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Summary

Multivalency is a ubiquitous mechanism in nature involved in numerous biologi-
cal processes such as recognition, adhesion, self-organization of matter and signal
transduction. Multivalency can be defined as the binding of an n-valent ligand
to an m-valent receptor through non-covalent, strong, but reversible interactions.
Recently, multivalency has been applied as a principle to design novel molecules
with a potential to fight the different microbes. Therefore, the majority of the
experimental and theoretical framework has been developed in the areas facili-
tating the ligand design, while its respective receptor is usually assumed to be
somewhat rigid. However, this assumption does not always hold. Thus the pri-
mary focus of this thesis was to investigate the conformational behavior of three
multivalent systems with computational methods and to correlate these findings

with the outcomes of the complementary experiments.

First, we investigated the carbohydrate uptake and release by a trivalent C-type
lectin receptor Langerin, since the little was known about this mechanism. The
carbohydrate recognition is dependent on the Ca?* cofactor. We demonstrated
that the Ca** binding to Langerin is pH-sensitive and under control of a robust
allosteric network. Additionally, we showed that the conformational dynamics of

Langerin comprised several events occurring at different timescales.

Then, I focused on elucidating the conformational dynamics and its influence on
the design and the potency of the trivalent sialosides to inhibit a viral protein

Hemagglutinin.

Last, I explored a bivalent recognition process on the example of a proline-rich
peptide SmB5 and tandem-WW domains of a spliceosomal Formin Binding Pro-
tein 21. In this study, I reported a highly complex conformational dynamics of
the apo receptor, shed light on its respective free energy landscape, proposed a
scheme for determining a binding-competent structure and modeled a binding

complex.



Zusammenfassung

Multivalenz ist ein allgegenwartiger Mechanismus in der Natur, der in eine Vielzahl
biologischer Prozesse wie zur Erkennung, Adhésion, Selbstorganisation von Ma-
terie und Signaliibertragung involviert ist. Multivalenz kann als Bindung eines
n-valenten Liganden an einen m-valenten Rezeptor durch nichtkovalente, starke,
aber reversible Wechselwirkungen definiert werden. Unléngst wurde Multivalenz
als Prinzip fiir das Design neuartiger Molekiile mit Potential zur Bekdmpfung ver-
schiedener Mikroben angewandt. Daher wurde ein Grofteil des experimentellen
und theoretischen Grundgeriists in Bereichen entwickelt, die das Ligandendesign
unterstiitzen, wahrend der entsprechende Rezeptor gewohnlich als eher unbe-
weglich betrachtet wird. Allerdings ist diese Annahme nicht immer berechtigt.
Deshalb liegt der primére Fokus dieser Arbeit auf der Untersuchung des konfor-
mationellen Verhaltens dreier multivalenter Systeme mit computerunterstiitzten
Methoden und der Korrelation der Resultate mit den Ergebnissen ergénzender

Experimente.

Zunachst untersuchten wir die Kohlenhydrataufnahme und -freisetzung des triva-
lenten C-typ Lectinrezeptors Langerin, da nur wenig iiber diesen Mechanismus
bekannt ist. Die Kohlenhydraterkennung ist auf einen Ca?"-Kofaktor angewiesen.
Wir wiesen nach, dass die Ca?"-Bindung an Langerin pH-sensitiv ist und unter
Kontrolle eines robusten allosterischen Netzwerks steht. Aufserdem zeigten wir,
dass die Konformationsdynamik von Langerin mehrere Vorgéinge auf unterschiedlichen

Zeitskalen umfasst.

Weiterhin konzentrierte ich mich auf die Aufklarung der Konformationsdynamik
und deren Einfluss auf Design und Wirksamkeit trivalenter Sialoside das virale

Protein Himagglutinin zu hemmen.

Zuletzt untersuchte ich einen bivalenten Erkennungsprozess am Beispiel des pro-
linreichen Peptids SmB, und Tandem-WW-Doménen des spliceosomalen Formin-
bindenden Proteins 21. In dieser Studie berichtete ich von der hochkomplexen
Konformationsdynamik des Aporezeptors, klarte die entsprechende Freie Energie-
Landschaft auf, schlug ein Schema zur Bestimmung einer bindungskompetenten

Struktur vor und modellierte einen bindenden Komplex.
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Chapter 1

Introduction

1.1 Multivalency

Multivalency is an important mechanism in nature that comprises the non-covalent,
strong and reversible binding between m-valent ligands and n-valent receptors
(where myn >1) [1]. Examples of multivalency include attachment of pathogens
to the host cells through carbohydrate-protein interactions [2], cell-cell adhe-
sion, multivalent DNA-protein interactions essential for the gene expression, and
multivalent protein-protein interactions that are the key element in the antibody-

mediated immunological responses |[3].

Recently an idea of fighting the nature with its own weapons arose through a
concept of a multivalent ligand design. In such ligands, the carbohydrate moieties
are assembled into the supramolecular structures by the spacers or interfaces of
the diverse origins. To quantify the increase in the binding affinity Mammen and

coworkers introduced the enhancement factor

Kamuiti
8= —Kdmom) (1.1)
where Kgmuii and Ky mono are the dissociation constants of the multivalent ligand
and its monovalent counterpart respectively [4]. An advantage of this enhance-
ment factor [ is that it can be used when the exact number of the ligand-receptor
entities is unknown a priori, which is often the case in biological systems. How-
ever, this affinity measure cannot distinguish multivalency from the cooperativity

and symmetry effects [5].

The interaction of the n monovalent ligands with an m-valent receptor is not
considered as multivalent. Nonetheless, the multivalent architecture of the recep-
tor itself increases the probability of the monovalent ligand to bind more often.

Similarly, this symmetry effect is incorporated in the multivalency. Cooperativity
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effect describes how the binding of one ligand changes the affinity of the multiva-
lent receptor to support further binding. Cooperativity is said to be neutral when
all ligands have the same affinity for the given multivalent receptor (noncoopera-
tive effect). Then, positive cooperativity implies that affinity for the first ligand
is the lowest compared to all other ligands of the binding series. Finally, when
the binding of the first ligand decreases the probability of the subsequent binding
events, one assumes negative cooperativity. Multivalency is often confused with
the positive (synergetic) cooperativity. Furthermore, the negative cooperativity
effect was reported for the most multivalent carbohydrate-lectin interactions and

multivalent molecular machines. [6, 7|.

Affinity enhancement can be explained regarding the favorable thermodynamics
or kinetics of the multivalent binding event when compared to the monovalent
case. Sometimes, the affinity enhancement can be attributed to a rebinding effect.
The increased concentration of the ligand in the proximity of the receptor causes
the rebinding events, which in turn govern the system to a state where all ligands

are bound.

Thermodynamics model of a monovalent ligand binding to a multivalent receptor

still can be represented by the binding free energy (AG) as following;:
AG = AH — TAS. (1.2)

The enthalpic component of binding A H accounts for all the non-covalent interac-
tions formed between the ligand and the binding site, whereas entropic component
represents the number of degrees of freedom lost upon binding (considering ligand
and receptor combined). Further, the entropic component AS can be realized as
the sum of the translational (AS.q,s), rotational (AS,,) and conformational en-
tropy (ASeons) of the ligand, and the desolvation effects occurring at the receptor
(ASsom):

AS = ASirans + ASyor + AScons + ASsop. (1.3)

The translation entropy represents the freedom of a molecule to independently
move through space. It is directly dependent on the logarithm of the mass of a
molecule (AS;ans < log(M)), and inversely proportional to the logarithm of its
concentration (AS;qns o< log([L])™). The rotational entropy represents the pos-
sibility of a molecule to rotate around all three Cartesian axes and it proportional
to the product of three momenta of inertia (AS,, o log(1;1,1.)). Therefore, those
two entropy contributions are weakly dependent on the mass and dimensions of

a molecule. If it is assumed that AS;..,, and AS,,; are equal for the ligand,
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the receptor and the ligand-receptor species, then, upon ligand-receptor complex
formation, three translational and three rotational degrees of freedom are lost. If
the difference in the masses of the ligand and receptor is neglected then the total
translational and rotational entropic cost of the ligand-receptor complex forma-
tion (independent of the mono-/multivalent nature) is approximately the same

given that both molecules are at the same concentration in solution.

A 2@ +20 = 2@
8 —&
+ —
L 4
: path%"‘D

€ __
<=
L e [:

FIGURE 1.1: Thermodynamic models of mono/bivalent binding:

(A) Binding of a rigid monovalent ligand to a rigid monovalent

receptor; (B) Binding of a rigid bivalent ligand to a rigid bivalent

receptor; (C) Binding of a flexible bivalent ligand to a somewhat
flexible bivalent receptor.

et
et

Consider binding of two monovalent ligands to two monovalent receptors. If both
binding partner are absolutely rigid resulting in the conformational entropy equals

to zero and the total entropic cost is (Figure 1.1A):

AS = 2A8Mme 4 9 A gmeno, (1.4)

trans rot

When a rigid bivalent ligand associates with a rigid bivalent receptor (AS.,, =0,

once the first ligand-complex is formed, there is no further translational and
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rotational cost involved in the subsequent ligand-receptor pair formation (Figure
1.1B):
AS = ASTOn + ASTIC, (1.5)

trans rot

Hence, this type of multivalent binding is thought to be entropically enhanced.
However, this binding scenario is rather unrealistic, as multivalent ligands and
receptors pose the certain degree of flexibility encoded in their nature. For the
realistic systems, the conformational entropy AS,,; has almost always negative
value due to the reduction of conformational spaces of both binding partners.
Now assume that the binding event occurs between a pair of somewhat flexible
bivalent ligand and bivalent receptor (Figure 1.1C), and the flexibility of a bivalent
receptor is restricted to two binding sites. If binding event follows a path A and:

A mono < Asmono _|_ ASmOTLO (1 6)

conf trans rot

then the binding in such a bivalent system is still entropically enhanced compared
to the monovalent case. This is the favourable scenario in the design of the
multivalent ligands. When there is an equal probability of the bivalent system
taking both binding paths, then, the binding of the bivalent ligand to the bivalent
receptor is entropically neutral and that is given as follows:

A mono — ASTTLOTLO _l_ AS’/TLOTLO. (17)

conf trans rot

Improper design of the bivalent ligand can result in no affinity gain compared to
its monovalent counterpart, as the binding is said to be entropically diminished,

since:

A mono > AST)’LO?’LO + AST)’LOTLO (18)

conf trans rot

and only a binding path B is possible. From a thermodynamical perspective,
designing a multivalent ligand with spacer of modest flexibility proved to be the

best approach in achieving affinity enhancement [1, 4].

Kinetic studies of the multivalent binding revealed that the association constant
ko is not significantly dependent on the multivalent nature of the system. How-
ever, the dissociation rate constant ks of a multivalent ligand is reduced com-
pared to its monovalent counterpart. To achieve the full dissociation, N ligand-
receptor interactions should be broken. Thus, the slower £, rate contributes to

the affinity enhancement. |5, §].

Rao et al. reported that high affinity of trivalent a vancomycin-based ligand
had a kinetic origin due to the strong rebinding effect [9]. It was proved that
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thermodynamics representation for such systems failed to explain the rebinding
effect, and consequently, this phenomenon should be addressed kinetically. In a
typical kinetic model, a ligand can assume three states: an unbound, a transition,
and a bound state. The ligand should overcome a transition energy barrier to
form an initial complex with the receptor. From the transition complex, the
system progresses fast to the fully bound state. Nonetheless, this kinetic model is
not applicable for studying the rebinding effect due to the low activation barrier
of the transition complex, which increases the probability of binding. The local
concentration of the ligand also contributes to the improved £, rates. Weber et.
al [10] proposed an additional almost bound state to account for the rebinding

effect and discussed the following cases:

e strong ligand with activation barrier independently of the spacer pres-
ence is always totally bound or totally unbound. The almost bound state
is the kinetically unstable entity and immediately transits to the totally
bound state (Figure 1.2A).

e weak ligand without activation barrier also lacks the almost bound
state, and the singly bound state is absent when ligands are connected by

a spacer (Figure 1.2B).

e very weak ligand without activation barrier is a case where the pres-
ence of a spacer strongly influences the existence of the respective kinetic
entities. Spacer-free ligands lack the totally bound state due to the low
affinity. In contrast, the almost bound state is kinetically stable. The
presence of a spacer shifts the equilibrium to the totally bound state, as
the dissociation occurs at the slower rate allowing the rebinding effect to

happen (Figure 1.2C).

Principles of multivalency have been used to design new antibacterial and an-
tiviral agents. A potent multivalent drug should shield the pathogen surface and
lead to pathogen removal from the body. Alternatively, a multivalent ligand can
interact with the receptor on the cell membrane and prevent the pathogen from
entering the cytoplasm causing infection. Since multivalent agent binds to the
multiple binding sites simultaneously, the possibility for the resistance develop-
ment is highly reduced. Multivalent glycoconjugates have been employed in the
development of vaccines to fight the various pathogen. Broader advancement in
this area is held by the obstacles of detecting the potent carbohydrate antigens
or poor antibody responses to them. Efficacy, bioavailability, and toxicity of the

multivalent ligands are still marginally addressed in the literature [1, 5, 11, 12].
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FIGURE 1.2: Kinetic models of a multivalent binding: (A) Strong

ligand with activation barrier (ligand in red); (B) Weak ligand

without activation barrier (ligand in magenta); (C) Very weak lig-

and without activation barrier (ligand in green). Unstable kinetic
species are indicated in gray letters.

1.2 Allostery

Much progress has been reported recently on fine-tuning the affinity of multi-

valent ligands. On the contrary, dynamics of multivalent receptors have rarely



Chapter 1. Introduction 7

been studied, assuming rigid body representation of such a receptor. However,
the effect of the ligand binding on the population shifts in the receptor’s con-
formational ensemble cannot be neglected. In a classic example of the oxygen
transport by the oligomeric protein hemoglobin, the binding of the first oxygen
molecule introduces the conformational changes of the receptor, which are then
associated with the positive cooperativity effect allowing further three oxygen
molecules to bind with increased affinity [13]. Although this type of binding is
not multivalent per se, it triggers the question if the allostery may play a role in

actual multivalent systems.

The term allostery was coined in 1961 by Monod and Jacob to describe the in-
hibition of the enzyme L-threonine deaminase by its end-product L-isoleucine.
The authors argued that L-isoleucine binds to the different (allosteric) site then
the substrate L-threonine causing inhibition [14]. As early as in 1935, Pauling
proposed a model to account for the positive cooperativity in hemoglobin. In
the mid-sixties, the hemoglobin case was revisited and the first two models of
allostery emerged. Monod et al. proposed the "concerted" or MWC model based
on at least two known conformational states of the deoxy- and oxyhemoglobin.
According to MWC model, the allosteric proteins are symmetric multimers, and
each monomer is either in tensed (binding incompetent) or relaxed state (bind-
ing competent state). The interconversion between two conformational entities
is then concerted. Tensed and relaxed states differ in their affinities for the sub-
strate. The authors excluded that mixed tensed-relaxed (TR) state existed [15].
In a sequential (KNF) model, Koshland et al. extended the previous work of
Pauling and stated that subunits of the oligomer change their conformation one
at the time [16]. Hence, a hybrid TR state may exist in the conformational en-
semble. Taken together, MWC and KNF model can be combined in a general

model of allostery.

In the decades to follow the numerous proves of the allosteric mechanism in the
monomeric proteins emerged. Even for a rather rigid protein lacking the huge
conformational changes, an allosteric mechanism could not be excluded. Those
findings led to the shift in the paradigm of understanding allostery. All but the
fibrous proteins exist as a mixture of the different conformational states in a so-
lution. Weber et al. proposed that ligand binding only shift the conformational
ensemble towards the elevated populations of the binding-competent structures
(Figure 1.3) [17]. Starting from this powerful concept Gansekaren et al. pos-
tulated that the allostery is likely to be an intrinsic property of all dynamical

proteins. Pieces of evidence for such hypothesis are numerous. Initially, the
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FIGURE 1.3: An allosteric modulator causes a shift in the confor-
mational ensemble.

proteins thought to be non-allosteric were later allosterically modulated by the
site-directed mutagenesis, chemical modifications (i.e., phosphorylation of the key

residues), or by the detection of the potent allosteric agents [18].

Current view on the allostery can be summarized in terms of "domino" and
"violin" models. The domino model is in line with the traditional view on the
allostery. The allosteric modulator binds to the allosteric site distant from the
orthosteric site and provokes strong signal transduction followed by significant
conformational changes. On the other hand, in violin model, the allosteric sig-
nal is spread through protein along several relatively weak pathways mainly as

vibrational fluctuations of the protein structure [19].

