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1 Introduction 

 

1.1 Polyhalogen Anions 

A wide range of poly- and polyinterhalide compounds are known. Starting with polyhalogen 

anionic species the polyiodides are the most investigated class ranging from [I3]  to             

[I26]4 .[1 3] The tendency to form polyhalides decreases the lighter the halogens are. 

First, the general bonding situation of polyhalogen anions will be described, thereafter the 

polybromides are discussed in more detail and then briefly compared with the polychlorides 

and -fluorides. 

 

1.1.1 General Bonding Situation 

Polyhalides are formed of three building blocks [X] , [X3] , and X2. [X]  and [X3]  are usually 

located in the polyhalide molecule center and act as Lewis bases donating electron density 

from their HOMO into the LUMO of one or more Lewis acids, X2. This results in an 

elongation of the X X bond of coordinated X2, which can be detected via vibrational 

spectroscopy as a shift of the corresponding stretching mode to lower wavenumbers. A 

distinction is made for the trihalide anion [X3]  depending on whether it is linear and 

symmetric, and can therefore be described as a 4-electron 3-center bonding system, which 

is isoelectronic to e.g. XeF2, or shows an asymmetric structure represented by a donor-

acceptor or charge-transfer complex as described above.[4] Figure 1-1 shows the Rundle-

Pimentel model for 4-electron 3-center bonding systems in comparison to a donor-acceptor 

interaction.[5 8] 

 

 

 

Figure 1-1: Different bonding situations in [X3] . Left: Rundle-Pimentel scheme for the description of 

a 4-electron 3-center bonding system. Right: Simplified diagram of a donor-acceptor complex. (graphic: 

based on [8]) 
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Hoffmann and Aragoni investigated these two bonding concepts for [X3]  on basis of 

theoretical calculations as well as structural data from the Cambridge Structural Database 

(CSD). While the donor-acceptor model, as already mentioned above, is particularly 

suitable for the description of very asymmetric systems due to the consideration of two 

stable fragments the Rundle-Pimentel model explains well the charge distribution of 

symmetric trihalide anions. Thus, the two terminal halogen atoms show a much more 

negative charge than the central atom in [X3] , since they are the largest contributors to 

the HOMO.[7,8] For example, the NPA (Natural Population Analysis) charges of a 

tribromide anion are 0.451 for the two terminal and 0.098 for the central bromine atom 

as calculated in quantum-chemical calculations at CCSD(T)/aug-cc-pVTZ//B3LYP/aug-

cc-pVTZ level.[4] 

Furthermore, the concept of halogen bonding is used to describe the bonding situation in 

polyhalogen anions. This concept and related nomenclature have recently been a topic of 

an IUPAC recommendation.[9] The noncovalent interaction is largely driven by electrostatic 

forces and generally built between a R X unit in which the halogen atom X shows a region 

of positive electrostatic potential, namely the σ-hole, and a negative site like the lone pair 

of a Lewis base or a halide anion. Beside the σ-hole, that lies in extension of the covalent 

bond, the anisotropic charge distribution of R X also leads to a belt of negative 

electrostatic potential around the central region due to the three unshared electron   

pairs.[10 17] Figure 1-2 shows the electrostatic potential plotted for a Br2 molecule.  

 

Figure 1-2: Electrostatic potential of Br2 mapped on the total electron density isosurface of 0.005 a.u. 

in the range from 0.02 a.u. (red) to 0.08 a.u. (blue); calculated at the B3LYP-D3/def2-TZVPP level. 

Halogen close contacts with another atom show an angle of approximately 180° to a nucleophile and 

around 90 120° to an electrophile. 

Halogen bonding is highly directional with bond angles of approximately 180° for                

R X···B with the halogen X acting as electron acceptor and 90 120° for a contact with 

electrophiles in which X acts as an electron donor (see Figure 1-2).[12,15] The electrostatic 

potential at the σ-hole decreases in the order X = I > Br > Cl > F. Its value also depends 

on electron-withdrawing properties of the R substituent.[11,14] Therefore, Politzer et al. 
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observed a σ-hole for the chlorine atom in CF3Cl, but not for CH3Cl. Even the fluorine 

atom in CF3F does not show a σ-hole, its high electronegativity and sp-hybridization result 

in the cancellation of the σ-hole.[11] 

 

1.1.2 Polybromide Monoanions 

First investigations on polybromide anions were reported in 1923 by Chattaway and Hoyle. 

They reacted tetramethylammonium bromide with bromine in two different ways, either 

by dissolving them in small amounts of acetic acid and alcohol or by absorption in a 

desiccator. For the latter, they determined the highest amount of absorbed bromine to be 

5.7 eq.[18] 

Today, the polybromide monoanions [Br3] , [Br5] , [Br7] , [Br9]  and [Br11]  are structurally 

known, see Figure 1-3 for schematic representations. 

 

Figure 1-3: Schematic representation of the polybromide monoanion structures [Br3] , [Br5] , [Br7] , 

[Br9]  and [Br11] . 

In 2011 Pichierri compared all high-resolution crystal structures containing [Br3]  anions       

(R factor ≤0.05) found in the CSD. This analysis showed 12 compounds with a symmetric 

[Br3]  revealing the same bond lengths that range from 252.3 255.1 pm as well as 30 

compounds that contain an asymmetric [Br3]  anion.[19] The asymmetry is usually due to 

the presence of cations or other positively charged groups like in the most asymmetric 

example adamantylidene-adamantane bromonium tribromide.[20] In this case the 

bromonium cation interacts both with the central and one of the terminal bromine atoms 

resulting in an elongation of one Br Br bond to 271.8(1) pm while the other distance is 

only 241.2(1) pm.[19] These interactions are consistent with ab initio calculations for KBr3, 
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where the cation in side-on position also induces a distortion of the [Br3]  anion with a 

difference in the Br Br bond lengths of 50 pm.[21] 

After initial evidence of [Br5]  anions in UV/Vis[22] and Raman spectra[23], the first structural 

proofs were reported by Himmel et al. for [(ttmgn-Br4)(BF2)2][Br5]2 (ttmgn = 1,2,4,5-tetra-

kis(tetramethylguanidyl)naphthalene) and [(btmgn-Br4)(BF2)][Br5] (btmgn = 1,8-bis-

(tetramethylguanidinyl)naphthalene). In both structures the asymmetric V-shaped [Br5]  

anions interact with each other to form dimeric units or polymeric chains.[24] Polymeric 

[Br5]  zig-zag chains, which are in contrast to the [Br5]  described above, formed by 

alternating [Br3]  anions and Br2 molecules, are recently reported for [p-MeOPy2Br][Br5]                             

(p-MeOPy2Br = bis(4-methoxypyridine)bromonium)[25], [Cu(dafone)3][Br3][Br5] and 

[Cu(dafone)3][Br5][Br8]0.5·CH3CN (dafone = 4,5-diazafluoren-9-one).[26] 

The behavior to interact with adjacent ions is also found for [Br7] . Feldmann et al. 

obtained the compound [PPh3Br][Br7] in an eutectic mixture of the ionic liquids 

[C10MPyr]Br (C10MPyr = N-decyl-N-methylpyrrolidinium) and [C4MPyr][OTf] (C4MPyr = 

N-butyl-N-methylpyrrolidinium). The [Br7]  anion, that consists of a central Br  

coordinating three bromine molecules in a distorted trigonal pyramidal structure, weakly 

interacts with the bromine atom of the phosphonium cation as well as with neighboring 

[Br7]  anions, see Figure 1-4A.[27] When working in a HBr/Br2 medium Gorokh et al. 

obtained the 2D supramolecular polymer [NEt4][(Br3)(Br2)2] in which each [Br3]  anion 

interacts with four Br2 molecules, see Figure 1-4B.[28] 

 

Figure 1-4: Crystal packing in the solid state structures of [PPh3Br][Br7] (A), [NEt4][(Br3)(Br2)2], where 

the hydrogen atoms are omitted for clarity (B), and {[o-SCH3C6H4)3PBr][Br]·0.5(μ-Br2)3}n (C). (graphic: 

based on [27 29]) 

A compound that does not formally contain any [Br7]  anion, but nevertheless shows many 

of the already mentioned structural motifs is {[o-SCH3C6H4)3PBr][Br]·0.5(μ-Br2)3}n, see 

Figure 1-4C. Here, the central Br  anions are coordinated by three bromine molecules. Each 

Br2 molecule interacts with two Br  anions, forming a polybromide network.[29] 
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Chen et al. studied the reactions of tetraethylammonium bromide with bromine forming 

polybromides from [Br3]  to [Br9] . With the exception of the [Br7]  anion, the measured 

Raman spectra agree well with quantum-chemical calculations at the MP2/6-31G(d)   

([Br3] , [Br5] , [Br7] ) and the HF/6-31G(d) level ([Br9] ).[30] The first nonabromide crystal 

structure [NPr4][Br9] was obtained from a reaction mixture of tetrapropylammonium 

bromide in an excess of bromine. The [Br9]  anion is almost tetrahedrally coordinated with 

additional intermolecular contacts that form a 3D-network. According to quantum-

chemical calculations at MP2 and HF level, the most stable [Br9]  isomer shows Td 

symmetry.[31] However, depending on the used cation the [Br9]  structures differ in the series 

of [NEt4][Br9] (Alk = Me, Et, Pr, Bu). Analogous to [NPr4][Br9], the [Br9]  anions of [NMe4]+ 

and [NEt4]+ also consist of the two building blocks [Br]  and Br2 forming different networks 

of T- and Z-shaped wires or layers in a zipper-like motif. [NBu4][Br9] displays two different 

structural motifs for the [Br9]  anion, see Figure 1-5. In the first one, the central Br  is 

coordinated by four bridging and two terminal Br2 units and is comparable to the structural 

motif in [NEt4][Br9]. With the building block [Br3]  that coordinates at each side three Br2 

molecules, the second structural motif in [NBu4][Br9] deviates from all other described [Br9]  

anions.[32] 

 

Figure 1-5: Excerpt from the polybromide network in the solid state structure of [NBu4][Br9]. The 

building blocks Br  and [Br3]  are yellow colored, Br2 is red colored. (CCDC: 845161)[32] 

This [Br3]  building block is also observed in the Raman spectrum as an additional band 

at 219 cm 1. The other two bands of the [Br9]  anion are shifted to lower wavenumbers 

(254 and 268 cm 1) in contrast to all other described [Br9]  anions that show bands at 

approximately 260 and 275 cm 1.[32] The nonabromides show surprisingly high 

conductivities[31 33], especially [HMIM][Br9] (HMIM = 1-hexyl-3-methylimidazolium), the 

first nonabromide ionic liquid, shows a conductivity of 52.1 mS·cm 1 at 25.6 °C, while for 

[HMIM]Br the conductivity of 54.2 μS·cm 1 at 26.6 °C is considerably lower.[33] A 

Grotthuss-type hopping mechanism was proposed for the conductivity of Br /Br2 
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systems.[34] Nowadays, even higher polybromides are tested in redox-flow batteries[35,36] and 

Br /[Br3]  electrolyte solutions in dye-sensitized solarcells.[37,38] In addition to some 

tribromides[39 41] the nonabromide [NPr4][Br9] can also be used as a bromination reagent 

that is easier to handle and shows in some cases a higher selectivity than elemental 

bromine.[42] 

The polybromide monoanion with the highest bromine content obtained so far is 

[PPN][Br11·Br2] (PPN = bis(triphenylphosphoranylidene)iminium).[43] The [Br11]  anion 

consists of a central Br  coordinating five Br2 molecules in an almost square-pyramidal 

structure. The additional embedded Br2 molecule has a short bond length of 227.3(1) pm 

and shows distances to the neighboring [Br11]  anions of 328.8(1) and 366.9(1) pm that are 

below twice the van der Waals radius of bromine (370 pm). The formed chains are pictured 

in Figure 1-6. 

 

Figure 1-6: Chain-like structure in [PPN][Br11·Br2] formed by [Br11]  anions and Br2 molecules. 

(CCDC: 906333)[43] 
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1.1.3  Polybromide Dianions 

In the series of polybromide dianions [Br4]2 , [Br6]2 , [Br8]2 , [Br10]2 , [Br16]2 , [Br20]2  and 

[Br24]2  are known. Schematic representations for the four first mentioned dianions are 

presented in Figure 1-7. 

 

Figure 1-7: Schematic representation of the polybromide dianion structures [Br4]2 , [Br6]2 , [Br8]2  and 

[Br10]2 . 

The [Br4]2  dianion was already investigated by X-ray crystallography in 1959.[44] The nearly 

linear chains are formed by treating dimethylammonium bromide with elemental bromine 

in chloroform. They show an angle of 173.0° and Br Br distances of 242 pm between the 

two central and 303 pm to the terminal bromine atoms. Further [Br4]2  dianions are known 

for W6Br16 in which [W6Br8]6+ cations and [Br4]2  dianions are linked to repeating units of 

angled chains[45], [(CH3)2SBr+][Br 0.5(Br4
2 )0.25][46] and [H4ttpz4+][(Br )2(Br4

2 )] (tppz = 

tetra(2-pyridyl)pyrazine]. For the latter bands at 167 and 74 cm 1 are observed in the 

Raman spectrum that agree well with predicted bands at 176 and 70 cm 1 in quantum-

chemical calculations at the MP2/LanL2DZ level.[47] 

Recently, the first structure of a [Br6]2  dianion was reported for the reaction of 

1,3-dimethylimidazolidinone with oxalyl bromide. The dianion shows a hockey-stick like 

structure (see Figure 1-7) that consists of two asymmetric tribromides connected in a 

L-shaped geometry by halogen-halogen interaction with an angle of 87.7(1)°. The 

interaction of the two [Br3]  units is facilitated by another interaction of the [Br3]  units 

with the bromoamidinium cation. In contrast, quantum-chemical calculations at the RI-

MP2/aug-cc-pVTZ level predict a T-shaped minimum structure.[48] 
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The [Br8]2  dianion is built of two [Br3]  anions connected by a Br2 molecule in a roughly 

planar Z-shaped structure (see Figure 1-7). Many examples containing a [Br8]2  dianion are 

known. The angles of the linked building blocks range from 76.8(1)° to 117.7(1)°.[27,49 53] 

The reaction of 1,5-diphenylformazan and bromine yielded a salt of the rectangular [Br10]2  

dianion. It consists of two asymmetric [Br3]  anions that are linked by two Br2 molecules 

(see Figure 1-7).[54] 

[PPN]2[Br16]·Br2 contains the only known [Br16]2  dianion so far. [Br16]2  consists of two 

nearly T-shaped [Br7]  whose central Br  anions are interconnected by a Br2 molecule. An 

additional Br2 links these [Br16]2  dianions to chains.[55] 

All reported [Br20]2  dianions [(n-Bu3)3MeN]2[Br20], [C4MPyr]2[Br20] (C4MPyr = N-butyl-N-

methylpyrrolidinium) (see Figure 1-8) and [P(C6F5)3Br]2[Br20]·Br2 consist of the two 

building blocks Br  and Br2. They all show different structural motifs forming 3D-networks. 

