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Abbreviations 

AUC area under the receiver operating characteristic curve 

BOLD blood oxygenation level dependent 

CI confidence interval 

DSM diagnostic and statistical manual of mental disorders 

DV decision value 

EEG electroencephalography 

fMRI functional magnetic resonance imaging 

FWHM full-width-half-maximum 

GNB Gaussian Naïve Bayes 

iRISA syndrome of impaired response inhibition and salience attribution 

LeAD research program on “Learning and Habitisation as Predictors of the 

Development and Maintenance of Alcoholism” 

LDA linear discriminant analysis 

MEG magnetoencephalography 

MVPA multivariate pattern analysis 

mPFC medial prefrontal cortex 

MRI magnetic resonance imaging 

NGFN+ national genome research network plus 

PET positron emission tomography 

PFC prefrontal cortex 

SNR signal-to-noise ratio 

SVM support vector machine 

WeiRD weighted robust distance 
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1. INTRODUCTION 

Alcohol dependence, the physical or psychological dependence on alcohol, is one of the 

most prevalent psychiatric disorders worldwide (Grant et al., 2004; Kessler et al., 2005; 

Rehm et al., 2015; Wittchen et al., 2011). It is a highly disabling mental disorder (Dawson 

et al., 2009; Hasin et al., 2007), impairs productivity (Rehm et al., 2009) and social 

functioning (Zeichner et al., 1994; Brismar and Bergman, 1998; Heinz et al., 2011), and 

contributes significantly to global morbidity and mortality (Lozano et al., 2012; Murray 

et al., 2012; Heinz et al., 2016). A better understanding of the underlying neurobiological 

disease mechanisms is thus a pressing societal issue. 

To foster this understanding, the German Research Foundation (Deutsche Forschungs-

gemeinschaft) funded a bicentric research unit (FOR 1617) at the Universitätsklinikum 

Dresden/Technische Universität Dresden and Charité Universitätsmedizin Berlin to 

investigate the neural basis of alcohol dependence (‘Learning and Habitisation as 

Predictors of the Development and Maintenance of Alcoholism’; LeAD study). The 

LeAD study collected behavioural, functional and structural neuroimaging, psychosocial 

and genetic data in a number of cohorts, in particular a matched patient/control sample 

and an at-risk population of young adults to investigate the development of alcohol 

dependence.  

The majority of works presented here are based on the matched patient/control sample of 

the LeAD study with a special emphasis on machine-learning approaches to 

neuroimaging data analysis. More specifically, the first part of this habilitation reviews 

works with a stronger focus on methodology in machine learning (2.1) and the second 

part describes works in which machine learning was applied to clinical research questions 
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based on neuroimaging data of the LeAD study (2.2). This introduction thus first provides 

a primer for machine learning in neuroimaging and then describes the specific research 

questions on alcohol dependence that were addressed through these techniques. 

Machine learning in neuroimaging 

In the early years of human neuroimaging, the analysis of brain data mostly followed a 

parsimonious approach: a statistical univariate comparison of activation levels between 

experimental conditions (within-subject) or between groups of participants (between-

subject, e.g. patient-control studies). However, with the advent of higher computational 

power and the development of specialized data analysis toolboxes, a number of more 

advanced analysis techniques have emerged, which are collectively summarized as 

multivariate pattern analyses (MVPA). 

The application of MVPA is driven by the assumption that valuable information is 

encoded beyond the univariate level of individual measurements (e.g., voxels, sensors or 

regions of interest) – in patterns of brain measurements. In other words, information in 

the brain about e.g. sensory representations or markers of psychiatric disease must not 

necessarily manifest as an overall difference in activation levels, but as an activation 

pattern ‘fingerprint’. This approach was spearheaded in the beginning of the 2000s by 

functional magnetic resonance imaging (fMRI) studies which showed that the content of 

visual stimulation could be ‘decoded’ from low- and high-level visual cortex (Haxby et 

al., 2001; Haynes and Rees, 2005; Norman et al., 2006; Kamitani and Tong, 2005). 

Here, the focus lies on a specific form of MVPA – machine learning. In general, the goal 

of machine learning is to 1) develop a statistical model of a given task on a training dataset 
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in order to 2) make predictions on an independent test dataset. This separation into 

training and testing is crucial to machine learning investigations, as models can otherwise 

easily overfit when applied to a single dataset at once. As full independent datasets are 

rare in the context of neuroimaging, this separation into training and test datasets is 

typically achieved through cross-validation procedures, in which the independence of 

training and testing is implemented by repeatedly splitting a single dataset into training 

and testing partitions. Each splitting corresponds to a cross-validation fold, and the 

performance of machine learning models is computed as an average of prediction 

accuracies across such folds. 

The accuracy metric, often referred to as the scoring metric, depends on the type of 

predictions made by the machine learning model. While classification models label data 

patterns according to discrete classes (e.g. stimulus A or B, patient or control), regression 

models predict a continuous value for a given data pattern (e.g., reaction time, continuous 

disease severity score). In the works reviewed here, both classification (Guggenmos et 

al., 2018a; Sebold et al., 2017; Guggenmos et al., 2016, 2018b) and regression 

(Guggenmos et al., 2017, 2018a) models were used. The simplest scoring metric for 

classification is the raw accuracy, i.e. the percentage of correctly predicted samples. For 

imbalanced datasets (i.e. different number of samples per class), raw accuracy yields 

biased estimates and is therefore discouraged. For this reason, the present works either 

used the area under the receiver operating characteristic curve (AUC) (Sebold et al., 2017; 

Guggenmos et al., 2016) or the balanced accuracy (average of sensitivity and specificity; 

Guggenmos et al., 2018b, 2018a) as a scoring method. For continuous predictions, i.e. 

regression models, the Pearson correlation between predicted values and measured values 

was used (Guggenmos et al., 2017, 2018a). 
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A variety of machine learning models are available, but by far the most popular choice in 

the context of neuroimaging is a family of models referred to as support vector machines 

(SVMs) (Cortes and Vapnik, 1995). The main reason for this preference is that SVMs can 

robustly handle data with a relatively low number of samples but high dimensionality, 

both properties that are common to neuroimaging data. Yet, the preference for SVM and 

for many other analytic choices in machine learning investigations are often not informed 

by evidence. Instead, researchers often default to choices that were used in previous 

studies, regardless of whether they are fitting to the problem at hand. Here, two works are 

reviewed that address this issue. First, Guggenmos et al. (2016) introduces a novel 

classifier – the weighted robust distance (WeiRD), to demonstrate that a surprisingly 

simplistic and efficient distance-to-centroid classifier performs at a competitive level to 

canonical and often more complex classifiers. Second, Guggenmos et al. (2018b) 

systematically compares novel and established methods for preprocessing and 

classification with the aim to provide analytic guidance and default recommendations to 

the field. 

Investigating the neural basis of alcohol dependence with machine learning 

While machine learning was initially applied to fundamental research questions about the 

human brain, it is now increasingly used to investigate psychiatric research questions as 

well (Huys et al., 2016; Stephan et al., 2016). As machine learning models have led to 

breakthroughs in other domains such as object recognition (Ciresan et al., 2012), the hope 

is that these models will at some point be able to utilize the massive amount of data 

collected in neuroimaging measurements and make useful clinical predictions about 

diagnosis and treatment planning. 
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Despite its prevalence and impact on society, only a few studies have used machine 

learning to investigate the neural basis of alcohol dependence. Whelan et al. (2014) used 

machine learning to predict current and future adolescent binge drinking from a wide 

range of data of the IMAGEN project (Schumann et al., 2010), including structural and 

functional MRI data. While the combination of all data, including highly predictive 

variables such as smoking or conscientiousness, yielded notable accuracies for both 

current (91%) and future (70%) binge drinking, the contribution of brain imaging 

variables to these predictions was rather modest. Seo et al. (2015) compared a number of 

techniques for the prediction of relapse in alcohol-dependent patients from structural and 

functional MRI data. The predictive accuracy of the best approach based on robust soft 

learning vector quantization (Seo and Obermayer, 2003) was 79%. However, given the 

fact that a number of classification approaches were tested in combination with a small 

sample size (16 abstainers, 30 relapsers), this accuracy should be treated with caution 

until replicated. 

Surprisingly, no study yet investigated whether machine learning can be used as a 

computer-based diagnostic tool for alcohol dependence. The most promising non-

invasive neuroimaging modality for such a task is T1-weighted magnetic resonance 

imaging, as structural changes in alcohol dependence have been convincingly shown in 

many studies (for review, see Harper and Matsumoto, 2005). Here, structural brain 

changes associated with alcohol dependence were investigated from two conceptually 

different angles. Guggenmos et al. (2018a) investigated to what degree such structural 

changes were predictive of the diagnosis and the severity of alcohol dependence. By 

contrast, in Guggenmos et al. (2017) the focus was on the meaning of these structural 

changes against the background of the premature aging hypothesis (Oscar-Berman and 

7



 

Schendan, 2000; Ellis and Oscar-Berman, 1989). Methodologically, in both studies 

machine learning was used to exploit the information contained in the patterns of regional 

grey-matter volume and density estimates. 