While the MWC and KNF models could not explain the allostery at the atom-
istic level, advances in the experimental and computational techniques broaden
our perception of allostery [20-22]. Consequently, allosteric modulators gained
the momentum in drug design. Considering the rationale that almost all pro-
teins can be allosterically triggered then there is a possibility to design drugs
hitting the "cryptic" sites. As a proof of concept, Bowman et al. utilized the
combination of molecular dynamics and cysteine-labeling experiments to detect
cryptic sites in three known allosteric drug targets [23]. Binding to the allosteric
sites has a considerable advantage, as those sites are protein specific unlike the

orthosteric site conserved within the protein family and among different species.
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Then, an allosteric drug can be applied in lower doses compared to an orthosteric
counterpart directly competing with an endogenous substrate. Finally, allosteric

drugs binding at the protein-protein interfaces has also been reported |20, 24].

1.3 Protein-Protein Interactions

Antigen-antibody interactions |25] and spliceosomal proteins are well studied ex-
amples of multivalent protein-protein interplays [26]. 20000 coding genes give rise
to approximately 200000 proteins in the humans. This huge variety is a conse-
quence of alternative splicing and post-translational modifications [27]. Proteins
work in concert with other proteins through protein-protein interactions (PPIs).
PPIs are physical contacts established between two or more proteins through van
der Waals and electrostatic interactions. Due to temporal and spatial dimensions
of the PPIs, it is hard to estimate the exact number of unique PPIs. In general,
PPIs are highly dynamical complexes dependent on the condition and state of
the cell [28].

PPIs can be classified based on the composition, stability, lifetime and affin-
ity of the protein complex. By the composition, a complex can be homo- or
heterooligomer. A homooligomer consists of the identical subunits, while the for-
mation of heterooligomers occurs between nonidentical protein chains. Regarding
stability, PPIs are said to be obligate, when monomers cannot exist independently
in vivo. Such proteins request a binding partner or partners to maintain their
fold and stability. On the contrary, protein participating in nonobligate PPIs,
first fold and then find the partner(s) to form the complex. Further, classification
based on the lifetime of the protein complex only applies to the nonobligate PPIs.
Transient protein complexes associate and dissociate temporarily, and they are
often found in signaling and regulatory pathways. Permanent interactions are
typically very stable. An example of the permanent PPI is an antigen-antibody
complex. Finally, affinity of the PPI implies if the interaction is weak or strong
[20].

Proteins interact through interfaces, which are usually flat, large and exposed
to solvent (Figure 1.4A). The area of a typical protein interface is between 1500
and 3000 A. Additionally, PPIs can be classified based on the architecture of the
interface [32]:

e linear epitopes comprise the short linear peptides or turn that fit into the

interface of the binding partner (Figure 1.4B);
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FIGURE 1.4: Protein-Protein Interactions: (A) Two proteins form
an interface comprised of non-convalent interactions; (B) Linear
epitopes - Smad 7 peptide (shown in cyan) bound to Smurf 1 WWy
domain (shown in gray) (pdb: 2ltx [29]); (C) Secondary epitopes
- MDM2 (in magenta) bound to the transactivation domain of
p53 (pdb: lycr [30])) ; (D) Tertiary epitopes - Barnase-Barstar
complex (barnase shown in gray, barstar in green) (pdb: 1brs [31]).

e secondary epitopes represent the most common type of PPIs. A single
secondary structure element (a-helix, 5-sheet or longer peptides) binds to

the groove of its counterpart (Figure 1.4C);

e tertiary epitopes comprise the multiple sequences of both binding part-

ners engaged in the interface formation (Figure 1.4D).

PPI interfaces consist of the core and rim regions. The core region is mainly
hydrophobic and resembles the protein interior. In contrast, the rim region is
exhibited to the solvent and mimics the surface of a protein. Albeit PPI contain
a large number of residues, only a small subset of them contributes significantly

to the binding affinity. They are named "hot spots" residues [33] and located in
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the core region. Tryptophans, arginines, and tyrosines are the most abundant
"hot spots" residues [34].

Lately, the "hot spot" residues have been tested as the potential drug targets since
they can provide a variety of the intermolecular non-covalent bonds ranging from
m-m stacking interactions to strong salt bridges. The linear and secondary epi-
topes have been employed as the lead compounds of peptidomimetics approach.
Furthermore, even tertiary epitopes initially thought to be undruggable, have

been targeted successfully with macrocyclic compounds [32, 35, 36].

1.4 Thesis Objectives

[ aimed at understanding the dynamics of the multivalent receptors and its impli-
cations on the binding of the multivalent ligands with the atomistic precision. To
achieve this goal, I applied various computational methods, in particular, molecu-
lar dynamics simulations (MD). In Chapter 2, I presented a theoretical overview

of the methods facilitating the research conducted in this dissertation.

Chapter 3 is dedicated to the study on elucidating the structural determinants
of Ca?* binding to the trimeric C-type lectin receptor Langerin. I employed
MD simulations to investigate the Langerin conformational dynamics mimicking
the conditions in extracellular and intracellular compartments. Then, by imple-
menting the Mutual Information, I constructed a network of dynamically coupled
residues. This network guided mutagenesis experiments (conducted by Dr. Jonas
Hanske from Structural Glycobiology Group led by Dr. Christoph Rademacher),
which then shed light on the role of an allosteric network triggered by Ca?*
binding.

In Chapter 4, I studied the conformational dynamics of the trivalent sialic acid
based constructs targeting Haemagglutinin. MD simulations revealed that PEG
spacer collapsed into an ensemble of coiled structures further stabilized by the
presence of the intramolecular hydrogen bonds. Those findings can guide further
efforts in optimizing such multivalent ligands. In this project I collaborated with
Pallavi Kiran, and Dr. Sumati Bhatia (Macromolecular Chemistry Group led by
Prof. Dr. Rainer Haag), Dr. Susanne Liese (Bio-soft Matter Theory Group led
by Prof. Dr. Roland Netz) and Dr. Daniel Lauster (Molecular Biophysics Group
led by Prof. Dr. Andreas Hermann).
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In Chapter 5, I addressed multivalent protein-protein interactions. I was inter-
ested in understanding how the highly complex conformational space of tandem-
WW domains influenced the binding of a bivalent proline-rich sequence. To an-
swer this question, I constructed a Markov state model (MSM) of the apo-receptor
dynamics. MSM analysis revealed that the slowest kinetic modes entailed for the
structures with the formed interdomain interface. In turn, interface formation
blocked "hot spot" residues from simultaneous recognition of both valences. I
found a binding-competent structure in the ensemble of the fast interconverting
structures lacking the defined interface. Finally, I modeled the binding event
by employing HADDOCK protein-protein protocol. Experimental insights for
this project were provided by Miriam Bertazzon and Dr. Jana Sticht of Protein

Biochemistry Group led by Prof. Dr. Christian Freund.

The outlook for the further research in all three areas covered in this thesis was

summarized in Chapter 6.
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Chapter 2

Methods and Theory

2.1 Molecular Dynamics

With the advent of X-ray crystallography and nuclear magnetic resonance (NMR)
in the middle of last century, scientists were able to determine the structures of
biomolecules with the atomic resolution for the first time. However, those bio-
physical methods are limited to the rather rigid representations of biomolecules.
The internal motions of atoms result in the conformational changes, which are
in turn necessary for a biomolecule to fulfill its biological role. Molecular simu-
lations emerged as a computational technique complementing experiments in the

efforts of answering complex biological questions [37, 38].

Molecular simulations found applications in the sampling of the conformational
space of a target molecule. Then, they can recover the thermodynamical prop-
erties of an investigated system. Finally, they examine the actual dynamics of a
biomolecule. For the first two application, one can choose between Monte Carlo
and Molecular Dynamics simulations (MD), yet only MD simulations describe

the time evolution of the system and can account for the dynamics [39].

The all-atom (classical) MD simulations are based on the laws of classical me-
chanics. Each atom in the investigated system is treated as a point mass (m;).
The movement of a point particle ¢ can be represented with a position vector

r;(t) with an arbitrary origin in a 3D-Cartesian space:
ri(t) =r(zr,y, 2) = z(t)e; + y(t)e, + z(t)e (2.1)

where z(t), y(t), and z(t) are the time-dependent displacements of the point
particle 4 along the respective Cartesian coordinate, while €z, ¢,, and € are the
orthogonal basis vectors. The current velocity (Eq. 2.2) and acceleration (Eq.

2.3) of the point particle i calculated for a small time-step At = t, - t ~ 0,
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represent the first and the second derivatives of 7; () respectively:

’I“i(tg) —Ti(tl) d

oo vilt) —w) d o dd o
= fim = = gl = i) =71 (2:3)

The force vector F;(t) acting on the point particle ¢ and causing the movement
along the free energy surface is denoted according to the Newton’s second law of
motion:

Fi(t) = mya; = m;7i(t) (2.4)

Since a biomolecule consists of a large number of atoms integrating the set of
equations of motions (Eq. 2.2, 2.3, 2.4) analytically becomes unfeasible. To cir-
cumvent this problem and to assure the low computational demand, yet still, to
maintain the high accuracy of an MD algorithm, a number of numerical integra-
tion methods have been developed. Among them, Verlet-type algorithms are the
most common. The general equation of a Verlet algorithm for the point particle ¢

can be derived from the forward and the backward Taylor expansion of the 7;(%):

ri(t+ A) =r(t) + (A + %fi(t)A2 + %%;(t)A?’ + O(AY)
it = &) = ) — (A + S (1A - %'ﬁ(t)A?’ Lo
b (2.5)
ri(t 4+ A) = 2ry(t) — ri(t — A) + 75(1) A% + O(A?)
4
ri(t + A) = 2r;(t) —ri(t — A) + };—TS?AQ + O(AY).

suggesting that the position of the particle i r;(t+A) in the next simulation step
is determined by the current position 7; (%), the position at the previous time step
r;(t-A), and the force vector acting on the the particle i at the current time step
F;(t). Thus, the Verlet algorithm is time-reversible by definition. The velocity of
the particle ¢ at the current time step ¢ is calculated according:

it +A) =it = A)

vi(t) = IA (2.6)

Verlet type algorithms (Verlet, velocity-Verlet, leap-frog) are fourth-order algo-

rithms, as the error of calculating the position of the particle ¢ is approximated
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with the fourth power of the integration time step A [40]. The value of the in-
tegration step A is determined by the fastest motions of the system. The bonds
connecting the hydrogen and heavy atoms vibrate with periods of 10 fs. There-
fore, the integration time step should be at least one order of magnitude smaller.
If such vibrations are constrained by means of SHAKE [41] or LINCS [42] algo-
rithms, integrations time step can be increased up to 4 fs to further speed up
calculations. Verlet type algorithms preserve quantities like the total (mechan-
ical) energy, momentum, and angular momentum of the system sampled in an
MD simulation. For a system comprising N atoms (point particles), with the

conserved mechanical energy, its classical Hamiltonian (H) is denoted as follows:

N N

H = ZV(Tz‘(t)) + ZK(pi)

=1 i=1

N (2.7)
Z V(ri(t)) + 7“2 Z m;7i(t) = const.
=1

Bonds potential Angles potential

M
W
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Dihedrals potential potential
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FIGURE 2.1: Schematic representation of the bonded potentials
of a force field.

The sum of the all momenta is constant according to the principle of action and
reaction. To keep the potential energy term constant, one assumes that only a

set of conservative forces (F; vector) causes the displacement of the molecule. A
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conservative force is a force only dependent on the coordinates of an object on
which it is acting, but not on the speed of that object. Hence, the work associated
with a molecule displacement is independent of the path taken. In the context of
the of the MD simulations, the set of conservative forces acting on the investigated
molecule is often referred as a force field. The force field is given as a sum of the
interatomic potentials accounting for the bonded and non-bonded interactions.
Equation 2.4 can be further expanded, since F;(t) equals to the negative gradient

of the potential energy:
Fi(t) = myri(t) = =VV(R(t)) (2.8)

A mathematical expression for a typical force field is given as:

bonded terms

~

V(RE) =Y %kz(l —leg)+ Y %ke(e — 0eq)”

bonds angles

bonded terms
o\

7 1 N

+ Y kslltcos(no— I+ Y She(C )

dihedrals improper (29)
dihedrals

non-bonded terms
7\

~

g o o aq; 1
4 N2 7 \6 4y -

Y a@E-Gs Y Ao

non-bonded non-bonded

atom pairs atom pairs

where the position vector of the investigated molecule is realized as R(t)={r (1),
o (t),....,rn (t)}. The bonds and angles potentials in the force field equation treat
the stretching and bending motions around a chemical bond respectively. They
ensure the correct chemical structure of the investigated molecule and prevent
bond breaking. Both potentials are approximated as harmonic oscillators (Fig-
ure 2.1) and denoted according to a Hooke’s law formula. In the bond potential,
k; is a force constant, [ is a bond length at the simulation time step ¢, and I,
is an equilibrium bond length for the same atom pair determined experimentally
(i.e., X-ray crystallography) or obtained from the high-level quantum mechanics
calculations. Analogously to the bond potential, the angle potential (three atoms
are needed to define a bond angle 6) is defined with kg (force constant), 6 (angle
value at the current simulation time step t), and 6., (angle value at equilibrium)

terms. The dihedral angles potential describes the rotation around a chemical
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bond (four atoms are needed to define a dihedral angle), and it is given as a
periodic cosine function. In the dihedral potential term of Eq. 2.9 k4 stands for a
force constant, n is a number of minima in a dihedral potential energy profile, and
7 is a phase offset (Figure 2.1). The improper dihedrals term is needed to ensure
the planarity of some particular groups, such as sp? hybridized carbons in car-
bonyl groups or in aromatic rings. Similarly to bonds and angles potentials, the
improper dihedral potential is approximated with a harmonic oscillator (oscilla-
tion from the equilibrium value of the respective improper dihedral ¢., with force
constant ke (Figure 2.1)). The last two terms of the force field equation account
for the long-range non-bonded (non-covalent) interactions. The repulsive and at-
tracting van der Waals interatomic forces are modeled with the Lennard-Jones
(LJ) 12-6 potential. The n term of the LJ potential represents the depth of the
potential well (Figure 2.2 left-hand side panel), while o term is an interatomic
distance at which V; =0. The electrostatic interactions between non-bonded
(partially) charged atoms are modeled according to the Coulomb’s law. ¢, and ¢;
are the dielectric permeabilities of the vacuum and a solvent in which the system
is simulated respectively, while ¢; and ¢; are (partial) charges of 4 atoms, and

denar the distance between charged species. [43].

Molecular Dynamics is a statistical mechanics method. The macroscopic prop-
erties of the system can be calculated by averaging over the sets of microstates
(configurations) according to the Boltzmann distribution. To better mimic the
actual macroscopic behavior of the system, it is possible to couple the simulation
box to external thermostatic bath (canonical (NVT) ensemble in which the num-
ber of particles N, the volume of the system V and temperature T are constant).
Thermostats (Andersen [44|, Noose-Hover [45]|, Berendsen [46]) are algorithms
that keep the temperature of the system around the desired macroscopic value
through a proper alternation of the equations of motion. Similarly, the pressure
can be maintained at the constant value (isothermal-isobaric ensemble, NPT =

const) by the employment of the barostat algorithms.

To address the finite size effects and surface properties periodic boundary condi-
tions (PBC) are commonly applied in an MD simulation. The system of interest
is placed in a unit cell, which is in turn replicated in all directions. The co-
ordinates and velocities are propagated for the unit cell exclusively, while the
non-bonded terms of a force field are determined over all periodic images. As
Lennard Jones potential decays with d'? and d=% a spherical cut off 1 nm is
used when computing van der Waals forces [40]. Due to the long-range nature of

the electrostatic interactions, they should be evaluated over the whole periodic
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FIGURE 2.2: Schematic representation of the non-bonded poten-
tials of a force field.

lattice. As shown in Figure 2.2 (right-hand side panel), the electrostatic potential

decays very slowly with the factor # resulting in an increase of the computa-
tion cost for calculating all electrostatic interactions. Ewald sum methods have

been utilized in solving this computationally demanding problem [47].

