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Summary/Zusammenfassung 

Objective: Using mechanical cues to control stem cells fate has attracted the widespread 

attention in the field of stem cell-based regenerative therapies. The aim of the present 

work was to determine the influence of surface microstructures (curvature level) on 

secretome, migration of human mesenchymal stem cells (MSCs) and to reveal the 

underlying mechanism. Furthermore, the efficiency of the neural differentiation of human 

induce pluripotent stem cells (iPSCs) on the surface with microstructures was evaluated. 

Methods: Human adipose derived mesenchymal stem cells (ADSCs) were cultivated on 

polystyrene surfaces with different curvature levels. Conditioned medium from such 

cultures was collected and its VEGF levels were analyzed. Further, the cells 

preconditioned by the surface curvatures were collected and reseeded on regular tissue 

culture plates to examine their migration capacity. For the underlying mechanism, the 

activation level of integrin, focal adhesion kinase (FAK) and mitogen-activated protein 

kinase (MAPK/ERK) were measured. Using matrigel coated polystyrene surface with 

different curvature levels for cultivation, human induced pluripotent stem cells (iPSCs) 

were induced to differentiate into neural lineages. Expression level of neural genes and 

protein was analyzed to evaluate the differentiation efficiency. 

Results: Appropriate surface topographic curvature promoted the VEGF secretion of 

human ADSCs. The conditioned medium increased tube formation and migration of 

human umbilical vein endothelial cells (HUVECs) in vitro and stimulated blood vessels 

formation in the hen's egg test - chorioallantoic membrane (HET-CAM) ex vivo. For the 

underlying mechanism, the integrin mediated FAK-MAPK/ERK pathway was involved in 

the surface curvatures stimulated ADSCs behavior. Furthermore, the curvature was found 

to increase the neural differentiation efficiency of human iPSCs. 

Conclusion: Surface with microscale curvature increases VEGF secretion and migration 

capacity of MSCs via activating the integrin mediated FAK-MAPK/ERK signaling pathway, 

but this regulation effect is depended on the curvature level. Further, the similar surface 

can promote the neural differentiation of human iPSCs. Surface microscale curvature 
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might be a useful strategy to enhance the therapeutic potential of stem cells in 

regenerative medicine. 

Zielsetzung: Die Möglichkeit zur Kontrolle des Stammzellverhaltens durch mechanische 

Reize hat im Bereich der regenerativen Therapien große Aufmerksamkeit erlangt. Ziel 

der vorliegenden Arbeit war es, den Einfluss der Mikroskalaskrümmung von Oberflächen 

auf die Sekretion des vaskulären endothelialen Wachstumsfaktors (VEGF) Sekretion 

durch humane mesenchymale Stammzellen (MSCs) zu bestimmen, deren Migration zu 

analysieren und die zugrundeliegenden Mechanismus aufzudecken. Darüber hinaus 

wurde die Effizienz der neuronalen Differenzierung von humanen induzierten 

pluripotenten Stammzellen (iPSCs) auf vergleichbaren Oberflächen ausgewertet. 

Methoden: Auf Polystyrol-Oberflächen mit verschiedenen Mikroskalakrümmungsgraden 

wurden humane adipöse mesenchymale Stammzellen (ADSCs) kultiviert. Die 

konditionierten Medien wurden gesammelt und ihr VEGF Gehalt quantifiziert. Ferner 

wurden die durch die Oberflächenkrümmung vorkonditionierten Zellen gesammelt, auf 

der Gewebekulturplatten ausgesät, und ihr Migrationsverhalten   untersucht. Die 

zugrundeliegenden Mechanismen wurden über Messung des Aktivierungsgrads von 

Integrin, fokaler Adhäsionskinase (FAK) und mitogenaktivierter Proteinkinase 

(MAPK/ERK) adressiert. Darüber hinaus wurden humane induzierte pluripotente 

Stammzellen (iPSCs) auf matrigelbeschichteten Polystyroloberfläche mit 

unterschiedlichen Krümmungsgraden kultiviert und in neuronale Zellen differenziert. Die 

Expression neuronaler Gene wurden analysiert, um die Differenzierungseffizienz zu 

bewerten. 

Ergebnisse: Durch geeignete topographische Oberflächenkrümmung kann die VEGF-

Sekretion von humanen ADSCs stimuliert werden. Das Krümmungskonditionierte 

Medium erhöhte die Ausbildung vaskulärer Strukturen (sogenannter tube formation assay) 

und die Migration von humanen Nabelschnurvenen-Endothelzellen (HUVECs) in vitro. 

Zudem verbesserte es die Blutgefäßbildung im Hühnereientest an der Chorion-Allantois-

Membran (HET-CAM) ex vivo. Die Integrin-vermittelte FAK-MAPK / ERK 

Signaltransduktion war entscheidend in das Oberflächenkrümmung-stimulierte ADSC-
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Verhalten involviert. Darüber hinaus wurde festgestellt, dass die Krümmung die 

neuronale Differenzierungseffizienz von menschlichen iPSCs beeinflusst. 

Schlussfolgerung: Oberflächenkrümmung erhöht die VEGF Sekretion und 

Migrationskapazität von MSCs durch Aktivierung des Integrin-vermitteltes FAK-MAPK / 

ERK-Signalwegs. Die beobachteten Effekte sind von dem Krümmungsgrad abhängig. 

Ähnliche Krümmungsgrade können die neuronale Differenzierung von menschlichen 

iPSCs fördern. Der Einsatz solcher Oberflächenkrümmung könnten eine nützliche 

Strategie sein, um das therapeutische Potential von Stammzellen in der regenerativen 

Medizin zu verbessern. 
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General Introduction 

Over the past decade, Stem cells have attracted the enormous attention in the field of 

regenerative medicine for their ability to regenerate and repair the injured tissues [1, 2]. 

Stem cells are broadly classified into adult stem cells (ASCs) and embryonic stem cells 

(ESCs). ASCs are multipotent cells derived from adult somatic tissues with the potential 

to differentiate into many specific cell types. As the commonest type of ASCs, 

Mesenchymal stem cells (MSCs) are self-renewing clonal precursors of non-

hematopoietic stromal tissues with multi-lineage differentiation potential, which can be 

found in almost all postnatal organs and tissues such as fat, skin and bone marrow [3]. 

MSCs have been considered as the promising cell source in regenerative medicine with 

the eventual clinical benefits such as abundance, homing ability, functional plasticity and 

immune-regulatory properties [4]. Recent studies indicated that the benefits of MSCs 

based therapy could be predominantly due to their paracrine activity rather than the direct 

differentiation [5]. Besides, the MSCs were also not able to preserve a long lifespan after 

transplantation [6, 7], the beneficial effects from transplanted MSCs may mainly attribute 

to the rapid targeting to the site of injury. Thus, cell rapidly migration to the lesion site 

remains the lingering problem in MSCs-based therapies. It is of great benefit to develop 

the MSCs migration and secretion capacity prior to their transplantation. 

ESCs are derived from the inner cell mass of blastocysts and have the capacity to 

regenerate into cells types from all three germ layers (ectoderm, mesoderm and 

endoderm). Due to their capacities such as long term self-renewal, extended culturing 

and the pluripotency of differentiation, the ESCs are regarded as a very attractive cell 

resource in regenerative medicine. However, the ESCs always represent the ethical 

constraints because the embryo dies during the isolation from the blastocysts [8]. Until 

2006, the induced pluripotent stem cells (iPSCs) were found by ectopic expression of four 

genes- Oct4, Sox2, Klf4, and c–Myc in both embryonic and adult murine fibroblasts [9]. 

Soon later, the human iPSCs were obtained with a somewhat altered gene set- Oct4, 

Sox2, Nanog, and Lin28 [10]. Human iPSCs have been hailed as an ideal replacement 

for the ESCs and a prime candidate cell source for regenerative aims without many of the 

associated ethical concerns. In the past years, many remarkable progresses of iPSCs 



8 
 

based regenerative therapies have been made. For example, the dopaminergic neurons 

as the predominant cell type for treating Parkinson's disease (PD) has been effectively 

generated from iPSCs, and functionally integrated into cynomolgus monkey model [11]. 

Moreover, the first human clinical trial was performed in 2014, in which, iPSCs derived 

from skin cells from patients with wet age-related macular degeneration were 

reprogrammed to differentiate into retinal pigment epithelial (RPE) cells, then were 

transplanted back into the affected retina [12]. However, there are still some challenges 

needed to be overcome such as inefficient cell derivation, genetic abnormalities during in 

vitro expanding [13]. Most of all, it is of utmost importance to avoid the teratoma or tumor 

formation caused by inadequate differentiation [14]. It is only of benefit if there is a 

complete differentiation to generate the cell types of interest. Hence, controlled 

differentiation of iPSCs is critical for cell replacement based therapies. 

Therefore, how to control the behaviors of stem cells remains the key role in their 

therapeutic application. It is an accepted knowledge that stem cell fate is regulated by the 

various stimuli dictated by the microenvironment including soluble factors and matrix-

mediated signals, as well as cell-cell communication. However, soluble factor mediated 

signaling pathway can’t completely elucidate many cellular behaviors [15]. Recently, the 

cues presented by the physical microenvironment are being thought to be important 

regulators of stem cell behaviors. Further understanding of these environmental 

instructions on stem cell behaviors is emerging, with the hope to better their therapeutic 

potential. The physical force and hemodynamic shear stress in a living organism 

surrounded mechanical environment are referred to mechanic transduction [16], such as 

the substrates stiffness, different stiffness level could conduct the MSCs to differentiate 

into neuronal, myogenic or osteogenic lineage [17]. As a natural topography of 

extracellular matrix, material surface topographic nanoscale roughness has been 

described as a strong modulator in regulating cell migration [18, 19] and the adhesion, 

proliferation and differentiation [20, 21]. However, there is very limited knowledge 

concerning the surface microscale microstructure on the stem cells fate. It is in a great 

need to figure out the potential effects and the undergoing mechanism.  

https://en.wikipedia.org/wiki/Skin_cell
https://en.wikipedia.org/wiki/Macular_degeneration#wet_AMD
https://en.wikipedia.org/wiki/Retinal_pigment_epithelium
https://en.wikipedia.org/wiki/Retina
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Focusing on the interface between cell and material surface, the integrin as the cell 

transmembrane receptor and mechanotransducer, is responsible for sensing and 

translating external mechanical signal into cellular biochemical information [22]. On the 

one hand, intracellular activators such as talin and kindlin, can bind to the cytoplasmic tail 

of integrin to induce the conformational changes in the extracellular domain of integrin, 

which can increase the affinity of integrin to extracellular ligand [23]. On the other hand, 

surrounding environment regulates the conformation and clustering of integrin, which can 

lead to a series cellular response such as cell adhesion, cytoskeletal structure, migration, 

gene expression, cell survival, proliferation and differentiation [24, 25]. Intracellularly, 

integrin interacts with focal adhesion kinase (FAK) via the cytoskeletal protein talin [26]. 

FAK and Src activation upon integrin engagement can subsequently activate the 

downstream mitogen-activated protein kinase MAPK/ERK pathway [27, 28]. Further, the 

FAK-MAPK/ERK axis was reported to regulate the cellular behaviors such as proliferation, 

secretion, migration and differentiation [29, 30]. Thus, it is of great interest to study the 

effects of surface topographic microstructure (defined in surface curvature) on stem cell 

behaviors and the activity of FAK and MAPK, which may reveal the underlying 

mechanism and present a safe and robust approach to increase the therapeutic efficacy 

of MSCs in regenerative medicine. 

Motivation 

Different topographical patterns and different cell types would have completely distinct 

interactions. It is necessary to broaden our study view to explore the underlying 

mechanisms. Curvature as one of the topographical cues in nano and micro scale size 

exist in our native body. Limited studies have been carried to explain their effects on the 

cell behaviors. It is demonstrated that the concave structure would enhance the cell 

migration and convex structure would promote the differentiation. Further, the secretion 

capacity of stem cells may be the predominant factor for their therapeutic efficiency. 

Therefore, it is in great need to know the effects of surface curvatures on stem cell 

secretion, migration and differentiation and the undergoing mechanisms; and if the effects 

of curvature are associated with the cell size. The results would help us to understand the 
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effects of curvature level on stem cells therapeutic efficiency and to design substrate 

surface for increasing their regenerative potential. 

Hypothesis 

The surface microscale structures could influence the stem cells behaviors including 

secretion, migration and differentiation; the different microscale structure preconditioned 

cells would own the different levels in specific gene and protein expression and 

consequently own the distinct behaviors such as migration capacity. The curvature 

degree provided by surface microscale structures is the determining factor to influence 

stem cells behaviors. Further, curvature induced integrin gathering and activation would 

be the intermedium to transfer the signal from substrate surface into cells; the focal 

adhesion and downstream FAK-ERK signaling pathway would be activated by the integrin 

activation and consequently modulate the stem cells behaviors.  

Concept 

Polystyrene was used to prepare the standard 24-well tissue culture plate fitting inserts 

via injection molding. Three differently structured cylinders were utilized to manufacture 

the inserts with different types of bottom microstructures: a cylinder with a polished 

contact surface (PS-000), and two cylinders with micro-structured surfaces according to 

the standard of German Institute for Standardization (DIN 16747: 1981-05), M30 (PS-160) 

and M45 (PS-320).(Figure.1) The prepared inserts were sterilized by gas sterilization (gas 

phase: 10% ethylene oxide, 54 ºC, 65% relative humidity, 1.7 bar, 3 hours of gas 

exposure time and 21 hours of aeration phase).  

Figure. 1. Manufacture of polystyrene 24 well inserts with microstructured bottom 
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The extracellular matrix was coated on the inserts to enhance the cell adhesion. As 

following, the behaviors including secretion, migration and differentiation of the 

multipotent or pluripotent stem cells on the microstructured bottom were evaluated. To 

assess the biological effects of secretion of mesenchymal stem cells, the conditioned 

media were collected and examined both in vitro using tube formation and migration 

assay of human umbilical vein endothelial cells (HUVECs) and ex vivo via the hen's egg 

test - chorioallantoic membrane (HET-CAM) assay.  The migration capacity of 

microstructures conditioned mesenchymal stem cells was test in gap closure assay and 

time-laps microscope tracking. The neuronal differentiation efficiency is assessed by the 

gene and neuronal protein expression. To explore the underlying mechanism, the 

activation of integrin, FAK and MAPK/ERK is investigated using flow cytometry, ELISA 

and west blotting.  

Aims 

This work is dedicated to investigate the modulation effects of surface with different 

microscale curvature levels on the secretion, migration capacities of human MSCs and 

the neural differentiation efficiency of iPSCs. The aim of the study is also trying to reveal 

the underlying mechanism of the surface curvature induced response of stem cells, such 

as the integrin activation, focal adhesion kinase activity and the consequent MAPK/ERK 

phosphorylation, which would improve our understanding of these influences of surface 

microscale structures on stem cell behaviors and the underlying molecular mechanisms.  
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Abstract 

Fine tuning of the substrate properties to modulate mesenchymal stem cell (MSC) 

function has emerged as an attractive strategy to optimize their therapeutic potential. In 

the context of mechanotransduction process, the conformational change of integrin 

(integrin activation) plays a critical role to perceive and transmit various signals. In this 

study, polymeric cell culture inserts with defined bottom roughness were fabricated as a 

model system for cell cultivation. We showed the conformational change of integrin and 

its downstream signaling cascade of human adipose-derived mesenchymal stem cells 

(hADSCs) could be modulated by the curvature of the cell-material interface. The 

mailto:andreas.lendlein@hzg.de
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curvature of substrate surface with a roughness in the size range of a single cell could 

strongly increase high-affinity β1 integrin level of hADSCs without alteration of total β1 

integrin level. Further, the integrin downstream FAK/ERK and Rho/ROCK pathways were 

activated and resulted in upregulated VEGF secretion of hADSCs. Conditioned medium 

on such a surface exhibited a strong pro-angiogenic effect, with an increased formation 

of tubular structure, a higher migration velocity of endothelial cells and an enhanced blood 

vessel density in ex vivo hen's egg test-chorioallantoic membrane (HET-CAM). These 

results highlighted the clinical potential to manipulate topographic features of cell culture 

substrate, whereby to regulate integrin affinity states and further control MSC functions.  

Key words: micro-scale curvature, mesenchymal stem cells, integrin activation, FAK, 

angiogenesis 

 

1 Introduction 

Mesenchymal stem cells (MSCs) have demonstrated major advantages to meet the 

clinical requirements including abundance, homing ability, functional plasticity and 

immunoregulatory properties.1 Accumulated evidences have proved that MSCs can 

transmit the cues from their micro-environment such as stiffness,2, 3 surface topography,4-

8 and external force 9 into biochemical activity, which is referred to 

mechanotransduction.10, 11 This opens a promising field of modulating and controlling 

MSC function simply through mechanical stimuli for improved therapeutic efficacy. Among 

these stimuli, surface topography/roughness is an effective approach to modulate MSCs. 

It has been demonstrated that bioceramic scaffolds with micro-nano-hybrid surface 

topographies could significantly enhance cell attachment and viability, osteogenic 

differentiation and pro-angiogenic effects of MSCs;7 and poly(ε-caprolactone) surface 

with a roughness level similar to native bone induced the preferential osteogenic 

commitment of MSCs.12 Hence, understanding the molecule mechanisms to further utilize 

these beneficial effects is of major clinical relevance. 
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Integrin, as a transmembrane receptor and primary mechanosensor of cells, plays a 

critical role to perceive various signals during the mechanotransduction process.13 

Integrin is a heterodimer of the non-covalently linked type I transmembrane α and β 

subunits. A substantial proportion of integrins on cell surface are inactive. Upon 

extracellular stimulation, integrins undergo a change in conformation and affinity (integrin 

activation), which allows the recruitment of several cytoplasmic proteins. 14 High-affinity 

integrins are highly concentrated in the cell’s contact points to ECM including focal 

adhesions and their variants (focal complexes, fibrillar adhesions and podosomes), 

mediating cell-ECM interaction. As integrins bind both extracellular and intracellular 

ligands, they regulate the bidirectional transmission of the mechanical and biochemical 

signals across the cell membrane.15 On one hand, the ‘inside-out’ signaling leads to 

conformational changes in the extracellular domain of integrin, resulting in an increased 

affinity of integrin to extracellular ligands. This process is termed integrin activation and 

is regulated by different intracellular activators, such as talin or kindlin, which bind to the 

cytoplasmic tail of integrin.16 Once activated, integrin mediates extracellularly the 

mechanical interaction of cells with ECM, connects to cytoskeletal actin intracellularly via 

a series of linker proteins and regulates several important signaling cascades by 

activating protein tyrosine kinases such as focal adhesion kinase (FAK) and Src-family 

kinases.17 On the other hand, integrin can transmit the signals into the cells through the 

‘outside-in’ signaling, providing extracellular information including its adhesive state and 

the surrounding environment. Both the conformational change and the clustering of 

integrin contribute to the ‘outside-in’ signaling and can lead to a series of cellular response 

to extracellular matrix such as cell adhesion, cytoskeletal structure, migration, gene 

expression, cell survival, proliferation and differentiation.15 Therefore, understanding the 

integrin conformation/affinity change and its downstream pathways would be of great 

importance to clarify the mechanotransduction mechanism, providing valuable 

information for design and development of novel substrates potentially used as cell 

culture device or implants. 

