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Abstract

An important hallmark of science is the transparency and reproducibility of scientific results.

Over the last few years, internet-based technologies have emerged that allow for a repre-

sentation of the scientific process that goes far beyond traditional methods and analysis

descriptions. Using these often freely available tools requires a suite of skills that is not nec-

essarily part of a curriculum in the life sciences. However, funders, journals, and policy mak-

ers increasingly require researchers to ensure complete reproducibility of their methods

and analyses. To close this gap, we designed an introductory course that guides students

towards a reproducible science workflow. Here, we outline the course content and possible

extensions, report encountered challenges, and discuss how to integrate such a course in

existing curricula.

The need for open science education

The scientific process from idea to publication is complex and seldomly reflected in full in tra-

ditional research articles [1]. As of 2015, only 13% of research articles include raw data [2], and

even fewer include data analysis code [3]. The reasons for this are numerous, such as unclear

data protection issues, pending patents, or lack of technical know-how [4]. Transparency of

this process is, however, desirable, as an in-depth evaluation of presented evidence depends on

a detailed account of methods and results. A lack of such an account potentially results in diffi-

culties in replicating results or impairs future research that builds on limited evidence. This is

particularly prevalent in biomedical research, in which clinical findings rest on a chain of pre-

vious results from in vitro and in vivo experiments [5,6]. Incomplete reporting can result in

unnecessary costs and, at its worst, endanger patients’ lives [7]. As a response to these prob-

lems, journals [8], funding agencies [9,10], and policy makers have introduced more or less

strict regulations for how hypotheses, materials, data, and procedures should be made avail-

able. These new requirements, which come under the umbrella term ‘open science’, have a

direct impact, particularly on the work of young researchers: they must ensure that their

research practices are in line with these new requirements to be able to publish their work or
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apply for funding. At the same time, open science practices can also directly benefit young

researchers by increasing their visibility and expanding their network. There is some evidence

that articles with open access gain more citations, particularly when associated data is also pub-

lished openly [11]. Moreover, researchers may also benefit from the availability of scientific

data and code in their own research projects.

As a result of these developments and the changing scientific landscape, new and estab-

lished digital tools have evolved into a novel toolbox for digital open science. In our view, how-

ever, the diffusion of these innovations is somewhat hindered, as they are seldom part of a

curriculum in the life sciences. An EU report recently declared early career education in open

science highly desirable, but ‘training opportunities for open access and open data are not yet

widely offered’ [11]. There are notable initiatives that offer educational programs regarding

open science practices [12,13]. Whereas these initiatives offer dedicated workshops that are

often given off site, we designed a university-level course that can be adapted to existing curric-

ula early on, i.e., at the MSc and early PhD level. An integral and distinguishing part of our

course is the direct practice of acquired skills. This is achieved by employing these skills in

local research projects with resident researchers. Hereby, students get into contact with every-

day problems of scientists such as messy data and unannotated Excel sheets. They experience

directly how to meet the quality standards of a reproducible and transparent research process

[14]. Course participants were expected to have only minimal programming experience,

and the course was designed without restrictions to any particular programming language.

Whereas this course was mainly designed for students in the life sciences, some students from

the humanities took part as well. In the following, we outline the curriculum of the course,

which comprises approximately 60 hours with 15–20 hours of lectures and tutorials. Addition-

ally, we will highlight tools and techniques that are supplementary and could serve as material

for more advanced classes. All materials for this course, including a reading list and presenta-

tions, are available as a public project on the Open Science Framework (OSF) (https://osf.io/

X6892/).

Course overview

As mentioned above, our course consisted of two parts. The first part conveyed the theoretical

background of open science and comprised an introduction to the available digital tools in

interactive teaching sessions (Fig 1). To introduce students to the open science toolbox, we

developed a narrative for this part of the course that involved a planned replication of an

existing study. Students needed to identify and study a paper from their field of expertise or

interest with a single, ideally simple, experiment that should be replicated. All content was

then practiced on this paper. For example, when participants simulated data, they simulated

data for the experiment in the paper they selected for the course. In the spirit of open science,

tools in the course were selected for their free accessibility and were ideally open source and

Fig 1. Outline of interactive teaching sessions and associated tools. OSF, Open Science Framework.

