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Sometimes fate is like a small sandstorm that keeps changing directions. You
change direction but the sandstorm chases you. You turn again, but the storm
adjusts. {. . . } But one thing is certain. When you come out of the storm you
won’t be the same person who walked in.
That’s what this storm’s all about.

— Haruki Murakami, Kafka on the Shore





Abstract

Globally the number of climate-related disasters and the associated loss fig-
ures are on the rise. The changing climate as well as the increasing exposure in
terms of people and assets could induce unprecedented damage levels. Damage
functions constitute the crucial link between hazard, exposure and the result-
ing damage. As such, they provide vulnerability and damage-cost information,
which are essential for disaster risk reduction and for the evaluation of climate-
change adaptation options. With this purpose in mind, the overarching goal of
the work at hand is to contribute to the fundamental understanding of damage
functions and to provide systematic and versatile damage assessment.

Only few damage functions are available for a regional damage assessment.
Data scarcity, for example, is a major obstacle for the development of storm
damage functions. For the work at hand, newly available data on German storm
loss permit a fresh look at the wind–loss relation. Based on these data, a novel
storm damage function is developed and compared against existing approaches.
The results show that the wind–loss relation is well described by power-law
curves with exponents that are considerably higher than previously expected.
While the steepness of the curves at extreme wind speeds is comparable to
other damage functions, the novel damage function is capable of predicting
damages over a wider range of wind speeds. It is found that the uncertainty
of the damage estimates is mainly driven by uncertainty from the wind meas-
urement and approximates to a log-normal uncertainty distribution. Exploring
further damage functions beyond the domain of storm damage, analogous ap-
proaches are identified for coastal flooding and, schematically, for heat-related
mortality. Together, these are formulated as a unified damage function. With its
wide applicability the unified approach forms the basis for undertaking a fun-
damental analysis of uncertainty. Here, in contrast to prior studies, the work
at hand puts emphasis on the propagation of uncertainty from the microscale
to the macroscale level. The results show that the relevance of intrinsic uncer-
tainties on the microscale level is carried over to the aggregate macroscale level.
However, extrinsic sources of uncertainty, such as the aforementioned measure-
ment error of wind speed, dominate overall.

In summary, this work delivers multiple contributions to the understanding
of damage functions. The novel storm damage function provides improved loss
estimates and will help to assess the significance of changes in storm climate.
The comparison brings together the rather fragmented research on storm dam-
age functions and sheds light on their performance. Furthermore, the findings
suggest a rebuttal of the cubic power-law assumption for macroscale storm loss.
Finally, the unified approach for damage estimation facilitates knowledge trans-
fer between various climate-related hazards. As one example, the findings on
the relevance of uncertainty sources have broad applicability and may guide
future research to reduce the uncertainty of damage estimation. With its inter-
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disciplinary approach, this work has strong relevance to practitioners in the
various domains of natural hazards research and in the atmospheric sciences
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Zusammenfassung

Im globalen Maßstab sind sowohl die Anzahl als auch die Schäden klimabe-
dingter Naturkatastrophen im Anstieg begriffen. Durch das Zusammenspiel
von Klimawandel und zunehmender Exposition von Menschen und Vermögen
ist von einem weiterhin zunehmenden Schadensniveau auszugehen. Schadens-
funktionen beschreiben die Schnittstelle zwischen den verursachten Schäden,
der Exposition, sowie der zugrunde liegenden Naturgefahr. Sie ermöglichen die
Abschätzung der Gefährdung sowie des potentiellen Schadenaufwands und
liefern somit essentielle Informationen für den Umgang mit künftigen Kata-
strophenschäden und die Evaluierung von möglichen Anpassungsmaßnahmen.
Es ist daher das vorrangige Ziel dieser Arbeit, das grundlegende Verständnis
von Schadensfunktionen zu stärken, um eine systematische und übergreifende
Schadensabschätzung zu ermöglichen.

Schadensfunktionen zur Abschätzung regionaler Schäden sind oft nur einge-
schränkt verfügbar, da mangelnde Datenverfügbarkeit ein wesentliches Hinder-
nis für deren Entwicklung und Kalibrierung darstellt. In der vorliegenden Ar-
beit erlauben neu verfügbare und hoch aufgelöste Sturmschadensdaten einen
frischen Blick auf die Relation zwischen Windstärke und Sturmschaden. Auf
Grundlage dieser Daten, wird eine neuartige Sturmschadensfunktion entwi-
ckelt und mit bestehenden Schadensfunktionen verglichen. Es zeigt sich, dass
die Relation des Schadens zum verursachenden Wind einem einfachen Potenz-
gesetz folgt, dessen Exponent jedoch einen signifikant höheren Wert annimmt
als eingangs erwartet. Während der Verlauf der Kurve bei extremen Windge-
schwindigkeiten bestehenden Schadensfunktionen ähnelt, lässt die neu entwi-
ckelte Schadenfunktion die Abschätzung potentieller Schäden über einen deut-
lich breiteren Windbereich zu. Bezüglich beobachteter Schäden zeigt sich, dass
die Schwankungen der Schadenswerte im Wesentlichen durch Unsicherheit in
der Windermittlung begründet sind. Diese Schwankungen lassen sich in guter
Näherung durch eine Lognormalverteilung beschreiben.

Über das Spektrum von Windschäden hinaus werden analoge Ansätze zur
Abschätzung von Schäden durch Küstenfluten sowie, auf schematischer Ebene,
zur Modellierung von hitzebedingten Todesfällen identifiziert. Diese Ansätze
lassen sich in eine einheitliche mathematische Form bringen und dienen als
Basis für die Analyse des Einflusses verschiedener Unsicherheitsfaktoren auf
die Schadenshöhe. Hierbei liegt der Schwerpunkt der Unsicherheitsanalyse, im
Gegensatz zu vorhergehenden Studien, auf der Transformation von Unsicher-
heit zwischen der Mikro- und der Makroskala. Die Ergebnisse zeigen, dass
die Relevanz mikroskaliger Unsicherheiten auf der Makroebene erhalten bleibt.
Schlussendlich dominieren jedoch extrinsische Unsicherheitsquellen, wie die
bereits erwähnte Unsicherheit aus der Windermittlung.

Insgesamt liefert die vorliegende Arbeit eine Vielfalt von Erkenntnissen für
das Verständnis von Schadensfunktionen. So bietet die neuartige Sturmscha-
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densfunktion eine Verbesserung der Schadensprognose und ermöglicht eine
genauere Beurteilung der negativen Auswirkungen des Klimawandels. In ei-
nem umfassenden Vergleich werden zudem erstmals die bestehenden Ansätze
zusammengebracht und quantitativ verglichen. Darüber hinaus sprechen die
Ergebnisse für die Widerlegung der Hypothese einer kubischen Wind-Schaden-
Relation. Es ist im Weiteren davon auszugehen, dass die Vereinheitlichung kli-
marelevanter Schadensfunktionen den Wissenstransfer zwischen den verschie-
denen Feldern der Naturgefahrenforschung erleichtert. So bildet z.B. die Un-
sicherheitsanalyse eine Grundlage um künftige Arbeiten zur Reduzierung von
Unsicherheiten auf wesentliche Unsicherheitsquellen zu fokussieren. Mit ihrem
interdisziplinären Ansatz ist die vorliegende Arbeit von hoher Relevanz für die
Naturgefahrenforschung sowie die Atmosphärenwissenschaften
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I
Introduction and
Research Agenda

1.1 Motivation

Globally there is an increase of the number of climate-related disasters and
their associated loss figures (CRED, 2015; Munich Re, 2015). The trend is driven
by growing exposure, i.e. the accumulation of people and assets in risk-prone
areas, as well as regional changes in climate, e.g. causing increased flood levels
or prolonged heat waves. In order to prevent unprecedented damage levels, the
abatement of the adverse effects of anthropogenic climate change – by means
of mitigation and adaptation – has become a challenge for decision makers
around the globe (IPCC, 2014).

Damage functions are unique in their role of providing the link between
hazard, exposure and the resulting damage. As a key component of cost assess-
ment, damage functions support and guide decision makers in natural hazards
management and climate change adaptation (Meyer et al., 2013). With the capa-
city to differentiate regional vulnerability, damage functions provide essential
information for targeted action in disaster risk reduction.

However, data scarcity and the complexity of the damaging processes are
the main reasons that scientific advances in damage cost assessment have been
lagging behind hazard modelling (Merz et al., 2010). The fragmentation of the
information on damage functions is mostly due to non-public, regionally lim-
ited, or inconsistent data. In particular, data availability is an issue for many
developing countries, where detailed post-disaster information (e.g. from well-
developed insurance markets) is not available (de Moel et al., 2015). These as-
pects hinder both the development and the validation of damage functions. Fur-
thermore, as damage functions are typically developed on a case study basis,
a fundamental theoretical understanding of damage functions is missing. Exist-
ing approaches are highly specific to the considered hazard, leaving potential
for knowledge transfer (Merz et al., 2010).

It is the overarching goal of this thesis to contribute to the understanding of
damage functions, both from a practical perspective on damage functions for
windstorms and from a theoretical perspective on the unification of damage
functions for climate-related hazards. Accordingly, this work provides insight

1



2 I Introduction and Research Agenda

on the wind–loss relation and discusses the functional form of storm damage
functions. In the more general context of climate-related hazards, this work
addresses the applicability of a common damage function to different hazards.
Finally, based on a unified approach the role and interrelation of uncertainty
sources is investigated at different spatial scales

1.2 Introduction to Damage Functions

1.2.1 Translating Hazard Intensity to Loss

Damage functions are widely employed to model the relation between a hazard
and the inflicted damage. The general concept of a damage function represents
an idealization of the complex damaging processes, which are both poorly un-
derstood and difficult to observe. Accordingly, damage functions relate one or
more indicators for the hazard intensity to a specific damage type, e.g. gust
speed to monetary storm damage. Moreover, they may relate to either a single
structure or a portfolio of structures (Merz et al., 2010; Walker, 2011).

Across the different disciplines, damage functions are discussed under vari-
ous names. With a focus on specific damage states, structural engineers have
coined the phrase fragility curves (Unanwa et al., 2000), while from an economic
perspective the term loss function (Watson and Johnson, 2004) is employed. De-
pendent on the research goal, the natural hazards community employs several
terms: damage function (Merz et al., 2010), susceptibility function (Meyer et al.,
2013), and vulnerability function (Fuchs et al., 2007).

The damage function is an integral component of risk assessment. Such risk
is determined not only by the hazard (e.g. climate and weather events) but also
by the exposure and the vulnerability to these hazards (Cardona et al., 2012). Since
a variety of alternative notions for risk are employed in the different scientific
communities (Costa and Kropp, 2013; Thywissen, 2006), this work defines the
constituents of risk as follows.

The hazard component represents a probabilistic description of the occur-
rence of an event which may cause adverse effects. The exposure component
refers to the inventory of elements (e.g. people or assets) in an area in which
hazard events may occur (Cardona et al., 2012). The vulnerability component
then relates the intensity of the hazard event to the severity of the adverse
effects. When adverse effects take the form of damages, the vulnerability com-
ponent can be represented by a damage function.

One key difference of the various connotations of damage functions is the dif-
ferentiation of relative and absolute damage. The focus may be either on what
fraction of a structure is damaged or on the estimation of potential monetary
loss. The work at hand follows the first definition, with the intention to general-
ize the functional form of damage functions and transform the relative damage
to loss at a later stage.



1.2 Introduction to Damage Functions 3

The definition of relative damage is inherently challenging as it requires to
value the damaged fraction against the whole. When dealing with economic
losses, the damage ratio can be defined as the ratio of repair cost to the replace-
ment value of a structure. However, from an insurance perspective it may be
more adequate to compare repair cost in the form of insurance payout against
insured value. Hence, the relative damage is dependent on the choice of refer-
ence, either the initial or the current value1.

Whatever the reference, the damage function is physically limited between
no damage and complete destruction, i.e. zero and one in relative terms. Actual
damages to individual structures are a consequence of cascading failures of its
components (Unanwa et al., 2000) and hence increase incrementally (Vickery
et al., 2006; Hamid et al., 2010). During a storm, for example, a breach of the
building envelope due to a broken window severely compromises the resistance
of the remaining structure and can cause a sudden leap in damage. Without in-
tricate knowledge of the incident wind and the failure state of each component,
a damage function can merely reflect the mean response of a class of structures
to the hazard (Pita et al., 2013). Hence, throughout this work the term dam-
age function refers to a mean damage function that represents a smooth and
monotonous statistical average of the actual damages.

The shape of the damage function is determined by a set of properties that
characterize the structures under consideration. These properties (e.g. build-
ing type, construction type, materials, etc.) could be chosen to differentiate
between important hazard response types. In practice, the number of discern-
ible response types is often limited by data availability such that only a basic
subdivision is feasible, e.g. residential versus commercial use.

Evidently, the response of a structure is dependent on the specific hazard.
Certain perils such as hurricanes may combine more than one hazard, e.g. storm
surge, extreme wind gusts, and heavy precipitation. Accordingly, damage func-
tions can be employed to model each sub-peril or, alternatively, their joint effect.
In each case the response of the structure to the particular hazard determines
the shape of the damage function.

Beyond physical considerations, risk tolerance and socio-economic condi-
tions may influence (insured) losses and with them the shape of the inferred
damage function. Stakeholders in one region may be more tolerant to minor
damages, while in another region complete repair is considered good custom.
Additionally, socio-economic conditions have an influence on maintenance and
lead to variations in the vulnerability of otherwise similar structures. These
soft aspects are difficult to quantify and detailed information is required to
infer their effect in practice.

Of particular importance is the spatial scale at which the damage function
operates. Even under seemingly similar settings, disparate scales can result in
varied shapes of the respective damage functions (Merz et al., 2010). This aspect

1 Note that there is a discussion whether to employ replacement values or depreciated values
(Merz et al., 2010).
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is often overlooked when comparing damage functions that relate to a structure,
a sub-structure, or a system of multiple structural components. In line with
Merz et al. (2010), this work relates microscale with single structures at risk,
while the entire system is referred to as macroscale. Naturally, both scales are
related since any macroscale damage is comprised of a number of microscale
damages. So far, this relationship has been considered for some climate-related
hazards, most notably for coastal flooding (e.g. Hinkel et al., 2014) and for
winter-storm damage (e.g. Heneka and Ruck, 2008). However, in general little
attention has been paid to the crossover of scales, in particular with regard to
uncertainty.

When considering the impact of a natural hazard on a wider portfolio of
structures, e.g. an urban agglomeration, the damage assessment may incorpor-
ate both direct and indirect damages (Merz et al., 2010). While the former are
a direct consequence of the incidence of the peril (e.g. damage to infrastructure,
crops, housing), the latter comprise secondary (e.g. induced production losses,
unemployment) or higher order impacts (e.g. loss of tax revenue due to indirect
production losses, market destabilization). Of particular importance for indir-
ect damages is the identification of critical infrastructure, which typically form
a part of a wider network of elements (Hammond et al., 2015).

Post disaster research has shown, that indirect socio-economic losses can po-
tentially surmount direct losses from property damage (Hallegatte et al., 2007).
For the landfall of hurricane Kathrina, Hallegatte (2008) has estimated indirect
losses for the economy of Louisiana at about 40% of direct losses. Koks et al.
(2015) show that expected annual loss is dominated by direct loss, while indir-
ect losses drastically increase for very-low probability events.

Due to greater accessibility, a wide body of research has focussed on the
assessment of direct damage to portfolios of specific structures (e.g. Meyer et al.,
2013; Hammond et al., 2015). Direct damages are also the focus of the work
at hand. In fact, the availability of established damage functions opens up the
opportunity for a comparison of modelling approaches for various hazards and
the identification of the common grounds of damage functions.

Damage functions are reliant on detailed loss data for calibration and valid-
ation. In general, these are subject to the rare occurrence of extreme events
(e.g. coastal floods) and are only available within well-developed insurance
markets. However, the proprietary nature of insured-loss data still limits the
information available and impedes a fundamental understanding of the shape
of damage functions (Merz et al., 2010; Walker, 2011). The lack of damage in-
formation also reduces the transferability of damage functions to developing
countries.

If available, damage information typically takes the form of insurance-claim
data. These data are characterized by a wide distribution of economic losses,
comprising a large number of smaller losses and few extremely large losses.
For the case of German storm damage, for example, average loss per residential
building is of the order of e 1000 while extreme losses can breach the million
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Euro threshold (GDV, 2013). This fact is indicative of a very high dynamic
range in conjunction with a heavily skewed probability distribution. In fact,
actuarial research has shown that there is no simple parametric form for the
damage probability distribution and modellers frequently resort to creating
more complex approximations via mixing or splicing (Klugman et al., 2008).

The involved statistical averaging implies that damage functions are ill-suited
for the prediction of actual damage of single structures (Merz et al., 2004;
Walker, 2011). Typical storm damages, for example, involve a number of largely
unharmed buildings, while comprising a few massive losses – neither of which
are well captured by an expected value from a damage function. Instead, typ-
ical applications of damage functions include the prediction of expected losses
in an insurance context, or the distinction of regional vulnerability patterns.

The low predictability of actual damages, including the potential absence of
damage, must also be considered when assessing the predictive power of dam-
age functions. Any validation that is based solely on cases of actual damage will
be subject to selection bias, since the damage function represents the average
damage related to both damaged and unharmed structures

1.2.2 Storm Damage Functions

Global storm damages amount to 40% of world-wide economic losses and 58%
of insured losses between 1980 and 2014 (Munich Re, 2015). For Europe, insured
loss from the largest event so far, winter storm Daria in 1990, was estimated at
$ 8.6 billion in 2013 values (Swiss Re, 2014).

European storm loss is dominated by wind damage from extra-tropical cyc-
lones that are common during the autumn and winter months, so called winter
storms. Putting an emphasis on German storm loss, the work at hand hence
focusses on windstorm damages. Accordingly, the term storm damage function is
used to denote a damage function for windstorm damage, as opposed to other
storm categories such as hailstorms, tornadoes, or rainstorms.

Climate change is envisaged to have an amplifying effect on the intensity and,
arguably, on the frequency of winter storms in Central and Western Europe
(Feser et al., 2015; Mölter et al., 2016). For the evaluation of the adverse effects
of a changing storm climate, accurate storm damage functions are required.
Sound storm damage estimates may reveal adaptation potential and can be em-
ployed to assess the effectiveness of adaptation measures. Furthermore, climate
change could affect the insurability of storm risk (Held et al., 2013), and its
assessment hinges on the choice and quality of the employed storm damage
function.

A storm damage function relates meteorological indicators to storm loss. Suit-
able indicators provide a measure of the intensity of a storm, which defines the
strength of the storm with respect to the severity of the damage caused. For
windstorms the academic literature mainly focusses on simple univariate dam-
age functions that employ some measure of peak wind speed, e.g. maximum
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daily gust. Hence, typical quantities used are the maximum gust (3-seconds
average) or the maximum sustained wind speed averaged over 10 minutes
(Walker, 2011). In practice the choice of wind measure is also limited by the
resolution of the spatio-temporal wind field data and the involved measure-
ment (or modelling) uncertainty.

Further meteorological parameters, such as storm duration and precipita-
tion, are likely to have an effect on the total damage. During a long-lasting
storm local structures face a higher probability of experiencing the maximum
gust speed indicated. Moreover, fatigue from continued material stress could
increase the probability of structural failure. Indeed, Swiss Re (1993) has repor-
ted2 a dependence of the number of insurance claims on the duration of winter
storms. However, this could not be confirmed by Dorland et al. (1999), who
did not find a statistically significant dependence between insured losses and
storm duration. Addressing the potential impact of precipitation, Sparks and
Bhinderwala (1994) have reported a strong damage increase if damaged roofs
or windows allow rain to enter the interiors. In practice, the limited availabil-
ity of data and the high level of uncertainty hinders the calibration of models
that include such additional meteorological or physio-graphical (e.g. surface
roughness) variables.

Storm damage functions are typically tailored to the exposed assets and calib-
rated to structural classes. For instance, a statistical damage function developed
from residential insured loss is specific to the residential class of buildings. In
engineering-based approaches building classes are defined by their substruc-
ture, and corresponding damage functions are based on detailed load model-
ling as well as wind-tunnel experiment (Walker, 2011). Hence, the engineer-
ing-based approach offers greater versatility, due to the capacity of composing
building classes from sub-structures. Thus, once calibrated the approach bene-
fits from being less reliant on observational data, and if the individual compon-
ents of the structural class are known, engineering-based damage functions can
in principle also be employed for data-scarce regions. However, actual losses
are also influenced by socio-economic conditions and specific construction vari-
ants. Since their effect on loss cannot be evaluated without observational data,
the transfer of damage functions requires both expert judgement and statistical
validation.

While engineering-based approaches have become the standard for the mod-
elling of hurricane wind damage in the USA3, equivalent approaches for Euro-
pean storm damage are lacking. With an emphasis on German storm loss, the
work at hand hence considers a variety of statistical storm damage functions.

As previously stated, damage functions describe the mean response of a spe-
cific class of structures to a certain hazard intensity. It follows from this defini-
tion that one should expect differences between damage functions across differ-
ent classes and even regions, but academic literature even reports considerable

2 As reproduced in Table 3 of Heneka and Ruck (2004).
3 As applied, for example, in the HAZUS-MH model (Vickery et al., 2006) or the Florida Public

Hurricane Loss Model (Pinelli et al., 2008).
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differences for identical class and region. For the case of German residential
buildings – a focus of this study – several different shapes of damage functions
have been reported. For instance, the analysis of reinsurance data by Munich
Re (1993, 2001) indicated a power-law relation between loss and wind gust, al-
beit exponents appeared to fluctuate for different storms. In contrast, Klawa
and Ulbrich (2003) applied a cubic power law to the exceedance of wind speed
above a local threshold. Assuming an individual threshold for each building,
Heneka et al. (2006) proposed a damage function derived from the cumulative
distribution of thresholds.

In summary, there is considerable ambiguity about the shape of storm dam-
age functions and their theoretical support. Arguments that relate the kinetic
energy of the wind to the caused losses are not well supported by empirical
data. Comprehensive analysis is hampered by the availability of loss data that
are of a proprietary nature and by uncertainties in the representation of the
wind field. Furthermore, actual damages may be caused by both structural fail-
ure (overstressing) under peak wind loads and fatigue under fluctuating loads
at lower wind levels (Holmes, 2015). Damages of the latter kind are often not re-
flected in the existing damage functions, which focus on direct damage caused
by peak gusts

1.2.3 Coastal Flood Damage Functions

Coastal regions are of high relevance for human habitation and economic activ-
ity (McGranahan et al., 2007; Blackburn et al., 2013). Under the constant threat
of coastal flooding, protection measures are deployed to minimize adverse ef-
fects on livelihoods, commerce, and industry. However, in the wake of anthro-
pogenic climate change, sea level rise (slr) will severely compromise existing
flood protection levels. By the year 2100, global annual loss from coastal flood-
ing could amount to 0.3–9.3% of the global gross domestic product (Hinkel
et al., 2014). The devastating magnitude of estimated losses becomes evid-
ent if compared against the mean annual economic loss from natural hazards
between 2005 and 2014 – approximately 0.23% of global GDP (Munich Re, 2015;
World Bank, 2015).

Nowadays, two out of three cities with a population of above 5 million are
located at least partially within low-elevation coastal zones (McGranahan et al.,
2007). Moreover, coastal zones tend to be the most urbanized ecosystems in
all regions of the world (UN-Habitat, 2008). Due to the high population dens-
ity and the associated accumulation of risk in built-up areas, the majority of
economic loss caused by coastal flooding is in fact attributed to urban areas
(Jongman et al., 2012). These losses are typically caused by property damage,
displacement of residents, and disruption of transportation (UN-Habitat, 2011).

In practice, there is a complex relationship between the occurrence of coastal
floods and the associated destruction and loss. On the one hand, it is difficult
to characterize the flood level, which is subject to storm surge, astronomic tide,
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and wave action. On the other hand, the damaging processes are poorly under-
stood and very much reliant on local conditions. Clearly, damages are related
to inundation depth, but they are also influenced by factors such as flood dur-
ation, flow velocity, debris, and contamination (Merz and Thieken, 2009; Merz
et al., 2010). The number of potential impact factors and the de facto lack of cor-
responding data are the limiting factors for flood damage functions and lead to
a concentration on the effect of inundation depth only (Cammerer et al., 2013).

Accordingly, depth–damage functions4 are the accepted standard for translat-
ing a given inundation level into monetary damage (Merz et al., 2010; Cammerer
et al., 2013). These damage functions can be calibrated on data from actual flood
events, either for single buildings (microscale) or entire cities or regions (mac-
roscale).

If not measured directly, the inundation level can be estimated by offsetting
the flood level with elevation data, which are typically obtained from LiDAR
measurement or digital elevation models. Modellers also frequently resort to a
steady state water depth called stillwater, instead of considering the actual flood
level. Stillwater refers to the flood level not including the effects of waves or
tsunamis, but including storm surge and astronomic tide (Divoky et al., 2005).
This is also the approach followed in the work at hand.

The fact that flood damages do not directly correspond to the hazard intens-
ity (flood level), but rather depend on a derived quantity (inundation), is in
contrast to other hazards such as windstorms, where structures are directly
exposed to the full intensity of the hazard. In practice, the modelling of inund-
ation contributes additional uncertainty to the damage assessment.

Similar to other hazards, data availability poses a severe constraint for the
derivation and validation of flood damage functions. In particular, information
about macroscale damage is scarce and few studies discuss the shape of mac-
roscale damage functions (Boettle et al., 2013). While there is more information
on microscale damages, the data show a high level of dispersion (Merz et al.,
2004). It is a consequence of certain hazard or building characteristics that are
insufficiently represented either by the employed geographical data or within
the modelling process.