2.2 Computational Approaches for Prediction of
NMR Observables

In recent decades NMR became a widely used technique for the structural deter-
mination of the biomolecules in particular proteins. 'H, *C, N chemical shifts
are utilized to determine the presence of the secondary structure elements by
Chemical Shift Index method [48]. The ensemble average of the backbone and
sidechain dihedrals are obtained from the scalar coupling measurements (COSY
spectrum). Then, the interatomic distances are deduced from NOESY spectrum
(spatial magnetization transfer - Nuclear Overhauser effect). Finally, the rela-
tive orientation of the tertiary structure elements can be concluded by Residual
Dipolar Coupling measurements. One can combine these NMR experiments to

elucidate an ensemble of structures for a protein of interest.

Within this thesis, I computed the chemical shifts, and the 3.J-coupling constants
based on the performed MD simulations of the molecules investigated in Chap-
ters 3 and 5 (only chemical shifts were computed in this chapter). Then, I
compared computed data with the experimentally determined values, which is a

common approach for the validation of the quality of the MD simulations.

To introduce the concepts of chemical shift and 3J-coupling constant consider

a proton (*H) NMR experiment. A nucleus of interest in such experiment is
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a spinning proton. By applying an external magnetic field By, the spin of the
proton may be aligned with By (spin number +%, « spin state), or against By
(spin number —%, (3 spin state). If an imaginary sample for an NMR experiment
would consist only of protons, then the magnetic field at a H" would equal to By,
as no additional magnetic field was induced in the absence of an electron. Hence,

the energy difference AE between the o and [ spin states would be given as:

YhBy
2

AFE = = hVsample (2.10)
where v is a magnetogyric constant, h is a Planck constant, and vs,mpe is a
resonance frequency of this imaginary sample. Now assume that a sample for
an NMR experiment consists only of hydrogen atoms, then a spinning electron
would induce an additional magnetic field B;,4, which would be aligned against
the external magnetic field By. Thus, the proton is thought to be shielded by the
electron, as the effective magnetic field at the proton B.s; is lower compared to

By. Then, the equation 2.10 can be reformulated as follows:

Vh(Bo = Bina) _ vhBeyy
2m 2m

AFE =

= hsample- (2.11)

This shielding effect yields a lower value for AE between the a and 3 spin states
of a hydrogen atom compared to an imaginary sample only containing protons

(H). Since AE and vggmpe are directly proportional, a signal for a hydrogen
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FIGURE 2.3: Schematic representation of a combined 'H-NMR
spectrum of CH3Cl and CHy4.
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atom would be shifted to the lower frequency range compared to a proton signal
(upfield shift). If one would compare signals of protons in spectra of methane
(CHy4) and chloromethane (CH3Cl), a signal for chloromethane protons would be
shifted to the higher frequency range (downfield shift). An electronegative Cl
atom attracts the electron density towards itself resulting in deshielding effect
on three protons of CH3Cl (Figure 2.3). Therefore, the effective magnetic field
would be higher compared to the effective magnetic field felt by methane pro-
tons. As different NMR spectrometers operate at different working frequencies
(different strength of an external magnetic field), signals in a 1D-NMR spectrum
are reported as chemical shifts [ppm]| or shifts from the signal of a standard com-
pound. The standard compound like tetramethylsilane (CHj)4Si (TMS) consists
of almost completely shielded nuclei. Chemical shift § of the respective nucleus
in a sample represents a measure of the nuclear (de)shielding effect, which is in
turn in direct correlation to the chemical environment surrounding that specific

nucleus. Chemical shift ¢ is calculated as:

5 _ Vsamp — Vstand [HZ]
Vstand [MHZ]

= [ppm] (2.12)

Because of the total nuclear shielding effect the absolute resonance frequency of
TMS vgana equals to the operating frequency of a NMR spectrometer. Hence,
the chemical shift of TMS is set to 0 ppm. The deshielding effect at any other

sample that is not a standard compound causes the downfield shift of its resonance

frequency (Vsample_l/stand)'
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FIGURE 2.4: (A) Schematic representation of 1H-NMR spectrum
of CH3CHCl according to SDBS No. 3347THPM-02-151 spectrum
[49]; (B) Spin states of the methylene protons (spin-spin coupling);
(C) Enlarged methyl peaks with denoted 3-J coupling constants.
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In Figure 2.4A a schematic representation of a "H-NMR spectrum of chloroethane
is given. One would expect to observe just two peaks, a peak representing the
methyl group protons, and a peak for the methylene protons. However, the methyl
peak has been split into three peaks, while the methylene peak into four peaks.
This splitting pattern can be explained with spin-spin interaction (coupling) be-
tween two group of protons bound to the vicinal carbons. To explain why the
methyl peak is split into a triplet, one should look at the possible orientations of
the spins of two methylene protons. Their spins can be aligned to By or against it
resulting in four combinations of their spins states (Fig 2.4B). Two combinations
of the spin states are equal (1], {1 and the induced magnetic fields cancel each
other) and yield a middle peak. When both protons have spins paired in the
direction of By, then a downfield peak is produced. On the contrary, impaired
spins produce an upfield peak. The multiplicity of the peaks is determined by
the number of chemically equivalent protons at the vicinal carbon(s) increased
by 1 (n+1 rule). The chemically equivalent nuclei do not couple to each other.
By applying the same n-+1 rule, then the methylene peak is split into a quartet.
The peaks in both triplet (Figure 2.4C) and quartet are split with the same spac-
ing independent of By called ?J-coupling constant [Hz| (spin-spin coupling occurs

between two protons separated by three chemical bonds) [50].

The magnitude of 3.J-coupling constant provides a wealth of information on the
spatial orientation of two considered protons. For a pair of protons separated by

three chemical bonds, ®.J-coupling constant is given by Karplus equation:
3JH7H/ = Acos*0 + Bcost + C (2.13)

where 6 is a dihedral angle defined by four covalently bound atoms and A, B,
C are empirically determined parameters [51|. Those parameters are obtained
by fitting measured 3J-coupling constants for which respective torsion angle has
been elucidated previously by X-ray crystallography. Determining ®Jya gy and
3JHQ’ s provides the structural insight on the conformational space sampled by
the backbone and sidechain ¢, y; dihedrals respectively. As shown in Figure 2.5,
the *Jya gr-coupling is the highest inside the S-sheets. The spatial orientation
of the same atoms when located in a right a-helix correlates with the lowest
values of 3JHQ, gn-constants. For the highly dynamical residues located in the
loops, 3J constant cannot be used to unambiguous resolve value of the dihedral
¢, as it corresponds to fully sampled ¢-space. Nonetheless, Karplus equation still
holds as a powerful tool for the validation of the simulation data. The time series

of the dihedral ¢ is easily accessible allowing comparison of the computed and
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FIGURE 2.5: 3J-coupling constant as a function of ¢-dihedral of a
canonical residue.

experimentally determined 3.J-coupling constants [52].

Broadening our understanding of the critical physico-chemical factors responsible
for the chemical shift changes paved the way for the computational methods for
the chemical shift prediction. These methods can be classified into three groups.
The first group comprises the methods based on the use of sequence/structure
alignment against protein chemical shifts databases. The second group is based on
calculating chemical shifts directly from atomic coordinates by employing empiri-
cal equations derived from classical physics and experimental data or by applying
density functional theory. Lately, the former two methods were combined into
several hybrid methods. They have become popular as they yield more accurate

results compared the older approaches.

One can use a chemical shifts prediction software to validate the quality of MD
data. SPARTAT is software with built-in artificial neural network trained on
the database of 580 proteins for which relations between tertiary structure and
chemical shifts are established. SPARTA™ protocol incorporates both structural
(backbone and sidechain dihedrals) and dynamical inputs (S*-order parameter)
with the information on the local interactions (i.e., hydrogen bonds) to elucidate
the chemical shifts for a query structure [53]. Beauchamp et al. critically assessed
the quality of SPARTA™ protocol for prediction of backbone atoms chemical shifts
based on the MD derived ensembles. The reported errors for the AMBER99-ILDN
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family of force fields were in line with the experimental errors for nonproline

canonical residues [54].

2.3 Markov State Models of Protein Dynamics

The classical molecular dynamics simulations generate the ample of data regard-
ing the conformational behavior, the thermodynamical and kinetic properties of a
system of interest. Only recently the Markov State Models (MSMs) have emerged
as a powerful framework capable of resolving a free energy landscape of a simu-
lated biomolecule. Hence, MSM provides insights into long-lived conformations
of the system and the kinetic rates at which the system interconverts between
the minima of the free energy landscape. The method has been applied in study-
ing biologically relevant phenomena like the conformational dynamics [55], ligand
binding [56|, protein folding [57], and allostery [23].

Consider a state space §2 comprising all the coordinates and velocities of the
particles in a system of interest. To construct the MSM of a molecule of interest

one assumes:

e Markovian property of the system, implying that the time evolution of the
system is only determined by the current state, but not dependent on the

history of the system,;

e that system is ergodic, hence all parts of the state space €2 are dynamically

connected;

e that detailed balance condition is satisfied meaning that the portion of the
system transitioning from the region 7 of §2 to the region j per time unit

equals the portion of the system transitioning from j to i.

Now assume that several MD trajectories of the system of interest run in parallel
and that the starting points of the respective simulations are distributed according
to some initial probability density function wu—y. Continuous treatment of the
state space () relies on the transfer operator formalism, which can be summarized

as follows:

1
Ur (y) = T(T)uly) = — / p(@,y; 7)m(x)u(z)de. (2.14)
m(y) Jo
If the system is initialized in the y region of Q (at the time step t), by applying
the transfer operator 7(7) to the probability density function w(y) over the

time discretization 7, us(y) will evolve to a modified probability density function
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Uz, (y). If this procedure is repeated long enough, the system will transition from
the region y to the region z of 2, which is given by the transition probability
density p(x,y;7). For infinite amount of time the system will visit the whole state
space €2, while u;(y) will converged to a constant function independent of the
stationary distribution 7 (y). If the system is simulated in an NVT or an NPT
thermodynamical ensemble, the stationary distribution 7 (y) is equivalent to the

Boltzmann distribution at a temperature of simulation:

exp(— g7 H (7))

BT
Joda exp(—kBLTH(x))

m(x) = (2.15)

where H(z) is Hamiltonian of the system, and kg is the Boltzmann constant. [58].
As discussed in [59, 60], the transfer operator 7 (7) is self-adjoint implying that
its eigenvalues A\, (7) and eigenfunctions 7y (y) are real-valued. Since the system

is assumed to be ergodic and reversible, solving Eq. 2.16:

T()rr(y) = Me(T)ra(y) (2.16)

would yield information on the dynamical modes of the system. In the full state
space {2 molecular dynamics is Markovian by construction, however, finding the
analytical solution to the eigenvalues and the eigenfunctions of the transfer oper-
ator is not feasible for any biomolecular system. Hence, within MSM framework
one usually works in a discretized state space € 45, partitioned in a set of N
non-overlapping states (S; N S;=0 and UN; S;i=Q ). Those discrete states are
called microstates and can be thought as a small portion (volume) of the state
space. Ideally, discretization algorithm should be purely kinetic, so the barrier
between microstates would overlap with the barriers of the free energy surface. In
the discrete state space the transfer operator is approximated with the transition
matrix 7'(7), in which the transition probabilities of jumping from the microstate
S; to S; within the observation interval or lag time 7 are stored. The probability

density p;(y) is given as:
pi(y) = 7(y)ui(y) (2.17)

where 7(y) and w (y) are the stationary distribution and the probability density
function respectively. In the discrete state space (2 45 the probability density
is given as a vector containing the same number of elements as the number of
microstates. Fach entry represents the probability of finding the system in that
specific microstate at the time ¢ Since the state space is fully partitioned, the

sum of all entries of the p;(y) vector always equals to 1. As the system evolves
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over the time, the p;(y) vector is updated according to:

Prir(y) = T(7)p:(y)- (2.18)

The transition matrix 7(7) is computed based on a count matrix. The count
matrix is a NxN matrix, where N is the number of microstates. In a sliding

window approach, the transitions are counted as follows:

e check in which microstate is the projected trajectory at the time step t=0
(S;) and t=0+7 (S;), and then increase the count for the element C;; by

one;

e move to the next time step (t=1), and compare it with the time step t=1+7,

while increasing the count of the respective element C;; by one;
e repeat the counting procedure until the time step t=T-7 (where T is the
length of a trajectory).
Finally, to enforce the detailed balance condition the total number of the transi-

tions between 75 and 77 microstate pairs are averaged:

_ Gy + Gl

Cij = Cji 5

(2.19)

Then the transition matrix is realized as:

Zk Cik.

The transition matrix is a row stochastic matrix, meaning that each entry in the

1ij (2.20)

K" row of C is normalized with respect to the sum of all entries of the & row.

For an ergodic and reversible system, analogously to the equation 2.16, the tran-

sition matrix 7'(7) is subject of the eigendecomposition as given by:
UT(r) = N(T)l (2.21)

where \;(7) and [; are the real-valued eigenvalues and left eigenvectors of T'(7)
respectively. The eigenvalues \;(7) are bound to the interval [-1,1]. Consequently,

the eigenspectrum of T(7) is bound from above:
INi(T)| <A =1 (2.22)

Since the eigenvalues \;(7) (i>1) decay exponentially, the conformational dynam-

ics of the system is approximated by the linear combination of the N dominant
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eigenvectors (determined by the initial slow decay of the corresponding A;(7)).
Therefore, the probability density p; can be expressed in the terms of the expan-

sion coefficients ¢; determined by the initial probability density p;—o:

o) N
p(t) =D e\ (M= Y e (7). (2.23)
i=1 i=1

All the entries of the first left eigenvector /; are positive, and the ##" entry of [
represents the probability of the system to be found in the S; microstate of €2 ;..
All other left eigenvectors [; (i>1) contain the positive, negative, and entries close

or equals to zeros (Figure 2.6-right panel). This change in the sign structure of

Ac-A-NH;
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FIGURE 2.6: Free energy landscape of the alanine dipeptide pro-
jected onto ¢-1) plane discretized into 36 x36 grid cells; Left eigen-
vectors (l1_3) reshaped as 36x36 matrices (right panel).

the eigenvectors entries (for [; (i>1)) is a basis for the Perron Cluster Cluster
Analysis (PCCA). PCCA is an iterative algorithm considering a single eigenvec-
tor of T'(T) at a time. For the simplicity, now consider alanine dipeptide, since its
free energy surface is well represented by a projection onto a Ramachandran plane
spanned over two backbone dihedrals. It comprises three distinguishable minima,
namely «, 3, and L-a regions. Additionaly assume, that an MSM for this system
has been contstructed by discretizing the free energy surface into 36x36=1296
grid cells (microstates). As shown in Figure 2.6, the microstates corresponding
to the L-a region have positive values assigned in [/, while microstates of the a
and 3 regions have negative values. One interprets the sign structure of , as the
kinetic exchange across an energy barrier centered at ¢=0°. This is the slowest
dynamic mode of the alanine dipeptide conformational dynamics. PCCA algo-
rithm has split alanine dipeptide free energy surface into two metastable regions
(macrostates). Next look at the sign structure of . Interestingly, the microstates
corresponding to the L-a region have all assigned values close to 0. The kinetic

exchange occurs between the « region (positive sign structure), and the 5 region
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(negative sign structure), while L-v microstates are excluded from this dynamic
mode. Hence, the free energy surface is further split into two macrostates, yield-
ing in total three macrostates, which are analogous to three minima of the Ra-
machandran plane [61|. To treat more complex molecules (free energy surfaces),
a recent algorithm called PCCA™ has been reported [62]. PCCA™ algorithm con-
siders several eigenvectors at the same time, thus the degree of membership to
a macrostate is reported for each microstate. An implied time scale of the n*

dynamic mode can be determined by rewriting equation 2.23:

t t
G (M)l = ¢ exp(—;), (2.24)
which yields:
-
tp=—— 2.25

For increasing values of the lag time 7 the implied time scales converge to the
constant values, and are independent of the lag time 7 for which the transition

matrix of MSM is estimated (Champman-Kolmogorov test).