https://doi.org/10.1371/journal.pbio.2006022.g001
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noncommercial. In some instances, such as the commercial GitHub platform, we had to com-

promise: over the last years, GitHub has established itself as the de facto community standard

for online version control with Git. We also mentioned alternatives, such as an open source

GitLab community edition on a self-hosted server. However, such open-source alternatives

often require considerable expertise and dedication to establish and maintain at an academic

institution. In future instantiations of our course, we will include some guidance on how to

select open science tools from both an idealistic and a pragmatic perspective. The second part

involved projects in which students applied digital open science tools to a research project of

their choice. This resulted in a symposium at which students presented their projects.

Interactive teaching sessions

In the following, we will briefly outline each session of the first part of the course. A detailed

description of the background and exercises are available in the associated OSF project. For

brief explanations of some of the open science key terms, see Table 1.

Introduction

In the first session, we recapitulated the steps involved in a scientific project, including an

introduction to the OSF [14] and an outline of the expected active contributions of the

students.

Preregistration

Preregistration is a summary of the research rationale, hypotheses with predictions, methods,

and, in an extended version, also an analysis plan [15]. We introduced students to the mini-

mum requirements for a preregistration and the difference between preregistrations that are

either submitted directly to a journal (registered reports) and submissions to a suitable plat-

form like OSF or aspredicted.com. We discussed how preregistration potentially prevents p-

hacking [16] and Hypothesising After Results are Known (HARKing) [17], two major threats

for the reproducibility of science [18]. Furthermore, we emphasised the difference between

confirmatory and exploratory analysis and particularly why exploratory analysis is not per se

problematic but can be a major driver of scientific discovery [19].

Table 1. Definitions of some key terms in open science practice and education.

Preregistration The practice of digitally registering an in-depth data analysis plan before data acquisition.

Preregistration allows for clearly separating confirmatory hypothesis-testing from exploratory

hypothesis-generating research [31,32].

Registered Report Registered reports are research papers whose potential for publication is evaluated by means of

peer review and editorial decisions prior to data collection. As such, these reports emphasise the

importance of the research question and methodological quality independent of the actual

results [15].

p-hacking The use of data mining techniques to uncover patterns in data that are “statistically significant”

based on the use of p-values, but for which no pre-existing causal hypotheses were devised [16].

HARKing The practice of Hypothesising After Results are Known in scientific writing [17].

Green vs. Gold

OA

Green OA refers to the practice of making a copy of a published journal article openly available

via an online repository or personal website. Gold OA refers to the availability of journal articles

from the journal’s website, sometimes based on additional article processing charges required

by the publisher.

Abbreviations: HARKing, Hypothesising After Results are Known; OA, open access.

https://doi.org/10.1371/journal.pbio.2006022.t001

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006022 July 26, 2018 3 / 11

https://doi.org/10.1371/journal.pbio.2006022.t001
https://doi.org/10.1371/journal.pbio.2006022


Data repositories

Once data has been collected, it has to be saved in a digital format in an appropriate repository.

We highlighted different types of general repositories (OSF, Dataverse, Zenodo) versus special-

ised repositories for a particular data structure (for example, proteins [20] or MRI data [21]).

Importantly, all repositories should ideally adhere to the ‘FAIR’ guiding principles: Findability,

Accessibility, Interoperability, and Reusability [22]. This includes unique digital object identi-

fiers, but also metadata that allows humans and machines to understand the data format.

Additionally, we also covered differences between licences for the shared data and legal and

ethical issues that are often associated with data from human subjects.

Code repositories, version control, and notebooks

Raw data are seldom reported in a paper but rather are derived statistics and figures of aggre-

gated data. Annotated analysis scripts make the transition from raw data to figure transparent

and can be shared via specialised code repositories. One major advantage of such repositories

is a version control system that keeps track of changes to the code and allows for collaborative

work on the scripts. In particular, we introduce students to Git [23] as a software version con-

trol system that connects to online repositories like GitHub and Gitlab [24–26]. We then inte-

grated analysis code with annotating text into notebooks (livescript for MATLAB, Jupyter for

Python, and RMarkdown for R) to illustrate how to write a fully reproducible analysis in a

manuscript format.

