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Chapter 1

Introduction

Recent innovations and developments in 3D acquisition technology, such as 3D laser scanners, mag-
netic resonance imaging, ultrasound, optical coherence tomography and LiDAR scanning allow fast,
robust and highly accurate digitization of complex 3D objects. The analysis and processing of these
geometric data are vital in various scientific disciplines and industries, such as neuroscience, mech-
anical engineering, animation, etc. Discrete differential geometry, a relatively new field in mathem-
atics and computer science that concerns between acquisition and production of a geometrical data.
Discrete differential geometry is a rapidly growing research field, equipped with concepts of clas-
sical and modern differential geometry of smooth manifolds, mathematical models and algorithms
for analyzing and manipulating geometric data. Geometry processing is basically a combination
of several mathematical algorithms, which are applied to geometrical models in various real life
applications, for example, Figure 1.1 shows a general pipeline for geometry processing.

Figure 1.1: A general pipeline for geometry processing.

The thesis is divided in two parts. The first part consists of Chapter 2−5. In this part, we
introduce a shape analysis operator (Chapter 2), its application to mesh denoising (Chapter 3) and
point set denoising (Chapter 4). This thesis also discusses about the robust statistics framework and
introduces a robust and high fidelity mesh denoising using a robust estimator (Chapter 5).

In the second part, we apply geometry processing algorithms including the proposed algorithm
in the first part of thesis, for the retinal shape analysis. An general introduction about a human eye,
the retinal shape and common neurological disorders are given in Chapter 6. Chapter 7 comprises
of an algorithm to perform a parametric modeling of the fovea, which is an important region in
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2 Chapter 1 Introduction

the retina. The optical nerve head morphometry is performed in Chapter 8 using the proposed
geometry processing algorithms.

Here, we give an introduction about surface denoising, general problems in surface denoising
and an overview of state-of-the-methods related to these topics.

Surface Denoising: Surface denoising is a central preprocessing tool in discrete geometry pro-
cessing with many applications in computer graphics such as CAD, reverse engineering, virtual
reality and medical imaging. During a surface measurement, noise is inevitable due to various in-
ternal and external factors and this degrades surface data quality and its usability. The main goal
of a surface denoising algorithm is to remove spurious noise and compute a high quality noise-free
surface while preserving sharp features.

In general, noise and sharp features both have high frequency components, so decoupling the
sharp features from noise is still a challenging problem in surface denoising algorithms. Tradition-
ally, noise is removed by using a low pass filtering approach, but this operation leads to feature
blurring as shown in Figure 1.2. Noise behaviour depends highly on resolution and uniformity of
the corresponding mesh. As it can be seen from Figure 1.2(e), feature preservation is a challenging
task with non-uniform meshes and also the removal of low frequency noise is not so straight for-
ward (Figure 1.2 (e), top edge of the cylindrical region). Figure 1.2 (f) shows the result obtained
by our method [114], which produces a noise-free mesh with sharp features.

(a) Original (b) Noisy (c) Blurring (d) Shrinkage (e) Non-uniform
mesh effect

(f) Ours [114]

Figure 1.2: General problems in mesh denoising.

Retinal Shape Analysis: In this part of thesis, we introduce couple of geometric processing al-
gorithms for quantification of the retinal shape. As part of the central nervous system, the retina
comprises a similar cellular composition as the brain, and many neurological disorders thus affect
the retina. Many neuroinflammatory conditions are known to cause modifications to two import-
ant regions of the retina: the fovea and the optical nerve head (ONH) and an accurate and robust
shape modeling of these regions can diagnose several neurological disorders by detecting the shape
changes. A detailed discussion about this part is mentioned in Chapter 6, 7 and 8.

1.1 Main Contributions

The main contributions of this thesis have been divided into two parts: mesh and point set denoising
in a proposed normal voting tensor framework and the retinal shape analysis, which includes a
parametric modeling of the foveal region and a quantification of the optical nerve head region.
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Surface Denoising and Feature Analysis

• We follow the variation of surface normals, which is termed as the normal voting tensor and
derive a relation between the shape operator and the normal voting tensor.

• We extend the concept of the directional and the mean curvatures on the dual representation
of a triangulated surface using the proposed element-based normal voting tensor (ENVT).

• We propose an ENVT-based mesh denoising algorithm. A binary optimization technique is
applied on the spectral components of the ENVT that helps the algorithm to retain sharp
features in the concerned geometry and improves the convergence rate of the algorithm.

• We give a stochastic analysis of the effect of noise on a triangulated mesh based on the min-
imum edge length of elements in the geometry. It gives an upper bound to the noise standard
deviation to have minimum probability for flipped element normals.

• We investigate the robust statistics framework for face normal bilateral filtering and propose
a robust and high fidelity two-stage mesh denoising method using Tukey’s bi-weight function
as a robust estimator to stop the diffusion at sharp features and to produce smooth umbilical
regions.

• We introduce a vertex update scheme, which uses a differential coordinate-based Laplace
operator along with an edge-face normal orthogonality constraint to produce a high-quality
mesh without face normal flips and this operator also makes the algorithm more robust against
high-intensity noise.

• We extend the concept of the ENVT-based mesh denoising for a point set denoising algorithm,
where noisy vertex normals are filtered using the vertex-based NVT and the binary optimiza-
tion.

• For vertex update stage in point set denoising, we add different constraints to the quadratic
error metric based on features (edges and corners) or non-feature (planar) points.

Retinal Shape Analysis

• We introduce a parametric modeling of the foveal shape using Cubic Beziér and derive several
3D shape parameters to quantify the foveal shape with high accuracy.

• A 3D shape analysis algorithm is introduced to measure the shape variation in the ONH in
different neurological disorders. The proposed method uses manifold surfaces of two different
layers of the retina to derive several 3D shape parameters.

Publications Parts of this thesis appear in the following papers:

• ”Mesh Denoising based on Normal Voting Tensor and Binary Optimization”, IEEE Transactions
on Visualization and Computer Graphics 2017 [114].
DOI: https://doi.org/10.1109/TVCG.2017.2740384.

• ”Cube: Parametric Modeling of 3D Foveal Shape using Cubic Bézier”, Biomedical Optic Express
2017 [112].
DOI: https://doi.org/10.1364/BOE.8.004181.
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• ”Constraint-based Point Set Denoising using Normal Voting Tensor and Restricted Quadratic Error
Metrics”, Computer and Graphics 2018 (Shape Modeling International 2018) [116].
DOI = https://doi.org/10.1016/j.cag.2018.05.014 .

• ”Robust and High Fidelity Mesh Denoising”, IEEE Transactions on Visualization and Computer
Graphics 2018 [115].
DOI: https://doi.org/10.1109/TVCG.2018.2828818.

• ”Optic Nerve Head 3D Shape Analysis”, submitted to IEEE Transactions on Medical Imaging
2018 [113].

1.2 Related Work in Surface Denoising

In last two decades, a wide variety of smoothing algorithms have been introduced to remove un-
desired noise while preserving sharp features in a geometry. The most common technique for noise
reduction is mainly based on the Laplacian on surfaces. We can characterize them as isotropic,
anisotropic and two stage smoothing methods. For a comprehensive review on mesh denoising, we
refer to couple of survey papers [14–16]. We mention a major part of related works in this section.

Isotropic smoothing methods are the earliest smoothing algorithms. These algorithms have low
complexity but suffer from severe shrinkage and further feature blurring [32]. Desbrun et al. [21]
introduced an implicit smoothing algorithm that produces stable results for irregular meshes and
avoids the shrinkage by volume preservation. Later, the concept of the differential coordinates is
introduced by Alexa [4] as a local shape descriptor of a geometry. Differential coordinates preserves
the fine details on a triangular mesh, which leads to their further applications in mesh processing,
for example, Lipman et al. [63] used the same concept for mesh editing. Mesh quantization [93] and
Shape approximation [92] are also done by using the concept of differential coordinates. Sorkine
et al. [91] introduced a general differential coordinate-based framework for mesh processing. In
continuation, vertex-based Laplacian mesh optimization algorithm was introduced by Nealen et
al. for shape optimization and mesh smoothing [72]. Later, Su et. al. exploited the differential
coordinates concept for mesh denoising by computing the mean of the differential coordinates at
each vertex [94]. This method produces less shrinkage but is unable to preserve shallow features.
In general, isotropic smoothing methods are prone to shrink volumes and blur features but effective
in noise removal.

Anisotropic diffusion is a PDE based de-noising algorithm introduced by Perona and Malik [82].
The same concept was extended for surface denoising using a diffusion tensor [7, 20]. Similarly,
the anisotropic diffusion of surface normals was introduced for surface smoothing [99]. Later, the
prescribed mean curvature based surface evolution algorithm was introduced by Klaus et al. [45]
that avoids the volume shrinkage and preserves features effectively during the denoising process.

The bilateral filtering was initially proposed by Tomasi et al. [103] for image smoothing. The
relation between anisotropic diffusion [45] and the bilateral filtering is explained by Barash [9].
In continuation, Black et al. [13] and Durand et al. [24] expressed anisotropic diffusion and the
bilateral filtering in a robust statistics framework [42]. The concept of bilateral smoothing was ex-
tended for mesh denoising by Fleishmann et al. [34] and later, Jones et al. [51] explained the same
concept in a robust statistics framework. A consistent subneighborhood-based bilateral filtering is
introduced by Fan et al. [29]. Solomon et al. proposed a general framework for bilateral and mean
shift filtering in any arbitrary domain [90]. These algorithms are simple and effective against noise
and feature blurring. In general, anisotropic denoising methods are more robust against volume
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shrinkage and are better in terms of feature preservation but the algorithm complexity is higher
compared to isotropic algorithms.

The two step denoising methods are simple and quite robust against noise. These algorithms
consist of two steps: the face normal smoothing and the vertex position update. Face normals
are treated as signals on the dual graph of a mesh with values in the unit sphere. The Laplacian
smoothing of face normals on a sphere is introduced by Taubin [101] and displacement of the con-
cerned face normal is computed along a geodesic on the unit sphere. The face normal smoothing
is done by rotating a face normal on the unit sphere according to the weighted average of neigh-
bor face normals. The bilateral surface normal filtering with the least squares error vertex position
update was introduced by Lee et al. [58]. Later, different linear and non-linear weighting func-
tions have been introduced by different algorithms for the face normal smoothing. For example,
Yogou et al. [117] computed the mean and the median filtering of face normals to remove noise
effect. Later, a modified Gaussian weighting function was applied to the face normal smoothing in
an adaptive manner to reduce features blurring [78]. In continuation, the alpha trimming method
introduced a non-linear weighting factor which approximates both, the mean and the median filter-
ing [117]. Bilateral normal is one of the most effective and simple algorithms among the two step
methods [121], where the weighting function is computed based on the normal differences (simil-
arity measurement) and spatial distances between neighboring faces. Recently, a total variational
method has been introduced for the face normal filtering [119]. After the preprocessing of face
normals, the vertex position update is done by using the orthogonality between the corresponding
edge vector and the face normal [95]. Wang et al. [106] introduced a learning-based mesh denois-
ing algorithm, where the bilateral filtered normal descriptor is used to model the local geometry
features. The two step denoising methods are simple in implementation and produce effective res-
ults. However, on noisy surfaces, it is difficult to compute the similarity function because of the
ambiguity between noise and sharp features, and that leads to unsatisfactory results.

In recent mesh denoising methods, compressed sensing techniques are involved to preserve
sharp features precisely and remove noise effectively [111]. For example, L0 mesh denoising
method assumed that features are sparse on a general surfaces and introduced an area based differ-
ential operator. This method utilizes L0 optimization to maximize flat regions on a noisy surfaces to
remove noise [43]. The L0 method is effective against high noise but produces piecewise flat areas
on smooth surfaces. Later, the weighted L1-analysis compressed sensing optimization is applied
to recover sharp features from the residual data after global Laplacian smoothing [107]. Recently,
the ROF-based (Rudin, Osher and Fatemi) algorithm has been introduced in [110]. This method
applies L1 optimization on both data fidelity and regularization to remove noise without volume
shrinkage. In continuation, Lu et al. utilized the L1-median normal filtering along with vertex
preprocessing to produce a noise-free surface [66]. Recently, Yadav et al. [114] proposed a binary
optimization-based mesh denoising algorithm, where noise was removed by assigning a binary val-
ues to a face normal-based covariance matrix. Centin et al. [16] proposed a normal-diffusion-based
mesh denoising algorithm, which removes noise components without tempering the metric quality
of a surface. In general, the compressed sensing based denoising algorithms are robust against high
intensity noise and recover not only sharp features but also shallow features, but at the same time
these algorithms produce false features (piecewise flat areas) on smooth geometries.

A multistage denoising framework was introduced by Bian et al. [12], where feature identific-
ation is done by the eigenalysis of the NVT (normal voting tensor) [55] [70] and then geometry
is divided into different clusters based on features and smoothing is applied on different clusters
independently. Later, the guided mesh normals are computed based on consistence normal orient-
ations and the bilateral filtering is applied [120]. Recently, Wei et al. [108] exploited both vertex
and face normal information for feature classification and surface smoothing. In continuation, fea-
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tures detection is done on the noisy surface using quadratic optimization and remove noise using L1
optimization while preserving features [67]. Multistage denoising algorithms produce effective res-
ults against different levels of noise but have higher algorithm complexity because of the different
stages.

Similar to mesh denoising, point sets denoising is also studied by several researchers in last two
decades [10]. The moving least squares was introduced by Alexa et al. [5] to up-sample a point set
in local tangent spaces. Later, a parametrization free, local optimal projector is introduced to remove
noise and outliers from point sets using the L1-median [62]. LOP concept was modified by Huang
et al. by adding the weighting term, which makes the algorithm robust against non-homogeneous
point density [48]. Algebraic Point Set Surfaces (APSS) algorithm used local moving least squares
to reconstruct a smooth surface from a point set [40]. In continuation, RIMLS (robust implicit
moving least squares) was introduced by Öztireli et al. and it preserves sharp features by applying
bilateral normal filtering before projection [80]. Lange and Polthier [57] introduced the anisotropic
smoothing of point sets using the shape operator and principal curvatures. In terms of feature
preservation, L0 point set denoising is introduced by Sun et al. [97] and this algorithm recovers
sharp features by computing piecewise flat areas on a point set surface. In continuation, Mattei
et al. [68] introduced MRPCA (moving robust PCA) to remove outliers effectively and retain sharp
features. Recently, a guided point set denoising algorithm is introduced. This method exploited
L1-median skeleton to extract the feature points and then computed guidance normal by using
consistent normals [122].



Chapter 2

Element-based Normal Voting Tensor (ENVT)

On a polygonal mesh surface, estimation of curvature informations including, principal curvatures
is quite important for various geometry processing algorithms, for example, shape analysis, mesh
segmentation and surface smoothing. In the past, several shape analysis operators have been intro-
duced for feature detection and basic geometry processing operations, for example, the curvature
tensor, which was introduced by Taubin [100] and it computes the variation of tangent vectors
along a curve on a triangulated surface. The spectral analysis of the curvature tensor approxim-
ates the principal curvatures of polygonal surfaces. We follow similar concept and introduce the
variation of surface normals termed as the normal voting tensor, and derive a relation between
the shape operator and the normal voting tensor. We extend the concept of the directional and
the mean curvatures on the dual representation of a triangulated surface. A normal voting tensor
is defined on each triangle of a geometry and termed as the element-based normal voting tensor
(ENVT). Later, a deformation tensor consisting of the anisotropy of a surface is extracted from the
ENVT, and the mean curvature vector is defined based on this ENVT deformation tensor. We also
show a similarity of the ENVT with the principal directions and the principal curvatures. In the end
of this chapter, we experimented the capability of the ENVT in terms of feature preservation.

2.1 The Curvature Tensor

The curvature notion has a central importance in classical differential geometry and has several
concepts and definitions. Here, we explain the concept of directional (normal) curvature using the
classical Meusnier’s theorem.

Theorem 1. (Meusnier’s theorem) LetM⊂ R3 be a orientable regular surface with unit normal field
N :M→ R3 and second fundamental form II : TpM×TpM→ R, where TpM is the tangent plane
at a point p ∈ M spanned by principal curvature directions T1 and T2 as the orthonormal basis. Let
c : (−ε, ε) → M be a curve parametrized by arc-length with c(0) = p, then the directional (normal)
curvature of c can be expressed as:

κp = II(ċ(0), ċ(0)). (2.1)

Let us consider an arbitrary vector Tθ ∈ TpM, which can be expressed in terms of the orthonor-
mal basis T1 and T2:

Tθ = {cosθT1 + sinθT2}, θ ∈ R, (2.2)

Let us assume that the curve c is aligned with the tangent vector Tθ, then Tθ = ċ(0). By differential
geometry, the shape operator has a diagonal form and because of the orthogonality of the curvature

7
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line parametrization, the second fundamental form computes the directional curvature w.r.t. Tθ ∈
TpM, and this directional curvature can also be expressed in a quadratic form:

κp(Tθ) = II(Tθ,Tθ) =
(
cosθ sinθ

)(κ1 0
0 κ2

)(
cosθ
sinθ

)
. (2.3)

Substituting the value of Tθ from Equation (2.2) into second fundamental form gives us the Euler
formula for the directional curvature:

κp(Tθ) = II(Tθ,Tθ) = κ1cos2θ + κ2sin2θ. (2.4)

Using the directional curvature from Equation (2.4) and an arbitrary tangent vector Tθ, Taubin
[100] introduced the curvature tensor at point p on a surfaceM, which is defined as:

Mp = 1
2π

∫ +π

−π
κp(Tθ)TθTt

θdθ, (2.5)

where Tθ is a column vector. The curvature tensor Mp is a covariance matrix of a set of tangent
vectors, where each tangent vector is weighted by the corresponding directional curvature. The
curvature tensor is rewritten in following form using Equations (2.2) and (2.4):

Mp = 1
2π

∫ +π

−π
(κ1cos2θ + κ2sin2θ)(cosθT1 + sinθT2)(cosθT1 + sinθT2)tdθ. (2.6)

The term Mp is a 3 × 3 matrix and we can decompose this tensor in terms of the orthonormal
basis T1 and T2 of the tangent plane TpM:

Mp =
(
T1 T2

)(σ2 0
0 σ3

)(
Tt

1
Tt

2

)
, (2.7)

where T1 and T2 are the column vectors, thus, (T1,T2) will be a 3 × 2 matrix. The non-diagonal
components of the eigenvalues matrix (2 × 2, the central matrix) are zero. Using Equation (2.6),
the eigenvalues (σ2 and σ3) of the tensor Mp are computed as:

σ2 = Tt
1MpT1 = 3

8κ1 + 1
8κ2, σ3 = Tt

2MpT2 = 1
8κ1 + 3

8κ2. (2.8)

The above equation shows a relationship between the principal curvatures and the eigenvalues
of the curvature tensor. The mean curvature is defined as the arithmetic mean of the principal
curvatures.

κ1 = 3σ2 − σ3, κ2 = 3σ3 − σ2, H = κ1 + κ2
2 = σ2 + σ3. (2.9)

The eigenvectors of Mp are aligned with the principal directions but its eigenvalues are not approx-
imating the principal curvatures, for example, on a cylinder both of these eigenvalues are non-zero
but the minimum principal curvature is zero. The eigenvalues σ2 and σ3 can have negative values
also and approximate the mean curvature effectively.

Let us consider, for a particular value of θ in the radial direction, point q is lying on the same
surfaceM in the neighbourhood of p. Let us consider an arc-length parametrized smooth curve c
between p and q such that the tangent direction Tθ = ċ(0) and the directional curvature κp(Tθ) =
c̈(0)np, where np ∈ N is the surface normal at point p then, by using Taylor series expansion the
directional curvature from p to q can be approximated as:

κp(Tθ) = 2〈np, (q − p)〉
|q − p|

. (2.10)
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Vertex-based Directional and Mean Curvatures on a Triangulated Surface

In the discrete setting, let us consider a triangulated surfaceM = (V,F), which is a combination of
a set of vertices and a set of elements. For a vertex vi ∈ V, the directional curvature w.r.t. vj ∈ Ni,
and mean curvature can be defined as:

κij = 2〈nvi , (vj − vi)〉
|vj − vi|

, H = 1∑
j∈Ni

Wij

∑
j∈Ωi

Wijκij , (2.11)

where Ni is the set of neighbour vertices of vi. The term H is mean curvature andWij is a weighting
factor associated with each neighbor vertex. In general, this weighting factor is chosen on the basis
of an area of elements connected with the vertex vi. The corresponding tangent plane is computed
using the vertex normal nvi .

2.2 Normal Voting Tensor (NVT)

In general, covariance matrices compute a variation of an entity in a well defined domain, for
example, principal component analysis (PCA), where the covariance matrix of an edge vector on
a triangular surface computes the variation of vertices in R3 space. The curvature tensor Mp is a
weighted covariance matrix, which computes the variation of tangent vectors around a point.

In general, surface normals carries anisotropy of a surface hence a covariance matrix of surface
normals in a well defined neighborhood computes anisotropic nature of a surface in that region.

To analyze anisotropy of an orientable surface M ⊂ R3, which has well defined normal field
N : M → R3, for any Ω ⊂ M, we define a bilinear form CΩ : Ω × Ω → R. In most general term,
we have a map: Ω 7→ CΩ, where Ω is a geodesic disk of radius r. Now, we define the term CΩ in
terms of the tensor product (outer product) of surface normals:

CΩ = 1
|Ω|

∫
Ω

n⊗ ndΩ, (2.12)

where n ∈ N is a column vector and is an order-1 tensor. The symbol ⊗ represents the outer
product, which can be written as n⊗ n = nnt. The term CΩ is known as the normal voting tensor.
The above equation shows a special case of the Kronecker product of matrices and possesses the
following properties:

1. The inner product of normal vectors can be computed using the trace of the outer product.

1
|Ω|

∫
Ω
〈n,nt〉dΩ = Trace(CΩ). (2.13)

2. If the surface normal n is a non-zero vector then CΩ has matrix rank 1 because for any vector
x ∈ R3:

CΩx = 1
|Ω|

∫
Ω

n(ntx)dΩ, (2.14)

where (ntx) is a scalar quantity.

3. As the surface normal n is an order-1 tensor so the term CΩ will be an order-2 tensor.

As it is mentioned in Equation (2.12), CΩ is a covariance matrix of surface normals so the normal
voting tensor computes the variation of surface normals in Ω geodesic disk. To understand this
variation, we follow a theorem by Rodriguez from classical differential geometry.



10 Chapter 2 Element-based Normal Voting Tensor (ENVT)

Theorem 2. (Rodriguez’s theorem) LetM⊂ R3 be a orientable regular surface and n belong to a unit
normal field N :M→ R3. Let c : I →M be a curve parametrized by arc-length, then c is a curvature
line onM if and only if there exists a function λ : I → R with:

d

dt
n(c(t)) = λ(t) · ċ(t), t ∈ I, (2.15)

where −λ(t) is the corresponding principal curvature.

From Rodriguez’s theorem, it is clear that the variation of normals depends on mainly two
factors: tangent direction ċ(t) and corresponding principal curvature. A similar conclusion, we get
from Weingarten map Wp : TpM→ TpM as well:

Wp(Ti) = κi ·Ti, i = 1, 2. (2.16)

From Equations (2.15) and (2.16), it is clear that the variation of surface normals is well approxim-
ated in the principal directions using the principal curvatures.

However, it is not so clear in arbitrary directions. For θ ∈ [−π, π), let cθ : (−ε, ε) → Ω be a unit
speed geodesic along which we study the change of the normal vector. Using Taylor expansion:

n(cθ(t)) = n(cθ(0)) + tn(cθ(0))′ +O(t2), (2.17)

where the term n(cθ(0))′ is similar to Equation (2.15) and represents the corresponding tangent
vector, which is defined in the local neighborhood of point p:

T̃θ = κ1cosθT1 + κ2sinθT2. (2.18)

In the above equation, we added the principal curvatures κ1, κ2 as weighting factors in the principal
directions T1,T2 to create an anisotropic radial sampling. The tangent vector T̃θ is spanned by the
principal curvature directions and is closer to the maximum principal direction than the minimum
principal direction.

The term n(cθ(0))′ (Equation (2.17)) can be replaced with T̃θ (Equation (2.18)), which is the
combination of the principal directions and curvatures. The radius term r defines the neighborhood
area and as r → 0, the surface normal n(cθ(0)) = n0. For a small disk radius the higher order
component will be close to zero O(t2) ≈ 0 and the surface normal can be written as a linear
combination of n0 and its corresponding tangent plane T̃θ.

n(cθ(t)) = n0 + tT̃θ. (2.19)

In other words, when we move in arbitrary direction Tθ as mentioned in Equation (2.2), the
surface normal changes by T̃θ in first order approximation. From Equations (2.12) and (2.19), we
express the NVT in the following integral equation in a polar coordinate form around a point p:

CΩ = 1
πr2

∫ π

−π

∫ r

0
(n0 + tT̃θ)⊗ (n0 + tT̃θ)tdtdθ, (2.20)

where geodesic disk area |Ω| = πr2. Using Equations (2.18) and (2.20):

CΩ = n0 ⊗ n0 + r2

4π

∫ π

−π
(κ2

1cos
2θT1 ⊗T1 + κ2

2sin
2θT2 ⊗T2)dθ. (2.21)

So the ENVT can be decomposed into two different covariance matrices:

CΩ = C0 + r2

2 Cκ, (2.22)
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where C0 is the covariance matrix regarding n0 (when r → 0) and has only one dominant ei-
genvalue in the surface normal direction. The second term Cκ consists of the variation of surface
normals excluding n0 within disk Ω. The NVT CΩ is a symmetric positive semi-definite matrix and
can be written in terms of orthonormal basis:

CΩ =
(
n0 T1 T2

)λ1 0 0
0 λ2 0
0 0 λ3


n0

T1
T2

, (2.23)

and the most dominant eigenvalue along the surface normal is computed using the following equa-
tion:

λ1 = nt0CΩn0 = 1. (2.24)

In this case, Cκ will be a zero covariance matrix because it has zero eigenvalue along the surface
normal direction and non-zero eigenvalues along the principal directions, which are perpendicular
to n0. The other two eigenvalues along the principal directions can be computed as:

λ2 = Tt
1CΩT1 = r2

2 Tt
1CκT1 = r2

2
1

2π

∫ π

−π
κ2

1cos
2θdθ = r2κ2

1
4 , (2.25)

λ3 = Tt
2CΩT2 = r2

2 Tt
2CκT2 = r2

2
1

2π

∫ π

−π
κ2

2sin
2θdθ = r2κ2

2
4 , (2.26)

From the above equations, it is clear that second and third eigenvalues of the NVT approximate
squares of the principal curvatures κ1 and κ2. The eigenvalues (σ2, σ3) of the curvature tensor are a
linear combination of the principle curvatures (κ1, κ2). Considering the same example of Cylinder,
unlike σ3, which is non-zero, the least dominant eigenvalue λ3 of the NVT will be zero. Therefore,
the NVT approximates the shape operator better compared to the curvature tensor.