Several schemes for the discretization of the state space have been proposed in
the literature [63]. Often schemes that fully partition €2 yield a poor statistics in
the transition regions of the free energy surface, leading to the instability of the
model. To circumvent such problem and to minimize the discretization error, the
core set approach for the discretization of the state space has been introduced.
The idea behind this approach is that a core set represents a metastable region or
a minimum of the free energy landscape. Thus, the union of the disjoint core sets
B; does not fully discretize the state space ( UY.; B; C Q) unlike the union of the
disjoint microstates. As a result of this discretization scheme some of the regions
of 2 do not belong to any of the core sets. This is so-called the intervening space
I=Q / UN, B;. Tt is assumed when the system occasionally leaves a core set and
visit the intervening space, a time scale associated with that conformational event
is faster then the fastest dynamic mode estimated by the MSM. Equation 2.23
is analogous to the approximation of the transfer operator by the basis functions
¥(x), which form a complete basis of the state space ). One can rewrite it as

follows:

r(z) ~ Zéﬂm(m) (2.26)

where r(x) are the eigenfunctions of the transfer operator (Eq. 2.16). In the
core set approach the basis functions are modeled with the committor functions

¢;. Let assume that the free energy surface of the system has only two minima
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represented by the core sets By and B;. Only one committor function is needed
to approximate the transfer operator. If the system is in By, then the committor
function assumes the value 0, while in B; the value of the committor function is
1. As system interconverts from By to By, in the intervening space the committor
function interpolates between 0 and 1. In the systems with more complex free
energy surface, additional committor functions are needed to account for other
possible B; to B; transitions. Typically, the committor functions are not known
analytically, and as shown by Schiitte et al. [64], they can be approximated by
the trajectory projections dependent on the history and the future of the system.
These projections are called milestoning processes. The forward milestoning (m™)
process assigns a value 1 if the trajectory is in the core set B;. Additionally, the
value 1 is assigned if the trajectory hit the intervening space, but will next visit
the core set B;. In all other cases, the trajectory is projected to a value 0. The
backward milestoning (m~) again assigns the value 1 when the trajectory is in
the core set B;, or visit the intervening space by coming from B;. Otherwise,
the trajectory is projected to the value 0. As shown by Lemke et al. [65], the

equation 2.26 can be further expanded into:
FP(r)M "' = \é". (2.27)

The matrix elements of matrices M and P(7) are given as the (time-lagged)
correlation functions between a ij pair of the forward and backward milestoning

processes according to:

M;; = T Zm;(t)m;r(t),
=0 (2.28)

LS (i (e + 7).

T—71

Py(r) =

The probability of the system visiting the core set B; next after the system
resided in the core set B; is stored as a matrix element M;;. The matrix P(7) is
time-lagged analog of the mass matrix M. The product P()M~! (Eq. 2.27) is
equivalent to the transition matrix T(7) of the conventional (fully partitioned)

MSM.

Instead of working in a multidimensional state space sampled by an MD trajec-
tory, one can define a low-dimensional subspace spanned over several "reaction
coordinates" capable of capturing the most relevant conformational events of the

system. However, finding those "reaction coordinates" is not always a trivial
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task. In the context of Chapter 5 studying a highly complex conformational
dynamics of the Formin Binding Protein 21 tandem-WW domains, I proceeded
with a two-step protocol for the dimensionality reduction. First, I applied the
Principal Component Analysis (PCA) on the set of the backbone atoms coor-
dinates to detect the internal motions relevant for this system. Next, to define
the slow subspace of the PCA space capturing the most of the kinetic variance
of the system, I performed the Time-lagged Independent Component Analysis
(tICA). Finally, this projected representation of the tandem-WW domains free
energy landscape was subject to a density-based clustering algorithm, namely
Common-Nearest Neighbor (CNN) algorithm to determine the core sets used for
the MSM construction. The theoretical framework of the PCA, tICA, and CNN

is summarized in the subsections 2.3.1, 2.3.2 and 2.3.3 respectively.

2.3.1 Principal Component Analysis

Principle component analysis (PCA) introduced by Karl Pearson in 1901 has been
successfully applied to analyze MD simulations of the numerous biomolecules. To
detect the internal motion of the system, rotational and translational degrees of
freedom should be removed from the MD trajectory. Kabsch’s method [66] for
the rotational fit is implemented in GROMACS package and minimize the least

square distance A between instantaneous r(t) and reference structure 7 :

N

A= Zm(r(t) — 7). (2.29)

Now consider a case when the internal motions of the system are represented by
a set of mass weighted Cartesian coordinates X={z, 1,..., ,}. PCA linearly
transforms the dataset X of p correlated coordinates into a set of p uncorrelated
variables PC:{zl, 22,00, zp} called principal components, where p equals to 3N
(number of the considered atoms of the system). The first principle component is
a linear combination (dot product) of the original dataset X with a set of weights
o:

21 = Od?X = 1171 + Q192 + ... + Q1pTp (230)

The weight are constrained as follows:
ajy +aj,+ .. +af, =1 (2.31)

and determined in such a way that the variance of the original dataset X is

maximized. The second principle component z =y’ X is estimated to capture
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the maximum variance in the dataset X uncorrelated with z. Again, it is subject
to the same normalization constraint applied on the set of ay weights. All other

principle components 23, z,...,%, are determined in the same fashion.

The principal components are calculated following the eigendecomposition of the

p X p covariance matrix o. The matrix elements of o are calculated as

i = %Z (zi — () (x5 — (23)) 0,5 =1,2,...,p, (2.32)

where (z;),(z;) are averaged " and f" coordinates respectively. The eigenvectors
of the covariance matrix are sorted according the decreasing eigenvalues (; >
Co > ... > (p. Eigenvalues of the covariance matrix describe the degree of the
variance of the dataset in the direction of the corresponding eigenvector. The
principal components z; are realized as projections of the original data onto the
eigenvectors of o [67]. By calculating the cumulative variance over all eigenval-
ues, one can show that first several principal components account for the most
important internal motions, while the rest of the principal components entails for
the local fluctuations. [68].

2.3.2 Time-lagged Independent Component Analysis

By performing PCA the state space () was linearly transformed into a set of n
most dominant principal components PC ’:{zl, 22yenes zn} capturing most of the
conformational variance of the system. However, some of the projected confor-
mational events contained in the PCA subspace, might have huge magnitude, al-
though happening at a fast time scale. As previously discussed, the ultimate goal
of the MSM framework is to find the slowest dynamic modes of the investigated
system. The PC’ set was once again linearly transformed with the Time-lagged
Independent Component Analysis into a set of independent components yielding
]C:{z’l, 2, z’m} (where m<n). Similarly to PCA, one computes the matrix
elements of a time-lagged correlation matrix o7 (7 ):

o7 (1) = (zi(t)z;(t + 7)) (2.33)

ij
which can be given in the following form as well:

75 (r) = e S s+ 7) (2.34)
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where T'is the length of the MD trajectory, 7 the lag time, and z;, z; the princi-
ple components for which the correlation function is computed. The independent
components should be uncorrelated, while their autocovariance (at the lag-time
7) should be maximized with the constrain o3;(0)=6;;. Analogously to PCA, the
eigendecomposition of ¢%(7) and the projection of PC’ onto its dominant eigen-
vectors yields IC:{Z’l, 29, z’m} capturing the system’s degrees of freedom
with the greatest kinetic variance . Now, one can work in a slow subspace of the
full state space €2 [69].

2.3.3 Common Nearest Neighbors Clustering Algorithm

If an MD trajectory is projected on the slow subspace spanned over the m dom-
inant independent components, to determine the core sets, a density-based clus-
tering algorithm can be applied. Common Nearest Neighbors (CNN) algorithm
like any other density-based algorithm assigns a data point z; of the multivariate
data set to a cluster CSy, if z; is density-reachable to any of the previously deter-
mined members of the cluster CS,. When applying CNN algorithm one should
define a neighborhood parameter R and the number of shared neighbors N. In the
CNN algorithm, the neighborhood parameter R is a radius of the cluster CS;. If
a cluster CS}, is initialized at the data point z; then the data point z; will be as-
signed to the same cluster when z; and z; share at least N neighbors, while being
in each other’s neighbors list. This implies that the maximum distance between
z; and z; points equals to the radius R. Data points not assigned to any cluster
are considered as noise points, and in the core set approach, they correspond to

the intervening space [65].

2.4 Mutual Information - Computational Approach
to Study Allostery

The recent developments in the understanding of the allostery can be signifi-
cantly attributed to the numerous emerging computational methods which aim
to detect the potential allosteric sites or to elucidate the possible pathway(s)
of the allosteric signal transduction. Additionally, the increase of the computer
power and improved simulations protocols enabled the studies on the dynamical
aspects of the allostery. Early computational methods considered the analysis
of the protein sequence concerning the evolutionarily conserved residues. The
rationale behind such methods is that a set of highly conserved residues (single

site methods), or the clusters of residues that coevolved together ("coupled sites
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methods"), play a significant role in allostery. However, they cannot distinguish
between the multiple roles that conserved residues may assume within a protein
structure [70].

Protein allostery is tightly connected with the intrinsic dynamics. An allosteric
site communicates with an orthosteric site through substantial conformational
changes induced by the binding of the allosteric modulator, or through subtle
correlated internal motions. While the time scales of the large conformational
changes are still rarely reachable by unbiased MD simulations, the fast internal
motions especially the oscillation of the sidechains can be well sampled by the
all-atom MD simulations. The protein dynamics can be visualized as a network
utilized in subsequent allosteric network analysis. Residues are represented by
the nodes in such a network, whereas the edge thickness connecting a specific

residue pair is proportional to the degree of interdependence in their motion [21].

A common statistical metric of the correlation implemented in various sequence-
based and dynamical network analysis methods is the Mutual Information (MI).
Mutual Information of two continuous random variables X, Y or the information

content conveyed about X by Y is given as follows:

p(X,Y)
p(X)p(Y)

where p(X,Y) is the joint distribution, and p(X), p(Y) are marginal distributions.
By definition, MI is 0 only and only if the product of marginals distributions

MI(X,Y) = / / p(X,Y) log( )dxXdy (2.35)

equals to the joint distribution. As MI is not restricted to a certain interval, one

should normalize MI with the respect to the Shannon information entropy:

MI(X,Y)

NMI(X,Y) = 2.
) = ) H (V) (2:30)
Shanon entropy of a random continuous variable X is defined as :
HX) = = [ 00 loglp())ax (237
X

If two random variables X, Y assume NMI value of 0, they are said to be mutually
independent. In contrast, if NMI equals 1, then the random variable X is fully
determined by variable Y [71].

Several implementations of the MI have been reported elsewhere [72, 73]. The
main advantage of MI application in the context of protein allostery is that this

correlation measure can account for the non-linear correlations, which is often



Chapter 2. Methods and Theory 33

the case when MI is applied to the set of internal coordinates such as dihedral
angles [74].

2.5 Protein-Protein Docking

Molecular docking is a computational method that aims at predicting the ligand-
receptor complex structure. Traditionally, a protein target has been treated as
a rigid body in docking calculations. Molecular docking comprises two steps.
First, the conformational space of the ligand in the active site is sampled by a
search algorithm (molecular mechanics, Monte Carlo sampling). In a later step,
binding conformations (poses) are ranked according to an implemented scoring
function. Ideally, the best-scored poses should resemble the experimentally de-

termined binding poses [75].

The computational methods for studying PPI can be classified into two categories.
The first category comprises the data-driven methods utilizing a machine learning
algorithm to mine the interactome databases (databases of known protein-protein
interactions). Such methods are complementary to protein-protein docking meth-
ods, as they provide the input on the interacting residues for the docking algo-
rithm [76]. A good protein-protein docking software should address the dynamical
nature of the binding partners, at least at the level of the binding interface [77].

HADDOCK protein-protein docking protocol employs the NMR observables such
as the chemical shift perturbation (CSP) or the NOE distances to guide docking
calculations aiming at producing the high quality (near-native) complexes of the
interacting partners. For instance, the residues exhibiting significant CSP upon
binding are set as active and treated as flexible during the docking run. The rest
of the surrounding residues are set to be passive, hence rigid. Information on
the interacting residues is supplied in the form of ambiguous interacting restrains
(AIR). AIR is an ambiguous intermolecular distance d; 45 calculated between any
atom m of an active residue ¢ of protein A (m;4) and any atom n of both active
and passive residues k (N, in the protein B (n.5)). The effective distance is

given according to:

Natoms NresB Natoms | (=1/6)
dfﬁ’éZ( PRI DT ) (2.38)

mia=1 k=1 npp=1 "HATkB

;where N,oms denotes all atoms of an active residue 4 in either of the binding

partners, while N,., represents th sum of active and passive residues. dﬁ@ig is
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limited to a maximum value of 3 A, and is scaled with —% power to mimic the

London term of the Lenard-Jones potential.

The docking protocol follows a three-step procedure. First, two proteins are sep-
arated by the 150 A distance and randomly rotate around the respective center
of mass. During the rigid body energy minimization the translational degrees
of freedom are also allowed resulting typically in 1000 different docking com-
plexes which are evaluated in terms of the HADDOCK scoring function. The
HADDOCK scoring function (HSF) is realized as a sum of:

HSF = Evdw + Eelec + Edesolv + EBSA + EAIR (239>

where E,gw, and E,.. describe the non-bonded interactions, Egeso, 1S an empiri-
cal desolvation constant, Egg4 is the buried surface area upon complex formation
in A and E,;p is the restraint violation energy [78]. Then, the best 200 confor-
mations are further optimized through a simulated annealing MD run. Lastly,
the docking complex is solvated with TIP3P water molecules, and subjected to a
short MD run. The pair-wise backbone RMSD at the interface (iRMSD) is used
as a similarity measure to cluster docking solutions. All structures, for which
an iIRMSD < 1.0 A is reported, are assigned to the same cluster. The resulting
clusters are again evaluated in terms of HADDOCK scoring function |79, 80].
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Chapter 3

Intradomain Allosteric Network
Modulates Calcium Aflinity of the
C-Type Lectin Receptor Langerin

Lectins are ubiquitous proteins capable of binding a soluble carbohydrate or a
carbohydrate component of a glycoprotein or a glycolipid [81]. Members of the
C-type lectin (CTL) family requires a Ca®" cofactor to recognize a sugar moiety.
CTL are oligomeric receptors that mediate cell to cell adhesion and apoptosis.

They are also an integral part of the innate immune system [82].

Langerin is a trimeric C-type lectin receptor (CTLR) expressed on the surface of
the Langerhans cells. It triggers the immunological responses towards invading
pathogens such as HIV, influenza virus, Mycobacterium spp., or different types
of fungi [83]. Each of three identical monomers comprises a carbohydrate recog-
nition domain (CRD), an a-helical tail domain, and a transmembrane domain.
The CRDs and a-helical tails of all three monomers form a so-called extracellular
domain (ECD) [84]. The CRD bears a single Ca®"-site, which comprises E285
and N287 of a highly conserved EPN motif (comprising residues E285, P286,
and N287) of the long loop, and adjacent residues E293, N307 and D308. The
EPN motif determines Langerin specificity for mannose-based oligosaccharides
[85]. Recently, Munoz-Garcia et al. reported that Langerin trimer binds gly-
cosaminoglycans through an interdomain interface pointing at the importance of

Langerin in the cell to cell adhesion [86].

Prior to this study, a little was known about how the sugar cargo is processed
once it is attached to Langerin and internalized to a dendritic cell. Therefore, we
were interested in elucidating the molecular mechanism(s) facilitating the extra-
cellular sugar uptake and intracellular release in the acid environment of an early

endosome. To gain insights into these processes, we combined complementary
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techniques, nuclear magnetic resonance (NMR), isothermal titration calorimetry

(ITC), and molecular dynamics (MD) simulations.

I set up and analyzed the molecular dynamics simulations. Then, I implemented
Mutual Information as referred in section 2.4. I generated Figure 3 (panels A-D),
Figure 4 and Figure 6 (panels B, C, E, F) in addition to the Supporting Infor-
mation Figures (S7, S9, S10, S15, S16). Last, I participated in the manuscript
preparation together with Dr. Jonas Hanske, Dr. Christoph Rademacher, and
Prof. Dr. Bettina Keller.

