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If you want to build a ship, don’t drum up people to collect wood and don’t
assign them tasks and work, but rather teach them to long for the endless

immensity of the sea.
Antoine de Saint-Exupéry
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1
I N T R O D U C T I O N

This goal of this thesis is to study certain properties of a quasilinear
parabolic differential equation with spherical domain, namely

ut = a(θ, φ, u,∇u)∆S2 u + f (θ, φ, u,∇u) (1)

with initial data u(0, θ, φ) = u0(θ, φ) such that f ∈ C2, a ∈ C1, the
parabolicity condition a > 0 holds and ∆S2 is the Laplace-Beltrami
operator on the sphere S2. In coordinates, the angle variables are
(θ, φ) ∈ [0, π]× [0, 2π] with Neumann boundary condition in θ and
periodic boundary in φ.

This thesis has three main results. The first two describes the
asymptotics as t → ∞ when the spatial domain is unidimensional.
The third proves a symmetry property about equilibria solutions of
(1), and how the symmetry of the spherical domain influences the
symmetry of solutions.

Suppose that solutions are axisymmetric, that is, u(t, θ, φ) that are
independent of rotations with respect to the angle φ and depend only
in θ, as in u(t, θ). Hence, u solves the following equation

ut = a(θ, u, uθ)

[
uθθ +

uθ

tan(θ)

]
+ f (θ, u, uθ) (2)

with initial data u(θ, 0) = u0(θ), where θ ∈ [0, π] has Neumann
boundary. Even though the equation has a degenerate coefficient at
the boundary, solutions are still regular.

The equation (2) defines a semiflow denoted by (t, u0) 7→ u(t) in
the Banach space X := C2β+α

w ([0, π]) where α, β ∈ (0, 1) are respec-
tively a fractional power and the Hölder exponent, and w = sin(θ)
is a weight induced by the spherical metric. The appropriate func-
tional setting for the semilinear case is described in Chapter 2, and in
Chapter 3 for the quasilinear case. See also [49].

In order to study the long time behaviour of (2), we suppose that f
satisfies the following conditions, where p := uθ ,

f (x, u, 0) · u < 0 (3)

| f (x, u, p)| < f1(u) + f2(u)|p|γ (4)

|aθ |
1 + |p| + |au|+ |ap| · [1 + |p|] ≤ f3(|u|) (5)

0 < ε ≤ a(θ, u, p) ≤ δ (6)
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where the first condition holds for |u| large enough uniformly in θ,
the second for all (θ, u, p) for continuous f1, f2 and γ < 2, and the
third for continuous f3.

Those conditions imply that |u| and |ux| are bounded. Hence
bounded solutions are global in time and the flow is dissipative: tra-
jectories u(t) eventually enter a large ball in the phase-space X. See
Chapter 6, Section 5 in [84]. Also [56] and [12].

Moreover, these hypothesis guarantee the existence of a nonempty
global attractor A of (2), which is the maximal compact invariant set.
Equivalently, it is the set of bounded trajectories u(t) in the phase-
space X that exist for all t ∈ R. See [12].

For the statement of the main theorem that describes the global
attractor A, denote by the zero number z(u∗) the number of strict sign
changes of a continuous function u∗(θ).

Recall that the Morse index i(u∗) of an equilibrium u∗ is given by
the number of positive eigenvalues of the linearized operator at such
equilibrium, that is, the dimension of the unstable manifold of said
equilibrium.

We say that two different equilibria u−, u+ of (2) are adjacent if there
does not exist an equilibrium u∗ of (2) such that u∗(0) lies between
u−(0) and u+(0), and

z(u− − u∗) = z(u− − u+) = z(u+ − u∗).

This notion was described by Fiedler and Rocha [29] and refined
in Wolfrum [86]. The zero number of difference of solutions roughly
describes the number of intersections between those solutions.

Both the zero number and Morse index can be computed from a
permutation of the equilibria, as it was done in [33] and [29]. Such
permutation is called the Sturm Permutation. We construct an anal-
ogous permutation for the case of boundary singularity in Section
(2.3), as in (8). For such, it is required that the flow of the equilibria
equation of (8) exists for all θ ∈ [0, π]. Sufficient conditions for bound-
edness are given in [63], which in turn implies global existence.

Theorem 1.0.1. Sturm Attractors [Lappicy (’17)]
Consider a ∈ C1 and f ∈ C2 satisfying the growth conditions (3). Sup-

pose that all equilibria for the equation (2) are hyperbolic. Then,

1. the global attractor A consists of equilibria E and heteroclinics H.

2. there exists a heteroclinic u(t) ∈ H between u−, u+ ∈ E such that

u(t)→t→±∞ u±

if, and only if, u− and u+ are adjacent and i(u−) > i(u+).

The first claim follows due to the existence of a Lyapunov func-
tional constructed by Matano [53] and Zelenyak [87]. A modification
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of such functional for the case of degenerate coefficients is done in
Chapter 2, whereas the quasilinear case was already done by Matano.

The second claim answers the question of which equilibria con-
nects to which other. This geometric description was carried out
by Hale and do Nascimento [37] for the Chafee Infante problem, by
Brunovský and Fiedler [27] for some f (x, u) and by Fiedler and Rocha
[29] for certain f (x, u, ux). Such attractors are known as Sturm attrac-
tors.

There are two difficulties in proving such theorem: it is a quasi-
linear equation, and the diffusion has degenerate coefficients at the
north and south pole θ = 0, π. The singularities are dealt by con-
sidering weighted Banach spaces in Chapter 2 so that the degener-
ate elliptic operator becomes regular. The quasilinearity is dealed by
choosing appropriate Banach spaces X, in Chapter 3. It is the aim of
this thesis to modify the existing theory for such cases and still obtain
a Sturm attractor.

In particular, we compute the attractor explicitely for the exam-
ple of Chafee-Infante type nonlinearity with singular boundary coef-
ficients and quasilinear diffusion.

Corollary 1.0.2. Chafee-Infante Attractor [Lappicy (’17)]
Consider a(u) = un and f (λ, u) = λun+1(1− u2) for some n ∈ N0

in the equation (2). Let λ ∈ (λk, λk+1), where λk is the k-th eigenvalue
of the axially symmetric Laplacian with k ∈ N0. Consider the phase space
X := C2β+α

w ([0, π]) ∩ {u > ε} with weigth w := sin(θ) and fixed ε > 0.
Then, there are 2k + 3 hyperbolic equilibria u1, ..., u2k+3 and its attractor
A in X is as the below figure, where arrows denote heteroclinics.

uk+1

uk uk+2

u2 u2k+2

u1 u2k+3

We note that even though the Chapters 2 and 3, for degenerate co-
efficients and quasilinear diffusion, are written separately, their meth-
ods can be combined in order to prove the above Theorem. We prefer
to split the discussion in two chapters so that the reader knows which
problem arises in each case, and how this problem is dealt differently.

The last result of this thesis studies how the symmetry of the spher-
ical domain influences solutions of elliptic equations on such domain.
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Consider the quasilinear elliptic equation

0 = a(θ, φ, u,∇u)∆S2 u + f (u) (7)

where (θ, φ) ∈ S2, a and f are analytic.
We say that a function u ∈ C2(S2) has axial extrema if its extrema oc-

cur as axis from the north to south pole. Mathematically, if uφ(θ0, φ0) =

0 for a fixed (θ0, φ0) ∈ S2, then uφ(θ, φ0) = 0 for any θ ∈ [0, π]. In that
case, the extrema depend only at the position in φ.

Moreover, we say that the axial extrema are leveled if all axial max-
ima φi have the same value u(θ, φi) = M(θ), and all axial minima φi
also have the same value u(θ, φi) = m(θ).

Since a, f are analytic, so is u, as in [21]. Therefore there are finitely
many leveled axial extrema and we denote them by {φi}N

i=0.

Theorem 1.0.3. Symmetry of Certain Equilibria [Lappicy (’17)]
Suppose that u is a non constant equilibrium of (7) such that all its ex-

trema are leveled and axial. Then φi =
φi−1+φi+1

2 and

u(θ, φ) = u(θ, Rφi(φ))

for all i = 0, , ..., N, where φ−1 := φN and φN+1 := φ0, Rφi(φ) := 2φi − φ

is the reflection of φ with respect to φi and (θ, φ) ∈ [0, π]× [φi−1, φi].

For positive solutions of elliptic equations on a ball with Dirich-
let boundary conditions such symmetrization result was obtained by
Gidas, Ni and Nirenberg [34], using the moving plane method devel-
oped by Alexandrov [2] and further by Serrin [75]. We give a brief
sketch of this method in Section 4.1.

Proving the symmetrization property in the sphere carry some dif-
ficulties. In particular, it has no boundary and it is not clear where
to start the moving plane method. This problem was solved partially
by Padilla [58] for particular convex subsets of the sphere, and later
considered by Kumaresan and Prajapat [45] for subsets of the sphere
contained in a hemisphere. Later by Brock and Prajapat [17] for sub-
sets containing hemisphere, but still not the full sphere. All these
methods rely on a stereographic projection, so that domains within
the sphere are transformed to domains in the Euclidean space and
one can apply the moving plane method. Moreover, such results in
the sphere deal with positive solutions.

From now on, the thesis is organized as follows. Chapter 2 con-
structs the axisymmetric global attractor in case the equation (2) is
semilinear and has degenerate coefficients. Chapter 3 constructs the
axisymmetric global attractor in case the equation (2) is quasilinear
and has regular coefficients. Chapter 4 rigorously proves the symme-
try property for certain equilibria. Chapter 5 discuss an application
of such equations and attractors: the Einstein Hamiltonian constraint
equation. Each chapter is independent of the other, having its own
introduction and discussion sessions.



2
A X I S Y M M E T R I C D Y N A M I C S

The goal of this chapter is to study the Sturm attractors of semilinear
parabolic equations with degenerate coefficients on the boundary, as
it was done without the degenerate term by Brunovský and Fiedler
[18], and later by Fiedler and Rocha [29].

Consider the scalar semilinear parabolic differential equation

ut = ∆S2 u + f (θ, φ, u,∇u)

with initial data u(0, θ, φ) = u0(θ, φ) such that f ∈ C2 and ∆S2 is
the Laplace-Beltrami operator on the sphere S2. In coordinates, the
angle variables are (θ, φ) ∈ [0, π]× [0, 2π] with Neumann boundary
condition in θ and periodic boundary in φ.

Suppose that solutions u(t, θ, φ) are axisymmetric, that is, they are
independent of rotations with respect to the angle φ and depend only
in θ. Hence, u(t, θ) solves the following equation

ut = uθθ +
uθ

tan(θ)
+ f (θ, u, uθ) (8)

with initial data u(0, θ) = u0(θ), where θ ∈ [0, π] has Neumann
boundary. Even though the equation has a degenerate coefficient at
the boundaries θ = 0 or π, solutions are still regular.

The equation (8) defines a semiflow denoted by (t, u0) 7→ u(t) in
a Banach space X. The appropriate functional setting is described in
Section 2.2.

In order to study the long time behaviour of (8), we suppose that f
satisfies the following conditions

f (θ, u, 0) · u < 0 (9)

| f (θ, u, uθ)| < f1(u) + f2(u)|p|γ (10)

where the first condition holds for |u| large enough uniformly in θ,
and the second for all (θ, u, p) for continuous f1, f2 and γ < 2.

The first dissipative condition implies that |u| is bounded, and
hence bounded solutions are global in time. The second dissipative
condition implies that |ux| is bounded. Hence the flow is dissipative:
trajectories u(t) eventually enter a large ball in the phase-space X.
See [3], [46] and [12].

Moreover, these hypothesis guarantee that there exists a nonempty
global attractor A of (8), which is the maximal compact invariant set.

10
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Equivalently, it is the set of bounded trajectories u(t, .) in the phase-
space X that exist for all t ∈ R. See [12].

For the statement of the main theorem of this chapter that describes
the global attractor A, denote by the zero number z(u∗) the number of
strict sign changes of a continuous function u∗(θ). In Section 2.4 it is
given a rigorous definition.

We say that two different equilibria u−, u+ of (8) are adjacent if there
does not exist an equilibrium u∗ of (8) such that u∗(0) lies between
u−(0) and u+(0), and

z(u− − u∗) = z(u− − u+) = z(u+ − u∗).

This notion was described by Fiedler and Rocha [29] and refined in
Wolfrum [86].

Recall that the Morse index i(u∗) of an equilibrium u∗ is given by
the number of positive eigenvalues of the linearized operator at such
equilibrium, that is, the dimension of the unstable manifold of u∗.

Both the zero number and Morse index can be computed from a
permutation of the equilibria, as it was done in [33] and [29]. Such
permutation is called the Sturm Permutation. We construct an anal-
ogous permutation for the case of boundary singularity in Section
(2.3), as in [29]. For such, it is required that the flow of the equi-
libria equation of (8) exists for all θ ∈ [0, π]. Sufficient conditions for
boundedness are given in [63], which in turn implies global existence.

Theorem 2.0.1. Sturm Attractor [Lappicy (’17)]
Consider f ∈ C2 satisfying the growth conditions (9). Suppose that all

equilibria for the equation (8) are hyperbolic. Then,

1. the global attractor A of (8) consists of equilibria E and heteroclinic
orbits H.

2. there exists a heteroclinic u(t) ∈ H between u−, u+ ∈ E such that

u(t)→t→±∞ u±

if, and only if, u− and u+ are adjacent and i(u−) > i(u+).

The first claim follows due to the existence of a Lyapunov func-
tional constructed by Matano [53] and Zelenyak [87]. A modification
of such functional for the case of degenerate coefficients is done in
Section 2.2.

The second claim answers the question of which equilibria con-
nects to which other. This geometric description was carried out
by Hale and do Nascimento [37] for the Chafee Infante problem, by
Brunovský and Fiedler [27] for f (x, u) and by Fiedler and Rocha [29]
for f (x, u, ux). Such attractors are known as Sturm attractors.

Constructing the Sturm attractor for the equation (8) is problematic
due to its degenerate coefficient. It is the aim of this chapter to modify
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the existing theory for such boundary singularity and still obtain a
Sturm attractor.

In particular, we compute the attractor explicitely for the example
of Chafee-Infante type nonlinearity with degenerate boundary coeffi-
cients.

Corollary 2.0.2. Chafee-Infante Attractor [Lappicy (’17)]
Consider f (λ, u) = λu(1− u2) in the equation (8). Let λ ∈ (λk, λk+1),

where λk is the k-th eigenvalue of the axisymmetric Laplacian with k ∈N0.
Then, there are 2k + 3 hyperbolic equilibria u1, ...u2k+3 and its attractor
A is below, where arrows denote heteroclinics.

uk+1 ≡ 0

uk uk+2

u2 u2k+2

u1 ≡ −1 u2k+3 ≡ +1

This corollary is proved by constructing the Sturm permutation of
the axisymmetric Chafee-Infante, yielding the the same as the usual
Chafee-Infante problem. Hence, their attractors are geometrically
(connection-wise) the same and their only difference lies in the equi-
libria and the domain of the parameter λ.

The remaining sections are organized as follows.
We firstly introduce the functional setting in Section 2.1. Further

in Section 2.2, we construct a Lyapunov functional for the singular
case by modifying Matano’s arguments from [51]. In particular this
implies that the attractor consists of equilibria and heterolinics.

Then, we focus on the connection problem. All the necessary in-
formation about the adjacency, namely the zero numbers and Morse
indices, are encoded in a permutation of the equilibria, which is de-
scribed in Section 2.3. This was done firstly by [33], and here is mod-
ified for the singular case.

In Section 2.5, it is proven the dropping lemma for the singular
case, as well as some consequences. This is a fundamental result for
the attractor construction that dates back to Sturm and is done by
modifying arguments of Chen and Polácik [62], where they proved
such result for a degenerate coefficient at only one boundary value.
Then all the previous tools are put together to construct the attractor
in Section 2.5, as it was done [29].
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Lastly, Section 2.6 gives an example of the developed theory and
constructs the attractor for the axisymmetric Chafee-Infante problem.

2.1 functional setting

The Banach space used in the upcoming theory consists of the sub-
spaces of L2(S2) depending only on the angle θ ∈ [0, π]. A more
precise description is given below.

The equation (8) can be rewritten as an abstract differential equa-
tion on a Banach space. Consider the operator

A : D(A)→ X

u 7→ Au :=
1

sin(θ)
∂θ (sin(θ)∂θu)

where we consider the weighted space X := L2
w([0, π]) with weight

w := sin(θ), and D(A) ⊂ X is the domain of the operator A. The
weight is chosen to tame the singular term, and it is exactly the metric
on the axially symmetric arc within the sphere, parametrized by the
angle θ ∈ [0, π]. The norm inherited in this space is

||u(θ)||L2
w([0,π]) =

(∫ π

0
u2(θ) sin(θ)dθ

) 1
2

The operator A is a self-adjoint singular Sturm-Liouville operator
on the space X. Its spectrum consists of real and simple eigenvalues
λk = k(k+ 1) for k ∈N0 with corresponding eigenfunctions being the
Legendre polynomials φk = Pk(cos θ), which form an orthonormal
basis of X. Hence, A is a sectorial operator and generates a compact,
dissipative and analytic semigroup, as in [41].

In particular, it settles the theory of existence, uniqueness and qual-
itative properties of solutions. For instance, the equation (8) with the
dissipative conditions (9) defines a dynamical system on some sub-
spaces of X containing D(A). Namely, on fractional power spaces Xα

for particular choices of α ∈ (0, 1). For instance, it is convenient to
chose α > 3/2 so that one obtains the Sobolev embedding Xα ⊂ C1.

Moreover, one can prove the existence and certain properties of
invariant manifolds tangent to the linear eigenspaces spanned by φk.

Theorem 2.1.1. Filtration of Invariant Manifolds [41]
Let u∗ be a hyperbolic equilibrium of (8) with Morse index n := i(u∗).

Then there exists a filtration of the unstable manifold

Wu
0 (u∗) ⊂ ... ⊂Wu

n−1(u∗) = Wu(u∗)

where each Wu
k has dimension k + 1 and tangent space spanned by φ0, ..., φk.

Analogously, there is a filtration of the stable manifold

... ⊂Ws
n+1(u∗) ⊂Ws

n(u∗) = Ws(u∗)

where each Ws
k has codimension k and tangent space spanned by φk, φk+1, ....
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Note that the above index labels are not in agreement with the di-
mension of each submanifold within the filtration, but it is with the
number of zeros an eigenfunction has. For example, an eigenfunc-
tion φk corresponding to the eigenvalue λk > 0 has k simple zeroes,
whereas the dim(Wu

k ) = k + 1.
An important property is the behaviour of solutions within each

submanifold of the above filtration of the unstable or stable mani-
folds.

Theorem 2.1.2. Linear Asymptotic Behaviour [41], [5], [18]
Consider a hyperbolic equilibrium u∗ with Morse index n := i(u∗) and a

trajectory u(t) of (8). The following holds,

1. If u(t) ∈Wu
k (u∗)\Wu

k−1(u∗) with k = 0, ..., i(u∗)− 1, then

u(t)− u∗
||u(t)− u∗||

t→−∞−−−→ ±φk.

2. If u(t) in Ws
k (u∗)\Ws

k+1(u∗) with k ≥ i(u∗), then

u(t)− u∗
||u(t)− u∗||

t→∞−−→ ±φk..

where the convergence takes place in C1
w, and Wu

−1(u∗) = ∅.
The conclusions of 1. and 2. also hold true by replacing the difference

u(t)− u∗ with the tangent vector ut.

The reason this theorem works for both the tangent vector v := ut

or the difference v := u1 − u2 of any two solutions u1 and u2 of the
nonlinear equation (8) is because they satisfy a linear equation of the
type

vt = vθθ +
vθ

tan(θ)
+ b(t, θ)vθ + c(t, θ)v (11)

where θ ∈ (0, π) has Neumann boundary conditions, b(t, θ) and
c(t, θ) are bounded, and the self-adjoint operator A := 1

sin(θ) [sin(θ)uθ ]

is bounded from below and has eigenvalues λk = k(k + 1) in the
Hilbert space L2

w([0, π]) with weight w := sin(θ).

Proof We give a sketch of the appendix in [5]. This proof works for
the case that b ≡ 0, in particular when f = f (θ, u). For the most
general proof of this fact, see [18].

Let the trajectory v(t) with initial data v0 6≡ 0 be either the tangent
vector ut(t) or the different u1(t)− u2(t) of two solutions of (8), hence
v is a solution of (11).

Consider γk a spectral gap, that is, a number in R between the
eigenvalues λk and λk+1. Denote by Pk the projections of A on the
space spanned by the eigenfunctions with associated eigenvalues less
than γk, and its complement by Qk := IdX − Pk.
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Define v̂(t) := v(t)
||v(t)||C1

w

. Note by linearity of the projection Pk and

the decomposition of X into the images of Pk and Qk,

||Pkv̂(t)||2 =
||Pkv(t)||2
||v(t)||2 =

||Pkv(t)||2
||Pkv(t)||2 + ||Qkv(t)||2 .

Due to the spectral gap, it can be proven that the projected trajecto-
ries Pkv(t) and its complement Qkv(t) have strict different asymptotic
rates, and one is faster than the other. Moreover, there is an unique k0

such that for k < k0 one of the projected trajectories is faster, whereas
for k ≥ k0 the same projected trajectories is slower.

Mathematically, limt→∞
||Pkv(t)||
||Qkv(t)|| is either 0 or ∞, for each k > 1.

This can be applied to the above, yielding

lim
t→∞
||Pk(v̂)|| = 0 or 1.

Moreover, there exists an unique k0 such that the above limit is 0
for all k < k0, and 1 for k ≥ k0. See the Lemma 7 in [5]. That is,

lim
t→∞

eλktv̂(t) = 0, for all k < k0

lim
t→∞

eλktv̂(t) 6= 0, for all k ≥ k0

Hence the asymptotic direction of v(t) is on the direction of the
eigenfunction φk0−1.

�

2.2 variational structure

In this section, we show that there exists a Lyapunov functional, as
it was done by Zelenyak [87] and Matano [52]. We modify Matano’s
construction bearing in mind that the metric on the sphere induces a
space with weighted norms, and this weight should be incorporated
into the construction of the Lyapunov functional. As a consequence
of the Lyapunov functional, bounded trajectories tend to equilibria.

Lemma 2.2.1. Lyapunov Functional
There exists a Lagrange functional L such that

E :=
∫ π

0
L(θ, u, uθ) sin(θ)dθ (12)

is a Lyapunov functional for the equation (8).

Note that in the case that the nonlinearity f does not depend on uθ ,
then the Lagrange functional L(θ, u, uθ) := 1

2 u2
θ − F(θ, u) yields a Lya-

punov functional E, where F is the primitive function of f . Indeed,

dE
dt

= −
∫ π

0
(ut)

2 sin(θ)dθ.
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For nonlinearities of the type f (θ, u, uθ), Matano’s idea yields a
Lyapunov functional such that

dE
dt

:= −
∫ π

0
(ut)

2Lpp sin(θ)dθ (13)

where p := uθ and L satisfy the convexity condition Lpp > 0. Hence,
the case that f does not depend on uθ is seen as a particular case
when Lpp = 1.

Proof Let p := uθ and differentiate (12) with respect to t,

dE
dt

=
∫ π

0

[
Luut + Lpuθt

]
sin(θ)dθ.

Integrating the second term by parts and noticing that the sin(θ) is
0 at the boundaries,

dE
dt

=
∫ π

0

[
Lu sin(θ)− d

dθ
(Lp sin(θ))

]
utdθ

=
∫ π

0

[
(Lu − Lpθ − Lpuuθ − Lppuθθ) sin(θ)− Lp cos θ

]
utdθ.

Substitute (8) casted as uθθ sin(θ) = ut sin(θ)− f sin(θ)− uθ cos(θ),

dE
dt

=
∫ π

0
(Lu − Lpθ − Lpuuθ + Lpp f ) sin(θ)utdθ

+
∫ π

0
(Lppuθ − Lp) cos(θ)utdθ

−
∫ π

0
Lppu2

t sin(θ)dθ.

