
Gysi et al. BMC Bioinformatics          (2018) 19:392 
https://doi.org/10.1186/s12859-018-2351-7

SOFTWARE Open Access

wTO: an R package for computing
weighted topological overlap and a consensus
network with integrated visualization tool
Deisy Morselli Gysi1,2*, Andre Voigt3, Tiago de Miranda Fragoso4, Eivind Almaas3,5 and Katja Nowick6

Abstract

Background: Network analyses, such as of gene co-expression networks, metabolic networks and ecological
networks have become a central approach for the systems-level study of biological data. Several software packages
exist for generating and analyzing such networks, either from correlation scores or the absolute value of a transformed
score called weighted topological overlap (wTO). However, since gene regulatory processes can up- or down-regulate
genes, it is of great interest to explicitly consider both positive and negative correlations when constructing a gene
co-expression network.

Results: Here, we present an R package for calculating the weighted topological overlap (wTO), that, in contrast to
existing packages, explicitly addresses the sign of the wTO values, and is thus especially valuable for the analysis of
gene regulatory networks. The package includes the calculation of p-values (raw and adjusted) for each pairwise gene
score. Our package also allows the calculation of networks from time series (without replicates). Since networks from
independent datasets (biological repeats or related studies) are not the same due to technical and biological noise in
the data, we additionally, incorporated a novel method for calculating a consensus network (CN) from two or more
networks into our R package. To graphically inspect the resulting networks, the R package contains a visualization
tool, which allows for the direct network manipulation and access of node and link information. When testing the
package on a standard laptop computer, we can conduct all calculations for systems of more than 20,000 genes in
under two hours. We compare our new wTO package to state of art packages and demonstrate the application of the
wTO and CN functions using 3 independently derived datasets from healthy human pre-frontal cortex samples. To
showcase an example for the time series application we utilized a metagenomics data set.

Conclusion: In this work, we developed a software package that allows the computation of wTO networks, CNs and a
visualization tool in the R statistical environment. It is publicly available on CRAN repositories under the GPL−2 Open
Source License (https://cran.r-project.org/web/packages/wTO/).
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Background
Recent applications of complex network analysis methods
have provided important new knowledge of the func-
tioning and interactions of genes at the systems level
[1–4]. Within the area of biological network analyses,
co-expression networks have received much attention [5, 6].
For the co-expression networks, a pair of nodes are
typically connected by a link if the genes they represent
show a significantly correlated expression pattern. In
the network, this link may be represented as a binary
relationship, where 1 = “presence” and 0 = “absence”
of the link, or alternatively, the link may have a numeric
value (often called weight). The magnitude of the weight
is typically interpreted as representing the strength of a
gene-pair relationship, and the sign as indicative of the
type of associated gene interaction: positive if the genes
are co-regulated, negative if they are oppositely controlled [7].
In many implementations of network analyses, we may

primarily be interested in an a priori defined subset of
genes with a specific set of properties. Examples include
transcription factors (TFs), genes with known orthologs
in a set of organisms of interest, or disease associated
genes [8, 9]. For these situations, oftentimes the choice
is made to only take into account direct interactions
between the gene-subset of interest, instead of includ-
ing the full set of correlations. A major drawback with
such an approach, is that relevant information contained
in interaction patterns among excluded genes that would
affect network topology and link strength values, is not
incorporated in the network. The loss of such informa-
tion is not only undesirable, but may also lead to biased
results.
When analyzing networks in which the links have non-

binary weights, themethod of weighted topological (wTO)
network analysis [10] has been found very useful. In a
wTO-analysis, a new link-weight for a pair of connected
nodes is determined through an averaging process that
accounts for all common network neighbors [10]. Thus,
wTO is a method that implicitly includes correlations
among nodes that are going to be exempt from further
analysis. The wTO method [10–12] can be used to deter-
mine the overlap among classes of transcripts, for example
TFs and non-coding RNAs (ncRNAs). The resulting wTO
network provides amore robust representation of the con-
nections and interactions among the node-set of interest
than a simple correlation network analysis focused only
on the node-set of interest [13].
The packages WGCNA [14, 15] and ARACNe [16, 17]

are widely used for weighted gene co-expression network
analysis studies. The former provides functions for the
calculation of the adjacency matrix for all pairs of genes
as the n-th power of absolute correlations, resulting in an
unsigned network. Network modules can be defined with
this package by unsupervised clustering. The latter uses

the mutual information (MI) of the expression in order to
build the networks. These methods have received much
attention in the literature [7, 18].
Previously, Nowick and collaborators [13] developed a

mathematical method to calculate the wTO for a set of
nodes that explicitly takes into account both positive and
negative correlations. This version of the wTO-measure
is especially valuable for investigating networks, in which
it matters whether an interaction is activating or inhibit-
ing/repressing. For instance, in gene regulatory networks
the effect of a transcription factor or a ncRNA on its target
genes can be activating or repressing. In metabolic net-
works, the increase of a substance can lead to an increase
or decrease of another substance. Or in ecological
networks, species interactions can be positive or negative,
for instance in symbiotic or predator-prey relationships.
In such cases, a distinction between positive and negative
correlations for the calculation of the wTO is neces-
sary and using the absolute correlations would falsify the
biological insights. This wTO-calculation methodology is
implemented in the R package presented here. In order
to avoid confusion, we will refer to the method for calcu-
lating a pair-wise link score as wTO and to the package
as wTO.
When analyzing similar datasets, e.g. from a repeated