Apart from diagnosis, there is a strong demand for models of alcohol dependence that 

make predictions about whether patients relapse after abstinence. Current estimates place 

the 1-year rate of relapse among abstinent alcohol-dependence subjects at 65-70% 

(Dawson et al., 2005; Anton and O’Malley, 2006), while neuro-behavioural predictors of 

relapse probability are largely unknown. From a theoretical view point it has been 

suggested that vulnerability to the development and maintenance of addiction can be 

explained as an imbalance between goal-directed and habitual or compulsive behaviour 

(Everitt and Robbins, 2016, 2005; McKim et al., 2016). According to this view, 

abstinence from conditioned stimuli such as alcohol requires goal-directed decision 

making, for which relapsing alcohol-dependent patients may show reduced capacity. In 

Sebold et al. (2017), this hypothesis was put to the test by means of a paradigm explicitly 

probing the balance between model-based and model-free (habitual) behaviour (Daw et 

al., 2011), functional magnetic resonance imaging and machine learning. 
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2. ORIGINAL WORKS 

2.1 Works with a methodological focus on machine learning 

The first part reviews works contributing methodological advancements in machine 

learning, which provided the basis for clinically more applied works in the second part. 

2.1.1 WeiRD – a parameter-free and efficient machine-learning classifier 

Guggenmos M, Schmack K, Sterzer P (2016). WeiRD - a fast and performant multivoxel 

pattern classifier. 6th International Workshop on Pattern Recognition in Neuroimaging 

(PRNI). doi:10.1109/prni.2016.7552349 

The large majority of canonical machine-learning classifiers have one or more parameters 

that have to be optimized. The most common parameter is a regularization parameter, 

which determines the bias-variance trade-off. In brief, weak regularization leads to a 

precise fit of the classification model to training data, but comes with the risk of poor 

generalization. By contrast, strong regularization leads to a less precise fit on training 

data, but potentially better generalization. Examples for other parameters are the number 

of prototypes for k-nearest neighbor classifiers or the kernel coefficient for kernel-based 

methods such as SVM.  

In the context of neuroimaging, two problems arise with the optimization of parameters. 

First, obtaining sensible estimates of these parameters for high-dimensional 

neuroimaging data often demands larger sample sizes than typically provided by 

neuroimaging studies. Second, parameter optimization procedures are computationally 

expensive, as they require nested cross-validation procedures to yield unbiased estimates. 
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Both issues were part of the motivation to devise a novel distance-to-centroid classifier 

termed weighted robust distance (WeiRD) with the goal to provide a parameter-free 

alternative to canonical parameter-based classifiers.  

WeiRD is a distance-to-centroid classifier, which, in the training phase, 1) learns 

prototypes (“centroids”) of two classes A and B as the arithmetic average feature vector, 

and 2) assigns importance scores to each feature based on a two-sample t-test between 

the samples of class A and class B. WeiRD thus utilizes the robustness of the t-test to 

effectively do a form of regularization, without requiring a dedicated regularization 

parameter. When presented with unseen samples during testing, WeiRD can be best 

understood as a voting scheme, where each feature receives a vote as to which of two 

classes a sample belongs. Votes are computed as the difference between the sample’s 

Euclidean distances to prototypes A and B and thus reflect to which prototype a sample 

feature is closer (by ways of their sign) and by how much it is closer (by ways of their 

absolute value). The final classification is based on an ensemble vote, computed as the 

weighted sum of feature votes, where weights correspond to the importance scores 

estimated during training. Negative and positive signs of this weighted sum correspond 

to predictions of classes A or B, respectively. 

To test whether WeiRD, despite its simplicity, performs competitive to other established 

classifiers, it was compared to SVM and a random forest classifier (Breiman, 2001) for a 

range of simulated and real-world neuroimaging classification problems. Simulated 

datasets mimicked a between-group design with 48 samples in each of two groups and a 

fictitious region of interest consisting of 100 voxels. Brain activation patterns were 

simulated by combining discriminative signal and normally distributed noise. The signal-

to-noise-ratio and the allocation of signal to voxels varied between three different 
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“scenarios”, each representing a characteristic challenge in neuroimaging classification 

problems: (1) a “Noise scenario”, in which only few voxels contained discriminative 

signal information, while the majority of voxels was pure noise; (2) a “Dislocation 

scenario”, in which a certain fraction of features was dislocated at a different position of 

the feature vector (mimicking an imperfect between-subject correspondence of voxels); 

and (3) a “Phenotype scenario”, in which each class consisted of multiple subphenotypes. 

The goal of classification was to correctly predict group labels within a leave-one-sample-

out cross-validation procedure. 

The simulation results showed that WeiRD outperformed SVM and random forests in the 

Noise scenario and the Dislocation scenario across a percentage range of voxels 

containing signal and being dislocated, respectively. Thus, for these two characteristic 

challenges of neuroimaging, WeiRD yielded superior classification accuracies. In the 

Phenotype scenario, WeiRD was slightly inferior to SVM and random forests for more 

than two phenotypes, which can be explained by the fact that WeiRD estimates only a 

single prototype per class, and thus struggles when classes differentiate into multiple 

phenotypes. Nevertheless, overall WeiRD performed competitive to canonical classifiers 

for these simulated scenarios. 

The real-world dataset consisted of whole-brain grey-matter maps estimated with voxel-

based morphometry from 120 patients and 97 controls of the LeAD study. To assess the 

effect of resampling and smoothing on classification performance, grey-matter maps were 

additionally preprocessed with a range of resampling (3-12 mm) and smoothing (0-

24 mm FWHM) choices. Classification accuracy was measured with the AUC to account 

for the class imbalance of the dataset. It was found that WeiRD slightly outperformed 
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both other classifiers across resampling and smoothing choices, thus reinforcing the result 

of the simulation. 

Finally, the computational efficiency of WeiRD was tested on the simulated data and 

compared to SVM and random forests. On average, WeiRD was twice as fast as SVM 

and 200 times as fast as random forests. In general, while SVMs performance grows more 

than quadratically with the number of samples, WeiRD scales linearly and thus is well-

behaved in cases with a large number of samples (Wilbertz et al., 2018). 

Overall, WeiRD provides a parameter-free and computationally efficient alternative to 

canonical classifiers in the context of neuroimaging datasets. In terms of performance, 

WeiRD was en par – and in part superior – to canonical classifiers across a range of real-

world and simulated neuroimaging datasets. WeiRD is particularly suited for datasets 

with a large number of samples and for exploratory machine learning analyses, enabling 

researchers to quickly asses the predictive accuracy of a given dataset for conditions of 

interest without expensive optimization schemes.  
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2.1.2 Comparing analytic choices for machine learning in neuroimaging 

Guggenmos M, Sterzer P, Cichy RM (2018). Multivariate pattern analysis for MEG: a 

comparison of dissimilarity measures. NeuroImage 173, 434–447.  

doi: 10.1016/j.neuroimage.2018.02.044 

Machine learning work flows can be broadly divided into the preprocessing stage and the 

classification stages of training and prediction. To establish guidelines regarding optimal 

analytic choices for these stages, Guggenmos et al. (2018b) evaluated several established 

– and in part novel – methods for preprocessing and classification based on a high-

powered neuroimaging (magnetoencephalography) dataset by Cichy et al. (2014).  

During preprocessing, data are transformed and optimized in various ways before being 

submitted to machine learning models. Preprocessing methods include outlier removal, 

standardization (scaling to unit variance), mean centering, removal of the pattern means, 

more advanced noise normalization techniques and dimensionality reduction techniques 

(e.g. principal component analysis). Optimal preprocessing of neuroimaging data for 

machine learning is a challenging task due to a number of special properties: (1) highly 

varying signal-to-noise ratios (SNRs) across measurement channels, (2) strong unspecific 

components common to multiple experimental conditions, and (3) high spatial 

correlation. Addressing these properties for the case of electroencephalography (EEG) 

and magnetoencephalography (MEG) data, but with relevance for other neuroimaging 

modalities as well, was a major aspect of Guggenmos et al. (2018b).  

Heterogenous SNR across measurement channels (e.g. voxels or channels) is a 

phenomenon common to nearly all neuroimaging modalities. Reasons for this 

heterogeneity are manifold and include varying quality of electrode contacts, local skull 
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thickness or head movement affecting different voxels to a different degree. In addition, 

given constant noise sources, different measurement channels may contain more or less 

informative signals about a condition of interest, thus affecting the nominator of the SNR. 

To address the issue of variable SNR across measurement channels, a common procedure 

is to weigh channels by an estimate of their error variance and thus to emphasize channels 

with high SNR and to deemphasize channels with low SNR. This procedure is known as 

univariate or variance-based noise normalization. In addition, it is possible to consider 

the covariance structure of measurement channels and thus to emphasize or deemphasize 

spatial frequencies across measurement channels. This procedure is known as 

multivariate noise normalization. 

By systematically comparing established and newly developed noise normalization 

schemes, a number of important insights were achieved in Guggenmos et al. (2018b). 

First, it was shown that multivariate noise normalization indeed provided a benefit 

compared to univariate noise normalization. Thus, accounting for the full covariance 

structure of the data by normalizing with variance-covariance matrices yielded optimal 

classification accuracy. Second, a considerable boost of machine learning performance 

was observed when the variance-covariance matrix was regularized by means of a 

shrinkage operation (Ledoit and Wolf, 2004), which effectively biased the matrix towards 

the identity matrix. The benefit of such regularization suggests that the computation of 

the variance-covariance matrix was otherwise unstable, likely due to the low number of 

samples. 