In this study, we hypothesized that tuning the curvature of cell-material interface might be 

an effective approach to regulate β1 integrin affinity and its downstream signaling 

pathways, and further modulate MSC behavior and function. As a cell culture device, 
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polystyrene (PS)-based inserts with three roughness levels on the bottom were fabricated 

for culturing hADSCs (Fig. 1A-D). As the PS used here is an amorphous polymer, it can 

provide a homogeneous surface. A smooth surface (PS-000) was used here as a control. 

A surface (PS-160) with a roughness level comparable to hADSC dimension (~ 100 µm 

in adhesion) was expected to regulate the MSCs at the single cell level via its local 

curvature, while a surface (PS-320) with a roughness surpassing hADSC size might be 

capable of modulating cell clusters. The cellular responses of hADSCs to the roughness 

including their morphology, surface markers and proliferation were evaluated. The VEGF 

secretion was quantified, and the effect of the conditioned media from the cell cultures on 

angiogenesis was examined both in vitro using human umbilical vein endothelial cells 

(HUVECs) and ex vivo via the hen's egg test - chorioallantoic membrane (HET-CAM) 

assay. In particular, we studied the underlying mechanism, through which the VEGF 

secretion of hADSCs was regulated by the micro-scale roughness. Our results 

demonstrated that the PS-160 surface with a roughness in the range of cell size could 

elevate high-affinity β1integrin level without an alteration of total β1 integrin level, resulting 

in the significantly promoted VEGF secretion of hADSCs (as illustrated in Fig. 1E). 
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Fig. 1. Modulating VEGF secretion of hADSCs via micro-scale surface curvature. (A) 

Phase contrast microscope images showing the top-view of the insert bottoms with 

different roughness. (B) Side-view surface profiles of the insert bottoms determined by 

optical profilometry. (C) The inserts were coated with fibronectin to facilitate cell adhesion 

and the immunofluorescent staining images demonstrated the distribution of pre-coated 

fibronectin. The absorbed fibronectin formed the homogeneous layers (green) on all 

surfaces according to the cross-sectional view of the orthoimages. (D) The hADSCs were 

cultured on fibronectin-coated surfaces for 14 days followed by fluorescence staining to 

detect the actin cytoskeleton (red), nuclei (blue) and fibronectin (green) using a confocal 

laser scanning microscope. (E) Schematic diagram illustrating that the micro-scale 

curvature of the substrate surface could influence hADSC shape and morphology, and 

modulate VEGF secretion via integrin mediated mechanotransduction. 
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2 Experimental Section 

2.1 Cell culture inserts 

PS (Type 158K, BASF, Germany) with a number average molecular weight of Mn = 

109.000 g·mol-1 was used without any further purification to prepare the inserts fitting 

standard 24-well tissue culture plates via injection molding as described before.18, 19 The 

(micro)curvature of the injection molded polystyrene cell culture inserts was controlled by 

the utilization of metal cylinders having different micro surface roughness in a custom 

made mold. Three differently structured cylinders were utilized to manufacture the inserts 

with different types of bottom roughness: a cylinder with a polished contact surface (PS-

000), and two cylinders with micro-structured surfaces according to the standard of 

German Institute for Standardization (DIN 16747: 1981-05), M30 (PS-160) and M45 (PS-

320). The prepared inserts were sterilized by gas sterilization (gas phase: 10% ethylene 

oxide, 54 ºC, 65% relative humidity, 1.7 bar, 3 h of gas exposure time and 21 h of aeration 

phase). Before using the prepared inserts for hADSC cultivation, the inserts were coated 

with human fibronectin (Sigma-Aldrich, St. Louis, MO, USA) to enhance the cell 

attachment. For each insert, 300 µl of fibronectin solution (10 µg/ml in PBS) was added 

and incubated at 37 ºC for 1 h, followed by washing three times with PBS.  

Optical profilometry and atomic force microscopy was employed for characterization of 

the PS surface structures. An optical profilometer type MicoProf 200 (FRT - Fries 

Research & Technologie GmbH, Bergisch Gladbach, Germany) equipped with a CWL 

300 chromatic white-light sensor was utilized for determination of the arithmetic average 

roughness (Ra) at micro scale and the mean spacing between the peaks (Sm) of sterile 

PS substrates (details are given in Supporting method S1). Surface topography 

investigations and nanoindentation experiments were conducted with an atomic force 

microscope MFP-3D Bio-AFM (Asylum Research, Santa Barbara, CA, U S A) with PS 

substrates in the dry state at ambient conditions (for details see Supporting method S2). 
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2.2 Cell culture and conditioned medium collection 

hADSCs were isolated from human adipose tissue as described previously 4. The adipose 

tissue was obtained by abdominal liposuction from a female donor after informed consent 

(No.: EA2/127/07; Ethics Committee of the Charité - Universitätsmedizin Berlin, approval 

from 17.10.2008). The hADSCs were expanded in human adipose-derived stem cell 

medium (ADSCTM growth medium, Lonza, Walkersville, MD, USA) and then stored in 

liquid nitrogen. The cells were recovered and maintained in a cell culture incubator (37 °C, 

5% CO2), and were used from passage three for all experiments. The HUVECs (Lonza, 

Walkersville, MD, USA) were cultured in the endothelial cell growth medium (EGMTM, 

Lonza, Walkersville, MD, USA) in a cell culture incubator.  

The conditioned media of hADSC cultures derived from different surfaces were collected 

at the indicated time points. 1.0 × 104 cells were seeded per insert. 24 h before medium 

collection, the growth medium was replaced with 500 µl of fresh ADSCTM medium. 

Collected conditioned media were stored at -20 ºC for further experiments. 

2.3 Cell size and contact area to the substrate 

To study the cell size and contact area to the material surface, hADSCs were seeded with 

the number of 1.0 × 104 cells for each insert and were fixed after 3 days of culture to 

perform the fluorescence staining. Four fluorescent images in each group were then 

analyzed using ImageJ software (National Institutes of Health, USA) to calculate the cell 

size (2D spreading area). First, the total cell covered area was calculated, and the cell 

number was determined by counting the nuclei. Then the 2D spreading area of single 

cells was calculated by dividing the total cell covered area with the cell number. However, 

it should be noted that such an analysis becomes difficult at a higher cell density, due to 

the proximity of the cells. 

The true cell size or contact area to the rough surfaces (3D spreading area) was further 

calculated based on the result of 2D spreading area. The ratio of surface area (SAR) 

between the rough surfaces and smooth surface was calculated via the model-based 

analysis (SAR, PS-160/PS-000 = 1.18; SAR, PS-320/PS-000 = 3.24; see supporting method 
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S4 and Fig. S6). Assuming that the cells were distributed randomly on the rough surfaces, 

the following equation was applied: 3D spreading area = 2D spreading area × SAR. 

However, randomly distributed hADSCs were only observed on PS-160, but not on PS-

320.  

2.4 Fluorescence staining and laser scanning microscopy 

1.0 × 104 hADSCs were seeded into each insert. At the indicated time points for staining, 

the cells were fixed with 4% paraformaldehyde for 20 minutes, permeabilized with 0.1% 

Triton X-100 for 10 minutes and blocked with 1% BSA for 30 minutes. Vinculin was 

stained with mouse anti-human vinculin monoclonal antibody (Merck Millipore, Darmstadt, 

Germany) and Alexa Fluor® 488 labeled IgG antibody (Life Technologies, Darmstadt, 

Germany). F-actin was stained with Alexa Fluor® 555 Phalloidin (Life Technologies, 

Darmstadt, Germany). The cell nuclei were stained with Hoechst 33342 (NucBlue® Live 

Reagent, Life Technologies, Darmstadt, Germany). To detect the pre-coated fibronectin 

on different surfaces and study its organization during cell culture, fibronectin was stained 

with Anti-Fibronectin antibody-Alexa Fluor® 488 (Abcam, Cambridge, United Kingdom). 

After staining, the samples were scanned with a confocal laser scanning microscope 

(LSM 780, Carl Zeiss, Jena, Germany) using the mode of z-stack multilayer scanning, 

and the images were processed using ZEN 2012 software (Carl Zeiss, Jena, Germany). 

The cross-sectional view of the orthographic images was used to study the distribution of 

the pre-coated fibronectin, and the fluorescence intensity was analyzed using ImageJ 

software (National Institutes of Health, USA) to compare the adsorption density of 

fibronectin on different surfaces and in different areas. The top-view images of the 

samples were processed by Maximum Intensity Projection to study the cell morphology, 

fibronectin organization and focal adhesions, and further analyzed to study the cell size 

and contact area to the material surfaces.  

In addition, to observe the cell-material interface, the tilted-view images were taken by 

tilting the samples to make a 25° angle between the objective and the material surface 

(Fig. S3A). A confocal laser scanning microscope (LSM 780, Carl Zeiss, Jena, Germany) 

was applied to scan the samples using the mode of z-stack multilayer scanning. The 3D 
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images were then reconstructed based on the single layer scanning images using the 

ZEN 2012 software (Carl Zeiss, Jena, Germany). 

2.5 Flow cytometry 

1.0 × 104 hADSCs were seeded into each insert. After 14 days of culture, the cells were 

harvested and stained with a Human MSC Analysis Kit (StemflowTM, BD Biosciences, 

Heidelberg, Germany) according to the manufacturer's instruction to examine the cell 

surface markers. To quantify the β1 integrin, hADSCs were cultured in the inserts for 4 

days. Then the cells were harvested using StemPro Accutase® (Thermo Fisher Scientific, 

Bonn, Germany) for 2 minutes at 37 °C, fixed with 4% (w/v) paraformaldehyde for 15 

minutes. To detect β1 integrin in the whole cells (surface and cytoplasm), the cells were 

permeabilized with 0.1 % (w/v) Triton X-100 in PBS for 10 minutes. To detect β1 integrin 

on the cell surface, no permeabilization step was applied. After blocking with 1% (w/v) 

BSA for 30 minutes, the activated or total β1 integrin was stained using monoclonal 

mouse anti-human integrin beta-1 antibody (HUTS-4, Millipore, Darmstadt, Germany) or 

total integrin beta-1 antibody (Abcam, Cambridge, UK), and Alexa Fluor® 488 labeled 

IgG antibody (Life Technologies, Darmstadt, Germany). A flow cytometer (MACSQuant®, 

Miltenyi Biotec, Bergisch Gladbach, Germany) was used to analyze the cells, and the 

data were processed using Flowjo software (Tree Star Inc., Ashland OR, USA).  

2.6 Enzyme-linked immunosorbent assay (ELISA) 

The expression levels of VEGF, phosphorylated FAK (pFAK), total FAK (tFAK) and 

phosphorylated extracellular signal-regulated kinase (pERK) of hADSCs growing on 

different surfaces were quantified by ELISA. The VEGF concentration in the conditioned 

medium was determined using a human VEGF-A ELISA kit (Thermo Fisher Scientific, 

Bonn, Germany). The concentration of pFAK, tFAK and pERK in the cell extract were 

measured using the pFAK (pY397), tFAK and pERK (ERK1[pTpY202/204] and 

ERK2[pTpY185/187]) ELISA kits (Life Technologies, Darmstadt, Germany). The amount 

of total protein in the cell extract was determined using a BCA protein assay kit (Thermo 
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Fisher Scientific, Bonn, Germany) to normalize the expression levels of the proteins of 

interest.  

2.7 Tube formation and migration of HUVECs 

The tube formation and migration of HUVECs were tested using the conditioned media 

collected from the hADSC cultures on different surfaces. To assess the tube formation of 

HUVECs, a 24-well tissue culture plate was first coated with Geltrex® Matrix solution (Life 

Technologies, Darmstadt, Germany; 200 µl per well) according to the given protocol. 

Thereafter 6.0 × 104 HUVEC cells per well were seeded on the matrix. For each well, 500 

µl of conditioned medium collected at day 14 was applied for cell culture. The cells were 

stained with calcein (Life Technologies, Darmstadt, Germany) after 24 h of incubation, 

and the formed tubes were visualized using a fluorescence microscope (AxioSkop, Carl 

Zeiss, Jena, Germany). In each well, the images were taken in randomly selected 

observation fields and the number of the complete rings was counted.  

The migration of HUVECs was tracked using a time-lapse imaging microscope (IX81 

motorized inverted microscope, Olympus, Hamburg, Germany) equipped with a bold line 

cage incubator to maintain cell growth in a humidified atmosphere (37 °C, 5% CO2). 

HUVECs were seeded in a 24-well tissue culture plate with the number of 2.0 × 104 cells 

per well. After 24 h of culture, the medium was replaced with the conditioned medium 

collected at day 14 (500 µl per well), and the cell migration was recorded up to 24 h. The 

migration trajectories and velocity were analyzed using ImageJ software (National 

Institutes of Health, USA) combined with the software plug-ins “manual tracking” and 

“chemotaxis and migration tool” (ibidi GmbH, Martinsried, Germany). 

2.8 HET-CAM assay 

HET-CAM assay was performed to assess the effect of the conditioned medium on 

angiogenesis. The fertile VALO SPF eggs of white Leghorn species (Lohmann Tierzucht 

GmbH, Cuxhaven, Germany) were bred at 37°C and 65% humidity for 8 days in the 

breeding incubator (BSS 300 MP GTFS, Grumbach GmbH, Asslar, Germany). Before the 

test, the position of the air bubbles was marked under a shell lamp, and the marked upper 
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part of the egg shell was removed. Then the exposed inner membrane was moistened 

with 0.9% NaCl and carefully removed. After that, 500 µl of conditioned medium collected 

at day 14 was dropped on the chorioallantoic membrane. Images were taken at the 

starting point, 24 h and 48 h later, respectively, using a stereomicroscope (MZ16A, Leica, 

Wetzlar, Germany). The vessels crossing the middle line of the image were counted, and 

the fold increase of the vessel density was calculated (fold increase = vessel density after 

24 or 48 h / vessel density at starting point). 

2.9 Inhibition experiment 

FAK inhibitor PF-573228 and rho-associated coiled-coil-containing protein kinase (ROCK) 

inhibitor Y-27632 (both are from Sigma-Aldrich, St. Louis, MO, USA) were used in the 

inhibition experiment. 1.0 × 104 hADSCs were seeded per insert. After 10 days of culture 

PF-573228, Y-27632 or both were added at a final concentration of 10 µM each. The 

inhibitor-containing medium was changed once at day 12. The conditioned medium was 

collected at day 14 and the cells were lysed to extract the proteins.  

2.10  Statistics 

The number of replication for experiments was larger than three as indicated respectively 

in figure legend for each assay, and data are expressed as mean ± standard deviation. 

Statistical analysis was performed using two-tailed independent samples t-test, and a 

significant level (Sig.) < 0.05 was considered to be statistically significant. 

 

3 Results and discussion 

3.1 Surface characterization 

Three substrates were designed and prepared: PS-000 smooth surface, PS-160 with a 

surface roughness in the range of cell size, PS-320 with a roughness surpassing hADSC 

size. The insert bottom was analyzed by optical profilometry measurements and the 

obtained results are listed in Table S1. PS-000 exhibited a Ra value of 0.13 ± 0.07 µm, 
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while higher Ra values of 4.17 ± 0.17 µm and 25.4 ± 3.8 µm were obtained for the micro-

rough surfaces PS-160 and PS-320. The Sm value of PS-160 was 164 ± 16 µm, 

comparable to the dimension of single hADSC, while for PS-320 a higher Sm of 316 ± 36 

µm was found. The nanoscale roughness obtained by atomic force microscopy exploring 

a scan size of 2 × 2 µm2 revealed average Ra values less than 15 nm for the different 

surfaces. As the surfaces were coated with human fibronectin prior to cell seeding, the 

fibronectin adsorption and distribution were evaluated. The coated fibronectin formed a 

homogenous layer on the insert bottom (Fig. 1C). The fibronectin density was at a similar 

level on different surfaces and in different areas according to the fluorescence intensity 

analysis. AFM investigations utilizing nanoindentation technique showed almost similar 

local mechanical properties of the different substrates. Here, a Young’s modulus of 31 ± 

2 GPa was found for PS-000, while values of 30 ± 5 and 29 ± 2 GPa were obtained from 

nano-indenting the top of the hills of the rough samples PS-160 and PS-320 (Table S1).  

3.2 hADSC proliferation, surface markers and morphology 

We found the initial cell attachment after 24 h was similar on all surfaces (Fig. S1A), which 

was different to the result reported by Bigerelle et al. In their study, the bone marrow 

MSCs showed a lower attachment on the surface with the roughness relevant to the cell 

size.20 The possible reasons for this discrepancy might be the surface chemistry of the 

cell culture materials employed, as we used fibronectin-coated PS compared to the 

titanium surfaces used in their study. Similarly, no effect of surface roughness on the 

proliferation rate of hADSCs was observed. The proliferation activity of the cells on 

different surfaces was similar during 2 weeks of cultivation (Fig. S1A). After 14 days of 

culture, no change of surface marker expression was observed, independent of the 

roughness of the culture surface. MSC markers were well preserved and non-MSC 

markers were not detected, demonstrating that the surface curvature has no influence on 

hADSC surface markers (Fig. S1B).  

Immunofluorescent staining was performed to investigate the cell morphology. After 3 

days of cell culture, analysis based on fluorescent images showed that hADSCs 

presented a smaller 2D projection size but a similar effective spreading area in 3D on PS-
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160, as compared to the cells on smooth surface (Fig. 2), suggesting PS-160 surface 

could effectively modulate hADSC size and shape. In addition, distinct difference was 

observed in cells on different surfaces with respect to their orientation, distribution, F-actin 

arrangement and fibronectin organization (Fig. S2). The cells on PS-000 surface showed 

a highly aligned cell orientation and actin cytoskeleton. In contrast, cells and their stress 

fibers on PS-160 and PS-320 were less orientated. The fibronectin organization by the 

cells was affected by the surface curvature. Most fibronectin localized beneath the cells, 

and an increase in fibronectin fibrils around the cell periphery was observed. Notably, the 

cells on PS-320 were less homogeneously distributed, as compared to those on PS-000 

and PS-160. 

To further study the interaction of cells and materials, the stained samples were observed 

from a tilt angle (Fig. S3A). This approach could overcome the limitations of normal top-

view method, as the images of cell-material interface could be generated with high 

resolution. The single layer scanning images indicated that the cells formed a monolayer 

on all surfaces (Fig. 1D). Accordingly, a smooth cell layer was observed on PS-000, 

whereas the rougher cell layers were found on PS-160 and PS-320 (Fig. S3B). 

