even if εgap is much smaller than the bulk
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superconducting gap ∆. Such a situation drastically differs from a conventional normal-
metal–superconductor junction in the absence of a magnetic field, where a large spectral
weight inside the superconductor coincides with the short-junction limit for which εgap

and ∆ are of comparable magnitude.
Our theoretical approach complements that of Refs. [Peng 15, Das 15], which uses

a large tunnel matrix element to model the strong-coupling limit of a normal-metal–
superconductor hybrid. Instead, we employ a semiclassical wavefunction approach, and
characterize the normal-metal–superconductor interface in terms of its transparency, in
which case the strongest coupling naturally appears for an ideal interface with unit trans-
parency. For such an ideal interface, the coupling of normal metal and superconductor is
strongest when ∆ � ~v/DN, where v is the Fermi velocity in the absence of coupling to
the superconductor and DN the transverse dimension of the normal metal. Our method
is similar to the one used in the analysis of a semiconductor-wire model in Ref. [Stic 17],
and extends previous work on the weak-coupling limit [Duck 11].

4.1. Semiclassical interpretation of the renormalization

The wavefunction approach allows for an instructive semiclassical picture of the renor-
malization effects. In this picture, a delayed specular reflection of electrons in the normal
metal at the superconductor interface lowers the longitudinal velocity, as shown in Fig. 4.1.
At an ideal normal-metal superconductor interface, this reflection process consists of three
phases: (1) An electron incident from the normal metal at angle θ is transmitted into the
superconductor. (2) The transmitted electron is Andreev reflected as a hole. In contrast
to the electron, this hole cannot re-enter the spin-polarized normal metal because it has
the wrong spin. Instead, it is specularly reflected at the normal-metal–superconductor
interface. (3) Finally, the reflected hole is Andreev reflected into an electron with the
right spin, which is subsequently transmitted into the normal metal. Because the pene-
tration depth into the superconductor is finite, the electron accumulates a delay ∼ 2~/∆
during the three phases of this reflection process. For a normal metal wire of thickness DN

the electron travels a distance 2DN tan θ in the longitudinal direction between subsequent
reflection events within a time 2DN/v cos θ. Hence we obtain the renormalized velocity

vx ≈
∆

~
DN tan θ (4.1)

in the limit of strong coupling ∆� ~v/DN.
For a non-ideal normal-metal–superconductor interface a second reflection channel, di-

rect specular reflection without a delay, is added in parallel to this delayed reflection
process. We emphasize that the velocity renormalization is caused by the delay for the
normal reflection; processes that lead to Andreev reflection of majority electrons into
majority holes or vice versa are not involved in this renormalization.

Spin-orbit coupling in the normal metal and/or the superconductor enables Andreev
reflection of majority electrons into majority holes. As a result a small minigap εgap opens
up in the spectrum of the normal metal and Majorana bound states appear at the wire
ends. The localization length of the Majorana bound state lmaj ∼ ~vx/εgap, with vx the
renormalized normal-state velocity. In the strong coupling limit, the renormalization of
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4.2. Planar geometry

Figure 4.1.: Spin-polarized normal-metal wire of thickness DN (white) with one super-
conducting (grey, top) boundary and one insulating boundary (bottom). In
the absence of spin-orbit coupling specular (normal) reflection at the normal-
metal–superconductor interface involves a double Andreev reflection process
in which an Andreev reflected minority hole is specularly back-reflected into
the superconductor. The time delay incurred in this process slows down elec-
trons propagating in the normal metal.

the velocity vx leads to a strong renormalization of the product εgaplmaj. Upon comparing
expressions for the weak and strong-coupling limits, we find that εgap is renormalized but
not the localization length, in accordance with the analysis of Refs. [Peng 15, Das 15].

The outline of the remainder of this chapter is as follows: In Sec. 4.2 we introduce a
model of a spin-polarized normal metal proximity coupled to a superconductor in a planar
geometry. In Sec. 4.2.1, we derive the propagating low-energy modes and the dispersion
ε(kx) in the absence of spin-orbit coupling. The renormalized velocity vx is obtained via
the relation vx = ~−1|dε/dkx| and compared to a classical prediction. We include spin-
orbit coupling in Sec. 4.2.2 and study the Majorana localization length and minigap in
the limits of an ideal and non-ideal interface. Results for a spin-polarized normal metal
with a cylindrical cross-section are presented in Sec. 4.3.2.

4.2. Planar geometry

We consider a normal-metal (N) strip coupled to a superconductor (S). Coordinate axes are
chosen such that the NS interface coincides with the x axis, see Fig. 4.1, the superconductor
occupies the half space z > 0, and the normal metal is in the region −DN < z < 0. The
4× 4 BdG Hamiltonian reads

Ĥ =

(
H0 iσ2∆eiφθ(z)

−iσ2∆e−iφθ(z) −H∗0

)
, (4.2)
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for a BdG spinor (u↑, u↓, v↑, v↓)
T consisting of particle and hole wavefunctions. Here, σi

with i = 1, 2, 3 are the Pauli matrices in spin subspace, ∆eiφ is the superconducting order
parameter, and θ(z) the Heaviside step function. The 2× 2 normal-state Hamiltonian H0

is

H0 =
p2

2m
+ V (z) +

~2w

m
δ(z) +Hso, (4.3)

where p is the momentum operator, m is the electron mass, which we take to be the
same in the N and S parts of the system, V (z) is a spin-dependent potential, (~2w/m)δ(z)
a potential barrier at the NS interface, and Hso the spin-orbit interaction. For the spin-
dependent potential V (z), we take different expressions in the normal and superconducting
parts of the system,

V (z) = −~2k2
S

2m
(4.4)

when z > 0 and

V (z) = − ~2

2m

(
k2
↑ 0

0 −κ2
↓

)
+ Vconf(z) (4.5)

when z < 0. Here, kS and k↑ are the Fermi wavenumbers of the superconductor and the
majority spin band, −κ2

↓/2m is the Fermi level of the depleted minority band, measured
from the band bottom in the absence of spin-orbit coupling, and Vconf(z) is a confining
potential modeling the sample boundary at z = −DN, Vconf(z) = 0 for z > −DN and
Vconf(z) = ∞ for z < −DN. Finally, the spin-orbit coupling is taken to be linear in
momentum,

Hso =
~
2

∑
j

[pΩj(z)σj + σjΩj(z)p] , (4.6)

where the spin-orbit coupling strength

Ωj(z) = ΩSjθ(z) + ΩNjθ(−z) (4.7)

is piecewise constant in the N and S regions. Spin-orbit coupling is assumed to be weak,
so that it can be treated in first-order perturbation theory.

The normal-state majority-carrier transparency of the interface depends on the Fermi
velocities v↑ = v = ~k↑/m and vS = ~kS/m, the strength w of the surface δ-function
potential, and the momentum component ~kx parallel to the interface. In the absence of
spin-orbit coupling, the corresponding reflection and transmission amplitudes at the Fermi
energy ε = 0 are [Kupf 11]

t↑(kx) =
2
√
k↑zkSz

2iw + k↑z + kSz
, (4.8)

r↑(kx) = −1 + t↑(kx)
√
k↑z/kSz, (4.9)

r′↑(kx) = −1 + t↑(kx)
√
kSz/k↑z, (4.10)

where

k↑z =
√
k2
↑ − k2

x, kSz =
√
k2

S − k2
x. (4.11)
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(The amplitudes r↑ and r′↑ describe reflection for majority electrons coming from the N
and S parts of the system, respectively.) Minority spins coming from z > 0 are reflected
with reflection amplitude

r′↓(kx) = eiϕ↓(kx)

=
kSz − iκ↓z − 2iw

kSz + iκ↓z + 2iw
, (4.12)

where κ↓z =
√
κ2
↓ + k2

x and we neglect terms exponentially suppressed in κ↓zDN.

This model describes semiconductor wires in a large Zeeman field as well as half-metallic
(ferromagnetic) wires, both coupled to a superconductor. In the former case spin-orbit
coupling is typically assumed to exist inside the semiconductor, but not in the supercon-
ductor [Lutc 10, Oreg 10]; in the latter case, spin-orbit coupling is usually taken to be in
the superconductor, but not in the half-metallic wire [Duck 11, Chun 11].

4.2.1. Velocity renormalization

We first consider the system under consideration in the presence of superconductivity, but
without spin-orbit coupling. The superconducting gap confines carriers with excitation
energy |ε| < ∆ to the normal region, so that the N region effectively becomes a conducting
wire of thickness DN.

Without spin-orbit coupling, reflections at the NS interface are purely normal; Andreev
reflections are ruled out because they would require a spin flip process. Nevertheless, the
presence of the superconductor can lead to a strong renormalization of the carrier velocity.
To see this explicitly, we construct the wavefunction of a majority electron at excitation
energy ε and momentum ~kx parallel to the interface,

u↑(x, z) ∝ eikxx
[
eikz(kx,ε)z + ree(kx, ε)e

−ikz(kx,ε)z
]
. (4.13)

Here
kz(kx, ε) =

√
k2
↑ − k2

x + 2mε/~2 (4.14)

and ree(kx, ε) is the reflection amplitude in the presence of the superconductor. In terms of
the normal-state reflection and transmission amplitudes of the NS interface the reflection
amplitude ree(kx, ε) reads (in the Andreev approximation ~2k2

z/2m� ∆)

ree(kx, ε) = r↑(kx) +
t↑(kx)2e−2iη(ε)−iϕ↓(kx)

1− r′↑(kx)e−2iη(ε)−iϕ↓(kx)

=
k↑z − 2iw − ikSz tan(η + ϕ↓/2)

k↑z + 2iw + ikSz tan(η + ϕ↓/2)
, (4.15)

where
η(ε) = arccos(ε/∆). (4.16)

This result can be easily understood by considering the different paths a majority electron
incident on the NS interface from z < 0 can take: Direct normal reflection with amplitude
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∆
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Figure 4.2.: Subgap dispersion relation ε(kx) for a spin-polarized normal wire attached to
a superconductor. Only electron-like solutions are shown, hole-like ones are
obtained by mirroring the spectrum vertically such that ε → −ε. The wire
thickness satisfies k↑DN/π = 1.2, corresponding to one propagating mode at
the Fermi level ε = 0 in an isolated wire. The solid lines are obtained by
numerically solving Eq. (4.17). The left panel shows the dispersion relation
for k↑ = kS, w = 0, corresponding to a fully transparent NS interface; the
right panel has wm/~k↑ = 1, corresponding to an interface with transmission
probability |t↑|2 = 1/2 for perpendicular incidence. The dashed lines show
Eqs. (4.20) (left panel) and (4.25) (right panel), while the dotted lines show
the dispersion for a vanishing interface transparency. The magnitude of the
superconducting gap is given by (~π/DN)2/2m∆ = 10, well within the validity
range of the Andreev approximation. We further set κF↓/k↑ = 2.

r↑ or entering the superconductor with transmission amplitude t↑, Andreev reflection
into a minority hole, normal backreflection of the hole into S with amplitude r′∗↓ , finally
followed by a second Andreev reflection into a majority electron and transmission into the
normal metal. The denominator in Eq. (4.15) describes higher-order processes involving
multiple double Andreev reflections. We have assumed κ↓DN � 1, so that the minority
wavefunction component u↓ decays sufficiently fast away from the NS interface and it is
sufficient to restrict ourselves to the majority wavefunction component u↑.

The dispersion relation ε(kx) follows by imposing that u↑(x,−DN) = 0, which leads to

1 = −e2ikzDNree(kz, ε). (4.17)

For a weakly coupled superconductor one has r↑ = r′↑ ≈ −1 and |t↑| � 1, and Eq. (4.17)
reproduces the standard quantization rule kz = nπ/DN, n = 1, 2, . . ., and a quadratic
dispersion

ε =
~2

2m

(
k2
x +

n2π2

D2
N

− k2
↑

)
. (4.18)
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In the opposite limit of an ideal interface with t↑ = 1 and r↑ = r′↑ = 0, one finds

2kz(ε)DN = 2η(ε) + ϕ↓(kx) + (2n+ 1)π. (4.19)

If we restrict ourselves to the single-mode regime 1 . k↑DN/π . 2, the Andreev approxi-
mation implies that (~π/DN)2/2m� ∆, which allows us to neglect the energy dependence
on the l.h.s. of Eq. (4.19) and to obtain the dispersion

ε = ±∆ sin

[
ϕ↓(kx)

2
−DN

√
k2
↑ − k2

x

]
. (4.20)

The left panel of Fig. 4.2 shows the dispersion for k↑DN/π = 1.2 for an ideal interface,
together with the approximate result (4.20) and the dispersion (4.18) of the isolated wire.

Figure 4.2 clearly shows that the coupling to the superconductor leads to significantly
flatter ε vs. kx curves near ε = 0, indicating a strongly renormalized Fermi velocity vx =
~−1|dε/dkx|. The strong renormalization of the velocity also follows from the approximate
dispersion (4.20) for an ideal interface,

vx =
1

~

√
∆2 − ε2

kxDN

k↑z

(
1− 1

κ↓zDN

)
. (4.21)

Although we dropped terms exponentially suppressed in κ↓zDN in Eq. 4.12, we keep the
term including κ↓zDN as it is suppressed by a power law only. Equation (4.21) gives an
effective velocity vx that is suppressed by a factor ∆/εkin compared to the velocity ~kx/m
of an isolated normal wire. Here, εkin = ~2k2

↑/2m is the normal-state kinetic energy. This
suppression is consistent with the semiclassical estimate (4.1).

The renormalized velocity is shown in Fig. 4.3 as a function of interface transparency
for the same parameter choice as in Fig. 4.2. Starting from the value vx = ~kx/m of an
isolated wire, the velocity decreases monotonically as a function of interface transparency
|t↑|, reaching the much smaller value given by Eq. (4.21) at |t↑|2 = 1.

Although the velocity renormalization is strongest for a fully transparent interface,
we emphasize that the renormalization exists for arbitrary transparency of the interface,
provided ∆ is small enough, so that a double Andreev reflection from the superconductor
takes a sufficiently long time. In fact, the limit of a weakly transparent interface allows
for an explicit solution for vx, as we now show. The limit of a small junction transparency
is realized if kSz � kz or |w| � kz. In this limit one finds

ree = −4w2 + k2
Sz + ikz(2w + εkSz/∆)

4w2 + k2
Sz − ikz(2w + εkSz/∆)

, (4.22)

up to corrections that are small in |ε|/∆, in kz/|w|, or in kz/kSz. For |ε| � ∆, the solution
of Eq. (4.17) is

kz =
π

DN
− π(2w + εkSz/∆)

D2
N(4w2 + k2

Sz)
, (4.23)

which gives the equation

ε =
~2

2m

(
k2
x +

π2

D2
N

− 2π2(2w + εkSz/∆)

D3
N(4w2 + k2

Sz)
− k2
↑

)
, (4.24)
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Figure 4.3.: Renormalized velocity as a function of interface transparency |t↑|2. The veloc-
ity is normalized to v0

x = ~kx/m = v sin θ. The interface barrier is introduced
by increasing w while matching k↑ = kS (bright, orange line) and by increasing
kS at fixed w = 0 (dark, blue line). The solid lines are obtained by numer-
ically solving Eq. (4.17). All other parameters are the same as in Fig. 4.2.
The dashed lines show the |t↑|2 = 1 approximation of Eq. (4.21) and the
small-transparency approximation of Eq. (4.25).

from which the dispersion relation can be obtained. (The ε-dependence of kSz can be
neglected in the limit of small interface transparency because either kS � k↑, in which
case kSz = kS up to small corrections, or |w| � kSz, in which case kSz drops out of the
equation.) Differentiating with respect to kx gives the velocity

vx =
v sin θ

1 + |t↑|2ξN/4DN
, (4.25)

at ε = 0, where sin θ = kx/k↑ and ξN = ~2kz/m∆ = ~2π/mDN∆ is the transverse co-
herence length in the normal metal. The strong velocity renormalization sets in when
ξN|t↑|2 � DN. The small-transparency approximation for the dispersion ε(kx) and the
velocity vx is illustrated in the right panel of Fig. 4.2 and in Fig. 4.3, respectively, show-
ing that the small-transparency approximation remains useful for interface transparencies
|t↑|2 . 0.5.

From a purely classical point of view, the denominator in Eq. (4.25) is surprising. To
understand this, consider the process shown in Fig. 4.1 for a low transparency |t↑|2. From
a classical point of view, the electron will spend a time TN ∼ DN/v↑|t↑|2 in the normal
metal before being transmitted through the interface and a time TS ∼ ξ/vS|t↑|2 in the
superconducting region. Here, we define the velocities v↑ = k↑/m and vS = kS/m and
neglect the angle θ. In the superconducting region, the distance traveled along x is zero
due to the zero-net displacement processes shown in Fig. 4.1, and thus the velocity is
expected to be

v(cl)
x ∼ v↑T↑

T↑ + cTS
∼ v↑

1 + cξN/DN
, (4.26)

with some constant numerical factor c, and the ratio v↑/vS has been absorbed into ξN.
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4.2. Planar geometry

Eq. (4.26) is clearly inconsistent with Eq. (4.25). The missing factor |t↑|2 can be traced
back to the coherent scattering in the superconductor: During a single cycle of the double
Andreev reflection shown in Fig. 4.6, a phase factor eiα = e−2iη(ε)r′↑(r

′
↓)
∗ is picked up. For

|ε| � ∆ and a low transparency, this phase factor becomes eiα = −1 + O(|t|2). Hence
multiple double Andreev reflections interfere destructively up to corrections of O(|t↑|2)
and the time TS is effectively lowered by a factor |t↑|2, which explains the discrepancy
between the classical and semiclassical expressions in (4.25) and (4.26).

In Sec. 4.3.2, we show that qualitatively the same results are obtained for a spin-
polarized normal metal wire with a cylindrical cross section.

4.2.2. Minigap and Majorana localization length

Spin-orbit coupling in the superconductor allows for spin flips and thereby enables Andreev
reflections of majority spin electrons into majority spin holes and vice versa. This induces
a p-wave minigap εgap in the excitation spectrum of the normal wire and zero-energy
Majorana bound states form at its ends. This section considers both of these effects and
relates the localization length lmaj of the Majorana bound states and the minigap εgap to
the velocity renormalization calculated in the previous section. The calculation extends
that of Ref. [Duck 11], which considered the same problem in the limit of an opaque NS
interface, for which there is no velocity renormalization.

We assume that spin-orbit coupling is sufficiently weak so that it can be treated in
first-order perturbation theory. Correspondingly, the probability for Andreev reflection
off the normal-metal–superconductor interface is small and the induced minigap εgap in
the spectrum of the normal wire much smaller than the bulk superconducting gap ∆.
For that reason, we neglect corrections to the scattering amplitudes of order ε/∆ in the
calculations below.