While the first two compounds were obtained from ionic liquids, the latter was observed 

when P(C6F5)3 was treated with 5 or 10 equivalents of elemental bromine.[27,55,56] 

 

Figure 1-8: Solid state structure of the [Br20]2  dianion in [C4MPyr]2[Br20] (B) (CCDC: 811451). The 

central Br  are yellow colored. (graphic based on [27,56]) 

 

The largest known polybromide [Br24]2  was obtained by the reaction of an equimolar 

mixture of [P4,4,4,4]Br and [P6,6,6,14][NTf] with 10 equivalents of elemental bromine, see Figure 

1-9 for the obtained structure.[57] Maschmeyer et al. compared the obtained structural motif 

to the roughly square pyramidal [Br11·Br2]  anion.[43] 
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Figure 1-9: Solid state structure of [P4,4,4,4]2[Br24] containing the largest known polybromide. (CCDC: 

1059043)[57] 

 

1.1.4  Polychlorides and -fluorides 

Again, Chattaway and Hoyle reported on the first polychlorides in 1923. They obtained 

pale yellow hygroscopic compounds by passing chlorine over tetaethyl- or 

tetramethylammonium chlorides.[18] The first crystal structure of a [Cl3]  anion was 

observed in 1981 by Bogaard et al.[58] [AsPh4][Cl3] has an almost linear asymmetric 

structure, similar to the other known trichloride anions[59 62]. For M[Cl3] (M = Na, K, Rb, 

Cs, K) two bands are observed in the Raman spectrum between 225 276 and 326           

375 cm 1 in argon matrices.[63] In addition to M+[Cl3 ] free, uncoordinated [Cl3]  was 

observed for the first time in matrix-isolation experiments by co-deposition of laser ablated 

alkali metal chlorides (CsCl, RbCl and KCl) with chlorine. Irrespective of the matrix gases 

(Ne, Ar) and the used metals free [Cl3]  shows one single band at 252 cm 1 in the far-IR 

spectrum. Quantum-chemical calculations at the CCSD(T)/def2-TZVPP level confirmed 

this result showing that the [Cl3]  anion becomes asymmetric once interacting with an alkali 

cation.[64] Structures of higher polychlorides are known from literature for [Cl3 ·Cl2] 

showing a hockey-stick like structure that consists of a [Cl3]  anion coordinating a slightly 

elongated Cl2 molecule at a distance of 317.1(2) pm,[65] [Cl8]2 , that was crystallized from 

the ionic liquid [BMP][OTf] (N-butyl-N-methylpyrrolidinium triflate)[66], the network 

[(Cl3)2·Cl2]2 [67], [Cl11] , [Cl12]2  and [Cl13] .[68] Comparing the last four mentioned structures 

with known polybromide anions, in the previous section, only [PPN][Cl11·Cl2] shows a 

similar structure to the undecabromide [PPN][Br11·Br2][43]. However, [AsPh4][Cl11] and 

[PPh4][Cl11] feature distorted square pyramidal structures building one-dimensional chains 

in the solid state. The [Cl12]2  dianions are formed by two [Cl5]  units that are bridged by 

a Cl2 molecule. [Cl13]  shows a distorted octahedral structure, with a distance of 328.7(1) pm 

between the single anions which are very loosely connected to chains.[68] Evidence for a 
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[Cl9]  is obtained by Raman spectroscopy measurements of [NEt4][Cl9] at 196 °C in 

comparison with quantum-chemical calculations.[69] 

In contrast to the polybromides and -chlorides, polyfluorides are only obtainable under 

matrix-isolation conditions. Although, theoretical investigations showed that CsF3 should 

be stable at pressures between 15 30 GPa and CsF5 at 50 GPa none of these compounds 

exist so far in preparative amounts.[70,71] Experiments, like for example the reaction of 

[NMe4]F with fluorine in CH3CN or CHF3 at 31 and 142 °C respectively were 

unsuccessful.[72] So far, only two polyfluoride anions are known. The first prooven [F3]  

anion was found in 1976 by Ault and Andrews reacting alkali fluoride salts with elemental 

fluorine under cryogenic conditions in argon matrices. The observed MF3 (M = K, Rb and 

Cs) were characterized by IR and Raman spectroscopy indicating a D h symmetry for the 

anion.[73,74] In 2015 this results were extended to KF3 and CsF3 in neon that show in IR 

experiments absorption bands at 557 and 561 cm 1.[75] Free [F3]  anions were observed in 

the gas phase by electron capture mass spectrometry on the one hand[76], on the other hand 

they were formed under cryogenic conditions in argon and neon matrices during laser-

ablation experiments of transition metals under access of fluorine.[77 79] Besides further laser-

ablation experiments of metals and neat fluorine[78,79] MF3 (M = K, Rb, Cs) as well as 

isolated [F3]  anions were formed during the reaction of laser ablated alkali metal fluorides 

with fluorine in solid neon, argon, krypton and nitrogen.[80] The first speculation of a [F5]  

anion was based on a weak signal in the flowing afterglow of a mass spectrometry 

experiment.[81] Free [F5]  was isolated after the reaction of IR-laser ablated metal atoms 

with neat fluorine in neon matrices.[75,82] The IR spectra suggest a V-shaped structure, that 

contrasts with quantum-chemical calculations at the CCSD(T)/aug-cc-pVTZ level showing 

that the hockey-stick like structure is energetically favored by 6.2 kJ·mol 1.[77]  
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This section is part of a review manuscript. Therefore, contents of chapter 3.2 with           

syn- and anti- [NMe4][I4Br5] are anticipated. Results from chapter 4, namely         

[NEt4][I5Br2], [CoCp2][I2Cl3], [PPh4][I2Cl3], [PPh4][I3Cl4], [CoCp2]2[I3Br4]2·CH2Cl2, 

[{(C6H2F3)3P}2N]2[I4Cl4]·4 CH3CN and [PPh4]2[I6Cl6] are marked with an asterisk [*]. 

 

1.2  Polyinterhalides 

As previously stated several polyhalogen anions have been prepared and characterized over 

the last decades. However, only homonuclear polyhalogens of fluorine, chlorine, and 

bromine have been summarized so far. The possible variety of polyinterhalogen anions 

increases dramatically compared to the homonuclear variety. Before the discussion of such 

polyinterhalide anions, a very important differentiation has to be made. In principle two 

kinds of polyinterhalide compounds are known, namely the classical and non-classical 

polyinterhalides. The former are built of an electropositive central atom surrounded by 

more electronegative halogen atoms such as [ICl4] [83] or [IF6] [84]. Many of these compounds 

are experimentally known and well characterized, see e.g. reviews[85,86] and articles for the 

higher classical interhalides.[18,84,87 112] For the latter non-classical polyinterhalides the 

central halide is more electronegative than the coordinating dihalogen or interhalogen 

molecules, see Figure 1-10.[4] 

 

Figure 1-10: Classical (left) and non-classical polyinterhalides with coordinated dihalogen (middle) or 

interhalogen molecules (right) in comparison. The electropositive atoms are violet while the 

electronegative are green. All species are known for example for iodine (electropositive, violet) and 

chlorine (electronegative, green). 

Herein, the focus is on non-classical polyinterhalide anions, starting with compounds that 

are formed by either a central halide (X ) or three atomic interhalide which is in each case 

coordinated by dihalogen molecules (Y2). 

Three atomic interhalides of this design were already investigated in 1923 by Chattaway 

and Hoyle.[18] The stability of trihalide anions [X2Y]  (X, Y = Cl, Br, I) was examined by 
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quantum-chemical calculations. It was shown by molecular orbital studies in the gas phase 

and in solution that in the case where Y is heavier than X the [Y Y X]  structure is 

preferred to the [Y X X]  structure.[113] This outcome explains why no structures of the 

type [Y X X]  have been found in a CCDC database search. Hoffmann et al. investigated 

the bonding situation of mixed trihalide anions based on quantum-chemical calculations. 

They showed that the structure of [Y Y X]  is also favored over [Y X Y] .[8] 

All trihalide anions of the type [Y Y X]  with known crystal structure are summarized in 

Table 1-1. 

Table 1-1: Literature known crystal structures of trihalides [YYX] . 

 [Br2Cl] [119] [I2Cl] [116,118 121] 

 [I2Br] [120,124 127] 

 

They are described in more detail in the following sections. Reactions of CsF or RbF with 

Cl2 in argon matrices at 15 K show an infrared absorption around 410 cm 1, which can be 

possibly assigned to [Cl2F] .[74] This assignment agrees well with the 424 cm 1 calculated at 

the CCSD(T)/aug-cc-pVTZ level.[114] [Br2F]  and [I2F]  could not be experimentally detected 

so far. However, the formation of [Br2F]  was supposed during the procedure of indirect 

anodic fluorination with a Br+/Br  redox mediator.[115] 

 

Polyinterhalides of Cl  and I2: [C12H9N2]2[I2Cl][ICl2] ([C12H9N2] = 1,10-phenanthrolin-1-

ium; phenH+) contains the three atomic [I2Cl]  anion.[116] Interestingly, in addition to the 

non-classical [I I Cl]  this compound also contains the classical polyinterhalide [ICl2] . The 

[I2Cl]  anions form infinite chains. With 273.7(1) pm the I I bond is very close to that of 

elemental iodine (271.5(6) pm[117]) while the distances of I Cl with 304.0(1) and 

315.8(1) pm suggest covalent bonding. The crystal packing is influenced by hydrogen bonds 

between N H groups of the cation and chlorine atoms of [I2Cl]  as well as many weak       

C H···Hal interactions. However, [I2Cl]  is also structurally known with further 

counterions.[118 121] Beyond this mono-coordinated Cl  anion in [I2Cl]  it is possible to extend 

the coordination sphere by four I2 molecules as it can be seen in [Cl(I2)4]  which forms a 

square-planar structure.[122,123] Surprisingly, the anion in the experimentally determined 

structure of [(H5O2)(I2b15c5)2][Cl(I2)4] (I2b15c5 = diiodobenzo-15-crown-5) does not represent 

the expected tetrahedral coordination of the ligands as it was found e.g. in [Br9] , see above. 

The presence of a planar instead of a tetrahedral orientation in the solid state can be 

explained by quantum-chemical calculations which show that halogen-halogen bonding 
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between the [Cl(I2)4]  anions stabilizes this structural motif. The coordinated iodine units 

show a higher electrostatic potential in the peripheral region than on the lateral site, the 

resulting σ-hole can therefore interact with the adjacent ion, which leads to these anion-

anion interactions, see Figure 1-11. 

 

Figure 1-11: Interactions between [Cl(I2)4]  anions based on the electrostatic potential (red  blue:  

decreasing potential) and in the crystal structure.[122] (Copyright Wiley-VCH Verlag GmbH & Co. KGaA. 

Reproduced with permission) 

In this example the I-I distances with 269.9(1) and 270.5(2) pm are also close to the 

corresponding distance in elemental iodine, and the Cl I bonds with 299.6(1) and 

302.9(1) pm are even a bit shorter than in the above described [I2Cl]  anion. The first three-

dimensional network containing iodine and chlorine was observed by Feldmann et al. in 

[(Ph)3PCl]2[Cl2I14] out of the ionic liquid [C4MPyr][OTf] ([C4MPyr] = N-butyl-N-methyl-

pyrrolidinium).[27] The square pyramidal structure is built of a central Cl  which coordinates 

five I2 units, whose not exactly planar basis forms a two-dimensional network by a direct 

connection to the next central chloride atoms. The fifth diiodine is disordered and connects 

as well as a further I2 molecule two layers to a polyinterhalide network, see Figure 1-12. 

 

Figure 1-12: Network of the [(Cl)2(I2)7]2  anions in [(Ph)3PCl]2[Cl2I14].[27] 
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Polyinterhalides of Br  and I2: For [I2Br]  many examples are literature known. The 

first mentioned polyinterhalide of this kind [BEDT-TTF]2[I2Br] (BEDT-TTF = 

bis(ethylenedithio)tetrathiofulvalene) was published in 1985.[124 125] Here, the [I2Br]  anions 

are crystallographically disordered with [I3] , as is apparent from the bond lengths. Further 

reported examples of an [I2Br]  anion, without disorder, are [(C5H5N)C16H33][I2Br][120] and 

[(C6H5)3P(CH2)3COOH][I2Br][127]. The latter shows dimeric associates of [I2Br]  with a rather 

long Br I with 283.1(2) pm is elongated 

in comparison to elemental iodine, the I Br distance with 280.7(2) pm is much smaller 

than the sum of the van der Waals radii. The crystal structure of [Br(I2)2]  is so far still 

missing. Only far IR and Raman spectra suggesting the formation of this anion have been 

published. Note, the recorded spectra show very similar frequencies to those of the well-

known [I5]  anion, and therefore need further investigation.[128] 

 

Polyinterhalide of Cl  and Br2: The first crystal structure of [Br2Cl]  was obtained by 

reaction of hexamethonium chloride dihydrate with a stoichiometric amount of Br2 

vapors.[119] Two adjacent [Br2Cl]  units form a hexaatomic system, that is controlled by 

Br∙∙∙Br contacts between the trihalide anions, with chlorine atoms at both ends. This 

structural behavior is also observed for [I2Cl]  using the same counter ion. Both trihalides 

are stable at room temperature and at ambient pressure. 

 

Polyinterhalide of [IICl]  (disordered: [ClICl] ) and I2: The interhalide in 

[H5O2(I4DB24K8)]2(I1.74Cl1.16)2(I2)4  (DB24K8 = dibenzo-24-crown-8) consists of an [I2Cl]  anion 

in which the terminal iodine atom is occupied with 26% chlorine, coordinating two iodine 

molecules to form a Z-shaped heptahalide. These are combined to form dimers, which leads 

to the formation of ten-membered rings out of two [I2Cl]  ([ICl2] ) anions and two iodine 

molecules. The second I2 of each heptahalide, that is not part of the ring shows a weak 

contact (390.2(2) pm) to the central iodine atom of an [I2Cl]  ([ICl2] ) in the next ring.[129] 

 

Polyinterhalides of [BrIBr]  and I2: Parlow and Hartl reported the structure of 

[BPH][I5Br2] (BPH+ = 2,2´-bipyridylium).[130] One of the bromine atoms (Br1) of the almost 

linear [IBr2]  anions with interatomic distances of 267.3(9) and 277(1) pm forms together 

with an I2 molecule slightly bent Br I I Br I I  chains. These chains are connected to 

curled net-like layers by additional iodine molecules (I2 I3), that connect Br2 of the first 

chain with Br1 of the second one, see Figure 1-13. 
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Figure 1-13: Unit cell of the molecular structure of [BPH][I5Br2]. (CSD: 51132)[130] 

The column-shaped cavities are occupied by [BPH]+ cations. With 270.3(8) and 

270.5(6) pm the I I distances correspond to those in solid iodine while the I-Br distances 

between [IBr2]  and I2 with distances between 316(2) and 340(1) pm are much weaker but 

shorter than the sum of the van der Waals radii. For this reason, the assignment to the 

non-classical polyinterhalides should be critically questioned. An [I5Br2]  anion is also 

obtained by the reaction of tetraethylammonium bromide with different amounts of IBr in 

the ionic liquid [HMIM][Br] (HMIM = 1-hexyl-3-methyl-imidazolium).[*] Here, symmetrical 

[IBr2]  anions are formed that are connected with two neighboring I2 molecules at each 

bromine atom. This again leads to the formation of Br I I Br I I  zig-zag chains which 

are connected to those in front and behind by the iodine atoms in the middle of the [IBr2]  

anions (I1) to build double layers, see Figure 1-14. The [NEt4]+ cations exist in the middle 

of the double layers and lie on gaps to the I1 atoms of the [IBr2]  anions. 

 

Figure 1-14: Solid state structure of [NEt4][I5Br2].[*] 

 

Polyinterhalide of [BrIBr]  and Br2: Rajasekharan et al.[26] reported with [IBr4]  in 

[Cu(dafone)3](IBr4)(I2Br6)0.5·CH3CN a further example of a polyinterhalide coordinating a 

dihalogen molecule. The second polyinterhalide in this compound, [I2Br6]2 , is described in 
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the dianion section. The [IBr4]  anion consists of two building blocks [IBr2]  and Br2. The 

unsymmetrical V-shaped structure can be compared with the other discussed pentahalide 

ions. As it can be seen in Figure 1-15 these interhalides form weakly linked zig-zag chains. 

 

Figure 1-15: Zig-zag chains of [IBr4]  in the solid state structure of [Cu(dafone)3](IBr4)(I2Br6)0.5·CH3CN. 

(CCDC: 1051676)[26] 

 

The following parts are focused on non-classical polyinterhalide anions that consist of an 

electronegative halide X  coordinating interhalogen molecules XY or YZ. For three atomic 

polyinterhalide anions, for example [Cl I Cl]  or [Br I Br] , it is questionable of which 

kind of polyinterhalide it consists (classical or non-classical). As symmetrical anions, they 

feature a three-electron four-center bond and clearly should be classified as classical 

polyinterhalides, for example the case in KIBr2.[131] But if the cation changes to Cs+, the 

anion becomes more asymmetric with bond lengths of 278 and 262 pm.[132] Is the 

electropositive central iodine surrounded by more electronegative bromine atoms or the 

bromide coordinated by an IBr unit? Based on potentially present crystal packing effects, 

no clear assignment can be made so far. All literature known structures of [XYX]  and 

[XYZ]  will be discussed below, Table 1-2 summarizes all experimentally known trihalides. 