Furthermore, since all data are specific to the location and time of obser-
vation, spatial and temporal transfer remains a challenge (Merz et al., 2010).
Often, the only resort is the application of synthetic damage function, where
flood damage curves are based on expert judgement. However, without the
possibility of validating against empirical data, these damage functions yield
little insight on the general characteristics of flood damage functions

4 Often referred to as stage-damage curves. See Smith (1994) on the historical development of the
concept.
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1.3 The Challenge from Hazard–Loss Data

Empirical data on the intensity and corresponding loss of a hazard event are
essential for the development, calibration, and validation of damage functions.
From a general point of view, these data can be characterized by four distinct
properties: i) high dynamic range, ii) a skewed distribution, iii) heteroscedasti-
city, and iv) ambiguity between affected and unaffected structures.

Dynamic range is defined as the ratio between the largest and smallest values
of a changeable quantity. In the hazard context, it reflects the difference in
magnitude of small events and severe catastrophes. For instance, the storm
losses observed by the German Insurance Association (gdv) at the NUTS 3 level
range over approximately 4 orders of magnitude.

The frequency distribution of loss events is typically very uneven and in
fact strongly skewed towards frequent small events. Catastrophic high impact
events are exceedingly rare, and extrapolation – typically via extreme value
theory – is required to consider return periods around or beyond the observed
time frame.

Heteroscedasticity is frequently encountered when relating indicators for the
hazard intensity to empirical loss data. It refers to the variance of losses being
conditional on the magnitude of the hazard. For instance, heteroscedastic re-
lations are observed for storm damage, where variance increases with storm
intensity (e.g. Heneka and Ruck, 2008).

When dealing with stochastic damage processes there is a general ambiguity
whether a particular structure is affected by a given hazard or not. Such is the
case for storm damages, where the occurrence of loss for a specific building
cannot be predicted due to incomplete information on the incident wind and
the failure state of its structural components. Consequently, similar structures
may experience different degrees of damage – or no damage at all – even un-
der comparable conditions. Thus, spatial loss patterns are often incoherent and
difficult to predict on a local scale.

These four properties of natural hazard data pose a challenge for the develop-
ment, the calibration, and the validation of damage functions. Despite its high
relevance, the issue has not received much attention in the academic literature
on damage functions. The challenge from hazard–loss data is addressed at mul-
tiple points throughout this work and solutions are found in order to support
the three research questions described in the following
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1.4 Research Questions

1.4.1 The Wind–Loss Relationship

Strong wind constitutes the chief cause of storm damage. It is common prac-
tice to relate losses to a measure of maximum wind speed, such as maximum
3 s gust or maximum 10min averaged wind (Walker, 2011). Detailed loss data
are almost always of a proprietary nature and thus not widely available to the
scientific community. Therefore, previous studies on German storm loss have
been based either on aggregate data (Klawa and Ulbrich, 2003) or on data sets
that are only regionally available (e.g. for the state of Baden-Württemberg see
Heneka and Ruck, 2008). For the first time, the gdv has recently made available
highly resolved data covering all German administrative districts (NUTS 3 level,
Held et al., 2013). These data open up new pathways to the analysis of the
wind–loss relationship.

The vulnerability of buildings to windstorms has been shown to vary re-
gionally (e.g. Khanduri and Morrow, 2003; Donat et al., 2011b). In fact, there
is a wide range of proposed models, comprising exponential, power-law, and
threshold models5. The multitude of damage functions raises the question,
whether there exists a genuine damage function that can be regionally paramet-
erized or whether the regional damage characteristics differ more substantially.

On theoretical grounds, the occurrence of storm damage has been linked to
the dissipation of wind kinetic energy, which is described by a cubic function
of wind velocity (Emanuel, 2005; Kantha, 2008). Despite partially drawing on
this idea, available damage functions for German storm loss (Klawa and Ul-
brich, 2003; Heneka and Ruck, 2008) deviate from a purely cubic relation. Fur-
thermore, there is evidence on damage functions with much higher exponents
that drastically deviate from the cubic assumption (Nordhaus, 2010). Deviation
of this sort have strong implications for damage assessment of extreme storm
events and must be addressed especially in the light of a changing climate.

The gdv data at hand allow to investigate further into the optimal shape of
a storm damage function and to evaluate existing approaches. This gives rise
to the First Research Question (rq1)

What is the statistical wind–loss relationship for German residential
buildings, and how does it compare to existing damage functions?

Research Question 1

5 Threshold models consider the exceedance of hazard intensity above a certain threshold level.
They may be of a similar functional form as the competing models, e.g. power law or exponential.
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1.4.2 The Role of Uncertainties in Damage Functions

Damage functions approximate the average outcome of complex physical pro-
cesses and are hence subject to uncertainty. In fact, research on flood and storm
damage reveals daunting levels of uncertainty (Merz et al., 2004; Heneka and
Ruck, 2008; Nordhaus, 2010; de Moel et al., 2012). This aspect highlights the
importance of identifying relevant sources of uncertainty and scrutinising how
uncertainty is propagated through the modelling chain.

The definition of uncertainty is intrinsically linked to the modern understand-
ing of probability. In fact, probability theory defines two kinds of uncertainty:
statistical uncertainty that arises from random processes, as well as epistemolo-
gical uncertainty that reflects incomplete knowledge or degrees of belief about
a system (Hacking, 1984).

These two facets of uncertainty are frequently taken up in natural hazards re-
search, where the differentiation between aleatory (i.e. statistical) and epistemic
uncertainty is made (Apel et al., 2004). Depending on the scientific aim, many al-
ternative categorisation of uncertainty have been developed (Thunnissen, 2003),
often putting particular emphasis on aspects, such as model and parametric un-
certainty, that otherwise may have been classified as epistemic (e.g. Bedford and
Cooke, 2001).

Aleatory uncertainty is regarded as a measurable uncertainty that can be
grasped by statical methods (Deck and Verdel, 2012). As such it is tractable
and has been widely studied in the field of natural hazards (e.g. for the case
of flood risk see Apel et al., 2004; Merz and Thieken, 2009). However, the focus
of prior research has been on the attribution of overall uncertainty, irrespect-
ive of the hazard intensity and neglecting the scale of the analysis. In the case
of a regional assessment of damages, local damages must be aggregated on
a wider scale. However, it is generally unclear how the associated uncertainties
propagate between the different scales. As a matter of fact, macroscale damage
functions are intimately connected with their microscale counterparts (an as-
pect that is subject to the Third Research Question as defined in the following
section). This connection opens up the opportunity for analysing the interaction
of uncertainty sources across spatial scales and leads to the Second Research
Question (rq2)

How are the sources of statistical uncertainty in damage functions in-
terrelated, and what is their importance on different scales?

Research Question 2
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1.4.3 The Unification of Damage Functions
for Climate-Related Hazards

Damage functions are an essential part of damage assessment in natural haz-
ards research. However, there has been limited interchange between research
conducted in the different hazard domains. The resulting difficulties when
comparing damage assessment across hazards and sectors have implications
for decision support and policy development (Meyer et al., 2013).

Even within a particular hazard domain, e.g. flood hazard, there is incom-
plete integration across scales. De Moel et al. (2015) have argued that better
integration of scales would enable rapid assessments of flood risk for local
policy makers in regions where few data are available. Similarly the Intergov-
ernmental Panel on Climate Change (IPCC, 2012) concludes that “there is room
for improved integration across scales from international to local”.

However, the comparability of the various approaches is hampered by differ-
ent data sources, terminologies, and methodological approaches (World Bank
and United Nations, 2010; Meyer et al., 2013). As a result, there is a need
for the development of damage models on an intermediate level of complex-
ity, bridging the gap between interregional and local impact assessment and
providing transparent and transferable methodology.

It has further been acknowledged, for example, that advances in flood dam-
age assessment could trigger methodological improvement in areas such as
windstorms (Merz et al., 2010). However, in order to expedite such knowledge
transfer a unification of damage functions for different hazards is required.

Consequently, the goal of the Third Research Question (rq3) is the identifica-
tion of the common grounds of damage functions for the main climate-related
hazards, (coastal) flooding and storm damages. At intermediate complexity, the
sought-after damage function should bridge scales by allowing for a rapid top-
down appraisal of total damage as well as a detailed view on local damages.
Furthermore, a unified damage function should provide a probabilistic view
on damage estimates and incorporate uncertainty as addressed by the previous
research question

What are the commonalities between damage functions for the differ-
ent climate-related hazards windstorm and coastal flooding, and how
could these damage functions be unified?

Research Question 3
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1.5 Methods and Structure of the Thesis

The mechanisms that determine damage functions are a central theme of the
work at hand. The presented research explores these mechanisms with a view
on three complementary research facets: depth, breadth, and scope. As illustrated
by Fig. 1.1, each facet is represented by a separate chapter. Each of these chapters
has been written and published as a stand-alone and peer-reviewed research
article.

Breadth:  
Comparing storm  
damage functions 

Depth: Developing  
a novel storm dam- 
age function 

Scope: Unifying 
damage functions 
across hazards 

Chapter II 

Figure 1.1: The main contributions of the different chapters for answering the research
questions. Beginning with the storm hazard, a novel storm damage function is elab-
orated in depth (Chapter II) and its performance is compared against the breadth of
existing storm damage functions (Chapter III). Finally, the scope of the considered dam-
age functions is widened to further climate-related hazards (Chapter IV).

In Chapter II, a novel storm damage function is developed for residential
buildings in Germany. German insurance losses are related to extreme wind
gusts at the scale of single administrative districts (NUTS 3 level) based on the
newly available data obtained from the gdv.

Using statistical estimation techniques, in particular maximum likelihood re-
gression, a power-law model6 is calibrated on the available data. Addressing
rq1, the steepness of the damage function is analysed and compared against
both theoretical and empirical expectations. Log-normal uncertainty bands are
derived from the data and the potential sources of uncertainty are discussed,
thus contributing to rq2.

Chapter III is devoted to a comparison of existing storm damage functions
for German residential losses. In order to establish a level playing field, four

6 If losses are small in comparison to the insured value, a power law is an approximation to the
more general log-logistic curve.
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distinct models including the novel damage function are set up on identical
meteorological and loss data. Wind-gust data from observations by the German
Weather Service (dwd) and the ERA-Interim reanalysis (era-i) are put into con-
text with the high-resolution loss data provided by the gdv.

Addressing the key challenge of dealing with natural hazard data, the issue
of skewed, heteroscedastic data with high dynamic range is explored and the
practical consequences are elaborated. In an effort to establish more robust calib-
ration and evaluation of damage functions, conventional metrics are employed
together with a newly developed statistical test based on straight-forward bino-
mial statistics.

Beyond a mere assessment of the performance of damage functions, the
comparison provides insight into the commonalities between the different ap-
proaches, contributing to rq3. Of particular concern is the evident disaccord
between the theoretical proposition of a cubic wind–loss relationship and any
of the available damage functions. Providing a possible solution to this problem,
it is shown how a simple threshold could reconcile both theoretical and prac-
tical approaches. These considerations also further contribute to rq1 dealing
with the nature of the wind–loss relation.

The third research paper is presented in Chapter IV. Here, the scope broadens
from storm damage functions to further climate-related hazards. By identifying
the common grounds of damage functions for windstorm and coastal flooding,
the skeletal structure of a unified damage function is established. Guided by
rq3, a unified damage function is derived from first principles. The example
of heat-related mortality demonstrates the potential of the unified approach for
providing an accessible solution to the modelling of damages from very diverse
hazards at intermediate complexity.

Furthermore, rq2 is addressed by a comprehensive characterization of un-
certainties along the modelling chain. The relevance of the different sources of
uncertainty for the estimation of loss is assessed by means of a variance-based
sensitivity analysis. For the first time, this approach considers the effects of
uncertainties on both the local and the regional scale



II
Applying Stochastic Small-Scale
Damage Functions to German
Winter Storms

Abstract. Analysing insurance loss data we derive stochastic storm damage
functions for residential buildings. On district level we fit power-law relations
between daily loss and maximum wind speed, typically spanning more than
four orders of magnitude. The estimated exponents for 439 German districts
roughly range from 8 to 12. In addition, we find correlations among the para-
meters and socio-demographic data which we employ in a simplified paramet-
erization of the damage function with just three independent parameters for
each district. A Monte Carlo method is used to generate loss estimates and con-
fidence bounds of daily and annual storm damages in Germany. Our approach
reproduces the annual progression of winter-storm losses and enables to estim-
ate daily losses over a wide range of magnitudes

This chapter has been published as:

Prahl, B. F., Rybski, D., Kropp, J. P., Burghoff, O., and Held, H. (2012). Applying
stochastic small-scale damage functions to German winter storms. Geophys. Res.
Lett., 39(6):L06806, doi: 10.1029/2012GL050961.
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2.1 Introduction

A storm damage function describes losses as a function of observable meteor-
ological parameters, typically maximum wind speed. For winter storms occur-
ring in central Europe several storm damage functions for residential buildings
are described in the literature. The reinsurance company Munich Re (1993, 2001)
found a power-law damage function of maximum wind speed with varying ex-
ponents of roughly 3 as well as 4–5 , depending on the storm event and country
being analysed. Klawa and Ulbrich (2003) proposed a power-law damage func-
tion with exponent 3, refined in Donat et al. (2011b), using excess wind speed
over threshold instead of absolute maximum wind speed. Similarly, Heneka
and Ruck (2008) used a power-law damage propagation function of excess
wind speed with exponent of either 2 or 3, assuming proportionality to the
force or the kinetic energy of the wind, respectively. Both groups define thresh-
old wind speed as the empirical 98th percentile of the wind distribution. For
the Netherlands Dorland et al. (1999) derived a damage function for residential
property that can be reformulated as a power law of maximum wind speed
with exponent 0.5. When comparing these studies with literature on hurricane
losses in the United States (see Watson and Johnson, 2004, for an overview), one
must be aware of the many differences in building structure and the nature of
the hazard. However, following a similar approach to this article Huang et al.
(2001) describe an exponential damage model for residential property in the
South-Eastern United States based on 10min averaged wind speed.

Our work is based on daily insurance loss data (years 1997-2007) with a re-
gional resolution of administrative districts. From theoretical considerations
we propose a stochastic power-law damage function depending on maximum
daily wind speed to describe empirical losses. We find exponents typically
ranging from 8 to 12. Statistical deviations are modelled by a spatially cor-
related stochastic variable drawn from a log-normal distribution. Correlations
among parameters and with socio-demographic data are exploited to reduce
the number of independent parameters to three per district. The model quality
is assessed by out-of-sample calculations based on Monte Carlo simulations of
losses in daily and annual resolution. We demonstrate good agreement between
annual model results and empirical values, albeit observing a small potential
underestimation of high losses. For the majority of districts we find high cor-
relations between annual loss estimates and data. Absolute daily losses in Ger-
many for the three most severe storms show good predictions of losses across
four orders of magnitude.

This article is structured as follows: After a brief discussion of data, we de-
scribe motivation and details of the damage function in Sect. 2.3. A simplified
parameterization of the damage function is demonstrated in Sect. 2.4. Finally,
we present modeled loss estimates and close with the discussion of our results
in Sects. 2.5 and 2.6, respectively.
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2.2 Data

Insurance loss data from the years 1997 to 2007 were provided by the German
Insurance Association (gdv). The data comprise daily losses due to wind and
hail for 439 German administrative districts. To eliminate economic influences
such as growing market penetration and price effects, loss data were divided
by the total insured value of each district to obtain a dimensionless loss ratio.
Further description of the loss data is given by Donat et al. (2011b). As the
empirical loss data does not differentiate between wind and hail damages, we
limit the scope of the analysis to winter months from October through March,
during which damages are predominantly driven by high winds.

Data of daily maximum wind speed (3 s gust wind) are publicly available
and were obtained from the German Weather Service (dwd) for 78 wind sta-
tions across Germany1. Wind stations that were lacking more than 5×n meas-
urements for a sampling period of n years were discarded. Typically, measure-
ments were taken at 10m height above ground.

2.3 Motivation of the Damage Function

A damage function should naturally have a sigmoid shape with steep initial
increase and saturation at large wind speeds. Such growth processes are often
modelled by a logistic function

d(x) =
dmax

1+ e−cx
, (2.1)

where dmax is the asymptotic upper bound and the exponent c determines the
steepness of the function. We apply the transformation x = ln (v/bv), with
maximum daily wind speed v scaled by local constant bv. Taking the logarithm
reduces broadness and skewness of the distribution of daily maximum wind
speeds and ensures that limv→0 d(v) = 0. Since recorded data show that for
Germany d� dmax, d(v) can be approximated as

d(v) =
dmax

1+ (v/bv)
−c ≈

( v
b

)c
, (2.2)

where constants were combined to the new scaling parameter b ≈ bvd−1/cmax .
Figure 2.1 (a) shows the empirical loss data for an arbitrarily chosen district.

By inspection we see that the logarithmically binned data reveals a strong in-
crease for wind speeds higher than approximately 13m s−1 and an approx-

1 Available online at http://www.dwd.de

http://www.dwd.de
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Figure 2.1: Example of the damage function and the occurrence probability for an
arbitrary district. In (a) the damage function d(v) is plotted against the maximum
daily wind speed v. Confidence bounds of ±2σ are shown by dashed lines. Grey points
represent daily loss data. In (b) the fitted occurrence probability p(v) is shown. Binned
empirical data, shown as circles, are given as reference only.

imately constant regime for lower wind speeds. To capture this behaviour an
additional constant offset a is introduced, giving

d(v) ≈
( v
b

)c
+ a . (2.3)

Calculating the residuals ε̂ between empirical data and d(v), we find an approx-
imately log-normal distribution of residuals with nearly constant scale para-
meter σ. For simplicity, we utilize this finding for modelling statistical devi-
ations ε and hence describe losses via a stochastic variable

Dε(v) ∼ LN
(
µ(v),σ2

)
, (2.4)

where LN represents the log-normal distribution and µ(v) = lnd(v). µ(v) and
σ are the mean and standard deviation, respectively, of the variable’s natural
logarithm.

So far the analysis accounts for the loss intensity given a loss event, leaving
aside the probability of an event. An empirical occurrence rate of loss events
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[Fig. 2.1 (b)] was calculated from linearly binned binary data, where a loss event
was coded as ‘1’ and days without loss as ‘0’. While the empirical occurrence
rate is approximately 1 at high v, it drops to a constant base rate for v → 0.
Ideally, the occurrence rate could be derived from Dε(v) as the probability of
exceeding a certain loss threshold. We were not able to identify such thresh-
old via censored regression modelling and hence chose to fit the data with an
empirical occurrence probability function

p(v) = 1−
α

1+ eγ(v−β)
, (2.5)

with base probability (1− α), shift β, and slope γ. Multiplying Dε(v) with a
stochastic weight functionw(v) based on p(v), we obtain the complete stochastic
damage function

Dε,p(v) = w(v)Dε(v)

w(v) :=

1, if P 6 p(v)

0, if P > p(v)

P ∼ U(0, 1) .

(2.6)

Maximum likelihood estimation was applied to calculate the parameters of
Dε(v) in an iterative process, alternating between computing parameters a, b,
and c while keeping the scale parameter σ constant and vice versa (see pseudo-
likelihood algorithm by Ruppert et al., 2003). A least-squares approach was
used to fit the parameters of p(v).

As some wind stations may not be representative for a given district, the
wind station featuring the highest predictive power was chosen from a set of
5 wind stations closest to the geographical centre of the district. The coefficient
of determination for non-linear regression models, generalized R2, was chosen
as a measure of predictive power. For the given shape of the damage curve d(v),
R2 values related to nearby wind stations indicate the level of variance inherent
to the specific combination of district loss and wind data. Due to the high level
of statistical deviation around d(v) low R2 scores would be expected for any
smooth damage curve. In fact, all estimated R2 scores lie within the interval
[0.2, 0.6], with an average of 0.42. High R2 is seen for north-western coastal
regions which often experience high winds. Regions with an R2 score of 0.4
and below largely coincide with German low mountain ranges (Mittelgebirge)
and along the southern alpine border. Best scores are hence generally obtained
for regions with homogeneous elevation and high frequency of strong winds.

The spatial distribution of the exponent c estimated for all German districts
is shown in Fig. 2.2. We find a slightly right-skewed distribution with mean
9.8. 80% of values are contained within the interval from 8.3 to 11.8. Values
of 15 and beyond can be conceived as outliers, occurring in districts where
wind measurements insufficiently differentiate losses even at high wind speeds.
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Figure 2.2: Spatial distribution of exponent c and dwd wind stations. The color code
indicates the local values of c, summarized in the histogram inset. Markers indicate
dwd wind stations that were used for calculations or excluded due to inhomogeneities
or missing data.

Geographically, values of c below 10 predominate in Western, Central, and
Northern Germany, while values above 10 are most often found across Southern
Germany and the southern districts of East Germany.

Our analysis is based on the assumption that maximum wind speed is the
dominating criterion for the occurrence and severity of storm damages. It was
not feasible to quantify the effects from other potential factors (e.g. storm dur-
ation, precipitation, or turbulent winds). However, the presence of systematic
large-scale deviations should be reflected in spatial correlations of the statist-
ical deviations ε. In fact, calculations of Spearman’s correlation coefficient from
normalized residuals ln(ε̂) showed significant spatial rank correlations between
districts, ranging from −0.30 to 0.67. While insignificant for the estimation of
loss in single districts, these correlations must be accounted for when spatially
accumulating loss across Germany. In order to reproduce the spatial correla-
tions during the Monte Carlo calculations, the empirically estimated rank cor-
relations were enforced on the random deviations ε of Dε. The algorithm was
implemented as follows:
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• Determine pairwise Spearman’s correlation coefficients ρi,j of ln(ε̂) be-
tween every possible combination of districts and thus populate matrix
M̂ = [ρi,j]439×439

• Determine the nearest positive-definite correlation matrix M using the
algorithm derived by Higham (2002)

• Use the iterative procedure by Iman and Conover (1982) to create spatially
correlated random deviations ln(ε).

We assume two main processes giving rise to the statistical deviations being
found in Fig. 2.1 (a). Firstly, the correlation between wind speed measurements
at separate sites is known to decrease significantly with growing distance. To as-
sess the significance of this effect on small scales, we compared two closely situ-
ated wind stations within the same district (Berlin Tempelhof and Berlin Tegel,
distance ≈ 11 km). From the empirical distribution we estimate that 75% of stat-
istical deviations lie within the interval [−1.5m s−1,1.4m s−1], while roughly
5% exceed [−3m s−1,2.9m s−1]. Hence a significant part of the observed devi-
ations may be attributed to such source of error. Secondly, insurance data may
be subject to statistical fluctuations caused by incorrect or delayed reporting of
losses. We however expect that for large losses the latter errors are small and
negligible.

2.4 Parametric Simplification

In order to simplify the parameterization of the damage model, we identified
global statistical relationships and reduced the number of local fitting paramet-
ers. As additional predictors we used the number of residential buildings per
district h, long-term damage rate δ defined as the share of days with recor-
ded damages during the observation period, and the wind speed ν = ba1/c

at the intersection of the constant a and the power-law term in d(v). The raw
data for the 439 districts and the corresponding least-square fits are shown in
Fig. 2.3 (a–c). Parameters a, α, and β could hence be replaced with the fitted
global relationships

a = (2.05± 0.58)h−0.99±0.03 (2.7)

(1−α) = (0.92± 0.01)δ1.47±0.02 (2.8)

β = (0.96± 0.01)ν+ (0.58± 0.24)m s−1 . (2.9)

Intuitively, the inverse proportionality between loss offset a and number of
building h (Eq. 2.7) follows from the definition of the loss ratio, defined as
the absolute loss divided by the insured value, since the insured value scales
linearly with the total number of houses. This suggests a common minimum
noise level for all districts. Furthermore, the approximate direct proportional-
ity between ν and β in Eq. 2.9 hints at a common threshold that separates the
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Figure 2.3: Correlations among model parameters and external factors. Scatter plots
(a)-(c) show the correlations found for model parameters a, α, and β, respectively. Dots
represent individual districts and dashed lines indicate fitted curves (cf. Eqs. 2.7-2.9).
(d) shows the parameter b versus the elevation (above MSL) of the used wind stations.
Circles denote binned data.

regime of noise at lower wind speeds from storm-driven losses at high wind
speeds. In line with this proposition, we interpret (1−α) as the probability of a
random loss event in the noisy regime of the curve. Accordingly, Eq. 2.8 shows
that the regional differences of the long-term damage rate δ are dominated
by random loss events. The remaining third parameter of p(v), γ, could further-
more be replaced by its mean value over all districts, γ̄ = 0.46. As p(v) generally
increases rapidly from (1−α) to 1, results were insensitive to the error induced
by this replacement.

In summary, the above global relationships can be used to reduce the model
parameterization to three local parameters (exponent c and scaling parameters
b and σ). Additionally, we observe a weak dependence of scale parameter b on
the elevation of the respective wind stations above mean sea level [Fig. 2.3 (d)].
However, it is expected that b comprises a multitude of scaling effects due to
orography or land use, and that hence the altitude dependence is not sufficient
for a robust approximation.

In the following, all calculations are based on the full parametric model un-
less we refer to the reduced model.
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Figure 2.4: Out-of-sample calculations for daily German absolute losses during three
severe winter storms (Lothar, Jeanett, and Kyrill). Circles denote the median of the
damage distribution and diamonds empirical values. 50%, 80% and 95% confidence
bounds are shaded from dark to light grey, respectively.

2.5 Modelling Results

In order to assess the predictive power of the proposed damage function, cal-
culations of regional and countrywide loss figures were compared to empirical
values. Due to the availability of only 11 years of spatially resolved loss data,
an out-of-sample test algorithm was implemented as follows:

• Exclude year x from empirical damage data

• Train the storm damage model on the remaining data

• Predict countrywide daily and cumulated damages for year x based on
daily maximum wind speeds

• Vary x and repeat all calculations.

In order to estimate the distribution for daily losses, the Monte Carlo method
was used and 500 realizations of daily loss estimates were calculated.

