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Zusammenfassung

Diese Dissertation beschäftigt sich mit der Theorie der Isokristallen, insbesondere mit
zwei Vermutungen von de Jong und Deligne.

Im ersten Teil zeigen wir über log erweiterbare Isokristalle von Rang 1 auf nicht-
projektiven Varietäten: Wenn die zahme Fundamentalgruppe der Varietät trivial ist,
dann sind alle solche Isokristalle trivial. Dies dehnt Ergebnisse von Esnault und Shiho
aus.

Ferner, stellen wir die Menge der Isokristallen von Rang 1 auf einer projektiven Kurve
als Unterraum des de Rham Modulraums von Simpson und Langer dar. Wir vergleichen
die `-adische Kohomologie dieses Unterraums mit der `-adischen Kohomologie des
Modulraums, indem wir Ergebnisse aus der Theorie von Berkovich verwenden. Wir
beweisen damit eine Vermutung von Deligne.

Abstract

This thesis is about the theory of isocrystals, in particular about two conjectures of de
Jong and Deligne.

In the first part of the thesis we treat the case of rank 1 log extendable isocrystals
on non-proper varieties: we show that if the variety has trivial tame fundamental group,
then there are no non-trivial such isocrystals on it. This extends a result of Esnault
and Shiho in the projective case.

Moreover, we express the set of rank 1 isocrystals on a proper curve as a subset
of the de Rham moduli space, defined by Simpson and Langer. Using results from
the theory of Berkovich spaces, we compare the `-adic cohomology of this subspace
with the `-adic cohomology of the whole moduli space. This confirms a conjecture of
Deligne in the rank 1 case.

5





Contents

Introduction 9

1 Background 15
1.1 Isocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Log isocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Étale fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Berkovich and rigid analytifications . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Rigid analytification . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Berkovich analytification . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Generic fibers of formal schemes . . . . . . . . . . . . . . . . . . . . . . 30
1.6 Cohomology of Berkovich spaces . . . . . . . . . . . . . . . . . . . . . . 33

2 De Jong’s Conjecture 37
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Residue exact sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 The value of the log extension on the compactification . . . . . . . . . 40
2.4 Triviality of the isocrystal . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Moduli space of rank 1 isocrystals 49
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Moduli of line bundles with integrable connection . . . . . . . . . . . . 50
3.3 The subset of isocrystals. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Hitchin map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Isocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.3 A conjecture of Deligne . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Comparison of cohomology groups. . . . . . . . . . . . . . . . . . . . . 56
3.5 Frobenius action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Functorial interpretation . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Frobenius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7





Introduction

Crystals were introduced by Grothendieck in 1966 in a letter to Tate, and were so
called because they are “rigid” but also “grow”. They are sheaves that “grow” over
PD thickenings and have to satisfy a rigidity condition. The quasi-coherent ones on an
algebraic variety are equivalent to quasi-coherent sheaves with integrable connections.
They are coefficients of crystalline cohomology, a Weil cohomology theory that fills the
gap of `-adic cohomology for ` equal to the characteristic of the base field.

As often happens in mathematics, one could try to understand how these objects
are connected with the geometric properties of the variety on which they are defined.
One example of such a question is de Jong’s Conjecture, which is a crystalline version
of a classical conjecture posed by Gieseker. In more detail, for a complex connected
smooth projective variety X one can define the category of OX-coherent DX-modules,
which is equivalent via the Riemann-Hilbert correspondence to the category of finite
dimensional representations of the topological fundamental group πtop

1 (X). By a result
of Malčev [Mal40] and Grothendieck [Gro70] we know how this category relates to the
étale fundamental group πét

1 (X): if πét
1 (X) is trivial, then there are no non-constant

OX-coherent DX-modules. Naturally, one asks if the same holds true in positive
characteristic. This conjecture was formulated by Gieseker [Gie75] and proven by
Esnault and Mehta in [EM10].

In 2010 de Jong proposed a p-adic version of this conjecture: if πét
1 (X) = 1, then

any isocrystal E ∈ Crys(X/W )Q is constant. This question was addressed in great
detail in [ES16] and in [ES15], where various subcases were considered. There the
authors prove, among other results, that for a smooth connected projective variety
over an algebraically closed field of positive characteristic, the triviality of the étale
fundamental group implies that any convergent isocrystal, which is filtered so that the
associated graded is a sum of rank 1 convergent isocrystals, is constant [ES16, Theorem
0.1]. In particular, it is also proven that rank 1 isocrystals (not necessarily convergent)
are also trivial in this case [ES15, Theorem 1.2].

In the present work we extend this result to the case of rank one log extendable
isocrystals on a non-proper variety with trivial étale fundamental group. Actually
we just need to assume that its abelianized tame fundamental group is trivial. More
precisely, we prove the following:

Theorem (Theorem 2.6). Let U be a smooth connected variety over an algebraically
closed field k of positive characteristic, that admits a good compactification X, where
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X −U = ∪i∈IZi =: Z is a simple strict normal crossings divisor. If πtame,ab
1 (U) = 1 and

L is a rank one isocrystal on U that extends to a log isocrystal on X, equipped with
the log structure coming from Z, then L is trivial.

As a corollary we obtain also, with the previous notations and assumptions:

Corollary (Corollary 2.9). Unipotent log extendable isocrystals on U are constant.

On the other hand, a very natural question is whether there exists a moduli space
which parametrizes such objects. Using the equivalence of the category of isocrystals
on a projective variety with the category of modules with quasi-nilpotent integrable
connection on a smooth lift of the variety over the Witt ring, using Grothendieck’s
formal function theorem, one can see that such a space can be constructed as a subspace
of the de Rham moduli space of vector bundles with integrable connection. This was
constructed by Simpson in [Sim94a] and [Sim94b] in characteristic zero and extended
by Langer [Lan14] and others, for example [Gro16],[LP01], [BB07], in the positive
characteristic case.

The second part of this thesis is about the moduli space of rank 1 isocrystals on a
smooth proper curve and provides evidence for a conjecture of Deligne [Del15] in the
rank 1 case. Concretely, let C0 be a smooth projective curve over the finite field Fq of
characteristic p > 0 and let C be its base change to Fq =: k. Denote by W the Witt
ring of Fq, by K its field of fractions, of characteristic 0, and K an algebraic closure of
it. Denote by CW a smooth lift over SpecW and assume in addition that CW admits a
section x : SpecW → CW .

Deligne conjectured the following in [Del15]: let MK denote the moduli space of
vector bundles of rank r on a smooth curve C, as before, endowed with an integrable
connection, and respectively MK the corresponding scheme on an algebraic closure K
of K.

Conjecture (Conjecture 2.18 in [Del15]). The cohomology of MK admits an endomor-
phism V ∗, such that for all n ≥ 1, the number Nn of fixed points of V ∗ on Er, the set
of isomorphism classes of irreducible lisse `′-adic sheaves of rank r on C, is given by

Nn =
∑
i

(−1)i Tr(V ∗n, H i(MK)),

where all cohomology groups denote `-adic cohomology groups, with ` 6= p.

Deligne expects that there should exist an open subspace M0
K

inside the Berkovich
analytification Man

K
, which should correspond to the sublocus of isocrystals and such

that it has the following two properties:

(1) the restriction morphism H∗(MK) = H∗(Man
K

) → H∗(M0
K

) is an isomorphism
and

(2) a crystalline interpretation of M0 allows us to define V = Frob∗ : M0
K
→ M0

K
,

which induces V ∗ on cohomology.



11 Introduction

In the same article, Deligne provides an example of this in the rank 1 case, [Del15,
Example 2.19 and Proposition 2.20] using Pic0 as M0. Our goal in the second part
of this thesis is to explain why this example indeed provides a comparison between
the cohomology of the subset of isocrystals and that of the moduli space of rank 1
connections.

The recent work of Hongjie Yu [Yu18] actually proves Deligne’s conjecture and
gives explicit formulas for the number of irreducible `-adic local systems fixed by the
Frobenius. In our work, we mainly focus on the first part of this conjecture, specifically
on the relation with the theory of isocrystals and subsequently why there should be a
Frobenius on the cohomology of the moduli space.

Leitfaden

We explain here shortly our strategy for proving the afore-mentioned results. In
Chapter 2 we prove Theorem 2.6: starting with a rank one isocrystal L on U , as in the
assumptions of the theorem, we denote by L log the log isocrystal on X extending L ,
by Llog a locally free lattice of it and by L the restriction of the latter to U . We first
work on the value of L log on X. It can be seen as a log crystal on X/ Spec k (we omit
here the reference to the log structures) and can be seen as a module on the log scheme
X with integrable quasi nilpotent log connection, which we denote by (Llog

X ,∇log
X ).

In Section 2.2 we adapt the discussion of [AB05, Section 6] to our situation and
obtain a residue exact sequence:

H1
crys(X/W,O∗X/W )→ H1((X,M)/W,O∗X/W )log

crys → ⊕W (k)[Zi]→ H2(X/W,O∗X/W ).
(1)

We also derive from (1) that there is an injection

H1((X,M)/W,O∗)log
crys ↪→ ⊕W (k)[Zi]. (2)

We then prove that the log crystalline Chern class clogcrys
1 (Llog

X ) is equal to zero
and using this we conclude in Lemma 2.4, that the line bundle LX to some power N
is then of the form OX(

∑
aiZi) with Q-coefficients. To simplify the notation we set

Elog := (Llog)⊗N . By (1) we can then conclude that the map H1((X,M)/W,O∗)log
crys →

H1(X,O∗X) is injective, hence that the log crystal (Elog
X ,∇log

X ) is actually “controlled”
by the value of the sheaf Elog

X .

Using this and the previous observations we get that the restriction of (Elog
X ,∇log

X )
to U is the trivial module with the trivial connection. It then follows that we can
assume (Elog

X ,∇log
X ) to be isomorphic to (Olog

X , dlog).

In Theorem 2.6 we then use a deformation argument (adapted from [ES16]) to prove
that L⊗n is the trivial crystal and conclude that L and therefore also L are trivial,
using Lemmas 2.7 and 2.8.

As a corollary of this theorem and using the observations made in Section 2.2, we
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also obtain in Corollary 2.9 that extensions in Icrys(X/W )log of the trivial log isocrystal
by itself are constant and so isocrystals on the open variety whose extensions are of
this form, are also constant. Therefore log extendable unipotent isocrystals on U , i.e.
isocrystals that admit a filtration with the property that their associated quotients are
successive extensions of the trivial isocrystal, are also constant.

Finally, we would like to point out the steps of the proof where the triviality of
πtame,ab

1 (U). From (1.10) we obtain that then also πab(X) = 1 is true. In Lemma 2.4

we use that the maximal pro-l-quotient π
ab,(l)
1 (U) is trivial for l 6= p to obtain that

H0(U,O∗U) = k∗, while πab(X) = 1 also implies NS(X) = Pic(X), see Remark 1.26.
For the observations of Section 2.2, the triviality of πtame,ab

1 (U) also suffices. Indeed,
there we use that H1

crys(X/W ) = H1
crys(X/W,O∗X) = 0, from [ES16, Theorem 0.1.1

and Proposition 2.9] and [ES15, Theorem 5.1]. The triviality of the abelianized tame
fundamental group is indeed enough to derive these equalities. The same relations are
also mainly used in Theorem 2.6 together with the fact that NS(X) = Pic(X). To
conclude Section 2.2 and for Lemma 2.7 we use that Kummer coverings of U are trivial,
thus we have to assume that πtame,ab

1 (U) = 1, since k is algebraically closed.

In Chapter 3, we consider the rank 1 case of Deligne’s conjecture and use the moduli
space Pic∇(CW ) of line bundles of degree zero with integrable connection on CW . This
is the universal extension of Pic0(CW ), see Section 3.2, and is therefore fine.

Our first goal is to characterize the subspace of rank 1 isocrystals inside this
moduli space. Isocrystals can indeed be thought as vector bundles with integrable
and nilpotent connection: we say that a point [(L ,∇)] of Pic∇(CW ) represents an
isocrystal on C if the associated pair (LFq ,∇Fq) represents an isocrystal, or equivalently
if (LFq ,∇Fq) has nilpotent p-curvature. This condition is equivalent to requiring that
the characteristic polynomial of the p-curvature is zero or that χ([(LFq ,∇Fq)]) = 0,

with χ : Pic∇(C)→ A 1(Fq) := H0(C, ωpC) the Hitchin map. We denote the fiber over
zero of the Hitchin map by Pic∇(C)ψ=0. By the Cartier isomorphism, [Kat70, Theorem
5.1], we have that this fiber is isomorphic to Pic0(C(p)), which is actually isomorphic
to Pic0(C).

In the spirit of the above conjecture we consider in Section 3.3 the Berkovich
analytification of Pic∇(CW )K and remark that the inverse image of Pic∇(C)ψ=0 by the
reduction map

red : ̂(Pic∇(CW ))K → Pic∇(C)

is an open subset, denoted by ] Pic∇(C)ψ=0[. Using results of [Ber90] and [Ber96a], we
show in Proposition 3.6 that

H∗(Pic∇(CK)an,Q`)
∼−→ H∗(] Pic∇(C)ψ=0[K ,Q`)

and see therefore that ] Pic∇(C)ψ=0[ is a good candidate for being the open subset M0

of the aforementioned conjecture.

As a last step, we prove that this subset admits a Frobenius action. To this end,
we describe ] Pic∇(C)ψ=0[ as a subfunctor of Pic∇(CK)an. For this, it is enough to
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characterize the set
Hom(S, ] Pic∇(C)ψ=0[)

for S an affinoid. Indeed, using results of [BL93] we obtain in Section 3.5 an isomorphism
between

Hom(S, ] Pic∇(C)ψ=0[)

and the set

{(L ,∇) line bundles with integrable connection on S ×K Can
K which are

isocrystals on S ′ × CW → S ′ where S ′is a formal model of S ′,

an admissible formal blow-up of S} (3)

and prove that this isomorphism is well defined (independent of the choice of an
admissible blow-up) and functorial.