Moreover, our model-based analysis indicated that the cells on PS-160 and PS-320 

surfaces might perceive the different cues of local curvature (Fig. S6 and Supporting 

method S4). Compared to PS-320, the PS-160 surface with a roughness in the range of 

cell size has apparently a larger portion of surface with optimal curvature properties for in 

situ regulation of hADSC properties. Accordingly, when hADSCs attached on PS-160 a 

large fraction of cells could be affected by the local curvature. In contrast, the larger 

portion of relatively smoother surface in the range of cell size on PS-320, for example the 

broad valleys, flat peaks or gentle slopes, may in average reduce the effect of local 

curvature experienced by the given hADSCs. 
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Fig. 2. hADSC size and contact area to the material surfaces. (A) Representative images 

of fluorescently stained hADSCs on different substrates (bar = 100 µm). Inhomogeneous 

cell distribution was observed on PS-320 surface, as indicated by the areas enclosed by 

the dash-lines (white: low cell density; yellow: high cell density). (B) 2D and 3D spreading 

area of single hADSCs on different surfaces. The quantification was based on 4 randomly 

selected images (*Sig < 0.05).  
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3.3 Enhancement of integrin mediated FAK signaling by micro-scale 

curvature 

Cells receive various mechanical signals via their transmembrane receptors (such as 

integrin) from their micro-environment, assemble focal adhesions accordingly and launch 

a series of intracellular biochemical signaling events.21 To study the cell-material 

interaction and to determine the potential mechanism, the focal adhesion-related protein 

components were investigated. Flow cytometry analysis was performed to quantify 

activated and total β1 integrin in hADSCs cultured on different substrates. The 

significantly higher levels of activated β1 integrin on cell surface and in the whole cells 

were observed in PS-160 group at day 4, as compared to the cells on PS-000 and PS-

320. The total β1 integrin was at the similar level for these three groups (Fig. 3A). These 

results were further confirmed by immunofluorescence staining and western blot analysis 

(Fig. S4). The focal adhesion complex formation was examined by immunofluorescent 

staining of vinculin. After 4 days of culture, hADSCs on PS-160 surface formed more focal 

adhesions than on PS-000 and PS-320 (Fig. 3B). These results suggested that PS-160 

substrate could enhance the β1 integrin activation of hADSCs without alteration of the 

total β1 integrin level. Given that the surface chemistry of these substrates was identical, 

the enhanced β1 integrin activation might be predominantly due to the physical features 

of PS-160 surface. We speculated that the PS-160 roughness with a comparable scale 

to cell size might provide appropriate topographic cues such as the local curvature, which 

could be perceived by cells to modulate the integrin mediated adhesion. This observation 

is consistent with the previous findings that the focal adhesion complexes of MSCs were 

primarily formed at the regions of local curvature when they grew on 2D micro-patterns 

or in 3D micro-wells.4, 22 Notably, the difference in fibronectin remodeling by hADSCs on 

different surfaces was observed here (Fig. S2). Fibronectin remodeling is dynamically 

related with integrin activation. On the one hand, extracellular fibronectin assembly 

requires the participation of integrin that recognize the RGD and synergy sequences in 

fibronectin.23 On the other hand, the fibronectin density can affect the activation of cell 

surface integrin.24  
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The engagement of integrin with its extracellular ligand can activate various intracellular 

signaling components. Multiple structural and signaling proteins are recruited to focal 

adhesions upon cell adhesion to ECM. Among these proteins, FAK is one of the most 

prominent signaling molecules, which is composed of a central kinase domain flanked by 

an N-terminal FERM domain and a C-terminal FAT domain.25, 26 Intracellularly, the 

autophosphorylation of FAK at Y397 can be initiated by the binding of integrins to ECM 

and their clustering. Y397 is the most important phosphorylation site since the kinase 

activity of FAK can be fully activated via its phosphorylation. Phosphorylation at Y397 

creates a high-affinity binding site for the Src-homology 2 (SH2) domain of Src family 

kinases. The recruitment of Src by FAK leads to a conformational activation of Src, which 

consequently promotes the Src-dependent phosphorylation of FAK at other tyrosines.27 

In this study, at day 4 the ratio of phosphorylated to total FAK (pY397FAK/tFAK) was 

significantly higher in the PS-160 group as demonstrated by ELISA result, and this 

elevated FAK phosphorylation was maintained at least 14 days (Fig. 3C). Further, a 

higher FAK phosphorylation level in cells on PS-160 than on PS-000 and PS-320 was 

evidenced by the immunostaining and western blot results (Fig. S5). 
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Fig. 3. PS-160 substrate enhanced β1 integrin activation, focal adhesion formation and 

FAK phosphorylation. (A) Activated β1 integrin (Act-β1) and total β1 integrin (T-β1) were 

quantified using flow cytometry, and the result was expressed as the fold change of mean 

fluorescence intensity (MFI) compared to PS-000 group. hADSCs on PS-160 showed the 

higher levels of activated β1 integrin on cell surface and in the whole cells compared to 

cells on PS-000 and PS-320. (B) Representative laser scanning microscopic images 

showed the formation of a higher number of focal adhesions on PS-160 than on PS-000 

and PS-320 (red: F-actin; green: vinculin; blue: nuclei; bar = 10 µm). (C) FAK 

phosphorylation was induced by PS-160 surface to a significantly higher level than by 

PS-000 and PS-320. Cells cultured in 3 independent inserts of each group were analyzed 

(*Sig < 0.05). 

3.4 Promotion of VEGF secretion by micro-scale curvature 

Upon integrin engagement, the activation of FAK and Src can subsequently activate the 

downstream mitogen-activated protein kinase (MAPK)/ERK pathway. The 

phosphorylation of FAK at Y925 facilitates the SH2-mediated binding of Grb2 adaptor 

protein, which can activate the Ras-Raf-MEK-ERK signaling and promote VEGF 

expression in tumor cells.28 Here, the VEGF secretion of hADSCs on different surfaces 

was quantified and the pro-angiogenic effect of cell secretome was assessed. 

First, the VEGF concentration in the conditioned media of hADSCs cultured on different 

surfaces was quantified at day 4, 7 and 14. Markedly, hADSCs cultured on PS-160 

surface secreted more VEGF than those on PS-000 and PS-320 at all of the time points 

of measurement. At day 4, the VEGF concentration in the medium of PS-160 culture was 

around 40% and 50% higher than that in PS-000 and PS-320 cultures, respectively. After 

2 weeks, the VEGF concentration in the medium of PS-160 culture still remained highest, 

around 80% and 20% increase over that in PS-000 and PS-320 groups, respectively (Fig. 

4A). Further, to challenge the possible biological relevance of elevated VEGF in the 

hADSC secretome as a result of culturing cells on surfaces with micro-scale curvature, 

the pro-angiogenic effect of the conditioned media was assessed by an in vitro assay. 

The conditioned medium derived from hADSCs cultured on PS-160 surface could 
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significantly enhance the tube formation of HUVECs compared to accordingly conditioned 

media from PS-000 and PS-320 surfaces (Fig. 4B). To evaluate the HUVEC migration 

driven by the conditioned media, the cells were cultured in the conditioned media and 

their migration track was recorded using a time-lapse microscope. The HUVEC migration 

velocity was significantly elevated when grown in conditioned medium derived from PS-

160 surface. The cells in PS-160 medium moved around 1.4 and 1.3 times as fast as the 

cells in PS-000- and PS-320 media, respectively (Fig. 4C). A HET-CAM assay was 

performed to further evaluate the pro-angiogenic capacity of conditioned media under ex 

vivo condition. A higher number of newly formed vessels was observed on the 

chorioallantoic membrane treated by PS-160 medium than by PS-000 and PS-320 media 

(Fig. 4D). Compared to the initial state, the PS-160 medium resulted in the highest fold 

increase of vessel density after 24 h, as compared to the PS-000 and PS-320 media. 

After 48 h of treatment, there was still a significant higher increase of the vessel density 

in the PS-160 medium treated group, consistent with the finding in the in vitro 

tubulogenesis assay. Our findings on the modulation of angiogenic capacity of freely 

migrating MSCs by local curvature are in part supported by the latest report using discrete 

adhesive micropatterns, with varying aspect ratio and local curvature, to stimulate 

immobilized MSCs the angiogenic factor secretion.29 It should be noted that the enhanced 

pro-angiogenic effect of the conditioned medium from PS-160 might be due to not only 

the VEGF upregulation but also a synergistic effect with other growth factors. Further 

studies are necessary to clarify the secretion profile of angiogenic factors at different 

interface curvatures.  
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Fig. 4. PS-160 substrate promoted VEGF secretion of hADSCs, and enhanced pro-

angiogenic effect of conditioned medium. (A) VEGF secretion of hADSCs on PS-160 

surface was induced to a higher degree than on PS-000 and PS-320 surfaces. Cells 

cultured in 3 independent inserts of each group were analyzed (*Sig < 0.05). (B) 

Representative images showed the tube formation of HUVECs in conditioned media 

derived from different surfaces. The HUVECs were stained by calcein. The number of the 

complete rings was counted in 7 randomly selected images to quantify the formed tubes. 

(C) For cell migration assay, HUVECs cultured in different conditioned media were 

tracked up to 24 h to generate the migration trajectories and to calculate the migration 

velocity. For each group, the migration velocity of 60 cells was analyzed. (D) 

Representative images showed the vessels on the chorioallantoic membrane at the 

starting point (0 h) and after incubation for 24 and 48 h with the conditioned media. The 

vessels were accounted based on 5 randomly selected images and the values indicated 

the fold increase of vessel density as compared to the starting point. (bar = 500 µm; *Sig 

< 0.05) 

3.5 VEGF expression regulated by FAK signaling pathway 

Small molecule inhibitors related to FAK and ROCK signaling pathways were applied to 

elucidate the underlying mechanism of micro-scale curvature induced enhancement of 

VEGF secretion. Without inhibition, the expression levels of both pY397FAK and VEGF 

were significantly higher in the cells growing on PS-160, as compared to the cells on PS-

000 and PS-320 (Fig. 5A, B). When treated with FAK inhibitor, ROCK inhibitor or both for 

4 days, pY397FAK expression was significantly inhibited (Fig. 5A). Accordingly, VEGF 

levels in the conditioned media were decreased by the inhibitors, as compared to the 

untreated group (Fig. 5B). In addition, the relative expression levels of related proteins in 

the untreated hADSCs on PS-160 were determined at different time points. The VEGF 

expression increased at the earlier stage and reached the peak at day 10. Notably, VEGF 

amounts determined in the cell culture supernatants largely followed the expression levels 

of pY397FAK and pERK1/2, and a significant correlation between the expression levels 

of these three proteins was observed (Fig. 5C). These results indicated the key regulatory 



35 
 

function of FAK signaling on VEGF expression of hADSCs in response to surface 

curvature.  

MSCs sense and response to the mechanical environment through the interaction of a 

signaling network components including FAK, cytoskeletal dynamics and RhoA/ROCK.9 

In the current study, the participation of RhoA/ROCK pathway in VEGF secretion was 

observed. The regulation of VEGF secretion by RhoA/ROCK might be through different 

pathways. First, RhoA/ROCK could stimulate FAK phosphorylation and then activate the 

ERK signaling. Second, RhoA/ROCK could phosphorylate and activate the downstream 

target PTEN,30 which in turn inactivates Akt.31 This would promote ERK activation as 

phosphorylation of Raf by Akt can inhibit the activation of the Raf-MEK-ERK cascade.32 

Further studies focusing on the exact function of RhoA/ROCK for mediating VEGF 

secretion of MSCs will be interesting. 
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Fig. 5. Modulation of VEGF expression in hADSCs via FAK/ERK signaling. Both 

pY397FAK (A) and VEGF (B) levels were downregulated when the cells were treated with 

FAK inhibitor (PF-573228) or/and ROCK inhibitor (Y-27632). Cells cultured in 3 

independent inserts of each group were analyzed (*Sig < 0.05 in the untreated group; # 

Sig < 0.05 for inhibitor treated groups vs untreated group). (C) The expression levels of 

VEGF, pY397FAK and pERK1/2 exhibited the similar pattern in hADSCs on PS-160 

surface and showed a significant correlation according to the analysis of Spearman's rank 

correlation coefficient (rs) and Pearson correlation coefficient (rp) (VEGF vs pY397FAK: 

rs = 0.9, rp = 0.957; VEGF vs pERK1/2: rs = 0.9, rp = 0.911; pY397FAK vs pERK1/2: rs 

= 1, rp = 0.931). The conditioned media or cell extract samples from 3 independent PS-

160 inserts were collected to perform the ELISA analysis. The expression levels of 

proteins of interest were normalized against the amount of total protein of the cells. 

In summary, these results demonstrated that integrin activation and its downstream 

signaling network were critically involved in hADSC modulation by micro-scale curvature 

(Fig. 6). When hADSCs attached on the surface with a roughness comparable to the cell 

dimension, complex changes in the micro-environment will be sensed by the cells. 

Parameters to consider such as the topography-dependent spectrum of local curvatures, 

alone or in conjunction with the contacted polymer area, could result in the alteration of 

cell shape, morphology, cytoskeleton organization and the distribution of adhesion points. 

Activation of the integrin can be enhanced under these conditions, where their 

extracellular domains undergo conformation/affinity changes and transmit signals across 

the cytoplasmic membrane. FAK, as a key component of the integrin triggered signaling 

pathway, was subsequently activated. The signaling network including FAK and 

Rho/ROCK may exert the regulatory effect on cell morphology and actin cytoskeleton 

organization, and activate downstream ERK signaling to enhance VEGF expression. This 

study pointed at a gateway to control parameters of MSCs critical for their therapeutic 

potential by specifying cell-material interactions. As a promising cell source in 

regenerative medicine, MSCs can accelerate tissue regeneration predominantly due to 

their paracrine activity rather than their direct differentiation,1, 33-36 due to their low 

engraftment level and marginal survival rate at the injury site 37, 38. The regulatory and 

trophic factors in MSC secretome can exert multiple functions to achieve therapeutic 
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effects in tissue regeneration. Hence, regulating MSC secretion is of great relevance to 

their clinical applications. Our results suggested that fine-tuning the surface roughness 

might be an effective and safe approach to improve the therapeutic functions of MSCs. 

These results shed light on design and developing biomaterials for both in vitro and in 

vivo applications. For instance, in vitro preconditioning of MSCs on the surface with such 

a well-defined topography may improve their therapeutic efficacy after transplantation; or 

surface topography treatment as a preconditioning approach could be used for producing 

cell-free therapeutics. The MSC pre-seeded implant materials with an appropriate surface 

topography may accelerate tissue regeneration in vivo, which might be attributed to 

elevated level of predominant pro-angiogenic factors in MSC secretome 39-41. 

 

 

Fig. 6. Proposed model of regulatory effect of micro-scale curvature on hADSCs. 
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Compared to smooth surface (PS-000) or rougher surface (PS-320), the surface with 

micro-scale roughness comparable to hADSC dimension (PS-160) could present a larger 

portion of surface with optimal curvature properties for modulating hADSCs. The cell 

shape and morphology of hADSCs would be altered on such a surface. This physical cue 

of local curvature would induce the enhancement of integrin activation on cell surface, 

and then activate FAK to form a signaling network. The actin cytoskeleton organization 

would be modulated accordingly with the involvement of ROCK. And the downstream 

ERK signaling might be activated, leading to the upregulation of VEGF expression.  

4 Conclusion 

PS inserts with three different types of culture surface roughness (smooth surface: PS-

000; with roughness level comparable to hADSC size: PS-160; with roughness level 

surpassing hADSC size: PS-320) were fabricated to investigate the effect of micro-scale 

curvatrue on hADSCs. The cells exhibited different morphology and actin cytoskeleton on 

different surfaces, but neither their surface markers nor their proliferation were altered by 

micro-scale curvature. The conditioned medium derived from the substrate with a 

roughness comparable to hADSC size had a higher pro-angiogenic potential than that 

from smooth and rougher substrates, which could improve the tube formation and 

migration of HUVEC cells and enhance the new vessel formation on the chorioallantoic 

membrane of hen's eggs. Compared to smooth and rougher substrates, the substrate 

with a roughness comparable to hADSC size could promote VEGF secretion of hADSCs 

to a significantly higher level, and this effect was regulated through the increased high-

affinity β1 integrin level of hADSCs and downstream FAK signaling with participation of 

RhoA/ROCK. These findings allow a better mechanistic understanding of MSC response 

to micro-scale curvature. This knowledge might help to design and develop biomaterials 

with effective and functional surface structures, which can be potentially utilized as 

implants or in vitro cell culture materials, to modulate MSCs and consequently achieve 

clinical benefits in regenerative medicine.  
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Supporting methods 

Supporting method S1: surface microscale roughness characterization via optical 

profilometry 

The microscale roughness of the insert bottom was determined with an optical 

profilometer type MicoProf 200 (FRT - Fries Research & Technologie GmbH, Bergisch 

Gladbach, Germany) equipped with a CWL 300 chromatic white-light sensor. A scan size 

mailto:andreas.lendlein@hzg.de


43 
 

7 x 7 mm2 was investigated for calculation of the arithmetic average roughness (Ra). The 

data were acquired with the software AQUIRE (ver. 1.21) and evaluated with the software 

MARK III (ver. 3.9). The mean spacing between the peaks (Sm)-value was measured 

based on the obtained profilometry images. In brief, a mean line was first created and 

then the average value of the width of peaks at mean line was calculated. The side-view 

profile of the material surfaces was smoothed by a median filter to eliminate noise with 

abnormal amplitude. 

Supporting method S2: nanotopography and local mechanical analysis by AFM 

investigations 

Surface nanotopography investigations were carried out using an atomic force 

microscope (AFM, MFP-3D, Asylum Research, Santa Barbara, CA, USA). AC-mode 

scanning was conducted with a silicon cantilever type OMCL-AC160TS-R3 (Olympus, 

Tokyo, Japan) having a spring constant of 9 N/m. For topographical analysis an area with 

a scan size of 2 x 2 µm2 at three different locations of each sample was investigated in 

dry state at ambient temperature with a scan rate of 0.5 Hz. The arithmetic average 

roughness (Ra) of each image was obtained by the commercial software Igor Pro 6.22A 

and the mean Ra value and the respective standard deviation were calculated from these 

results. 

Nanoindentation measurements were conducted with same instrument (MFP-3D Bio-

AFM, Asylum Research, Santa Barbara, CA, USA) in the dry state at ambient conditions. 