The starting point of the calculation is an expression for the propagating states in
the normal wire in the absence of spin-orbit coupling, normalized to unit flux in the x
direction. To keep the notation simple, we restrict attention to the regime in which there
is one propagating mode in the normal-metal wire in the absence of spin-orbit induced
Andreev reflection. This mode has transverse wavevector kz, which is determined by the
quantization condition (4.17). The electron-like scattering states |ψe,±〉 propagating in the
positive (+) or negative (−) x direction have the wavefunction components [Kupf 11]

u↑,±(r) = e±ikx(ε)x e
ikzz + reee

−ikzz
√N vx

(4.27)

v↓,±(r) = − e±ikx(ε)x it↑τ↓e
κ↓zze−iφ

(r′↓ + r′↑)
√N vx

, (4.28)

in the normal region −DN < z < 0, where

kx(ε) =
√
k2
↑ − k2

↑z +
ε

~vx
, (4.29)

with the velocity vx taken from the calculation of the dispersion in Sec. 4.2.1, and

τ↓ =
2
√
kSzk↑z

kSz + iκ↓z + 2iw
. (4.30)
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Since we are interested in energies |ε| � ∆, we only need to retain the energy dependence
in the exponential factors, see the discussion in the previous paragraph. As before, we
assume that κ↓zDN � 1 so that no hard-wall boundary condition needs to be applied at
z = −DN for the minority component v↓,±(r). In the superconducting region, the nonzero
wavefunction components are [Kupf 11]

u↑,±(r) =
t↑e
±ikx(ε)x−z/ξ(eikSzz − e−ikSzz−iϕ↓)

(1 + r′↑e
−iϕ↓)

√
NkSzvx/k↑z

,

v↓,±(r) =− it↑e
±ikx(ε)x−z/ξ−iφ(eikSzz + e−ikSzz−iϕ↓)

(1 + r′↑e
−iϕ↓)

√
NkSzvx/k↑z

. (4.31)

Here

kSz =
√
k2

S − k2
↑ + k2

z , (4.32)

ξ =
~2kSz

m∆
, (4.33)

N = 2DN +
Im ree

kz
+

2ξN|t↑|2
|r′↓ + r′↑|2

, (4.34)

where the transverse coherence length in the normal metal ξN was defined below Eq.
(4.25). The factors

√
kSz/k↑z in the denominators of Eq. (4.31) are a consequence of

current conservation at the normal-metal–superconductor interface. Similarly, the nonzero
wavefunction components of the hole-like scattering states |ψh,±〉 are

v↑,±(r) =
e∓ikx(−ε)x(e−ikzz + r∗eee

ikzz)√N vx
,

u↓,±(r) =
it∗↑τ

∗
↓ e
∓ikx(−ε)xeκ↓zzeiφ

(r′∗↓ + r′∗↑ )
√N vx

(4.35)

in the normal region −DN < z < 0. Likewise, the corresponding wavefunction components
in the superconducting region follow from Eqs. (4.31) upon exchanging electron and hole
components, complex conjugating, and sending ε→ −ε.

To calculate how spin-orbit coupling modifies these scattering states, we now consider
a system for which spin-orbit coupling is non-zero in a segment 0 < x < δL only. For
small enough δL, spin-orbit coupling induces a backscattering amplitude in the scattering
state which is linear in δL for small enough δL. Calculating the linear-in-δL scattering
amplitudes in perturbation theory in Hso as in Ref. [Duck 11], we find for the electron-to-
hole amplitude for electrons incident from the left (i.e., initially moving in the positive x
direction)

ρheδL = − i
~

〈
ψh,−

∣∣∣δĤso

∣∣∣ψe,+

〉
, (4.36)

where

δĤso =
1

2

{(
Hso 0
0 −H∗so

)
,ΘδL(x)

}
, (4.37)
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with {·, ·} the anticommutator and ΘδL(x) = 1 for 0 < x < δL and ΘδL(x) = 0 otherwise.
This gives

ρhe = −
it2↑~kxk↑z(ΩSxx + iΩSyx)e−iφ(1 + r′2↓ )

N vxk2
Sz(r

′
↓ + r′↑)

2

− 2~kx(ΩNxx + iΩNyx)t↑τ↓e
−iφ

N vx(r′↑ + r′↓)(κ
2
↓z + k2

↑z)
[κ↓z(1 + ree)− ik↑z(1− ree)] . (4.38)

The remaining amplitudes are readily obtained by symmetry arguments. The Andreev re-
flection amplitude ρ′he for incoming electron moving in the negative x direction is obtained
from Eq. (4.38) by sending kx → −kx; The amplitudes for incoming holes are obtained
by complex conjugation, ρeh = ρ∗he and ρ′eh = ρ′∗he. Although the wavefunction penetrates
a distance ∼ ξ into the superconductor, the spatial integrals contributing to the matrix
element (4.36) have support only within a few wavelengths of the interface [Duck 11]. This
is the reason why the first term in Eq. (4.38) does not involve a factor ξ in the numerator.

The Andreev reflection amplitude rhe(L) for a segment of length L can obtained by
solving

drhe

dL
=

2iε

~vx
+ ρhe + ρ′∗her

2
he, (4.39)

which is obtained by concatenating the scattering matrix of an infinitesimal slice 0 <
x < δL and a subsequent segment δL < x < L according to Eq. (3.8), and solutions
to the differential equation are known [Duck 11]. Integrating Eq. (4.39) gives the non-
perturbative amplitudes

rhe(L) =
ρhe sinh qL

q cosh qL− i(ε/~vx) sinh qL
(4.40)

and

reh(L) =
ρeff

eh sinh qL

cosh qL− i(ε/~vx) sinh qL
, (4.41)

where
q =

√
|ρhe|2 − (ε/~vx)2. (4.42)

For energies |ε| < εgap, with
εgap = ~vx|ρhe| (4.43)

one has |rhe| → 1 in the limit L → ∞. This is the hallmark of a Majorana bound state
[Law 09, Flen 10], with εgap being the proximity-induced minigap [Duck 11].

With the help of Eq. (4.42) one readily identifies lmaj = |ρhe|−1 as the localization length
of the zero-energy Majorana bound state. The strong renormalization of the velocity vx
for a transparent interface enters the denominator of Eq. (4.38). However, the fact that in
the strong coupling limit ∆ � ~v/DN most of the spectral weight is concentrated in the
superconductor also enters into the expression for ρhe, through the normalization factor
N . Interestingly, the superconducting gap ∆ drops out from the product N vx, causing no
additional smallness of the localization length. Nevertheless, the velocity renormalization
does affect the product of the minigap and the localization length, in agreement with the
analysis of Ref. [Peng 15, Das 15].
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To assess the dependence on interface transparency, it is instructive to evaluate the
expressions for the induced gap and the localization length of the Majorana state for
a weakly transmitting barrier. Taking the imaginary part of ree from Eq. (4.22), one
concludes that the second term in Eq. (4.34) does not contribute to the normalization
factor in that limit. Since |r′↓ + r′↑| ' 2 for a weakly transmitting barrier, one finds

N = 2DN +
|t↑|2ξN

2
. (4.44)

To further simplify the expressions for ρhe, we consider two special cases: (i) Equal Fermi
velocities in the normal metal and the superconductor kS = k↑, and |w| � k↑ to ensure a
non-transparent interface. (ii) kS � k↑ with a barrier-free interface w = 0. Here, the small
transparency is the result of a large Fermi velocity mismatch between the superconductor
and the normal metal.

In both limits one has 1 + r′2↓ = 2, although this equality does not hold generally for
non-transparent interfaces. Finally, for the factor 1 + ree we find

1 + ree = t↑ (4.45)

in the former limit, and

1 + ree = −
it2↑κz

2kSz
(4.46)

in the latter limit (where we assumed that κ↓ � kS). For the amplitude whose magnitude
is equal to the inverse Majorana localization length, we then find

ρhe = ie−iφm|t↑|2 (4.47)

×
(
π(ΩNxx + iΩNyx)

π2 + κ2
↓zD

2
N

− ΩSxx + iΩSyx

4π

)

for a weakly transmitting interface with kS = k↑ and |w| � k↑, and

ρhe = ie−iφm|t↑|2 (4.48)

×
(
π(ΩNxx + iΩNyx)

π2 + κ2
↓zD

2
N

− |t↑|
4(ΩSxx + iΩSyx)

64π

)

in limit of a weakly transmitting interface with w = 0 and kS � k↑. Expressions for
the induced minigap εgap = ~vx|ρhe| follow immediately upon multiplication with the
renormalized velocity vx in Eq. (4.25), restricted to the small-transparency limit.

Figure 4.4 shows the inverse localization length |ρhe| as a function of barrier trans-
parency for the two limits considered above, as well as the full expression (4.38) (solid
line). For the latter, the velocity and the wave numbers are obtained by numerically
solving Eq. (4.17). The figures confirm that the low-transparency expressions in Eqs.
(4.47) and (4.48) are excellent quantitative approximations for transparencies |t↑|2 . 0.5.
However, for transparencies close to unity, spin-orbit coupling in the superconductor, and
w = 0, we observe a sharp closing of the minigap. This is an interference effect which
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Figure 4.4.: Log-log plot of the inverse localization length |ρhe| = 1/lmaj vs. interface
transparency |t↑|2 for an interface with matched Fermi velocities kS = k↑ (top
row) and with zero potential barrier w = 0 (bottom row), with spin-orbit
coupling in the superconductor (left column) and in the normal metal (right
column). The dashed curves show the weak-transparency results (4.47) and
(4.48). The remaining parameters are k↑DN = 1.2π, (~π/DN)2/2m∆ = 20
and κ↓ = 2k↑. We defined Ω2

Sx ≡ Ω2
Sxx + Ω2

Syx and Ω2
Nx ≡ Ω2

Nxx + Ω2
Nyx.
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Figure 4.5.: Log-log plot of the minigap versus transparency for the same conditions
as in Fig. 4.4. The grey curves show the power laws corresponding to the
weak-coupling limit |t↑|2 � DN/ξN and the strong-coupling limit (at weak
transparency) DN/ξN � |t↑|2 � 1. The dashed curve is obtained using the
weak-transparency results (4.47) and (4.48) for the inverse localization length
ρhe. The parameter values are k↑DN = 1.2π, (~π/DN)2/2m∆ = 200π and
κ↓ = 2k↑.

can be traced back to the factor 1 + r′2↓ = 2eiϕ↓ cosϕ↓ in Eq. (4.38). For w = 0 and with
κ↓ > k↑ the minority reflection phase ϕ↓ passes through π/2 close to unit transparency,
see Eq. (4.12). A similar effect appears upon approaching perfect transparency by varying
w at k↑ = kS for negative w (data not shown).

Figure 4.5 shows the induced minigap εgap as a function of barrier transparency. Here
the transition between the strong-coupling and weak-coupling limits at |t↑|2 ∼ DN/ξN can
be clearly seen. The weak-coupling limit agrees with the theory of Ref. [Duck 11]; the
velocity renormalization appears in the strong-coupling limit |t↑|2 & DN/ξN.

4.3. Cylindrical geometry

The planar model discussed in Sec. 4.2 accounts only for a small subset of realizable
materials. This motivates us to investigate a three dimensional analogue thereof. We
consider a spin-polarized normal metal wire with a cylindrical cross-section surrounded
by an s-wave superconductor with spin-orbit coupling in either of the two materials. The
cross section is shown in Fig. 4.6. The wire has a radius R, which replaces the thickness
DN used in Sec. 4.2. The main differences to the planar model are a change in the basis of
the transverse components, from plane waves to Bessel functions, and the addition of an
angular momentum quantum number. We neglect the orbital contribution of the magnetic
field and take only the Zeeman field into account.

We consider the parameter regime of sufficiently narrow wires such that a single trans-
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Figure 4.6.: Cross section of the cylindrical-wire model. A spin-polarized normal metal
wire of radius R is embedded in an s-wave superconductor.

verse mode, the one with zero angular-momentum, is present inside the wire. We are
able to show that the renormalization of the velocity and minigap are qualitatively the
same as in the planar geometry, and consequently the Majorana localization length is not
renormalized.

The outline of our approach is similar to the planar setup. After defining the cylin-
drical model, we first define the transmission and reflection amplitudes at a normal-
metal–normal-metal interface. Next, we turn on superconductivity and follow the lines
of Sec. 4.2.1 in order to obtain the renormalized velocity. Building on these results, we
then derive the Majorana decay length and the minigap in the presence of the spin-orbit
coupling.

The cylindrical-wire model is described by the same Hamiltonian as in Eq. (4.2), with
three changes. First, we generalize to cylindrical coordinates (r, ϕ, x), with x parallel
to the wire. The explicit dependence on z is changed by replacing z → r − R. Second,
we set Vconf(r) = 0 for all r, as the cylindrical normal wire has a boundary with the
superconductor only, while for the planar setup a termination at z = −DN was necessary.
Third, we take into account the cylindrical geometry in the spin-orbit coupling tensor,
such that the components along the unit vectors êr, êϕ and êx are constant. To this end,
we redefine

ΩXj = ΩXjrêr + ΩXjϕêϕ + ΩXjxêx (4.49)

where X = S, N.

4.3.1. Cylindrical normal-normal metal interface

We now derive the scattering amplitudes at the interface for ∆ = 0 and in the absence of
spin-orbit coupling. We define the propagating modes

Ψkx,m(r, ε) = eimϕ+ikxxψkx,m(r, ε) (4.50)

Here, we introduced the integer angular momentum quantum number m and the longi-
tudinal momentum kx. In order to distinguish the quantum number m from the mass of

41



4. Renormalization effects in spin-polarized metallic wires proximitized by a
superconductor: A scattering approach

the electrons, we rename the latter to me for the remainder of this section. The radial
component, normalized to unit flux, reads

ψkx,m(r, ε) =

√
πme

2~
×


ce,m,↑H

(1)
m (k↑r(ε)r) + c′e,m,↑H

(2)
m (k↑r(ε)r)

0

ch,m,↑H
(2)
m (k↑r(−ε)r) + c′h,m,↑H

(1)
m (k↑r(−ε)r)

0

 (4.51)

+

√
2πme

~


0

ce,m,↓Im(κ↓r(ε)r)
0

ch,m,↓Im(κ↓r(−ε)r)


for r < R and

ψkx,m(r) =

√
πme

2~


de,m,↑H

(2)
m (kSrr) + d′e,m,↑H

(1)
m (kSrr)

de,m,↓H
(2)
m (kSrr) + d′e,m,↓H

(1)
m (kSrr)

dh,m,↑H
(1)
m (kSrr) + d′h,m,↑H

(2)
m (kSrr)

dh,m,↓H
(1)
m (kSrr) + d′h,m,↓H

(2)
m (kSrr)

 (4.52)

for r > R. Here, H
(1, 2)
m are the Hankel functions of first and second kind and Im is the

modified Bessel function of the first kind. The wave and decay numbers are

k↑r(ε) =
√
k2
↑ − k2

x + 2meε/~2, (4.53)

κ↓r(ε) =
√
κ2
↓ + k2

x − 2meε/~2, (4.54)

kSr =
√
k2

S − k2
x. (4.55)

We neglected the ε-dependence in kSr, which assumes ~2k2
Sr/me � |ε|. As we are interested

in the sub-gap spectrum, this corresponds to Andreev approximation ~2k2
Sr/me � ∆.

The c-coefficients are constrained by the requirement that the wavefunction has to be
well behaved at the origin. This constraint is satisfied for c′e,m,↑ = ce,m,↑ and c′h,m,↑ = ch,m,↑,

as the Hankel-functions add up to the Bessel functions of the first kind Jm(z) = [H
(1)
m (z)+

H
(2)
m (z)]/2, which is well behaved at the origin. For the minority modes, Im is trivially

well behaved at the origin.

The requirement of a continuous wavefunction across the interface and the relation

ψ′kx,m(R+ δ, ε) = ψ′kx,m(R− δ, ε) + 2ωψkx,m(R, ε), (4.56)

with δ → 0, further constrain the c-coefficients. Solving the matching conditions relates
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the in- and out-going modes by
d′e,m,↑
c′e,m,↑
d′h,m,↑
c′h,m,↑

 =


t↑m(ε) r′↑m(ε) 0 0

r↑m(ε) t↑m(ε) 0 0
0 0 t∗↑m(−ε) r′∗↑m(−ε)
0 0 r∗↑m(−ε) t∗↑m(−ε)



ce,m,↑
de,m,↑
ch,m,↑
dh,m,↑

 , (4.57)


d′e,m,↓
ce,m,↓
d′h,m,↓
ch,m,↓

 =


r′↓m(ε) 0

t↓m(ε) 0
0 r′∗↓m(−ε)
0 t∗↓m(−ε)

(de,m,↓
dh,m,↓

)
. (4.58)

Here, we dropped the dependence on kx for the sake of compactness. For each m,
Eqs. (4.57) and (4.58) are identical to the ones for a planar setup [Kupf 11], while the
parametrization of the amplitudes differs,

t↑m(kx, ε) =
4i/πR

kSrH
(1)
m−1(kSrR)H

(2)
m (k↑rR)−H(1)

m (kSrR)
[
k↑rH

(2)
m−1(k↑rR) + 2ωH

(2)
m (k↑rR)

] ,
(4.59)

r↑m(kx, ε) =
−H(1)

m (k↑rR) + t↑mH
(1)
m (kSrR)

H
(2)
m (k↑rR)

, (4.60)

r′↑m(kx, ε) =
−H(2)

m (kSrR) + t↑mH
(2)
m (k↑rR)

H
(1)
m (kSrR)

, (4.61)

t↓m(kx, ε) =
2i/πR

kSrH
(1)
m−1(kSrR)Im(κ↓rR)−H(1)

m (kSrR) [κ↓rIm−1(κ↓rR) + 2ωIm(κ↓rR)]
,

(4.62)

r′↓m(kx, ε) = eiϕ↓m(kx,ε) =
−H(2)

m (kSrR) + 2t↓mIm(κ↓rR)

H
(1)
m (kSrR)

. (4.63)

Here we dropped the dependencies on (kx,+ε) on the right-hand side.

Next, we consider the limiting cases of the Bessel functions for large and small argu-
ments. These are useful for the subsequent discussion. First, in the limit where m is small
compared to the arguments of the Bessel functions, the amplitudes are related to the ones
in the planar model in Eqs. (4.8) to (4.10), (4.12) and (4.30) by

t↑m(kx, 0) = ei(k↑r−kSr)Rt↑(kx)|z→r, (4.64)

r↑m(kx, 0) = −i(−1)me2ik↑rRr↑(kx)|z→r, (4.65)

r′↑m(kx, 0) = i(−1)me−2ikSrRr′↑(kx)|z→r, (4.66)

r′↓m(kx, 0) = i(−1)me−2ikSrRr′↓(kx)|z→r, (4.67)

t↓m(kx, ε) = e(2m+1)π/4−κ↓rR−ikSrR
√
κ↓r
k↑r

τ↓(kx)

∣∣∣∣
z→r

. (4.68)
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Next, we consider the cases of large and intermediate |m|, for the relevant regime k↑r ∼
κ↓r . kSr. In the large |m| limit, kSrR � |m|, k↑rR � |m|, the radial modes have a
vanishing overlap with the wire and r′↑m = r′↓m = r↑m = 1, t↑m = 0. Hence, these modes
have a vanishing overlap with the wire. For intermediate angular momentum numbers,
k↑rR� m� kSrR, we get r↑m = 1 and t↑m = 0 . Consequently the amplitude inside the
wire vanishes. The remaining reflection amplitudes r′↑m and r′↓m are of magnitude one.

In the limit of an ideal interface, w = 0 and k↑ = kS the amplitudes for the majority
carriers reduce to t↑m = 1 and r↑m = r′↑m = 0, which can be verified by using the
Wronskian of the Hankel functions and the unitarity of the scattering matrix [Olve 10].

4.3.2. Velocity renormalization

Next, we include a finite pairing potential ∆ > 0. As described in Sec. 4.2.1, this confines
excitations with energies ε < ∆ to the normal region, r < R, with evanescent components
in the superconducting region that decay at a length scale of order of the coherence length
ξε. The additional weight in the superconductor, as well as the change of the matching
conditions at the boundary lead to renormalization of the wire dispersion.