 

Table 1-2: Experimentally known trihalides [XYX]  and [XYZ] . (black: known crystal structure) 

[ClF2] [133 135]    

[BrF2] [136 138] [BrCl2] [155 158]   

[IF2] [89,139,140] [ICl2] [141 144] [IBr2] [131,132] [BrICl] [160 165] 

 

The [ClF2]  anion was first prepared in 1965 by Christe and Guertin.[133] In further reactions 

beside [NO][ClF2] the [ClF2]  salts of potassium, rubidium, and cesium were synthesized 

and characterized by vibrational spectroscopy.[134] The infrared spectra of solid Rb[ClF2] 

and Cs[ClF2] showed a band associated to the symmetric Cl F stretching vibration that 

was explained by a distortion of [ClF2]  or crystal field effects.[135] After Raman[136] and IR 

measurements in solid argon[137] showing an asymmetric [BrF2] , the first clearly 



Introduction 

  

21 

 

centrosymmetric [BrF2]  anion, confirmed by IR and Raman spectroscopy was obtained for 

[NMe4][BrF2].[138] For both anions no crystal structure is known so far. For further 

combination possibilities, such as [BrIF] , [ClBrF]  or [ClIF]  no experimental data exist. 

 

Polyinterhalide of F  and IF: For [IF2]  only one crystal structure is known in the 

literature. The anion in [Pip][IF2] shows quasi identical bond lengths of 208.2(3) and 

207.5(3) pm.[89] A linear centrosymmetric structure was also confirmed for [NEt4][IF2] by 

vibrational spectroscopy with a band at 445 cm 1 in the Raman and 462 cm 1 in the IR 

spectrum.[139] Christe et al. obtained bands at 446 and 397 cm 1 for [NMe4][IF2], from which 

the latter contrasts to the prior reported value but can be confirmed by ab initio 

calculations.[140] 

 

Polyinterhalides of Cl  and ICl: Many crystal structures of [ICl2]  are known, therefore 

only the first symmetric and asymmetric examples will be mentioned. The first crystal 

structure containing an [ICl2]  anion was reported in 1920 by Wyckoff.[141] But the I Cl 

bond lengths are not discussed there. In 1939 Mooney presented the crystal structure of 

[NMe4][ICl2] with an I Cl bond length of 234 pm[142] while Visser and Vos obtained  a value 

of 255(2) pm.[143] The first asymmetric [ICl2]  was reported for piperazinium di-

dichloroiodide with I Cl distances of 269 and 247 pm.[144] The higher non-classical 

polyinterhalide [I2Cl3]  was first mentioned in 1942.[145] Yogi and Popov investigated 

reactions of ICl with dichloroiodate salts of large organic cations and discovered yellow 

microcrystalline powders of [ICl2·ICl] [146,147] that are stable at room temperature. The 

characterization of these substances was achieved by elemental analysis and IR 

spectroscopy. In solution the complexes seem to dissociate to the [ICl2]  anion and ICl. In 

1979, [I2Cl3]  was structurally characterized by Parlow and Hartl in the compound 

[C18H13N2][Cl(ICl)2] (C18H13N2 = 2,2`-bichinolinium).[148] The [I2Cl3]  anion is V-shaped, 

similar to pentahalide anions, and shows a bonding angle of 101.5(1)°. I Cl distances 

between the central Cl  and the coordinating ICl units are 271.8(2) pm, the terminal ICl 

shows a bond length of 241.7(2) pm. Further crystal structures of the [I2Cl3]  anion are 

obtained in [CoCp2][I2Cl3], that shows two crystallographically independent interhalides 

and [PPh4][I2Cl3] with I Cl I angles of 130.8(2), 131.7(2) and 97.5(1)°.[*] 

[BnMe3N]2[I2Cl3][ICl4] shows the non-classical interhalide [I2Cl3]  next to the classical 

interhalide [ICl4] . With a distance of 376.2(1) pm between the terminal chlorine atoms of 

[I2Cl3]  and the iodine atoms in the middle of [ICl4]  the connection in this chain-like 

arrangement is slightly above the sum of the van der Waals radii of iodine and chlorine 
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(360 pm).[149] [PPh4][I3Cl4] was obtained once in a trigonal pyramidal structure with a 

central Cl  anion coordinating three ICl units[150] as well as a chain-like structure, that 

consists of a central asymmetric [ICl2]  anion and two additional ICl units that are 

coordinated via their iodine atoms.[*] 

 

Polyinterhalides of Br  and IBr: Examples for a symmetric and asymmetric [IBr2]  

anion are already mentioned above. The pentahalide [Br(IBr)2]  shows a V-shaped 

structure, but the central I Br I angle is more rectangular with 94.8(1)[130] or 94.5(1)°[151] 

and therefore smaller than in all known [I2Cl3]  anions. In 2000 Minkwitz et al. reported 

the synthesis of [PPh4][I3Br4], which can be prepared by the reactions of [PPh4]Br and 

[PPh4]Cl with IBr,[152] due to halogen exchange reactions.[152] Like other known heptahalides, 

[Br(IBr)3]  displays a distorted trigonal pyramidal structure. The salt was characterized by 

X-ray structure determination, compared with quantum-mechanical calculations at the 

B3LYP/LANL2DZ level as well as IR and Raman spectroscopy. Eight years later Aragoni 

et al. synthesized a planar [I3Br4]  anion in [H3tptz][I3Br4][IBr2]2.[154] An interlaced structure 

of two [I3Br4]  anions was obtained in [CoCp2]2[I3Br4]2·CH2Cl2, see Figure 1-16.[*] 

 

Figure 1-16: Two interlaced [I3Br4]  anions in the solid state structure of [CoCp2]2[I3Br4]2·CH2Cl2 

(transparent: disordered IBr unit with 14.5%)[*] 

In contrast to the other two known [I3Br4]  anions with a central Br  coordinating three 

IBr molecules, this [I3Br4]  is formed of a slightly asymmetric [IBr2]  coordinating two IBr 

units. One of these IBr units is disordered, therefore the structure seems to consist of two 

interlaced syn-[I4Br5]  anions, which will be described next. [NMe4][I4Br5] was obtained with 

identical stoichiometries in either the ionic liquid [HMIM]Br or in dichloromethane.[151] In 

both structures the central V-shaped [I2Br3]  unit binds at each outer bromine atom an 

additional IBr molecule. This further coordination is based on halogen-halogen interactions 

as it was shown by quantum-chemical calculations. It is interesting to note, that depending 
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on the solvent two different structures have been observed. The syn-conformation is built 

in the ionic liquid and an anti-arrangement in CH2Cl2, see Figure 1-17. The obtained 

structures differ significantly if compared to other known nonahalides. 

 

Figure 1-17: Syn- and anti-[I4Br5]  in the solid state structures of [NMe4][I4Br5] crystallized from 

[HMIM]Br and CH2Cl2. (CCDC: 1496857 and 1496858)[151] 

 

Polyinterhalides of Cl  and BrCl: In the CCDC-database are so far four entries with 

a [BrCl2]  anion incorporated.[155 158] Larger anions with a central Cl  coordinating BrCl 

molecules were recently obtained. [Cl(BrCl)3]  is synthesized from tetraphenylarsonium 

chloride with an excess of BrCl in acetonitrile. [AsPh4][Cl(BrCl)3] shows two 

crystallographically independent anions. Both [Br3Cl4]  have a distorted pyramidal 

structure though one shows a more planar character. The polyinterhalide in 

[CCl(NMe2)2][Cl(BrCl)5] forms a square pyramidal rather than trigonal bipyramidal 

arrangement, although the latter was favored by a value of 18.1 kJ·mol 1 in DFT 

calculations. The largest known polyinterhalide monoanion was observed in 

[PPN][Cl(BrCl)6] (PPN = bis(triphenylphosphoranylidene)iminium). [Br6Cl7]  is the first 

polyinterhalide anion crystallized in a slightly distorted octahedral structure. In the solid 

state structure [Br6Cl7]  anions form chains due to halogen bonding interactions, see     

Figure 1-18.[159] 

 

Figure 1-18: Interactions between the [Br6Cl7]  anions forming chains in the solid state structure of 

[PPN][Cl(BrCl)6]. (CCDC: 1827157)[159] 
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Polyinterhalides of Cl, Br and I: [BrICl]  is the only crystallographic established 

trihalogen anion with three different atoms. It was reported for the first time in 1938 as 

[NH4][BrICl].[160] Other examples of this anion are only obtained in low dimensional organic 

conductors of bis(ethylenedithio)tetrathiofulvalene (BEDT-TTF) salts with trihalide 

counterions and are therefore disordered or rather a combination of different anions.[161 165] 

The anion [ICl2·IBr]  was obtained by reacting both [NMe4][IClBr] with ICl and 

[NMe4][ICl2] with IBr. [NMe4][I2Cl2Br] was investigated by IR spectroscopy.[146] 

 

Polyinterhalides of F  and BrF3: A special case, that extends the definition above, can 

be formulated if the central atom acts as a bridging ligand between several tetratomic 

interhalogen compounds, namely in [Br2F7]  or [Br3F10] . [Br2F7]  was first described in 1976 

by Sukhoverkhov et al.[167] who studied the BrF3-CsF-HF ternary system and reported 

therefore the IR spectrum of the CsBr2F7 phase. The crystal structure of CsBr2F7 was 

reported in 2013 by Kraus et al.[99] The central fluorine bridges the two bromine atoms of 

the BrF3 units which show together an almost square pyramidal structure. But in contrast 

to previous Raman spectroscopic investigations of Stein et al.[168] the structure neither 

shows a planar anion, nor a linear Br-μF-Br unit. Stein et al. also reported the Raman and 

IR spectra of MBr3F10 (M = Cs, Rb) which were both crystallized in 2016 by Kraus et 

al.[169] as well as the structure of RbBr2F7. An analog crystal structure with [I2Cl7]  does not 

exist yet. However, Krossing et al. investigated the mixtures of [HMIM]Cl, [BMP]Cl or 

[NEt4]Cl with different amounts of I2Cl6. The measured Raman spectra of [BMP]Cl and 

[NEt4]Cl with 1.0 eq of I2Cl6 are in agreement with quantum-chemical calculations at RI-

MP2/def2-TZVPP level and support the assignment of [Cl2I7] . There is also no clear 

evidence for an [I3Cl10]  anion.[112] 

 

Polyinterhalide Dianions: For the description of polyinterhalide dianions we need to 

extend the definition of a non-classical polyinterhalide, too. The dianions can be built by 

several halides or interhalides that coordinate the same dihalogen or interhalogen molecule. 

[Cl I I Cl]2  was obtained by the reaction of 2-pyrimidone hydrochloride with elemental 

iodine in a solution of dichloromethane and methanol followed by the evaporation of the 

filtrate for crystal growing.[170] The I I distance in the almost linear [I2Cl2]  anion is with 

272.6(2) pm only 1.2 pm longer than in elemental iodine. The bond lengths of I Cl are 

much shorter than the sum of the van der Waals radii. The complex is thermally stable up 

to 50 °C against the loss of I2. With bands at 202 and 217 cm 1 in the FIR-region and in 

the Raman spectra the I Cl vibrations can be detected. A second [Cl I I Cl]2  as well as 
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[Br I I Br]2  were obtained by thermal treatment of [HMET][I2Cl]2 and [HMET][I2Br]2 

(HMET = 1,6-bis(trimethylammonium)hexane), respectively. The crystal structures were 

directly determined from the powder XRD data. Interestingly, these dianions cannot be 

obtained from solution.[121] 

In the reaction of [PPN-3F]Cl (PPN-3F = bis[tris(3,4,5-trifluorophenyl)phosphor-

anylidene]iminium) with ICl crystals with the stoichiometric formula 

[{(C6H2F3)3P}2N]2[I4Cl4]·4 CH3CN were obtained from acetonitrile. The dianion [I4Cl4]2  

forms a Z-shaped structure out of two slightly unsymmetrical [ICl2]  anions that are 

interconnected via their chlorine atoms by an iodine molecule.[*] Therefore, the structure 

can be compared with the known octahalide dianions [X8]2  (first reported with                      

X = I [171], Br[49], Cl[66]). Another octainterhalide dianion is found in 

[Cu(dafone)3][(IBr4)(I2Br6)0.5]·CH3CN (dafone = 4,5-diazafluoren-9-one), that was 

obtained from a mixture of CuBr2, dafone, iodine, and bromine in acetonitrile.[26] In addition 

to the already mentioned [IBr4] , the compound also contains the Z-shaped dianion [I2Br6]2  

which is built of two nearly symmetric [Br I Br]  anions that are linked by a central 

bromine molecule. Further mentioned octainterhalides, that however show a disorder are 

[I3.77Cl4.23]  with two [ICl2]  anions connected by an iodine or chlorine molecule [I4.24Br3.76]  

and [I6.67Br1.33] . The latter two show an iodine in the middle bridging in the first case two 

[I I Br]  or [Br I Br]  anions and in the second case two [I3]  or [I I Br]  anions, wherein 

in the former combination a polyiodide is formed.[129] 

The largest known polyiodinechloride and -bromide dianions are [PPh4]2[I6Cl6] (disordered: 

[PPh4]2[I4Cl8])[*] and [PBr4]2[I5Br7], see Figure 1-19.[172]  

 

Figure 1-19: [I6Cl6]2  (transparent: disordered Cl2 unit with 28.5%: [I4Cl8]2 ) and [I5Br7]2  in the solid 

state structures of [PPh4]2[I6Cl6] (disordered: [PPh4]2[I4Cl8]) and [PBr4]2[I5Br7].[*][172] 

The former was obtained in the reaction of [PPh4]Cl with three equivalents of ICl. The V-

shaped [I2Cl3]  anions are bridged over the central chlorine atoms by an iodine molecule 

that is disordered with 28.5% chlorine.[*] The latter was synthesized from PBr5 and an 
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excess of IBr in the ionic liquid [(n-Bu)3MeN][N(Tf)2] (N(Tf)2 = bis(trifluoro-

methylsulfonyl)amide). It consists of two V-shaped [I2Br3]  anions that are bridged by a 

central IBr unit, but in contrast to the compound above via two iodine atoms. The central 

IBr is disordered with an occupation of 50.4% of iodine and 49.6% of bromine for both 

positions. The absorptions at 223, 213, and 187 cm 1 in the Raman spectrum can be 

assigned to I-Br stretching vibrations and therefore exclude the existence of Br2 or I2 instead 

of the disordered IBr unit. In comparison to solid IBr this bridging IBr is significantly 

elongated by 12 pm which can be explained by the additional bonds to the two [I2Br3]  

units.[172] 

 

1.3  Bis(triphenylphosphoranylidene)iminium Cations 

The first synthesis of a bis(triphenylphosphoranylidene)iminium cation, abbreviated 

[PPN]+, was reported in 1961 by Appel and Hauss.[173] They studied the reaction behavior 

of triphenylphosphine imine. Substitution of the hydrogen by bromine led to 

triphenylphosphine bromoimine, that reacted with triphenylphosphine in benzene to 

[PPN]Br (Eq. 1 and 2). 

 

The proposed mesomeric structures for the [PPN]+ cation are shown in Figure 1-20. 

 

Figure 1-20: Mesomeric resonance structures of [PPN]+. 

Another synthesis route described in this context, was the reaction of triphenylphosphine 

dibromine with triphenylphosphine imine (Eq. 3). 