2.3 Element-based Normal Voting Tensor (ENVT) on a Triangulated
Surface

The concept of normal voting was introduced by Medioni [70] and was used in various computer
vision applications. The basic idea of normal voting tensor is to select the neighborhood of a vertex
and these neighborhood vertices vote to estimate feature points on a surface.

As face normals are a first order information on a surface and give better description about sharp
features than vertex normals because the angles between face normals are bigger compared to the
angles between vertex normals in those regions. We extended the normal voting concept and define
an element-based normal voting tensor on every element of a properly oriented triangulated mesh.
Similar to Section 2.2, the element-based normal voting tensor is the weighted average of the outer
product of the neighbor element normals. On the geometrical neighborhood Ωi of face fi (Figure
2.1), the ENVT is defined as:

CΩi = 1∑
j∈Ωi

wijAj

∑
j∈Ωi

wijAjnj ⊗ nj , (2.27)

where Aj is the area of fj and wij is a Gaussian-based weighting function. Weighting by correspond-
ing element area makes the proposed tensor more robust against irregular sampling. The element
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based normal voting tensor is a symmetric and positive semi definite matrix so, we can represent
CΩi using a rotational and a scaling matrix:

CΩi = RΛRt =
(
e1 e2 e3

)λ1 0 0
0 λ2 0
0 0 λ3


e1

e2
e3

 , (2.28)

where R and Λ are the rotational and the scalar matrix respectively. The terms ei and λi are spectral
components of the ENVT.

Vi

Vj

(a) Triangulate mesh

ci

cj

Ωi

r

(b) Dual Mesh (c) Both

Figure 2.1: A visual representation of primal and dual mesh. (a) Original meshM, where the vertex
vj ∈ Ni belongs to the 1-ring neighborhood of vertex vi. (b) Dual polyhedral mesh Md, which
is computed from triangulated mesh M using Equation (2.31). The geometrical neighborhood
is represented by Ωi, which is a disk of radius r on the dual mesh. (c) Both triangulated and
corresponding dual mesh.

As it can be seen from Equation (2.28), the eigenvectors e2 and e3 are the basis of a tangent
space and align with the principal directions (T1 = e2, T2 = e3). The eigenvector e1 aligns with
the surface normal at that point as shown in Figure 2.2.

(a) Eigenvalues of C and B

e3

e2e1

(b) Magnified view

Figure 2.2: The eigenvectors visualization on a Cube model. (a) The eigenvectors are painted on
Cube, e1 in green, e2 in blue and e3 in red for both the ENVT and the deformation tensor. (b) The
least dominant eigenvector e3 is aligned with the edge direction, which is the minimum principal
direction.
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2.4 Feature Analysis based on the ENVT

The ENVT primarily consist of the anisotropy of a triangulated surface and can be written in terms
of its spectral components:

CΩi = (λ1 − λ2)e1 ⊗ e1 + (λ2 − λ3)(e1 ⊗ e1 + e2 ⊗ e2) + λ3(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3), (2.29)

where the eigenvalues are sorted in decreasing order: (λ1 ≥ λ2 ≥ λ3 ≥ 0). As shown in Figure 2.3,
each term of Equation (2.29) can be defined as the following tensors:

1. The term (λ1 − λ2)e1 ⊗ e1 is defined as the stick tensor because this tensor has a stick like
shape in the surface normal direction.

2. The term (λ2−λ3)(e1⊗e1+e2⊗e2) is defined as the plate tensor because the two eigenvectors
are spanning a plate like shape and the least dominant direction will be normal to this plate
like shape.

3. The term λ3(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) is defined as the ball tensor because this tensor is
spanned by all three eigenvectors.

Based on these tensors, we can define the saliency of features on a surface. The stick tensor repres-
ents the surface saliency (SMap) where the surface normal is in the direction of the most dominant
eigenvector and (λ1 − λ2) shows the strength in that direction. Similarly, the plate tensor is the so-
called curve map (CMap) and has two dominant eigenvector. The ball tensor basically represents
the intersection of more than two planes and has no well defined direction either for surface normal
or for surface tangent and is so-called junction map (JMap) [70].

On a noise free triangulated mesh, a planar area has only one dominant eigenvalue in surface
normal direction (SMap) and the least dominant eigenvectors represent an orthonormal basis for
the tangent plane. Two dominant eigenvalues indicate edge features (CMap), where the weakest
eigenvector will be along the edge direction and dominant eigenvalues are in the direction of the
surface normal and across the edge respectively. Therefore, the tangent space will be spanned by
significant and insignificant directions. At a corner all three eigenvalues are dominant (JMap) and it
is not trivial to define a tangent plane. Let us consider the Cube model, and compute the ENVT using
Equation (2.28). The eigenvalues vector is sorted and normalized, then for orthogonal features, we
can write: {λ1 = 1, λ2 = λ3 = 0} (face), {λ1 = λ2 =

√
2

2 , λ3 = 0} (edge) and {λ1 = λ2 = λ3 =
√

3
3 }

(corner). Let us define a new eigenvalues vector λp = {1, λ2
λ1
, λ3
λ1
} and categorize the following

features points:

1. Significant value of λ3
λ1

indicates a corner point.

2. Significant value of λ2
λ1

indicates a edge.

3. On planar areas, λ2
λ1

and λ3
λ1

, both are insignificant.

Using the above classification, we can define the feature strength value:

sf = λ2 + λ3. (2.30)

Figure 2.4(c) shows a visual representation of the feature strength on a smooth Fandisk model. As
it can be seen, the ENVT identifies sharp features effectively.
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{λ2, e2}

{λ1, e1}

{λ3, e3}

(a) JMap

{λ2, e2}{λ1, e1}

(b) CMap

{λ1, e1}

(c) SMap (d) Together

Figure 2.3: A visual representation of different kinds of tensors mentioned in Equation (2.29).

2.5 Curvature Approximation in the ENVT Framework

In the discrete setting, the curvature tensor is well defined for vertices on a triangulated mesh and it
approximates the directional and the mean curvatures with high fidelity. Here, we exploit a similar
framework to define the directional and the mean curvatures on elements (faces) of a surface.
Firstly, we compute a barycentric dual meshMd of the original triangulated surfaceM. The dual
meshMd will be a polyhedral surface and consists of vertices and polygon elements. For the dual
meshMd, the set of vertices and elements are represented as Vd and Fd respectively. Each vertex
of the dual mesh has a fixed connectivity of 3 and can be computed as:

ci = 1
3
∑

vj∈fi

vj , where fi ∈ F, vj ∈ V. (2.31)

Note that elements in the dual mesh will be n-sided polygon and number of sides in polygons de-
pends on vertices connectivity in the original triangulated surface as shown in Figure 2.1. Each
vertex ci of the dual mesh has a well defined vertex normal ni, which is basically the face normal of
the element fi ∈ F in the original triangulated surface. Patanè et al. [81] discussed a homeomorph-
ism between 2-manifold tringulated mesh and its dual representation and the several combinatorial
properties of a dual mesh, which include 1-neighborhood analysis, triangle mesh reconstruction,
primal-dual correspondence and dual Laplacian smoothing. The dual transformation is also genus
invariant for polygonal mesh. Similar to Equation (2.11), the directional and the mean curvatures
on the dual meshMd is defined as:

κdij = 2〈ni, (cj − ci)〉
|cj − ci|

, Hd = 1∑
j∈Ωi

Wij

∑
j∈Ωi

Wijκ
d
ij , (2.32)

where Wij = Aj is the area of fi ∈ F. To compute the direction curvature κdij , we need to compute
the tangent plane Tij , which is basically the triangle plane of fi ∈ F and is computed using the face
normal ni. The area weighting will improve the accuracy of curvatures computation as big area
elements have trustworthy normals.

The ENVT C is a positive semi-definite symmetric matrix and can be expressed in a form of the
deformation tensor B:

C = BBt s.t. det(B) > 0. (2.33)

From Equations (2.27) and (2.33), the deformation tensor is defined in terms of the rotation and
the scaling matrix:

C = RΛ
1
2 Λ

1
2 Rt = BBt, and B = RΛ

1
2 . (2.34)
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Using the above representation of the ENVT, for a given vector u, we can express the ENVT in the
following quadratic form :

utCu = utBBtu = (Btu)t(Btu) = ‖Btu‖2. (2.35)

By using the above representation of the ENVT, similar to Tsuchie et al. [104], a distance between
central vertex ci and neighbor vertex cj on the dual mesh is defined as:

dij =
√

(cj − ci)C(cj − ci)t = ‖Bt(cj − ci)‖, (2.36)

where the parameter dij possesses the following properties:

1. In general, dij 6= dji.

2. If ci and cj have the same tangent plane then dij = 0, because dij compute a distance in the
surface normal direction.

3. If the ENVT is an identity matrix then, dij represent an Euclidean distance in R3.

The deformation tensor B carries anisotropy nature of a surface and can be used to approximate
the direction curvature along with dij:

κ̄dij =
√

2Bt(cj − ci)
|cj − ci|

, H̄d = 1∑
j∈Ωi

Wij

∑
j∈Ωi

Wijκ
d
ij , (2.37)

The above equations present the directional (κ̄dij) and the mean (H̄d) curvatures using the aniso-
tropic deformation tensor and vertex positions of the dual mesh.

(a) Cotangent MC (b) Hd (Equation (2.32)) (c) sf (Equation (2.30)) (d) H̄d (Equation (2.37))

Figure 2.4: A visual representation of different kinds of feature analysis operator. (a) traditional
mean curvature computed using the shape operator. (b) mean curvature computed using Equation
(2.32) on the dual mesh of the Fandisk model. (c) Edges and corners are detected using the eigen-
analysis of the ENVT. (d) feature detection using the ENVT deformation tensor as a mean curvature
operator.

The deformation tensor B and the ENVT both have the same eigenbasis. The eigenvalues of the
deformation tensor are square roots of the eigenvalues of the ENVT, so it can also be written in its
spectral components:

B =
3∑
i=1

√
λieieti. (2.38)

Here,
√
λ2 and

√
λ3 approximate the principal curvature, and the corresponding eigenvectors are

the principal directions. In Figure 2.2, the least dominant and the most dominant eigendirection e3
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are colored in red and green respectively. The eigenvalue e2 is painted in blue color. Figure 2.2 (b)
shows that the least dominant direction (e3) is along the edge and the eigenvalue λ3 corresponding
to this direction is equal to zero. The most dominant eigendirection (e1) approximates the surface
normal and across the edge-direction, there will non zero eigenvalue

√
λ2. The tangent space is

spanned by the two least dominant directions. Here, we can say that the lower sub-matrix of the
deformation tensor approximates the shape operator.

2.6 Summary

In this chapter, a shape analysis operator, the ENVT is introduced. The spectral analysis of the ENVT
revealed that it can be decomposed into several feature based tensors, for example, stick, plate and
ball tensors. To identify feature points on a triangulated surface, a feature strength parameter sf is
introduced and Figure 2.4 (c) shows that sf detects sharp features on a geometry effectively. Later,
the concept of dual mesh is exploited to derive the mean curvature operator and the directional
curvature based on face normals and barycentric points of the corresponding faces. With help of
the deformation tensor, which is decomposed from the ENVT, a metric and mean curvature vector
is again computed. In the end, similar to the curvature tensor by Taubin [100], correlation between
the shape operator and the ENVT is presented and it is shown that two least dominant eigenvalues
of the ENVT approximate the squared principal curvatures and corresponding eigenvectors are the
principal directions.



Chapter 3

ENVT-based Mesh Denoising Algorithm

In general, noise and sharp features both are high frequency components and decoupling them
during a denoising operation, is a challenging task. Several traditional average-based denoising
methods have been published to remove noise effectively. However, they are not able to preserve
sharp features properly because of the ambiguity between noise and sharp features. Unlike other
traditional averaging approaches, our method uses the element-based normal voting tensor to com-
pute smooth surfaces. By introducing a binary optimization on the tensor together with a local
binary neighborhood concept, the algorithm better retains sharp features and produces smoother
umbilical regions than previous approaches. On top of that, a stochastic analysis on the different
kinds of noise is provided based on the average edge length. The quantitative results demonstrate
that the performance of our method is better compared to state-of-the-art smoothing approaches.
This chapter is based on a published mesh denoising method [114]. Additionally, we added the
detailed denoising explanation in 1D using a noisy polygon including a graphical description of the
ENVT multiplication to the noisy face normal. The definitions of different kinds of neighborhood
are included. We shortened the properties and explanation of the ENVT as it is well explained in
Chapter 2.

This algorithm follows a two stage denoising process. In the first stage, noisy face normals
are processed to remove undesired noisy component and in the second stage, vertex positions are
updated according to processed face normals. The main contributions of this chapter are:

• A tensor-based mesh denoising algorithm is introduced to remove the undesired noise from
noisy surfaces with a stable and fast convergence property.

• A binary optimization technique is applied on the eigenvalues of the proposed element-based
normal voting tensor (ENVT) that helps us to retain sharp features in the concerned geometry
and improves the convergence rate of the algorithm.

• We give a stochastic analysis of the effect of noise on a triangular mesh based on the minimum
edge length of elements in that geometry. It gives an upper bound to noise standard deviation
to have minimum probability for flipped element normals.

3.1 Method

Figure 3.1 shows the whole pipeline of our algorithm. Face normal smoothing (the yellow blocks
in Figure 3.1) consists of four steps: (1) We compute a neighborhood disk for the concerned face
using a local binary scheme. (2) We define the ENVT within its neighborhood disk. (3) To remove

17
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Figure 3.1: The proposed smoothing algorithm pipeline. The yellow blocks show face normal
processing and the blue block represents the last stage (vertex update) of the method.

noise effectively, we apply a binary optimization on the eigenvalues of the computed tensor. (4) We
multiply the modified ENVT to corresponding face normals to suppress noise. In the last stage (the
blue block in Figure 3.1), we update vertex positions using the orthogonality between edge vectors
and face normals. In this section, we explain each stage of the proposed algorithm briefly.

3.1.1 Local Binary Neighbor Selection

The first step of our denoising scheme is the preprocessing of face normals using neighboring face
normals. To select the neighborhood region Ω, there are three possibilities: Combinatorial, geodesic
and geometrical neighborhood, which are defined as:

1. Combinatorial neighborhood: is defined as a set of all elements connected with vertices of
the corresponding face:

Ωi = {fj |vi1 ∈ fj ∨ vi2 ∈ fj ∨ vi3 ∈ fj},

where the neighborhood region is presented by Ω and vertices vi1, vi2 and vi3 belong to the
face fi.

2. Geometrical neighborhood: is defined as a set of all elements belonging to a disk area of the
desired radius and centered at the corresponding element:

Ωi = {fj | |cj − ci| ≤ r},

where ci and cj are centroids of the central and neighbor elementa and r is the radius the
geometrical neighborhood disk.

3. Geodesic neighborhood: is defined as a set of all elements within the shortest distance
defined by the radius r:

Ωi = {fj | D(fi, fj) ≤ r},

where fi is the source point and D(fi, fj) : M → R is a geodesic distance function on a
manifold surfaceM.

The geometrical neighborhood is preferred because it depends only on the disk size irrespective
of mesh resolution unlike the topological neighborhood.

The geometric neighborhood elements are weighted based on an angle threshold value ρ [79].
Based on ρ, we assign a binary value to neighborhood elements fj w.r.t. the central element fi using
the following function:

wij =
{

1 if 6 (ni,nj) ≤ ρ
0.1 if 6 (ni,nj) > ρ,

(3.1)

where ni and nj are face normals of the central element and neighbor elements. By using the value
of 0.1, close to a feature, we still allow the area on the other side of that feature to contribute (so
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(a) Noisy input (b) wij ∈ {0, 1} (c) wij ∈ {0.1, 1} (d) zoom

Figure 3.2: Effect of two different binary weighting functions in the proposed method. (a) Noisy
model. (b) wij ∈ {0, 1}. (c) The weight function mentioned in Equation (3.1). (d) A magnified
view shows that the weight function mentioned in Equation (3.1) is more effective compared to the
exact binary weighting (wij ∈ {0, 1}).

the edge direction can be detected from the computed tensor), but the area on ”same” side of the
feature will be dominant. Figure 3.2 shows that a contribution of the other side of a feature helps
to enhance sharp corners (Figure 3.2(d)). Equation (3.1) shows a discontinuous box filter which
takes similar faces into consideration and avoids blurring features within the user defined geometric
neighborhood. Figure 3.3 shows that w˙ij depends on the dihedral angle, which can be unstable
intially but stabilizes after a few iterations. In further discussion, local binary neighbor definition
refers to Equation (3.1).

(a) Noisy input (b) 10 iterations (c) 20 iterations (d) 40 iterations

Figure 3.3: The local binary neighbor selection in the proposed algorithm. Intially, it selects very
few neighbor elements fj (red color) around the central element fi(blue) because of the dihedral
angle threshold. As iterations increase, it selects more elements with similar element normals.

3.1.2 Element-based Normal Voting Tensor (ENVT)

In chapter 2, a detailed analysis about the ENVT is given. For mesh denoising purpose, we modified
the weighing function according to the local binary neighbour concept along with a triangle area
factor. The ENVT Ci is a covariance matrix, defined on the face fi:

CΩi = 1∑
j∈Ωi

wijAj

∑
j∈Ω

wijAjnj ⊗ nj , (3.2)

where Aj is the area of fj and wij is the weighting function as mentioned in Equation (3.1). Weight-
ing by corresponding element areas makes the ENVT more robust against irregular sampling. The
eigenanalyis of the given tensor identifies features on triangulated surfaces similar to the meth-
ods [55] and [12]. In our algorithm, the ENVT is represented as a mesh denoising operator which
is able to suppress noise contents from noisy surfaces while preserving sharp features. The ENVT
CΩi is a symmetric and positive semi definite matrix so we can represent it using an orthonormal
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basis of the eigenvectors ek and real eigenvalues λk:

CΩi =
3∑

k=1
λkek ⊗ ek. (3.3)

As mentioned in chapter 2, on a noise-free triangulated mesh, a planar area has only one dom-
inant eigenvalue in surface normal direction. Two dominant eigenvalues indicate edge features
where the weakest eigenvector will be along the edge direction. At a corner, all three eigenvalues
are dominant.

3.1.3 Eigenvalues Binary Optimization

Let us consider a noisy mesh, corrupted by a random noise with standard deviation σn bounded
by minimum edge length. On a planar area (face) of a geometry: λ1 � σn, and the other two
eigenvalues will be proportional to noise intensity, λ2, λ3 ∝ σn. Similarly, on an edge of a geometry:
λ1, λ2 � σn and λ3 ∝ σn. On a corner of a geometry: λ1, λ2, λ3 � σn.

The concept of binary optimization is applied to remove noise effectively by setting the less
dominant eigenvalues to zero and the dominant eigenvalues to one. Our optimization technique
removes noise not only from planar areas but also along edge directions of sharp features during the
denoising process. The binary optimization is implemented by introducing a scalar threshold value
τ , which is proportional to noise intensity τ ∝ σn and is smaller than the dominant eigenvalues.
The λ̃ are modified eigenvalues of the ENVT using the following optimization technique. There
are three eigenvalues for feature classification. Therefore, our optimization method checks the
following three cases:

• At corners of noisy surfaces (smooth or sharp), the smallest eigenvalues should be bigger than
the threshold value i.e. λ3 ≥ τ . Hence:

λ̃i = 1, i ∈ {1, 2, 3} if λ3 ≥ τ.

• At edges of a noisy geometry (smooth or sharp), the less dominant eigenvalue should be
smaller than the threshold value i.e. λ3 < τ and λ2 ≥ τ . Hence:

λ̃2 = λ̃1 = 1, λ̃3 = 0 if λ2 ≥ τ , λ3 < τ.

• In the last case, we check for planar area of a geometry. Having λ2 < τ and λ3 < τ shows that
the only dominant eigenvalue is λ1. Hence:

λ̃1 = 1, λ̃2 = λ̃3 = 0 if λ1 ≥ τ , λ3,λ2 < τ.

There are three possible combinations during the eigenvalue binary optimization. The threshold τ
has to be set by the user according to noise intensity.

3.1.4 Denoising using ENVT

Our denoising method is inspired by feature classification characteristic of the eigenvalues of the
ENVT. The smallest eigendirections (one for edges of a geometry, two in planar areas) represent
noise. Multiplication of the ENVT with corresponding element normals will suppress noise in the
weak eigendirection. This operation also projects element normals in the strongest eigendirection.
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(a) Noisy (b) (c) (d)

Figure 3.4: The results with different combinations of steps of the proposed algorithm. (a) Noisy
model, (b) Without using the eigenvalues binary optimization and local binary neighborhood selec-
tion. (c) Without the local binary neighbor selection. (d) Using both eigenvalues binary optimiza-
tion and local binary neighborhood selection. The black curve shows the edge information in the
smooth geometry and is detected using the dihedral angle.

Traditionally, face normal smoothing is done by rotating the concerned face normal along a
geodesics on a unit sphere whereas our method aligns face normals by projection. We project noisy
face normals towards smooth normals by multiplication of the ENVT to the corresponding face
normal.

A demonstration of the ENVT multiplication to a noisy face normal in R2 is shown in Figure 3.5.
If λ2 > λ1, then it will strengthen the face normal in the desired direction e1 and suppresses noise
in the e2 direction. The whole procedure consists of the following steps:

• A noisy face normal n is decomposed according to the eigenbasis (e1 and e2) of the element
based normal voting tensor, Figure 3.5 (left).

• Then, the modified eigenvalues (λ1 and λ2) get multiplied to the corresponding eigendirec-
tions to suppress the weak eigenvalue in that eigendirection, Figure 3.5 (middle).

• Finally, the new element normal np is obtained by normalizing CΩi · n, in Figure 3.5 (right).

Figure 3.5: Shows the basic idea behind the proposed method to remove noise in R2 where ei
and λi represent eigenvectors and eigenvalues of the proposed element based voting tensor and n
shows the noisy normal. We rotate the noisy normal n towards the dominant eigendirection e1 by
a corresponding tensor multiplication.
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Anisotropic Face Normal Denoising

We recompute the ENVT by using the same eigenvectors with modified eigenvalues:

C̃Ωi =
3∑

k=1
λ̃kek ⊗ ek. (3.4)

Now, C̃Ωi will have the quantized eigenvalues according to different features on a surface. To
remove noise, we multiply the corresponding element normal with the newly computed tensor
C̃Ωi . The multiplication will lead to noise removal while retaining sharp features.

ñi = dni + C̃Ωini = dni +
3∑

k=1
λ̃k〈ek,ni〉ek, (3.5)

where d is the damping factor to control the speed of preprocessing of face normals. We use d = 3
for all experiments. The second row of Figure 3.6 shows face normal denoising using the tensor
multiplication.

(a) Noisy input (b) 30 iterations (c) 60 iterations (d) 200 iterations

Figure 3.6: Stable convergence of our method with different number of iterations and correspond-
ing processed face normals (XY-plane view). (a) Noisy cube model, (b) The result after 30 iterations,
low frequency noise can be seen on planar areas of cube model. (c) After 60 iterations, smoother
compared to Figure (b). (d) After 200 iterations. There is no significant difference between Figure
(c) and (d).

Vertex Update

In the last stage, we synchronize vertex positions with the corresponding newly computed face
normals. To compute a proper vertex position, the orthogonality between edge vectors and face
normals is used [95]. The energy function is then defined as follows:

min
vi

Ni−1∑
j=0

∑
(i,j)∈∂Fk

‖ñk · (vi − vj)‖2, (3.6)

where vi is the vertex position and Ni represents the number of vertices of the vertex star of vi,
∂Fk is a set of the boundary edges of the vertex star of vi shared with face fk. The term ñk is the
smooth face normal at fk. Taubin [101] explained that the face normal vector can be decomposed
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into a normal and a tangential component and the main problem here is to find vertex positions
which minimize the tangential error. The possible solution of Equation (3.6) may be a mesh with
degenerate triangular faces. Like Taubin [101], to avoid the degenerate solution, we are using
gradient descent that will lead to optimal vertex positions.

ṽi = vi + 1
3F (vi)

Ni−1∑
j=0

∑
(i,j)∈∂Fk

(ñk · (vi − vj))ñk, (3.7)

where F (vi) is the number of faces connected to the vertex vi. We iterate the whole procedure
several times and the number of iterations depends on the noise intensity. Figure 3.4 shows the
effect of each stage of face normal processing in the proposed algorithm.

3.1.5 Effect of Noise on the Proposed Method

Noise is inevitable during digital data acquisition of real life objects. The high intensity of noise flips
edges in a geometry and that leads to inconsistent face normals on a geometry. As we mentioned in
section 3.2, the ENVT is defined on properly oriented surfaces with consistence face normals because
the spectral decomposition of the ENVT is invariant to face normal orientations. In this section,
we give a stochastic approximation about the relation between noise and geometry resolution to
prevent edge flips in a geometry. Let us consider a smooth triangular meshMs which is corrupted
by noise N , M = Ms + N . Noise N can be approximated by a random vector Xn consisting of
three independent random variables. We assume that the random vector Xn follows the Gaussian
distribution. This is a realistic model for noise from 3D scanning [96]. Let σn be the standard
deviation of noise in each independent direction, then:

P{|Xn| ≤ σn} = 0.682,
P{|Xn| ≤ 2σn} = 0.954,
P{|Xn| ≤ 3σn} = 0.997.

To explain the probability of normal flips, we switch to the 2D case of a polygon in R2. Let us
consider an edge vector l between two vertices v0 and v1 in R2: l = (~v0−~v1). We give a probabilistic
estimation of the effect of noise on the edge l w.r.t. the noise intensity (standard deviation) σn. Our
analysis is mainly focused on the proper orientation of edge normals. Wrong orientation of the edge
normal nl leads to an edge flip in a smooth geometry. We denote by Ω1 and Ω2, the sets of correctly
oriented edge normals and wrong oriented edge normals respectively. The probabilistic estimation
of the orientation of edge normals based on noise intensity and edge length is given as follows:

• Probability of an edge to have a correctly oriented edge normal:

P{~nl ∈ Ω1} ≥
{

0.682 if σn ≤ |l|2
0.954 if σn ≤ |l|4 .

• Similarly, the probability of an edge to have a wrong oriented edge normal:

P{~nl ∈ Ω2} ≤
{

0.318 if σn ≤ |l|2
0.046 if σn ≤ |l|4 .

Due to the presence of noise, edge flipping may occur when the vector sum of vertex dislocations at
the edge is bigger than the edge length as shown in Figure 3.7. This is similar to sampling theorem,
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(a) A smooth polygon with edge normals and 50 vertices.