We continue to derive the renormalization of the velocity along the lines of Sec. 4.2.1.
The majority wavefunctions for r < R read

ψkx,m(r, ε) =


u↑,kx,m(r, ε)

0
0

v↓,kx,m(r, ε)

 , (4.69)

u↑,kx,m(r, ε) =

√
πme

2~

[
H(1)
m (k↑r(ε)r) +ree,m(kx, ε)H

(2)
m (k↑r(ε)r)

]
, (4.70)

v↓,kx,m(r, ε) =

√
2πme

~
ch,m,↓Im(κ↓r(−ε)r). (4.71)

The amplitude ree,m is derived by applying wavefunction matching at r = R and by
requiring the modes to decay in the limit r → ∞. The latter condition yields the wave-
function

ψkx,m(r, ε) =

√
πme

2~

H
(1)
m

(
kSrr + i rξε

)
A

(1)
m


d′↑
0
0

d′↑e
−iη−iφ

 (4.72)

+
H

(2)
m

(
kSrr − i rξε

)
A

(2)
m


d↑
0
0

d↑e
iη−iφ


 ,

for r > R, where the factors

A(1/2)
m =

H
(1/2)
m

(
kSrR± iRξε

)
H

(1/2)
m (kSrR)

(4.73)
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ensure continuity at r = R. We dropped the ε and kx dependencies for the sake of
compactness. Within Andreev approximation, ~2k2

Sr/2me � ∆, the interface can be
treated as an interface between two normal metals. Thus, the c and d coefficients are
related by Eqs. (4.57) and (4.58). We choose ce,m,↑ = 1, and obtain

ree,m(kx, ε) = r↑m(kx, ε) +
t↑m(kx, ε)

2

r′↓m(kx,−ε)e2iη(ε) − r′↑m(kx, ε)
, (4.74)

d↑(kx, ε) =
t↑m(kx, ε)

r′↓m(kx,−ε)e2iη(ε) − r′↑m(kx, ε)
, (4.75)

d′↑(kx, ε) = r′↓m(kx,−ε)e2iη(ε)d↑(kx, ε), (4.76)

ch,m,↓(kx, ε) = t∗↓m(kx,−ε)e−iη(ε)−iφd′↑(kx, ε). (4.77)

Equations (4.74) to (4.77) are identical to the ones in a planar setup at ε = 0 [Kupf 11],
while the parametrization of the amplitudes is different.

The requirement of a well-behaved wavefunction at the origin gives

1 = ree,m(kx, εm). (4.78)

Solving this equation yields the dispersion εm(kx) and the renormalized velocity vx,m(ε) =
|dεm/dkx|/~. In the following, we provide solutions to Eq. (4.78) in the limiting cases of
an ideal and a low transparency interface.

For an ideal interface, w = 0 and kS = k↑, Eq. (4.78) reduces to

2η(εm) + ϕ↓m(kx, εm) = 2πn. (4.79)

Within Andreev approximation for the normal region, ~2k2
↑r/2me∆� 1 and ~2κ2

↓r/2me∆�
1, the energy dependence in ϕ↓m can be neglected, and we obtain

εm(kx) = ±∆ cosϕ↓m(kx). (4.80)

For m � k↑rR, the phase ϕ↓m vanishes and εm = ±∆. Hence, the large m modes are
gapped out. For k↑rR & m, we can use the approximation (4.67) to obtain

2k↑rR = 2η(εm) + ϕ↓(kx) + (4n+ 2m+ 1)π/2, (4.81)

where ϕ↓(kx) is defined in Eq. (4.12). Solving for εm, we get

εm(kx) = ±∆ cos

[
k↑rR−

ϕ↓(kx)

2
− (2m+ 1)

π

4

]
, (4.82)

The velocity is obtained by taking the derivative,

vx,m(kx) =
√

∆2 − ε2
m

kxR

~k↑r

∣∣∣∣1− 1

κ↓rR

∣∣∣∣ , (4.83)

which is identical to the one for the planar model upon replacing r by z and R by DN.
The analytical predictions in Eqs. (4.82) and (4.83) are compared to a direct numerical
solution of Eq. (4.78) in Figs. 4.7 and 4.8. Both limiting cases show good agreement.
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Next, we consider the limit of an opaque interface, w, kSr � k↑r, κ↓r. For m � kSrR
the overlap with the wire vanishes and all modes are gapped out, ε = ±∆. For m . kSrR,
we obtain

ree,m(kx, ε) = −H
(1)
m (k↑rR)

H
(2)
m (k↑rR)

|H(1)
m (k↑rR)|2πR∆(k2

Sr + 4w2) + 2ik↑r(kSrε/∆ + 2w)

|H(1)
m (k↑rR)|2πR∆(k2

Sr + 4w2)− 2ik↑r(kSrε/∆ + 2w)
. (4.84)

Equation (4.78) enforces ree,m = 1 and to zeroth order in k↑r/w and k↑r/kSr we get

H
(1)
m (k↑rR) + H

(2)
m (k↑rR) = 0. The solutions of this equation correspond to the zeros of

the m-th order Bessel function of the first kind. Since k↑r ≤ k↑ within our semiclassical
approximation, no solutions are available for m � k↑rR, hence we can employ the small
m approximation. To leading order in k↑r/w and k↑r/kSr, Eq. (4.84) reduces to

ree,m(kx, ε) ≈ −e2ik↑rR−i(2m+1)π
2
k2

Sr + 4w2 + ik↑r(kSrε/∆ + 2w)

k2
Sr + 4w2 − ik↑r(kSrε/∆ + 2w)

. (4.85)

In the following, we will focus on the regime where k↑rR is of order one and sufficiently
small such that only a single mode has significant overlap into the spin-polarized normal
metal wire. This mode has m = 0, and Eq. (4.85) yields

k↑r =
3π

4R

[
1− kSrε0/∆ + 2w

R(k2
Sr + 4w2)

]
, (4.86)

and the dispersion

ε0(kx) =
~2

2me

[
k2
x − k2

↑ +
9π2

16R2

(
1− 2

kSrε0/∆ + 2w

R(k2
Sr + 4w2)

)]
. (4.87)

The ε0-dependence on the right hand side can be neglected. The longitudinal velocity is

vx,m =
vr sin θr

1 + ξN0|t↑0|2/4R
, (4.88)

where vr = ~k↑/me, sin θr = kx/k↑ and ξN0 = ~2k↑r/me∆.
The renormalization of the dispersion that is present in Eqs. (4.87) and (4.88) is the

same as the one for the planar setup, see Eqs. (4.24) and (4.25), up to the change DN → R,
z → r and the factor 9/16 in Eq. (4.87), which originates in the basis change from plane
waves for two dimensions to Bessel functions in three dimensions. The approximations
in Eqs. (4.87) and (4.88) are shown as the dashed line in Figs. 4.7 and 4.8. They show
good agreement for small transparencies. The renormalized velocity (4.88) is essentially
the same as for the planar geometry, see Eq. (4.25).

4.3.3. Minigap and Majorana localization length

Spin-orbit coupling is expected to have the same effects as in the planar-model, mak-
ing Andreev reflection between majority spin electrons and majority spin holes possible,
opening a minigap εgap and allowing Majorana bound states to form at the end of the
cylindrical wire.
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Figure 4.7.: Dispersion of the cylindrical setup at different interface transparencies. The
figure shows only half of the BdG spectrum, the other half is obtained by
taking ε → −ε. We choose kS = k↑ and w = 0 on the left, which yields
t↑m = 1, and w/k↑ = 2 with kS = k↑ on the right, corresponding to |t↑0|2 =
0.2 for perpendicular incidence. The solid lines show the numerical solution
of Eq. (4.78), with angular momentum numbers m = 0 (blue), m = ±1
(orange) and m = ±2 (green). In the right plot, we find in-gap solutions for
m = 0 only. The dashed lines shows the predictions from Eq. (4.82)(left)
and (4.87)(right). The remaining parameters are k↑R = 0.8π, κ↓/k↑ = 2 and
(~π/R)2/2me∆ = 50.

Figure 4.8.: Velocity renormalization as a function of transparency on a semi-logarithmic
scale. For the blue (upper) line, we tune the transparency by varying w while
keeping k↑ = kS fixed. For the orange (lower) line, we vary kS/k↑ ≥ 1 with
w = 0 fixed. The dashed lines show the predictions for |t↑0|2 � 1 and for
|t↑0|2 = 1. The remaining parameters are the same as in Fig. 4.7.
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We assume spin-orbit coupling to be weak, such that we can treat its effects within
first order perturbation theory and we neglect finite-energy corrections of order ε/∆.
Furthermore, we restrict ourselves to the m = 0 mode.

We define the electron like wave functions |ψe±〉, travelling into the positive (+) or
negative (−) x direction, by

ψe±(r, ε) =

√
v↑re

ikx(ε)x√
2πvx,mN0

ψ±kx(0),0(r, ε) (4.89)

with ψ±kx(ε),0(r, ε) defined in Eqs. (4.69) and (4.72) and

kx(ε) =
√
k2
↑ − k2

↑r +
ε

~vx,m
. (4.90)

The normalization constant is obtained by normalizing ψe± to unit flux along the wire
and one obtains

N0 = 2R+ 2ξN
|t↑0|2

|r′↓0 + r′↑0|2
. (4.91)

Here, we define ξN = ~2k↑r/me∆, neglect the minority spin contribution and expand the
Bessel functions in terms of plane waves. The renormalization factor in Eq. (4.91) is
similar to the one in the planar setup, see Eq. (4.44).

The hole-like wavefunctions ψh±, travelling into positive (+) or negative (−) x-direction,
are obtained by applying particle-hole symmetry

ψh±(r, ε) = τx [ψe±(r,−ε)]∗ . (4.92)

In order to study how spin-orbit coupling changes these states, we consider a segment
0 < x < δL, in which spin-orbit coupling is turned on while it is zero elsewhere. For
sufficiently small δL, the reflection amplitude becomes linear in δL. Along the lines of
Sec. 4.2.2, we define

ρhe,cδL = − i
~

〈
ψh,−

∣∣∣δĤso

∣∣∣ψe,+

〉
. (4.93)

and for κ↓rR & 1, we obtain

ρhe,c =
−k↑r~kx(ΩSxx + iΩSyx)e−iφ+2ik↑rRt2↑(1 + r′2↓ )

vx,mN0k2
Sr(r

′
↓ + r′↑)

2
(4.94)

− 2~kx(ΩNxx + iΩNyx)e−iφτ↓t↑
vx,mN0(k2

↑r + κ2
↓r)(r

′
↓ + r′↑)

[
κ↓r

(
1− ie2ik↑rR

)
+ ik↑r

(
1 + ie2ik↑rR

)]
,

where t↑, τ↓, r
′
↑ and r′↓ are the interface amplitudes defined in the planar setup.

The remaining amplitudes for reflection from the right, as well as the reflection am-
plitudes from majority holes into majority electrons are obtained by the same symmetry
arguments as the ones discussed below Eq. (4.38). The reflection amplitudes for a segment
of length L is the same as in Eq. (4.40) upon replacing ρhe by ρhe,c and vx by vx,0. This
allows us to define the minigap

ε0,c = ~vx,m|ρhe,c|, (4.95)
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Figure 4.9.: Log-log plot of the Majorana decay strength as a function of transparency for
the cylindrical setup. We choose matched Fermi velocities (top row) and zero
potential barrier w = 0 (bottom row), with spin-orbit coupling in the super-
conductor (left column) and in the normal metal (right column). The dashed
curves show the weak transparency results, the solid lines are obtained by nu-
merically solving Eq. (4.78) and using Eq. (4.94). The remaining parameters
are k↑rR = 0.8π, κ↓/k↑ = 2 and (~π/R)2/2me∆ = 50.

and the localization length

lmaj,c = |ρhe,c|−1. (4.96)

Equation (4.94) is almost identical to ρhe in Eq. (4.38). Indeed, in the single mode limit
and for k↑rR & 1 we have

1 = ree,0 = −ie2ik↑rRree, (4.97)

with ree defined in Eq. (4.15), allowing us to identify ρhe = ρhe,cie
−2ik↑rR, upon replacing

the labels r by z and R by DN. The asymptotic expansions for ρhe in the limit |t↑|2 � 1
are then obtained by replacing the factors π in Eqs. (4.47) and (4.48) by factors of 3π/4,
which originates in the difference of Eqs. (4.23) and (4.86).

The low transparency approximation for the Majorana decay length is compared to the
full expression in Fig. 4.9 and shows good agreement. The decay length, and hence also the
induced minigap are qualitatively the same as the ones for the planar setup, in Sec. 4.2.2.

4.4. Conclusions

In this chapter, we employed a semiclassical scattering approach to study a spin-polarized
normal-metal quantum wire which is strongly coupled to a spin-orbit-coupled superconduc-
tor. This model for a topological superconductor was originally introduced and studied
in the limit of an opaque interface between wire and superconductor [Duck 11]. Here,
we have shown that the properties of its topological phase are strongly renormalized for a
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highly transparent interface and provide a semiclassical interpretation. Following previous
work on related systems [Peng 15, Das 15, Stic 17, Stan 17], we trace the renormalization
to the lowering of the Fermi velocity which we interpret in terms of scattering processes
which yield zero net-displacement along the wire as well as a modified spin-flip scattering
rate ρhe. Specifically, a transparent interface greatly increases both the topological mini-
gap and the localization length of the emerging Majorana bound states as compared to
an opaque one. Additionally we find that, while the low transparency prediction for the
localization length stays accurate even for transparencies . 0.5, the velocity as well as the
minigap are strongly renormalized towards small values compared to the low-transparency
prediction.

We now compare our semiclassical approach to the previously employed Green function
approach of Ref. [Peng 15]. In this approach, the low-energy excitations are studied by
accounting for the coupling to the superconductor through the self energy

Σ(k, ω) = −Γ
ω + ∆τx√
∆2 − ω2

. (4.98)

Here, ∆ is the order parameter inside the superconductor, Γ relates to the coupling
strength between wire and superconductor in the normal state, and ω is the energy of
the subgap excitations of the wire. The self energy is expressed in Nambu notation with
the corresponding Pauli matrices denoted by τj (j = x, y, z) and does not yet account for
spin-orbit coupling in the superconductor. Thus, the pairing terms ∝ τx describe conven-
tional s-wave pairing and the induced p-wave pairing requires the addition of spin-orbit
coupling.

An interesting feature of Eq. (4.98) is its independence of the wave vector k. Con-
sequently, the self energy is local in real space. Within the semiclassical picture of this
chapter, this surprising locality can be naturally interpreted in terms of the locality of
the scattering processes by the superconductor. Furthermore, the semiclassical approach
requires a purely spectral description of the renormalizations. The expression in Eq. (4.98)
implies that we can expect such a spectral interpretation in the limit in which ω � ∆
and the induced gap is small compared to ∆. For ω � ∆, both the induced pairing term
and the quasiparticle weight become independent of ω. Then, the subgap spectrum of
the wire can be obtained from an effective Hamiltonian, provided that the induced gap is
sufficiently small. In the context of the model studied in this chapter, this latter condition
is guaranteed by the strong polarization of the wire.

In the Green’s function approach of Ref. [Peng 15], the renormalizations of the Hamil-
tonian parameters are due to the quasiparticle weight. As the coupling between wire and
superconductor increases, the quasiparticle weight of the wire Green function is progres-
sively reduced. This renormalization is directly mirrored in factors involving 4DN +ξN|t↑|2
in the semiclassical approach of this chapter. Such factors are involved in the semiclas-
sical expressions (4.25) and (4.43) for the Fermi velocity and the induced gap of the
normal metal, respectively. Correspondingly, both quantities involve renormalizations by
the quasiparticle weight in the Green function approach. At the same time, the quasi-
particle weight drops out from the localization length of the Majorana bound state (or,
equivalently, the coherence length of the induced superconductivity) since it is the ratio of
Fermi velocity and induced gap. Again, this is consistent with our semiclassical approach
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which also does not involve a factor 4DN + ξN|t↑|2 in Eqs. (4.47) and (4.48). Note that
despite this absence of renormalization, the Majorana localization length depends on the
bare system parameters in a highly unexpected way, as it is independent of the gap of the
superconductor (see also [Stic 17]).

We finally note that our analysis excluded the presence of disorder which may or may
not affect the properties of the topological phase. As discussed earlier [Kupf 11, Duck 11],
for a mean free path ` in the wire, much larger than the microscopic length scales, the
single reflection amplitude ρheδL is not affected by weak disorder since it is obtained by
matching the wavefunctions at the short scale of the half-metal - superconductor interface.
In contrast, the derivation of the reflection amplitude reff

he includes multiple scattering
processes at a length scale 1/|ρhe|. In the absence of disorder, these add coherently to reff

he

because kx is conserved. Including disorder with ` � 1/|ρhe| leads to contributions from
different kx for different scattering paths. Additionally, based on symmetry arguments it
can be shown that rhe is anti-symmetric in kx [Kupf 11]. Hence the sum over the different
paths is incoherent and there is no guarantee that reff

he is unaffected by disorder. However,
if ` � 1/|ρhe| the amplitudes still add coherently, and disorder is expected not to play
a role [Kupf 11, Duck 11]. Since 1/|ρhe| is strongly decreased for a highly transparent
interface, we conclude that high transparencies lead to a better protection from disorder
for the Majorana bound states.
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5. Proximity induced gap in nanowires with
a thin superconducting coating

Recent experiments on semiconductor-superconductor hybrids in a magnetic field use very
thin, epitaxially grown superconductors [Chan 15, Deng 16, Albr 16, Zhan 18]. Besides
reducing the size of the experimental setup, these thin shells are advantageous as they
reduce the magnetic flux through the superconductor for fields parallel to the wire and as
they can be epitaxially grown on top of the nanowire, which allows for very clean interfaces
between the two materials [Krog 15]. The latter is believed to be responsible for a hard
proximity-induced gap which has been achieved in experiments [Chan 15].

Looking at the typical length scale of the system, these results are rather surprising, as
the coherence length in Al is of the order of a µm, much larger than the thickness of the su-
perconducting coat, and hence finite-size effects are expected to play a role. Similar to our
analysis in chapter 4, early studies have focused on nanowire - superconductor heterostruc-
tures where the finite-size effects can be neglected [Sau 10, Duck 11, Zyuz 13, Peng 15,
Heck 16]. More recent studies have considered the implications of a finite thickness of the
superconductor. For a one-dimensional wire proximitized by two- or three dimensional
thin superconducting coats, it has been suggested that finite-size effects can be detrimen-
tal for the induced gap [Reeg 17, Reeg 18a, Reeg 18b]. Other works have considered the
effects of a spatially varying electrostatic potential. Under suitable conditions, this may
allow for charge accumulation at the wire-superconductor interface and thus promote the
proximity effect by pushing the wavefunction inside the nanowire closer to the interface
[Anti 18, Mikk 18, Wood 18].

In the experiments, the interface between the epitaxially grown Al and the nanowire is
expected to be clean [Krog 15], but the exposed surface of Al might introduce a sizable
amount of disorder or surface roughness. So far, disorder has been studied for wide super-
conductors coupled to nanowires, with disorder present in the wire [Akhm 11, Brou 11a,
Diez 12, Liu 12, Stan 12, Bagr 12, Stan 11, Rain 13], the wire surface, [Stan 11, Sau 12]
at the end of the wire [Pien 12], and inside the superconductor [Stan 11, Cole 16]. A
recent study investigated nanowires proximitized by a thin, disordered superconducting
layer [Reeg 18a] and found that disorder can enhance the induced gap.