experiment or independent studies on a similar subject,
the resulting networks are usually different [19]. These
differences may arise from several sources: (A) technical
differences, such as the platform on which the expression
data was measured, the facility where data was collected
and prepared, or how data was processed. (B) Another
cause may be biological differences from confounding
factors, such as sex, age, and geographic origin of the
individuals measured. It is thus desirable to obtain an inte-
grated network that considers all independently derived
networks as biological replicates and systematically iden-
tifies their commonalities. We developed a novel method
to compute the network that captures all this information;
we call this the consensus network (CN).
Here, we present wTO, an R package that is capable

of computing both signed and unsigned wTO networks
as well as the CN, thus providing methods for assign-
ing p-values to each link. The package also comes with
an integrated tool to visualize the resulting networks and
allows for nine differentmethods for network clustering to
aid in module identification. The workflow of the package
is shown in Fig. 1.
We compare our method to other state of art meth-

ods. To exemplify the usage of our package, we show
here results from the calculation of wTO and CN net-
works from three independent genome-wide expression
studies of healthy human pre-frontal cortex samples and
an analysis of a time-series dataset from a metagenomics
study.
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Fig. 1 The wTO package workflow. Gray boxes refer to inputs, red boxes refer to content of the wTO package, yellow boxes are functions included in
the package, blue boxes are outputs of those functions, and green boxes refer to methods internal to the package. Our package can deal with
multiple kinds of data, for example RNA-seq counts or normalized values, microarray expression data, abundance data coming from metagenomic
studies, and many more. All input data should be pre-processed with the quality control and normalization methods recommended for each
respective type of data. The function wTO.Complete calculates the wTO values, as many times as desired. As output, the user will obtain an
object containing the signed and absolute wTO values for each pair of nodes, p-values and padj-values for multiple testing. This output can be used
for the construction of a CN from independent networks using the function wTO.Consensus. Outputs from the wTO and CN networks can be
used as an input for NetVis, which is an integrated tool for plotting networks. As an interactive tool it also allows the user to modify the network

Implementation
Input data
Our package can handle a wide range of input data.
Data can be discrete or continuous values. We recom-
mend performing all commonly used steps for quality
control and normalization before passing on the data to
our package. For RNA-Seq data, our package can han-
dle normalized quantification, for example RPKM (Reads
Per Kilobase Million), FPKM (Fragments Per Kilobase
Million), and TPM (Transcripts Per Kilobase Million).
For microarray data, rma or mas5 values can be used.
If our package is used with metagenomics data, for
instance for analyzing co-occurrence networks, we rec-
ommend the abundance data to be normalized per day/
sample.

Weighted topological overlap calculation
For a system of N nodes (e.g. genes or species), we define
the adjacency matrix A = [ ai,j] based on correlations bet-
ween a pair of nodes i and j as

ai,j =
{

ρi,j i �= j
0 i = j.

(1)

with ρi,j being a correlationmeasure. Assuming that nodes
i and j represent a sub-set of factors (e.g genes) of par-
ticular interest selected from the N nodes, we calculate
the weighted topological overlap (wTO [13], ωi,j) between
node i and node j as

ωi,j =
∑N

u=1 ai,uau,j + ai,j
min

(
ki, kj

) + 1 − ∣∣ai,j∣∣ , (2)

where

ki =
N∑
j=1

∣∣ai,j∣∣ . (3)

Note that, this expression explicitly includes both pos-
itive and negative correlations, and thus allows for ωi,j
to take both positive and negative values. Other software
packages calculating theωi,j have implemented definitions
of the wTO method that do not allow for negative val-
ues [14], making this version valuable for gene regulatory
network analysis. The wTO package also calculates the
unsigned network, and for that, it takes as an input the
absolute values of the correlation.
Since Eq. (2) explicitly allows ai,j � 0, we need to be

aware of the limits of this expression. Consider three
nodes i, j and u, and assume that aij � 0. All the terms in
the numerator of Eq. (2) will be negative if aiuauj � 0 for
all nodes u. However, if aiuauj > 0, then at least some con-
tributions to the sum will cancel out. The same rationale
applies for the case of aij ≥ 0.
To systematically assess the potential effect of term can-

cellation in Eq. (2), we calculate the absolute weighted
topological overlap, |ω| which uses the absolute value of
the correlations (ai,j = |ai,j|) as input for Eq. (2). In this
case, the sign of the correlation is excluded from the anal-
ysis and only the magnitude of the link-strength is taken
into account. Consequently, by generating a scatter plot of
the signed and unsigned weights, it is possible to assess
at which ωi,j-values term cancellations start affecting the
results. Thus, for wTO values of interest, the closer the
plot of ω vs. |ω| is to y = |x|, the better.
However, by just computing thewTO network we do not

avoid all spurious correlations. A way to detect them is to
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compute a probability of each one of the link scores being
zero using the hypothesis test{