To obtain the desired equality (13), one now has to guarantee that
there exists a function L satisfying

(Lu − Lpθ − Lpu p + Lpp f ) sin(θ) + (Lpp p− Lp) cos(θ) = 0 (14)

for all u, p ∈ R and θ ∈ [0, π].
Differentiating this equation with respect to p, some of the terms

cancel, yielding

(−Lppθ − Lppu p + Lppp f + Lpp fp) sin(θ) + (Lppp p) cos(θ) = 0. (15)

To make sure that Lpp > 0, Matano makes an Ansatz by introduc-
ing a function g = g(θ, u, p) through Lpp = exp(g) > 0. Hence, g
satisfies the following linear first order differential equation,

[(gθ + gu p− gp f − fp) sin(θ)− (gp p) cos(θ)] exp(g) = 0. (16)

Or equivalenty,[
gθ + gu p + gp

(
− f − p

cos(θ)
sin(θ)

)]
sin(θ) = fp sin(θ).
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This can be solved through the method of characteristics: along the
solutions of the ordinary differential equation{

uθ = p

pθ = − f − p cos(θ)
sin(θ)

the function g must satisfy

dg
dθ

= fp.

Note that the characteristic equation is the equation for equilibria.
Under the assumption that solutions of such equations exist for all
initial conditions (u, p) ∈ R2 at θ = 0, and all θ ∈ [0, π], one ob-
tain a global solution g of (16) with some initial data, for example,
g(0, u, p) ≡ 0.

It is still needed to ascend from a function g satisfying (16) to a
function L satisfying (14). A choice for L such that Lpp = exp(g)
can be obtained by integrating this relation twice with respect to p,
yielding

L(θ, u, p) :=
∫ p

0

∫ p1

0
exp(g(θ, u, p2))dp2dp1 + G(θ, u)

and this is a solution of (15).
To show that such L is also a a solution of (14), we have to restrict

which G are allowed.
Recall that (15) was obtained through differentiating (14) with re-

spect to p. That means that the left-hand side of (14) is independent
of p, since it is equal to 0. Hence it is satisfied for all p if holds for
p = 0.

At p = 0, the construction of L yields that Lp = Lpθ = 0 and
Lu = Gu. Plugging it in the equation (14) at p = 0, it yields

(Gu + Lpp f ) sin(θ) = 0.

Hence, Gu + Lpp f = 0, that is, Gu = − exp(g) f . Integrating in u,

G(θ, u) := −
∫ u

0
f (θ, u1, 0)exp(g(θ, u, 0))du1

�

Note that one can do a similar construction of a Lyapunov func-
tion without assuming that the sin(θ) appears in the integrand, as in
(12). But such coefficient will appear once the differential equation is
plugged in the Ansatz for the Lyapunov functional.

Moreover, Matano’s construction can be adapted to more general
singular Sturm Liouville operators of the form ∂θ(r(θ)∂θ)

w(θ)
, if the weight

sin(θ) within the integrand is replaced by w(θ).
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Therefore, the LaSalle invariance principle holds and implies that
bounded solutions converge to equilibria, and any ω-limit set consists
of a single equilibrium. See [53]. Moreover, the global attractor can
be characterized as follows, yielding the first part of the main result.

Proposition 2.2.2. Attractor Decomposition [41], [12]
If the equation (8) has a Lyapunov functional and a discrete set of equilib-

ria E , then the global attractor A is decomposed as

A =
⋃

v∈E
Wu(v)

and consists only of the set of equilibria and heteroclinics orbits.

Note that hyperbolic equilibria must be isolated. Moreover, there
must be finitely many due to dissipativity.

2.3 sturm permutation

The next step on our quest to find the Sturm attractor is to construct
a permutation associated to the equilibria, which is done using shoot-
ing methods. This enables the computation of the Morse indices and
zero number of equilibria. That was firstly done by Fusco and Rocha
[33] using methods also described by Fusco, Hale and Rocha in [66],
[39], [67], [69] and [32].

The equilibria equation associated to (8) can be rewritten as

0 =
1

sin(θ)
d
dθ

[uθ sin(θ)] + f (θ, u, uθ) (17)

for θ ∈ [0, π] with Neumann boundary conditions.
In order to get rid of the singularities at θ = 0 and π, rescale the

system by τ(θ) := ln(tan(θ/2)) ∈ (−∞, ∞), which maps the singu-
larities at θ = 0, π to τ = ±∞. Moreover, reduce the system to first
order through p := uτ. Lastly, add the extra equation θτ = sin(θ) to
obtain an autonomous system. Hence,

uτ = p

pτ = − f
(

θ, u, p
sin(θ)

)
sin2(θ)

θτ = sin(θ)

(18)

where the Neumann boundary condition becomes limτ→±∞ p(τ) = 0,
since the Neumann boundary in changed of coordinates yields

0 = lim
θ→0,π

uθ = lim
τ→±∞

uτ
dτ

dθ
= lim

τ→±∞
p(τ) cosh(τ) (19)

and limτ→±∞ cosh(τ)→ ∞. This forces exponential decay of p.
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Note that the term sin2(θ) cuts off the reaction f , being 1 at the
equator and decaying to 0 near the poles. This means that the diffu-
sion near the poles are stronger. Also, f is a function of p

sin(θ) , which
seems to be singular, but p := uτ = uθ sin(θ).

Recall we assumed that solutions of (18) are defined for all θ ∈
[0, π] and any initial data (u, p).

In the nonsingular case, the idea to find equilibria (8) is as follows.
They must lie in the line

L0 := {(θ, u, p) ∈ R3 | (θ, u, p) = (0, a, 0) and a ∈ R}

due to Neumann boundary at θ = 0. Then, evolve this line under
the flow of the equilibria differential equation and intersect it with
an analogous line Lπ at θ = π, so that it also satisfies Neumann at
θ = π. This reasoning does not work for the singular case, since L0

is a line of equilibria and is invariant under the shooting flow (18). A
new approach is needed.

In the singular case, the linearization of (18) at each point in L0 has
eigenvalues λ1 = 1 and λ2 = λ3 = 0. with respective generalized
eigenvectors v1 = (0, 0, 1), v2 = (1, 0, 0), v3 = (0, 1, 0). Hence, there is
an one dimensional unstable direction given by the θ-axis, and two
center directions given by the invariant plane {(u, p, 0) ∈ R3}.

Furthermore, each point (0, a, 0) ∈ L0 has an associated one dimen-
sional strong unstable manifold Wu(0, a, 0), which is locally a graph
{(θ, uu(θ, a), pu(θ, a)) ∈ R3}. See [35]. The collection of all these
strong unstable manifolds defines the unstable shooting manifold Mu,

Mu :=
⋃

a∈R

Wu(0, a, 0).

Similarly, each point (0, b, 0) ∈ Lπ has a one-dimensional strong
stable manifold given locally by the graph {(θ, us(θ, b), ps(θ, b)) ∈
R3}, and its collection defines the stable shooting manifold Ms,

Ms :=
⋃

b∈R

Ws(0, b, 0).

Note that the unstable (or stable) manifolds will exist globally for
any initial data (0, a, 0) (or (0, b, 0)), since solutions are global and it is
possible to extend such invariant manifolds through the flow of (18).

Denote by Mu
θ the cross-section of Mu for some fixed θ ∈ [0, π].

This is a curve parametrized by a ∈ R. Similarly, Ms
θ is a curve

parametrized by b.
We obtain the following characterization of equilibria through the

shooting manifolds and its relation with the Morse indices and zero
numbers, similar to [66] and [36].

Lemma 2.3.1. Equilibria Through Shooting

1. The set of equilibria E of (8) is in one-to-one correspondence with
Mu

θ ∩Ms
θ for any θ ∈ [0, π].
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2. An equilibrium point corresponding to fixed a ∈ R and b ∈ R is hy-
perbolic if, and only if, Wu(0, a, 0) intersects Ws(0, b, 0) transversely.

3. If u∗ correspond to a hyperbolic equilibrium of (8), then its Morse
index is given by i(u∗) = 1+ b ζ(θ0)

π c where ζ(θ0) is the angle between
Mu and Ms measured clockwise at their intersection point θ0, and b.c
denotes the floor function.

Proof To prove 1), note that a point in Mu
θ ∩Ms

θ satisfies the equilib-
ria equation by definition of the shooting manifolds. Moreover, the
Neumann boundary conditions are also satisfied since solutions are
in the appropriate stable/unstable manifolds.

Conversely, consider an equilibrium of (8). It must satisfiy the Neu-
mann boundary conditions (19), which requires exponential conver-
gence rate to 0. This implies that the equilibrium must be both in the
strong unstable Mu and strong stable Ms manifolds. Moreover, such
manifolds intersect for some θ ∈ [0, π], because the equilibrium is
continuous. By uniqueness and invariance of the shooting manifolds,
they must also intersect for all θ ∈ [0, π].

Due to the uniqueness of the shooting differential equation (18),
such correspondence above is one-to-one.

To prove 2), consider an equilibrium u∗ corresponding to a, b ∈
R. We compare the eigenvalue problem for u∗ and the differential
equation satisfied by the angle of the tangent vectors of the shooting
manifold.

Introducing the τ variable, the eigenvalue problem for u∗ is{
λu sin2(θ) = uττ + [Du f (θ, u∗, p∗).u + Dp f (θ, u∗, p∗).p] sin2(θ)

θτ = sin(θ)

with boundary conditions limτ→±∞ uτ(τ) = 0. From now on, the
coordinates of D f are suppressed.

Rewriting the above system as a system of first order by p := uτ,
uτ = p

pτ = −[Du f .u + Dp f .p− λu] sin2(θ)

θτ = sin(θ)

with boundary conditions limτ→±∞ p(τ) = 0.
In polar coordinates (u, p) =: (r cos(µ),−r sin(µ)), the angle given

by µ := arctan( p
u ) satisfies{

µτ = sin2(µ) + [Du f .u + Dp f .p− λ] sin2(θ) cos2(µ)

θτ = sin(θ)
(20)

with limτ=−∞ µ(τ) = 0 and limτ→∞ µ(τ) = kπ for some k ≥ 0.
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On the other hand, Mu
θ is parametrized by a ∈ R and its tangent

vector ( ∂u(θ,a)
∂a , ∂p(θ,a)

∂a ) satisfies the following linearized equation,
(ua)τ = pa

(pa)τ = −[Du f (θ, uu, pu).ua + Dp f (θ, uu, pu).pa] sin2(θ)

θτ = sin(θ)

(21)

with initial data limτ→−∞(ua, pa) = (1, 0). Note that the lineariza-
tion is considered along the unstable manifold given by the graph
{(θ, uu(θ), pu(θ)) ∈ R3}, but from now on we supress this depen-
dence of D f .

In polar coordinates (ua, pa) =: (ρ cos(ν),−ρ sin(ν)), where ν is the
clockwise angle of the tangent vector of Mu

θ with the u-axis,{
ντ = sin2(ν) + [Du f .u + Dp f .p] sin2(θ) cos2(ν)

θτ = sin(θ)
(22)

with initial data limτ→−∞ ν(τ, a) = 0.
Similarly, the angle ν̃ of the tangent vector of Ms

θ with the u-axis
satisfies the equation (22), but with initial data limτ→∞ ν(τ, b) = 0.

Note that the equation (22) that both angles ν and ν̃ of the tangent
vector satisfy is the same equation as the eigenvalue problem in polar
coordinates (20) with λ = 0, where each ν or ν̃ encodes the boundary
condition at τ = −∞ of ∞.

By hypothesis, the equilibrium u∗ corresponds to the pair of initial
data a, b ∈ R. That means that Mu

θ0
intersects Ms

θ0
for some fixed

θ0 ∈ [0, π].
Suppose that u∗ is not hyperbolic, that is, limτ→∞ µ(τ) = kπ for

λ = 0 and some k ∈ N. We compare this value with the angle
between the shooting curves at θ0. More precisely, it is proven that

lim
τ→∞

µ(τ) = ν(θ0)− ν̃(θ0). (23)

Indeed, for θ ∈ [0, θ0] the equations (20) and (22) are the same, since
both of them are linearized at the same orbit u∗, which corresponds
to the unstable manifold of (0, a, 0) ∈ R3. Since both of them have the
same initial data, uniqueness implies

µ(θ0) = ν(θ0).

To obtain a relation between µ and ν̃, consider the change of co-
ordinates in the eigenvalue problem (20) as µ̃ := µ− kπ. The equa-
tion (20) is invariant under this transformation, since sin2(µ̃ + kπ) =

sin2(µ̃). But the boundary condition changes at θ = π, namely,
limτ→∞ µ̃(τ) = 0. Therefore, µ̃ satisfies the same equation as the
angle ν̃, for θ ∈ [θ0, π]. Hence, by uniqueness,

µ(θ0)− kπ = µ̃(θ0) = ν̃(θ0).
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Subtracting these last two equations yields kπ = ν(θ0)− ν̃(θ0), that
is, the intersection of the shooting manifolds is not transverse at their
intersection point θ0.

Conversely, if the shooting manifolds are not transverse at some
intersection point for θ0, then kπ = ν(θ0)− ν̃(θ0).

Concatenate the solution ν within Mu from θ ∈ [0, θ0] with the ini-
tial data limτ=−∞ ν(τ) = 0, and ν̃ within Ms for θ ∈ [θ0, π] with initial
data ν̃(θ0) = ν(θ0) − kπ. Hence, the previous boundary conditions
limτ=∞ ν̃(τ) = 0 implies that limτ=∞ ν̃(τ) = kπ, by considering the
new initial data at θ = θ0. Note such concatenated solution satisfy the
equation (20) for the angle µ of the eigenvalue problem with λ = 0.
This implies there exists a solution µ of (20) and hence λ = 0 is an
eigenvalue. Thus, the equilibrium u∗ is not hyperbolic.

To prove 3), consider the solution µ(τ, λ) of the eigenvalue problem
in polar coordinates (20). The Sturm oscillation theorem implies that

ψ(λ) := lim
τ→∞

µ(τ, λ) (24)

is decreasing so that limλ→−∞ ψ(λ) = ∞ and limλ→∞ ψ(λ) = −π/2.
Hence, there exists a decreasing sequence {λk}k∈N to −∞ such that
ψ(λk) = kπ for k ∈ N. This implies that there exists a solution of
(20) for each λk such that ψ(λk) = kπ, and hence {λk}k∈N are the
eigenvalues.

Recall that the Morse index i(u∗) is the number of positive eigen-
values of the linearization at u∗, that is

... < λi(u∗) < 0 < λi(u∗)−1 < ... < λ0.

Since ψ(λ) is decreasing and λi(u∗) are eigenvalues, then

i(u∗)π = ψ(λi(u∗)) > ψ(0) > ψ(λi(u∗)−1) = (i(u∗)− 1)π.

Divide the above by π and consider the integer value, yielding that
i(u∗) = bψ(0)

π c + 1. It was noted in (23) that ψ(0) = ν(θ0) − ν̃(θ0),
which is exactly the angle between Mu and Ms.

�

Hence, one can obtain a Sturm permutation σ by labeling the inter-
section points ui ∈ Mu

π
2
∩ Ms

π
2

firstly along Mu
π
2

following its para-
metrization given by (π

2 , uu(π
2 , a), pu(π

2 , a)) as a goes from −∞ to ∞.
Namely,

u1 < ... < uN

where N denotes the number of equilibria. Secondly, label the inter-
section points along Ms

π
2

following its parametrization by b ∈ R,

uσ(1) < ... < uσ(N)
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The Morse indices of equilibria and the zero number of difference
of equilibria can be calculated through the Sturm permutation σ, as
in [68] and [29]. This yields all necessary information for adjacency.
The main tool for such proofs is the third part of the above Lemma:
the rotation along the shooting curve increases the Morse index.

Lemma 2.3.2. Adjacency Through Permutation [29]
The Sturm permutation σ yields the Morse indices of equilibria and zero

numbers of difference of equilibria. Mathematically,

1. For any 1 ≤ n ≤ N,

i(vn) =
n−1

∑
j=1

(−1)jsgn(σ−1(j + 1)− σ−1(j))

2. For any 1 ≤ n < m ≤ N,

z(vn − vm) = i(vm) +
1
2
[(−1)n(sgn(σ−1(n)− σ−1(m)))− 1]

+
n−1

∑
j=m+1

sgn(σ−1(j + 1)− σ−1(m))

where empty sums denote 0.

2.4 dropping lemma

Let the zero number zt(u) count the number of strict sign changes in θ

of a C1 function u(t, θ) 6≡ 0, for each fixed t. More precisely,

zt(u) := sup
k

{
∃ partition {θj}k

j=1 of [0, π] such that
u(t, θj)u(t, θj+1) < 0 for all j = 1, ..., k

}
.

and zt(u) = −1 if u ≡ 0. In case u does not depend on t, we simply
write zt(u) = z(u).

A point (t0, θ0) ∈ R× [0, π] such that u(t0, θ0) = 0 is said to be a
simple zero if uθ(t0, θ0) 6= 0 and a multiple zero if uθ(t0, θ0) = 0.

The following result shows that the zero number of certain solu-
tions of (8) is nonincreasing in time t, and decreases whenever a mul-
tiple zero occur. Different versions of this well known fact are due to
Sturm [81], Matano [52], Angenent [6] and others. See [47] for a more
recent account.

Lemma 2.4.1. Dropping Lemma
Consider v 6≡ 0 a solution of the linear equation (11) for t ∈ [0, T). Then,

its zero number zt(v) satisfies

1. zt(v) < ∞ for any t ∈ (0, T).

2. zt(v) is nonincreasing in time t.
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3. zt(v) decreases at multiple zeros (t0, θ0) of v, that is,

zt0−ε(v) > zt0+ε(v)

for any sufficiently small ε > 0.

Recall that both the tangent vector ut and the difference u1 − u2

of two solutions u1, u2 of the nonlinear equation (8) satisfy a linear
equation as (11). Hence, the dropping lemma deals with the zero
number of such solutions.

Below we give the idea of two different proofs. The first is an
adaptation of Chen and Poláčik [62], where the dropping lemma was
proved for the case of a singular coefficient at one boundary point.
The second by Angenent [6], where this lemma was proved for the
case of regular coefficients. We also note that it is also possible to
adapt the Newton polygon method done in Angenent [8] and An-
genent with Fiedler [11], but this is not pursued here.

2.4.1 Proof 1

This proof adapts Chen and Poláčik [62]. We cut off solutions nearby
each boundary point so that it satisfies a differential equation with
only one boundary singularity, and then apply the dropping lemma
for such equations as it was proved in [62].

We say two functions u(t, θ) and v(t, θ) have the same type of zeros if
for each fixed t, their zeros in θ coincide, together with their property
of being simple or multiple. Mathematically, u(t, θ0) = 0 if, and only
if v(t, θ0) = 0, for fixed t. Moreover, consider a zero θ0 of u and v for
fixed t, then uθ(t, θ0) = 0 if, and only if vθ(t, θ0) = 0, .

Lemma 2.4.2. Suppose u 6≡ 0 is a solution of (11). Then, there exists
bounded functions v and d on [t1, t2]× [0, π] satisfying

vt = vθθ +
vθ

θ
+ d(t, θ)v (25)

where θ ∈ (0, π) has Neumann boundary conditions. Moreover, for a fixed
θ1 ∈ (0, π), the functions u and v have the same type of zeros for θ ∈ [0, θ1],
whereas v 6= 0 for all θ ∈ [θ1, π].

Proof The idea is to localize the solution u(t, θ) for each t and θ near
the boundary θ = 0, and cut off whatever is far from it. Vaguely, this
defines v(t, θ), and d(t, θ) is chosen accordingly so that one obtains
the desired equation (25).

Since the solution u 6≡ 0, choose a point θ1 such that the solution
is not zero at θ1 for a nonempty small interval of time [t1, t2], by
continuity in t. Moreover, due to continuity in θ, choose θ2 ∈ (θ1, π)

such that u(t, θ) 6= 0 for [t1, t2] × [θ1, θ2]. Without loss of generality,
suppose that u is positive for [t1, t2] × [θ1, θ2]. Otherwise, consider
u(t, θ) 7→ −u(t, θ).
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Expand the singular term in power series as 1
tan(θ) = 1

θ + b(θ),
where b(θ) = ∑∞

n=0 bnθ2n+1 is analytic in θ ∈ [0, π) and its coeffi-
cients bn are related to the Bernoulli numbers. Plugging this in (11),
yields

ut = uθθ +
uθ

θ
+ b(θ)uθ + c(t, θ)u.

Since b(θ) converges for θ ∈ [0, π) but not for θ = π, this is how
the singularity at θ = π is encoded in the new equation.

In order to get rid of b(θ), rescale the solution for θ ∈ [0, θ2] by
ũ(t, θ) := exp ( 1

2

∫ θ
0 b(y)dy)u(t, θ). Note u(t, θ) and ũ(t, θ) have the

same type of zeros. The chain rule implies

ũt = ũθθ +
ũθ

θ
+ c̃(t, θ)ũ

for θ ∈ [0, θ2], where c̃(t, θ) := c(t, θ)− b(θ)
2θ + b2(θ)

4 − bθ(θ)
2 . Note the

term b(θ)
θ is not singular at θ = 0 due to the nature of b(θ), that is, its

first order term is b0θ.
Next, the rescaled solution will be cut off. Define the cut off func-

tion η : [0, π]→ [0, 1] given by

η(θ) :=


1 for θ ∈ [0, θ1]

0 < η(θ) < 1 for θ ∈ (θ1, θ2)

0 for θ ∈ [θ2, π]

which transitions smoothly from 1 to 0.
Let v : [t1, t2]× [0, π]→ R be defined by

v(t, θ) :=

{
η(θ)[ũ(t, θ)− 1] + 1 for θ ∈ [0, θ2]

1 for θ ∈ (θ2, π].

That is, v(t, θ) = ũ(t, θ) for θ ∈ [0, θ1]. For θ ∈ [θ1, θ2] there is a
transition phase from ũ to the constant function 1. For θ ∈ [θ2, π], the
singularity at θ = π does not play a role anymore, since v(t, θ) ≡ 1
satisfies a trivial equation.

The chain rule says that v(t, θ) satisfies

vt = vθθ +
vθ

θ
− ηθ [ũ− 1]

θ
+ ηc̃ũ− ηθθ [ũ− 1]− 2ηθ ũθ .

Now d(t, θ) is defined so that v(t, θ) satisfies the desired equation
(25). For θ ∈ [0, θ1], the only term that does not vanish is c̃ũ, since
η ≡ 1 and ηθ ≡ 0 ≡ ηθθ . This defines d in this interval. For θ ∈ (θ1, θ2),
define most terms on the right hand side by d(t, θ)v, as below. For
θ ∈ [θ2, π], the function v ≡ 1 and vt = vθθ = vθ

θ = 0. Hence, it
satisfies a trivial equation and define d := 0. More precisely,

d(t, θ) :=


c̃ for θ ∈ [0, θ1]
1
v [−

ηθ [ũ−1]
θ + ηc̃ũ− ηθθ [ũ− 1]− 2ηθ ũθ ] for θ ∈ (θ1, θ2)

0 for θ ∈ [θ2, π]
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is bounded, since all terms ũ, ũθ , η, ηθ , ηθθ , c̃ are bounded for θ ∈ [0, θ2].
Also, note v > 0 for θ ∈ [θ1, θ2] and hence 1

v is well defined and
bounded. Indeed, the solution u is positive in this interval, and so
is ũ, since they have the same type of zeros. If ũ ≥ 1 it is clear that
v > 0 by its definition, and if 1 > ũ > 0, one also obtains that v > 0
by noticing that η ∈ [0, 1] for θ ∈ [0, θ2].

Hence, we have defined v and d satisfying (25) such that v and u
have the same type of zeros and v ≡ 1 for θ ∈ [θ2, π].

�

In order to apply the dropping lemma to functions v(t, θ) satisfying
the equation (25), as in [62], one still needs two adaptations. Firstly,
the dropping lemma is proved for θ ∈ [0, 1] and this can be circum-
vented by stretching the interval through θ 7→ πθ. Secondly, in [62]
it is considered Dirichlet boundary condition at the regular bound-
ary θ = 1, but their proof works similarly for the Neumann case by
changing the odd reflection done at the regular boundary θ = 1 to an
even reflection. Such choice of reflections is done explicitly in [6], for
different boundary conditions.

Proof of Lemma 2.4.1 (dropping lemma) Firstly, we prove that u has
finitely many zeros. The Lemma 2.4.2 implies that one can construct
a v satisfying (25) with same type of zeros of u. Due to the dropping
Lemma in [62], v has finitely many zeros and consequently u has
finitely many zeros for θ ∈ [0, θ1].

To conclude that u also has finitely many zeros for θ ∈ [θ1, π], con-
sider the change of coordinates θ̃ := π − θ. The solution u(t, θ̃) satis-
fies the equation (25) with θ̃ ∈ [0, π− θ1], and by the dropping lemma
in [62], it also has finitely many zeros for θ̃ ∈ [0, π− θ1]. Equivalently,
u has finitely many zeros for θ ∈ [θ1, π].