The used indenter, chosen from the NanoIndenter module (Asylum Research, Santa 

Barbara, CA, USA), was a standard diamond Berkovich-tip with a spring constant k = 488 

N/m, Poisson’s ratio of νind = 0.2 and Young’s modulus of E indenter = 865 GPa. For each 

sample up to 100 single indents were recorded within the whole area of a sample, 

supported by up to three 64-indent arrays (force maps) in a quadratic area of 90 × 90 µm2 

with an indentation/scan rate of 0.1 Hz and a trigger force of 100 µN. The Young’s 

modulus was calculated by the Oliver-Pharr model [1] in a range from 20% to 90% at the 

force-distance curve. To determine the mean values, statistical distributions of Young’s 

moduli were fitted using a Gaussian function. Correspondingly, the error bars are 

represented by the distribution half width. For rough samples (PS-160 and PS-320) the 
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local mechanics were solely analyzed on the “hills” of the microstructures, where an 

orthogonal indentation can be expected. The calculated mean values of the Young’s 

modulus are listed in Table S1. 

Supporting method S3: cell proliferation assay 

1.0×104 hADSCs were seeded into each insert and the culture medium was changed 

every 3 days. The number of cells at different time points was determined using a Cell 

Counting Kit-8 (CCK-8, Dojindo Molecular Technologies, Munich, Germany). In brief, for 

each insert the old medium was replaced with 300 µl of fresh medium, followed by adding 

30 µl of CCK-8 solution. After 3 h of incubation at 37 ºC, 100 µl of medium/CCK-8 mixture 

were transferred from each insert into a transparent 96-well tissue culture plate, and the 

absorbance was measured at a wavelength of 450 nm and a reference wavelength of 

650 nm using a microplate reader (Infinite 200 PRO, Tecan Group Ltd., Männedorf, 

Switzerland). A standard curve, which was generated by measuring the absorbance of a 

series of samples with known cell numbers, was used to calculate the number of hADSCs 

in the inserts. 

Supporting method S4: cell active integrin and pFAK immunofluorescence staining 

After 4 days and 14 days, the cells were fixed with 4% (w/v) paraformaldehyde for 20 

minutes, permeabilized with 0.1% (w/v) Triton X-100 for 10 minutes and blocked with 1% 

(w/v) BSA for 30 minutes. Active integrin ß1 was stained with monoclonal mouse anti-

human integrin beta-1 antibody (HUTS-4, Millipore, Darmstadt, Germany) and Alexa 

Fluor® 488 labeled IgG antibody (Life Technologies, Darmstadt, Germany). pFAK was 

stained with rabbit anti human phospho-FAK(Y397) antibody (Cell Signaling Technology, 

MA, USA) and Alexa Fluor® 488 labeled IgG antibody (Life Technologies, Darmstadt, 

Germany). F-actin was stained with Alexa Fluor® 555 Phalloidin (Life Technologies, 

Darmstadt, Germany). The cell nuclei were stained with Hoechst 33342 (NucBlue® Live 

Reagent, Life Technologies, Darmstadt, Germany). After staining, the samples were 

scanned with a confocal laser scanning microscope (LSM 780, Carl Zeiss, Jena, 

Germany) and the images were processed with ZEN 2012 software (Carl Zeiss, Jena, 

Germany).  
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Supporting method S5: Western blotting 

Cell lysates from the hADSCs at day 4 and day 14 were prepared with RIPA buffer 

(Sigma-Aldrich, St. Louis, MO, USA) supplemented with phenylmethylsulfonyl fluoride 

(Life Technologies, Darmstadt, Germany) and Protease Inhibitor Cocktails (Sigma-

Aldrich, St. Louis, MO, USA). After centrifugation, the supernatant of cell lysates was 

stored at -80 ºC. To quantify the integrin and FAK expression, the protein solutions were 

denatured by heating at 95 °C for 5 minutes, separated by electrophoresis on 4–20% 

Mini-PROTEAN ® TGX™ Precast Protein Gels (Bio-Rad, München, Germany) and then 

transferred onto nitrocellulose membranes (Millipore, Darmstadt, Germany). The blots 

were probed with monoclonal primary antibodies (mouse anti-human integrin beta-1 

antibody (HUTS-4, Millipore, Darmstadt, Germany), rabbit anti human total integrin beta-

1 antibody (Abcam, Cambridge, UK) or mouse anti human FAK antibody and rabbit anti 

human phosphor-FAK(Y397) antibody (Cell Signaling Technology, MA, USA)) and the 

IRDye 680LT and IRDye 800CW secondary antibodies (Li-Cor, Bad Homburg, Germany). 

Fluorescent signal were then detected using an Odyssey Imaging scanner and the 

intensity was analyzed by image studio software (Li-Cor, Bad Homburg, Germany). 

Supporting method S6: model-based analysis of regulation of micro-roughness on 

hADSCs 

To investigate the complex relation between surface roughness, local curvature, and cell 

development, the optical profilometry experiments on the PS surface samples PS-160 

and PS-320 were further analyzed. Fig. S6A and S6B show typical examples for 3D height 

profiles for samples PS-160 and PS-320 over a base area of 1000 × 1000 µm2. To 

determine local surface area values, the base area was divided into 5 × 5 partitions of 

200 × 200 µm2, indicated by the black grids. The 3D height profile of the central partition 

of the grid (marked in green) is presented enlarged in Fig. S6C for the PS-160, and in Fig. 

S6D for the PS-320 sample. Image analysis determines for the PS-160 partition a surface 

area A of 47085 µm2 and for the PS-320 partition a significant larger value of 129400 µm2. 

These values should be set in ratio to the surface A0 of the respective base area (40000 

µm2). A larger local surface area is a result of extent and spatial distribution of local 

curvature effects. Therefore, the ratio A/A0 can be used as a (spatial averaged) estimate 

http://www.bio-rad.com/en-jp/sku/4561096-4-20-mini-protean-tgx-precast-protein-gels-15-well-15-ul
http://www.bio-rad.com/en-jp/sku/4561096-4-20-mini-protean-tgx-precast-protein-gels-15-well-15-ul
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of surface curvature. For the two partitions, values of the surface area ratio SAR = A/A0 of 

1.18 and 3.24 are obtained. Assuming half spherical valleys as local surface structure 

with A = 4𝜋r2/2 and A0 = 𝜋r2 a ratio of SAR = 2.0 would result as “curvature measure”. On 

the other side a flat surface would be characterized by SAR = 1.0. The sample PS-160 

with SAR = 1.18 shows in the 3D profile Fig. S6C a hilly and well curved structure and is 

characterized by maximum roughness depth values of about 35 µm. The rougher PS-320 

surface (Fig. S6D) with SAR = 3.24 shows a canyon structure with plateaus and deeply 

incised valleys (profile depth about 190 µm). Here the flat walls of both sides of the valleys 

contribute significantly to the high local surface area, but not to a curvature of the surface. 

From the presented image analysis, one can conclude that SAR values between 1.10 and 

2.0 should characterize well curved surfaces in the respective surface level. The lower 

value was chosen to distinguish from “real” flat surfaces, which show always some small 

roughness. Assuming a diameter of 100 µm for the living cells, the selected base areas 

with a side length of 200 µm are in the same size level as the cells, because a respective 

square could accommodate up to 4 or 5 cells. So, finally one can use the SAR parameter 

to estimate the extent of surface regions of a sample, where an optimal curvature for cell 

growing can be expected. Fig. S6E and S6F show for the two polymer samples PS-160 

and PS-320 the 2D distribution of SAR values over the 25 partition of the grid over the 3D 

height profiles of Fig. S6A and S6B. The PS-160 sample (Fig. S6E) contains extended 

regions of “optimal” SAR values, indicated in green. They are surrounded by more or less 

flat regions with only low surface curvature (SAR < 1.1). The PS-320 sample (Fig. S6F) 

shows a significantly smaller proportion of “green region”, i.e. optimal for cell growth. The 

surface of the PS-320 sample is dominated through the central canyon region with a high 

surface area ratio, SAR > 2.0, indicated in light gray, and two “flat” regions (SAR < 1.1), 

which are also significant in extension.  

 

Supporting tables, figures and legends 

Supporting Table S1. Surface roughness and local mechanics characterization 
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Sample ID 

Micro-roughness a) Nano-roughness 

b) 

Ra (nm) 

Local 

mechanics c) 

Ra (µm) Sm (µm) 
Young´s 

modulus (GPa) 

PS-000 0.13 ± 0.07 / 2.6 ± 0.8 31 ± 2 

PS-160 4.17 ± 0.17 164 ± 16 12.0 ± 4.3 30 ± 5 

PS-320 25.4 ± 3.8 316 ± 36 7.2 ± 0.4 29 ± 2 

 

a) Optical profilometry measurement by scanning an area of 7 × 7 mm2.  

b) Atomic force microscopy experiments with a scan size of 2 × 2 µm2. 

c) AFM nanoindentation experiments.  
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Supporting Fig. S1. Micro-scale surface roughness did not alter hADSC surface markers 

and proliferation. (A) hADSCs growing on different surfaces exhibited the similar 

proliferation rate (n = 3). (B) The phenotypic markers of MSCs (CD90, CD105 and CD73) 

were preserved, and the non-MSC markers (CD45, CD34, CD11b, CD19 and HLA-DR) 

were negative after 14 days of culture on different surfaces.  
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Supporting Fig. S2. The morphology of hADSCs and fibronectin remodeling were 

influenced by micro-scale roughness. The cells were cultured on fibronectin-coated 

surfaces followed by fluorescence staining after 4 days of culture to detect the actin 

cytoskeleton (red), nuclei (blue) and fibronectin (green) using a confocal laser scanning 

microscope (bar = 100 µm).  
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Supporting Fig. S3. 3D reconstruction of tilted-view images of hADSCs cultured on 

surfaces with different micro-roughness. (A) The scanning was performed by tilting the 

samples to make a 25° angle between the optical axis of the objective and the material 

surface. (B) The 3D reconstruction images demonstrated the dominant effect of surface 

roughness on topography of the cell layers (F-actin: red; nuclei: blue; fibronectin: green). 
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Supporting Fig. S4. Activated and total β1 integrin expression level of hADSCs cultured 

on different substrates for 4 days: (A) Immunostaining of activated β1 integrin (green) F-

actin (red) and cell nuclei (blue) (bar = 50 µm); (B) Representative images of Western 

blot analysis of activated and total β1 integrin of hADSCs on different substrates. 

 

Supporting Fig. S5. Level of phosphorylated FAK in hADSCs cultured on different 

substrates for 14 days: (A) Immunostaining of phosphorylated FAK (green) F-actin (red) 

and cell nuclei (blue) (bar = 50 µm); (B) Representative images of Western blot analysis 

of phosphorylated FAK at Y397 and total FAK. 
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Supporting Fig. S6. Model-based analysis of the optical topography measuring data for 

the two polymer samples PS-160 (left) and PS-320 (right). 3D height profiles over a base 

area of 1000 × 1000 µm2 for samples PS-160 (A) and PS-320 (B). To access local surface 

area values, the base area was divided into 5 × 5 partitions of 200 × 200 µm2, indicated 

by the black grid. 3D height profile of the central partition of the grid (marked in green) is 

enlarged for PS-160 (C) and PS-320 (D). The 2D distribution of the surface area ratio 
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parameter SAR = A/A0, calculated for the 25 partitions of the grid over the surface, are 

presented for samples PS-160 (E) and PS-320 (F). 
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Modulation of the mesenchymal stem cell migration capacity via 

preconditioning with topographic microstructure 

 Clinical Hemorheology and Microcirculation. 2017;67(3-4):267-278. 
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Abstract 

Controlling mesenchymal stem cells (MSCs) behavior is necessary to fully exploit their 

therapeutic potential. Various approaches are employed to effectively influence the 

migration capacity of MSCs. Here, topographic microstructures with different microscale 

roughness were created on polystyrene (PS) culture vessel surfaces as a feasible 

physical preconditioning strategy to modulate MSC migration. By analyzing trajectories 

of cells migrating after reseeding, we demonstrated that mobilization velocity of human 

adipose derived mesenchymal stem cells (hADSCs) could be promoted and persisted by 

brief preconditioning with the appropriate microtopography. Moreover, the elevated 

activation levels of focal adhesion kinase (FAK) and mitogen-activated protein kinase 

(MAPK) in hADSCs were also observed during and after preconditioning process. These 

findings underline the potential enhancement of in vivo therapeutic efficacy in 

regenerative medicine via transplantation of topographic microstructure preconditioned 

stem cells. 

Key words: Mesenchymal stem cells, Precondition, Microstructure, Migration, FAK-

MAPK 

1 Introduction 

Mesenchymal stem cells (MSCs) have been considered as a promising cell source for 

cell transplantation and tissue engineering [1-3]. The improvement of MSCs migration 

capacity in vivo towards the damaged tissue such as the infarcted myocardium is one of 

the major challenges in stem cell therapy [4-7]. An in vivo study with a rat myocardial 

infarction model revealed that merely 1% of MSCs injected systemically can reach the 

ischemic myocardial area [8]. Further, since MSCs were also not able to preserve a long 

lifespan after transplantation [9, 10], the beneficial effects from transplanted MSCs may 

mainly attribute to the rapid targeting to the site of injury. Thus, cell migration to the lesion 

site remains the lingering problem in MSCs-based therapies. It is of great benefit to 

enhance the MSCs migration capacity prior to their transplantation.   
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Several biochemical approaches have been developed to promote MSC migration. For 

instance, Short-term exposure of MSCs to hypoxia and pretreating MSCs with cytokines 

and growth factors such as IL-6 and HGF could upregulate the expression of chemokine 

receptors and therefore promote the MSC migration [11-13]. Besides, overexpression of 

chemokine receptors such as CXCR4 on MSC surfaces via genetic engineering can also 

efficiently enhance the migration capacity and result in an improved recovery of 

myocardial infarction [14]. However, genetically modified MSCs may not yet be feasible 

for therapeutic applications in terms of safety issues. Therefore, preconditioning of MSCs 

with biochemical factors is currently widely applied in regulating cell migration capacity. 

It is particularly attractive to induce and modulate MSCs migration without introducing 

artificial biochemical factors through the physical, especially mechanical properties, of 

biomaterials. From this point of view, modification of wettability [15] and rigidity [16, 17] 

of materials has been reported to influence the cell motility. Moreover, it was 

demonstrated that cells could reach their maximum migration capacity when treated with 

optimal mechanical cues [18-21]. As a natural topography of extracellular matrix, material 

surface with nanoscale roughness has been described as a strong modulator in regulating 

cell migration [22, 23]. Materials with microscale surface roughness were demonstrated 

in regulating cell adhesion, proliferation and differentiation [24, 25]. One up-to-date study 

indicated that the proper level of microscale roughness could alter the osteoblast 

migration speed [26]. Meanwhile, polymeric material with the advantage of tailorable 

physical and mechanical properties provides broad platform to study the cell-material 

interactions. Strategies such as surface structures manipulating [27]and protein 

patterning [28]on polymeric materials were demonstrated to induce specific effects on 

cells. Thus, it is of great interesting to study the influence of polymeric materials with 

surface microscale structures on the migration capacity of MSCs. 

Focusing on the interface between cell and material surface, integrin, as the cell 

transmembrane receptor, is responsible for sensing and translating external mechanical 

signal into cellular biochemical information [29, 30]. Intracellularly, integrin interacts with 

focal adhesion kinase (FAK) via the cytoskeletal protein talin [31]. FAK has been 

demonstrated to play a key role in cell migration [32, 33]. Furthermore, FAK activation is 
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connected to mitogen-activated protein kinase (MAPK) cascade [34]. Thus, it is of great 

interest to study the effects of topographic microstructures on stem cell migration capacity 

and the activity of FAK and MAPK, which may reveal the underlying mechanism and 

present a safe and robust approach to increase the therapeutic efficacy of MSCs in 

regenerative medicine. Here, we hypothesize that microscale surface roughness could 

influence the stem cell migration capacity through the activities of FAK and MAPK. 

To test our hypothesis, polystyrene (PS) cell culture inserts with topographic 

microstructures defined in three distinct roughness levels (R0, R1 and R2) on the bottom 

surfaces were fabricated to explore the effects of microstructures on the migration 

capacity of human adipose-derived mesenchymal stem cells (hADSCs). The morphology 

and focal adhesion (FA) of hADSCs were observed. The influence of microstructure on 

migration capacity was evaluated in vitro using time-lapse and gap closure assays. 

Furthermore, the activation of FAK and MAPK in response to topographic microstructures 

was extensively investigated. 

2 Materials and methods 

2.1 Cell culture surfaces 

As described before [35], polystyrene inserts with different microstructures on the bottom 

were manufactured by injection moulding. The prepared inserts were sterilized using gas 

sterilization. The roughness level of the insert bottom with different microstructures was 

determined as previously described [36]. In brief, optical profilometer (MicoProf 200, FRT 

- Fries Research & Technologie GmbH, Bergisch Gladbach, Germany) equipped with a 

CWL 300 chromatic white-light sensor was used to measure the level of root mean square 

roughness (Rq). The data were acquired with the software AQUIRE (ver. 1.21) and were 

evaluated with the software MARK III (ver. 3.9). To enhance the cell adhesion, the bottom 

surfaces of the prepared inserts were coated with 300 µl of human fibronectin solution 

(10µg/ml in PBS, Sigma-Aldrich, St. Louis, MO, USA) was coated and incubated at 37 ºC 

for 1 h. 
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2.2 Cell cultivation 

hADSCs isolated from human adipose tissue were positively expressed phenotype 

markers CD90, CD105 and CD73 [37]. The adipose tissue was obtained by abdominal 

liposuction from a female donor after informed consent (No.: EA2/127/07; Ethics 

Committee of the Charité - Universitätsmedizin Berlin, approval from 17.10.2008). The 

isolated hADSCs were cultured in the human adipose-derived stem cell medium (ADSCTM 

growth medium, Lonza, Walkersville, MD, USA) at 37 °C in a humidified atmosphere 

containing 5% CO2.  

2.3 Migration assay 

2.3.1  Gap closure assay 

A 24-well wound healing assay plate (CytoSelect™ 24-Well wound healing assay plate, 

Cell Biolabs. INC, San Diego, USA) was used to assess cell migration according to 

manufacturer’s instructions (Fig. 1). In brief, hADSCs cultured on surfaces with different 

microstructures for 2 days to 14 days were collected and then reseeded in the 24-well 

wound healing assay plate at a density of 3 × 104 cells per cm2. After overnight adhesion, 

the gap was created by removing the baffle in the central of the well, images of gaps at 

each time point were taken with a digital camera connected to a phase-contrast Olympus 

microscope (IX81 motorized inverted microscope, Olympus, Hamburg, Germany, ×10 

objective). The same visual field was marked and used throughout the experiment. The 

area of wound gap was measured by Image-Pro Plus software with the wound healing 

tool (Media Cybernetics, Inc. Rockville, USA). Gap closure (%) = [Gap area (T0 − T)/Gap 

area T0] × 100% (where T is the image taking time and T0 is the time that the gap was 

initiated). 