We proposed a novel mechanism of fine-tuning Ca?* achieved through a large
and robust allosteric network that coupled the dynamics of the adjacent structural
elements, namely the long and short loops. Ca?' binding is a pH-sensitive process.
The drop in Ca?* affinity is paired with the drop in pH occurring in the early
endosome. We demonstrated that pH sensitivity is due to two pH sensors: (i)
a central hub residue H294 and (ii) an unknown pH sensor probably located in
the Ca?*-binding site itself. Then, we excluded a possibility that allosteric signal
was transmitted downstream the receptor and the allosteric network was a part
of a broader signaling pathway. Finally, our NMR relaxation experiments and
MD simulations revealed that Langerin was rather rigid. The loops coupling
takes place at the nanosecond timescales. The loss of Ca?" cofactor triggers the
structural rearrangements of the highly conserved proline residue P286 of the
EPN motif. The latter conformational event occurs in the micro- to millisecond
regime. It is an intrinsic feature of the apo Langerin structure independent of
the pH changes and not under allosteric control. However, at the steady Ca?*
concentration of the extracellular matrix Langerin is completely shifted to the

holo cis conformer.
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Chapter 4

Exploring Rigid Core and Flexible
Core Trivalent Sialosides for

Influenza Virus Inhibition

4.1 Introduction

Hemagglutinin (HA) is a glycoprotein expressed on a coat of the influenza virus.
It comprises of three identical monomers, each having a globular domain and
a-helical tail that docks HA to the viral coat. HA interacts with the sialic acid
residues (SA) on the membrane of respiratory cells and erythrocytes. An SA-
binding site resides in the globular domain of a HA monomer, pointing outwards
and being solvent exposed. Two SA sites of a HA trimer (HAj3) are separated by
approximately 4.3 nm, while two adjacent copies of HA3 are 10-12 nm distant
from each other [87]. One can apply these spatial constraints to design an SA-
based trivalent ligand and achieve inhibition of the influenza virus with high
affinity. Several approaches for the SA-based multivalent ligand design have been

proposed in the literature [88, 89|.

The aim of this study was to design and synthesize a trivalent sialoside that could
bind with the HA3 and influenza virus with high binding affinity. I collaborated
with Pallavi Kiran, and Dr. Sumati Bhatia (Macromolecular Chemistry Group
led by Prof. Dr. Rainer Haag), Dr. Susanne Liese (Bio-soft Matter Theory Group
led by Prof. Dr. Roland Netz) and Dr. Daniel Lauster (Molecular Biophysics
Group led by Prof. Dr. Andreas Hermann).

Pallavi Kiran and Dr. Sumati Bhatia selected polyethylene glycol (PEG) as a
spacer due to its high water solubility and biocompatibility. Considering the ge-
ometry of HA3, Dr. Susanne Liese proposed two paths that connect the core of
HAj3 and respective sialic acid binding sites. The first path has a length of 3.06

nm and goes through a "valley" between two adjacent HA monomers. The second
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sialic acid

“hill” path

FIGURE 4.1: Three HA monomers are shown in grey, while the

respective SA-sites are shown in red. Possible paths that connect

the SA-binding site with the center of the trimer are indicated with

black lines (the "valley" path with a dashed line, the "hill" path
with a bold line.

path goes over a "hill" and is 3.35 nm long (Figure 4.1). The rigid segment of
a trivalent ligand has a length of approximately 1.2 nm, thus leaving the PEG
spacer to bridge the distance of 1.86 nm or 2.15 nm, depending on the assumed
path. Based on the findings of Liese et al., the PEG spacer should comprise at
least six to 14 ethylene-glycol units [90]. Hence, Pallavi Kiran prepared several
trivalent ligands containing either a rigid adamantane core or a flexible TRIS
core. Dr. Daniel Lauster measured the affinity of those tripods to bind to a HA
trimer in a hemagglutination inhibition assay and to inhibit the influenza virus
in a microscale thermophoresis assay. As indicated in Table 4.1 only compound

10 had the inhibition constant in the micromolar range.

(EG),, n= core HAI (K;) | MST (K4 (pM))
a-methylsialoside 2 mM 2800 4+ 300
2,6-sialyl lactose 100 mM ND

Ada >100 mM ND
6 Ada (compound 10) | 97 uM 113 (1mM)
14 Ada (compound 11) | >100 mM ND
Tris >100 mM ND
Tris 20 mM ND
Tris >100 mM ND

TABLE 4.1: Tripods affinity data.
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“’}:\ compound 10 (n=6)
W\ compound 11 (n=11)

FIGURE 4.2: Schematic representation of the tripod constructs.

To answer the question why only compound 10 exhibited the desirable potency,
I set up molecular dynamics simulations of the compounds 10 and 11 with the

PEG spacer and the adamantane core (Figure 4.2).

4.2 Methods

4.2.1 Molecular Dynamics Simulations Set-up

All-atom molecular dynamics (MD) simulations were performed for the mono-
valent counterparts of compounds 10 and 11 (later referred as ligands 10 and
11 respectively) in explicit water (TIP3P water model [91]), using the GRO-
MACS 5.0.2 simulation package [92]. The initial structures of the ligands were
drawn in Marwin Sketch [93]. Both ligands were parametrized in Acpype [94].
The topologies of the ligands 10 and 11 were generated according to the Gen-
eral Amber Force Field (GAFF) [95]. The semi-empirical quantum chemistry
programme SQM was used to assign the partial charges with AM1-BC level of
theory [96]. The systems were minimised in vacuum with the steepest decent
algorithm [97] (emtol = 1000.0 (kJ/mol)/nm, nsteps = 50000). 4069 and 14441
water molecules were added to solvate the ligands 10 and 11 respectively in a
dodecahedron box (volume of the ligand 10 box 130.51 nm3, volume of the lig-
and 11 box 443.76 nm3). Then solvated ligands were brought to another round
of minimization with the same parameters, followed by two equilibration runs,
first in the NVT ensemble at 300 K (V-rescale thermostat [98], time constant =
0.1 ps), and then in NPT ensemble (Parrinello-Rahman barostat [99], reference
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pressure = 1 bar, time constant = 2 ps) for 100 ps respectively. Five starting
structures per ligand were randomly taken from the NPT equilibration run, and
used later in the subsequent MD runs. The production runs were simulated in
the NPT ensemble (temperature 300 K, pressure 1 bar). The covalent bonds to
all hydrogen atoms were constrained with the LINCS algorithm [42]| (lincs iter
= 1, lincs order = 4), allowing for an integration time step of 2 fs. Newton’s
equations of motion were integrated with the leap-frog scheme. The cut-off for
Lennard-Jones interactions was set to 1 nm. The electrostatic interactions were
treated with the Particle-Mesh Ewald (PME) algorithm [47] a real space cut off 1
nm, a Fourier grid spacing of 0.16 nm, and an interpolation order of 4. Periodic
boundary conditions were applied in all three dimensions. The solute coordinates
were written to the trajectory file every 1 ps. In total, 1 us of the simulations

were obtained for each ligand.

4.2.2 Molecular Dynamics Data Analysis

The respective distances used to characterize ligands 10 and 11 were obtained
with the GROMACS command g mindist. Then, they were visualized with
an in-house MATLAB [100] script. The intramolecular hydrogen bond networks
were computed with GROMACS command g hond and the hydrogen bond

occupancy was calculated with an in-house Python [101] script.

4.3 Results and Discussion

In a preliminary study conducted on the similar set of trivalent ligands (contain-
ing the adamantane core and the PEG linker), I found that all three PEG arms
collapsed shortly after the start of MD simulations. Each arm formed an ensem-
ble of the coil-like structures with the same average end-to-end distance measured
between the outermost oxygen atoms. Hence, I simulated only monovalent coun-
terparts of ligands 10 and 11 solvated in water. To trace the conformational
behavior of simulated ligands, I measured the distance distributions for several
atom pairs as indicated in Figure 4.3. First, the distance distribution of the Csg,
N5 atom pair lays in the range of 0.7 nm to 0.9 nm for the most of simulation
time (1 ps) in both ligands. Nonetheless, the overlap of both distributions is
expected, as the planarity of the peptide bond and adjacent triazole ring provide
the limited flexibility of this building block. Thus, the composition in the rest of
the molecule does not influence the dynamics of the core. Second, the distance

distributions of the Cg, S; atom pair correspond to the formation of PEG coils.
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FIGURE 4.3: (A) Pymol representations of the monovalent coun-
terparts of ligand 10 (left panel) and ligand 11 (right panel). The
atoms used to characterize the conformational dynamics of the
ligands are marked according to the Acpype parametrization. (B)
The distance distribution of the Cg-N5 atom pair capturing the
dynamics of the rigid part of the ligands. (C) The distance dis-
tribution of the Cg-S; atom pair capturing the distance between
the rigid core and sialic acid. (D) The distance distribution of the
outermost oxygen atoms of PEG spacers. (E) Pymol representa-
tion of the most stable intramolecular hydrogen bond of ligand 10.
(F) Pymol representation of the most stable intramolecular hydro-
gen bond of ligand 11. (G) As indicated in [90] a PEG linker can
adopt two conformations similar to alkanes: gauche (left panel)
and trans (right panel).
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Both distributions are centered below 1 nm suggesting that PEG arms in the ab-
sence of receptor do not stretch enough to reach the range estimated to facilitate
binding. Surprisingly, they cover also distances lower than the Cg-Nj distance
(<0.5 nm). In such conformations, I found the sialic acid moiety underneath
the adamantane core, which is sterically impossible for the adjacent triazole ring.
Last, the distance distribution of the outermost oxygen atoms of PEG spacers
shows that on average PEG arms sample the longer distances than the distances
between the adamantane core and sialic acid. This observation was somehow con-
fusing and triggered the question if there was an attractive interaction between

the rigid core and the sialic acid moiety.

To test this hypothesis, I analyzed the formation of the intramolecular hydrogen
bonds between all the pairs of hydrogen bond donors and acceptors. My analysis
revealed that sialic acid remained free to potentially interact with the respective
binding site on the surface of HA. In both simulated systems, the bonded atom
pair Ny-Hyy was the most dominant hydrogen bond donor. It brings the PEG
spacer and triazole ring adjacent to the sialic acid in the vicinity of the adaman-
tane core through the formation of several transient hydrogen bonds. In case of
compound 10, Ny-Hsy donor participates in the intramolecular hydrogen bonding
for 34.5% of the simulation time, whereas in case of compound 11 it acts as the
donor for the half of the simulation time. As shown in Figures 4.3E and 4.3F, the
formation of the most stable hydrogen bond between No-Hyy and a PEG oxygen
atom resulted in all PEG oxygens of the linker to assume the gauche conforma-
tion (Figure 4G). It is in line with findings in the reference [90]. As Liese et al.
showed, a gauche conformation of PEG oxygens allows for the surrounding water
molecules to be doubly coordinated with the PEG backbone. Taken together the
intramolecular hydrogen bond network and the water shell around PEG linker
discussed by Liese et al., one should expect increased conformational and des-
olvation entropic penalties for ligand 11 compared to ligand 10. Consequently,
ligand 10 unfolds from the coil-like structure easier than ligand 11 leading to uM

inhibitory constant.
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Chapter 5

Structural Basis for Recognition of

a Bivalent Proline-rich Sequence
(SmBs) by FBP21 tandem-WW

Domains

5.1 Introduction

Proteins are complex machineries that usually requires binding partners to fulfill
their biological functions. Many cellular pathways such as cell to cell communi-
cation, signal transduction, or transcription are executed through protein-protein
interactions. Protein-protein interactions (PPI) are the physical contacts formed
between two or more proteins through van der Waals and electrostatic interac-
tions and maintained through a big (1000-6000 A), and solvent exposed surface
[20]. A particular subset of residues found in the interaction surface contributes
significantly to the binding affinity. Those residues are referred as "hot spots"
[33]. There is a tendency for such residues to be organized in local clusters, more
than to be evenly distributed across the binding surface. Several classifications
of the PPI have been proposed in the literature and are discussed in detail in

section 1.3.

Eukaryotic genes are usually transcribed in the form of a precursor mRNAs (pre-
mRNAs), which are processed to mRNAs during splicing. Noncoding sequences
(introns) are removed from the pre-mRNA, and coding sequences (exons) are
ligated to form mRNA later transcribed to a functional protein. Splicing takes
place in a ribonucleoprotein (RNP) complex called spliceosome. The spliceosome
is a highly dynamical assembly. The final composition of the spliceosome is
determined by the type of the introns to be spliced and comprised of the small

nuclear ribonucleoproteins (snRNPs) and numerous non-snRNP proteins. The
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building blocks of a snRNP are a molecule of RNA (for U4/U6 two molecules),
a set of seven Sm proteins (B/B’, D3, D2, D1, E, F, and G) and a variable
number of spliceosome-specific proteins [102]. The splicing factors or the protein
components of the spliceosome maintain the structure of the snRNPs and fine-

tune the splicing activity by interacting with other spliceosomal components [103].

A prominent example of PPI in the eukaryotic proteome is the recognition of the
proline-rich sequences (PRS) by the spliceosomal proteins. PRS are typically 5-10
residues long peptide sequences. There are 3-6 proline residues in the so-called
"core motif," hence, the name proline-rich sequence. PRS play an active role
in the spliceosome formation through interaction with the proline-rich sequence
recognition domains (PRD) such as GYF, and WW domains [104]|. The architec-
ture of a PRS recognition domain is characterized by a shallow binding groove
containing a cluster of solvent-exposed aromatic residues, which form hydropho-
bic but unspecific contacts to the conserved prolines in the PRS core motif [105].
Fine-tuning in both affinity, and specificity is achieved through additional inter-
actions between the flanking residues of the core motif and a WW domain. In a
bound state, PRS assume almost an ideal left-handed polyproline II (PPII) helix.
Known PRS have a Cj rotational pseudo-symmetry about the helical axis, with
three residues per turn leading to PxxPxxP or PxPPxPP consensus sequence
of the core motif. Additionally, PPII helix has C, rotational pseudo-symmetry
about the axis perpendicular to the helical axis. These features results in the
ability of a PRS to bind in both N- to C-, and C- to N- directions, as the back-
bone, and the side chains of the core motif have the same position upon rotation
of 180° [106].

Formin binding protein 21 (FBP21) is a spliceosomal protein, which is a binding
partner of the various splicing factors. It recognizes the PRS of the core splicing
factor SmB/SmB’ with its tandem-WW (t-WW) domains. The two WW domains
are bridged with a highly flexible linker (Figure 5.1). Whereas two domains
themselves are rather rigid, the overall flexibility of the t-WW domains is solely

determined by the conformational behavior of the unstructured linker [107].

The basis for this study was the previous report on the affinity and specificity of
the FBP21 t-WW domains for several PRS with varying number of proline-rich
motifs by Klippel and coworkers [108]. They demonstrated that a monovalent
peptide (SmB;) derived from the SmB splicing factor binds with a relatively low
affinity (Kq =~ 300 uM) to the t-WW domains of FBP21. By the addition of the
second proline-rich motif (SmBy peptide), the binding affinity of such peptide for
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flexible linker

FIGURE 5.1: Three-dimensional architecture of FBP21 t-WW do-
mains (pdb: 2jxw).

t-WW domains increased by more than ten folds instead of the mainly expected

factor 2.

We aimed at understanding how the conformational dynamics of the apo t-WW
domains influenced the improved binding affinity of the bivalent SmB, peptide.
To elucidate this process at the atomistic resolution, we combined molecular dy-
namics (MD) simulations, protein-protein docking, Markov state model analysis,
nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), and

site-directed mutagenesis.

In this project, I collaborated with Miriam Bertazzon and Dr. Jana Sticht from
Protein Biochemistry Group led by Prof. Dr. Christian Freund. I set-up and
analyzed all MD simulations and protein-protein docking calculations. Miriam
Bertazzon prepared all protein constructs of interest and ran NMR and ITC

measurements. Together with Dr. Sticht, they analyzed the experimental results.

5.2 Methods

5.2.1 Principal Component Analysis

Principal component analysis (PCA) is a common dimensionality reduction
method which captures the dimensions of the largest conformational variance.
PCA linearly transforms the initial set of the atomistic coordinates by the diag-
onalisation of the covariance matrix to a set of linearly uncorrelated coordinates.

The elements of the covariance matrix o;; are given as:

aig = ((ri = (ra))(ry = (r3))) (5.1)
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where r; — (r;) are protein atomic displacement vectors in the 3N dimensional
conformational space, N is the number of atoms in the observed system, 7; is the
atomic coordinate vector, and (r;) is the average atomic coordinate vector over an
MD trajectory. The diagonalisation of the covariance matrix produces 3N eigen-
vectors (v;) describing the modes of the protein dynamics, and 3N eigenvalues
(xi) describing their respective amplitudes. Eigenvectors are sorted according to
decreasing eigenvalues [68]. The slow modes of the protein dynamics are repre-
sented by the motion of the backbone atoms. The 76 trajectories of the apo t-WW
domains were reduced to the backbone atoms trajectories and fitted to the back-
bone atoms of the starting structure by trjconv GROMACS command. All the
trajectories were merged into a single trajectory, prior the computation of the
covariance matrix with g covar GROMACS command. Then, the backbone
coordinates were projected onto the eigenvectors with g anaeig GROMACS

command.