Secondly, we prove that multiple zeros must drop. Suppose (t0, θ0)

is a multiple zero of a solution u 6≡ 0 of (11). By the Lemma 2.4.2,
there is a function v(t, θ) having zeros of the same type as u(t, θ) for
θ ∈ [0, θ1] and some fixed θ1 ∈ (0, π).

If θ0 ≤ θ1, then the dropping lemma in [62] implies that the number
of zeros of v(t, θ) should drop. Since v(t, θ) is not zero for θ ∈ [θ1, π],
then the zero that dropped should have occured for θ ∈ [0, θ1]. This
implies that some zero of u(t, θ) must have dropped, since they have
the same type of zeros.

If θ0 > θ1, then consider the change of coordinates θ̃ := π − θ and
the same arguments as above show that the multiple zero of u(t, θ̃)

must have dropped for θ̃ ∈ [0, π − θ1].
Thirdly, we prove that the zero number is not increasing in time.

We already know that it must drop at multiple zeros. Suppose (t0, θ0)

is a simple zero, that is u(t0, θ0) = 0 and uθ(t0, θ0) 6= 0. Hence, the
implicit function theorem says that u(t, θ(t)) = 0 for an unique curve
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θ(t) in small neighborhood of t0 such that θ(t0) = θ0. Hence, the
simple zero persists and no new zeros are created.

�

2.4.2 Proof 2

This proof is an adaptation of Angenent [6], by rescaling the solution
nearby a multiple zero of multiplicity n and showing that there are n
zero curves backwards in time, and less curves forwards in time. We
give a sketch, for a more detailed account see [47].

For t0 > 0, the localization of the solution v(t, θ) of (11) nearby the
multiple zero (t0, θ0),

w(τ, ξ) := e−
ξ2
2 v(t0 − e−2τ, θ0 + 2e−τξ)

for τ ≥ − 1
2 log(t0) =: τ0. Due to the properly chosen parabolic rescal-

ing, w(τ, ξ) satisfies

wτ =
1
2

wξξ +
1

2 tan(θ0 + 2e−τξ)
wξ −

1
2
(ξ2 − 1)w + q(τ, ξ)w

where (τ, ξ) ∈ (τ0, ∞)×R and q(τ, ξ) is bounded and decay with τ.
There are two cases: either the multiple zero is in the interior θ0 ∈

(0, π) or in one of the boundaries θ0 = 0, π.
In the first case, the tangent term is regular and one can rescale

this wξ term out by an appropriate multiplying w by an appropriate
exponential. Then the arguments of Angenent [6] hold.

In the second case, there is a singular term only at one of the bound-
aries it is being zoomed in. One can reflect solutions along the other
boundary, which is regular, and rescale the bounded terms to obtain

wτ =
1
2

wξξ +
1

2ξ
wξ −

1
2
(ξ2 − 1)w + q(τ, ξ)w

for x ∈ R+.
The operator 1

2 wξξ +
1

2ξ wξ is self-adjoint in L2
r ([0, ∞)) with weigth r.

Due to Sturm-Liouville, the spectrum of such operator consists of sim-
ple eigenvalues and respective eigenfunctions φn(ξ) = e−ξ2/2Ln(ξ),
where Ln is a multiple of the n-th Laguerre polynomial. This eigen-
value problem is also known in the literature as the quantum har-
monic oscillator in spherical coordinates. One can then follow the
proof of Angenent by simply changing the functional spaces and its
basis. For a more detailed account see [47].

2.4.3 Consequences of the dropping lemma

Two results follow by combining the dropping lemma 2.4.1 and the
asymptotic description in Theorem 2.1.2. The first is a result relating
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the zero number within invariant manifold and the Morse indices of
equilibria. The second is the Morse-Smale property.

Theorem 2.4.3. Zero number within Invariant Manifolds [82], [18]
Consider a equilibria u± ∈ E and a trajectory u(t) 6≡ u± of (8). Then,

1. If u(t) ∈Wu(u−), then i(u−) > zt(u− u−).

2. If u(t) ∈Ws
loc(u+), then zt(u− u+) ≥ i(u+).

3. If u(t) ∈Wu(u−) ∩Ws
loc(u+), then

i(u+) ≤ zt(u− u±) < i(u−).

These results also hold by replacing u(t)− u∗ with the tangent vector ut.

The above theorem implies that (8) has no homoclinic orbits. In-
deed, if there were any, then i(u∗) < i(u∗), which is a contradiction.

Proof The proof from [18] is sketched.
Firstly we prove the claim regarding the unstable manifold, since it

is finite dimensional. Consider time t > −tj, where tj > 0. Noticing
that a normalization factor doesn’t change the number of zeros and
using the dropping lemma 2.4.1, we obtain

z−tj

(
u− u−
||u− u−||

)
= z−tj(u− u−) ≥ zt(u− u−)

Theorem 2.1.2 guarantees that if u(t) ∈ Wu
k (u−)\Wu

k−1(u−), then
u−u−
||u−u−|| → ±φk as −tj → −∞, in C1

w([0, π]), where the eigenfunction
±φk has k simple zeros, due to Sturm-Liouville theory. Moreover,
z−tj(.) is constant in a C1

w neighborhood of any C1
w function with

only simple zeros. This implies that the above left hand side equals
z−tj(±φk) = k, for tj sufficiently large, yielding

k ≥ zt(u− u−). (26)

One can repeat this argument for each layer within the filtration
of the unstable manifold Wu(u−) as in Theorem 2.1.1, yielding the
inequality (26) for each k ≤ i(u−) − 1. Therefore, the zero number
in the unstable manifold Wu(u−) is less than the biggest of all these
values, namely, i(u−). This yields the first part of the theorem.

Now we prove the second claim of the theorem regarding the stable
manifold. Similar arguments as before hold, yielding

zt(u− u+) ≥ k

for each finite dimensional Ws
k (u+)\Ws

k+1(u+).
This does not guarantee that such inequality holds on the whole

stable manifold Ws(u+), since the set ∩k≥i(u+)W
s
k (u+) ⊆ Ws(u+) is

not necessarily empty. Hence, one can not deduce the inequality in
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the full stable manifold from the same inequality for sets within its
filtration.

Note that the attractor A is finite dimensional. Hence Ws(u+) ∩A
is finite dimensional, and therefore the above arguments from the
unstable manifold holds for subsets of the stable manifold within the
attractor.

But we continue to give a sketch of the proof for the most general
case, that is, for solutions in the infinite dimensional Ws(u+). To
circumvent the problem of infinite dimensionality, consider u(t) ∈
Ws

k (u+) with k ≥ i(u+). By the dropping lemma, there exists a t∗ > 0
such that u(t)− u+ has finitely many zeros for all t > t∗, and

zt(u− u+) ≥ zt∗(u− u+)

for t < t∗.
Moreover, it is shown in [19] that u(t) − u+ has only simple ze-

ros for an open dense set in [t∗, ∞). Due to the dropping lemma,
u(t)− u+ has finitely many zeros and is non-increasing for t > t∗, de-
creasing strictly at multiple zeros. Therefore, it can only drop finitely
many times. Hence, no dropping occurs for large enough t∗, and the
number of zeros is constant for t > t∗. From now on we suppose that
t∗ is large so that these remarks hold.

Let t∗ be large enough, then ||u(t∗)− u+||C1
w

is small enough, and
hence there exists ũ ∈Ws

m(u+)\Ws
m+1(u+) such that

z(ũ− u+) = zt∗(u− u+)

for some m ∈ N0, since dim(Ws
m(u+)\Ws

m+1(u+)) = 1 and all ele-
ments in this space have m zeros for t > t∗, since no more dropping
occurs.

For ũ ∈Ws
m(u+)\Ws

m+1(u+), the bound

z(ũ− u+) ≥ m

holds. Moreover, this holds for any m ≥ i(u+), which proves the
desired theorem.

For the last part, we apply the first two claims together as follows.
For u(t) ∈ Wu(u−), then i(u−) > zt(u − u−) for all t ∈ R. By the
dropping lemma, for t < τ, we have that zt(u − u−) ≥ zτ(u − u−).
In particular, for large τ > 0, we obtain zτ(u− u−) = zτ(u− − u+),
yielding

i(u−) > zt(u− u−) ≥ zτ(u− − u+)

for all t < τ. Repeating the arguments above, one obtain that

zt(u− − u+) ≥ i(u+).

This proves that i(u−) > zt(u− u−) ≥ i(u+) for all t ∈ [−τ, τ] with
sufficiently large τ.
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�

Theorem 2.4.4. Morse-Smale Property [42], [5], [33]
Consider two hyperbolic equilibria u− and u+ with respective Morse in-

dices i(u−), i(u+). If Wu(u−) ∩Ws(u+) 6= ∅, then such intersection is
transverse. Moreover, Wu(u−) ∩Ws(u+) is an embedded submanifold of
dimension i(u−)− i(u+).

This last theorem implies that if the semigroup has a finite number
of equilibria, in which all are hyperbolic, then it is a Morse-Smale
system in the sense of [38]. Note that this property can hold even in
case the equilibria are not hyperbolic, as in [42].

Proof The sketch of the proof follows [5].
Consider u0 ∈ Wu(u−) ∩Ws(u+), that is, there exists a trajectory

u(t) with initial data u0 such that limt→±∞ u(t) = u±. To prove trsver-
sality, we need to show that

X = Tu0Wu(u−) + Tu0Ws(u+).

The idea is to construct a linear subspace L ⊆ Tu0Wu(u−) such that
dim(L) = codim(Tu0Ws(u+)) and L does not intersect Tu0Ws(u+).

The hyperbolicity of u+ yields that

X = Tu0Wu(u+) + Tu0Ws(u+)

and hence dim(L) = i(u+). Since L does not intersect Tu0Ws(u+), we
have that

X = L + Tu0Ws(u+)

which finishes the proof of transversality, since L ⊆ Tu0Ws(u−).
We now construct a space L with the above properties. Theorem

2.4.3 implies that i(u−) ≥ z(ut(0)) > i(u+), and hence we consider
the linear subspace

L := span{φk | k = 0, ..., i(u+)− 1} ⊂ Tu0Wu(u−)

where φk are the eigenfunctions of the linearization at u0. Hence
dim(L) = i(u+) and since L is a linear subspace,

z(ψ) = z

(
i(u+)−1

∑
k=0

ckφk

)
< i(u+)

for any ψ ∈ L with ck ∈ R, as in [18].
On the other hand, suppose towards a contradiction that ψ also

lies in Tu0Ws(u+). Consider a solution ψ(t) of the linear equation (11)
with initial data ψ, hence the dropping lemma implies that

z0(ψ) ≥ zt(ψ) ≥ i(u+)

for any t ≥ 0, a contradiction.
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Therefore,
L ∩ Tu0Ws(u+) = ∅.

Lastly, Wu(u−) and Ws(u+) are embedded submanifolds. Hence
their intersection is also an embedded submanifold and has dimen-
sion as follows

dim(Wu(u−) ∩Ws(u+)) = dim(Wu(u−))− dim(Ws(u+)
⊥)

= i(u−)− i(u+).

which is positive, since i(u−) ≥ z(ut(0)) > i(u+) as in Theorem 2.4.3.

�

2.5 sturm global structure

This section gathers all the tools developed in the previous sections in
order to construct the attractor for the parabolic equation with degen-
erate coefficients (8) and prove the second part of the main Theorem
2.0.1.

Its proof is a consequence of two propositions. Firstly, due to the
cascading principle, it is enough to construct all heteroclinics between
equilibria such that their Morse indices differ by 1. Secondly, on
one direction, the blocking principle: some conditions imply that there
does not exist a heteroclinic connection; on the other direction, the
liberalism principle: if those conditions are violated, then there exists a
heteroclinic.

The cascading and blocking principles follow from the dropping
lemma and Morse-Smale property from Section 2.4, and we give a
sketch as in [29]. There is only a mild modification in the proof of the
liberalism principle in Proposition 2.5.2.

Proposition 2.5.1. Cascading Principle [29]
There exists a heteroclinic between two equilibria u− and u+ such that

n := i(u−)− i(u+) > 0 if, and only if, there exists a sequence (cascade) of
equilibria {vk}n

k=0 with v0 := u− and vn := u+, such that the following
holds for all k = 0, ..., n− 1

1. i(vk+1) = i(vk) + 1

2. There exists a heteroclinic from vk+1 to vk

Proposition 2.5.2. Blocking and Liberalism Principles [29]
There exists a heteroclinic connection between equilibria u− and u+ with

i(u−) = i(u+) + 1 if, and only if,

1. Morse blocking: z(u− − u+) = i(u+),

2. Zero number blocking: z(u−− u∗) 6= z(u+− u∗) for all equilibria
u∗ between u− and u+ along Mu

θ for some θ ∈ [0, π].
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The blocking and liberalism principles assert that the Morse indices
i(.) and zero numbers z(.) construct the global structure of the attrac-
tor explicitly. Those numbers can be obtained through the Sturm
permutation, as in Section 2.3.

In particular, one can check the zero number blocking for θ = 0 as
it is done in [29]. We prefer to state the condition for some θ ∈ [0, π]

because the Sturm permutation in Section 2.3 labels the equilibria
along Mu

θ and Ms
θ for some θ ∈ [0, π]. Moreover, those curves are

computed for θ = π/2 for the Chafee-Infante example in Section 2.6
We now show that u∗ lies in between u− and u+ at θ = 0 if, and

only if it is also between u± along Mu
θ for any θ ∈ [0, π]. Indeed, due

to continuity with respect to the initial data (0, a, 0) ∈ R3 of the shoot-
ing flow (18), the curve Mu

θ for fixed θ ∈ [0, π) is continuous and the
order of a ∈ R induces an order along Mu

θ , hence the parametrization
respects its labeling. At θ = π, continuity also yields an ordering of
the equilibria within Mu

θ .
Note one can replace Mu

θ in the zero number blocking by Ms
θ , since

imilar arguments as above hold and show that u∗ lies in between u−
and u+ at θ = π if, and only if it is also between u± along Ms

θ for
some θ ∈ [0, π].

Proof of Proposition 2.5.1
( ⇐= ) Theorem 2.4.4 guarantees that the dynamical system gen-

erated by (8) is Morse-Smale, which has the following transitivity
relation: if there exists a heteroclinics between u− and v, and another
between v and u+, then there also exists a heteroclinic connecting u−
and u+. See [59].
( =⇒ ) Consider two hyperbolic equilibria u− and u+ with Morse

indices i(u−) and i(u+). Denote set of heteroclinic connections by

Σ := Wu(u−) ∩Ws(u+)) 6= ∅

where dim(Σ) = i(u−)− i(u+) =: n. The proof follows by induction
on n. The statement is trivial for n = 1. Suppose that the theorem
holds for all 1, ..., n− 1 with n ≥ 2, and it is shown that it also holds
for n.

Denote the boundary ∂Σ := Σ\Σ, where the closure is understood
in the H2

w([0, π])-topology of X = L2
w([0, π]) with weight w = sin(θ).

Note that ∂Σ is closed, Σ is invariant and u−, u+ ∈ ∂Σ.
Firstly, it is shown that there exists an equilibrium v ∈ ∂Σ\{u−, u+}.

Suppose towards a contradiction that it does not exist such v. Then,
one can construct u0 ∈ Σ near u− such that z(u0 − u−) = i(u+) and
u0− u− have a different sign than u+− u− at θ = 0, see [29]. Consider
a trajectory u(t) ∈ Σ through u0 which satisfies

zt(u− u−) ≥ i(u+) = z(u0 − u−)

since u(t) ∈ Ws(u−) ⊂ Σ and it is known how the zero number
behaves within invariant manifolds by Theorem 2.4.3.
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On the other hand, the different sign condition at θ = 0 implies
u(t)− u− has a zero at the boundary θ = 0 for some time t0. More-
over, Neumann boundary conditions enforce this zero to be a multi-
ple zero. The dropping lemma 2.4.1 implies

zt(u− u−) < z(u0 − u−)

for t > t0. Both these inequalities yield the desired contradiction.
Lastly, for equilibria v ∈ ∂Σ\{u−, u+}, there are heteroclinic conec-

tions from u− to v, and from v to u+. This holds for Morse-Smale
systems, see [14]. Moreover, connections occur from an equilibrium
with higher to another with lower Morse indices, hence i(u−) > i(v).
Subtracting i(u+) from both sides, yields n > i(v) − i(u+), by defi-
nition of n. The induction hypothesis implies that there is a cascade
between v and u+. Similarly, one obtain a cascade from u− to v. Join-
ing both these cascades yield the full cascade.

�

For the proof of the liberalism theorem, it is used the Conley index
to detect orbits between u− and u+. We give a brief introduction
of Conley’s theory, and how it can be applied in this context. See
Chapters 22 to 24 in [80] for a brief account of the Conley index, and
its extension to infinite dimensional systems in [71].

Consider the space X of all topological spaces and the equivalence
relation given by Y ∼ Z for Y, Z ∈ X if, and only if Y is homotopy
equivalent to Z, that is, there are continuous maps f : Y → Z and
g : Z → Y such that f ◦ g and g ◦ f are homotopic to idZ and idY,
respectively. Then, the quotient space Y/ ∼ describes the homotopy
equivalent classes [Y] of all topological spaces which have the same
homotopy type. Intuitively, [Y] describes all other topological spaces
which can be continuously deformed into Y.

Suppose Σ is an invariant isolated set, that is, it is invariant with
respect to positive and negative time of the semiflow, and it has a
closed neighborhood N such that Σ is contained in the interior of N
with Σ being the maximal invariant subset of N.

Denote ∂eN ⊂ ∂N the exit set of N, that is, the points which are not
strict ingressing in N,

∂eN := {u0 ∈ N | u(t) 6∈ N for all sufficiently small t > 0}.

The Conley index is defined as

C(Σ) := [N/∂eN]

namely the homotopy equivalent class of the quotient space of the
isolating neighborhood N relative to its exit set ∂eN. Such index is
homotopy invariant and does not depend on the particular choice of
isolating neighborhood N.
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We compute the Conley index for two examples.
Firstly, the Conley index of a hyperbolic equilibria u+ with Morse

index n. Consider a closed ball N ⊂ X centered at u+ without any
other equilibria in N, as isolating neighborhood. The flow provides a
homotopy that contracts along the stable directions to the equilibria
u+. Then, N is homotoped to a n-dimensional ball Bn in the finite
dimensional space spanned by the first n eigenfunctions, related to
the unstable directions. Note the exit set ∂eBn = ∂Bn = Sn−1, since
after the homotopy there is no more stable direction and the equilibria
is hyperbolic. Therefore, the quotient of a n-ball and its boundary is
an n-sphere,

C(u+) = [N/∂eN] = [Bn/∂eBn] = [Bn/Sn−1] = [Sn].

Secondly, the Conley index of the union of two disjoint invariant
sets, for example u− and u+ with respective disjoint isolating neigh-
borhoods N− and N+. Then, N− ∪ N+ is an isolating neighborhood
of {u−, u+}. By definition of the wedge sum

C({u−, u+}) =
[

N− ∪ N+

∂e(N− ∪ N+)

]
=

[
N−

∂eN−
∨ N+

∂eN+

]
= C(u−) ∨ C(u+).

The Conley index can be applied to detect heteroclinics as follows.
Construct a closed neighborhood N such that its maximal invariant
subspace is the closure of the set of heteroclinics between u±,

Σ = Wu(u−) ∩Ws(u+).

Suppose, towards a contradiction, that there are no heteroclinics
connecting u− and u+, that is, Σ = {u−, u+}. Then, the index is given
by the wedge sum C(Σ) = [Sn] ∨ [Sm], where n, m are the respective
Morse index of u− and u+.

If, on the other hand, one can prove that C(Σ) = [0], where [0]
means that the index is given by the homotopy equivalent class of a
point. This would yield a contradiction and there should be a con-
nection between u− and u+. Moreover, the Morse-Smale structure
excludes connection from u+ to u−, and hence there is a connection
from u− to u+.

Hence, there are three ingredients missing in the proof: the Conley
index can be applied at all, the construction of a isolating neighbor-
hood N of Σ and the proof that C(Σ) = [0].

Proof of Proposition 2.5.2
( =⇒ ) This part is called blocking in [29]. Consider a heteroclinic

u(t) connecting u− to u+ such that i(u−) = i(u+) + 1.
In order to prove the Morse blocking, note that for large t > 0,

zt(u− − u) = z(u− − u+) = z−t(u− u+).
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Combining with Theorem 2.4.3,

i(u+) ≤ z(u− − u+) < i(u−) = i(u+) + 1.

To prove the zero number blocking, suppose towards a contradic-
tion that there exists an equilibrium u∗ between u− and u+ at θ = 0
such that z(u− − u∗) = z(u+ − u∗). For large t > 0, we have that

z−t(u− u∗) = z(u− − u∗) = z(u+ − u∗) = zt(u− u∗).

On the other hand, for large t > 0, u(−t) is close to u−, and u(t)
is close to u+ at θ = 0. This means that if u∗ is between u− and u+

at θ = 0, then u(t)− u∗ changes sign at θ = 0, as t increases. Hence
the profile u(t) − u∗ has a zero at θ = 0 for some time, and it is a
multiple zero due to Neumann boundary conditions. The dropping
lemma 2.4.1 implies that the number of zeros drops,

z−t(u− u∗) > zt(u− u∗)

for large t > 0. The last two equations yield a contradiction.
( ⇐= ) This is also called liberalism in [29]. Consider hyperbolic

equilibria u−, u+ such that i(u−) = i(u+) + 1 and satisfies both the
Morse and the zero number blocking. Without loss of generality, as-
sume u−(0) > u+(0).

It is used the Conley index to detect orbits between u− and u+.
Note that the semiflow generated by the equation (8) on the Banach
space X is admissible for the Conley index theory in the sense of
[71], due to a compactness property that is satisfied by the parabolic
equation (8), namely that trajectories are precompact in phase space.
See Theorem 3.3.6 in [41].

As mentioned above, in order to apply the Conley index concepts
we need to construct appropriate neighborhoods and show that the
Conley index is [0].

Consider the closed set

K(u±) :=
{

u ∈ X | z(u− u−) = i(u+) = z(u− u+)

u+(0) ≤ u(0) ≤ u−(0)

}
Consider also closed ε-balls Bε(u±) centered at u± such that they

don not have any other equilibria besides u±, respectively, for some
ε > 0.

Define
Nε(u±) := Bε(u−) ∪ Bε(u+) ∪ K(u±).

The zero number blocking condition implies there are no equilibria
in K(u±) besides possibly u− and u+. Hence, Nε(u±) also has no
equilibria besides u− and u+.

Denote Σ the maximal invariant subset of Nε. We claim that Σ is
the set of the heteroclinics from u− to u+ given by Wu(u−) ∩Ws(u−).
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On one hand, since Σ is globally invariant, then it is contained in
the attractor A, which consists of equilibria and heteroclinics. Since
there are no other equilibria in Nε(u±) besides u±, then the only
heteroclinics that can occur are between them.

On the other hand, Theorem 2.4.3 implies that along a heteroclinic
u(t) ∈ H the zero number satisfies zt(u − u±) = i(u+) for all time,
since i(u−) = i(u+) + 1. Therefore u(t) ∈ K(u±) and the closure of
the orbit is contained in Nε(u±). Since the closure of the heteroclinic
is invariant, it must be contained in Σ.

Lastly, it is proven that C(Σ) = [0] in three steps, yielding the
desired contradiction and the proof of the theorem. We modify the
first and second step from [29], whereas the third remain the same.

In the first step, a model is constructed displaying a saddle-node
bifurcation with respect to a parameter µ, for n := z(u+ − u−) ∈ N

fixed,

0 = [vξξ +
1

tan(ξ)
vξ ]P2

n + λnv + gn(µ, ξ, v, vξ) (27)

where ξ ∈ [0, π] has Neumann boundary conditions, λn = n(n + 1)
are the eigenvalues of the axisymmetric laplacian with the Legendre
polynomials Pn(cos(ξ)) as eigenfunctions, and

gn(µ, ξ, v) :=
[
v2 − µP2

n
]

Pn.