 

The side product aminotriphenylphosphonium bromide was separated by recrystallization 

from hot water. [PPN]Br is stable against acids in boiling water and only partially 

destroyed by concentrated bases.[173] 

 

 



Introduction 

  

27 

 

Ruff and Schlientz simplified this synthesis by reacting triphenyldichlorophosphorane with 

further triphenylphosphine and hydroxylamine hydrochloride in C2H2Cl4 (Eq. 4 and 5).[174] 

 

Using this synthesis [PPN]Cl is readily obtained in high yield. It is described as an air-

stable, non-hygroscopic salt that is soluble in ethanol, dichloromethane, and the common 

polar aprotic solvents. Thus, it proves to be, in comparison to tetraalkylammonium salts, 

a clear advantage in terms of solubility and preparation of anhydrous salts.[175] Knapp et 

al. used this synthesis to obtain [PPN]Cl and crystallized a solvent free form of [PPN]Cl 

in a CH3CN/Et2O solution with a P N distance of 159.8(2) pm and a P N P angle of 

133.0(3)° (Figure 1-21).[176] 

 

Figure 1-21: Solid state structure of [PPN]Cl. (CCDC: 803187).[176] 

The Cl  anion can be replaced by the desired anion via metathesis with alkali metal salts 

MX (X = Br , I , CN , NO2 , NO3 , N3 , OCN , SCN ).[174,177] However, [PPN]F was 

obtained either by the reaction of [PPN]I with silver fluoride in methanol[177] or when 

[PPN][BF4] is treated with KF in dry methanol.[178] [PPN]+ is like [NMe4]+, [PMe4]+, 

[P(NMe2)4]+, [S(NMe2)3]+ or 1,3,5-hexamethylpiperidinium a weakly coordinating cation 

(WCC). Due to its hydrophobic nature, the bulkiness and good distribution of the positive 

charge, it is an appropriate counter-ion that allows the isolation of very labile, highly basic, 

and nucleophilic anions which readily crystallize as stable salts.[177,179] Examples include the 

heavy metal carbonyl ions [Co(CO)4] [174], [M2(CO)10]2  (M = Cr, Mo, W)[174,180,181] as well as 

mixed-metal derivatives like [FeMn(CO)9] , [MCo(CO)9]  and [MMn(CO)10]  (M = Cr, 
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W)[182] or [M2(CO)10L]  (M = Cr, W; L = H, I, Br, Cl, SCN, CN).[183] As already mentioned 

in previous sections [PPN]+ was used as counterion in the synthesis of polyhalides and 

polyinterhalides. [PPN][Br11]·Br2
[43], [PPN][Cl13][68], and [PPN][Br6Cl7][159] are in each case 

the largest representatives known to date. It is also known for trifluorometyltellurates like 

for example [(TeCF3)2X]  (X = Cl, Br, I) and [(TeCF3)3] . The latter shows a considerably 

higher stability in terms of thermal resistance and decomposition on air compared to its 

[NMe4]+ analog.[184,185] [PPN]Cl was reported as solubility mediator in halogen exchange 

reactions for the synthesis of fluoroarenes. The preparation with potassium fluoride as 

fluorinating agent in DMSO showed nearly 100% yield after 8 hours using mild reaction 

conditions with 150 °C in the case of 4-fluoronitrobenzene. Here, the synthesis of [PPN]Cl 

was carried out as described in equation 6 9.[186] 

 

 

In the first step triphenylphosphine was treated with hexachloroethane in tetrahydrofuran 

followed by a reaction with gaseous ammonia to form triphenylaminophosphonium 

chloride. This purified product was reacted with nBuLi in order to obtain Ph3PNLi that 

formed together with freshly prepared PPh3Cl2 the product [PPN]Cl. Lacour et al. also 

reported the reaction for [PPN]Br using bromine instead of C2Cl6.[186] 

 

Examples containing substituents at the phenyl rings of [PPN]+ are very rare. Only 

[{(4-MePh)3P}2N]Cl with a methyl-group in para-position of the phenyl ring was reported 

in the literature. It was used as counterion for the hexanuclear ruthenium carbidocarbonyl 

cluster [Ru6C(CO)16(μ-Br)] .[187] Studies on the conductivity of [{(4-MePh)3P}2N]Cl 

confirmed the building of larger aggregates in dilute aqueous solutions[188] as known from 

[PPN]Cl.[189] 
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Further representatives of the bisphosphineiminium salts, where at least one phenyl ring 

was replaced by another group are [Ph3PNPPh2E]X (EX = CH3I, Ph2PCl, Ph2PBr, PhPCl2, 

Br2)[190], [Ph3PNPPh2NHR]Cl (R = H, Bn, t-Bu)[191] and [MePh2PNPPh2Me]X (X = I, Cl). 

The latter was first prepared by Schmitz-DuMont and Klieber in 1968 who reacted two 

equivalents of CH3I with Ph2PNHK.[192] 14 years later Ellermann et al. obtained 

[MePh2PNPPh2Me]I in the reaction of lithium-bis(diphenylphosphino)amid with two 

equivalents of MeI (Eq. 10). 

 

In addition, they reported the exchange reaction of iodide by [PF6]  and [BPh4]  and a full 

characterization of all products by NMR and vibrational spectroscopy.[193,194] 

[Ph3PNPPh2E]X (EX = CH3I, Ph2PCl, Ph2PBr, PhPCl2, Br2) was synthesized by direct 

reaction of Ph3PNPPh2 with EX.[190] [Ph3PNPPh2NHR]Cl (R = H, Bn, t-Bu) was reported 

as precursor for strong non-ionic bases which were obtained by deprotonation with sodium 

hydride in DMSO.[191]  

Schwesinger et al. investigated organic phosphazenium cations. Thereof one series showed 

the (R2N)3PNP(NR2)3 bonding motif with NR2 (R = Me; R,R = -(CH2)4-, -(CH2)5-, cis-

CHMe-(CH2)3CHMe-) instead of the phenyl rings. They distinguished the stability of the 

compounds towards aqueous base and the improved anion reactivities which can be 

explained by a very good anion-cation separation due to the cation shape. A further 

advantage was the weak cation-anion interaction based on negligible hydrogen bridges. 

Comparing these compounds, the pyrrolidinium systems are for example more stable than 

the methylated ones while piperidinyl substituents did not improve the stability. 

[(R2N)3PNP(NR2)3]BF4 was synthesized starting from [Cl3PNPCl3]PCl6 that was treated 

with R2NH and NaBF4.[195] Moreover, [(Me2N)3PNP(NMe2)3]F is described as a convenient 

fluoride source among the phosphazenium fluorides and showed in E2 elimination reactions 

an extreme reactivity and selectivity.[196] 

[Cl3PNPCl3]PCl6 was first synthesized and characterized by Becke-Goehring et al. who 

reacted PCl5 with NH4Cl.[197] Further treating with PCl5 and NH4Cl resulted in              

[Cl3P=N PCl2=N PCl3]PCl6, higher chains, or with NH4
+ in rings like [NPCl2]3 or 

[NPCl2]4.[198] 

Interionic C H···A  hydrogen bonds between [PPN]+ and [PPh4]+ cations and anions show 

longer distances for [PPN]+ than for [PPh4]+ and therefore weaker interactions. The reduced 

polarization of the C H system in [PPN]+ cations is due to the better delocalization of the 

positive charge.[199] In order to stabilize less disturbed polyhalides hydrogen bridges can be 
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further avoided by replacing hydrogen atoms of the phenyl substituents with fluorine 

atoms. The influence of such an exchange on the charge distribution is discussed on the 

well-known example of benzene and hexafluorobenzene (Figure 1-22). 

 

Figure 1-22: Electrostatic potential of benzene (left) and hexafluorobenzene (right) in the range from 

0 a.u. (red) to 0.1 a.u. (blue) calculated at the B3LYP-D3/def2-TZVPP level (isosurface 0.01). 

Benzene shows a higher electrostatic potential in the periphery. Thus, for an interaction 

with an anion, the motif C H···A  is preferred over an anion-π interaction. 

Hexafluorobenzene features an opposite behavior, the electrostatic potential of the 

periphery is less positive and the center of the π-system is more electrophilic.[200] These 

positive regions above and below the aromatic ring, however, favor electrostatic anion-π 

interactions, while benzene is able to interact with positively charged groups with its π-

system, as shown in quantum-chemical calculations.[201 205] 
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2 Aims and Objectives 

 

Although the number of known polyhalides and polyinterhalides steadily increases, many 

of the influences that contribute to the formation and structure of this class of compounds 

remains poorly understood. The amount of halogen used in the reaction reflects the formed 

anion. However, the contributions of the solvent and cation influences on polyhalide or 

polyinterhalide formation are largely unanswered. 

The aim of this work is the synthesis and characterization of novel polybromides and 

polyinterhalides based on ICl and IBr. For the polybromides, the effect of a stepwise 

fluorination of the counter cation and the used amount of bromine on the obtained 

compounds is to be investigated. Polybromides of the unfluorinated and perfluorinated 

triarylbromophosphonium cation are already known. The series of compounds are to be 

extended and completed by the use of partially fluorinated triphenylphosphanes. 

Starting from iodine monochloride and iodine monobromide new polyinterhalides are to be 

synthesized. In the case of iodobromides, possible influences on the resulting molecular 

structure in the solid state will be emphasized. For this purpose, the reaction of [NMe4]Br 

with iodine monobromide in an ionic liquid shall be compared to that in organic solvents. 

In addition to X-ray structure determination and Raman spectroscopy, supported by 

quantum-chemical calculations, the obtained iodobromides are to be investigated by 

conductivity measurements and thermogravimetric analysis.  

Until now, only cobaltocenium cation based trihalides were known. The suitability of 

cobaltocenium as a counterion for larger polybromides and polyinterhalides is to be tested 

in reactions with bromine, iodine monochloride and -monobromide. 

Due to its weakly coordinating properties and large volume, the bis(triphenyl-

phosphoranylidene)iminium cation is particularly suitable for the synthesis of large 

polyhalides and polyinterhalides. Appropriate synthesis conditions for novel [PPN]+ salts 

are to be developed. Of interest here are halogen substituents on the phenyl rings, especially 

fluorine atoms and their influence on the weakly coordinating properties of the new cations. 
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3 Publications 
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Figure 3-2. Graphical abstract. 
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Figure 3-3: Graphical abstract. 
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4 Further Investigations on Polyhalides and Polyinterhalides 

Parts of the experimental work described in this chapter include results from the bachelor 

theses of Maxim Gawrilow[1] and Patrick Voßnacker[2] carried out under my supervision. 

 

4.1 Investigation of Polyhalides and Polyinterhalides of the 

Cobaltocenium Cation 

Previous work has shown that for the synthesis of large polyhalides especially ammo-    

nium[3 7], phosphonium[8,9] and other bulky cations[10,11], for example [PPN]+[12,13] or 

[Fe(phen)3]2+[14] are suitable. We wanted to study the cobaltocenium cation as an 

alternative counterion. With 18 valence electrons, it should be stable towards the oxidation 

of bromine or interhalogens. Substituents at the cyclopentadienyl rings result in a further 

increased size and stability.[15] Until now only cobaltocenium triiodide and tribromide are 

known.[16,17] 

When cobaltocenium bromide was treated with an excess of neat bromine crystals of 

[CoCp2][Br11] were obtained (Figure 4-1). The compound crystallizes in the orthorhombic 

space group Pnma. 

 

Figure 4-1: Solid state structure of [CoCp2][Br11]. Ellipsoids are set at the 50% probability level. Selected 

bond lengths (pm) and angles (°): Br1 Br2: 278.4(2), Br2 Br3: 238.9(2), Br1 Br4: 303.6(1), Br4 Br5: 

231.7(1), Br1 Br6: 304.0(1), Br6 Br7: 232.9(1); Br4 Br1 Br1 Br6: 82.4(1), Br2

Br1 Br4: 81.6(1), Br2 Br1 Br6: 88.0(1). 

The [Br11]  anion is built of a central Br  (Br1) that acts as Lewis base and donates electron 

density in the LUMOs of the five coordinating bromine molecules resulting in an elongation 

of the Br Br bond length in comparison to solid elemental bromine (228.1 pm[18]). The 

anion shows a distorted square pyramidal structure. So far, an undecabromide was 

described only once in the structure of [PPN][Br11·Br2][12]. The [Br11·Br2]  anion features 
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an additional embedded Br2 molecule next to the also rather square pyramidal [Br11]  anion, 

that does not interact with the central Br , but the closest intermolecular distance to a 

terminal Br2 unit still lies below twice the van der Waals radius of bromine (370 pm). 

Considering the value of 370 pm there are further interactions between the bromine atoms 

of [PPN][Br11·Br2], that result in a chain like structure. Interactions below a distance of 

370 pm are also found between the [Br11]  anions in [CoCp2][Br11] (Figure 4-2, left). 

 

Figure 4-2: Three dimensional arrangement of [Br11]  anions in the solid state structure of [CoCp2][Br11]. 

The central Br  (Br1) is yellow colored. Ellipsoids are set at the 50% probability level. Left: Selected 

bond lengths (pm) between the distorted pyramids: Br3 Br5

320.2(1). Right: Excerpt from the [Br11]  network along b-axis. 

The [Br11]  anions are linked via the top of the distorted pyramid (Br3) to the bottom 

center (Br1) of the next one, resulting in long zig-zag chains along the c-axis (Figure 4-2, 

right). These are associated in pairs where the pyramids show the same orientation      

(Figure 4-2, left). The pyramids are only slightly tilted (blue colored). The adjacent pair 

of chains are upside down oriented (green colored). Neighboring pairs of mutually twisted 

pyramids are at the same height and linked together by their bases and tops. Adjacent 

chains featuring pyramids of the same orientation are shifted along the c-axis. Therefore, 

the interchain interactions occur with two successive pyramids of the neighboring chain. 

Furthermore, the reaction of cobaltocenium bromide with different amounts of iodine 

monobromide ratios (1:3, 1:5, 1:7, 1:9) was studied. For the 1:3 and 1:7 approach single 

crystals were formed and examined by X-ray crystallography. They show in both cases the 

same compound with the stoichiometric formula [CoCp2]2[I3Br4]2·CH2Cl2 in the monoclinic 

space group Cc (Figure 4-3). [I3Br4]  was already described. In a trigonal pyramidal as well 
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as a trigonal planar structure a central Br  is coordinated by three IBr molecules.[19,20] In 

contrast to both literature known anions the structure obtained here is more reminiscent 

of two interlaced syn-[I4Br5]  anions, which were presented in chapter 3.2. 

 

Figure 4-3: Solid state structure of [CoCp2]2[I3Br4]2·CH2Cl2. Ellipsoids are set at the 50% probability 

level. The IBr units I5 I7 and I6 I8 are disordered (major domains (85.5%): I5, I6, Br7, Br8; minor 

I1: 272.9(1), I1

Br2: 271.6(1), Br1 I2: 295.6(1), I2 Br3: 257.6(1), Br4 I3: 271.9(1), I3 Br5: 270.5(1), Br4 I4: 292.6(1), 

I4 Br6: 258.3(1), Br2 I5: 295.2(2), I5 Br7: 256.7(2), Br5 I6: 296.9(2), I6 Br8: 256.1(2), Br2

338.1(2 2 Br6: 304.3(7),  Br5 Br3: 303.5(7), 

Br6 Br7: 351.0(2), Br3 Br8: 350.3(2);  I1 Br1 I2: 91.9(1), Br1 I1 Br2: 177.4(1), Br1 I2 Br3: 177.5(1), 

I3 Br4 I4: 92.6(1), Br4 I3 Br5: 176.7(1), Br4 I4 Br6: 178.7(1), I1 Br2 I5: 100.6(1), I3 Br5 I6: 

93.6(1), I2 Br3 ), I4 Br6  

The [I3Br4]  anions are built of a V-shaped [I2Br3]  and a further IBr molecule that interacts 

via halogen bonding with one of the terminal bromine atoms. Due to the disorder of the 

terminal connected IBr molecule interactions between two opposing [I3Br4]  anions occur. 

The IBr of the minor domain, which is turned, interacts with the still free terminal bromine 

atom resulting in a syn-[I4Br5] , which indeed only has the occupancy of an [I3Br4] . To 

have a closer look on the remaining parts of the anion we investigated the bonding situation 

of the V-shaped [I2Br3] . Salts of [I2Br3]  anions with [BPH]+ -bipyridylium)[21] 

and [NMe4]+ (chapter 3.2) are known. They exist of a central Br  coordinated by two IBr 

molecules via the more electropositive iodine atoms with I Br distances to the central Br  

of 285.7(2) 295.9(2) pm and outer IBr distances of 255.9(2) 260.7(2) pm. The [I2Br3]  in 

[CoCp2]2[I3Br4]2·CH2Cl2 shows instead slightly asymmetric [IBr2]  anions (Br1 I1 Br2: 

272.9(1) pm, 271.6(1) pm; Br4 I3 Br5: 271.9(1) pm, 270.5(1) pm) that coordinate an IBr 

molecule, respectively. The IBr molecules of the major domain connect on the [IBr2]  side 

of the V-shaped [I2Br3]  (Br2 I5: 295.2(2) pm, Br5 I6: 296.9(2) pm). They show shorter 

distances than the IBr units of the minor domain that interact with the other side (Br3

2Br3]  anion in syn-[NMe4][I4Br5] 
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(see chapter 3.2) also shows the known bonding situation where the angles only slightly 

deviate by < 8°. 