The outline of the thesis is the following: in Chapter 1 we include some background
on isocrystals, log isocrystals, the étale fundamental group and some results about
the Berkovich and rigid analytification functors. We end the chapter discussing the
connection of Berkovich and rigid spaces to formal schemes.

In Chapter 2 we prove de Jong’s conjecture in the case of rank 1 log extendable
isocrystals on a non-proper variety with abelian tame fundamental group, in Theorem
2.6.

Finally in Chapter 3 we discuss the afore-mentioned conjecture of Deligne in the
rank 1 case. Section 3.2 includes a discussion about the universal extension of an
abelian variety, and specifically of Pic0, while in Section 3.3 we recall some results about
the Hitchin map and discuss the construction of the subset of isocrystals. In Section
3.4 we prove a comparison between cohomology groups as expected from Deligne’s
conjecture and in Section 3.5 we provide a functorial interpretation of the subset of
isocrystals we defined.





Chapter 1

Background

1.1 Isocrystals

In this section we provide some background on the theory of isocrystals and include
some results that we use in the next two chapters of the thesis. In the rest of this
section, we always denote by k an algebraically closed field of characteristic p > 0, by
X a smooth projective variety over k and by U a smooth, non-proper variety over k.
We also denote by W the Witt ring of k and set Wn := W/pn.

The motivation for the theory of (iso-) crystals and crystalline cohomology comes
from the Weil conjectures, actually their proof. Specifically, Grothendieck defined
étale cohomology as an attempt to construct a Weil cohomology theory, in order to
prove these conjectures. Later Deligne [Del74] indeed gave the proof of the analogue
of Riemann hypothesis using `-adic cohomology. This cohomology theory provides
for any prime number ` 6= p (the characteristic of the base field), cohomology groups
Hi

ét(X,Q`) = lim←−Hi(X,Z/`nZ) ⊗ Q. This provides a Weil cohomology theory and
gives us information about the rank and `-torsion of the singular cohomology of a
complex analytic variety. However, this is no longer true, if ` = p. For example,
for a g-dimensional abelian variety over k, Hi(X,Q`) has dimension 2g, if ` 6= p,
but Hi(X,Qp) has dimension smaller that g. This motivates the need for a good
p-adic cohomology theory,, which is given by crystalline cohomology. All details about
crystalline cohomology and the theory of crystals can be found in the classical books
[BO78] and in [Ber74]. A nice introduction to the main properties of crystals and
convergent isocrystals can be found in [ES16, Preliminaries]. We sketch here shortly
some of the most important results and definitions.

Definition 1.1 (Crystalline site). The crystalline site (X/Wn)crys is defined as follows:
the objects are given by (U ↪→ T ), where U ⊂ X is a Zariski open, T is a Wn-scheme
and i : U ↪→ T is a PD thickening of U . This means that i is closed immersion of Wn

schemes such that the ideal Ker(OT → OU ) has a PD structure δ compatible with the
canonical PD structure on pWn, which is defined by γn(p) = pn/n!.

15
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The morphisms (U ↪→ T )→ (U ′ ↪→ T ′) are commutative diagrams

U T

U ′ T ′

compatible with the PD structures. The coverings are given by elements (Ui, Ti) such
that Ti ↪→ T are open immersions and T = ∪Ti .

The crystalline site (X/W )crys is defined in the same way, where T is a Wn-scheme
for some n. The structure sheaf OX/W is defined by (U ↪→ T ) 7→ Γ(T,OT ).

Crystals are sheaves on the crystalline site satisfying some special glueing property:

Definition 1.2 ((Iso-)crystals). Defining a sheaf E on the crystalline site (X/W )crys

is equivalent to giving for any (U ↪→ T ) =: T , a sheaf of OT -modules ET in the Zariski
topology of T with the following property: given a morphism g : (U ′ ↪→ T ′)→ (U ↪→ T )
in the crystalline site, there is an induced OT ′-linear morphism g∗ET → ET ′ , which
is an isomorphism when T ′ → T is an open immersion and U ′ = U ×T T ′. A crystal
of OX/W -modules is a sheaf on (X/W )crys for which the morphisms g∗ET → ET ′

are isomorphisms. For each element T of (X/W )crys, we get a sheaf of OT -modules
ET , which is called the value of the crystal on T . The crystal is called of finite
presentation, respectively locally free, if the sheaf ET is of finite presentation and
locally free respectively for any object T of (X/W )crys. We denote by Crys(X/W ),
respectively Crys(X/Wn), the category of crystals of OX/W -, respectively OX/Wn-,
modules of finite presentation. These categories are abelian and satisfy descent in the
Zariski topology [Ber74, Proposition 1.7.6]. The category of isocrystals, which will be
denoted by I(X/W ) and Icrys(X/Wn) respectively, has the same objects as Crys(X/W ),
Crys(X/Wn) respectively, but the homomorphisms are given by

HomIcrys(X/W )(E,F ) := Q⊗W HomCrys(X/W )(E,F ).

There is a restriction functor Crys(X/W ) → Crys(X/Wn), E → En, which is
induced by the natural inclusion of sites (X/Wn)crys ↪→ (X/W )crys and moreover we
have an equivalence [BO78, p. 7-22]:

Crys(X/W )
'−→ lim←−

n

Crys(X/Wn). (1.1)

If X is projective over k and i : X ↪→ PNk denotes a fixed closed immersion, we
have the notion of PD-envelope of X ↪→ PNk ↪→ PNWn

, as defined in [BO78, Section 3,
p. 3.19, Definition 4.1], which we denote by Dn. In [BO78, Section 4], they define the
notion of ODn-modules with integrable connection with respect to the PD-derivation
on Dn. The category of such objects is denoted by MIC(Dn) and the subcategory of
quasi-nilpotent ones, for the precise definition see [BO78, Definition 4.10], is denoted
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by MIC(Dn)qn. As remarked in [Ogu04], a connection ∇ on E is called quasi-nilpotent
if locally on X, every local section of E is annihilated by a power of the p-curvature
(we recall the definition of the latter in (3.9)).

By [BO78, Theorem 6.6], we have that this category is equivalent to the one of
crystals:

Crys(X/Wn)
'−→ MIC(Dn)qn; E 7→ (EDn ,∇EDn

). (1.2)

In the case when X admits a lifting to p-adic formal scheme XW (such a lifting exists
on affine open subschemes when X is smooth over k), and if we set Xn = XW ⊗Wn,
evaluating at (X ↪→ Xn, canonical PD structure on pOXn) induces an equivalence, see
also [ES16, p. 7]:

Crys(X/Wn)
'−→ MIC(Xn/Wn)qn (1.3)

and passing to the limit:

Crys(X/W ) = lim←−
n

Crys(X/Wn)
'−→ lim←−

n

MIC(Xn/Wn)qn = MIC(XW/W )qn. (1.4)

Crystalline cohomology is a Weil cohomology theory which takes values in the Witt
ring of the base field. Crystals are coefficients for this cohomology theory. Using the
equivalences described above, Berthelot [BO78, Section 7] gave a comparison between
crystalline and algebraic de Rham cohomology:

Theorem 1.3 ([BO78, Theorem 7.1]). Let i : X ↪→ Y a closed immersion of S-
schemes, for S a scheme over a field k of positive characteristic, and let E be a crystal
on X. If we denote by E the corresponding DX/Y -module with quasi-nilpotent integrable
connection, where DX/Y is the PD-envelope of i, then there is a canonical isomorphism

Hi((X/S), E)crys → H(XZar,E ⊗DX/Y Ω•DX/Y /S)

where E ⊗DX/Y Ω•D/S is the de Rham complex defined by the connection on E , by
considering E as an OY -module.

We denote by Hi(X/S)crys the cohomology of the trivial crystal OX/S.
There are two special categories of isocrystals which represent connections with

extra convergence properties. In [Ogu84, Definition 2.7] Ogus gave the definition of
another class of isocrystals, the convergent isocrystals. They are crystals on the site of
enlargements of X, see [Ogu84, Definition 2.1]. The convergent isocrystals coincide
in turn with the overconvergent isocrystals on proper varieties, which were defined
by Berthelot in [Ber96c]. About the theory of overconvergent isocrystals and rigid
cohomology, we also refer to [Le 07].

Definition 1.4 ([Ogu84, Definition 2.1 and 2.7]). Let X be a W -scheme or a W -formal
scheme. An enlargement of X/W is a pair (T, zT ), with T a flat p-adic formal W -scheme
and zT a W -morphism T0 → X, where T0 is the reduced closed subscheme (T1)red of
the closed subscheme T1 of T defined by the ideal pOT .
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A convergent isocrystal E on X/W is a crystal on the site of enlargements: for every
enlargement (T, zT ) it is a coherent sheaf ET of coherent K ⊗OT -modules, together
with the expected glueing property for morphisms between enlargements.

The category of convergent isocrystals on a smooth p-adic formal W -scheme X
is a full subcategory of the category of sheaves of K ⊗ OX-modules with integrable
connection relative to K, [Ogu84, Theorem 2.15].

Especially interesting in the theory of isocrystals are the objects that admit a
Frobenius structure:

Definition 1.5 (F-Isocrystals [Ogu84, Definition 2.17]). Let X be a k-scheme, regarded
as a formal W -scheme and let FX : X → X be its absolute Frobenius endomorphism
which covers the Frobenius morphism FW : W → W . A convergent F -isocrystal E on
X/W is a convergent isocrystal on Z/W together with an isomorphism Φ : F ∗XE → E.

1.2 Log isocrystals

The main references for this section are [Kat89],[NS08],[ShI] and [ShII].

Log isocrystals are isocrystals on log schemes. We first give the definition of a log
scheme: in what follows, monoids are assumed to be commutative with a unit element.

Definition 1.6 ((pre-) log structures [Kat89, 1.1 and 1.2]). A pre-log structure on a
scheme X is a sheaf of monoids M endowed with a homomorphism α : M → OX . A
pre-log structure is a log structure if in addition

α−1(O∗X) ' O∗X .

A scheme together with a log structure is called a log scheme. We can make the same
definition for a p-adic formal scheme over a complete discrete valuation ring of mixed
characteristic (0, p). A morphism of log schemes is a pair (f, h) : (X,M) → (Y,N),
with f : X → Y a morphism of schemes and h : f−1(N)→M such that the following
diagram commutes:

f−1(N) M

f−1(OY ) OX .

h

Example 1.7. (1) Any scheme X can be endowed with the log structure (O∗Y ,O∗Y ↪→
OY ). This is called the trivial log structure. Moreover, the functor (Schemes→
Log schemes) is fully faithful and we can consider a scheme as a log scheme
endowed with the trivial log structure, while the same holds if we replace schemes
by formal schemes.
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(2) We can endow any regular scheme X, which has a reduced normal crossings
divisor Z, with the log structure defined by

MZ := {f ∈ OX |f is invertible outside Z} ⊂ OX .

For a monoid M , we denote by Mgp its Grothendieck group: it is the abelian group
{ab−1|a, b ∈M}/ ∼, where the equivalence relation is: ab−1 ∼ cd−1 if and only if there
is an element s ∈M with sad = sbc.

Definition 1.8 (Fine and fs monoids). A monoid M is called

(1) fine is it is finitely generated and in addition the natural homomorphism M →
Mgp is injective.

(2) fs if it is fine and

if m ∈Mgp and mn ∈M then m ∈M.

Definition 1.9 (Fine and fs log schemes). A log scheme (X,M,α) is called fine
(respectively fs) if étale locally on X, there exists a fine (respectively fs) monoid P such
that M is isomorphic to the log structure associated to the homomorphism PX → OX .
This means that M is isomorphic to the push-out of the diagram

α−1(O∗X) P

O∗X .

The log structure of this push-out is in general given by the map (a, b) 7→ α(a)b, for
a ∈M, b ∈ OX .

The analogue of smoothness in the log scheme setting is the following:

Definition 1.10 (Exact closed immersion, (formally) log smooth morphism [Kat89,
3.1 and 3.3]). Let f : (X,M)→ (Y,N) be a morphism of fine log schemes. It is called
an exact closed immersion, if the morphism X → Y is a closed immersion of schemes
and the homomorphism f ∗N →M is an isomorphism. If the latter is only surjective,
f is called a closed immersion. Moreover, f is called log smooth if:

(1) the morphism of schemes X → Y is locally of finite presentation and

(2) if we have a commutative diagram of fine log schemes

(Z0, P0) (X,M)

(Z, P ) (Y,N)

a

i f

b
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with i an exact closed immersion, such that J := Ker(OZ → OZ0) satisfies J2 = 0,
then there exists étale locally a morphism g : (Z, P ) → (X,M), with g ◦ i = a
and f ◦ f = b.

In the case of formal log schemes, we call f formally log smooth if each (Xn,Mn)→
(Yn, Nn) is log smooth. Here, (Xn,Mn) denotes the closed subscheme defined by pnOX
and Mn the pull-back of M to Xn.

An important property of fine log schemes, which we use in order to prove Theorem
2.6, is that they admit a good embedding system:

Definition 1.11 (Good embedding systems [ShII, Definition 2.2.10]). Assume that we
have a morphism of fine log schemes

(X,M)→ (Spf V,N)

with X/ Spf V of finite type and V a totally ramified finite extension of W .

A good embedding system is a diagram

(X•,M•) (P •, N•)

(X,M) (Spf V,N)

(1.5)

with the following properties:

(1) X i → X is a hyper-covering for the étale topology and M i(i ≥ 0) is the inverse
image of M on X i, for all i.

(2) each (X i,M i) is a simplicial fine log scheme, of Zariski type, [ShII, Definition
1.1.1], and of finite type over k.

(3) each (P i, N i) is a simplicial fine formal log V scheme, formally log smooth and
of Zariski type.

(4) (X i,M i)→ (P i, N i) is a closed immersion for all i.

Remark 1.12. By [ShII, Proposition 2.2.11], given morphisms of fine log schemes

(X,M)
f−→ (Spec k)

i−→ (Spf V,N) where f is of finite type, i is the canonical exact
closed immersion and assuming that (Spf V,N) admits a chart, there exists at least
one good embedding system of (X,M) over (Spf V,N).