For µ > 0, the equilibria of (27) are v± = ±√µPn(cos(ξ)), since Pn

are the eigenfunctions of the axially symmetric Laplacian.

z(v+ − v−) = z(u+ − u−) =: n (28)

since the n intersections of v− and v+ will be at its n zeroes.
Moreover, v± are hyperbolic equilibria for small µ > 0, such that

i(v+) = n + 1 and i(v−) = n. Indeed, parametrize the bifurcating
branches by µ = s2 so that v(s, ξ) = sPn(cos(ξ)), where s > 0 corre-
spond to v+ and s < 0 to v−. Linearizing at the equilibrium v± yields
the following linear operator

Ln(s)v :=
[

vξξ +
1

tan(ξ)
vξ + (λn + 2s)v

]
P2

n .

This operator can be seen as a Sturm-Liouville eigenvalue problem
in the space L2

w with weight w(ξ) = sin(ξ)P2
n , namely

(η − 2s) sin(ξ)P2
nv =

[
vξ sin(ξ)]ξ + sin(ξ)λnv

]
P2

n .

Hence, for each n fixed, ηn(s) = 2s is an eigenvalue with Pn(cos(ξ))
its corresponding eigenfunction, since the terms on the right hand
side yield the eigenvalue problem for the axisymmetric Laplacian and
vanish.

We now use a perturbation argument in Sturm-Liouville theory.
For µ = s2 = 0, the eigenvalues of Ln(0) in L2

w coincide with the
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eigenvalues of the usual axisymmetric laplacian such that there is one
eigenvalue ηn(0) = 0 and n positive eigenvalues. For small µ < 0, the
number of positive eigenvalues persist, and there is no eigenvalue 0,
since η(µ) < 0; whereas for small µ > 0, the number of positive
eigenvalues increases by 1, and there is no eigenvalue 0, since η(µ) >

0. This yields the desired claim about hyperbolicity and the Morse
index.

Now consider the semilinear parabolic equation such that (27) is
its equilibria equation. The equilibria v± together with their connect-
ing orbits of the corresponding evolution equation form an isolated
invariant set

Σµ := Wu(v−) ∩Ws(v+)

with isolating neighborhood Nε(v±), and the bifurcation parameter
can also be seen as a homotopy parameter. Hence the Conley index
is of a point by homotopy invariance as desired, that is,

C(Σµ) = C(Σ0) = [0]. (29)

In the second step, the equilibria v− and v+ are transformed respec-
tively into u− and u+ via a diffeomorphism which is not a homotopy.

Recall n = z(v− − v+) = z(u+ − u−). Hence, choose θ(ξ) a smooth
diffeomorphism of [0, π] that maps the zeros of v− − v+ to the zeros
of u− − u+. Therefore, from now on we suppose that the zeros of
v− − v+ and u− − u+ occur in the same points in θ ∈ [0, π].

Consider the transformation

Θ : X → X

v 7→ α[v− v−] + u−

where α is defined pointwise through

α :=

{
u+−u−
v+−v− , if v+ 6= v−
∂θ(u+−u−)
∂θ(v+−v−)

, if v+ = v−

such that the coefficient α is smooth and nonzero due to the l’Hôpital
rule. Hence, Θ(v−) = u− and Θ(v+) = u+ as desired.

Moreover, the number of intersections of functions is invariant un-
der the maps Θ and θ, that is,

z(Θ(v(θ)− ṽ(θ))) = z(v(ξ)− ṽ(ξ)) (30)

and hence K(v±) is mapped to K(u±) under Θ.
Through the map θ, the model equation (27) is mapped to the equa-

tion (8) with different diffusion coefficients and nonlinearity, namely

ut = (θξ)
2uθθ +

θξ

tan(θ)
uθ + f (θ, u, uθθξ) + uθθξξ

where the Neumann boundary conditions are preserved.
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Through the map Θ, the model equation (27) is mapped to

ut = αuθθ +
α

tan(θ)
uθ + f (θ, Θ(u), ∂θΘ(u))

+ 2αθ∂θ [u− v−] + αθθ [u− v−] + ∂θθu−

+
αθ [u− v−] + ∂θu− − ∂θθv−

tan(θ)

where the Neumann boundary conditions are preserved.
In other words, the maps Θ and θ yield and equation of the type

ut = a(θ)uθθ + b(θ)
uθ

tan(θ)
+ f̃ (θ, u, uθ)

where the coefficients a(θ) and b(θ) are obtained by combining the
diffusion within the above two equations, whereas the remaining
terms are collected in order to define the reaction term f̃ .

Moreover, the set Σµ is transformed into an isolated invariant set Σ̃
with invariant neighborhood Nε(u±) such that

C(Σµ) = C(Θ(Σµ)) = C(Σ̃). (31)

In the third step, we homotope the diffusion coefficients a(θ), b(θ)
and nonlinearity f̃ to be the standard axisymmetric diffusion and
the desired reaction f from the equation (8). Indeed, consider the
semilinear parabolic equation

ut = aτ(θ)uθθ + bτ(θ)
uθ

tan(θ)
+ f̃ τ(θ, u, uθ)

where

aτ(θ) := τa(θ) + 1− τ

bτ(θ) := τb(θ) + 1− τ

f τ(θ, u, uθ) := τ f̃ + (1− τ) f + ∑
i=− , +

χui µui(τ)[u− ui(θ)]

and χui are cut-offs begin 1 nearby ui and zero far away, the coef-
ficients µi(τ) are zero near τ = 0 and 1 and shift the spectra of the
linearization at u± such that uniform hyperbolicity of these equilibria
is guaranteed during the homotopy.

Consider u−, u+ and their connecting orbits during this homotopy,

Στ := Wu(uτ
−) ∩Wu(uτ

+).

Note that Στ ⊆ K(u±), since the dropping lemma holds through-
out the homotopy. Variying τ, the equilibria, u± do not bifurcate due
to normal hyperbolicity. Choosing ε > 0 small enough, the neigh-
borhoods Nε(u±) is an isolating neighborhood of Στ throughout the
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homotopy. Indeed, Στ can never touch the boundary of K(u±), ex-
cept at the points u± by the dropping lemma. Once again the Conley
index is preserved by homotopy invariance, yielding

C(Σ) = C(Σ0) = C(Στ) = C(Σ1) = C(Σ̃). (32)

Finally, the equations (29), (31) and (32) yield that the Conley index
of Σ is the homotopy type of a point, and hence the desired result.

�

2.6 example : axisymmetric chafee-infante

In this section it is given an example of the theory above, namely, it
is constructed the attractor of the axially symmetric Chafee-Infante
problem,

ut = uθθ +
1

tan(θ)
uθ + λu[1− u2] (33)

where θ ∈ [0, π] has Neumann boundary conditions and initial data
u0 ∈ Hα

w([0, π]) with α > 3/2 and weight w(θ) := sin(θ), so that the
equation generates a dynamical system in such space, as in [41].

Theorem 2.6.1. For λ ∈ (λk, λk+1), where λk is the k-th eigenvalue of
the axially symmetric Laplacian with k ∈N0, the axially symmetric Chafee
Infante problem (33) has 2k + 3 hyperbolic equilibria u1, ..., u2k+3 and the
attractor A is given by

uk+1 ≡ 0

uk uk+2

u2 u2k+2

u1 ≡ −1 u2k+3 ≡ 1

We will prove that the Sturm permutation for the axially symmetric
case is the same as the Sturm permutation for the regular case in [29].
Hence, both attractors are geometrically (connection-wise) the same.
The only difference lies in the equilibria, and the parameter λ must
lie between two eigenvalues of the appropriate diffusion operator.
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The proof is divided in the upcoming subsections. Following the
shooting arguments in Section 2.3, we explicitly construct the shoot-
ing manifolds. Then we count how many times they intersect, yield-
ing all equilibria, and if such intersections are transverse, yielding hy-
perbolicity. Lastly those intersection points are labeled accordingly,
yielding the permutation σ and hence the attractor A.

The equilibria equation describing the shooting curves is
uτ = p

pτ = −λu[1− u2] sin2(θ)

θτ = sin(θ).

(34)

Solutions of the shooting (34) exist for all θ ∈ [0, π] and all initial
data a ∈ L0 := {(0, a, 0) | a ∈ R} or b ∈ Lπ := {(π, b, 0) | b ∈ R}.
Indeed, solutions of (34) are bounded, since one can compare solu-
tions of the axially symmetric Chafee-Infante equation (34) with the
usual Chafee-Infante ODE, which is known to have global bounded
solutions. Indeed, pτ = f (u) sin2(θ) < f (u) = qτ < ∞ where pτ

is related to the axially Chafee-Infante and qτ to the regular Chafee-
Infante. Hence, bounded solutions exist globally in time.

This system possesses two symmetries, namely invariance under

time reversal: τ 7→ −τ, (35)

reflection: u 7→ −u, (36)

where both symmetries also changes the sign of p := uτ.

2.6.1 Construction of the shooting curves

Note that the stable shooting manifold Ms is obtained through the
time reversal (35), which is simply a reflection in the p-axis of the
unstable shooting manifold Mu.

In order to construct the unstable shooting manifold Mu, we ana-
lyze four regions for the initial data (0, a, 0) ∈ R3 constrained to the
trivial equilibria a ≡ −1, 0, 1, for all λ > 0.

Note also that part of the unstable shooting manifold Mu, namely
when a < 0, is obtained through a rotation by π, fixing the origin, of
the the piece of the shooting manifold Mu when a > 0, due to the
reflectional symmetry (36).

If a > 1, then the corresponding solution remains bigger than 1 for
small time by continuity. Hence, the shooting flow (34) implies that
pτ > 0 and the shooting manifold Mu|a>1 increases in the p direction
as θ increases.

For a ∈ (0, 1), we will show that the unstable shooting manifold
Mu|a∈(0,1) winds around the trivial equilibria a ≡ 0. More precisely,
the angle and radius of the shooting manifold in polar coordinates
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are monotone with respect to its parametrization given by the initial
data a ∈ R.

This was proved in [39] using the Hamiltonian structure of the
Chafee-Infante system, which can not be applied for the system (34),
since it is nonautonomous. Instead, we adapt ideas of [48].

Indeed, the shooting flow (34) in polar coordinates with the clock-
wise angle, (u, p) =: (ρ cos(µ),−ρ sin(µ)), is given by

ρτ = ρ sin(µ) cos(µ)
[
λ(1− ρ2 cos2(µ)) sin2(θ)− 1

]
µτ = sin2(µ) + λ[1− ρ cos2(µ)] sin2(θ) cos2(µ)

θτ = sin(θ)

(37)

with lim
τ=−∞

µ(τ) = 0 describing L0. Note that

µτ > 0 (38)

for |ρ| < 1, that is, the angle µ is increasing in τ and each solution
within the shooting manifolds are winding around the trivial equilib-
ria 0 as τ increases.

Consider the map F(λ, θ, ρ, µ) : R4 → R3, where each coordinate Fi
correspond to the i-th line of the right-hand side in (37). Note that F
is a Lipschitz function, since it is a composition of Lipschitz maps.

Now, we show the monotonicity of the angle µ with respect to the
initial data a ∈ (0, 1), that is, the angle µ decreases as a increases.
This means that the bigger the initial data a ∈ (0, 1), smaller the
angle, hence outer orbits rotate slower than inner orbits.

Lemma 2.6.2. Let (ρ(τ), µ(τ)) and (ρ̃(τ), µ̃(τ)) be solutions of (37) cor-
responding to different initial data, that is, limτ→−∞(ρ(τ), µ(τ)) = (a, 0)
and limτ→−∞(ρ̃(τ), µ̃(τ)) = (ã, 0) such that a < ã, for a, ã ∈ (0, 1).

Then
µ(τ) > µ̃(τ) (39)

and
ρ(τ) < ρ̃(τ) (40)

for all τ ∈ R. Moreover, if λ > λ̃ in (37), then

µ(λ) > µ(λ̃) (41)

for all τ ∈ R and fixed initial data a.

Proof Firstly we show a weaker version of (39) with a non strict in-
equality, namely

µ(τ) ≥ µ̃(τ) (42)

for all τ ∈ (−∞, ∞).
Suppose, towards a contradiction, that

µ(τ1) < µ̃(τ1) (43)
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for some τ1 ∈ (−∞, ∞). We will extend such inequality for τ ∈ (τ2, τ1)

for some τ2 < τ1.
In order to extend (43), note that for τ large and negative, the flow

of the angle in (37) is given by its linearization,

µτ = sin2(µ) + λ[D f (a, 0).ρ cos(µ)] sin2(θ) cos2(µ) (44)

where the linearization is given by D f (a, 0) = 1 − 3a2. The angle
µ̃ satisfies a similar equation with linearization given by D f (ã, 0) =

1− 3ã2.
Indeed, nearby a non-hyperbolic fixed point, the flow (37) is topo-

logically equivalent to a decoupled system as in [77], where the first
equation describes the flow on the center manifold, and the second
describes the linear hyperbolic dynamics. If the equilibria is hy-
perbolic, there is no center manifold and this breaks down to the
Hartman-Grobman theorem. Since the shooting manifolds are the
strong unstable and stable manifolds, there is no center direction
within them, and the flow is topological equivalent to its correspond-
ing hyperbolic part of the linearization,

Note that D f (a, 0) > D f (ã, 0), since a < ã. By the comparison
theorem in [20], one obtains that for such linearizations,

µ(τ) > µ̃(τ) (45)

for all τ ∈ (−∞, τ∗) with τ∗ negative and large such that τ∗ < τ1,
that is, so that the nonlinear system is topological equivalent to the
linear one.

By the intermediate value theorem, there exists τ2 ∈ (−τ∗, τ1) such
that µ(τ2) = µ̃(τ2). We can choose the biggest of those values, due to
continuity of those functions up to τ1, yielding

µ(τ) < µ̃(τ) (46)

for τ ∈ (τ2, τ1], which extends the inequality (43) as claimed.
On the other hand, the integral formulation of (37) yields that

µ(τ1)− µ(τ2) =
∫ τ1

τ2

F2(λ, θ, ρ, µ)dτ (47)

and similarly for µ̃.
Consider the difference µ̃− µ of the above representation. Notice

that µ(τ2) = µ̃(τ2) and the right-hand side is a Lispchitz map in µ

and ρ, while λ and θ are fixed,

|µ̃(τ1)− µ(τ1)| ≤ c(λ, θ)
∫ τ1

τ2

√
|ρ̃− ρ|2 + |µ̃− µ|2dτ.

Note that the square root of a sum is less than the sum of the square
roots. Moreover, the solutions ρ, ρ̃ of (34) are bounded, hence |ρ̃− ρ|
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is bounded. Lastly, one can get rid of the norms in |µ̃ − µ|, due to
(46). These considerations yield

µ̃(τ1)− µ(τ1) ≤ c1

∫ τ1

τ2

dτ + c2

∫ τ1

τ2

(µ̃− µ)dτ. (48)

By the mean value theorem, there exists some τ̃ ∈ (τ1, τ2) such
that τ1 − τ2 = 1

µ̃(τ̃)−µ(τ̃)

∫ τ1
τ2
(µ̃− µ)dτ. Since µ, µ̃ are continuous func-

tions on a compact interval, the fractional term in this formula is well
defined and a fixed bounded value. We substitute such formula for
τ1 − τ2 above, yielding

µ̃(τ1)− µ(τ1) ≤ c3

∫ τ1

τ2

(µ̃− µ)dτ (49)

where c3 := c1
µ̃(τ̃)−µ(τ̃)

+ c2.
The integral Grönwall inequality implies that µ̃(τ1) − µ(τ1) ≤ 0,

which contradicts the definition of τ1 in (43) and proves the non strict
inequality (42).

Now we show the strict inequality (39). Suppose on the contrary
that there exists a τ3 ∈ R such that µ(τ3) = µ̃(τ3).

Let τ∗ be obtained by studying the linear flow as before, such that
the strict inequality (45) holds for all τ ∈ (−∞, τ∗]. Hence τ∗ < τ3.
Due to the non strict inequality (42), we have in particular that µ(τ) ≥
µ̃(τ) for τ ∈ (τ∗, τ3).

Integrate backwards from τ3 to τ∗. Indeed, reverse the orientation
of τ ∈ [τ∗, τ3] through τ̃ := −τ, so that τ̃ ∈ [τ3, τ∗]. The integral
formulation of the ODE yields

µ(τ∗)− µ(τ3) =
∫ τ∗

τ3

F2(λ, θ, ρ, µ)dτ̃

with similar equation for µ̃.
Hence, the same methods from equations (47) and (49) can be ap-

plied for the difference µ(τ∗)− µ̃(τ∗), yielding the inequality µ(τ∗)−
µ̃(τ∗) ≤ 0, which contradicts the definition of τ∗. This proves the in-
equality (39).

Analogously, the above arguments can be used to prove a mono-
tonicity in the radial coordinate. There are two mild adaptations in
such proof. Firstly, one does not need to study the linearized flow for
the radius, since the initial data is already ordered by a < ã. Secondly,
to obtain (48), one needed to bound |ρ̃− ρ|. Here, we need to bound
|µ̃− µ|, which is a continuous function on the compact interval [τ2, τ1]

and hence attains a maximum. Then, the mean value theorem is used
for |ρ̃− ρ| and the proof is analogous.

The monotonicity in the parameter λ is seen by comparing the
shooting flow (34) as λ increases.

�
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2.6.2 Intersection of shooting curves: finding equilibria

The shooting curves Mu
π/2 and Ms

π/2 always intersect at the constant
equilibria a ∈ {−1, 0, 1}.

If a > 1, the shooting curves Mu
π/2 and Ms

π/2 are monotone in
the initial data. The former increase in the p direction as θ increases,
whereas the latter decreases in the p direction, for any λ ∈ R+. Hence,
they do not intersect. Analogously for a < 1.

Consider the case that |a| < 1. We show that intersections of the
shooting curves only occur either at the u or p-axis. Then we show
how many intersections there are with those axis.

Lemma 2.6.3. Mu ∩Ms ⊆ {(θ, u, p) ∈ R3 | p = 0 or u = 0}.

Proof Towards a contradiction, suppose that there is an intersection
point (u, p) ∈ Mu ∩Ms which is not in these axis.

If (u, p) ∈ Mu, then (−u,−p) ∈ Mu, due to reflection symmetry
(36). Similarly, if (u, p) ∈ Ms, then (−u,−p) ∈ Ms. Therefore,

(−u,−p) ∈ Mu ∩Ms.

Also, if (u, p) ∈ Mu, then (u,−p) ∈ Ms, due to the construction
of Ms, which is done by the time reversal (35) of Mu. Similarly, if
(u, p) ∈ Ms, then (u,−p) ∈ Mu, and hence

(u,−p) ∈ Mu ∩Ms.

The same arguments in the above two paragraph using both the
time reversal (35) and reflection symmetry (36) yield

(−u, p) ∈ Mu ∩Ms.

Therefore there are four points with the same radius in the intersec-
tion Mu ∩Ms and none of those lie in the u or p-axis. The pigeon hole
principle guarantees that at least two of those four points were con-
structed with the initial data a either in (0, 1) or (−1, 0), contradicting
the monotonicity of the radius (40), and proving the lemma.

�

The next step is to find exactly how many intersections there are
between the stable and unstable shooting curves, for each λ ∈ R+.
As λ increases, the shooting curves change due to the continuous
dependence on the parameter, yielding a different attractor. See [41]
for the dependence of the attractor on parameters.

There are always three trivial equilibria 0,±1 in the intersection
of the shooting curves. A new pair of equilibria appears when λ

crosses an eigenvalue of the spherical laplacian λk. This characterizes
the pitchfork bifurcations that occur at each λk and gives a different
proof of such results, as in [22].
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Lemma 2.6.4. Consider λ ∈ (λk, λk+1), where λk is the k-th eigenvalue of
the axially symmetric Laplacian with k ∈N0.

Then there are 2k + 3 intersections of Mu ∩ Ms, and the angle of the
tangent vector of the unstable shooting curve at (0, 0) ∈ Mu

π/2 is given by
µ(λk+1) =

π
2 (k + 1).

Proof The proof follows by induction on k ∈ N0. For the basis of
induction, k = 0, it is proved that there are three equilibria for λ ∈
(0, λ1) and that µ(λ1) =

π
2 .

For λ0 = 0, the shooting flow (34) implies that p ≡ 0 and hence the
unstable shooting manifold is given by the u-axis. Therefore µ(0) = 0.
By continuous dependence on λ, this curve changes a little for λ

small. Moreover, due to the monotonicities (38), (39) and (40) for a ∈
(0, 1), the unstable shooting manifold spirals clockwise towards the
trivial equilibria 0. Considering the appropriate reflections through
Symmetries 1 and 2, one obtains the full unstable and stable curves
as below.

u

p

−1 +10

Mu
π
2

Ms
π
2

Figure 1: Shooting curves of (34) for λ ∈ (0, λ1)

Consider function µ (λ, a) describing the angle of the tangent vector
of the unstable shooting curve Mu

π
2

corresponding to the initial data
u0 ∈ [0, 1] and the parameter λ ∈ R+.

Recall that the angle µ is also monotone in λ for fixed a ∈ R as in
(41). Moreover, limλ→∞ µ(λ, a) = ∞, for any τ ∈ R and a ∈ (−1, 1)
fixed. Indeed, it follows by combining that (24) is increasing in λ,
and (23) with the Symmetry 1, which implies that the stable angle is
minus the unstable angle.

Therefore, there is a λ∗ > 0 such that µ(λ∗, a) = π
2 . We have to

prove that λ∗ = λ1 and that there are no new equilibria for λ ∈
(0, λ∗).

The angle monotonicity (39) implies that the biggest value that µ

attains is at a = 0. Together with the monotonicity in λ, we have that
µ(λ, a) < µ(λ∗, a) < µ(λ∗, 0) = π

2 for λ < λ∗ and a ∈ (0, 1). Hence,
there is no intersection of the unstable shooting curve with the neg-
ative p-axis. Since µ is continuous and monotone, in order to reach
the positive p-axis, described by the angle 3π/2 in polar coordinates,
the shooting curve would have to cross firstly the negative part of the
p-axis, which we already showed is not possible.



2.6 example : axisymmetric chafee-infante 46

By the construction of the remaining part of the unstable mani-
fold Mu

π/2 for a ∈ (−1, 0), through Symmetry 2, there is also no in-
tersection of this piece of the unstable shooting curve with the p-axis.
Hence, the only intersection points of the unstable shooting curve lies
in the trivial equilibria a = −1, 0, 1.

Moreover, due to Symmetry 1 and the construction of the shooting
stable manifold Ms

π/2, there are no intersection points of the shooting
stable manifold with the p-axis, except the ones regarding the trivial
equilibria related to the initial data b = −1, 0, 1.

This proves that there are no other equilibria for λ ∈ (0, λ∗). In
order to show that λ∗ = λ1, recall that the angle of the tangent of
Mu

π/2 is µ(λ∗, 0) = π/2.
Due to the Symmetry 1, the angle of the tangent of the stable mani-

fold Ms
π/2 at b = 0 will be −µ(λ∗, 0) = −π

2 . Hence, the angle between
those tangent vectors is π, as in (23). This is the definition of an eigen-
value λ1 through the eigenvalue problem in polar coordinates (20).
This shows λ∗ = λ1.

This proves the basis of induction. For the induction step, suppose
that for λ ∈ (λk−1, λk), there are 2(k− 1) + 3 equilibria and µ(λk) =
π
2 k. Note the last condition informs how many times the unstable
shooting curve has crossed the u and p axis. We shall prove that for
λ ∈ (λk, λk+1), there are 2k + 3 equilibria, µ(λk+1) = π

2 (k + 1) and
λk+1 is the (k + 1)-th eigenvalue.

The monotonicity in λ as in (41) implies that there exists a λ∗ > λk
such that µ(λ∗, 0) = π

2 (k + 1). The arguments to show that λ∗ = λk+1
and that two new equilibria appear for λ ∈ (λk, λ∗ are analogous as
the basis of induction.

There are two cases, depending on the parity of k. This influences
which axis the shooting curve intersects and where the new equilibria
appear, as λ croses λk.

If k is odd, then the new equilibria appear in the p-axis. We illus-
trate such case in the figure below, when λ crosses λ1.
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π
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Ms
π
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Figure 2: Shooting curves of (34) for λ ∈ (λ1, λ2)

This can be seen as follows. By the induction hypothesis, we have
that µ(λk) =

π
2 k, which means that the tangent of the shooting Mu

π/2
at a = 0 is parallel to the p-axis for odd k. Since µ is increasing in λ

and the shooting curve is continuous, then the shooting curve nearby
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a = 0 moves from the quadrants {p > 0, u < 0} and {p < 0, u > 0}
to its compliment, as λ crosses λk. This creates two new intersections
of the shooting curve with the p-axis. Due to the construction of the
stable shooting curve Ms

π/2, it also intersects the p-axis in the same
points.