2.3.2 Time-Lapse Microscopy 

The migration of surface microstructures preconditioned cells was tracked using the 

phase contrast time-lapse imaging microscope (IX81 motorized inverted microscope, 

Olympus, Hamburg, Germany) combined with a bold line cage incubator providing a 

humidified atmosphere (37 °C, 5% CO2) (Fig. 1). Briefly, suspended cells collected from 

the different surfaces were reseeded in the 24 well TCP at a density of 3 × 104 cells per 
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cm2. After overnight adhesion, cells were observed and recorded every 10 minutes for 20 

h. The images were processed using ImageJ software (National Institutes of Health, USA) 

combined with the software plug-ins “manual tracking” and “chemotaxis and migration 

tool” (ibidi GmbH, Martinsried, Germany) to calculate the migration parameters. 

 

Fig. 1. Schematic diagram of the methods for investigating migration capacity of 

microtopography preconditioned hADSCs.  

2.4 Immunocytochemistry 

The hADSCs cultured on different surfaces or reseeded in TCP for overnight were fixed 

by adding 4% (w/v) paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) for 

15 minutes and then permeabilized with 0.1% (w/v) Triton X-100 (Sigma-Aldrich, St. Louis, 

MO, USA) for 5 minutes. After blocking with 3% (w/v) bovine serum albumin (BSA) 

(Sigma-Aldrich, St. Louis, MO, USA) solution for 30 minutes, the vinculin was stained with 

mouse anti-human primary antibodies (mouse anti-human vinculin monoclonal antibody 

(Merck Millipore, Darmstadt, Germany) and the Alexa Fluor® 488 labeled anti-mouse IgG 

antibody (Life Technologies, Darmstadt, Germany); F-actin was stained with Alexa 

Fluor® 555 conjugated Phalloidin (Life Technologies, Darmstadt, Germany); the nuclei 

were stained with Hoechst 33342 (NucBlue® Live Reagent, Life Technologies, Darmstadt, 

Germany). After washing with PBS, the samples were scanned with a confocal laser 

scanning microscope (LSM 780, Carl Zeiss, Jena, Germany).  
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2.5 Protein extraction 

Cell lysates from hADSCs preconditioned on the microstructure for 14 days before and 

after overnight reseeding were prepared with RIPA buffer (Sigma-Aldrich, St. Louis, MO, 

USA) supplemented with phenylmethylsulfonyl fluoride (Life Technologies, Darmstadt, 

Germany) and protease inhibitor cocktails (Sigma-Aldrich, St. Louis, MO, USA). After 

centrifugation, the supernatant of cell lysates was stored at -80 ºC for further analysis. 

 

2.6 Enzyme-linked immunosorbent assay (ELISA) 

The expression levels of phosphorylated FAK (pFAK) were quantified by ELISA. The 

concentration of pFAK in the cell protein solutions were measured using the pFAK 

(Tyr397) ELISA kits (Life Technologies, Darmstadt, Germany). The total amount of 

protein in the cell extract was determined using a BCA protein assay kit (Thermo Fisher 

Scientific, Bonn, Germany), and used to normalize the expression levels of the proteins 

of interest. 

2.7 Western blotting 

To quantify the protein expression, the obtained protein solutions were denatured by 

heating at 95 °C for 5 minutes, separated by electrophoresis on 10% (v/v) SDS-PAGE 

and then transferred onto nitrocellulose membranes (Millipore, Darmstadt, Germany). 

The blots were probed with monoclonal primary antibodies (rabbit anti human MAPK, 

mouse anti human phospho-MAPK (Thr202, Tyr204), Millipore, Darmstadt, Germany) 

and the IRDye 680LT and IRDye 800CW secondary antibodies (Li-Cor, Bad Homburg, 

Germany). Fluorescent signal were then detected using an Odyssey Imaging scanner 

and the intensity was analyzed by image studio software (Li-Cor, Bad Homburg, 

Germany). 

2.8 Statistics  

Experiments were repeated more than three times. For each experiment, cells from the 

female candidate were used between passage 3 to passage 5; 8 polystyrene inserts in 
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each roughness level (24 inserts in three roughness levels) were used to collect the cell 

or protein samples. Data are shown as mean ± standard deviation. Statistical analysis 

was performed using the two-tailed independent-samples t-test, and a significance level 

(Sig.) < 0.05 was considered to be statistically significant.  

3 Results 

3.1 Surface characterization of polymer substrates 

The topographic microstructures on the insert bottom were determined via optical 

profilometry. As previously described, R0 has an relatively plane surface with a Rq value 

of 0.12±0.04 µm, while R1 and R2 have rougher surfaces (R1: 3.52±0.26 µm and R2: 

16.04±1.24 µm) [35].  

3.2 Migration of microtopography preconditioned hADSCs 

The surface microstructures preconditioned cells were reseeded in a wound healing 

assay plate to perform the gap closure assay. The surface R1 and R2 preconditioned 

cells could rapidly narrow down the gap when compared to the flat R0 surface 

preconditioned cells. The gap closure percentage of the cells from R1 surface after 7 days 

preconditioning was significantly higher than the cells from flat surface R0 (Fig. 2A, B). 

To further confirm our findings, the time-lapse microscope was used to track the cell 

migration and quantify the migration velocity. The results strengthened the findings from 

the gap closure assay. Surface R1 preconditioned cells had a higher velocity than the 

cells from the other two surfaces. After 4 days preconditioning with different topographic 

microstructured surfaces, remarkable differences in velocity of hADSCs were observed 

(Fig. 2C, D). 
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Fig. 2. Enhanced migration capacity of hADSC via surface microtopography 

preconditioning. (A) Representative images showed the gap closure of hADSCs 

preconditioned for 7 days by different surface microstructures (bar = 500 µm). (B) The 

percentages of gap closure were quantified by Image-Pro Plus software (n = 5; *Sig < 

0.05). The hADSCs, preconditioned on different surfaces were reseeded on tissue culture 

plates up to 20 h and tracked to generate the migration trajectories (C) and to calculate 

the migration velocity (D)(n≥50; Mean ± standard error of the mean (SEM); *Sig < 0.05).  

3.3 Focal adhesion of microtopography preconditioned hADSCs  

Focal adhesion related components were investigated to study the cell-material 

interaction. The focal adhesion complex formation was examined by immunofluorescent 

staining of vinculin and F-actin. After 4 days of cultivation, hADSCs on R1 and R2 
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surfaces formed smaller and more aggregated focal adhesions than those on flat R0 

surface (Fig. 3A). The 4 days preconditioned cells were reseeded on TCP, after overnight 

adhesion, the cells from R1 and R2 surfaces had more focal adhesions at the edges (Fig. 

3B). 
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Fig. 3. Focal adhesion alteration in appearance and amount of hADSCs via different 

topographic microstructures during and after preconditioning (BF: bright field). 

Representative laser scanning confocal microscopic images are shown: At day 4, the 

formation of focal adhesion and organization of F-actin cytoskeleton in hADSCs grown 

on three distinct surfaces (A) and after reseeding on TCP (B) (red: F-actin; green: vinculin; 

blue: nuclei; bar = 50 µm). 

3.4 FAK activation level of microtopography preconditioned hADSCs  

After 4 days precondition, the pTyr397 FAK was significantly higher in R1 group, and this 

elevated FAK phosphorylation level was maintained for up to 14 days (Fig. 4A). Further, 

after reseeding on TCP, a significantly increased FAK phosphorylation level of the cells 

from R1 surface was observed compared to the cells from R0 and R2 surfaces (Fig. 4B).  

 

Fig. 4. Activation levels of FAK of hADSCs during and after preconditioning. (B) The 

normalized FAK phosphorylation levels of hADSCs harvested directly from microscale 

roughness surfaces at day 4, 7 and 14 (B) and roughness pretreated cells post 24 h 

reseeding (C) (n = 3; *Sig < 0.05). 
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3.5 MAPK phosphorylation level of microtopography preconditioned hADSCs 

Protein blotting was performed to evaluate the expression and activation of MAPK in 14 

days surface microtopography preconditioned hADSCs before (Fig. 5A) and after 

reseeding (Fig. 5B). It was found that the ratio of phosphorylated MAPK to total MAPK 

was significantly higher in hADSCs grown on microtopographic surfaces R1 and R2 

compared to that on flat surface R0 (Fig. 5C). After reseeding of preconditioned cell on 

TCP, the ratio of phosphorylated MAPK to total MAPK was sustained at a high level from 

cells preconditioned with R1 surface (Fig. 5C).  

 

 

Fig. 5. Surface microtopography enhanced the MAPK phosphorylation. The proteins 

expression of MAPK and phosphorylated MAPK in 14 days surface microstructure 

preconditioned cells before (A) and after reseeding on tissue culture plate (B) was 
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analyzed via western blot. (C) The statistical analysis of pMAPK/MAPK ratio were 

presented in a fold change histogram (n = 3, * Sig. < 0.05 compared with R0). 

4 Discussion 

It has been reported that the stem cell behavior can be influenced by preconditioning in 

micro environments [38]. In this study, the microstructures were applied to precondition 

the hADSCs, the preconditioned cells were then harvested and reseeded in the same 

conventional cell culture vessel to compare the migration capacity and activity of 

potentially migration-associated modulators such as FAK and MAPK. Our results 

demonstrated that the hADSCs were able to develop different migration capacities 

induced by preconditioning on different topographic microstructures. Within these 

microstructures, the cell-material contact surface with intermediate roughness level 

promoted cell migration. Meanwhile, accompanied with the promoted migration, an 

elevated FAK and MAPK activation level was observed. These findings indicate that the 

MSCs are capable of reserving the previously received structural signal. Only the cells 

preconditioned for 4 days or longer obtained and maintained the enhanced migration 

capacity, which suggests that the functional alteration of MSC behavior may exhibit only 

in response to a satisfied dosage of topographic cues. This phenomenon is in consistence 

with a recent report, which illustrated a clear relationship between the stem cell memory 

and the precondition dosage of mechanical signals [39]. 

The formation and turnover of focal adhesion (FA) complexes are crucial dynamics in 

cells migration [40]. During migration, on one hand, FA forms at the leading edge so as 

to initially generate the necessary forces to pull the cell body forward. On the other hand, 

FA turns over at the rear edge to eliminate the resistance force and continue cell 

movement. Hence continuously synchronized formation and turnover of FA of the cell 

body are required in migration [41]. Moreover, it has been demonstrated that the size of 

FA predicted the cell migration speed [42]. In the present study, the distinct appearance 

in size and density FA of cells during and after microstructures precondition might 

contribute to the initiation of the different migration. 
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As one of the most prominent signaling molecules, FAK is involved in both formation and 

turnover of FAs during cell migration [32, 43]. FAK is composed of an N-terminal FERM 

domain, a C-terminal FAT and an intermediate kinase domain. The FERM domain of FAK 

has been demonstrated to interact with integrins and growth factor receptors [44]. These 

extracellular interactions can elicit the intracellular autophosphorylation of FAK at Tyr397, 

located at the kinase domain. The phosphorylated FAK at Tyr397, which binds and 

recruits Src protein, can lead to further phosphorylation of FAK at various tyrosine sites 

including Tyr576, Tyr577, Tyr861 and Tyr925 [45-47]. In terms of dynamics in FA, on one 

side, Tyr925 is necessary for the interaction of FAK with Grb2, which helps the recruitment 

of dynamin to adhesion site to support FA formation [48]. On the other side, FA 

disassembly requests the dephosphorylation of phosphorylated Tyr397 and FAK after the 

extension of microtubule to FA [48, 49]. Therefore, activation of FAK is indispensable in 

formation, turnover of FA, and intracellular transduction of integrin and growth factor 

receptor mediated external signals. It has been demonstrated that cells with highly 

activated FAK level exhibited an enhanced migration capacity [50-52]. Here, in agreement 

with these studies, an increased cell migration speed accompanied with an elevated FAK 

phosphorylation level at Tyr397 site was detected in hADSCs that have been 

preconditioned with R1 microstructured PS surface. It is suggested that the enhanced cell 

migration through microstructure preconditioning might be closely associated with the 

elevation of FAK activity. 

MAPK regulates the cell migration through the FAK and myosin light chain kinase. The 

activation of MAPK can induce the phosphorylation of myosin light chain, which could 

enhance the cell migration [53]. Further, the activation of FAK was reported to 

subsequently activate its downstream effectors including MAPK [54]. Our results 

demonstrated that the R1 surface microstructure could enhance the migration capacity, 

elevated the FAK phosphorylation and the MAPK phosphorylation levels. This alteration 

of subcellular structure and function of cells is in consistence with previous studies [55, 

56], in which it was demonstrated that the formation of a paxillin-FAK-MAPK complex 

regulates the cell migration capacity. Therefore, we assume that topographic 

microstructures modulate the MSCs migration capacity through the activation of FAK and 

MAPK.  
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In summary, the observations presented here indicate that hADSCs migration capacity 

could be modulated by surface microstructures. The appropriate roughness level 

promoted migration, which was accompanied with a higher activated FAK-MAPK level. 

This might be helpful for further understanding the underlying mechanism of 

microstructure modulated hADSCs migration capacity.   

5 Conclusion 

Effects of surface microtopography on hADSCs migration capacity were investigated in 

this study. The cells preconditioned with topographic microstructures exhibited distinct 

morphologies, focal adhesion sizes and migration velocities. The appropriate topographic 

microstructure significantly enhanced the cell migration capacity, and this effect was 

accompanied with increased FAK and MAPK activation level. These findings suggest that 

the cell migration capacity could be modulated by the preconditioning of cells via surface 

topographic microstructures of culture vessels, which might be helpful for improving the 

in vivo stem cell therapeutic efficacy by fine-tuning the in vitro physical or mechanical 

cues prior to stem cell transplantation.  
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Abstract 

Induced pluripotent stem cells (iPSCs) own the capacity to develop into all cell types of 

the adult body, presenting high potential in regenerative medicine. Regulating and 

controlling the differentiation of iPSCs using the surface topographic cues of biomaterials 

is a promising and safe approach to enhance their therapeutic efficacy. In this study, we 

tested the effects of surface roughness on differentiation of human iPSCs into neural 

progenitor cells and dopaminergic neuron cells using polystyrene with different roughness 

(R0: flat surface; R1: rough surface, Rq ~ 6 µm; R2: rough surface, Rq ~ 38 µm). Neural 
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differentiation of human iPSCs could be influenced by surface roughness. Up-regulated 

neuronal markers were found in cells on rough surface, as examined by real-time PCR 

and immunostaining. Particularly, the R1 surface significantly improved the neuronal 

marker expression, as compared to R0 and R2 surface. This study demonstrates the 

significance of surface roughness, depending on the roughness level, in promoting 

differentiation of human iPSCs towards the neuronal lineage. Our study suggests the 

potential applications of surface roughness in iPSCs based treatment of neural disorder 

diseases, and highlights the importance of design and development of biomaterials with 

effective surface structures to regulate stem cells.   

Key words: human iPSCs, roughness, neural differentiation, regenerative medicine 

1 Introduction 

Induced pluripotent stem cells (iPSCs), generated from adult cells by introducing 

transcription factors, hold great promise in regenerative medicine without many of the 

associated ethical concerns as compared to embryonic stem cells (ESC) [1, 2]. Due to 

their neural differentiation capacity, iPSCs have been described as scientific 

breakthrough for treating Parkinson's Disease (PD), which is a common 

neurodegenerative disorder characterized by a selective loss of dopaminergic neurons. 

In this area, remarkable progress has been made in the past decade. For example, the 

dopaminergic neurons as the predominant cell type for treating PD have been effectively 

generated from iPSCs [3, 4], and functionally integrated into cynomolgus monkey model 

[5]. These achievements presage a strong immunological, functional and biological 

rationale to use dopamine neurons derived from iPSCs for cell replacement in PD in the 

future. However, there are still some challenges that need to be overcome such as 

inefficient cell derivation, genetic abnormalities during in vitro expanding [6]. Most of all, 

it is of utmost importance to avoid the teratoma or tumor formation caused by inadequate 

differentiation [7]. It is only of benefit if there is a complete differentiation to generate the 

cell types of interest. Hence, controlled neural differentiation of iPSCs is critical for treating 

PD by cell replacement.  
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Researchers have assembled considerable knowledge on how biochemical factors, 

signaling pathways and transcriptional networks regulate iPSCs behaviors [8]. Increasing 

evidences have demonstrated that the biophysical properties of the microenvironment, 

such as the extracellular matrix (ECM) stiffness and cyclic strain, could effectively control 

a variety of cell behaviors of iPSCs [9, 10]. Most of the biophysical properties can be 

readily generated using the appropriate fabrication technologies, such as the topographic 

features at micro- and nano-scale which have shown effects to induce changes in cell 

alignment, polarization, elongation, migration, proliferation and gene expression [11-13]. 

It has been reported recently that the topography of nano- and micro-grating substrates 

could regulate the expression of neuronal markers in iPSCs [14]. Further, appropriate 

microscale roughness could affect the differentiation of mesenchymal stem cells [15]. 

Therefore, topographical cues might hold a great interest in inducing neural dopaminergic 

differentiation of iPSCs. 

In this study, we hypothesized that surface roughness could influence the neural 

differentiation of human iPSCs. To examine our hypothesis, neural differentiation was 

induced in a polystyrene based cell culture insert system with different roughness on the 

bottom. Considering the single cell size of human iPSCs (~ 43.5 µm²) [16], surfaces with 

three different roughness levels were used (R0: flat surface; R1: rough surface, Rq ~ 6 

µm; R2: rough surface, Rq ~ 38 µm) to adapt the cell size. Human iPSCs were induced 

to differentiate into neural progenitor cells and dopaminergic cells on matrigel coated 

inserts. The expression of neural ectodermal marker genes and neural marker proteins 

was assessed. Our results indicated that the differentiation of human iPSCs was 

promoted by the microscale roughness. Cells on R1 presented the highest level of neural 

differentiation. These results expand the knowledge of improving neural differentiation of 

iPSCs by topographic cues, which would be benefit for design and fabrication of 

biomaterials to enhance efficacy of iPSCs based regenerative therapies. 
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2 Materials and methods 

2.1 Cell culture surfaces 

PS inserts fitting the standard 24-well tissue culture plate (TCP) were prepared via 

injection molding as described before [17, 18]. Three differently structured cylinders were 

utilized to manufacture the inserts with different types of bottom roughness: a cylinder 

with a polished contact surface (R0), and two cylinders with micro-structured surfaces 

according to the standard of German Institute for Standardization (DIN 16747: 1981-05), 

M30 (R1) and M45 (R2). The prepared inserts were sterilized by gas sterilization (gas 

phase: 10% ethylene oxide, 54 ºC, 65% relative humidity, 1.7 bar, 3 hours of gas 

exposure time and 21 hours of aeration phase). The roughness of the insert bottom was 

determined with an optical profilometer (MicoProf 200, FRT - Fries Research & 

Technologie GmbH, Bergisch Gladbach, Germany) equipped with a CWL 300 chromatic 

white-light sensor. The data were acquired with the software AQUIRE (ver. 1.21) and 

were evaluated with the software MARK III (ver. 3.9).  