For a reaction with iodine monochloride [CoCp2]Cl was synthesized based on the procedure 

described by Hartley and Ware.[22] When the salt was treated with seven equivalents of ICl 

crystals of [CoCp2][I2Cl3] were isolated. [CoCp2][I2Cl3] crystallizes in the monoclinic space 

group P21. 

 

Figure 4-4: Unit cell of the solid state structure of [CoCp2][I2Cl3]. Ellipsoids are set at the 50% 

probability level. Selected bond lengths (pm) and angles (°): Cl1 I1: 271.7(4), I1 Cl2: 243.5(4), Cl1 I2: 

268.5(3), I2 Cl3: 245.3(3), Cl4 I3: 271.0(2), I3 Cl5: 243.1(1), Cl4 I4: 271.1(3), I4 Cl6: 244.4(3); I1

Cl1 I2: 130.8(2), Cl1 I1 Cl2: 175.6(2) , Cl1 I2 Cl3: 174.3(2), I3 Cl4 I4: 131.7(2), Cl4 I3 Cl5: 174.7(1), 

Cl4 I4 Cl6: 174.9(2). 

Figure 4-4 shows the unit cell of [CoCp2][I2Cl3]. The two different [I2Cl3]  anions are built 

of a central Cl  coordinated by two ICl molecules via the iodine atoms. The V-shaped 

structures show I Cl I angles of 130.8(2) (I1 Cl1 I2) and 131.7(2)° (I3 Cl4 I4), the Cl

I Cl bonds are nearly linear with angles between 174.3(2) and 175.6(2)°. The anions seemed 

to build chains along the c-axis, but the distances of the adjacent chlorine atoms are with 

378.3(4) (Cl3

Waals radius of chlorine (350 pm). So far, only two crystal structures of an [I2Cl3]  anion 

are known. The central I Cl I angles in [BHP][I2Cl3] with 101.5(1)° and in 

[BnMe3N]2[I2Cl3][ICl4] with 99.5(1)° are clearly smaller than in the obtained structure of 

[CoCp2][I2Cl3]. Furthermore, both groups reported C2v symmetric [I2Cl3]  anions with inner 

I Cl bond lengths of 271.8(2) and 269.8(1) pm and an outer bond lengths of 241.7(2) and 
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243.0(1) pm, respectively.[23,24] These values only show a small variance to the I Cl distances 

in [CoCp2][I2Cl3] which lie between 268.5(3)  271.7(4) pm and 243.1(1)  245.3(3) pm. 

In addition to single crystal X-ray analysis both interhalides and the polybromide of the 

cobaltocenium cation were investigated by vibrational spectroscopy. Especially Raman 

spectra of the stretching region of the investigated poly- and interhalide anions are 

revealing. Beginning with [CoCp2][Br11] the room temperature Raman spectrum as well as 

the spectrum at 150 °C are shown in Figure 4-5 in comparison to the Raman spectrum of 

[PPN][Br11·Br2] at 196 °C[12]. 

 

Figure 4-5: Raman spectra of [CoCp2][Br11] at 25 °C (red line) and 150 °C (blue line) in comparison 

to the Raman spectrum of [PPN][Br11·Br2] at 196 °C[12]. 

The room temperature Raman spectrum of [CoCp2][Br11] shows a weak band at 313 cm 1           

( 150 °C: 314 (w), 295 (sh) cm 1), two medium bands at 286 and 274 cm 1 ( 150 °C: 288 (s) 

and 278 (vs) cm 1) and a very strong band at 251 cm 1. The latter reveals a large 

temperature-dependent shift of 23 cm 1 ( 150°C: 228 (s) cm 1). In the case of 

[PPN][Br11·Br2] the Raman spectrum features bands at 286, 269 and 264 cm 1 for [Br11]  

and 297 cm 1 for the additional embedded Br2.[12] Also the band at 313 cm 1 at 25 °C and 

the bands at 314 and 295 cm 1 obtained at lower temperatures can be assigned to non-

coordinated or very weakly coordinated bromine in the solid state, respectively (gaseous 

bromine: 325 cm 1[18]). The [Br11]  anion of the [PPN]+ salt shows bands between 286 and 

264 cm 1 while for the [CoCp2]+ salts analog bands between 288 and 278 cm 1 are obtained 

at lower temperatures. The observed differences in the band positions for the [Br11]  anions 
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can in part be explained by different Br Br bond lengths. While in [PPN][Br11·Br2] the 

distances of the central Br  and the coordinating Br2 units lie between 232.0(1) and 

233.5(1) pm[12] [CoCp2][Br11] exhibits slightly shorter equatorial bond lengths of 231.7(1) 

and 232.9(1) pm. [CoCp2][Br11] also shows one strongly polarized Br Br unit with a longer 

bond distance of 238.9(2) pm that reveals a large shift to smaller wavenumbers at the 

transition from solution to solid. This is due to interactions with adjacent pyramids 

followed by an elongation of the axial Br Br bond length. In addition, between 400 and 

290 cm 1 the cobaltocenium cation shows bands at 395, 383, 328, and 295 cm 1. The reaction 

series of cobaltocenium bromide with elemental bromine from 1:1.3 to 1:120 is described 

elsewhere.[1] Already the use of a ratio > 1:3.8 as well as the direct reaction of cobaltocene 

with an excess of elemental bromine lead to spectra similar to those shown in Figure 4-5 

for [CoCp2][Br11]. 

Crystals obtained by the reaction of [CoCp2]Br with different amounts of IBr were 

investigated by Raman microscope measurements. Regardless of the amount of IBr used, 

they all show the same bands. Figure 4-6 presents theses spectra in comparison to that of 

syn-[NMe4][I4Br5], see chapter 3.2.  

 

Figure 4-6: Raman spectra (Raman microscope) of [CoCp2]Br + x IBr (x = 3, 5, 7, 9) or rather 

[CoCp2][I3Br4] (disordered, see above) in comparison to the spectrum (Raman microscope) of 

[NMe4][I4Br5] (see chapter 3.2). 

[CoCp2][I3Br4] shows in Raman microscope measurements of crystals, vibrational bands at 

211 (s), 189 (w), 163 (m) cm 1, and two very weak ones at 120 and 93 cm 1. In comparison 



Further Investigations on Polyhalides and Polyinterhalides 

  

127 

 

to syn-[NMe4][I4Br5] with bands at 228 (s), 191 (m), 177 (m), and 145 (w) cm 1 the strong 

to medium bands are shifted to lower frequencies due to a different bonding situation. The 

band at 163 cm 1 is assigned to both central [IBr2]  anions (Br1 I1 Br2 and Br4 I3 Br5) 

that are almost symmetric with bond lengths between 270.5(1) and 272.9(1) pm. This value 

is comparable to the symmetric I Br stretching vibration of [NMe4][IBr2] with 160 cm 1.[25] 

In the case of an asymmetric [IBr2]  anion, like in [NBu4][IBr2] two bands at 162 and           

176 (w) cm 1 for the symmetric and asymmetric stretching mode in CH2Cl2 solution are 

obtained.[26] In comparison to this, the band at 189 cm 1 in Figure 4-6 could probably be 

attributed to residual iodine (compare the following chapters). The strong and slightly 

asymmetric broad band at 211 cm 1 is associated with the IBr units that are coordinated 

to the central [IBr2]  anion (I2 Br3, I4 Br6, I5 Br7, I6

bond lengths between 256.1(2) and 259.5(14) pm they are shifted to lower wavenumbers 

compared to the 228 cm 1 obtained for the IBr units, that are involved in the V-shaped 

[I2Br3]  anion of syn-[NMe4][I4Br5] with bond lengths of 253.7(1) and 254.5(1) pm. The 

distances between the building blocks are larger than 292.6(1) pm. The very weak bands 

at 120 and 93 cm 1 could tentatively be assigned to bending modes of the anion. 

Solid [CoCp2][I2Cl3] was investigated by FIR and Raman spectroscopy. Whereas Yagi and 

Popov[27,28] described the IR spectrum of [NMe4][ICl2∙ICl] with bands at 312.6 and    

294.5 cm 1 to the best of our knowledge no Raman spectrum of an [I2Cl3]  anion is known 

in literature. Therefore, we compare in Figure 4-7 both vibrational spectra of [CoCp2][I2Cl3] 

with calculated spectra of the [I2Cl3]  anion at the SCS-MP2/def-SV(P) level. The far-IR 

spectrum with a weak band at 318 and a strong, asymmetric band around 291 cm 1 is 

similar to that described in the literature for [NMe4][ICl2∙ICl].[27,28] The additional very 

strong calculated band at 204 cm 1, attributed to a bond deformation, is not well observed 

in the experimental spectrum. The experimental Raman spectrum shows bands at 386 (w), 

324 (m), 306 (s), 191 (sh), 182 (vs), 95 (m), and 72 (m) cm 1. Bands at 386 and 324 cm 1 

were already recorded in the spectrum of the educt [CoCp2]Cl. The latter is likely 

superimposed by the symmetric stretching vibration. The antisymmetric I Cl stretching 

vibration appeared at 306 cm 1, which fit well with the calculated value at 304 cm 1. The 

bands at 191 and 182 cm 1 are attributed to iodine. Both band positions and intensities are 

comparable to the stretching vibrations of crystalline iodine at 188 and 180 cm 1.[29] 
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Figure 4-7: Experimental Raman (bottom) and FIR spectrum (top) of [CoCp2][I2Cl3] (red) in 

comparison to calculated spectra for the [I2Cl3]  anion at SCS-MP2/def-SV(P) level (black, dashed). 

Further reactions of the cobaltocenium salts, especially with substituted cobaltocenium 

cations are described elsewhere.[1,30] 

 

4.2 Iodobromide Synthesized from Tetraethylammonium Bromide in 

an Ionic Liquid 

As already presented, tetramethylammonium tetraiodopentabromide [NMe4][I4Br5] 

crystallizes in two different structures depending on the solvent used. In the case of the 

ionic liquid [HMIM]Br the anion is built of a V-shaped [I2Br3]  and two further IBr 

molecules connecting the terminal bromine atoms in a syn-orientation due to halogen-

halogen interactions. In contrast to the syn structure anti-[NMe4][I4Br5] was formed in the 

organic solvent dichloromethane. Here, the two IBr units coordinate from opposite 

directions on the central [I2Br3]  (see chapter 3.2). 

To investigate the influence of the alkyl chain length of the cation on the forming anion 

the experiments in [HMIM]Br were repeated treating [NEt4]Br with 3 and 5 equivalents of 

IBr, respectively. In both approaches crystals of the stoichiometric formula [NEt4][I5Br2] 

were obtained (Figure 4-8).  
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Figure 4-8: Solid state structure of the connected anions in [NEt4][I5Br2]. Ellipsoids are set at the 50% 

probability level. Selected bond lengths (pm) and angles (°): Br1 I1: 273.2(2), Br1 I2: 331.5(2), I2

268.5(2); Br1 I1 Br1 I2: 82.9(1), I2 Br1 I2  

The crystal structure shows the orthorhombic space group Cmce. [I5Br2]  consists of an 

[IBr2]  anion and two iodine molecules. The bromine atoms of [IBr2]  are connected with 

each other over I2 molecules to form curled chains. This Br I I Br I I  chains are linked 

via the [IBr2]  iodine atoms with those in front and behind to build double layers. The 

[IBr2]  anions are symmetric and show a Br1 I1 bond length of 273.2(2) pm which is 

comparable to those in [NEt4][IBr2] (274.2(2) pm)[31]. The bond length of the I2 molecules 

(268.5(2) pm) is only slightly elongated compared to molecular iodine (266 pm) while the 

Br1 I2 distance (331.5(2) pm) lies underneath the sum of the van der Waals radii of IBr 

(383 pm). 

An interhalide anion with the same formula [I5Br2]  is already known for the substance 

[BPH][I5Br2 -bipyridylium).[21] The unit cells of both compounds are pictured 

in Figure 4-9. 

 

Figure 4-9: Left: Unit cell of the solid state structure of [NEt4][I5Br2] along c-axis. The [NEt4]+ cations 

are disordered. Right: Unit cell of the solid state structure of [BPH][I5Br2] along a-axis.[21] In both 

structures the ellipsoids are drawn at 50% probability and the hydrogen atoms are omitted for clarity. 



Further Investigations on Polyhalides and Polyinterhalides 

 

130 

 

[BHP][I5Br2] is also build of an [IBr2]  anion and two iodine molecules. The [IBr2]  anion 

shows two different bond lengths (I1 Br1: 267.3(9) pm, I1 Br2: 277(1) pm) and the 

unequal iodine molecules (I2 I3: 270.3(8) pm, I4

2 pm compared to [NEt4][I5Br2]. Furthermore, they are connected in a different way. While 

one of the bromine atoms (Br1) also forms Br I I Br I I  chains, the other bromine atom 

(Br2) of [IBr2]  is connected via the second I2 molecule (I2 I3) to Br1. Hence, curled netlike 

layers with a distance of 435.1(2) pm are formed. The [BHP]+ cations lie in the cavities 

between the polyinterhalides.[21] 

In [NEt4][I5Br2] (Figure 4-9, left) the cations are in the middle of the double layers, that 

are parallel to the a-c-plane. The positions of the [NEt4]+ nitrogen atoms and the [IBr2]  

iodine atoms are reminiscent of the NaCl structure. The double layers have a high of 

575 pm, the distance to the next one is only 176 pm. However, since the double layers show 

ABAB stacking, the shortest atom to atom distance is 571.1(1) pm (I2 I2next layer). 

A layered structure, even if less pronounced, can also be found in syn-[NMe4][I4Br5] (see 

chapter 3.2) along the a-axis. The distance is with 244 pm clearly larger than in 

[NEt4][I5Br2]. Furthermore, the [NMe4]+ cations extend into the interspace. But in contrast 

to both [NMe4][I4Br5] compounds the ratio of iodine to bromine in [NEt4][I5Br2] does not 

correspond to that of the starting materials used. This fact can be explained by halogen 

exchange reactions. Furthermore, at room temperature 8% of iodine monobromide are 

dissociated into the elements.[32] For the synthesis of [BPH][I5Br2] the [BPH]Br, IBr, and I2 

were used in a ratio of 5:5:2.[21] Again, the product contains a larger percentage of iodine 

than used. 

For the Raman microscope measurement crystals of [NEt4][I5Br2] have been used, see Figure 

4-10. The Raman spectrum shows a strong band at 191 cm 1 and two medium bands at 

224 and 160 cm 1. The latter is assigned to the symmetric [IBr2]  anion in the network. The 

I Br bond is with 273.2(2) pm only slightly elongated in comparison to the above described 

[IBr2]  units in [CoCp2]2[I3Br4]2·CH2Cl2 with bond lengths of 270.5(1)  272.9(1) pm that 

show a band at 163 cm 1 in the Raman spectrum. The band obtained at 191 cm 1 is in the 

frequency range for crystalline iodine with 180 and 188 cm 1.[29] Presumably, the band at 

224 cm 1 belongs to some remaining IBr. Solid IBr shows a broad band between 200 and 

250 cm 1 with a maximum at 218 cm 1.[33,34] 
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Figure 4-10: Raman microscope measurement of [NEt4][I5Br2]. 

Further details, such as Raman spectra of the reaction mixtures and further reactions of 

ICl and IBr in ionic liquids are described elsewhere.[2] 

 

4.3 Investigation of [PPN-3F]Cl in the Synthesis of a Polyhalide and 

a Polyinterhalide 

In first attempts partially fluorinated bis(triarylphosphoranylidene)iminium cations    

[PPN-3F]+ were used for the preparation of polyhalides and polyinterhalides. However, the 

reaction of [PPN-3F]Cl with an excess of chlorine (112 eq.) and some drops of acetonitrile 

resulted in the formation of the side product 2,4,6-tris(trichlorometyl)-1,3,5 triazine and 

the evolution of HCl. The product was characterized by Raman spectra of the solid[35] as 

well as single crystal X-ray structure determination. 31P and 19F NMR spectra show that 

[PPN-3F]+ does not react in this mixture. Furthermore, by repeating the reaction without 

[PPN-3F]+ or after its replacement by [PPN]+ 2,4,6-tris(trichlorometyl)-1,3,5 triazine was 

formed again. Due to the fact that the reaction did not occur in the dark the chlorination 

of CH3CN is photochemically induced. Further work of K. Sonnenberg confirmed this result 

for the preparation of [PPN][Cl13] where the chlorinated triazine derivative was obtained 

after a few days, too.[13] 
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If [PPN-3F]Cl was treated with iodine monochloride crystals were obtained from an 

acetonitrile solution with the formula [{(C6H2F3)3P}2N]2[I4Cl4]∙4 CH3CN. The compound 

crystallizes in the monoclinic space group P21/c. The discrete polyinterhalide can be 

described by two slightly unsymmetrical [ICl2]  anions (Cl1 I1: 253.5(1) pm; I1 Cl2: 

255.5(2) pm) that are linked by an iodine molecule to a Z-shaped polyinterhalide, see 

Figure 4-11. This I2 shows a bond length of 271.6(1) pm, that is comparable with crystalline 

iodine (271.5(6) pm).[36] The distance to the chlorine atom of each [ICl2]  anion lies with 

311.2(2) pm clearly below the sum of the van der Waals radii of iodine and chlorine 

(373 pm). 