Figure 2.4 shows daily loss predictions in Germany for the time periods
around the three major storm events named Lothar (24.-27.12.1999), Jeanett
(26.-29.10.2002), and Kyrill (17.-19.1.2007). These storms are of particular in-
terest, as they caused the largest insurance losses during the period under con-
sideration. For most days empirical values lie within the uncertainty bounds of
the model estimates. Peak empirical losses of storm events Lothar and Kyrill
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are contained within the 80% uncertainty bound, while Jeanett is found in the
95% interval. The results demonstrate the model performance for predicting
losses over 4 orders of magnitude.
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Figure 2.5: Out-of-sample calculations for the annually accumulated loss ratio during
winter months (Oct-Mar). Panel (a) shows loss estimates for Germany. Circles denote
the median of the estimated damage distribution, while 50%, 80% and 95% confidence
bounds are shaded from dark to light grey, respectively. Empirical values are repres-
ented by diamonds. Panel (b) shows a histogram of Pearson’s correlation coefficients
between annual loss estimates and empirical values for each district. Correlations above
0.6 are statistically significant. The solid and dashed lines relate to the fully parameter-
ized and the reduced model, respectively.

Annual loss estimates during winter months are shown in Fig. 2.5 (a). Re-
garding absolute loss figures, we estimate a very high Pearson correlation of
0.99 between the model estimates (median) and the empirical values, which in-
dicates a good reproduction of the annual progression of empirical storm loss
data. Annual losses are dominated by the storm events Lothar, Jeanett, and
Kyrill in the years 1999, 2002, and 2007, respectively. Loss estimates for these
years hence reflect the peaks seen in Fig. 2.4. Additionally, we observe a small
positive bias for years with loss ratio below 10−4, which may be due to ignoring
correlations in the estimation of p(v) (Eq. 2.5). In total, we find approximately
12% underestimation of absolute loss accumulated over 11 years.

Figure 2.5 (b) summarizes the correlation per district between the median
of the annual loss estimates and the empirical values. Approximately 1/3 of
all districts show high Pearson correlation coefficients above 0.9. The mean
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correlation over all districts is 0.74. The correlations allow for a comparison
of the full model and the reduced model with only three fit parameters per
district. The histogram shows an increase of correlations between 0.5 and 0.9,
while the number of correlations with values above 0.9 is slightly decreased.
Together with a slight increase of mean correlation to 0.76 this demonstrates
the sufficiency of the three remaining fit parameters. Since both the original
and the reduced model produce nearly identical quantitative loss estimates for
Germany, we show results for the original model only.

2.6 Discussion

Empirical data of daily insurance losses across German administrative districts
show a strong increase of losses with maximum daily wind speed. We find that
these losses are well described by power-law damage functions with region-
ally varying exponents that typically range between 8 and 12 (cf. Fig. 2.2). For
the out-of-sample calculations we generated successive parameter fits based on
varying time slices of the available data. The estimated parameters were in-
sensitive to these variations, thus demonstrating model robustness even under
exclusion of the major loss events.

While these results are in contrast to damage functions published before,
a direct comparison of the exponents may be misleading. In fact, excess-over-
threshold models, as applied by Klawa and Ulbrich (2003) and Heneka and
Ruck (2008), imply a much steeper increase of loss in the threshold vicinity than
pure power-law models of absolute wind speed (e.g. Munich Re, 1993, 2001).
The basic conjecture of our approach is a monotonous relationship between
insured loss and maximum wind speed applicable to both small and extreme
storm loss, which enables us to exploit information from a wide range of re-
corded losses. Since we found a universal power-law increase of loss for all
districts, we think that the use of damage functions with differing asymptotic
shape may result in significant extrapolation error.

In Fig. 2.4 we demonstrate in an out-of-sample test that daily modelled losses
across Germany closely match empirical values ranging over four orders of
magnitude. Judging from the comparison of median loss estimates and empir-
ical data, peak losses may be slightly underestimated while still being within
the uncertainty bounds of the model. Next to being a purely statistical effect
(e.g. insufficient length of time series), this may be due to other aspects such as
under-determination of the model based on maximum wind speed only. Where
available, empirical data regarding such aspects as the temporal wind profile,
storm duration, or gustiness may be used to improve loss estimation. Socio-
economic effects such as demand surges (see, e.g., Olsen and Porter, 2011) are
expected to play a minor role.

Inspired by other studies, the proposition of an exponential damage function
was tested but rejected due to strong overestimation of damages for large wind
speeds. Bearing in mind that the damage function was fitted on the whole range
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of available loss data and thus not specifically calibrated to extreme losses, we
conclude that the model results demonstrate good reproduction of both daily
and annual extremes.

Strong countrywide correlations of model parameters support the universal
applicability of our damage function and permit the separation of the damage
curve into a approximately constant noisy regime and a physical power-law
regime.2

Employing these correlations, the model parameterization was successfully
reduced to three independent parameters determining the basic shape of the
damage curve. While the power-law exponent determines the curve’s steep-
ness, the scale parameter accounts for regional variation between districts and
wind stations (e.g. distance and orography). The third parameter specifies the
width of the log-normal loss distribution around the central curve and thus
relates to the expected level of statistical deviations. In particular, the value of
the exponent may be interpreted as an indicator for regional vulnerability to
extreme winds. Its spatial distribution indicates reduced vulnerability within
Western and Northern Germany. As these regions, and especially the coastal
regions, are highly exposed to extreme winds, the relatively low values of the
exponent suggest a greater level of adaptation to the current wind climate than
for Southern Germany.

All model calculations were deliberately based on raw measurements of max-
imum wind speed as provided by dwd. While most wind stations are known
to be subject to inhomogeneities due to change in measurement apparatus, loc-
ation, or surrounding surface roughness, they may nonetheless possess predict-
ive power for neighbouring districts. Due to the selection criterion of maxim-
izing generalized R2, wind stations with inhomogeneities causing significant
additional variance were excluded. Unlike temperature or pressure data, cor-
rection of inhomogeneities in maximum wind speed data would require case-
specific non-linear transformations that are beyond the scope of this study.

Additional insight, in particular regarding the significance for extreme loss
modelling, could be gained from a dedicated model intercomparison on the
basis of common meteorological and insurance loss data. In further work we
moreover intend to apply our model to loss data for other European countries

2 A side note on the originally published paragraph: When relating the model parameters that were ob-
tained for individual districts with socio-demographic data, strong correlations were observed as
seen in Fig. 2.3 (a–c). The presence of these correlations indicates a meaningful parameterization
of the damage function. Worse correlations, i.e. a more random parameterization, would have
been expected, if the damage function did not fit the wind–loss relation.
As described in the succeeding paragraph of the main text, the correlations can be used to de-
termine certain model parameters and to simplify the parameterization of the model. This has,
however, negligible effect on the damage estimates itself.
Quite different is the effect of the spatial correlations between the residuals of the loss estimates
for different districts, which represent unaccounted storm variations, e.g. in duration or precipit-
ation. Of course, these correlations cannot influence the expected loss, but have a widening effect
on the uncertainty intervals.
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and regions. A cross-national comparison of model parameters could enable the
identification of clusters of similar vulnerability and reveal regional adaptation
potential.
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III
Comparison of Storm
Damage Functions and
their Performance

Abstract. Winter storms are the most costly natural hazard for European resid-
ential property. We compare four distinct storm damage functions with respect
to their forecast accuracy and variability, with particular regard to the most
severe winter storms. The analysis focuses on daily loss estimates under differ-
ing spatial aggregation, ranging from district to country level. We discuss the
broad and heavily skewed distribution of insured losses posing difficulties for
both the calibration and the evaluation of damage functions. From theoretical
considerations, we provide a synthesis between the frequently discussed cubic
wind–damage relationship and recent studies that report much steeper damage
functions for European winter storms. The performance of the storm loss mod-
els is evaluated for two sources of wind gust data, direct observations by the
German Weather Service and ERA-Interim reanalysis data. While the choice of
gust data has little impact on the evaluation of German storm loss, spatially
resolved coefficients of variation reveal dependence between model and data
choice. The comparison shows that the probabilistic models by Heneka et al.
(2006) and Prahl et al. (2012) both provide accurate loss predictions for moder-
ate to extreme losses, with generally small coefficients of variation. We favour
the latter model in terms of model applicability. Application of the versatile de-
terministic model by Klawa and Ulbrich (2003) should be restricted to extreme
loss, for which it shows the least bias and errors comparable to the probabilistic
model by Prahl et al. (2012)
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3.1 Introduction

As a major contribution to natural-hazard damages, windstorms are respons-
ible for an average of 39% of world-wide economic losses during 1980–2011

(Munich Re, 2013). Across Europe losses from meteorological events are mainly
caused by winter storms and comprise 68% of total insured loss caused by nat-
ural catastrophes. The largest event so far, winter storm Daria in 1990, totalled
$ 8.6 billion of insured loss in 2013 values (Swiss Re, 2014).

Recent climatological studies by Schwierz et al. (2010) and Held et al. (2013)
have indicated that the severity of winter storm-related loss is likely to increase
markedly in the course of the 21st century. While there is no consensus on
changes of winter storm frequency, a growing body of research supports a fu-
ture increase in storm intensity (Feser et al., 2015). With this development in
mind, it is questionable whether the anticipated damages will remain within
the limits of insurability. Even though Held et al. (2013) come to a positive con-
clusion for the German insurance market, such analyses hinge on the choice
and quality of the employed damage function.

A storm damage function describes the relation between the intensity of
a storm and the typical monetary damage caused. While on the continental
scale storm intensity can be best described by complex storm severity indices
(Deroche et al., 2014; Roberts et al., 2014), local losses are ultimately caused by
surface winds. As the magnitude of storm loss is highly sensitive to changes in
wind speed, even small variations between potential damage functions could
have severe implications for the reliability of loss estimates and their validity
for economic and political decision making.

The work in hand tackles this issue by providing a model intercomparison
of storm damage functions for the residential sector in the context of European
winter storms.

In the discussion of storm damage functions it is often assumed that loss
should increase as the square or cube of the maximum wind (gust) speed. These
presumptions originate from the following:

• the consideration of wind loads, which are approximately proportional
to the exerted pressure and, hence, to the square of the wind speed
(e.g. Simiu and Scanlan, 1996);

• the concept of proportionality between structural damage and the dissip-
ation rate of the wind kinetic energy that scales with the third power of
wind speed (recently: Emanuel, 2005; Powell and Reinhold, 2007; Kantha,
2008).

In particular, the notion of a cubic relationship is backed by empirical ana-
lysis of insurance records, which appear to exhibit cubic or quartic behaviour
depending on the storms under scrutiny (Munich Re, 1993, 2001). However, re-
cent literature provides evidence for a much stronger increase of insured storm
loss with wind gust speed (Huang et al., 2001; Heneka and Ruck, 2008). For the
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insurance data set that we employ here, Prahl et al. (2012) found a power law
with regionally varying exponents that approximately range between 8 and 12.

We reason that the apparent contradiction results from the negligence of a po-
tential loss threshold due to insurance deductibles or similar economic effects.
Thus, we schematically demonstrate the transition from very steep loss increase
to a more modest cubic power-law.

The comparison of storm damage models is generally impeded by inconsist-
encies for reasons of (i) differing temporal or spatial resolution of meteorolo-
gical data, (ii) deviating building codes and enforcement practices, and (iii) dif-
fering insurance policies and claims settlement practices (Walker, 2011).

In order to circumvent such inconsistencies, three recently developed dam-
age functions (Klawa and Ulbrich, 2003; Heneka and Ruck, 2008; Prahl et al.,
2012) are applied to a common data set of wind gusts and insurance loss data
for Germany. These damage functions are complemented by a simple exponen-
tial model inspired by recent US hurricane loss models (Huang et al., 2001;
Murnane and Elsner, 2012), yielding four mathematically distinct modelling
approaches. For simple referencing, we assign the acronyms X and K to the
deterministic exponential model and the model by Klawa and Ulbrich (2003),
respectively. The probabilistic models by Prahl et al. (2012) and by Heneka and
Ruck (2008) are referred to via the letters P and H, respectively.

The theoretical foundations and the implications of each model are discussed
in order to mainstream terminology and conceptual structure of storm damage
functions. Quantitative results are obtained from numerical estimation and al-
low a direct comparison of model performance under varied spatial aggrega-
tion, relating to either daily loss or particular major storms. During summer
months the employed loss data inseparably includes both wind and hail dam-
ages. Since the employed damage functions concern wind damage only, we
limit the work in hand to days within the winter half-year (wh), comprising the
months October through March.

We address the validation of countrywide loss estimates by applying a novel
pairwise binomial test metric in conjunction with the relative metrics mean per-
centage error (mpe) and mean absolute percentage error (mape). Furthermore,
a coefficient of variation (cv) is employed to assess the predictive uncertainty
on district level at daily resolution.

The overall model estimation is based on annual cross validation, an iterative
procedure for the sampling of the training data, safeguarding that loss estim-
ates within any given year are obtained from independent training samples.
We furthermore assess model robustness by employing a jackknife method for
the systematic resampling of training data. Selectively excluding parts of the
training sample, the jackknife method allows us to assess the dependence of
model estimates on the training data. Probabilistic model results are obtained
from a Monte Carlo simulation with a sample size of 1000.

In the following section, we give overviews of the employed wind gust and
insurance data sets and of the model estimation procedure. In Sect. 3.3 a brief
introduction of storm damage functions is followed by a detailed view on each
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of the compared models. The numerical modelling results are discussed in
Sect. 3.4. In Sect. 3.5 we attempt a synthesis between a cubic wind–damage
relation and the considerably steeper damage functions reported for German
winter storms. The concluding synopsis and discussion of the theoretical and
numerical aspects of the impact model intercomparison are given in Sect. 3.6.

3.2 Data and Methods

3.2.1 Insurance Data

In this work, the employed damage functions are calibrated against detailed
insurance loss data obtained for storm damages to residential buildings. The
German Insurance Association (gdv) provided loss data relating to the “com-
prehensive insurance on buildings” line of business resolved for 439 German
administrative districts (as of 2006).

The data set comprises the magnitude of absolute losses and insured values
as well as the number of claims for the years 1997 to 2007 on a daily basis. With
its high spatio-temporal resolution and countrywide coverage, the gdv data set
has been successfully applied for the calibration of different damage functions
(e.g. Donat et al., 2011b; Prahl et al., 2012; Gerstengarbe et al., 2013).

In order to eliminate price effects and time-varying insurance market penetra-
tion, we consider relative figures for the amount of loss and claims throughout.
The following definitions are applied:

• loss ratio (lr): the amount of insured loss per day and district, divided by
the corresponding sum of insured value;

• claim ratio (cr): the number of affected insurance contracts per day and
district, divided by the corresponding total number of insurance con-
tracts.

These definitions are based on the assumption that insured buildings are
randomly distributed in each district and are representative of the overall resid-
ential building stock. With data coverage of up to 13.4million insured buildings
and in excess of 90% market coverage (GDV, 2013) we expect the assumptions
to hold.

The highly skewed and heavy-tailed distribution of daily losses during the
winter half-year is illustrated in Fig. 3.1. More than 50% of total loss is recor-
ded for the top 6 out of 2000 loss days. The shaded area in Fig. 3.1 highlights
the upper 10% of loss days, comprising in excess of 90% of total loss. For eco-
nomic relevance our work focusses on this loss segment, with a sub-division
into three distinct loss classes, as shown in Table 3.1.

The vast number of days exhibiting negligible insured loss appears to be due
to a random scattering of small losses across time and districts. Supporting the
attribution to noise, Prahl et al. (2012) found a direct proportionality between
the magnitude of the temporally scattered losses and the number of insured
contracts in a given district.
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Figure 3.1: (a) shows the empirical cumulative distribution function of loss days in Germany during the winter half-year. The observations
comprise 2000 loss days, which exhibit a steep increase of loss at the upper end of their distribution. The shaded area indicates the days within
the upper 0.1 quantile, subdivided into the three loss classes defined in Table 3.1. The top scale shows the share of total loss that is accumulated
for all losses smaller than or equal to a specific loss ratio. (b) shows the spatial distribution of the employed dwd stations and the era-i grid cell
resolution.
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Loss class Description No. Quantiles of Loss

daily losses share

I Extreme 6 0.997–1.000 54.9%

II Large 34 0.980–0.997 23.4%

III Moderate 160 0.900–0.980 15.0%

Table 3.1: The three loss classes defined for the winter half-year. Given are the number
of observations, the related quantiles, and the accumulated loss share for the period
1997 to 2007.

3.2.2 Wind Gust Data

Two sets of meteorological data were employed. The first set comprises daily
maxima of the 3 s wind gust measured by the German Weather Service (dwd)1.
Applicable meteorological stations were selected according to the following cri-
teria:

1. Missing values may not exceed 20 days for each year.

2. Average missing days per year may not exceed 10 for the period 1996 to
2008.

3. Stations should exclude mountainous stations above 1400m a.s.l.

Based on the selection criteria, 85 meteorological stations were selected. Meas-
urements obtained at anemometer heights other than 10 m were adjusted using
the simple wind-profile power law

v(10) =

(
10

h

)λ
v(h), (3.1)

with wind velocity v, anemometer height h, and an exponent λ = 1/7 as dis-
cussed in Wan et al. (2010).

Inhomogeneities in meteorological time series can be identified by finding
an optimal solution to the multiple breakpoint problem. Standard methods are
available, in particular, for finding inhomogeneities in monthly climatic time
series (Venema et al., 2012). Application to daily time series is however subject
to ongoing research (e.g. Wang, 2008; Mestre et al., 2011).

In the case of daily block maxima of climatic data, the relatively small change
at the breakpoint as compared to the data’s variance and the presence of long-
term persistence adversely affect the capacity to identify breakpoints correctly.
With a low signal-to-noise ratio, the presence of long-term correlation can lead
to false identification of breakpoints (Rybski and Neumann, 2011; Bernaola-
Galván et al., 2012).

1 Data available at: http://www.dwd.de/webwerdis.

http://www.dwd.de/webwerdis
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We attempt to avoid over-detection by applying a conservative testing scheme
based on multiple cross-comparison of neighbouring stations and the examina-
tion of metadata, e.g. about relocation of stations. The testing scheme employs
the R implementation of the PMFred algorithm developed by Wang (2008) to
identify potential breakpoints in time series of differences between daily gust
maxima of any pair of meteorological stations. We reduced the skew of the dis-
tribution of gust speeds by applying a logarithmic transformation and hence
improved the normality of the data, which constitutes a basic assumption of
the PMFred algorithm.

To begin with, we chose a control group of 39 stations whose individual
time series showed no significant inhomogeneities in the test algorithm. Sub-
sequently, we paired each of the 85 stations with the 10 closest of the con-
trol group and performed the PMFred algorithm on the time series of their
differences. If within a 60 day window at least three pairwise tests indicated
a breakpoint that could be backed by metadata, the inhomogeneity was cor-
rected. Furthermore, if all 10 pairwise comparisons suggested a significant and
otherwise undocumented breakpoint it was also corrected. All corrections were
performed using a quantile-matching algorithm (Wang et al., 2010).

Overall, we took a conservative stance on artificial manipulations of the raw
time series and corrected only three significant breakpoints in total, two of
which were documented in metadata.

The second wind gust data set was obtained from the ERA-Interim reana-
lysis2 (era-i, Dee et al., 2011). We use the daily maxima of the 3-hourly values
of the 10m wind gust.

Both sets of wind gust data, dwd and era-i, require a downscaling to match
the resolution of the insurance data. Prahl et al. (2012) demonstrate that wind
gust observations from neighbouring meteorological stations provide sufficient
information for the calibration of a storm damage function. Higher precision
may be attained via the use of mesoscale climate models for the computation of
detailed and physically valid wind fields from reanalysis or observational data
(Heneka et al., 2006; Huttenlau and Stötter, 2011). As this is clearly beyond
the scope of our work, we limit ourselves to a simple inverse-distance inter-
polation scheme applied to both dwd and era-i data sources. The wind field
was interpolated at the centroids of each district, taking into account all loca-
tions (stations or grid points) within a certain radius of interaction. Employing
leave-one-out cross validation, i.e. iteratively excluding each individual location
from the interpolated data set, we calculated the average correlation between
empirical and interpolated values at varying radii of interaction. The optimal
radius of interaction was chosen as the value at which the average correlation
reached its maximum. The estimated radii were 130 and 60 km for dwd and
era-i, respectively.

2 era-i data were obtained from: http://data-portal.ecmwf.int/data/d/interim_full_daily.

http://data-portal.ecmwf.int/data/d/interim_full_daily
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3.2.3 Model Calibration

The analysis of daily insurance loss data of the winter half-year reveals an
extremely broad and strongly skewed loss distribution. Relating loss and wind
gust data, a pronounced heteroscedasticity is revealed (cf. Fig. 6 in Heneka
and Ruck, 2008), with uncertainty resembling a log-normal error (Prahl et al.,
2012). In conjunction with such pronounced heteroscedasticity, the scarcity of
extreme events in the tail of the distribution may cause a bias of traditional
regression methods, such as least squares, towards singular extremes present
in the training data. While a data transformation, such as the logarithm, may
reduce skew and heteroscedasticity, it would put stronger weight on smaller
loss events and hence counteract the focus on extremes. In practice, potential
data transformation and curve fitting methods are dependent on the specific
damage model and are hence discussed in conjunction. Calibration issues that
arise from the properties of the loss distribution are discussed alongside the
mathematical model concepts in Appendix 3.a.

3.2.4 Model Estimation Procedure

Since damage functions are typically employed as predictive models, it is of
key importance how accurately they perform in practice. In addition to choos-
ing the optimal model, there is the risk of overfitting to a training data which
may not represent the high variability of weather extremes. In order to assess
the predictive performance of the employed models, a k-fold cross validation
scheme (Kohavi, 1995) is employed in conjunction with a jackknife procedure
(Miller, 1974).

For annual cross validation, the 11-year data set is partitioned into annual
subsamples. Iteratively, each individual subsample is retained for evaluation,
while the model is trained in the 10 years remaining. This process ensures that
each year is used exactly once for evaluation.

The employed cross validation enables out-of-sample prediction for each day
and allows for the assessment of the model fit with regard to the range of
frequently occurring losses.

However, for very scarce extreme events the evaluation of model robustness
requires additional resampling of the training data. The resampling is per-
formed via a jackknife procedure, where each individual annual subsample
is excluded consecutively from the 10-year training sample.

For the joint analysis of deterministic and probabilistic models, two different
schemes for loss aggregation are employed. Generally, we consider the daily
district-wise loss estimates as independent random variables dependent only
on the maximum gust speed. In the case of deterministic models, the model
estimates are interpreted as expected values and were simply summed up over
time or space. For the probabilistic models, we employed a Monte Carlo ap-
proach, where results of 1000 independent random realisations were aggreg-
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ated. The expected value and distribution quantiles were then calculated from
the distribution of Monte Carlo estimates at the desired level of aggregation.

3.2.5 Validation Metrics

The broadness and skew of the loss distribution also play a role for the val-
idation of model estimates, as they have significant impact on the applicabil-
ity of evaluation metrics. Heteroscedastic dependence between prediction error
and loss magnitude invalidates traditional moment-based metrics such as R2 or,
equivalently, Pearson’s ρ. In particular, very extreme events may attain the char-
acter of singularities and dominate absolute performance metrics. Alternatively,
relative metrics such as mean percentage error or mean absolute percentage er-
ror may be employed over well-defined loss ranges (Hyndman and Koehler,
2006). However, these metrics fail if predictions comprise both days with and
days without loss, which is often the case for daily resolved data. Moreover,
such zero values prevent the use of common transformations (e.g. power trans-
formations such as Box–Cox Transformation, see Box and Cox, 1964) to increase
the normality of the loss distribution required for most statistical metrics.

In order to eliminate the effects of scale of the loss distribution for model
comparison, we propose a simple pairwise statistical test based on binomial
statistics. The null-hypothesis is that both models have equal predictive skill
and, hence, that their predictions are equally likely to be closest to the true ob-
servations. Successes (i.e. closer prediction) can be represented by independent
Bernoulli trials with probability 0.5. In a one-tailed test the binomial distribu-
tion then expresses the probability for a given success rate.

In order to apply the binomial test, the share of predictions where one or the
other comes closer to the observation is estimated for each pairing of models.
Significance is obtained from the binomial distribution with probability 0.5 and
n independent trials, where n equals the total number of loss days for each loss
class.

As the binomial test itself does not disclose why any specific model outper-
forms a competitor, we interpret the results of each model in conjunction with
traditional relative metrics relating to a multiplicative error. For the employed
data, Prahl et al. (2012) found a variability that is approximately symmetric on
the log-scale, such that the assumption of a multiplicative error seems viable.

The employed multiplicative metrics are the mape (i.e. the mean of the mod-
uli of deviations between model estimates and observations in percent) and the
mpe (i.e. the mean of the deviations between model estimates and observations
in percent). While mape gives an estimate of the variability of model results,
mpe provides an indication for systematic bias.
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3.3 Storm Damage Models

A damage function describes the relation between the intensity of a specific
hazard and the typical monetary damage caused with respect to either a single
structure (microscale) or a portfolio of structures (macroscale).

Microscale models can be empirical (i.e. statistically derived from data), en-
gineering-based, or a mixture of both. On the macro scale, damages may be
either aggregated from microscale models or obtained from statistical relation-
ships based on empirical data (cf. Merz et al., 2010).

Due to the minimum resolution of our data (i.e. districts), our analysis is
constrained to the macroscale models of the latter kind. Nonetheless, some
of the damage functions under scrutiny contain assumptions on the nature
of microscale damage. As there are no publicly available engineering-based
models for our region of interest, only statistical models are considered.

For a general overview of modelling approaches, both statistical and engin-
eering-based, we refer the reader to Walker (2011) and, with a focus on hur-
ricane damage, to Pita et al. (2013). In the following, we present each of the
four employed damage functions.

3.3.1 Generic Exponential Damage Function

The choice for an exponential damage function is motivated by empirical obser-
vation, showing quasi-linear increase of the logarithm of the loss ratio versus
maximum wind (gust) speed over a wide range (e.g. Prettenthaler et al., 2012;
Murnane and Elsner, 2012).

It is a non-physical damage function in the sense that it does not saturate
with increasing wind gust speed and thus ignores an upper limit of physical
damage. However, average loss levels reached during European winter storms
typically range below or around a few tenths of a percent of insured value, such
that loss saturation does not become an issue.