(b) A Gaussian noise (σn = 0.4le) is added.

(c) Denoised edge normals of the polygon.

(d) A Gaussian noise (σn = le) is added.

(e) Denoised edge normals of the polygon.

Figure 3.7: A visual representation of the effect of noise intensity on the proposed method. (a)
A smooth polygon. (b) Corrupted with a Gaussian noise, where σn is smaller than the half of the
edge length. (c) Smoothed edge normals without any flips. (d) The same polygon corrupted with
a Gaussian noise, where noise intensity is equal to the average edge length of the polygon. (e)
Denoised edge normals using the proposed method. Due to bigger noise intensity, there are several
normal flips in smooth edge normals.
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(a) Noisy (b) τ = 0.01 (c) τ = 0.02(d) τ = 0.03(e) τ = 0.04 (f) τ = 0.05 (g) τ = 0.1 (h) τ = 0.5

Figure 3.8: The effect of the eigenvalue binary optimization threshold value τ on results of the
proposed algorithm. The first row shows the cube model (|V | = 24578, |F | = 49152) corrupted
by synthetic Gaussian noise (σn = 0.4le) where le is the average edge length and the second row
shows the scanned box model (real data with |V | = 149992, |F | = 299980) and corresponding
results regarding different values of τ . The third row shows the magnified area of the box model.
For the box model, the algorithm produced the optimal result with smaller value of τ = 0.03
because of low noise whereas the cube model needed the higher value of τ = 0.5 because of high
intensity noise. The bigger value of τ can lead to the feature blurring as shown in Figure (h) for the
box model.

where a signal can be reconstructed properly if and only if the data is sampled with a frequency
bigger than twice the highest frequency of a data signal.

Using the given analysis for a given probability density function and an upper bound to the
standard deviation, we can estimate the expected number of edge flips in a geometry. If a surface is
affected by noise only in normal direction, then there is no edge flip, irrespective of the probability
density function of noise.

We also experimented with uniformly distributed noise where the random variable Xn follows
uniform distribution thus, we can write: P{|Xn| ≤ σn} = 1. If the noise intensity is less than half
of the minimum edge length in a geometry then there will be no edge flip as shown in Figure 3.9.

3.2 Experiments, Results and Discussion

We evaluated the capacity of our algorithm on various kinds of CAD (Figure 3.11 - 3.17), CAGD
(Figure 3.8, 3.16) models corrupted with synthetic noise and real scanned data (Figure 3.18,
3.19) models with different types of features. Noisy surfaces with non-uniform mesh corrupted
with different kinds of noise (Gaussian, Impulsive, Uniform) in different random directions are
also included in our experiments. We compared our method to several state-of-the-art denoising
methods in which we implemented [45], [121], [43] and [34] based on their published article and
several results of [1], [120], [108] and [67] are provided by their authors.

3.2.1 Parameters Tuning

We discussed several parameters (geometric neighbor radius r, dihedral angle threshold ρ, eigen-
value threshold τ , damping factor d and iteration p) and throughout, the whole experimentation,
we fixed ρ = 0.8, d = 3. Effectively, there are only 3 parameters to tune the results, in which τ
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(a) Original (b) Impulse (c) Ours (d) Uniform (e) Ours

Figure 3.9: The results obtained by our method against different kinds of noise. (a) Original vase
model. (b) 1/3 of the vertices of the vase model are corrupted by impulsive random noise. (c)
Corresponding result with our method. (d) The vase model is corrupted by uniformly distributed
noise and (e) corresponding result.

(a) σn = 0.4le (b) σn = 0.6le (c) σn = 0.8le (d) σn = le

Figure 3.10: Robustness against different levels of noise: The first row shows the cube model
corrupted with different levels of noise. The second row shows the corresponding results obtained
by the proposed method. In Figure (d), noise level is bigger than the feature size and it is impossible
to decouple features from noise. As a consequence, we are not able to recover the perfect cube.

is the most important as it depends on noise intensity but at the same time this parameter is not
highly sensitive. We use τ ∈ {0.3 − 0.4} for synthetic data and τ ∈ {0.05 − 0.1} for real data
because real data have smaller noise intensity compared to synthetic data. The neighborhood ra-
dius r depends on the number of elements within the geometric neighborhood region. We iterate
several times (p ∈ {40 − 60}) to obtain better result. In the quantitative comparison Table 3.1,
the parameters are given in the following format:(τ, r, p). For the [120] and [108] methods, we
mention Default in the parameter column because smooth models are provided by those authors.
We are following a similar pattern for other algorithms too: (σc, σs, p) for [34], (σs, p) for [121],
(λ, s, p) for [45] and α for [43], where σs, σc are the standard deviations of Gaussian functions in
the bilateral weighting, s and λ represent the step size and the smoothing threshold, α controls the
amount of smoothing.

To see the effect of different values of τ , we have experimented with two different models, the
Box model (real data, with different level of features and less noise) and the Cube model (with
limited features and high noise). With smaller values of τ ∈ [0.01, 0.05], there is not much change
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(a) Original (b) Noisy (c) Combinatorial (d) Geometric

Figure 3.11: Comparison between geometric and combinatorial neighborhood on a non-uniform
mesh block model. Figure (c) and (d) show the results obtained by our method using the topological
and the geometric neighborhood.

(a) Noisy (b) [45] (c) [121] (d) [43] (e) [120] (f) [108] (g) Ours

Figure 3.12: Non-uniform triangulated mesh surface corrupted by Gaussian noise (σn = 0.35le) in
normal direction where le is the average edge length. The first row shows the results obtained by
state-of-the-art methods and the proposed method. The second row shows the magnified view of
the corner and the cylindrical hole of the corresponding geometry.

in the cube model because of higher noise whereas the box model manages to remove noise and
as well as shallow features with increasing τ . So τ is responsible for removing noise and also for
preserving features. If the feature size is smaller than the noise intensity, feature preservation is an
ill-posed problem as shown in Figure 3.8.

Figure 3.11 shows that the geometrical neighborhood is more effective against irregular meshes
compared to the topological neighborhood. The geodesic neighborhood is quite similar to the
geometrical neighborhood but it is not appropriate when a model is corrupted by high intensity of
noise.

3.2.2 Visual Comparison with State-of-the-art Methods

The Block (Figure 3.11), the Joint (Figure 3.12), the Cube (Figure 3.13) and the Devil (Figure 3.15)
have non-uniform meshes corrupted with Gaussian noise in random direction. Figure 3.12 shows
that the proposed method produces a smooth model with sharp features without creating any false
features (piecewise flat areas like [43]) while method [121] does not manage to remove low fre-
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(a) Original (b) Noisy (c) [45] (d) [121]

(e) [43] (f) [120] (g) [108] (h) Ours

Figure 3.13: The Cube model consists of non-uniform triangles corrupted by Gaussian noise (σn =
0.3le) in normal direction. The first row shows the results produced by state-of-the-art methods and
our proposed method. The second row shows magnified view of one of the sharp edges in the cube
model. The results show that the proposed method has sharper and straighter edges compared to
state-of-the-art methods.

(a) Original (b) Noisy (c) [34] (d) [45] (e) [121] (f) [43] (g) [120] (h) Ours

Figure 3.14: Rockerarm model corrupted by Gaussian noise (σn = 0.3le) in normal direction. The
results are produced by state-of-the-art methods and our proposed method.
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(a) Original (b) Noisy (c) [45] (d) [121] (e) [43] (f) [120] (g) [108] (h) Ours

Figure 3.15: The Devil model consists of non-uniform triangles corrupted by Gaussian noise with
standard deviation σn = 0.15le. The first row shows the results produced by state-of-the-art methods
and our proposed method. The second row shows the magnified view of the left eye and the right
horn of the devil. The results show that the proposed method has minimum shrinkage at the horn
area.

quency noise (we can see smooth ripples). Method [120] produces good results but at the narrow
cylindrical area, it could not manage to retain the circular area. It also produces some false features
at the non-uniform sharp corner. Method [108] could not manage to retain sharp features. Simil-
arly, we can see this behavior for the Cube model in Figure 4.4. The Rockerarm model (Figure 3.14)
has a considerably non-uniform mesh and our method better retains sharp features (the screw part)
compared to [120], [45], [34] while removing noise better compared to methods [121], [43]. Fig-
ure 3.15 shows the robustness of our method against volume shrinkage. The horns of the model
have minimum shrinkage compared to state-of-the-art methods. The Fandisk model contains both
cylindrical and sharp feature regions and is corrupted by high intensity Gaussian noise in random
direction. Figure 3.17 shows that the proposed method delivers both sharp features and umbilical
regions without noise component and false features. Figure 3.16 shows that the proposed algorithm
does not outperform state-of-the-art method in terms of features preservation (the left eye of the
Julius model) but removes noise better compared to methods [120], [67], as it can be seen by mean
curvature coloring (flat area of the Julius model).

For real data, we can not see considerable differences between the proposed method and state-
of-the-art denoising methods because the noise intensity is quite low and state-of-the-art methods
also produce good results. Figure 3.18 shows that our method better retains features in the right
eye of the angel model, but for the Rabbit model, our result is quite similar to [120] and better
compared to other methods. For the Julius model, our method produces a smoother result, but at
the cost of some fine features (around the eyes) compared to method [67]. For the Vase model,
method [67] produces quite similar results to ours. However, the shrinkage effect is bigger in
method [67] as shown in Table 3.1. Figure 3.19 shows the robustness of the proposed algorithm
against irregular meshes and holes in the real data. The Gorgoyle and the Eagle model have several
holes and spikes, but our smoothing algorithm manages to produce a smooth surface with proper
features.

Our method is invariant against different kinds of noise as shown in Figure 3.9 where the vase
model is corrupted by impulsive and uniform noise. The proposed method does not produce ap-
propriate results above a certain level of noise as shown in Figure 3.10. Figure 3.20 shows that our
method is robust against random edge flips.
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(a) Noisy (b) [34] (c) [45] (d) [121]

(e) [43] (f) [120] (g) [67] (h) Ours

Figure 3.16: The Julius model corrupted by Gaussian noise (σn = 0.2le) in random direction. The
results are produced by state-of-the-art methods and the proposed method. Our method does not
outperform state-of-the-art methods and the output is quite similar to method [121] (eye of the
Julius model). The proposed method removes low frequency noise better than methods [120], [67]
where we can see small ripples of noise on the Julius model, as shown in the second row of the
figure by the mean curvature coloring.

3.2.3 Quantitative Comparison with State-of-the-art Methods

In this section, we give a quantitative comparison of our method with state-of-the-art methods. We
are using two different parameters: Ev (L2 vertex-based error) and MSAE (the mean square angular
error). The positional error from the original ground truth model is represented by Ev and defined
as [95]:

Ev =
√√√√ 1

3
∑
k∈F Ak

∑
i∈V

∑
j∈Fv(i)

Ajdist(ṽi, T )2,

where F is the triangular element set and V represents the set of vertices. Ak and Aj are the
corresponding element areas and Fv(i) is the number of elements in the ith vertex-ring. dist(ṽi, T )
is the closest L2-distance between the newly computed vertex ṽi and the triangle T of the reference
model. The MSAE computes the orientation error between the original model and the smooth
model and is defined as:

MSAE = E[ 6 (ñ,n)],

where ñ is the newly computed face normal and n represents the face normal of the reference
model. E stands for the expectation value. The quantitative comparison Table 3.1 shows that our
method performs better for most of the models e.g. Cube, Devil, Joint etc. For some model like
Fandisk, our method produces quite similar numeric errors as state-of-the-art methods.

3.2.4 Convergence and Running Time Complexity

Our smoothing algorithm has a stable and fast convergence (as shown in Figure 3.21) because of
the eigenvalue binary optimization. Modification of the eigenvalues of the ENVT will not affect the
orientation of the corresponding face normal when noise is removed because the difference between
two eigenvalues will be zero and also the less dominant eigenvalue will be zero. There will be no
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Models Methods MSAE (degrees) Ev(×10−3) Parameters
[34] 5.267 3.142 (0.3, 0.3, 30)
[45] 1.935 1.432 (0.05, 0.05, 50)

Cube [121] 1.159 1.207 (0.3, 60)
|F | = 3808 [43] 1.343 4.476 (1.4)
|V | = 1906 [120] 40.41 1.166 (Default)

[108] 41.63 1.446 (Default)
Ours 0.700 1.034 (0.3, 0.15, 50)
[34] 4.983 58.86 (0.3, 0.3, 20)
[45] 3.444 32.53 (0.2, 0.05, 30 )

Devil [121] 2.641 8.95 (0.3, 50)
|F | = 25906 [43] 6.699 26.28 (4.0)
|V | = 12986 [120] 2.870 9.44 (Default)

[108] 5.396 13.52 (Default)
Ours 2.702 6.901 (0.1, 1.0, 30)
[34] 3.777 0.530 (0.3, 0.3, 40)
[45] 2.630 0.766 (0.009, 0.05, 50)

Joint [121] 1.808 0.263 (0.4, 100)
|F | = 52226 [43] 1.768 0.500 (1.4)
|V | = 26111 [120] 0.956 0.179 (Default)

[108] 2.874 0.366 (Default)
[67] 1.16 1.49 (Default)
Ours 0.829 0.171 (0.3, 0.05, 60)
[34] 8.567 4.422 (0.4, 0.4, 40)

Fandisk [45] 5.856 4.910 (0.07, 0.05, 30)
|F | = 12946 [121] 2.727 1.877 (0.4,70)
|V | = 6475 [43] 4.788 5.415 (1.4)

[120] 2.221 1.702 (Default)
[67] 3.1 4.42 (Default)
Ours 2.692 1.964 (0.3, 0.2, 50)
[34] 5.737 44.22 (0.3, 0.3, 40)

Rockerarm [45] 5.982 51.35 (0.2, 0.05, 50)
|F | = 48212 [121] 5.713 23.47 (1.0, 100)
|V | = 24106 [43] 7.468 34.70 (1.4)

[120] 6.846 30.45 (Default)
Ours 5.410 20.05 (0.3, 1.0, 60)

Vase [67] 2.92 1.72 (Default)
|V | = 3827 [43] 4.26 0.83 (1.6)
|F | = 7650 Ours 3.34 0.42 (0.3, 0.03, 30)

Table 3.1: Quantitative Comparison
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(a) Noisy (b) [34] (c) [45] (d) [121] (e) [43] (f) [120] (g) Ours

Figure 3.17: Fandisk model corrupted with a Gaussian noise (σe = 0.3le) in random direction. The
first row shows the results produced by state-of-the-art methods and our proposed method. The
second row shows the corner and the cylindrical region of the concerned model. The proposed
method does not produce any false features in the umbilical region while retains sharp features and
corners.

(a) Noisy (b) [34] (c) [45] (d) [121] (e) [43] (f) [120] (g) Ours

Figure 3.18: Triangulated mesh surface (real data) corrupted by 3D scanner noise. Both rows show
the results obtained by state-of-the-art methods and the proposed method for the Angel and the
Rabbit models.

more modification on noisy surfaces after some iteration when we meet the explained scenario as
shown in Figure 3.6, where there is no significant change (visually) after 60 iterations. Figure 3.21
shows that the proposed method converges with minimum error compared to the methods [45]
and [121]. We can see that after 40 iterations, our method is almost stable and does not produce
any significant changes. The eigenvalue binary optimization not only helps in preserving features,
but also improves the convergence rate of the algorithm.

Running time complexity of the proposed method is similar to most of the two-step denoising
methods [77], [101], [117], [121]. The neighborhood computation is done by the growing disk
method to compute the ENVT. The ENVT computation has the complexity of O(c · nf · p), where
c is the number of elements within the neighborhood, nf and p are the numbers of elements and
iterations respectively. The tensor multiplication procedure has the running complexity of O(nf ).
Similarly, the vertex update procedure has the complexity of O(c · nv · p), where nv is the number
of vertices in the geometry. In general, nf > nv, so the overall complexity of the algorithm will
be O(c · nf · p). The number of elements in the geometric neighborhood c plays an important role
in the running time of the algorithm as shown in Table 3.2. For example, the Devil model has
smaller number of elements and larger running time compared to the Joint model because of the
different geometric neighborhood radius. The Bilateral normal method [121] uses a fix number
of neighborhood elements (depending on the valence of vertex) for face normal smoothing and
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(a) The gorgoyle model (b) The balljoint model (c) The eagle model

Figure 3.19: Results obtained by our method against different kinds of real data captured by the
laser scanner. The figure (a) and (c) show real life scans with a lot of holes and our method manages
to produce good results.

(a) Random edge
flip

(b) [34] (c) [45] (d) [121] (e) [43] (f) Ours

Figure 3.20: Robustness against random edge flips after adding noise. (a) Noisy model corrupted
with σn = 0.3le and random edge flips, (b) to (f) show that the proposed method preserves better
features (magnified corners) compared to state-of-the-art methods.

is a bit faster compared to the proposed method. However, the other recent two step denosing
methods [120], [108] are slower compared to our method because of their additional denoising
steps.

Table 3.2: Running Time (in seconds)
Models Cube Devil Joint Fandisk Rockerarm Vase

Time (s) 1.2 51.9 38.2 5.06 27.5 1.1

3.3 Summary

This chapter presented a simple and effective tensor multiplication algorithm for feature-preserving
mesh denoising. The concept of the element-based normal voting tensor (ENVT) has been intro-
duced and eigenanalysis of this tensor leads to decoupling of features from noise. The proposed
method does not need any additional Laplacian-based smoothing technique to remove noise, like
multistage state-of-the-art methods [29], [12], [120], [108]. This method removes noise by mul-
tiplying the ENVT to the corresponding face normal, and this reduces complexity of the algorithm.
This chapter also introduced the concept of eigenvalue binary optimization that not only enhances
sharp features but also improves the convergence rate of the proposed algorithm. The local binary
neighborhood selection helps to select similar elements in neighborhood to compute the element
based normal voting tensor which avoids feature blurring during the denoising process. This chapter
provided a stochastic analysis of noise effect on the geometry depending on the average edge length
of the triangulated mesh. On the basis of this analysis, user can provide an upper bound on the noise
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(a) MSAE (b) Ev

Figure 3.21: Convergence plot comparison between the methods [45], [121] and our method. The
error metrics MSAE and Ev are computed for the Cube model and p is the number of iterations.
Figure shows that the proposed method has better convergence rate compared to the methods [45]
and [121].

standard deviation depending on the minimum edge length to reconstruct the smooth surface from
a noisy surface. The experimental results (visual and quantitative) show capability of the proposed
algorithm. This method produces good results not only in terms of visual but also quantitatively
with all kinds of data including CAD, CAGD and real data. This chapter have also shown robustness
of the algorithm against different kinds and levels of noise and also discussed wrong orientation of
triangles in presence of strong noise.



Chapter 4

Point Set Denoising Algorithm using Vertex-based
NVT

In general, point set surfaces are acquired by 3D scanners and during this acquisition process,
noise and outliers are inevitable. For a high fidelity surface reconstruction from noisy point sets,
a feature preserving point set denoising operation should be performed to remove undesired noise
and outliers components from the input point set. To suppress these noise components and outliers
with feature preservation, we introduce an anisotropic point set denoising algorithm in the normal
voting tensor framework. The proposed method is implemented in three different stages. In the
first stage, noisy vertex normals, which are computed using PCA, are filtered using the vertex-
based normal voting tensor and the binary optimization. In the second stage, feature points are
categorized into corners and edges using an anisotropic covariance matrix, which is computed
based on filtered vertex normals. In the last stage, vertex positions are updated according to the
processed vertex normals using restricted quadratic error metrics. For the vertex update, we added
different constraints to the quadratic error metric based on feature (edges and corners) and non-
feature (planar) points.

4.1 Method

The proposed method has three different stages, vertex normal filtering, feature detection and
vertex position update. Let us consider that a non-uniform and noisy input point set, which repres-
ented as, V = {v0,v1, · · · ,vn−1} ⊂ R3, where n is the number of vertices. These data points are
acquired by a 3D laser scanner and intrinsically do not have vertex normals. Principal component
analysis (PCA) [46] is applied to compute consistent initial vertex normals, which are represented
as, N = {n0,n1, · · · ,nn−1 ⊂ R3}.

4.1.1 Vertex Normal Filtering

This is the first stage of the proposed method, where noisy vertex normals are filtered using the
vertex-based NVT and the binary optimization similar to Method [114]. Vertex normal filtering is
done in following steps:

Vertex-based Normal Voting Tensor

As we discussed in Chapter 2, covariance matrices compute the variation of an entity in a well
defined domain, for example, the covariance matrix of edge vectors in a point set computes the
variation of vertices in R3 space. Similarly, the covariance matrix of vertex normals in a well defined
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neighbourhood computes the anisotropic nature of a point set in that region. To analyze an aniso-
tropic nature of a shape (point set surface), we define the vertex-based NVT, which is computed
using neighbour vertex normals:

CΩi = 1∑
j∈Ωi

wij

∑
j∈Ωi

wijnj ⊗ nj , (4.1)

where Ωi is the geometric neighbourhood disc centred at the vertex vi and it is computed using
KNN. The symbol⊗ represents the outer product. The weight function wij is computed based on the
similarity between neighbour normals. To define wij , we follow local binary neigbourhood concept,
where the central vertex normal looks at neighborhood vertex normals and assigns a binary value
(1 or 0) according to the normal difference. The weight term wij is defined as:

wij =
{

1 if 6 (ni,nj) ≤ ρ
0 if 6 (ni,nj) > ρ,

(4.2)

where ρ is the local binary neighbourhood threshold, which is used to select similar vertex points
within the disc region Ωi. The weight term wij is not exactly similar to the weight function men-
tioned in Chapter 3 because vertex normals are more sensitive to noise compared to face normals,
for example at edges, angles between vertex normals is smaller compared to face normals. Unlike
face normals filtering, we are not considering the vertices, which are on the other side of edges.

The term CΩi is a covariance matrix. Therefore, it is a symmetric and positive semi-definite
matrix and can be represented in terms of its spectral components:

CΩi =
3∑

k=1
λkek ⊗ ek, (4.3)

where λk and ek are the corresponding eigenvalues and eigenvectors. Let us sort the eigenvalues in
decreasing order {λ1 ≥ λ3 ≥ λ3 ≥ 0} and the we can rewrite CΩi as:

CΩi = (λ1 − λ2)e1 ⊗ e1 + (λ2 − λ3)(e1 ⊗ e1 + e2 ⊗ e2) + λ3(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3), (4.4)

where the first term of the right hand side is known as the stick tensor and has only one dominant
eigenvalue in the normal direction. The second term is spanned by two dominant eigen-directions
and the normal direction is defined in the least dominant direction. This term is known as the
plate tensor. The third term is spanned all dominant eigen-directions and does not have a well
defined normal direction [70]. From above description, it is clear that the vertex-based NVT consists
anisotropic nature of a point set and feature points can be easily detected using the eigenvalues
of CΩi . For example, if there is only one dominant eigenvalue then it is a planar area, if two
eigenvalues are dominant then it is an edge and if all eigenvalues are dominant then it is a corner.

Eigenvalues Binary Optimization

In our method, the vertex-based NVT is applied as a denoising operator on a noisy point set. As we
discussed in last section that the vertex-based NVT is capable of detecting features on point sets as
shown in Figure 4.1(d). However, on a noisy point set, the behaviour of the spectral components
of the vertex-based NVT will change. Let us assume that a point set is corrupted by a random noise
with standard deviation σn. Due to presence of noise, the eigenvalues of the vertex-based NVT will
alter, for example, on a planar area, the other two eigenvalues will be non-zero and proportional
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(a) (b) (c) (d) (e) (f)

Figure 4.1: The algorithm pipeline. (a) a noisy point set and the surface is reconstructed using
”ball pivoting” algorithm [11]. (b) noisy ertices are colored according to vertex normals variation.
(c) vertex normals filtering using the vertex-based NVT and the eigenvalues binary optimization.
(d) feature points (yellow and red vertices) detection using the anisotropic covariance matrix. (e)
vertex positions are updated using the proposed constraint-based quadratic error metrics. (f) the
smooth surface is reconstructed using [11].

to noise intensity. Similarly, on an edge of a geometry, the least dominant eigenvalue λ3 ∝ σn. On
a corner of a geometry: λ1, λ2, λ3 � σn. To remove noise effect from the vertex-based NVT, the
eigenvalues of CΩi should be modified according to Equation 4.4, which means , on a planar area
and on an edge, the least dominant eigenvalues should be zero and at a corner all eigenvalues are
equal and dominant.

The concept of binary optimization is applied to the eigenvalues CΩi , where each eigenvalues
will be assigned a binary number (1 or 0) to remove noise components effectively. Similar to Method
[114], a threshold value τ is used for the eigenvalues binary optimization. The term τ should be
chosen according to the noise intensity τ ∝ σn and smaller than the dominant eigenvalues. Let us
consider that the λ̃ are modified eigenvalues of the vertex-based NVT after the eigenvalues binary
optimization, which is applied based on feature classification:

• At corners of a noisy point set (smooth or sharp), the smallest eigenvalues should be bigger
than the threshold value i.e. λ3 ≥ τ . Hence:

λ̃i = 1, i ∈ {1, 2, 3} if λ3 ≥ τ.

• At edges of a noisy point set (smooth or sharp), the less dominant eigenvalue should be
smaller than the threshold value i.e. λ3 < τ and λ2 ≥ τ . Hence:

λ̃2 = λ̃1 = 1, λ̃3 = 0 if λ2 ≥ τ , λ3 < τ.

• In the last case, we check for planar area of a geometry. Having λ2 < τ and λ3 < τ show that
the only dominant eigenvalue is λ1. Hence:

λ̃1 = 1, λ̃2 = λ̃3 = 0 if λ1 ≥ τ , λ3,λ2 < τ.

The above procedure will remove noise components from the eigenvalues of the vertex-based NVT.

Vertex Normal Denoising

To remove noise components, we project noisy vertex normals towards smooth normals by multi-
plication of the vertex-based NVT to the corresponding vertex normal. This multiplication procedure
will suppress noise in weak eigendirections and strengthens vertex normals in strongest eigendirec-
tions.
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Before multiplication, we recompute the modified vertex-based NVT by using the same eigen-
vectors with modified eigenvalues:

C̃Ωi =
3∑

k=1
λ̃kek ⊗ ek. (4.5)

To remove noise, we multiply the corresponding vertex normal with the modified tensor C̃Ωi . The
multiplication will lead to noise removal while retaining sharp features.

ñi = dni + C̃Ωini = dni +
3∑

k=1
λ̃k〈ek,ni〉ek, (4.6)

where d is the damping factor to control the denoising speed of face normals. We use d = 3 for all
experiments.