The PS inserts and tissue culture plate were coated with MatrigelTM Basement Membrane 

Matrix (BD Biosciences; San Jose, USA) to enable the cell attachment. Matrigel was 

diluted with Dulbecco's Modified Eagle Medium-Nutrient Mixture F-12 (DMEM/F12, 

Thermo Fisher Scientific, Bonn, Germany) (1:80 v/v). For each well of 6 well TCP or each 

PS insert, 2000 µl or 200 µl (approximately 200 µl/cm²) of diluted matrigel solution was 

added and incubated at 37 ºC for 1 hour, and then was removed before cell cultivation.  

2.2 Human iPSCs cultivation and neural differentiation 

Human iPSCs (IMR90-4 cell line, WiCell, Wisconsin, USA) were cultured in feeder-free 

medium (mTeSRTM, STEMCELL Technologies, Vancouver, Canada) on matrigel coated 

dishes at 37 oC in a humidified atmosphere containing 5% CO2. For cell maintenance, the 

medium was changed regularly and the cells were passaged every 5 days at ratios of 1:6. 

The neuronal differentiation conditions were adapted from Dual SMAD inhibition protocol 

[19]. Briefly, the iPSCs clusters were dissociated into single cells with cell detachment 
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solution (AccutaseTM, STEMCELL Technologies, Vancouver, Canada). Then, the cells 

were seeded on matrigel coated dishes or PS inserts at a density of 3×104 cells/cm2. 

Neural differentiation was inducted at day 4 by changing the culture medium to N2B27 

medium (Neurobasal® medium (Thermo Fisher Scientific, Bonn, Germany) 

supplemented with 0.5 mM L-Glutamin (Thermo Fisher Scientific, Bonn, Germany), B-

27® Supplement (Thermo Fisher Scientific, Bonn, Germany) and N-2® Supplement 

(Thermo Fisher Scientific, Bonn, Germany)) containing different compounds (Fig. 3A). 

From day 4, N2B27 medium containing 10 μM SB431542 (Merck Millipore, Darmstadt, 

Germany Germany), 200 ng/ml Noggin (R&D Systems, Minneapolis, USA) and 

Dorsomorphin (Sigma-Aldrich, St Louis, USA) was used. At day 8, the medium was 

replaced with that containing 200 ng/ml recombinant N-terminal human sonic hedgehog 

(SHH, R&D Systems, Minneapolis, USA) instead of SB431542. From day 12 the induction 

medium was changed to N2B27 medium supplemented with 20 ng/ml brain-derived 

neurotrophic factor (BDNF, Peprotech, Hamburg, Deutschland), 100 ng/mL FGF8 (R&D 

Systems, Minneapolis, USA), 200 μM ascorbic acid (AA, Sigma-Aldrich, St Louis, USA) 

and 200 ng/ml SHH. From day 16, N2B27 medium supplemented with 20 ng/ml BDGF, 

200 μM ascorbic acid and 20 ng/mL glial cell-derived neurotrophic factor (GDNF, 

ProSpec-Tany TechnoGene, Rehovot, Israel) was applied. The medium was changed 

every 2 days during the whole induction process. 

2.3 Immunocytochemistry 

The human iPSCs cultured in TCP or PS inserts were fixed by adding 4% 

paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) for 15 minutes and then 

permeabilized with 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) for 5 minutes. 

After blocking with 3% bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO, USA) 

solution for 30 minutes, the cells were incubated with mouse anti-human primary 

antibodies (mouse monoclonal anti-neuronal β- III Tubulin, mouse monoclonal anti-Nestin 

and mouse monoclonal anti-MAP2 (all are from Millipore, Darmstadt, Germany)) at 4 °C 

overnight. After washing with PBS, the secondary antibodies (Alexa Fluor-488 goat anti-

mouse IgG, 1:500; Alexa Fluor-555 goat anti-mouse IgG, 1:500; Life Technologies, 

Darmstadt, Germany) were added and incubated for 60 minutes. The cell nuclei were 

http://products.invitrogen.com/ivgn/product/25030149
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stained with 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, St. Louis, MO, USA). 

After 3 times of washing with PBS, the samples were visualized using a fluorescence 

microscope (AxioSkop, Carl Zeiss, Jena, Germany) or scanned with a confocal laser 

scanning microscope (LSM 780, Carl Zeiss, Jena, Germany).  

For the cell characterization staining, the hiPSCs were stained with the Fluorescent 

Human ES/iPS Cell Characterization Kit (Millipore, Darmstadt, Germany) following the 

manufacturer’s protocol.  

2.4 Real-time PCR 

Isolation of total RNA was performed using TRI Reagent® (Sigma-Aldrich, St. Louis, MO, 

USA) following the manufacturer’s instruction. The cDNA was synthesized from the 

isolated RNA using SuperscriptTM III First-Strand Synthesis System (Life Technologies, 

Darmstadt, Germany) according to the given protocol. Quantitative RT-PCR was 

performed on a StepOnePlusTM Real-time PCR Systems (Life Technologies, Darmstadt, 

Germany) using SYBER® Green Master Mix (Thermo Fisher Scientific, Bonn, Germany) 

and RT-PCR primers (Table 1). The expression of the genes of interest was determined 

in triplicate for each cell sample. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

was used as housekeeping gene. Gene expression level was determined using the 

method as we described before [20]. The ΔCT values of the target genes was normalized 

with the CT value of GAPDH (ΔCT = CT, target - CT, GAPDH). The fold change of gene 

expression levels between two samples was expressed as 2-ΔΔCT (ΔΔCT = ΔCT, sample 

2 - ΔCT, sample 1). 

Table 1. Primer sequence 

Gene Primer (Forward) Primer (Reverse) 

GAPDH GTGGACCTGACCTGCCGTCT GGAGGAGTGGGTGTCGCTGT 

SOX1 AATTTTATTTTCGGCGTTGC TGGGCTCTGTCTCTTAAATTTGT 

http://www.sigmaaldrich.com/technical-documents/protocols/biology/tri-reagent.html
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SOX2 CCCAGCAGACTTCACATGT CCTCCCATTTCCCTCGTTTT 

NESTIN CTGGAGCAGGAGAAACAGG TGGGAGCAAAGATCCAAGAC 

PAX6 ATGTGTGAGTAAAATTCTGGGCA GCTTACAACTTCTGGAGTCGCTA 

MAP2 GGAGACAGAGATGAGAATTCCT GAATTGGCTCTGACCTGGT 

 

2.5 Western blotting 

To quantify the neuronal protein expression, cell lysates were prepared with RIPA buffer 

(Sigma-Aldrich, St. Louis, MO, USA) supplemented with phenylmethylsulfonyl fluoride 

(Life Technologies, Darmstadt, Germany) and Protease Inhibitor Cocktails (Sigma-

Aldrich, St. Louis, MO, USA). The obtained protein solutions were denatured by heating 

at 95 °C for 5 minutes, separated by electrophoresis on 10% gradient SDS-poly-

acrylamide gel and then transferred onto PVDF membranes (Millipore, Darmstadt, 

Germany). The blots were probed with monoclonal primary antibodies and fluorescently 

labeled secondary antibodies (Li-Cor, Bad Homburg, Germany). Fluorescent signal were 

then detected using an Odyssey Imaging scanner and the intensitie was analyzed by 

image studio software (Li-Cor, Bad Homburg, Germany). 

2.6 Statistics  

Data are shown as mean ± standard deviation. Statistical analysis was performed using 

the two-tailed independent-samples t-test, and a significant level (Sig.) < 0.05 was 

considered to be statistically significant.  

3 Results 

3.1 Cell culture surfaces characterization 

PS inserts with different types of bottom roughness were prepared via injection molding 

(Fig. 1A-C). The micro-scale roughness of the insert bottom was first determined via 

http://www.sigmaaldrich.com/life-science/biochemicals/biochemical-products.html?TablePage=14562002
http://www.sigmaaldrich.com/life-science/biochemicals/biochemical-products.html?TablePage=14562002
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optical profilometry measurement. R0 has a smooth surface with the root mean squared 

roughness (Rq) value around 0.3 µm, while R1 and R2 have the rougher surfaces with Rq 

values around 6 µm and 38 µm respectively. At the nanoscale, all of the surfaces are 

relatively smooth with the average Rq values less than 300 nm (Table 2). The surfaces 

were coated with ECM gel prior to cell seeding. The ECM gel coated surfaces for human 

iPSCs seeding were in the level in Rq analysis compared with uncoated surfaces (Fig. 1 

D, Table. 2). 

 

Fig. 1. PS inserts bottom surface characterization. (A) The insert with a suitable size to fit 

the standard 24-well tissue culture plate. (B) Phase contrast microscope images showed 

the three types of insert bottom with different roughness (bar = 500 µm). (C) 

Representative profilometry scanning images of the surfaces before and after matrigel 

coating (bar = 500 µm).  

Table 2. Surface roughness 

Samples Uncoated Matrigel coated 
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Micro-roughness a) 

Rq (µm) 

Nano-roughness 

b) 

Rq (µm) 

Nano-roughness 

b) 

Rq (µm) 

R0 0.31 ± 0.11 0.020 ± 0.010 0.015 ± 0.004 

R1 6.01 ± 0.21 0.154 ± 0.044 0.138 ± 0.040 

R2 38.15 ± 5.86 0.067 ± 0.021 0.093 ± 0.004 

 a) Optical profilometry measurement by scanning an area of 7×7 mm2. b) Optical 

profilometry measurement by scanning an area of 50×50 µm2. 

3.2 Human iPSCs characterization 

To characterize the human iPSCs, the alkaline phosphatase (AP) and pluripotent markers 

(Oct4and Nanog) were assessed through the immunostaining (Fig. 2). The cultivated 

humaniPSCs showed the typical iPSC colony morphology and a well-defined edge 

composed oftightly pached cells with round shape and uniform size. The undifferentiated 

iPSCspositively expressed AP and the iPSC markers Oct4 and Nonog. 

https://www.stemgent.com/products/show/136
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Fig. 2. Human iPSCs characterization. Cultivated iPSCs showed the classic clone 

morphology and expressed pluripotent markers of Oct4 and Nanog (bar = 50 µm). 

3.3 Neural differentiation on TCP  

At first, the neural differentiation of cultivated human iPSCs was performed on the TCP 

coated with matrigel. Following the dual SMAD pathway inhibition protocol (Fig. 3, A), the 

iPSCs were rapidly differentiated into neural progenitor cells which was characterized by 

the immunostaining of Nestin at day 16. The neural progenitor cells derived from iPSCs 

showed the morphologically identifiable rossette structures (Fig. 3, B upper panel). During 

this period, the expression of pluripotent gene Oct 4 was downregulated, and the neural 

progenitor marker genes PAX6, SOX 1 and Nestin were upregulated (Fig. 3, C). With the 

further induction with BDNF and GDNF, the neural progenitor cells continuously 

differentiated into neuronal cells. After 42 days of induction, the cells differentiated from 

iPSCs expressed the mature neural marker ß-III Tubulin (Fig. 3, B lower panel).  
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Fig. 3.  Human iPSCs neural differentiation on TCP coated with matrigel. (A) The neural 

differentiation protocol induced by chemicals. (B) Representative images showed that 

differentiated iPSCs showing identifiable rossette morphology of neural progenitor cells 

at day 16 (upper panel) and positively expressing the neural marker ß-III Tubulin at day 

42 (lower panel, bar = 50 μm). (C) Pluripotent gene (Oct 4) expression was downregulated 

while neural genes (PAX 6, SOX 1, Nestin) expression were upregulated during induction 

process. The undifferentiated human iPSCs were used as control (n = 3).   

3.4 Neural differentiation on rough surfaces 

To study the influence of topographic roughness on neural differentiation of human 

iPSCs, the neural induction was performed in the PS inserts with different bottom 

roughness using the same protocol as that on TCP surface (Fig. 3, A). After 42 day of 

induction, the cells differentiated from human iPSCs showed the neural microtubule 

structures and positively expressed the neural identifiable proteins MAP2 and ß-III 

Tubulin (Fig. 4). 
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Fig. 4.  Neural differentiation of human iPSCs on matrigel coated surfaces with different 

roughness. After 42 days of induction, human iPSCs differentiated into neural cells on all 

surfaces, with the expression of the neural identification marker ß-III Tubulin and MAP2 

(bar = 25 μm). 

3.5 Neural gene and protein expression  

To investigate the effects of roughness on neural differentiation of iPSCs, the quantitative 

real-time PCR was performed to assess the expression of neural genes of the 

differentiated iPSCs at day 16.  Compared with cells on flat surface R0, the neural 

progenitor cells on rougher surface R1 and R2 exhibited higher expression levels of 

Nestin and ß-III Tubulin. Particularly, these genes expressed significantly higher on R1 

surface as compared to those on R0 and R2 (Fig. 5, A). As following, the progenitor cells 

derived from the human iPSCs were continuously induced to differentiation towards 

dopaminergic neurons with BDNF, GDNF and AA. After 42 days, the protein expression 
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was assessed by western blot (Fig. 5, B). The cells on R1 surface expressed higher neural 

identical proteins compared with the cells on R0 and R2 surfaces.  Notably, cells on R1 

expressed significantly higher ß- III Tubulin than cells on R0 and R2 (Fig. 5, C). 

 

Fig. 5.  Expression of neural genes and proteins of iPSCs induced towards neural 

differentiation on surfaces with different microroughness.  (A) After 16 days of induction, 

the expression of SOX1, SOX2, PAX6, Nestin, ß- III Tubulin and MAP2 genes was 

quantified via RT-PCR and normalized to the expression level on R0 surface (n = 3, * R1: 

R0 Sig. < 0.05, # R1: R2 Sig. < 0.05). (B)  After 42 days of induction, the expression of 

Nestin and ß- III Tubulin proteins of the cells were analyzed via western blotting. (C) The 
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statistical analysis of Nestin expression and ß- III Tubulin expression (normalized to 

GAPDH, n = 3, * Sig. < 0.05). 

4 Discussion  

Neural differentiation of iPSCs represents a promise in neural regenerative medicine. Due 

to the tumorigenic potential [21], establishment of efficient neural differentiation approach 

is an essential prerequisite for the further applications. Mechanic cues are increasingly 

studied to affect the stem cell behaviors. Thus, modulation of neural differentiation of 

iPSCs with different physical cues is of great interest in regenerative medicine. In our 

work, designed polymer surface system with different roughness demonstrated that 

appropriate roughness could promote the dopaminergic neural differentiation of iPSCs in 

gene and protein expression. Our finding highlights a new approach to enhance the 

efficiency of dopaminergic neuron derivation of iPSCs.  

In current study, highest promotive effects of differentiation were found on the middle 

ranged R1 surface, which might highly adapt to the iPSCs size. It is reported that 

nanoscale roughness surfaces tended to induce pluripotent stem cells (PSCs) into 

spontaneous differentiation while smooth surfaces supported PSCs adhesion, rapid cell 

proliferation and long-term self-renewal [22]. In our system, higher nanoscale roughness 

of our designed surfaces was found on R1 and R2 surfaces compared with flat R0 surface. 

Thus, the elevated neural differentiation on R1 and R2 surface may attributed not only to 

the microscale roughness, but also to the nanoscale roughness. This finding indicated a 

optimize roughness condition for the human iPSCs neural differentiation. However, more 

deep studies are needed to explore the concealed mechanism. 

Several approaches can be considered for the induction of iPSCs neural differentiation. 

Like the early protocol, embryoid bodies generated from the lifting PSCs, are grown in 

adherent culture condition in N2 and fibroblast growth factor (bFGF) supplemented 

medium to form neural progenitor cells who are allowed to form the neural rosettes 

structure [23]. This embryoid body formation way is considered a distinguishing feature 

of successful neural differentiation induction. Another approach is to use the mouse 

stromal feeder cells that are known to have the neural inducing effect [24]. However, the 
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embryoid body formation or feeder cell approaches are not adapted to study influence of 

the roughness on neural differentiation since the rare directly contact conditions. Recently, 

a remarkably and robust approach via dual inhibition of SMAD signalling was reported for 

the neural induction of PSCs [19].  Single cell adherent cultivation of PSCs were 

stimulated with Noggin (an inhibitor of bone morphogenetic protein 4, BMP4) and 

SB431542 (an inhibitor of Lefty/Activin/TGFβ pathways) to achieve neural differentiation. 

For the feasibility and robustness as well as high efficiency, this approach has resulted in 

its relative popularity in the neural differentiation induction. In this study, Dorsomorphin (a 

chemical BMP inhibitor) was added to increase the efficiency and reduce the cost [25]. 

Additionally, the extracellular matrix has great effects on the efficiency of neural 

differentiation of PSCs [26, 27]. Matrigel was chosen to coat the surface in current work 

since its great enrichment of neural differentiation [26].  

For the source of the human iPSCs, the IMR90-4 was chose in our study, This cell line 

was generated from IMR90 fetal lung fibroblasts by viral transduction of a combination of 

Oct 4, Sox 2, Nanog , and Lin 28 genes. In our cultivation, the cells showed the typical 

iPSCs colony morphology and a well-defined edge composed of tightly pached round and 

uniformly sized cells, and an elevated level of AP on the cell membrane. The AP is 

commonly used to identify the undifferentiated PSCs including ESCs and iPSCs [28, 29]. 

Additionally, the pluripotent marker Oct 4 and Nanog were characterized in our 

immunostaining. Further, It has a high efficiency of differentiation towards neural lineage 

in a cell lines comparable study [30]. 

In PSCs differentiation, the pluripotent genes and the stage specific lineage genes are 

programmatically downregulated and upregulated respectively. It is reported that Pax6 

gene plays a critical role in neural differentiation and determines the human 

neuroectoderm cell fate [31], and  during PSCs differentiation to neural cells, Oct4 is 

downregulated before Pax6 becomes highly expressed [32]. Our results showed that the 

Oct4 gene was sustainably downregulated by induction, and the Pax6 gene was 

conversely upregulated, which is in accordance with these reports.  Besides, the neural 

marker genes Sox1 and Nestin genes were upregulated during the induction, which is in 

accordance with previously description [24]. 
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 Our results indicated that the neural genes expression of neural progenitor cells was 

positively expressed after 16 days induction, and among these genes, the Nestin, ß-III 

Tubulin and MAP2 were significantly upregulated by rough surface R1 compared with 

other flat surface R0 and rougher surface R2, which indicated that the roughness 

promoted the neural differentiation, and this promotion was dependent on the roughness 

level. MAP2 as a mature neuron marker was also upregulated on the rough surface, which 

demonstrated that roughness could enrich the neuron mature from the progenitor stage. 