The damage function relates the loss ratio L to the exponential of the gust
speed v,

LX ∝ eX1v. (3.2)

The absolute gust speed is rescaled via a linear transformation governed by
parameter X1. Primarily, the parameter reflects the particular vulnerability to
wind damage. Additionally, rescaling of wind gust observations may be re-
quired for reasons such as:

• Variations of scale due to mismatches in altitude or location of the geo-
graphical reference of the gust data and the building portfolio

• Loss being dependent on a differing wind predictor with approximate
proportionality to the maximum gust speed

• Systematic bias caused by the interpolation of wind gust data.
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The exponential damage functions focuses on wind-dependent losses only.
Typically, these are large losses within the upper tail of the loss distribution.
For the employed insurance data, small losses that occurred at days with max-
imum gust speed beneath the 95th percentile show a predominantly random
behaviour not captured by Eq. 3.2 and were hence neglected during calibration.
This aspect is also seen exemplarily in Fig. 3.2, showing the independently
trained damage function in the context of empirical loss data.

Further details about the calibration of the damage function are given in
Sect. 3.a1.

3.3.2 Probabilistic Power-Law Damage Function

In the literature, there are several proponents for power-law-based storm dam-
age functions (e.g. Dorland et al., 1999; Nordhaus, 2010; Bouwer and Wouter
Botzen, 2011).

For winter storms affecting Germany, Prahl et al. (2012) developed a mac-
roscale damage function based on the presumption of a power-law-based sig-
moid curve. Considering the typical loss range of winter storms, the sigmoid
curve can be approximated by a simple power-law term. For the general case,
their damage function comprises two key components. The first component de-
scribes the probability for the occurrence of damage within the portfolio, while
the second component models the intensity of loss if a damage has occurred.
In conjunction with the introduction of a noise constant, this two-part structure
enables the modelling of the entire range of damages, thus not excluding in-
formation from the bulk of small losses that may provide additional support
for the calibration of the damage function.

For an arbitrary district, Fig. 3.2 shows the curve fits for both components
of the damage function as well as the resulting expected value for storm loss.
The left-hand panel demonstrates that the predicted 95% confidence bounds
encompass the majority of loss observations and the right-hand panel shows
how the probability of occurrence is inferred from the empirical occurrence
rate (training data).

The model can be simplified for large wind gust speeds. In this case, the
expected value of loss L is approximately proportional to the gust speed v

raised to the power P1,

E [LP] ∝ vP1 . (3.3)

The exponent P1 is the key parameter and expresses the vulnerability of
the building portfolio. Additional important parameters adjust the scale of the
employed wind gust data and control the spread of the loss probability distri-
bution (see Sect. 3.a2 for details). Concerning the scale of the employed gust
data, the observations may require a rescaling to relative values (cf. Sect. 3.3.1).

The original model published by Prahl et al. (2012) incorporates correlations
between district losses caused by the same storm event. Due to the complexity
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of the employed modelling scheme, it was not feasible to include these correla-
tions in this paper. However, the effect of correlations is perceived as minor to
the overall performance of the damage function and their inclusion would lead
primarily to a widening of confidence intervals.

Please refer to Sect. 3.a2 for further details of the mathematical derivations
and of the fitting procedure.

3.3.3 Cubic Excess-Over-Threshold Damage Function

Klawa and Ulbrich (2003) proposed a macroscale damage function for German
storm loss based on the hypothesis that storm damages grow with wind gust
speed in excess of a specific threshold. The approach has since been applied
to other European locations (e.g. Leckebusch et al., 2007; Etienne and Beniston,
2012; Cusack, 2013) and was recently refined to the scale of German districts by
Donat et al. (2011b).

At the core of the damage function is the definition of a damage proxy D
based on the regional wind gust speed v and its 98th percentile,

D =


(
v−v98
v98

)3
if v > v

98

0 if v < v
98

. (3.4)

The damage function is calibrated by performing a linear regression of loss
observations against the damage proxy, thus involving two regression paramet-
ers (a scaling coefficient and an offset). In the upper limit, the damage function
increases without bounds and hence ignores damage saturation at high gust
speed.

The scaled damage proxy is shown exemplarily for an arbitrary district in
Fig. 3.2. Since the additive offset parameter rather describes the bulk of loss that
may occur below the 98th wind gust percentile, it is not directly attributable to
any specific event and hence indicated via a dotted line in Fig. 3.2.

The employed wind gust percentile was empirically found by Klawa and
Ulbrich (2003) and may be considered as a third parameter. Since the introduc-
tion of the European Standard EN 1991-1-4 describing the wind action on land
structures, the 98th wind gust percentile has become a crucial factor for the
reinforcement of buildings against wind damage. Even before its legal imple-
mentation during the first decade of the 21st century, it may be reasonable to
presume an autonomous adaptation3 to the wind climate and hence argue for
the applicability of a wind percentile as a proxy for such adaptation.

The cubic relationship of the damage function has been repeatedly put into
context with the advection of kinetic energy (Leckebusch et al., 2007; Pinto et al.,
2007; Cusack, 2013). As a matter of fact, this line of reasoning is problematic due

3 Structures are reinforced to withstand frequent low-impact events, while adapting to the rare
extremes may be too costly. A balance between the individually perceived (monetary) risk and
tolerable adaptation cost is maintained.
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Figure 3.2: Example of model predictions for a single district obtained from dwd data for the training period 1997–2006 and set in contrast
to year 2007 empirical data, all limited to the winter half-year. (a)–(d) show the expectation values of the loss ratio versus wind gust speed
on a log–log scale, circles denote observed losses during 2007. For probabilistic models P and H, the median and 95% confidence bounds are
given. Additionally, we show for model P the median and confidence bounds of the curve fit to actual loss days and for model H an analogous
but implied curve. (e) and (f) show the fitted and implied occurrence rate probability for models P and H, respectively. Year 2007 observed
occurrence rates are indicated by blue bars. For model P, training data (shaded bars) is displayed as reference.
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to the subtraction of the 98th percentile threshold, and hence the resulting dam-
age function is inconsistent with the purely cubic dependence on gust speed.
As a consequence, the gradient of the damage function is much steeper than
that of a simple cubic gust relationship over the entire range of historical wind
gust speeds. Only in the upper asymptotic limit, as the gust speed approaches
infinity, does the damage function converge to the simple cubic dependence.

In Sect. 3.a3, we demonstrate that on the basis of the employed data the
increase of the loss curve for extreme winter storms is comparable to that of
a power law with a steep exponent of approximately 10.

Although Klawa and Ulbrich (2003) developed their damage function for
winter storms, the function can be applied to the entire loss range, in which
case the regression offset parameter serves as baseline loss resulting from wind
gusts beneath the defined percentile threshold. Figure 3.6 illustrates that there
is a strong relation between loss and gusts below the 98th wind gust percentile,
suggesting that the damage function could potentially utilize a lower wind
percentile. Further mathematical details and the fitting procedure are described
in Sect. 3.a3.

3.3.4 Probabilistic Claim-Based Damage Function

Heneka et al. (2006) put forward an integrated approach for modelling storm
loss, combining a probabilistic description of affected buildings with a micro-
scale damage relationship.

Within their theoretical framework, a building damage occurs if a critical
wind gust speed, particular to that building, is exceeded. A continuous prob-
ability density function is employed to describe the probability of critical gust
speeds within the overall building stock. For modelling purposes, Heneka et al.
(2006) assumed a Gaussian distribution for critical gust speeds, which is non-
physical in a sense as it yields finite probability for negative wind gust speeds.
The claim ratio follows naturally as the cumulative distribution function of crit-
ical gust speeds, describing the fraction of buildings for which wind gust speed
exceeds the critical threshold.

If an individual building i is affected, the damage Di is assumed to rise as
the square of the gust exceedance above threshold until complete destruction
is reached at maximum exceedance level H1. Heneka et al. (2006) (see also
Heneka and Ruck, 2008; Heneka and Hofherr, 2011) argue that the square term
of their microscale damage relationship,

Di =

(
v− vc

H1

)2
, (3.5)

corresponds to proportionality between damage and wind force. Repeating the
reasoning given in Sect. 3.3.3, we argue that such proportionality is violated due
to the inclusion of the critical threshold vc which is inconsistent with the wind
force being proportional to the square of the untranslated wind gust speed
(e.g. Simiu and Scanlan, 1996).
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In contrast to the other discussed damage functions, model fitting and loss
estimation requires numerical integration, which makes the application of the
damage function computationally more demanding. It was found that the
model could not be reliably calibrated on loss data only, necessitating the use
of additional data for the number of claims per region and day. Given the ad-
ditional information from claims data, the damage function would be expected
to perform as well or better than the competing models.

Due to its probabilistic description of the building stock, the damage function
naturally incorporates an upper limit to the claim and loss ratio and may be
applicable to a wide range of losses.

The model requires the calibration of four parameters, describing the wind
gust speed at which half of the building stock is damaged and its associated
standard deviation, the standard deviation of critical wind gust speeds, and the
gust range over which building damages reach complete destruction. Further
description of the mathematical details and the three-step calibration procedure
is given in Sect. 3.a4.

For an exemplary district, Fig. 3.2 shows the expected value and 95% confid-
ence bounds of the damage function. For better comparison with the probabil-
istic power-law damage function, we further decomposed the damage function
into the implied components for the occurrence probability and the loss intens-
ity, both shown in Fig. 3.2.

3.4 Comparison Results

Bringing together the four different models, the two wind gust data sources,
and the modelling procedure (Sect. 3.2.4), model predictions were obtained
for 2004 days (consisting of the winter halves of 11 years) and for each of the
439 administrative districts.

Due to the high level of detail, the presentation of results is focused on
three distinct aggregation levels: (i) daily loss per district, (ii) daily country-
wide losses, and (iii) countrywide losses caused by the six most severe storm
events during their entire passage duration.

In case of models K and H, different setups for model calibration were pos-
sible (cf. Appendix 3.a). For greater clarity, only those results that relate to the
best-performing setup are reported, while additional results are provided in
the Supplement (see Sect. 3.b2).

The circumstances of comparing two deterministic and two probabilistic mod-
els require the choice of a common metric. The output of the deterministic
models is hence considered equivalent to an expected value obtained from the
probabilistic models and forms the basis of the model intercomparison.
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North East South West All

D
W

D

231 342 436 228 331

248 384 580 255 385

266 403 911 290 508

290 552 997 352 578

ER
A

In
t.

356 327 417 286 376

401 333 469 299 387

515 342 738 305 458

842 580 745 527 665

Model color code

X H P K

N

W
E

S

Table 3.2: Spatial averages of the coefficient of variation for each model. For ease of
comparison, values are sorted in ascending order. The respective model is indicated by
the colour code. The spatial extent is defined by the four geographic regions (North,
East, South, West) depicted in the map inset.

3.4.1 Daily Loss per District

While temporal or spatial aggregation generally leads to a convergence of model
estimates and observations, strong variability is expected for daily storm loss
estimates on the fine district scale.

On the basis of root-mean-squared error (rmse) we define a coefficient of
variation (cv),

CVRMSE =
1

x

(
1

n

n∑
i=1

(xi − x̂i)
2

) 1
2

, (3.6)

where, for n samples, x and x̂ denote the observations and estimates of the
expected value respectively. Values are normalized to the mean of the observa-
tions x.

Table 3.2 shows regional averages of the cv for each of the four competing
models. These results highlight the interdependence between model and wind
gust choice. While model Hmostly outperforms the competing models for dwd

wind gust data, it appears less suited for era-i wind gust data, whose distribu-
tion properties are distinctly different from those of the dwd data. Of particular
interest is the fact that, irrespective of the wind gust data source, model H per-
forms best across southern Germany. With relatively complex terrain and less
frequent storm events, this region poses the greatest challenge to the damage
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Figure 3.3: Coefficients of variation of the root-mean-squared error per district, evalu-
ated for the entire 11-year modelling period. Depicted is the minimum value of CVRMSE
found for any of the four models. (a) and (b) show results obtained from dwd and era-i
wind gust data, respectively.

models, resulting in a wide spread of cv values between different models. In
contrast, model K appears to be least reliable in the south. While the exponen-
tial model X fares worst overall, it scores best for dwd wind gust data over
northern Germany. It may be assumed that in this region the probability distri-
bution of the dwd wind gust data are most favourable for the steep exponential
model. Overall, models H and P show the least variation throughout. While
model K performs well, with the exception of southern Germany, the exponen-
tial model consistently generates the largest amount of variation and, hence,
modelling error.

Due to the fact that the district resolution exceeds the resolution of sampling
points of the wind field, a strong influence of the choice of gust data are expec-
ted. Figure 3.3 shows a baseline cv estimated as the minimum value found for
any of the four competing models. The dwd-based values show relatively small
variation across north-western Germany, while exhibiting stronger variation in
southern Germany. In contrast to the dwd-based values, era-i-based cv estim-
ates show a marked increase of variation from east to west. The origin of this
effect, however, remains unclear.
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3.4.2 Countrywide Daily Loss

Our second appraisal of the model performance is based upon countrywide
daily losses. The spatial aggregation has the beneficial effects of reducing loss
variability and yielding a high number of otherwise spatially separated loss
events.

Figure 3.4 shows the model predictions for the countrywide loss ratio plotted
against the observations from insurance data. Focusing the initial examination
onto results based on dwd wind gust observations [Fig. 3.4 (a)], several import-
ant aspects are revealed.

First of all, the loss predictions from all models exhibit a very high variability
in the range of few orders of magnitude. Since the variability cannot be signific-
antly reduced by model choice, it may be a consequence of other aspects such as
the stochastic nature of the building damage, measurement error of gust speed,
or the omission of further explanatory parameters. Secondly, the model variab-
ility appears nearly symmetric on the log-scale, indicating a strongly skewed
distribution. In this case, expected values may be significantly lower than loss
observations that fall into the upper tail of the uncertainty distribution.

Two models, K and P, show a lower bound for the expected value of predicted
loss. In the case of K, this is a direct consequence of the model design which
involves a constant baseline loss that accounts for any loss beneath the local
98th wind gust percentile. For model P a similar lower bound exists, which
reflects the expected value of the noise level present in the loss data at any
wind gust speed.

When considering the binned loss ratios (black circles) in Fig. 3.4 (a), both
models X and H exhibit an underestimation of small losses, which is more pro-
nounced for model H. A comparison with Fig. 3.2 shows that this behaviour is
in line with the rapid convergence to zero of the damage curve for model H. Un-
surprisingly, model P shows good agreement of binned loss ratios over a wide
range of loss due to the fact that this model is the only one specifically designed
to match also the low and medium loss ranges. In comparison, model K maps
a considerably larger fraction of losses onto its lower bound (baseline loss) and
seems to underestimate losses especially in the region around 10−6. This beha-
viour is a likely outcome of the wind gust threshold fixed to the 98th percentile.
Losses near or below this threshold may be strongly underestimated, an effect
that plays a larger role for small-scale storms than for extreme, large-scale storm
events.

For era-i-driven simulations, Fig. 3.4 (b) shows a similar overall behaviour as
for dwd wind gust data. Comparison indicates a stronger variability of model
results for era-i. Likely causes for this effect are the reduced spatial resolution
of era-i grid cells compared to the spatial distribution of dwd climate stations
and the lack of precise geographical allocation of wind gust values attributable
only to entire grid cells.
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Loss
class

Tested
against

Share of closest loss estimates in % (p value)

X P K H

I

X − 83 (0.02) 67 (0.11) 50 (0.34)

P 17 (0.89) − 17 (0.89) 67 (0.11)

K 33 (0.66) 83 (0.02) − 50 (0.34)

H 50 (0.34) 33 (0.66) 50 (0.34) −

II

X − 68 (0.01) 24 (1.00) 62 (0.06)

P 32 (0.97) − 24 (1.00) 35 (0.94)

K 76 (0.00) 76 (0.00) − 76 (0.00)

H 38 (0.89) 65 (0.03) 24 (1.00) −

III

X − 53 (0.24) 25 (1.00) 35 (1.00)

P 48 (0.71) − 35 (1.00) 47 (0.76)

K 75 (0.00) 65 (0.00) − 71 (0.00)

H 65 (0.00) 53 (0.19) 29 (1.00) −

Table 3.3: Results from a binomial test for the prediction accuracy of the different
models based on daily loss estimates calculated from dwd wind gust data. The model
of each column is tested against each row of competing models and across loss classes
(as defined in Table 3.1). Bold results indicate superiority of the tested model with
statistical significance greater than 95%.

The similarity of results drawn from dwd and era-i wind gust data prevails
for all further model results, and we hence focus the subsequent discussion on
dwd-based model estimates. The quality (performance) of wind gust data in
the context of storm damages is beyond the scope of the work in hand. For
special interest we provide results corresponding to era-i in the Supplement
(see Sect. 3.b3).

It is evident from an economic (or insurance) point of view that the perform-
ance for small and mid-range damages should be disregarded in case better
performance is achieved for large loss events. In our further analysis we accom-
modate for this aspect by applying the loss categories defined in Table 3.1.

In order to compare model results over different loss ranges, we apply a sim-
ple scale-independent pairwise statistical test based on binomial statistics. For
each pair of models, Table 3.3 provides the share of predictions where one or
the other comes closer to the observation. Values with a statistical significance
greater than 95% are set in bold.

As the binomial test itself does not disclose why any specific model out-
performs a competitor, we interpret the results of each model in conjunction
with the mean absolute percentage error (mape) and the mean percentage er-
ror (mpe). Table 3.4 summarizes the results both for mape and mpe.
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Loss
class

Model mape (mpe) in %

X P K H

I 56 (49) 17 (−5) 27 (−1) 26 (11)

II 67 (27) 51 (27) 79 (33) 55 (16)

III 75 (6) 97 (43) 85 (−51) 75 (−6)

Table 3.4: Estimates of the mape and mpe for each of the competing models and across
loss classes (as defined in Table 3.1) based on dwd wind gust data. Best values for each
class are emphasized in bold.

For extreme losses in loss class I the binomial test gives prevalence to the
model P, whose estimates exhibit the lowest mape. There appears to be indif-
ference between models H and P, although mpe shows that model H tends
to overestimate extreme losses, while model P shows a small downward bias.
Model K exhibits the least bias and yields the lowest mpe.

Considering loss class II, all models show a strong tendency to overestimate
large losses. Here, the smallest bias is produced by H with an mpe of 16%.
Results from P exhibit the least variability of the four models, so that the model
can outperform the competitors in the binomial test.

In contrast, moderate losses in class III illustrate a completely different beha-
viour. The biggest change arises for K, which converts from significant overes-
timation to strong underestimation indicated by a negative bias of −51 %. While
the upward bias of P increases for moderate losses, models X andH exhibit only
small bias and generally the smallest mape.

All above metrics were based on model estimates obtained from dwd wind
gusts [cf. Fig. 3.4 (a)]. Tables related to era-i wind gusts generally show the
same tendencies and are given in the supplementary material in Sect. 3.b3. In
Sect. 3.b1, we also provide an additional diagram showing results of the bino-
mial test for small and minor losses below the 0.9 quantile.

3.4.3 Most Severe Storm Events

Having so far considered only single loss days, Fig. 3.5 shows the aggregated
loss ratios for the six most severe (in terms of loss) winter storms during the
observation period. The daily loss estimates were accumulated for the entire
passage duration of the respective cyclones, whose start and end dates are given
in Table 3.5.

In addition to the expected value obtained from the full training sample,
estimates of the expected value obtained from the jackknife resampling give
an indication of the robustness of the model fit. A large spread of jackknife
estimates, e.g. as seen for the model X, indicates a strong dependence on the
training sample.
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Storm Start date End date

Anatol 2 Dec 1999 5 Dec 1999

Lothar 24 Dec 1999 27 Dec 1999

Jennifer 25 Jan 2002 30 Jan 2002

Anna 25 Feb 2002 1 Mar 2002

Jeanett 26 Oct 2002 29 Oct 2002

Kyrill 17 Jan 2007 19 Jan 2007

Table 3.5: Dates of the six most severe winter storms during the period 1997–2007

(Donat et al., 2011b).

Robustness is of particular concern, since the short training period may not al-
ways contain very severe storms, and, hence, the storm damage function must
reliably extrapolate beyond its support. Empirically, this aspect is illustrated
most prominently for winter storms Jeanett and Kyrill, both affecting approx-
imately the same geographical region.

In the case of model K, the outliers of the jackknife estimates for these storms
relate to a training sample containing neither one as benchmark. It becomes
apparent that the linear regression employed for model K straps the otherwise
highly constrained damage function to the maximum level of losses present in
the training sample.

With the exception of winter storm Lothar, model P exhibits the least spread
of expected values. Even though there are no constraints on the exponent of the
damage function as for model K, the model demonstrates robustness due to its
larger support from the entire range of observed losses.

A similarly robust behaviour is shown by model H, albeit there appears to be
some sensitivity to the training sample for winter storms Jeanett and Kyrill. In
contrast to model P, the robustness of model H is likely to originate from the
strong constraints imposed on the damage function by the choice of distribution
function for the critical gust speed.

The least constrained model X appears not only to be sensitive to the training
sample used, but also generates significant overestimation for the three most
severe winter storms. Although a verdict may not be based on three events
only, the exponential approach appears less reliable for extreme winter storms
than the competing models.

Finally, Fig. 3.5 also shows the probability density contours for the prob-
abilistic models P and H derived from Monte Carlo calculations, convolving
all 10 jackknife model fits with 1000 realizations each. While a judgement on
the adequacy of the distributions cannot be made due to the scarcity of ex-
treme events, some observations can be made. Model P, which assumes a log-
normal uncertainty distribution with constant scale parameter generates heav-
ily skewed loss distributions that by inspection seem too wide. In contrast, the
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Figure 3.5: Model estimates for the six most severe winter storms in the period 1997–
2007 based on dwd data. Red circles indicate the expected value obtained from models
trained on the full 10-year data, while the red dots represent expected values from the
9-year resampled (jackknife) training periods. For models P and H, the black contours
represent the probability distribution of predicted storm loss for the 10-year training
data. Empirical insured loss is marked by green dashed lines.
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less-skewed loss distribution produced by H appears more reasonable. In gen-
eral, both models yield loss distributions that encompass empirical observa-
tions.

3.5 Towards a Synthesis of
Storm Damage Functions

All of the four different damage functions discussed herein exhibit a loss in-
crease that is much more rapid than a cubic power law derived from physical
considerations about the kinetic energy of the wind mass. In this section, we
propose a simple mechanism to reconcile the steep loss increase with a cubic
power law. With our hypothesis we intend to expedite the discussion on the
overall shape of the damage curve, since its behaviour beyond the support has
strong implications for the extrapolation of loss.

Figure 3.6 (a) shows the average loss increase obtained when superimposing
data from all German districts. Visual comparison with the power-law guiding
lines suggests that both the lr and the cr curves increase significantly faster
than the 3rd power of wind gust speed. Moreover, the average lr of affected
buildings (i.e. those for which an insurance claim was filed) remains approxim-
ately constant over a wide range of wind gust speed. This implies a minimum
loss threshold for damage compensation to be claimed. Such a threshold could
be caused by insurance deductibles, but may also arise from small damages
that either go unnoticed or are fixed autonomously.

We make the hypothesis that the steep loss increase that is observed from
the gdv data may be a consequence of the presence of such a loss threshold.
Mathematically, when applying a threshold T the expected loss ratio LRall is
given by

LRall =

∫∞
T
Lfv(L)dL, (3.7)

where fv(L) denotes the probability distribution of the loss ratio L at gust
speed v. The claim ratio CR follows from the respective cumulative distributive
function, Fv(L), as

CR = 1− Fv(T). (3.8)

The loss ratio of affected buildings LRaffected is then simply given by

LRaffected =
LRall

CR
. (3.9)

Assuming a log-normal uncertainty distribution, Fig. 3.6 (b) illustrates the
effect of a loss threshold on the expected lr obtained from a simple cubic loss–
wind relationship. As a result, for low wind gust speed LRaffected remains close
to the threshold value, while LRall steeply increases. The noise level of the gdv
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data however entails a minimum loss level, approximately corresponding to
a single damaged building per district portfolio.

To be consistent, both lr curves given in Fig. 3.6 (a) must converge as gust
speed increases. However, at these gust levels damages are unlikely to follow
an idealized square or cubic relationship, especially with cascading effects in
case of a breach of the building envelope and additional damage caused by
flying debris. Sparks and Bhinderwala (1994) show that at extreme wind speeds
a minor fraction of overall loss is comprised by direct wind damage, while the
majority of loss results from interior or non-wind damage that are not captured
by the physical considerations above.

3.6 Discussion and Concluding Remarks

The non-linear processes behind wind and non-wind damage as well as the
effects of cascading failure of structural components entail that reduced-form
approaches as discussed here may only approximate the actual storm dam-
age characteristics. In order to assess the robustness and quality of macroscale
storm damage functions, we have analysed and compared the results of four
different models applicable to the European winter storm season. As a growing
body of climatological research indicates, an increase in future storm intensity
(see, e.g., the review article by Feser et al., 2015) could lead to the emergence
of new hazard profiles. Conditional on the accurate reproduction of local wind
characteristics, gust-based damage functions can provide a flexible tool to as-
sess these changes.

Before we discuss the detailed results of the comparison, it is important to ac-
knowledge the effect of deductibles on the shape of damage functions derived
from insurance data. Care must be taken as to what extent physical damage
concepts, such as a cubic wind–damage relationship, may be applied to in-
sured storm loss. In this regard, all four compared damage functions exhibit
a much stronger increase of loss, which is in good agreement with the gdv data
employed herein. However, by introducing a simple loss threshold we could
demonstrate how such a steep damage function for winter storm loss could be
reconciled with a purely cubic wind–damage relationship. If, as climatological
research suggests, future storm intensities increase beyond current levels, the
overall shape of the damage function plays a crucial role for the extrapolation
of future losses. With our threshold hypothesis we intend to expedite the dis-
cussion on the validity of damage functions beyond their original data support.

Storm-related insured losses generally exhibit a very broad distribution with
a high dynamic range that spans several orders of magnitude. The loss distri-
bution is highly skewed with very few extreme loss events dominating total
annual loss. These two aspects pose severe difficulties for both the calibration
and the evaluation of damage functions.