4.1.2 Feature Detection

This is the second stage of the proposed denoising, where we classify the three different sets: corner,
edge and planar points using the spectral analysis of an anisotropic covariance matrix. To detect
feature points on a point set, which has filtered vertex normals, an anisotropic covariance matrix is
defined as:

Ai = 1∑
j∈Ωi

w̃ij

∑
j∈Ωi

w̃ij(vj − vc)⊗ (vj − vc), (4.7)

where the weight function w̃ij is similar to Equation (4.2) and is computed using filtered vertex
normals. The terms vc and w̃ij are defined as:

vc = 1∑
j∈Ωi

w̃ij

∑
j∈Ωi

w̃ijvj , w̃ij =
{

1 if 6 (ñi, ñj) ≤ ρ
0 if 6 (ñi, ñj) > ρ

, (4.8)

where vc is the centroid of vertices, which has similar vertex normals. Similar to the vertex-based
NVT, Ai is also a symmetric and positive semi definite matrix and can represented in its spectral
components:

Ai =
3∑

k=1
akxk ⊗ xk, (4.9)

where ak and xk are the corresponding eigenvalues and eigenvectors. In the proposed method, the
eigenvalues {a1, a2, a3} are exploited to classify feature points as following:

1. On a planar area, the two eigenvalues will be dominant in the tangent directions and the least
dominant direction will be in the normal direction.

2. On an edge, there will be only one dominant eigenvalue along the edge direction.

3. On a corner, either all eigenvalues are dominant or none of them are significant.

Let us sort the eigenvalues in decreasing order {a1 ≥ a2 ≥ a3 ≥ 0} and corner, edge and planar
points are represented by Vc = {vci}, Ve = {vei} and Vf = {vfi } respectively, such that V =
Vc ∪Ve ∪Vf .



4.1 Method 39


Vf = {vj ∈ V | a1, a2 ≥ τ, a3 < τ},
Ve = {vj ∈ V | a1 ≥ τ, a2, a3 < τ},
Vc = {vj ∈ V | (a1, a2, a3) ≥ τ ∨ (a1, a2, a3) < τ},

(4.10)

where τ is the same threshold variable, which is used in the binary optimization of the vertex-based
NVT at vertex normal filtering stage.

(a) (b) (c)

Figure 4.2: Figure shows the effect of the proposed constraint-based vertex position update scheme.
Figure (a) represents the smooth model reconstructed by using Equation (4.16) not only for flat re-
gions but also at feature points. Figure (b) represents the result obtained by the proposed scheme,
where flat regions follow Equation (4.16), Edges are reconstructed using Equation (4.15) and
corners positions are updated using Equation (4.13). Figure (c) shows the magnified view of the
Cube corner. Surfaces are reconstructed using the “ball pivoting” algorithm [11].

4.1.3 Constraint-based Vertex Position Update

In the last stage of the denoising algorithm, we update vertex positions with a distance-based con-
straint, where the resulting filtered point set remains within a prescribed distance to the input noisy
point set. To compute the optimal position of a vertex w.r.t. the filtered vertex normal, restricted
quadratic error metrics are used in this algorithm. The restriction to the quadratic error metric
is introduce based on different feature points and later vertex position is updated along with a
distance-based constraint.

Distance-based Constraint

In the proposed method, we use a distance-based constraint, which limits the deviation between
the initial noisy point set and the filtered point set. Therefore, during the denoising process, the
maximum deviation of a vertex position is limited by the user. The discrete maximum deviation
measure between two point sets V and Ṽ is defined as:

dm(V, Ṽ) = max‖vi − ṽi‖R3 ∀i = 0, · · · , n− 1, (4.11)

where numbers of vertices in both point sets are equal and the term dm is a metric and is defined
on all set of point sets with equal number of vertices.
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Vertex Update at Corners

After a corner point detection using the anisotropic covariance matrix, we minimize the following
energy function to compute the optimal vertex position of a corner point:

min
ṽc

i

∑
j∈Ωi

‖ñj · (ṽci − vj)‖2. (4.12)

The vertex ṽci ∈ Vc is a corner point and vj ∈ V represents the neighbourhood points of the corner
point. We can associate a set of planes with each vertex based on the filtered normal, and we define
the error of the vertex with respect to this set as the sum of squared distances to its plane. By
minimizing the above equation, the new vertex position can be computed as:

ṽci =


(∑

j∈Ωi
Nj

)−1∑
j∈Ωi

(
Njvj

)
if dm ≤ ε

vci if dm > ε

, (4.13)

where Nj = ñj ⊗ ñj and ε is a user input, which keeps the deviation between noisy and filtered
corner points. The above equation computes the minimum plane distance for the corner points.
The additional distance-based constraint does not allow to move the corner point beyond the user
input.

Vertex Update at Edges

On an edge vertex vei ∈ Ve of a noisy point set, which has a filtered vertex normal, we use a
restricted version of a quadratic error metric. On an edge vertex, the anisotropic covariance matrix
A has only one dominant eigenvalue and corresponding eigenvector aligns with the edge direction.
For each edge vertex, we define a plane Te, which is spanned by the two least dominant eigenvectors
of A. The eigenvectors x2 and x3 are the orthonormal basis of tangent plane Te and the dominant
eigenvector x1 represents the normal of this plane.

First of all, we project all neighbourhood vertices and the projected vertex normal to the plane
Te:

vpj = vj − 〈(vj − vei ),x1〉x1,

ñpj = ñj − 〈ñj ,x1〉x1,

where vpj and npj are the projected vertex position and its normal on the plane Te and j ∈ Ωi. Now,
we define a quadratic energy function similar to Equation (4.12):

min
ṽe

i

∑
j∈Ωi

‖ñpj · (ṽ
e
i − vpj )‖

2 + 1
nΩi

‖x1 · (ṽei − vpj )‖
2
, (4.14)

where nΩi is the number of vertices within Ωi disc. The above energy function is defined on the
plane Te. We try to minimize the energy function similar to Equation (4.13), but the covariance
matrix of the projected normal is not invertible because the least dominant eigenvalue along the
the normal of this covariance is zero, which reduces the rank of the corresponding matrix. To fix
this problem, additional terms are added to the above energy function.

ṽei =


(∑

j∈Ωi
Ne
j + x1 ⊗ x1

)−1∑
j∈Ωi

(
Ne
jv
p
j + x1 ⊗ x1vei

)
if dm ≤ ε

vei if dm > ε

, (4.15)
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where Ne
j = ñpj ⊗ ñpj and the factor x1 ⊗ x1 makes sure that the covariance matrix is invertible.

For each edge vertex, the above equation computes the optimal position by minimizing the distance
between the lines on a well defined plane. This operation effectively preserves sharp features along
edges and removes noise effectively.

Vertex Update on Flat Regions

The flat region is detected using the anisotropic covariance spectral analysis. For the flat region, the
matrix A has two dominant eigenvalue. to remove noise from flat regions, we allow to move the
vertex position only in the corresponding vertex normal direction. We use the same energy function
mentioned in Equation (4.12) along with a restriction, which allows to move a vertex only in the
normal direction. Therefore, the optimal vertex position is computed using the following equation:

ṽfi =


vfi + λ∑

j∈Ωi

Wij

∑
j∈Ωi

Wij〈ñj · (vj − vfi )〉ñi if dm ≤ ε

vfi if dm > ε

, (4.16)

where λ controls the amount of smoothing on flat regions and the weight function Wij is a combin-
ation of the similarity and the closeness function and defined as:

Wij = exp
(
− 16|ñi − ñj |2

r2

)
· exp

(
− 4|vj − vfi |

2

r2

)
, (4.17)

where r is the radius of the disk Ωi. By iterating the whole procedure including the vertex normal
filtering and the vertex update stages, the proposed algorithm produces a noise-free point set with
proper sharp features.

4.2 Experiments, Results and Discussion

(a) Original (b) Noisy (c) APSS (d) RIMLS (e) Ours

Figure 4.3: The Fandisk model corrupted by Gaussian noise (σn = 0.28le), where le is the average
distance between the vertices of the model. Figure shows that the proposed method is able to
preserve sharp features effectively compared to state-of-the-art methods. Surfaces are reconstructed
using the “ball pivoting” algorithm [11].

We evaluated the capacity of our algorithm on various kinds of point set (Figure 4.3, 4.4, 5.9)
models corrupted with synthetic noise and real scanned data (Figure 4.6, 4.7). We compared
our method with two state-of-the-art denoising methods [40] and [80], which are implemented in
MeshLab.
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(a) Original (b) Noisy (c) APSS (d) RIMLS (e) Ours

Figure 4.4: The Cube model with non-uniform distribution of vertices, corrupted by Gaussian noise
(σn = 0.3le), where le is the average distance between the vertices of the model. Figure shows
that the proposed method is able to preserve sharp features effectively compared to state-of-the-art
methods and does not create bumpy structures. Surfaces are reconstructed using the “ball pivoting”
algorithm [11].

(a) Original (b) Noisy (c) APSS (d) RIMLS (e) Ours

Figure 4.5: The Rockerarm model corrupted by Gaussian noise ((σn = 0.3le) in normal direction.
The results are produced by state-of-the-art methods and our proposed method. The proposed
method removes noise effectively and also enhances sharp features around the cylindrical region.
Surfaces are reconstructed using the “ball pivoting” algorithm [11].

4.2.1 Parameters Tuning

We discussed several parameters: geometric neighbor radius r, dihedral angle threshold ρ (Equation
(4.2)), eigenvalue threshold τ (Equation (4.10)), damping factor d (Equation (4.6)), iteration p
and vertex-diffusion speed λ (Equation (4.16)). Throughout, the whole experimentation, we fixed
λ = 0.1, d = 3. The geometric neighbour radius depends on the resolution of point sets and it is
fixed to twice of the average distance between vertices. Effectively, there are only 3 parameters
(τ, ρ, p) to tune the results, in which τ is the most important as it depends on noise intensity but at
the same time this parameter is not highly sensitive. We use τ ∈ {0.3 − 0.4} for synthetic data
and τ ∈ {0.05 − 0.1} for real data because real data have smaller noise intensity compared to
synthetic data. We iterate several times (p ∈ {20− 100}) to obtain better result.
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(a) Original (b) APSS (c) RIMLS (d) Ours

Figure 4.6: Real data of the Rabbit model, acquired by a 3D scanner and results produced by the
proposed method and state-of-the-art methods. Surfaces are reconstructed using the ”ball pivoting”
algorithm [11].

(a) Original (b) APSS (c) RIMLS (d) Ours

Figure 4.7: The balljoint model, which is corrupted by a scanner noise and results produced by the
proposed method and state-of-the-art methods. Surfaces are reconstructed using the “ball pivoting”
algorithm [11].

4.2.2 Visual Comparison with State-of-the-art Methods

The Cube (Figure 4.4) and the Fandisk (Figure 4.3) have non-uniform sampling corrupted with
Gaussian noise. Figure 4.4 shows that the proposed method produces a smooth model with sharp
features without creating any false and bumpy features like APSS [40] and RIMLS [80] methods.
The Rockerarm model (Figure 4.5) has a considerably non-uniform sampling and our method better
enhances sharp features (around cylindrical region) and removes noise effectively compared to [40]
and [80].

For real data, Figure 4.6 shows that our method removes noise effectively while retaining fea-
tures on the surface compared to [40] and [80] methods. Similarly, Figure 4.7 represents the
applicability of the proposed method in medical data analysis. As it can be seen from the figure,
our method removes noise effectively from the spherical region and retains sharp features in the
cylindrical region. Methods [40] and [80] are not able to remove noise components properly.

4.3 Summary

This chapter presented a simple and effective tensor multiplication algorithm for feature-preserving
point set denoising. The proposed method is basically an extension of the ENVT-based mesh denois-
ing. Similar to the concept of the ENVT the proposed algorithm used vertex-based NVT and eigen-
analysis of this tensor leads to decoupling of features from noise. Noise components are removed by
the multiplication of the vertex-based NVT to the corresponding vertex normal. The concept of ei-
genvalue binary optimization not only enhances sharp features but also improves convergence rate
of the method. Similar to the ENVT-based mesh denoising algorithm, the local binary neighborhood
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(a) Original (b) APSS (c) RIMLS (d) Ours

Figure 4.8: The Octahedron model, which is corrupted by Gaussian noise and results produced
by the proposed method and state-of-the-art methods. Surfaces are reconstructed using the “ball
pivoting” algorithm [11].

selection helps to select similar vertices in neighborhood to compute the vertex-based NVT and it
leads to minimal feature blurring during the denoising process. After vertex normal filtering, the al-
gorithm classifies feature points into edges, corners and flat regions using an anisotropic covariance
matrix. For the vertex update stage, This method used restricted least square error metrics, which
are different for different kinds of features. The vertex position reconstruction used restricted quad-
ratic error metrics that helps the algorithms to recreate sharp edges and corners. The experimental
results show the capability of the proposed algorithm.
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RoFi: Robust and High Fidelity Mesh Denoising

This chapter presents a simple and effective two-stage mesh denoising algorithm, where in the
first stage, face normal filtering is done by using bilateral normal filtering in the robust statistics
framework. Tukey’s bi-weight function is used as the similarity function in bilateral weighting, which
is a robust estimator and stops the diffusion at sharp edges to retain features and removes noise
from flat regions effectively. In the second stage, an edge-weighted Laplace operator is introduced
to compute a differential coordinate. This differential coordinate helps the algorithm to produce a
high-quality mesh without any face normal flips and makes the method robust against high-intensity
noise.

We propose a robust and high fidelity two-stage mesh denoising method, where face normal
processing is mainly motivated by a robust statistics framework in anisotropic diffusion and bilateral
filtering. Basically, the robust statistics framework is focused on developing different estimators,
which are robust to outliers. In the mesh denoising and robust statistic framework, sharp features
are considered as outliers and a proper estimator will avoid these outliers to preserve sharp features
and remove undesired noise components from a noisy surface.

We apply Tukey’s bi-weight function for the similarity function as a robust estimator, which stops
the diffusion at sharp features and produces smooth umbilical regions. In the vertex update step, we
use a differential coordinate-based Laplace operator along with an edge-face normal orthogonality
constraint. This Laplace operator is computed using the edge length as a weight function to produce
a high-quality mesh without face normal flips and it also makes the algorithm more robust against
high-intensity noise. This chapter is basically based on the published method [115]. Additionally,
the robust estimators are explained in detail.

5.1 Method

The proposed method is implemented in two different stages. In the first stage, noisy face normals
are processed using bilateral filtering in the robust statistics framework and in the second stage, a
high fidelity mesh is reconstructed using an edge-face normal orthogonality constraint and an edge-
weighted differential coordinate. Both stages are iterated until a noise-free surface is produced.

5.1.1 Robust Bilateral Face Normal Processing

In the first step of the proposed algorithm, we smooth noisy face normals using the bilateral filter,
which is a non-linear filter and it computes output using the weighted average of the input:

ñi = 1
Ki

∑
j∈Ωi

ajf(|ci − cj |, σc)g(|ni − nj |, σs)nj , (5.1)

45
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where nj represents a noisy face normal and belongs to the geometric neighbour disk Ωi of the
central face normal ni. The geometric neighborhood is more robust against non-uniform meshes
compared to the combinatorial neighborhood [114]. The term Ki is defined as:

Ki =
∑
j∈Ωi

ajf(|ci − cj |, σc)g(|ni − nj |, σs),

where aj is the area of the corresponding face. The term f(|ci − cj |, σc) and g(|ni − nj |, σs) rep-
resent the closeness and the similarity functions whose kernel widths are controlled by σc and σs
respectively and ci is the centroid of face i.

Robust Estimation

The problem of the estimation of a smooth surface from a noisy surface can be written by using
tools of robust statistics. As shown by Black and Sapiro [13], Durand and Dorsey [24] and Jones et
al. [51], to compute a smooth surface, Equation (5.1) can be written as the following minimization
problem:

min
ñi

∑
j∈Ωi

ajf(|ci − cj |, σc)ρ(|ñi − nj |, σs), (5.2)

where ρ is a robust error norm. The minimization of the above function will lead to smooth face
normals. To solve Equation (5.2), the first derivative of ρ-function should be zero and it is a so-called
influence function Ψ(x, σs) = ρ′(x, σs), where x can be any variable (in our algorithm x = |ni−nj |).
The influence function shows the behaviour of a ρ-function.

For anisotropic diffusion and bilateral filtering, the influence function Ψ(x, σs) and ρ(x, σs)-
function can be written in terms of the similarity function g(x, σs) [24]:

Ψ(x, σs) = xg(x, σs), ρ(x, σs) =
∫
xg(x, σs)dx.

The selection of a ρ-function is crucial to avoid outliers. In our framework, the outliers will be sharp
features and an appropriate ρ-function will help the algorithm to retain sharp features and remove
noise components.

-5 5

(a) g(x, σs)

-5 5

0.5
1

(b) Ψ(x, σs)
-10 -5 0 5 10

0.5

(c) ρ(x, σs)

Figure 5.1: An isotropic linear similarity function with corresponding influence function and ρ-
function.

For example, the least square estimator (a quadratic ρ-function) is the most naive estimator
because it has a linear influence function without any bounds and is very sensitive to outliers as
shown in Figure 5.1. Figure 5.2 shows Gaussian-based ρ-function which has a bounded influence
function Ψ(x) and gives smaller weight to outliers compared to the least square estimators. Figure
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(a) g(x, σs) (b) Ψ(x, σs) (c) ρ(x, σs)

Figure 5.2: A Gaussian-based similarity function with corresponding influence function and ρ-
function [13].

(a) g(x, σs) (b) Ψ(x, σs) (c) ρ(x, σs)

Figure 5.3: Tukey bi-weight similarity function with corresponding influence function and ρ-
function [13].

5.3 shows that Tukey’s bi-weight function with corresponding influence function and ρ-function and
it produces more robust results compared to the least square and Gaussian-based estimators because
it completely cuts off the diffusion at sharp features (outliers) and removes noise from non-feature
areas. Tukey’s bi-weight function is defined as [13]:

g(x, σs) =
{1

2{1− (x/σs)2}2 if |x| ≤ σs,
0 if |x| > σs.

(5.3)

In terms of preserving features, Tukey’s bi-weight function is more effective compared to Gaussian
function because it does not allow the diffusion across sharp features and removes noise components
along these sharp features effectively. In our algorithm, we use Tukey’s bi-weight function as the
similarity function to produce feature preserving smooth face normals. For the closeness function
f(ci − cj , σc), Gaussian function is used.

5.1.2 High Fidelity Mesh Reconstruction

In the second step of the denoising process, we need to impose the effect of processed face normals
to corresponding vertices. To reconstruct a high fidelity mesh, we minimize the following quadratic
energy function:

min
ṽi

{|vi − ṽi|2 +
∑
j∈Ni

∑
(i,j)∈∂Fk

|ñk · (ṽi − vj)|2 + |Ri|2}, (5.4)

where ṽi and vi are the newly computed and the noisy vertex positions. The terms Ni and ∂Fk
represent the set of vertices and the boundary edge of the vertex star of vi respectively. The second
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term of the energy function synchronizes a vertex position to the corresponding face normal by
using the concept of orthogonality between edge vector and face normal [101]. The term Ri helps
algorithm to produce a high fidelity mesh and makes the proposed algorithm robust against high-
intensity noise. This term is computed using a differential coordinate and can be written as:

Ri = Di + Dti , (5.5)

where Di and Dti represent the differential coordinate and its tangential component respectively.

(a) Di = 0 (b) Di 6= 0

Figure 5.4: An example to show the effect of differential coordinate Di at the second stage of the
proposed algorithm.

The differential coordinate at the vertex vi is defined as:

Di = 4vi − vi, 4vi = 1∑
j∈N(i)

wij

∑
j∈N(i)

wijvj . (5.6)

The weighting term is defined as wij = |vi−vj |2. As shown in Figure 5.4, the differential coordinate
Di computes the deviation vector from the centroid of the 1-ring neighbour. If the central vertex
is positioned at the centroid of the 1-ring polygon, then Di = 0, otherwise it computes a distance
vector from the centroid of the 1-ring polygon. The term Di helps the proposed algorithm to
produce mesh triangles of better quality (high fidelity mesh). An ideal example would be equilateral
triangles, if the 1-ring polygon had 6 vertices. The term Dti is computed w.r.t the corresponding
vertex normal, which is approximated using the processed face normals:

n̄vi = 1∑
j∈Fv(i)

aj

∑
j∈Fv(i)

ajñj , (5.7)

where ñj and aj represents the processed face normal and the area of the corresponding face. The
term Fv(i) represents the set of faces, which are connected to the vertex vi. Now by using n̄vi , the
tangential component of the differential coordinate is computed as:

Dti = Di − 〈Di, n̄vi〉n̄vi , (5.8)

where the term 〈Di, n̄vi〉n̄vi represents the normal component of the differential coordinate.

Effect of a Linear Combination of the components of Differential Coordinates

The term Ri is effective against high-intensity noise and helps the algorithm to produce high-
quality mesh triangles. It is a linear combination of the normal and the tangent components of



5.2 Experiments, Results and Discussion 49

(a) Noisy (b) σs = 0.1 (c) σs = 0.5 (d) σs = 1.5 (e) λI = 0.0 (f) λI = 0.2 (g) λI = 0.6

Figure 5.5: The Bearing model is corrupted with a uniform noise (σn = 0.5le) in random direction
(a). For Figure (b)-(d), λI = 0.2 and for Figure (e)-(g), σs = 0.8. The black curve shows sharp edge
informations in the smooth geometry and is detected using the dihedral angle θ = 65◦. The second
row shows the magnified view of the mesh structure at a sharp edge. The red color faces are with
wrong orientation (flipped normals).

Di (Equation (5.5)). In general, noise affects a geometry in the surface normal direction. There-
fore, the normal component of Di is more effective against high-intensity noise. However, the
diffusion of the normal components does not improve the mesh quality and it causes a volume
shrinkage during the denoising process. Similarly, diffusion of tangential components leads to a
better mesh quality, less shrinkage, and less shape deformation. However, it is less effective against
high-intensity noise. As we mentioned earlier that we target to produce a noise-free geometry with
sharp features, a better mesh quality, and minimum volume shrinkage. Therefore, we give more
weight to the tangential component of Di compared to the normal component of Di. Figure 5.7
shows the effect of different components of Di. As it can be seen, the addition of Ri produces
a better mesh quality (Q = 0.66, mentioned in Section 5.2.2), and acceptable volume shrinkage
compared to other combinations of Di.

Minimization of the energy function mentioned in Equation (5.4), is done by the gradient des-
cent method and the updated vertex position is:

ṽi = vi + 1
3|Fv(i)|

∑
j∈Ni

∑
(i,j)∈∂Fk

(ñk · (vi − vj))ñk,+λIRi, (5.9)

where λI is the isotropic smoothing or the mesh fidelity factor. We iterate the whole procedure
mentioned in Equation (5.9) several times to get the desired result. In each iteration, using the same
value of λI leads to feature blurring, shape deformation and volume shrinkage in the smoothed
surface as noise is getting lower with the iterations. To overcome this problem, the effect of isotropic
smoothing should get reduced after each iteration. We reduce λI in every iteration by λp+1

I = 0.6λpI ,
where p represents the number of the current iterations.

5.2 Experiments, Results and Discussion

We have performed our denoising scheme on various kinds of CAD (Figures 5.5, 5.6, 5.7, 5.9, 5.11,
and 5.12) and CAGD (Figures 5.10, and 5.12) models. These models consist of different levels
of features and are corrupted with different kinds of synthetic noise (Gaussian and uniform) in
different random directions. We also included real scanned data (Figures 5.8, 5.13, and 5.15).
We provide visual and quantitative comparison of our method to several state-of-the-art denoising
methods. We implemented [45], [34], [121], [43], and [114] based on their published article and
several results of [16], [108], [120], [106], and [67] are provided by their authors.
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(a) (b) (c) (d) (e)

Figure 5.6: Effects of the proposed vertex update method and Tukey’s bi-weight function. The ad-
dition of the edge-based Laplacian operator produces a high fidelity mesh (low value of Q) and
Tukey’s bi-weight function suppressed low frequency components better compared to the Gaussian
function. (a) noisy input. (b) output using a Gaussian based bilateral weighting and the least
square error constraint for vertex update [95], (Ev, MSAE, Q) = (0.001, 15.9, 3.69). (c) output
using a Gaussian based bilateral weighting and the proposed vertex update method, (Ev, MSAE,
Q) = (0.00096, 3.77, 0.80). (d) output using the proposed face normal filtering and the least
square error constraint for vertex update [95], (Ev, MSAE, Q) = (0.0013, 10.8, 4.68). (e) output
using the proposed face normal filtering and the proposed vertex update method, (Ev, MSAE, Q)
= (0.00094, 3.63, 0.81). In each figure, the second column shows the cotangent mean curvature,
which is coloured between white(0) and red(2.0).

(a) Noisy (b) Di (c) Dti (d) Ri

Figure 5.7: Visual and quantitative comparison of the different components of Di. (a) the Fandisk
model corrupted by a uniform noise (σn = 0.65le) in a random direction, (Ev, MSAE, Q) = (0.077,
28.09, 1.01). (b) output by using Di only, (Ev, MSAE, Q) = (0.0156, 2.23, 0.71). (c) output by
using Dti only, (Ev, MSAE, Q) = (0.014, 2.08, 0.7). (d) output by using Ri only, (Ev, MSAE, Q)
= (0.0147, 2.13, 0.66). The terms Ev,, MSAE and Q are quantitative parameters and explained in
Section 5.2.2.

In the proposed method, we discussed five different parameters: kernel widths of the closeness
and the similarity functions (σc and σs), geometric neighbour disk (Ω), isotropic factor λI , and the
number of iterations p. Throughout the algorithm, the radius of the neighbour disk is defined as
r = 2ca, where ca represents the average distance between the centroid of faces. Furthermore, the
kernel width of the closeness function is half of the radius of the neighbour disk (σc = ca). The
average centroid distance-based radius will make the algorithm robust against irregular sampling as
denser regions will have more faces compared to sparse regions during the face normal processing.
Effectively, the user has to tune only 3 parameters (σs, λI , and p) to get the desired result. In Table
5.1, the proposed method parameters are mentioned in the following format (σs, λI , p). Similarly,
(τ, r, p) for [114], where τ is the feature threshold, r is the radius of the geometric neighborhood
disk, and p is the number of iterations. The parameters (σc, σs, p) are for [34], (σs, p) are for [121],
(λ, s, p) are for [45], and α is for [43], where σc and σs are the standard deviation of Gaussian
function in the bilateral weighting. The variables s, λ represent the step size and the smoothing
threshold [45] and α controls smoothing in [43].
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(a) Noisy (b) σs = 0.2 (c) σs = 0.5 (d) σs = 1.5

Figure 5.8: Effect of the parameter σs on the Box model (magnified view), which has different level
of features. The parameter λI is fixed to 0.05.