Example 1.13 (Addendum to Example 1.7). (1) The trivial log structure defined
in Example 1.7 is fs, since it is associated to the pre-log structure {1}X → OX .
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(2) For (X,Z) as in Example 1.7(2), we can also show that the obtained log structure,
which we denote by (M,α), is fs [ShI, Example 2.4.4]: for x ∈ X a point, there
exists an open affine neighborhood U of x and a regular sequence u1, · · · , un ∈
Γ(U,OU), with the property that Z × U is given by u1u2 · · ·um = 0, for some
m ≤ n. Here x denotes the separable closure of x according to [Kat89, Section 1].
The choice of such elements defines a map ψ : Nm

U → M|U
α−→ OU , by ei 7→ ui,

where ei generate Γ(U,Nm
U ) = Nm. This is in fact a pre-log structure and its

associated log structure, as defined in Definition 1.9, is in fact isomorphic to M|U .

Last but not least, we can define the notion of log differentials for a log scheme:

Definition 1.14 (Log differentials). Let f : (X,M,α)→ (Y,N, β) be a morphism of
log schemes. The module of log differentials ω1,log

(X,M)/(Y,N) is defined as the quotient of

Ω1
X/Y ⊕ (OX ⊗Z M

gp)

by the OX-submodule locally generated by the elements:

(1) (dα(a), 0)− (0, α(a)⊗ a), with a ∈M .

(2) (0, 1⊗ a), where a ∈ Im(f ∗N →M).

Note that by [Kat89, p. 3.10], the module of log differentials is a locally free OX-
module of finite type. Moreover, we can define as in the classical case the q-th exterior
product of ω1,log

(X,M)/(Y,N) and denote it by ωq,log
(X,M)/(Y,N). In the following we omit the log

structures from the notation, if there is no confusion, and simply write ωq,log
X/Y .

Next, we define the notions of log crystalline site and log isocrystals and recall the
equivalence of the latter category with the category of modules with log connection.
These extend the analogous definitions and results of the theory of isocrystals without
log structure.

Definition 1.15 (Log crystalline site). Let (X,M) be a fine log scheme over k and

(X,M)→ (Spec k,N) ↪→ (Spf W,N)

be morphisms of fine log formal schemes over W . An object of the crystalline
site ((X,M)/(SpecWn, N))crys, respectively ((X,M)/(SpecW,N))crys is given by the
5-tuple (U, T, L, i, γ), where U is étale over X, (T, L) is a fine log scheme over
(SpecWn, N), respectively (SpecWn, N) for some n, i : (U,M) → (T, L) is an ex-
act closed immersion over (SpecWn, N), respectively over (SpecW,N), and γ is a log
PD structure on the ideal defining U inside T , which is compatible with the one of Wn.
A morphism is defined in the obvious way, in order to satisfy all compatibilities with
the log structures.

A covering is the one induced by the étale topology on T .
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For simplicity we refer to such an object of the crystalline site by T and usually
denote the crystalline site by (X/Wn)log

crys or (X/W )log
crys. The structure sheaves Olog

X/Wn

and Olog
X/W are defined by Olog

X/Wn
(T ) := Γ(T,OT ) and Olog

X/W (T ) := Γ(T,OT ).

Definition 1.16 (Log Isocrystals). A log crystal on X/Wn is a crystal on the site
(X/Wn)log

crys; it is a sheaf of Olog
X/Wn

-modules E such that, for any morphism g : T ′ → T

in (X/Wn)log
crys, the map g∗ET → ET ′ is an isomorphism of sheaves. The log crystal E

is called coherent, respectively locally free, if the sheaf ET , for T an object of the log
crystalline site, is coherent, respectively locally free.

Similarly, we define log crystals on (X/W )log
crys and we denote by Crys(X/Wn)log

and Crys(X/W )log the categories of coherent crystals on the two sites respectively. The
category Icrys(X/W )log of log isocrystals is defined as follows: the elements are coherent
crystals on the log crystalline site and the morphisms are defined by

HomIcrys(X/W )log(E,F ) := Q⊗W HomCrys(X/W )log(E,F ).

There is a logarithmic version of the PD envelope of [BO78, Definition 4.1] given in
[Kat89, Definition 5.4]:

Definition 1.17 (Log PD envelope). Let j : (X,M)→ (Y,N) be a closed immersion
of schemes with log structures over (Spf(Wn)). We define the PD envelope of (X,M)
in (Y,N) as follows: there is a functor from the category of pairs (i, δ), where i is an
exact closed immersion of schemes with fine log structures (X,M)→ (Y,N) and δ is a
PD structure on the ideal of Y defining X, which is compatible with the PD structure
on Spf Wn, to the category of closed immersions j as before. This functor has a right
adjoint, see [Kat89, Proposition 5.3], and if we denote by (j̃ : (X̃, M̃) → (Ỹ , Ñ), δ)
the result of applying this right adjoint to j, then (Ỹ , Ñ) is called the PD envelope of
(X,M) in (Y,N).

For its construction, as in [Kat89, (5.6)], one works étale locally and can assume
that the log structure N is fine. Then there is a factorization j = ij′ with i étale
and j′ : (X,M) → (Z,MZ) exact closed immersion, by [Kat89, 4.10(1)]. We define
(j̃ : X̃ → D, δ) to be the PD envelope in the usual sense and endow it with the inverse
image of the log structure M .

Theorem 1.18 ([Kat89, Theorem 6.2]). Let (X,M) ↪→ (Y,N) be a closed immersion
of fine log schemes over Spf W and denote by (Dn,MDn) the complete log PD envelope
of (X,M) inside (Yn, Nn)/(Spf(Wn)). There is an equivalence of categories

Crys(X/Yn)log ' MIC(Dn)log

where MIC(Dn)log denotes the category of coherent ODn-modules L on Dn with integrable
connection ∇log : L→ L⊗OY ω

1,log
Y/Wn

.

As remarked in [Shi07, Remark 1.14] the above theorem also proves, if MIC(D)log

is the category of projective systems {(Ln,∇n)}n of objects in MIC(Dn)log that satisfy
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(Ln+1,∇n+1)⊗Z/pnZ Z/pnZ = (Ln,∇n), that

Crys(X/Y )log ' MIC(D)log.

We also get a log crystalline cohomology theory :

Theorem 1.19 ([Kat89, Theorem 6.4] and [Shi07, Remark 1.14]). With notations as
in the previous theorem, let ulog

X/W : (X/Y )log,
Zar → XZar, E a crystal on (X/W )log

crys and

L the corresponding Olog
D -module. Then the log crystalline cohomology with coefficient

E is
Rulog

X/W,∗(E) ' L⊗Olog
Y
ω•,log
Y/W .

In [ShI] and [ShII], Shiho also defines the categories of log convergent isocrystals
and log convergent cohomology. We don’t include details of these constructions here
and refer to the corresponding results as we use them.

Definition 1.20 (Log extendable isocrystals). We call an isocrystal L on an open
smooth scheme U log extendable if there is a log isocrystal L log on X such that the
restriction of L log on U is equal to L .

Definition 1.21 (Lattices of isocrystals). A crystal is said to be p-torsion free if
multiplication by p on it is injective. A lattice of an isocrystal L on a scheme U is a
p-torsion free crystal L ∈ Crys(U/W ) such that L ' L⊗Q.

For a given isocrystal we can find more than one lattices and it is not generally true
that an isocrystal always admits a locally free lattice, i.e. a lattice L whose value on U
is a locally free coherent sheaf.

However, when the isocrystal is of rank 1, it admits a locally free lattice by [ES16,
Proposition 2.10]. The same is indeed true for a rank 1 log isocrystal on a proper
variety X:

Lemma 1.22. A rank 1 log isocrystal on a proper variety X admits a locally free
lattice.

Proof. The argument is the same as in [ES16, Proposition 2.10] in the local case. We can
glue the local lattices as in [ES16, Lemma 2.11], because H0(X,OX)log

crys = H0(X,OX)crys

by [AB05, Section 6].

1.3 Étale fundamental group

The topological fundamental group πtop
1 (X) of a complex projective variety X classifies

all covers of X and is defined in a purely topological way. An algebraic analogue of it is
the étale fundamental group πét

1 (X, x) based at some geometric point x, which classifies
all finite étale coverings of X and is isomorphic to the profinite completion of πtop

1 (X)
(we omit the geometric point from the notation from now on). As already mentioned in
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the introduction, the topological fundamental group relates, via the Riemann-Hilbert
correspondence, to the category of OX-coherent DX-modules: the latter is equivalent
to the category of finite dimensional linear representations of πtop

1 (X). The above two
constructions were related by a result of Malčev [Mal40] and Grothendieck [Gro70]: if
πét

1 (X) = 1, then there are no non-constant OX-coherent DX-modules.
In the positive characteristic case, Esnault and Mehta [EM10, Theorem 1.1] proved

in 2010, that for a projective variety over an algebraically closed field k of positive
characteristic, πét

1 (X) = 1 implies that there are no non-constant OX-coherent DX-
modules. This was formulated as a conjecture by Gieseker [Gie75].

These results show the close relation between the fundamental group of a projective
variety and the existence of DX-modules on it and motivated in 2010 de Jong’s
conjecture, about the relation between simply connectedness and the existence of
non-constant isocrystals, treated in [ES16].

In particular, it is shown there among other results:

Theorem 1.23 ([ES16, Theorem 0.1]). Let X be a connected smooth projective variety
over an algebraically closed field k of characteristic p > 0, with trivial étale fundamental
group. Then

(1) any convergent isocrystal, filtered so that the associated graded is a sum of rank 1
convergent isocrystals, is constant,

(2) if the maximal slope of Ω1
X is non-positive, then any convergent isocrystal is

constant. The maximal slope of a coherent torsion free module E is defined as
deg(E)/ rank(E).

However, for a rank 1 isocrystal, the same is true even without any convergence
condition:

Proposition 1.24 ([ES16, Proposition 2.10(1)]). If X is as before, any rank 1 isocrystal
on X is constant.

The first part of this thesis treats de Jong’s conjecture for rank 1 isocrystals on a
non-proper variety over an algebraically closed field of positive characteristic. However,
it is very difficult to find examples of non-proper varieties with trivial étale fundamental
group; even A1 has a very big fundamental group, [Ray94].

For a smooth connected projective scheme, the fundamental group is finitely gener-
ated, [Sza09, Corollary 5.7.14]. This however, is false for non-proper schemes, see for
example [Sza09, Theorem 4.9.5].

Therefore, when considering non-proper varieties, as is the case in the first part
of this thesis, it is useful to work with the tame fundamental group πtame

1 (X) defined
in [KS10], see also [Sza09, Definition 5.7.15], whose p-part is topologically finitely
generated in positive characteristic. The tame fundamental group is indeed a quotient
of πét

1 (X) and is in particular a profinite group.
On the other hand, we also have the abelianized fundamental group [Sza09, Section

5]:
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Definition 1.25 (Abelianized fundamental group). We define the abelianized funda-
mental group πab

1 (X, x) of a scheme X, as the maximal abelian profinite quotient of
the fundamental group πét1 (X, x) for some geometric point x.

Remark 1.26. Let X be a smooth projective variety over k of characteristic p > 0.
The abelianized fundamental group fits into an exact sequence [Sza09, Proposition
5.8.3]:

1→ OX(X)∗/OX(X)m → Hom(πab
1 (X),Z/mZ)→ Pic0

X(k)[m]→ 1 (1.6)

where Pic0
X(k)[m] denotes the m-torsion of Pic0(X).

One also has a commutative diagram, [Sza09, Facts 5.8.7]:

0 Pic0
X(k) Pic0

X(k) NS(X) 0

0 Pic0
X(k) Pic0

X(k) NS(X) 0

m m m (1.7)

with the vertical maps being the multiplication by m. This induces an exact sequence
between the m-torsion subgroups:

0→ Pic0
X(k)[m]→ PicX(k)[m]→ NS(X)[m]→ 0 (1.8)

and combining this with (1.6), we get:

0→ Pic0
X(k)[m]→ Hom(πab

1 (X),Z/mZ)→ NS(X)[m]→ 0. (1.9)

When the fundamental group is abelian, we have therefore that Pic0
X has no torsion

prime to p, and hence Pic0
X(k) is trivial; indeed for an abelian variety A of dimension

g, A[l] = (Z/`)2g, ` 6= p, hence Pic0
X is zero dimensional and since k is algebraically

closed, Pic0
X(k) has to be trivial.

In Chapter 2 we will be interested in Pic0(U) for U a non-proper variety, which
admits a good compactification X.

Remark 1.27. One can find in [Kin13, Proof of Proposition 3.15] a discussion about this
case: let U be a non-proper smooth variety over k, which admits a good compactification
X such that X \ U = ∪iZi =: Z is a strict normal crossings divisor. Then one has
a surjection Pic(X) → Pic(U) and can define Pic0(U) as the image of the divisible
abelian group Pic0(X) inside Pic(U). The Néron-Severi group of X is the finitely
generated group defined by Pic(X)/Pic0(X) and since Pic0(U) is also divisible, one
defines also NS(U) = Pic(U)/Pic0(U).

Moreover, we note here the following fact regarding the tame fundamental group
and its abelianization, which we use in Chapter 2:
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Lemma 1.28 ([SS03, p. 10]). Let U be an smooth scheme admitting a smooth com-
pactification X. Then :

πtame,ab
1 (U) = πab

1 (U)(p′)⊕ πab
1 (X)(p), (1.10)

where (p) and (p′) denote the maximal pro-p and prime-to-p quotients respectively.

This relation follows from the decomposition of πtame,ab1 (U) to its pro-p and prime-
to-p quotients and the fact that an abelian p-cover of U lifts to a p-cover of X. For more
details we refer to [SS03, p. 10]. In particular, we note that the fundamental group is
a birational invariant of a projective variety, we can conclude from this decomposition
that πtame,ab

1 (U) depends only on U and not on the choice of compactification.
Finally, we recall here two facts about fundamental groups, which we use later:

Proposition 1.29 ([Kin13, Proposition 3.8, Remark 3.9]). If k is algebraically closed

and U is a connected normal k-scheme of finite type such that π
ab,(`)
1 (U) is trivial for

some ` 6= char(k), then H0(U,O∗U) = k∗. Moreover, if char(k) > 0, π
ab,(p)
1 (U) = 0

implies H0(U,OU) = k.