With a focus on the level of extreme losses, least-squares curve fitting has
often been employed to calibrate damage curves to loss data. The combination
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of skewed loss distribution and heteroscedastic variance seen for the case of
gdv data suggests a violation of the basic assumption for least-squares fitting
and potentially leads to biased results. Due to the high dynamic range even
temporally or spatially aggregated loss figures, as used in the cubic excess-
over-threshold damage function by Klawa and Ulbrich (2003) (model K), are
subject to this effect as they are still dominated by extreme losses.

The optimal curve fitting procedure remains a matter of discussion. Rely-
ing on the assumption of general damage relation valid for a large range
of losses, the probabilistic power-law damage function by Prahl et al. (2012)
(model P) puts equal weight on all data points. In contrast, the fitting proced-
ure for the probabilistic claim-based damage function by Heneka and Ruck
(2008) (model H) has given greater weight to extremes by using averages of
binned losses. The comparison between model H and the simple exponential
damage function (model X), both of which are calibrated in the same manner,
shows that effective calibration relies on a combination of model constraints
and curve fitting.

As was seen in Fig. 3.5, model H attains greater robustness against jackknife
variations of the training sample due to the presumption of a specific claims
distribution. Following a different philosophy, model P achieves robustness by
rooting the damage function in the entire range of loss.

Transferability is one of the biggest challenges of empirical damage functions.
All of the discussed damage functions require substantial calibration to loss
data. On the one hand, Heneka and Hofherr (2011) applied their damage func-
tion to Germany by employing a static parameterization originally obtained for
the federal state of Baden-Württemberg. Donat et al. (2011a), on the other hand,
assume the same vulnerability for nation-wide building stock. In both cases,
spatial extension of the model comes at cost of blurring regional vulnerability.

From a practical point of view, model K is most easily calibrated since only
a scaling of an otherwise robust raw damage term is required. More elaborate
are the calibration procedures for models X and P, which both require detailed
loss data. Mathematically, calibration of model H is most demanding and also
requires additional data for the number of loss claims.

In order to assess the countrywide performance of the different models,
a simple binomial test was devised. In conjunction with the more traditional
metrics mape and mpe, it was shown that models H and P generally perform
best, with some advantage for model P in the large loss class. Most interest-
ingly, the behaviour for extreme losses is indecisive. Model P shows the least
variability in terms of mape, while model K exhibits the least bias. In terms of
the closest model predictions, the binomial test is indecisive between models H
and P, whereas both are preferred to models K and X. A summary of the results
is given in Table 3.6.

The applicability of model K appears to be focused on extreme losses. Its
further behaviour turns from a positive bias for large losses into a strong neg-
ative bias for the moderate loss class. In Sect. 3.a3 we showed that for extreme
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gust speeds, model K exhibits steepness similar to model P. However the model
reaches a lower bound at the 98th wind gust percentile and hence appears to
understate losses at speeds in the proximity of this threshold.

Overall, similar behaviour is found for era-i-based results which are given
in the Supplement (see Sect. 3.b3). A peculiar difference is that for the class of
extreme loss days model K performs best in terms of deviation and bias, but
fares worse when regarding the losses accumulated for the six largest storms.
These contradictory findings can be explained by the imprecise representation
of major storms in era-i data, especially with regard to the temporal wind
profile.

Generally, the obtained results were irrespective of either dwd or era-i wind
gust data. Not surprising, era-i-based results showed greater variance than
those based on direct wind gust observations. Interestingly, on district level the
estimated coefficients of variation reveal a marked increase of model variance
from the west to the east of Germany.

Further analysis of the coefficient of variation emphasized the importance of
the interplay between damage function and the particular wind gust distribu-
tion (from either dwd or era-i). Strong interdependence was seen for model H,
performing best with dwd data, and for model K, which showed best results
for era-i data. While model P showed low variability throughout and appeared
most flexible to the different data sources, model X showed the greatest error
variance overall.

It is worthwhile to note that the coefficient of variation indicates a strong level
of residual error variance even for the best-performing model. The advantage of
dwd over era-i gust data (cf. Fig. 3.3) suggests a strong influence of uncertainty
in wind gust data. However, there are also a number of potential uncertainty
sources connected to the employed insurance data. Uncertainties may arise
from gradual damage accumulation masking the effect of individual storms,
from incentives for insurance holders (e.g. deductibles), and from wealth levels
that affect both building quality and insurance taken. While the employed data
does not allow a stratification of losses along socio-economic dimensions, our
regional calibration implicitly accounts for spatial variations due to regionally
differing vulnerability and wealth patterns. An altogether different situation
would arise for models calibrated on a national scale, where such effects must
be considered explicitly.

In our comparison it would not be meaningful to draw a unique conclusion
on the suitability of each model as the performance may crucially depend on
the purpose for which it is applied. In the light of this limitation, the exponen-
tial modelling approach was found less adequate for the modelling of extremes.
In contrast, model K showed its best results for extreme losses, albeit with a cal-
ibration procedure that appears less robust than those of the probabilistic mod-
els H and P.

Both probabilistic models provided good results over a wide range of loss
(moderate to extreme), with their model differences being much smaller than
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Criteria Rank Model Description

Extreme loss
predictions
(loss class I)

1. P least error, small bias

1. K small error, least bias

3. H slightly worse error, moderate positive bias

4. X strong error and strong positive bias

Moderate to large
loss predictions
(loss classes III and II)

1. H good prediction, positive bias for era-i, smallest bias for dwd

2. P good prediction for large loss, positive bias

3. X decent prediction for large loss, smallest error and least bias for moderate loss

4. K reasonable prediction, strong bias flipping from negative to positive

Variability on
district level

1. H best for dwd, overall good for era-i

1. P very good for both gust data sources

3. K better for era-i; best in north-eastern, worst in southern Germany

4. X worst for dwd, large variability for era-i

Model applicability

1. K simple calibration, also on extreme losses only

2. P requires data for all sizes of loss

2. X requires large training data set

4. H both number of claims and loss data required

Table 3.6: Ranking of the four damage functions according to their prediction quality, variability, and applicability.
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the general variability of losses. On the regional level, they yielded smaller coef-
ficients of variation than the two deterministic models. While models H and P
exhibited comparable results, a slight preference could be given to model P
in terms of robustness and applicability. With regard to the broadly skewed
uncertainty of estimates, probabilistic models can give a better picture of poten-
tial loss and should generally be preferred. However, uncertainty estimates for
extreme loss remain a concern and should be subject to further research.
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Appendices to Chapter III

3.a Mathematical Model Description
and Calibration Setup

3.a1 Generic Exponential Damage Function

The assumption of an exponential damage relationship is not uncommon in
the related literature (Huang et al., 2001; Prettenthaler et al., 2012; Murnane
and Elsner, 2012) and such models are characterized by a steeper increase than
comparable power-law models.

Mathematically, the damage function is comprised of a simple exponential
term for the loss ratio,

LX(v) = e
X1(v−X2), (3.10)

where coefficient X1 re-scales the wind gust, and offset X2 adjusts the estimates
of the exponential term to the observed loss figures.

Due to the high dynamic range of the loss data and their inherent heteros-
cedasticity, the damage function cannot be calibrated directly via least squares.
Similarly to the approach for model H, training data were truncated below the
95th wind gust percentile in order to discard the noisy lower end of the loss
spectrum that would otherwise distort the damage function. Using gust speed,
the remaining loss data were averaged in 10 equally spaced bins with a min-
imum of five losses each. Thus the relative weight of the few extremes com-
pared to the abundance of small losses was increased. Finally, a logarithmic
transformation of the loss averages was employed to reduce the dynamic range
of loss and Eq. 3.10 was fitted via least squares regression.

3.a2 Probabilistic Power-Law Damage Function

Prahl et al. (2012) advocate a probabilistic damage function based on a power-
law approximation to a more general sigmoid curve. The backbone of the
damage function is given by the relationship for the median of the loss mag-
nitude M (i.e. the loss ratio, given at least one loss claim),

M̃v ≈
(
v

P2

)P1

+P3, (3.11)

where in addition to the power-law scaling P2 and exponent P1 a constant
noise level P3 is included. Based on the observation that for given wind gust
speed v the dispersion of insured losses approximately followed a log-normal
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distribution, LN(µ, σ), the stochastic loss magnitude is described as a random
variable

Mv ∼ LN
(

ln
(
M̃v

)
,P4
)

. (3.12)

The location parameter of the log-normal distribution is related to the median
by µ= ln(M̃v). The scale parameter σ=P4 describes both the variability due to
imprecise gust observation and the aleatory uncertainty regarding the damage
caused.

Complementary to the loss magnitude, the probability of loss occurrence
(i.e. of receiving one or more loss claims) is given by the relationship

p(v) = 1−
P5

1+ eP7(v−P6)
. (3.13)

The turning point P6 relates to the transition from the noisy regime to the
regime of physically driven damages. P7 determines the sharpness of the trans-
ition and P5 the noise level. Loss occurrence is described stochastically as a ran-
dom variable

Ov =

{
1 if P 6 p(v)

0 if P > p(v)
, (3.14)

where random variable P is drawn from the standard uniform distribution,
P ∼U(0, 1).

In conjunction, loss occurrence and loss magnitude yield the stochastic ex-
pression for the loss ratio

LP = OvMv, (3.15)

with an expected value given by

E [LP]v = E [Ov]E [Mv]

= p(v)eµ+
σ2

2

= p(v)e
P2
4
2 M̃v. (3.16)

For high wind gust speeds v�P6, e.g. beyond the 95th percentile, the noise
level becomes negligible and the expression for the expected value of loss sim-
plifies to

E [LP](v�P6)
≈ e

P2
4
2

(
v

P2

)P1

. (3.17)

Equation 3.17 demonstrates that for high wind gust speeds the expected
value of the damage function is approximately proportional to the gust speed
raised to the power P1.
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Both components of the damage function are calibrated separately. The log-
normally distributed loss magnitude is fitted via maximum likelihood to the
empirical loss. A least-squares approach is used to fit the loss occurrence term
against empirical occurrence rates derived from binned data, enforcing para-
meter constraints such that the loss occurrence probability is bound within the
interval [0, 1].

3.a3 Cubic Excess-Over-Threshold Damage Function

Klawa and Ulbrich (2003) developed a simple storm damage function that was
subsequently refined for regional application and calibrated to gdv data (Donat
et al., 2011a,b). At the heart of the damage function is a cubed power-law term
as a proxy for storm damage,

D(v) =


(
v−v98
v98

)3
if v > v

98

0 if v < v
98

. (3.18)

The damage function

LK(v) = K1D(v) +K2 (3.19)

is calibrated against loss data via linear regression, where constants K1 and K2
are the regression coefficients.

Keeping in mind the high dynamic range of loss claims with few dominat-
ing extreme losses, the linear regression implicitly puts a strong emphasis on
extreme losses ensuring that these are closely matched (cf. Fig. 3.2).

The shape of the damage function is determined by the power-law term,
which is influenced only by the 98th wind gust percentile. We chose to determ-
ine the 98th percentile from the same training sample as used for calibration of
the remaining parameters.

The value of this threshold is of particular interest, as it controls the shape
and with it the steepness of the damage function. To clarify this statement, we
relate the cubed power-law term of the damage function with a tangent based
on a simple power law without threshold. For every gust speed v, the tangency
condition requires equality of the function values

c1

(
v

v98
− 1

)3
=

(
v

c2

)γ
(3.20)

and equality of the first derivatives

3c1
v98

(
v

v98
− 1

)2
=
γ

c
γ
2

vγ−1. (3.21)
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Solving Eqs. 3.20 and 3.21 for the exponent γ yields the simple relationship

γ = 3
v

v98

(
v

v98
− 1

)−1

≡ 3η

η− 1
. (3.22)

Equation 3.22 shows that the local steepness of the cubed excess-over-thresh-
old term depends on the ratio η= v/v98 of the gust speed to its 98th percentile.
For the employed dwd data, the average ratio over all districts of the max-
imum measured gust speed to the 98th percentile is ηmax ≈ 1.50, implying that
for extreme losses the damage curve increases approximately as a power law
with exponent γ ≈ 9.0. Repeating the calculation for era-i data, we estimated
ηmax ≈ 1.41 and a local power-law exponent γ ≈ 10.3.

Hence, the steepness of the model is dependent on the wind gust data source,
which may have a potential impact on the portability of the damage function.
Additionally, the high local exponents around 10 indicate a similarity with other
models that report exponents of a similar magnitude, e.g. Prahl et al. (2012).
In physical terms, the two regression coefficients K1 and K2 are interpreted,
respectively, as a scaling constant and a base loss for losses occurring at wind
gusts beneath the threshold. As such, K2 must be constrained to be strictly
non-negative.

For data-scarce applications, it may be opportune to resolve regional portfolio
differences via population density as a proxy for (insured) value and obtain
a global parameterization via regression on the national level (e.g. Donat et al.,
2011a). In contrast, the finely resolved loss data for our study allowed a local
parameterization and the simple summation of loss to the national level.

Finally, Donat et al. (2011a) perform the regression against annual loss ag-
gregates, while Donat et al. (2011b) demonstrate calibration against a selected
sample of the 34 most loss-intensive storm passages. We find that the former
calibration method produces better results. However, for reference, results from
both calibration methods are given in the Supplement (see Sect. 3.b2).

3.a4 Probabilistic Claim-Based Damage Function

Heneka et al. (2006) provide a theoretical framework for the modelling of storm
loss. Their model was applied first to the federal state of Baden-Württemberg
and subsequently to Germany (Heneka and Hofherr, 2011). Maintaining the
key assumptions made by Heneka et al. (2006) as far as possible, the inter-
comparison was based on the following considerations for model design and
calibration.

The fundamental concept of model H is the idea that buildings sustain dam-
age only above a critical wind gust threshold vc. The damage sustained by
individual buildings is hence dependent on the specific value of the critical
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threshold and is formalized by a microscale damage relationship for the frac-
tional damage g,

g (v, vc) =


0, v < vc(
v−vc
H1

)2
, vc 6 v 6 (vc +H1)

1, v > (vc +H1)

, (3.23)

reaching complete destruction at a wind gust increase of H1 above the critical
threshold.

For a portfolio of buildings, each with individual critical threshold, a specific
density distribution for vc may be assumed or otherwise estimated. For simpli-
city, Heneka et al. (2006) idealized the density distribution of vc by the density
of the normal distribution f(vc, µc, H2), with mean µc and standard deviation
H2. It follows that the claim ratio CH(v), i.e. the relative share of affected build-
ings, is given by the integral

CH(v) =

v∫
−∞

f (vc,µc,H2)dvc. (3.24)

The loss ratio LH(v) is then obtained by solving the convolution integral

LH(v) =

v∫
−∞

g (v, vc) f (vc,µc,H2)dvc, (3.25)

combining the density distribution of vc with the microscale damage function
g(v, vc).

Finally, uncertainty is introduced by assuming a Gaussian distribution
f(µc, H4, H3) for the mean critical wind gust speed µc, with mean H4 and
standard deviation H3. Putting all components together, we obtain an expres-
sion for the expected value of the loss ratio,

E [LH] =

1∫
0

Lf (µ(L),H4,H3)
dµ(L)

dL
dL, (3.26)

where we define µc =µ(L) as the inverse function of Eq. 3.25 with respect to µc.
For calibration, Heneka et al. (2006) used least-squares fitting of claims and

loss data that was pooled for the entire state of Baden-Württemberg. How-
ever, fitting the damage function to individual districts, it was found that least-
squares curve fitting was yielding poor results due to frequent overfitting to
the few number of “outlying” extreme events and the generally high dynamic
range of the data. Furthermore, the model was developed on strong winds and
could not deal with the noise present in the gdv data at low wind gust speeds.

For the work in hand, these problems were solved via a three-step fitting
procedure. In order to exclude the effect of noise, data below the 95th wind
gust percentile were discarded during the fitting procedure.
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Source H4 H3 H2 H1

A
bs

ol
ut

e
gu

st Heneka and Ruck 50.5 2.5 7.8 70.0

dwd 42.3 2.0 6.2 49.7

(50.5) (2.4) (7.4) (59.4)

era-i 41.6 1.8 5.6 45.5

(50.5) (2.2) (6.8) (55.3)

R
el

at
iv

e
gu

st Heneka and Ruck 1.31 0.04 0.20 1.85

dwd 2.28 0.09 0.32 2.67

(1.31) (0.05) (0.19) (1.54)

era-i 2.17 0.10 0.29 2.43

(1.31) (0.06) (0.18) (1.47)

Table 3.7: Comparison of the parameter values obtained for the federal state of Baden-
Württemberg with those published by Heneka and Ruck (2008). Accordingly, relative
wind gust speed was normalized by its 98th percentile. For easier comparison, the
values in brackets are rescaled to match the published value of H4.

In the first step, Eq. 3.24 was fitted to claims data. To overcome the problem
of the high dynamic range, claims data were logarithmically transformed. To
counteract the downside of the transformation, namely the increased weight of
the abundant small damages as compared to the few extremes, the data were
binned into 10 equally spaced bins, each containing a minimum of five data
points. Using the method of least squares the curve was fitted to the mean
values of each bin. In this step, we made the implicit assumption of a multiplic-
ative error term, relating to a symmetric distribution around the mean of the
log-transformed claims data (i.e. the geometric mean of the absolute numbers).
This assumption is backed by actuarial practice for describing insurance dam-
age claim distributions by log-symmetric distribution such as the log-normal
distribution (Lawrence, 1988).

In the second step, the above described fitting procedure is used to calibrate
Eq. 3.25 to the loss ratio data.

Thirdly, the parameters of the normal distribution describing the random
fluctuation of µc are determined via log-likelihood optimization based on loss
data at full detail.

Due to the strong deviation from the original least-squares fitting employed
by Heneka et al. (2006), it was necessary to validate the parameters obtained
from the gdv data set. For this purpose, we pooled the gdv data for all dis-
tricts in the state of Baden-Württemberg and compared the obtained model
parameters against those values published by Heneka and Ruck (2008). The
results presented in Table 3.7 show good agreement of the individual paramet-
ers across the different sources. As the wind gust data sources are not directly
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comparable, the parameters shown in brackets were rescaled according to H4.
Regarding these values, only H2, which represents the wind gust range from
beginning to total destruction, shows a significant difference of approximately
−15% as compared to the original values.

While we report only those results that relate to the best performing model
setup, results from applying the Baden-Württemberg calibration to entire Ger-
many (similarly to Heneka and Hofherr, 2011) are included in the Supplement
for special interest (see Sect. 3.b2).
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3.b Supplementary Material

3.b1 Binomial Test for Model Performance

While the results in Sect. 3.4.2 focus on the upper 10th percentile of the loss
distribution, separated into the three defined loss classes, Fig. 3.7 shows the
results of the simple binomial test based on a moving-window approach. Here,
we apply a 2 and a 10 percentile window to the model estimates which were
ranked by descending order of the corresponding empirical loss. This approach
enables a full view on the relative performance of the individual models also
in medium or low loss ranges.

However, care must be taken when interpreting the behaviour for small loss
events, as the limitation of the different models play a deciding role. In par-
ticular the lower bounds of the models P and K, observed in Fig. 3.4, lead to
a strong signal in Fig. 3.7. For example, pairwise comparisons with model K
show an apparently strong performance of model K for a cumulative loss ratio
between 10−8 and 10−7. However, this effect corresponds to observed losses in-
cidentally matching the lower bound of the model and, hence, does not indicate
superior predictive skill. Considering the loss range indicated by the left-hand
axis (cumulative loss ratio) it becomes clear that this effect may be rather seen
as an artefact at an insignificant loss level.

3.b2 Results for Different Set-Ups of Models K and H

Based on their respective publications, different calibrations options are avail-
able for both the model K and the model H. In case of model K, Donat et al.
(2011a) perform a regression against annual loss aggregates, while Donat et al.
(2011b) demonstrate calibration against a selected sample of the 34 most loss-
intensive storm passages. Figure 3.8 shows the results obtained after both calib-
rations, the annual calibration [K] employed in Chapter III and the storm-based
calibration [K storm].

As outlined in Chapter III, our approach to the calibration of model H differs
from those originally published by Heneka and Ruck (2008). Whereas we ap-
plied a district-wise calibration, Heneka and Ruck (2008) calibrated their model
against pooled data, merged from all post-code areas in the federal state of
Baden-Württemberg. Following their approach, we have also pooled all district
data within Baden-Württemberg. In line with Heneka and Ruck (2008), the
model was calibrated against absolute dwd wind gust data [H BW] and against
relative dwd data [H BW rel] normalized to the 98th wind gust percentile. All
results of the different calibrations are shown in Fig. 3.8.



3.
b

Su
p

p
lem

en
tary

M
aterial

6
7

8/2 6/4 4/6 2/8
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

H Ka

 

 

Equal odds

8/2 6/4 4/6 2/8

H P

 

 

2 percentile window

95% sig. level

8/2 6/4 4/6 2/8

Ka P

 

 

10 percentile window

95% sig. level

0.10
0.50

0.80
0.90
0.95
0.98
0.99

1.0010
−9

10
−8

10
−7

10
−6

10
−5

10
−4

H X Ka X P X

0.10
0.50

0.80
0.90
0.95
0.98
0.99

1.00

Odds

Q
ua

nt
ile

C
um

ul
at

iv
e 

lo
ss

 r
at

io

Figure 3.7: The figure shows the odds (i.e. the ratio of the total hits – as being closest to the observation – of each of the models in the
pairwise comparison) calculated for the simple pairwise binomial test on varying loss ranges. Estimates were ranked in descending order by the
corresponding observed loss amount. Moving 2 and 10 percentile windows were used to estimate the pairwise odds. The results are significant
if the odds exceed the 95% guidelines obtained from the binomial distribution.
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3.b3 Countrywide Results of the Binomial Test and mape/mpe Metrics
Based on era-i Data

The following Tables 3.8 and 3.9 show countrywide results obtained from era-i
wind gust data. They correspond to the dwd based Tables 3.3 and 3.4 in the
main paper. The results based on era-i are very similar to those obtained from
dwd data, with the exception of loss class one, where model K appears to
excel. The results should, however, be interpreted in conjunction with Fig. 3.9,
which indicates that the loss accumulated over the entire passage duration of
the 6 most severe winter storms (with peaks corresponding to the 6 most severe
loss days) is not so well reproduced by model K.

Loss
class

Test
vs.

Share of closest loss estimates in % (p-value)

X P K H

I

X − 83 (0.02) 100 (0.00) 67 (0.11)

P 17 (0.89) − 83 (0.02) 33 (0.66)

K 0 (0.98) 17 (0.89) − 50 (0.34)

H 33 (0.66) 67 (0.11) 50 (0.34) −

II

X − 79 (0.00) 29 (0.99) 71 (0.00)

P 21 (1.00) − 26 (1.00) 18 (1.00)

K 71 (0.00) 74 (0.00) − 71 (0.00)

H 29 (0.99) 82 (0.00) 29 (0.99) −

III

X − 53 (0.24) 34 (1.00) 34 (1.00)

P 48 (0.71) − 38 (1.00) 47 (0.76)

K 66 (0.00) 63 (0.00) − 64 (0.00)

H 66 (0.00) 53 (0.19) 36 (1.00) −

Table 3.8: Results from a binomial test for the prediction accuracy of the different
models based on era-i wind gust data. The model of each column is tested against
each row of competing models and across loss classes (as defined in Tab. 3.1). Bold
results indicate superiority of the tested model with statistical significance greater than
95%.
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Loss
class

Model MAPE (MPE) both in %

X P K H

I 250 (220) 62 (9) 57 (0) 91 (43)

II 133 (84) 90 (45) 108 (46) 102 (49)

III 82 (16) 95 (40) 85 (−51) 86 (19)

Table 3.9: Estimates of the mape and mpe for each of the competing models and across
loss classes (as defined in Tab. 3.1) based on era-i wind gust data. Best values for each
class are emphasized in bold.

3.b4 Results for the Six Most Severe Winter Storms
Obtained from era-i Data

Figure 3.9 shows model estimates for the 6 most severe winter storms during
the period under observation. The results are based on era-i data and corres-
pond to Fig. 3.5, which is based on dwd wind gust data. Overall, the era-i based
results show similar relative intervals than those obtained from dwd data. How-
ever, there appears to be a general bias in the wind gust data, e.g. shown by the
pronounced overestimation for winter storm Anatol and the underestimation
of winter storm Anna.
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Figure 3.9: Model estimates for the 6 most severe winter storms in the period 1997–
2007 based on era-i data. Red circles indicate the expected value obtained from models
trained on full 10-year data, while the red dots represent expected values from the
9-year resampled (jackknife) training periods. For models P and H, the black contours
reflect the probability distribution of predicted storm loss for the 10-year training data.
Empirical insured loss is marked by green dashed lines.





IV
Damage Functions for
Climate-Related Hazards:
Unification and Uncertainty
Analysis

Abstract. Most climate change impacts manifest in the form of natural hazards.
Damage assessment typically relies on damage functions that translate the mag-
nitude of extreme events to a quantifiable damage. In practice, the availability
of damage functions is limited due to a lack of data sources and a lack of
understanding of damage processes. The study of the characteristics of dam-
age functions for different hazards could strengthen the theoretical foundation
of damage functions and support their development and validation. Accord-
ingly, we investigate analogies of damage functions for coastal flooding and
for wind storms and identify a unified approach. This approach has general
applicability for granular portfolios and may also be applied, for example, to
heat-related mortality. Moreover, the unification enables the transfer of meth-
odology between hazards and a consistent treatment of uncertainty. This is
demonstrated by a sensitivity analysis on the basis of two simple case stud-
ies (for coastal flood and storm damage). The analysis reveals the relevance of
the various uncertainty sources at varying hazard magnitude and on both the
microscale and the macroscale level. Main findings are the dominance of un-
certainty from the hazard magnitude and the persistent behaviour of intrinsic
uncertainties on both scale levels. Our results shed light on the general role
of uncertainties and provide useful insight for the application of the unified
approach
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4.1 Introduction

As climate extremes, natural hazards are an inherent part of the climate system.
There is increasing evidence that a changing climate leads to changes in haz-
ard characteristics and can even result in unprecedented extreme weather and
climate events (IPCC, 2012). For instance, sea level rise aggravates the intensity
of coastal floods such that expected damage increases more rapidly than mean
sea level (Boettle et al., 2016).