H0 : ωij = 0
Ha : ωij �= 0 , (4)

of the null hypothesis (H0) of no association against
the two-sided alternative (Ha) of non-zero association.
This can be computed by using bootstrap [20] or per-
mutation resampling methods [13]. In the former, one
resamples individuals, thus approximating the weights’
empirical distribution and calculating the probability that
an observed weight is sufficiently distant from zero. In
the latter, one operates under the null hypothesis of no
dependence among genes and permutes the gene labels,
obtaining the weights’ distribution under the null hypoth-
esis, which is rejected if the observed weight is sufficiently
extreme.We define δ as the maximal distance between the
ωi,j calculated with each bootstrap and the ωi,j of the real
dataset. This means that, the smaller δ is, the stronger is
our confidence in a particularωi,j. By default, δ is set to 0.2.
One advantage of the wTO package is its application to

analyze andmake networks out of time-series data. There-
fore, we are interested in the implementation of blocked
bootstrap resampling [20] that can be used for tempo-
ral data without sample replicates for each time point.
This type of resampling is necessary once there are two
correlation components in those samples: The correla-
tion inside the factors of each sample and the correlation
across the time of different samples. For this situation,
the use of a lag is required. Lags are particularly help-
ful in time-series analyses as autocorrelations are often
present: a tendency of consecutive values to be correlated.
An important benefit of the presence of autocorrelations
is that we may be able to identify patterns inside a time-
series, such as seasonality (patterns that repeat themselves
at a periodic frequency). Therefore, the lag can be chosen
using a partial correlation of the time per sample. This is
followed by calculating the wTO for a time series where
the observations are not independent of each other.

Amethod for determining a consensus network
Berto and collaborators [19] described a consensus net-
work based on gene-expression data from primates’
frontal lobes by applying a Wilcoxon test on the links.
Our proposed methodology allows the use of two or more
datasets, each generating different (and significant) wTO
values, to be combined into a single CN. Our approach
has the advantage of penalizing links with opposite signs.
According to the same rationale, links with the same sign
among the multiple wTO networks, will have their CNi,j
values closer to the largest ωi,j of a link among the k
networks. Our first step is to remove nodes that do not
exist in all networks. Consequently, if a node is absent in at
least one network, we are not able to compute a consensus

of the links that belong to that node. It is particularly
important not to associate factors that were not measured
in a particular condition.
In order to obtain a single integrated network derived

from multiple independent wTO networks, we calculate a
CN using the following approach:
If we have k = 1, . . . , n replicated networks (note that

nmeans the index of the networks, not the exponent of α

nor ω), then we define the consensus network wTOCN =[
�i,j

]
as

�ij =
n∑

k=1
αk
ijω

k
ij, (5)

where

αk
ij =

∣∣∣ωk
ij

∣∣∣∑n
k=1

∣∣∣ωk
ij

∣∣∣ . (6)

A threshold can be used to remove links with �i,j values
close to zero, thus should not be included in the consensus
network. To join networks that were generated with the
proposed wTO method into the consensus network, the
p-values are combined using the Fisher’s method.

Results and discussion
The representation of interactions between a set of nodes
by the wTOmethod [10–12] takes into account the overall
commonality of all the links a node has, instead of basing
the analysis only on calculating raw correlations among
the nodes. It thus provides a more comprehensive under-
standing of how two nodes are related. Therefore, it is
expected that a wTO network contains more robust infor-
mation about the connections among nodes than what
would result from simply taking direct correlations into
account [11, 13]. The wTO can be computed based on a
similarity matrix, where the link weights are calculated
using Pearson’s product moment correlation coefficient
or the Spearman Rank correlation. The first one mea-
sures the linear relationship between two genes. Note
that, the Pearson’s correlation coefficient is sensitive to
extreme values, and therefore it can exaggerate or under-
report the strength of a relationship. The Spearman Rank
Correlation is recommended when data is monotonically
correlated, skewed or ordinal, and it is less sensitive to
extreme outliers than the Pearson coefficient [21–24].

Package functions
The function wTO calculates the weights for all links
according to Eq. (2) between a set of nodes for a given
input data set. If the user is not interested in the resam-
pling option, one may simply run this wTO function.
To test whether the calculated wTO is different from

random expectation and to decide on a suitable threshold
value for including link weights, we implemented the



Gysi et al. BMC Bioinformatics          (2018) 19:392 Page 5 of 16

function wTO.Complete. Here, the wTO is calculated
a number of times, n specified by the user, by using
either the 1) Bootstrapping (method_resampling
= “Bootstrap”), or (method_resampling =
“BlockBootstrap”) for time series data or 2)
Permuting the expression values for each individual
(method_resampling = “Reshuffle”) [13]. The
user may specify the correlation method that this function
should use, Pearson correlation is the default choice.
Because bootstrapping and permutation tests can be

computationally expensive, the wTO.Complete can also
run in parallel over multiple cores to reduce the wall clock
time. For running in parallel, the user may specify a given
number of k computer threads to be used in the calcula-
tions. To implement the parallel function, we used the R
package parallel [25].
The execution of the wTO.Complete function returns

two outputs; a diagnosis set of plots and a list consisting
of the following three objects:

• $Correlation is a data.table containing the
Pearson or Spearman correlations between all the
nodes, not only the set of interest. The wTO links for
the set of nodes of interest are based on these
correlations. The default of this output is set to FALSE.

• $wTO is a data.table containing the nodes, the wTO
values (signed and unsigned), the p-values and the
adjusted p-values computed using both signed and
unsigned correlations.

• $Quantile is a table containing the quantiles for
the empirical distribution, computed using the
bootstrap and the quantiles for the real data: 0.1%,
2.5%, 10%, 90%, 97.5% and 99.9%. Those empirical
values can be used as a threshold for the wTO values,
when it is not desired to visualize low wTO scores.