In this chapter, we will investigate both two and three dimensional thin superconducting
coats (S) coupled to a single-mode nanowire (N), with a cross section as the one in shown
in Fig. 5.1. We define thin superconductors as those where the thickness DS is small
compared to the coherence length in S. Our goal is to gain an understanding of what are
the impacts of the finite superconductor thickness, dimensionality, and disorder on the
induced gap in these systems. We consider disorder located in the bulk or at the surface
of the superconductor.

This chapter is structured as follows. In Sec. 5.1, we use a semiclassical approach to
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5. Proximity induced gap in nanowires with a thin superconducting coating

give an overview of the size of the induced gap in different regimes. We present our
model of interest in Sec. 5.2 and derive the wavefunctions in the absence of disorder
and superconductivity in Sec. 5.3. These form the basis of our analysis. In Sec. 5.4,
we include superconductivity and derive the induced gap of the system explicitly up to
a transcendental equation, which we solve numerically as well as analytically in certain
limits. In Sec. 5.5 we include disorder in our discussion and derive analytical expression of
∆ind by using a semiclassical ansatz. Sec. 5.6 introduces a numerical scattering approach
that allows us to calculate the density of states in the presence of disorder. We present
the results in Sec. 5.6.2. Finally, we conclude in Sec. 5.7.

5.1. Induced gap from a semiclassical point of view

A semiclassical understanding of the magnitude of the induced gap ∆ind can be obtained
as follows. For a sufficiently small pairing potential ∆, the transverse modes of the N-S
junction shown in Fig. 5.1 are well described by a metal-metal junction where ∆ is zero
inside S. Within a semiclassical picture, the wavefunctions of such a metal-metal junction
correspond to propagating electrons and holes, with quantized transverse momenta if no
disorder is present. Superconductivity only plays a role at long length-scales of the order of
the coherence length ξ = ~vS/∆, where vS is the Fermi velocity inside the superconductor.
Electrons propagating in S are retroflected into holes at this length scale, and this process
takes a time ~/∆.

We identify the time ~/∆ind with the maximum time scale an electron can propagate
in the N-S junction, before it is retroflected as a hole. In the simplest case of no N-
region, this leads to a gap of magnitude ∆. In the presence of N, electrons that can be
transmitted into N are retroflected into holes at a slower time scale, because the time
spent in the normal region has to be added on top of ~/∆. Consequently, the induced gap
reduces. By identifying the induced gap with the time of retroflection, we assume that
the quasiparticles propagate classically, which neglects interference effects.

To further discuss the magnitude of the induced gap, first let us consider the setup shown
in Fig. 5.1 in the absence of disorder. Hopping between N and S modes has to preserve
momentum in the x- and y- direction, and fixing these momenta leaves the momentum
along z, which, for a weak coupling and a small interface transparency, is essentially
quantized with a spacing of π/DS. This translates to a large energy spacing for small
DS and generically a mode propagating in N will couple off-resonantly to S. Hence, these
modes have little overlap into S, and the induced gap becomes small, which is in agreement
with Ref. [Reeg 17].

Next, we consider an interface transparency close to unity, which requires approximately
matching Fermi velocities in S and N. Not all quasiparticles that propagate in S can hop
into N, because the Fermi wavenumber in semiconductors is typically much smaller than
the Fermi wavenumber in superconductors. Hence for a quasiparticle in S to enter into N,
it has to have a small momentum along kx and thus has to propagate almost perpendicular
to the interface, as shown in the middle of Fig. 5.1. Quasiparticles propagating under other
angles will be totally reflected at the interface, as shown in the left part of Fig. 5.1, and
will be gapped out with a gap of size ∆, which leaves the modes that can penetrate into

54



5.1. Induced gap from a semiclassical point of view

Figure 5.1.: Cross section of normal-metal wire (N) coated by a thin superconductor (S),
and sketch of the relevant semiclassical scattering processes. For better visibil-
ity a rectangular cross-section is shown, although we typically choose N close
to a square (DN ≈ W ). The left scattering process describes quasiparticles
hitting the interface at a non-perpendicular angle. These are mostly totally
reflected due to the large wavenumber in S compared to the one in N. Only
for almost perpendicular incidence at the interface, quasiparticles can enter
N (middle). Surface disorder, indicated in the top right, scatters modes that
can enter N into modes that are totally reflected at the interface.

N to lower the gap. For a single mode in N with a velocity vNz in the z direction, the
ratio of the times spent in N and S is DNvS/vNzDS. The total time spent in S is ~/∆−1,
which leads to the induced gap

∆ind =
∆

1 +DNvS/DSvNz
. (5.1)

Since the velocities are approximately matching and DN/DS is large in the experiments,
∆ind is still small, compared to the bulk gap ∆.

The gap can be further enhanced by the inclusion of disorder in S. For unit transparency,
after an electron propagating in N enters S, disorder can scatter it into all possible angles.
If the disorder is strong enough, quasiparticles propagating in N will be scattered into an
arbitrary angle after they enter the superconductor. Since only a few modes propagate
perpendicular to the interface and thus can enter N, it is unlikely for the quasiparticle to
return into the normal region through disorder scattering, as is indicated in the right part
of Fig. 5.1. Instead, it will be retroreflected as hole after a time ~/∆. The total rate of
scattering from an electron into a hole, and hence the induced gap, is

∆ind =
∆

1 + 2DNvS/ξvNz
, (5.2)

where ξ = ~vS/∆ is the coherence length of S in the absence of N and the factor 2 is
due to the normal region being traversed once as an electron and once as an hole. For
current experiments that typically use aluminium as a superconductor [Krog 15, Chan 15,
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Deng 16, Albr 16, Zhan 18], ξ is much larger than DN. Thus the induced gap is expected
to be of order ∆, which is in agreement with experimental observations. We note that a
similar reasoning has been used in Ref. [Reeg 18a] in order to argue that in the presence
of disorder the induced gap is expected to increase and can reach a magnitude close to ∆.

5.2. Model

In the remainder of this chapter, we consider a normal-metal (N) wire coupled to a thin
superconducting layer (S). The cross section is shown in Fig. 5.1, with the x direction
along the wire. Both materials have a width W in the y direction, the superconductor
has a thickness DS, and the semiconductor wire has a thickness DN in the z direction.
The interface between the two materials is located at z = 0 and 0 < y < W . The 2 × 2
Bogoliubov-de Gennes Hamiltonian reads

Ĥ =

(
Ĥ0 θ(z)∆

θ(z)∆ −Ĥ∗0

)
, (5.3)

for a spinor wavefunction ψ = (u, v)T consisting of particle and hole wavefunctions of
opposite spin, and we choose the gauge of a real pairing potential ∆. The Heaviside step
function θ(z) restricts the gap to be finite in S only. The normal-state Hamiltonian Ĥ0 is

Ĥ0 = ξp(z) + Vconf(y, z) + U(r). (5.4)

We consider the parabolic dispersion

ξp(z) = p⊥
1

2m(z)
p⊥ +

p2
x

2mx(z)
− µ(z), (5.5)

where

µ(z) =
~2k2

S

2mS
, (5.6)

m(z) = mx(z) = mS, (5.7)

in the superconductor (i.e. z > 0), and

µ(z) =
~2k2

N

2mN
, (5.8)

m(z) = mN, (5.9)

mx(z) = mNx. (5.10)

in the wire (z < 0). Here, px, p⊥ = (py, pz) are the momenta along x, y and z, kS and
kN are the Fermi wavenumbers, and mS and mN the masses in S and N. We leave the
option to choose a different mass mNx along the x direction in N, which as we argue in
section 5.6 does not qualitatively change the physics while it simplifies our numerics. The
confining potential Vconf(y, z) models the sample boundary, Vconf(y, z) = 0 for −DN <
z < DS and 0 < y < W , and Vconf(y, z) = ∞ otherwise. We assume disorder to be
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present at the exposed top boundary of the superconductor with an extension D` into the
superconductor. We model the corresponding potential V (r) as Gaussian white noise with
zero mean and the correlation〈

U(r)U(r′)
〉

=
~vS

2πν0`
δλ
(
r− r′

)
, (5.11)

with support for 0 ≤ DS−D` ≤ z ≤ DS only. Here, vS = ~kS/m and the densities of states
per spin direction in two and three dimensions read ν0 = kS/2π~vS and ν0 = k2

S/2π
2~vS,

respectively. The parameter ` corresponds to the mean free path in the disorder region
if kS` & π. For surface disorder potential fluctuations are expected to be of the order
of ~2k2

S/2mS and one excepts diffusive boundary scattering. In this case, ` no longer
corresponds to the mean free path and scattering from the top boundary is expected to
saturate with an effective mean free path of order DS.

5.3. Metal-metal junction

In this section, we derive the wavefunctions for a metal-metal junction in the absence of
disorder, described by Eqs. (5.3) to (5.10) with ∆ = 0. These will form the basis of our
subsequent analysis.

We write the wavefunction, normalized to unit flux along the x direction, as

ψν(r, ε) =
eisτkx(τε)x sin

πny
W y√

W~vx/2
ψ⊥τ,nz(z, ε), (5.12)

with a multi-index ν = (s, τ, ny, nz), direction of propagation s = ±, longitudinal mo-
mentum kx, velocity vx = ~|dε/dkx|, and positive integer quantum numbers ny and nz
describing the quantized momenta in the transverse directions. We use τ = e(h) to in-
dex the electron-hole subspace if τ appears as an index, and τ = 1(−1) otherwise. The
components along z read

ψ⊥e,nz(z, ε) =
cee

ikNz(ε)z + c′ee
−ikNz(ε)z√

vNz(ε)Ne,nz
, (5.13)

ψ⊥h,nz(z, ε) =
che
−ik∗Nz(−ε)z + c′he

ik∗Nz(−ε)z√
vNz(−ε)Nh,nz

(5.14)

for z < 0 and

ψ⊥τ,nz(z) =
dτe
−iτkSzz + d′τe

iτkSzz√
vSzNτ,nz

(5.15)

for z > 0. Here, Nτ,nz are normalization constants such that
∫
dz|ψ⊥τ,nz(z)|2 = 1,

kNz(ε) =

√
k2

N − k2
y +

mN

mNx

(
k2

Sz + k2
y − k2

S

)
+ 2mN

(
1− mS

mNx

)
ε, (5.16)

kx(ε) =

√
k2

S − k2
Sz − (nyπ/W )2 + 2mSε/~2, (5.17)

vSz = kSz/mS, (5.18)

vNz = kNz/mN, (5.19)
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5. Proximity induced gap in nanowires with a thin superconducting coating

where, in our notation, we drop the multi-index ν for the wavenumbers and velocities.
We assume that kS ≥ kN and within a semiclassical approximation consider only real kx.
In this case kSz is real, while kNz lies either on the real or the imaginary axis and ny is
bounded from above correspondingly.

Next, we determine the relations between the cτ and dτ coefficients and derive the
quantization condition for kSz. Upon applying the matching conditions at the interface,
continuity in ψ and the first spatial derivative, similar to [Kupf 09], one finds

c′e
d′e
c′h
d′h

 =


r t′ 0 0
t r′ 0 0
0 0 r∗ (t′)∗

0 0 t∗ (r′)∗



ce
de
ch
dh

 (5.20)

Here, we introduced the interface transmission and reflection amplitudes

t =
2
√
vSzvNz

vSz + vNz
, (5.21)

t′ =
2
√
vNzvSz

vSz + vNz
, (5.22)

r = −1 + t
√
vNz/vSz, (5.23)

r′ = −1 + t′
√
vSz/vNz. (5.24)

For our later analysis it is useful to define the transmission amplitude for perpendicular
incidence

t⊥ =
2
√
vSvN

vS + vN
, (5.25)

where vS = ~kS/mS and vN = ~kN/mN.
The amplitudes have to vanish at z = −DN and z = DS, which gives

c′e = −cee−2ikNz(ε)DN , (5.26)

c′h = −che2ik∗Nz(−ε)DN , (5.27)

d′τ = −dτe−2iτkSzDS . (5.28)

Equations (5.20) and (5.26) to (5.28) fully determine the wavefunction, and yield the
transcendental equation

0 = vNz cot kNz(τε)DN + vSz cot kSzDS. (5.29)

Note that kNz depends on kSz via equations (5.16). Solving Eq. 5.29 numerically yields
the quantized values for kSz(τε) and is now dependent on τε via Eq. (5.29). We label the
solutions by integer index nz. Furthermore, we choose cτ = 1 which fixes the remaining
c- and d-coefficients and leads to

Nτ,nz =
2DS

vSz
|dτ |2

(
1− sin 2kSzDS

2kSzDS

)
+
e4DNImkNz − 1

2ImkNz|vNz|
− e2DNImkNz

sin 2DNRekNz

|vNz|RekNz
. (5.30)

Here we drop the dependence on τε for the sake of compactness.
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5.4. Excitation gap in the absence of disorder

Next, we consider the system described by Eq. (5.3) in the absence of disorder and derive
the gap of the system in the presence of a pairing potential ∆.

We start by expressing the Hamiltonian (5.3) in the basis of the wavefunctions (5.12).
We assume the limit of ξ/DS, ξ/W � 1, such that the transverse modes are well described
by the transverse components in Eq. (5.12). Furthermore, when a mode in the supercon-
ductor becomes resonant with one in the wire they split due to the tunnel coupling and
the presence of the pairing potential. We assume ∆ to be small enough, such that the
splitting is dominated by the tunnel coupling. Finally, we note that in the absence of
disorder, Eq. (5.3) is diagonal in ny.

The resulting low-energy Hamiltonian for fixed quantum number ny reads

Heff,ny =
∑
α

|ψ⊥,α(εα,k̂x)〉 εα,k̂x 〈ψ⊥,α(εα,k̂x)| (5.31)

+ |ψ⊥,α(εα,k̂x)〉∆α(εα,k̂x , εα,k̂x) 〈ψ⊥,α(εα,k̂x)| ,

where the sum is over the multi index α = (τ, nz), and α = (τ , nz) with a flipped particle-
hole index τ . The wavefunctions ψ⊥,α(εαkx) are defined in Eqs. (5.13) to (5.15). Further-
more, we introduced

εα,kx = τ
k2

Sz + (nyπ/W )2 + k2
x − k2

S

2mS
, (5.32)

∆α,kx = ∆ 〈ψ⊥,α(εαkx)| θ(ẑ) |ψ⊥α(εαkx)〉 . (5.33)

Equation (5.31) describes a multichannel wire along the x direction, where the modes
labeled with different ny and kSz do not mix, and each mode has its own pairing potential
∆α,kx . We can further simplify this model by noting that the modes localized mostly in
the normal region and close to the Fermi level will give the overall gap of the system. For
these modes we neglect the dependence on εα,kx in ψ⊥ and get the kx-independent pairing
potential

∆α = ∆ 〈ψ⊥τ,nz(0)| θ(ẑ) |ψ⊥τ ,nz(0)〉 , (5.34)

Within the Andreev approximation, ~2(kx(0))2/m|∆α| � 1, each mode α has a gap of
magnitude |∆α|, and the overall gap of the system is

∆ind = min
α
|∆α| (5.35)

At the Fermi level, the τ and τ wavefunctions are related by particle-hole symmetry, and
we find that |∆α| is equal to the overlap of the normalized wavefunction |ψα〉 with the
superconductor. This overlap is independent of the extension in the y direction, and
consequently ∆ind does not depend on the width W .

Upon evaluating Eq. (5.34), we obtain

∆α =
2DS∆

vSzNα
|dα|2

(
1− sin 2kSzDS

2kSzDS

)
, (5.36)
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where

|dα|2 =

∣∣∣∣vNz cos kNzDN − ivSz sin kNzDN

vSz cos kSzDS − ivNz sin kSzDS

∣∣∣∣ e−ImkNzDN , (5.37)

Due to the exponential factor in Eq. (5.37), which also appears in Nα, modes evanescent
in the normal region will have ∆α ≈ ∆, with corrections that are exponentially suppressed
in ImkNzDN. (Note that we use the convention ImkNz < 0.) In the following discussion
of limiting cases, we focus on modes with real kNz. Furthermore, we consider the regime
of a single mode inside the normal region below the Fermi level, 1 . kNDN/π < 2 and
1 . kNW/π < 2, set mNx = mN, and take the limits kS � kN, mS � mN and kSDS � 1,
which are the relevant parameter regimes of current experiments based on semiconductor-
superconductor hybrids.

First, we discuss the case of unit transparency, which corresponds to vNz = vSz. In
the limit kS � kN, we have kSz ≈ kS and since vNz lies between 0 and vN, we require
vN > vS for this to occur. Furthermore, the parameters have to be tuned in order to fulfill
Eq. (5.29), which yields

kSDS + vSmNDN = nπ, (5.38)

for any positive integer n. In order to obtain ∆ind from Eq. (5.35) we argue that since we
consider the regime of a single mode in the wire, and since the remaining modes in the
superconductor have an evanescent overlap with the wire, the mode with unit transparency
will have the minimum |∆α|. After evaluating Eq. (5.36), we obtain

∆ind = ∆

[
1 +

DN

DS

(
1− sin 2kNzDN

2kNzDN

)]−1

. (5.39)

Equation (5.39) agrees with Eq. (5.1) for matching velocities, up to the interference term in
parentheses, which is of order unity. In the derivation of Eq. (5.1), we assumed a classical
propagation of electrons and holes, which explains the absence of the interference term.

Next, we derive the induced gap in the limit in the limit vS/vN � 1 and k2
S/k

2
N � kSDS.

In order to solve Eq. (5.29), we expand around the solution for zero transparency and at
the Fermi level,

kSz =

(
nS +

1

2

)
π

DS
+ δq, (5.40)

kNz =
π

DN
+ δk, (5.41)

with

nS = bkSDS/πc, (5.42)

δq = kS −
(
nS +

1

2

)
π

DS
, (5.43)

where b·c denotes the floor function. Here, we neglected the contribution of δk to kSz,
which is justified in the limit k2

N/k
2
S � kSDS. Expanding Eq. (5.29) to lowest order in δq

and δk yields,
π

mND2
Nδk

+
1

mNDN
= vSδq, (5.44)
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Figure 5.2.: Induced gap in the absence of disorder. We choose a velocity mismatch
vN/vS = 0.1, 0.33, 1, 3.3 for the lowest (red) to the highest lying solid line
(blue), respectively. The dashed lines show the prediction at the peak (5.39),
and the tails (5.46). The remaining parameters are kNDN = 1.8π, kS/kN =
100.

which has the solution

δk =
π

mND2
NvSδqDS −DN

. (5.45)

For 1 & δqDS � vN/vS, both δq and δk are sufficiently small to justify the lowest order
expansion around the zero transparency case. Finally, we argue that for δqDS & vNDS

vSDN
the

remaining propagating modes have evanescent overlap into the wire and can be neglected.
Thus, the solution (5.45) is expected to contribute the minimum |∆α|, and from Eq. (5.35)
we obtain the induced gap

∆ind =
∆π2

D3
Nv

2
Sm

2
Nδq

2DS
. (5.46)

Figure 5.2 shows numerical results obtained by solving Eqs. (5.29) and (5.35). The
resulting effective gap as a function of DS is a series of peaks that is approximately π
periodic in kSDS. For a small velocity inside the normal region, we find good agreement
with Eq. (5.46). For the parameter range shown and vN ≤ vS, the peak of the gap is given
by Eq. (5.39) and is approximately constant as a function of DS. Once vS > vN, we find
that the peak gap increases further and its value of kSDS/π shifts away from half-integer
values.