Third, a beneficial effect of estimating the variance-covariance matrix from task-related 

time periods was shown. This approach was contrary to established procedures, which 

typically estimated variance-covariance matrices from task- and stimulus-free baseline 
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periods in order to obtain an estimate of the error (co)variance that is not contaminated 

by the ‘signal’ (co)variance caused by different experimental conditions. In Guggenmos 

et al. (2018b), this issue was overcome by separately computing the error (co)variance 

within each condition (i.e. across samples within a given condition) and then averaging 

across conditions. The strong performance of this approach suggests that the noise 

structure in task and/or stimulus time periods differs from the noise structure during 

baseline periods, calling into question the established way of computing variance-

covariance matrices from baseline data. Overall, estimating variance-covariance matrices 

from task-related data in combination with shrinkage yielded a substantial improvement 

in machine learning performance: compared to a previous publication on the same dataset 

which achieved a percentage of correct predictions slightly higher than 70% (Cichy et al., 

2014), this new approach yielded an accuracy of over 90%. 

At the classification stage, Guggenmos et al. (2018b) compared several different classifier 

types (SVM, WeiRD, linear discriminant analysis – LDA, Gaussian Naïve Bayes – GNB) 

with respect to classification accuracy. In brief, SVM, WeiRD and LDA were found to 

perform equally well, while GNB fell off by a large margin. Additional analyses 

suggested that the impaired performance of GNB was due to its implicit assumption about 

the conditional independence of features –  an assumption that is heavily violated in 

nearly all neuroimaging data sets, as different features (e.g., voxels or sensors) typically 

show a strong shared unspecific component. Thus, while SVM, WeiRD and LDA were 

equally potent choices, GNB should only be used after decorrelating features, e.g. via 

principal component analysis (which, however, bears the risk of losing relevant 

information). 
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Finally, in Guggenmos et al. (2018b) a novel method to preserve gradual information 

from machine learning predictions was evaluated. Most applications of classification-

based machine learning only consider categorical (often binary) predictions from 

classifiers, which are based on implicit criteria or thresholds imposed on decision values 

of the classifier. Yet, there is a number of applications where gradual decision values 

themselves could provide meaningful additional information in the, entertaining the 

notion that decision values reflect the certainty of predictions. One example is the 

application of machine-learning to multimodal neuroimaging data, where multiple 

modality-specific classifiers are combined to make an ensemble prediction. It is plausible 

that considering not only the predicted categorical labels, but also the certainty provided 

by each modality, improves overall multimodal classification performance. However, 

whether decision values (e.g. distance to the hyperplane in case of SVM) are well-

behaved on neuroimaging data and provide reliable and systematic information about the 

certainty of predictions is currently unknown. 

To this aim, Guggenmos et al. (2018b) developed the concept of decision-value(DV)-

weighted classification accuracies – the correctness of individual predictions weighted by 

their certainty – to test the reliability of DV-augmented classification accuracies. 

Specifically, the reliability was computed as a test-retest reliability, as the dataset by 

Cichy et al. (2014) comprised two identical experimental sessions per participant. It was 

found that DV-weighted accuracy showed indeed substantially improved test-retest 

reliability compared to raw classification accuracy. This suggests that meaningful and 

well-behaved information is contained in continuous classifier decision values, which 

could be used to provide certainty estimates around classifier predictions or enable fine-

grained ensemble predictions.  
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2.2 Works with a clinical focus on the neural basis of alcohol dependence 

This second part reviews the application of machine learning to clinical research 

questions using data from the LeAD study. 

2.2.1 Predicting diagnosis and lifetime consumption in alcohol dependence from 

grey-matter pattern information 

Guggenmos M, Scheel M, Sekutowicz M, Garbusow M, Sebold M, Sommer C, Charlet 

K, Beck A, Wittchen H-U, Smolka MN, Zimmermann U, Heinz A, Sterzer P, Schmack 

K (2018). Decoding diagnosis and lifetime consumption in alcohol dependence from 

grey-matter pattern information. Acta Psychiatrica Scandinavica 137, 252–262.  

doi: 10.1111/acps.12848 

A common dilemma of machine learning applications to psychiatric disorders is the fact 

that their maximum performance is bounded by the label noise associated with training 

examples. As there are no objective markers for psychiatric illnesses, the certainty of a 

label for a given training sample (e.g., a brain scan of a patient) depends on the reliability 

of psychiatric diagnoses. However, even in the newest iteration of the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-5) only a few psychiatric illnesses are 

diagnosed with “very good agreement” (kappa > 0.6) between raters and many show 

questionable or unacceptable agreement (Freedman et al., 2013). This state of affairs 

makes alcohol dependence, which typically shows excellent inter-rater reliabilities 

(Huang et al., 2009; Ruskin et al., 1998), an interesting test candidate for the development 

of machine learning applications in psychiatric neuroimaging. In addition, alcohol-

induced grey-matter atrophy is well-established for alcohol dependence (Harper and 
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Matsumoto, 2005), making it a promising neuroimaging marker that could inform clinical 

diagnosis. 

Thus, in Guggenmos et al. (2018a) a machine learning model was applied to structural 

brain scans from the LeAD study of 119 alcohol-dependent patients aged 20-65 (18 

female) meeting criteria of alcohol dependence according to ICD-10 and DSM-4 

(American Psychiatric Association 2000) and 97 controls matched according to age, 

gender and education. The goal was to predict both the diagnosis of alcohol dependence 

and a continuous marker of severity (lifetime consumption) using grey-matter pattern 

information estimated from structural brain scans with voxel-based morphometry 

(Ashburner and Friston, 2000; Mechelli et al., 2005). In addition, a number of recent 

concerns about machine learning applications in psychiatric neuroimaging were 

addressed, including (i) the opaqueness of many machine learning models impeding the 

interpretability of results (Brodersen et al., 2014), (ii) overfitting and lack of validation 

on independent datasets (Demirci et al., 2008; Whelan and Garavan, 2014; Schnack and 

Kahn, 2016) and (iii) a lack of comparison with human expert judgements (Klöppel et al., 

2008). 

As the key machine learning model the WeiRD algorithm (Guggenmos et al., 2016, 

2018b) introduced in 2.1.1was used, for two reasons. First, the voting scheme of WeiRD 

makes explicitly transparent the contribution of each feature to classification, thus 

addressing (i). Second, as described in 2.1.1, WeiRD does not require the optimization of 

hyperparameters, which addresses (ii) by reducing the danger of overfitting. SVM was 

used as a reference classifier in order to compare the performance achieved through 

WeiRD to an established machine learning model.  
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Both classifiers were applied in four different classification schemes. In the first and 

simplest scheme, a single biomarker was computed as the whole-brain average of grey-

matter concentration. The second scheme occupied the other extreme and submitted all 

voxels (around 700.000) to classification. The third and fourth scheme involved 

parcellation into 110 anatomically plausible brain regions and was based on either 

regional averages or on the voxel patterns of each brain region. The results showed that 

the classification based on anatomical parcellation and regional averages in combination 

with WeiRD performed best, yielding 74% accuracy (71% accuracy for SVM). In 

addition, these results demonstrated the value of multivariate machine learning methods 

(i.e. the pattern of 110 regional averages) over a classification scheme based on a 

univariate comparison of average grey-matter concentration. An inspection of WeiRD 

votes for these 110 regions revealed that classification was mainly based on inferior 

frontal, dorsal cingulate and insular regions, brain areas that are consistent with 

previously reported foci of grey-matter damage in alcohol dependence (Chanraud et al., 

2007; Tanabe et al., 2009; Demirakca et al., 2011). 

Through a collaboration with the NGFN+ project (Spanagel, 2009), the classification 

scheme could be applied to an independent dataset including structural MRI scans from 

94 individuals with alcohol dependence and 83 controls.  An interesting aspect of this 

generalization dataset was that it was acquired by a different research group and in a 

different scanning facility. Moreover, it differed in terms of gender balance from the 

original data set (36% female in the validation versus 16% female in the original data set). 

Thus, the validation dataset was different enough from the original dataset to probe the 

real-world generalizability of the machine-learning approach. Applying the WeiRD 

classifier after training on the original LeAD dataset on the NGFN+ dataset yielded 73% 
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accuracy, demonstrating excellent generalizability and robustness to differences between 

datasets. 

Finally, the performance of computer-based classification was compared to the 

performance of a human expert. An experienced radiologist from the Charité was 

recruited to judge structural MRI scans as belonging to alcohol-dependent patients or 

controls. To ensure a fair comparison, the radiologist likewise was provided with 

information about age and gender of the subjects. However, to avoid strategic judgements, 

the radiologist did not receive information about the relative proportion of patients and 

controls in the sample. The radiologist achieved an accuracy of 66%, which was clearly 

above chance, but significantly below the accuracy of computer-based classification.  The 

radiologist showed higher specificity than computer-based classification (81% versus 

76%), but much lower sensitivity (51% versus 71%). 