For a risk assessment of natural hazards, damage functions are employed to
translate the magnitude1 of extreme events to a quantifiable damage. Often the
focus is on the modelling of the hazard, while the damage assessment receives
less attention (Merz et al., 2010).

Accordingly, the availability of damage functions is very limited. On the one
hand, empirical damage functions may not be inferable due to a lack of obser-
vations for certain impacts or sites. On the other hand, the correlations between
loss and the explanatory variable(s) might be weak and loss estimates could be-
come unreliable due to the high level of uncertainty. This results in the need for
a comprehensive damage assessment in order to enable the quantification and
comparison of the impacts from different natural hazards and their interactions
(Kreibich et al., 2014).

For this purpose, the work at hand provides an investigation into the com-
mon aspects of damage functions for different hazards. It considers similarities
in damage functions and exposure for coastal flooding (as applied by Hinkel
et al., 2014) and windstorms (Heneka and Ruck, 2008). A general derivation of
the damage functions reveals that these constitute two facets of a more general
approach which we refer to as a unified damage function.

Moving towards a multi-risk assessment, it is shown how this approach can
be extended to heat-related mortality. This is of particular concern since heat-
related fatalities currently comprise over 90% of total natural hazard fatalities
in Europe and are also a major issue for developing countries (Golnaraghi et al.,
2014; Munich Re, 2013).

The unified damage function also provides a platform for the discussion
of potential uncertainties. Embedding the damage function in a probabilistic
framework, this study investigates the relevance of different uncertainty sources
for damage estimation. Excluding considerations about the stochastic nature of
extreme events, we consider uncertainties in the damage function subject to
a hypothetical hazard magnitude. A variance-based sensitivity analysis (vbsa,
see Saltelli et al., 2008) is employed to quantify the influence of uncertainties at
different hazard magnitudes. Furthermore, the analysis compares the relevance
of uncertainties on the microscale and the aggregated portfolio levels. As a res-
ult, the work at hand provides indications for considering relevant uncertainties
in damage assessments.

1 Throughout this chapter the term hazard magnitude is used to denote the intensity of the hazard
with respect to the damage caused.
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In Sect. 4.2, we begin by deriving the basis of the unified damage function in
the context of coastal flooding and windstorms and extend the concept to heat-
related mortality. The role of different uncertainties is discussed in Sect. 4.3,
where we also derive the probabilistic framework for the unified damage func-
tion. Two case studies are parameterized in Sect. 4.4 to serve as the basis for
the sensitivity analysis conducted in Sect. 4.5. We conclude with a discussion
of our key results in Sect. 4.6.

4.2 Unified Damage Functions

Damage functions are an important tool for an impact assessment of climate-
related hazards. For example, Fig. 4.1 shows three damage functions that relate
to the hazards of coastal flooding, wind storms, and excessive heat. It is the goal
of this section to determine a unified damage function that has applicability in
each of these fields. For this purpose, the analogies between two existing dam-
age functions for coastal floods and windstorms are analysed and an extension
to heat-related mortality is proposed.

Henceforth, we rely on the following definitions. A damage function is de-
fined as the mathematical relation between the magnitude of a (natural) hazard
and the average damage caused on a specific item (building, person, etc.) or
portfolio of items. The emphasis is on direct monetary damage, but the findings
can be generalized to any measurable quantity.

In this context, the microscale level relates to a single item. In contrast, the
macroscale level refers to a portfolio of independent items with similar prop-
erties (e.g. residential buildings). With this definition, we go beyond similar
definitions that define the macro domain solely via the spatial extent (e.g. Merz
et al., 2010). In the regional context, the macroscale damage function may refer
to a city or otherwise spatially delineated portfolio. Damage can be expressed
in absolute or relative terms (Merz et al., 2010). In order to facilitate compar-
ison between different hazards, we consistently employ relative figures for both
micro- and macroscale damage.

4.2.1 Coastal Floods – Explicit Threshold Representation

In the following, we give account of a damage function that has been frequently
applied for the assessment of coastal flooding (e.g. Boettle et al., 2011; Hinkel
et al., 2014).

We begin by defining a microscale damage function g, which relates the rel-
ative damage r of an item i to the hazard magnitude x:

ri = g(x− λi). (4.1)

The damage is conditional on the exceedance of the item-specific hazard thresh-
old λi. In other words, a single item will suffer damage only if its hazard thresh-
old is exceeded.
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The hazard magnitude may be represented by a more or less complex indic-
ator. Frequently the most basic indicator, maximum flood height, is chosen (Hal-
legatte et al., 2013; Hinkel et al., 2014). Neglecting ancillary damaging effects,
such as floating debris, the damage to an individual building is dominated by
the inundation. Accordingly, the hazard threshold is identified as the elevation
of the building site and the threshold exceedance as the inundation level.

The microscale damage function has a lower bound of 0 for x < λi and in-
creases monotonically to its upper bound gmax for x > λi. Considering relative
damages, the upper bound is less than or equal to 1 and represents the poten-
tial maximum damage. In general, g can exhibit jumps and may hence not be
differentiable.

For a macroscale damage assessment, e.g. for a coastal city, it is assumed
that all items in the portfolio are exposed to the same hazard magnitude. Local
fluctuations (e.g. caused by obstruction or varying distance to coast) are con-
sidered as a source of uncertainty in Sect. 4.3. For now, the fraction of affected
items c within a portfolio of n items is given by the number of items for which
x reaches or exceeds λi. Explicitly,

cexpl(x) =
1

n

n∑
i=1

H(x− λi), (4.2)

where H denotes the Heaviside step function, defined as

H(z) =

{
0, for z < 0

1, for z > 0.
(4.3)

The damage ratio for the portfolio (relative damage) is given by the average
damage of the individual items:

dexpl(x) =
1

n

n∑
i=1

g(x− λi)

=
1

n

n∑
i=1

ri. (4.4)

While the above equation assumes equal monetary value for each item, gen-
eralization is simple. Different item values can be incorporated by weighting
the sum with a normalized asset value vi (i.e. rescaled such that the average
equals 1).

In order to emphasize the similarity to the storm damage function described
in the following section, we define a discrete frequency distribution f(λj) for
the portfolio and rewrite Eq. (4.4) as

dexpl(x) =
∑
j

f(λj)g(x− λj), (4.5)

where the sum runs over all discretized threshold values λj.
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Figure 4.1: (a) Relative flood damage function obtained for the case study of Kalundborg (Boettle et al., 2011), with a log–log inset. (b) Relative
storm damage function for a German district (Prahl et al., 2012). (c) Damage function for the city of Bologna, relating mortality increase to
apparent temperatures (data extracted from Stafoggia et al., 2006). The shaded areas in (b) and (c) represent uncertainty bands.
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Figure 4.2: Schematically, (a) shows a macroscale damage function based on a building portfolio with a distribution of hazard thresholds as
shown in (b), where coloured bars indicate portfolio segments affected at hazard magnitude x0. (c) shows the applied microscale damage
function. Accordingly, the coloured arrows indicate the damage inflicted on the respective portfolio segments at x0.
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The relationship between macroscale damage, portfolio composition, and mi-
croscale damage function is shown schematically in Fig. 4.2. Given a hypo-
thetical hazard magnitude of x0, all colour-coded portfolio segments will be
affected since x0 exceeds their threshold. Accordingly, the coloured arrows in
subfigure (c) indicate the damage suffered by each portfolio segment. The sum
of these damages amount to the macroscale damage level seen in subfigure (a).

The key characteristic of this approach is the consideration of a granular
portfolio of buildings, each with an observable hazard threshold. The approach
is reliant on the availability of building-specific information and prior know-
ledge on the microscale damage function and hence represents a bottom-up
approach.

4.2.2 Wind Storms – Implicit Threshold Representation

In this section we give account of a storm damage function that was developed
by Heneka and Ruck (2008), which is then set into contrast with the previously
discussed coastal flood damage function.

Storm damage functions are typically calibrated to insurance data. The data
comprise the fraction of affected buildings (claim ratio) and the damage ratio
for a defined region (Prahl et al., 2012).

It can be assumed that buildings have a specific resistance to wind (i.e. thresh-
old wind speed) that depends on their characteristics (Walker, 2011). However,
the detailed building characteristics are usually not known and there is no
simple proxy for the hazard threshold. In consequence, the hazard threshold
must be defined probabilistically, as follows.

In analogy to the coastal flood example, let λi denote the hazard thresh-
old of an individual item. From a probabilistic point of view, λi constitutes
an independent realization of a random variable Λ, whose probability density
distribution is given by fΛ(λ).

For a given portfolio, P(Λ 6 x) represents the expected value of the share
of items whose hazard threshold has been attained or exceeded at a given x.
Hence, the claim ratio is defined by the distribution of hazard thresholds:

cimpl(x) = P(Λ 6 x)

=

∫x
0

fΛ(λ)dλ. (4.6)

Having identified the distribution of hazard thresholds, the macroscale dam-
age ratio is given by the convolution of the probability density of the hazard
threshold and the microscale damage function g(x− λ):

dimpl(x) = (fΛ ∗ g)(x)

=

∫x
0

fΛ(λ)g(x− λ)dλ. (4.7)
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In other words, the potential damage at any hazard threshold λ is weighted
with the probability density of λ. Via integration, the macroscale damage com-
prises all the contributions from hazard thresholds below the hazard mag-
nitude x.

As in the previous case of coastal flooding, the damage function considers
a granular portfolio of exposed buildings. The key difference is that in the case
of wind storms a direct observation of the hazard threshold is not feasible.
Instead, an implicit description of the portfolio is given by the distribution of
hazard thresholds. In order to obtain this distribution, the damage function is
calibrated against macroscale damage data in a top-down approach.

Simple inspection shows that Eq. (4.7) for wind storm is the continuous ana-
logue to Eq. (4.5) for coastal flooding. Consequently, both approaches – bottom-
up in the case of coastal floods and top-down for wind storms – can be under-
stood as different facets of a unified damage function.

4.2.3 Extension to Heat-Related Mortality

Formally, the mathematical relationships derived in the previous sections also
hold for other natural hazards such as heat-related mortality.

In general terms, the mortality rate is a measure of fatalities in a given popu-
lation over a certain period of time. While it is not always possible to attribute
fatalities to distinct causes, the effect of excess mortality due to the impact of
heat waves has been widely studied (e.g. Gasparrini et al., 2015; Leone et al.,
2013). Typically, excess mortality describes the increase of daily mortality in re-
lation to a temperature indicator. An example for excess mortality for the city
of Bologna is given in Fig. 4.1 (c). As can be seen, the expected mortality starts
to increase just above 20 ◦C of apparent temperature (Stafoggia et al., 2006). In
absolute terms, the increase in mortality can be defined as the daily number of
heat-related fatalities divided by the total population.

Although it is a delicate issue to discuss human mortality in a technical lan-
guage, we believe that it allows for an intuitive and meaningful application of
the unified damage function. First, decease is expressed via a Heaviside step
function, where 0 and 1 denote life and death respectively. The step function
takes the part of the microscale damage function g in the unified damage func-
tion. Second, the hazard threshold relates to the maximum heat-wave intensity
(e.g. apparent temperature) tolerated by an individual. While this threshold is
generally not known and may also fluctuate over time, a statistical description
of the distribution of heat-wave thresholds within the population would be
feasible.

Extending the regional focus, Leone et al. (2013) and others have shown an in-
fluence of local climatic conditions as well as socio-demographic and economic
characteristics on the shape of the damage function. However, a comprehensive
decomposition of the hazard threshold is yet to be found.
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Caution should be taken when considering the uncertainty of the hazard
threshold. In contrast to the cases of coastal flood and storm damages, where
building portfolios change only gradually, human heat tolerance is subject
to continuous biophysical, behavioural, and environmental changes. Hence,
a path dependence of the threshold exceedance is expected for ongoing heat
waves.

4.3 Uncertainty

While the stochastic occurrence of hazardous events has been subject to ample
research, the origin and propagation of uncertainty within the damage function
has received less attention. Often, a rough understanding of sensitivity is ob-
tained from estimating alternative scenarios (e.g. Hallegatte et al., 2013; Hinkel
et al., 2014). Other studies focus on an empirical description of uncertainty
(e.g. Heneka and Ruck, 2008; Merz et al., 2004) but do not provide a compre-
hensive analysis of potential sources.

To enable a comprehensive sensitivity analysis of uncertainty from different
sources, the unified damage function is cast into a probabilistic framework. We
begin by defining a taxonomy of uncertainty sources that are relevant in our
context.

4.3.1 Brief Taxonomy of Uncertainty Sources

Uncertainties arise at each step along the causal chain, from the modelling or
observation of the hazard through the estimation of micro- and macroscale
damage to the validation against reported losses. We focus on the propagation
of uncertainties within the damage function, linking the microscale with the
macroscale behaviour. For this reason, model and parametric uncertainty are
excluded. Model uncertainty would arise from selecting an inadequate damage
function that deviates from the actual hazard–damage relation. Parametric un-
certainty relates to incomplete knowledge about the model parameters (but not
the explanatory variables).

It is common to categorize uncertainties into those that are due to statist-
ical variability (aleatory) and those that are due to incomplete knowledge (epi-
stemic) (Merz and Thieken, 2009). While model and parametric uncertainty
belong to the latter category, the attribution is not clear-cut for uncertainties in
explanatory variables. In principle, all aleatory uncertainty could be addressed
as epistemic by raising the level of detail and modelling all minute sub-scale
processes. Hence, Bedford and Cooke (2001) state that “the categorization into
aleatory and epistemic uncertainties is for the purposes of a particular model”.

In order to maintain an intermediate level of detail, the considered uncer-
tainties are classified as aleatory, i.e. statistically tractable. Having excluded
model and parametric uncertainty, the remaining sources of uncertainty can be
identified from the mathematical description of the damage function. For this
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Figure 4.3: Classification of the sources of uncertainty into intrinsic and extrinsic.

purpose, Eq. (4.4) is cast into its most general form, including a variable asset
weight vi and allowing for a local hazard magnitude x̃i to fluctuate around x:

dexpl( x ) =
1

n

n∑
i=1

vi g(

ei︷ ︸︸ ︷
x̃i − λi)︸ ︷︷ ︸
ri

. (4.8)

On the right-hand side of Eq. (4.8), the asset weight vi, the relative damage ri,
and the exceedance ei are identified as potential sources of uncertainty. These
are intrinsic uncertainty sources as they manifest within the damage function.
On the left-hand side, the hazard magnitude represents an extrinsic source of un-
certainty for the damage function. If observations of macroscale damage were
available for the calibration or validation, these would represent an additional
source of extrinsic uncertainty.

The sources of uncertainty are summarized in Fig. 4.3 and each source is
briefly described in the following.

a. The asset values of affected items can vary significantly (e.g. different
house prices). The attribution of values to location is feasible only on
a detailed case study level, while large-scale assessment typically relies
on by-proxy estimation of average asset value (e.g. Hallegatte et al., 2013;
Hinkel et al., 2014). Especially in the latter case, unknown asset values
pose a significant source of uncertainty.

b. Even if structures of similar type are equally affected (i.e. at the same
threshold exceedance) their damage can differ considerably. The under-
lying damaging processes are not well understood and are dependent
on construction types and employed materials. The resulting uncertainty
could in principle be reduced by modelling all physical processes in-
volved. However, data limitations usually permit no more than a strati-
fication to a few predefined asset classes (Hammond et al., 2015).
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c. The threshold exceedance for an item is subject to uncertainty in the haz-
ard threshold (λi) and fluctuations of the local hazard magnitude (x̃i).
The hazard threshold may either be not directly observable (e.g. for storm
damage) or be affected by measurement error (e.g. using elevation mod-
els for flood damage assessment). Similarly, the local hazard magnitude
is affected by observational or modelling error.

d. On the macroscale level, the hazard magnitude is typically described
by a single indicator (e.g. the maximum flood level or gust speed). For
all practical purposes, this indicator is subject to uncertainty, stemming
either from imprecise measurement, uncertain model output, or confid-
ence levels estimated from extreme value statistics (Coles and Tawn, 2005).
Prahl et al. (2012) highlight the relevance of this uncertainty by indicating
that variability of reported storm losses could be largely due to uncer-
tainty in wind measurements.

e. For purposes of calibration and validation, model estimates are often put
into comparison with reported figures of damage or economic loss. Like
any observation, these figures are subject to uncertainty. For example, re-
ported figures may be affected by gradual damage accumulation masking
the effect of individual hazard occurrences, by incentives for insurance
holders (e.g. deductibles), and by wealth levels that affect the construc-
tion quality and the likelihood of purchasing insurance.

4.3.2 Probabilistic Description of Uncertainty

A quantitative analysis of the aforementioned uncertainties requires an exten-
sion of the basic damage function. Here, we derive a comprehensive probabil-
istic framework for the unified damage function. The framework also forms the
mathematical basis for the subsequent sensitivity analysis.

We begin by defining random variables for each of the micro- and macroscale
model variables. Microscale variables are the local hazard magnitude X̃, the
hazard threshold Λ, the threshold exceedance E, the inflicted relative damage
R, and the relative asset weight V . The asset-weighted damage for a single object
is described by L. Similarly, we define the macroscale random variables for the
hazard magnitude and its measurement, X and X̂. The macroscale damage for
the portfolio takes into account the different weights of the asset values and is
described by D. In the following, the probability density function (pdf) of each
random variable is denoted as f(·).

The exceedance, e = x̃− λ, closely links the uncertainty in the local hazard
magnitude with the uncertainty of the hazard threshold. The pdf of the random
variable E for the exceedance is hence given by the convolution of the pdfs of X
and Λ as follows:

fE|X=x(e) = fX̃|X=x(x̃) ∗ fΛ(−λ). (4.9)
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The distribution of the relative damage caused, fR|E=e(r), is conditional on
the level of exceedance. The combination with Eq. (4.9) yields an expression for
the distribution of relative damage conditional on the hazard magnitude:

fR|X=x(r) =

∫∞
0

fR|E=e(r) fE|X=x(e)de. (4.10)

We define the asset-weighted damage as the product of relative damage and
normalized asset value, l = rv/n. In the case that individual asset values are
not known, a probabilistic asset weight v is employed. Its pdf, fV(v), can be
obtained by rescaling the pdf of absolute asset values such that the expected
value equals 1.

The pdf of l is obtained by combining the pdf of asset weights with Eq. (4.10):

fL|X=x(l) =

∫∞
0

fR|X=x(n l/v) fV(v)dv. (4.11)

Since the macroscale damage d is the sum of the weighted microscale dam-
ages, its pdf is given by the convolution of the density functions for the asset-
weighted damages of each of the n portfolio items:

D =

n∑
i=1

Li

fD|X=x(d) = fL1|X ∗ fL2|X ∗ . . . ∗ fLn|X. (4.12)

Finally, uncertainty in the true hazard magnitude x (e.g. resulting from meas-
urement or model output x̂) is modelled via pdf fX|X̂=x̂(x). Using Eq. (4.12) it
follows that

fD|X̂=x̂(d) =

∫∞
0

fD|X=x(d) fX|X̂=x̂(x)dx. (4.13)

4.4 Case Studies for the Sensitivity Analysis

Based on our taxonomy of uncertainties, we provide an exemplary parameter-
ization of the unified damage function for two separate climate-related hazards:
(i) coastal flooding in Lisbon, Portugal, and (ii) winter-storm damage for a Ger-
man building portfolio comprised of 5000 individual buildings.

The Lisbon case exemplifies a bottom-up approach, where the individual
hazard thresholds are known explicitly. Since coastal flooding is not bound by
artificial administrative boundaries, we consider a cluster of continuous urban
agglomeration in the Lisbon metropolitan area (Fig. 4.4). The cluster extent was
kindly supplied by B. Zhou (see Zhou et al., 2013) and had been generated
from 2006 data of the CORINE Land Cover (clc) project (Büttner et al., 2007).
It includes several connected suburbs along the shores of river Tejo and the
north of the Setúbal peninsula.
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Figure 4.4: The Lisbon urban cluster supplied by B. Zhou (see Zhou et al., 2013). The
red-shaded area represents continuous and discontinuous urban fabric as classified in
the clc data (Büttner et al., 2007).

The portfolio of flood-prone buildings within the cluster of Lisbon is based
on statistical data provided by the Instituto Nacional de Estatística2, the na-
tional Portuguese statistics institute. Census data from 2007 on the number of
buildings at the highest resolution available (Freguesia, i.e. urban quarters) were
downscaled via the clc classes for continuous and discontinuous urban fabric.

The number of buildings within each clc cell were assigned to elevation
levels obtained from the EU-DEM3, a hybrid digital elevation model (dem)
based mainly on SRTM and ASTER GDEM data. A flood-fill algorithm (Poulter
and Halpin, 2008) was employed to determine which dem cells were affected at
different flood levels, increasing in steps of 0.5m up to a maximum of 10m. All
employed data are publicly available. Table 4.1 shows the number of flooded
buildings within the Lisbon urban cluster at flood levels up to 10m.

Microscale building damages in the Lisbon cluster are estimated with the
damage function employed by Hinkel et al. (2014), described by a saturating

2 Data available from http://www.ine.pt.
3 Obtained from http://www.eea.europa.eu/data-and-maps/data/eu-dem.

http://www.ine.pt
http://www.eea.europa.eu/data-and-maps/data/eu-dem
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Flood level [m] Inundated buildings
Total Increase [%]

0.0 0 −

0.5 19 −

1.0 28 47

1.5 36 29

2.0 43 19

2.5 67 56

3.0 107 60

3.5 146 36

4.0 210 44

4.5 453 116

5.0 670 48

5.5 888 33

6.0 1284 45

6.5 1621 26

7.0 1895 17

7.5 2356 24

8.0 2659 13

8.5 3025 14

9.0 3435 14

9.5 3985 16

10.0 4478 12

Table 4.1: The number of inundated buildings within the Lisbon urban cluster at
hypothetical flood levels between 0 and 10m.

power law z/(z+ 1m). The function implies that relative damage increases pro-
portional to the inundation level for z� 1m and saturates at 1 for large z.

A complementary top-down approach is pursued for the German building
portfolio, with an implicit description of the hazard threshold by means of
a probability density distribution. In the case of storm hazard, the determin-
ants of the hazard threshold are less clear-cut than for flood damages. While
they depend strongly on construction type and building age, a strong residual
uncertainty remains. Heneka and Ruck (2008) argue for a simple statistical de-
scription of hazard thresholds via a normal distribution with mean 55m s−1

and standard deviation 7.8m s−1. Due to the lack of similar works, we adopt
their parameterization to generate a generic portfolio of 5000 residential build-
ings.

The mean microscale damage caused by severe winds is often described as
a power law with an upper bound representing complete destruction (Prahl
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et al., 2015). Again following Heneka and Ruck (2008), we apply a simple square
power law.

Unlike the general features of the damage function, the nature of the uncer-
tainties involved is typically not well understood and their quantification heav-
ily relies on assumptions. Consequently, the required pdfs of the asset value,
the microscale damage, the exceedance, and the hazard magnitude were estim-
ated from literature, where available, and otherwise based on own considera-
tions. Tables 4.2 and 4.3 provide a summary of the case study parameterization
for each of the case studies, including the employed references. Due to the
scarcity of information on uncertainty concerning microscale damage and the
asset value, an identical parameterization was used for both case studies. De-
tails on the estimation of uncertainties are given in Appendix 4.a.

Figure 4.5 (a–c) and (d–f) show the derived macroscale damage function, the
portfolio composition, and the assumed microscale damage function for both
cases respectively.

4.5 Sensitivity Analysis

Going beyond the qualitative description of the involved uncertainties, this sec-
tion focusses on their potential impact on damage estimates. From a non-linear
damage function we expect potential interactions between different uncertain-
ties that may vary with the hazard magnitude. Moreover, the analysis should
take the different scales into account, as the macroscale damage is effectively
an aggregation of microscale damages.

The influence of the various sources of uncertainty is assessed by performing
a sensitivity analysis. Sensitivity analysis usually considers the effect of vari-
ation in one or more input variables on the dependent variable. For simple lin-
ear models, it may be sufficient to vary only one input variable at a time, since
there is no interaction between different input variables. Non-linear models, in
contrast, require a global sensitivity analysis, where simultaneous changes of
all input variables are considered.

4.5.1 Method

We employ the variance-based sensitivity analysis (vbsa), which estimates the
contribution of each input variable to the total variance of the dependent vari-
able (Saltelli et al., 2008). vbsa is a global sensitivity analysis and uses a Monte
Carlo approach to sample from the probability distributions of the uncertain
variables.

The general algorithm of vbsa is summarized as follows. First, two (s× t) ma-
trices A and B are defined, where each column vector represents one of the
t input variables that has been sampled s times. Initially, the matrices are filled
with uniformly distributed random values between 0 and 1. Then, inverse cu-
mulative distribution functions are used to convert the random vectors to the
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Table 4.2: Parameterization of the probabilistic damage function for the estimation of damage from coastal flooding in Lisbon. The variables µ
and σ denote the mean and standard deviation respectively.

Component Parameterization References

Portfolio composition Frequency distribution for Lisbon [this paper] see Table 4.1

Microscale damage function g(z) = z
z+1m Hinkel et al. (2014)

Asset value LogN(µ = 1,σ = 0.5) adapted from Ohnishi et al. (2011)

Damage level LogN(µ = g,σg=0.5 = 0.1) [this paper] based on Lawrence (1988)

Threshold exceedance N(µ = x− λ,σ = 0.2m) Hallegatte et al. (2013) and EEA (2014)

Hazard magnitude N(µ = x,σ = 0.1m) Fortunato et al. (2014)

Table 4.3: Parameterization of the probabilistic damage function for the storm damage simulation for a German building portfolio. The variables
µ and σ denote the mean and standard deviation respectively.