(a) Original (b) Noisy (c) [34] (d) [121] (e) [43]

(f) [120] (g) [106] (h) [67] (i) [114] (j) Ours

Figure 5.9: The Fandisk model corrupted with a Gaussian noise (σn = 0.3le) in a random direction.
Both rows show the results produced by state-of-the-art methods and our proposed method. The
sharp feature curve (black curve) is computed using the dihedral angle θ = 70◦.

Figure 5.5 shows the effect of the parameters σs and λI . The black curve represents sharp
features and is computed using the dihedral angle, θ = 65◦, between neighboring faces. In Figures
5.5 (b-d), the isotropic factor is fixed, λI = 0.2. The small value of σs = 0.1 produces piecewise flat
regions and does not produce a noise-free surface with sharp features (Figure 5.5 (b)). For σs =
1.5, sharp features are smoothed out and for σs = 0.5, the algorithm produces an optimal result.
Similarly, from Figure 5.5 (e-g), the parameter σs is fixed, σs = 0.8. For λI = 0, the reconstructed
surface has several edge flips (faces with wrongly oriented normals) and the algorithm does not
preserve all desired features (Figure 5.5(e)). However, the algorithm produces a high fidelity mesh
with sharp features when we use λI = 0.2 (Figure 5.5(f)) and blurs sharp features with a bigger
isotropic factor (Figure 5.5 (g)). In general, the value of λI depends on noise intensity on surfaces.
The higher noise the more normal flips will be produced during the denoising process. Therefore, it
is better to use a bigger value of λI to avoid these normal flips. At the same time, higher values for
λI can produce edge blurring and volume shrinkage. Additionally, Figure 5.8 shows the effect of σs
on the Box model, which has a different levels of features. As it can be seen, small-scale features
disappear with a bigger value of σs. In the proposed method, λI is responsible to produce a high
fidelity mesh against high-intensity noise and σs helps to preserve sharp features effectively.

Figure 5.6 shows a comparison with different weighting functions (Gaussian and Tukey’s bi-
weight) for face normal filtering and also represents a comparison between the proposed vertex
update method and Method [95]. The quantitative parameters indicate that the proposed face
normal filtering and the vertex update method better preserve features (better MSAE) and a high
fidelity mesh (low value of Q). From the mean curvature colouring, it is clear that Tukey’s bi-weight
removes low frequency components of noise effectively and produces a uniform mean curvature
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(a) Original (b) Noisy (c) [43] (d) [120]

(e) [106] (f) [114] (g) [16] (h) Ours

Figure 5.10: The Nicola model, a non-uniform triangulated mesh surface, which is corrupted by a
Gaussian noise in a random direction. The magnified view of the eyes and the nose shows that the
proposed method better preserves sharp features without creating piecewise flat areas compared to
state-of-the-art methods.

on the cylindrical region of Ring model compared to the Gaussian weighting function. Similar
comparisons are shown in Figures 5.9-5.12, where Method [121] uses a Gaussian function for the
face normal filtering and for the vertex update, it follows Method [95].

5.2.1 Visual Comparison

Figure 5.9-5.14 represent a visual comparison of the proposed method with several state-of-the-
art methods. Figure 5.9 shows the Fandisk model, which is corrupted with a moderate intensity
Gaussian noise in a random direction. The sharp feature curve (black curve) shows that the pro-
posed method preserves sharp features (especially at corners) effectively and does not produce false
features in the cylindrical region compared to state-of-the-art methods. Method [114] and [67]
manage to produce features at sharp corners but do not recover the sharp features on the whole
surface. Method [43] creates false features in the cylindrical region and is not able to preserve the
corner features [16]. The Nicola model (Figure 5.10) has a non-uniform mesh and is corrupted
by a Gaussian noise in a random direction. The magnified view shows that our method preserves
sharp features around the eye regions better than state-of-the-art methods and does not produce
any false features around the nose area (piecewise flat areas). Figure 5.11 shows the Joint sharp
model with non-uniform mesh corrupted with a Gaussian noise in the normal direction. As it is
shown, the proposed method reconstructs the cylindrical region and corners without creating any
false features. Method [114] produces a quite similar result to ours while Method [120] and [43]
produce false features around the cylindrical region. The other state-of-the-art methods are not
able to preserve sharp features. Figure 5.12 provides a visual comparison between state-of-the-art
methods and the proposed method where models are corrupted with high-intensity noise. As shown
in Figure 5.12, our method is able to remove noise components properly and retains sharp features
without creating any edge flips. Method [121] is able to preserve sharp features but produces edge
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(a) Original (b) Noisy (c) [121] (d) [43] (e) [108] (f) [106] (g) [114] (h) [16] (i) Ours

Figure 5.11: Non-uniform triangulated mesh surface, which is corrupted by a Gaussian noise (σn =
0.35le) in the normal direction. The first row shows the results obtained by state-of-the-art methods
and the proposed method. The second row shows a magnified view of the corner and the cylindrical
hole of the corresponding geometry.

(a) Original (b) Noisy (c) [121] (d) [43] (e) [108] (f) [106] (g) [114] (h) Ours

Figure 5.12: Figure (b) shows the noisy models, which are corrupted by a uniform noise (σn = 0.5le)
in a random directions. Figure (c)-(i) show the results produced by state-of-the-art methods and
the proposed method. The second row shows the magnified view of the mesh quality at the sharp
corner. The sharp feature curves are computed at θ = 65◦ (for the Bearing model) and the red color
faces are with wrong orientation (flipped normals).

flips and the mesh quality is not optimal. Method [43] is using an isotropic regularization factor,
which helps the algorithm to produce a good quality mesh on the planar areas but fails to produce
similar triangles near the sharp edges (second row Figure 5.12(e)). Method [106] is not producing
an optimal result because the algorithm is trained for low and moderate levels of noise.

In general, real data is captured using the 3D scanners and have a quite low intensity of noise.
Thus, it is difficult to see a considerable difference between the results of the proposed method
and state-of-the-art methods. Figure 5.13 shows that our algorithm is capable of better preserving
features around both eyes compared to state-of-the-art methods. Methods [114] and [121] are able
to retain the feature in the right eye but fail for the left eye. The other state-of-the-art methods
are not able to preserve fine levels of features in both eyes. In case of the Pierrot model (Figure
5.14), our method removes noise effectively around the eyes and preserves features. Methods [67]
and [114] retain similar scale of the feature but are not able to remove noise properly. Figure 5.15
shows the applicability of the proposed method to Kinect data. The David model is corrupted with
lower noise compared to the Girl model and our method is able to remove these noise components
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(a) Original (b) [43] (c) [120] (d) [67]

(e) [106] (f) [114] (g) [16] (h) Ours

Figure 5.13: The Angel model, a triangulated mesh surface (real data) obtained by a 3D scan-
ner. The proposed method better preserves sharp features (both eyes) compared to state-of-the-art
methods.

effectively while preserving features properly.

5.2.2 Quantitative Comparison

For the quantitative comparison, we are using three different quantities. Two of them show differ-
ences between the ground truth and smooth model, the so-called L2 vertex-based positional error
and mean square angular error (MSAE) respectively. The third parameter computes the mesh qual-
ity of a smoothed surface. The L2 vertex-based positional error Ev from the original ground truth
model is defined as [95]:

Ev =
√√√√ 1

3
∑
k∈F ak

∑
i∈V

∑
j∈Fv(i)

ajdist(ṽi, T )2,

where F is the triangular element set and V represents the set of vertices. The terms ak and aj are
the corresponding face areas. The distance dist(ṽi, T ) is the closest L2-distance between the newly
computed vertex ṽi and the triangle T of the reference model.

The MSAE computes the orientation error between the original model and the smooth model
and is defined as:

MSAE = E[ 6 (ñ,n)],
where ñ is the newly computed face normal and n represents the face normal of the reference
model. The term E stands for the expectation value.

Mesh quality of the surface mainly refers to the shape of the faces in the mesh. For a better
mesh quality, the size and angles of the triangular face should not be too small or too large. To
measure the quality of faces, we use the ratio of the circumradius-to-minimum edge length of the
corresponding face [89]:

Q = 1
|F |

∑
i∈F

ri
ei
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Models Methods MSAE Ev×10−3 Q Parameters
[34] 7.45 172.7 1.18 (0.3, 0.3, 30)
[45] 6.269 76.87 1.00 (0.05, 0.05, 50)

Nicola [121] 5.25 66.07 1.02 (0.3, 60)
|F | = 29437 [43] 6.50 99.58 0.91 (1.4)
|V | = 14846 [120] 5.82 69.63 1.05 (Default)

[114] 5.900 72.8 1.02 (0.3, 0.15, 50)
Ours 5.5 66.14 0.9 (1.6, 0.06, 25)
[121] 3.17 0.590 1.45 (0.3, 50)

Bearing [43] 4.70 1.24 1.58 (4.0)
|F | = 6950 [108] 3.95 0.783 2.62 (Default)
|V | = 3475 [114] 4.43 0.698 1.66 (0.3,0.08,80)

[106] 5.67 0.691 1.73 (Default)
Ours 2.32 0.588 0.74 (0.8,0.2,80)
[34] 3.777 0.530 0.83 (0.3, 0.3, 40)
[45] 2.630 0.766 0.78 (0.009, 0.05, 50)

Joint [121] 1.808 0.263 0.77 (0.4, 100)
|F | = 52226 [43] 1.768 0.500 0.75 (1.4)
|V | = 26111 [120] 0.956 0.179 0.83 (Default)

[108] 2.874 0.366 1.67 (Default)
[67] 1.16 1.49 0.71 (Default)
[114] 0.829 0.171 0.91 (0.3, 0.05, 60)
Ours 1.032 0.198 0.73 (1.0, 0.2, 150)
[34] 8.567 4.422 0.87 (0.4, 0.4, 40)

Fandisk [45] 5.856 4.910 0.79 (0.07, 0.05, 30)
|F | = 12946 [121] 2.727 1.877 0.76 (0.4,70)
|V | = 6475 [43] 4.788 5.415 0.766 (1.4)

[120] 2.221 1.702 0.97 (Default)
[67] 3.1 4.42 0.7 (Default)
[114] 2.692 1.964 0.89 (0.3, 0.2, 50)
Ours 2.201 1.844 0.7 (0.55, 0.2, 100)
[121] 9.98 19.64 3.12 (1.0, 100)

Chinese Lion [43] 8.93 25.34 1.51 (1.4)
|F | = 118276 [108] 19.22 21.5 2.38 (Default)
|V | = 59140 [114] 21.39 21.89 2.16 (0.3, 1.0,100)

[106] 15.16 19.48 2.94 (Default)
Ours 8.795 18.35 0.87 (0.4, 0.3, 100)

Table 5.1: Quantitative Comparison
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(a) Original (b) [45] (c) [121] (d) [43]

(e) [67] (f) [106] (g) [114] (h) Ours

Figure 5.14: The Pierrot model (real data) is corrupted by a 3D scanner noise. The figures shows
the results obtained by state-of-the-art methods and the proposed method.

where ri and ei are circumradius and minimum edge length of the corresponding triangle. Ideally,
every face belonging to the mesh should be an equilateral triangle with a quality index of Q =
1/
√

3 ≈ 0.58.
Table 5.1 shows the quantitative comparison of our method with state-of-the-art methods. For

the models which are corrupted by high-intensity noise (Bearing, Chinese Lion, and Sharp Sphere),
the proposed method has lower values of Ev, MSAE and Q compared to Methods [121] and [43].
Method [121] produces a quite similar value of Ev but bigger values for MSAE and Q because of
the several edge flips. He et al. [43] produces a good quality mesh in planar regions but does
not produce a similar quality of triangles near sharp features, which leads to a higher value mesh
quality index. For the Nicola model, our method produces quite similar values for the position

(a) (b) (c) (d) (e) (f)

Figure 5.15: Figure (a) and (d) are the original models. Figure (b) and (e) represent the scans
captured by Kinect sensors [106]. The smooth outputs are shown in Figure (c) and (f) using the
proposed algorithm.
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(a) MSAE (b) Mesh Quality Factor Q

Figure 5.16: Convergence plots for MSAE and the mesh quality factor Q for Lion model. The red
and blue curves represent Method [121] and the proposed method respectively.

and orientation error (slightly bigger) to Method [121], because our algorithm also follows the
bilateral filtering technique and in addition, we use an isotropic factor which introduces a small
amount of volume shrinkage. At the same time, it produces a good quality mesh. Figure 5.16
shows a convergence rate comparison with Method [95]. As it can be seen, the proposed method
not only converges faster but also has a lowe and consistent mesh quality factor Q because of the
edge-weighted differential coordinate.

Table 5.2: Running Time (in seconds)
Models Fandisk Bearing Nicola Joint Lion

Time (s) 5.8 4.2 4.3 45.3 92

As it is explained by [114], the two-stage denoising methods have quite a similar running time
complexity. The proposed algorithm also follows the two-stage denoising scheme and has the com-
plexity of O(nc ·nf · p), where nc is the number of faces within the neighbourhood, nf and p are the
numbers of faces and iterations respectively. The implementation of the algorithm is quite straight-
forward and simple. First of all, we compute the smooth face normals using Equation (5.1) then
rearrange vertices by following Equation (5.9). Our implementation is done in a single computation
thread using Java. Table 5.2 shows the running time of our algorithm for different models according
to the parameter values mentioned in Table 5.1.

5.3 Summary

This chapter presented a robust and high fidelity mesh denoising algorithm, which is robust in terms
of feature preservation because of the robust statistics framework. It produces a high fidelity mesh,
which is measured using a mesh triangle quality (Q) and minimum number of normal flips. In the
first step of the proposed method, the face normal filtering is done using Tukey’s bi-weight function
as a robust estimator. Tukey’s bi-weight function completely stops the diffusion across sharp edges
and removes noise along sharp features and from flat areas. In the second step, vertex positions
are updated using edge-face normal orthogonality constraints along with differential coordinates.
Differential coordinates help the algorithm to produce a high-quality mesh, makes it robust against
high-intensity noise and avoids normal flips during the denoising process. Experimental section
shows the robustness of the proposed algorithm not only against different kinds and levels of noise
but also against face normal flipping. The quantitative comparison table shows that our method
produces better mesh quality compared to state-of-the-art methods. Similarly, for the positional and
the orientation error, the proposed method is either better or similar to state-of-the-art methods.





Chapter 6

Introduction to the Retinal Shape Analysis

This is the second part of the thesis, which is mainly focused on applications of geometry processing
algorithms for the shape analysis of the human retina in different diseases. This part of our work is
mainly motivated by the need of automatic shape quantifying algorithms, which would aid in the
diagnosis of several neurological disorders by detecting shape changes in the retina. Before going to
a detailed explanation of the retinal shape analysis algorithms, here, we provide an overview of the
anatomical background of the human eye including the different retinal layers, the optic nerve head
and the fovea. Then, the basic working principle of OCT (optical coherence tomography), which is
a non-invasive, high-resolution retinal imaging technology to provide the underlying imaging data,
is explained. Additionally, neurological disorders, which affect the shape of the retina in different
regions, are discussed. In continuation, we also discuss about state-of-the-art methods related to
the shape analysis of the two most important regions of the retina: the fovea and the optic nerve
head.

6.1 Structure of Human Eye

The eye is one of the most complex organs of the human body. The working principle of the human
eye is quite similar to a camera. It is self-focusing, adjusts automatically for different light intensity,
has a self-cleaning lens, and feeds signals to the brain with parallel-processing capabilities. The
human eye mainly consists of three different layers [109]:

1. The outer layer (the cornea and the sclera)

2. The middle layer (the iris, the ciliary body and the choroid )

3. The inner layer (the retina)

In the following, we describe in more detail the most relevant parts of the retina, which are the
retinal layers and this thesis is mainly focused on the morphometry of these particular regions.

6.1.1 The Retina (The Inner Layer)

The retina (see Figure 6.1) is the sensory membrane, which is approximately 0.5mm thick and lines
the inner surface of the back of the eyeball. The retina is a complex structure, which consists of
several layers of cell bodies and cell processes and each layer serves a specific purpose. It consists of
different types of neuron, photoreceptors, bipolar cells, horizontal cells, amacrine cells and ganglion
cells, which are responsible for transmitting the signals to the brain. It is considered as a part of
the central nervous system as it is created during embryogenesis from neural tissue. It has three
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Figure 6.1: The human eye structure [56]

rows of the nerve cell bodies separated by two layers as shown in Figure 6.2. The retina includes
photoreceptors that take light focused by the cornea and lens and convert it into chemical and
nervous signals which are transported to visual centers in the brain by way of the optic nerve.

Figure 6.3, show a cross sectional of the retina with corresponding layers. A detailed explanation
about each layer is given as:

1. The Inner limiting membrane (ILM) is the innermost boundary of the retina and defines a
boundary between the vitreous body and the retina. It is formed by astrocytes and end feet of
the mueller cells.

2. The retinal nerve fiber layer (RNFL) is formed by the retinal ganglion cell axons.

3. The ganglion cell layer (GCL) consists of nuclei of ganglion cells. Ganglion cells are connected
to nerve fibers. In humans, there are two types of ganglion cells, ON center and OFF center,
which are responsible for the major output of the retina to visual centers of the brain. ON
center ganglion cells are activated when light falls on the receptive filed and OFF center gan-
glion cells are activated when light falls on the periphery of the receptive field. So, ganglion
cells transmit two kinds of signals, dark-on-light (OFF) and light-on-dark (ON), which create
a train of spikes (informations) into the brain [56].

4. The inner plexiform layer (IPL) consists of synaptic connections between the axons of bipolar
cells and dendrites of ganglion cells.

5. The inner nuclear layer (INL), as it is shown in Figure 6.3, not only consists of the cell bodies
of horizontal cells, bipolar cells and amacrine cells but also interplexiform neurons, Müller
cells, and sometimes displaced ganglion cells. Bipolar cells receive chemical signals from the
photoreceptors and pass it to the ganglion cells and amacrine and horizontal cells send signals
using various excitatory and inhibitory chemicals. Horizontal cells have a bigger receptive
field compared to bipolar cells because each horizontal cell receives signals from many cones
and a single bipolar cell is connected to a small numbers of cones. As a result, horizontal and
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Figure 6.2: Layers [56]

amacrine cells modulate the photoreceptors signal and provide additional information to the
ganglion cell.

6. The outer plexiform layr (OPL) is the region, which is connecting the photoreceptors to the
bipolar and horizontal cells.

7. The outer nuclear layer (ONL) is the light detecting part of the retina and it contains the cell
bodies of the photoreceptors, cones and rods. Both rods and cones respond to light and are
responsible for quite different image properties. Rods, which are active with low light levels
and approximately 20 times more abundant than cones [109]. Cones are responsible for color
vision and about 50 percents of the cones are located around the macula region.

8. The retinal pigment epithelium (RPE) is a single layer of cells between the retina and choroid
that provides essential nutrition and waste removal for the photoreceptor cells.

6.1.2 The Fovea

In this section, we discuss about one of the most important regions of the retina for this work,
the fovea. The fovea is an avascular zone in the macula of the retina. This area is approximately
1.5 − 2mm in diameter within the larger macula where the retina thins out greatly. Although the
fovea represents a tiny anatomical region of the retina, the number of cortical neurons per unit of
visual field devoted to foveal input is much larger and contains more neurons than the network
devoted to perifoveal vision. The density of the photoreceptors per unit area in the fovea provides
exquisite visual acuity, and interactions between these and other retinal neurons are responsible for
high contrast sensitivity. The inner retinal cellular elements at various distances possibly determines
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Figure 6.3: Retinal layers [56]

the appearance of the shape of the pit. The ganglion cells and the innermost layers are pushed aside.
At the center of the foveal pit, only four retinal layers are present, the ILM, the OPL, the ONL and
the photoreceptors as shown in Figure 6.5.

6.1.3 The Optic Nerve Head (ONH)

The optic nerve head is a circular area in the back of the inside of the eye where the optic nerve
connects to the retina. At this location, 1.2 to 2.0 million ganglion cell axons converge and turn 90◦
to start their exit from the eye. This region is also known as the blind spot because no photoreceptors
are available. The ONH is also the entry and exit point as well for a number of large blood vessels
that supply the retina as shown in Figure 6.4(A). The ONH is also known as the optic disc and
it has a slightly oval structure, which consists of a peripheral rim composed of neural tissues and
the central depression (not always), the so-called cup. The region, which has neural tissues and
excludes the cup is known as the disk margin. The disk margin is an important parameter to quantify
the neural tissue in the ONH region and also the size of the ONH. The size of the physiologic cup is
developmentally determined and is related to the size of the disc. In general, the size of the optic
disc follows a near Gaussian distribution and in the non-highly myopic white population the mean
optic disc area is 2.5mm2 .

The Bruch’s membrane opening (BMO) is the another important morphological parameter in
the ONH region. The BMO is also known as the neural canal opening and occurs at the level of
the RPE and the Bruch’s membrane (BM). The outer border of the optic nerve is defined by the
termination of BM around the optic nerve, forming a hole called the BMO. This is the physiological
opening for axons of the retinal ganglion cells to exit the eyes globe.

6.2 Retinal Imaging using Optical Coherence Tomography

Optical Coherence Tomography (OCT) is a non-invasive diagnostic technique that provides a cross
sectional view of the retina with high resolution. This imaging technique was introduced in 1991
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Blood Vessels

Figure 6.4: The ONH and the fovea shape [6].

Figure 6.5: Layers obtained by a OCT device [124].

by Huang et al. [47]. OCT creates cross-sectional image by measuring the echo time delay and
intensity of the reflected and backscattered light. The first OCT images were produced in a time
domain fashion and the corresponding device is known as time-domain OCT (TDOCT). TDOCT was
capable to produce 400 A-scans per second using 6 radial scans oriented 30◦ apart. Later, SDOCT
(spectral domain OCT) has been introduced. The advantage of SDOCT over TDOCT is that the
interference pattern is split by a grating into its frequency components and all of these components
are simultaneously detected by CCD sensors. Compared to TDOCT, SDOCT is capable of aquiring
3D image data in very short time and with high accuracy. Figure 6.5 shows a section of a volume
from the macular region with multiple layers highlighted by the yellow lines acquired with an
SDOCT device. Most of the SDOCT devices add eye tracker systems to avoid the movement artifacts.
Currently, the most common four commercially available SDOCT devices are, Cirrus HD-OCT (Carl
Zeiss Meditec, Dublin, CA, USA), Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany),
RTVue-100 (Optovue Inc., Fremont, CA, USA), and Topcon 3DOCT 2000 (Topcon Corporation,
Tokyo, Japan).
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6.3 Neurological Disorders and their Effect on Retinal Shape

Optic neuritis (ON), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD),
Ideopathic Intracranial Hypertension (IIH) among many neurological disorders affect the macula,
the fovea and the ONH. While diagnosis of these diseases is done in a variety of ways and often
established by using several diagnosing techniques, such as magnet-resonance imaging (MRI) and
antibody tests, it is also known that many of these diseases can be detected evaluating OCT data
sets of the retina. Despite a variety of approaches in OCT to study and quantify the changes that
the retina undergoes in these disease, currently there is a lack of methods for quantifying these
morphologically. In this section we present several characteristics of disorders that are the focus
of this thesis and the features that have been captured in previous studies by OCT measurements.
Note, that compared to ophthalmological conditions, changes in neurological disorders can be often
in the rage of a few µm which poses a particular challenge in developing method that are able to
quantify these changes morphologically.

6.3.1 Multiple Sclerosis (MS)

Multiple sclerosis is the most common chronic inflammatory disorder of the central nervous system
of young adults. The most common symptoms in MS are visual disturbances including blurred
vision, visual field defects and color de-saturation and it is caused by the axonal damage and
the the inflammation to the optic nerve as part of the CNS. When these causing effects exceed
a threshold, clinically it is termed as the optic neuritis (ON) [124]. There are four courses of
MS: relapsing-remitting MS (RRMS), secondary-progressive MS (SPMS), primary-progressive MS
(PPMS), progressive-relapsing MS (PRMS). In RRMS, which is the most common MS course, the
patient suffers from attacks of new or increasing neurologic symptoms and these attacks are called
relapses, which are followed by periods of partial or complete recovery (remissions). During remis-
sions, all symptoms may disappear, or may continue and become permanent. PPMS is characterized
by accumulation of disability from the first symptoms, without any relapses or remissions. SPMS is a
combination of RRMS and PPMS. Patients, who are diagnosed with RRMS may eventually transition
to a secondary progressive course in which there is a progressive worsening of neurologic function
over time. Despite the high costs for the treatment per patient and per year there is no drug that
can cure MS.

Standard parameters for assessing structural changes of the retina in MS are the peripapillary
RNFL thickness from a ring scan centered at the ONH, total macular volume (TMV) of all layers, as
well as thickness of individual layers. Retinal damage has been noticed during the course of MS. A
20% loss of RNFL thickness is expected after ON because of the retrograde degeneration of retinal
axons as a consequence of an inflammatory attack to the optic nerve [124]. After initial swelling,
due to edema in the acute phase, degeneration of the retina especially in the RNFL occurs [3]. A
significant thinning is noticed within the GCL and IPL complex (GCIPL) also after ON and it is the
more reliable parameter for longitudinal monitoring of ON-related retinal damage [124]. In case
of non-ON, RNFL thinning is happening compared to healthy controls (HC) and SPMS patients are
more severely affected compared to RRMS and PPMS patients. In case of non-ON, the RNFL and
GCL reduction is caused by the ”dying back” of retinal ganglion cells [124]. Also SDOCT studies in
clinically isolated syndrome patients, which is the first potential herald of a developing MS, show
that degeneration of retinal neurons occurs very early in the course of the disease [74]. Although
still a very active research topic, many studies have shown a relationship between RNFL and GCIPL
thickness reduction and several MRI-derived measurements of brain atrophy [38, 123]. A meta-
analysis that investigated OCT layers association with neurodegeneration in MS in articles form
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1991 to 2016, found that the largest and most robust differences between the eyes of people with
MS and HC eyes are in the peripapillary RNFL and macular GCIPL, which mkes these layers perfect
candidates for diagnosis and monitoring, while INL might capture inflamatory disease activity [28].

6.3.2 Neuromyelitis Optica Spectrum Disorder

Neuromyelitis optica (NMO) is a rare autoimmune inflammatory disorders of the central nervous
system but an important differential diagnosis of MS. It is characterized by severe, immune-mediated
demyelination and axonal damage predominantly in the optic nerves and in the spinal cord. The
discovery of a disease-specific serum NMO-IgG antibody that selectively binds aquaporin-4 (AQP4)
has led to an increased understanding of a diverse spectrum of disorders. As treatment options for
NMO and MS are quite different, it is vital to distinct NMO from MS. From retinal damage point of
view, NMO causes severe neuronal damage and greater thinning of the RNFL compared to MS in
ON. Basically, the thinning of the peripapillary and macular RNFL, and of the GCL is more severe in
ON eyes in NMO compared to MS [88]. NMOSD frequently presents bilaterally and even simultan-
eously ON and the risk of recurrence is higher than in MS [98]. In a recent study [75] evidence of
microstructural changes for a specific type of NMOSD without ON in the fovea reagion was presen-
ted. These changes lead to modifications in the shape of the fovea visible in SDOCT macula volume
scans.