To assess how age and gender information was used by the radiologist, a logistic 

regression with judgement (control=0, patient=1) as the regressand was performed. The 

results showed that the judgements were significantly influenced by age (odds ratio [95% 

CI]: 1.05 [1.02; 1.08]) and gender (2.94 [1.18; 7.35]), such that being older and male 

increased the chances of a patient judgement. By contrast, computer-based classification, 

in which age and gender information was likewise accounted for, did not show equivalent 

biases. Interestingly however, when age and gender information was not accounted for, 

computer-based classification showed similar biases for age (1.15 [1.11; 1.20]) and 

gender (1.63 [0.64; 4.20]). This result suggests that these biases are data-driven (rather 

than being based on stereotypes) and were more efficiently taken into account by 

computer-based classification when provided with this demographic information.  
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2.2.2 Quantifying brain aging in alcohol dependence 

Guggenmos M, Schmack K, Sekutowicz M, Garbusow M, Sebold M, Sommer C, 

Smolka MN, Wittchen H-U, Zimmermann US, Heinz A, Sterzer P (2017). Quantitative 

neurobiological evidence for accelerated brain aging in alcohol dependence. 

Translational Psychiatry 7, 1279. doi: 10.1038/s41398-017-0037-y 

A long-standing hypothesis about the damaging effects of alcohol is the hypothesis of 

premature brain aging (Oscar-Berman and Schendan, 2000; Ellis and Oscar-Berman, 

1989). This hypothesis suggests that the effects of alcohol both at the behavioural and the 

neurobiological level are akin to those observed in natural aging. On the neurobiological 

level, this hypothesis has received support from post mortem brain analyses (Courville, 

1966) and magnetic resonance imaging (Pfefferbaum et al., 1998; Fein et al., 2002; 

Chanraud et al., 2007; Jernigan et al., 1991), which qualitatively noted similarities 

between atrophies of alcohol dependence and aging. Surprisingly, however, no study to 

date had systematically and quantitatively investigated the similarity of age-related and 

alcohol-related grey matter loss. 

The goal of Guggenmos et al. (2017) was two-fold. First, to systematically compare grey-

matter alterations due to alcohol- and age-related effects for a comprehensive set of 

anatomically plausible brain areas. And second, to quantify aging of alcoholic brains in 

years by means of a brain aging model. For both analysis goals, the brains of subjects 

were 1) segmented into grey matter, white matter and cerebral spinal fluid and 2) grey-

matter volume was estimated by means of voxel-based morphometry (Ashburner and 

Friston, 2000; Mechelli et al., 2005). 
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To compare the effects of alcohol dependence with those of aging, two second-level 

group contrasts were estimated on the resulting whole-brain grey-matter volume maps: a 

contrast between patients and controls and a regression contrast on the control subjects 

with age as regressand. These whole-brain group contrasts were subsequently parcelled 

into 110 anatomical grey-matter brain areas. A correlation analysis across regions 

revealed a substantial similarity between the grey-matter effects of alcohol dependence 

and aging (r=0.54). Thus, nearly 30% of alcohol-related grey-matter loss variance across 

regions was explained by the effect of age-related grey-matter changes across regions. 

This result provided first quantitative neurobiological evidence for the premature aging 

hypothesis of alcohol dependence. 

Given that alcohol-related grey-matter changes show characteristics of brain aging, the 

next question was by how much the brain age of alcohol-dependent patients increases. To 

investigate, a machine learning model was trained on regional grey-matter patterns of 

control subjects with chronological age as a continuous target variable. This trained model 

was then applied to the sample of alcohol-dependent patients in order to predict their 

‘brain age’. This analysis revealed that the brain age of patients was increased by 4.0 ± 0.7 

years on average relative to their chronological age, indicating substantial brain aging. 

Moreover, relating brain aging to kilogram lifetime consumption, it was found that 1kg 

of pure alcohol intake corresponded to approximately half a day of brain aging. 

From a theoretical perspective, two different versions of the premature brain aging 

hypothesis have been put forward. Whereas the accelerated aging hypothesis assumes 

that the damaging effects of alcohol dependence are largely independent of chronological 

age, the vulnerability hypothesis poses that these effects manifest mainly later in life (mid-

40s and older). To distinguish between these two hypotheses, patients and controls were 
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grouped into five chronological age decades (20-29, 30-39, 40-49, 50-59, 60-69) and 

relative brain aging was determined as the difference of brain aging between patients and 

controls for each decade separately. This analysis showed that brain aging increased 

systematically with age, reaching 11.7 ± 2.4 years in the oldest age group (60-69). By 

contrast, the two youngest age groups (20-29 and 30-39) showed no significant effects of 

brain aging. 

Thus, in accord with the accelerated aging hypothesis, brain aging was found throughout 

lifetime, except for the youngest patients. However, in line with the vulnerability 

hypothesis, brain aging was indeed strongest in the oldest age groups. Overall, these 

results thus resemble a hybrid of both accounts, indicating effects of accelerated brain 

aging in all but the youngest patients and an increasing vulnerability to brain aging with 

increasing age. Beyond these two hypotheses, the results provide evidence for protective 

factors in younger subjects against the damaging effects of alcohol and an elevated 

vulnerability in elderly individuals. 
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Abstract
The premature aging hypothesis of alcohol dependence proposes that the neurobiological and behavioural deficits in
individuals with alcohol dependence are analogous to those of chronological aging. However, to date no systematic
neurobiological evidence for this hypothesis has been provided. To test the hypothesis, 119 alcohol-dependent
subjects and 97 age- and gender-matched healthy control subjects underwent structural MRI. Whole-brain grey matter
volume maps were computed from structural MRI scans using voxel-based morphometry and parcelled into a
comprehensive set of anatomical brain regions. Regional grey matter volume averages served as the basis for cross-
regional similarity analyses and a brain age model. We found a striking correspondence between regional patterns of
alcohol- and age-related grey matter loss across 110 brain regions. The brain age model revealed that the brain age of
age-matched AD subjects was increased by up to 11.7 years. Interestingly, while no brain aging was detected in the
youngest AD subjects (20–30 years), we found that alcohol-related brain aging systematically increased in the
following age decades controlling for lifetime alcohol consumption and general health status. Together, these results
provide strong evidence for an accelerated aging model of AD and indicate an elevated risk of alcohol-related brain
aging in elderly individuals.

Introduction
The premature aging hypothesis posits that alcohol

dependence (AD) accelerates aging and that the brains of
individuals with AD resemble those of chronologically
older healthy individuals1. The first neuroanatomical
report about a parallel between chronological aging and
AD was based on post mortem analyses: Courville2

noticed that the cerebral atrophy in brains of individuals
with AD resembled the brain shrinkage that occurs with
chronological aging. More recent studies have used
magnetic resonance imaging (MRI) in individuals with

AD and found cortical and subcortical grey matter loss
(GML) throughout the brain as compared to healthy
controls3–6. Here too, qualitative reports have noted that
those areas that are particularly susceptible to GML in
individuals with AD (in particular frontal regions) overlap
with those found for chronological aging7. However, to
date no study has systematically and quantitatively
investigated the similarity of age-related and alcohol-
related GML or quantified the extent of brain aging in
AD.
To this aim, we developed and applied a novel whole-

brain pattern-based approach to analyse grey matter
volume information measured with MRI. We used data
from a recent study in Germany, in which structural MRI
scans were obtained from recently detoxified, abstinent
individuals diagnosed with AD (N= 119) and a healthy
control group (N= 97) (see Table 1 for sample
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characteristics). A parcellation scheme of cortical and
subcortical brain regions8 served to compare cross-
regional GML patterns of AD with patterns of chron-
ological aging. In addition, these patterns served as the
basis for a brain aging model of AD.
The premature aging hypothesis has been outlined in

two different versions9. According to the accelerated
aging hypothesis10, adverse effects of AD manifest rela-
tively independent of chronological age and are thus to be
found across all ages. By contrast, the increased vulner-
ability hypothesis11, 12 places the timing of AD-related
neurodegenerative effects and behavioural impairments
later in life (mid-40s and older11). In addition to our
general hypothesis of alcohol-related brain aging, we
therefore aimed to answer the following questions arising
from the above versions of the premature aging hypoth-
esis: is the extent of putative brain aging stable across the

lifespan, as predicted by the accelerated aging hypothesis?
Or is the onset of brain aging relatively late in life, as
predicted by the vulnerability hypothesis?