The set of plots indicate the quality of the resample: the
closer the density of the resampled data is to the real data,
the better. Another generated plot is the scatter plot of
the ωi,j vs

∣∣ωi,j
∣∣, as previously discussed. The scatter plot

of p-values against the ωi,j and
∣∣ωi,j

∣∣ is also plotted along
with suggested threshold values that are the empirical
quantiles.
Computing of the CN is done using the function

wTO.Consensus. This function allows the user to give
a list of networks in the format of data.frames with: Node
1, Node 2, the link weight and the p-value. The out-
put is a data.table containing the two nodes’ names and
the consensus weight, and the combined p-value. This
allows the user to filter out the links that were not signif-
icant in part of the networks. A visual representation of
the Consensus Network methodology is shown in Fig. 2.
The thicker the link between two nodes is, the stronger
the correlation between them. The signs are represented
by the colors blue and orange, respectively. If a link has
different signs in the networks, the strength of the link in
the CN is close to zero. When all links agree to the same

Fig. 2 A schematic example of the CNmethod: Panel I shows four independent networks to be combined into one CN. Note that the rightmost
network does not include the ’A’ node. Blue links indicate negative sign, while orange, positive. The CN can be seen on Panel II. Note that the
missing node from Panel I is not present in the CN. Also, only links that are constant in their sign among networks are present in the final network.
For example, the link between D and E is removed since it has a different signal in the last network
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value or show little deviation, the strength of the resulting
CN value is closer to the determined |maximum| value. If
a node is absent in at least one network, it is removed.
The output data.frames (from both, wTO.Complete

and wTO.Consensus) can be easily exported using the
function export.wTO. This allows, for instance, to pass
on the results of our package to Cytoscape [26] for further
analysis.
Our R package also includes options to visualize

the resulting networks. The function NetVis gener-
ates an interactive graph using as input a list of links
and their corresponding weights. The analysis functions
wTO.Complete and wTO.Consensus both generate
network data-structures (edge list) that can be visual-
ized with this function. The user needs to choose a rel-
evant wTO-threshold (the quantiles resulting from the
bootstrap), or p-value cut-off, to select the set of links
to be plotted. Additionally, the user may choose a lay-
out for the network visualization from those available in
the igraph [27] package. By default, the wTO-threshold
value is set to 0.5, and the network layout-style is set to
layout_nicely. To avoid false positives, we recom-
mend to filter the data according to the desired signifi-
cance p-value and to choose thewTO-threshold according
to the computed empirical quantiles. The size of the nodes
is relative to their degree. Our package further includes
an option for MakeCluster from the nodes; if allowed,
nodes are colored according to the cluster they belong to.
The user can choose the method to create the clusters.
One important difference between our package and the

WGCNA package, is that we only use significant links for
cluster (modules) network representation instead of the
full set of co-expressions, as in the WGCNA package. The
width of a link is relative to the wTOi,j, and its color is
respective to its sign (if a signed network was calculated).
Nodes can have different shapes, allowing for labeling
nodes of different classes, for example target genes or
protein coding and non-protein coding genes. Further-
more, the user may also zoom in and out of the network
visualization, drag nodes and links, edit nodes and links,
and export the image as html or png. The package pro-
vides example datasets and an example of nodes of interest
as well.

Algorithm compute time with varying system size
Normally, when running the wTO, the interest lies on a
subset of nodes of interest. In Fig. 3 we show the runtime
for different network sizes, and different proportions of
nodes of interest.When running thewTO for all expressed
genes coding for transcription factors (TFs) being the
genes of interest, we have around 14% of nodes of inter-
est. Using a standard laptop computer, it’s possible to
compute the wTO for a full network with 20,000 nodes in
20 miliseconds per link. This shows that it is quite feasible

Fig. 3 Computational time for the calculation of wTO for each link for
different sizes of networks and proportions of sets of nodes of
interest: The run time of the wTO calculation increases with increasing
proportion of nodes of interest. The graph presented here shows the
time for computing each link for different sizes of nodes and
proportions of subsets of nodes of interest

to compute the full wTO for a realistic gene expression
network.

Comparison with existing methods
A variety of methods currently exist to analyze gene
co-expression networks, in particular ARACNe [16, 17],
SPACE [28] and WGCNA [14, 15]. These methods rest on
a multitude of different mathematical principles, particu-
larly with respect to how co-expression is quantified. Of
particular interest is WGCNA, which shares notable simi-
larities with our wTO package in heuristic terms, but with
some substantial differences in functionality. In particu-
lar, WGCNA also uses the weighted topological overlap (in
their nomenclature, the “topological overlap matrix”, or
TOM) to quantify co-expression at the gene-pair level. But
in WGCNA, the final edge weight corresponds to the abso-
lute value of ωi,j as defined in Eq. 2, or the absolute value
of the terms in the numerator of Eq. 2. These are referred
to as signed or unsigned, respectively. Topological overlap
as a measure of co-expression has previously been shown
to compare favourably with other methods [18].
While wTO and WGCNA construct the networks based