Open access

The final step in the scientific process is the publication of the results (and, of course, the

data and data analysis steps that led to the results) in a journal. In this session, we gave an

introduction to the publication process and explained differences in open access formats. We

highlighted different monetisation schemes of publishers (for example, pay for view versus pay

for publication). Moreover, we discussed university- or funding agency-specific regulations on

who is paying for open access and included some cautionary notes on predatory open access

journals [27]. Finally, we covered the differences between preprint servers, green and gold

access, and how they fit into the current publication landscape [28–30]. This session should

enable young researchers to discuss with their supervisors which journals may be a suitable

outlet for their work under consideration of publications costs. A possible extension, not yet

covered in our course, may include public copyright licencing schemes for research materials,

such as the Creative Commons licence suite (https://creativecommons.org/).

Chances and limitations of open science

The last session was dedicated to the promises and limitations of open science and directly

linked to the discussion on open access publishing. Students collected advantages of open sci-

ence and arguments under which circumstances there are limitations to open science in small

groups and presented them. Important topics included privacy concerns for patient and par-

ticipant data and patents. Students further listed the fear of being scooped before their own

publication and a reuse of data they collected without proper attribution. Finally, we discussed

arguments for convincing a potential PhD supervisor to embrace open science principles.

Project work

In a final session, students presented their plans for an open science project that they would

conduct over the next couple of weeks. Importantly, these projects were directly connected
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with current or past research projects in our department. The projects were roughly separable

into two categories: students either came up with an idea for a small replication experiment

that they conducted and analysed, while others worked on an already-collected data set.

Importantly, students actively used a selection of the aforementioned open science tools in

these projects. Example projects include data set projects in which students transformed

already existing neuroimaging data sets into a novel community standard for data sharing (the

Brain Imaging Data Structure (BIDS, [33], see below). Another project involved an extended

replication of an experiment and making resulting data for this available on OSF (https://osf.

io/jaxdp). Yet another project extended an analysis of an existing data set from a bachelor the-

sis and used Git as a version control system for programming an analysis on participants’

choice data. All these projects enabled students to use open science tools in a scientific context

and integrate open science practices in their workflows. This setup is, in our opinion, feasible

in almost every environment, as many labs have unpublished data sets and undocumented

analyses or are interested in a small replication study. This directly connects teaching to the

scientific process, enabling students to contribute to knowledge creation in a meaningful way

and hence increasing motivation [34–37]. We concluded the course with a colloquium at

which students gave short presentations on their projects and reflected on challenges they

encountered during the project. In the following, we discuss a concrete example project in fur-

ther depth.

An example project

In the past, many cognitive neuroimaging labs, including our own, have published the results

of neuroimaging without concurrently making the raw data and analyses code readily available

for other researchers. While data sharing may still have happened in an informal manner by

request to the author and in the idiosyncratic format that the data set was saved in, two recent

developments have made ‘one-click’ sharing of neuroimaging data much more feasible. First,

many general-purpose repositories, such as the OSF, have improved and now allow users to

upload files of up to 5 GB, which covers the typical file sizes in neuroimaging. Secondly, the

neuroimaging community has developed a common standard of how to organise functional

neuroimaging data [33]. These two developments now ease the refurbishment of old data sets

according to the open science standard. In a concrete example, Ostwald and colleagues [38]

recorded a large EEG and simultaneous EEG–fMRI data set of human participants performing

a simple visual perceptual decision task. In the original paper, the data were analysed from an

information theoretic perspective and provided some evidence for the dynamic and distributed

representation of decision-relevant information in the human brain. To make these data avail-

able for other researchers, Georgie and colleagues [39] converted the raw behavioural, EEG,

and fMRI data recordings to the Brain Imaging Data Structure (BIDS) format. BIDS specifies

in detail in which folder structure the data should be organised, how files should be named,

which file types should be used, which information about the behavioural paradigms should be

shared, and which metadata should be included. Converting an idiosyncratically organised

data set into the BIDS standard is a programming exercise that is highly suited for MSc stu-

dents developing their programming skills. In addition, basic analyses of the data set already

reported in Ostwald and colleagues [38] were reproduced using newly developed code that

maximises code readability. Finally, the data were uploaded as a project on the OSF, and a

report describing the data set was submitted to a journal that specialises in data descriptors