 

Figure 4-11: Left: Molecular structure of 2[ICl2] ∙I2 in [PPN-3F]2[I4Cl4]∙4 CH3CN. Ellipsoids are shown 

at the 50% probability level. Selected bond lengths (pm) and angles (°): Cl1 I1: 253.5(1), I1 Cl2: 

255.5(2), Cl2 I2: 311.2(2) pm, I2 I1 Cl2: 177.5(1), I1 Cl2 I2: 92.4(1), Cl2 I2

166.1(1). Right: Cutout of the solid state structure of [PPN-3F]2[I4Cl4]∙4 CH3CN. 

Z-shaped structures are already known from other polyhalide dianions. [I8]2  was first 

mentioned in literature in 1954, [Br8]2  in 1997.[37,38] [Cl8]2  was recently reported to be 

prepared in the ionic liquid [BMP][OTf] (N-butyl-N-methylpyrrolidinium triflate) and 

shows a more linear structure.[39] A mixed octahalide dianion is known for [I2Br6]2  in 

[Cu(dafone)3][IBr4][I2Br6]0.5∙CH3CN (dafone = 4,5-diazafluoren-9-one). For this compound, 

Rajasekharan et al. added iodine and an excess of bromine to a mixture of CuBr2 and 

dafone in acetonitrile.[40] The structure motif of the here prepared [I4Cl4]2  is compared to 

[I2Br6]2 , [Cl8]2  and one of the numerous known [I8]2  dianions in Figure 4-12.[39 41] 
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Figure 4-12: Comparison of the octahalide anions [I2Br6]2 [40] (CCDC: 1051676), [I8]2 [41] (CSD: 58639), 

[I4Cl4]2  and [Cl8]2 [39] (CCDC: 1456573). 

An overview of some octaiodides is given by Svensson and Kloo.[10] Whereas the [I8]2  shown 

in Figure 4-12 has an elongated bond length I4 I3 I4 angle of 98.9(1)° the 

corresponding values obtained in [Cu(phen)2I]2[I8][10,42] are with 272.3 pm and 95.7° more 

closer to those obtained in our [I4Cl4]2 : 271.6(1) pm for I2 Cl2 I2 angle of 

92.4(1)°. The Br7 2Br6]2  and the Cl4

(204.9(1) pm) in [Cl8]2  are elongated in comparison to, respectively, crystalline bromine 

(229.4(2) pm at 80 K) and chlorine (198.5(2) pm at 100 K).[43] This again illustrates weak 

if any interactions between the two [ICl2]  units and the bridging I2. Furthermore, the 

[X2Y]  anions as part of the octainterhalides show nearly equal bond lengths (X Y 

difference: 2 4 pm) while the [X3]  units are clearly asymmetric (X X difference: 18

42 pm). At this point a reference to further Z-shaped disordered interhalides should be 

made. Among them is [Sr(B15K5)2][I3.77Cl4.23] (B15K5 = benzo-15-crown-5) which consists like 

the [I4Cl4]2  dianion described here of two [ICl2]  units that are connected by a dihalogen 

with a statistic occupancy of 12% chlorine and 88% iodine.[44] 

Raman microscope measurements of a single crystal of [PPN-3F]2[I4Cl4]∙4 CH3CN show two 

strong bands at 268 and 195 cm 1 for the [ICl2]  and I2 units. With values between 254 and 

278 cm 1 for [ICl2] , depending on the used cation,[45 47] 207 cm 1 for iodine (in CHCl3 

solution),[48] and 168 cm 1 for the central I2 molecule in [Mn(Ur)6][I8],[49] respectively, the 

obtained bands are in good agreement with the literature. For further bands due to the           

[PPN-3F]+ cation, see Figure 4-13. 
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Figure 4-13: Raman microscope spectra (single crystal, 0 °C) of [PPN-3F]2[I4Cl4]∙4 CH3CN (black) with 

marked bands at 286 (ICl2 ) and 195 cm 1 (I2) in comparison  to [PPN-3F]Cl∙3 CH3CN. Bands of CH3CN 

are indicated by an asterisk. 

Although iodine monochloride is only dissociated to 0.4% at room temperature[32] the 

obtained compound contains an iodine molecule. The presence of I2 is confirmed by a very 

weak band at 198 cm 1 (molten I2: 194 cm 1)[50] obtained in the Raman spectrum of the 

starting material ICl at room temperature. 

 

4.4 Reaction of [PPh4]Cl with ICl 

In an earlier work the reaction of [PPh4]Cl with ICl (ratio 1:3) was described to led between      

30 and 40 °C to crystals of [PPh4][I3Cl4], that show a distorted trigonal pyramidal 

structure.[51] In order to learn more about the system of [PPh4]Cl and ICl a reaction series 

was started with ratios from 1:1 to 1:7. Like in the synthesis of [PPh4][I3Cl4] the volatile 

materials were removed under reduced pressure while cooling. Figure 4-14 shows the 

compounds prepared for Raman measurements before they were resolved in 

dichloromethane for crystallization experiments again. The 1:3 mixture was additionally 

performed without using CH2Cl2 to solve the educts. 
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Figure 4-14: Reactions of [PPh4]Cl with ICl in the ratios 1:1, 1:2, 1:3, 1:3 (prepared without the solvent 

CH2Cl2), 1:4 and 1:5. 

But in contrast to previous results the reaction of [PPh4]Cl with 3 equivalents of ICl shows 

at 30 °C crystals of [PPh4]2[I6Cl6] (Figure 4-15). The compound crystallizes in the triclinic 

space group P̅ The [I6Cl6]2  anions consist of two V-shaped [I2Cl3]  anions bridged by an 

I2 molecule over the central Cl . The bridging iodine molecule is disordered and therefore 

substituted by 28.5% chlorine. 

 

Figure 4-15: Solid state structure of [PPh4]2[I6Cl6]. The central bridging position occupied with an I2 

unit is disordered, being substituted with 28.5% Cl2. Ellipsoids are set at the 50% probability level. 

Selected bond lengths (pm) and angles (°): Cl1 I1: 263.5(1), I1 Cl2: 247.0(1), Cl1 I2: 281.9(1), I2 Cl3: 

238.8(1), Cl1 I3: 306.5(2), I3 Cl4: 345.9(7), Cl4 I1 Cl2: 176.4(1), 

Cl1 I2 Cl3: 177.0(1), I1 Cl1 I2: 125.7(1), Cl1 I3 Cl1 I3: 134.1(1), I2 Cl1 I3: 93.4(1), 

Cl1 Cl4 Cl1 Cl4: 136.1(2), I2 Cl1 Cl4: 90.0(2). 
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Repeating this reaction with educts from alternative suppliers ([PPh4]Cl: Sigma-Aldrich 

instead of Riedel-de Haën, ICl: Alfa Aesar instead of Merck) crystals of [PPh4][I2Cl3] were 

obtained (Figure 4-16).  

 

Figure 4-16: Solid state structure of [PPh4][I2Cl3]. Ellipsoids are set at the 50% probability level. 

Selected bond lengths (pm) and angles (°): Cl1 I1: 270.5(1), I1 Cl2: 243.0(1), Cl1 I2: 272.1(1), I2 Cl3: 

243.1(1); Cl1 I1 Cl2: 174.9(1), Cl1 I2 Cl3: 177.1(1), I1 Cl1 I2: 97.5(1). 

[PPh4][I2Cl3] crystallizes in the monoclinic space group P21/c. In contrast to the literature 

known [BHP][I2Cl3] with an I Cl I angle of 101.5(1)°[23], [BnMe3N]2[I2Cl3][ICl4] with 

99.5(1)°[24] and the above described [CoCp2][I2Cl3] with 130.8(2) or 131.7(2)° [PPh4][I2Cl3] 

shows the smallest I Cl I angle with 97.5(1)°. The bond lengths with 243.0(1) (I1 Cl2) 

and 243.1(1) pm (I2 Cl3) for the outer I Cl units and 270.5(1) (Cl1 I1) and 272.1(1) pm 

(Cl1 I2) to the central Cl  are in the same range as those in the other three [I2Cl3]  anions: 

241.7(2)  245.3(3) pm, and 268.5(3)  271.8(2) pm. 

In a further 1:3 approach [PPh4]Cl (Sigma-Aldrich) was purified from contaminations of 

[PPh4]Br before treated with 3 equivalents of ICl (Merck). The orange solid crystallized at 

room temperature before it was resolved in dichloromethane again. The sample shows two 

different types of crystals. Orange crystals of [PPh4]2[I6Cl6] (disordered with [PPh4]2[I4Cl8]) 

were found next to colorless crystals of [PPh4][ICl2]. The latter are already described by 

Minkwitz and Berkei.[52] 

Since the obtained crystals always show a smaller ratio of [PPh4]Cl and ICl than the used 

1:3 we tested a 1:5 ratio in order to get larger iodochlorides. In this reaction mixture 

crystals of [PPh4][I3Cl4] were obtained at 30 °C. But in contrast to the known distorted 

trigonal pyramidal structure[51] the [I3Cl4]  anions show a chain-like structure (Figure 4-17). 
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Figure 4-17: [I3Cl4]  in the solid state structure of [PPh4][I3Cl4]. Ellipsoids are set at the 50% probability 

level. Selected bond lengths (pm) and angles (°): Cl1 I1: 240.3(2), I1 Cl2: 278.9(2), Cl2 I2: 258.2(2), 

I2 Cl3: 253.0(2), Cl3 I3: 288.1(2), I3 Cl4: 249.0(2); Cl1 I1 Cl2: 179.1(1), I1 Cl2 I2: 100.8(1), Cl2 I2

Cl3: 178.2(1), I2 Cl3 I3: 121.4(1), Cl3 I3 Cl4: 177.6(1). 

In quantum-chemical calculations at the SCS-MP2/def2-TZVPP level the chain-like 

structure in C2h symmetry is 5.1 kJ·mol 1 energetically less favorable than the C3v 

structure.[51] This small energy difference can be overcome by crystal packing effects. In 

summary, it becomes apparent that in addition to the used Cl  : ICl ratio the crystallization 

conditions may play an important role for the formation of the here shown samples, too.  

[PPh4][I3Cl4] crystallizes in the tetragonal space group P̅  It is built of a central asymmetric 

[ICl2]  anion with bond lengths of 258.2(2) (Cl2 I2) and 253.0(2) pm (I2 Cl3), that is 

coordinated by two ICl molecules. The [PPh4]+ cations and [I3Cl4]  anions are both stacked 

along the c-axis (Figure 4-18). 

 

Figure 4-18: Unit cell of the solid state structure of [PPh4][I3Cl4] along c-axis. Ellipsoids are set at the 

50% probability level. Both anions and cations are stacked along the c-axis. 
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Figures 4-19, 4-20 and 4-21 show the Raman spectra of the described reaction approaches 

and crystals. The Raman microscope measurements of [PPh4][ICl2] and [PPh4]2[I6Cl6] 

(disordered with [PPh4]2[I4Cl8]) (Figure 4-19) show a strong band at 258 cm 1 in the yellow 

spectrum (bottom trace) that decreases with increasing orange color of the crystals (bright 

orange and orange spectrum at the middle and top traces). This band is assigned to the 

[ICl2]  anion which is confirmed by literature spectra of [ICl2]  with bands at 254 and 

278 cm 1[45 47] or the band at 268 cm 1 for the aforementioned [ICl2]  as part of                 

[PPN-3F]2[I4Cl4]∙4 CH3CN (see 4.3). The yellow color can be explained by overlaying the 

colorless [PPh4][ICl2] and the orange [PPh4]2[I6Cl6] ([PPh4]2[I4Cl8]) crystals (see bottom 

trace). Therefore, the weak and medium strong bands in the yellow spectrum (bottom 

trace) belong to the [I6Cl6]2  anion.  

 

 

Figure 4-19: Raman microscope measurement of the crystals [PPh4][ICl2] and [PPh4][I6Cl6] (disordered 

with [PPh4][I4Cl8]). The color of the traces roughly match with the color of the measured crystals (top: 

yellow, middle: light orange, bottom: orange colored crystals). 

The bright orange spectrum in the middle trace of Figure 4-19 also shows superimposed 

frequencies of both crystal types. In the orange spectrum in the top trace of Figure 4-19 

the band at 258 cm 1 is completely disappeared. It can be assumed that this is probably 

the pure spectrum of [PPh4]2[I6Cl6] ([PPh4]2[I4Cl8]). However, this is a tentative assignment, 

any impurities cannot be ruled out. The band at 199 (vs) cm 1 can be assigned to the 

bridging iodine molecule (I3
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at 195 cm 1 of the bridging I2 in [PPN-3F]2[I4Cl4]∙4 CH3CN (see 4.3) that shows a shorter 

bond length (I2

in the spectrum (stretching frequencies for crystalline Cl2 at 168 K: 526.5  542.3 cm 1[29,53]). 

Beside the band at 199cm 1 the orange spectrum shows bands at 344 (s), 294 (sh), 286 (m), 

277 (sh), 154 (m) and a band at 105 (w) cm 1 with a shoulder at lower wavenumbers. In 

comparison to the above described [CoCp2][I2Cl3] with stretching frequencies at 324 and 

306 cm 1 (I1 Cl2: 243.5(4) pm, I2 Cl3: 245.3(3) pm) the obtained bands centered at 344 

and 286 cm 1 are consistent considering the shorter and longer I Cl distances of the [I2Cl3]  

units in [PPh4]2[I6Cl6] of 238.8(1) and 247.0(1) pm. 

Based on these results the obtained bands of the reaction series of [PPh4]Cl with different 

ratios of ICl are evaluated (Figure 4-20). 

 

Figure 4-20: Raman spectra of the reaction series of [PPh4]Cl with ICl in the ratios 1:1 (Raman 

microscope measurement: dashed), 1:2, 1:3 (without prior solving in CH2Cl2: dotted), 1:4 and 1:7 at        

150 °C. 

The 1:1 approach shows the band at 259 and 257 cm 1 in both the spectrum of the solid 

(continuous line) and the Raman microscope measurement of a crystal (dashed line) 

respectively, which can be assigned to the [ICl2]  anion. The deformation vibrations at 120, 

109, or 113 cm 1, which could also be longitudinal and transversal vibrations of the solid, 

will not be discussed any further. All spectra show a band around 200 cm 1 which is due 

to iodine. The 1:2 ratio shows in addition to the bands we know from the 1:1 approach 

further very weak bands, that are found in the 1:3 approach again. Spectra of the reaction 
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mixtures of [PPh4]Cl with 3 and 4 equivalents of ICl show the same band positions, even 

without solving the educts in CH2Cl2 during the reaction (dotted line) no differences can 

be seen. However, the 1:7 approach differs significantly. The Raman spectrum of the solid 

obtained for the 1:3 ratio shows a mixture of several species. In addition to [ICl2]             

(261 cm 1) and [I6Cl6]2  (345, 298, 277, 157 cm 1, the band at 286 cm 1 is missing compared 

to Figure 4-19), that crystallizes from this sample, additional strong bands at 333 and 

324 cm 1 are obtained. Broad bands at 330 and 326 cm 1 respectively are also found in the 

yellow and bright orange spectrum in Figure 4-19.  

Suitable for this Figure 4-21a) (top trace) shows strong bands at 331 and 326 cm 1 during 

the warm up of the compound after it had been frozen with liquid nitrogen. In comparison 

to the measurement of [PPh4][I2Cl3] crystals in a Raman cuvette at 196 °C that shows 

strong bands at 308 and 298 cm 1 with the expected low-frequency shift the solid reaction 

mixture also consists of several compounds. 