Component Parameterization References

Portfolio composition N(µ = 50.5m s−1,σ = 7.8m s−1) Heneka and Ruck (2008)

Microscale damage function g(z) =
(

z
70m s−1

)2 Heneka and Ruck (2008)

Asset value LogN(µ = 1,σ = 0.5) adapted from Ohnishi et al. (2011)

Damage level LogN(µ = g(z),σr=0.5 = 0.1) [this paper] based on Lawrence (1988)

Threshold exceedance N(µ = x− λ,σ = 1m s−1) [this paper] based on Mitsuta and Tsukamoto (1989)

Hazard magnitude N(µ = x,σ = 1.5m s−1) Prahl et al. (2012) and Hofherr and Kunz (2010)
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respective input variables of the model, i.e. the damage function. For each input
variable with index i, a new matrix C(i) is constructed, comprising all columns
with index j 6= i from A and the column j = i from B.

The total-effect index is chosen as the main metric for sensitivity. It describes
the share of output variance that is due to the direct and indirect effects of an
uncertain variable. The direct effect (also called first-order effect) measures the
lone contribution of varying a single variable, averaged over different realiza-
tions of the remaining variables. Indirect effects (higher-order effects) are due
to interactions between two or more variables, e.g. a second-order effect may
arise from the interaction between the threshold exceedance and the damage
level.

The total-effects index TEi of the damage function F(·) is evaluated using the
recommended Jansen estimator (Jansen, 1999; Saltelli et al., 2010):

TEi =
1
2s

∑s
k=1

(
F(A)k −F(C(i))k

)2
σ2

, (4.14)

with

σ2 =
1

2s

s∑
k=1

(
F(A)2k +F(B)2k

)
−

(
1

s

s∑
k=1

F(A)k +F(B)k

)2
. (4.15)

Note that in Eq. (4.15) we include both matrices A and B in order to obtain
a closer estimate of the variance than by using matrix A alone.

The vbsa was applied on three distinct levels: (i) the microscale level related
to a single item, (ii) the macroscale level limited to intrinsic uncertainty, and
(iii) the macroscale level including extrinsic uncertainty. The sample size s was
set to 20 000. At level (i), s random samples of the asset value V , the damage
level R, and the exceedance E were drawn from the probability distributions
fV(v), fR|E=e(r), and fE|X=x(e) respectively. At level (ii), the same procedure
was applied, albeit for each of the items that sum up the portfolio. Finally,
at level (iii), the hazard magnitude X and the macroscale damage D (including
the effects of intrinsic uncertainties) were drawn from the distribution functions
fX|X̂=x̂(x) and fD|X=x(d) respectively.

In order to evaluate the uncertainty of the sensitivity indices, the bootstrap
method was used to obtain uncertainty intervals. Specifically, the s random
samples were resampled (i.e. selected randomly with replacement) 1000 times,
and each time the sensitivity indices were recalculated. From the resulting dis-
tribution, the 95% uncertainty range was estimated.
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Figure 4.5: (a–c) show the damage function components for the case study of coastal flooding in Lisbon, Portugal. (d–f) demonstrate the
methodology for storm damage within a building portfolio of 5000 individual buildings, based on the study by Heneka and Ruck (2008). The
shaded areas around the damage functions indicate 95% confidence intervals. The insets in (a) and (d) show the macroscale damage function
on a log–log scale.
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4.5.2 Results from the Sensitivity Analysis

Figure 4.6 summarizes the vbsa results for the Lisbon case study. Subfigure (a)
shows the total-effect index for the intrinsic uncertainties at the microscale
level (i.e. concerning a single building). It can be seen that at low inundation
levels uncertainty in the threshold exceedance (due to local hazard fluctuations
and/or variation of the hazard threshold) dominates. However, at inundation
levels beyond 1m its relevance quickly diminishes and uncertainty in the build-
ing asset value dominates. While the effect of the damage-level uncertainty sur-
passes that of the uncertainty in the threshold exceedance at most inundation
levels, it is generally outweighed by the uncertainty in asset value.

The overall behaviour seen for the microscale case also holds true for the accu-
mulated building portfolio of Lisbon. Excluding extrinsic uncertainty, Fig. 4.6 (b)
shows the sensitivity of the portfolio damage to intrinsic uncertainties. In con-
trast to the microscale case, the plot indicates a stronger impact of the uncer-
tainty in the threshold exceedance. This behaviour arises from the fact that
there are additional buildings affected as the flood level increases. Hence, the
marked bump of the curve above 4m flood height is explained by the strong
increase of affected buildings at that elevation (cf. Table 4.1).

On the macroscale level, Fig. 4.6 (c) shows the effect of the accumulated in-
trinsic uncertainties and the extrinsic uncertainty in the global hazard mag-
nitude. The complex behaviour of the two curves can be decomposed into two
main aspects. Firstly, the relative importance of intrinsic uncertainties decreases
with rising flood levels. Secondly, the strong impact of intrinsic uncertainties
around a flood level of 2m results from the low fraction of newly affected
buildings, as seen in Table 4.1. Higher fractions at 3m and in particular beyond
4m lead to an increased relevance of the uncertainty in hazard magnitude.

This behaviour can be explained as follows. For a fixed number of affected
buildings, intrinsic uncertainty outpaces the uncertainty in hazard magnitude.
However, an increase in affected buildings reduces the relative magnitude of in-
trinsic uncertainty due to diversification. This is not the case for the uncertainty
in hazard magnitude, which acts as a bias for the entire portfolio.

The sum of the total-effect indices of each variable is equal to 1 only in the
absence of higher-order effects. Sums larger than 1 are due to potential double
counting, as higher-order effects are attributed to each of the interacting vari-
ables. It is clear from inspection that the results given in Fig. 4.6 (a–c) indicate
a minor role of higher-order effects. However, for completeness, we provide
a detailed breakdown on first- and higher-order indices in the supplementary
material presented in Sect. 4.b.

In the absence of interaction, the relevance of the uncertainties is determined
by their relative magnitude. In this regard, Fig. 4.6 (d) shows the isolated ef-
fect of selected input variables on the standard deviation of damage estimates.
The comparison with Figs. 4.6 (b) and (c) shows that the source of uncertainty
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Figure 4.6:
(a–c) show the results of the vbsa (total-effect index) for the Lisbon case study at different scales. Shaded areas indicate boot-strapped confidence
bands. For microscale damages, (a) shows the attributable effect of intrinsic uncertainty in asset value, damage, and threshold exceedance on
the total variance. Similarly, (b) shows the effect of the intrinsic uncertainties on the variance of the aggregated portfolio. In (c), the portfolio-
aggregated microscale uncertainties are weighed against the hazard uncertainty, i.e. error in estimated flood level. (d) shows the standard
deviation against the expected value of flood damages on log–log scale. Each curve includes the uncertainty sources indicated by the legend.
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exhibiting the largest standard deviation is also the dominating factor in the
sensitivity analysis.

The sensitivity results obtained for the second case study – storm damage
in a hypothetical German city – are similar to the Lisbon case. Figure 4.7 (a)
shows the relative contributions of the intrinsic uncertainties to the variance of
the microscale damage. Despite the different shapes of the microscale damage
function [cf. Figs. 4.5 (c) and (f)] there is a strong resemblance to Fig. 4.6 (a).
A different behaviour is seen at an exceedance wind speed of 70m s−1, where
the microscale damage function reaches saturation. At this point, complete de-
struction has taken place, leaving only the uncertainty of the original asset
value.

On the macroscale level, intrinsic uncertainties show a sensitivity that is sim-
ilar to the microscale level. The curves shown in Fig. 4.7 (b) are considerably
smoother than those of the Lisbon case study. This underlines the conjecture
that the irregularities in the Lisbon case study are due to the heterogeneous
portfolio distribution. This aspect is also reflected in the relation between in-
trinsic uncertainties and the extrinsic uncertainty in the hazard magnitude in
Fig. 4.7 (c). Here, the uncertainty in the hazard magnitude dominates for almost
the entire range of gust speed. The narrowing at very low gust speeds is a res-
ult of the interdependence between the uncertainties in the exceedance and the
hazard magnitude when the portfolio is barely affected. Finally, Fig. 4.7 (d) com-
plements the sensitivity results, showing the standard deviation of the potential
storm damage against the expected value.

4.6 Conclusions

Based on damage assessments for coastal flood and storm hazards, a unified
damage function was identified and embedded into a probabilistic framework
for the consideration of uncertainty.

While an exchange of information between the various hazard communities
could potentially trigger methodological improvement (Merz et al., 2010), the
approaches for assessing direct damage are typically hazard specific (Meyer
et al., 2013). Hence, this study has investigated the analogies of the approaches
for coastal flood, storm damage, and heat-related mortality. The defining prop-
erty of these approaches is the consideration of granular portfolios of exposed
items (e.g. residential buildings) or people. In our view, the applicability of the
unified approach extends to any hazard that affects such a granular portfolio.
Furthermore, the unified approach represents a synthesis of synthetic bottom-
up and empirical top-down damage evaluation. With its broad scope, it is seen
as a potential building block towards a theory of damage functions.

Cross-hazard comparison of uncertainties within the unified approach has
the potential to provide valuable insight on the nature and relevance of uncer-
tainties along the causal chain. From a practitioner’s point of view, determining
the most relevant sources of uncertainty is arguably more important than quan-
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Figure 4.7: (a–c) show the results of the vbsa (total-effect index) for the German storm damage case study at different scales. Shaded areas
indicate boot-strapped confidence bands. For microscale damages, (a) shows the attributable effect of intrinsic uncertainty in asset value, damage,
and threshold exceedance on the total variance. Similarly, (b) shows the effect of the intrinsic uncertainties on the variance of the aggregated
portfolio. In (c), the portfolio-aggregated microscale uncertainties are weighed against the hazard uncertainty, i.e. error in estimated flood
level. (d) shows the increasing standard deviation against the expected value of damage estimates on a log–log scale. Each curve includes the
uncertainty sources indicated by the legend.
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tifying each potential uncertainty source. Serving this purpose, valuable insight
could be gained from a variance-based sensitivity analysis of the unified dam-
age function. The analysis goes beyond similar studies (e.g. Egorova et al., 2008;
de Moel and Aerts, 2011) by considering uncertainty on both the microscale
and macroscale levels, as well as at different hazard magnitude. Investigating
both the case of coastal flooding for the city of Lisbon and the case of storm
damage in a German town, a set of general conclusions could be drawn.

On a general level, extrinsic and intrinsic sources of uncertainty were distin-
guished. Extrinsic sources manifest as a random bias for the entire portfolio
(e.g. hazard magnitude), while intrinsic uncertainties arise locally and affect
individual portfolio items (w.r.t. asset value, damage level, and threshold ex-
ceedance).

As demonstrated by both case studies, extrinsic uncertainty can play a cru-
cial role as the dominant source of uncertainty. In contrast to the intrinsic un-
certainties, whose aggregated effect (i.e. in terms of the standard deviation of
the macroscale damage) increases sub-linearly with portfolio size due to diver-
sification, the effect of extrinsic uncertainty is directly proportional to portfolio
size. Hence, given a sufficiently large portfolio and uncertainty in the hazard
magnitude, intrinsic uncertainty sources may be negligible for damage assess-
ment. This is of particular importance in climate science, where practitioners
often deal with ensemble simulations exhibiting large model spreads. It is also
relevant for natural hazard research, where extreme value theory often implies
broad confidence intervals for extreme events.

An example where this result allows for additional insight is the work of
Heneka and Ruck (2008). In their damage assessment, uncertainty was attrib-
uted to a random bias on the threshold distribution for each post-code area.
However, the assumed bias is equivalent to an uncertainty in the hazard mag-
nitude, i.e. error from physical modelling. Such uncertainty in gust estimation
is not only more intuitive than a threshold bias but also consistent with the val-
idation results of the employed atmospheric model (Hofherr and Kunz, 2010).

Considering the relevance of intrinsic uncertainty sources, our results show
that the composition of uncertainty within the microscale damage function
largely determines the role of intrinsic uncertainties at the portfolio level.

Amongst the intrinsic uncertainties, the uncertainty due to local threshold ex-
ceedance (being a combination of local hazard fluctuations and local variations
in hazard threshold) is only significant for low hazard magnitudes. This mag-
nitude range may not be relevant in certain cases, e.g. focussing on high-end
scenarios or including protective measures such as sea walls. The case studies
also show the extent to which variability in asset values can dominate intrinsic
uncertainty. While that uncertainty could be reduced if spatially resolved data
were available, this is typically not the case for data-scarce regions within de-
veloping countries, which are also more severely affected by natural disasters
(IPCC, 2012).
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Despite the different microscale damage functions used, both case studies
show a similar sensitivity to uncertainties. This indicates that the validity of our
conclusions on uncertainty reaches beyond the considered hazards. Moreover,
the effect of different microscale damage functions (of the same one-parameter
family) could be simulated by a re-scaling. For the sensitivity results, for ex-
ample, a more shallow microscale damage function would result in a stretch
along the hazard axis, while preserving overall behaviour.

The effect of large-scale protection measures, e.g. sea walls, was not con-
sidered in this study for two reasons. Firstly, such measures are specific to
flood hazards and have no counterpart for other hazards, such as wind storms.
Secondly, sea walls modify the incident hazard by interrupting events below
the design protection level and are hence not an immediate component of dam-
age estimation. However, it is known that the probability of protection failure,
e.g. crevasses, represents a major source of uncertainty for damage assessment
(de Moel et al., 2012).

In practice, there are some limitations to the unified damage function that
arise from the simplicity of the approach. At increased cost and effort of data
acquisition, more specialized approaches could provide superior damage es-
timates (e.g. Kreibich et al., 2010; Pita et al., 2013). However, the strengths of
the discussed approach are in its versatility and the ability to provide valuable
insight for applications where detailed data for calibration and validation are
missing. The latter aspect is highlighted by our general conclusions on uncer-
tainties. Given the evident lack of reliable information on uncertainty, as en-
countered for the parameterizations of our case studies, the results may guide
further investigation.

Addressing the need for comprehensive approaches for risk analyses and
management, we have shown that certain damage functions for coastal floods
and windstorms are two facets of a unified damage function. Further, it was
indicated how this unified approach could be extended to the estimation of
heat-wave fatalities.

With its wide applicability to the assessment of both loss and fatalities, the
unified damage function has the potential to facilitate knowledge transfer be-
tween climate-related hazards and to narrow the gap for a multi-hazard dam-
age assessment. Moving towards this goal, the interdependence and cascad-
ing effects of climate-related hazards become of wider concern. For further
research, we hence propose the extension of the unified approach to include
non-stationary hazard thresholds.
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Appendices to Chapter IV

4.a Uncertainty Parameterization

4.a1 Lisbon Case Study for Coastal Flooding

Hazard Magnitude Uncertainty

For our case study region, the Portuguese coast and in particular Cascais, For-
tunato et al. (2014) estimate a tidal uncertainty of 5 cm and an uncertainty of
approximately 10 cm for extreme water levels calculated by a dedicated circu-
lation model. Based on this result and due to the lack of information on the
distribution of uncertainty, we make the assumption of a normally distributed
error in overall flood level with a standard deviation of 10 cm. If ensemble pre-
dictions of surge levels were available, the ensemble spread (standard deviation)
could serve as a indicator for the forecast error (Flowerdew et al., 2009, 2010).

Threshold Exceedance Uncertainty

Modelling flood damages, exceedance uncertainty is mostly driven by errors re-
lated to the elevation model used. For Portugal, statistical validation of the EU-
DEM against ICESat measurements (EEA, 2014) indicates a mean error > 0.5m
and an average standard deviation of approximately 2m. However, errors in
flood-prone lowlands are expected to be strongly spatially correlated and to
exhibit less local fluctuations (Hallegatte et al., 2013). In the lack of a detailed
DEM validation for Lisbon, we assume a modest normally distributed pixel
error with a standard deviation of 0.2m.

Damage Level Uncertainty

Actuarial practice suggests that the log-normal distribution may serve as a first
approximation to the broadly skewed damage claim distributions (Lawrence,
1988). By applying a constant scale factor, the log-normal distribution repres-
ents a multiplicative error term that is proportional to the average damage
caused. Defining the microscale damage curve as the mean of the log-normal
distribution, we set the scale factor such that the standard deviation σ = 0.1 at
a relative damage d = 0.5, implying a standard deviation of approximately 20%
for d� 1. The upper tail of the log-normal damage distribution is truncated at
d = 1, which represents complete destruction and loss.

Asset Value Variation

Regarding storm or flood damages to individual buildings, the built-up values
can be approximated by the distribution in house prices. For the case of Tokyo,
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Ohnishi et al. (2011) show that house prices generally follow a log-normal dis-
tribution, with price bubbles affecting mainly the tails of the distribution. While
comparable studies are not available for the European region, one may assume
that relative house prices follow a similar distributional shape and width. On
relative terms, the results by Ohnishi et al. (2011) translate to a log-normal dis-
tribution normalized to an average value µ = 1 and with a standard deviation
σ = 0.5.

4.a2 Storm Damages in a German Building Portfolio

Hazard Magnitude Uncertainty

For maximum wind gusts, which are required for the assessment of storm dam-
ages, Prahl et al. (2012) report a strong variation between measurements at
nearby sites and estimate that 75% of measurements fall within the range of
±1.5m s−1. Reports show an even stronger modelling uncertainty when com-
paring gust estimates from a mesoscale atmospheric model from a mesoscale
atmospheric model with measured gusts (e.g. Ágústsson and Ólafsson, 2009;
Hofherr and Kunz, 2010). In our calculations, we hence assume wind gust un-
certainty to follow normal distribution with a standard deviation σ = 1.5m s−1.

Threshold Exceedance Uncertainty

Wind gusts exhibit a strong spatial variability at short ranges. This aspect is
demonstrated, inter alia, by the fact that the 3 s gust factor (relating extreme
wind gust to mean wind speed) drops by more than 20% if spatial averaging is
applied for short distances less than 1 km (Mitsuta and Tsukamoto, 1989). While
there is no indication in the scientific literature on the uncertainty in storm haz-
ard threshold, the macroscale uncertainty in storm gust speed poses an upper
bound for the local gust variability. In line with macroscale gust speed uncer-
tainty, we assume a normally distributed local variability, albeit with a reduced
standard deviation of 1m s−1.

Damage Level Uncertainty and Variation in Asset Values

In the lack of local empirical studies for the uncertainty in damage levels or the
variation in asset values, we employ an identical parameterization for both the
coastal flooding and the storm hazard case studies. The parameterization for
the damage level uncertainty and the variation in asset values is described in
Sect. 4.a1.
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4.b Supplementary Material

4.b1 Additional Indices for the Sensitivity Analysis

A vbsa allows to explain output variance by the contributions from explanatory
variables (Saltelli et al., 2008). The general method is described in Sect. 4.5.1. For
the estimation of the first-order effect we do not employ the estimator recom-
mended by Saltelli et al. (2010), which appears to be robust only for variables
with zero mean. Instead, we use the corresponding Jansen estimator (Jansen,
1999; Saltelli et al., 2010) whose results rapidly converge with increasing sample
size s. Hence, the first-order effects index FOi is given by

FOi = 1−
1
2s

∑s
k=1

(
F(B)k −F(C(i))k

)2
σ2

, (4.16)

with

σ2 =
1

2s

s∑
k=1

(
F(A)2k +F(B)2k

)
−

(
1

s

s∑
k=1

F(A)k +F(B)k

)2
. (4.17)

The extension to higher-order effects (interactions) is straight-forward. For
second-order effects, we construct matrix C(i,j) such that we take all columns
l /∈ {i, j} from A and all columns l ∈ {i, j} from B. To estimate the second-order
effect index SOi,j, we replace C(i) with C(i,j) in Eq. (4.16) and subtract first-
order effects of input variables i and j. It follows that

SOi,j = 1−
1
2s

∑s
k=1

(
F(B)k −F(C(i,j))k

)2
σ2

− FOi − FOj (4.18)

for i 6= j.
Similarly, we calculate the third-order effect index TOi,j,k by constructing the

corresponding matrix C(i,j,k) and subtracting low-order terms,

TOi,j,k = 1−
1
2s

∑s
k=1

(
F(B)k −F(C(i,j,k))k

)2
σ2

− FOi − FOj − FOk − SOi,j − SOi,k − SOj,k (4.19)

for i 6= j 6= k 6= i.
It is clear from inspection, that Eqs. (4.18) and (4.19) simplify considerably

for models with only two and three random variables, respectively. For models
with only two random variables, the second-order effect index becomes

SO1,2 = 1− FO1 − FO2. (4.20)

Similarly, for models with three random variables the third-order effect index
simplifies to

TO1,2,3 = 1− FO1 − FO2 − FO3 − SO1,2 − SO1,3 − SO2,3. (4.21)
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Figure 4.8: Results of the sensitivity analysis of the macroscale damage function for
the Lisbon case study, relating the joint effect of intrinsic uncertainties to the effect of
uncertainty in the hazard threshold. Panel (a) shows the direct, first-order effect, while
panel (b) shows the second-order effect due to interaction between the uncertainty
sources.

4.b2 Additional Results for the Lisbon Case Study

Figure 4.8 shows the first- and second-order effect indices of intrinsic and ex-
trinsic (hazard threshold) uncertainties [cf. Fig. 4.6 (c)]. The interaction seen for
flood levels below 0.5m is due to the fact that the uncertainty in the hazard
threshold determines the occurrence of a damage at such low flood levels and
that, consequently, the intrinsic uncertainties are conditional on the occurrence
of a damaging event.

Figure 4.9 shows the first-, second-, and third-order effect indices for the in-
trinsic uncertainties in both the microscale and the macroscale damage function.
If compared with the total-effects index [cf. Fig. 4.6 (a–b)], it is seen that the first-
order effects are the dominant contribution to the total effects index. Panels (c)
and (d) show that there is some interaction between the variation in asset value
and the uncertainty of the threshold exceedance. However, this interaction is
limited to inundation levels below 1m and only contributes lightly to the over-
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Figure 4.9: Results of the sensitivity
analysis of the microscale (a, c, and e)
and the macroscale (b, d, and f) dam-
age function for the Lisbon case study,
taking into account only intrinsic un-
certainties. Each column comprises the
first-, second-, and third-order effects
of the respective uncertainty sources
on the output variance. First-order
effects are directly attributable to a
source of uncertainty, while higher-
order effects arise from interactions
between two or more uncertain vari-
ables.
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Figure 4.10: Results of the sensitivity analysis of the macroscale damage function for
the German storm damage case study, relating the joint effect of intrinsic uncertainties
to the effect of uncertainty in the hazard threshold. Panel (a) shows the direct, first-
order effect, while panel (b) shows the second-order effect due to interaction between
the uncertainty sources.

all model variance (less than 0.2 of output variance). Panels (e–f) show that
third-order effects are negligible.

4.b3 Additional Results for the Storm Case Study

Figure. 4.10 shows the first- and second-order effect indices of intrinsic and ex-
trinsic (hazard threshold) uncertainties within the macroscale damage function
[cf. Fig. 4.7 (c)]. There is some interaction at low hazard magnitudes, analogous
to the Lisbon case study (cf. Fig. 4.9).

Figure 4.11 shows the first-, second-, and third-order effect indices for the
intrinsic uncertainties in both the microscale and the macroscale damage func-
tion [cf. Fig. 4.7 (a–b)]. The same reasoning as for the Lisbon case study applies
(cf. Sec. 4.b2 and Fig. 4.8).
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Figure 4.11: Results of the sensitivity
analysis of the microscale (a, c, and e)
and the macroscale (b, d, and f)
damage function for the German
storm damage case study, taking into
account only intrinsic uncertainties.
Each column comprises the first-,
second-, and third-order effects of the
respective uncertainty sources on the
output variance. First-order effects
are directly attributable to a source of
uncertainty, while higher-order effects
arise from interactions between two or
more uncertain variables.
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(f) Macroscale (only intrinsic uncertainties)
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(a) Microscale
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V
Conclusions and Outlook

5.1 General Achievements

The work at hand has been focussed on the analysis and the development of
damage functions in order to contribute to their fundamental understanding
as well as to the improvement of damage estimation. These damage functions
relate the intensity of natural hazards to the direct economic losses caused. As
such, damage functions are particularly helpful in assessing the adverse im-
pacts of natural hazards whose characteristics are altered by climate change.
Such adverse impacts are the consequence of complex physical processes and
the resulting damage signal is typically non-linear. Taking the example of the
storm–loss relation, even small increases in wind speed can invoke a drastic in-
crease of expected loss. Accurate high-resolution damage functions, as provided
for German winter storms, are essential for the decision support on climate
change and the handling of climate change risks. The undertaking of their val-
idation and the incorporation of uncertainty are a necessity for creating reliable
estimates of potential damages. Following this route, the obtained results im-
prove the accuracy and validity of damage functions and will be helpful to
assess the availability of risk financing, e.g. insurance and other financial in-
struments.

The overarching goal of this work has been to advance the understanding
of climate-related damage functions. This goal has been met by addressing
damage functions along three distinct research facets: depth, breadth, and scope.

In depth the wind–loss relation was explored for winter storms across Ger-
many, resulting in a novel storm damage function which for the first time covers
the entire range of possible losses.

The breadth of storm damage functions for Germany has been reviewed and
assessed, thereby developing new methodology custom-tailored to the proper-
ties of storm loss data.

Finally, the scope of the presented research was widened to include further
hazards, revealing a common damage function applicable to both windstorm
and coastal flooding and possibly others.

Investigating into these three research facets, the work at hand has advanced
the understanding of damage functions in multiple ways, beginning with a spot-
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light on storm damage functions and concluding with a multi-disciplinary in-
sight into the common grounds and uncertainties of damage functions.

The novel storm damage function has been developed with the aim to reflect
the entire range of observed loss. This fundamental approach is in contrast to
prior attempts that were tailored to extreme or highly aggregated losses. The
comparison with other established models confirmed that the novel damage
function performs at par with the current best models for German storm loss.
Overall, it provides improved loss estimates over a wider range of gust speed
than competing models. Geographically, the power-law shape of the damage
function has been found applicable throughout Germany and there is no indic-
ation that it would not apply to further European countries.

The comparison of storm damage functions has shown a great amount of
residual variability, which highlights the need for a more fundamental under-
standing of the damaging processes. That said, the findings also indicate a lim-
itation to the merits of increasing model complexity. This is the case, e.g. for
storm damage functions, where residual variability could be linked mainly to
uncertainty from the gust observation. Unfortunately, most approaches for de-
veloping more detailed damage functions are severely hampered by limited
data availability and model resolution. In this light, it is concluded that prac-
titioners should focus on simple and accessible damage functions, which are
susceptible to further analysis especially in the field of uncertainty.