Subjects and methods
Participants
This study was conducted as part of the LeAD study, a

bicentric (Berlin, Dresden) German program investigating
the neurobiological basis of AD (www.lead-studie.de;
clinical trial number: NCT0167914513–15). Pooled across
the Berlin and Dresden sites, we assessed 119 individuals
aged 20–65 (18 females) meeting criteria of AD according
to ICD-10 and DSM-IV-TR and 97 healthy controls aged
21–65 (16 females) matched in terms of age, gender and
education (highest school-leaving qualification).
We used the computer-assisted interview version

Composite International Diagnostic Interview (CAPI-

Table 1 Sample characteristics for alcohol-dependent and healthy control subjects

AD group (N=119) Control group (N=97)

Mean SD % Mean SD % t or χ2 df p

Gender (female) 15.1 16.5 0.001 N=216 0.98

Age in years 45.0 10.7 43.7 10.8 0.9 214 0.38

SES −0.4 1.9 0.7 2.1 −3.6 170 <0.001

Lifetime alcohol intake in kg (pure alcohol) 1805 1121 285 810 11.1 214 <0.001

Alcohol intake per drink year in kg (pure alcohol) 55.5 25.8 10.0 23.3 13.4 214 <0.001

Age of AD onset in years (DSM-IV) 32.0 12.0 N=111

Duration of AD in years (DSM-IV) 11.7 9.9 N=110

Abstinence before MRI in days 22.8 11.5 N=115

ADS 14.8 6.9 2.0 3.0 17.0 213 <0.001

OCDS-G total score 11.9 8.5 2.8 2.8 10.1 207 <0.001

Smokers 76.5 67.0 1.9 N=216 0.16

FTND (sum score) 3.6 2.8 1.4 2.0 6.4 214 <0.001

WHODAS-II 19.9 6.8 13.5 8.4 8.4 204 <0.001

BIS-15 total score 31.6 6.5 29.1 5.5 2.9 205 0.004

TMT (percentile) 36.1 25.1 44.8 25.1 2.5 209 0.014

DSST 64.3 15.1 73.5 16.6 4.2 211 <0.001

DSB 6.5 1.9 7.4 2.0 3.4 214 0.001

MWT 104.7 9.4 104.5 8.9 −0.2 209 0.82

Socioeconomic status (SES): sum of z-transformed self-ratings of social status, household income and inverse personal debt scores29; Alcohol Dependence Scale (ADS):
degree/level of AD30; Obsessive Compulsive Drinking Scale (OCDS-G): current craving for alcohol31; Fagerström test for nicotine dependence (FTND): intensity of
physical addiction to nicotine; Disability Assessment Schedule 2.0 of the World Health Organization (WHODAS-II): generic assessment instrument for health and
disability; Barratt Impulsiveness scale (BIS-15): impulsivity32; trail making test (TMT): visual attention and task switching; digit symbol substitution test (DSST):
processing speed; digit span backwards (DSB): working memory; multiple-choice vocabulary intelligence test (Mehrfachwahl-Wortschatz-Intelligenztest, MWT):
crystallized/verbal intelligence
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CIDI16, 17) to verify diagnosis criteria of AD in the patient
group. For inclusion, individuals with AD had to meet
criteria for AD for at least 3 years and had to undergo an
inpatient detoxification phase (average duration, ±SEM:
22.8± 1 days). Alcohol lifetime consumption (LC) was
quantified by the standard drink section of the CAPI-
CIDI. The instrument was also used to exclude the pos-
sibility of AD in healthy controls.
Exclusion criteria for all subjects were left-handedness

(Edinburgh handedness index below 5018), contra-
indications for MRI, and a history of or current neuro-
logical or mental disorders (excluding nicotine
dependence in both groups and alcohol abuse in indivi-
duals with AD, but including abuse of other drugs).
Mental disorders were assessed according to DSM-IV axis
one as verified by the computer-assisted interview version
Composite International Diagnostic Interview, CAPI-
CIDI16, 17. It was ensured that all subjects were free of
psychotropic medication (including detoxification treat-
ment) known to interact with the central nervous system
for at least four half-lives. Current non-tobacco/non-
alcohol drug abuse was confirmed by means of a dedi-
cated urine test.
On a neuropsychological level, we assessed crystallized

intelligence using a standardized vocabulary test in Ger-
man (Mehrfachwahl‑Wortschatztest-Intelligenztest19)
and three facets of fluid intelligence: (i) working memory
capacity by assessing the digit span backwards task (Digit
Span20), (ii) executive functioning using the trail making
test, TMT A and B21, and (iii) processing speed by the
digit symbol substitution task (DSST, from the Wechsler
Adult Intelligence Scale20).
The study was conducted in accordance with the

declaration of Helsinki and approved by local ethics
committees of the Technische Universität Dresden and
the Charité Universitätsmedizin Berlin. All participants
provided written informed consent after receiving a
complete description of the study.

MRI acquisition
High-resolution T1-weighted structural MRI scans were

acquired on a 3-Tesla Siemens Trio scanner using a
magnetization-prepared rapid gradient echo sequence
(repetition time: 1900ms; echo time: 5.25 ms; flip angle:
9°; field of view: 256× 256 mm2; 192 sagittal slices; voxel
size: 1 mm isotropic).

Data analysis
Voxel-based morphometry
Data were preprocessed and analysed using SPM12

(http://www.fil.ion.ucl.ac.uk/spm) and VBM 8 (http://
dbm.neuro.uni-jena.de/vbm). Images were spatially nor-
malized to a Montreal Neurological Institut (MNI) tem-
plate, segmented (grey matter, white matter, cerebrospinal

fluid) and resampled to 1.5 mm isotropic. To create
volumetric grey matter partitions corrected for brain size,
normalized grey matter images were modulated through a
nonlinear-only transformation, resulting in relative grey
matter volume maps22. This procedure allowed for ana-
lysing the relative differences in regional grey matter
volume (ie, corrected for individual brain size). Modulated
images were smoothed with an 8 mm isotropic Gaussian
kernel.

Whole-brain univariate analysis
Three different second-level general linear models were

computed to estimate whole-brain grey matter volume
effects of (i) AD vs. control, (ii) aging and (iii) alcohol LC.
Group differences were assessed by subjecting individual
grey matter volume images to a second-level random-
effects analysis with the factor group (AD, control), con-
trolling for age, gender, site (Berlin, Dresden), smoking
(FTND sum score) and general health status (WHODAS-
II). Note that there were no significant whole-brain dif-
ferences between the sites Berlin and Dresden. The effects
of aging on grey matter volume was investigated in the
healthy control group by regressing on age, while con-
trolling for gender, site, smoking, general health status
and mean yearly intake (kilogram pure alcohol) ingested
since the first alcoholic drink. Finally, the relationship
between grey matter volume and LC in the AD group was
investigated with a regression analysis on LC, while con-
trolling for age, gender, site, smoking and general health
status.

Atlas-based parcellation and cross-regional correlation
analysis
Contrast images of the whole-brain univariate analysis

provided the basis for a cross-regional correlation analy-
sis. In a first step, the brain was parcelled into 110 GM
areas on the basis of an anatomical atlas (JHU atlas8),
which included a comprehensive set of both cortical and
subcortical brain areas. Next, within each brain region,
average grey matter contrast estimates were computed for
the three group-level models (group, age, LC): (i) controls
> AD; (ii) age < 0 (ie, less grey matter volume with
increasing age); (iii) LC < 0. Finally, to assess the cross-
regional correspondence between AD diagnosis, age and
LC, contrast estimates between these factors were corre-
lated across regions.

Brain age model
The goal of the brain age model was to compute the

biological brain age of participants on the basis of whole-
brain grey matter volume patterns. Regional averages
were extracted for the brain regions of the JHU atlas from
the original grey matter volume map of each participant.
To build the model, in each analysis a multilinear ridge
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regression (λ= 1.0) with age as the dependent variable
was trained on data of the control group. The regression
model comprised 110 regressors based on the regional
grey matter volume patterns and three regressors for
gender, site and smoking (FTND sum score). For control
subjects, brain age was predicted in a leave-one-sample-
out procedure. To predict brain ages of AD subjects, the
model was trained once on the entire set of control
subjects.

Results
Congruent patterns of age- and AD-related grey matter
loss
In a first step, we computed whole-brain statistical maps

for group- and age-related GML based on regional grey
matter volume. Fig. 1a, b and Supplementary Tables 1 and
2 show that both AD group membership and chron-
ological aging were associated with widespread and qua-
litatively similar patterns of GML across the brain,
strongly affecting frontal (especially cingulate cortex and
middle frontal gyrus), superior temporal and cerebellar
areas. To quantitatively assess the cross-regional similar-
ity between age- and AD-related GML, we extracted the
average contrast estimates for both effects within each
region of the JHU brain atlas8 and correlated them across
regions. This approach revealed a strong linear relation-
ship between age-related and AD-related GML across 110
anatomical brain regions (rPearson= 0.54, p214< 10−8)
(Fig. 1c).
A possible concern is that the correlation between age-

and AD-related grey matter loss might be inflated by the
fact that the magnitude of grey matter loss in different
regions primarily depends on the size or the general
variance of the region. To account for these possibilities,
we approximated region size by counting the number of
grey matter voxels in each region. Across-subject variance
of grey matter volume was computed within the control
group for each region individually. A partial correlation
approach showed that the correlation also held when
controlling for region size (rPearson= 0.56, p214< 10−9),
variance (rPearson= 0.36, p214< 10−4) or both (rPearson=
0.34, p214< 10−3). Thus, aging and AD similarly affected
regional GML across a comprehensive set of 110 anato-
mical brain regions even when controlling for region size
and interindividual variance.
In a next step, we investigated whether individual LC

within the AD group would likewise be reflected in an
age-like cross-regional pattern. Using contrast estimates
for a negative linear relationship between LC and grey
matter volume, we found a clear correspondence between
GML patterns of LC and age (rPearson= 0.24, p214= 0.015)
(Fig. 1d). Thus, age-related GML patterns were similar to
alcohol-related GML patterns both in terms of a between-
group diagnostic contrast and a within-group consump-
tion-based contrast.