on overlaping topologies, the ARACNe method builds the
network using the mutual information (MI) and removing
links that are indirect interactions using data processing
inequality (DPI). Another important difference between
the methods is that wTO and WGCNA will compute a
link for all pair-wise possible connections, while ARACNe
will only compute the pair-wise information if their
information is not independent (Table 1).
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Relative to WGCNA, wTO provides three major additions:
the determination of p-values (determined by bootstrap-
ping) for each pairwise wTO value; the calculation of
a consensus network, and the ability to visualize the
topological overlap network (along with node grouping
according to a choice of nine algorithms). While WGCNA
provides a variety of tools for visualizing the hierarchi-
cal tree forming the network, as well as for rendering the
correlation matrix in heatmap form, it does not provide
a node-and-edge type view of the co-expression network
(but does allow for exporting networks into Cytoscape,
in which network views are possible). Additionally, the
consensus network as defined in Eq. 6 differs from the
consensus TOM defined in WGCNA, which simply assigns
to each edge of the consensus network the minimal value
of the topological overlap across the input conditions.
This is a strict version of consensus (unanimity), in that it
will discard any gene pair if the overlap is weak in even a
single network. In contrast, while Eq. 6 will remove con-
tributions from networks where the topological overlap is
weak (or where the sign of the wTO score is in conflict
with the other networks), an edge may still be included if
it is sufficiently present across the other networks.
Further additions in wTO include the possibility of

choosing the Spearman correlation as the basis of ai,j
(while WGCNA provides biweight midcorrelation, or bicor
for short; both provide Pearson), as well as reducing com-
putation time by the option of restricting the calculation
of wTO scores to a set of genes of interest (while still
including the adjacency to genes outside this set in each
inter-set wTO score).
Another minor difference resides in how wTO is deter-

mined for each gene with itself. From Eq. 2, we see that
(assuming ai,i = 0 and ai,j = aj,i):

ωi,i =
∑N

u=1 ai,uau,i + ai,i
ki + 1 − ∣∣ai,i∣∣ =

∑N
u=1 a2i,u∑N

u=1 ai,u + 1
. (7)

For an unweighted network, where ai,j = 0 or ai,j = 1
for all (i, j), this approximates to ωii ≈ 1 for large ki. How-
ever, this is not the case for weighted networks. WGCNA
differs from the wTO package in that wi,i = 1 is explicitly
set for all i, while our package retains the score as defined
by Eq. 2.

Comparing wTO, WGCNA and ARACNe using an E. coli
transcription factor network
In order to quantitatively compare the performance of wTO,
WGCNA and ARACNe, we downloaded a gene expression
dataset from E. coli from http://systemsbiology.ucsd.edu/
InSilicoOrganisms/Ecoli/EcoliExpression2 [29–32]. The
data consists of 213 Affymetrix microarray gene expres-
sion profiles, corresponding to multiple different strains
under different growth conditions, and contains gene

expression data for 7312 distinct probes. Gene expressions
were calculated as the mean of probes corresponding
to the same gene. To assess the capability of the three
tools in identifying true TF-TF interactions, we used the
RegulonDB [33] database, which contains experimen-
tal data from E. coli, as a reference. We defined as
True-Positive interactions those that are described in
RegulonDB, and as True-Negatives all interactions that
could not be experimentally validated in that dataset.
For comparison, we also calculated networks using only
the raw Pearson correlation. We generated the net-
work for WGCNA following the steps described by the
authors in the Tutorial [11, 34]. We used the functions
pickSoftThreshold and pickHardThreshold for
defining the power of the soft-threshold and for choosing
the hard-threshold, respectively. The power was defined
as 4 and the hard-threshold was set to 0.3.
The ARACNe network was built using the Pearson cor-

relation with build.mim and ARACNe functions in the
minet R package [35]. The wTO networks were built
using 1000 simulations, Pearson correlation and filtered
for padj-values ≤0.01 and the 90% quantile. One wTO
network was constructed using a δ of 0.2, the default of
the package, and another network was built using a δ of
0.1. All networks were filtered to only contain TFs with
information in the RegulonDB.We calculated the Receiver
operating characteristic (ROC)-curve using the pROC R
package [36] (see Fig. 4).

Fig. 4 ROC curves for the comparison of methods. Overall, our wTO
method performs better than ARACNe, WGCNA and raw Pearson
correlations. ARACNe is better in finding true positives, while WGCNA
is more conservative, and therefore better in finding true negatives
but identifies fewer true positives

http://systemsbiology.ucsd.edu/InSilicoOrganisms/Ecoli/EcoliExpression2
http://systemsbiology.ucsd.edu/InSilicoOrganisms/Ecoli/EcoliExpression2
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Table 1 Comparison of key differences between wTO, WGCNA
and ARACNe

Method wTO WGCNA ARACNe

Topological
overlap

Yes Yes No

Signed topological
overlap

Optional No No

Consensus
topological overlap

Weighted
sum

Minimum
weight
(strict)

No

Pairwise p-values Yes No Used to filter MI

Network view Native Exported
to
Cytoscape

Exported to
Cytoscape

Soft thresholding No Optional
(on by
default)

No

Correlation choices Spearman,
Pearson

Bicor,
Pearson

Spearman,
Pearson,
Kendall

Able to deal with
time-series

Yes No No

ARACNe was able to better identify the amount of
true positives compared to WGCNA and wTO, but per-
forms worse when finding true negatives and also has
a larger number of false positives (Fig. 4, Table 2).
WGCNA is better at finding true negatives, but does not
identify many true links. Our proposed wTO method
performs better than WGCNA in finding true positives
and better than ARACNe in finding true negatives. It
also finds fewer false positives than ARACNe. In gen-
eral, even when using a large δ, wTO performs bet-
ter than the two other methods, as seen in the Area
Under the Curve (AUC; the closer it is to unity, the bet-
ter). This demonstrates that the use of the wTO method
further reduces false effects coming from incorrectly
assigned linked genes (false positives) when compared to
ARACNe and raw correlations.