1.4 Berkovich and rigid analytifications

After the introduction of overconvergent isocrystals by Berthelot in [Ber96c], rigid
analytic geometry became a necessary tool for the study of isocrystals. The theory
of Berkovich spaces is another approach to non-archimedean geometry and provides
us with spaces that are very close to rigid analytic spaces, but have a true topology,
in contrast to the rigid analytic ones, which have a Grothendieck topology. In this
section, we include various results that we use in the second part of this thesis. We
focus mainly on the functors of analytification from algebraic schemes to the respective
categories of rigid analytic and Berkovich spaces. For the basic definitions in the theory
of rigid analytic geometry we refer to [BL93, Chapter 1-5]. Nice introductions to the
theory of Berkovich spaces can be found in [Bak08],[Tem15],[DFN15] and of course in
the original papers of Berkovich [Ber90] and [Ber93].

In this section we denote by K a complete field equipped with a non-trivial non-
archimedean absolute value, R denotes the associated valuation ring, and k the residue
field of R.

1.4.1 Rigid analytification

Building blocks of rigid analytic spaces are affinoid spaces, [Bos14, Section 3.2]. They
are defined as maximal spectra of affinoid K-algebras, which in turn are defined as
quotients of Tate algebras associated to K, for details see [Bos14]. On an affinoid
K-space X, we define a Grothendieck topology T in the following way: the objects of
Cat T are affinoids subdomains, morphisms are inclusions and coverings are the finite
coverings by affinoid subdomains.
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From this local data, we can construct a Grothendieck topology T on a K-space
X. Objects of Cat T are called admissible open subsets of X and coverings in T are
called admissible coverings.

Definition 1.30 (Rigid analytic space). A rigid analytic space is a locally ringed space
(X,OX) equipped with a strong Grothendieck topology, [BL93, Proposition 5], which
admits an admissible covering by affinoid K-spaces.

In analogy with the GAGA functor of complex algebraic geometry constructed by
Serre [Ser56], there is a rigid analytification functor

(K − schemes locally of finite type )→ (rigidK − spaces); Z → Zan. (1.11)

Example 1.31 ([Bos14, Section 5.4]). We can construct explicitly the rigid analytifi-
cation of the affine space An

K .
Set for r > 0, Tn(r) the K-algebra of power series

∑
u αuζ

n, with ζ = (ζ1, · · · , ζn)
and αu ∈ K such that limu αur

|u| = 0. Note that the limit of elements in K is the limit
in the topology on K given by its absolute value. Equivalently, we can say that Tn(r)
is the algebra of all power series that converge inside a closed ball of dimension n and
radius r. If we also set T

(i)
n = Tn(|b|i), for some b ∈ K with |b| > 1, we see that this is

exactly the Tate algebra K〈b−iζ1, · · · , b−iζn〉.
Moreover, there are natural inclusions T (i) ↪→ T (i−1), and taking the corresponding

morphisms between the maximal spectra of T (i), we get:

Bn = SpT (0)
n ↪→ SpT (1)

n ↪→ · · · .

The rigid analytification of An
K is then defined to be the union of SpT (i), which can

be constructed by [Bos14, Proposition 5.3.5]. We note that it is independent from the
choice of b.

For general K-schemes, one can define the rigid analytification via a universal
property:

Definition 1.32 (Rigid analytification). The rigid analytification of a K-scheme
(X,OX) locally of finite type is a rigid analytic space (Xan,OXan) together with
a morphism of locally G-ringed K-spaces (i, i∗) : (Xan,OXan) → (X,OX) which
has the following universal property: any morphism of locally G-ringed K-spaces
(Y,OY )→ (X,OX), for (Y,OY ) a rigid K-space, factors through (i, i∗).

If we have now a morphism of K-schemes f : X → S, we obtain its analytification
f an of f by the universal property of analytification:

Xan Y an

X Y .

fan

f
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Hence, one indeed obtains a functor as in (1.11).
Moreover, one can show as in [Bos14, Proposition 5.4.4], that every K-scheme

admits an analytification, which is constructed by gluing the analytifications of its
affine parts, and that the map of sets i : Xan → X identifies the closed points of Xan

and X.

Example 1.33 (Example 1.31 continued [Bos14, p. 114]). First, we check that the
definition of An,an

K as in Example 1.31 agrees with the general definition 1.32. Recall that

An
K = SpecK[ζ] and An,an

K = ∪∞i=0 SpT
(i)
n . The canonical morphisms K[ζ] → SpT

(i)
n

give rise to OAn(An)→ OAn,an(An,an), which in turn yields a morphism between locally
ringed spaces by [Bos14, Lemma 5.4.2],

(i, i∗) : (An,an,OAn,an)→ (An,OAn).

To prove that this satisfies the universal property of Definition 1.32, we see that
a morphism (Z,OZ) → (An,OAn) corresponds to a morphism φ : K[ζ] → OZ(Z).
Choosing i ∈ N such that ζj ∈ K[ζ] have the property |φ(ζj)|sup ≤ |c|i in OZ(Y ), we

see that the morphism φ extends to T
(i)
n , as needed.

Furthermore, we can show that the analytification of An
K constructed in Example

1.31 satisfies the universal property of an n-dimensional affine space: let Z be a rigid
K-space. Morphisms of locally ringed G-spaces Z → An

K can be described as:

Hom(Z,An
K)

∼−→ Hom(K[ζ1 · · · , ζn],OZ(Z))
∼−→ OZ(Z)n.

However, a morphism of rigid K-spaces Z → An,an
K , gives rise to a morphism in

Hom(Z,An
K), by composing with the canonical morphism i : An,an

K → An
K . By the

universal property of analytification, we then get a bijection:

Hom(Z,An,an
K )

∼−→ Hom(Z,An
K)

∼−→ OZ(Z)n.

Given a coherent sheaf F on an algebraic variety X, one can define a coherent sheaf
of OXan-modules F an, by F an := i−1F ⊗i−1OX OXan . Moreover, there is an analogue
of Serre’s GAGA theorem in the rigid analytic case:

Theorem 1.34 (Rigid GAGA [Bos14, Theorem 6.3.13]). If X is proper over K, then
the functor F 7→ F an induces an equivalence of categories between the category of
coherent OX-modules and the category of coherent OXan-modules. Moreover, for every
n ≥ 0, there exist a canonical isomorphism

Hn(X,F ) ' Hn(Xan,F an).

In Chapter 3 we will be particularly interested in the rigid analytification of Pic0:

Remark 1.35 ([Con06, Lemma 4.3.2]). Given a map between rigid spaces X → S,
where X has geometrically reduced and connected fibers over S, together with a section
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x ∈ X(S), we can consider the functor PicX/S,x, which associates to any rigid analytic
spaces S ′ over S, the set of xS′-rigidified line bundles on X ×S S ′.

When the rigid spaces are rigid analytifications of algebraic varieties, this functor
is actually representable: for a map X → S of algebraic K schemes with geomet-
rically reduced and connected fibers, it is proven in [Con06, Lemma 4.3.2] that the
analytification of the Picard scheme PicX/S,x represents the functor PicXan/San,xan .

1.4.2 Berkovich analytification

Rigid analytic geometry makes it possible to define the notion of an analytic function
on a non-archimedean field K, but doesn’t provide a good topological space to work
with; one works with a Grothendieck topology instead. Berkovich’s K-analytic spaces
though have a true topology, which makes working with them easier.

Building blocks of a K-analytic space are the so called K-affinoid spaces: spaces of
the form M (A) = the space of multiplicative semi-norms on the Banach algebra A,
see [DFN15, Definition 4.1.2.1]. A K-analytic space is then a topological space which
admits a K-affinoid atlas on X, together with a family of subsets, called a net, see
[DFN15, Definition 4.1.1.1]. We don’t include here details about this definition, but we
see an example:

Example 1.36. The Berkovich n-dimensional affine space An
K,Berk is the space

M (K[T1, · · · , Tn]) of multiplicative semi-norms on the ring A = K[T1, · · · , Tn], whose
restriction to K is bounded with respect to the Banach norm on K. Recall that every
field which is complete with respect to a valuation is a commutative Banach ring. It is
equipped with the weakest topology with respect to which all functions An → R+, of
the form x→ |f(x)|, with f ∈ A , are continuous.

As in the case of rigid analytic spaces, we are mainly interested in the functor
which assigns a K-analytic space to an algebraic K-variety. This functor is called the
Berkovich analytification functor.

This functor is defined as follows on affine schemes: let X = SpecK[T1, · · · , Tn].
We set Xan := M (K[T1, · · · , Tn]), which is exactly the affine space of the previous
example. For a scheme SpecK[T1, · · · , Tn]/I, we define the analytification as the closed
subset of Xan defined by the vanishing of IOXan .

The analytification functor can also be defined via a universal property: the
analytification of an algebraic variety X represents the functor which assigns to a
K-analytic space Y , the set of morphisms of locally ringed spaces Y → X. This also
means, exactly like the rigid analytic case, that there is a morphism i : Xan → X. For
a coherent OX-module F , we can define a coherent OXan-module F an = i∗(F ).

Remark 1.37. There is a close relation between K-analytic spaces and rigid analytic
K-spaces, which is explained in [Ber90, Section 3.3]. To state it, we first need to recall
the following: for A a commutative Banach algebra over K, a point x ∈M (A ) gives
rise to a character A → H (x), where H (x) is a field. Indeed, the multiplicative
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semi-norm corresponding to x extends to the fraction field of the quotient ring of A
by its kernel and H (x) is then defined as the completion of this field, see [Ber90, p.4].

By [Ber90, Proposition 2.2.5], the class of strictly affinoid domains in X defines
a G-topology on a separated strictly K-analytic space X and setting X0 = {x ∈
X|[H (x) : K] < ∞}, this has the induced G-topology and has the structure of a
rigid analytic K-space. Moreover, [Ber90, Proposition 2.3.1] implies that given a sheaf
F on X, we get an induced sheaf F0 on X0 and the correspondence F 7→ F0 is an
equivalence between the categories of coherent sheaves on X and X0.

As explained also in [Bak08, p.58], by the correspondence X 7→ X0 we also obtain an
equivalence of categories between the category of quasi-separated rigid spaces admitting
a locally finite admissible covering by affinoid opens and the category of paracompact
Hausdorff strictly K-analytic spaces. Moreover, the Berkovich analytification functor
from algebraic K-schemes to strictly analytic K-spaces and the rigid analytification
functor from algebraic K-schemes to rigid analytic spaces over K is compatible with
this equivalence. This functor in fact preserves the category of locally constant sheaves
and their cohomology groups, by [Ber90, Proposition 3.3.4]. Therefore, cohomological
results from the theory of rigid analytic spaces are applicable to Berkovich’s K-analytic
spaces.

1.5 Generic fibers of formal schemes

It is possible to relate both the Berkovich and the rigid analytification of an algebraic
variety with the theory of formal schemes; more specifically their generic fibers.

Berkovich spaces and generic fibers of formal schemes

Definition 1.38 (Special formal schemes). Let R be a topological adic Noetherian
ring whose Jacobson radical is an ideal of definition. An a-adic R-algebra A is called
special if A/a2 is finitely generated over R, see [Ber96a, Lemma 1.2]. A formal scheme
X over R is called special if it is locally a finite union of affine formal schemes of the
form Spf A, with A an adic special algebra over R.

Let K be a non-archimedean field with a non-trivial discrete valuation, R the ring
of integers of K and k its residue field. For a special R-formal scheme X , the ringed
space (X ,OX /I ), where I is an ideal of definition of X that contains the maximal
ideal mR of R, is a scheme locally of finite type over k and is called the closed fiber of
X , denoted by Xs. It depends on the choice of I but the underlying reduced scheme
and the associated topos do not, see [Ber96a, p.370].

Remark 1.39 ([Ber96a, p.370]). If Y ⊂Xs, the formal completion of X along Y is
a special formal scheme over R. We denote this completion by X|Y .

Berkovich defines in [Ber96a] a functor from the category of special formal R-schemes
to the category of K-analytic spaces, which associates to X its generic fiber Xη. For
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a formal scheme of the form X = Spf A, with A a special R-algebra, the generic fiber
Xη is defined as the set of continuous multiplicative semi-norms on A that extend the
valuation on R and have value at most 1. For an arbitrary formal scheme X , one can
take an affine covering Xi and glue Xi,η. For all details we refer to [Ber96a, p.370-371].

Example 1.40. In the case when X = Spf A, with A = K{T1, · · · , Tn}[[S1, · · · , Sm]],
where K{T1, · · · , Tn} is the algebra of restricted power series with coefficients in K.
Then one defines Xη = Em(0, 1)×Dn(0, 1), where Em(0, 1) and Dn(0, 1) are the closed
and open polydiscs of radius 1 and center at zero, in Am and An respectively.

Moreover, one can construct a map, called the reduction map π : Xη →Xs.

Proposition 1.41 (Definition of reduction map). There is an anticontinuous map
π : Xη →Xs, called the reduction map.

Proof. The proof of this fact can be found in [Ber96a, p. 541], but we present it
here for completion. If X = Spf(A), with A a topologically presented ring over R,
i.e. A = R{T}/α with α a finitely generated ideal in R{T} , then A ⊗R K =: A is
a K-affinoid algebra and by definition, Xη is the space M (A ). Since the image of
A in A is contained in the subset of elements f ∈ A such that |f(x)| ≤ 1 for all
x ∈ M (A ), by the previous discussion, an element x ∈ M (A ) defines a character

Ã := A/mRA→ H̃ (x). The kernel of this map is a prime ideal in Ã, since H̃ (x) is a
field, and we define π(x) ∈Xs to be this prime ideal. This defines a map π : Xη →Xs.

For Y ⊂ Xs a closed subset defined by (f̃1, · · · , f̃n) for fi ∈ A , π−1(Y ) = {x ∈
Xη||fi(x)| < 1, i = 1, · · ·n}. If Y = Spec(Ã[1/f̃ ]), f ∈ A, is instead an open subset,
then π−1(Y ) = {x ∈Xη||fi(x)| = 1, i = 1, · · ·n}.