5.2.2 Markov State Models

In recent years, Markov state models (MSMs) have emerged as a powerful tool
to understand the complexity of data sampled by MD simulations. MSMs have
been successfully employed to study biological phenomena such as the confor-
mational dynamics of biomolecules, protein folding, ligand-receptor interactions,
and allostery [23, 55-57|. Prior to construction of an MSM, one assumes that
a process sampled by MD simulations is Markovian, ergodic and reversible. In
the next step, a proper discretization scheme is selected for the partitioning of
the conformational space into a set of microstates, followed by the estimating
the transition jump probabilities between (micro)states pairs. Those transitions
probabilities are stored in a transition matrix, which is a row stochastic matrix
(specified by denominator in Eq. 5.2) and it elements are computed according

to:
Cij

N Zk Cik'

where Cj; are the matrix elements of a count matrix C containing the counts

T 4(7) (5.2)

of transitions between 7j pairs of (micro)states. The eigendecomposition of the
transition matrix yields the information on the time scales at which slow dy-
namics modes occur, the long-lived conformations (metastable states), and their

hierarchy in the free energy surface [58].

The conformational space of the apo t-WW domains was projected onto the

subspace spanned over the first 15 principal components accounting for the 97%
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of the conformational variance. Then, this subspace was a subject of the Time-
lagged Independent Component Analysis (tICA) to detect the rare events in this
projected subspace [69]. Time-lag correlation matrix €; ;(7) was computed with
pyEMMA Python package [109] according to:

Qi5(1) = (ri(@)r;(t + 7))~ (5.3)

for lag time 7 = 1 ns. FEigenvectors of the time-lagged covariance matrix (2
represent the linear combination of the slowly decomposing degrees of freedom.
The conformational space of t-WW domains further reduced to the tIC space
spanned over ten slowest tICs, was then discretized with the core set approach.
The metastable regions in the tIC subspace were detected with the Common
Nearest Neighbour (CNN) density-based cluster algorithm. The density criterion
parameters (in detailed discussed in section 2.3.3) like the cluster radius (R) and
the minimum number of shared neighbors (N) in CNN algorithms were set to 2.4
and 2 respectively. This parametrization yielded 50 disjoint core sets, 47 of which
were dynamically connected and comprised 80.85 % of the conformational space,
suggesting a highly complex conformational dynamics of the t-WW domains.
The remainder of the conformational space is referred to as intervening space,
which can be interpreted as an ensemble of transient and unstable structures.
The transitions between the 47 core sets were computed by defining the forward
m; " (t) and backward m; ™ (t) milestoning processes. The milestoning processes
are defined based on the history (m; (t)) and future (m;*(t)) of the system and
constructed for each core separately ((in detailed discussed in section 2.3.3)).

The transition matrix of the MSM was given according
T(r)=M"'P(r) (5.4)

The matrix elemens of P(7) and M were computed as (time-lagged) correlation

function between the forward and backward milestoning processes [65]:

Poglr) = e S i 14 7) (5.5)
My =Y my (tym(t). (5.6)

The MSM was validated in terms of the convergence of the implied time scales

(1):
(5.7)
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where \; 7(-y (i>1) are the eigenvalues of the transition matrix 7'(7). By consid-
ering the eigenspectrum of T'(7 ), core sets were then lumped with Perron Cluster
Cluster Analysis (PCCA) [61] into long-lived structures separated by the free

energy barriers.

5.2.3 Molecular Dynamics Simulations

All-atom molecular dynamics simulations were carried out for the following apo
systems: FBP21 t-WW domains (system #1), FBP21 WW1 domain (system
#2), and FBP21 WW2 domain (system #3). To study the binding of the SmBs
peptide (GTPMGMPPPGMRPPPPGMRGLL) to t-WW domains, four SmBsy:t-
WW complexes were selected as indicated in Table 5.1 (systems #4-7). The
structure of the bivalent ligand SmBy was prepared in Chimera [110] molecular
modeling software with the Build Structure tool. As previously reported by
Ball et al. [106], PRSs are the linear peptides and form a PPII helical structure
due to the presence of a proline-rich motif. All the backbone dihedrals were set to
¢=-78°, 1= 146° to maintain a PPII helix. The terminal residues in the systems
#1-3 were kept as charged. All the simulations were performed in explicit water
(TIP3P water model [91]), using the GROMACS 5.0.2 simulation package [92]
and the AMBER ff99SB*-ILDNP force field [111]. From the 2JXW ensemble
of NMR structures [107], the third structure was selected, since it lacks inter-
domain contacts. The initial structures of the respective WW domains were
obtained by saving the coordinates of the residues 1 to 37 for WW; domain and
of the residues 38 to 75 for WW, domain to match the sequence of the expressed
singular domain constructs. The initial structures of the bound complexes were
the docking poses obtained from the HADDOCK protocol [79]. The systems
were minimized in the vacuum with the steepest decent algorithm [97] (emtol
= 1000.0 (kJ/mol)/nm, nsteps = 50000), followed by solvation in dodecahedron
boxes. Na™ ions were added to neutralize the simulation boxes (Table 5.1.). The
solvation box of the WW, was larger than the box of the WW; as the linker
was in the extended conformation. Solvated systems were brought to another
round of minimization with the same parameters, followed by an equilibration
in the NVT ensemble at 300 K (V-rescale thermostat [98| time constant = 0.1
ps), and NPT ensemble (Parrinello-Rahman barostat [99], reference pressure =
1 bar, time constant = 2 ps) for 100 ps respectively. The covalent bonds to all
hydrogen atoms were constrained with the LINCS algorithm [42] (lincs iter = 1,
lincs order = 4), allowing for an integration time step of 2 fs. Newton’s equations
of motion were integrated with leap-frog scheme. The cut-off for Lennard-Jones

interactions was set to 1 nm. The electrostatic interactions were treated with
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the Particle-Mesh Ewald (PME) algorithm [47] with a real space cut off of 1
nm, a Fourier grid spacing of 0.16 nm, and an interpolation order of 4. Periodic
boundary conditions were applied in all three dimensions. The first set of apo
t-WW domains simulations was initialized from 12 structures attained from a
short simulation at 350 K (1 ns). Prior to the start of MD runs, the temperature
of the system was scaled back to 300 K. Those 12 parallel simulations yielded
8.9 us of simulation time in total. This MD data set was a subject of core set
analysis on the PCA subspace spanned over 15 principle components as described
in sections 5.2.1 and 5.2.2. Further simulations were started from the structures
corresponding to the core sets. An additional round of the core sets detection
was performed when 16 ps of the simulation data was gathered. In total, 76
trajectories were produced which varied from 150 ns to 1.1 us in length, resulting
in overall 36.7 us of the simulation time for the apo t-WW domains. The main
aim of these two rounds of the adaptive sampling was to achieve the connectivity
between trajectories and to ensure the sampling according to the Boltzmann
distribution. The production runs for all investigated systems were simulated in
the NPT ensemble (temperature 300 K, pressure 1 bar). For two singular apo
constructs, ten trajectories with a total simulation length of 8.9 us were generated.
The holo simulations were directly started after the NPT minimization. For the
holo systems trajectories of 100 ns were produced. The solute coordinates were

written to the trajectory file every 1 ps.

Ref # System Box size [nm?] | # Hy0 | Na™ | Simulation
time
1 t-WW domains 291.64 9282 7 | 36.7 us
2 WW; domain 122.59 3808 4 |89 us
3 WW,; domain 197.26 6248 4 | 8.9 us
4 (SmB2:CS3) canonical 1 482.70 15176 5 | 100 ns
5 (SmB2:CS3)inverted.1 474.61 14801 5 | 100 ns
6 (SmB2:CS3) canonical 2 501.17 15874 5 | 100 ns
7 (SmB2:CS3)inverted,2 489.27 15436 5 | 100 ns

TABLE 5.1: Volume of the simulation box, number of water
molecules per simulation box, number of counter ions per simu-
lation box, and total simulation time for each system.
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5.2.4 Dihedral Angles Analysis

The flexibility of the protein backbone can be evaluated in terms of the ¢- and
y-backbone dihedrals, which jointly form the Ramachandran space of the corre-
sponding residue. The backbone dihedrals of the systems #1, #2, #3 were ex-
tracted with the GROMACS command g rama. An in-house developed MAT-
LAB script [100] based on the discretization of the Ramachandran plane into 360
x 360 = 1296000 bins (the bin width of 1°), was employed to project the time
series onto the grid. The Ramachandran plots were produced for all the residues
of #1, #2, #3. Changes in the backbone dynamics of WW; domain simulated as
a singular construct (system #2), and in the t-WW domains (system #1) were
visualized through pair-wise Ramachandran difference plots. The same analysis

was also performed for the #3, #1 system pairs.

5.2.5 Hydrogen Bond Analysis

All trajectories obtained for the respective system were concatenated and then
down-sampled with GROMACS command trjcat resulting in 20000 equidis-
tant frames for systems #1,#2,#3 (later referred as down-sampled trajectories).
Then, they were loaded into VMD [112] for the subsequent hydrogen bond ex-
traction with Hydrogen Bond tool. The donor-acceptor distance was set to 3.5
A, while hydrogen bond angle was cut off at 30°. An in-house Python-based [101]
script analyzed occupancy of the hydrogen bonds detected in the MD trajecto-
ries. This script reads VMD output files, filters out the hydrogen bonds with
low occupancy (threshold of 10% used), detects the conserved hydrogen bonds
present in all analyzed systems (i.e., #2 versus #1 analysis) and creates a list of

a system specific hydrogen bonds.

5.2.6 The Chemical Shifts Prediction Based on the MD

Simulations

To validate the quality of the MD the chemical shifts were predicted from the
downsampled trajectories for the systems #1, #2, and #3 by with the SPARTA™
software [53|. This software predicts the chemical shifts based on the neural net-
work algorithm that considers both structural (backbone and sidechain torsions)
and dynamical inputs (S%-order parameter) with the information on the local

interactions (i.e., hydrogen bonds).
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5.2.7 DSSP Analysis

DSSP is a computer algorithm which considers the hydrogen bond network and
geometrical features to assign every residue in a protein sequence to a specific
secondary structure element [113]. To evaluate the stability of the secondary
structures in the conformational ensemble, the compute dssp function of the

MDtraj [114] Python library was employed to the down-sampled trajectories of
#1, #2, #3 systems.

5.2.8 Protein-Protein Docking

HADDOCK [79], a protein-protein docking web server (version 2.2) was employed
to study the interactions between t-WW domains and SmBs peptide. HADDOCK
is a force-field based docking approach. A user can provide experimentally deter-
mined restrains referred as ambiguous interaction restraints (AIR), such as chem-
ical shifts, or NOE distances. Then, the user should specify a list of the active
residues, usually experimentally observed to be important in the binding process.
Nearby residues at the protein-protein interface are treated as passive residues.
The HADDOCK docking protocol comprises three steps. First, a contact inter-
face based on the provided AIRs is formed in a rigid body search, followed by
the generation of 10000 structures of a protein-protein complex. Then, they are
ranked based on a HADDOCK scoring function . This scoring function includes
five terms: van der Waals, electrostatic, desolvation, restraint energy, and buried
surface area term [80]. The top 200 structures are then refined in the torsion
angle space by the simulated annealing. In the last step, those 200 structures are
placed in TIP3P water boxes, and further refined in the Cartesian space. Finally,
they are re-ranked with HADDOCK scoring function and clustered according to
similarity. The decision tree for selecting a binding competent structure employed
in the HADDOCK protocol is discussed in section 5.3.4.

5.2.9 Contact Maps

To asses if the proline-rich motifs of SmB, remained in close contact with the
binding grooves of two WW domains, the contact distance matrices for the C-
« atoms of the SmBo:t-WW complex were computed with the gmx mdmat
GROMACS command for the systems #6 and #7. Then, those matrices were
visualized as contact maps with a MATLAB script.
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5.3 Results

5.3.1 Matching Molecular Dynamics Simulations and
NMR Measurements

I computed the 'H-1°N HSQC spectra of the systems #1, #2, #3 from my simu-
lations and compared the results to the experimentally measured chemical shifts
(Figure A.1). The computed chemical shifts for the backbone N atoms matched
the experimental values within an RMSD of 2.64 ppm for the t-WW domains,
2.69 ppm for the WW; construct, and 2.60 ppm for the WW, construct. The
computed chemical shifts of 'H atoms matched to the experimental values with
RMSD between 0.35 to 0.43 ppm. The reported accuracy of the chemical shift
calculations for the current force fields is 2.45 ppm for N and 0.43 ppm for 'H,
respectively [54]. Thus, my simulations are in good agreement with the NMR

experiments for all three observed systems.

5.3.2 Refolding Does Not Play a Role in the PRS Recog-
nition
A previous study on YES-associated protein 2 (YAP-2) tandem-WW domains in-
volved in the Hippo signaling pathway [115] (control of the tissue growth) showed
that the WW; domain is partially unfolded in the absence of the proline-rich lig-
and and refolds during the binding process [116]. T also examined the stability of
the singular WW domains and t-WW domains in my simulations. DSSP analysis
revealed that the secondary structure was stable in all three systems, in partic-
ular, the two anti-parallel -sheets remained folded throughout the simulations
(Figure 5.3). Moreover, the structurally important hydrogen bonds remained sta-
ble in the singular domains (Tables A.1, A.2), whereas pair-wise Ramachandran
difference plots showed no significant changes of the backbone dynamics for the
residues in the all six S-strands (Figures A.2 and A.3). The singular constructs
showed a minor increase in the backbone flexibility of the loops connecting the
core (-strands compared to the t-WW domains. Thus, MD simulation did not
show unfolding in either of the two WW domains in the absence of the ligand. I,
therefore, rule out the possibility that refolding of the WW domains plays a role
in recognition of a PRS by FBP21 t-WW domains. Instead, the dynamics of the
two domains relative to each other is likely to be the dominating factor in the

recognition process.
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FI1GURE 5.2: DSSP analysis performed on the downsampled tra-

jectories (20000 equidistant frames) of t-WW domains (left panel)

and the singular domain constructs (right panel) revealed that the
[-sheet fold remained stable in three investigated systems.

5.3.3 The Conformational Ensemble of t-WW Domains is

Dominated by an Inter-domain Interface Formation

Visual inspection of the MD trajectories of the t-WW domians confirmed that
the dynamics of the two domains relative to each other is very complex. They
adopt a wide range of relative orientations, some of which are stabilized by the
formation of inter-domain contacts. Accordingly, the linker residues were highly
flexible and visited all three allowed regions of the Ramachandran space (Figure
5.3.). The linker did not form any stable secondary structure element (Figure
5.2.), which is in line with a previous NMR study on the FBP21 t-WW domains
[107].

To obtain a low-dimensional representation of the conformational space sampled
by the t-WW construct, first I performed a principal component analysis (PCA)
on the Cartesian coordinates of the backbone atoms. I considered the first 15
principal components accounting for 97% of the conformational variance. As I
confirmed by visual inspection of the MD trajectories, some of the conformational

changes had a large magnitude, yet occurred rather fastly. Then, to distinguish
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F1GURE 5.3: Backbone flexibility of the t-WW domains; Coloring
is done based on the legend depicted in the right-hand side panel.

the rare conformational events from the fast fluctuations, I additionally performed
a time-lagged independent component analysis (tICA) on the PCA subspace. Ten
time-lagged independent components (tIC) represented 90% of the kinetic vari-
ance. Last, [ analyzed this 10-dimensional tIC subspace with Common-Nearest
Neighbours (CNN) density-based algorithm to detect densely populated regions

of the t-WW domains conformational space.