Then, one repeat the arguments in the induction step in order to
show there is no intersection of the shooting curves with the u-axis.

The only remaining claim to be proven is that equilibria can’t dis-
appear, after they appear. The only possibility for this to happen is if
two equilibria within the u or p axis collide. Note that neighboring
equilibria come from different parts of the initial data: either a is in
(0, 1) or (−1, 0). Hence, if they collide, it contradicts uniqueness of
the shooting flow (34), since their initial data is different.

The other case when k is even yields new equilibria in the u-axis.
We illustrate this in the example below, as λ crosses λ2 and two new
equilibria appear in the u-axis.

u

p

−1 +10

Mu
π
2

Figure 3: Shooting curves of (34) for λ ∈ (λ2, λ3)

�

2.6.3 Hyperbolicity: all intersections are transverse.

It is enough to check that the unstable and stable manifolds Mu and
Ms are not tangent to the u or p axis. Indeed, Mu is tangent to u-
axis if, and only if Ms is also, since one is obtained from the other
through to the reflection p 7→ −p. Similarly, Mu is tangent to p-axis
if, and only if there is another tangency of Mu with the p-axis, due to
the rotation (u, p) 7→ (−u,−p). Moreover, Ms is obtained from Mu

through the reflection p 7→ −p, hence Ms is also tangent to the p-axis.
Recall that the tangent vector of the unstable shooting manifold

is given by (ua, pa) and satisfy the equation (21). Hence, the tangent
vector is tangent to the u-axis if it is horizontal, that is, if the first coor-
dinate ua = 0. On the other hand, the coordinate in polar coordinates
is u = ρ cos(µ), and the chain rule within the tangency condition
implies

0 = ua = (ρ cos(µ))a = ρa cos(µ)− ρ sin(µ)µa
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Algebraic manipulation yields µ = arctan( ρa
µa

ρ). Note that the
monotonicity properties (39) and (40) implies ρa and µa are nonzero
with different signs, for both cases that a is either in (0, 1) or (−1, 0).
Moreover, the radius ρ > 0. Therefore, the argument ρa

µa
ρ is strictly

negative, and hence µ ∈ (−π/2, 0). That is, the point where the tan-
gency occurs is neither at the u, nor the p-axis, because those in polar
coordinates are given by µ = π

2 k. This contradicts that intersections
must occur at the u-axis.

Similarly a tangency occurs at the p-axis, if it the vector is vertical,
namely pa = 0. In polar coordinates p = −ρ sin(µ), the tangency
condition and the chain rule implies that µ = arctan( ρa

−µa
ρ). By a

similar analysis as above, the argument is strictly positive and hence
µ ∈ (0, π/2). That is, the intersection does not occur in the p-axis,
yielding a contradiction.

2.6.4 Obtaining the permutation.

We construct the Sturm permutation for λ ∈ (λk, λk+1) by induction
on k. As mentioned before, the idea is to label the intersections
of the unstable and stable manifolds, firstly along Mu following its
parametrization given by the initial data a from −∞ to ∞. Then label
them along Ms, also following its parametrization given by b from
−∞ to ∞.

For k = 0, that is, λ ∈ (λ0, λ1), there are no other intersections of
the shooting curves, except the trivial equilibria a = −1, 0, 1. Noticing
how the shooting curve was constructed before, this is exactly their
order along both Mu and Ms, since their parametrization goes from
−∞ to ∞. Hence, the permutation is the identity σ = id, since their
oder is the same along Mu and Ms.

For the induction step, we find the permutation for λ ∈ (λk, λk+1),
with k ≥ 1, supposing that the permutation for λ ∈ (λk−1, λk) is given
by

σ = (2, 2k)(4, 2k− 2)... (50)

where (j, l) denotes a transposition in the group of permutations of
SN with appropriate N.

Notice that for λ < λk with small |λ − λk|, there are N = 2k + 1
equilibria, and dk/2e transpositions in the above permutation, for
k ≥ 1, where d.e denotes the ceiling function. Moreover, note that
such permutation has all even numbers less or equal N = 2k + 1.

There are two cases: either k is even or odd. The previous construc-
tion of the shooting curve implies that it rotates clock-wise around
the trivial equilibria 0. The parity of k tells how the shooting curve
behaves for λ < λk, in particular, if the equilibria nearby the trivial
equilbiria 0 is obtained by an intersection with the u or p axis.

Suppose k is odd. Labeling the equilibria along Mu and Ms for λ <

λk, the trivial equilibria 0 is labeled k + 1, since there are k equilibria
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before it along the unstable manifold. Hence, the nearby equilibria
are labeled by k for the equilibria before, and k + 2 for the equilibria
after it. Moreover, the last transposition in the permutation (50) is
(k + 1, k + 1), since k + 1 is even.

u

p

k k + 2k + 1

Mu
π
2

Ms
π
2

Figure 4: λ < λk with k odd

The labeling within the unstable manifold for the equilibria labeled
less than k + 1 will not change. Moreover, as λ cross λk, two new
equilibria appear, one on each side along the unstable manifold. The
trivial equilibria 0, which was labeled k + 1 for λ < λk, will be shifted
by 1, yielding k + 2 for λ > λk. All other having label bigger than
k + 1 will be shifted by two. See the figure below.

u

p

k k + 4k + 2

k + 3

k + 1

Mu
π
2

Figure 5: λ > λk with k odd

Similarly, the change of labeling is similar along the stable mani-
fold, since the the stable manifold is obtained by a reflection in the
u-axis of the unstable manifold.

u

p

k k + 4k + 2

k + 1

k + 3

Ms
π
2

Figure 6: λ > λk with k odd

One only has to check what happens to the permutation itself.
There is a new transposition in the permutation given by (k+ 1, k+ 3).
Note k is odd, and hence both k + 1 and k + 3 are even. Moreover, the
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transposition, which was (k+ 1, k+ 1) must be shifted to (k+ 2, k+ 2),
yielding the identity transposition and not changing (50).

Therefore, there number of transpositions does not change, and
number dk/2e is the same. The only difference is the relabeling of
equilibria within the permutation, described above, yielding the de-
sired permutation. The case when the orientation of the unstable
manifold is reversed have similar arguments as above.

For k even, the above argument can be adapted. Notice that there
are 2k + 1 equilibria, and again the trivial equilibria 0 is labeled by
k+ 1. As λ crosses λk, there are two new equilibria along the unstable
manifold. Hence, the ones before k should not be relabeled, the origin
k + 1 for λ < λk should be relabeled by k + 2 for λ > λk, and all
equilibria with label bigger than k + 1 should be shifted by 2.

Again, since the stable manifold is obtained by the reflection of the
unstable manifold with respect to the u-axis, then one can see that the
new permutation that should be added is (k, k + 4). Notice those are
even numbers. Again, the transposition of the origin does not change
(50), since it yields the identity transposition given by (k + 2, k + 2).
The case when the orientation of the unstable manifold is reversed
have similar arguments as above.

2.6.5 Obtaining the attractor.

The permutation obtained above is the same as the regular Chafee-
Infante problem. Hence, the attractors are connection-wise the same,
since the conditions for the existence of heteroclinics are the same.

2.7 discussion

The shooting method used to construct the attractor generalizes the
bifurcation result in [22] for radially symmetric solutions in the disk.
Indeed, not only we are able to prove the existence of bifurcating equi-
libria, but can also compute secondary bifurcations that might occur,
hyperbolicity of all equilibria, their Morse indices and how they fit
together in the attractor, by computing heteroclinic trajectories.

After the construction of the Sturm attractor for the parabolic equa-
tion with degenerate coefficients, we see that if the Sturm permuta-
tion for the degenerate case coincide with the permutation for the
case of regular coefficients, then the attractors for both cases coincide.
This happens since they are both constructed in the same way, yield-
ing the same conditions about the zero numbers and Morse indices.

The construction of the Sturm attractor in the case of general de-
generate diffusion is not proved here, but we believe the above argu-
ments can be replicated. Moreover, we believe that different diffusion
yields the same attractors connection-wise, whenever the parameter
is in the proper range, differing only in the shape of equilibria.
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Q U A S I L I N E A R D Y N A M I C S

The goal of this chapter is to study the Sturm attractors of quasilin-
ear parabolic equations, as it was done for the semilinear case by
Brunovský and Fiedler [18], and later by Fiedler and Rocha [29].

Consider the scalar quasilinear parabolic differential equation

ut = a(x, u, ux)uxx + f (x, u, ux) (51)

with initial data u(0, x) = u0(x) such that f ∈ C2, a ∈ C1, the strict
parabolicity condition a > ε holds for ε > 0 and x ∈ [0, π] has Neu-
mann boundary.

Instead of calling the spatial variable θ to denote the spherical an-
gle as before, we call it x and ommit the singularity in the diffusion
operator.

The equation (51) defines a semiflow denoted by (t, u0) 7→ u(t) in
a Banach space X. The appropriate functional setting is described in
Section 3.1.

In order to study the long time behaviour of (51), we suppose that
a and f satisfy the following conditions, where p := uθ ,

f (x, u, 0) · u < 0 (52)

| f (x, u, p)| < f1(u) + f2(u)|p|γ (53)

|aθ |
1 + |p| + |au|+ |ap| · [1 + |p|] ≤ f3(|u|) (54)

0 < ε ≤ a(θ, u, p) ≤ δ (55)

where the first condition holds for |u| large enough, uniformly in x,
the second for all (x, u, p) for continuous f1, f2 and γ < 2, and the
third for continuou f3 and ε, δ > 0.

Those conditions imply that |u| and |ux| are bounded. Hence
bounded solutions are global in time and the flow is dissipative: tra-
jectories u(t) eventually enter a large ball in the phase-space X. See
Chapter 6, Section 5 in [84]. Also [56] and [12].

Moreover, these hypothesis guarantee the existence of a nonempty
global attractor A of (51), which is the maximal compact invariant set.
Equivalently, it is the set of bounded trajectories u(t) in the phase-
space X that exist for all t ∈ R. See [12].

51
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Due to a Lyapunov functional, constructed by Matano [53] and Ze-
lenyak [87], the global attractor consists of equilibria and their hetero-
clinic connections within their unstable manifolds. It still persits the
question of which equilibria connects to which other. This geometric
description was carried out by Hale and do Nascimento [37] for the
Chafee Infante problem, by Brunovsk and Fiedler [27] for f (x, u) and
by Fiedler and Rocha [29] for f (x, u, ux). Such attractors are known
as Sturm attractors.

Constructing the Sturm attractor for the equation (51) is problem-
atic due to its quasilinear nature. It is the aim of this chapter to mod-
ify the existing theory for such equations and still obtain a Sturm
attractor.

For the statement of the main theorem of this chapter, denote by
the zero number z(u∗) the number of sign changes of a continuous
function u∗(x). Recall that the Morse index i(u∗) of an equilibrium
u∗ is given by the number of positive eigenvalues of the linearized
operator at such equilibrium, that is, the dimension of the unstable
manifold of said equilibrium.

We say that two different equilibria u−, u+ of (51) are adjacent if
there does not exist an equilibrium u∗ of (51) such that u∗(0) lies
between u−(0) and u+(0), and

z(u− − u∗) = z(u− − u+) = z(u+ − u∗).

This notion was firstly described by Wolfrum [86].
Both the zero number and Morse index can be computed from a

permutation of the equilibria, as it was done in [33] and [29]. Such
permutation is called the Sturm Permutation and is computed in Sec-
tion (3.3), as it was done [29]. For such, it is required that the flow of
the equilibria equation of (51) exists for all x ∈ [0, π].

Theorem 3.0.1. Sturm Attractor [Lappicy (’17)]
Consider f ∈ C2 satisfying the growth conditions (52). Suppose that all

equilibria for the equation (51) are hyperbolic. Then,

1. the global attractor A of (51) consists of equilibria E and heteroclinic
connections H.

2. there exists a heteroclinic orbit u(t) ∈ H between two equilibria
u−, u+ ∈ E such that

u(t)→t→±∞ u±

if, and only if, u− and u+ are adjacent and i(u−) > i(u+).

This meets some expectations of Fiedler [26], which mentions that
fully nonlinear equations yield the same type of attractors as the semi-
linear ones. We prove it for the quasilinear, and leave the fully non-
linear for another occasion.
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In particular, we compute and comment on some explicit attractors.
Firstly, when the diffusion coefficient is a(u) = u2, and a reaction of
the Chafee Infante type with adjusted powers, in order to match the
diffusion rate. This attractor is used in Chapter 5 as an application of
the Einstein Hamiltonian equation. This same diffusion with another
reaction is used to model the curve shortening flow in R2, as in [9].

Corollary 3.0.2. Chafee-Infante Attractor [Lappicy (’17)] Consider the
equation (51) with a(u) = un and f (λ, u) = λun+1(1− u2) for some n ∈
N0. Let λ ∈ (λk, λk+1), where λk is the k-th eigenvalue of the Laplacian
with k ∈N0.

Then, there are 2k + 3 hyperbolic equilibria u1, ..., u2k+3 and its attractor
A is

uk+1

uk uk+2

u2 u2k+2

u1 u2k+3

The remaining is organized as follows.
We firstly introduce the functional setting in Section 3.1, including

invariant manifolds for the quasilinear case. Further in Section 3.2,
we construct a Lyapunov functional for the quasilinear case a(x, u, ux)

using Matano’s arguments from [51] for the quasilinear case a(u).
In particular this implies that the attractor consists of equilibria and
heterolinics.

Then, we focus on the connection problem. All the necessary infor-
mation about the k-adjacency, namely the zero numbers and Morse
indices, are encoded in a permutation of the equilibria, which is de-
scribed in Section 3.3. This was done firstly by [33]. The shooting is
similar to the semilinear case, but one needs to divide the reaction
term by the diffusion noticing a > 0.

In Section 3.4, we recall the dropping lemma and some conse-
quences, which hold since the difference of solutions satisfy a linear
equation. This is a fundamental result for the attractor construction
that dates back to Sturm. Then all the previous tools are put together
to construct the attractor in Section 3.5, as it was done [29].

Lastly, Section 3.6 gives an example of the developed theory and
constructs the attractor of the Chafee-Infante type.
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3.1 functional setting

The Banach space used on the upcoming theory consists on subspaces
of Hölder continuous functions Cβ([0, π]) with β ∈ (0, 1). A more
precise description is given below, following [49], [4], [12].

The equation (51) can be rewritten as an abstract differential equa-
tion on a Banach space,

ut = Au + g(x, u, ux) (56)

where A is the linearization of the right-hand side of (51) at u∗, and
g the remaining nonlinear part.

Indeed, consider the operator

A : D(A)→ X (57)

v 7→ Av = [au(u∗, p∗) + ap(u∗, p∗)]vxx + D f (x, u∗, p∗)v

where p∗ := (u∗)x, X := Cβ([0, π]) and D(A) = C2+β([0, π]) ⊂ X
is the domain of the operator A. Note D f is a short for Du f + Dp f .
Note all coefficients depend only on x.

Note that if u∗ is a homogeneous equilibria, that is, independent
of x, then g(x, u) = f (u) − D f (u∗).u. For any other u∗(x), then
g(x, u) = f (u)− D f (u∗).u + [a(u∗, p∗)∆u∗]u.

As in Lunardi [49], we consider the interpolation spaces Xα =

C2α+β([0, π]) between D(A) and X with α ∈ (0, 1) such that A gener-
ates a strongly continuous semigroup in X, and hence the equation
(51) with the dissipative conditions (52) defines a dynamical system
in Xα.

In particular, it settles the theory of existence and uniqueness. For
certain qualitative properties of solutions, such as the existence of
invariant manifolds tangent to the linear eigenspaces, one needs to
know more about the spectrum of A.

Indeed, note that A is self-adjoint with respect to the weighted
C2α+β metric, with weight given by [au(u∗, p∗) + ap(u∗, p∗)]−1. Hence,
the eigenvalue problem for A is a regular Sturm-Liouville problem,
since the coefficients depend only on x and are all bounded. There-
fore, the spectrum σ(A) consists of real simple eigenvalues λk ac-
cumulating at −∞, and corresponding eigenfunctions φk(x) which
form a an orthonormal basis of X. Moreover, there is a spectral gap
between eigenvalues that allows us to get the following filtration of
invariant manifolds. Note that since it is supposed that equilibria are
hyperbolic, then there is no 0 as an eigenvalue and no center direc-
tion.

Theorem 3.1.1. Filtration of Invariant Manifolds [54], [49]
Let u∗ be a hyperbolic equilibrium of (51) with Morse index n := i(u∗).

Then there exists a filtration of the unstable manifold

Wu
0 (u∗) ⊂ ... ⊂Wu

n−1(u∗) = Wu(u∗)



3.2 variational structure 55

where each Wu
k has dimension k + 1 and tangent space spanned by φ0, ..., φk.

Analogously, there is a filtration of the stable manifold

... ⊂Ws
n+1(u∗) ⊂Ws

n(u∗) = Ws(u∗)

where each Ws
k has codimension k and tangent space spanned by φk, φk+1, ....

Note that the above index labels are not in agreement with the di-
mension of each submanifold within the filtration, but it is with the
number of zeros an eigenfunction has. For example, each eigenfunc-
tion φk has k simple zeroes, whereas the dim(Wu

k ) = k + 1.
An important property is the behaviour of solutions within each

submanifold of the above filtration of the unstable or stable mani-
folds.

Theorem 3.1.2. Linear Asymptotic Behaviour [41], [5], [18]
Consider a hyperbolic equilibrium u∗ with Morse index n := i(u∗) and a

trajectory u(t) of (51). The following holds,

1. If u(t) ∈Wu
k (u∗)\Wu

k−1(u∗) with k = 0, ..., i(u∗)− 1. Then,

u(t)− u∗
||u(t)− u∗||

t→−∞−−−→ ±φk

2. If u(t) in Ws
k (u∗)\Ws

k+1(u∗) with k ≥ i(u∗). Then,

u(t)− u∗
||u(t)− u∗||

t→∞−−→ ±φk

where the convergence takes place in C1
w.

The conclusions of 1. and 2. also hold true by replacing the difference
u(t)− u∗ with the tangent vector ut.

The reason this theorem works for both the tangent vector v :=
ut or the difference v := u1 − u2 of any two solutions u1, u2 of the
nonlinear equation (51) is that they satisfy a linear equation of the
type

ut = a(t, x)uxx + b(t, x)ux + c(t, x)u (58)

where x ∈ (0, π) has Neumann boundary conditions and the func-
tions a(t, x), b(t, x) and c(t, x) are bounded.

The proof in [5] works for the case a = a(x, u, ux) and f = (x, u, ux)

considering Dirichlet boundary condition; or in case a = a(x, u) and
f = f (x, u) considering other boundary conditions. For the general
case, see [18].

3.2 variational structure

In this section, we show that there exists a Lyapunov functional for
the quasilinear case a(x, u, ux), as it was done by Matano [52] for a(u).
Hence, bounded trajectories tend to equilibria.
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Lemma 3.2.1. Lyapunov Functional
There exists a Lagrange functional L such that

E :=
∫ π

0
L(x, u, ux)dx (59)

is a Lyapunov functional for the equation (51).

Note that in the case that the nonlinearity f does not depend on ux,
then the Lagrange functional L(x, u, ux) := 1

2 u2
x− F(x, u) yields a Lya-

punov functional E, where F is the primitive function of f
a . Indeed,

dE
dt

= −
∫ π

0

1
a(x, u, p)

(ut)
2dx.

For nonlinearities of the type f (x, u, ux), Matano’s idea yields a
Lyapunov functional of the type

dE
dt

:= −
∫ π

0

Lpp

a(x, u, p)
(ut)

2dx (60)

where p := ux and L satisfy the convexity condition Lpp > 0. Hence,
one needs that a(x, u, p) > 0. Note that Matano’s construction was
done for a(u), and here we consider more general quasilinear equa-
tions, namely a(x, u, p).

Proof Let p := ux and differentiate (59) with respect to t,

dE
dt

=
∫ π

0

[
Luut + Lpuxt

]
dx.

Integrating the second term by parts,

dE
dt

=
∫ π

0

[
Lu −

d
dx

Lp

]
utdx

=
∫ π

0

[
Lu − Lpx − Lpuux − Lppuxx

]
utdx.

Substitute (51) casted as uxx = 1
a(x,u,ux)

[ut − f sin(x)],

dE
dt

=
∫ π

0

[
Lu − Lpx − Lpuux + Lpp

f
a

]
utdx−

∫ π

0
Lppu2

t dx.

To obtain the desired equality (60), one has to guarantee that there
exists a function L satisfying

Lu − Lpx − Lpuux + Lpp
f
a
= 0 (61)

for all u, p ∈ R and x ∈ [0, π].
Differentiating this equation with respect to p, some of the terms

cancel, yielding

−Lppx − Lppu p + Lppp f + Lppp
f
a
+ Lpp

fpa− ap f
a2 = 0. (62)
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To make sure that Lpp > 0, Matano makes an Ansatz by introduc-
ing a function g = g(x, u, p) through Lpp = exp(g) > 0. Hence, g
satisfies the following linear first order differential equation,

[gx + gu p− gp
f
a
+

fpa− ap f
a2 ] exp(g) = 0. (63)

Or equivalenty,[
gx + gu p + gp

(
− f

a

)]
=

fpa− ap f
a2 .

This can be solved through the method of characteristics: along the
solutions of the ordinary differential equation{

ux = p

px = − f
a

(64)

the function g must satisfy

d
dx

g =
fpa− ap f

a2 . (65)

We suppose that solutions of (64) exist for all initial conditions
(u, p) ∈ R2 at x = 0, and all x ∈ [0, π]. Hence, we also suppose
one can solve (65) to obtain a global solution g of (63) with some ini-
tial data, for example, g(0, u, p) ≡ 0. For example, in case a and f do
not depend on p, (65) is indeed solvable.

It is still needed to ascend from a function g satisfying (63) to a
function L satisfying (61). A choice for L such that Lpp = exp(g)
can be obtained by integrating this relation twice with respect to p,
yielding

L(x, u, p) :=
∫ p

0

∫ p1

0
exp(g(x, u, p2))dp2dp1 + G(x, u)

and this is a solution of (62).
To show that such L is also a a solution of (61), we have to restrict

which G are allowed.
Recall that (62) was obtained through differentiating (61) with re-

spect to p. That means that the left-hand side of (61) is independent
of p, since it is equal to 0. Hence it is satisfied for all p if holds for
p = 0.

At p = 0, the construction of L yields that Lp = Lpx = 0 and
Lu = Gu. Plugging it in the equation (61) at p = 0, it yields

Gu + Lpp
f
a
= 0.

Hence, Gu = − exp(g) f
a . Integrating in u,

G(x, u) := −
∫ u

0

f (x, ũ, 0)
a(x, ũ, 0)

exp(g(x, u, 0))dũ.
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�

Therefore, the LaSalle invariance principle holds and implies that
bounded solutions converge to equilibria, and any ω-limit set consists
of a single equilibrium. See [53]. Moreover, the global attractor can
be characterized as follows, yielding the first part of the main result.

Proposition 3.2.2. Attractor Decomposition [12]
If the equation (51) has a Lyapunov functional and a discrete set of equi-

libria E , then the global attractor A is decomposed as

A =
⋃

v∈E
Wu(v)

and consists only of the set of equilibria and connection orbits.

Note that hyperbolic equilibria must be isolated. Moreover, there
must be finitely many due to dissipativity.

3.3 sturm permutation

The next step on our quest to find the Sturm attractor is to construct
a permutation associated to the equilibria, which is done using shoot-
ing methods. This enables the computation of the Morse indices and
zero number of equilibria. That was firstly done by Fusco and Rocha
[33] using methods also described by Fusco, Hale and Rocha in [66],
[39], [67], [69] and [32].

The equilibria equation associated to (51) can be rewritten as

0 = a(x, u, ux)uxx + f (x, u, ux)

for x ∈ [0, π] with Neumann boundary conditions and the parabolic-
ity condition a > 0.

Reduce the system to first order through p := uτ. Lastly, add the
extra equation xτ = 1 to obtain an autonomous system. Hence,

uτ = p

pτ = − f (x,u,p)
a(x,u,ux)

xτ = 1

(66)

where the Neumann boundary condition becomes p = 0. We suppose
that solutions are defined for all x ∈ [0, π] and any initial data.