6.3.3 Ideopathic Intracranial Hypertension (IIH)

Ideopathic Intracranial Hypertension is also known as pseudotumor cerebri and it is characterized
by an increased pressure of the cerebrospinal fluid surrounding the brain, which is known as intra-
cranial pressure (ICP). In general, this condition occurs to young and obese women of childbearing
age (20-44 years). The main symptoms of IIH are headache, visual disturbances, pulsating tinnitus,
photopia, eye pain, diplopia and nausea. Papilledema with subsequent visual field loss is the most
feared clinical consequence, which mainly determines the therapy and outcome of the syndrome.
Patients with newly diagnosed IIH present RNFL thickening compared to HC, which decreased after
three months under IIH treatment, visible and quantifiable in the ring scan with OCT [44]. ONH
presents moderate up to extreme swelling and correlates with cerebrospinal fluid pressure (CSF)
in IIH patients compared to HC, which can be quantified by using SDOCT [52, 53]. The increased
volume of the ONH is associated with lower visual acuity. Moreover SDOCT, particularly 3D ONH
volume measurements, in a clinical trial setting, provide reliable measurement of the effects of
papilledema on the ONH [39], as well as in longitudinal studies, ONH volume could be employed
for therapy monitoring [2].

6.4 Previous Works

This part of thesis is mainly focused on the shape analysis of two structures of the retina: the fovea
and the ONH. In this section, we will give an overview of the related works in the fovea and the
ONH morphometry.

6.4.1 Fovea 3D Shape Analysis

Foveal shape analysis is a promising approach for quantitative OCT next to thickness or volume
measurements. The few studies in this regard can be divided into two categories: data-driven,
which directly employ segmentation lines from the OCT scan itself to compute various metrics,
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and model-driven, which use mathematical constructs to create a representation of the macula and
fovea in order to calculate different features directly from the model.

Data-driven approaches are based on the analysis of 2D images (B-scans) with results computed
from one B-scan or averaged over two B-scans. To analyze the variability of the healthy foveal shape
and to investigate the relationship between this structure and the foveal avascular zone (FAZ), Tick
et al. computed several parameters: pit depth, central foveal thickness, maximal retinal thickness,
pit diameter, pit cross-sectional area, and the foveal inner retinal area. Using these parameters,
the authors could show that the healthy foveal structure strongly correlates with its neurovascular
structure [102]. Similarly, Chiu et al. introduced the parameters foveal photoreceptor thickness and
foveal width, and found a large individual variation of FAZ size and shape in healthy retinae and
a negative correlation between FAZ diameter and foveal thickness [19]. Other studies investigated
the way retinal structures change in the context of prematurity [41] or albinism [69] using fovea
shape parameters like pit depth.

One of the first attempts to mathematically describe the foveal shape was published by Barak et
al. [8]. Their approach employs an automated symbolic regression software that fits a section of the
foveal profile around the center which was able to detect different patterns in the premacular hole
foveal configurations and normal foveal configurations. A similar approach was used by Nesmith
et al. to characterize changes that occur in the foveal anatomy with aging in a large number of
OCT scans [73]. The first more general mathematical model was created by Dubis et al., who used
Difference of Gaussians (DoG) function for a 2D fit of several radial scans passing through the lowest
point of a macular scan [23]. The method derived three pit metrics (diameter, depth and slope)
from a fitted model, which was symmetrical with respect to the fovea center. The model’s symmetry
was problematic, because of the fovea’s asymmetry, which stems mostly from differences between
the nasal and temporal retinal nerve fibers [87,102]. The model was thus not accurate enough for
modeling the asymmetric nature of the fovea and had problems covering the wide range of fovea
shapes in the healthy population, due to other model fitting constraints, which were e.g. not able
to model an extended flat part at the foveal pit in many healthy foveae [87, 102]. Scheibe et al.
applied a different approach to overcome these drawbacks by creating a more flexible 2D model,
which is fitted to each supporting direction in a circular region around the foveal center [86]. The
authors derived five parameters analytically: mean retinal thickness inside a radius of 1mm, foveal
bowl area, retinal radius, and maximum height of the foveal rim. By applying this model to a large
cohort of healthy subjects, the authors were able to confirm and further investigate the asymmetric
nature of the fovea. Although, capable of modeling a large variety of data, and having a smaller
root mean square error (RMSE) than previous approaches, the method has difficulties deriving 3D
parameters such as volume due to the complexity of the computation. Liu et al. created a different
2D model, which uses a sloped piecemeal Gaussian function (SPG) to model the asymmetry and
the foveal flatness [64]. The authors tested their method on a large number of macular scans
and showed good RMSE compared to other 2D methods. The main drawback consists in the use
of only two scans for each subject, a vertical and a horizontal one, which limits information on
only these sections and prohibits generation of 3D metrics like volume. Ding et al. developed an
approach, which intends to model the surface of inner retinal layers using a 3D model-fit based
DoG and a second order polynomial [22]. The authors used the model coefficients to discriminate
between Parkinson patients and a control group. As a drawback, the model coefficients’ relation to
foveal shape itself is difficult to interpret. Additionally, although the model takes into account the
difference in the slope for horizontal and vertical directions, it does not model the asymmetry in the
anatomical ones (temporal-nasal), nor does it capture fovea shapes with very flat pits accurately.
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6.4.2 Optical Nerve Head 3D Shape Analysis

Analyzing tissue damage and structural changes in the ONH is one of the key goals to improve the
diagnosis and understanding of diseases related to this structure. The main focus of ONH research
lies in the field of ophthalmology, the most prominent topic being glaucoma. The most common
parameters utilized include length, areas, volumes or ratios to quantify various regions of the ONH.
The main anatomical structures needed to compute these parameters are the inner limiting mem-
brane (ILM), Bruch’s membrane or the lower boundary of the retinal pigment epithelium (denoted
throughout the paper, for simplicity, by RPE) and the Bruch’s membrane opening (BMO) points. The
first two structures comprise the retina, while the BMO points have recently gained more and more
attention since Reis et al. [85] introduced these as being the true anatomical structure defining
the optic disc as to the clinically identified margin using fundus photography. Following this work,
several other groups [17,118] proved BMO based parameters superiority in reliability compared to
cup-to-disk ratio.

For ONH analysis, Enders et al. [26] and Daniel et al. [71] both used manual segmentation of
the BMO points and minimal rim width (BMO-MRW), as well as commercially available ILM surface
detection with manual correction to study the correlation between visual fields and structural ONH
changes. Chauhan et al. [17] proposed BMO-MRW as a marker for early glaucoma detection also
using manual segmented BMO points and BMO-MRW measurements, while Pollet et al. [84] used
a similar manual process to prove that structure-function relationship was significantly stronger
using BMO-MRW over other ONH parameters derived from spectral domain OCT. Furthermore,
several studies focused on the description of normative values that characterize the shape of the
ONH. Chauhan et al. [18] analyzed BMO-MRW, orientation of the long axis of BMO in a normal
population, while Enders et al. described BMO-MRW in micro- [26] and macrodiscs [27]. BMO
minimum rim area (BMO-MRA) correlates with the total number of nerve fibers traversing the
optic nerve and was introduced and investigated in [25,35]. Both studies have shown BMO-MRA’s
high diagnostic power for glaucoma. All these studies used commercial available OCT software to
retrieve the ILM surface and BMO points, which were then manually controlled and corrected by
experienced graders.

Another important parameter is the ONH volume, previously analyzed mainly in relation to
conditions characterized by ONH swelling. To this end, a 2D segmentation has been previously
developed by our group. The method [52] is able to robustly detect the lower boundary of the
RPE in healthy as well as in ONHs from patients suffering from various neurological disorders that
lead to swelling of the ONH. Several other publications investigating the same condition [39, 105]
followed, all using a graph-cut based approach to segment the ILM and BM at the ONH. Lee et
al. [61] introduced an end-to-end pipeline to compute several morphometric parameters (volumes
in different ONH regions and related area parameters). Furthermore, a surface correspondences
approach to create a normalized space was presented. However, this pipeline is semiautomatic and
needs manual segmentation of the ILM, BM and BMO points. For the development of the mean
surfaces, an accurate registration between the ONH surfaces is needed. Eli et al. [37] introduced an
ONH registration algorithm to compute the one-to-one correspondence between two ONH surfaces
using the hemispherical surface and volume registration. Later, Lee et al. [60] proposed a more
sophisticated registration algorithm based on surface currents and a hemispherical demons. Re-
cently, the shape variability of RNFL-choroidal thickness was investigated using a nonrigid surface
registration for longitudinal analysis [59].
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6.5 Contributions

In fovea morphometry, most of the published studies assume that the foveal pit shape follows a
Gaussian function-like shape and use the this function for modeling the fovea. However, this as-
sumption is inaccurate, and one of the goal of this thesis was to develop a robust, model-driven 3D
macula shape analysis method, which can be computed from standard macular volume OCT scans
and from which foveal and macular shape metrics can be derived. In addition to available mac-
ular thickness measurements, the developed approach allows a detailed analysis of foveal shape,
including depth, diameter, slope, area and volume of different regions, as well as pit shape analysis.

In case of ONH morphometry, most published methods related to ONH morphometry are com-
puting traditional parameters (lengths, widths and volumes) and performing layers segmentation
either manually or semiautomatically. To the best of our knowledge, none of the published ONH
morphometry methods use proper manifold 3D ILM or BM surfaces, but rather 2.5D surface (i.e. a
graph function on an XY-grid).

Specifically, the contributions of this part of thesis are:

1. Chapter 7 introduces a parametric modeling of the foveal shape using Cubic Beziér and derives
several 3D shape parameters, which quantify the foveal shape with high accuracy. Later, it is
shown that the proposed 3D parameters are capable to differentiate between the foveal shape
of HC and patients (neuroinflammatory disorders).

2. A 3D shape analysis algorithm is introduced to measure the shape variation in the ONH in
different neurological disorders. The proposed method uses manifold surfaces of two different
layers (the ILM and the RPE) of the retina to derive several 3D shape parameters (Chapter 8).
In the experimentation section, it is shown that the proposed ONH parameters are capable to
differentiate between HC and patient (IIH and ON).



Chapter 7

CuBe: 3D Shape Analysis of the Fovea

As part of the central nervous system, the retina comprises a similar cellular composition as the
brain, and many neurologic disorders thus affect the retina. Many neuroinflammatory conditions
are known to cause modifications to the fovea shape (for example, MS and NMO) and an accurate
and robust shape modeling of the fovea can diagnose several neurological disorders by detecting
the foveal shape changes. This chapter proposes a method for parametric modeling of the foveal
shape, where we exploit invariant features of the macula from OCT data and applies a cubic Bézier
polynomial along with a least square optimization to produce a best fit parametric model of the
fovea. Additionally, we provide several parameters of the foveal shape based on the proposed 3D
parametric modeling. Our quantitative and visual results show that the proposed model is not only
able to reconstruct important features from the foveal shape, but also produces less error compared
to the state-of-the-art methods. Finally, we apply the model in a comparison of healthy control
eyes and eyes from patients with neuroinflammatory central nervous system disorders and optic
neuritis, and show that several derived model parameters show significant differences between the
two groups. Most of the contents of this chapter are appeared in publication [112]. Additionally,
we added a quantitative analysis to check the fidelity of radial re-sampling from a volume scan.

7.1 Method Theory

As it is explained in Chapter 6, most of the model driven state of art methods assume that the foveal
pit shape is quite similar to the Gaussian function. Therefore, these methods use the Gaussian basis
function for the mathematical modeling of the foveal pit. However, this assumption is not entirely
true as we can see in Figure 7.1 that the pit shape varies a lot from the Gaussian shape. Modeling
of the flatness of the foveal pit is difficult with the Gaussian basis function. The inner (around the
mean value) and outer (away from the mean value) regions of the Gaussian function are depend
on each other and the standard deviation of the given Gaussian function. However, the shape of the
interior (pit area) and exterior (rim area) regions of the fovea are independent with each other. For
example, similar kinds of foveal pits can have significantly different rim heights. In summary, we
can say that the Gaussian function is not an optimal basis function to describe macular and foveal
shape.

To overcome these problems, we introduce a cubic Bézier based robust and flexible basis func-
tion, which is able to encounter all possible variations of the fovea shape. We fit the cubic Bézier
polynomial in the interior and exterior regions independently using a least square optimization with
invariant features of the fovea which will be discussed in the coming sections.
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(a) Big rim diameter (b) Small pit area (c) Flat pit (d) Big rim height (e) Asymmetric pit

Figure 7.1: Various shapes of the foveal pit

7.1.1 Invariant Features of the Fovea

Foveal shape in the healthy population varies [87]. In Figure 7.1, we show a selection of different
foveal pit shapes from our cohort to exemplify this. In order to reconstruct all these variations, we
need to find some invariant features of the shape. The tangents at the critical points of the macula
represent reliable and stable features. The critical points refer to the lowest point of the pit and the
highest point around this region as shown in Figure 7.2. The slope at these critical points is always
zero and the macula will have a horizontal tangent at these points.

7.1.2 Cubic Bézier

Bézier curve was introduced by Dr. Pierre Bézier in early 1960s. A parametric Bézier curve of
polynomial degree n is defined as:

Q(t) =
n∑
i=0

Pi,nBi,n(t), 0 ≤ t ≤ 1. (7.1)

Where the Pi,n are the control points and Bi,n are the Bernstein polynomials.

Bi,n(t) =
(
n

i

)
ti(1− t)n−i, i = [0, 1.., n]. (7.2)

For a Bézier curve of degree n, there would be n + 1 control points. From Equation (7.1), we
can see that the Bézier curve is a weighted average of the control points where weights are defined
using the Bernstein polynomials. For n = 3, Equation (7.1) becomes the cubic Bézier equation:

Q(t) =
3∑
i=0

PiBi,3(t), 0 ≤ t ≤ 1. (7.3)

The cubic Bézier will have four control points and is tangent to the first and last control points
P0 and P3 respectively [30]. The relationship between the control points, in terms of distance α, β
and unit tangent directions T01 and T23 can be written as:

P1 − P0 = α · T01,

P2 − P3 = −β · T23.
(7.4)

In our curve fitting algorithm, we use the parameters α and β of each Bezier segment as shape
parameters for an optimal curve fitting. The direction of a Bézier curve at its endpoints is uniquely
determined by the tangent vector. Thus, by choosing the same tangent vector for two adjacent
Bezier segments we assure tangent continuity (geometrical continuity G1) at each junction, and
thus throughout the whole composite spline curve.
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7.1.3 Least Square Optimization

We use a least square fitting approach to each B-scan/radial scan using a cubic Bézier curve and
the tangents at the critical points, derived from the invariant feature of the macular shape. Let us
consider c(x) as the central B-scan which contains the minimal retinal thickness point as shown in
Figure 7.2(a). The central B-scan can then be decomposed into two interior (c1(x), c2(x)) and two
exterior (c0(x), c3(x)) segments as shown in Figure 7.2(b).
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Figure 7.2: (a) The central B-scan of a volume with invariant tangent at the critical points. The
critical points are shown in red dots. (b) Shows the interior and the exterior segments of the right
half of the corresponding B-scan. The inner (P1, P2) and end (P0, P3) control points are shown in
green and red respectively.

Now, we compute the maximum point of the right half of the central B-scan which is represented
by (x2, c(x2)). Let us consider (xm, c(xm)) and (xe, c(xe)) the beginning and end points of the right
half of the scan c(x) as shown in Figure 7.2(b). Now, we split this half segment into two segments
at the critical point (x2, c(x2)) and each segment can be written as cI : [xm, x2]→ R for the interior
and cE : [x2, xe]→ R for the exterior segment as shown in Figure 7.2(b).

For interior segment (cI) the end points P0 and P3 have the horizontal tangent lines T = [1, 0]
and the inner control points P1 and P2 are lying opposite to each other w.r.t. tangent direction, as
shown in Figure 7.2(c). So, we can modify Equation (7.4) accordingly:

P1 = P0 + α · T,
P2 = P3 − β · T.

(7.5)

Similarly, for exterior segment (cE) of the macula, one of the end points has the horizontal
tangent and one of the inner control point (P1) lies in the same horizontal tangent direction. We
can modify Equation (7.4) for the exterior segments of the fovea:

P1 = P0 + α · T. (7.6)

The other inner control point P2 for the exterior segment does not have the horizontal tangent
direction (T = [1, 0]) so we optimize the value of P2 without using any invariant feature of the
macula.

In the next step, we compute the optimized values of α and β for a best fitting cubic Bézier
for each segment of the corresponding scan. We begin the optimization process from the interior
segment. By using Equations (7.3) and (7.5), we can modify the cubic Bézier equation for the
interior segment (cI) as follows:

(7.7)QI(t, α, β) = αTB1(t)− βTB2(t) + P0(B0(t) +B1(t)) + P3(B2(t) +B3(t)).
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If the corresponding segment has m data points and is represented by DI then we express the
least square energy function as:

E(t, α, β) =
m∑
i=1
‖DI

i −QI(ti, α, β)‖2. (7.8)

Now, we minimize the given energy function for t, α and β in the following two steps:

1. We give an initial value to t using the uniform parametrization and compute the corresponding
α and β by computing the first derivative of the given energy function w.r.t. α and β:

∇αE = 0, ∇βE = 0. (7.9)

2. In the next step, we compute the optimized value of t using the following equation with the
values α and β computed at the previous step:

∇tE = 0. (7.10)

We iterate these two steps until we get the minima of the convex energy function in Equation (7.8).
For the exterior segment (cE), our optimization procedure will be different compared to the

interior segments because only one end point has the horizontal tangent. Using Equation (7.6), we
modify Equation (7.3):

(7.11)QE(t, P2, α) = αTB1(t) + P0(B0(t) +B1(t)) + P2B2(t) + P3B3(t)).

Similar to the energy function in Equation (7.8), we define another energy function which depends
on t, P2 and α:

E(t, P2, α) =
m∑
i=1
‖DE

i −QE(ti, P2, α)‖2. (7.12)

Where DE represents data points corresponding to the external segment. The minimization of
this given function will be done similar to the interior segment parameter optimization. In the
first step, we compute the derivative of energy function w.r.t. P2 and α for a given initial uniform
parametrized t. Then, in the next step, we compute the optimized t with the new obtained values
for P2 and α.

7.2 Materials and Methods

To evaluate the method, we used macular volume scan (25◦× 30◦, 61 vertical or horizontal B-scans,
768 A-scans per B-scan, 9 ≤ ART ≤ 15) captured with the Spectralis OCT (Heidelberg Engineering,
Heidelberg, Germany). In the ART (Automatic real time) mode, the selected number of B-scans
(9-15) are averaged. The voxel dimensions in the horizontal, axial directions and distance between
B-scans in this data set were approximately 11.69, 3.87, and 125µm respectively. A total of 187 OCT
scans, 95 from healthy controls (HC) and 92 from patients with different autoimmune neuroinflam-
matory diseases, were selected from the NeuroCure Clinical Research Centers’ imaging database.
All scans underwent quality control by an experienced rater. Automatic layer segmentation was
performed with the device’s software (Eye Explorer 1.9.10.0 with viewing module 6.0.9.0). The
institute’s imaging database only contains images derived from local studies that were approved by
the local ethics committee at the Charité - Universitätsmedizin Berlin and were conducted following
the Declaration of Helsinki in its currently applicable version.
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Figure 7.3: The pipeline of the proposed algorithm.

All computations were carried out using MATLAB 2016b (MathWorks, Inc., Natick, MA, USA).
The statistical analysis was conducted using R version 3.3.2 [49]. We use ICC (inter class correla-
tion) and GEE (Generalized estimating equation) for the statistical measurement. The ICC measures
the repeatability of the proposed parameters and GEE (p-value) shows the significance between the
two groups of data for each of the proposed parameters.

7.2.1 Method Pipeline

Figure 7.3 shows the pipeline of our algorithm. In order to import the data into MATLAB, Heidel-
berg Spectralis OCT raw data format was exported from the device. This data contains additional
to the image information, the coordinates of the inner limiting membrane (ILM) and the Bruch’s
membrane (BM). The whole algorithm is implemented in following steps:

1. ILM-RPE Computation and Minimal Foveal Point Detection: In the first step, the height
difference between the inner limiting membrane (ILM) and the Bruch’s membrane (BM) of
each volume scan is extracted. This represents the macular thickness surface. Using this
difference has the advantage of removing the slant of the scan created at the measurement
and/or by the curved shape of the eye. Let us consider a volume scan and the corresponding
thickness profile represented as the graph function M : (x, y) → R, where (x, y) ∈ Ω and
Ω represents our region of interest. A volume scan is the combination of A-scans and B-
scans obtained from the OCT scanner. We assume that x and y represent A-scans and B-scans
directions respectively.

To determine the fovea’s center, a region Ω of 1 mm radius is taken from this surface centered
at the fovea automatically detected by the OCT device. The information about this center
point is contained in the raw data export. In order to detect the lowest point of the foveal
surface, we look at the minima of this region:

Mm =M(xm, ym). (7.13)

Where xm, ym are the coordinate of the minimum valueMm of the volume scan.

If several minimas are detected, then the median point of them is taken as the center of the
foveal pit.

2. Volume to Radial Sampling: This is the second step of the proposed method as shown in
Figure 7.3. For 3D shape analysis of the fovea, we need the information from the whole
volume, and therefore we re-sample the scan into a radial one. The radial scans capture
the foveal pit shape accurately as they have more samples near to the center compared to the
outer region of the fovea.The sampling from volumeM to radialMp can be done in following
steps:

(a) We create a polar grid Mp(r, θ), centered at the (xm, ym) with zero height value. The
radius and the angle between the radial lines will be defined by the user.
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(b) We compute the height value of Mp(r, θ) using the bilinear interpolation between the
nearest four points of theM(x, y) which are closest to the corresponding (r, θ).

(c) Now, we have n = (2π/θ) radial scans represented as:

c(r, θi) ∈Mp(r, θ) where i = 1, · · · , n.

These radial scans approximate the original volume scan as shown in Figure 7.4(a).

In our experimentation, we choose r = 2mm and θ = 15◦ for the radial sampling.

3. Segmentation of the Radial Scans: Each of the radial scan c(r, θi) is segmented into interior
cI and exterior cE regions at the corresponding maximum (critical) point, as shown in Figure
7.2(b) and (c).

4. Cubic Bézier Fitting using Least Square Optimization: For each of the segments of the ra-
dial scan, we fit a cubic Bézier with the least square optimization as explained in section 7.1.3.
For the interior segment, we use Equation (7.8), (7.9), and (7.10) to compute optimized α, β
and t. Then, we reconstruct the interior segment using the optimized parameters by assigning
these to Equation (7.7). Similarly, for exterior segment, we use Equation (7.12) and compute
optimized α, P2 and t then reconstruct the exterior segment by using Equation (7.11). To get
a complete 3D parameterized modeling of the fovea, we have to fit a cubic Bézier to each of
the re-sampled radial scans. Figure 7.4(b) shows the 3D parametrized model with 24 radial
scans.

(a) Resampling
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Figure 7.4: 3D shape reconstruction procedure. (a) Shows a volume scan with 61 B-scans and
768 A-scans and corresponding 24 radial directions (blue) using the bilinear interpolation. (b)
Represents the 24 fitted radial scans (green) using the least square optimization. The red points
show the critical points for each radial scan.

5. Parameters Computation: This is the last step of the algorithm. Now, we have a cubic Bézier
parameterized 3D radial scans of a volume scan. By using this parametrization, we compute
several parameters for the volume scan. The analytical formulations of these parameters are
shown in the next section.
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7.3 Parameters

In this section, we present several shape parameters for a volume scan using a cubic Bézier paramet-
erization. Rim point of a radial scan is defined as the maximum height point in the corresponding
radial scan. Let us consider that there are n number of radial scans re-sampled from a volume scan
and (p1, p2, · · · , pn) ∈ R3 are the corresponding rim points. A visual representation of some of the
3D parameters are shown in Figure 7.7 and 7.8. Figure 7.6 shows two parametrized radial scans
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(a) Re-sampled radial scans
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Figure 7.5: 2D shape reconstruction (a) Shows re-sampled radial scans from a volume scan divided
in two parts: c(r, θi) and c(r, θi + π) (b) Shows corresponding fitted radial scans using the least
square optimization which are represented by Q(t, θi) and Q(t, θi+π) and i = 1, · · · , n. A full radial
scan can be consider as a combination of c(r, θi) and c(r, θi + π) and is shown in different colors.

(Q(t, θi) and Q(t, θi+π)) of a volume scan which differ by the angle π. Several basic parameters are
defined based on these two radial scans. QI and QE represent parameterized interior and exterior
segments respectively. Most of the 3D parameters are computed by first computing the values for
each radial scans and then taking the average over these scans.

Central Foveal Thickness (hcft): refers to the central foveal thickness which is defined as the
minimum height of the fovea at the center of the pit. From Equation (7.13), CFT can be written as:

hcft =M(xm, ym). (7.14)

The hcft of each radial scan will be same because (xm, ym) is the center of radial and represents the
beginning as well as the lowest point for each radial scan.

Average Rim Height (hr): is defined as the average of the maximum height in each radial scan of
a volume (as shown in Figure 7.2). Average rim height is written as:

hr = 1
n

n∑
i=1

max(c(r, θi)). (7.15)

Rim Disk Area (Ar): To compute the rim disk area, we need to compute the normal to the disk
plane as shown in Figure 7.7. The covariance analysis of all the rim points provides not only the
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Figure 7.6: Visualization of the 2D parameters on the central B-scan.

disk normal but also shape information as described below. Rim points covariance matrix can be
computed as:

Cr = 1
n

n∑
i=1

(pc − pi)T (pc − pi),

pc = 1
n

n∑
i=1

pi.

(7.16)
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Figure 7.7: a: The top view of the rim disk. b: The normal vector of the rim disk plane and
corresponding covariance eigenvalues and eigenvectors.

Eigen analysis of the matrix Cr provides shape information about the rim disk. Let us consider
λ = [λ3, λ2, λ1] represents the eigenvalues sorted in decreasing order: λ3 ≥ λ2 ≥ λ1 and [v3, v2, v1]
are the corresponding eigenvectors. The most dominant eigenvalues λ3 and λ2 represent the major
and the minor axis of the rim disk respectively. The least dominant eigen direction will be the disk
normal so np = v1. Now, the Rim Disk Area can be computed as:

A3D = A2D
cosθ

, θ = 6 (np, nz), (7.17)

where nz = [0, 0, 1] and A2D : R2 → R is the projection of the A3D on XY-plane.