For an arbitrary X , one can fix a finite covering {Xi} by open affine formal
subschemes and the maps πi : Xi,η →Xi,s induce a map π : Xη →Xs.

From the affine case, it follows that the pre-image of a closed subset of Xs by π
is an open in Xη and the pre-image of an open subset is instead a closed analytic
subdomain of Xη.

We can describe the inverse image of a subscheme Y of Xs in more detail:

Proposition 1.42 ([Ber96a, Proposition 1.3]). With notation as in the above proposi-
tion, there is a canonical isomorphism π−1(Y ) ' (X|Y )η.

Remark 1.43 ([Ber96b, p.553]). Given now a scheme of finite type over R, one
can relate to it a K-analytic space in two different ways: by associating to it the
analytification of its generic fiber (Xη)

an and the generic fiber of its completion (X̂)η,
the construction of which we summarized in this section. By construction, there is a
morphism (X̂)η → (Xη)

an and for X separated and finitely presented, this identifies

(X̂)η with a closed analytic subvariety of (Xη)
an; in the affine case X = SpecA where A

is generated by f1, · · · , fn, (X̂)η = {x ∈ (Xη)
an||fi(x)| ≤ 1}. For arbitrary varieties, one

takes a finite covering by open affine subschemes and concludes in a similar way. If X
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is proper, this morphism is in fact an isomorphism. This follows from the more general
fact, that a proper morphism φ : Z → X induces an isomorphism Ẑη

'−→ Zan
η ×Xan

η
X̂η,

applied to X being a point.

Formal models for rigid spaces

Just as for Berkovich spaces, we can relate rigid spaces to generic fibers of formal
schemes. In this part, we include some details about this relation and some results
which we use later.

Definition 1.44. With notation as in the rest of this section, an R-algebra A is called:

(1) topologically of finite type if A = R〈ξ〉/a, where R〈ξ〉 = R〈ξ1, · · · , ξn〉 is the
R-algebra of strictly convergent power series in variables ξ1, · · · , ξn and a ⊂ R〈ξ〉
an ideal,

(2) topologically of finite presentation if a is moreover finitely generated,

(3) admissible if A has no mR-torsion, where mR is as before the maximal ideal of R.

An affine formal scheme Spf A is called admissible, if A is admissible and a general
formal scheme X over R is called admissible if it is locally of the form Spf A, with A
an admissible R-algebra.

We can make the analogous definition for a formal scheme X over an R-formal
scheme S . If we denote by u a generator of the maximal ideal mR, we assume that
for I = uOS, the ideal IOX is an ideal of definition of X. We call X admissible, if
moreover OX has no I -torsion.

In order to relate formal schemes with rigid analytic spaces, we need the notion of
an admissible formal blowing up.

Definition 1.45. Let X /S an admissible formal S -scheme with ideal of definition
IOX and A ⊂ OX an open ideal. Then we define

X ′ := lim−→
m

Proj⊕∞n=0(A n ⊗OX
OX /I

m+1)

and call the morphism of S -formal schemes φ : X ′ →X , an admissible formal blowing
up with respect to A .

Among many interesting properties, see for example [BL93, Section 2], an admissible
formal blowing up satisfies a universal property,[BL93, Proposition 2.1(c)]: if ψ : Z →
X is a morphism of formal S -schemes such that AOX is invertible on Z , there exists
a unique S -morphism ψ′ : Z →X ′ such that ψ = φ ◦ ψ′. Note that [BL93, Lemma
2.2] gives an explicit description of an admissible blowing up in the case of an affine
formal scheme.

The relation between formal schemes and rigid analytic spaces can be seen in the
next theorem of Raynaud:
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Theorem 1.46 ([BL93, Theorem 4.1], [Ray74]). There is an equivalence of categories
between:

(1) the category of quasi-compact admissible formal schemes, localized by admissible
formal blowing ups, and

(2) the category of rigid K-spaces, which are quasi-compact and quasi-separated.

In the affine case the above functor is defined as follows: to an admissible R-
algebra A = R〈ξ〉/a we associate the affinoid K-algebra Arig := A⊗R K = R〈ξ〉/aK.
Globalizing this construction, as explained in [BL93, Section 4], we obtain a functor
from admissible formal R-schemes to the category of rigid K-spaces. We denote this
functor by X 7→Xrig. We call Xrig the rigid analytic fiber of X .

In the inverse direction and in the affinoid case, this functor is given by associating
to XK = SpAK = SpK〈ξ〉/aK, the affine formal scheme X = SpR〈ξ〉/a ∩R〈ξ〉.

We recall finally here for convenience the definition of localization of a category C
with respect to a set of morphisms T : the localization CT is a category together with
a functor C → CT such that, if C → D is a functor to another category sending all
morphisms in T to isomorphisms in D , then there is a unique functor CT → D making
the diagram

C CT

D

(1.12)

commute.

Remark 1.47. In Chapter 3 we use in particular some properties of this equivalence,
found in [BL93, Proof of Theorem 4.1, (a), (b) and (c)]:

(1) the above functor sends admissible blowing ups to isomorphisms: if φ : X ′ →X
is an admissible formal blowing up, then φrig : X ′

rig →Xrig is an isomorphism.

(2) Two morphisms φ, ψ : Z → X of formal R-schemes coincide if φrig and ψrig

coincide.

(3) If φK : Zrig →Xrig is a morphism between the rigid analytic fibers of two formal
R-schemes, then there is an admissible formal blowing up r : Z ′ → Z and a
morphism φrig : Z ′ →X such that φrig = φK ◦ r.

1.6 Cohomology of Berkovich spaces

We state here some results from [Ber96b, Section 5] that we use in Chapter 3. Let X
be a scheme of finite type over SpecR, with notations as in the previous sections. We
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have a diagram, where Xη and Xs are the generic and closed fibers respectively:

Xη X Xs

Xη X Xs.

j

i

j

i

The vanishing cycles functor Ψη : X̃η,ét → X̃s,ét is then defined as Ψη(F ) = i
∗
(j∗F ).

Let now Y ⊂ Xs be a subscheme of the closed fiber of X → SpecR. Then the
formal completion of X along Y , X̂|Y is a special formal scheme, in the sense of
[Ber96a], whose closed fiber is identified with Y . By [Ber96a, Proposition 1.3], which
we recalled in Proposition 1.41, there is a canonical isomorphism

(X̂|Y )η ' π−1(Y ).

As recalled in Remark 1.43, we have a morphism X̂η → Xan
η . Moreover, there are

canonical morphisms of sites X̂η,ét → Xan
η,ét → Xη,ét. For details about the étale topos

on an analytic space, we refer to [Ber96b, Section 3]. For a sheaf F on Xη,ét, we

denote by F an and F̂ the respective pullbacks to Xan
η,ét and X̂η,ét, while there is also a

canonical morphism of sheaves Ψη(F )→ Ψη(F̂ ). For this morphism more is in fact
true:

Proposition 1.48 ([Ber96b, Corollary 5.3]). If F is an abelian torsion sheaf on Xη,
then for any q ≥ 0, there is a canonical isomorphism

RqΨη(F )
'−→ RqΨη(F̂ ).

Corollary 1.49 ([Ber96b, Corollary 5.4]). If X is a smooth formal R-scheme and n
is an integer coprime to p, then

Ψη(Z/nZ)Xη = (Z/nZ)Xs
and RqΨη(Z/nZ)Xη = 0, q ≥ 1.

In Chapter 3 we will be mainly interested in comparing the `-adic cohomology
of a subset Y of Xs and the cohomology of its inverse image by the reduction map
π−1(Y ). The following theorem of Berkovich provides us with a comparison between
these cohomology groups:

Theorem 1.50 ([Ber96a, Theorem 3.1]). Let F be an abelian torsion sheaf on Xη

with torsion orders prime to p. Then for Y ⊂ Xs an open in the closed fiber Xs we
have

(Rq ΨηF )|Y
'−→ Rq Ψη(F̂|Y ), ∀q ≥ 0,

where F̂ is the pullback of F to X̂η.

As a corollary of this we get:
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Corollary 1.51 ([Ber96a, Corollary 3.5]). Let X,Y be as before and F be a con-
structible sheaf on Xη with torsion orders prime to p. Then there are canonical
isomorphisms

RΓ(Y ,RΨη F )
'−→ RΓ(π−1(Y ),F an).

In particular:

Corollary 1.52 ([Ber96a, Corollary 3.7]). With notations as before, there are isomor-
phisms

Hq(Y ,Z/nZ)
'−→ Hq(π−1(Y ),Z/nZ), ∀q ≥ 0, n 6 |p.





Chapter 2

De Jong’s Conjecture

In this Chapter, we address de Jong’s conjecture in the case of rank 1 log extendable
isocrystals, as recalled in Section 1.3. We consider the case of a non-proper variety
with trivial tame fundamental group which admits a good compactification. In Section
2.2 we obtain a “residue exact sequence” from which many cohomological results easily
follow and in Section 2.3 we look at the (log) crystalline Chern classes of such isocrystals.
Finally, we adapt the proof of [ES16, Proposition 3.6] to prove Theorem 2.6.

2.1 Notation

Let U be a smooth connected variety over an algebraically closed field k with the
property that πtame,ab

1 (U) = 1 and such that it admits a good compactification X,
where X − U = ∪i∈IZi =: Z is a simple strict normal crossings divisor. Denote by W
the Witt ring of k and by K the fraction field of W .

We endow X with the log structure associated to the strict normal crossings divisor
Z and denote this log scheme by (X,MZ) or (X,Z): if we denote the open immersion
X \ Z ↪→ X by j, the inclusion

MZ := OX ∩ j∗O∗X−Z ↪→ OX (2.1)

defines a log structure on X, as already recalled in Example 1.7(2).

Since Z is a normal crossings divisor, we know by [ShI, Example 2.4.4] that
MZ is an fs, hence also fine, log structure, see 1.8, and the morphism (X,MZ) →
(Spec k, trivial log structure) is log smooth.

Remark 2.1. From the decomposition of Lemma 1.28, we can deduce the following:
if πtame,ab

1 (U) = 1, then in particular πab
1 (U)(p′) = πab

1 (X)(p) = 1. Since we also have a
surjection πab

1 (U)(p′)→ πab
1 (X)(p′), we see that πab

1 (X)(p′) must be also trivial, which
means that πab

1 (X) = 1.

37
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2.2 Residue exact sequence

In this section, we obtain some results about the (log) crystalline and rigid cohomology
of the compactification X, by adjusting some results of [AB05, Section 6]. We investigate
using these, how the value of a log crystal on the variety X controls the crystal itself.

Let {Ui ↪→ Vi} be a covering in the log crystalline site. We set Uij = Ui ∩ Uj and
denote by Vij the log PD envelope of Uij in Vi (or Vj) and do the same for every tuple of
indices (i0, i1, · · · , in). Define Qr

i0,...,in
:= ωr,logVi0,...,in

/ωrVi0,...,in
. We then have the following

maps between the total complexes of the corresponding Čech complexes, with exact
columns:

0 ⊕O∗Vi ⊕i,jO∗Vij ⊕i ω
1
Vi

⊕i,j,kO∗Vijk ⊕i,j ω
1
Vij
⊕i,j ω2

Vij
. . .

0 ⊕O∗Vi ⊕i,jO∗Vij ⊕i ω
1,log
Vi

⊕i,j,kO∗Vijk ⊕i,j ω
1,log
Vij
⊕i,j ω2,log

Vij
. . .

0 ⊕Q1
i ⊕i,jQ1

ij ⊕i Q2
i . . .

0 0
(2.2)

and note that the third complex is the total complex of:

0 ⊕Q1
i ⊕Q1

ij . . .

0 ⊕Q2
i ⊕Q2

ij . . .

0 ⊕Q3
i ⊕Q3

ij . . .

0 . . . . . . . . .

(2.3)

Taking cohomology, we obtain maps (starting from H1)

H1
crys(X/W,O∗X/W )→ H1((X,M)/W,O∗X/W )log

crys → H1(Tot(Q•,•))→ H2(X/W,O∗X/W )
(2.4)

and computing the cohomology of the complex (2.3) with spectral sequences, as in
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[AB05, Lemma 6.2.1], we obtain the exact sequence

H1
crys(X/W,O∗X/W )→ H1((X,M)/W,O∗X/W )log

crys →
→ Ker(H0(Q1

•)→ H0(Q2
•))→ H2(X/W,O∗X/W ). (2.5)

By the computation in [AB05, Proposition 6.3.2] we have that

Ker(H0(Q1
•)→ H0(Q2

•)) = DivZ(X)⊗W (k) = ⊕W (k)[Zi], (2.6)

so we obtain:

H1
crys(X/W,O∗X/W )→ H1((X,M)/W,O∗X/W )log

crys → ⊕W (k)[Zi]→ H2(X/W,O∗X/W ).
(2.7)

Moreover, in [AB05] we find the exact sequence

0→ H1
crys(X/W )→ H1((X,M)/W )log

crys → ⊕W (k)[Zi]→ H2
crys(X/W ) (2.8)

with the last map being the crystalline Chern class map. By [ES16, Proposition 2.9(2)]
and [Esn15, Theorem 4.3.1] we have that πab

1 (X) = 1 implies H1
crys(X/W ) = 0. Hence,

the group H1(X/W )log
crys coincides in this case with the kernel of the crystalline Chern

class map, which by [AB05, Proposition 6.3.2] is equal to Div0
Z(X)⊗W (k) and this is

equal to zero in our case, as already remarked in Remark 1.26. We therefore obtain an
injection ⊕W (k)[Zi] ↪→ H2

crys(X/W ).