The idea to find equilibria (51) is as follows. They must lie in the
line

L0 := {(x, u, p) ∈ R3 | (x, u, p) = (0, b, 0) and b ∈ R}

due to Neumann boundary at x = 0. Then, evolve this line under
the flow of the equilibria differential equation and intersect it with
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an analogous line Lπ at x = π, so that it also satisfies Neumann at
x = π. More precisely, one can write the shooting manifold as

M := {(x, u, p) ∈ [0, π]×R3 | (x, u(x, b, 0), p(x, b, 0)), b ∈ R}.

where (x, u(x, b, 0), p(x, b, 0)) is the solution of (66) which evolves the
initial data (0, b, 0).

Denote by Mx the cross-section of M for some fixed x ∈ [0, π]. This
is a curve parametrized by a ∈ R.

We obtain the following characterization of equilibria through the
shooting manifolds and its relation with the Morse indices and zero
numbers, similar to [66] and [36].

Lemma 3.3.1. Equilibria Through Shooting

1. The set of equilibria E of (51) is in one-to-one correspondence with
Mπ ∩ Lπ.

2. An equilibrium point corresponding to fixed b ∈ R is hyperbolic if,
and only if, Mπ intersects Lπ transversely at (π, u(π, b, 0), 0).

3. If u∗ correspond to a hyperbolic equilibrium of (51), then its Morse in-
dex is given by i(u∗) = 1 + b ζ(x0)

π c where ζ(x0) is the angle between
Mπ and Lπ measured clockwise at their intersection point x0, and b.c
denotes the floor function.

Proof To prove 1), note that a point in Mπ ∩ Lπ satisfies the equilib-
ria equation with Neumann boundary conditions by definition of the
shooting manifolds. Conversely, consider an equilibrium of (51) sat-
isfying Neumann boundary must be in Mπ ∩ Lπ. Due to the unique-
ness of the shooting differential equation (66), such correspondence
above is one-to-one.

To prove 2), consider an equilibrium u∗ corresponding to the initial
data b ∈ R. We compare the eigenvalue problem for u∗ and the
differential equation satisfied by the angle of the tangent vectors of
the shooting manifold.

The eigenvalue problem for u∗ is

λu = a(x, u∗, p∗)uxx + [Du f (x, u∗, p∗).u + Dp f (x, u∗, p∗).p]

with Neumann boundary conditions for x ∈ [0, π]. From now on, the
coordinates of D f and a are suppressed.

Rewriting the above system as a system of first order by p := ux,{
ux = p

px = −Du f .u+Dp f .p−λu
a

with Neumann boundary conditions.
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In polar coordinates (u, p) =: (r cos(µ),−r sin(µ)), the angle given
by µ := arctan( p

u ) satisfies

µτ = sin2(µ) +
Du f .u + Dp f .p− λu

a
cos2(µ) (67)

with µ(0) = 0 and µ(π) = kπ for some k ≥ 0.
On the other hand, Mx is parametrized by the initial data b ∈ R

and its tangent vector ( ∂u(x,b)
∂b , ∂p(x,b)

∂b ) corresponding to the trajectory
u∗ satisfies the following linearized equation,{

(ub)x = pb

(pb)x = −Du f (x,u∗,p∗).ub+Dp f (x,u∗,p∗).pb
a(x,u∗,p∗)

(68)

with initial data (ub(0), pb(0)) = (1, 0). From now on we suppress
this dependence of D f and a.

In polar coordinates (ub, pb) =: (ρ cos(ν),−ρ sin(ν)), where ν is the
clockwise angle of the tangent vector of Mx at the trajectory u∗ with
the u-axis,

νx = sin2(ν) +
Du f .ub + Dp f .pb

a
cos2(ν) (69)

with initial data ν(0, b, 0) = 0.
Note that the angle ν of the tangent vector in (69) satisfy is the

same equation as the eigenvalue problem in polar coordinates (67)
with λ = 0 and same boundary conditions at x = 0.

Suppose that u∗ is not hyperbolic, that is, there exists a solution
of (67) with µ(π) = kπ for λ = 0 and some k ∈ N. Since this is
the same equation as (69), uniqueness implies that ν(π) = kπ. This
implies that Mπ and Lπ are not transverse.

Conversely, if Mπ and Lπ are not transverse, then ν(π) = kπ for
some k ∈ N. Again, notice this is the same equation for (67) and
hence there exists a solution of (67) for λ = 0 such that ν(π) = kπ.
Hence, λ = 0 is an eigenvalue and u∗ is not hyperbolic.

To prove 3), consider the solution µ(x, λ) of the eigenvalue problem
in polar coordinates (67). The Sturm oscillation theorem implies that

ψ(λ) := µ(π, λ)

is decreasing so that limλ→−∞ ψ(λ) = ∞ and limλ→∞ ψ(λ) = −π/2.
Hence, there exists a decreasing sequence {λk}k∈N to −∞ such that
ψ(λk) = kπ for k ∈ N. This implies that there exists a solution of
(67) for each λk such that ψ(λk) = kπ, and hence {λk}k∈N are the
eigenvalues.

Recall that the Morse index i(u∗) is the number of positive eigen-
values of the linearization at u∗, that is

... < λi(u∗) < 0 < λi(u∗)−1 < ... < λ0.
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Since ψ(λ) is decreasing and λi(u∗) are eigenvalues, then

i(u∗)π = ψ(λi(u∗)) > ψ(0) > ψ(λi(u∗)−1) = (i(u∗)− 1)π.

Divide the above by π and consider the integer value, yielding that
i(u∗) = bψ(0)

π c+ 1. By definition, ψ(0) = ν(π, 0), which is exactly the
angle between Mπ and Lπ.

�

Therefore, a Sturm permutation σ is obtained by labeling the intersec-
tion points ui ∈ Mπ ∩ Lπ firstly along Mπ following its parametriza-
tion given by (π, u(π, b, 0), p(π, b, 0)) as b goes from −∞ to ∞,

u1 < ... < uN

where N denotes the number of equilibria. Secondly, label the inter-
section points along Lπ by increasing values,

uσ(1) < ... < uσ(N)

The Morse indices of equilibria and the zero number of difference
of equilibria can be calculated through the Sturm permutation σ, as
in [68] and [29]. The main tool for such proofs is the third part of
the above Lemma: the rotation along the shooting curve increases the
Morse index.

3.4 dropping lemma

Let the zero number 0 ≤ zt(u) ≤ ∞ count the number of strict sign
changes in x of a C1 function u(t, x) 6≡ 0, for each fixed t. More
precisely,

zt(u) := sup
k

{
There is a partition {xj}k

j=1 of [0, π]

such that u(t, xj)u(t, xj+1) < 0 for all j

}

and zt(u) = −1 if u ≡ 0. In case u does not depend on t, we omit the
index and simply write zt(u) = z(u).

A point (t0, x0) ∈ R× [0, π] such that u(t0, x0) = 0 is said to be a
simple zero if ux(t0, x0) 6= 0 and a multiple zero if ux(t0, x0) = 0.

The following result proves that the zero number of certain solu-
tions of (51) is nonincreasing in time t, and decreases whenever a
multiple zero occur. Different versions of this well known fact are
due to Sturm [81], Matano [52], Angenent [6] and others. See [47] for
a more recent account.

Lemma 3.4.1. Dropping Lemma
Consider u 6≡ 0 a solution of the linear equation (58) for t ∈ [0, T). Then,

its zero number zt(u) satisfies
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1. zt(u) < ∞ for any t ∈ (0, T).

2. zt(u) is nonincreasing in time t.

3. zt(u) decreases at multiple zeros (t0, x0) of u, that is,

zt0−ε(u) > zt0+ε(u)

for any sufficiently small ε > 0.

Recall that both the tangent vector ut and the difference u1 − u2

of two solutions u1, u2 of the nonlinear equation (51) satisfy a linear
equation as (58), and the proof is exactly the same as the one for
the semilinear equations. The proof even holds for fully nonlinear
equations, as in [47].

We mention two consequences of the dropping lemma 3.4.1 and the
asymptotic description in Theorem 3.1.2. The first is a result relating
the zero number within invariant manifolds and the Morse indices of
equilibria. The second is the Morse-Smale property.

Theorem 3.4.2. Zero number and Invariant Manifolds [82], [18]
Consider an equilibrium u∗ ∈ E and a trajectory u(t) of (51). Then,

1. If u(t) ∈Wu(u∗), then i(u∗) > zt(u− u∗).

2. If u(t) ∈Ws
loc(u∗)\{u∗}, then zt(u− u∗) ≥ i(u∗).

These results also hold by replacing u(t)− u∗ with the tangent vector ut.

The above theorem implies that (51) has no homoclinic orbits. In-
deed, if there were any, then i(u∗) < i(u∗), which is a contradiction.

Theorem 3.4.3. Morse-Smale Property [42], [5], [33]
Consider two hyperbolic equilibria u− and u+ with respective Morse in-

dices i(u−), i(u+). If Wu(u−) ∩Ws(u+) 6= ∅, then such intersection is
transverse. Moreover, Wu(u−) ∩Ws(u+) is an embedded submanifold of
dimension i(u−)− i(u+).

This last theorem implies that if the semigroup has a finite number
of equilibria, in which all are hyperbolic, then it is a Morse-Smale
system in the sense of [38]. Note that hyperbolicity of equilibria is a
generic property. See brunovsky,polacik. Also, hyperbolicity is not
even necessary for transversality, as in henry.

3.5 sturm global structure

This section gathers all the tools developed in the previous sections, in
order to construct the attractor for the quasilinear parabolic equation
(51) and prove part of the main Theorem 3.0.1.

Its proof is a consequence of the following two propositions. Firstly,
due to the cascading principle, it is enough to construct all heteroclin-
ics between equilibria such that the Morse indices of such equilibria
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differ by 1. Secondly, on one direction, the blocking principle: some
conditions imply that there does not exist a heteroclinic connection;
on the other direction, the liberalism principle: if those conditions are
violated, then there exists a heteroclinic.

The cascading and blocking principles follow from the dropping
lemma and Morse-Smale property from Section 3.4, and we give a
sketch as in [29]. There is only a mild modification in the proof of the
liberalism principle in Proposition 2.5.2.

Proposition 3.5.1. Cascading Principle [29]
There exists a heteroclinic between two equilibria u− and u+ such that

n := i(u−)− i(u+) > 0 if, and only if, there exists a sequence (cascade) of
equilibria {vk}n

k=0 with v0 := u− and vn := u+, such that the following
holds for all k = 0, ..., n− 1

1. i(vk+1) = i(vk) + 1

2. There exists a heteroclinic from vk+1 to vk

Proposition 3.5.2. Blocking and Liberalism Principles [29]
There exists a heteroclinic connection between equilibria u− and u+ with

i(u−) = i(u+) + 1 if, and only if,

1. Morse blocking: z(u− − u+) = i(u+),

2. Zero number blocking: z(u−− u∗) 6= z(u+− u∗) for all equilibria
u∗ between u− and u+ at x = 0 .

The blocking and liberalism principles assert that the Morse indices
i(.) and zero numbers z(.) construct the global structure of the attrac-
tor explicitly. Those numbers can be obtained through the Sturm
permutation, as in Section 3.3.

For the proof of the liberalism theorem, it is used the Conley index
to detect orbits between u− and u+. We give a brief introduction
of Conley’s theory, and how it can be applied in this context. See
Chapters 22 to 24 in [80] for a brief account of the Conley index, and
its extension to infinite dimensional systems in [71].

Consider the space X of all topological spaces and the equivalence
relation given by Y ∼ Z for Y, Z ∈ X if, and only if Y is homotopy
equivalent to Z, that is, there are continuous maps f : Y → Z and
g : Z → Y such that f ◦ g and g ◦ f are homotopic to idZ and idY,
respectively. Then, the quotient space Y/ ∼ describes the homotopy
equivalent classes [Y] of all topological spaces which have the same
homotopy type. Intuitively, [Y] describes all other topological spaces
which can be continuously deformed into Y.

Suppose Σ is an invariant isolated set, that is, it is invariant with
respect to positive and negative time of the semiflow, and it has a
closed neighborhood N such that Σ is contained in the interior of N
with Σ being the maximal invariant subset of N.
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Denote ∂eN ⊂ ∂N the exit set of N, that is, the points which are not
strict ingressing in N,

∂eN := {u0 ∈ N | u(t) 6∈ N for all sufficiently small t > 0}.

The Conley index is defined as

C(Σ) := [N/∂eN]

namely the homotopy equivalent class of the quotient space of the
isolating neighborhood N relative to its exit set ∂eN. Such index is
homotopy invariant and does not depend on the particular choice of
isolating neighborhood N.

We compute the Conley index for two examples.
Firstly, the Conley index of a hyperbolic equilibria u+ with Morse

index n. Consider a closed ball N ⊂ X centered at u+ without any
other equilibria in N, as isolating neighborhood. The flow provides a
homotopy that contracts along the stable directions to the equilibria
u+. Then, N is homotoped to a n-dimensional ball Bn in the finite
dimensional space spanned by the first n eigenfunctions, related to
the unstable directions. Note the exit set ∂eBn = ∂Bn = Sn−1, since
after the homotopy there is no more stable direction and the equilibria
is hyperbolic. Therefore, the quotient of a n-ball and its boundary is
an n-sphere,

C(u+) = [N/∂eN] = [Bn/∂eBn] = [Bn/Sn−1] = [Sn].

Secondly, the Conley index of the union of two disjoint invariant
sets, for example u− and u+ with respective disjoint isolating neigh-
borhoods N− and N+. Then, N− ∪ N+ is an isolating neighborhood
of {u−, u+}. By definition of the wedge sum

C({u−, u+}) =
[

N− ∪ N+

∂e(N− ∪ N+)

]
=

[
N−

∂eN−
∨ N+

∂eN+

]
= C(u−) ∨ C(u+).

The Conley index can be applied to detect heteroclinics as follows.
Construct a closed neighborhood N such that its maximal invariant
subspace is the closure of the set of heteroclinics between u±,

Σ = Wu(u−) ∩Ws(u+).

Suppose, towards a contradiction, that there are no heteroclinics
connecting u− and u+, that is, Σ = {u−, u+}. Then, the index is given
by the wedge sum C(Σ) = [Sn] ∨ [Sm], where n, m are the respective
Morse index of u− and u+.

If, on the other hand, one can prove that C(Σ) = [0], where [0]
means that the index is given by the homotopy equivalent class of a
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point. This would yield a contradiction and there should be a con-
nection between u− and u+. Moreover, the Morse-Smale structure
excludes connection from u+ to u−, and hence there is a connection
from u− to u+.

Hence, there are three ingredients missing in the proof: the Conley
index can be applied at all, the construction of a isolating neighbor-
hood N of Σ and the proof that C(Σ) = [0].

Proof of Theorem 3.5.2
( ⇐= ) This is also called liberalism in [29]. Consider hyperbolic

equilibria u−, u+ such that i(u−) = i(u+) + 1 and satisfies both the
Morse and the zero number blocking. Without loss of generality, as-
sume u−(0) > u+(0).

It is used the Conley index to detect orbits between u− and u+.
Note that the semiflow generated by the equation (8) on the Banach
space X is admissible for the Conley index theory in the sense of
[71], due to a compactness property that is satisfied by the parabolic
equation (8), namely that trajectories are precompact in phase space.
See Theorem 3.3.6 in [41].

As mentioned above, in order to apply the Conley index concepts
we need to construct appropriate neighborhoods and show that the
Conley index is [0].

Consider the closed set

K(u±) :=
{

u ∈ X | z(u− u−) = i(u+) = z(u− u+)

u+(0) ≤ u(0) ≤ u−(0)

}
Consider also closed ε-balls Bε(u±) centered at u± such that they

don not have any other equilibria besides u±, respectively, for some
ε > 0.

Define
Nε(u±) := Bε(u−) ∪ Bε(u+) ∪ K(u±).

The zero number blocking condition implies there are no equilibria
in K(u±) besides possibly u− and u+. Hence, Nε(u±) also has no
equilibria besides u− and u+.

Denote Σ the maximal invariant subset of Nε. We claim that Σ is
the set of the heteroclinics from u− to u+ given by Wu(u−) ∩Ws(u−).

On one hand, since Σ is globally invariant, then it is contained in
the attractor A, which consists of equilibria and heteroclinics. Since
there are no other equilibria in Nε(u±) besides u±, then the only
heteroclinics that can occur are between them.

On the other hand, Theorem 2.4.3 implies that along a heteroclinic
u(t) ∈ H the zero number satisfies zt(u − u±) = i(u+) for all time,
since i(u−) = i(u+) + 1. Therefore u(t) ∈ K(u±) and the closure of
the orbit is contained in Nε(u±). Since the closure of the heteroclinic
is invariant, it must be contained in Σ.
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Lastly, it is proven that C(Σ) = [0] in three steps, yielding the
desired contradiction and the proof of the theorem. We modify the
first and second step from [29], whereas the third remain the same.

In the first step, a model is constructed displaying a saddle-node
bifurcation with respect to a parameter µ, for n := z(u+ − u−) ∈ N

fixed,
0 = a(v)[vξξ + λnv] + gn(µ, ξ, v, vξ) (70)

where ξ ∈ [0, π] has Neumann boundary conditions, λn = −n2 are
the eigenvalues of the laplacian with cos(nξ) as respective eigenfunc-
tions, and

gn(µ, ξ, v) :=
(

v2 +
1
n2 v2

ξ − µ

)
cos(nξ).

For µ > 0, a simple calculation shows that v± = ±√µ cos(nξ) are
equilibria of (70). Hence,

z(v+ − v−) = z(u+ − u−) =: n (71)

since the n intersections of v− and v+ will be at its n zeroes.
Moreover, those equilibria are hyperbolic for small µ > 0, such

that i(v+) = n + 1 and i(v−) = n. Indeed, parametrize the bifur-
cating branches by µ = s2 so that v(s, ξ) = s cos(nξ), where s > 0
correspond to v+ and s < 0 to v−. Linearizing at the equilibrium
v(s, ξ), the eigenvalue problem becomes

ηv = a(v±)[vξξ + λnv] + [2sv±v +
2s∂ξv±vξ

−n
]v±

where v± are coefficients depending on ξ, and the unknown eigen-
function is v, corresponding to the eigenvalue η.

Hence ηn(s) = 2s is an eigenvalue with v±(ξ) its corresponding
eigenfunction. Hence, by a perturbation argument in Sturm-Liouville
theory, that is µ = 0 we have the usual laplacian with n positive
eigenvalues and one eigenvalue ηn(0) = 0. Hence for small µ < 0,
the number of positive eigenvalues persist, whereas for small µ > 0,
the number of positive eigenvalues increases by 1. This yields the
desired claim about hyperbolicity and the Morse index.

Now consider the quasilinear parabolic equation such that (70) is
the equilibria equation. The equilibria v± together with their connect-
ing orbits form an isolated set

Σµ := Wu(v−) ∩Ws(v+)

with isolating neighborhood Nε(v±), and the bifurcation parameter
can also be seen as a homotopy parameter. Hence the Conley index
is of a point by homotopy invariance as desired, that is,

C(Σµ) = C(Σ0) = [0]. (72)

In the second step, the equilibria v− and v+ are transformed respec-
tively into u− and u+ via a diffeomorphism which is not a homotopy.
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Recall n = z(v− − v+) = z(u+ − u−). Hence, choose θ(ξ) a smooth
diffeomorphism of [0, π] that maps the zeros of v− − v+ to the zeros
of u− − u+. Therefore, from now on we suppose that the zeros of
v− − v+ and u− − u+ occur in the same points in θ ∈ [0, π].

Consider the transformation

Θ : X → X

v 7→ α[v− v−] + u−

where α is defined pointwise through

α :=

{
u+−u−
v+−v− , if v+ 6= v−
∂θ(u+−u−)
∂θ(v+−v−)

, if v+ = v−

such that the coefficient α is smooth and nonzero due to the l’Hôpital
rule. Hence, Θ(v−) = u− and Θ(v+) = u+ as desired.

Moreover, the number of intersections of functions is invariant un-
der the maps Θ and θ, that is,

z(Θ(v(θ)− ṽ(θ))) = z(v(ξ)− ṽ(ξ)) (73)

and hence K(v±) is mapped to K(u±) under Θ.
Through the map ξ, the model equation (70) is mapped to the equa-

tion (51) with different diffusion coefficients and nonlinearity, namely

ut = a(u)(xξ)
2uxx + f (x, u, uxxξ) + uxξxx

where the Neumann boundary conditions are preserved.
Through the map Θ, the model equation (70) is mapped to

ut = a(u)αuxx + f (x, Θ(u), ∂xΘ(u))

+ 2αx∂x[u− v−] + αxx[u− v−] + ∂xxu−
+ αx[u− v−] + ∂xu− − ∂xxv−

where the Neumann boundary conditions are preserved. We call the
reaction terms f̃ .

In other words, the maps Θ and θ yield and equation of the type

ut = ã(x)a(u)uxx + f̃ (x, u, ux)

where the coefficients ã(x) and b(θ) are obtained by combining the
diffusion within the above two equations, whereas the remaining
terms are collected in order to define the reaction term f̃ .

Moreover, the set Σµ is transformed into an isolated invariant set Σ̃
with invariant neighborhood Nε(u±) such that

C(Σµ) = C(Θ(Σµ)) = C(Σ̃). (74)

Hence, one identify the equilibria in the model constructed in the
first step with the equilibria from the equation (51), by preserving
neighborhoods and the Conley index.
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In the third step, we homotope the diffusion coefficients a(θ), b(θ)
and nonlinearity f̃ to be the standard axisymmetric diffusion and
the desired reaction f from the equation (8). Indeed, consider the
semilinear parabolic equation

ut = aτ(θ)uθθ + bτ(θ)
uθ

tan(θ)
+ f̃ τ(θ, u, uθ)

where

aτ(θ) := τa(θ) + 1− τ

bτ(θ) := τb(θ) + 1− τ

f τ(θ, u, uθ) := τ f̃ + (1− τ) f + ∑
i=− , +

χui µui(τ)[u− ui(θ)]

and χui are cut-offs begin 1 nearby ui and zero far away, the coef-
ficients µi(τ) are zero near τ = 0 and 1 and shift the spectra of the
linearization at u± such that uniform hyperbolicity of these equilibria
is guaranteed during the homotopy.

Consider u−, u+ and their connecting orbits during this homotopy,

Στ := Wu(uτ
−) ∩Wu(uτ

+).

Note that Στ ⊆ K(u±), since the dropping lemma holds through-
out the homotopy. Variying τ, the equilibria, u± do not bifurcate due
to normal hyperbolicity. Choosing ε > 0 small enough, the neigh-
borhoods Nε(u±) is an isolating neighborhood of Στ throughout the
homotopy. Indeed, Στ can never touch the boundary of K(u±), ex-
cept at the points u± by the dropping lemma. Once again the Conley
index is preserved by homotopy invariance, yielding

C(Σ) = C(Σ0) = C(Στ) = C(Σ1) = C(Σ̃). (75)

Finally, the equations (72), (74) and (75) yield that the Conley index
of Σ is the homotopy type of a point, and hence the desired result.

�

3.6 example : quasilinear chafee-infante

In this section it is given an example of the theory above, namely, it
is constructed the attractor of a quasilinear Chafee-Infante type prob-
lem,

ut = unuxx + λun+1[1− u2] (76)

where n ∈ N0, x ∈ [0, π] has Neumann boundary conditions and
initial data u0 ∈ C2α+β([0, π]) ∩ {u > ε} with α.β ∈ (0, 1) and ε > 0
small, so that the equation generates a dynamical system in such
space, as in [49].
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The equilibria equation describing the shooting curves is
uτ = p

pτ = − f (λ,u)
a(u) = −λu[1− u2]

xτ = 1.

(77)

Hence the shooting is exactly the same as the semilinear one. Thus,
the permutation and the attractor are the same as the semilinear
Chafee-Infante problem in [29]. Therefore, both attractors are geo-
metrically (connection-wise) the same. The only difference lies in the
equilibria, and the parameter λ must lie between two eigenvalues of
the appropriate diffusion operator.

Theorem 3.6.1. For λ ∈ (λk, λk+1), where λk is the k-th eigenvalue of
the linearized operator of (76) with k ∈ N0, the equation (76) has 2k + 3
hyperbolic equilibria u1, ..., u2k+3. Moreover, its Sturm attractor Ak is

uk+1

uk uk+2

u2 u2k+2

u1 u2k+3

3.7 discussion

We now mention two applications in the realm of general relativ-
ity and curve shortening flow, and two generalization proposals for
the results in this chapter, namely a similar result for fully nonlinear
parabolic equations, and fourth order parabolic equations.