To decide on a representative structure of each core set, I investigated their re-
spective hydrogen bond networks. I filtered all the hydrogen bonds facilitating
the [-strand fold of two WW domains and focused on the hydrogen bonds con-
necting two distinct structural elements (i.e., N- or C- tail and the linker, the
linker and any of two WW domain, or two WW domains). Every core set ex-
hibited several unique hydrogen bonds, which I considered when extracting the
representative structure (Figure A.4). Interestingly, some of the hydrogen bonds
appeared across the multiple core sets (Table A.3). The sidechain of the Rg is
a prominent donor in several semi-conserved salt bridges, which resulted in the
WW, domain having close contacts with either linker of WW, domain. Strik-
ingly, in 43 out 50 core sets, two WW domains were in close contact and formed
an inter-domain interface. In the core sets CSig, CS1g, CSsg, CSu5, CSug, and CSsg
the flexible linker was placed between two domains as dictated by the formation
of the unique and the semi-conserved hydrogen bonds only between the linker and
two WW domains (Figure 5.4A). In a single core set CSsg, the hydrogen bond
network comprised contacts between the N- and C- termini and the end residues

of the linker exclusively, causing two WW domains to be separated from each
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FIGURE 5.4: (A) Linker is placed between two WW domains; (B)
No inter-domain interface was formed; (C) inter-domain interface
comprising N- and C-terminal residues; (D) N-terminal residues
hydrogen bonded with the WW3 domains residues; (E) highly com-
plex interface - mainly achieved through the polar linker residues
and their counterparts in either of two WW domains; (F) interface
stabilized by the hydrogen bonds formed between residues of the
WW; and their counterparts in the WWs domains.

other (Figure 5.4B). The inter-domain interfaces varied among 43 core sets and

could be grouped in the four categories:

e interface was established between the N- and C-terminal residues: core sets
CSa4, and CSyy (Figure 5.4C);

e interface was formed via N-terminus being placed between two WW do-

mains: core sets CSs, and CSy9 (Figure 5.4D);

e majority of the hydrogen bond participating in the interface were formed

between the linker residues and their counterparts in either of two WW
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domains: core sets CS7, CSQ, CSH, CSlg, CSlg, CSQl, CSQS, CSgQ, CSgg,
0834, CSgG, 0837, and CS40 (Figure 54E)

e interface was achieved mainly through hydrogen bonded residues of WW,

and WW; domains: remaining core sets (Figure 5.4F).

Next, Miriam Bertazzon calculated the chemical shift perturbations by comparing
the *H-15-N HSQC spectra recorded for the singular constructs to those of the t-
WW domains. The largest chemical shifts were observed for residues S3,Q34, and
Eso. Given that all affected residues are solvent exposed and that the secondary
structure remains stable, it is likely that these chemical shifts are caused by inter-

domain contacts of the affected residues, in particular by the interface formation.

To categorize the relative orientation and position of two WW domains in the
different core sets, I defined four vectors between the C-a atoms of the following
residues: Vg, Gig, Kyo, Vg, Gs1 (Figure A.4). The angle a between the vectors
Vg — Gig, and V9 — Gs; described the orientation of the WW;-domain relative
to the WWsy-domain. The other two vectors, K490 — Vg, and Kyg— Vg9, were
centered at the linker residue K49. Their angle S accounts for the relative posi-
tion of the two domains, where Ky, was defined as the origin. The results of the
vector analysis were summarized in Table A.4. Two WW-domains could adopt
three relative orientations to each other, namely perpendicular (1 —), parallel (1
1) and anti-parallel (1 ]), as depicted in Figure 5.5. By far the most dominant
orientation of two WW domains observed in the conformational ensemble was
perpendicular (25 core sets), then 17 core sets were found in anti-parallel orienta-
tion, while only eight core sets assumed parallel orientation. However, there was
no strong correlation between four types of the inter-domain interface and the
relative orientation of the WW;, WW, domains. However, I assumed that the
relative orientation of the two domains to each other might play an important
role in determining a binding-competent structure, which is further discussed in

section 5.3.4.

I proceeded with the investigation of the hierarchy in the free energy surface
(FES) of the t-WW domains by constructing a Markov State Model (MSM) us-
ing 50 core sets discretization previously discussed. The core set CSys (relative
population 0.37%) was not reachable from the rest of conformational space. Next,
I checked if the mass matrix M was diagonally dominant to ensure that other
49 core sets were metastable enough. After several rounds of merging the low
populated core sets with the neighboring core sets in the respective trajectories,

the mass matrix became diagonally dominant, but two core sets CSyy (relative
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FI1GURE 5.5: Two WW domains can adopt three possible orien-
tations respect to each other: perpendicular (left panel), parallel
(middle panel, and anti-parallel (right panel).

population 0.84%) and CSsg (relative population 0.18%) lost connectivity to the
remainder of the conformational space. Then the MSM was constructed on the
largest connected set comprising 47 core sets. With the adjusted mass matrix, I
computed the transition matrices T for the lag times 7 in the range from 100 ps to
70 ns. The implied time scales were rather well converged for the lag times 20 to
70 ns (Figure A.5). I performed the PCCA analysis on the dominant eigenvectors
of the transition matrix 7' (computed for 7=60 ns), yielding six metastable sets
(M;-Mg) separated by the five highest barriers in the FES and corresponding to
dynamical modes of the system. The FES of the apo t-WW domains is presented
in Figure 5.6. Interestingly, each of the metastable sets My, My, M3, My, and
Mj; corresponded to a single core set CS,, CSg, CS11, CSqg, and CS5 respectively.
The metastable sets M;-Mjs shared two features: (i) the perpendicular orientation
of two WW domains and (ii) the inter-domain interface. The metastable set Mg
contained remaining 42 core sets considered in the model. In the slowest dynam-
ical process the M; set (CSs, relative population 9.84%) kinetically exchanged
with the rest of the conformational ensemble with an implied time scale of 7.4
ps. This minimum of FES was determined by the following hydrogen bonds Rg
— Gsg, Rg — Esg, and Lgg — E5. The My (CSg, relative population 1.83%)
set was stabilized by the hydrogen bonds mainly established between N-terminal
residues (S3, Ky4) and WW,, residues (Ye1, Ne2, Tes).

It kinetically exchanged with the sets M3-Mg at an implied time scale of 5.8 ps.
In the set M3 (CSyy, relative population 1.13%), the N- and C-terminal, linker,
and WW, domain residues participated in the hydrogen bond network stabilizing
a highly complex inter-domain interface. The t-WW domains visited any other
part of the conformational space covered by the My-Mg metastable sets every 5.3
ps. Next in the hierarchy of the FES was the metastable set My (CSyg, relative
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FIGURE 5.6: Kinetic model of the apo t-WW domains.

population 1.31%). In the representative structure of this metastable set My two
WW domains were brought in an inter-domain interface through the side chain
contacts of Rgg and Wyy of the WW, with Eg, and Eq4 of the WW; domain
respectively. The next kinetic process occurred at an implied time scale 4.7 us
and comprised interconversion of the t-WW domains from the metastable set M,
to either set M5 or Mg. The last distinguishable metastable set M5 (CSs, relative
population 2.53%) was determined by an interface formed by the N-terminal
residues Py, S3 and Rg bridged with the counterparts of the WW, domain Y
and Sgg. The core sets belonging to the Mg metastable set were interconverting at
faster time scales than 2.58 us, and the timescales of such conformational changes

could not be determined by the current model. Those core sets can be assumed
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to belong to a rather shallow, huge and rugged minimum of the free energy
surface. Taken together a visual inspection and the hydrogen bond networks of
the respective core sets, in addition to the kinetic model, I concluded that the
conformational dynamics of the t-WW domains was dominated by the formation

of the various inter-domain interfaces.

5.3.4 Binding-competent Structure

I previously mentioned in chapter 5.1 that WW domains bind a PRS with their
shallow and solvent exposed binding grooves (Figure 5.7). The most important
recognition element of a WW domain binding groove is a cluster of aromatic
residues, which packs against a proline-rich motif of a PRS [106]. In the previous
study by Huang et al. [107], it was shown that by mutating the tryptophans
Wyg (WW; domain), and Wry (WW; domain), the affinity of the respective WW
domain for a PRS was completely abolished. Hence, W9 and Wy are essential
for the binding of a PRS. Additionally, tyrosines adjacent to Wag (Y15, Y20), and
to Wro (Y59, Ye1) exhibited relatively strong chemical shift perturbations upon
PRS binding [108], suggesting their importance as the recognition elements. As
discussed by Ball et al. [106], the lack of the intra-molecular hydrogen bonds
in a PPII helix, leaves backbone carbonyl oxygen of a proline free to form a
hydrogen bond with the side chain of the essential tryptophan of the respective
WW domain. This binding pattern was observed in available X-ray and NMR
structures [29, 105, 117|. In the absence of the X-ray or NMR structure of a
bivalent PRS bound to the t-WW domains, 1 assumed three conditions that
both t-WW domains and SmBy should meet to facilitate SmBo:t-WW complex

formation:

(i) all residues of SmBy have the fixed backbone dihedrals ¢=-78°, 1)=146° to
maintain the PPII helixal conformation of the peptide (Figure 5.7A). Thus
the distance between the backbone carbonyl oxygens of the outermost pro-
lines of two proline-rich motif stood at ~30 A, consequently this condition
implies that the imidazole nitrogens of Wog and Wyy should be also ~30 A

apart from each other in a binding competent structure;

(ii) the relative orientation of two WW domains should allow for the simulta-

neous recognition of both proline-rich motifs of the SmBy peptide;

(iii) two aromatic clusters or binding grooves (Yis,Y29, Wag in the WW; domain,
and Yso,Ye1, Wrg in the WW5 domain) should be solvent exposed, therefore,

not trapped in an inter-domain interface.
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FIGURE 5.7: (A) Pymol representation of the SmBs in a PPII helix
conformation; (B) Binding-competent structure decision scheme.

With the notion that the conformation which the t-WW domains adopt in the
bound state was already present in the simulated conformational ensemble of the

unbound state, I next identified core set(s) which would be capable of forming
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a complex with the SmB,. 47 core sets used in the construction of the MSM
were considered for the further analysis. By applying the relaxed condition (i)
and using the distance between the imidazole nitrogens of Wog and Wyy in the
range of ~25-35 A, I marked 29 core sets as not binding competent. In the
remaining 18 core set, I visually inspected the relative orientations of two WW
domains (condition (ii)), resulting in only core sets CS3, CS;, CSs3, and CSy
to be further considered. Last, I excluded the core set CSs3 as the side chain of
Y41 was blocked in a hydrogen bond with the side chain of T45, while the core
set CS4; was filtered out due to Ysg, and Yg; having low solvent exposure. The
reported SASA of Ysg, and Y stood at 19A, and 12A respectively (condition
(iii)). Furthermore, none of three dynamically disconnected core sets were a

potential binding-competent structure according to conditions (i-iii).

system Kpymr [#M] | Kp rre [#M]
wt t-WW 84.17 £ 22.42 | 41.84 £ 3.45
R6A t-WW | 111.55 + 35.83 | 45.45 £+ 8.79

TABLE 5.2: Affinity measurements

To further support the decision on the binding-competent structure Miriam
Bertazzon expressed R6A mutant of the t-WW domains as the side chain of
Rg participated in a salt bridge with the side chain of Ejy stabilizing the core
set CS;. Then she employed isothermal titration calorimetry and NMR titra-
tion experiments to measure the affinity of the wild-type (wt) t-WW, and R6A
t-WW domains for the SmBsy peptide (Table 5.2). Additionally, Miriam recorded
a NOESY spectrum of the SmBy:t-WW complex. This experiment revealed that
only the backbone nitrogen atoms of the residues adjacent in the primary se-
quence were at the NOE distances lower then 5 A (upper limit of the method),
suggesting that two domains were not in a close contact upon binding of the
SmB, peptide to the wild-type t-WW domains. No NOEs were detected between
the SmB, peptide and the t-WW domains. This was somehow expected, since
Miriam used of SmB, peptide construct without the '*-N labeled backbone ni-
trogens. However, the Smby:t-WW complexed was formed as indicated in Table
5.2. Based on the experimental findings, I concluded that CS,; was not a binding-
competent structure. Hence, I used the representative structure of the core sets
CS; (relative population 5.39%) in the subsequent docking calculations (Figure
5.7B).
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5.3.5 Docking and Molecular Dynamics Yields Candidates
for the Structure of the SmBs:t-WW domains Com-
plex

Next, I checked whether a docking protocol would yield suitable complexes of
SmBs with the selected t-WW domains structure CSs. I employed NMR-guided
protein-protein docking with the HADDOCK protocol, in which one can specify a
set of active residues, which side chains conformations are optimized together with
the ligand conformation during docking. Residues Eg, Gig, Yig, Agg, Qos, Wayg,
Ss3, Es4, Tss, Yoo, Reo, Wro, and E7; were set as active based on the chemical shift
perturbation calculations (Miriam Bertazzon). Additionally, three tyrosines Yy,
Y59, and Yg; were marked as active as they were expected to facilitate packing
of the proline-rich motifs of SmB;. The HADDOCK protocol yielded several
docking poses of the SmBy:t-WW complex. However, visual inspection showed
that the HADDOCK score was a poorly suited to compare the various poses.
In particular, in some cases, a relatively high HADDOCK score was assigned
to poses in which SmB, was docked to regions outside of the binding groove.

Therefore, I selected interesting docking poses based on the following criteria:

(i) SmBy can bind to the t-WW domains in the N- to C- direction (canonical
binding mode), and C- to N- direction (inverted binding mode) as indicated

by NMR spin labeling experiments [108];

(ii) the core motif of SmB; has to be in the proximity of Wag and Wq. Ideally,
it formed an intermolecular hydrogen bond to the side chain of the two

residues;

(iii) as HADDOCK yielded docking poses in which the central arginine Ry5 of the
SmBs, was pointing towards either of two WW domains. Hence I considered

two distinct R;s conformations.

Thus, I obtained four candidates of the potential SmBo:t-WW complex:

Ref # | SmBy:t-WW complex | binding direction | Ry5 conformation
4 SmB,:CS; canonical towards WW;
5 SmB,:CS;3 inverted towards WW;
6 SmB5:CS; canonical towards WW,
7 SmB,:CS; inverted towards WW,

TABLE 5.3: Docking poses probed by the MD simulations.
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In the system #4 SmB, was bound to the t-WW domains in a canonical direction
(Figure A.6). The sidechain of Wyg formed a hydrogen bond with the backbone
carbonyl oxygen of Mg of the Smby preceding the P;_g proline-rich motif. Both
proline-rich motifs were packed against the respective aromatic cluster, albeit a
hydrogen bond with the sidechain of W;y was missing. The SmBy:t-WW complex
was additionally stabilized by a salt bridge between E7; and Ri9. Again in the
system #5, when SmBy was bound to the t-WW domains in the inverted mode,
Wy established a hydrogen bond with the SmB, (carbonyl oxygen of Gy7), while
the side chain of Wy did not participate in any hydrogen bond formation (Figure
A.6). Similarly, in the systems #6 and #7 the side chain of Wy, did not establish
any hydrogen bond with the proline-rich motifs of the SmB,, although it was
placed in their proximity. The P7;_g proline-rich motif was attached to the WW;
domain through hydrogen bonds with the side chains of So7 and Wag, while the
side chain of the central Ry, established contacts with £5-5¢ loop residues Tgz and
Eg4 in the system #6 (Figure 5.8A). The P7_g proline-rich motif in the system #7
formed two hydrogen bonds with the side chain of Sgg of the WW, domain, while
the backbone of M;g following the Pi3_1¢ proline-rich motif made a hydrogen
bond with the side chain of Wyg (Figure 5.8A).

To investigate the role of the Rjs in the formation of the SmB2:t-WW complex
I initialized the MD simulations from the selected docking poses (Table 5.3).
Furthermore, I wondered if the #4, #6 and #05, #7 respectively would converge
to a single complex per binding direction. Interestingly, in the systems #4 and #5
(Figure A.6), the initial orientation of the Ry pointing towards WW; domain led
to overall instability of the SmB2:t-WW complex. In both system, the proline-
rich motif of SmBy in the vicinity of the WW5, domain, actually detached from
the WWjy domain, leaving systems #6 and #7 as the potential candidates for
the bound complex. The lack of charged residues in the [5-3 loop resulted
in no salt bridges formed with the side chain of Ry in system #4. On the
contrary, in systems #6 and #7 glutamate Eg4 (55-56 loop) formed a stable salt
bridge with SmB, arginine Ris, suggesting its importance for the stability of the
SmB2:t-WW complex (Figure 5.8B). Remarkably, during the MD simulations,
the stable hydrogen bonds with the side chain of W;q were formed between the
backbone carbonyl oxygens of G5 and Gi7 in the #6 and #7 systems respectively.
Additionally, in both systems, the proline-rich motif bound to the WW; domain
was further stabilized by the side chain of Ss7. In the inverted binding mode
(system #7), the P;_g proline-rich motif was kept in the WWy domain through
an additional hydrogen bond with the side chain of Sgs. The flanking arginine
Ry19 of SmBy further facilitated bound complexes through salt bridges with E;;
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(system #6), and Egy (system #7). The computed contact maps for the #6
and #7 systems revealed that both proline-rich motifs of the SmB; remained
in close contact with two aromatic clusters (Figure 5.8C, Table A.5). Taken
together the hydrogen bond networks and the good packing of the proline-rich
motifs against the cluster of aromatic residues, I concluded that systems #6 and
#7 were meaningful candidates for the SmB2:t-WW complex representing two

experimentally determined binding directions of the SmB,.