Examples of wTO networks using the wTO R
package
wTOandCNnetworks for TFs of the human prefrontal cortex
To exemplify the usage and results of our package, we
analyzed three independent datasets of microarray data

from human prefrontal cortex. Data sets were down-
loaded as raw data fromGene ExpressionOmnibus (GEO)
website [37]. From the study GSE20168 [38, 39], we used
data from a total of 15 postmortem brain samples. From
the study GSE2164 [40], we used a total of 26 samples
from post mortem brains. And finally, from the study
GSE54568 [41] we used all the 15 controls. All individuals
were older than 5 years and died without any neuro-
pathological phenotypes. We chose the TFs to be our
genes of interest and calculated a TF-wTO network for
each of the three datasets. Subsequently, we computed the
consensus network for the three TF wTO networks.
The downloaded data were pre-processed and nor-

malized by ourselves independently, using the R envi-
ronment [42], and the affy [43] package from the
Bioconductor set. The probe expression levels (RMA
expression values) and MAS5 detection p-values were
computed, and only probesets significantly detected in at
least one sample (p-value <0.05) were considered. After
the Quality Control and normalization of the data, the
probes that were not specific for only one gene were
deleted. If one gene was bound bymore than one probeset,
the average expression was computed.
Here, we will focus on how TFs are co-expressed

in brain networks. We used a set of 3229 unique TF
symbols from the TF-Catalog (Perdomo-Sabogal et al.
(in preparation)) with ENSEMBL protein IDs. The con-
struction of this catalog contains the information for
TF proteins sourced from the most influential stud-
ies in the field of human Gene Regulatory Factors
(GRF) inventories [44–51] that are associated with gene
ontology terms for regulation of transcription, DNA-
depending transcription, RNA polymerase II transcrip-
tion co-factor and co-repressor activity, chromatin bind-
ing, modification, remodeling, or silencing, among others.
Signed wTO networks were calculated for each dataset

separately using the function wTO.Complete of our
wTO R package and then merged with the function
wTO.Consensus into the consensus. Significance of
all networks was evaluated using 1000 bootstraps, Pear-
son correlation and filtered for padj-value of < 0.01.
The Consensus Network was built based on the calcu-
lated signed wTO values of significant links. Weights for
links with in-significant wTO were set to zero. Figure 5

Table 2 Accuracy of the 3 methods and correlation

ReactomeDB
(Total)

Pearson
correlation ARACNe WGCNA

wTO
(delta 0.1)

wTO
(delta 0.2)

True negative 7234 2259 2633 7092 6520 5235

False negative 0 216 245 321 318 288

False positive 0 4975 4601 142 714 1999

True positive 328 112 83 7 10 40

Total 7562 7562 7562 7562 7562 7562
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Fig. 5 Comparison of the three networks used to compute the CN. The first row shows the distribution of significant wTO values (padj-value < 0.01).
Note that the wTO range of the second network is larger than of the other two networks. The second row show the wTO network for each method.
The third and forth row refer to the CN. Note that now the distribution of the wTO values does not include the wTO values close to zero, and retains
only values that show a high correlation between the TFs. In the histograms, the presence of negative wTO values is visible, indicating that there are
TFs that downregulate other genes

shows the distributions and the networks for our three
datasets.
TFs were clustered using the Louvain algorithmwith the

NetVis function, which identified 5 clusters in the CN.
When considering each network independently, we had
18, 8 and 16 clusters. This shows that the CN detects fewer
clusters of genes, which are more densely connected,
compared to the clusters detected in the individual wTO

networks. In order to investigate the function of each
one of the 5 CN clusters, we calculated the correlation
of each TF of a cluster with all other expressed genes
using Pearson correlation. Genes with a correlation of at
least |0.80| with at least one TF of the cluster were used
for GO enrichment analysis for that cluster, using the R
package topGO [52]. The enrichment analysis revealed
many brain related functions, for instance, clusters 1 and
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Table 3 GO terms associated with each one of the CN Clusters

Cluster # TFs Genes GO.ID Term
correlated
to TFs

1 589 58 GO:0042775 mitochondrial ATP
synthesis coupled

GO:0010498 proteasomal protein
catabolic process

GO:0050890 cognition
GO:0033238 regulation of cellular

amine metabolic pathway
GO:0008090 retrograde axonal transport
GO:0070050 neuron cellular homeostasis
GO:0090168 Golgi reassembly
GO:0006099 tricarboxylic acid cycle
GO:0051443 positive regulation of

ubiquitin-protein
GO:0061418 regulation of transcription

from RNA polimerase
GO:0047496 vesicle transport along

microtubule
GO:0061640 cytoskeleton-dependent

cytokinesis
GO:0043488 regulation of mRNA stability
GO:0000086 G2/M transition of mitotic cell

cycle
GO:0038061 NIK/NF-kappaB signaling
GO:0000209 protein polyubiquitination
GO:0007052 mitotic spindle organization
GO:0031333 negative regulation of protein

complex
GO:0002223 stimulatory C-type lectin

receptor signal
GO:0016486 peptide hormone processing
GO:0034314 Arp2/3 complex-mediated

actin nucleation
GO:1900271 regulation of long-term

synaptic potential
GO:0000715 nucleotide-excision repair,

DNA damage
GO:1901983 regulation of protein acetylation
GO:0016082 synaptic vesicle priming
GO:0043243 positive regulation of protein

complex
GO:2000637 positive regulation of gene

silencing
GO:0021902 commitment of neuronal cell
GO:0051683 establishment of Golgi

localization
GO:0060013 righting reflex
GO:0061732 mitochondrial acetyl-CoA

biosynthetic pr...
2 647 77 GO:0035773 insulin secretion involved in

cellular
GO:0098930 axonal transport
GO:0000086 G2/M transition of mitotic cell

cycle
GO:0061640 cytoskeleton-dependent

cytokinesis
GO:0090083 regulation of inclusion body

assembly
GO:0034112 positive regulation of homotypic
GO:1902750 negative regulation of cell cycle