Average Rim Disk Diameter (dr): Let us consider pθi
and pθi+π are two rim points corresponding
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(a) Rim disk (b) Inner rim disk - all
points are at 0.5 mm
from the foveal center
used for the inner rim
volume computation

(c) Slope disk (d) Pit disk

Figure 7.8: A visual representation of the 3D parameters. The rim and the inner rim volume is
defined as the volume covered by the corresponding disk area. The radius for the inner disk area
and the volume is defined by user.

to the two parametrized opposite radial scans(Q(t, θi) and Q(t, θi + π)) then average rim diameter
is written as:

dr = 2
n

n/2∑
i=1
‖pθi
− pθi+π‖

2. (7.18)

Average Pit Depth (hp): represents the depth of the foveal pit and can be computed as the dif-
ference between the average rim height and central foveal thickness.

hp = hr − hcft. (7.19)

Average Maximum Pit Slope (sm): Average maximum pit slope measures the steepness of the
foveal pit. It is defined as the average of the maximal slope of each radial scan. The slope of a
parametrized radial scan Q(r, θi) is defined as:

si = dQyI (t)/dt
dQxI (t)/dt i = 1, · · · , n.

Where QyI (t) and QxI (t) represent parametrized x and y coordinates for the interior segment. To
calculate the maxima of the above equation, we compute the gradient, ∇tsi = 0 and we get the
value of tmi for the maximal slope (smi):

smi = − P y3 − P
y
0

α− β −
√
αβ − (P x3 − P x0 )

,

tmi =
√
α√

α+
√
β
,

(7.20)

where P y3 and P y0 are the y coordinates of the end control points of the QI(t, θi). Similarly, P x3 and
P x0 are the x coordinates of the end control points of the QI(t, θi). Average maximum pit slope of a
volume is defined as:

sm = 1
n

n∑
i

smi . (7.21)
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Average Slope Disk Diameter (ds): Average slope disk diameter is computed similar to the av-
erage rim diameter dr. Slope width is computed between two opposite parametrized radial scans:
Q(t, θi) and Q(t, θi + π) and the corresponding maximum slope points are psθi

and psθi+π such that:

psθi
(x) = Qx(tm, θi),

psθi
(y) = Qy(tm, θi),

psθi+π(x) = Qx(tm, θi + π),
psθi+π(y) = Qy(tm, θi + π).

(7.22)

Where tm represents maximum slope point in parametric domain as shown in Equation (7.20) and
Qx(tm, θi), Qy(tm, θi) are the corresponding x and y coordinate. Average slope width of a volume
is defined as:

ds = 2
n

n/2∑
i=1
‖psθi
− psθi+π‖

2. (7.23)

Slope Disk Area (As): The slope disk area can be computed similar to the rim disk area. Let
us consider (ps1, ps2, · · · , psn) ∈ R3 are the maximum slope points corresponding to the each radial
scan and are computed using Equations (7.20) and (7.22). Covariance of maximal slope points can
be computed using Equation (7.16) to obtain the normal vector, major and minor axes of the slope
disk.

Pit Flat Disk Area(Af): The pit flat disk area measures the flatness of the foveal pit around the cen-
ter and is computed using a threshold value τ for each of the radial scans. In each radial scan, we
compute a point pfθi

where the retinal thickness is smaller than τ . Then the corresponding segment

from the center (xm, ym) to the computed point pfθi
is treated as flat. This can be done in following

two steps:

1. First of all, we compute the parametric value tf corresponding to the threshold value τ :

τ −QyI (tf , θi) = 0. (7.24)

2. Now, we compute the x value corresponding the parametrized value tf :

dfi
= QxE(tf , θi). (7.25)

The point pfθi
= (dsi , τ, θi) corresponds to the pit flat point for a single radial scan. Similarly, let us

consider (pf1 , p
f
2 , · · · , pfn) ∈ R3 as the pit flat points. The area, major and minor axis of the pit flat

disk can be computed similar to the rim disk area. We compute the average pit flat disk diameter
(df) using dfi

from Equation (7.25):

df = 2
n

n∑
i=1

dfi
. (7.26)
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Rim Volume (Vr): In general, the volume under a surface in Cartesian and Polar domains and
can be computed using the following equation:

Vr =
∫ ∫

A
f(x, y)dxdy =

∫ 2π

0

∫ R

0
c(r, θ)rdrdθ.

After the discretization process of the whole volume into n radial directions, the above equation
will become :

Vr = 2π
n

n∑
i=1

∫ R

0
c(r, θi)rdr.

We modify the above equation using the following substitution. The interior parametrized curve
QI(t, θi) is defined between the center and the rim points.

Therefore, the parametric value t→ {QxI (t, θi), QyI (t, θi)} will be t = 0 and t = 1 at the center
and the rim points respectively. Similarly, r = QxI (t, θi), R = QxI (1, θi), c(r, θi) = QyI (t, θi) and

dr = dQx
I (t,θi)
dt dt. After the substitution, the rim volume can be written as:

Vr = 2π
n

n∑
i=1

∫ 1

0
QyI (t, θi)Q

x
I (t, θi)

dQxI (t, θi)
dt

dt. (7.27)

In the above equation, R = P x3 and at the end point of the parametric curve t is equal to one. R
might have different values for different radial scans because of the asymmetry of the foveal pit.

Inner Rim Volume (VIR): Is defined as the volume of the fovea within the fixed radius from the
center. The radius is given by the user. Let us consider tu to be the parametric value corresponding
to the user input radius ru for each radial direction. Now, we can modify Equation (7.27):

VIR = 2π
n

n∑
i=1

∫ tu

0
QyI (t, θi)Q

x
I (t, θi)

dQxI (t, θi)
dt

dt. (7.28)

Before using the above equation, we have to make sure that the radius R will be equal to the min-
imum of the P x3 from all the radial directions. In case, R is bigger than any of the P x3 , we need to
introduce the exterior segment into the integration as well.

Pit Volume (Vp): We calculate the total volume (Vt) under the rim disk, Vt = A3Dh, where h
is the average height of the rim points. Then the pit volume can be defined as:

Vp = Vt − Vr. (7.29)
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Parameters ICC LCI UCI
Pit depth (hp) (mm) 0.9813 0.9663 0.9904

Central foveal thickness (hcft) (mm) 0.9894 0.9808 0.9945
Rim height (hr) (mm) 0.9762 0.9572 0.9877

Rim diameter (dr) (mm) 0.9250 0.8686 0.9608
Rim disk area (Ar) (mm2) 0.9192 0.8588 0.9576

Major axis rim disk (λr3) (mm) 0.9099 0.8434 0.9526
Minor axis rim disk (λr2) (mm) 0.9069 0.8384 0.9509
Slope disk diameter (ds) (mm) 0.9309 0.8785 0.9639

Slope disk area (As) (mm2) 0.9467 0.9056 0.9723
Major axis slope disk (λs3) (mm) 0.9365 0.8881 0.9669
Minor axis slope disk (λs2) (mm) 0.9467 0.9056 0.9723

Pit disk diameter (df ) (mm) 0.8966 0.8215 0.9454
Pit disk area (Af ) (mm2) 0.9155 0.8528 0.9556

Major pit disk length (λf3) (mm) 0.8990 0.8255 0.9467
Minor pit disk length (λf2) (mm) 0.9135 0.8494 0.9545

Rim Volume (Vr) (mm3) 0.8957 0.8201 0.9449
Inner rim volume (VIR) (mm3) 0.9668 0.9400 0.9831

Pit Volume (Vp) (mm3) 0.9606 0.9297 0.9796
Pit slope (sm) (Degrees) 0.9697 0.9457 0.9844

αm (mm) 0.9172 0.8555 0.9565
βm (mm) 0.8102 0.6864 0.8967

Table 7.1: Repeatability test for the 3D parameters. Abbreviations: ICC - intra-class correlation
coefficient, LCI - lower confidence interval and UCI - upper confidence interval.

7.4 Experiments, Results and Discussion

Scans from 187 eyes of 95 healthy control (HC) and 92 patients with autoimmune neuroinflammat-
ory diseases (with and without previous optic neuritis) were processed.

7.4.1 Quantitative Analysis of Volume to Radial Re-sampling

An important aspect in the re-sampling process of the volume are the number of radial scans. Lower
number of radial scans will lead to data loss and higher number will increase the running time of
the algorithm. Figure 7.10 shows the height map of each volume scan (61, 97,193 B-scans) and the
corresponding re-sampled scans with different radial number (12, 18, 24). A star scan (n = 48)
measured by the OCT device is used as the ground truth.

Table 7.2: The distance between a volume scan and re-sampled radial scan using the L2-metric
[114]

Volume to radial distance comparison (in µm)
Volume scan n = 12 n = 18 n = 24
61 B-scans 0.188 0.167 0.183
97 B-Scans 0.151 0.166 0.164
193 B-scans 0.157 0.161 0.166
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We also tested the fidelity of the re-sampling, by computing the L2-metric [114] for each of the
volumes mentioned above, see Table 7.2. This metric basically calculates the closeness between two
geometries. The very low values obtained show that there is no significant difference between these
volumes and radial scans derived, therefore the scan with 61 B-scans delivers enough information
for the our analysis. Moreover, the radial samples capture the foveal pit shape accurately as there
are more samples into the pit region compared to the outer region of the fovea.

(a) Volume Scan (b) n = 12 (c) n = 18 (d) n = 24 (e) Ground Truth,
n = 48

Figure 7.9: From left to right: The first column consists of volume scans with 61, 97 and 193 B
scans respectively. The second column shows 12 re-sampled radial lines from the corresponding
volume scan. Similarly, third and fourth column show 18 and 24 re-sampled radial lines from the
corresponding volume scan. The last column shows a volume measured with a radial scan pattern
consisting of 48 radial B-scans.

7.4.2 Re-test Reliability

The proposed algorithm was able to successfully model all the scans; visual inspection of model
results did not suggest modelling failure in any of the included scans. Table 7.1 shows the test-
retest reliability applied to a group of data including three repeated measurements of 30 healthy
eyes. Intra-class correlation coefficient (ICC) for the 3D derived parameters varied from 0.8102 for
βm to 0.9894 for the Central foveal thickness as shown in Table 7.1. From Table 7.1, the parameter
βm has the lowest repeatability. Basically, αm and βm are the average of all α and β belonging to
radial scans of the interior region of the fovea. As mentioned in Equation (7.5), α and β represent
the distance between the control points P0, P1 and P3, P2 respectively. The lowest ICC value of the
βm indicates the distance between the P3 and P2 is not consistent. Perhaps, the small inaccuracy in
rim point detection is leading to the low repeatability of the βm. On the other hand, α depends on
the center or beginning control point(P0) which is fix for a volume scan. Therefore, αm has a better
repeatability compared to the βm.
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Parameters HC Patients GEE
Mean (SD) Min-Max Mean (SD) Min-Max p

Pit depth (hp) (mm) 0.128 (0.019) 0.079-0.165 0.1109 (0.022) 0.04-0.15 3.9E-08
Central Foveal Thickness (hcft) (mm) 0.224 (0.016) 0.186-0.266 0.223 (0.014) 0.199-0.2640 0.611

Rim height (hr) (mm) 0.352 (0.014) 0.319-0.389 0.335 (0.018) 0.285-0.378 5.4E-13
Rim Diameter (dr) (mm) 2.13 (0.19) 1.68-2.58 2.14 (0.17) 1.76-2.51 0.497

Rim disk area (Ar) (mm2) 3.58 (0.66) 2.22-5.24 3.51 (0.59) 2.44-4.90 0.450
Major axis rim disk (λr3) (mm) 0.625 (0.11) 0.372-0.867 0.615 (0.1) 0.42-0.86 0.539
Minor axis rim disk (λr2) (mm) 0.535 (0.1) 0.32-0.817 0.524 (0.089) 0.33-0.78 0.451
Slope disk diameter (dr) (mm) 0.608 (0.015) 0.34-0.955 0.636 (0.16) 0.274-0.101 0.178

Slope disk area (As) (mm2) 0.313 (0.12) 0.1-0.71 0.348 (0.17) 0.059-0.839 0.111
Major axis slope disk (λs3) (mm) 0.053 (0.02) 0.019-0.123 0.06 (0.029) 0.01-0.839 0.08
Minor axis slope disk (λs2) (mm) 0.045(0.018) 0.0001-0.1 0.049(0.026) 0.00002-0.127 0.18

Pit disk diameter (df ) (mm) 0.182(0.031) 0.11-0.295 0.197(0.044) 0.1-0.433 0.016
Pit disk area (Af ) (mm2) 0.027(0.01) 0.011-0.068 0.033(0.018) 0.0079-0.149 0.012

Major axis pit disk (λf3) (mm2) 0.0048(0.0017) 0.0023-0.011 0.0058(0.003) 0.0013-0.025 0.009
Minor axis pit disk (λf2) (mm2) 0.004(0.0015) 0.0013-0.01 0.0048(0.0028) 0.0012-0.022 0.004

Rim volume (Vr) (mm3) 1.02(0.19) 0.558-1.544 0.944(0.17) 0.597-1.364 0.002
Pit volume (Vp) (mm3) 0.239(0.044) 0.152-0.366 0.236(0.054) 0.134-0.384 0.73

Inner rim volume (VIR) (mm3) 0.11(0.018) 0.06-0.153 0.1(0.019) 0.062-0.147 8.9E-4
Pit slope (sm) (Degree) 12.74(2.68) 6.32-20.65 10.65(2.62) 3.4-16.29 6.32E-8

αm (mm) 0.25(0.063) 0.133-0.470 0.25(0.077) 0.1-0.45 0.46
βm (mm) 0.61(0.1) 0.36-0.83 0.56(0.089) 0.335-0.845 1.7E-4

Table 7.3: Analysis of all the 3D parameters defined for the HC and patient group. The last column
shows the GEE analysis between the two groups. Abbreviations: HC - healthy controls. SD -
standard deviation, Min - minimum value, Max - maximum value, GEE - generalized estimating
equation models analysis accounting for the inter-eye/intra-subject dependencies, p - p value

7.4.3 Model Accuracy

For root-mean-square-error (RMSE) comparison, we have implemented two state-of-the-art meth-
ods for foveal shape analysis, the one proposed by Ding et al. [22], and the one described in Dubis
et al. [23] and compared them with our method. For a better readability, we renamed [22] as M1
and [23] as M2. In case of M1 we implemented the 3D approach, as presented in the paper [22].
For M2 we implemented the 3D version by extending the 2D method presented by the authors on
our radial re-sampled volume. In order to visualize the behaviour of M1 vs. M2 vs. CuBe, we
present the fitting results on the central B-scan for the same subject in Figure 7.10. As shown in the
figure, CuBe is able to capture the exact foveal shape with the lowest RMSE compared to methods
M1 and M2.

The method M2 [23] derives only three parameters (slope, rim diameter and rim height) to
characterize the shape of the fovea, which is a too small number to encounter all the variation of
the fovea shape. The optimization procedure of the mentioned energy function in this method is
complex because of the two different Gaussian basis and the energy function can have unstable
minima quite often. The method M1 [22] needs eight parameters (A0, A11, · · · , A22) to reconstruct
a 3D model of a volume scan. However, these parameters do not represent any morphological
information of the fovea, which makes their interpretation in relation to the morphological charac-
teristics rather difficult. Scheibe et al. introduced a stable and accurate modeling of the fovea using
the double derivative of an exponential function [86]. This method [86] is applied to re-sampled
radial scans from 3D macula cube scans. There are four parameters used to parametrize a radial
scan. However, the term γ (see [86]) makes the algorithm more complex and leads to difficulties in
optimization and analytical analyses. Additionally, the direct analytical derivation of 3D paramet-
ers, e.g volumes presents several computational problems. Recently, Liu et.al [64] has introduced a
sloped piecemeal Gaussian model for characterizing the foveal pit shape. This method uses a com-
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(a) M1, RMSE = 4µm
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(b) M2, RMSE = 8µm
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(c) CuBe, RMSE = 2.5µm

Figure 7.10: Comparison of the proposed method with two state-of-the-art methods [22] and [23].
Blue curve is the raw input (ILM-RPE difference) at the central B-scan and black, red and green
are the reconstructed curves with [23], [22] and our method (CuBe) respectively. The RMSE val-
ues show that the proposed method manages to reconstruct the shape with minimum artifacts,
specifically the pit shape.
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Figure 7.11: RMSE values for 3D M1 , M2, and CuBe for the whole data set.

bination of linear and Gaussian basis function along with an additional parameter which encounters
the pit bottom flatness. As this method is using piecewise basis function, the optimization process is
not straight forward. However, this method only characterizes the foveal pit and not the complete
fovea shape.

In Figure 7.11, we show the different RMSE values for 3D fitting on a volume scan. The com-
parison has been analyzed between the proposed method, CuBe and methods M1, M2. The RMSE
values for our approach show overall lower values compared to the other methods as our method
reconstructs the foveal pit more accurately as shown in Figure 7.10. In the proposed method,
the highest RMSE occurs in regions where the segmentation is mostly influenced by blood vessels.
These blood vessels produce several ”jumps” spatially close to each other as shown in Figure 7.12
(bottom). These ”jumps” have a strong influence also in the detection of the maximum height
points (rim points) which can lead to a higher RMSE because our parametrization scheme depends
on these critical points. In such cases, peaks are representing the vessels and not the retinal tis-
sue, which might induce an additional noise when investigating differences between healthy and
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Figure 7.12: Two examples of the 2D curve fitting results with the lowest (top) and the highest
(bottom) RMSE values selected from the entire data set analyzed. The original data is shown in red
and the fitted curve in green. The RMSE values are from top to bottom, 1.0 µm, 7.1 µm.

pathological data [76].
An important aspect of the presented method is the ability to utilize characteristic fovea prop-

erties for the whole circular region (re-sampled radial region) because of the flexible and robust
cubic Bezier parametrization scheme. This implies that we derive the discussed 3D parameters in
a completely new fashion. This gives us the possibility to explore new morphological features of
the fovea in terms of the Rim Disk, Slope Disk, and Pit Flat Disk by looking at the eigenvectors of
the covariance matrix defined in Equation (7.16). By computing the pit flatness and its area from
the 3D reconstruction, we are able to provide not only a better visual insight of this region but also
a potentially new diagnostic parameter for further investigations into several diseases e.g. those
characterized by nerve fibers and ganglion cells loss [74, 75, 88]. Another beneficial aspect of the
presented 3D approach is in the flexibility of defining the foveal radius. This can be computed from
the model itself as a specific feature of each radial Bézier curve part, and as such it would take into
account the asymmetric nature of this region, or as a variable radius, defined by the user.

7.4.4 Application in HC and Patients with Autoimmune Neuroinflammatory Dis-
orders

Having all the parameters described in the previous section, we can perform a first analysis of the
morphological aspects of the data set. Table 7.3 shows all the 3D parameters defined for the HC
and patient groups. The measurements obtained with our method have similar values to the ones
encountered in the literature. For characteristics like Rim Disk Area, Slope Disk Area, Pit Flat Disk
Area a comparison to the existing literature was not possible since this is the first time that these
parameters has been introduced.
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We also investigated the capability of the derived parameters to differentiate between HC and
patients. To this end we performed generalized estimation equation (GEE) analyses. Table 7.3
represents that several parameters show significant differences between HC and patients. These
results open new possibilities for further investigation of the fovea shape derived parameters in
more specific clinical diseases.

7.5 Summary

This chapter introduced a reliable, accurate and meaningful approach for fovea shape analysis,
which is able to correctly model the profile of the foveal region and reconstruct its 3D shape. The
proposed method has been shown to robustly encounter possible variations in foveal shape in HC
but also in foveas that undergo considerably changes during the course of neuroinflammatory dis-
ease.

The mathematical model created is simple and has the advantage of a straight forward deriva-
tion of parameters. The computed parameters are in direct relation to the geometry modeled, and
therefore provide an intuitive way of interpretation for further medical analysis and clinical inter-
pretation. A major advancement of the developed method is that it is possible to analyze the foveal
shape in a clinical context, especially from the 3D perspective.

Several derived foveal shape parameters showed statistically, significant differences between HC
and patients with neuroinflammatory diseases of the central nervous system and could potentially
reveal more insights into the foveal morphology and the changes it undergoes especially when
correlated with other clinical information. Further applications in ophthalmologic diseases like
macular degeneration are worth to be investigated as well and it would be interesting to see the
foveal shape variation in HC, in terms of proposed 3D parameters.





Chapter 8

Optic Nerve Head 3D Shape Analysis using ILM
and RPE Manifold Surfaces

Due to several ophthalmological problems and neurological disorders (for example, IIH and ON),
the ONH shape varies and the quantification of these shape variations lead to an accurate diagnosis
of different diseases. To provide an ease to clinicians, the automatic shape analysis of the ONH
is always preferable. The presented method automatically generates a 3D ONH model and then
allows computation of several 3D parameters describing the ONH. The method starts with a high-
resolution OCT volume scan as input. From this scan, the model-defining inner limiting membrane
as inner surface and the retinal pigment epithelium as outer surface are segmented, and the Bruch
membrane’ opening as the model origin is detected. Based on the generated ONH model by tri-
angulated 3D surface reconstruction different parameters (areas, volumes, annular surface ring,
mininum distances) of different ONH regions can then be computed. Additionally, the bending
energy (roughness) in the BMO region on the ILM surface and 3D BMO-MRW surface area are com-
puted. We show that our method is reliable and robust across a large variety of ONH topologies
(specific to this structure) and present a first clinical application. This chapter is based on a pub-
lished method [113]. Additionally, statistical shape analysis of a group of ILM surfaces is included.
The statistical shape analysis of a group of ILM surfaces is performed in two different steps: in the
first step, we align the ILM surfaces w.r.t each other and then in the next step, we compute a mean
shape of a group of ILM surfaces. Later, the shape variation is shown using the standard deviation
of the corresponding points.

The objective of our proposed method is to retrieve robust and reliable 3D quantitative meas-
urements that describe different aspects of the various shapes of the ONH. Specifically,:

• A fully automatic pipeline is introduced for 3D shape analysis of the ONH region.

• The segmentation of ILM and the lower boundary of RPE along with BMO points are done
automatically.

• Triangulated 3D surfaces of the ILM and the lower boundary of RPE are computed.

• Several 3D shape analysis parameters are introduced along with traditional parameters.

• Statistical shape analysis of a group of ILM surfaces is added.

• We validate and prove the robustness of our algorithm in a dataset with clinical relevance.

87
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Figure 8.1: Pipeline

8.1 Method

In this section, we explain the procedure to compute several 3D shape parameters of the ONH
including the preprocessing of the ILM and the RPE surfaces and correspondence between them.
Figure 8.1 shows the algorithm pipeline, where an OCT volume scan is the input of the algorithm.
Next, we compute the triangulated ILM and RPE surfaces along with the BMO points. These three
structures represent the ONH 3D shape and serve as inputs for further shape analysis of the ONH.
In the remainder of the paper, the ILM and the RPE surfaces will be represented asMilm andMrpe,
respectively and the BMO points are denoted by P.

The ILM and the RPE surfaces are triangulated manifold surfaces and can be written in terms of
the set of vertices and faces (triangles):

Milm = {Vilm,Film}, and Mrpe = {Vrpe,Frpe}.

These two surfaces can have different numbers of vertices and number of triangles. Let us consider
that nilm and milm represent the numbers of vertices and faces in the ILM surfaces. Similarly,
nrpe and mrpe denote the size of Vrpe and Frpe respectively. The BMO points are represented as:
P = {pi ∈ R3|i = 1 · · ·np}, where np is the number of the BMO points. The computation of the RPE
surface and the BMO points is explained in a published method [113].

8.1.1 ILM Surface Computation

The ILM separates the retina from the vitreous body and defines a critical boundary layer for the
ONH. Several ILM segmentation methods have been published to separate the ILM layer around
the ONH region, and most of them compute the ILM layer as a graph function and are unable to
capture complex and variable topological structures of the ONH. To compute the ILM surface, we
previously developed a method introduced by Gawlik et al. [36]. This method is based on an active
contour method of Chan-Vese type and produces a true 3D ILM segmentation unlike other state-of-
the-art methods. Figure 8.2(a) shows the ILM surface, which is computed using the Marching Cubes
algorithm [65], where the input level sets are computed using the method proposed by Gawlik et
al. [36]. The lower right corner of Figure 8.2(a) shows that the approach is capable to reconstruct
a complex topological structure in the ONH region and the Marching Cubes algorithm produces a
manifold ILM surfaceMilm with proper neighborhood and properly oriented face normals.

8.1.2 ILM Surface Smoothing

During data acquisition of the ONH region using the 3D OCT scanner, noise is inevitable due to
various internal, and external factors. As it can be seen from Figure 8.2(a), the ILM surface is not
smooth and has various noise components. Staircase artifacts are also shown in the left corner
of Figure 8.2 as an effect of the Marching Cubes algorithm and a volume scan resolution. For
an accurate shape parameter computation, these artifacts, including noise components should be
removed at the early stage of the algorithm. To compute a noise free and a high-fidelity ILM
surface, we use a robust mesh denoising algorithm, proposed by Yadav et al. [115]. In general,
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(a) Noisy ILM surface (b) Smooth ILM surface (c) Smooth ILM and RPE surfaces
with BMO

Figure 8.2: The ILM surface computed using the marching cube algorithm and level sets produced
by Method [36].

mesh denoising algorithms are divided into two categories: isotropic and anisotropic methods.
Isotropic methods remove noise effectively but produce a volume shrinkage, which leads to an
incorrect shape analysis of the ONH. Anisotropic methods are feature preserving mesh denoising
algorithms and induce a small volume shrinkage compared to the isotropic methods. In case of the
ILM surface, the anisotropic methods treat the Marching Cube artifacts as features and lead to an
incorrect shape analysis. Method [115] is a combination of both isotropic and anisotropic methods
and produces a high fidelity smooth ILM surface without staircase artifacts and minimum volume
shrinkage as shown in Figure 8.2(b). This method also produces a high quality triangular mesh
with proper face normal orientation, which is vital in further shape analysis of the ONH.

(a) Noisy BMO Points (b) Smooth BMO Points

Figure 8.3: (a) Noisy and irregular BMO points, which are computed automatically. (b) Smooth
and uniform density BMO points are computed using an ellipse fit.