5.5. Semiclassical approach to disordered systems

Next, we consider the presence of disorder in the bulk or at the top surface of the super-
conductor in the case of approximately matching Fermi velocities in N and S. As discussed
in the introduction, disorder is expected to scatter modes with an overlap in N into modes
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5. Proximity induced gap in nanowires with a thin superconducting coating

with no overlap in N. Consequently, the time spent in N gets smaller, which increases the
induced gap.

Within a semiclassical picture, we can derive a formula for the induced gap as a function
of the mean free path as follows. We consider the case of a single mode in N, that has unit
transparency across the interface, |t|2 = 1, and assume that the remaining modes have an
evanescent overlap into N. In this case, the mode relevant for the induced gap is the one
propagating in N, and we can express the induced gap as

∆ind =
1

∆−1 + 2tN/~
. (5.47)

Here the denominator is the time it takes an electron to propagate in N and S and to
return as a retroflected hole. The fraction of time spent in S is ~∆−1, and tN is the time
an electron spends in N, with a factor of 2 due to the retroreflected hole spending the
same time in N.

In order to parametrize tN, we define the probability P e→h for an electron not to scatter
into a hole when performing a round trip from z = 0 to z = DS and back again. It reads

P e→h = e−4DS/ξ−2DS/`eff (5.48)

Here, the factor e−4DS/ξ is the probability not to be directly reflected into a hole during a
round trip, excluding the effects of disorder; and e−2D`/`eff is the probability to not scatter
from disorder and be subsequently reflected as a hole. For the latter we define the effective
mean free path `eff . In the case of bulk disorder we simply have `eff = `. In the case of
surface disorder, disorder might well be strong, leading to the saturation of scattering from
the surface. Thus, for surface disorder, we set

`eff =
DS

D`
max(`, asatπ/kS), (5.49)

where asat is a constant of order one and is determined numerically in Sec. 5.6.3. If we
assume that disorder scatters the electrons only into angles that cannot enter back into
N, P e→h corresponds to the probability of not being retroflected as a hole during a round
trip.

Each time the electron is not retroreflected as a hole, an additional time 2DN
vNz

has to be
spent inside N, and we get

tN =
DN

vNz
+ P e→h

2DN

vNz
+ P

2
e→h

2DN

vNz
· · · . (5.50)

By summing up the geometric series and evaluating Eq. (5.47), we obtain

∆ind = ∆

(
1 +

2vSDN

vNzξ

1 + P e→h

1− P e→h

)−1

(5.51)

Notably, the induced gap does not depend on the width W .
In the no-disorder limit `eff � ξ � DS, Eq. (5.51) reduces to Eqs. (5.1), and in the limit

ξ � DS � `eff , it turns into Eq. (5.2). For intermediate disorder strengths, ξ � `eff � DS,
we obtain

∆ind = ∆

(
1 +

vSDN`eff

vNzDSξ

)−1

, (5.52)
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which grows monotonically upon increasing the disorder strength `−1
eff .

In our derivation of Eq. (5.51), we assumed that once an electron scatters from disorder,
it does not enter again into N. However, an electron might scatter from disorder and enter
N one or multiple times. If nS modes are present in the superconductor, we expect
these processes to become relevant for ξ & nS`eff only. This is also the scale at which
Anderson localization is expected to occur, and hence we cannot access this regime with
our semiclassical approach. We note however, that the width W can be increased to
increase the number of modes and push the onset of this regime to larger coherence
lengths.

5.6. Numerical scattering approach

We compare the estimate in Eq. (5.51) to a numerical calculation. Our numerics employ
the thin-slice concatenation method introduced in Sec. 3.3 in order to calculate the scat-
tering matrix S(L, ε) of a wire slab of length L with a cross section as the one shown in
Fig. 5.1. Inside the slab, a pairing potential ∆ as well as disorder is present, as described
by the Hamiltonian (5.3). Two semi-infinite leads are attached to the slab at x = 0 and
x = L. The leads are described by the same Hamiltonian as the slab, but with disorder
and pairing potential turned off. Once the scattering matrix is known, quantities such as
the conductance or density of states can be calculated to infer the gap of the system.

Our analysis is somewhat complicated by the fact that for a z-dependence in the kinetic
energy term p2

x/2mx(z) of the Hamiltonian (5.3), the transverse components ψ⊥τ,nz(z)
can be non-orthogonal with respect to nz. (Note that the full wavefunctions in (5.12)
including the x and y dependencies still form an orthonormal set.) In order to circumvent
this, we take mx(z) = mS in which case ψ⊥τ,nz(z) form an orthonormal set with respect
to nz, and at fixed ny and τ . We argue that this change does not qualitatively alter the
results of our analysis, which considers the regime of a single mode inside the normal
region. This is because modes in the superconductor have an evanescent overlap into the
wire and hence are not affected by a change in the normal region. Since this leaves only
the single mode in the normal region, this corresponds to an energy shift for this mode
which can be absorbed into kN, and consequently only the value of kN has to be adjusted.

5.6.1. Implementation details

In order to compute S(L, ε) along the lines of Sec. 3.3, we split the Hamiltonian (5.3) into

Ĥ = Ĥε + Ĥ ′ε, (5.53)

where

Ĥε = [ξp(z) + Vconf(y, z)] τz + ε (5.54)

Ĥ ′ε = ∆τx + U(r)τz − ε, (5.55)

and τi denotes Pauli matrices in particle-hole space. Our goal is to calculate the scattering
matrix of a scattering region 0 < x < L described by Ĥ, with attached leads described
by the Hamiltonian Ĥε=0 for x < 0 and x > L. In order to use the concatenation scheme
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5. Proximity induced gap in nanowires with a thin superconducting coating

described in Sec. 3.3, we would need to calculate the matrix elements T (j)
ν′ν for Ĥ ′ε=0 and

the in- and outgoing modes ψν(r, ε) defined in Eq. (5.12) at finite energy. By instead
including the energy as a constant shift in the scattering potential, Ĥ ′ε, we can evaluate
the wavefunctions at zero energy and calculate the T matrix as

T (j)
ν′ν =

∫
xj<x<xj+1

drψ†ν′(r, 0)Ĥ ′εψν(r, 0), (5.56)

for a thin slice xj < x < xj+1. Here, we introduce the multi-index ν = (s, τ, ny, nz), with
propagating direction s = ±.

By using the unitarized Born approximation in Eq. (3.28), and concatenating the scat-
tering matrices of the slices according to Eq. (3.29), we obtain the scattering matrix

S̃(L, ε) = lim
N→∞

S0 ⊗ S1 ⊗ · · · ⊗ SN−1, (5.57)

in terms of the in- and outgoing modes ψν(r, 0) at zero energy.
For our later calculation, we require S(L, ε) for in- and outgoing modes at finite ε. The

transformation between S̃(L, ε) and S(L, ε) is obtained by matching the in- and outgoing
modes at finite energy with those at zero energy, at both ends of the scattering region
x = 0 and x = L. This yields the scattering matrices Sleft and Sright, and we get

S(L, ε) = Sleft ⊗ S̃(L, ε)⊗ Sright. (5.58)

For a detailed derivation of Sleft/right and explicit expressions for T (j)
ν′ν , we refer to ap-

pendix B.

5.6.2. Results on disordered systems

The density of states per unit energy ρ(L, ε) can be obtained from the numerically calcu-
lated S(L, ε) by using the relation [Soum 02]

ρ(ε) =
∑
ν

L

vx(ν)π
+

1

2πi
TrS(L, ε)†

dS(L, ε)

dε
. (5.59)

Here Tr denotes the trace, the first term represents the density of states of a metal at the
Fermi surface, and the second term describes how it changes due to the perturbation Ĥ ′.

We infer the size of the induced gap by noting that if the system is gapped and ε lies
above the gap, ρ(L, ε) is an extensive quantity in L. In contrast, for ε inside the gap,
ρ(L, ε) converges to a constant value ε, which is non-zero due to an evanescent overlap of
modes into the wire. The crossover energy between these two behaviors correspond to the
size of the gap.

For a two dimensional system, extended in the x-z plane, the density of states is shown
in Fig. 5.3. For all disorder strengths a gap is visible, indicated by the dark region. For
small disorder strengths a Van Hove singularity clearly indicates the edge of the induced
gap, and at ε ∼ ∆ the high density of states reflects the bulk gap. Furthermore, for
very weak disorder, the induced gap converges to the value predicted by Eq. (5.39) (white

64



5.6. Numerical scattering approach

Figure 5.3.: Density of states as a function of energy and disorder strength for a 2d
superconductor extended in the x− z plane. We choose ξ/DS = 40, vN/vS =
1.5 and disorder located over the full width of the superconductor (left, D` =
DS) and the top surface (right, D` = 2π/kS). The white dots show Eq. (5.39)
and the red line shows Eq. (5.51) with asat = 5.2. The remaining parameters
are kSDS = 20.4π, mS/mN = 100, L/ξ = 8 and kNDN = 1.2π. The density
of states is averaged over 5 disorder realizations. Values exceeding the color
scale are mapped to the maximum value of the colorbar.

dots). The induced gap starts to increase once the effective mean free path exceeds the
coherence length ξ and shows good agreement with Eq. (5.51) (red line). Finally, for the
strongest disorder values shown in Fig. 5.3, the gap reaches values that lie slightly below
those predicted by Eq. (5.1). We attribute this smaller value as well as the decrease of
the bulk gap visible for large disorder strengths to the onset of Anderson localization.
The localization length ξloc is approximately given by the number of transverse modes
times `eff . In Fig. 5.3 about 20 transverse modes are present, leading to ξloc ∼ 20`eff .
Once, ξloc < ξ Anderson localization is expected to play a role, which is in agreement
with Fig. 5.3. We note that moving to three dimensional systems, where a much larger
number of transverse modes is accessible, the effects of Anderson localization are expected
to become negligible as ξloc becomes large.

Next, we consider a three-dimensional superconductor with a larger number of modes
along the y direction, of which only the mode with ny = 1 has non-evanescent overlap
into the normal region. The results are shown in Fig. 5.4. Clearly, disorder greatly
enhances the gap. We attribute this enhancement to the large number of modes along the
y direction (ny ≤ 18), since only a small number of modes is present along the z direction
(kSDS/π = 2.4). Furthermore, the results show good agreement with Eqs. (5.39) (red
line) and (5.51) (white dots).

5.6.3. Saturation of surface disorder scattering

In this section, we discuss the crossover from weak (kS` � 1) to strong surface disorder
(kS` . 1). We expect that scattering from surface disorder saturates when ` becomes
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Figure 5.4.: Density of states as a function of energy and disorder strength for a 3d
superconductor. We set kSDS/π = 2.4, kSW = 18.7π, kNW = 1.4π, and
kNDN = 1.2π such that only a single mode has a non-evanescent overlap into
N. We choose ξ/DS = 40, vN/vS = 1.5 and disorder located over the full
width of the superconductor (D` = DS). The white dots show Eq. (5.39) and
the red line shows Eq. (5.51). The remaining parameters are mS/mN = 20
and L/ξ = 22. The density of states is averaged over 10 disorder realizations.
Values exceeding the color scale are mapped to the maximum value of the
colorbar.
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small compared to the Fermi wavelength.
We verify this numerically, by considering a two dimensional metal slab of thickness

DS and length L, that is connected to two leads. Disorder is present only at one of the
surfaces, extending a distance D` into the superconductor. The system is described by the
Hamiltonian (5.3) in the absence of superconductivity and without the additional normal
region N.

We access the scattering strength via the conductance at the Fermi level,

G(L) = Tr
[
t̂†(L)t̂(L)

]
, (5.60)

where t̂(L) is the transmission matrix through the sample, which we obtain by calculating
S(L, 0) according to Sec. 5.6.1, and Tr denotes the trace over all scattering channels.

For weak disorder, we approximate the conductance by Ohm’s law, which gives

Gohm =
kSDS/π

1 + LD`/DS`
. (5.61)

Here, kSDS/π corresponds to the number of available modes, and we assume that the mean
free path in the disorder slab is identical to `. The additional factor D`/DS in Eq. (5.61)
is the fraction of time an electron spends in the disorder region, when propagating from
z = 0 to z = DS.

We use the numerical scattering approach described in Sec. (5.6.1) to calculate G. The
results are presented in Fig. 5.5 (a) at a fixed length L, which is small enough to prevent
Anderson localization. For large `, Ohm’s law well approximates G, while for π/kS` & 1
the conductance saturates. The horizontal lines show the average over the numerically
calculated G−1 − π/kSDS for π/kS` ≥ 1.

We now determine the coefficient asat in Eq. (5.49). The mean free path in the saturated
region can be approximated by the value ` = `sat, at which the inclined and horizontal
line in Fig. 5.5 (a) cross. This gives

asat =
kS`sat

π
. (5.62)

The numerically determined values of asat are shown in Fig. 5.49 (b) and are approximately
constant, with a weak dependence on Dell/DS. The marker at D`/DS = 0.1 corresponds
to D` = 2π/kS, that we use in Fig. 5.3.

The saturation of surface disorder scattering is also visible in the size of the induced
gap. Figure 5.6 shows a similar parameter configuration as in Fig. 5.3, but with a smaller
coherence length that significantly weakens the impact of Anderson localization at small
`. In the case of surface disorder (right), Figure 5.6 shows a clear saturation for small `,
which agrees well with Eq. (5.51). In the case of bulk disorder (left), this saturation is not
visible, and the induced gap reaches higher values.

5.7. Conclusion

In this chapter, we have investigated a normal-metal wire coated by a thin two- or three
dimensional superconductor, with disorder in the bulk or at the bare surface of the super-
conductor.
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5. Proximity induced gap in nanowires with a thin superconducting coating

Figure 5.5.: Saturation of scattering for different thicknesses of the disorder region. We
choose a normal metal wire of width kSDS = 20.4π and L = DS. In (a),
kSD`/π = 2 (bottom, blue markers), 4, and 8 (top, green markers). The
horizontal lines show the average over G−1 − π/kSDS for π/kS` ≥ 1, the
inclined lines show Eq. (5.61). The conductance is averaged over 40 disorder
realizations. In (b), the coefficient asat is shown, as defined in Eq. (5.62).

Figure 5.6.: Density of states as a function of energy and disorder strength for a 2d
superconductor extended in the x− z plane. We choose ξ/DS = 10, vN/vS =
1.5 and disorder located over the full width of the superconductor (left, D` =
DS) and the top surface (right, D` = 2π/kS). The white dots show Eq. (5.39)
and the red line shows Eq. (5.51) with asat = 5.2. The remaining parameters
are kSDS = 20.4π, mS/mN = 100, L/ξ = 8 and kNDN = 1.2π. The density
of states is averaged over 8 disorder realizations. Values exceeding the color
scale are mapped to the maximum value of the colorbar.

68



5.7. Conclusion

In the absence of disorder and for small interface transparencies, we find that a narrow
superconductor leads to a strong suppression of the induced gap, up to resonances that
occur periodically when a level in the superconductor passes the wire. For matching
Fermi-level velocities in N and S and no interface barrier, which corresponds to the strong-
coupling regime, the induced gap is suppressed in the ratio of the material thicknesses,
DN/DS, which is large in experiments [Krog 15, Chan 15, Deng 16, Albr 16, Zhan 18].

Our results in the absence of disorder are in qualitative agreement with Ref. [Reeg 17],
which studies a one-dimensional wire coupled to a thin superconductor. In their case, the
coupling to the superconductor is described by a tunneling energy scale γ, and in our case,
the coupling is described by the interface tunneling strength |t⊥|2. In the weak-coupling
limit, the two quantities are related by γ ∼ |t⊥|2vN/DN, and we find that our prediction
for the suppression of the induced gap in Eq. (5.46) agree with theirs up to a prefactor of
order unity [see Eq. (17) in Ref. [Reeg 17]]. In the case of unit transparency, our results
predict a suppression of the induced by a factor DN/DS. In Ref. [Reeg 17], the data with
the strongest coupling has ∆ind ∼ ∆, showing no such suppression. We attribute this to
the large values of γ, that corresponds to small values of DN/DS.

In the presence of disorder and for approximately matching Fermi velocities, we find
that disorder in the bulk or at the surface of the superconductor can significantly enhance
the induced gap. We find that this enhancement sets in, when the effective mean free
path `eff in the superconductor becomes smaller than the coherence length ξ. For the
typical case when ξ is large compared to the thicknesses DN and DS of N and S, we find
an induced gap comparable to ∆ for `eff/ξ . DS/DN. In the case of strong disorder at
the bare surface of S, which we assume to be present in current experiments, `eff ∼ DS,
and consequently one expects an induced gap of order ∆, consistent with experimental
observations [Chan 15, Deng 16, Albr 16, Zhan 18].

The authors of Ref. [Reeg 18a] numerically studied a quasi-one-dimensional normal wire
coupled to a disordered superconductor. Our results on surface disorder agree with theirs,
and they also find that the induced gap is independent of the width W . In the case of
bulk disorder, the authors find only negligible effects of moderate disorder on the induced
gap. Our analysis shows that there exists a large regime, where disorder in the bulk of
the superconductor can significantly enhance the induced gap.

In conclusion, these findings show that creating thin, superconducting crystals without
defects and a flat surfaces is not desirable when trying to induce a sizable gap in semicon-
ductor nanowires. In particular, if the exposed surface of the superconductor would contain
no scatterers the induced gap would be strongly suppressed. However, our study shows
that this can be counteracted by including impurities in the bulk of the superconductor,
which can enhance the induced gap to values close to that of the bare superconductor.
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6. Effects of nonmagnetic disorder on the
energy of Yu-Shiba-Rusinov states

This chapter is based on Ref. [Kien 17] (doi). Copyright remains with ©2017 American
Physical Society.

In the previous chapters, we have studied hybrid structures consisting of one-dimensional
magnetic materials coupled to two- or three dimensional superconductors in the strong
coupling limit. In this section, we reduce the dimensionality of the magnetic materials
by one and consider point-like magnetic scatterers. As we discussed in Sec. 2.2, these
magnetic scatters can be experimentally realized by for example magnetic adatoms, and
will introduce YSR bound states that reside deep inside the gap of the superconductor
for a sufficiently strong coupling. Interest in YSR states was recently renewed due to
the experimental progress discussed in Sec. 2.2, as well as the possibility to use chains of
adatoms to form the Majorana wires that we discussed in chapters 4 and 5. One way to
think of the latter is in terms of an effective tight-binding model of hybridized YSR states
[Nadj 13, Pien 13, Klin 13, Brau 13, Kim 14, Sche 16].

It is an important question to which degree YSR bound states are sensitive to (nonmag-
netic) potential impurities in the superconductor. In the context of individual magnetic
impurities, strong sensitivity to potential impurities would make the YSR energies sample
and adatom-position specific, reflecting the details of the impurity configuration in the
vicinity of the magnetic atom. Similarly, topological superconductivity is known to be
sensitive to disorder. Sensitivity of the YSR state to potential scatterers in the super-
conductor could thus be detrimental to the formation of a topological superconducting
phase.

In this chapter, we characterize the sensitivity of YSR states in two and three dimensions
to potential scatterers. We find that the YSR states are robust to disorder, even when the
mean free path is shorter than the coherence length of the superconductor. The major
condition for this robustness is that the disorder induced mean free path is large compared
to the Fermi wavelength which is usually satisfied in conventional superconductors. Thus,
our findings relax previous claims [Hui 15] that ultraclean superconductors are required
for disorder to introduce only a small perturbation. These earlier results do not include
a discussion of the Fermi wavelength, which we find to be a crucial parameter when
considering the robustness of the YSR energy.