Since X is proper, we have that H1
crys(X/W,O∗X) = 0, by [ES16, Theorem 0.1.1]

and [Esn15, Theorem 4.3.1]. Therefore (2.7) gives us an injection

H1((X,M)/W,O∗)log
crys ↪→ ⊕W (k)[Zi] (2.9)

and combining this with the previous remarks we obtain:

H1((X,M)/W,O∗)log
crys ↪→ ⊕W (k)[Zi] ↪→ H2

crys(X/W ). (2.10)

From the exact sequences above and going through the definition of ccrys
1 and clogcrys

1

(see also Lemma 2.3 for the definition) we observe, as already remarked in [AB05,
Proposition 6.3.2], that the following diagram commutes:

H1((X,M)/W,O∗)log
crys ⊕W (k)[Zi] H2(X/W )crys

H1(X,O∗X)

ccrys1

ccrys1 . (2.11)

From this we conclude that under our assumptions the projection map

H1((X,M)/W,O∗)log
crys → H1(X,O∗X), (L,∇) 7→ LX (2.12)
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is in fact injective.

Remark 2.2. We can show that H1
rig(U/K) = 0 under our assumptions. For a proper

scheme this is known. Observing (2.8) we conclude as before that H1(X/W )log
crys = 0.

Hence H1
rig(U/K) ' H1(X/W )log

crys ⊗Q = 0.

2.3 The value of the log extension on the compact-

ification

Starting with a log extendable L ∈ Icrys(U/K), we take a log extension L log ∈
Ilogcrys(X/K) and, by Lemma 1.22, a locally free log lattice Llog of L log. We denote its
restriction to U by L. In the following we denote by Llog

X ∈ Coh(OX) the value of the
log crystal on X.

Lemma 2.3. With the above notations we have clogcrys
1 (Llog

X ) = 0.

Proof. One defines the crystalline Chern class of a locally free sheaf in analogy with
[BI70]: let J log

X/W be the log PD ideal defined by the short exact sequence

0→J log
X/W → O log

X/W → i∗OX → 0 (2.13)

with i : (X)Zar → (X/W )log
crys. Consider also

1→ 1 + J log
X/W → O∗,log

X/W → i∗O
∗
X → 1. (2.14)

The first log crystalline Chern class is defined by taking cohomology of (2.14) and
composing with the logarithm map

1 + J log
X/W →J log

X/W , 1 + x 7→ log(1 + x). (2.15)

So we obtain clogcrys
1 : H1(X,O∗X)→ H2(X/W,O log

X/W )log
crys.

Taking cohomology of (2.13) we get

0→ H0(X/W,J log
X/W )log

crys → H0(X/W,O log
X/W )log

crys →

→ H0(X,OX)→ H1(X/W,J log
X/W )log

crys → H1(X/W,O log
X/W )log

crys. (2.16)

By Remark 2.2 we have however that H1(X/W,O log
X/W )log

crys = 0. Moreover, since X

is geometrically connected we have that H0(X/W,O log
X/W )log

crys ' W which surjects to

H0(X,OX) ' k. Hence we see that H1(X/W,J log
X/W )log

crys ' H1(X/W, 1+J log
X/W )log

crys = 0.
Therefore we obtain an exact sequence

0→ H1(X/W,O∗,log
X/W )log

crys → H1(X,O∗X)→ H2(X/W,J log
X/W )log

crys → H2(X/W, 1+J log
X/W )log

crys.
(2.17)
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By applying the map

H2(X/W, 1 + J log
X/W )log

crys → H2(X/W,O log
X/W )log

crys (2.18)

we get

0→ H1(X/W,O∗ log
X/W )log

crys → H1(X,O∗X)
clogcrys1−−−−→ H2(X/W,O log

X/W )log
crys. (2.19)

Therefore, the kernel of the log crystalline Chern map is exactly the group of rank 1
log crystals, hence the value of a rank 1 log crystal on X is sent to zero by clogcrys

1 .

Lemma 2.4. The line bundle (Llog
X )⊗N for some natural number N can be written as

OX(
∑
aiZi), with ai ∈ Q.

Proof. As remarked in [Kin13, Proposition 3.8], we have an exact sequence:

0→ H0(X,O∗X)→ H0(U,O∗U)→ ⊕Z[Zi]→ Pic(X)→ Pic(U)→ 0 (2.20)

As we recalled in Proposition 1.29, we have that πab
1 (X) = πab

1 (U) = 1 implies
H0(U,O∗U) = k∗ and thus H0(X,O∗X) is isomorphic to H0(U,O∗U).

Moreover, by Remark 1.26, this also implies that Pic(X) = NS(X) and Pic(U) =
NS(U), and the exact sequence becomes,

0→ ⊕Z[Zi]→ NS(X)→ NS(U)→ 0, (2.21)

we refer to Remark 1.27 for the Néron-Severi group of U . The log crystalline Chern
class can be seen as, where H∗(X/W )crys and H∗(X/W )log

crys denote the cohomology

groups H∗(X/W,O log
X/W )crys and H∗(X/W,O log

X/W )log
crys:

clogcrys
1 : H1(X,O∗X)→ H2(X/W )log

crys ⊗Q ' H2
rig(U/K). (2.22)

We observe that the following diagram commutes:

H1(X,O∗X) H2(X/W )log
crys

H2(X/W )crys

clogcrys1

ccrys1

f∗ , (2.23)

where we denote by f ∗ : H2(X/W )crys → H2(X/W )log
crys the homomorphism which is

obtained by the exact map of topoi f : (X/Wn)log
crys → (X/Wn)crys for all n and is

defined as f ∗(E)((U,MU), (T,MT )) := E(U ⊂ T ). As stated in [AB05, Section 6.3]
this map is exact and commutes with global sections. Applying this to the sequence

1→ 1 + JX → O∗X/Wn
→ O∗X → 1 (2.24)
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we get

1 f ∗(1 + JX) f ∗(O∗X/Wn
) f ∗(O∗X) 1

1 1 + J log
X O∗,log

X/Wn
O∗X 1

(2.25)

with exact rows and commutative squares. By taking cohomology of the first row and
composing with the log map, one obtains f ∗(ccrys

1 ) whereas by taking cohomology of
the second, one obtains clogcrys

1 .

Combining the previous observation with [Pet03, Theorem 5.23] we obtain the
following commutative diagrams

H2
rig(X/K) H2(X/W )crys ⊗Q

H1(X,O∗) H2(X/W )log
crys ⊗Q

crig1

ccrys1

clogcrys1

. (2.26)

Moreover, by [Ill79, Remark II 6.8.4], and using the fact that πab
1 (X) = 1 implies

also that Pic(X) = NS(X), we know that H1(X,O∗X)⊗K ↪→ H2
rig(X/K) via the first

rigid Chern class.

The line bundle Llog
X seen in NS(X)⊗Q (i.e. Llog

X modulo torsion) is sent to zero
by clogcrys

1 , by Lemma 2.3.

So we have

〈K[Zi]〉Q

NS(X)⊗Q ↪→ NS(X)⊗K H2
rig(X/K)

H2
rig(U/K)

crig1

j∗crig1
j

which means that Llog
X is contained in the kernel of the map H2

rig(X/K)→ H2
rig(U/K),

which is 〈K[Zi]〉Q. Hence, Llog
X ∈ 〈K[Zi]〉Q ∩ NS(X)⊗Q = ⊕Q[Zi].

This in turn means that Llog
X can be written as OX(

∑
aiZi)⊗ T , with T a torsion

bundle, and therefore some power of it can be written as a formal sum of Zi with
Q-coefficients.

Of course we could increase the value of N and obtain integral coefficients in the
above decomposition. As we see in the following remark, it is actually enough to raise
the bundle (Llog

X )⊗N to a power that is prime to p and obtain the same result.
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To simplify the notation set Elog := (Llog)⊗N .

Remark 2.5. Recall that under our assumptions Lemma 2.4 implies that the sheaf
Elog := (Llog)⊗N for some N lies in ⊕Q[Zi], whereas from (2.10) it can also be written
as a sum with W (k) coefficients. Hence, Elog

X lies actually in ⊕Z(p)[Zi]. Therefore there
is m ∈ Z \ pZ with the property that E⊗mX ∈ ⊕Z[Zi] is such that E⊗mU = OU and
(m, p) = 1. This in turn defines a Kummer cover of U . However, by assumption we
have that πtame,ab

1 (U) = 1, so m can be chosen as 1 and EX is in fact in ⊕Z[Zi] and
has the property that EU is trivial (see Lemma 2.7 for detailed argument).

On the other hand, from (2.12) we see that the connection ∇log
X , as well as its

restriction to U can be assumed to be trivial.

We therefore have a module with log connection on X restricting to (OU , dU ) on U
and can take an extension of it that is isomorphic to (O log

X , dlog
X ).

2.4 Triviality of the isocrystal

Theorem 2.6. Let E a locally free lattice of a rank 1 log isocrystal E on (X,Z) and
such that its value on (X,Z) is trivial. Then E is the trivial log crystal.

Proof. Step 1: We have the following maps of fine log schemes:

(X,Z)→ S → W (k)

where S is the log scheme defined by S = Spec k with the log structure associated to
N→ k; 1 7→ 0 and W (k) is the log scheme defined by SpecW (k) with the log structure
N→ W (k); 1 7→ 0.

There is at least one good embedding system for (X,Z)/(Spec k,N), so we assume
from now on that there is an embedding (X,Z) ↪→ (P,L) to a smooth formal scheme
over (Spf W,N).

Denote by D the completed log PD envelope of (X ↪→ P ). It is the usual PD
envelope equipped with the inverse image of the log structure. Denote by Dn the
corresponding PD envelopes for the immersions over P/ Spf Wn.

Dn

X PWn

Wn

. (2.27)

By [Kat89, Theorem 6.2] the category Crys(X/Wn)log of log crystals on X/Wn is equiv-
alent to the category of ODn-modules with integrable log quasi nilpotent connection.
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Let E be a log crystal such that the restriction En of En+1 to Crys(X/Wn)log is the
trivial log crystal. We can define, as in [ES16, Proposition 3.6], D to be the set of pairs

(G, φ) such that G ∈ Crys(X/Wn+1)log with φ : OX
'−→ G ∈ Crys(X/Wn)log. We claim

that in this case we have an isomorphism e : D ' H1(X/W1)log
crys. By the equivalence of

log crystals and modules with log integrable quasi nilpotent connection, we can identify
En+1 with a ODn+1 module Mn+1 with a log connection ∇n+1. By assumption, there is
an isomorphism

φ : (ODn , d)→ (Mn,∇n),

(Mn,∇n) being the restriction of (Mn+1,∇n+1) to MIClog(Dn)qn ' Crys(X/Wn)log.

Take an open affine cover U = {Ua} of Dn+1 and an isomorphism ψa : OUa →
Mn+1|Ua lifting φ|Dn×Ua . Then ψ∗a(∇n+1) defines a connection on OUa that is given
as d + pnsa with sa ∈ Γ(Ua, ω

1,log
D1

). On the intersection Ua ∩ Ub =: Uab the glueing
(ψa|Uab)−1 ◦ (ψb|Uab) is given by 1 + pnzab with zab ∈ Γ(Uab,OD1).

Because of the integrability of the connection and the compatibility of the con-
nection with the glueing, we see as in [ES16, Proposition 3.6], that ({sa}, {zab})
actually defines a 1-cocycle in Tot Γ(U, ω•,log

D1
) and this defines a class in the cohomology

H1(Tot Γ(U, ω•,log
D1

)) = H1(X/W1)log
crys.

Step 2: By the previous step we get:

Ker(MIClog(Dn+1)→ MIClog(Dn)) ' H1(X,ω•,log
D1

).

Denoting by KX/W the convergent isocrystal defined by T 7→ K ⊗W Γ(T,OT ), we
obtain the following from [ShII, Theorem 2.4.4 and Corollary 2.3.9]: for all i ∈ N there
is an isomorphism

Hi((X/W )log
crys, K ⊗OX/W ) ' Hi((X/W )log

conv, KX/W ) (2.28)

and
Hi((X/W )log

conv, KX/W ) ' Hi
rig(U/K). (2.29)

In [ShII, page 136 ] Shiho defines for E = K ⊗F in Icrys(X/W )log:

H1((X/W )log
crys, E) = Q⊗Z H1((X/W )log

crys,F).

Combining this with Remark 2.2

H1((X/W )log
crys, K ⊗OX/W ) = Q⊗ H1(X/W )log

crys,OX/W ) = H1
rig(U/K) = 0.

From [AB05, Theorem B’ and Section 2.3], we know that H1(X/W )log
crys is a free

W -module, hence torsion free and therefore H1(X/W )log
crys = lim←−

n

H1(X/Wn)log
crys = 0.

Hence there is a natural number N large enough such that for all n ≥ N , the maps
H1(X/Wn)log

crys → H1(X/W1)log
crys are zero.
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Claim: There is a natural number d ≥ 0 s.t. (F d)∗H1(X/W1)log
crys = 0.

From [Mum74, Corollary on page 143] we have the decomposition of H1(X/W1)log
crys

as a direct sum of the part on which Frobenius acts as an isomorphism and the part
on which it acts nilpotently. Denote the former by H1((X/W1)

log
crys)ss. We have the

following maps:

H0(X,Ω≥1
X ) H1

crys(X/k) H1(X,OX)

H0(X,ω≥1,log
X ) H1(X/W1)log

crys H1(X,OX)

.

Since F ∗ acts by zero on the image of H0(X,Ω1
X) in H1

crys(X/k), it acts by zero on the im-

age of H0(X,ω1,log
X ) in H1(X/W1)log

crys and therefore H1((X/W1)log
crys)ss ⊂ H1(X,OX)ss =

0, the latter equality being true because:

H1(X,OX)ss = H1(X,OX)F=1 ⊗Fp k = H1
ét(X,Fp)⊗ k = Hom(πab

1 (X),Fp)⊗ k = 0.

So, there exists some d ∈ N s.t. (F d)∗H1(X/W1)log
crys = 0. �

By the same computations as in Step 1, one can actually have:

Ker
(
MIClog(Dn+m)→ MIClog(Dn)

)
' H1(X,ω•,log

Dm
), for all 1 ≤ m ≤ n.

Assume now that we have E as in the assumption of the theorem. Then E2 ∈
Ker

(
MIClog(D2)→ MIClog(D1)

)
, and this defines a class e(E2) ∈ H1(X/W1)

log
crys. By

the definition of d above, we have (F d)∗e(E2) = e((F ∗)dE)2 = 0. Hence, by Step 1,
((F ∗)dE)2 is trivial. Repeating this we find r ∈ N such that ((F r)∗E)N = (F r)∗EN =:
E ′N is trivial.