 

Figure 4-21: a) Raman spectra of [PPh4][I2Cl3] (bottom: measurement of the crystals in the Raman 

cuvette at 196 °C, top: low temperature measurement of the solid). b) Raman microscope measurement 

of chain-like [PPh4][I3Cl4]. 

Figure 4-21b) shows the Raman microscope measurement for the chain like [I3Cl4]  anion 

in [PPh4][I3Cl4] with bands at 326 (vs), 258 (s), 202 (m), 142 (m) and 107 (s) cm 1. The 

band at 258 cm 1 can be assigned to the central [ICl2]  unit which is consistent with previous 

observations. The two coordinated ICl units are assigned to the slightly asymmetric bands 

at 326 cm 1. The band at 202 cm 1 again shows remaining iodine, and frequencies at 142 

and 107 cm 1 are in the range of the deformation vibrations or the stretching vibration of 

the weak bonding interaction Cl2 I1 and Cl3 I3. 
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4.5 Overview of the Stretching Vibrations of Non-Classical 

Iodochlorides and -bromides 

Tables 4-1 and 4-2 sum up the stretching vibrations of iodochlorides and -bromides. The 

reported values originate from this work as well as from literature Raman spectra. 

Table 4-1: Characteristic wavenumbers for the stretching vibrations of iodochlorides. 

Interhalide Building Block Wavenumber [cm 1] 

[I2Cl]  [54] [I I Cl]  160 (vs) 

[ICl2]  [47] [Cl I Cl]  278 or 268 or 254 

(depending on the cation) 

[ICl2]  [44] [Cl I Cl]  264 (vs) 

[ICl2]  [Cl I Cl]  258 

[I2Cl3]  I Cl 324 (m), 306 (s) 

[I2Cl3]  I Cl 308 (vs), 298 (vs) 

[I3Cl4] (trigonal 

pyramidal)[51] 

I Cl 330 (vs), 320 (vs) 

[I3Cl4] (chain) I Cl 326 (vs) 

 [Cl I Cl]  258 (s) 

[I2Cl7]  [55] [I Cl I]  216 (vw) 

[I2Cl2]2 [37] [Cl I I Cl]  217, 202 

[I4Cl4]2  [Cl I Cl]  268 (s) 

 I I 195 (vs) 

[I6Cl6]2  I Cl 344 (s), 294 (m), 277 (m) 

 I I 199 (vs) 
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Table 4-2: Characteristic wavenumbers for the stretching vibrations of iodobromides. 

Interhalide Building Block Wavenumber [cm 1] 

[I2Br]  [I I Br] and [I Br I]  154 (s), 132(s), 111(s) 

[IBr2] [20] [Br I Br]  168 

[IBr2] [25] [Br I Br]  160 (s) 

[I2Br3]  (chapter 3.2) I Br 230 (sh), 214 (s), 193 (m) 

[I3Br4]   (trigonal  I Br 228 (s), 215 (vs) 

pyramidal)[19] I3 Br 161 (w), 101 (w) 

[I3Br4]  (trigonal planar)[20] I Br 228 (vs), 211 (sh), 190 (s) 

 I3 Br 130 (w, br) 

[I3Br4]  (chain) I Br 211 (s) 

 [Br I Br]  163 (m) 

[I5Br2]  I I 191 (s) 

 [Br I Br]  160 (m) 

[I4Br5]  (chapter 3.2) I Br 228 (s, br) 

 I Br ([I2Br3] ) 191 (m), 177 (m) 

 IBr2 145 (w) 

[I5Br7] [33] I Br 223 (s), 213 (m), 187 (s) 

[I2Br6]2 [40] Br Br 275 (m) 

 [Br I Br]  187 (vs), 167 (m) 
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4.6 Experimental Section 

4.6.1 Methods 

The far-IR spectrum was recorded on a Nicolet FT-IR Nexus spectrometer with a solid 

substrate beam splitter (resolution 4 cm 1) between 50 and 600 cm 1. The IR spectrum was 

measured on a Nexus 670 Nicolet FT-IR spectrometer (resolution 4 cm 1) between 500 and 

4000 cm 1. 

FT Raman spectra were recorded on a Bruker RFS 100/S or MultiRam II spectrometer 

with low-temperature Ge detector (1064 nm, 30 300 mW power, resolution 4 cm 1) in a 

temperature range between room temperature and 196 °C. For low temperature 

measurements the sample was either frozen in liquid N2 or measured in an additional 

cooling unit or a Raman cuvette. Single-crystal Raman spectra were recorded on a Raman 

Microscope (Bruker RamanScope III) equipped with a Linkam stage. Graphical 

representations were created with Origin 2016. 

NMR spectra were recorded on a JEOL 400 MHz ECZ spectrometer. 

Quantum-chemical calculations were performed using the SCS-MP2[56] functional together 

with def-SV(P) basis set as implemented in Turbomole V6.4[57]. 

Crystal data were collected on a Bruker D8 Venture CMOS area detector diffractometer 

with MoKα radiation. A single crystal was coated with perfluoroether oil at 30 to 25 °C 

and mounted on a 0.1 0.2 mm Micromount. The structures were solved by direct methods 

with SHELXT[58], SHELXS[59] or SIR2004[60] and refined by least squares on weighted F2 

values for all reflections in SHELXL[61] using Olex2[62]. Diamond 3[63] was used to prepare 

the graphical representations. 

 

 

 

 

 

 

 

 



Further Investigations on Polyhalides and Polyinterhalides 

 

144 

 

4.6.2 Crystallographic Data 

Compound [CoCp2][Br11] [CoCp2]2[I3Br4]2 

·CH2Cl2 

[CoCp2][I2Cl3] [NEt4][I5Br2] 

CCDC number 1843805 1843806 1843807 1843808 

Empirical formula C10H10Br11Co C21H22Br8Cl2Co2I6 C10H10Cl3CoI2 Br4C16I10N2 

(Hs are omitted) 

Formula weight 1068.12 1863.82 549.26 1808.82 

Crystal system orthorhombic monoclinic monoclinic orthorhombic 

Space group Pnma Cc P21 Cmce 

a [Å] 20.870(2) 27.8213(19) 8.2409(9) 12.5325(13) 

b [Å] 13.5903(15) 8.9868(5) 13.9868(16) 15.0196(15) 

c [Å] 8.2937(9) 17.8049(12) 13.2783(14) 10.8639(10) 

α [°] 90 90 90 90 

β [°] 90 115.548(2) 99.253(5) 90 

γ [°] 90 90 90 90 

Volume [Å3] 2352.4(4) 4016.4(4) 1510.6(3) 2044.9(3) 

Z 4 4 4 2 

ρcalc [g·cm 3] 3.016 3.082 2.415 2.938 

F(000) 1928.0 3336.0 1016.0 1560.0 

Crystal size [mm3] 0.24×0.05×0.04 0.60×0.20×0.14 0.19×0.15×0.09 0.21×0.05×0.02 

Wavelength [Å] 0.71073 0.71073 0.71073 0.71073 

Temperature [K] 100.0 100 100.0 100.03 

μ [mm 1] 19.407 13.546 5.726 11.494 

Absorption 

correction 

multi-scan multi-scan multi-scan multi-scan 

Tmin 0.0950 0.3813 0.6272 0.2029 

Tmax 0.2387 0.7461 0.7456 0.7454 

Reflections 

collected 

73859 126158 119434 12015 

Independent 

reflections 

2343  

Rint = 0.1042 

Rsigma = 0.0265 

11766 

Rint = 0.0663 

Rsigma = 0.0374 

7349 

Rint = 0.0936 

Rsigma = 0.0331 

1113 

Rint = 0.0574 

Rsigma = 0.0315 

Data/restrains/par

ameters 

2343/0/109 11766/2/288 7349/121/218 1113/36/48 

Goodness-of-fit on 

F2 

1.060 1.022 1.124 1.159 

Final R indexes 

[I≥2σ (I)] 

R1 = 0.0345 

wR2 = 0.0631 

R1 = 0.0275 

wR2 = 0.0432 

R1 = 0.0353 

wR2 = 0.0616 

R1 = 0.0511 

wR2 = 0.1374 

Final R indexes [all 

data] 

R1 = 0.0467 

wR2 = 0.0668 

R1 = 0.0375 

wR2 = 0.0451 

R1 = 0.0487 

wR2 = 0.0653 

R1 = 0.0551 

wR2 = 0.1401 
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Compound [PPN-3F]2 

[I4Cl4]∙4 CH3CN 

[PPh4]2[I6Cl6] 

(disordered with 

[PPh4]2[I4Cl8]) 

[PPh4][I2Cl3] [PPh4][I3Cl4] 

CCDC number 1843809 1843810 1843811 1843812 

Empirical formula C40H18Cl2F18I2N3P2 C24H20Cl3.29I2.71P C24H20Cl3I2P C24H20Cl4I3P 

Formula weight 1269.21 800.36 699.57 861.87 

Crystal system monoclinic triclinic monoclinic tetragonal 

Space group P21/c P̅ P21/c P̅ 

a [Å] 12.1504(6) 6.9629(5) 10.6026(6) 19.660(3) 

b [Å] 15.9622(9) 10.6356(7) 13.3871(8) 19.660(3) 

c [Å] 22.6526(13) 18.2762(13) 17.7973(10) 7.4187(8) 

α [°] 90 97.677(2) 90 90 

β [°] 92.692(2) 95.273(2) 95.030(2) 90 

γ [°] 90 91.210(2) 90 90 

Volume [Å3] 4388.6(4) 1334.86(16) 2516.4(3) 2867.4(9) 

Z 4 2 4 4 

ρcalc [g·cm 3] 1.921 1.991 1.8464 1.996 

F(000) 2444.0 757.0 1343.3 1624.0 

Crystal size [mm3] 0.27×0.15×0.04 0.21×0.14×0.05 0.68×0.42×0.0

8 

0.60×0.22×0.1

8 

Wavelength [Å] 0.71073 0.71073 0.71073 0.71073 

Temperature [K] 100.01 100.13 100.85 100.04 

μ [mm 1] 1.740 3.583 2.892 3.711 

Absorption 

correction 

multi-scan multi-scan multi-scan multi-scan 

Tmin 0.6627 0.5606 0.3038 0.2222 

Tmax 0.7454 0.7452 0.6478 0.4296 

Reflections 

collected 

76886 76744 44914 20164 

Independent 

reflections 

9027 

Rint = 0.0413 

Rsigma = 0.0244 

4892 

Rint = 0.0463 

Rsigma = 0.0173 

7720 

Rint = 0.0447 

Rsigma = 0.0293 

5619 

Rint = 0.0696 

Rsigma = 0.0604 

Data/restrains/  

parameters 

9027/0/606 4892/0/290 7720/0/271 5619/0/289 

Goodness-of-fit on 

F2 

1.043 1.079 1.048 1.026 

Final R indexes 

[I≥2σ (I)] 

R1 = 0.0354 

wR2 = 0.0880 

R1 = 0.0193 

wR2 = 0.0374 

R1 = 0.0298 

wR2 = 0.0686 

R1 = 0.0361 

wR2 = 0.0729 

Final R indexes 

[all data] 

R1 = 0.0465 

wR2 = 0.0940 

R1 = 0.0259 

wR2 = 0.0389 

R1 = 0.0344 

wR2 = 0.0722 

R1 = 0.0471 

wR2 = 0.0767 
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4.6.3 Syntheses 

All syntheses were performed using standard Schlenk techniques, unless mentioned 

otherwise. When using water sensitive chemicals bromine was additionally condensed and 

stored over molecular sieve. Chlorine gas was dried by passing through CaCl2. [HMIM]Br 

was dried in vacuum (1×10 3 mbar) for 2 days at 80 °C.  

 

4.6.3.1 Materials 

Acetonitrile (CH3CN)       solvent system 

Bis(triphenylphosphoranylidene)iminium chloride   group supply 

(C36H30ClNP2, [PPN]Cl) 

Bis[tris(3,4,5-trifluorophenyl)phosphoranylidene]-   see chapter 3.3 

iminium chloride (C36H12F18ClNP2, [PPN-3F]Cl)       

Bromine (Br2) (99%)       Merck 

Chlorine (Cl2)        Linde 

Cobaltocene (C10H10Co, CoCp2)      see[1] 

Cobaltocenium bromide (C10H10CoBr, [CoCp2]Br)   see[1] 

Dichloromethane (CH2Cl2)      solvent system 

Diethyl ether (C4H10O, Et2O)      VWR 

1-Hexyl-3-metylimidazolium bromide     Iolitec 

(C10H19BrN2, [HMIM]Br) (99%) 

Hydrochloric acid (HCl) (37%)      VWR 

Iodine monobromide (IBr) (98%)     Sigma-Aldrich 

Iodine monochloride (ICl) (98%)      Alfa Aesar; Merck 

Tetraethylammonium bromide (C8H20NBr, [NEt4]Br) (99%)  Merck 

Tetraphenylphosphonium chloride (C24H20PCl, [PPh4]Cl) (98%) Riedel-de Haën; 

Sigma-Aldrich 
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4.6.3.2 Reactions of [CoCp2]Br or CoCp2 with Br2 ([CoCp2][Br11])[1] 

Elemental bromine was added to ice-cooled [CoCp2]Br or CoCp2 respectively in different 

ratios. While for CoCp2 inert reaction conditions are required, [CoCp2]Br can be handled 

under air. The mixture was heated to 60 °C to complete the reaction. The products are 

stable in closed glass ware. 

For suitable crystals of [CoCp2][Br11] an excess of bromine (1:120) was required. The 

reaction mixture was stored at 5 °C to obtain orange crystals. 

[CoCp2][Br11]: Raman ( 150 °C, region: 350 150 cm 1): 314 (w), 295 (sh), 288 (s), 278 (vs), 

228 (s) cm 1. 

 

4.6.3.3 Reactions of [CoCp2]Br with IBr ([CoCp2]2[I3Br4]2·CH2Cl2) 

[CoCp2]Br was solved in CH2Cl2 (2 4 ml). IBr was added in the desired ratio (1:3, 1:5, 1:7, 

1:9). The reaction mixture was stirred until everything was dissolved and afterwards stored 

for 19 h at room temperature. The volatile materials were removed under reduced pressure 

at 0 °C. The orange-brown solid was again dissolved in CH2Cl2 (7 16 ml). Light orange 

crystals were obtained at 27 °C. 

[CoCp2]2[I3Br4]2·CH2Cl2: Raman (RT, crystals, region: 300 100 cm 1): 211 (s), 189 (w), 163 

(m), 120 (vw) cm 1. 

 

4.6.3.4 Synthesis of [CoCp2]Cl and reaction with ICl ([CoCp2][I2Cl3]) 

The [CoCp2]Cl synthesis was based on literature.[22] HCl (5 N) was added to CoCp2 (1.00 g, 

5.29 mmol). The reaction mixture was stirred until the gas evolution finished. The yellow-

green solid was filtered, extracted with Et2O and dried under reduced pressure (0.74 g, 

3.31 mmol, 63%). 

[CoCp2]Cl: IR (RT, region: 3500 550 cm 1): 3078 (m), 2009 (w), 1719 (w), 1413 (vs), 1110 

(w), 1068 (w), 1006 (s), 862 (vs), 820 (w), 564 (w) cm 1. 

[CoCp2]Cl: Raman (RT, region: 3500 100 cm 1): 3113 (w), 1419 (m), 1110 (s), 1064 (w), 

854 (w), 386 (m),324 (s), 308 (s), 194 (vs) cm 1. 

To obtain crystals of [CoCp2][I2Cl3] CH2Cl2 (5 ml) and ICl (1.26 g, 7.78 mmol) were added 

to [CoCp2]Cl (0.24 g, 1.06 mmol). The suspension was held at room temperature over a 

period of 5 days. The volatile materials were removed under reduced pressure to obtain an 
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orange-brown solid, that was after analysis dissolved again in CH2Cl2. Light orange crystals 

were obtained at 33 °C. 

[CoCp2][I2Cl3]: FIR (RT, region: 400 150 cm 1): 318 (w), 291 (s), 168 (w) cm 1. 

[CoCp2][I2Cl3]: Raman (RT, region: 350 100 cm 1): 324 (m), 306 (s), 191 (sh),                 

182 (vs) cm 1. 