This chapter is structured as follows. In Sec. 6.1 we introduce the model Hamiltonian on
which our analysis is based. In Sec. 6.2, we review the YSR wavefunctions in the absence of
disorder and present a perturbative analysis of the effect of disorder on the YSR energies.
Section 6.3 introduces a scattering approach, which in an approximate analytical approach,
allows us to reduce the effects of disorder on the YSR energy to two contributions which
can be discussed qualitatively based on symmetry arguments and a random walk model.
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6. Effects of nonmagnetic disorder on the energy of Yu-Shiba-Rusinov states

In addition, we also employ the scattering approach for a numerical calculation beyond
perturbation theory and compare it to the results obtained by perturbation theory. In Sec.
6.4 we discuss the discrepancy of our results and that of [Hui 15]. Finally, we conclude in
Sec. 6.5.

6.1. Model

The system we consider is described by the BdG Hamiltonian

H =

(
H0 + V↑(r) + U(r) ∆

∆ −H0 − V↓(r)− U(r)

)
, (6.1)

where H0 = p2/2m−~2k2
F/2m, with m the (effective) mass and kF the Fermi wavenumber,

∆ the superconducting order parameter, which we choose to be real, Vσ(r) the impurity
potential, and U(r) the disorder potential.

Following Refs. [Yu 65, Shib 68, Rusi 68] we take the impurity to be a classical spin of
magnitude S, located at the origin r = 0. Choosing the spin quantization axis along the
impurity spin direction, the spin-dependent impurity potential has the form

Vσ(r) = (V0 − JSσ)δλ(r). (6.2)

Here, δλ(r) represents a short-ranged function with unit integral and range λ ∼ 1/kF, J is
the exchange coupling strength, and V0 is the strength of the potential scattering by the
impurity.

For the disorder potential U(r), we take a Gaussian white noise model, for which U(r)
has zero mean and variance 〈

U(r)U(r′)
〉

=
~vF

2πν0`
δλ
(
r− r′

)
, (6.3)

where ` is the elastic mean free path, vF = ~kF/m the Fermi velocity, and ν0 the density
of states per spin direction. [In two dimensions (d = 2) and three dimensions (d = 3),
one has ν0 = kF/2π~vF and ν0 = k2

F/2π
2~vF, respectively.] For simplicity, we choose the

same short-distance cutoff λ for the disorder potential U(r) and for the impurity potential
Vσ(r).

The characteristic length scales of the system are illustrated in Fig. 6.1. The supercon-
ductor is characterized by the clean-limit superconducting coherence length ξ0 = ~vF/∆.
For weak-coupling superconductors, one has kFξ0 � 1. Also, in superconductors that are
good metals in the normal state, one has kF` � 1. We will assume that both inequali-
ties are obeyed in the considerations that follow, but we will not make any assumptions
concerning the relative magnitude of the mean free path ` and the coherence length ξ0.
Superconductors with ` � ξ0 are in the clean limit; superconductors with ` � ξ0 are in
the dirty limit.

6.2. Perturbative approach

In the presence of the impurity potential V , the equation

H |ψ〉 = ε |ψ〉 , (6.4)
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Figure 6.1.: Sketch of the model of this chapter and the relevant length scales. A magnetic
adatom (black) with a size comparable to the Fermi wavelength λF is placed
on top or embedded in a superconductor (dark gray). The superconducting
ground state is formed by Cooper pairs, indicated by the orange circles, which
have a spatial extension of the order of the coherence length ξ0. Nonmagnetic
disorder (light gray circles) introduces a mean free path ` in the normal state.

with H given by Eq. (6.1), has a bound-state solution with energy |ε| < ∆. In this
section, we review Rusinov’s original calculation of the bound-state energy ε0 for a clean
superconductor [Rusi 68]. We then use this as a starting point to calculate the shift
δε = ε− ε0 to first order in the disorder potential U .

We start with the general radially symmetric solution of the BdG equation (6.4) for
r > λ, where λ is the range of the potential Vσ(r). For kFξ0 � 1, this reads

ψ(r) =
1√
ξε

∑
±
a±Φ±(r)e−r/ξεb±, (6.5)

where a± are complex coefficients,

ξε =
~vF√

∆2 − ε2
(6.6)

is the energy-dependent coherence length, Φ±(r) solves the radial Schrödinger equation
at ε = 0 in the absence of superconductivity and takes different forms in two and three
dimensions,

Φ±(r) =


√

kF
4 H

±
0 (kFr) d = 2,√

k2
F

4πh
±
0 (kFr) d = 3,

(6.7)

with H± and h± the Hankel and spherical Hankel functions, respectively, and b± are
two-component spinors,

b± =
1√
2

(
1

e∓iη(ε)

)
, (6.8)
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with the Andreev phase

η(ε) = arccos(ε/∆). (6.9)

To determine the coefficients a± we use the boundary condition at r = λ imposed by
the magnetic impurity. Following Rusinov’s original derivation [Rusi 68], we formulate
this boundary condition in terms of scattering phase shifts φσ for electrons with spin σ.
We may neglect the effect of superconductivity on the phase shifts φσ since λ� ξ0. The
scattering phases φσ can be related to the impurity potential (6.2) by [Rusi 68, Clog 62]

tanφσ = −πν0(V0 − σJS). (6.10)

Eq. (6.10) assumes that the range λ of the impurity potential satisfies the inequality
kFλ � 1. If kFλ . 1, a correction to Eq. (6.10) in the form of a Cauchy principal value
integral has to be included into Eq. (6.10), see Ref. [Clog 62]. Since we express our results
in terms of the phase shifts φσ, these corrections are not important for our considerations.

We note that in the general solution (6.5) the upper component multiplied by a+ (a−)
describes a radial wave for an electron with spin up moving away from (towards) the
origin. Hence,

a+ = e2iφ↑a−. (6.11)

Similarly, the lower component multiplied by a+ (a−) describes a radial wave moving
towards (away from) the origin for a hole in the spin-down band. Taking into account the
phase factors e±iη(ε) in the lower component of the spinor (6.8), we find the relation

a−e
iη(ε) = e−2iφ↓a+e

−iη(ε). (6.12)

Combining these two equations we find the YSR-state energy

ε0 = ±∆ cos(φ↑ − φ↓) (6.13)

for a magnetic impurity in an (otherwise) clean superconductor. The solution (6.5) is
properly normalized if |a+| = |a−| = 1 (up to corrections that are small in the limit kFξ0,
ξ0/λ� 1). Note that |ε0| < ∆ if and only if φ↑ 6= φ↓), i.e., if the impurity is magnetic.

We now calculate the change δε of the energy of the YSR state to first order in the
disorder potential U(r). We assume that U(r) = 0 for r < λ, i.e., the disorder potential
does not overlap with the potential of the magnetic impurity. To first order in U(r) the
change δε is

δε =

∫
drψ†(r)U(r)τzψ(r), (6.14)

where τz is the Pauli matrix in particle-hole space and the spinor wavefunction ψ(r) is
given by the general solution (6.5), with the coefficients a± satisfying the relations (6.11)
and (6.12). Using the relation Φ+(kFr) = [Φ−(kFr)]

∗ this can be simplified as

δε = sin η(ε0)

∫
drU(r)e−2r/ξε0

× Im e−iη(ε0)+2iφ↑ [Φ+(r)]2. (6.15)
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Using the correlator (6.3), we obtain the variance

〈δε2〉 =
2~vF

πν0`ξ2
ε0

sin2 η(ε0) (6.16)

×
∫
dr
{

Im e−iη(ε0)+2iφ↑ [Φ+(r)]2
}2
e−4r/ξε0 .

In two dimensions the main contribution to the integral (6.16) comes from r ∼ ξε0 . The
integral is convergent at the lower limit r ↓ 0, so that the short-distance cutoff λ can be
taken to zero. We then find

〈δε2〉 =
∆2(ξ0/ξε0)4

πkF`
log(kFξε0). (6.17)

In three dimensions the integral (6.16) is dominated by short distances r ∼ λ ∼ k−1
F and

the short-distance cutoff λ is needed to ensure convergence. In this case we find

〈δε2〉 ∼ ∆2(ξ0/ξε0)4

kF`
, (6.18)

where a numerical prefactor depends on the precise way in which the short-distance regu-
larization is implemented. Note that in three dimensions and with ε0 well inside the gap
such that ξ0/ξε0 ∼ 1, the variance 〈δε2〉 does not depend on kFξε0 .

In two dimensions the root-mean-square fluctuations are parametrically smaller than
the superconducting gap ∆ if the condition kF` � log(kFξ0) is met. This condition only
weakly depends on the superconducting coherence length ξ0. In three dimensions the
condition is kF`� 1, which is independent of ξ0. The latter condition kF`� 1 is typically
met in superconductors that are good metals in the normal state, such as Pb or Al.

6.3. Scattering approach

In this section, we present a numerical calculation of the YSR-state energies that takes
higher-order contributions in the disorder potential U(r) into account. The calculation
makes use of a relation between the YSR-state energy ε and the scattering matrix S(ε)
of the superconductor for radial waves moving towards and from the origin r = 0. We
first describe this relation and the calculation of S(ε) separately, and then proceed with a
calculation of the variance 〈δε2〉.

6.3.1. Relation between YSR-state energy and scattering amplitudes

To define the scattering matrix S we introduce a narrow shell r0 < r < r0 + δr around the
impurity in which the superconducting order parameter ∆ as well as the potentials V and
U are set to zero. (At the end of the calculation, we will send the shell width δr → 0.) We
choose r0 ∼ λ . 1/kF. The solution of the BdG equation may be assumed to be radially
symmetric, so that it can be expanded as

ψ(r) =
∑
±

[ae,±Φe,±(r) + ah,±Φh,±(r)] , (6.19)
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where Φe,± and Φe,± represent flux-normalized electron-like (e) and hole-like (h) waves
propagating radially outward (+) or inward (−). In two dimensions one has

Φe,±(r) =

√
kF

4vF
H±0 (kFr)

(
1
0

)
,

Φh,±(r) =

√
kF

4vF
H∓0 (kFr)

(
0
1

)
, (6.20)

whereas in three dimensions

Φe,±(r) =

√
k2

F

4πvF
h±0 (kFr)

(
1
0

)
,

Φh,±(r) =

√
k2

F

4πvF
h∓0 (kFr)

(
0
1

)
. (6.21)

The solution of the BdG equation for r > r0 + δr yields two linear relations for the four
amplitudes ae,± and ah,±, which have the general form(

ae,−
ah,−

)
= S(ε)

(
ae,+

ah,+

)
, S =

(
ree reh

rhe rhh

)
. (6.22)

The matrix S is the scattering matrix of the superconductor for radial waves around
the origin r = 0. The coefficients ree and rhh are the amplitudes for normal reflection
of electrons and holes, respectively, whereas rhe and reh describe Andreev reflection of
electrons into holes and vice versa. Time-reversal symmetry and particle-hole symmetry
enforce the constraints

S(ε) = ST(ε) = τyS(−ε)∗τy, (6.23)

where τy is a Pauli matrix in particle-hole space.
In the absence of the disorder potential U(r), one has ree = rhh = 0, and reh = rhe =

e−iη(ε), with η(ε) defined in Eq. (6.9). This reproduces Eq. (6.5). In the presence of the
disorder potential U(r), all four coefficients are in general nonzero. As we will show below,
the difference with the clean case is small when kF`� 1, so that we may write

S(ε) = e−iη(ε)τx (1− iδA(ε)) , (6.24)

where δA(ε) is small. The conditions that S(ε) be unitary, symmetric, and particle-hole
symmetric imply

δA(ε) = δA(ε)† = τxδA(ε)Tτx = −τzδA(−ε)τz. (6.25)

We therefore parameterize

δA(ε) =

(
δη(ε) δr(ε)
δr(ε)∗ δη(ε)

)
, (6.26)

where δr(ε) is a complex, symmetric function of energy ε, which represents disorder-
induced normal reflection, whereas δη(ε) is a real, antisymmetric function of ε, which
represents a disorder-induced shift of the Andreev reflection phase η(ε).
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As discussed above, the solution of the BdG equation for r < r0 yields two additional
relations between the amplitudes ae,± and ah,±,

ae,+ = e2iφ↑ae,−, ah,− = e−2iφ↓ah,+. (6.27)

Note that in Eq. (6.27), we assumed that the size of the magnetic impurity is small
compared to the coherence length, corresponding to kFξ0 � 1. By taking this limit we
can neglect scattering from electrons to holes at the position of the impurity.

A nontrivial solution of Eqs. (6.22) and (6.27) exists if

det

[(
e2iφ↑ 0

0 e−2iφ↓

)
S(ε)−

(
1 0
0 1

)]
= 0. (6.28)

This gives

ε =ε0 + δε,

δε =
ξ0∆

ξε0

[
δη(ε0) + Re e−i(φ↑+φ↓)δr(ε0)

]
, (6.29)

to lowest order in δA. This equation is central to our analysis, since it allows us to calculate
the energy shift δε from the scattering matrix S.

6.3.2. Qualitative discussion

Next, we employ a semiclassical picture to qualitatively discuss why both δη and δr are
expected to be small. Within this semiclassical picture, Andreev reflection is retroreflec-
tion, i.e., after Andreev reflection a hole retraces the path of the incident electron (or vice
versa). Because the phases of electron and hole wavefunctions are correlated, see, e.g.,
Eq. (6.5), no net phase is accumulated, with the exception of the Andreev phase η(ε). If
kF` � 1 this semiclassical picture remains valid in the presence of a disorder potential
U(r). This explains why δη, corresponding to a shift of the Andreev phase, is small if
kF`� 1.

In fact, since δη(ε) is an antisymmetric function of ε, one must have δη(0) = 0, so that
there is no contribution to the YSR-state energy shift from the phase shift δη for YSR
states with energy near the center of the superconducting gap. Instead, for small YSR-
state energies, the residual disorder-induced fluctuations are dominated by the normal
reflection amplitude δr. An estimate of the size of the YSR-energy fluctuations can be
obtained by estimating δr as the amplitude that a particle returns to the origin r = 0 (up
to a distance 1/kF) within a time ξε/vF. In the two-dimensional case we then find for the
dirty superconductor limit ξ0 � `

|δr(ε)|2 ∼
∫ `/vF

λ/vF

dt
1

kF`t
+

∫ ξε/vF

`/vF

dt
2

kF`t

∼ 1

kF`
log(kFξ

2
ε/`). (6.30)

The first integral covers ballistic propagation times t . τ and the second diffusive times
t & τ , where τ = `/vF is the elastic mean free time. The integrands give the return

77



6. Effects of nonmagnetic disorder on the energy of Yu-Shiba-Rusinov states

Figure 6.2.: Sketch of the numerical concatenation method in two dimensions. The
disordered superconductor is cut into thin circular slices (dark gray), with
infinitesimally-thin–disorder-free metallic shells (white) in between the dark
gray slices and for r < r0. The scattering matrices of the slices are calculated
in the narrow limit and concatenated into the full scattering matrix S(ε),
which describes the reflection of spherical symmetric waves (black arrows)
that are propagating from the magnetic impurity into the bulk.

probabilities per unit time, which, in the diffusive regime, is multiplied by a factor two
due to coherent backscattering. In the second line the short-distance cutoff λ was replaced
by 1/kF. In the ultraclean limit ξ0 � ` the second term in Eq. (6.30) is absent and the
upper integration limit in the first is ξε, which gives

|δr(ε)|2 ∼ 1

kF`
log(kFξε) (6.31)

In three dimensions, the return probability is dominated by the ballistic regime t . τ and
one finds

|δr(ε)|2 ∼
∫ τ

λ/vF

dt
1

k2
F`vFt2

∼ 1

kF`
. (6.32)

In three dimensions, the estimate is consistent with the smallness of the first-order per-
turbation theory results of Sec. 6.2. In two dimensions and in the dirty limit, multiple
scattering changes the argument of the logarithm in Eq. (6.30) by a factor ξε/` compared
to the perturbative result (6.17).

6.3.3. Numerical calculation of the scattering matrix

Our strategy for an efficient numerical calculation is a generalization of the thin-slice
concatenation method for linear geometries, which we discussed in Sec. 3.3. It can be
outlined as follows. First, we slice the superconductor into thin circular (d = 2) or spherical
(d = 3) pieces, as illustrated in Fig. (6.2), and calculate the scattering matrix for each
piece. Next, we add the pieces together by concatenating their scattering matrices to
obtain the total scattering matrix S(ε). Finally, using Eqs. (6.24) and (6.29) we can
relate this scattering matrix to the energy of the YSR state.
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Note that within this approach, we need to include non-zero angular momentum chan-
nels due to two reasons. First, disorder breaks rotational symmetry and thus mixes dif-
ferent angular momentum modes. Second, the modes defined in Eq. (6.21) describe all
propagation modes at radii kFr . 1. There, non-zero angular momentum modes are
evanescent. This can be seen by considering the spherical representation of the momen-
tum operator, which results in a repulsive potential that diverges ∼ 1/r2 at the origin
for all modes but the zero angular momentum one. However, when going to larger radii
non-zero angular momentum modes start to propagate and thus cannot be excluded.

Our approach starts, by formally inserting a sequence of N + 1 infinitesimally thin
ideal shells into the disordered superconductor at radii rn, n = 0, 1, . . . , N . Within these
shells the superconducting order parameter ∆ and the impurity potential U(r) are zero.
The distance between the shells is rn+1 − rn � `. In each shell the wavefunction can be
expanded as [compare with Eq. (6.19)]

ψ(r) =
∑
ν

a(n)
ν Φν(r), (6.33)

where ν is a composite index representing particle/hole degrees of freedom (e or h), prop-
agation direction (radially outward, +, or inward, −, and the angular momentum label m
(in two dimensions) or the angular momentum labels l, m (in three dimensions).

The flux-normalized basis functions Φν are

Φe,m±(r) =

√
kF

4vF
H±m(kFr)e

imϕ

(
1
0

)
,

Φh,m±(r) =

√
kF

4vF
H∓m(kFr)e

imϕ

(
0
1

)
(6.34)

in two dimensions and

Φe,lm±(r) =

√
k2

F

4πvF
h±l (kFr)Ylm(θ, ϕ)

(
1
0

)
,

Φh,lm±(r) =

√
k2

F

4πvF
h∓l (kFr)Ylm(θ, ϕ)

(
0
1

)
(6.35)

in three dimensions, where the Ylm(θ, φ) are spherical harmonics and the Hm (h±l ) are
(spherical) Hankel functions. The solution of the BdG equation for rn < r < rn+1 gives
a linear relationship between the coefficients a(n) and a(n+1), which has the form (vector
notation is implied for all indices not listed explicitly)(

a
(n)
−

a
(n+1)
+

)
= S(n)(ε)

(
a

(n+1)
−
a

(n)
+

)
(6.36)

where S(n)(ε) is the scattering matrix between the shells at rn and rn+1.
If rn+1 − rn is much smaller than the mean free path `, the scattering matrix S(n)(ε)

can be calculated using the unitarized Born approximation introduced in Sec. 3.3,

S(n) = [1− iT (n)/2][1 + iT (n)/2]−1, (6.37)

79



6. Effects of nonmagnetic disorder on the energy of Yu-Shiba-Rusinov states

with

T (n)
ν′ν =

∫
dr

rn<r<rn+1

ψ†ν′(r)H ′ε(r)ψν(r), (6.38)

with H ′ε(r) = ∆τx + U(r)τz − ε. We refer to the Appendix. C for explicit expressions for
the matrices T (n).