We also see that the image of E ′2N via the restriction H1(X,ω•,log
DN

)→ H1(X,ω•,log
D1

),
which is equal to E ′N+1 is trivial.

Continuing like this, we can show that E ′n is trivial for all n ≥ N , therefore E ′

is trivial. The functor F ∗ is fully faithful restricted to locally free crystals, [Ogu94,
Example 7.3.4] so we conclude that E is itself trivial.

This proves that, with notations as in the previous sections, E = (Llog)⊗N is trivial
and therefore that a power of the rank one crystal L is trivial. Using the following two
lemmas, we conclude that L itself is trivial as well as the rank 1 isocrystal we started
with.

Lemma 2.7. With the previous assumptions, if L⊗n = 1 with (n, p) = 1, then L is
trivial.
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Proof. Since L⊗n is trivial, we have L⊗nU ' OU with (n, p) = 1, hence

Spec

(
n−1⊕
i=0

LiU

)
→ U

is a Kummer cover.

Since πtame,ab
1 (U) = 1 this cover has to be trivial, since this group parametrizes

exactly Kummer covers of U , so n = 1 and LU ' OU . Then we can choose a locally
free extension LX that is trivial. Applying the previous theorem to this, we get the
desired result.

Again with the previous notation we have the following:

Lemma 2.8. If L⊗p = 1, L is trivial.

Proof. If L⊗p = 1 then as coherent sheaves L⊗pU ' OU , thus MX := (F ∗L)U ' OU . We
choose a locally free extension MX that is the trivial log crystal and apply Theorem
2.6 (F ∗L is also log extendable if L is). We get that F ∗L is trivial. But the functor
F ∗ : Crys(U/W ) → Crys(U/W ) restricted to locally free crystals is fully faithful
[Ogu94, Example 7.3.4]. Hence L itself is trivial.

Corollary 2.9. Extensions of the trivial object by itself in Icrys(X/W )log are trivial.
In particular, log extendable unipotent isocrystals on U are constant.

Proof. The group of log isocrystals E on (X,M)/W for which the sequence

0→ OX/W ⊗Q→ E → OX/W ⊗Q→ 0 (2.30)

is exact, is precisely Ext1(OX/W ⊗ Q,OX/W ⊗ Q) = H1((X,M)/W,OX/W ⊗ Q)log
crys.

However,

H1((X,M)/W,OX/W ⊗Q)log
crys = H1((X,M)/W,OX/W )log

crys ⊗Q ' Hi
rig(U/K) = 0.

(2.31)
Let now E be a unipotent isocrystal on U , i.e. an isocrystal that admits a filtration
whose associated graded quotients are extensions of the unit isocrystal by itself. If E
is log extendable, then so are its associated graded quotients, which we denote by Ei.
They fit into exact sequences

0→ OX/W ⊗Q→ Ei → OX/W ⊗Q→ 0 (2.32)

in Icrys(X/W )log. Then we also have exact sequences in Crys(U/W )Q

0→ OU/W ⊗Q→ Ei → OU/W ⊗Q→ 0. (2.33)

Indeed, (2.32) being exact means that for all log PD thickenings ((V,MV ), (T,MT )) in
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the log crystalline site of X/W , we have

0→ OT ⊗Q→ Ei,T → OT ⊗Q→ 0. (2.34)

The log PD thickenings ((V,MV ), (T,MT )) restrict to PD thickenings (V, T ) on X and
they in turn define PD thickenings (V ∩ U, T ) on U . Every open of U is an open in
X, thus we have the above exact sequence in Crys(U/W )Q. So Ei is itself an extension
of the trivial isocrystal on U by itself and its extension to X is trivial. Applying the
above theorem to this, we obtain that the Ei are trivial on Crys(U/W )Q.





Chapter 3

Moduli space of rank 1 isocrystals

In this Chapter we address the rank 1 case of Deligne’s Conjecture, see Section 3.3.3.
We start by recalling some facts about the universal extension of Pic0 of a proper
variety in Section 3.2. We then identify the subset defined by isocrystals inside this
universal extension in Section 3.3 and compare in Section 3.4 the cohomologies of these
spaces in the Berkovich analytic setting. Finally, we discuss why there is a Frobenius
action on these cohomology groups, in Section 3.5.

3.1 Notation

Let C0 be a smooth projective curve over Fq, where q = pn for some prime number p.
We denote by Fq an algebraic closure of Fq, and denote by C the curve defined by

C C0

SpecFq SpecFq

Denote by W the Witt ring of Fq and by K its field of fractions, of characteristic 0, K
an algebraic closure of it and by CW a smooth lift over SpecW .

C CW CK

SpecFq SpecW SpecK.

proper,smooth (3.1)

49
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3.2 Moduli of line bundles with integrable connec-

tion

Let X be an S scheme, with S a noetherian scheme over W , together with a section
x : S → X. In general, we can define a functor

Pic#
X/S : (S − Sch)→ (Groups) (3.2)

which associates to an S-scheme T , the group of isomorphism classes of line bundles L
on T ×S X endowed with an integrable connection ∇ : L → L ⊗ pr∗X Ω1

X/S, such that

L|x×S ' OS, where prX : X×S T → X is the projection. We denote by Pic#(X/S) the
group of isomorphism classes of such pairs on X/S. As remarked in [Mes73, (2.5.3)],
there is an identification

Pic#(X/S) = H1(X,OX
dlog−−→ Ω1

X/S → Ω2
X/S → · · · )

and then if X ×S T =: XT for an S- scheme T admits a section over T , we also have
[Mes73, (2.6.4)]

Pic#
X/S(T ) = Coker(Pic(T )

f∗−→ Pic#(X ×S T/T )). (3.3)

In characteristic zero, this functor can be immediately seen to be representable
by a quasi-projective scheme: in [Bos13, Sections 2.3.3, 2.3.5] it is actually remarked
that for bundles of any rank r, this functor is the same as the representation functor
RDR(X, x, r), which is defined in [Sim94b, p. 55 and Theorem 6.13]. There, it is also
proven that this functor is representable.

We consider here the subfunctor of degree 0 line bundles as above, with integrable
connection on the curve X/S, and denote it by Pic∇X/S. In this case we have that
this functor is representable also in positive characteristic, since it is the universal
vector extension of Pic0

X/S, as was first proven in [Mes73, Proposition 2.8.1] and [MM74,
Theorem 2.6 and 3.2.3]. In more detail:

Definition 3.1. The universal vector extension of an abelian scheme A over S is an
abelian scheme E over S sitting in an exact sequence of fppf sheaves

0→ V → E → A→ 0, (3.4)

where V is a vector group over S, with the following universal property: for any other
abelian scheme E ′ and vector group V ′ sitting in an exact sequence of fppf sheaves of
abelian groups

0→ V ′ → E ′ → A→ 0 (3.5)

there is an OS-linear morphism of abelian groups ψ : V → V ′ such that (3.5) is
isomorphic to the pushout of (3.4) along ψ.
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Remark 3.2. [MM74, (2.6)] Assume we have an extension

0→ Gm → E → A→ 0

of an abelian variety A over a scheme S by Gm. By [MM74, (2.2.1)] there is an exact
sequence:

0→ ωA → EA → Ext1(A,Gm)→ 0, (3.6)

where ωA denotes as in [MM74] and [Mes73] the module of invariant differentials of
A. In [MM74, (2.6)] it is proven however that, since Ext1(A,Gm) is isomorphic to the
dual abelian variety A∗, EA is representable by a smooth S -group scheme and (3.6)
gives the universal extension of A∗.

In the case of a relative curve CW/ SpecW , which admits a section, the same is
true: as remarked in [Kat14, Section 3] we have an exact sequence

0→ H0(C,Ω1
CW /W )→ Pic∇(CW )→ Pic0(CW )→ 0. (3.7)

Indeed, every line bundle L on CW over SpecW which is fiber by fiber of degree 0
admits an S- linear connection, [MM74, p. 46]. Moreover, if we have two connections
(L ,∇1) and (L ,∇2), the difference of ∇1 and ∇2 is an element ω ∈ H0(C,Ω1

CW /W ).
In this case however, the dual abelian scheme A∗ of the above Remark is isomorphic

to the Jacobian Pic0(CW ) and we get, by [MM74, Theorem 3.2.3] that (3.7) is the
universal extension of Pic0(CW ). All details about this case are presented in [BK09,
Appendix] and recalled in [Lau96, Section 2].

We can see the same in a concrete example in the classical case:

Example 3.3. [[Mes73, (3.0)]] If X is a non-singular, connected curve over C, we
denote by J its Jacobian and choose a canonical (Abel-Jacobi) map X → J . This map
induces a map between the corresponding exact sequences on X and J , obtained by
[Mes73, (2.6.4)]:

0 H0(Ω1
X) Pic#(X) Pic(X) H1(Ω1

X)

0 H0(Ω1
J) Pic#(J) Pic(J) H2(τ(Ω•J))

' (3.8)

where τ(Ω•J) is the complex Ω1
X/S → Ω2

X/S → · · · with Ω1
X/S is in degree 1. Note that

we use here that the global 1-forms on X and J are all closed, since X is a curve and J
is smooth and projective. An element in the image of Pic# → Pic has to be a torsion
element in H2(X,Z) and H2(J,Z) respectively. Hence, since H2(X,Z) and H2(J,Z)
are torsion free, its Chern class is zero and therefore element has to be inside Pic0.
Moreover, we have an isomorphism Pic0(J)

'−→ Pic0(X). Hence, Pic#(X)
'−→ Pic#(J),

which is the universal extension of Pic0(X), by the abelian variety case, see [Mes73,
Proposition 2.9.2].
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3.3 The subset of isocrystals.

As the previous section shows, we get a fine moduli space of line bundles with integrable
connection, as described above, represented by a W -group scheme Pic∇(CW/ SpecW ),
which we denote by Pic∇(CW ) for simplicity. We then have Pic∇(CW )⊗K ' Pic∇(CK)
and Pic∇(CW )⊗ Fq ' Pic∇(C) for its generic and closed fibers, as well as Pic∇(CW )⊗
K ' Pic∇(CK).

3.3.1 Hitchin map

In the following let X be a smooth scheme over S, which is a scheme over a field of
characteristic p > 0. We denote the absolute Frobenius of S by FS : S → S (i.e. the
p-th power mapping on OS) and by FX/S : X → X(p) the relative Frobenius, which is
defined by the cartesian diagram:

X X(p) X

S S.

FX/S

FS

We denote by MIC(X/S) the abelian category of OX-modules with integrable
connection on X/S. Given an element (E ,∇) of MIC(X/S), we denote by E ∇ the
kernel of ∇.

For an element (E ,∇) of MIC(X/S), Katz defines in [Kat70, Section 5] its p-
curvature by

Der(X/S)→ EndS(E ); D 7→ (∇(D))p −∇(Dp). (3.9)

The morphism ψ(∇) is p-linear [Kat70, Proposition 5.2]: it is additive and ψ(∇)(fD) =
fpψ(∇)(D), for f and D local sections of OX and Der(X/S) over an open subset of S.
Using p-linearity, we can consider the p-curvature as a global section in H0(X,End(E )⊗
F ∗X/SΩ1

X(p)/S) and in fact, ψ(∇) lies in the kernel of the connection on End(E ) ⊗
F ∗X/SΩ1

X(p)/S , which is induced by the canonical connection on F ∗X/SΩ1
X(p)/S and the

connection ∇End, which is induced by ∇.

Cartier’s theorem provides a characterization of connections that have zero p-
curvature.

Theorem 3.4 (Cartier, Theorem 5.1 in [Kat70]). With notations as before, there is an
equivalence of categories between the category of quasi-coherent sheaves on X(p) and the
full subcategory of MIC(X/S) consisting of objects (E ,∇) whose p-curvature is equal
to zero.

More explicitly, the equivalence is given in the following way: given a quasi-coherent
sheaf F on X(p), there is a unique integrable S-connection ∇can on F ∗X/S(F ), which

has p-curvature zero and is such that F ' (F ∗X/S(F ))∇can.
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Conversely, given (E ,∇) ∈ MIC(X/S) of zero p-curvature, E ∇ is a quasi-coherent
sheaf on X(p).

We now focus in particular on the case S = SpecFq. We denote by ψ(∇) the
corresponding section in H0(X,End(E ) ⊗ F ∗X/SΩ1

X(p)/Fq
) and note that by [Kat70,

Proposition 5.2.3], the p-curvature of any connection (E,∇) is flat under the tensor
product of the canonical connection on F ∗X/SΩ1

X(p) and the one of End(∇) on End(E).
The Hitchin map, [Hit87] and [Lan14, p.12], is then defined by mapping an integrable

connection to the characteristic polynomial of its p-curvature, which by the above
discussion will have coefficients in the global symmetric forms on X(p):

χ(ψ(∇)) := det(−ψ(∇) + µ Id) = µr − a1µ
r−1 + · · ·+ (−1)rar

with ai ∈ H0(X(p), Symi(Ω1
X(p)))) and r = rank E .

In the case of a line bundle with connection on the curve C, we get a map, see for
example [LP01, Proposition 3.2],[BB07, Section 4], [Gro16, Definitions 3.12 and 3.16]:

χ(ψ(∇)) : Pic∇(C)→ A 1 := H0(C(p),Ω1
C(p)),

which is is known to be proper, [Lan14, Theorem 3.8].

3.3.2 Isocrystals

On the other hand, we say that a point [(L ,∇)] of Pic∇(CW ) represents an isocrystal
on C if the associated pair (LFq ,∇Fq) has nilpotent p-curvature. This condition is
equivalent to requiring that the characteristic polynomial of the p-curvature is zero or
that χ([(LFq ,∇Fq)]) = 0, by definition of the Hitchin map. Equivalently (LFq ,∇Fq) is

in the fiber above zero of the Hitchin map, which we denote by Pic∇(C)ψ=0. By the
Cartier isomorphism, [Kat70, Theorem 5.1], we have that this fiber is isomorphic to
Pic0(C(p)).