Increased brain age in AD subjects
While the above results hint at an accelerated aging

process in brains of AD subjects, they leave open the
extent of such an acceleration; in other words, by how
much does the brain age of AD subjects increase? To
answer this question, we trained a multilinear ridge
regression model on the grey matter volume patterns of
the control group with chronological age as the

Fig. 1 Correspondence between AD-related and age-related grey
matter loss (GML). a and b show t-maps for univariate whole-brain
analyses, thresholded at p < 0.001 uncorrected, for illustration. a T-map
for AD-related grey matter volume loss, based on a two-sample t test
between AD subjects and control subjects, controlling for age, gender,
site, smoking (FTND sum score) and general health status (WHODAS-
II). b T-map for age-related grey matter volume loss in control subjects
using a regression analysis controlling for gender, site, smoking,
general health status and mean yearly intake (kilogram pure alcohol)
ingested since the first alcoholic drink. c and d show the cross-
regional similarity between AD-related and age-related GML. Each
data point corresponds to one of 110 anatomical brain regions.
Colours indicate regions pertaining to different parts of the brain, as
indicated by the map on the right. Age-related GML was derived from
the contrast estimates in b. c Cross-regional relationship between age-
related GML and GML associated with the group contrast control
> AD of a. d Cross-regional relationship between age- and
consumption-related GML (lifetime consumption). Consumption-
related GML was computed as the contrast estimate of a negative
relationship between grey matter volume and kilogram lifetime
consumption, controlling for age, gender, site, smoking and general
health status
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dependent variable (Fig. 2a). For an initial verification, we
first tested the age model within the control group. A
leave-one-out cross-validation procedure was used, such
that in each of N folds the model was trained on N−1
control subjects and predicted the age of the left-out
control subject. We found that the predicted age was
strongly related to the chronological age (rPearson= 0.54,
p< 10−7; average predicted age: mean± SEM= 43.7± 1.1
years; average chronological age: 43.7± 0.6; mean abso-
lute error: 6.9 years) (Fig. 2b), thus affirming the general
validity of the model.
We then trained the brain age model on all control

subjects and applied it to AD subjects. We found that the
brain age of AD subjects was increased by 4.0± 0.7 years
relative to their chronological age (predicted age: 49.0±
0.6; chronological age: 45.0± 1.0; mean absolute error: 6.7
years). This increase was significant (one-sample t test:
t118= 5.6, p< 10−6). In an exploratory analysis, we
investigated brain aging in AD subjects for different
regions of the brain, which revealed that limbic, temporal
and frontal were numerically most strongly affected
(Fig. S1). To ensure that the model was generally suited
for the AD group, we confirmed that, despite the pre-
dicted age gap, the predicted age and the chronological
age of AD subjects were strongly correlated (rPearson=
0.69, p214 < 10−17) (Fig. 2b). These results provide clear
evidence for accelerated aging in the brains of AD
subjects.

Brain aging increases with lifetime alcohol consumption
and age
Finally, we assessed to which degree brain aging (pre-

dicted age minus chronological age) in AD subjects was
affected by the amount of LC and chronological age.
First, we regressed brain aging on LC, accounting for

age. We found that 1 kg (or 71 standard drinks of 14 g) of
alcohol intake corresponded to approximately half a day
of brain aging in AD subjects (β= 0.56± 0.25, p214=

0.028). Thus, the degree of brain aging is predicted by the
amount of alcohol consumed throughout life.
Second, we assessed the relationship between brain

aging in AD and chronological age. Since brain age esti-
mates were biased with respect to chronological age
irrespective of group (controls: rPearson=−0.82, p214<
10−24; AD: rPearson=−0.77, p214< 10−23; see also Fig. 2b),
we compared brain aging in AD subjects directly to age-
matched control subjects. After regressing out gender, LC,
smoking and general health status (WHODAS-II) from
brain aging estimates, we sorted AD and control subjects
into five chronological decades and submitted the brain
aging estimates to a two-way (2× 5) analysis of variance
with factors group and decade. This analysis revealed
main effects of group (p< 10−6, F1,43= 27.8) and age (p<
10−15, F1,68= 60.0) as well as an interaction of group and

Fig. 2 Brain age. a Brain age model. A ridge regression model was trained on the grey matter patterns of control subjects and served to predict the
brain age of AD subjects. b Chronological age vs. predicted brain age in AD and control subjects

Fig. 3 Brain aging in dependence of chronological age. Brain aging of
AD subjects in comparison to control subjects for five life decades.
Mean values indicate the difference of the group means (AD group
minus control group); error bars indicate the pooled standard error of
the group differences; **: < 0.01; ***: < 0.001
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age (p< 0.001, F4,2= 5.0) (Fig. 3). A post hoc t test for the
hypothesis of linearly increasing brain aging in AD sub-
jects but not control subjects (contrast vector: [−2, −1, 0,
1, 2; 0, 0, 0, 0, 0]), was likewise significant (p< 10−6, t214
= 5.5). Thus, brain aging in AD subjects increased with
chronological age. While brain aging was not significant
in the range 20–29, it was estimated as high as 11.7± 2.4
years in the ages 60–69.

Discussion
Our whole-brain analyses revealed that both AD and

aging reduced grey matter volume in largely overlapping
brain areas, in particular frontal (cingulate cortex and
middle frontal gyrus), cerebellar and superior temporal
regions. We quantitatively substantiated this parallel by
showing a striking correlation between regional alcohol-
related and age-related GML patterns. A brain age model
built on grey matter patterns showed substantial brain
aging in the AD group, which increased with LC and
chronological age.
The strong similarity between AD- and age-related

GML invites two possible, nonexclusive interpretations.
First, it may be that the neurotoxic effects of excessive
alcohol intake are, at a fundamental biological level,
comparable to deteriorating effects of the aging brain.
While the exact pathological molecular mechanisms of
alcohol-related neuronal damage have not been revealed
yet23, prominent candidate mechanisms are processes that
alter cell-integrity such as (chronic) oxidative stress24.
Indeed, oxidative stress has been found to increase both
with aging25 and (in model organisms) with excessive
ethanol exposure26. Crucially, if different brain regions
vary in their vulnerability to such a common biological
mechanism, similar regional patterns of age-related and
AD-related GML as observed in the present study are the
consequence.
Second, different brain areas might be generally more or

less susceptible to grey matter loss irrespective of a spe-
cific neurodegenerative mechanism. In this case, one may
expect to find similar cross-regional profiles across a
variety of illnesses that affect grey matter. A potential
avenue for future research is thus to investigate whether
other factors that cause GML, such as chronic stress or
psychiatric and neurodegenerative disorders, exhibit pat-
terns of GML that are likewise comparable to the pattern
of the aging brain. A recent study27 provides initial evi-
dence for this possibility, by showing aging-like changes in
brain structure for a range of psychiatric disorders (schi-
zophrenia, major depression and borderline personality
disorder). Such future research would clarify whether the
similarity to age-related GML is indeed specific to AD.
The similarity between age- and AD-related GML pat-

terns provided motivation for a brain age model of AD.
Our results revealed an average increase of the brain age

of 4 years relative to chronological age, thus demon-
strating that alcohol-related brain aging was substantial in
relation to the human lifespan. Of note, despite its sim-
plicity, the accuracy of the model with respect to the age
prediction in control subjects was on a competitive basis
with more complex approaches28. Our results thus con-
firm and quantify, for the first time, accelerated alcohol-
related brain aging on a chronological scale. Moreover,
relating brain aging to LC, we found that each kg of
alcohol consumption corresponded to approximately half
a day of brain aging. This result provides further valida-
tion for the brain aging model and may be particularly
useful for psychoeducational purposes.
An analysis of brain aging as a function of chronological

age revealed a systematic increase of brain aging over the
lifespan. While brain aging was highest in the oldest AD
subjects of our cohort (ages 60–69; 11.7± 2.4 years), no
brain aging was detectable in the youngest AD subjects
(ages 20–29). These results resonate with both the vul-
nerability hypothesis and the accelerated aging hypoth-
esis. In line with the accelerated aging hypothesis (but
contrary to the vulnerability hypothesis), brain aging was
measurable throughout the lifetime, with the exception of
only the youngest AD subjects tested. On the other hand,
the results did show more pronounced alcohol-related
brain aging with increasing chronological age. This pat-
tern, as well as the indication of protective factors in the
youngest AD subjects, are in accordance with the vul-
nerability hypothesis. Overall, our results thus suggest a
middle ground between the accelerated aging hypothesis
and the vulnerability hypothesis, evidencing accelerated
brain aging in all but the youngest individuals with AD
and a progressive vulnerability to brain aging with
increasing chronological age.
Limits of the present study are the relatively small

number of females (16%) in this study, potentially mask-
ing effects of gender, and possible side effects of physical
or mental comorbidities on GML, that may have not been
fully prevented by controlling for general health status
(WHODAS-II) and by excluding participants with non-
AD mental disorders.
In conclusion, the present study provides novel neuro-

biological evidence for accelerated aging in AD, casting
the neurotoxic effects of alcohol as an effective increase of
brain age. In addition, it demonstrates that over and above
total grey matter volume, cross-regional grey matter
patterns are a useful marker of AD.
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2.2.3 Predicting relapse in alcohol dependence with model-based functional 

magnetic resonance imaging 

Sebold M, Nebe S, Garbusow M, Guggenmos M, Schad DJ, Beck A, Kuitunen P-S, 

Sommer C, Neu P, Zimmermann US, Rapp MA, Smolka MN, Huys QJM, Schlagenhauf 

F, Heinz A (2017). When habits are dangerous - Alcohol expectancies and habitual 

decision-making predict relapse in alcohol dependence. Biological Psychiatry 82, 847–

856. doi: 10.1016/j.biopsych.2017.04.019 

A prominent theoretical account of addiction poses that drug consumption is initially 

goal-directed with respect to the anticipated positive effects of drugs, but progressively 

becomes more habitual and then compulsive (Everitt and Robbins, 2016, 2005; McKim 

et al., 2016). In line with this account impaired goal-directed behaviour has been found 

for a number of substance disorders, including methamphetamine (Voon et al., 2015), 

cocaine (Ersche et al., 2016), and alcohol dependence (Sebold et al., 2014; Sjoerds et al., 

2013). The goal of Sebold et al. (2017) was to investigate differences in goal-directed 

(model-based) and habitual (model-free) control between alcohol-dependent relapsers 

and abstainers as well as healthy controls, both at the behavioural and the neurobiological 

level. 