[40]. An important issue in sharing human biomedical data such as brain images is privacy

protection. In general, it is unlikely that participants who took part in neuroimaging studies

between 1995 and 2010 provided consent for the open sharing of their neuroimaging raw data,
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because this was a nonissue in obtaining study approval from local ethics committees. Honour-

ing this fact, we decided to make the data available in a protected manner: fellow researchers

who would like to assess and use the data for their own analyses are required to sign a data use

agreement. With this agreement, data users, for example, commit to refrain from trying to

identify individuals in the study or sharing the data further with third parties. In summary,

refurbishing old data sets for the open science paradigm has many advantages in open science

education: First, supervisors are familiar with the scientific matter at hand and can provide

excellent support. Second, students carry out well-defined tasks with easily identified goals

(conversion of a data set to a common standard, reproduction of previously performed data

analyses). Third, students acquire an overview of the necessary steps to implement open sci-

ence practices in novel projects and become aware of ethical and legal constraints such as data

privacy concerns. Finally, students actively contribute to real and meaningful research projects

and can obtain their first experiences in publishing scientific articles.

Course evaluation

We evaluated the course in two steps. First, we asked for immediate feedback on teaching style

and possible improvements. In a second step, we assessed how frequently course participants

were able to integrate open science practices in their workflow. The first evaluation was con-

ducted by the education quality assessment team at Freie Universität Berlin. It revealed that

students particularly liked the project work (‘Encouraging students to do their own projects is

an amazing idea’). Critical points involved the low number of sessions, which sometimes led to

only superficial or too-rapid coverage of material. That is, pacing was not ideal for the diverse

group of students. A further modularisation of content, particularly when it comes to version

control and programming, may help ameliorate these problems. Beyond this, we felt that a

course should address the immediate needs of participants. In our course, this was sometimes

not feasible given that students from both the life sciences and the humanities took part. Based

on this experience, we suggest that open science courses should be closely tailored to their

audience. Our course is, against our initial intuition, not ideally suited for a blend of students

from different disciplines, at least at this advanced level. In a slightly less elaborate form, it may

be a good fit for a beginner’s course on good scientific practice.

The best open science course is only an academic exercise if scientific behaviour after the

course is not changed. To evaluate how our course affected student behaviour, we contacted

students half a year after completion of the course. Out of 35 students enrolled in the course,

17 answered this survey (approximately 50%). Most students were psychology majors at the

end of their MSc thesis or early in their PhD. We found that more than half of the responding

students planned to or actually engaged in open science practices, with under 20% not plan-

ning to apply the learned skills (Fig 2A). An exception was version control: here, students were

reluctant to use it, and 35% of them even had no plans to use it in the future. To adapt the

course accordingly, we suggest three scenarios for teaching version control in future course

iterations. First, version control teaching may be omitted from the course entirely. This

could be particularly suitable for a shorter course in which it is unlikely that participants will

engage in larger software projects. Second, only basic mechanisms of version control may be

explained, and teaching will instead focus on writing reproducible code. With a focus on

reproducible code, more time can be spent on important aspects such as coding conventions,

commenting, and variable names, all of which foster the communicative aspects of code

design. Finally, we think that in an advanced open science data analysis course, version control

should be incorporated. Here, enough time should be allocated for learning techniques such as

branching, merging, and pull requests.
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Overall, however, above 80% of the responding students agree or strongly agree that the

quality of their own research will be improved by open science practices (Fig 2B). Moreover,

half of the students reported that their supervisors were supportive of open science (one stu-

dent did not feel supported). These results suggest that a course on open science can raise

awareness for open science as an important quality management tool. At the same time, con-

tinued support, infrastructures, and time are necessary to sustainably change behaviour and

anchor these practices in daily practice. Of course, we should point out that we describe here a

first instantiation of an open science course with a relatively small number of participants who

mainly stem from one field (psychology). The evaluation data, even though promising, is thus

only preliminary and not robust enough to warrant any policy implementations yet. It will

take more data on future student generations to fully evaluate which methods will result in a

sustainable implementation of open science practices in scientific workflows. Notably, the

methods taught in this course aim at improving research quality, and with that ‘increase value

and reduce waste’ [5]. Whether these goals will be met by teaching open science practices in

the long run is beyond our current scope, but we believe that we should feel encouraged to

design and evaluate educational programs with respect to these goals.