It would be interesting to compute the attractor for other chosen
nonlinearities f . In particular, one that has its application the con-
struction of metrics at the event horizon of black holes, with a pre-
scribed scalar curvature. For the case of Schwarzschild metric, the
scalar curvature is chosen so that resulting parabolic equation is

ut = u2uxx − u(1− λu2)

where λ ∈ R+. Such problem was considered in [28], where in such
axially symmetric class it was shown that the equilibria u ≡ λ−1/2

bifurcates in an alternating sequence of pitchfork and transcritical
bifurcations.
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In this setting, the bifurcating equilibria are not necessarily hyper-
bolic, but only normally hyperbolic, as it was seen in [28]. Their
computation of the Morse indices indicate that the equilibria are hy-
perbolic in the subspace of axially symmetric solutions.

Moreover, the nonlinearity f above does not satisfy the growth con-
ditions that guarantees dissipativity. Numerical simulation of the
shooting curve suggest that such nonlinearity is slowly nondissipa-
tive, as it is in [70]. We postpone this discussion, until all these tools
have been sharpened and adapted for such case.

Another application is to obtain results in curve shortening flow.
Considering a planar jordan curve flowing with respect to its cur-
vature flow, then its curvature changes according to a quasilinear
parabolic equation

kt = k2[kxx + k]

as in [9] and [10]. Note there are several ways of modelling this same
phenomena.

Certain solutions are known to blow up in finite time. In partic-
ular, Grayson’s theorem, in [7], guarantee that a strict convex curve
shrinks to a point in finite time. The condition that a curve is strictly
convex, mathematically is k > ε for ε > 0 fixed and guarantees strict
parabolicity of the equation above.

We believe that self-similar solutions self-similar solutions of the
type of the ODE blow up rate yields a dissipative nonlinearity, and
the attractor of such equation is a single equilibria related to the circle.
This would yield another proof of Grayson’s theorem.

The attractor construction in this chapter raises the question if one
can construct the Sturm attractor for fully nonlinear second order
parabolic and dissipative equation of the type

ut = f (x, u, ux, uxx)

satisfying the parabolicity condition ∂q f > 0 for q = uxx. Some
results, such as shooting and obtaining permutations can be easily
adapted. Others, like a Lyapunov functional and the full attractor
construction are not so obvious. Those questions shall be treated in
the near future.

A last question is if it is possible to obtain any dynamical informa-
tion of the attractor for higher order parabolic equations, such as the
Swift-Hohenberg,

ut = −(1 + ∂2
x)

2u + λu + f (u)

where λ > 1. Such equation can be used to generate spatial-temporal
patterns.

This system has a Lyapunov functional. Hence, solutions either
blow-up in finite time, or are global and then converge to equilibria.
But the main tool from the second order equation in such case is not
known, and probably does not hold: the dropping lemma. See [60].
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T H E S Y M M E T R I Z AT I O N P R O P E RT Y

The goal of this chapter is to study how the symmetry of the spheri-
cal domain influences solutions of elliptic equations on such domain.
The method pursued is a variant of the moving plane method, discov-
ered by Alexandrov [2] and used for differential equations by Gidas,
Ni and Nirenberg [34].

Consider the quasilinear elliptic equation

0 = a(u)∆S2 u + f (u) (78)

where (θ, φ) ∈ S2, a and f are analytic.
We say that a function u ∈ C2(S2) has axial extrema if its extrema

in φ occur as axis from the north to south pole. Mathematically, if
uφ(θ0, φ0) = 0 for a fixed (θ0, φ0) ∈ S2, then uφ(θ, φ0) = 0 for any
θ ∈ [0, π]. In that case, the extrema depend only at the position in φ.
Note that there are finitely many axial extrema, since a, f are analytic,
and so is u, as in [21]. Denote them by {φi}N

i=0.
A simpler case of the above is when axial extrema are leveled, that

is, if all axial maxima φ∗ have the same value u(θ, φ∗) = M(θ), and
all axial minima φ∗ also have the same value u(θ, φ∗) = m(θ).

Theorem 4.0.1. Symmetry of Certain Equilibria [Lappicy (’17)]
Suppose that u is a non constant equilibrium of (78) such that all its

extrema are leveled and axial. Then φi =
φi−1+φi+1

2 and

u(θ, φ) = u(θ, Rφi(φ)) (79)

for all i = 0, , ..., N, where φ−1 := φN and φN+1 := φ0, Rφi(φ) := 2φi − φ

is the reflection of φ with respect to φi and (θ, φ) ∈ [0, π]× [φi−1, φi].

For positive solutions of elliptic equations on a ball with Dirichlet
boundary conditions, a similar symmetrization result was obtained
by Gidas, Ni and Nirenberg [34], using the moving plane method
developed by Alexandrov [2] and further by Serrin [75]. We give a
brief sketch of this method in Section 4.1.

Proving the symmetrization property in the sphere has some dif-
ficulties. In particular, the domain has no boundary and it is not
clear where to start the moving plane method. This problem was
partially solved by Padilla [58] for particular convex subsets of the

71
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sphere, and later considered by Kumaresan and Prajapat [45] for sub-
sets of the sphere contained in a hemisphere. Later by Brock and
Prajapat [17] for subsets containing hemisphere, but still not the full
sphere. All these methods rely on a stereographic projection, so that
domains within the sphere are transformed into domains in the Eu-
clidean space and one can apply the moving plane method. Moreover,
such results in the sphere deal with positive solutions.

The following sections are organized as follows. We recall the im-
portant tools and mechanisms in the moving plane method in Section
4.1. Then, we adapt it to a moving arc method for elliptic problems
in Section 4.2 and prove the main theorem in this chapter. Lastly, in
Section 4.3, we discuss alternative proofs and generalizations of such
method.

4.1 mechanisms of symmetrization

In this section we mention three important mechanisms in order to
prove a symmetrization property using a variant of the moving plane
method. Then, we give a sketch of the Gidas, Ni and Nirenberg’s
proof in order to compare with the moving arc method introduced in
Section 4.2.

Consider the following elliptic case,

0 = LΩu + f (u) (80)

for some elliptic operator LΩ in a domain Ω and f analytic.
Firstly, the domain Ω must have some symmetry. For example,

the sphere is symmetric with respect to rotations and reflections of
both angle variables (θ, φ). Those are the expected symmetries for
solutions of (80).

Secondly, the linear diffusion operator LΩ should be invariant un-
der such symmetry. For example, the spherical Laplacian is

∆S2 u = uθθ +
uθ

tan(θ)
+

uφφ

sin2(θ)

and a change of coordinates θ̃(θ) would also change the coefficients
1

tan(θ) and 1
sin2(θ)

.
On the other hand, any reflection or rotation in the φ variable do

not change the coefficients above, yielding the same spherical lapla-
cian as linear operator. Hence, φ is the candidate variable that so-
lutions might possess some symmetry. Therefore, the difference of
solutions w(θ, φ) := u(θ, φ)− u(θ, Rε(φ)) satisfy a linear equation

0 = ∆S2 w + c(θ, φ)w (81)

with c(θ, φ) :=
∫ 1

0 ∂u f ((1− ζ)u(θ, Rε(φ)) + ζu(θ, φ))dζ and Rε(φ) :=
2ε− φ is the reflection of φ with respect to the arc ε. Similarly for the
difference w(θ, φ) := u(θ, φ)− u(θ, Rotε(φ)).
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Thirdly, one desires that w ≡ 0. This follows by choosing an appro-
priate subdomain of Ω so that (81) has a maximum principle and w
has a sign at the boundary of such subdomain, yielding w ≥ 0 and
w ≤ 0.

4.1.1 Moving Plane Method

We describe the main idea of Gidas, Ni and Nirenberg [34] for pos-
itive solutions u of the elliptic equation (80) with x = (x1, x2) ∈ Ω
being the unit two dimensional ball centered at the origin and Dirich-
let boundary conditions.

Consider the left-most point of the ball x1 = −1 and a vertical line
being its tangent. Then, move this vertical line by a little amount to
the right, that is, in the x1 direction. Call it the ε-line.

Define by Ωε the open subdomain considering the points within
the ball between the left most point x1 = −1 and the ε-line,

Ωε := {x ∈ Ω | x1 ∈ (−1, ε) and ε ∈ (−1, 0)}.

Its boundary ∂Ωε consists of two segments: one along the ε-line,
another along the boundary of Ω. Moreover, the reflection with re-
spect to the ε-line is given by Rε(x) := (2ε− x1, x2).

The idea is to move the ε-line from the left to the right, and consider
an appropriate an appropriate differential equation in Ωε.

x1

x2

ε = −1 ε↘ 0

Rε→

x1

x2

Ωε

ε = 0

Ω0 x1

R0→
x2

Figure 7: Moving Plane Method: start with the ε-line at the left-most
point of the domain and move it to the right, until it reaches
the symmetric line at the origin. Repeat this procedure in
all radial directions.

The difference of solutions

wε(x) := u(x)− u(Rεx)

satisfies a linear equation, where Rε(x) := (2ε− x1, x2) is the reflec-
tion of the x1 variable along the ε-line,{

0 = ∆wε + c(x)wε on Ωε

wε ≤ 0 on ∂Ωε
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for x ∈ Ωε and c(x) :=
∫ 1

0 ∂u f ((1− τ)u(θ, Rε(φ)) + τu(θ, φ))dτ.
The boundary conditions are wε = 0 along the ε-line due to the re-

flection, whereas wε < 0 outside the ε-line, due to Dirichlet boundary
conditions and the assumption that u > 0 in the interior of Ω, which
is where the reflection Rε(x) lies.

Hence one can apply the weak maximum principle for thin do-
mains, yielding that wε ≤ 0 on Ωε. Such maximum principle will be
made precise when it is used for the spherical case.

Using once again the maximum principle, one can move the ε-line
until the origin. In order to show this extension argument, it is crucial
that the solution u is positive and not only non-negative.

Indeed, consider

ε∗ := sup{ε ∈ [−1, 0] | wε ≤ 0 in Ωε}.

Suppose that ε∗ < 0. In order to contradict its maximality, it is
shown that

wε∗+δ ≤ 0

in Ωε∗+δ for some δ > 0.
In particular, the definition of ε∗ says that wε∗ ≤ 0 for the compact

subset Ωε∗−δ ⊂ Ωε∗ . Moreover, the inequality is strict,

wε∗ < 0

in Ωε∗−δ.
Indeed, in order to prove it, notice that the strong maximum prin-

ciple guarantees the only other possibility would be that wε∗ ≡ 0 in
Ωε∗−δ. This case is not possible for ε∗ < 0, because wε∗ < 0 at the
boundary Ω∩ ∂Ωε∗−δ, due to Dirichlet boundary conditions and that
u > 0 in Ω, by assumption.

By continuity in the parameter ε and compactness of Ωε∗−δ, such
inequality still holds with a parameter increment by small δ > 0,
yielding

wε∗+δ < 0 (82)

in Ωε∗−δ.
It is enough to prove wε∗+δ ≤ 0 for the remaining set Ωε∗+δ\Ωε∗−δ.

In this set, wε∗+δ satisfies{
0 = ∆wε∗+δ + c(x)wε∗+δ on Ωε∗+δ\Ωε∗−δ

wε∗+δ ≤ 0 on ∂(Ωε∗+δ\Ωε∗−δ)

The boundary values are wε∗+δ = 0 at the (ε∗ + δ)-line due to the
reflection, wε∗+δ < 0 at the (ε∗ − δ)-line due to the compactness argu-
ment in (82), and wε∗+δ < 0 on the remaining part of the boundary
that intersects the ball, due to Dirichlet and u > 0.

Since Ωε∗+δ\Ωε∗−δ is still a thin domain for δ > 0 small, the maxi-
mum principle implies

wε∗+δ ≤ 0
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in Ωε∗+δ\Ωε∗−δ.
This contradicts the maximality of ε∗ < 0, and hence ε∗ = 0. This

proves w0 ≤ 0 in Ω0.
The change of variables x1 7→ −x1 yields the same linear equation

in the ball as above, due to the symmetry of the domain, but wε has
the opposite sign within its boundary conditions. Using the same
arguments as above, one obtains the opposite inequality wε ≥ 0. Al-
ternatively, one can repeat the moving plane method by starting at
x1 = 1 and decrease the ε-line until the origin. Lastly, due to the
symmetry of the ball, one can use this argument on all radial direc-
tions. This yields a sketch of the symmetrization result for elliptic
equations.

4.2 symmetry of certain equilibria

The starting point of the moving arc method is at some axial extrema
φi−1. Without loss of generality, we can assume φi−1 = 0. Otherwise,
consider φ 7→ φ− φi−1.

Define a small sector within the sphere nearby φi−1 = 0,

Ωε := {(θ, φ) ∈ S2 | θ ∈ (0, π), φ ∈ (0, ε)}

with small ε > 0. The boundary ∂Ωε is given by two axis, namely at
φ = 0 and φ = ε. We call the latter by ε-arc.

Then, we will move the ε-arc by increasing ε, and consider reflec-
tions along it, defined by Rε(φ) := 2ε− φ. Due to the periodic bound-
ary conditions in φ, one has Ωε, Rε(Ωε) ⊂ S2 for arbitrarily large ε.

We will then show that equilibria solutions of (78) and its reflection
are related by an inequality, for small ε > 0. Then one can extend
such inequality for larger ε. Lastly one can prove the reversed in-
equality. The method is better illustrated in the below picture and
the following lemmata.

Ω0 Ωε

Rε

Ωφi

Rφi

Figure 8: Moving Arc Method: start at φi−1 and consider sectors Ωε

nearby it. Reflect along the and ε-arc to obtain an inequality.
Then extend such inequality for bigger ε. Repeat the process
starting at φi+1 and move the arc in the opposite direction.

Recall that a function u ∈ C2(S2) has leveled axial extrema if its
extrema in φ occur as axis from the north to south pole, that is, if
uφ(θ0, φ0) = 0 for a fixed (θ0, φ0) ∈ S2, then uφ(θ, φ0) = 0 for any
θ ∈ [0, π]. In that case, the extrema depend only at the position in
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φ. Since a, f are analytic, so is u and there are finitely many extrema,
denoted by {φi}N

i=0.
Moreover, all axial maxima φi have the same value u(θ, φi) = M(θ),

and all axial minima φi also have the same value u(θ, φi) = m(θ).

Lemma 4.2.1. Inequality for Reflections
Consider u a nonconstant equilibrium of (78) such that all extrema are

leveled and axial. If φi is an leveled axial maximum, then

u(θ, φ) ≤ u(θ, Rφi(φ))

for all i = 1, , ..., N, (θ, φ) ∈ [0, π]× [φi−1, φi].

Similarly, the above lemma holds with reversed inequality, if φi is
an axial leveled minimum. This yields the claimed reflection property
in the φ direction.

Lemma 4.2.2. Equality for Reflections
Consider u an equilibrium of (78) such that all extrema are leveled and

axial, given by {φi}N
i=0. Then φi =

φi−1+φi+1
2 and

u(θ, φ) = u(θ, Rφi(φ))

for all i = 1, , ..., N, where φ−1 := φN and φN+1 := φ0, and (θ, φ) ∈
[0, π]× [φi−1, φi].

The main tools to prove the above are different versions of the max-
imum principle. Below we state a particular version of the one for
thin domains on manifolds, as in Padilla [58], and the strong unique
continuation theorem for manifolds, due to Kazdan [44].

Theorem 4.2.3. Maximum Principles
Consider w a solution of the linear differential equation,

0 = ∆S2 w + c(θ, φ)w (83)

where ∆S2 is the Laplace-Beltrami operator on the sector Ωε ⊆ S2 with
ε > 0.

1. Thin domains: Consider U ⊆ Ωε such that the Lebesgue measure
|U| < µ for sufficiently small µ. If w ≤ 0 on ∂U, then w ≤ 0 in U.

2. Strong: If w ≤ 0 on Ωε, then either w < 0 in Ωε or w ≡ 0 in Ωε.

3. Unique continuation: If w ≡ 0 in an open set U ⊆ S2, then w ≡ 0
in S2.

In particular, Ωε with ε > 0 sufficiently small i a thin domain. Also,
the sector Ωε is an open set.

In order to prove the strong version, suppose that w(θ, φ) = 0 for
some (θ, φ) ∈ Ωε. One can calculate the value of a function at a
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point by its mean value around a geodesic ball Br in the sphere with
geodesic distance r > 0 small. Hence,

0 = w(θ, φ) =
1

vol(Br)

∫
Br

w ≤ sup
Br

(w) = 0

and the equality holds if and only if w ≡ 0 on Br. One can show
that {(θ, φ) ∈ Ωε | w(θ, φ) = 0} is nonempty, closed and open in the
connected set Ωε, hence it must be the full set Ωε. See [25] for a
detailed exposition of the euclidean case.

Proof of Lemma 4.2.1. We firstly prove an inequality for a small
reflection, then we extend the inequality for larger reflections.

Recall that the axial extrema are finite, since f is analytic, and so
is u. See [21]. Consider three consecutive axial extrema, φi−1 < φi <

φi+1. As mentioned, we start the moving arc at φi−1. Suppose that
it is an axial minimum, then φi is an axial maximum and φi+1 is an
axial minimum.

Indeed, if φi was a also an axial minimum, there would be an axial
maximum φ∗ ∈ (φi−1, φi), by the extreme value theorem and noticing
all extrema are axial. This contradicts that φi−1 and φi are consecutive.
Similarly for φi+1.

Therefore,
u(θ, φi−1) ≤ u(θ, φ) (84)

for all θ ∈ [0, π] and φ ∈ (φi−1, φi). In particular, the inequality must
be strict for some value (θ, φ), otherwise the function would be lo-
cally constant, and due to the unique continuation theorem, globally
constant.

Define the difference of the equilibrium solution u of (78) and itself
with reflected angle through

wε(θ, φ) := u(θ, φ)− u(θ, Rε(φ))

for (θ, φ) ∈ Ωε with ε > 0 sufficiently small. Then, wε satisfies{
0 = Lwε + c(θ, φ)wε on Ωε

wε ≤ 0 on ∂Ωε

(85)

where L := b(θ, φ)∆S2 is an elliptic operator defined below.
Indeed, the boundary values are wε(θ, ε) = 0 due to the reflection,

and wε(θ, 0) ≤ 0 since φi−1 = 0 is an axial minimum, as in (84).
Moreover, the fundamental theorem of calculus implies that the

difference of two solutions of (78) satisfy

0 =
∫ 1

0

d
dτ

[a(uτ)∆S2 uτ + f (uτ)] dτ

with uτ := τu(θ, φ) + (1− τ)u(θ, Rε(φ)).
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Calculating the above derivatives with respect to τ,

0 = b(θ, φ)∆S2 wε + c(θ, φ)wε

where the bounded coefficients are given by the Hadamard formulas,

b(θ, φ) :=
∫ 1

0
a(uτ)dτ

c(θ, φ) :=
∫ 1

0
∂u f (uτ)dτ +

∫ 1

0
∂ua(uτ)∆uτdτ.

The maximum principle for thin domains in Theorem 4.2.3 implies
that

wε ≤ 0 (86)

in Ωε for ε > 0 sufficiently small.
Now, we extend such inequality for larger ε > 0. Let

ε∗ := sup{ε ∈ [0, 2π] | wε ≤ 0 in Ωε for all ε ≤ ε∗}

Note ε∗ > 0, using the maximum principle for thin domains as
in (86). Also, ε∗ ≤ φi, since this is an axial maximum and hence
wφi+δ(θ, φ) > 0 for some (θ, φ) ∈ Ωφi+δ\Ωφi with δ > 0 sufficiently
small, by applying the same arguments as in (84) for a maximum.

We claim that ε∗ = φi. Suppose that ε∗ < φi. In order to contradict
its maximality, it is shown that

wε∗+δ ≤ 0 (87)

in Ωε∗+δ for some δ > 0.
The extension argument is a bit different than the one presented in

Section 4.1 for the Gidas, Ni and Nirenberg. The reason is that the
previous extension argument works well for strict positive solutions,
but not for solutions satisfying the non strict inequality (84). We
adapt the method using the unique continuation theorem, as Poláčik
[61].

By hypothesis, we have that wε∗ ≤ 0 in Ωε∗ . Moreover, the strong
maximum principle in Theorem 4.2.3 guarantees

wε∗ < 0

in Ωε∗ . The other possibility, that wε∗ ≡ 0 in Ωε∗ would imply that
wε∗ ≡ 0 in S2 due to the unique continuation theorem. Hence u
would be a constant, which is a contradiction.

In particular,
wε∗ < 0

for a compact subset K of Ωε∗ such that |Ωε∗\K| < µ
2 .

Due to continuity in the parameter and that K is compact,

wε∗+δ < 0 (88)
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in K.
It is enough to prove a similar inequality for the remaining set

Ωε∗+δ\K. In this set, wε∗+δ satisfy{
0 = Lwε∗+δ + c(θ, φ)wε∗+δ on Ωε∗+δ\K
wε∗+δ ≤ 0 on ∂(Ωε∗+δ\K) = ∂Ωε∗+δ ∪ ∂K

with L and C(θ, φ) as in (85). Note that one can choose δ > 0 small
such that |Ωε∗+δ\Ωε∗ | ≤ µ

2 , and hence |Ωε∗+δ\K| ≤ µ.
Note that since K is a compact subset of the open set Ωε∗+δ, then

∂(Ωε∗+δ\K) = ∂Ωε∗+δ ∪ ∂K. Moreover, the boundary values are ob-
tained in ∂K because of the inequality (88), wε∗+δ(θ, ε∗ + δ) = 0 due
to the reflection at the (ε∗ + δ)-line, and wε∗+δ(θ, 0) ≤ 0 since the
solution only has leveled axial extrema, and (θ, 0) is one of them.

Since Ωε∗+δ\K is still a thin domain for δ > 0 small, the maximum
principle implies that

wε∗+δ ≤ 0

in Ωε∗+δ\K.
Combining this inequality in Ωε∗+δ\K with the same inequality (88)

in K, yields the desired inequality (87) in the whole set Ωε∗+δ. This
contradicts the maximality of ε∗, yielding

wφi ≤ 0

in Ωφi .

�

Proof of Lemma 4.2.2.
Consider three consecutive leveled axial extrema φi−1 < φi < φi+1

such that φi is a maximum and the other two are minima. From the
Lemma 4.2.1,

u(θ, φ) ≤ u(θ, Rφi(φ)) (89)

with (θ, φ) ∈ [0, π]× [φi−1, φi].
It is proven the reversed inequality. This is done by moving the

arc on the reversed orientation of φ, starting at the minimum φi+1.
Indeed, consider the change of variable φ̃(φ) := φi+1−φ with starting
axis φ̃(φi+1) = 0.

The analogous of the condition (84) is that φ̃ = 0 is an axial mini-
mum, namely

u(θ, 0) ≤ u(θ, φ̃)

for φ̃ ∈ (0, φ̃i) and φ̃i := φ̃(φi) = φi+1 − φi is where the maximum φi
lies in the φ̃ coordinates.

Hence, one can apply the Lemma 4.2.1 in the new variable φ̃,

u(θ, φ̃) ≤ u(θ, Rφ̃i
(φ̃)) (90)

with (θ, φ̃) ∈ [0, 2π]× [0, φ̃i].
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We want to compare (89) and (90), but they are valid in different
domains. Consider φ ∈ [φi−1, φi], yielding (89). Then, either Rφi(φ)

is in [φi, φi+1] or [φi−1, φi], depending which interval is bigger. In the
former case, one can use (90) with φ̃ = Rφi(φ), whereas in the latter,
one can use (89) again with Rφi(φ) instead of φ. Both cases yield

u(θ, φ) ≤ u(θ, Rφi(φ)) ≤ u(θ, Rφ̃i
(Rφi(φ)))

with φ ∈ [φi−1, φi].
Since φi and φ̃i denote the same point in different coordinates, the

composition of reflections Rφ̃i
(Rφi(φ)) = φ. Hence,

u(θ, φ) = u(θ, Rφi(φ))

for φ ∈ [φi−1, φi].
In particular,

u(θ, φi−1) = u(θ, Rφi(φi−1)).

Then Rφi(φi−1) is another leveled and axial minimum, since all ex-
trema are leveled and axial. Moreover, we chose three consecutive
extrema φi−1 < φi < φi+1, hence Rφi(φi−1) = φi+1 and φi is the mid-
point between φi−1 and φi+1.

�

4.3 discussion

Clearly, the main result also holds for the sphere Sn with n ≥ 1. In
particular, for n = 1, the axial extrema hypothesis is superfluous and
the only remaining condition is that extrema are leveled. This implies
the symmetry of the equilibria with leveled extrema in the attractor
constructed by Fiedler, Rocha and Wolfrum [30], and stabilized by
Schneider [73].