As following, the Nestin and ß- III Tubulin proteins expression were upregulated after 

dopaminergic neural induction by the R1 rough surface, which revealed appropriate 

roughness could increase the neural differentiation of iPSCs. Although the obvious 

enhancement of neural differentiation was observed, the mechanism of roughness 

induced differentiation remains unclear. It may attribute to the surface roughness related 

subtle force which may cause the difference in membrane attachment and in cellular 

responses to the guidance signals emitted from the substrates [33], the formation and 

alignment of focal adhesion kinas (FAK) phosphorylation involved focal adhesions 

induced by the topography which could lead the stem cell differentiation [34, 35]. Further, 

the cytoskeleton rearrangement and nuclei relocation by the roughness may play a critical 

role in the mechanical signal transduction to affect the gene expression [36, 37]. In 

addition, surface roughness formed local curvature may affect the stem cell differentiation 

[38].  

5 Conclusion 

In this work, we demonstrated the roughness effects on human iPSCs differentiation 

towards neuronal lineage.  Neural differentiation of human iPSCs was successfully 

induced on the matrigel coated polymeric roughness. Gene expression profiling by real-

time PCR and immunostaining showed significant upregulation of neuronal marker 

expression on rough surfaces. Notably, middle ranged rough surface induced the highest 

level of neuronal marker expression. This study demonstrates the significance of 

microscale roughness in differentiation of human iPSCs towards neuronal lineage. It 

suggested the potential application of roughness in clinical regenerative medicine.  
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Concluding remarks 

The present thesis was to better our understanding of the influences of surface 

topographic microscale structures on the behaviors of stem cells and the undergo 

mechanisms. As explained in chapter II and III, we investigated the capacities of 

secretome and migration of the MSCs on the surfaces with different structures; and 

furtherly, the undergo mechanism in molecular level was studied. Besides, the neural 

differentiation of human iPSCs on surfaces with different structures was performed and 

the differentiation efficiency was evaluated in chapter IV. The results in this thesis 

demonstrated that surface topographic microscale microstructure could affect the stem 

cell behaviors, the curvature of the structures is a determine factor of the effects, which 

presents a strong evidence for controlling the stem cell behaviors by manipulating the 

surface topographic structures of materials.  

In chapter II, we found that the VEGF secretion could be improved by the surface 

structures. The VEGF is a primer factor of vascular growth for its activating the endothelial 

cells such as increasing the proliferation, migration and forming the tubular network [1-3]. 

The therapeutic effect of VEGF is dosage dependent. In our study, VEGF level stimulated 

by surface roughness was within the effective and safe range [4]. Additionally, the 

secretion stimulated by roughness increased angiogenic potential in our in vitro and ex 

vivo assay. This might not only due to the VEGF but also other growth factors since 

combination of VEGF and other growth factors was much more effective than individual 

growth factors in angiogenesis [5, 6]. For the underlying mechanism of structures 

stimulated VEGF secretion, the integrin activation on the surfaces was studied. Integrin 

as the cell transmembrane receptor receives the micro environment signals and 

translates them into intracellular biochemical signals [7, 8]. The extracellular environment 

induced conformation and clustering of integrin result many cellular behaviors such as 

cell adhesion, cytoskeletal organization, migration, gene expression, cell survival, 

proliferation and differentiation [9, 10]. The surface structures in our study increased the 

integrin activation. After the structure and cell size study, it was speculated that the 

surface structure provided local curvature might be perceived by the cells and regulate 

the integrin activation. Further, focal adhesion kinase, as the downstream protein of 
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integrin, was found highly phosphorylated at the domain of Y397 of the cells on surface 

with curvature. FAK activation can subsequently activate the downstream mitogen-

activated protein kinase (MAPK/ERK) pathway. Previously study demonstrated the 

activation MAPK/ERK by FAK increased the VEGF secretion in tumor cells [11]. In 

accordance with this report, our work showed an increased VEGF level was statistically 

correlated with an enhanced FAK level. This result suggested that integrin mediated FAK 

signaling pathway played a critical role in surface structure stimulated VEGF secretion.  

Further, FAK is involved in the formation and turnover of the focal adhesion during cell 

migration [12, 13]. With the findings that surface roughness modulated the FAK 

phosphorylation, we hypothesized that the surface structure influenced the cell migration 

via the activation of FAK and the formation of FAs. In chapter III, the migration of surface 

structure preconditioned MSCs was studied. The results demonstrated that the migration 

capacities of MSCs were developed by preconditioning on surface topographic structure. 

Since the stem cells behaviors could be influenced by the preconditioning in micro 

environments [14], our findings suggest that surface structure could be an effective 

precondition factor to modulate the behaviors of stem cells. Furthermore, in our study, the 

MSCs obtained and maintained the increased migration only after a certain time length 

of precondition, which indicates that the functional alteration of MSCs behavior may 

exhibit only in response to a satisfied dosage of topographic stimulation. This 

phenomenon is in consistence with a recent report, which illustrated a clear relationship 

between the stem cell memory and the precondition dosage of mechanical signals [15]. 

Besides, the focal adhesion (FA) is crucial during cell migration. FA formation at the 

leading edge and turnover at the rear edge are necessary to anchor the cell and pull the 

cell body forward. Therefore, continuously synchronized formation and turnover of FA of 

the cell body are required in migration [16]. It has been demonstrated that the size of FA 

predicted the cell migration speed [17]. The results in our study showed a distinct 

appearance of FA in size and density at the cells during and after surface roughness 

preconditioning, which might contribute to the different migration capacities. For the 

underlying mechanism, the downstream protein of FAK, ERK/MAPK activation could 

induce the phosphorylation of myosin light chain, which could enhance the cell migration 

[18]. Our results showed the increased migration capacity was accompanied with 
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elevated FAK phosphorylation and MAPK phosphorylation levels. This alteration of cells 

is in consistence with previous studies, which demonstrated that formation of a paxillin-

FAK-ERK/MAPK complex regulates the cell migration capacity [19, 20]. Therefore, we 

infer that surface topographic structure modulates the MSCs migration capacity via the 

activation of FAK and ERK/MAPK.  

To furtherly investigate the influence of surface topographic microscale structure on the 

other stem cell type (ESCs/iPSCs), in chapter IV, the neural differentiation of human 

iPSCs was induced on the surface roughness. Neural differentiation of iPSCs represents 

a promise for neural degenerative diseases. However, the tumorigenic potential of iPSCs 

limited their application. Controlled and efficient differentiation of iPSCs represents the 

essential prerequisite before the transplantation. Our results demonstrated that the 

surface topographic structure could promote the neural differentiation. It highlights a new 

method to increasing the efficiency of iPSCs differentiation. In our work, the remarkably 

and robust approach via dual inhibition of SMAD signaling was adopted to induce the 

neural differentiation of iPSCs. This approach fits the request of the direct contacts 

between cells and surface structure and was different from the early protocol, which was 

based on the embryoid body formation from the lifting iPSCs [21]. Meanwhile, the human 

iPSCs IMR-90 was selected in the work for their high potential of differentiation towards 

neural lineage [22]. During the differentiation of iPSCs on the structured surface, the 

neural genes of Nestin, ß-III Tubulin and MAP2 were significantly upregulated and the the 

Nestin and ß- III Tubulin proteins expression was consequently enhanced by the surface 

structures. The promotive effects of surface topographic roughness on iPSCs 

differentiation might attribute to the roughness induced subtle force, which plays a role in 

cellular membrane attachment and cellular response to guidance signals from the 

materials surface [23]. Besides, the FAK phosphorylation induced by the surface 

topography might lead the stem cell differentiation [24, 25]. Thus, more studies are 

needed to explore the concealed mechanisms of surface structure enhanced iPSCs 

differentiation. 
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Discussion 

It is widely accepted that the cells shape and consequent fate are influenced by the 

topographical cues from macroscale to nanoscale size in natural environments and the 

structures of basement membrane such as pores, fibers and ridges play the vital role in 

these influences [26]. Making use of topographical structure of substrate to improve the 

regenerative capacity of stem cells after injury attracts the interests of most researchers 

in area of regenerative medicine. Meanwhile, the developing of pattering techniques such 

as photolithography, electrospinning, layer by layer microfluidic patterning, three 

dimensional printing and ion milling make it possible to create the precise controlled 

geometry, texture, porosity and rigidity on artificial substrates which would contribute to 

study the controlled cell behaviors in vitro  [27]. Previous studies have suggested that 

surface topography of substrates affect the cell shape, size, elongation, position and 

regulate their interactions [28]. Therefore, addressing the underlying mechanism of 

effects of topographical pattern to stem cells would be the outstanding prerequisite for the 

clinical application. Different types of surface topographies including topographical scale 

(micro or nano), pattern type (ridges, pillar, pit or groove) and distribution (random or 

regular distributed features) have been generated and investigated for their effect on stem 

cells behaviors. However, most part of the studies were focused on the topography 

influenced stem cell differentiations (Table 1). Compared with these studies, current work 

is dedicated to demonstrate that the improved secretion and migration capacities of stem 

cells by the topographical structures with appropriate curvature level, which is as 

important as the differentiation in regeneration. Further, few studies demonstrated the 

mechanotransduction modulated migration or secretion capacity of stem cells, AJ Engler 

and his colleagues investigated the migration of human ADSCs on the polyacrylamide 

hydrogels with stiffness gradients of 0.5, 1.7, 2.9, 4.5, 6.8, and 8.2 kPa/mm, they found 

that both of the cell-spread area and the nuclear area increased with stiffness; cells 

exhibited higher y axis velocities with the steep gradient (8.2 kPa/mm) [29]. Proangiogenic 

effects of MSCs secretion were depended on the stiffness level of substrate, maximum 

influence was observed when the MSCs cultivated on the 40kPa fibronectin coated 

hydrogel [30]. Compare with these studies, current work for the first time demonstrated 
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that local curvature of microstructure directed the cell focal adhesion and consequently 

affected the secretion and migration. 

Table 1: Example of studies, topography influenced the stem cell behaviors 

Materials Stem cell 

source 

Topographical feature Findings Ref. 

Titanium UC-MSCs Pores Plasmapore promoted osteogenic 

differentiation 

 

[31] 

TiO2 hMSC Nanotubes 70- to 100-nm nanotubes elicited stem cell 

elongation, and induced differentiation into 

osteoblast-like cells 

[32] 

PMMA hMSCs square or hexagonal 

pattern and Nanopits 

Disordered square promoted osteogenesis [33] 

PLLA mESCs nanotube Enhanced osteogenesis [34] 

PDMS hMSC Grooves Promoted myogenesis [35] 

Carbon hMSCs Grooves Promoted neurogenesis [36] 

PDMS hESCs Grooves Promoted neural differentiation [37] 

Polystyrene rMSCs Grooves Promoted myogenesis and adipogenesis [38] 

Alumina 

ceramics 

hMSCs Grooves Enhanced the adhesion and osteogenesis [39] 

PCL hMSCs Nano-pillar, hole and 

grill 

nano-pillar and nano-hole tenhanced MSC 

chondrogenesis and facilitated hyaline 

cartilage formation 

[40] 

Polyimide hiPSCs groove-ridge structures Sub-micrometer range structure induced 

elongation of iPSC colonies, guide the 

orientation of apical actin fibers, and direct 

the polarity of cell division 

[41] 

UC-MSCs: Umbilical cord mesenchymal stem cells; hMSC: Human mesenchymal stem cell; rMSCs: Rat 

mesenchymal stem cell; hESC: Human embryonic stem cell; mESC: Mouse embryonic stem cell; PMMA: 

Polymethyl methacrylate; PLLA: Poly(L-lactide); PDMS: Polydimethylsiloxane; PCL: Polycaprolactone; PLL: 

Poly-l-lysine. 
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It has been reported that local curvatures play an important role on cells behaviors 

including the cell adhesion, contractile forces and cytoskeleton deformation [42, 43]. Stem 

cell osteogenic differentiation can be influenced by the substrate curvature modulated 

cytoskeletal force and lamin-A expression [44]. Current study indicated that the substrate 

with surface local curvature as a transitional platform between 2D and 3D system, 

affected the stem cell behaviors by modulating the activation of integrin and consequently 

active the downstream signaling pathway. 

Considering the dimension of substrate topography, 3D scaffolds represent the promising 

substrate for regenerative medicine, especially in the reconstruction for the big defects. 

Surface topography is very important for these 3D substrates. For example, in an 

electrospun titanium 3D scaffold study, the cell proliferation and differentiation were 

demonstrated in depending on the microscale roughness level and the fiber diameter [45]. 

3D scaffold of electrospun with height alternation has been shown to induce the neural 

stem cells differentiation into neurons than astrocytes [46]. Concave structure increased 

the stem cell migration compared to convex structure and flat surface on 3D substrate 

[44]. In according with the convex study, the insert system with local curvature in current 

study provided a mimic-convex structure, which promoted not only the cell migration 

ability but the secretion and differentiation. 

Compared with the complexity of three dimensional (3D) native microenvironment, two-

dimensional (2D) surfaces represent a convenient platform to evaluate the effects of 

individual components on cell behaviors. As early as in 1964, the microscale 2D pattern 

was discussed in regulating the alignment of endothelial, fibroblasts and epithelia [47]. 

The 2D surface topography of substrate affects the cells by factor of roughness and 

patterns. Roughness has been well studied in influencing the cell adhesion, migration, 

proliferation and differentiation [48]. The microscale surface roughness with the average 

Ra around 1 µm has the optimal effects to induce the stem cell behaviors [49, 50]. In 

current study, the topographical microstructures with different curvature levels distinctly 

directed the secretion, migration and differentiation of stem cells, the roughness level was 

measured to support current results. In according with this roughness level, the optimal 

effects to induce stem cell response in this study were observed when the surface with 
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the roughness level Ra 4.17±0.17 µm compared with the flat surface with Ra 0.13±0.07 

and the surface with Ra 25.4±3.8.  

The 2D surface pattern can be classified into isotropic and anisotropic ones. Anisotropic 

pattern is the surface with clear orientation such as ridges and grooves while the isotropic 

pattern is randomly distributed structure such as pillar, pit, channel, or etc. The anisotropic 

microscale pattern have been observed to direct the cell alignment, migration and 

adipogenesis [45, 51]. Further, the anisotropic pattern is conversely reported to improve 

the osteogenesis than adipogenesis when changing the periodicity [52]. Therefore, more 

studies need to be carried to explore the underlying mechanism. Compared with the 

anisotropic pattern, the isotropic pattern conducts collective effects to the cells rather than 

the cell alignment. The complicated factors of randomly distributed structures make it 

difficult to in-depth analyze the mechanism of cell responses. For example, the randomly 

pillared surface has been demonstrated to influence the stem cell differentiation [53], 

however, the height, shape and distance between pillars can be very varied compared to 

each other. Studies demonstrated a general trend of cell behaviors on the isotropic 

surfaces. The pillars or islands usually improve the osteogenic differentiation of MSCs 

[53-55]. In current work, the surface microscale structures contains randomly distributed 

ridges and pillars, which provide the average 160 µm or 320 µm peak distance 

respectively and a transitional substrate between 2D and 3D system. The average 160 

µm peak distance provides a stem cell size fit curvature and improved the secretion and 

migration abilities. This new finding predict that the structure fit for cell size may optimally 

modulate the cell behaviors.  Further, the ridged structures enhanced the human iPSCs 

neural differentiation which is in consistent to the former study [56].  

Conclusion and future prospects 

In conclusion, this thesis demonstrates the efficient influences of surface topographic 

microscale structures on stem cells behaviors including secretion, migration and 

differentiation, which provides robust evidences of the determinative effects of 

mechanical cues on stem cells fate. These data are valuable to furtherly study other 

influences of material surface properties on targeted cells. It highlights the great potential 
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of controlling stem cell behavior by manipulating the materials surface topographical 

structures, which would benefit their clinical application in regenerative medicine. 

Previous studies have demonstrated valuable insight into the interactions between cell 

and substrates. However, many challenges in this field need to be addressed, especially 

in the molecular mechanism area, such as the signal transduction from the cell-substrate 

adhesion to cell gene expression and consequent behaviors. Further, the determine 

factor of the topographical pattern on the substrates such as shape, size, depth and 

curvature would be crucial for the designation of substrates in regeneration. The 

continuous findings would enhance our knowledge in topographical patterns modulated 

behaviors of different cell types. Future substrates would contain both chemical and 

mechanical stimuli, with more degree in biomimetic features. The studies should be more 

focus on the multi-direction cues to support the application in regenerative medicine. 

Therefore, topographical 3D pattern need to be further studied to mimic the nature tissue 

and the associate mechanism should be revealed, which will not only benefit the 

fundamental biological studies.   

References 

1. Hoeben, A., et al., Vascular endothelial growth factor and angiogenesis. Pharmacological Reviews, 
2004. 56(4): p. 549-580. 

2. Yang, S.Y., et al., Vascular endothelial cell growth factor-driven endothelial tube formation is 
mediated by vascular endothelial cell growth factor receptor-2, a kinase insert domain-containing 
receptor. Arteriosclerosis Thrombosis and Vascular Biology, 2001. 21(12): p. 1934-1940. 

3. Morales-Ruiz, M., et al., Vascular endothelial growth factor-stimulated actin reorganization and 
migration of endothelial cells is regulated via the serine/threonine kinase Akt. Circulation Research, 
2000. 86(8): p. 892-896. 

4. Ozawa, C.R., et al., Microenvironmental VEGF concentration, not total dose, determines a 
threshold between normal and aberrant angiogenesis. Journal of Clinical Investigation, 2004. 
113(4): p. 516-527. 

5. Asahara, T., et al., Synergistic Effect of Vascular Endothelial Growth-Factor and Basic Fibroblast 
Growth-Factor on Angiogenesis in-Vivo. Circulation, 1995. 92(9): p. 365-371. 

6. Castellon, R., et al., Effects of angiogenic growth factor combinations on retinal endothelial cells. 
Experimental Eye Research, 2002. 74(4): p. 523-535. 



104 
 

7. Schwartz, M.A., Integrins and Extracellular Matrix in Mechanotransduction. Cold Spring Harbor 
Perspectives in Biology, 2010. 2(12). 

8. Katsumi, A., et al., Integrins in mechanotransduction. Journal of Biological Chemistry, 2004. 
279(13): p. 12001-12004. 

9. Shattil, S.J., C. Kim, and M.H. Ginsberg, The final steps of integrin activation: the end game. Nature 
Reviews Molecular Cell Biology, 2010. 11(4): p. 288-300. 

10. Qin, J., O. Vinogradova, and E.F. Plow, Integrin bidirectional signaling: a molecular view. Plos 
Biology, 2004. 2(6): p. 726-729. 

11. Mitra, S.K., et al., Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch 
in tumors. Oncogene, 2006. 25(44): p. 5969-5984. 