Advice to others

With open science practices gaining more and more widespread acceptance, we presume

that sooner rather than later, fellow academics will aim to establish open science teaching

activities at their departments. We admit that this course was implemented in a favourable

environment with high degrees of freedom for the lecturers, a supportive dean, and some

intramural funding. Fortunately, supervisors of projects understood the importance of open

science practices and gave students the opportunity to use data collected in their lab. Under

Fig 2. Post-course assessment of the impact on open science practices approximately half a year after the course. A. Percentage of students

engaging or planning to in different open science practices. B. Student agreement on whether course content will improve the quality of their research

and whether their supervisors support them in their open science endeavours. Both panels are based on a sample of N = 17 (https://doi.org/10.17605/

OSF.IO/32T5H).

https://doi.org/10.1371/journal.pbio.2006022.g002
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less ideal conditions, we suggest starting small, with only one or two topics that can easily be

integrated into the curriculum. To initiate this process, it may be helpful to identify faculty

members who are already using or are at least sympathetic to open science methods and who

may support students in open science projects. Implementation of an open science course will

of course depend on departmental specificities, but in the following, we compiled some key

points that may help others to integrate open science content into existing graduate curricula.

Tie open science content to existing methods or soft-skill courses

We think that existing methods or soft-skill courses are highly suitable for the integration of

open science education into existing curricula for MSc or PhD programs. For example, exist-

ing programming or data analysis courses can readily be adapted to incorporate aspects of the

current open science landscape, such as the use of software version control system Git, and

sharpen the students’ understanding that all scientific programming code is essentially part of

the scientific communication process and hence needs to be written in a clear and understand-

able manner. Other targets for the incorporation of open science content can be existing soft-

skill courses, for example on questions of research ethics. While traditional research ethics

courses emphasise, for example, the pros and cons of animal experiments or the meaning of

scientific fraud, these courses are equally suitable to discuss the ethical obligations involved in

performing publicly funded research or the impact of preclinical reporting quality on patient

welfare in clinical trials.

Provide academic credit

We think that it is essential that open science content is tightly incorporated into existing cur-

ricula such that engaging with questions of open science is in direct partial fulfilment of the

student’s degree. Open science content should not be regarded as an extracurricular activity,

as this would undermine the students’ motivation and perception of open science as a novel

working standard in academia. For example, in our case, we provided students with the oppor-

tunity to perform their open science projects in partial fulfilment of their neurocognitive

methods class, which in the past had typically involved a programming exercise.

Use scientifically meaningful, not play projects

As described in the example project above, we believe that open science education may also be

able to contribute to improving the scientific literature in many fields. By enabling researchers

to critically re-evaluate previously analysed data from an open science perspective, it helps stu-

dents to become familiar with essential data analytical skills and potentially improve the scien-

tific record.

Exploit the rapidly expanding resources for open science education

The open science movement is rapidly expanding. Almost every week, new tools or resources

that can help researchers to implement open science practices become available. Amongst

these are also tools for open science education. For example, at present, both an open science

training handbook [41] as well as open science online resources [42] are under development.

We thus encourage potential open science educators to, for example, subscribe to open science

email lists or follow open science experts on twitter, in order to remain updated about the

availability of open science teaching tools.
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Concluding remarks

The course described here offers a first introduction to open science for early career research-

ers We hope that ideas and aspects of this course will find their way into higher education

curricula. We acknowledge that starting new open science practices will initially increase the

work and effort needed to complete a full research cycle from question to publication. This

may put a burden on young researchers who already struggle with the other obstacles in their

new career. It is in our view thus important that supervisors and PIs are supportive and allow

for additional time to implement these practices. We want to stress that this will result in a

win–win situation, because open science practices are an important part of quality manage-

ment in science.

We have not established open science practices rigorously, if at all, in our own past research

projects. Rigour and highest quality standards for knowledge creation, however, mandate a

change in our thinking. This course, hopefully, provides some material to inspire teaching

young researchers the necessary skills to implement open science practices and increase the

sustainability and quality of modern science even beyond the prevailing high standards.
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