To truncate the hierarchy of Eqs. (6.36) we set the disorder potential U(r) to zero for
r > rN , which gives the relation

a
(N)
− = e−iη(ε)τxa

(N)
+ . (6.39)

Further, for nonzero angular momentum indices m or l the Hankel functions Hm and
hl diverge for kFr . π|m|/2, kFr . πl/2, respectively. In that case regularity of |ψ(r)〉
imposes that the corresponding coefficients a

(n)
+ and a

(n)
− must be equal. In particular, we

have
a

(0)
e,+(l)m = a

(0)
e,−(l)m, a

(0)
h,+(l)m = a

(0)
h,−(l)m (6.40)

for all m 6= 0 (d = 2) or l > 0 (d = 3). Similarly, this observation allows us to truncate
the sum over modes l and m to the number of propagating angular momentum modes at
the largest distance required for the calculation of S(ε), which is r ∼ ξε.

Combining Eqs. (6.36), (6.39), and (6.40) we can eliminate all amplitudes a(n) with
n ≥ 1 and calculate the scattering matrix S(ε) describing the (Andreev) reflection of
radially outgoing waves at the origin. The procedure becomes numerically exact in the
limit rn+1 − rn → 0, rN → ∞. In practice, to achieve convergence it is sufficient that
rn+1 − rn . ` and if rN ∼ ξε because of the exponential decay of the wavefunction in the
superconductor. In the numerical simulations, the short-distance cutoff is fixed to r0 = 0
in two and r0 = 1/kF in three dimensions.

Figure 6.3 shows examples of the convergence behaviors in two and three dimensions. In
two dimensions the numerical scattering matrix calculation converges slowly, in agreement
with results from perturbation theory which predicts a logarithmic convergence at a length
scale of the order of the coherence length. In contrast, our numerical results for three
dimensional systems converge after a few Fermi wavelengths 2π/kF and also agree well
with our results derived by perturbation theory.

In Fig. 6.4 we show the variance of the YSR energy for two dimensions. The numerical
results confirm that the fluctuations become small in the limit of large kF`, while keeping
`/ξε constant, quantitatively consistent with the result of lowest-order perturbation theory
in the disorder potential U(r). Logarithmic corrections to the perturbative results are
expected to occur deep in the dirty limit, see Eq. (6.30).

For comparison with the numerical results in three dimensions, we have repeated the
perturbative calculation of Sec. 6.2 with the disorder potential set to zero for r < r0 =
1/kF. In this case we find

〈δε2〉 =
∆2(ξ0/ξε0)4

kF`
(6.41)

×
(
c0 +

c1 − 2 log(kFξε)

kFξε
− c3 + c4 cos η

k2
Fξ

2
ε

+ · · ·
)
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Figure 6.3.: YSR energy shift (solid lines) versus disorder cutoff length rN in two di-
mensions (left panel) and three dimensions (right panel), obtained from the
numerical scattering approach. We choose ξ/` = 10 with kF` = 100. When
including the cutoff rN , our perturbative approach (dashed lines) fits well with
the numerical results. The shaded region shows the numerical standard error.
Figure taken from Ref. [Kien 17] (doi). ©2017 American Physical Society.

Figure 6.4.: YSR energy variance versus kFξε in two dimensions. The data points are
for ξε/` = 0.5 (triangles), 1 (circles) and 2 (squares). The scattering phase
shifts φ↑ = −φ↓ are chosen such that YSR energy in the absence of disorder is
ε/∆ = 0 (left) and ε/∆ = 0.37 (right). The solid lines show the lowest-order
perturbation theory result from Eq. (6.17). Error bars are of the size of the
markers. Figure taken from Ref. [Kien 17] (doi). ©2017 American Physical
Society.
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6. Effects of nonmagnetic disorder on the energy of Yu-Shiba-Rusinov states

Figure 6.5.: YSR energy variance in three dimensions, as a function of kFξε at fixed ratios
ξε/`. The parameters are the same as in Fig. 6.4. The dashed and solid curves
give the perturbative result (6.41) and its leading term, respectively. Figure
taken from Ref. [Kien 17] (doi). ©2017 American Physical Society.

Figure 6.6.: Comparison of the two contributions δr and δη to the superconductor scat-
tering matrix S(ε), in two (left) and three (right) dimensions. See Eq. (6.26).
We choose a ratio ξ0/` = 1 and energy ε/∆ = 0.15. The contribution from
normal reflection dominates in two as well as in three dimensions. Figure
taken from Ref. [Kien 17] (doi). ©2017 American Physical Society.
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Figure 6.7.: Energy variance over mean free path at fixed kF and ξ0. The markers show
the numerical results in two dimensions (top) and three dimensions (bottom),
with kFξ0 = 50 (blue triangles) and kFξ0 = 100 (green circles). The lines
correspond to the perturbative results derived in the main text. The scattering
phase shifts φ↑ = −φ↓ of the magnetic impurity are chosen such that, in the
absence of disorder, a YSR state forms at ε/∆ = 0. Figure taken from Ref.
[Kien 17] (doi). ©2017 American Physical Society.

to second order in 1/kFξε. The coefficients read c0 ≈ 0.45, c1 ≈ 2.59, c3 ≈ 5.87 and
c4 ≈ 2.71. To leading order this simplifies to the asymptotic form in Eq. (6.18). The
agreement of the higher order result (6.41) with the numerics is excellent for all values of
kFξε considered; the leading order agrees for large values of kFξε only, see Fig. 6.5.

Next, we present data in the dirty limit, ` . ξ0, and for a fixed ξ0 and kF while varying
`. The data is shown in Fig. 6.7 with the perturbative results taken from Eqs. (6.17) and
(6.41). The energy variance is well approximated by lowest order perturbation theory in
disorder. Deviations occur in two dimensions, when kF` gets close to one.

Additionally, as shown in Fig. 6.3, in order for us to reach convergence in two dimensions
we have to let the disorder cutoff flow to a distance far exceeding the Fermi wave length.
This supplements Fig. 6.8 by a fully converged plot in the dirty limit. We note especially,
that convergence requires distances of the order of multiple mean free paths and thus the
final value is expected to contain contributions from multiple scattering.

Our approach also allows us to separate contributions to the YSR energy variance arising
from fluctuations of the Andreev phase and normal reflection, see Eq. (6.29). The two
contributions to 〈δε2〉 are shown in Fig. 6.6 for ε/∆ = 0.15. The figure shows that the
main contribution to 〈δε2〉 comes from normal reflection. This is consistent with the fact
that fluctuations of the Andreev phase η(ε) have an additional smallness because δη(ε) is
an antisymmetric function of energy.
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Figure 6.8.: Convergence of the energy variance with disorder cutoff rN in the dirty limit
and in two dimensions. The parameters are kFξ0 = 300 and ξ0/` = 10, with
the same magnetic impurity parameters as in Fig. 6.7. Figure taken from Ref.
[Kien 17] (doi). ©2017 American Physical Society.

6.4. Relation to Ref. [Hui 15]

In this section, we discuss the related Ref. [Hui 15], which reports a much stronger sus-
ceptibility of the YSR energy to disorder than we do. We attribute the difference to the
two approximations made in Ref. [Hui 15].

Without disorder, the magnetic impurity contributes a delta function δ(ω − ε0) to the
density of states. Including and averaging over disorder, this contribution is broadened.
In Ref. [Hui 15], the width of the peak in the density of states is used as a measure of the
disorder-induced variance 〈δε2〉 of the YSR energy.

Reference [Hui 15] calculates the Green function G(ω) in the presence of the magnetic
impurity and non-magnetic disorder in the superconductor and obtains the impurity den-
sity of states from the relation

ρ(ω) = − 1

π
TrIm〈G(ω)〉, (6.42)

where the brackets 〈· · · 〉 refer to the disorder average. The disorder average 〈G(ω)〉 is
then performed with two approximations. First, Ref. [Hui 15] uses the self-consistent
Born approximation (SCBA), which yields a self-consistent equation for 〈G(ω)〉,

〈G(ω)〉 =

{[
G(0)(ω)

]−1
− Σ(ω)

}−1

, (6.43)

where G(0)(ω) is the Green function without the non-magnetic disorder (but with the
magnetic impurity) and

Σk,k′(ω) =
vF

2πν0`V

∑
p

τz
〈
Gp+k,p+k′(ω)

〉
τz (6.44)

is the SCBA self energy (other symbols are defined in Sec. 6.1).
The second approximation in Ref. [Hui 15] is based on the following argument. The

main contribution of the summation in the self energy is from momenta p + k and p +
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k′ at the Fermi-level. Hence, approximately, one can restrict the summation over p to
the manifold defined by |p + k| = |p + k′| = kF. If k 6= k′, these are two independent
equations and hence the manifold has two dimensions less than the dimension of p. If
however k = k′, there is only one constraint and the dimension of the manifold is only one
less than the dimension of p. From this, the authors of Ref. [Hui 15] concluded that the
self energy can be approximated to be diagonal and that it reads

Σk,k′ ≈
vF

2πν0`V
δk,k′

∑
p,q

τz〈Gp,q〉τz. (6.45)

To facilitate the comparison with our own results, we first reformulate these in Green
function language. In the limit kF` � kFξ0 � 1 the YSR state is separated from other
states by a finite gap. Hence, only the lowest order contributions in disorder are expected
to contribute to a shift in the YSR energy and to a good (controlled) approximation, we
can rewrite the low-energy part of Hamiltonian (6.5) as

H = (ε0 + U0,0) |0〉 〈0| . (6.46)

Here, |0〉 is the YSR-state derived in the main text, with its wavefunction given by
Eq. (6.5). The disorder matrix-element U0,0 = 〈0|U(r)τz |0〉 has a Gaussian distribu-
tion with zero average and a variance 〈U2

0,0〉 = 〈δε2〉, where the latter was derived in Eqs.
(6.17) and (6.18) in the main text. Note that, due to particle-hole symmetry being present
in the physical problem, there is also a YSR state at −ε0. However, this second state lives
in a disjunct sector of the Hilbert space and hence it is sufficient to consider only one of
the two states when calculating the spectrum.

The Green function is easily obtained and, within the YSR-state subspace, reads

G(ω) =
1

ω − ε0 − U0,0 + iη
(6.47)

with η ↓ 0. The average density of states reads

ρ(ω) =
1√

2π〈δε〉2
e−(ω−ε0)2/2〈δε〉2 , (6.48)

in exact quantitative agreement with the perturbation theory of Sec. 6.2.
We now investigate the effect of the first approximation in [Hui 15]. For the low-energy

Hamiltonian (6.46) the expression for the SCBA self energy reads

Σ(ω) = 〈δε2〉 〈G(ω)〉 . (6.49)

Solving Eqs. (6.43) and (6.49) one finds

ρ(ω) =


√

4〈δε2〉−(ω−ε0)2

2π〈δε2〉 for (ω − ε0)2 < 4〈δε2〉,
0 else.

(6.50)

This result disagrees qualitatively from the exact result (6.48), although the order-of-
magnitude of the width of the density of states peak is still correct.
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The second approximation relies on the assumption that Σ(ω) and 〈G(ω)〉 are diagonal
in momentum space. The latter assumption is clearly questionable, since the presence
of the magnetic impurity causes the Green function to be non-diagonal in momentum
space. In contrast, replacing the single sum in Eq. (6.44) by the double sum in Eq. (6.45)
assumes a diagonal Green function. Taking the double sum greatly increases the impurity
contribution to the diagonal part of Σ(ω), whereas the approximation (6.45) ignores any
impurity-induced off-diagonal contribution to Σ(ω). With this second approximation, the
momentum sums can be replaced by energy integrations. In this step, the dependence
on kF` as well as system dimensionality drops out, leaving a dependence on the ratio
`/ξ0 only, a feature that clearly contradicts the direct perturbative solution (6.48) in the
weak-disorder limit ξ0 � `.

To conclude, while both approximation made in Ref. [Hui 15] are uncontrolled, we
believe it is the second approximation that is responsible for the stark qualitative difference
between that reference and the present results.

6.5. Conclusion

In this chapter, we have analyzed the variance of the YSR energy due to nonmagnetic
disorder in both two and three dimensions. Mapping this problem to a scattering ansatz
for electrons and holes close to the magnetic impurity allowed us to reduce the effects of
nonmagnetic disorder to two separate contributions.

First, the Andreev phase, which is picked up when an electron is Andreev reflected as
a hole or vice versa, starts fluctuating as a function of disorder configuration. Using time
reversal and particle hole symmetry, we have argued that this contribution is expected to
be negligible in the limit kF`, kF ξε � 1. Numerical calculations confirmed this prediction.

Second, disorder can flip the momentum and lead to a finite normal reflection amplitude
for electrons or holes propagating from the impurity into the superconductor. We find that
the normal reflection probability is small if kF` � log [kFξε max(1, ξε/`)] and kF` � 1 in
two and three dimensions, respectively. Importantly YSR states can be robust to disorder
even in the limit of a dirty superconductor.

Finally, we found that in three dimensions only disorder within a few Fermi wavelengths
of the magnetic impurity contributes to the YSR energy variance. This is in contrast to
two dimensions, where disorder from distances up to the coherence length contributes.

Our results relax earlier claims [Hui 15], which suggested that at ` of the order of ξ0 the
width of YSR energy distribution becomes of the order of the superconducting gap. Our
findings show that λF is a crucial parameter to be included into the discussion and that
this typically leads to a negligible influence of disorder.

Our findings also have implications for one dimensional topological superconductors,
that are formed by dilute classical adatom chains. These systems can be described by
effective tight-binding models [Pien 15]. (Note, however, that current experiments may
well be in a rather different limit in which the hybridization of the adatom d levels plays
an important role [Nadj 14, Ruby 15a, Pawl 16, Feld 17, Ruby 17].) The on-site energies
in these models are immune to disorder, if the conditions are met that we derived in this
chapter for the single Shiba states. This leaves the discussion of the tunneling and pairing
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strengths. If the distance d between the impurities is small compared to `, we expect the
influence of disorder on the nearest neighbor hopping and pairing terms to be suppressed
by a factor d/` ∼ 1/kF`. However, previous studies have shown [Pien 13, Pien 14b], that
in a clean system with kFξ0 � kFd � 1, tunneling is following a long-range, 1/r power
law. Thus, strictly speaking, more than nearest-neighbor terms have to be included. If
the length of the chain is smaller than the mean free path, the same arguments as for the
nearest-neighbor elements apply. For longer chains, further work is required to investigate
the influence of disorder on long range tunneling and pairing elements.
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7. Conclusion

In this thesis, we study low-energy excitations in strongly-coupled superconductor-magnet
hybrids. We employ analytical and numerical methods of scattering theory to infer prop-
erties of the systems of interest. Much of the motivation of this thesis originates from the
goal of realizing a robust phase of topological superconductivity and observing Majorana
bound states in quasi-one dimensional systems.

In Chapter 2, we place this thesis into context. We review the theoretical progress
that lead to the prediction of topological superconductivity and Majorana bound states
in condensed matter systems, and investigate a model for weakly-coupled superconductor-
magnet hybrids with a translationally invariant bulk. For this model, we define a topo-
logical index and argue based on bulk-boundary correspondence that MBS appear when
two systems with a different topological index are connected. We finish our review by dis-
cussing two experimental realizations of topological superconductivity that gained much
attention in the current decade. These are semiconductor nanowires coupled to an s-wave
superconductor and placed inside a magnetic field, and adatom chains placed on top of an
s-wave superconductor. While signatures of Majorana bound states have been observed
in both of these systems, and the quality of these observations has been greatly improved
over the past years, these signatures remain ambiguous and it is still contentious whether
these experiments really observed Majorana bound states.

In the second part of chapter 2, we review another type of superconductor-magnet
heterostructure, a single magnetic impurity coupled to an s-wave superconductor. For
sufficiently strong coupling, it has been predicted that YSR states appear deep inside the
bulk superconductor’s gap and localized to the magnetic impurity. Besides the possibility
to couple multiple YSR states in order to realize a topological superconductor [Nadj 13,
Pien 13], isolated YSR states have intriguing properties by themselves and effort is being
put into better understanding these properties. Examples include the sudden change of
the electronic ground state from having total spin zero to total spin one when the YSR
energy crosses zero, the asymmetry of the particle and hole components of the YSR state,
and the appearance of multiple YSR states due to the coupling to different orbitals of the
magnetic impurity. Progress in control, fabrication and measurement techniques made it
possible to observe these states routinely in experiment, to verify theoretical predictions,
as well as to uncover new facets of YSR states [Yazd 97, Ji 08, Ji 10, Fran 11, Ruby 15b,
Mena 15, Hatt 15, Ruby 16, Choi 17, Hatt 17, Ruby 18, Fari 18, Kezi 18].

In chapter 3, we introduce the basic concepts of scattering theory used in this thesis,
based on the central concept of the S-matrix. We then apply scattering theory to the
extensively studied models of a wire with either a s-wave or a p-wave pairing potential,
where the later corresponds to a continuum version of the Kitaev chain [Kita 01], and
show that only for the p-wave case a bound state appears at the boundary, and that
this bound state is of Majorana type. Furthermore, we review a concatenation method
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that is used extensively in the later chapters and was previously applied in a variety of
contexts. It allows one to calculate the S-matrix of an elongated region by concatenating
the S-matrices of thin-slices of this elongated scattering region. This has the advantage
that one can perturbatively calculate the scattering matrix of the thin-slices and use a
concatenation prescription to obtain the S-matrix of the elongated scattering region.

Chapter 4 studies the low-energy excitations of a spin-polarized metallic wire that is
coupled to an s-wave superconductor, with spin-orbit coupling in either of the materials.
On the one hand, in the limit of weak coupling between superconductor and wire, this
model has been studied previously [Duck 11]. The low-energy excitations can be described
by the large-B limit of the weak-coupling model introduced in Sec. 2.1.2, and thus the
model realizes a topological superconductor. On the other hand, previous studies have
shown that strong coupling between a superconductor and adatom chains or semiconductor
nanowires leads to a renormalization of the properties of the topological phase, such as the
quasiparticle velocity, Majorana localization length and induced gap [Peng 15, Das 15,
Stic 17, Stan 17].

In this thesis, we investigate these renormalization effects from the point of view of
scattering theory in the case of coupling to either a two- and a three dimensional su-
perconductor. Our approach allows us to trace the renormalization of the quasiparticle
velocity back to Andreev processes that lead to zero net-displacement along the wire.
In the low-transparency limit, these predictions differ from a purely classical derivation
due to a π phase-shift that is picked up when quasiparticles are Andreev reflected twice.
Furthermore, as a function of interface transparency, our analysis yields the power law
dependencies of the induced gap, the localization length, and the velocity in the regimes
of very small and intermediate transparencies, and allows us to calculate the same quanti-
ties numerically at arbitrary transparencies. We find that large transparencies generically
lead to a large induced gap and a small localization length, compared to very small trans-
parencies. For intermediate transparencies, the induced gap is renormalized by the same
factor as the velocity, while we find no such renormalization for the localization length
of the Majorana bound state. Upon comparing these results with a previously employed
Green function approach that accounts for the strong coupling to the superconductor by
a local, energy-dependent self-energy, we find good qualitative agreement with our results
[Peng 15]. Furthermore, our approach gives a semiclassical understanding of the locality
of the self energy in terms of zero net-displacement scattering processes.

Recent experiments on Majorana wires use semiconductor nanowires coupled to thin
superconducting coats. These thin coats have a thickness much smaller than the expected
coherence length of the superconducting condensate [Chan 15, Deng 16, Albr 16, Zhan 18].
On the one hand, the small thickness reduces the size of the experimental setup, leads to
a small magnetic flux through the superconductor for fields parallel to the wire, allows for
relatively pristine interfaces with semiconductor nanowires, and has been found to induce
a hard gap in the proximitized wire [Krog 15, Chan 15]. On the other hand, it has been
suggested that finite size effects play a role and can be detrimental for the induced gap
[Reeg 17]. These finite size effects originate in the small thickness of the superconductor
compared to its coherence length, and one may pose the question which effects could be
included in order to reverse these detrimental effects.