5.4 Discussion and Conclusions

The presented work shed light on the recognition of bivalent proline-rich sequences
by the tandem WW domains of the spliceosomal forming binding protein 21
(FBP21). Taken together the findings of the NMR titration experiments and the
MD simulations of the systems #1, #2 and #3, I concluded that the (g-strand
fold of two WW domains remained stable in the absence of a PRS in all three in-
vestigated systems. This finding led to a conclusion that the refolding of any two
domains was essential during the binding event (Figure 5.2). Extensive molecu-
lar dynamics simulations revealed a highly complex dynamics of the apo t-WW
domains. The conformational ensemble of this system was characterized by 50
metastable structures. Interestingly, in 43 of those structures, two WW domains
remained in close contact due to the formation of an inter-domain interface. The
interface formations can be attributed to the abundance of the charged residues
encoded in the primary structure of the t-WW domains. Consequently, the side
chains of such residues bridged two WW domains with each other, then WW
domains with the flexible linker and both termini. The inter-domain interfaces
differed among the affected metastable structures, and I classified them into four

major types based on the participating secondary structure elements.

In the kinetic model of the conformational dynamics of the apo t-WW domains,
five slow dynamics modes were identified. They described the kinetic exchanged
between the six minima of the free energy surface occurring at the time scales
between 2.58 and 7.4 us. Each of the minima M;-Mj corresponded to a single
metastable structure exhibiting the inter-domain interface, albeit the type of the
interface varied among different minima (Figure 5.6). Then in the minima, M;-
Ms, two WW domains did not assume the relative orientation to each other which
would promote simultaneous recognition of both proline-rich motifs of the SmB,
peptide. Also, the essential aromatic residues of the WW, domains participated
in the inter-domain interface of the minima My, My and Ms. Such structural

features of the five deepest minima of the free energy surface implied that (i) a
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binding-competent structure might be found in the vast and shallow minimum Mg;
(ii) if such structure existed then presence of the PRS would provoke its formation
excluding the conformational selection on the level of protein as a mechanism of
the PRS recognition. Indeed, I was able to identify a single binding-competent
structure by following the criteria discussed in the section 5.3.4 and considering
the outcomes of the site-directed mutagenesis study combined with the SmB,

affinity measurements and the NOESY experiments.

The SmB, peptide was modeled to be in the PPII conformation in the subsequent
docking calculation, which yielded four potential candidates of the SmBy:t-WW
complex. However, it turned that the orientation of the central arginine R;5 of
SmB, dictated instability of two selected docking poses (systems #4 and #5),
leading to the detachment of the SmBy from the WW, domain, as confirmed by
the MD simulations (Figure A.6). MD simulations of the remaining two docking
poses (Figure 5.8), showed that the side chain of Rys was hydrogen-bonded to the
B5-B¢ loop contributing to the stable SmBy:t-WW complexes (systems #6 and

#7).

The protein-protein docking and MD simulations proved the dual binding mode
of the SmBy was possible. Since the SmBy peptide remained bound to the t-
WW domains, no clear conclusion on the preference for the binding direction
could be drawn. Given the proposed binding models and the hierarchy of the free
energy surface of the apo t-WW domains, it is likely that the combination of the
conformational selection and the induced fit on the level of the protein plays a
role in the PRS recognition. During the MD simulations of the systems #6 and
#7, the t-WW domains fluctuated from the starting structures with the RMSD
of 2-4 A, allowing for the subtle rearrangements of the residues essential for the

recognition of the SmBs,.
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FIGURE 5.8: (A) Docking poses of the SmBy:t-WW complex in
the canonical binding mode (left upper panel) subject of the 100 ns
MD run (system #6) with the last simulation frame presented (left
lower panel), and an inverted binding mode (right upper panel)
subject of the 100 ns MD run (system #7) with the last simulation
frame presented (right lower panel); (B) Hydrogen bond networks
of two SmBy:t-WW complexes (canonical binding mode-left panel;
inverted binding mode-right panel) - acceptors marked in red; (C)
Contact maps of the C-a atoms of two SmBo:t-WW complexes
(canonical binding mode-left panel; inverted binding mode-right
panel).
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Chapter 6

Conclusions and Outlook

In recent decades molecular dynamics has evolved into a robust method to study
dynamical properties of biomolecules and became a complementary method to
other structural techniques. Therefore, it was a method of choice in three projects
covered in this thesis, whose primary focus was the analysis of the multivalent

systems.

As presented in Chapter 3, I contributed to a structural study on the trimeric
C-type lectin receptor Langerin, an important component of the innate immune
system responsible for pathogen recognition and antigen presentation. Prior to
this study, a mechanism governing extracellular carbohydrate uptake and intra-
cellular release mediated by Langerin was not well understood. Like other C-type
lectins, Langerin requires the Ca?" cofactor to perform its biological role. We (a
collaborative project with Structural Glycobiology Group led by Dr. Christoph
Rademacher) showed that no interdomain cooperativity was involved in the Ca*"
binding and sugar recognition. However, Langerin affinity for the Ca?* ion was
pH-sensitive, and it was under control of an intradomain allosteric network. This
was a somewhat surprising outcome since other studied C-type lectin exhibited
different mechanisms of sugar uptake and release. Further, we were interested in
elucidating the role(s) of such an allosteric network. The pH-competent dictating
Langerin affinity for the Ca?" ion was encoded in this robust allosteric network
and controlled by two pH sensors: (i) a hub residue of the allosteric network H294
(ii) and an unknown pH sensor. The protonation of H294 affected the coupling
of the highly flexible short loop with the adjacent long loop bearing the Ca?*
binding site. We proposed that the unknown pH sensor was located in the Ca?"

binding site itself. This finding triggers several questions yet to be answered:

e which residue among the charged residues of the Ca™? site (E285, E293,
and D308) is the second pH sensor;

e do all the three charged residues form a pH triad, and then the positive

charge is transferred among them;
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e does the protonation of the second pH sensor lead to Ca** /sugar release in

the first place;

e does the opening of the Ca?* channels in the endosomal compartment and
the overall decrease of the Ca®" concentration cause Ca*"/sugar release
allowing the protonation of the second pH sensor, which in turn initializes

the conformational changes in the Ca™? site preventing the Ca?* rebinding.

Further investigations into this questions are currently performed. Then, we ex-
cluded a possibility that the allosteric network was a part of a broader signaling
pathway. It was not clear with the current data whether the allosteric network
evolved as an intrinsic feature of Langerin structure compensating for the loss
of the conformational entropy upon a ligand binding. Finally, we reported sev-
eral conformational events taking place at different time scales. While the loops
coupling was in the nanoscale range, the cis-trans isomerization of the highly
conserved P286 (located in the long loop) occurred in the micro- to millisecond

regime.

In Chapter 4, I focused on investigating the conformational dynamics of the
trivalent sialosides designed to inhibit an influenza virus protein, namely Hemag-
glutinin. Such ligands consist of a rigid adamantane core and the flexible PEG
linkers to which sialic residues were attached. I showed that PEG linkers tend
to collapse rather easily to the coil-like structures, suggesting a high conforma-
tional entropic cost upon the binding to the receptor. Then, I identified several
intramolecular hydrogen bonds facilitating the formation of the coil-like struc-
tures of the PEG linkers. The relative occurrence of such hydrogen bonds could
partially entail for the discrepancy in Ky of the two investigated ligands. As
indicated by molecular dynamics simulations, one might consider replacing the
carbamoyl moiety that connects the adamantane core with PEG linkers and con-
tains the dominant Ny-Hyg donor with an ether group to further fine-tune such

trivalent sialosides.

From investigating the conformational dynamics of a receptor and a ligand sep-
arately, I proceeded in Chapter 5 with a project that aimed at elucidating the
binding of a bivalent proline-rich peptide (SmB;) to the tandem-WW domains
of Formin Binding Protein 21 (FBP21). The molecular dynamics simulations
of the apo t-WW domains revealed a highly complex conformational dynamics.
In-depth analysis of the metastable regions of the conformational space showed
that tandem-WW domains tend to form various interdomain interfaces character-

ized by a (core)set specific hydrogen bond network. Additionally, I constructed
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a kinetic model of the apo t-WW domains, shedding light on the organization
of the free energy landscape. There were five distinguishable minima each cor-
responding to a single metastable structure. The sixth minimum comprised of
42 fast interconverting metastable sets and can be assumed as broad, shallow
and rugged. Remarkably, a binding-competent structure was found in this broad
minimum, and it lacked an interdomain interface. This finding suggested that
combination of the conformational selection and induced fit on the side of the
protein plays a role in the binding of the bivalent SmB, peptide. The bound
complex was modeled by the combination of HADDOCK docking protocol and
the molecular dynamics simulations yielding the SmB, peptide bound to the t-
WW domains in a canonical and in an inverted direction respectively. Still, there
is an open question if the proposed binding models would apply to any other biva-
lent proline-rich peptide. The novelty of this work is reflected in the combination
of molecular dynamics, Markov State Model theory, protein-protein docking and

NMR experiments to study protein-protein interactions.
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Chapter 5: Supplementary Material

Donor | Acceptor | % WW; | % t-WW
R6 SC D21 SC 100 33.14
S24 SC D21 SC 95.94 100
V8 BB Y20 BB 90.51 88.78
Y20 BB V8 BB 90.05 89.5
Q28 BB | Y19 BB 85.72 85.29
Y19 BB | Q28 BB 82.77 84.46
D21 BB | A26 BB 78.56 78.12
S24 BB D21 SC 78.39 83.34
Y18 BB | G10 BB 7.2 72.63
Q28 SC E30 BB 75.62 77.75
123 BB D21 SC 67.64 75.9
T12BB | Y16 BB 67.38 68.89
G10 BB | Y18 BB 65.12 66.49
L22 BB R6 BB 58.83 61.49
G15BB | T12 BB 52.49 52
S3 SC D1 SC 40.65 14.73
H17 SC E9 SC 38.53 41.29
Y16 BB T12 BB 35.22 37.22
W7 BB | G34 BB 30.81 29.53
R6 BB D21 SC 24.58 44.15
A26 BB S24 SC 22.59 24.86
F35 BB P32 BB 21.2 20.16
Q36 BB | W7 BB 16.84 16.98
T12 SC Y16 BB 14.84 13.13
W7 SC K4 BB 10.45 13.92

TABLE A.1: Hydrogen bond network comparison WW; versus

t-WW domains.
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Donor | Acceptor | % WW, | % t-WW
Y61 BB V49 BB 88.99 88.8
V49 BB Y61 BB 85.07 84.77
T63 BB V47 BB 84.52 84.96
R69 BB Y60 BB 82.57 82.02
Y60 BB R69 BB 78.38 77.15
T65 BB N62 SC 76.01 74.16
Y59 BB G51 BB 71.77 68.68
N62 BB E67 BB 70.77 70.54
N62 SC | W48 SC 63.93 60.35
G51 BB Y59 BB 59.27 62.7
S53 BB F57 BB 53.64 52.14
G56 BB S53 BB 53.02 44.85
T63 SC V47 BB 52.84 57.39
E64 BB N62 SC 51.98 54.35
R69 SC E67 SC 45.94 49.32
F57 BB S53 BB 44.43 31.99
T65 SC E67 SC 43.63 41.82
E67 BB T65 SC 34.58 33.84
R69 SC E71 BB 24.86 20.97
S53 SC F57 BB 23.84 20.26
K40 SC D38 SC 23.64 10.14
R69 SC D74 SC 18.23 18.01
F57 BB E54 BB 14.8 18.57
W48 BB | K45 BB 14.65 13.16
R69 SC E71 SC 14.45 11.2
G66 BB N62 BB 10.77 12.65

TABLE A.2: Hydrogen bond network comparison WWjy versus

t-WW domains.
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Donor | Acceptor [%] # core sets
Q36 BB | W7 BB 12-81% 13
D1 BB E33 SC 14-83 % 12
T63 SC | T46 BB 10 -85 % 12
R6 SC D74 SC | 15- 100 % 10
K4 SC E33 SC 12-65 % 10
K41 SC | E64 SC 10 - 50 % 10
K40 BB K4 BB 14 - 80 % 8
R6 BB K40 BB 18-72% 7
R6 SC D38 SC | 14 - 100 % 7
R6 SC E50 SC | 31 - 100 % 7
K40 SC D1 SC 11-46 % 7
W7 BB | Q36 SC 53 - 86 % 7
R6 SC E64 SC | 87 - 100 % 6
R6 SC E67 SC | 12-100 % 6
R6 SC L39 BB 27 - 68 % 6
K40 SC | E64 SC 11-53% 6
K41 SC | E67 SC 19 - 42 % 6
S3 BB E33 BB 14-62 % 6
R6 BB G34 BB 13-40 % D
D1 BB D38 SC 10-37% 5
E9 BB G37 BB 31-68% d
K4 SC D38 SC 11-41% D
K40 SC E9 SC 12-64 % o
K72 SC | D38 SC 16 - 51 % 5
T42 BB | E64 SC 14-69 % D

TABLE A.3: Semi-conserved hydrogen bonds appearing across sev-

eral core sets.
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core | angle | angle | orien- core | angle | angle | orien-
set « 15} tation set « 15} tation
1 | 12755 | 9749 | T — 26 | 2761 | 15221 | 11
2 20.01 | 14495 | 1 — 27 | 106.18 | 72.77 T4
3 | 11841 | 104.00 | 1 28 | 154.36 | 77.00 Tl
4 61.61 | 164.31 | 1 — 29 | 7597 | 12124 | 1T —
5 60.58 | 90.94 | 1T — 30 | 102.19 | 102.03 | 14
6 53.69 | 139.46 | 1T — 31 | 112.04 | 66.98 | T —
7 | 136.24 | 74.84 Tl 32 | 30.25 | 131.04 | 14
8 63.98 | 131.82 | 1T — 33 | 80.99 | 57.02 T4
9 |166.38 | 31.91 T 34 | 144.76 | 70.63 T4
10 | 29.83 | 104.01 | T — 35 | 52.67 | 93.16 | T —
11 | 141.09 | 7341 | T — 36 | 79.24 | 106.69 | 11
12 | 107.14 | 11198 | 1T — 37 | 124.65 | 30.84 T4
13 12235 | 11141 | 1] 38 | 9992 | 62.13 | T —
14 | 72.06 | 143.60 | T — 39 | 50.38 | 96.22 | T —
15 | 56.21 | 13943 | 11 40 | 87.55 | 13439 | 1T —
16 | 135.62 | 48.85 | T — 41 | 79.22 | 7114 | T —
17 | 43.30 | 14255 | T — 42 | 123.45 | 36.04 T4
18 | 127.08 | 101.58 | 1] 43 | 159.71 | 12.81 Tl
19 | 113.31 | 56.99 T 44 | 81.58 | 9853 | T —
20 | 50.72 | 12534 | T — 45 | 147.82 | 45.55 T4
21 | 128.09 | 31.40 Tl 46 | 37.73 | 15752 | 11
22 | 5278 | 94.63 T A7 | 42,73 | 13448 | 171
23 | 50.45 | 116.13 | T — 48 | 68.52 | 71.06 T1
24 |106.64 | 107.22 | T — 49 | 13252 | 89.74 T4
25 | 39.50 | 148.03 | T 1 50 | 121.56 | 108.04 | T —

TABLE A.4: Vector Analysis.
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FIGURE A.4: Vector analysis.
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SmBs canon | t-WW | Distance [A] SmBs jnvert | t-WW | Distance [A]

P, Wy 8.01 £ 0.68 P~ Ys9 6.80 £ 0.41

P, Yo | 881 4 0.29

P, W 8.81 £ 0.29

Pq Yis | 7.29 + 0.42 Pg Yo | 8.14 + 057

Py Wy | 6.38 + 0.44 Py Yo | 849 + 0.33

Py Yis 8.54 + 0.81 Py W 7.30 + 0.35
Py Yoo 8.89 £+ 0.42

Pis Yis 7.03 £ 0.5

P14 Ye1 7.49 + 0.46 P14 Yoo 7.47 £+ 0.69

Ps Y1 7.26 + 0.38 Pis Y 8.66 4+ 0.81

Py Yy | 843 + 0.46

P16 Yig 7.47 £ 0.43

P Yoo 8.33 = 0.36

Pig Waog 6.94 £+ 0.57

TABLE A.5: The average distance between the Ca-atoms of the
proline-rich motifs of SmBy and the aromatic clusters-only atoms
pairs at the average distance lower then 9 A reported.
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