The two-step task was used as a behavioural paradigm to distinguish between model-

based and model-free behaviour (Daw et al., 2011) and fMRI in combination with 

machine learning was used for group predictions (controls, abstainers, relapsers) based 

on the underlying neural correlates. In the two-step task, subjects first decide between 

two choices (first step), each one leading probabilistically to a second set of choices 
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(second step) which may or may not be rewarded. The assumption is that model-based 

agents consider the probabilistic transition structure between both steps, whereas model-

free agents repeat choices at both stages that led to reward in previous trials. To capture 

such behavioural differences, a computational model was used which estimated the 

balance between model-free and model-based control (Daw et al., 2011; Deserno et al., 

2015b, 2015a). Moreover, as positive alcohol expectancies have been linked to current 

(Leigh, 1989) and future (Reese et al., 1994; Goldman and Darkes, 2004) alcohol misuse, 

a possible interaction of model-free/based control with alcohol expectancy was 

considered. 

Applying model-based analysis to the behavioural data it was found that model-free or 

model-based control per se did not distinguish between healthy controls, abstainers, or 

relapsers; by contrast, the interaction between model-based control and alcohol 

expectancies did indeed predict group membership, such that a tendency to expect 

positive alcohol effects combined with low model-based control was strongest in 

relapsers, followed by abstainers and healthy controls. Conversely, in healthy controls 

(and to a degree in abstainers), high alcohol expectancies were associated with stronger 

model-based control. Using machine learning and a cross-validation procedure, it was 

found that a logistic regression model predicted group membership with high accuracy 

(AUC=0.77). 

In a next step, model-based control signals from the computational model were correlated 

to fMRI data to investigate potential differences between groups. In general, model-based 

control signals were found to be encoded in ventral striatum and medial prefrontal cortex 

(mPFC), confirming previous studies (Daw et al., 2011; Deserno et al., 2015b, 2015a). 

Crucially, in line with behavioural results, a significant difference was found in mPFC 
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between the group of relapsers and the group of abstainers and controls, such that 

relapsers showed the weakest signature of model-based control in mPFC. A control 

analysis using voxel-based morphometry showed that his result could not be explained 

by differences in individual grey-matter density. 

Overall, these results suggest that impaired model-based control predicts relapse only in 

patients with high alcohol expectancies. Relapsers with high alcohol expectancies may 

thus be less likely to make informed decisions and more influenced by habitual responses 

possibly caused by interoceptive cues that induce positive alcohol expectancies. By 

contrast, the positive relationship between high alcohol expectancy and model-based 

control in abstainers and healthy controls might help these subjects to use alcohol within 

a framework of self-determined values and goals and to make more informed decisions 

about their drinking using model-based control mechanisms. At the neural level, model-

based control signals and their influence on relapse probability may be mediated by the 

mPFC, which showed reduced activation in relapsers. 
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3. GENERAL DISCUSSION 

Two broad conclusions emerge from the studies presented in this work. First, at a 

methodological level the findings of this work delineate the utility but also the challenges 

of machine learning approaches to psychiatric neuroimaging (Guggenmos et al., 2016, 

2018b). Second, machine learning applied to the investigation of alcohol dependence 

yielded converging evidence for a role of structural and computational prefrontal 

dysfunction in alcohol dependence (Sebold et al., 2017; Guggenmos et al., 2017, 2018a). 

Here, both conclusions are discussed in the context of the empirical studies on the neural 

basis of alcohol dependence (Sebold et al., 2017; Guggenmos et al., 2017, 2018a). 

A first question is whether machine learning indeed provides an advantage over 

conventional univariate data analysis. This question was explicitly investigated in 

Guggenmos et al. (2018a), where three multivariate classification schemes based on 

either voxels or regional averages were contrasted with univariate classification. The 

results were two-fold. On the one hand, classification using the full information of voxel-

level patterns did not provide an advantage over patterns of regional averages based on 

anatomically plausible parcellation. Thus, regional averages appear to be the appropriate 

spatial scale for distinguishing alcohol-dependent patients and controls based on grey-

matter information. On the other hand, patterns based on regional averages were superior 

to univariate classification, in which classification was based on the whole-brain average 

of grey-matter concentration. Thus, conditional on the appropriate spatial scale, machine-

learning-based analysis of brain patterns can be more sensitive compared to traditional 

univariate approaches. 

73



 

A general advantage of classification-based analyses is the fact that they can be evaluated 

by means of prediction accuracy metrics such as percent correct classification or balanced 

accuracy (Brodersen et al., 2010), i.e. quantities that describe the actual utility of a 

putative biomarker. As shown in Guggenmos et al. (2018a), evaluating differences 

between samples (here alcohol-dependent patients and controls) in terms of classification 

accuracy puts univariate statistical results into perspective. Here, a conventional two-

sample t-test between whole-brain grey-matter maps of patients and controls yielded 

effects that would be judged as very strong in a neuroimaging context: family-wise-error 

corrected significance levels of p<0.001 in a number of peak voxels. Intuitively, one may 

have expected that such strong univariate differences should be reflected in a perfect or 

close-to-perfect classification accuracy score in a machine learning setting. However, the 

best classification scheme achieved 74% correct, which, although clearly above chance, 

was far from perfect. 

To understand, two factors have to be considered. First, as one can show easily via 

simulation, even two-sample t-test statistics for a variable of interest that are considered 

extraordinarily strong evidence (t-values of 10 to 20, assuming typical samples in the 

range of 30-100 per group), are associated with classification accuracies of well below 

100% in a cross-validated classification setting. The second point touches a common 

misconception in the psychiatric neuroimaging literature in that it has become routine to 

correct p-values for the massive multiple comparison problem in whole-brain analyses, 

while classification accuracies computed for peak voxels or individual regions are often 

taken at face value. However, these accuracies are mathematically meaningless, as they 

too are subject to the same multiple comparison problem and thus inflated. Nevertheless, 

it is a relatively widespread procedure to prominently report classification accuracy 
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metrics for individual searchlights (Uddin et al., 2011), individual clusters (Coutanche et 

al., 2011), individual regions of interest (Gowin et al., 2015; Schuckit et al., 2016), 

individual anatomical regions of atlas-based classification (Ball et al., 2014) or even 

voxels (Ahrens et al., 2014). These reported classification accuracies are often in the 

range of 80-90% percent correct and have contributed to an inflated expectation about the 

accuracy of neuroimaging-derived biomarkers for psychiatric disorders.  

Two possible methods exist to compute mathematically meaningful classification 

accuracies in the context of these multiple comparison problems. Either, all voxels or 

regional averages under investigation are fed to a single classifier and a single accuracy 

is computed for all data (as e.g. in Guggenmos et al., 2018a). It is then left to the classifier 

to discard uninformative and to emphasize the most predictive voxels or regions. The 

alternative is a validation data set, such that the most predictive region, searchlight, or 

voxel is determined in a training data set, and its predictive accuracy is determined in an 

independent dataset. This approach requires more data, but allows to compute 

mathematically meaningful classification accuracies for single searchlights, voxels or 

regions and thus higher spatial specificity. 

Methodological issues to quantify the accuracy of machine learning models aside, an 

important benchmark for any such model is the comparison to human expert judgements. 

After all, the great promise of machine learning methods is that they are more sensitive 

compared to human judgements. Nevertheless, such comparisons are rarely undertaken 

(see Klöppel et al., 2008, for an exception). In Guggenmos et al. (2018a), three findings 

emerged from the comparison of computer-based classification with the judgements of 

an experienced radiologist for the case of discriminating between alcohol-dependent 

patients and controls. 
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First, computer-based classification performance was overall more accurate than 

radiological judgements (74% versus 66%). This shows that, at least in principal, 

computer-based classification can provide an advantage over human performance. 

However, in the case of alcohol dependence it has to acknowledged that a clinical 

diagnosis would typically not be based on a brain scan, but on clinical anamnesis, and 

would have much higher accuracy. In this sense, this example of superior computer-based 

classification has to be qualified as a proof of principal and not a case of immediate 

clinical relevance. Nevertheless, as an anticipated machine learning revolution is still in 

its infancy, and promising new machine learning models based on deep learning (Lecun 

et al., 2015) have yet to be applied to psychiatric research questions in a large scale, it is 

likely that such proof of principals will soon translate to actual advancements in clinical 

diagnosis and treatment planning. 

Second, computer-based classification showed higher sensitivity compared to human 

judgements (71% versus 51%), i.e. identified a larger proportion of alcohol-dependent 

patients. This result is in line with a previous study comparing support vector machine 

classification against human performance for the discrimination between patients with 

sporadic Alzheimer’s disease from 1) controls or 2) patients with fronto-temporal lobar 

degeneration (Klöppel et al., 2008). Here, the sensitivity of computer-based classification 

was up to 100%. Together, these results suggest that currently machine learning may be 

particularly suited as a screening tool, identifying candidate cases with high sensitivity 

for a subsequent radiological assessment with high specificity. 