Since we are working on the perfect field Fq, we have that the Frobenius on it is
an isomorphism. Then also Pic0(C(p)) and Pic0(C) are isomorphic as schemes. If we
worked over Fp, they would even be isomorphic as Fp-schemes.

3.3.3 A conjecture of Deligne

In [Del15, Section 2.17] Deligne considers the following situation: let MK , and respec-
tively MK denote the moduli space of vector bundles of rank r on a smooth curve CK ,
respectively CK , endowed with an integrable connection. The space MK is obtained
by MK by extension of scalars. Denote as well by Er the set of isomorphism classes
of Q` - irreducible lisse sheaves of rank r on C. For a fixed embedding ι : K → C,
denote by Σ the Riemann surface obtained by CK , by extending the scalars to C. The
space MC corresponding to Er is induced by MK by extension of scalars and the `′-adic
cohomology, for `′ 6= p a prime number, of MK is isomorphic to the cohomology of
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MC with Q`′ coefficients. (Note that all cohomology groups below will denote `′-adic
cohomology groups, denoted by H∗(−).)

Conjecture ([Del15, Conjecture 2.18]). The cohomology of MK admits an endomor-
phism V ∗, such that for all n ≥ 1, the number Nn of fixed points of V ∗ on Er is given
by

Nn =
∑
i

(−1)i Tr(V ∗n,Hi(MK)).

In general, we do not have a Frobenius action on the moduli space of vector bundles
with integrable connection. Indeed, Deligne expects that there should exist an open
subspace M0

K
inside the Berkovich analytification of MK , which corresponds to the

sublocus of isocrystals and such that it has the following two properties:

(1) the restriction morphism H∗(MK) = H∗(Man
K

)→ H∗(M0
K

) is an isomorphism and

(2) a crystalline interpretation of M0 allows us to define V = Frob∗ : M0
K
→ M0

K
,

which induces V ∗ on cohomology.

Then the number of fixed points of the action of V n would be given by

Nn :=
∑

(−1)n Tr(V ∗,n,Hi(MK)). (3.10)

The conjectured morphism V : M0
K
→M0

K
should send M0

K
into a proper open subset

of M0
K

, and one can take ordinary cohomology, instead of cohomology with compact
support in the Lefschetz Trace formula.

Deligne provided in [Del15, Example 2.19] an example for this conjecture in the
rank 1 case, without explaining why the properties (1) and (2) from above are fulfilled.

Example 3.5 ([Del15, Example 2.19 and Proposition 2.20]). Denote the absolute
Frobenius of C0 by FC0 and that of Pic0(C0) by FPic0(C0). Pullback by the absolute

Frobenius of C0 defines F ∗C0
, an endomorphism of Pic0(C0) for which [Del15, (2.2.2)]:

F ∗C0
◦ FPic0(C0) = FPic0(C0) ◦ F ∗C0

= q. (3.11)

Because of this we denote F ∗C0
by V (Verschiebung).

Extending scalars to the algebraic closure Fq, we obtain the corresponding endo-
morphisms FC on C: FC maps a point of C with affine coordinates (x1, . . . , xn) to
the point with coordinates (xq1, . . . , x

q
n). We call this the Frobenius endomorphism of

C. The fixed points of the action of this map are exactly the Fq points of C, and are
computed by the Lefschetz Trace formula, given below in (3.17).

The morphism FC induces an endomorphism on cohomology:

Hi(C,Q`)→ Hi(C,Q`)
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In the rank 1 case, the moduli space MK is the same as Pic∇(CK), which, as
already discussed in Section 3.2, is the universal extension of Pic0(CK). By homotopy
invariance, it is true that

H∗(Pic0(CK))
'−→ H∗(Pic∇(CK)) (3.12)

while we also have a natural isomorphism by smooth base change

H∗(Pic0(C))
'−→ H∗(Pic0(CK)). (3.13)

On Fq, we have an endomorphism V : Pic0(C) → Pic0(C) induced by functoriality
from the Frobenius endomorphism of C and a pullback on cohomology:

V ∗ : H∗(Pic0(C)) −→ H∗(Pic0(C)) (3.14)

and because of (3.12) and (3.13) this defines

V ∗ : H∗ Pic∇(CK) −→ H∗ Pic∇(CK). (3.15)

In [Del15, Proposition 2.20], Deligne further computes the fixed points of this action
for n = 1 in (3.10). Note that one can reduce to this case, taking an extension of
scalars from Fq to Fqn . As also explained in [Del15, (6.1)], the number of fixed points
by the Frobenius correspond to the points fixed by V on E1, and as we see later by our
crystalline interpretation, this number should be the number of F -isocrystals defined
over Fq.

The Frobenius endomorphism FPic0(C) and V on Pic0(C) are transpose to each

other, since Pic0(C) is auto-dual, and we therefore obtain, [Del15, Proposition 2.20]:

Tr(V ∗,Hi(Pic0(C))) = Tr(F ∗Pic0(C),H
i(Pic0(C))) (3.16)

and ∑
(−1)i Tr(V ∗,Hi(Pic0(C))) = |Pic0(C0)(Fq)|. (3.17)

Our goal in this chapter is mainly to explain Deligne’s example and provide a
crystalline interpretation of it. We revisit this at the end of this chapter, in Example
3.10. In the spirit of the conjecture, we are considering the Berkovich analytification of
Pic∇(CW )K and its base change to K, Pic∇(CW )K . As recalled in Proposition 1.41, we
have the anti-continuous reduction map

π : ̂(Pic∇(CW ))K → Pic∇(C) (3.18)

where ̂(Pic∇(CW ))K ↪→ Pic∇(C)an
K , which would be an isomorphism if Pic∇(C)K was

proper, see Remark 1.43. We denote the inverse image of Pic∇(C)ψ=0, which is also
called the tube of Pic∇(C)ψ=0 inside the analytification, by ] Pic∇(C)ψ=0[. It is an open
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subset of Pic∇(C)an
K and is actually isomorphic to

̂(Pic∇(CW )Pic∇(C)ψ=0)K ,

the generic fiber of the completion of Pic∇(CW ) along the closed subset Pic∇(C)ψ=0,
see 1.42.

3.4 Comparison of cohomology groups.

In order to verify the aforementioned conjecture of Deligne, we have to compare
the cohomology groups of M0

K
and MK of Conjecture 3.3.3, which in our case are

] Pic∇(C)ψ=0[K and Pic∇(C)an
K

. As before, cohomology here means `-adic cohomology.

We can use the results recalled in Section 1.6 in order to prove the following
comparison:

Proposition 3.6. There is an isomorphism of cohomology groups

H∗(Pic∇(CK)an,Q`) ' H∗(] Pic∇(C)ψ=0[K ,Q`)

Proof. By Corollary 1.52 we have

H∗(] Pic∇(C)ψ=0[,Q`) ' H∗(Pic∇(C)ψ=0,Q`) (3.19)

but by the smooth base change theorem, see [Mil08, Theorem 20.1]

H∗(] Pic∇(C)ψ=0[,Q`) ' H∗(] Pic∇(C)ψ=0[K ,Q`) (3.20)

and as explained in Section 3.3,

H∗(Pic∇(C)ψ=0,Q`) ' H∗(Pic0(C(p)),Q`) ' H∗(Pic0(C),Q`). (3.21)

By Theorem 20.5 of Milne [Mil08] we have that, since Pic0(CW ) is proper over SpecW ,
it is also true that

H∗(Pic0(C),Q`) ' H∗(Pic0(C)K ,Q`). (3.22)

However, since Pic∇(C)K is the universal extension of Pic0(C)K , by Section 3.2, we
have

H∗(Pic0(C)K ,Q`) ' H∗(Pic∇(CK),Q`) (3.23)

Finally, the latter cohomology group is isomorphic to H∗(Pic∇(CK)an,Q`), by [Ber93,
Corollary 7.5.4].
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3.5 Frobenius action

The goal of this section is to show that there is a Frobenius action on ] Pic∇(C)ψ=0[,
which induces a Frobenius pullback morphism on cohomology. In general, if we have
an S-scheme M which represents a functor G, then to define a morphism M →M , it
is enough to define such a morphism G(S ′)→ G(S ′) for all S-schemes S ′.

With this in mind, we obtain in this section a moduli interpretation of ] Pic∇(C)ψ=0[
and this yields, because of its nature, a natural Frobenius action.

3.5.1 Functorial interpretation

We are interested in the functorial interpretation of the subset of isocrystals inside
the analytic space Pic∇(C)an

K . We consider here the rigid analytification. Indeed, the
Berkovich and rigid analytifications of an algebraic variety are compatible constructions,
as explained in Remark 1.37.

From now on, (−)an denotes the rigid analytification functor and (−)K denotes the
rigid analytic generic fiber.

By Remark 1.35, we can define the functor Pic∇Can
K /K,xan which is represented by the

analytification of Pic∇(CK). Our goal is therefore to characterize ] Pic∇(C)ψ=0[ as a
subfunctor of Pic∇Can

K /K . For this it is enough to describe the set

Hom(S, ] Pic∇(C)ψ=0[)

for a rigid analytic space S. This will be the set of line bundles with connection on
S ×K Can

K → S, as before, with some extra property. Hence, it is enough to assume S
is an affinoid and equal to Sp(A)⊗K = SpAK , for some W -algebra A.

A morphism of rigid analytic spaces

S = SpAK
φK−−→] Pic∇(C)ψ=0[= ̂(Pic∇(CW )Pic∇(C)ψ=0)K (3.24)

extends as recalled in Remark 1.47 to a morphism of formal schemes

S ′ φ′−→ ̂Pic∇(CW )Pic∇(C)ψ=0 (3.25)

where S ′ → S = Spf(A) is an admissible formal blow-up. For CW → Spf W the formal
lift of C, having a morphism as in (3.25) means that the morphism S ′ → Pic∇(CW )
factors as

S ′ Pic∇(CW )

̂Pic∇(CW )Pic∇(C)ψ=0

(3.26)
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which in turns yields

S ′Fq Pic∇(C)

Pic∇(C)ψ=0

(3.27)

This is equivalent to saying that the pair (L ,∇) defined by (3.25) is actually an
isocrystal on S ′ × CW → S ′.

Remark 3.7. This construction is independent of the choice of the admissible blow-up:
suppose there is another admissible blow-up S ′′ of S such that the morphism (3.24)
lifts to a morphism of formal schemes

S ′′ φ′′−→ ̂Pic∇(CW )Pic∇(C)ψ=0 . (3.28)

Then as in Remark 1.47 we have that φ′ and φ′′ coincide, since the rigid analytic generic
fibers S ′

K and S ′′
K coincide; they are isomorphic to S.

On the other hand, if we start with a pair of a line bundle with connection on
S ×Can

K → S for an affinoid S, which is an isocrystal on S ′×CW → S ′, for S ′ → S
an admissible blow-up of S , this means by definition that we have a morphism as
in (3.26). Taking the associated map between the rigid generic fibers, we obtain a
morphism

S ′ →] Pic∇(C)ψ=0[.

By [BL93, (a) in p.307], recalled in Remark 1.47, there is an isomorphism between
the rigid generic fiber of S and S ′, which means that this morphism is an element
of Hom(S, ] Pic∇(C)ψ=0[). Note that the category of isocrystals on a formal lift of a
scheme depends only on its reduction, because of the nilpotence condition.

By definition of taking the extension of a morphism between rigid spaces to a
morphism of the associated formal models and that of taking the rigid generic fiber of
a morphism of formal spaces, these two constructions are inverse to each other.

Proposition 3.8. We obtain therefore an isomorphism between the set

Hom(S, ] Pic∇(C)ψ=0[) (3.29)

and the set

{(L ,∇) line bundles with integrable connection on S × Can
K which are

isocrystals on S ′ × CW → S ′, for S ′ an admissible formal blow-up of S} (3.30)

We denote the latter by ] Pic∇(C)ψ=0[(S).
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Remark 3.9. Note also that this isomorphism is functorial: if S → T is a morphism
of affinoid spaces, we have a map ] Pic∇(C)ψ=0[(S)→] Pic∇(C)ψ=0[(T ). ([Ber96c] : the
category of overconvergent isocrystals on (X,S) is functorial on (X,S)).

3.5.2 Frobenius

In order to define a Frobenius pull-back morphism on ] Pic∇(C)ψ=0[, it is enough to
define it on ] Pic∇(C)ψ=0[(S). Because of the previous discussion, given a (L ,∇) =: L in
(3.30), and choosing a lift φ of the relative Frobenius of S ′×C → S ′ to S ′×CW → CW ,
we have a well-defined isocrystal φ∗L on S ′ × CW .

Example 3.10 ([Del15, Example 2.19]). In light of our interpretation of the subset
] Pic∇(C)ψ=0[, we can understand why Deligne used the cohomology of Pic0 for the
comparison on cohomology and why indeed this example gives an affirmative answer
to his conjecture in rank 1. By his computation, we thus obtain the number of fixed
points of the Frobenius action, which correspond to the isocrystals with Frobenius
structure, recalled in 1.5.
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[Ray74] Michel Raynaud, Géométrie analytique rigide d’après Tate, Kiehl..., Mémoires de la Société
Mathématique de France 39-40 (1974), 319–327.

[Ray94] M. Raynaud, Revêtements de la droite affine en caractéristique p>0 et conjecture d’Abhyankar,
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Promotionsverfahren eingereicht.

Berlin, den 26.07.2018
Efstathia Katsigianni

65


	Introduction
	Background
	Isocrystals
	Log isocrystals
	Étale fundamental group
	Berkovich and rigid analytifications
	Rigid analytification
	Berkovich analytification

	Generic fibers of formal schemes
	Cohomology of Berkovich spaces

	De Jong's Conjecture
	Notation
	Residue exact sequence
	The value of the log extension on the compactification
	Triviality of the isocrystal

	Moduli space of rank 1 isocrystals
	Notation
	Moduli of line bundles with integrable connection
	The subset of isocrystals.
	Hitchin map
	Isocrystals
	A conjecture of Deligne

	Comparison of cohomology groups.
	Frobenius action
	Functorial interpretation
	Frobenius