Moreover, it is believed that the hypothesis can be weakened yield-
ing similar results. In particular, if the extrema are not axial, but are
curves from the north pole to the south pole, then a similar result
should hold, by using the methods in [61]. Also, if the extrema are
not leveled, one can expect a similar result, but the domain in which
the symmetrization holds is different. Lastly, if a, f ∈ C1 it should
be possible to obtain the same result. Analyticity was only used to
obtain finitely many axial extrema.

Note the moving arc method is not limited to the sphere. De-
pending on the Laplace-Beltrami, the results here can be adapted to
other domains. For general manifolds, one might need an assump-
tion on convexity in the candidate direction for symmetrization, such
as geodesic convexity. Further investigation is being carried for the
torus and the hyperbolic disk.

A natural question that arises is the usual symmetry question: are
positive solutions of elliptic equations on the sphere axisymmetric?
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The lack of boundary implies the moving plane method is not ade-
quate. One can try other means, for example by stereographic pro-
jection. Indeed, Frankel in [31] collects several symmetrization re-
sults for the whole plane R2. In this case, it is required admissible
decay conditions at ∞ in order to start the moving plane method.
These conditions could possibly be satisfied due to the singularity at
the north pole, which imposes Neumann boundary conditions, and
hence growth conditions at ∞. Another possibility to obtain axisym-
metry of solutions is to adapt the work of Pacella and Weth [57] or
Saldaña [72] for the sphere.

We also mention that the method presented here can be replicated
for the problem in the ball with any boundary condition, yielding a
symmetry result for sign changing solutions. For example the Chafee-
Infante nonlinearity f (λ, u) = λu[1− u2] with λ ∈ R, the Gidas, Ni
and Nirenberg result concerns the trivial solutions u ≡ 0,±1 which
are clearly radially symmetric. On the other hand, there are several
bifurcating solutions from 0 that change sign and their properties
should be studied. Some of those bifurcating solutions can be com-
puted numerically, as in [83] and references therein. In those cases,
there are few examples of solutions which seem to have axial extrema
and display the symmetrization proved here.

Another extension of the main theorem in this chapter is a sym-
metrization property for parabolic equations. Indeed, similar results
for positive solutions of parabolic equations on the ball with Dirichlet
boundary were obtained by Poláčik and Hess [43], and Babin [13]. In
particular, it is proven that the global attractor A restricted to the sub-
space of positive solutions consists of radially symmetric solutions.
Hence, the result for elliptic equations can be seen as a particular
case of the parabolic version, since equilibria are in the attractor.

With that in mind, note that the radially symmetric attractor can be
explicitly constructed from the Chapter 2, using nodal properties. But
the construction of the attractor for the ball is far from being under-
stood, since nodal properties are not available in higher dimensions.
A tool that could be used to tackle that problem could be symmetry.
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E I N S T E I N H A M I LT O N I A N C O N S T R A I N T

The Einstein equations model gravity through spacetime as ten cou-
pled partial differential equations. Six of those evolve space in time,
whereas the other four constrain the initial data, or intuitively, dictate
how space curves itself and is embedded in the bigger framework of
spacetime.

We focus on static time-symmetric spacetime, namely time indepen-
dent solutions such that the embedding of space in spacetime is trivial
and its extrinsic curvature vanishes. Hence, those ten equations are
reduced to only one that indicates how space can bend intrinsically,
known as the Einstein’s Hamiltonian constraint. See [64].

Exact solutions of such equation with a prescribed function T00

describing its energy density are called pressureless perfect fluids, com-
monly used to model idealized distributions of matter in stellar mod-
els, such as galaxies and their interactions, or the interior of a star or
a black hole. See Chapter 4 in [74].

A simple case among the perfect fluids are the spherically symmet-
ric ones. Mathematically, space is described by a three dimensional
Riemannian manifold S with metric g. Assume that the space S can
be written in spherical coordinates, that is S := R+ × S2 with r ∈ R+

being the radial foliation of two dimensional spheres (θ, φ) ∈ S2. In
the simplest case, the metric splits as

g = u2dr2 + r2w

where w is the standard round metric in S2 and the metric component
u = u(r, θ, φ) is an unknown function. For a list of known exact
spherically symmetric solutions, see Table I and II in [16].

Computing the scalar curvature R(g) of S , Bartnik [15] claimed
that u satisfies the following parabolic equation,

2rur = u2∆S2 u + u +
r2R(g)− 2

2
u3 (91)

where this equation fails to be parabolic at r = 0.
This is purely a geometric fact of the chosen space S and metric g,

and still has no relation to the Einstein equations. This connection is
made by prescribing a matter model given by a C∞ function T00 and

82
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relating it with the the scalar curvature R(g) through the Einstein’s
Hamiltonian constraint equation,

R(g) = 16πT00 (92)

as in [64] and [15].
The simplest solution of (91) is given by the Schwarzschild metric

when R(g) = 4
r2 and the solution is independent of the angle vari-

ables, namely u(r) = (1/r− 1)−1/2 which blows up at r1 := 1. This
solution models black holes and the radius r1 is also known as the
event horizon, whereas there is another singularity at r0 := 0.

We are interested in Schwarzschild self-similar solutions of (91), as

u(r, θ, φ) =

(
1
r
− 1
)− 1

2

v(r, θ, φ) (93)

and hence constructing the space of initial data for such solutions in
order to rigorously study the dynamics of Einstein evolution equa-
tions, such as the stability of black holes.

The stability of black holes has been widely studied over the past
years, as in [55], but still lacks some rigorous treatment. Usually
only linear stability is treated, and in such case perturbations of the
Schwarzschild solution still satisfy the Einstein constraint equations.
For the nonlinear stability, the problem is open and it is not known if
perturbations of Schwarzschild still satisfy the constraints.

Through the self-similar glasses from (93), v satisfies the following
equation for some prescribed scalar curvature R(g),

2(1− r)vr = v2∆S2 v− v +
r2R(g)

2
v3.

Note that the parabolicity of the equation breaks down at the even
horizon r1 := 1, since there is no radial derivative. Moreover, it is the
backwards heat equation for r > r1, which is not well-posed.

For r > r1, Schwarzschild self-similar solutions of (91) with certain
curvature R(g) were constructed by Smith in [79]. For r ∈ (r0, r1)

with r0 > 0, and curvature R(g) = λ+2
r2 with λ ∈ R+, it was shown

that there are several non-spherical symmetric solutions bifurcating
from the Schwarzschild solution, by Fiedler, Hell and Smith in [28].

It is the aim of this thesis to study the structure at the event horizon
r1 := 1 from a dynamical point of view, depending on the interior of
the black hole, namely r < r1.

For that, rescale the equation through r = 1 − e−2t, so that the
breakdown of parabolicity at r1 := 1 is now represented as t→ ∞ in

vt = v2∆S2 v− v +
r2R(g)

2
v3. (94)

Note this equation for v is parabolic, and hence one can study its
initial value problem with initial data at t = 0, corresponding to r = 0.
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We recall that we are dealing with time independent solutions
of the Einstein equations. Even though t is usually called time in
parabolic equations, its interpretation here is different: it is a rescaled
radial distance from the black hole singularity at t = 0 such that the
event horizon r1 := 1 occurs at t = ∞.

There are two main results in this thesis, describing the structure of
the metric at r1. One describes the possible static axisymmetric self-
similar Schwarzschild metrics at r1, described rigorously in Chapters
2 and 3. The other, done in Chapter 4, describes some symmetries of
the metric at r1.

For the first result, suppose a priori that the prescribed curvature
satisfies the following growth conditions

R(g) <
2

r2v2 (95)

for |v| large enough uniformly in θ.
Under such assumption, the equation (94) generates a dissipative

dynamical system denoted by (t, v0) 7→ v(t) in the phase space X :=
C2α+β(S2) ∩ {v > ε} where α, β ∈ (0, 1) are respectively the Hölder
exponent and a fractional power exponent, and ε > 0 is a fixed value
that guarantees strict parabolicity of (94). These conditions are suffi-
cient for the existence of a global attractor A of (94) which attracts all
bounded sets as t→ ∞. See [12] and [38].

Hence, for any bounded initial data v0 ∈ X at t = 0 and a scalar
curvature R(g) satisfying (95), there exists a metric v(t, θ, φ) in phase
space for all t ∈ (0, ∞), by the semiflow of (94). Moreover, v will
approach an equilibrium in A as t → ∞, due to the existence of a
Lyapunov function.

In other words, for any bounded initial data v0 ∈ X at the singu-
larity r0 := 0 of self-similar Schwarzschild solutions, there exists a
metric v(r, θ, φ) for r ∈ (0, r1) such that v converges to an equilib-
rium of A as r → r1. Since r1 is the event horizon, this means that
self-similar metrics at the horizon v(r1, θ, φ) are given by equilibria
v1(θ, φ) ∈ A through v(r1, θ, φ) = v1(θ, φ) and the attractor A de-
scribes the possible metrics at r1.

Then, one can use Smith’s construction in [79] with such equilibria
v(r1, θ, φ) ∈ A as initial data at the horizon r1, yielding a metric for
r > r1, if one supposes that the scalar curvature R(g) is compactly
supported and satisfies R(g) < 1

r2 in (r1, ∞)× S2, and R(g) = 0 for
[r1, r1 + δ) for δ > 0 small.

The above construction yields a metric

g =
v(r, θ, φ)

1
r − 1

dr2 + r2ω (96)

such that v(0, θ, φ) = v0(θ, φ) ∈ X, the bounded trajectory v(r, θ) lies
in X for all r ∈ [0, ∞) and v(r1, θ, φ) ∈ A.
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We are interested into a more detailed study of the structure of the
attractor A that describes the possible metrics at the event horizon r1.
For such, we consider axially symmetric solutions and suppose that
the metric v(r, θ) is independent of the angle φ ∈ S1.

Axially symmetric solutions in general relativity have been exten-
sively studied and are also known in the literature as Ernst solutions
due to [24]. For a collection of case studies, see [50]. Numerical
simulation for the dynamics of interaction, pulsation or collapse of
axisymmetric stars was done in [78].

Therefore restricting the semiflow to the invariant subspace of ax-
isymmetric solutions Xaxi ⊆ X, one obtains a subattractor Aaxi ⊆ A
of the flow of

vt = v2
[

vθθ +
vθ

tan(θ)

]
− v +

r2R(g)
2

v3. (97)

In order to formulate the main result describing and constructing
Aaxi explicitely, we still need three necessary notions.

Recall that the Morse index i(v∗) of a hyperbolic equilibrium v∗ is
given by the number of positive eigenvalues of the linearized operator
at such equilibrium. Denote by the zero number z(v∗) the number of
strict sign changes of a continuous function v∗(θ).

We say that two different equilibria v−, v+ of (97) are adjacent if
there does not exist an equilibrium v∗ of (97) such that v∗(0) lies
between v−(0) and v+(0), satisfying

z(v− − v∗) = z(v− − v+) = z(v+ − v∗).

Both the zero number and Morse index can be computed explicitely,
as it is done in Chapters 2 and 3. Combining both these chapters
yields the following construction of the subattractor Aaxi within the
axisymmetric subspace Xaxi.

Theorem 5.0.1. Event Horizons and Sturm Attractors [Lappicy (’17)]
Suppose that space is given by a Riemmanian manifold (S , g) such that
S := R+× S2 and let its scalar curvature R(g) be a prescribed smooth func-
tion satisfying (95). Suppose also that all equilibria of (97) are hyperbolic.

If the metric is given by the form

g =
v(r, θ, φ)

1
r − 1

dr2 + r2ω

where ω is the standard metric on S2, then the event horizon at r1 := 1
is described by a function v(r1, θ, φ), which is an element of the the global
attractor A of (94).

Moreover, if v is axisymmetric, then the global attractor Aaxi of (97)
consists of equilibria E and heteroclinics H and can be computed explicitely.
Namely, there is a heteroclinic v(t) ∈ H between equilibria v−, v+ ∈ E such
that v(t) t→±∞−−−→ v± if, and only if, v− and v+ are adjacent and i(v−) >

i(v+).
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Recall that the interior region r ∈ [0, r1) of the horizon does not
influence the Cauchy development of the exterior r ∈ [r1, ∞) of the
horizon, see [85]. This is a claim about time. The above Theorem
is a claim about space: the event horizon can not be arbitrary for
each fixed time, but it depends on the metric v inside the black hole
r ∈ [0, r1), in particular at the singularity r0 = 0.

It could be of interest to consider the inverse problem: consider a
metric v(r1, θ, φ), which is inA at the event horizon r1 with prescribed
R(g), and find its basin of attraction. Hence, for one given metric at
the event horizon, one can find a zoo of possibilities of metrics inside
the horizon, including the singularity.

Also, in the above Theorem it is supposed that the only horizon that
can occur lies at r1. Indeed, horizons occur at spheres in the spatial
foliation for some fixed radius, which is a minimal surface such that
no other leaf has positive mean curvature, see [79]. Since each leaf
S2 has mean curvature Hr = 2

ru , horizons occur either at r0 := 0
or whenever u blows up. Due to the dissipativity conditions, v is
bounded for r ∈ (0, r1) and the only blow up point is at r1. Moreover,
there is no other horizon for r > r1 as it is mentioned in Smith [79],
due to the choice of the standard spherical metric for the foliation.

If one desires to study the existence of other apparent horizons
and their interplay, as in [28], one should drop the growth condition
on the prescribed scalar curvature (95), which yields a dissipative
dynamical system. In this case, the metric v could possibly blow up
for r < r1 and other horizons might occur inside the event horizon;
or the metric u could grow up and v is also unbounded at the event
horizon r1.

We now chose a prescribed scalar curvature so that the attractor at
the event horizon r1 can be constructed.

Corollary 5.0.2. A Prescribed Scalar Curvature [Lappicy (’17)]
If R = 2

r2 [
1
v2 + λv3(v− 1)(2− v)], where λ ∈ (λk, λk+1) and λk is the

k-th eigenvalue of the spherical Laplacian with k ∈N0.
Then, the axisymmetric self-similar Schwarzschild metrics at the event

horizon r1 := 1 is given by one of the 2k + 3 equilibria v1, ..., v2k+3 within
the Chafee-Infante type attractor below, where arrows denote heteroclinic
connections.

Indeed, the above choice of R(g) yields the equation

vt = v2
[

vθθ +
vθ

tan(θ)
+ λv(v− 1)(2− v)

]
(98)

for λ ∈ R. The unkown w := v − 1 satisfies the Chafee-Infante
equation with quasilinear diffusion coefficient (w + 1)2. Hence, the
equilibria v ≡ 1, corresponding to Schwazrschild, has the role of
the bifurcating equilibria w ≡ 0 in the usual Chafee-Infante equation
and each time λ crosses an eigenvalue of the spherical Laplacian, the
Schwarzschild solution bifurcates to an axisymmetric solution.
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Schwarzschild solution
vk+1 ≡ 1

vk vk+2

v2 v2k+2

v1 ≡ 0 v2k+3 ≡ 2

It would be interesting to compute the attractor for the prescribed
scalar curvature from [28], namely R = λ+2

r2 . The problem is that
this yields a slowly non-dissipative nonlinearity with non hyperbolic
equilibria. That is, solutions v might now stay bounded as r → r1

and grow-up occurs. One could still study a noncompact attractor at
r1, as it is done in [70], but this is not pursued here.

Note that in order to construct the attractorAaxi, one needs to know
the zero number of the difference of solutions v− ṽ, where the trivial
solution ṽ ≡ 1 represents the Schwarzschild solution in self similar
variables. Roughly speaking, one needs to know how many intersec-
tions other equilibria have with ṽ. This encodes the information of
how much such equilibria deviate from ṽ, and whenever a solution
intersects with the trivial solution, it means that v(r, θ) = 1 and the
metric looks like the Schwarzschild solution at that fixed radius r.

The second main result of this thesis answers partially the question
of how the symmetry of the sphere dictates a symmetry of some
solutions in the attractor A. This is done precisely in Chapter 4.

We say a function u ∈ C2(S2) has axial extrema if its maxima and
minima in φ occur as axis from the north to south pole. In other
words, if uφ(θ0, φ0) = 0 for a fixed (θ0, φ0) ∈ S2, then uφ(θ, φ0) = 0 for
any θ ∈ [0, π]. In that case, the extrema depend only at the position
in φ. Note that if R(g) is analytic, then u is also, as in [21]. Then the
set of axial extrema is finite, and we denote them by {φi}N

i=0 where
φ0 := φN .

A simpler case of the above is written below, in the case that the
axial extrema are leveled, that is, if all axial maxima φi have the same
value u(θ, φi) = M(θ), and all axial minima φi also have the same
value u(θ, φi) = m(θ).

Therefore, we state a Theorem about a symmetry property of equi-
libria of (97) that satisfies the above conditions about their extrema.

Theorem 5.0.3. Symmetry within a Event Horizon [Lappicy (’17)]
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Suppose that R is analytic and u is a non constant equilibria of (78)
having only leveled axial extrema. Then φi =

φi−1+φi+1
2 and

u(θ, φ) = u(θ, Rφi(φ))

for all i = 1, ..., N, where (θ, φ) ∈ [0, 2π]× [φi−1, φi].

The symmetrization property above informs us that at the horizon
r1, certain metrics will tend to be symmetric.

This theorem raises the mathematical question whether such re-
sult holds for other domains, such as the torus or the hyperbolic disk.
Subsequently, it raises the physical question of space foliated by other
two dimensional surfaces than the sphere, and if the resulting equa-
tion for the scalar curvature is still parabolic and of the same form as
(91). Even though Hawking’s theorem in [40] stating that event hori-
zons for certain black holes are topologically S2, other stellar objects
of interest could carry different topology. For example, it was found
numerically that dust collapse might yield a toroidal horizon before
reaching its spherical shape in [1]. The above theorem might aid such
dynamical question, of a toroidal horizon becoming a spherical one.

Another idea that comes to mind is to try other types of self similar-
ity, for example, Reissner−Nordström self-similar solutions to model
charged black holes; or choosing the Schwarzschild metric in the exte-
rior, and a regular interior in order to model dense stars. Once space
of initial data has been constructed for the latter, one can rigorously
study the dynamics of stars and its collapse into black holes, as in
[65].

Yet another proposal for a future project is as follows. Recall that
the Hamiltonian constraint above is one out of four constraints. In
the non-time symmetric case, one can rewrite them as a system of a
parabolic equation as above coupled with three ODEs, as in [76]. In
[23] it was proved that the global attractor has finite dimension, but
other dynamical properties are still out of reach. One could still pur-
sue simpler results, such as bifurcations, or pattern formation arising
from symmetry breaking and Turing instability phenomena.

Due to the no hair theorem, black holes are fully described by
their mass, charge and angular momentum. The Schwarzschild self-
similarity studied here describes the possible metrics at the event
horizon knowing its mass inside, if the black hole is chargeless and
has no momentum. The proposals above, namely studying Reissner-
Nordström self-similar solutions, and studying the four constraint
equations could describe the full space of initial data for black holes.
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[62] P. Poláčik and X.-Y. Chen. Asymptotic periodicity of positive
solutions of reaction diffusion equations on a ball. Journal für die
reine und angewandte Mathematik, pages 17–52, (1996).

[63] Y. N. Raffoul. Boundedness in nonlinear functional differen-
tial equations with applications to volterra integro−differential
equations. J. Integral Equations Applications, pages 375–388,
(2004).

[64] A. D. Rendall. Partial differential equations in General Relativity.
Oxford University Press, (2007).

[65] L. Rezzolla. An introduction to gravitational collapse to black
holes. Lecture notes for International School of Gravitation and Cos-
molog, 7th−10th of Sept. of 2004, (2004).

[66] C. Rocha. Generic Properties of Equilibria of Reaction-Diffusion
Equations. Proc. of the Roy. Soc. Edinburgh, pages 45 – 55, (1985).

[67] C. Rocha. Examples of attractors in scalar reaction-diffusion
equations. Journal of Differential Equations, pages 178–195, (1988).

[68] C. Rocha. Properties of the Attractor of a Scalar Parabolic PDE.
J. Dyn. Diff. Eq., pages 575–591, (1991).

[69] C. Rocha. On the Singular Problem for the Scalar Parabolic Equa-
tion with Variable Diffusion. Journal of Mathematical Analysis and
Applications, pages 413–428, (1994).

[70] C. Rocha and J. Pimentel. Noncompact global attractors for
scalar reaction-diffusion equations. São Paulo Journal of Mathe-
matical Sciences, pages 299–310, (2015).

[71] K. P. Rybakowski. On the Homotopy Index for Infinite-
Dimensional Semiflows. Transactions of the American Mathematical
Society, (1982).



Bibliography 94

[72] A. Saldaña and T. Weth. Asymptotic axial symmetry of solutions
of parabolic equations in bounded radial domains. Journal of
Evolution Equations, pages 697 –712, (2012).

[73] I. Schneider. An introduction to the control triple method for
partial differential equations. To appear, (2017).

[74] B. Schutz. A First Course in General Relativity, 2nd Edition.
Oxford University Press, (2009).

[75] J. Serrin. A symmetry problem in potential theory. Archive for
Rational Mechanics and Analysis, pages 304–318, (1971).

[76] J. Sharples. Local existence of quasispherical space-time initial
data. Journal of Mathematical Physics, (2005).

[77] A. Shoshitaishvili. Bifurcations of topological type at singular
points of parametrized vector fields. Functional Analysis and Its
Applications, pages 169–170, (1971).

[78] F. Siebel. Simulation of axisymmetric flows in the characteristic
formulation of general relativity. Master Thesis, (2002).

[79] B. Smith. Black hole initial data with a horizon of prescribed ge-
ometry. General Relativity and Gravitation, pages 1013–1024, 2009.

[80] J. Smoller. Shock waves and reaction-diffusion equations.
Springer-Verlag, 1983.

[81] C. Sturm. Sur une classe d’équations à différences partielles. J.
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A B S T R A C T

The Einstein constraint equations describe the space of initial data
for the evolution equations, dictating how space should curve within
spacetime. Under certain assumptions, the constraints reduce to a
scalar quasilinear parabolic equation on the sphere, and nonlinear-
ity being the prescribed scalar curvature of space. We focus on self-
similar solutions of Schwarzschild type, which describe the space of
initial data of certain black holes, for example.

The first main result gives a detailed study of the axially symmet-
ric solutions, since the domain is now one dimensional and nodal
properties can be used to describe certain asymptotics of the rescaled
self-similar solutions. Such asymptotics describe the possible metrics
arising at an event horizon of a black hole, depending on the met-
ric inside the horizon. Those are described by Sturm attractors. In
particular, we compute an example for a prescribed scalar curvature.

The second main result state a symmetrization property of certain
metrics in the event horizon, namely, how the symmetry of the spher-
ical domain can influence the symmetry of solutions.
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Z U S A M M E N FA S S U N G

Die Einsteinschen Zwangsgleichungen charakterisieren die Menge
der Anfangsdaten der Einsteinschen Evolutionsgleichungen. Diese
beschreiben, wie sich der Raum innerhalb der Raumzeit krümmt.
Unter gewissen Annahmen reduzieren sich die Zwangsbedingungen
auf eine einzige skalare, quasilineare parabolische Gleichung auf der
Sphäre und einer, durch die vorgeschriebene skalare Krümmung des
Raumes, gegebenen Nichtlinearität. In dieser Doktorarbeit konzentri-
eren wir uns auf selbstähnliche Lösungen von Schwarzschild, welche
zum Beispiel die Anfangsdaten von Schwarzen Löcher beschreiben.

Das erste Hauptresultat ist eine detaillierte Untersuchung von ax-
ialsymmetrischen Lösungen, da sich diese Lösungen durch nodale
Eigenschaften analysieren lassen, zum Beispiel um bestimmte Asymp-
totiken der reskalierten, selbstähnlichen Lsungen zu erhalten. Die
Asymptotiken korrespondieren zu möglichen Metriken, die an einem
Ereignishorizont eines Schwarzen Lochs, abhängig von der Metrik in-
nerhalb des Horizonts, entstehen. Dabei knnen die mglichen Metriken
durch Sturm-Attraktoren charakterisiert werden. Wir zeigen dies ins-
besondere an einem Bespiel einer bestimmten Nichtlinearität.

Das zweite Hauptergebnis ist eine Symmetrierungseigenschaft von
bestimmten Metriken im Ereignishorizont, also insbesondere wie die
Symmetrie der Sphäre die Symmetrie der Lösungen beeinflusst.
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