Beyond windstorms, damage functions can be employed to model damages
caused by different climate-related hazards. In this regard, the work at hand has
identified a simple mathematical form of a unified damage function applicable
both to storm and flood loss. This finding suggests that further formalization
towards a universal damage function may be feasible, providing both transpar-
ent and comparable methodology for the assessment of diverse climate impacts.
While flood damage assessment is a typical example for the application of
damage functions, it may also be worthwhile to extend the concept of damage
functions to heat-related mortality. In particular, the functional approach could
prove beneficial for characterizing the shape of empirical mortality curves.

With its wide regard for climate-related hazards and their associated dam-
ages, the work at hand has been placed at the interface of natural hazards
research, the atmospheric sciences, and actuarial science. By keeping all con-
siderations as general as possible, fundamental insights into the mechanics of
damage functions and into the interplay between the involved uncertainties
were gained. The general nature of the employed methodology makes this work
truly inter-disciplinary and distinguishes it from many studies in this field.

In the following sections, each of the posed research questions, rq1 through
rq3, will be revisited. The corresponding contributions from Chapters II–IV
will be reviewed and interlinked. Alongside a discussion of existing limitations,
the results are set into a broader context and their scientific relevance is high-
lighted. Finally, Sect. 5.6 provides an outlook on follow-up research and some
concluding remarks
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5.2 The Challenge from Hazard–Loss Data

The properties of damage data related to natural hazards pose a challenge
both for the calibration and the evaluation of damage functions. As outlined
in Sect. 1.3, these data are characterized by i) high dynamic range, ii) skewed
distribution, iii) heteroscedasticity, and iv) ambiguity.

Dealing with storm damages, the work in Chapters II and III has addressed
the challenging properties of storm loss data. It was seen that conventional
least-squares fitting causes the damage curve to align to the highest loss. This
could be observed, for example, when fitting the damage function proposed by
Klawa and Ulbrich (2003) to loss data in Fig. 3.2 (c). In general, least-squares
fitting may cause an unknown bias due to the scarcity of extreme events and
the heteroscedastic uncertainty that grows with expected loss. Even with ag-
gregated (e.g. annual) loss figures such bias may not be avoidable. For example,
losses for extreme storm events typically exceed the other losses by orders of
magnitude, such that the single most damaging storm frequently dominates
annual aggregates.

One solution to the problem is to employ maximum likelihood estimation
(mle) and to model heteroscedasticity explicitly. Following this approach, a nov-
el storm damage function was derived in Chapter II, where loss uncertainty was
modelled via a log-normal distribution with constant scale factor. The choice of
distribution was guided by the observation that a logarithmic transformation
of losses [e.g. as depicted in Fig. 2.1 (a)] would produce approximately Gaus-
sian residuals. While the assumption of log-normal uncertainty captivates by
its simplicity, it is not expected to hold in general, since the underlying premise
of a multiplicative error term cannot be justified on theoretical grounds. In-
stead, a more general description of uncertainty is presented on the basis of
a unified damage function (Chapter IV). In this model, the overall uncertainty
is obtained as a convolution of nested uncertainty distributions (see also discus-
sion in Sect. 5.4). While being heteroscedastic, the resulting uncertainty bands
[cf. Fig. 4.2 (g)] are not of constant shape as was assumed in the log-normal
approximation.

In this work it has become clear that the calibration of damage functions must
rely on adequate assumptions on the shape and extent of uncertainty. The em-
ployed mle is not only superior to least-squares estimation but also allows for
the consideration of arbitrary uncertainty distributions. Hence, going beyond
the work at hand, there is an opportunity to incorporate the theoretical insights
from the uncertainty analysis into the mle scheme. Such would increase the ro-
bustness of the calibration and have a fertilizing effect for further improvement
of damage functions.

Beyond the development of damage functions, loss-data characteristics also
play an important role when performing a comparison of different damage
models. In the present case, four non-nested damage functions were compared,
each predicting an expected value of loss. Any simple comparison based on ab-
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solute deviations, such as R2, would be biased for the same reason that impairs
least-squares fitting: high dynamic range with very few singular extremes that
exhibit heteroscedastic error. Furthermore, damage functions may show differ-
ent performance depending on the magnitude of storm events. In this regard,
the few extreme losses are of particular (monetary) relevance.

The work at hand has followed common practice by comparing the non-
nested models by their prediction skill, using separate validation data that were
not included in the training sample (cross-validation). However, the strong pos-
itive skew of the loss distribution and the resulting scarcity of extreme losses
impose a dilemma for the determination of skill. On the one hand, absolute
metrics are dominated by singular events, since the most severe loss may out-
weigh the second most severe loss by as much as an order of magnitude. As
a consequence, the validation statistics are not reliable. Relative metrics, on the
other hand, reduce the weight of extreme loss events. This comes at the risk
of giving preference to a model that performs well for the abundance of mid-
range losses, while performing worse for the highly relevant extreme losses.
Moreover, relative metrics cannot be employed for data that exhibit ambiguity
(i.e. the stochastic occurrence or non-appearance of loss at the same hazard
intensity) since the treatment of zeroes is inherently problematic.

In order to overcome the dilemma, the range of substantial loss was stratified
into three loss classes and all models were evaluated for each class separately.
Furthermore, minor losses that are subject to ambiguity but bear no relevance
for total loss figures were discarded. A first comparison was based on relative
metrics, giving approximately equal weight to each of the data points within
a loss class. Secondly, a novel statistical test based on binomial statistics was
employed to test the null hypothesis that two models have equal skill.

In response to the specific characteristics of the loss data, the employed two-
stage comparison of damage functions has reached beyond conventional ap-
proaches to measure the performance of damage functions. Most importantly,
the comparison has addressed the fact that damage models may show vary-
ing performance at different loss ranges. This is highly relevant for damage
assessment given that the empirical losses range over several orders of mag-
nitude. Furthermore, the identification of the best-matching curve may support
the search for a fundamental hazard–loss relation.

In summary, the work at hand has addressed the difficulties that arise from
the particular properties of hazard–loss data. Since these difficulties are not
simply mitigated by increased data availability, the use of adequate methodo-
logy is of high relevance. The results indicate that practitioners should refrain
from using conventional least-squares methods and employ mle together with
a thorough uncertainty model similar to the one derived in Chapter IV. Stratific-
ation has been employed effectively to analyse performance at different scales.
At the lack of a more fundamental statistical approach – taking into account
scale, skew, and heteroscedasticity – stratification balances the weight of differ-
ent loss regimes



5.3 The Wind–Loss Relationship (rq1) 109

5.3 The Wind–Loss Relationship (rq1)

The relation between insured storm loss and storm intensity is a matter of on-
going research. Storm damages are clearly dependent on the construction prac-
tices and building regulations, which in turn originate, at least partly, from the
local storm climate. The regional dependence complicates the transferability of
damage functions and together with a general lack of loss information impedes
the revelation of the wind–loss relationship. This issue has been addressed by
the First Research Question:

What is the statistical wind–loss relationship for German residential build-
ings, and how does it compare to existing damage functions?

In Chapter II the wind–loss relationship was analysed based on high-resolu-
tion loss data for the sector of German residential buildings. In contrast to other
studies, the data was best described by power-law curves with high exponents.
With an average of approximately 10 the exponents were considerably higher
than the cubic or quartic behaviour suggested by Munich Re (2001).

The power-law model represents a simplification of a more general sigmoid
curve, namely the cumulative distribution function of the log-logistic distribu-
tion. It has a simple and intuitive parameterization, where the exponent defines
the steepness of the curve and the offset parameter represents the point at
which half of the portfolio value is lost.

The power-law relationship was observed individually for 439 regions at
NUTS 3 level. The wind–loss relationship as given by this curve deviates from
prior expectation on both ends – for small losses occurring beneath the 98th
wind percentile and for the extrapolation to extreme losses in the tail of the
loss distribution.

The empirical loss data shows substantial losses beneath the 98th wind per-
centile for every region throughout Germany. In general these losses bear ad-
ditional information and were found to support the power-law shape of the
damage function. While the presented results give no indication that the 98th
percentile constitutes a threshold for the occurrence of loss, it has been argued
that the percentile does reflect regional vulnerability (Klawa and Ulbrich, 2003;
Leckebusch et al., 2007; Donat et al., 2011b). This premise could not be con-
firmed in this work, finding no correlation between exponent or offset and the
98th percentile of maximum daily gust. However, weak correlation between off-
set and altitude of the employed dwd station [Fig. 2.3 (d)] indicated that the
offset parameter also acts as a scaling factor, if the wind station is located at an
altitude different to that of the average settlement.

Although not supported by the results, the suitability of the 98th wind per-
centile to incorporate regional vulnerability into the damage function cannot
be ruled out in general. Within the novel damage function, the power-law expo-
nent – defining the steepness of the curve – is the prime indicator for local vul-
nerability. While its spatial distribution across Germany (Fig. 2.2) shows a clear
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prevalence of relatively low exponents for the North-Western parts of Germany,
no significant correlations with wind percentiles or basic socio-economic data1

were found.
Steep power-laws with large exponents are often hard to distinguish from

a similar exponential relationship. Amongst other empirical models, the expo-
nential hypothesis was tested as part of the model comparison in Chapter III.
The results in Figs. 3.4 and 3.5 clearly that an exponential relationship fares well
for relatively low losses, while extreme losses that contribute most significantly
to the total accumulated loss2 can be strongly overestimated.

Whereas the exponential function marks the upper limit of potential damage
functions in terms of steepness, cubic (power-law) models constitute the lower
limit, i.e. less steep approaches. On theoretical grounds, a purely cubic wind–
loss relation had been proposed (e.g. Lamb, 1991, or recently Kantha, 2008) and
was initially backed by empirical findings of Munich Re (1993). Later, consider-
ing a different set of storms Munich Re (2001) have reported higher exponents
in the range of 4 to 5. Based on the available loss data the presumption of power-
laws with exponents less than 5must be generally rejected, as only significantly
larger exponents with an average of 9.8 were found. However, it is not possible
to rule out potential bias coming from the employed loss data. In fact, the res-
ults show that a cubic relationship could be transformed to a steeper curve
similar to the novel power-law model. This has been demonstrated in Fig. 3.6,
where small losses were truncated from the distribution of building losses, an
effect comparable to a deductible. This finding suggests that there are mechan-
isms by which the steep damage curves found here could be reconciled with
considerations based on the available kinetic energy of the wind.

In the regime of extreme losses, the employed power-law approach is also
supported by the threshold model proposed by Klawa and Ulbrich (2003) and
refined in Donat et al. (2011b). As derived analytically in Sect. 3.a3, the thresh-
old leads to a local gradient of the curve that is much steeper than its asymp-
totically cubic behaviour. When applied to the typical wind speeds of extreme
losses, the local gradient corresponds to a power law with an exponent of ap-
proximately 10, matching nicely with the observed average exponent of 9.8. The
congruence is also reflected by the model comparison, where both the novel
power-law damage function and the threshold model excel at the prediction
of extreme losses (see summary in Tab. 3.6). But despite the similarity for his-
torical extremes, it should be noted that the curves will strongly diverge for
unprecedented extremes beyond the data support.

Available data on insured storm loss have typically been spatially aggreg-
ated. Since this is also the case for the data at hand, the novel damage function
considers losses that were accumulated for a large set of individual buildings.
However, the model comparison includes a model which combines a stylized
portfolio representation with a mean damage function for individual buildings

1 Socio-economic data comprised figures for population, buildings, income per capita, as well as
their respective densities.

2 See loss distribution in Fig. 3.1 (a).
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(Heneka and Ruck, 2008). While the approach showed good overall perform-
ance, it is reliant on ad hoc assumptions about the portfolio and the damage
curve for individual buildings. In the absence of more detailed loss data, these
assumptions cannot be validated and their geographic dependence remains un-
clear.

In summary, this work has demonstrated that storm loss from German home-
owners insurance follows a steep power law over a wide range of loss, improv-
ing upon previous approaches to damage estimation. Furthermore, the per-
formance of the novel damage function was positively assessed against compet-
ing models. For extreme loss, partial congruence with competing approaches
was found, strengthening the fundamental power-law premise made in this
work.

The steepness of the damage function is of importance especially in the light
of a changing climate, which may entail storms of unprecedented intensity.
Clarity is much needed, as gradients of various damage functions can differ
drastically with strong implication on the extrapolation of damage estimates.
This work has contributed to this goal not only by developing a novel damage
function, but also by identifying interrelations between different approaches

5.4 The Role of Uncertainties
in Damage Functions (rq2)

The story of damage functions is also a story of uncertainty. Uncertainties
arise on all stages along the causal chain, beginning with the hazard expos-
ure, through the damaging processes, and terminating with the value at risk.
Common approaches to evaluate uncertainties comprise scenario analysis and
sensitivity analysis, but have fallen short of providing a deeper understanding
of the propagation of uncertainty within the damage function, from the indi-
vidual structure to the macroscale portfolio. In order to close this gap, the issue
was placed at the core of the Second Research Question:

How are the sources of statistical uncertainty in damage functions interre-
lated, and what is their importance on different scales?

The answer to this research question was approached from two different
angles. From an empirical perspective, the uncertainty associated with the loss
estimates from the novel storm damage function was quantified in Chapter II.
From a more general point of view, the relevance of different sources of uncer-
tainty was investigated based on a unified approach to damage functions. The
corresponding results from a global sensitivity analysis have been presented in
Chapter IV and show how the sources of uncertainty affect both the microscale
and the macroscale level of the unified damage function.

Beginning the discussion with the latter approach, the presented research has
for the first time addressed the sensitivity of both the microscale damage func-
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tion (single structure) and the aggregated macroscale damage function (port-
folio). The overall loss variance could be attributed to the individual sources
of uncertainty by means of a variance-based sensitivity analysis. In prior stud-
ies, similar uncertainty analysis has been limited to the attribution of overall
variance3. Further level of detail was gained from considering the attribution
of variance as a function of hazard intensity, i.e. gust speed or flood height.
A key finding from this approach is that the sensitivity pattern of intrinsic un-
certainties at the microscale level (i.e. local variations of the hazard intensity or
building properties within the portfolio) persists also on the macroscale port-
folio level. Fortunately, the relative magnitude of intrinsic uncertainties can be
reduced by diversification, which leads to convergence to the expected value as
formulated by the law of large numbers. In contrast, the effect of extrinsic uncer-
tainty (i.e. variations of variables that describe the overall hazard intensity for
the entire portfolio) scales proportionally to the portfolio size. With increasing
portfolio size, and hence increasing diversification, it may be feasible to limit
the treatment of uncertainty to extrinsic sources (e.g. the overall flood height or
gust speed).

The importance of extrinsic uncertainty was also supported by the empiric-
ally derived storm damage function, as presented in Chapter II. A multiplic-
ative error model was used to describe the variance of loss observations, and
model residuals were found to follow an approximate log-normal distribution.
An analysis of the spatial variation of wind gust measurements indicated strong
uncertainty of gust estimates. As a matter of fact, a Gaussian uncertainty of
gust speed would cause a log-normal loss uncertainty, if transformed by an
exponential damage function. Since exponential curves are hardly discernible
from power laws at sufficiently high exponents, an approximate log-normal
distribution should indeed be expected. Hence, the results indicate that loss un-
certainty was caused primarily by the extrinsic gust uncertainty. This finding
is in line with the expectation that intrinsic uncertainties play a minor role for
large building portfolios.

While the analysis of the wind–loss relation and of the associated uncertainty
was supported by an abundance of empirical loss data, this is generally not
the case for other hazards, where losses are monitored either insufficiently or
less frequently. Nevertheless, since the sensitivity analysis has been based on
the unified damage function4, the findings are expected to hold also for other
hazards.

The sensitivity analysis has shown that interactions between different uncer-
tainties are negligible (Figs. 4.9 and 4.10) and, hence, that their significance is
defined by their direct contribution to the loss variance. This finding has prac-
tical relevance for the consideration of uncertainty in damage modelling, as it
indicates an approximately additive accumulation of output variance. In prac-
tice, a simple comparison of output variance from different uncertainty sources

3 Examples for the attribution of overall variance are the case studies by Apel et al. (2004); de Moel
and Aerts (2011); de Moel et al. (2012).

4 The applicability of the unified damage function is addressed in the discussion of rq3.
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could suffice to determine the dominating source of uncertainty [demonstrated
in Fig. 4.5 (d)]. Conversely, such a comparison would also allow the identifica-
tion of uncertainty sources that could be neglected.

The sensitivity analysis has been focussed on statistical uncertainties and
their propagation within the unified damage function. Additional (epistemic)
model uncertainty arises from the choice of model and its parameterization.
The intercomparison of storm damage functions in Chapter III provides an
indication of these epistemic uncertainties by considering four different damage
functions. Since all damage functions were applied to the same set of data, they
have been subject to the same amount of statistical uncertainty. Hence, changes
in the magnitude of overall uncertainty can be attributed to the model choice or
the parameterization. In this regard, the percentage errors given in Tab. 3.4 and
3.9 indicate strong levels of residual error for all damage functions and thus
suggest that model differences are less significant than statistical uncertainty
from wind or loss data.

The presented findings are of a general nature and are applicable also to
more complicated damage models. As the results show, the analysis of uncer-
tainties on the microscale level can be employed to draw conclusions also for
macroscale loss estimation. It is believed that this finding also holds for more
complex models, since the existence of a microscale damage relation is an im-
plicit assumption of every macroscale damage function

5.5 The Unification of Damage Functions
for Climate-Related Hazards (rq3)

Damage functions are widely used to quantify the adverse effects from diverse
natural hazards such as windstorms and coastal flooding. Despite the broad
scope, modellers generally limit their assessment to a specific hazard and often
focus on selected case studies only. While the quality of the assessment merits
such a narrow approach, increasing complicacy may block the view on the
fundamental characteristics of damage functions. The Third Research Question
has hence been formulated with the intention to bring together the separate
approaches for different climate-related hazards and to deepen the theoretical
understanding of a unified approach:

What are the commonalities between damage functions for the different
climate-related hazards windstorm and coastal flooding, and how could
these damage functions be unified?

The answer to the Third Research Question has been guided by three bound-
ary conditions: applicability, transparency, and transferability. A general ap-
proach should be applicable to a wide set of climate-related natural hazards,
and thereby provide transparent methodology for an appraisal of the adverse
effects of climate change. Transfer of methodology is of particular concern for
regions with limited data availability.
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Subject to the aforementioned boundary conditions, existing approaches in
the fields of storm damage and coastal flood damage assessment were con-
sidered. As elaborated in Chapter IV, analogous approaches were found in
the works of Heneka and Ruck (2008) and Hinkel et al. (2014). While both
damage functions had been developed independently with a view on their par-
ticular hazards, the treatment of the hazard threshold was identified as their
main difference. Bringing both approaches together, the hazard threshold can
either be described implicitly by a distribution function or explicitly based on
direct observation. The implicit representation has particular relevance, as it
reduces data requirements by choice of a suitable parametric distribution func-
tion. The parameters of this distribution are more readily estimated than indi-
vidual thresholds and can be linked to socio-economic conditions, thus allow-
ing a parameterization also for data scarce regions.

The unified damage function, parameterized according to Heneka and Ruck
(2008), was also included in the comparison of storm damage functions
(c.f. Chapter III). The results have shown that the constraints imposed by the
choice of portfolio distribution have a positive effect on the robustness of the
parameterization. Quantitatively, the unified approach showed a performance
similar to the competing models, with slightly worse predictions for extreme
losses. In favour of the unified damage function, it should be noted that the
differences between the various models were generally less significant than the
uncertainty of loss due to gust speed observation.

Broadening the scope of the unified damage function, it was proposed to
apply the unified damage function to the relation between temperature and
heat-related mortality. While there is much research on the empirical relation-
ship between temperature and excess mortality, there is no common description
of the resulting curves.5 The added value of introducing the damage-function
approach is in the understanding that the mortality curve follows from the un-
derlying distribution of heat tolerance. This relation opens the opportunity to
infer the shape of the distribution of heat-tolerance from mortality data. Further-
more, the reliability of extrapolating excess mortality for extreme temperatures
may be improved, since the shape of the distribution imposes constraints on
the behaviour of the damage curve beyond its support.

From a general point of view, the segmentation of the macroscale damage
function into a microscale damage function and a distribution of hazard thresh-
olds represents an assumption that may not necessarily be fulfilled. The as-
sumption clearly holds for flood damages, where water levels are required to
exceed the elevation level of the building. For the case of storm damage, the
situation is less clear cut. Storm damage levels are a result of (cascading) com-
ponent failures and thus depend on the quality and sturdiness of construction.

From a statistical perspective the segmentation constitutes just one of many
possible representations, even if these may not be grounded on physical consid-

5 It is common practice to infer curves of excess mortality by non-parametric smoothing methods.
Examples of this approach can be found in Gasparrini et al. (2015) and Martinez et al. (2016).
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erations. However, the question arises, which representation holds true for the
actual underlying hazard–loss relation. This aspect links the present discussion
with the results from the First and Second Research Questions, especially the
model comparison in the light of strong uncertainty. Having compared the uni-
fied damage function6 against competing statistical models for storm damage,
it was found that the uncertainty from the model choice falls below the data un-
certainty emanating from the hazard magnitude. Hence, while the decision on
the best possible representation of the hazard–loss relation remains outstand-
ing, the benefit from employing the unified damage function – the systematic
and transparent approach – outweigh potential modelling uncertainty.

When regarding hazards beyond those explored, the main criterion should
be whether a statistical damage function can provide sufficient information on
the considered risk. For example, despite the vast amount of loss caused by
European windstorms, individual damages are typically relatively small and
do not pose a critical threat to human life. Accordingly, regional losses can
be well captured by statistical approaches and the low average damage does
not warrant the development of more elaborate engineering-based approaches.
Quite the opposite, torrential river flow as a consequence of fluvial flooding
may affect only few built-up structures but may cause critical damage due to
fluvial erosion, undercutting, or floating debris. Nonetheless, in regions where
flow velocity plays a lesser role, damage from fluvial flooding may be largely
determined by inundation height. In this case, the unified damage function
could be applied in a similar fashion to the Lisbon case study in Sect. 4.4.

Beyond climate-related hazards, the application to seismic risk would in prin-
ciple be feasible, but in contrast to other hazards seismic shocks have an imme-
diate effect on the integrity of built-up structures and thus directly endanger
human lives. Since statistical models could provide only a rough loss estimate,
the nature of the hazard clearly warrants the development of more sophistic-
ated engineering-based models.

While emphasising the applicability of the unified damage function to differ-
ent natural hazards, there are also limitations to the approach. The founding
assumptions are granularity with regard to the considered portfolio and inde-
pendence of the damaging processes. These assumptions do not permit damage
cascading from one structure to another and in principle determine the focus
of the damage function on direct damages.

Across the different hazard domains, there is generally little information
available on the shape of macroscale damage functions. This shortfall entails
the importance of the unified approach, as it is capable of linking microscale
with macroscale damage. It is concluded that, due to its wide applicability,
the approach provides a step forward towards a common theory of damage
functions. As such, the model has already formed the basis for the analysis of
uncertainty propagation in rq2 and is likely to enable further insight on the
determinants of the shape of macroscale damage functions

6 Represented in the comparison by the model of Heneka and Ruck (2008).
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5.6 Outlook and Concluding Remarks

Following the discussion of the scientific advances contributed by the work
at hand, these will now be set into a broader context with an outlook into
prospective research.

The handling of complex loss data has been shown to constitute a key chal-
lenge for the development of damage functions. Common fitting methods are
flawed due to their failure to incorporate the non-standard properties of loss
data. The employed mle was found to be the tool of choice, being capable to in-
corporate flexible models of uncertainty. However, uncertainty of loss estimates
is a result of a complex interplay between various sources of uncertainty. The
modelling of loss uncertainty, as demonstrated for the unified damage func-
tion, could improve the fitting of damage functions by replacing simplifying
assumptions such as the employed log-normal loss uncertainty. In combination
with mle this could further increase the quality of loss estimates and enable
new insight into the nature of the hazard–loss relation. The proposed meth-
odology would be general in nature and should be applicable to any kind of
(natural) hazard data.

The defining properties of macroscale damage functions are poorly under-
stood. Typically these functions are either represented by a statistically inferred
damage curve or result from the aggregation of microscale damages. However,
an a priori understanding of what determines the shape of the macroscale dam-
age functions is still missing. Clearly, a deeper and more general understanding
of damage functions is needed. Contributing to this task, the work at hand has
improved the understanding of macroscale storm damage functions as well as
elaborated on a unification of damage function for multiple hazards. On these
grounds it is seen as a step towards the grand goal of a theory of damage
functions.

By their very nature, statistical damage function are heavily reliant on the
availability of data. In order to transfer these damage functions to data-scarce
regions, it is important to infer the determinants that define the shape of the
damage function. For windstorm damage it has been argued that local vulner-
ability is governed by continual adaptation to the local storm climate in the
form of building codes and practices. Establishing a link between the storm
climate and the vulnerability could foster the transfer of damage functions into
regions where loss data are missing and only the storm climate is observed.
While a correlation between the parameters of the damage function and com-
monly employed proxies for the storm climate (e.g. wind percentiles) could
not be confirmed in this work, strong regional patterns in vulnerability were
observed. This suggests that the observed vulnerability patterns are due to
building properties which may not be directly related to storm climate, e.g. tra-
ditional construction practices. Prospective work should illuminate the benefit
of obtaining detailed data on the exposure. The work at hand has shown that
current knowledge on storm damage functions remains insufficient to explain
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local vulnerability patterns and further research is needed to enable accurate
loss estimation for data-scarce regions.

It is believed that the thesis at hand will be of value to practitioners in the re-
lated fields of natural hazards research and the atmospheric sciences. It should
encourage researchers to breach the frontiers of their discipline to fertilize the
development of universal, transparent, and applicable methodology for the as-
sessment of climate-related hazards
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