In chapter 5, we investigate the low-energy spectrum of such a normal metal coupled to
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a thin two- or three-dimensional superconducting coat with disorder present in the bulk
or the exposed surface of the superconductor. Based on a semiclassical approximation, we
argue that the induced gap is small in the absence of disorder and for typical experimental
parameters, even when the interface transparency becomes of order unity. The induced
gap is suppressed in the ratio of normal-metal to superconductor thickness. Within our
semiclassical approximation and for approximately matching Fermi velocities in the normal
metal and superconductor, we argue that this suppression can be lifted by the presence of
disorder in the bulk or at the exposed surface of the superconductor. Notably, for a large
coherence length compared to the normal-metal thickness, we predict that a mean free
path larger than the superconductor thickness is sufficient to enhance the gap towards
values close to the bulk gap of the superconductor. These findings are in qualitative
agreement with the observation of large induced gaps in recent experiments [Krog 15,
Chan 15, Deng 16, Albr 16, Zhan 18], as well as with the results of other theoretical studies
that report an enhanced gap due to surface disorder [Reeg 18a].

We back up our prediction by two methods. First, in the absence of disorder, we derive
an effective low-energy Hamiltonian in the basis of the normal-state wavefunctions and
obtain its low-energy spectrum. These results show good agreement with results obtained
within our semiclassical approximation, as well as with previous results from the literature
[Reeg 17]. Furthermore, we employ the scattering approach discussed in Sec. 3.3 in order
to numerically calculate the low-energy density of states for the full model-Hamiltonian,
including disorder effects. Again, our results show good agreements with our semi-classical
results for weak-disorder. For large disorder-strengths, deviations occur that we attribute
to the onset of Anderson localization.

In chapter 4, we consider the renormalization processes in the case of a superconductor
with a thickness large compared to its coherence length, and find that the renormalization
of the velocity can be traced back to consecutive Andreev reflection processes that generate
zero net-displacement along the wire. Our discussion in chapter 5 begs the question, on
whether such renormalization processes are also present in the case of thin superconducting
coats that have a sufficiently small mean free path. Our qualitative arguments in chapter 4
relied on processes, where an electron that enters the superconductor is retroreflected as a
time-reversed hole with opposite spin. Because Andreev reflection for a time-reversal sym-
metric superconductor is retroflection between electrons and holes that are time-reversed
partners, these processes also occur if transport inside the superconductor is diffusive due
to scattering for example from the surface. Hence, we believe that processes that lead to
zero-net displacement are also present in the case of thin superconducting coats, and we
expect the presence of renormalization effects similar to those in chapter 4.

Finally, chapter 6 turns from wire-superconductor hybrids to point-like magnetic scat-
terers coupled to a superconductor and investigates the influence of non-magnetic disorder
on the energy of YSR states. Our model considers the case of a magnetic impurity em-
bedded in either a two- or three dimensional superconductor, and the extension of the
superconductor is assumed to be large compared to the coherence length in the super-
conductor. We tackle this problem by calculating the variance of the YSR energy using
a perturbative, a semiclassical, and a non-perturbative numerical ansatz. For three di-
mensions, we find that the energy variance is small in the product of mean free path and
Fermi wavenumber. In two dimensions, the energy variance has the same dependence on
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the mean free path, but is larger by a logarithmic factor that depends on the coherence
length. Our analysis shows that this differences arises from the fact that for three dimen-
sions only weak disorder within a few Fermi-wave lengths around the magnetic impurity
contributes to the energy variance. Our results show that the spectral properties of YSR
states have a strong robustness to disorder, even for moderate amounts of disorder, and
relax findings of a previous study that found a strong susceptibility to disorder once the
mean free path becomes small compared to the coherence length [Hui 15].

In conclusion, this thesis discusses superconductor-magnet hybrids of various geometries,
with a focus on the strong coupling regime between both materials. Much attention is paid
to the relation with current developments towards realizing robust phases of topological
superconductivity. While many research paths can be followed that use a topological
superconductor as a basic building block, in this thesis we commit ourselves to improving
the basic understanding of the building block itself, as well as related hybrid structures.
Throughout this thesis we use scattering theory as a tool to achieve this understanding
and aim at reducing effects to basic scattering processes. For example, in chapter 4 we
have shown that the renormalization of the quasiparticle velocity can be traced back to
successive Andreev reflections that create zero net-displacement along the wire, chapter
5 shows how to deduce the gap induced by a thin superconductor from basic scattering
processes within a semiclassical approximation, and in chapter 6, we related the variance
of the YSR energy to scattering processes reminiscent of those of a random walk.
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Appendix





A. Scattering matrix and born
approximation

In this chapter, we give a derivation of the scattering matrix in a more general context than
that of chapter 3, and derive the Born approximation, which is used at several occasions
in this thesis. The contents of this chapter are not new and have been covered in the
literature before in many places, see for example Refs. [Lipp 50, Saku 94, Thom 15].

To start, consider the Hamiltonian

Ĥ(t) = Ĥ0 + V̂ e−η|t| (A.1)

where we call Ĥ0 the free Hamiltonian with the complete set of free solutions

ε |φα(ε)〉 = Ĥ0 |φα(ε)〉 , (A.2)

normalized to
〈φα(ε)|φβ(ε′)〉 = 2π~δ(ε− ε′)δαβ, (A.3)

and V̂ is scattering potential that is slowly turned on and off at a rate η → 0. In a typical
scattering problem we take an initial state |φα〉 at t → −∞, let it scatter from V̂ , and
asks: What are the scattering amplitudes Sβα into the finial states |φβ〉 at t → ∞? The
matrix Sβα is called the S-matrix or scattering matrix.

More formally, we define the retarded and advanced wave functions |ψR(t, ε)〉 and
|ψA(t, ε)〉 that solve the time-dependent Schrödinger equation

i~∂t |ψR/Aα (t, ε)〉 = Ĥ(t) |ψR/Aα (t, ε)〉 , (A.4)

such that

lim
t→∓∞

|ψR/Aα (t, ε)〉 = lim
t→∓∞

e−iεt |φα(ε)〉 . (A.5)

That is, the retarded solution is the forward propagation of the initial state |φα(ε)〉 from
t → −∞ to a finite time, and the advanced solution is the backward propagation of the
final state from t→∞ to a finite time.

In terms of the retarded wavefunctions, we then define the scattering amplitudes via
the expansion

lim
t→∞
|ψRα (t, ε)〉 = lim

t→∞

∑
β

Sβα(ε)−iεt |φβ(ε)〉 . (A.6)

Next, we transform Eq. (A.6) into a more accessible form. First, we apply the bra
lim
t→∞
〈φβ(ε′)| eiε′t to Eq. (A.6) and obtain

Sβα(ε)2π~δ(ε′ − ε) = 〈ψAβ (0, ε′)|ψRα (0, ε)〉 . (A.7)
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A. Scattering matrix and born approximation

Here, we kept the braket on the left-hand side to keep the choice of normalization open
and on the right-hand side we evolved the bra and ket back in time to t = 0, which leaves
the braket invariant. An implicit solution to Eq. (A.1) at t = 0 and for η → 0 is given by
the Lippmann-Schwinger equation [Lipp 50]

|ψR/Aα (ε)〉 =

(
1 +

1

ε− Ĥ ± iη
V̂

)
|φα(ε)〉 , (A.8)

where we dropped the time-argument for ψ
R/A
α . We can use Eq. (A.8) to transform Eq.

(A.7),

Sβα2π~δ(ε− ε′) =
(
〈ψRβ (ε′)|+ 〈ψAβ (ε′)| − 〈ψRβ (ε′)|

)
|ψRα (ε)〉 (A.9)

= 2π~δ(ε− ε′)δαβ + 〈φβ(ε′)| V̂
(

1

ε′ − Ĥ + iη
− 1

ε′ − Ĥ − iη

)
|ψRα (ε)〉

= 2π~δ(ε− ε′)
(
δαβ − i 〈φβ(ε)| V̂ |ψRα (0, ε)〉 /~

)
.

In principle, one can solve the Lippmann-Schwinger and then obtain the scattering matrix
from Eq. (A.9). However, the former is an implicit equation and the lack of a general
solution makes this a non-trivial problem.

An explicit solution for the scattering-matrix can be obtained using the lowest-order
Born approximation, which evaluates Eq. (A.9) to lowest order in V̂ . In this case,

Sβα = δαβ −
i

~
〈φβ(ε)| V̂ |φα(ε)〉 . (A.10)

We will make extensive use of this equation in this thesis.
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B. Details on the numerics of the thin
superconductor setup

In this appendix, we supplement the discussion of Sec. 5.6.1 by presenting an explicit

derivation of Sleft/right and explicit expressions for T (j)
ν′ν .

The scattering matrices between zero-energy and finite-energy modes Sleft/right are ob-
tained as follows. For mNx = mS, the transverse modes ψ⊥ and sinnyπy/W are inde-
pendent of energy and orthogonal. Hence, the scattering matrices Sleft/right become block
diagonal, with each block Sleft/right,α corresponding to multi-index α = (τ, ny, nz). By
matching the wavefunction

Λα(r, ε) = A
(ε)
+,αψ+,α(r, ε) +A

(ε)
−,αψ−,α(r, ε) (B.1)

for x ↑ 0 with Λα(r, 0) for x ↓ 0, we obtain(
A

(0)
+,α

A
(ε)
−,α

)
=

 2
√
kx(ε)kx(0)

kx(ε)+kx(0)
kx(0)−kx(ε)
kx(ε)+kx(0)

−kx(0)−kx(ε)
kx(ε)+kx(0)

2
√
kx(ε)kx(0)

kx(ε)+kx(0)


︸ ︷︷ ︸

Sleft,α

(
A

(ε)
+,α

A
(0)
−,α

)
. (B.2)

Note that in our notation we dropped the dependence on α in kx(ε). Similarly, by matching
the wavefunction

Λα(r, ε) = B
(ε)
+,αψ+,α(r, ε) +B

(ε)
−,αψ−,α(r, ε) (B.3)

for x ↓ L with Λα(r, 0) for x ↑ L, we obtain(
B

(ε)
+,α

B
(0)
−,α

)
=

2
√
kx(ε)kx(0)

kx(ε)+kx(0) e
iτ [kx(0)−kx(ε)]L kx(ε)−kx(0)

kx(ε)+kx(0)e
−2iτkx(ε)L

−kx(ε)−kx(0)
kx(ε)+kx(0)e

2iτkx(0)L 2
√
kx(ε)kx(0)

kx(ε)+kx(0) e
iτ [kx(0)−kx(ε)]L


︸ ︷︷ ︸

Sright,α

(
B

(0)
+,α

B
(ε)
−,α

)
. (B.4)

Next, we present explicit expressions for Eq. (5.56) in chapter (5). These split into

T (j)
ν′ν = T (j)

ε,ν′ν + T (j)
∆,ν′ν + T (j)

γ,ν′ν , (B.5)

where

T (j)
ε,ν′ν =− εδν′,νχν′,ν , (B.6)

T (j)
∆,ν′ν =∆χν′,νΘν′,ν , (B.7)
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B. Details on the numerics of the thin superconductor setup

χν′,ν =− i
eiqν′,νx

[
eiqν′,νδL − 1

]
~qν′,ν

√
v′xvx

, (B.8)

qν′,ν =τskx − τ ′s′k′x, (B.9)

Θν′,ν =
2DSτ

′τd∗τ ′dτe
i(τ ′k′Sz−τkSz)DS√

Nν′Nνv′SzvSz

× (B.10)[
sincD`(k

′
Sz − kSz)− sincD`(k

′
Sz + kSz)

]
,

where kx = kx(0). The disorder contribution takes the form

T (j)
γ,ν′ν =4τ

√
γδτ ′,τe

iqν′,νxi(X
(i)
ν′,ν + iY

(i)
ν′,ν)× (B.11)

d∗τ ′dτe
−iτ(kSz−k′Sz)DS√

Nν′NνvSzv′Szvxv
′
x

(B.12)

Here γ = ~vS/2πν0`, and X
(i)
ν′,ν and Y

(i)
ν′,ν are correlated Gaussian random variables with

zero mean. The covariance matrix of (Xν′,ν , Yν′,ν)T reads

C =

(
C

(x)
XX C

(x)
XY

(C
(x)
XY )T C

(x)
Y Y

)
C(y)C(z). (B.13)

In Eq. (B.13), we dropped the indices (ν ′1, ν1), (ν ′2, ν2) that are attached to each C and
the C(x), C(y), and C(z) are multiplied element wise. Together with the fact that X(i)

and Y (i) have zero mean and are multivariate Gaussian random variables, the knowledge
of the covariance matrix C allows us to draw the random numbers for each slice in our
numerics.

For three dimensions, the explicit forms of the C’s are
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C
(x)
XX,(ν′1,ν1),(ν′2,ν2)

=
δL

2
[sinc δL(q1 − q2) + sinc δL(q1 + q2)] , (B.14)

C
(x)
XY,(ν′1,ν1),(ν′2,ν2)

=
q2 − q1

4
δL2 [sinc δL(q1 − q2)/2]2 +

q2 + q1

4
δL2 [sinc δL(q1 + q2)/2]2 ,

(B.15)

C
(x)
Y Y,(ν′1,ν1),(ν′2,ν2)

=
δL

2
[sinc δL(q1 − q2)− sinc δL(q1 + q2)] , (B.16)

C
(y)
(ν′1,ν1),(ν′2,ν2)

=
1

2DN

[
δ0,n′y,1+ny,1−n′y,2−ny,2 + δ0,n′y,1−ny,1−n′y,2+ny,2 + δ0,n′y,1−ny,1+n′y,2−ny,2

−δ0,n′y,1−ny,1−n′y,2−ny,2 − δ0,n′y,1−ny,1+n′y,2+ny,2 − δ0,n′y,1+ny,1−n′y,2+ny,2

−δ0,n′y,1+ny,1+n′y,2−ny,2

]
, (B.17)

C
(z)
(ν′1,ν1),(ν′2,ν2)

=
DS

8

[
sincD`(k

′
Sz1 + kSz1 + k′Sz2 + kSz2) + sincD`(k

′
Sz1 + kSz1 − k′Sz2 − kSz2)

+sincD`(k
′
Sz1 − kSz1 − k′Sz2 + kSz2) + sincD`(k

′
Sz1 − kSz1 + k′Sz2 − kSz2)

−sincD`(k
′
Sz1 − kSz1 − k′Sz2 − kSz2)− sincD`(k

′
Sz1 − kSz1 + k′Sz2 + kSz2)

−sincD`(k
′
Sz1 + kSz1 − k′Sz2 + kSz2)− sincD`(k

′
Sz1 + kSz1 + k′Sz2 − kSz2)

]
,

(B.18)

where qi = qν′i,νi , δn,m is the Kronecker delta and sincx = (sinx)/x. For two dimensions

the C(x) and C(y) are the same as in three dimension. For the y direction we restrict the
multi-index ν to ny = 1 and set C(y) equal to the identity matrix.

99





C. Transfer matrix for the YSR problem

This appendix is based on the appendix of Ref. [Kien 17] (doi), copyright remains with
©2017 American Physical Society.

In this appendix, we present explicit expressions for the transfer matrix of a thin, disor-
dered and superconducting slice that has a circular or a spherical shape. Using Eq. (6.37)
this enables one to calculate the corresponding scattering matrix of the thin slice.

C.1. Circular slice

First we consider a circular slice of a two-dimensional superconductor. In this case, we
define the radial part of the propagating waves in Eq. (6.34) as

Rem±(r) =

√
kF

4vF
H(±)
m (kFr)

(
1
0

)
,

for electrons and

Rhm±(r) =

√
kF

4vF
H(∓)
m (kFr)

(
0
1

)
,

for holes.
Within first order Born approximation, for a slice of width dr, at an energy ε and at a

radius rn from the origin, we obtain the transfer matrix

T (n)
ν′ν = R†ν′(rn)

(
dT̂ (n)δm′,m + dΓ̂

(n)
m′,m

)
Rν(rn),

with the same multi-index ν as in the main text. The term diagonal in angular momentum
reads

dT̂ (n) = (∆τx − ε)2πrndr.

For the disorder element we get

dΓ̂
(n)
m′,m =

√
γ2πrndrX

(n)
m′−mτz.

The random part is absorbed into

X
(n)
m′−m =

Y
(n)

0 for m=m’
Y

(n)

|m′−m|+isign(m′−m)Z
(n)

|m′−m|√
2

else

corresponding to the Fourier transform of white noise. Here Y
(n)
m and Z

(n)
m are independent,

normally distributed random variables with zero mean and variance one. Note that not
all elements of X(n) are independent since Xm′−m = X∗m−m′ .
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C. Transfer matrix for the YSR problem

C.2. Spherical slice

Next we calculate the transfer matrix of a thin, spherical slice in three dimensions. In this
case, the radial modes are defined as

Rem±(r) =

√
k2

F

4πvF
h

(±)
l (kFr)

(
1
0

)
for electrons and

Rhm±(r) =

√
k2

F

4πvF
h

(∓)
l (kFr)

(
0
1

)
for holes, with a total angular momentum quantum number l.

Within first order Born approximation and for a spherical slice of width dr at a radius
rn, the transfer matrix reads

T (n)
ν′ν = R†ν′(rn)

(
dT̂ (n)δl′lδm′m + dΓ̂

(n)
l′m′lm

)
Rν(rn)

similar to Eq. (C.1).
The term diagonal in the angular momentum quantum numbers reads

dT̂ (n) = (∆τx − ε)4πr2
ndr

and the disorder element is

dΓ̂
(n)
l′m′lm = τz

√
γ4πr2

ndrΞl′m′lm.

The random variable Ξl′m′lm takes a more complicated form in three than in two dimen-
sions, due to the involvement of the product of two spherical harmonics in the calculation
of the matrix elements in Eq. (6.38). These products can be expressed as a sum over single
spherical harmonics for which explicit expressions are known [Vars 88]. For these single
spherical harmonics we can calculate the overlap with the Gaussian disorder potential.
Following this strategy we obtain

Ξl′m′lm =
∞∑
L=0

cL,∆ml′m′lmXL,∆m

where the coefficients for the transformation between a single and the product of two
spherical harmonics are

cL,∆ml′m′lm =(−1)m

√
(2l′ + 1)(2l + 1)

4π(2L+ 1)
(C.1)

× CL, 0l′, 0, l, 0C
L,∆m
l′,m′, l,m. (C.2)

Here
CL,∆ml′,m′, l,m = 〈l′, m′, l, m|L, ∆m〉
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are the Clebsch Gordan coefficients [Vars 88]. Additionally, the overlap of the single
spherical harmonics with the angular part of the Gaussian disorder potential yields the
random numbers [Lang 15]

X
(n)
L,∆m =


Y

(n)
L,∆m+iZ

(n)
L,∆m√

2
for ∆m > 0

Y
(n)
L, 0 for ∆m = 0

(−1)∆mX
(n)
L,−∆m for ∆m < 0

Here, similar to the two dimensional case, YL,∆m and ZL,∆m are independent, normally
distributed random variables with zero mean and variance one.
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Gonzalez, Max Hering, Elina Locane, Zhao Liu, Flore Kunst, Laura Baez, Max Geier,
Max Trescher, Michele Filippone, Kevin Madsen, Jonas Sonnenschein, Christian Fräßdorf
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