Third, a specific advantage of computer-based classification identified in Guggenmos et 

al. (2018a) was the effective quantitative consideration of additional demographic data 

(age and gender) supplied with the brain scans. Not only did the correction of brain scan 
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data by demographic data improve overall classification performance, it also reduced 

biases that were found without such a correction (increased likelihood of patient 

predictions for being male and older). In contrast, although provided with the same 

demographic information, the radiologist showed these biases for both age and gender. 

This suggests that machine learning methods are better at accounting for additional 

quantitative information provided with primary neuroimaging data. As the development 

and trajectory of psychiatric disorders is likely influenced by a number of internal and 

external factors (e.g. demographic, social, psychological, educational or economic 

factors), this strength of machine learning will pay off even more off, when more 

comprehensive and larger data sets become available that include comprehensive 

quantitative information about these factors. 

As an important step in this direction, Sebold et al. (2017) investigated a specific 

hypothesis about disturbed model-based learning signals in alcohol dependence and how 

those interact with positive alcohol expectancies. Behaviourally, it was found that 

reduced model-based learning signals in combination with high alcohol expectancies 

were predictive of relapse in alcohol-dependent patients. At the neural level, model-based 

learning signals encoded in the medial prefrontal cortex (mPFC) were found to 

distinguish between alcohol-dependent relapsers and abstainers as well as healthy 

controls. 

Zooming out, the emerging theme across the three clinical studies reviewed here (Sebold 

et al., 2017; Guggenmos et al., 2018a, 2017) is a disturbance of frontal brain structure and 

function in alcohol dependence. Guggenmos et al. (2018a) showed that grey-matter 

concentration in dorsal cingulate and inferior frontal brain regions contributed most to the 

classification between alcohol-dependent patients and controls. Casting grey-matter 
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alterations in alcohol dependence as brain aging, Guggenmos et al. (2017) showed that 

frontal brain areas were among the regions that showed the most severe aging effects. 

Finally, using fMRI Sebold et al. (2017) found that prefrontal model-based learning 

signals were reduced in alcohol-dependent patients compared to controls and additionally 

distinguished within the patient group between relapsers and abstainers. Together, these 

results support the theory of frontal lobe pathology in alcohol dependence (Moselhy et 

al., 2001). 

At the core of this theory is the assumption that the prefrontal cortex exerts top-down 

inhibitory control over compulsive behaviours (Abernathy et al., 2010). These executive 

functions, including attention, planning, and decision making, are thought to operate 

through the dynamic interaction of two parallel networks of the PFC – an ‘executive’ 

network at the top of the hierarchy with dorsolateral and dorsal cingulate divisions of the 

PFC and a ‘limbic’ network primarily contained in the orbitofrontal PFC (Abernathy et 

al., 2010). In particular, the limbic network is thought to relay the integrated and ‘value-

tagged’ summary of sensory inputs to the executive network (Rolls, 1998).  

The specific disturbances underlying addiction in this network model of the PFC are still 

debated. Top-down models pose that the executive control functions of the prefrontal 

cortex are attenuated in individuals that are vulnerable to alcohol addiction as well as 

through alcohol exposure itself. This loss of inhibitory control by the PFC has been 

conceptualized as a syndrome of impaired response inhibition and salience attribution 

(iRISA) (Goldstein and Volkow, 2002; Volkow et al., 2003). On the other hand, bottom-

up models emphasize the role of the limbic system, which may be caused by disturbances 

in dopaminergic salience signalling. For instance, the incentive sensitization theory 

suggests that drug consumption leads to a sensitization of the dopamine system through 
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associative learning, which “causes excessive incentive salience to be attributed to the act 

of drug taking and to stimuli associated with drug taking” (Robinson and Berridge, 1993; 

Heinz et al., 2004). As a consequence, drug seeking and taking become a major 

motivational force, often occurring at the expense of social or professional obligations. 

The structural and functional disturbances found in the clinical studies reviewed here 

largely support a top-down model. First, grey-matter concentration in the dorsal anterior 

cingulate cortex was most predictive for the distinction between alcohol-dependent 

patients and controls in the machine learning approach of Guggenmos et al. (2018a) and 

thus a regions that is thought to belong to the executive PFC network. It is conceivable 

that grey-matter atrophy in the executive PFC network may contribute to the loss of 

inhibitory control observed in alcohol dependence. Second, Sebold et al. (2017) found a 

reduction of model-based control signals in the medial PFC of patients relative to controls 

(and relapsers relative to abstainers), and thus signals that support goal-directed and 

strategic ‘top-down’ behaviours. Overall, the studies reviewed here therefore reinforce a 

transition in the literature over the past two decades, which increasingly emphasizes 

disturbed top-down control functions in the PFC, as opposed to a disruption of subcortical 

reward circuits centred around the neurotransmitter dopamine (Goldstein and Volkow, 

2012).  

Taken together, the works reviewed here demonstrate both the utility and the current 

limits of machine learning approaches to psychiatric neuroimaging. Clear advantages of 

machine learning are the exploitation of the full information contained in brain activation 

patterns, which are largely inaccessible to standard data analysis and human evaluation, 

as well as their ability to systematically and quantitatively account for additional 

information (demographic, psychosocial, etc.) provided with the subject data. However, 
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the accuracy of machine learning models is currently not sufficient to have a clear clinical 

benefit. At present, the most realistic application of these models is to serve as screenings 

tool with high sensitivity. A promising avenue for future research is the combination of 

machine learning with computational modelling (generative embedding; Stephan et al., 

2016), such that computational modelling extracts meaningful mechanistic features from 

brain and behaviour which are subsequently processed by machine learning models to 

predict diagnoses or treatment outcomes in alcohol dependence and other psychiatric 

disorders.  
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4. SUMMARY 

Alcohol dependence is a psychiatric disorder with a lifetime prevalence of over 10% and 

a leading cause of morbidity and premature death. A better understanding of the neural 

mechanisms underlying alcohol dependence to improve prevention, diagnosis and 

treatment is thus of great societal interest. Recent advancements in the analysis of 

neuroimaging data based on machine learning have opened new paths to a better 

quantitative understanding of the disorder. The present habilitation reviews both works 

with a focus on improving machine learning methodology and empirical works in which 

machine learning was applied to investigate the neural basis of alcohol dependence.  

The methodological works advanced several aspects of machine learning in 

neuroimaging. In particular, they introduced i) a novel classifier (weighted robust 

distance – WeiRD), which operates parameter-free, computationally efficient and enables 

a transparent inspection of feature importances, ii) a method to preprocess neuroimaging 

data based on multivariate noise normalization, which yielded a substantial improvement 

in classification performance compared to previous the state-of-the-art, and iii) a novel 

method to reintroduce meaningful graded information into discretized classification 

accuracies by utilizing classifier decision values. 

Drawing on a large neuroimaging dataset of alcohol-dependent patients and controls from 

the LeAD-study (www.lead-studie.de; clinical trial number: NCT01679145), machine 

learning methods were applied in empirical works to investigate structural and functional 

alterations in alcohol dependence. Structural damage associated with alcohol dependence 

were investigated from two conceptually different angles. A first study was aimed at 

providing the first quantitative evidence for a long-standing hypothesis about the 
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damaging effects of alcohol – the premature aging hypothesis. To this end, a machine 

learning model was trained on the relationship between grey-matter pattern information 

and chronological age in a healthy control group and then applied to the sample of 

alcohol-dependent patients. The predicted ‘brain age’ of patients was found to be was 

several years higher than their chronological age, thus not only providing quantitative 

evidence for brain aging in alcohol dependence, but also showing that these aging effects 

are indeed substantial in relation to the human lifespan. The second study used machine 

learning to quantify the predictive accuracy of grey-matter pattern information for the 

diagnosis and a severity measure (lifetime consumption) of alcohol dependence. On 

average, machine learning models correctly predicted the diagnosis in three of four 

subjects and accurately estimated the amount of lifetime alcohol consumption. Closer 

inspection of the prediction model indicated an important role of dorsal anterior cingulate 

cortex. Comparison with an experienced radiologist, who, like the classifier, was 

provided with the structural brain scans of the subjects, demonstrated superior 

performance of computer-based classification and in addition a more effective 

consideration of demographic information (age and gender). Finally, a third study used 

functional magnetic resonance imaging to investigate a specific hypothesis about reduced 

goal-directed learning in alcohol dependence as well as its relation to relapse after 

detoxification. Computational modelling in combination with machine learning revealed 

that the interaction of model-based learning and high alcohol expectancies was predictive 

of diagnosis (patients versus controls) and treatment outcome (abstainers versus 

relapsers). This finding was paralleled by a signature of model-based learning in medial 

prefrontal cortex, which was reduced in patients relative to controls and in relapsers 

relative to abstainers. 
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In sum, the works presented in this habilitation advance machine learning methods for 

neuroimaging and show that these methods yield novel insights into the neural basis of 

alcohol dependence. An emerging theme across the three empirical studies on alcohol 

dependence is the disturbance of executive frontal brain structure and function, 

supporting a top-down rather than bottom-up view for the aetiology of alcohol 

dependence.  
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