 

4.6.3.5 Reactions of [NEt4]Br with IBr in [HMIM]Br ([NEt4][I5Br2])[2] 

[NEt4]Br was solved in [HMIM]Br (0.4 0.9 g). IBr was added in the desired ratio (1:3, 1:5). 

The reaction mixture was stirred for 30 min. Red crystals were obtained at 30 °C. 

[NEt4][I5Br2]: Raman ( 30 °C, crystal, region: 300 100 cm 1): 224 (m), 191 (s),                       

160 (m) cm 1. 

 

4.6.3.6 Reaction of [PPN-3F]Cl with Cl2 (2,4,6-Tris-(trichloromethyl)-1,3,5-

triazine) 

[PPN-3F] (0.07 g, 0.08 mmol) was suspended in CH3CN (0.1 ml). Chlorine was condensed 

onto the suspension that was slowly allowed to warm to room temperature. This procedure 

was repeated after 6 days (total amount of chlorine: 0.56 g, 7.86 mmol). Colorless crystals 

were formed at room temperature. When opening the reaction vessel HCl exhausted. 

Reaction mixture: Raman (RT, region: 3000 150 cm 1): 3000 (w), 2940 (m), 1618 (m), 1351 

(m), 994 (m), 810 (m), 435 (sh), 415 (vs), 390 (sh), 375 (m), 328 (w), 290 (m), 272 (m), 

259 (sh), 219 (w), 186 (m), 172 (sh) cm 1. 

Reaction mixture (after removing all volatile materials under vacuum): 31P NMR 

(162 MHz, CD3OD, 20 °C): δ = 19.9 ppm (m); 19F NMR (376 MHz, CD3OD, 20 °C): δ = 

151.3 (m, 6F, para-F), 130.9 ppm (m, 12 F, meta-F). 

 

4.6.3.7 Reaction of [PPN-3F]Cl with ICl ([PPN-3F]2[I4Cl4]·4 CH3CN) 

[PPN-3F]Cl (0.25 g, 0.27 mmol) was suspended in CH2Cl2 (2 ml) and ICl (0.29 g, 1.80 mmol) 

was added. The mixture was stirred for 30 min and stored at room temperature for 8 days. 

The orange-brown liquid was separated from the orange solid. After removing volatile 
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materials under reduced pressure, the latter was dissolved in CH3CN (1 ml). Orange-yellow 

crystals were obtained at 0 °C. 

[PPN-3F]2[I4Cl4]·4 CH3CN: Raman (0 °C, crystal, region: 350 150 cm 1): 346 (w), 332 (m), 

319 (sh), 307 (w), 300 (w), 268 (s), 225 (w), 209 (w), 195 (vs), 166 (m) cm 1. 

 

4.6.3.8 Reactions of [PPh4]Cl with ICl 

[PPh4]Cl (Riedel-de Haën) was solved in CH2Cl2 (8 10 ml). For one 1:3 approach the 

synthesis was also tested without the solvent CH2Cl2. ICl (Merck) was added in the desired 

ratio (1:1, 1:2, 1:3, 1:4, 1:7). The reaction mixture was stirred until everything was dissolved 

and afterwards stored for 29 h at room temperature. The volatile materials were removed 

under reduced pressure at 0 °C. The obtained solid was again dissolved in CH2Cl2 (1

18 ml). Orange crystals of the 1:3 approach that were formed at 30 °C, showed in X-ray 

structure analysis a formula of [PPh4]2[I6Cl6] (disordered with [PPh4]2[I4Cl8]). 

1:1: Raman (RT, crystal, region: 350 100 cm 1): 257 (s), 199 (m), 113 (s) cm 1. 

1:1: Raman ( 150 °C, region: 350 100 cm 1): 259 (s), 199 (m), 120 (m), 109 (sh) cm 1. 

1:2: Raman ( 150 °C, region: 350 100 cm 1): 344 (w), 331 (w), 323 (w), 296 (w), 259 (s), 

220 (m), 120 (m), 111 (sh) cm 1. 

1:3: Raman ( 150 °C, region: 350 100 cm 1): 345 (vs), 333 (s), 324 (s), 296 (s), 277 (s), 261 

(w), 216 (m), 200 (m), 157 (m), 126 (sh), 116 (m), 108 (sh) cm 1. 

1:3: Raman ( 150 °C, without prior solving in CH2Cl2, region: 350 100 cm 1): 245 (vs), 332 

(vs), 325 (vs), 298 (s), 277 (s), 261 (m), 216 (m), 200 (m), 157 (m), 127 (sh), 116 (m),                

108 (sh) cm 1. 

1:4: Raman ( 150 °C, region: 350 100 cm 1): 345 (vs), 332 (s), 325 (s), 297 (s), 278 (s), 260 

(m), 216 (m), 199 (m), 157 (m), 128 (sh), 115 (m), 109 (sh) cm 1. 

1:7: Raman ( 150 °C, region: 350 100 cm 1): 344 (m), 329 (vs), 324 (vs), 297 (w), 289 (w), 

277 (w), 260 (s), 215 (w), 200 (m), 158 (w), 147 (m), 114 (m) cm 1. 

The synthesis with a 1:3 ratio was repeated with educts from different suppliers (PPh4Cl: 

Sigma Aldrich, ICl: Alfa Aesar). Orange crystals of [PPh4][I2Cl3] were obtained at 30 °C. 

[PPh4][I2Cl3]: Raman ( 196 °C, crystals in Raman cuvette, region: 350 100 cm 1): 335 (sh), 

308 (vs), 298 (vs), 280 (w), 264 (w), 53 (m), 212 (w), 202 (w), 193 (w), 154 (m),                        

108 (s) cm 1. 
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In a further reaction [PPh4]Cl (Sigma-Aldrich) was first purified from residues of [PPh4]Br. 

Therefore, a hot saturated solution in CH2Cl2 was slowly cooled down. The precipitated 

solid was filtered off and disposed. CH2Cl2 was removed under reduced pressure. Then 

[PPh4]Cl was solved in CH2Cl2 (5 ml) and reacted with ICl (Merck) in an 1:3 approach. 

The reaction mixture was stored for 4 days at room temperature. The volatile materials 

were removed under reduced pressure at 0 °C. The obtained orange solid crystallized within 

one day at room temperature. Orange crystals of [PPh4]2[I6Cl6] (disordered with 

[PPh4]2[I4Cl8]) and colorless crystals of [PPh4][ICl2] were obtained. 

The different crystals have not completely separated for Raman microscope measurements. 

Yellow colored spot: Raman (RT, crystals, region: 350 100 cm 1): 344 (m), 326 (m), 293 

(m), 287 (m), 258 (vs), 210 (w), 199 (m), 153 (m), 110 (s) cm 1. 

Bright orange colored spot: Raman (RT, crystals, region: 350 100 cm 1): 344 (s), 330 (m), 

293 (sh), 287 (m), 277 (sh), 258 (m), 210 (sh), 199 (vs), 154 (m), 109 (s) cm 1. 

Orange colored spot: Raman (RT, crystals, region: 350 100 cm 1): 344 (s), 294 (sh), 286 

(m), 277 (sh), 199 (vs), 154 (m), 105 (w) cm 1. 

In the reaction of [PPh4]Cl (0.29 g, 0.76 mmol) with 5 equivalents of ICl (0.61 g, 3.75 mmol) 

in CH2Cl2 (1 ml) yellow-orange crystals of [PPh4][I3Cl4] were obtained at 30 °C. In contrast 

to all syntheses above, the removal of the volatile materials was omitted. 

[PPh4][I3Cl4]: Raman ( 30 °C, crystal, region: 350 100 cm 1): 326 (vs), 258 (s), 202 (m), 

142 (m), 107 (s) cm 1. 
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5 Summary 

In this work novel polyhalides and polyinterhalides were synthesized and characterized. 

For the first time fluorinated bis(triarylphosphoranylidene)iminium salts, new kinds of 

weakly coordinating cations, were prepared and fully characterized. 

Polybromide dianions and networks [(C6H5)3PBr]2[Br14], [(C6H4F)3PBr]2[Br14], 

[(C6H4F)3PBr][Br11] and [(C6H2F3)3PBr]2[Br16] were obtained, which could be included in 

the series of known compounds [(C6H5)3PBr][Br7] and [(C6F5)3PBr]2[Br20]·Br2. The so far 

unknown polyhalide networks with the repeating units [Br14]2  and [Br16]2  both make a 

valuable contribution to the structural diversity of polybromide dianions. It could be shown 

that fluorination of the bromo(triphenyl)phosphonium cation resulted in an increased 

bromine content in the resulting polybromides. The P Br···Br distance decreases in the 

series P(C6H4F)3 > P(C6H2F3)3 > P(C6F5)3. This result could be supported by quantum-

chemical calculations and the evaluation of the electrostatic potential, such as the σ-hole. 

An excess of bromine (≥ 5 equivalents) is of minor importance in the formation of the 

reported polybromides. The weakly perturbed Br2 units from which the polybromides are 

formed allow to establish a relationship between their bond lengths and their Raman shift. 

This correlation has been confirmed by quantum-chemical calculations, is consistent to 

literature reported values and therefore revealed Raman spectroscopy as an excellent 

characterization method for this type of polybromides. Furthermore, the [Br20]2  dianions 

[BMDIM][Br20] and [AsPh4]2[Br20]·½ Br2 as well as [CoCp2][Br11], the first undecabromide 

that crystallized without further embedded Br2 molecules in the crystal structure, were 

structurally characterized. 

In the field of polyinterhalides a great variety of novel compounds was synthesized as well. 

With [NMe4][I4Br5] the so far largest iodobromide monoanion was synthesized and 

characterized. The [I4Br5]  anion shows a structural motif which was previously unknown 

among the nonahalides. It consists of a V-shaped [I2Br3]  coordinating two further IBr 

molecules via halogen-halogen interactions, which could be supported by quantum-chemical 

calculations. Depending on the selected solvent one of the two following isomers was 

formed: syn-[NMe4][I4Br5] in the ionic liquid [HMIM]Br and anti-[NMe4][I4Br5] in 

dichloromethane. In further investigations the iodobromides [NEt4][I5Br2] and 

[CoCp2]2[I3Br4]2·CH2Cl2 were obtained. From the reaction of [PPh4]Cl a series of 

iodochlorides, namely [ICl2] , [I2Cl3] , a novel chain-like structure of [I3Cl4] , the dianion 

[I6Cl6]2  as well as [CoCp2][I2Cl3] were obtained. This great variety of polyinterhalides 

extend the existing Raman spectral library and can therefore contribute to the future 

characterization of this compound class. 
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Besides the ratio between halide and halogen the structure of the obtained polyhalide 

strongly depends on the employed cation. Therefore, this thesis dealt with the synthesis 

and full characterization of fluorinated bis(triarylphosphoranylidene)iminium cations 

[PPN-1F]+, [PPN-2F]+ and [PPN-3F]+. These compounds were obtained by a new-developed 

one-pot reaction. By calculating the electrostatic potential and the fluoride ion affinity it 

could be shown that within the series the [PPN-3F]+ reveals the most weakly coordinating 

properties. These fluorinated [PPN]+ cations can be used in the future to stabilize 

demanding anions, like for example [PPN-3F]2[I4Cl4]·4 CH3CN presented here. 
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6 Zusammenfassung 

Im Rahmen der vorliegenden Arbeit wurden neuartige Polyhalogenide und 

Polyinterhalogenide synthetisiert und charakterisiert. Zum ersten Mal konnten fluorierte 

Bis(triarylphosphoranyliden)iminiumsalze, eine neue Art schwach koordinierender 

Kationen, hergestellt und vollständig charakterisiert werden. 

Es wurden Polybromiddianionen und -netzwerke [(C6H5)3PBr]2[Br14], [(C6H4F)3PBr]2[Br14], 

[(C6H4F)3PBr][Br11] und [(C6H2F3)3PBr]2[Br16] erhalten. Diese ließen sich in die Reihe der 

bekannten Verbindungen [(C6H5)3PBr][Br7] und [(C6F5)3PBr]2[Br20]·Br2 eingliedern. Die 

beiden neuartigen Polyhalogenid Netzwerke mit den Wiederholeinheiten [Br14]  und 

[Br16]  erweitern die strukturelle Vielfalt der Polybromiddianionen. Es konnte gezeigt 

werden, dass durch Fluorierung des Bromo(triphenyl)phosphoniumkations höhere 

Bromgehalte für die resultierenden Polybromide erreicht werden können. Der P Br···Br 

Abstand nimmt in der Reihe P(C6H4F)3 > P(C6H3F3)3 > P(C6F5)3 ab. Dies konnte durch 

quantenchemische Rechnungen und der Untersuchung des elektrostatischen Potentials, wie 

z. B. des σ-Lochs untermauert werden. Ein Überschuss an Brom (≥5 Äquivalente) spielt 

für die Bildung der erwähnten Polybromide eine untergeordnete Rolle. Die schwach 

gestörten Br2-Einheiten, aus denen die Polybromide aufgebaut sind, erlaubten es, einen 

Zusammenhang zwischen ihren Bindungslängen und ihrer Frequenzverschiebung im Raman 

Spektrum herzustellen. Diese Korrelation wurde durch quantenchemische Rechnungen 

bestätigt, ist mit den Werten aus der Literatur konsistent und macht daher die Raman-

Spektroskopie zu einer ausgezeichneten Charakterisierungsmethode für diese Art von 

Polybromiden. Des Weiteren wurden die [Br20]2  Dianionen [BMDIM][Br20] und 

[AsPh4]2[Br20]·½ Br2 sowie [CoCp2][Br11], das erste Undecabromid, das eine 

Kristallstruktur ohne ein weiteres eingebettetes Br2-Molekül aufweist, strukturell 

charakterisiert. 

Im Bereich der Polyinterhalogenide konnte auch eine Vielfalt neuer Verbindungen 

synthetisiert werden. So konnte mit [NMe4][I4Br5] das bislang größte Iodbromid-Monoanion 

synthetisiert und charakterisiert werden. [I4Br5]  weist ein strukturelles Motiv auf, das unter 

den Nonahalogeniden bislang nicht bekannt war. Es besteht aus einem V-förmigen [I2Br3]  

Anion, das zwei IBr-Moleküle über Halogen-Halogen-Wechselwirkungen koordiniert, was 

im Einklang mit quantenchemischen Rechnungen steht. In Abhängigkeit vom gewählten 

Lösemittel wurde eines der folgenden Isomere gebildet: syn-[NMe4][I4Br5] in der ionischen 

Flüssigkeit [HMIM]Br und anti-[NMe4][I4Br5] in Dichlormethan. In weiteren 

Untersuchungen konnten die Iodbromide [NEt4][I5Br2] und [CoCp2]2[I3Br4]2·CH2Cl2 

erhalten werden. Durch die Reaktion von [PPh4]Cl mit ICl konnte eine Reihe an 



Zusammenfassung 

 

156 

 

Iodchloriden erhalten werden, nämlich [ICl2] , [I2Cl3] , eine neue kettenförmige Struktur 

von [I3Cl4] , das Dianion [I6Cl6]2 , sowie [CoCp2][I2Cl3]. Diese Vielzahl an Interhalogeniden 

ergänzt die bisherige Raman-Spektrenbibliothek und kann daher zukünftig zur 

Charakterisierung dieser Verbindungsklasse beitragen. 

Die Struktur der erhaltenen Polyhalogenide hängt neben dem Verhältnis von Halogenid zu 

Halogen stark vom verwendeten Kation ab. Daher beschäftigt sich diese Arbeit auch mit 

der Synthese und vollständigen Charakterisierung der teilfluorierten Bis(triarylphosphor-

anyliden)iminiumkationen [PPN-1F]+, [PPN-2F]+ und [PPN-3F]+. Diese Verbindungen 

konnten erstmals im Zuge einer neu entwickelten sogenannten Eintopf-Reaktion erhalten 

werden. Durch Berechnung des elektrostatischen Potentials und der Fluoridionenaffinität 

konnte gezeigt werden, dass innerhalb dieser Serie das [PPN-3F]+ die am schwächsten 

koordinierenden Eigenschaften aufweist. Diese fluorierten [PPN]+ Kationen können 

zukünftig zur Synthese anspruchsvoller Anionen eingesetzt werden, wie zum Beispiel dem 

hier vorgestellten [PPN-3F]2[I4Cl4]·4 CH3CN. 
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