G2/M
GO:0031146 SCF-dependent proteasomal

ubiquitin-dependent
GO:0061003 positive regulation of dendritic

spine
GO:0032922 circadian regulation of gene

expression
GO:0072600 establishment of protein

localization

Table 3 GO terms associated with each one of the CN Clusters
(Continued)

Cluster # TFs Genes GO.ID Term
correlated
to TFs

GO:0061077 chaperone-mediated protein
folding

GO:0016191 synaptic vesicle uncoating
GO:1902309 negative regulation of

peptidyl-serine
GO:0048024 regulation of mRNA splicing,

via spliceosome
GO:0016486 peptide hormone processing
GO:0048268 clathrin coat assembly
GO:0000209 protein polyubiquitination
GO:0035902 response to immobilization

stress
GO:2000757 negative regulation of

peptidyl-lysine
3 40 17 GO:0043687 post-translational protein

modification
GO:0050851 antigen receptor-mediated

signaling pathway
GO:0002479 antigen processing and

presentation
GO:0090199 regulation of release of

cytochrome c
GO:1905323 telomerase holoenzyme

complex assembly
GO:0050890 cognition
GO:0043248 proteasome assembly
GO:0030177 positive regulation of Wnt
GO:0030177 signaling pat...
GO:0047496 vesicle transport along

microtubule
GO:0042775 mitochondrial ATP synthesis
GO:0035773 insulin secretion involved in

cellular
GO:0045116 protein neddylation
GO:0090141 positive regulation of

mitochondrial
GO:0060071 Wnt signaling pathway,

planar cell
GO:0010635 regulation of mitochondrial

fusion
GO:0016579 protein deubiquitination
GO:0090090 negative regulation of canonical

Wnt signal
GO:0051131 chaperone-mediated protein

complex
GO:0051560 mitochondrial calcium ion

homeostasis
GO:0008090 retrograde axonal transport
GO:0032700 negative regulation of

interleukin-17
GO:0048170 positive regulation of
GO:0048170 long-term neuronal
GO:0051036 regulation of endosome size
GO:0061588 calcium activated phospholipid
GO:0090149 mitochondrial membrane fission
GO:0097112 gamma-aminobutyric acid

receptor
GO:0097332 response to antipsychotic drug
GO:0097338 response to clozapine
GO:1902683 regulation of receptor

localization
GO:0060052 neurofilament cytoskeleton

organization
GO:0048678 response to axon injury
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Table 3 GO terms associated with each one of the CN Clusters
(Continued)

Cluster # TFs Genes GO.ID Term
correlated
to TFs

4 677 39 GO:0007612 learning

GO:0000209 protein polyubiquitination

GO:0070646 protein modification by small

protein

GO:0035567 non-canonical Wnt signaling

pathway

GO:0038061 NIK/NF-kappaB signaling

GO:0090313 regulation of protein targeting

to membrane

GO:0016339 calcium-dependent cell-cell

adhesion

GO:0002223 stimulatory C-type lectin

receptor signal

GO:0043687 post-translational protein

modification

GO:0008090 retrograde axonal transport

GO:0061732 mitochondrial acetyl-CoA

biosynthetic

GO:0070050 neuron cellular homeostasis

GO:0016236 macroautophagy

GO:0043488 regulation of mRNA stability

GO:0061178 regulation of insulin secretion

involved...

GO:0016486 peptide hormone processing

GO:0035493 SNARE complex assembly

GO:0034112 positive regulation of homotypic

GO:1902260 negative regulation of delayed

rectifier...

GO:1902267 regulation of polyamine

transmembrane

GO:2000574 regulation of microtubule

motor activity

GO:0016082 synaptic vesicle priming

GO:0051560 mitochondrial calcium ion

homeostasis

GO:0006596 polyamine biosynthetic process

GO:0060052 neurofilament cytoskeleton

organization

GO:1903608 protein localization to

cytoplasmic stress
GO:0000715 nucleotide-excision repair,

DNA damage
GO:0047496 vesicle transport along

microtubule
GO:1990542 mitochondrial transmembrane

transport
GO:0031333 negative regulation of protein

complex

GO:0046826 negative regulation of protein
export

Table 3 GO terms associated with each one of the CN Clusters
(Continued)

Cluster # TFs Genes GO.ID Term
correlated
to TFs

5 18 4 GO:0072369 regulation of lipid transport

GO:1901379 regulation of potassium ion

transmembrane

GO:0032700 negative regulation of

interleukin-17

GO:0051036 regulation of endosome size

GO:1904219 positive regulation of

CDP-diacylglycerol

GO:1904222 positive regulation of serine

C-palmitoyl

GO:1905664 regulation of calcium ion import

GO:2000286 receptor internalization

GO:0021769 orbitofrontal cortex

development

GO:0045716 positive regulation of

low-density lipo.