12. Mitra, S.K., D.A. Hanson, and D.D. Schlaepfer, Focal adhesion kinase: in command and control of 
cell motility. Nat Rev Mol Cell Biol, 2005. 6(1): p. 56-68. 

13. Ilic, D., et al., Reduced cell motility and enhanced focal adhesion contact formation in cells from 
FAK-deficient mice. Nature, 1995. 377(6549): p. 539-44. 

14. Sart, S., T. Ma, and Y. Li, Preconditioning stem cells for in vivo delivery. Biores Open Access, 2014. 
3(4): p. 137-49. 

15. Yang, C., et al., Mechanical memory and dosing influence stem cell fate. Nat Mater, 2014. 13(6): 
p. 645-52. 

16. Broussard, J.A., D.J. Webb, and I. Kaverina, Asymmetric focal adhesion disassembly in motile cells. 
Curr Opin Cell Biol, 2008. 20(1): p. 85-90. 

17. Kim, D.H. and D. Wirtz, Focal adhesion size uniquely predicts cell migration. FASEB J, 2013. 27(4): 
p. 1351-61. 

18. Huang, C., K. Jacobson, and M.D. Schaller, MAP kinases and cell migration. J Cell Sci, 2004. 117(Pt 
20): p. 4619-28. 

19. Teranishi, S., K. Kimura, and T. Nishida, Role of formation of an ERK-FAK-paxillin complex in 
migration of human corneal epithelial cells during wound closure in vitro. Invest Ophthalmol Vis 
Sci, 2009. 50(12): p. 5646-52. 

20. Shi, J., et al., Activation of ERK-FAK Signaling Pathway and Enhancement of Cell Migration Involved 
in the Early Interaction Between Oral Keratinocytes and Candida albicans. Mycopathologia, 2009. 
167(1): p. 1-7. 

21. Zhang, Y., et al., Rapid single-step induction of functional neurons from human pluripotent stem 
cells. Neuron, 2013. 78(5): p. 785-98. 

22. Hu, B.Y., et al., Neural differentiation of human induced pluripotent stem cells follows 
developmental principles but with variable potency. Proc Natl Acad Sci U S A, 2010. 107(9): p. 
4335-40. 

23. Lenhert, S., et al., Capillary-induced contact guidance. Langmuir, 2007. 23(20): p. 10216-23. 



105 
 

24. Chen, Y.C., et al., Induction and regulation of differentiation in neural stem cells on ultra-
nanocrystalline diamond films. Biomaterials, 2010. 31(21): p. 5575-87. 

25. Yang, K., et al., Nanotopographical manipulation of focal adhesion formation for enhanced 
differentiation of human neural stem cells. ACS Appl Mater Interfaces, 2013. 5(21): p. 10529-40. 

26. Abrams, G.A., et al., Nanoscale topography of the basement membrane underlying the corneal 
epithelium of the rhesus macaque. Cell Tissue Res, 2000. 299(1): p. 39-46. 

27. Griffin, M.F., et al., Control of stem cell fate by engineering their micro and nanoenvironment. 
World Journal of Stem Cells, 2015. 7(1): p. 37-50. 

28. Kshitiz, et al., Control of stem cell fate and function by engineering physical microenvironments. 
Integr Biol (Camb), 2012. 4(9): p. 1008-18. 

29. Hadden, W.J., et al., Stem cell migration and mechanotransduction on linear stiffness gradient 
hydrogels. Proc Natl Acad Sci U S A, 2017. 114(22): p. 5647-5652. 

30. Abdeen, A.A., et al., Matrix composition and mechanics direct proangiogenic signaling from 
mesenchymal stem cells. Tissue Eng Part A, 2014. 20(19-20): p. 2737-45. 

31. Lauria, I., et al., Response of umbilical cord mesenchymal stromal cells to varying titanium 
topographical signals. J Biomed Mater Res A, 2018. 106(1): p. 180-191. 

32. Oh, S., et al., Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S 
A, 2009. 106(7): p. 2130-5. 

33. Dalby, M.J., et al., The control of human mesenchymal cell differentiation using nanoscale 
symmetry and disorder. Nature Materials, 2007. 6(12): p. 997-1003. 

34. Smith, L.A., et al., Enhancing osteogenic differentiation of mouse embryonic stem cells by 
nanofibers. Tissue Eng Part A, 2009. 15(7): p. 1855-64. 

35. Kurpinski, K., et al., Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U 
S A, 2006. 103(44): p. 16095-100. 

36. D'Angelo, F., et al., Micropatterned hydrogenated amorphous carbon guides mesenchymal stem 
cells towards neuronal differentiation. Eur Cell Mater, 2010. 20: p. 231-44. 

37. Lu, D., et al., Microgrooved Surface Modulates Neuron Differentiation in Human Embryonic Stem 
Cells. Methods Mol Biol, 2016. 1307: p. 281-7. 

38. Wang, P.Y., et al., Modulation of osteogenic, adipogenic and myogenic differentiation of 
mesenchymal stem cells by submicron grooved topography. J Mater Sci Mater Med, 2012. 23(12): 
p. 3015-28. 

39. Kim, S.Y., et al., Effect of topographical control by a micro-molding process on the activity of 
human Mesenchymal Stem Cells on alumina ceramics. Biomater Res, 2015. 19: p. 23. 

40. Wu, Y.N., et al., Substrate topography determines the fate of chondrogenesis from human 
mesenchymal stem cells resulting in specific cartilage phenotype formation. Nanomedicine-
Nanotechnology Biology and Medicine, 2014. 10(7): p. 1507-1516. 



106 
 

41. Abagnale, G., et al., Surface Topography Guides Morphology and Spatial Patterning of Induced 
Pluripotent Stem Cell Colonies. Stem Cell Reports, 2017. 9(2): p. 654-666. 

42. Sanz-Herrera, J.A., et al., On the effect of substrate curvature on cell mechanics. Biomaterials, 2009. 
30(34): p. 6674-6686. 

43. Chen, S.S., X.M. Lu, and Q.H. Lu, Effects of concave and convex substrate curvature on cell 
mechanics and the cytoskeleton. Chinese Chemical Letters, 2017. 28(4): p. 818-826. 

44. Werner, M., et al., Surface Curvature Differentially Regulates Stem Cell Migration and 
Differentiation via Altered Attachment Morphology and Nuclear Deformation. Advanced Science, 
2017. 4(2). 

45. Wang, X.K., et al., Effects of structural properties of electrospun TiO2 nanofiber meshes on their 
osteogenic potential. Acta Biomaterialia, 2012. 8(2): p. 878-885. 

46. Xie, J.W., et al., The differentiation of embryonic stem cells seeded on electrospun nanofibers into 
neural lineages. Biomaterials, 2009. 30(3): p. 354-362. 

47. Curtis, A.S.G. and M. Varde, Control of Cell Behavior - Topological Factors. Journal of the National 
Cancer Institute, 1964. 33(1): p. 15-&. 

48. Metavarayuth, K., et al., Influence of Surface Topographical Cues on the Differentiation of 
Mesenchymal Stem Cells in Vitro. Acs Biomaterials Science & Engineering, 2016. 2(2): p. 142-151. 

49. Wennerberg, A. and T. Albrektsson, Effects of titanium surface topography on bone integration: a 
systematic review. Clinical Oral Implants Research, 2009. 20: p. 172-184. 

50. Yang, W., et al., Surface topography of hydroxyapatite promotes osteogenic differentiation of 
human bone marrow mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl, 2016. 60: p. 45-
53. 

51. Matsuzaka, K., et al., The attachment and growth behavior of osteoblast-like cells on 
microtextured surfaces. Biomaterials, 2003. 24(16): p. 2711-2719. 

52. Biggs, M.J.P., et al., The use of nanoscale topography to modulate the dynamics of adhesion 
formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+enriched skeletal stem cells. 
Biomaterials, 2009. 30(28): p. 5094-5103. 

53. McNamara, L.E., et al., Skeletal stem cell physiology on functionally distinct titania 
nanotopographies. Biomaterials, 2011. 32(30): p. 7403-7410. 

54. Fiedler, J., et al., The effect of substrate surface nanotopography on the behavior of multipotnent 
mesenchymal stromal cells and osteoblasts. Biomaterials, 2013. 34(35): p. 8851-8859. 

55. Sjostrom, T., et al., Fabrication of pillar-like titania nanostructures on titanium and their 
interactions with human skeletal stem cells. Acta Biomaterialia, 2009. 5(5): p. 1433-1441. 

56. Pan, F., et al., Topographic effect on human induced pluripotent stem cells differentiation towards 
neuronal lineage. Biomaterials, 2013. 34(33): p. 8131-8139. 

  



107 
 

Contribution to publications  

1. Zhengdong Li et al. Integrin β1 activation by micro-scale curvature promotes pro- 

angiogenic secretion of human mesenchymal stem cells. Journal of Materials 

Chemistry B. 2017, 5, 7415--7425. https://doi.org/10.1039/c7tb01232b 

1) Literature study  

a) Topography and stem cell behaviors 

b) Effects of stem cells in angiogenesis  

c) Signaling pathway in stem cell response to mechanical cues 

2) Study design (with discussion and advice from co-authors Prof. Nan Ma and Prof. 

Lendlein) 

a) Methods of topography characterization 

b) Methods of stem cell secretion test 

c) Methods of signaling pathway test 

3) Experimental work  

a) Measurement of VEGF level in stem cell supernatant  

b) Migration and tube formation test of HUVECs in the supernatant of stem cells 

c) Blood vessel formation induced by the supernatant of stem cells (HET-CAM 

assay) 

d) Signaling pathway test (integrin, FAK, ERK) by ELISA or FACS 

4) Analysis and interpretation of experimental data 

a) The curvature level of materials 

b) VEGF secretion level of MSCs 

c) Migration velocity and tube formation level of HUVECs 

d) Blood vessels induced by MSCs secretome in HET-CAM 

e) Levels of activated integrin β1, FAK and ERK 

5) Manuscript 

a) Manuscript structure (discussed with co-authors) 

b) First manuscript draft 

c) Revising and finalization of the manuscript according to the comments of Prof. 

Lendlein and other co-authors. 

https://doi.org/10.1039/c7tb01232b


108 
 

2. Zhengdong Li et al. Modulation of the mesenchymal stem cell migration capacity 

via preconditioning with topographic microstructure.  Clinical Hemorheology and 

Microcirculation. 2017;67(3-4):267-278. https://doi.org/10.3233/CH-179208 

1)  Literature study  

a) Topography and stem cell migration 

b) Stem cell memory  

c) Signaling pathway in stem cell migration 

2) Study design (with discussion and advice from co-authors Dr. Weiwei Wang, Prof. 

Nan Ma and Prof. Lendlein) 

a) Methods of migration test 

b) Methods of precondition 

c) Methods of signaling pathway test 

3) Experimental work  

a) Migration level of preconditioned stem cells 

b) Focal adhesion staining  

c) FAK and MAPK expression level by ELISA or Western blot 

4) Analysis and interpretation of experimental data 

a) Cell migration velocity  

b) Focal adhesion  

c) FAK and MAPK expression level  

5) Manuscript 

a) First manuscript draft 

b) Revising and finalization of the manuscript according to the comments of Prof. 

Lendlein and other co-authors. 

3. Zhengdong Li et al. Influence of surface roughness on neural differentiation of 

human induced pluripotent stem cells. Clinical Hemorheology and Microcirculation 

64 (2016) 355–366. https://doi.org/10.3233/CH-168121 

1) Literature study  

a) Human iPSCs neural differentiation 

b) Topography and neural differentiation of human iPSCs 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Modulation+of+the+mesenchymal+stem+cell+migration+capacity+via+preconditioning+with+topographic+microstructure.+Clinical+Hemorheology+and+Microcirculation
https://www.ncbi.nlm.nih.gov/pubmed/?term=Modulation+of+the+mesenchymal+stem+cell+migration+capacity+via+preconditioning+with+topographic+microstructure.+Clinical+Hemorheology+and+Microcirculation
https://doi.org/10.3233/CH-179208
https://doi.org/10.3233/CH-168121


109 
 

2) Study design (with discussion and advice from co-authors Prof. Nan Ma and Prof. 

Lendlein) 

a) Methods of neural differentiation induction  

b) Methods of evaluation of the differentiation efficiency 

3) Experimental work  

a) Human iPSCs characterization 

b) Neural differentiation induction 

c) Human iPSCs and neural markers expression (staining and Real-time PCR) 

4) Analysis and interpretation of experimental data 

a) Human pluripotent stem cell markers expression level 

b) Neural markers expression level 

5) Manuscript 

a) First manuscript draft 

b) Revising and finalization of the manuscript according to the comments of Prof. 

Lendlein and other co-authors. 

  



110 
 

List of publications  

First Author 

1, Integrin β1 activation by micro-scale curvature promotes pro-angiogenic secretion of human 

mesenchymal stem cells. Journal of Materials Chemistry B. 2017, 5, 7415--7425. 

https://doi.org/10.1039/c7tb01232b 

2, Modulation of the mesenchymal stem cell migration capacity via preconditioning with 

topographic microstructure. Clinical Hemorheology and Microcirculation. 2017;67(3-4):267-278. 

https://doi.org/10.3233/CH-179208 

3, Influence of surface roughness on neural differentiation of human induced pluripotent stem 

cells. Clinical Hemorheology and Microcirculation 64 (2016) 355–366. https://doi.org/10.3233/CH-

168121 

Co-author 

1, Wang, WW., K. Kratz, M. Behl, W. Yan, Y. Liu, X. Xu, S. Baudis, Z. Li, A. Kurtz, A. Lendlein 

and N. Ma (2015). "The interaction of adipose-derived human mesenchymal stem cells and 

polyether ether ketone." Clinical Hemorheology and Microcirculation 61(2): 301-321. 

2, Wang, WW., X. Xu, Z. Li, A. Lendlein and N. Ma (2014). "Genetic engineering of mesenchymal 

stem cells by non-viral gene delivery." Clinical Hemorheology and Microcirculation 58(1): 19-48. 

3, Xu, X., W. Wang, K. Kratz, L. Fang, Z. Li, A. Kurtz, N. Ma and A. Lendlein (2014). "Controlling 

Major Cellular Processes of Human Mesenchymal Stem Cells using Microwell Structures." 

Advanced Healthcare Materials 3(12): 1991-2003 

4, Xu, X., K. Kratz, WW. Wang, Z. Li, T. Roch, F. Jung, A. Lendlein and N. Ma (2013). "Cultivation 

and spontaneous differentiation of rat bone marrow-derived mesenchymal stem cells on 

polymeric surfaces." Clinical Hemorheology and Microcirculation 55(1): 143-156. 

5, Wang, W., N. Ma, K. Kratz, X. Xu, Z. Li, T Roch, K. Bieback, F. Jung and A. Lendlein (2012). 

"The influence of polymer scaffolds on cellular behaviour of bone marrow derived human 

mesenchymal stem cells." Clinical Hemorheology and Microcirculation 52(2-4): 357-373. 

6, Xu, X., K. Kratz, W.Wang, Z. Li, T. Roch, F. Jung, A. Lendlein and N. Ma (2013). "Cultivation 

and spontaneous differentiation of rat bone marrow-derived mesenchymal stem cells on 

polymeric surfaces." Clinical Hemorheology and Microcirculation 55(1): 143-156. 

 

https://doi.org/10.1039/c7tb01232b
https://www.ncbi.nlm.nih.gov/pubmed/?term=Modulation+of+the+mesenchymal+stem+cell+migration+capacity+via+preconditioning+with+topographic+microstructure.+Clinical+Hemorheology+and+Microcirculation
https://doi.org/10.3233/CH-179208
https://doi.org/10.3233/CH-168121
https://doi.org/10.3233/CH-168121


111 
 

Curriculum Vitae  

Personal Details 

Name and sure name:  Zhengdong Li 

Birth date: 02. Aug. 1981 

Nationality:  People’s Republic of China (PRC) 

Address: Sven-Hedin Straße 41, 14163, Berlin 

Telefone number: +49 176 8295 7873 

Email: zhengdongli02@hotmail.com 

Education: 

10.2011-03.2018: Ph.D candidate, Helmholtz Macrobio Graduate School, Teltow and Freie 

Universität Berlin. 

04.2010 -09.2011: MD candidate, Rudolf-Zenker-Institut für Experimentelle Chirurgie, Universität 

Rostock. 

09.2000-07.2007: Bachelor and master of human medicine, Medical school, Xi´an Jiaotong 

University (PRC). 

Professional Experience: 

01.2017-09.2018: Wissenschaftlicher Mitarbeiter, Helmholtz-Zentrum Geesthacht – Zentrum für 

Material- und  Küstenforschung (Teltow, Germany) 

10.2011-12.2016: Doktorand, Helmholtz-Zentrum Geesthacht – Zentrum für Material- und  

Küstenforschung (Teltow, Germany) 

04.2010-09.2011: Wissenschaftliche Hilfskraft, Rudolf-Zenker-Institut für Experimentelle 

Chirurgie, Universität Rostock. 

07.2007-03.2010: Resident physician, Pediatrics and orthopedics, The Third People’s Hospital of 

Chengdu (PRC). 

07.2005-06.2007: Resident physician (internship), Orthopedics, The Second Affiliated Hospital of 

Xi´an Jiaotong University (PRC). 

Language: 

1, English: Fluent in reading and scientific writing, good in speaking. 

2, Deutsch: Basic level (A2). 

3, Mandarin: Mother tongue. 

https://tabellarischer-lebenslauf.net/faq/curriculum-vitae-cv/
mailto:zhengdongli02@hotmail.com
http://www.fu-berlin.de/en/index.html
http://www.fu-berlin.de/en/index.html
https://experimentelle-chirurgie.med.uni-rostock.de/
https://de.wikipedia.org/wiki/Helmholtz-Zentrum_Geesthacht_%E2%80%93_Zentrum_f%C3%BCr_Material-_und_K%C3%BCstenforschung
https://de.wikipedia.org/wiki/Helmholtz-Zentrum_Geesthacht_%E2%80%93_Zentrum_f%C3%BCr_Material-_und_K%C3%BCstenforschung
https://de.wikipedia.org/wiki/Helmholtz-Zentrum_Geesthacht_%E2%80%93_Zentrum_f%C3%BCr_Material-_und_K%C3%BCstenforschung
http://www.steuerklassen.com/gehalt/wissenschaftliche-hilfskraft/
https://experimentelle-chirurgie.med.uni-rostock.de/
https://experimentelle-chirurgie.med.uni-rostock.de/


112 
 

Selbständigkeitserklärung 

 

Ich erkläre, dass ich die vorliegende Dissertation selbständig, ohne unzulässige fremde 

Hilfe und nur unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt 

habe. 

 

 

I hereby confirm that I have made this work autonomously. I assure that I have read and 

used only the specified sources claimed in this work. 

 

 

Berlin, March, 2018 

Zhengdong Li 

 

 

 