GO:0060430 lung saccule development

GO:0070885 negative regulation of

calcineurin-NFAT

GO:1900272 negative regulation of

long-term synaptic

GO:1902951 negative regulation of dendritic

spine

3 show overrepresentation of groups related to cognition
(Table 3 and Fig. 6).

Time series: Metagenomics data from the ocean
Only about 1% of marine bacteria can be easily studied
using standard laboratory procedures [53]. This is a major
drawback for the understanding of how those microor-
ganisms interact. Systems biology methods can provide
helpful insights to shed light on species interactions.
To demonstrate an application of our wTO package

for time series data with no replicates, we use as an
example metagenomics data from The USC Microbial
Observatory. The data is public available at https://www.
ebi.ac.uk/metagenomics/projects/ERP013549.
The sampling site is located between Los Angeles and

the USC Wrigley Marine Laboratory on Santa Catalina
and spans approximately 900 m of water. Over the
course of 98 months, samples were taken once a month.
Operational Taxonomic Unity (OTUs) were determined
using 16S ribosomal RNA (rRNA). The authors found
67 OTUs that will be used in our analysis. In order to
find the correct lag for the blocked bootstrap, we used
the autocorrelation function (acf ) for all OTUs and chose
a median lag of 2. This allowed us to define the blocks
with high autocorrelation in the same sample, meaning

https://www.ebi.ac.uk/metagenomics/projects/ERP013549
https://www.ebi.ac.uk/metagenomics/projects/ERP013549
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Fig. 6 GO terms enriched within each cluster. Enriched GO terms of the category “biological process” are clustered by REVIGO [76] with the SimRel
measurement and allowed similarity of 0.5. The size of the circle represents the frequency of the GO term in the database, i.e. GO groups with many
members are represented by larger circles. The color code refers to the log10(p-value) of the GO enrichment analysis: the closer to 0, the more red,
the lower this value, the greener the bubble is. After removing redundancies, the remaining terms are visualized in semantic similarity-based
scatter-plots, where the axes correspond to semantic distance. Brain related functions were detected, for instance in Clusters 1 and 3, that are
involved with cognition

that for them the abundance of the OTU on each spe-
cific time point is correlated to the following next 2
time points.

Based on that, we built the network of bacteria co-
occurrence in that environment (Fig. 7). We found
that 61 out of 67 OTUs had at least one significant



Gysi et al. BMC Bioinformatics          (2018) 19:392 Page 13 of 16

Fig. 7 OTUs analysis using the Time-Series method of the wTO package. In this network, the sizes of the nodes are proportional to a node’s degree,
and the width of a link is proportional to its wTO-absolute value. The link color refers to its sign, with green links being negative and purple ones
positive. Nodes belonging to the same cluster are shown in the same color. There are four distinct clusters of bacteria. The orange cluster contains
only negative interactions (green links), suggesting that the bacterial species in this cluster do not co-exist. We also notice, that many of the bacteria
belonging to the same order are well connected by purple links, indicating that they co-exist and share interactions. However, the number of
interactions among non-related bacteria demonstrate that interactions are not intra-order specific

interaction (padj-value < 0.01). Positive correlations in
co-occurence networks may represent symbiotic or com-
mensal relationships, while negative correlations may
represent predator-prey interactions, allelopathy or com-
petition for limited resources. Using the community
detection method for defining clusters we identified
four distinct clusters of bacteria. We did not find any
association of the phylogeny with clusters, which is in
agreement with previous studies. However, we can clearly
see (Fig. 7) that the blue group is rich in negative relation-
ships, while both, the purple and orange groups, possess
many positive relationships. These positive relationships
are formed mostly by Flavobacteriales, bacteria that are
known to infect fishes [54] and to live in commensality
with other bacteria from the same order [55].

Conclusion
This new wTO package allows wTO network calculation
for both, positive and negative correlations, which is not
provided in any other published R package. With this
feature it becomes valuable for the analysis of gene regu-
latory network, metabolic networks, ecological networks
and other networks, in which the biological interpretation
strongly depends on distinguishing between activating
and inhibiting/repressing interactions.
Another novel feature is the computation of p-values

for each link based on its empirical distribution, which
allows for the reduction of false positive links in wTO net-
works. With our package, networks can also be calculated
from time series data. In addition, our package includes
the computation of a CN, which enables integrating
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networks derived from different studies or datasets
to determine links that consistently appear in these
networks.
By focusing on what these independently derived net-

works have in common, the CN should be of higher
biological confidence than each individual network is. We
also provide an interactive visualization tool that can be
used to visualize both,wTO networks andCN, for efficient
further custom analysis.
We qualitatively and quantitatively compared our new

package to state-of-the-art methods and demonstrated
that it performs better in identifying true positives and
false negatives.
We provide two use cases for our package, one on wTO

and CN calculation from three independent genome-wide
expression datasets of human pre-frontal cortex samples,
and one on wTO co-occurence networks calculated from
time series data of a metagenomics abundance dataset
from the ocean. Here, we demonstrated that clusters and
GO enrichment in the CN are more defined than in indi-
vidual wTO networks, highlighting the benefits of our
package for analyzing and interpreting large biological
datasets.

Availability and requirements
Project name: wTO: Computing Weighted Topological
Overlaps (wTO) & Consensus wTO Network
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igraph [27] and visNetwork [61]. The MakeGroups
parameter, passed to the function NetVis for construct-
ing the network, allows the user to choose clustering
algorithms from: “walktrap” [63], “optimal”[64], “spin-
glass” [65–67], “edge.betweenness’ [68, 69], ‘fast_greedy”
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