8.1.3 Ellipse Fitting to the BMO Points

The proposed algorithm uses the BMO points, which are computed automatically using Method
[113]. Due to blood vessels around the ONH, noise components and 3D OCT scan patterns, the
BMO points are non-uniform and noisy as shown in Figure 8.3(a). To remove these artifacts, we fit
an ellipse to the BMO point onto XY-plane. First of all, the BMO points P are projected onto the
corresponding XY-plane and denoted as a points set: P2D = {p̃i ∈ R2|i = 1, · · · , np} . Then, we
apply Method [33] to compute a fitted ellipse to the BMO pints in R2. Another key parameter in
the ONH shape analysis is the center of the BMO points. This is computed as the barycentric of the
all P2D points:

p̃c = 1
np

∑
p̃i∈P2D

p̃i, (8.1)
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where p̃c ∈ R2. Figure 8.3 shows that the ellipse fitting is not only removing noise but also increases
data points uniformly.

8.1.4 Correspondence between ILM and RPE Surfaces

The total retina at the ONH region is delimited by ILM and RPE. For further analysis, it is necessary
to find the corresponding points between these two surfaces. In the proposed method, we compute
vertices in the RPE surface corresponding to each face (fi ∈ Film|i = 1, · · · ,milm) of the ILM
surface. In general, the RPE surface, represented here as a function graph : Mrpe : R2 → R,
has a less complex structure compared to ILM. In the OCT scanner, the number of the A-scans (x-
direction) and the number of the B-scans (y-direction) are fixed, which creates a regular XY-grid
as a domain for the RPE graph function. Therefore, the index of each vertex of the RPE surface
can be computed using the numbers of x-lines (vertical lines) and y-lines (horrizontal lines) and
the sampling size in both directions, denoted by εx and εy respectively. The numbers of x-lines and

Figure 8.4: Correspondence between ILM and RPE surfaces, the face fi ∈ Film (green triangle) has
a corresponding vertex vi ∈ Vrpe in the RPE surface.

y-lines are computed using the following equation:

xline = xmax − xmin
εx

+ 1,

yline = ymax − ymin
εy

+ 1,
(8.2)

where xmax, xmin, ymax and ymin are the bounding values of the RPE surface in x and y directions.
For each face fi ∈ Film, the vertex of the RPE surface onto the XY-plane is computed, which approx-
imates the position of the corresponding A-scan and B-scan in the volume scan. Let us consider that
ci represents the centroid of the face fi. To compute the corresponding vertex in the RPE surface,
we project the face fi onto the corresponding XY-plane, c̃i represents the projected centroid. The
terms c̃xi and c̃yi are the corresponding x and y coordinates. We compute the x-index (ix), the
y-index (iy), and the vertex (i) index using xline and yline in the RPE surface for the face fi using
the following equation:

ix =
⌈
c̃xi − xmin + εx/2

εx

⌉
,

iy =
⌈
c̃yi − ymin + εy/2

εy

⌉
,

i = ix + iy · xline,

(8.3)

where d e represents the ceil function and i denotes the corresponding vertex in the RPE surface.
For an accurate computation, we check the neighborhood of vertex i of the RPE surface and the
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corresponding vertex is computed as:

ṽi = ṽj ∈ Ωi | min|c̃i − ṽj |, (8.4)

where Ωi represents the 3× 3 neighborhood (at XY-plane) of vertex i. The term ṽi is the projection
of vertex vi ∈ Vrpe onto XY-plane. Finally, we get the set C = {vi ∈ R3 |i = 1, · · · ,milm} represents
the set of RPE surface vertices corresponding to each face in Film. A visual representation of the
correspondence computation is shown in Figure 8.4, where the RPE’s regular XY-grid is shown in
blue and the projected ILM’s vertices and edges are painted in red.

8.1.5 BMO Region Segmentation

For the ONH shape analysis, the region inside the BMO points is of special interest since BMO points
represent the optic disc margin. To segment this region, we exploit the elliptic representation of the
BMO points in R2 along with their center as mentioned in Equation (8.1). First, we compute the
center of the ILM and the RPE surfaces corresponding to the center p̃c of the BMO points. Let us
consider that Ṽilm and Ṽrpe represent projected sets of vertices onto XY-plane. Then, the indices of
the centers of both surfaces can be computed as:

ilmc = j ∈ 1, · · · , nilm | min|ṽilmj − p̃c|,
rpec = j ∈ 1, · · · , nrpe | min|ṽrpej − p̃c|,

(8.5)

where ṽilmj ∈ Ṽilm and ṽrpej ∈ Ṽrpe. The vertices vilmc ∈ Vilm and vrpec ∈ Vrpe represent the
center of the ILM and the RPE surfaces receptively.

To compute the BMO regions in the ILM and the RPE surfaces, we transform the ellipse into
a circle using the affine transform. Let us consider p̃ei represents the fitted ellipse point to p̃i as
mentioned in section 8.1.3 and p̃ci denotes the corresponding affine transformed point on a circle of
radius r. This transformation reduces the complexity of the BMO region computation and improves
the speed of the algorithm. Now, by using the circular representation of the BMO points, the BMO
regions in both RPE and ILM surfaces is computed as:

Ωilm = {fj ∈ Film | |c̃ilmj − ṽilmc| ≤ r},
Ωrpe = {fj ∈ Frpe | |c̃rpej − ṽrpec| ≤ r},

(8.6)

where r is the radius of the transformed circle and c̃ilmj , c̃rpej represent the centroid of a face in the
ILM and the RPE surfaces respectively. The computation shown in Equation (8.6), is done using
disk growing method.

8.1.6 3D Shape Parameters

ONH Cup Volume: The ONH cup is defined as a segment of the ILM surface which is below the RPE
surface as shown in Figure 8.5(a) and (b). Note that the cup is not present in every ONH volume
scan. For example, mostly in the case swollen ONH scans, the ILM surface is always above the RPE.
To detect the availability of the ONH cup, we go to the each face fi ∈ Film and compute its centroid
ci. As we discussed in Section 8.1.4, each face fi of the ILM has the corresponding vertex vi ∈ C in
RPE. If czi − vzi ≥ 0 for all faces in ILM, then there is no cup available in the ONH region. Otherwise,
there is a cup. The terms czi and vzi show the corresponding z-coordinates (height). Similarly, we
can compute the cup region:

Ωcup = {fi ∈ Film | (czi − vzi ) ≤ 0}, (8.7)
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(a) BMO Region (b) Vcup (c) CONHT (d) Eb

Figure 8.5: A visual representation of the different morphological parameters.

where Ωcup consists of faces (triangles) of ILM, which are below the RPE surface. As it can be seen
from Figure 8.5(b), the cup region is also a manifold surface with proper face normal orientation. To
compute the volume of the cup accurately, we exploit the face normal information at each triangle
of the region. The cup volume is computed using the following equation:

Vcup =
∑

(fi∈Ωcup)
Aihi, (8.8)

where Ai represents the area of a triangle, which is a projection of the face fi of the ILM surface
onto XY-plane and hi is the height w.r.t the RPE surface. These variables are defined as:

Ai = 1
2(~e0 × ~e1), hi = (czi − vzi ), (8.9)

where ~e0 and ~e1 are the connected edges of the projected triangle. The cross product between the
two edges will take care of the orientation of the corresponding face and enables a precise volume
computation even in complex topological regions.
Central ONH Thickness (CONHT): The CONHT is defined as the height difference between the
center of the ILM and the RPE surfaces as shown in Figure 8.5(c). The CONHT of a ONH volume
scan is computed as:

CONHT = (vzilmc − vzrpec), (8.10)

where vzilmc and vzrpec show the corresponding height value (z-coordinates) of the center vertices
vilmc and vrpec respectively introduced in section 8.1.5.
BMO Region Volume: The BMO region volume is computed using the segmented ILM and RPE
surfaces. We separated the cup volume from the BMO region volume such that it does not include
the cup volume, if it exists. Then, the BMO region volume can be computed as:

Ωbmo = Ωilm \ Ωcup. (8.11)

Similar to the ONH cup volume, we compute the BMO region volume using the similar formula:

Vbmo =
∑

(fi∈Ωbmo)
Aihi, (8.12)

where Ai is area of the face fi which belongs to the set Ωbmo and is computed using Equation (8.9).
Similarly, hi is also computed using the corresponding vertices in the RPE surface as it is mentioned
in Equation (8.9).
ONH Total Volume: Similar to the ONH cup and the BMO region volumes, the ONH total volume is
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(a) Ω1.5mm, Ωrpe
1.5mm (b) Vtv (c) Vav

Figure 8.6: A visual representation of total and annular volume regions.

also computed using ILM and RPE surfaces. The total volume is computed from the circular region,
with radius 1.5 mm, centered at vilmc and vrpec for ILM and RPE surfaces respectively, as shown in
Figure 8.6(a). Similar to Equation (8.6), we compute the circular regions for ILM and RPE surfaces
using the following equation:

Ωilm
1.5mm = {fj ∈ Film | |c̃ilmj − ṽilmc| ≤ 1.5 mm},

Ωrpe
1.5mm = {fj ∈ Frpe | |c̃rpej − ṽrpec| ≤ 1.5 mm},

(8.13)

where Ωilm
1.5mm and Ωrpe

1.5mm are the sets consisting of all faces within the 1.5mm region of the ILM
and RPE surfaces from their centers. The other parameters were defined in Equation (8.6). Then,
the total volume region is calculated using Equation (8.13):

Ωtv = Ω1.5mm \ Ωcup, (8.14)

where Ωtv represents the total volume region on the ILM surface as shown in Figure 8.6(b), which
is further employed for the total volume computation:

Vtv =
∑

(fi∈Ωtv)
Aihi, (8.15)

where Ai is the area of the face fi ∈ Ωtv and hi is the height w.r.t. corresponding vertex in the RPE
surface similar to Equation (8.9).
ONH Annular Region Volume: The ONH annular region represents the ONH outer region, see
Figure 8.6(c). On ILM surface this region is computed using the following equation:

Ωav = Ω1.5mm \ Ωbmo, (8.16)

where Ωav consists of all the ILM surface faces which belong to the annular region of the ONH.
Similar to Equation (8.15), we compute the volume of the annular region using the ILM and RPE
surfaces correspondence.

Vav =
∑

(fi∈Ωav)
Aihi. (8.17)

The annular region volume helps to see the change in the outer region of the ONH volume in dif-
ferent cohort.
Bending Energy: The roughness on the ILM surface within the BMO region is an important para-
meter and commonly known as the bending energy on a manifold surface. The bending energy
measures the fairness of a surface in terms of the curvature. In general, the outer region of the ILM
surface is quite smooth and flat unlike the one inside the BMO, which has very complex topological
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structure. In this paper, we define the bending energy within the BMO region using the element-
based normal voting tensor (ENVT) [114]. The ENVT exploits the orientation information (face
normals) to compute a shape analysis operator at each face fi ∈ Ωbmo and is defined as:

Mi = 1∑
fj∈Ωbmo

aj

∑
fj∈Ωbmo

ajnj ⊗ nj , (8.18)

where nj represents the normal of face fi and nTj the transpose of nj . The term aj is the area of
the face fi. To assure robustness against irregular sampling of the ILM surface, we weight Equation
(8.18) by the corresponding face area aj . The symbol ⊗ represents the outer product. The ENVT,
Mi is a symmetric and positive semidefinite matrix, so, it can be decomposed into its spectral
components:

Mi =
2∑

k=0
λikek ⊗ ek, (8.19)

where ˘ik = {λi0, λi1, λi2} are the eigenvalues vector and these eigenvalues are sorted in decreasing
order (λi0 ≥ λi1 ≥ λi2 ≥ 0). The corresponding eigenvector is denoted by ek. In general, the
dominant eigenvalue λi0 has the corresponding eigenvector in the direction of the face normal and
the remaining two eigenvectors will be aligned to the principle curvature direction on the ILM
surface. On the planer region, only λi0 will be significant, on the edge region, λi0 and λi1 will be
significant and at the corners, all of these eigenvalues are significant. So using the anisotropic
properties of these eigenvalues, we define the bending energy inside the BMO region using the
following equation:

Eb =
∑

fi∈Ωbmo

λi2 + λi3, (8.20)

where λi2 and λi3 are the two least dominant eigenvalues of the ENVT of the face fi. Figure 8.5(d)
shows how each face of the BMO region is colored based on Equation (8.23). The color is scaled
from white (flat regions) to red (sharp features).
BMO-MRW: BMO-MRW, has been proposed by [85] as a valid alternative structural measure. It
computes the minimum distance between the BMO points and the ILM surface. The average BMO-
MRW, denoted by avgmrw, is calculated as:

avgmrw = 1
np

np∑
i=1
|pmrwi − pei |. (8.21)

(a) BMO-MRW with ILM (b) BMO-MRW

Figure 8.7: BMO-MRW surface with and without ILM.

BMO-MRW surface area: BMO-MRW surface area is computed by taking the whole region defined
by all BMO-MRW. We combine the ellipse fitted BMO points P2D and the z-coordinates from P and
represent these as: Pe = {pei ∈ R3|i = 1 · · ·np}, as it can be seen in Figure 8.7 (green points). For
each point pei ∈ Pe, we compute a point pmrwi on the ILM surface:

pmrwi = vj ∈ Vilm| min|vj − pei |. (8.22)
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The MRW points Pmrw = {pmrwi ∈ R3|i = 1 · · ·np} are lying on the ILM surface as shown in Figure
8.7(a) (violet points). We create a quad surface using point sets Pe and Pmrw by introducing edges
between the corresponding vertices in both point sets and connecting the neighbor points as shown
in Figure 8.7(b). The number of quad elements in the MRD surface is equal to the number of points
in each point sets and is represented as: Q = {qi|i = 1 · · ·np}. MRW-MRA is computed as:

Amrw =
∑
qi∈Q

aqi , (8.23)

where aqi represents the area of the quad qi.
BMO Area: As shown in Figure 8.3, BMO area (BMOA) represents the area under the fitted ellipse
to the BMO points and is computed using the conic representation:

Abmo = πr1r2, (8.24)

where r1 and r2 are the major and minor axes of the fitted ellipse.

8.2 Statistical Shape Analysis of the ILM Surface

To understand the variation in the shape of the ONH regrading different neurological disorders,
we use statistical shape analysis tool that quantifies the shape variability of a population of shapes.
This tool identifies statistical shape difference between healthy controls and patients and provides
an improved diagnosis. From geometry processing point of view, statistical shape analysis is closely
related to super-resolution surface reconstruction [31,54], where several low resolution 3D scan are
merged to reconstruct a high resolution surface, which has enhanced feature and surface quality.

For statistical shape analysis of ONH surfaces, we follow a procedure, which is similar to super-
resolution surface reconstruction techniques. To perform statistical analysis on ONH shapes, first
of all, we require intrinsic correspondence information between the ONH surfaces and then next
step , we compute a mean shape of a group of ONH surfaces using the correspondence information.
Let us consider that Mi

ilm represents a set of ILM surfaces, where i = 0, · · · , ns − 1 and ns is the
number of ILM surfaces. During statistical shape analysis, M0

ilm = {V0
ilm,F0

ilm} is considered as
the reference geometry and other geometries ofMi

ilm are registered to theM0
ilm.

8.2.1 ONH Surfaces Alignment

This is the first stage of the whole statistical shape analysis process of a set of ONH surfaces. At this
stage, we align ILM surfaces with each other. In general, we choose one of the surface as a reference
geometry and register other geometries w.r.t the reference geometry rigidly. This shape registration
algorithm uses point sets as a geometric data representation. Here, we are following the ICP (it-
erative closest point) registration algorithm [50] along with the singular value decomposition. we
compute the translational and rotational displacement between the geometries based on the corres-
pondence points. It is an iterative registration algorithm and keeps registering the geometries until
it meets the convergence criteria. After the registration process, we compute the corresponding
vertices in the ILM surfaces (Mi

ilm |i = 1, · · · , ns − 1) w.r.t the each vertex (vj |j = 0, · · · , n0
ilm) of

the reference geometryM0
ilm. Let us consider Cj is a matrix of size (ns − 1 × 3) and each row of

Cj consists of the corresponding vertices w.r.t. vj .
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8.2.2 Mean Shape Reconstruction

Mean shape of a set of ILM surfaces is computed similar to Method [54]. Let us consider thatMs
ilm

represents the means shape of the ILM surfaces and it has the same number of the vertices of the
reference geometryM0

ilm and vsj is the vertex of the mean shape and it is computed as:

vsj = 1
ns

ns−1∑
j=1

Cj . (8.25)

The above equation computes the centroid of the corresponding points. Figure 8.8 shows the mean

(a) ILM Surface (b) Mean Shape (c) Variations

Figure 8.8: (a) A single noisy ILM surface. (b) The ILM mean surface, which computed using
Equation (8.25) with 80 ILM surfaces. (c) Standard deviation of the shapes.

shape of 80 ILM surfaces. The computation is done in two steps, alignment and mean shape recon-
struction. Figure 8.8 (c) shows the variation of the 80 shapes and this variation is computed using
the standard deviation of the corresponding points of ILM surfaces.

8.3 Experiments and Results

In order to validate our method, we performed repeated-measurement reliability tests, investigated
ONH shape in healthy subjects, and tested if our method is able to detect differences in patients
with diseases known to affect the ONH in form of swelling and atrophy. Finally, we measured the
implementation’s performance.

8.3.1 Re-test Reliability

In order to estimate the repeated-measurement reliability we took three repeated scans of both
eyes from 10 healthy subjects measured twice at a time interval of one week. Table 8.1 shows
the repeatability results. We see that our method scores highly at every parameter presented, with
lowest intraclass correlation coefficient (ICC) of 0.905 for CONHT, and highest 0.998 for Vcup.

Parameters ICC LCI UCI
ONH Cup Vol.(Vcup) (mm3) 0.998 0.996 0.999

Central ONH Thickness (CONHT) (mm) 0.905 0.813 0.958
BMO Region Vol (Vbmo) (mm3) 0.993 0.986 0.997

ONH Total Vol. (Vtv) (mm3) 0.995 0.989 0.998
ONH Annular Vol. (Vav) (mm3) 0.983 0.965 0.993

Bending Energy (Eb) 0.911 0.824 0.961
BMO-MRW Surface Area (Amrw) (mm2) 0.910 0.823 0.960

BMO-MRW (dmrw) (mm) 0.993 0.986 0.997
BMO Area (Abmo) (mm2) 0.989 0.976 0.995
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Parameters HC IIH ON GEE
Mean (SD) Min-Max Mean (SD) Min-Max Mean (SD) Min-Max p(HC-IIH) p(HC-ON) p(IIH-ON)

Vcup 0.044 (0.075) 0.000-0.370 0.004(0.012) 0.000-0.049 0.035(0.052) 0.000-0.256 0.0012 0.353 1.95E-07
CONHT 0.002 (0.25) -0.545-0.550 0.403(0.340) -0.242-0.966 0.012(0.231) -0.399-0.668 9.91E-06 0.747 4.22E-06
Vbmo 0.572 (0.21) 0.107-1.035 1.521 (1.022) 0.436-4.3098 0.444(0.189) 0.105-1.050 5.02E-05 0.0012 2.66E-06
Vtv 2.523 (0.250) 2.114-2.988 3.309 (0.799) 2.351-5.365 2.163(0.295) 1.522-3.087 2.57E-05 5.28E-13 6.54E-10
Vav 1.906(0.181) 1.504-2.268 1.78(0.357) 0.572-2.200 1.683(0.210) 1.162-2.118 0.146 2.19E-10 0.257
Eb 0.026 (0.009) 0.011-0.065 0.029 (0.013) 0.008-0.066 0.029(0.010) 0.011-0.066 0.477 0.038 0.793

Amrw 1.791 (0.459) 0.763-2.789 2.975(1.016) 1.439-5.351 1.414(0.364) 0.615-2.765 1.35E-06 5.44E-06 3.94E-11
dmrw 0.135(0.054) 0.261-0.035 0.263 (0.105) 0.127-0.447 0.093(0.040) 0.030-0.260 3.52E-07 2.69E-05 1.81E-12
Abmo 1.906 (0.352) 1.158-2.646 2.682 (1.109) 1.057-5.709 1.861(0.377) 1.030-3.326 0.0028 0.407 0.001

Table 8.2: Analysis of all the 3D parameters defined for the HC and patient group. The last column
shows the GEE analysis between the two groups. Abbreviations: HC - healthy controls. SD -
standard deviation, Min - minimum value, Max - maximum value, GEE - generalized estimating
equation models analysis accounting for the inter-eye/intra-subject dependencies, p - p value

Table 8.1: Repeatability test for the 3D parameters. Abbreviations: ICC - intra-class correlation
coefficient, LCI - lower boundary of 95% confidence interval and UCI - upper boundary of 95%
confidence interval.

8.3.2 Clinical Validation

In this section, we present the results of our automatic pipeline approach for 248 OCT scans, from
three groups, 71 healthy control eyes (HC), 31 eyes of patients suffering from idiopathic intracra-
nial hypertension (IIH) [52], which causes swelling of the ONH (papilledema), and 146 eyes of
patients with autoimmune central nervous system disorders and a history of optic neuritis (ON),
an inflammatory optic neuropathy that damages the optic nerve leading to neuroaxonal degener-
ation [83, 124]. We hypothesized that patients with IIH would show significant changes in com-
parison to healthy controls indicating ONH swelling. And that patients with a history of ON would
show significant changes in comparison to healthy controls indication ONH atrophy. The results
presented in Table 8.2 demonstrate that our approach successfully captures the differences. The
only parameter showing no difference between groups is bending energy, Eb. Although we expec-
ted that in the IIH affected eyes the ONH shape inside the BMO to have a smoother convex shape,
the data is still extremely heterogeneous. Thus, the bending energy reflects this extreme variability
in the data. Especially inside the BMO the topologies from one ONH to the other can be extremely
different.

8.4 Summary

This chapter introduced an automatic and robust pipeline for the computation of several parameters
that characterize ONH shape. In particular, this chapter consists of an algorithm that computes true
3D parameters derived from triangulated mesh surfaces of the ILM and RPE. The proposed method
uses the RPE lower boundary, which is a smooth 2.5D surface and 3D ILM surface, which is com-
puted using a novel Chan-Vese level set approach and Marching Cube algorithm. The preprocessing
of these surfaces are done by employing a robust mesh denoising method. The resulting high fi-
delity surface preserves features with minimal shrinkage. It is important to remember that we are
interested in detecting even minimal shape changes, thus, obtaining a surface that has no staircase
artifacts, but preserves features is crucial for parameter computation. Having three components,
ILM and RPE and BMO points, the proposed method computes the correspondence between sur-
faces ILM and RPE, such that each face of the ILM surface has a corresponding vertex in RPE. After
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this step, we have all the ingredients to derive the parameters. Although the computed paramet-
ers, except the bending energy, were already introduced in several previous studies (mostly for the
investigation of glaucoma or papilledema), this is the first algorithm to provide quantifiable meas-
urements derived in a true 3D context. Furthermore, this method able to provide a first proof of
the applicability in a clinical setting, by showing the power of several parameters introduced in
differentiating between inflammation in form of swelling (IIH) and destruction in form of reduction
of layer thickness (ON).

In summary, the results showed that the proposed method successfully and robustly utilizes ILM,
RPE and BMO points and it enables computing the morphometric parameters, that capture shape
characteristics of the ONH and further can be used to diagnose several neurological disorders. In
future, this algorithm can provide an aid to diagnose several neurological disorders.



Chapter 9

Summary

Through the development of this thesis, starting from the curvature tensor, we have been able to
understand the variation of tangent vectors to define a shape analysis operator and also a rela-
tionship between the classical shape operator and the curvature tensor on a triangular surface. In
continuation, the first part of thesis analyzed the variation of surface normals and introduced a
shape analysis operator, which is further used for mesh and point set denoising. In the second part
of thesis, mathematical modeling and shape quantification algorithms are introduced for retinal
shape analysis.

In the first half, this thesis followed the concept of the variation of surface normals, which is
termed as the normal voting tensor and derived a relation between the shape operator and the
normal voting tensor. The concept of the directional and the mean curvatures is extended on the
dual representation of a triangulated surface. A normal voting tensor is defined on each triangle
of a geometry and termed as the element-based normal voting tensor (ENVT). Later, a deformation
tensor is extracted from the ENVT and it consists of anisotropy of a surface and the mean curvature
vector is defined based on the ENVT deformation tensor.

A ENVT-based mesh denoising algorithm is introduced, where the ENVT is used as a shape oper-
ator. A binary optimization technique is applied on the spectral components of the ENVT that helps
the algorithm to retain sharp features in the concerned geometry and improves the convergence
rate of the algorithm. Later, a stochastic analysis of the effect of noise on the triangular mesh based
on the minimum edge length of the elements in the geometry is explained. It gives an upper bound
to the noise standard deviation to have minimum probability for flipped element normals.

The ENVT-based mesh denoising concept is extended for a point set denoising, where noisy
vertex normals are filtered using the vertex-based NVT and the binary optimization. For vertex
update stage in point set denoising, we added different constraints to the quadratic error metric
based on features (edges and corners) or non-feature (planar) points.

This thesis also investigated a robust statistics framework for face normal bilateral filtering and
proposed a robust and high fidelity two-stage mesh denoising method using Tukey’s bi-weight func-
tion as a robust estimator, which stops the diffusion at sharp features and produces smooth um-
bilical regions. This algorithm introduced a novel vertex update scheme, which uses a differential
coordinate-based Laplace operator along with an edge-face normal orthogonality constraint to pro-
duce a high-quality mesh without face normal flips and it also makes the algorithm more robust
against high-intensity noise.

The second half of thesis focused on application of the proposed geometric processing algorithms
on the OCT (optical coherence tomography) scan data for quantification of the human retinal shape.
The retina is a part of the central nervous system and comprises a similar cellular composition as the
brain. Therefore, many neurological disorders affect the retinal shape and these neuroinflammatory
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conditions are known to cause modifications to two important regions of the retina: the fovea and
the optical nerve head (ONH). This thesis consists of an accurate and robust shape modeling of these
regions to diagnose several neurological disorders by detecting the shape changes. For the fovea, a
parametric modeling algorithm is introduced using Cubic Beziér and this algorithm derives several
3D shape parameters, which quantify the foveal shape with high accuracy. For the ONH, a 3D shape
analysis algorithm is introduced to measure the shape variation regarding different neurological
disorders. The proposed algorithm uses triangulated manifold surfaces of two different layers of the
retina to derive several 3D shape parameters. The experimental results of the fovea and the ONH
morphometry confirmed that these algorithms can provide an aid to diagnose several neurological
disorders.
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[80] C. ÖZTIRELI, G. GUENNEBAUD, AND M. GROSS, Feature preserving point set surfaces based on
non-linear kernel regression, vol. 28, 2009, pp. 493–501.
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Zusammenfassung

Im Rahmen dieser Arbeit ist es gelungen, ausgehend vom Krümmungsoperator, die Variation von
Tangentenvektoren und die Beziehung zwischen klassischem Formoperator und Krümmungstensor
einer triangulierten Fläche zu verstehen. In der ersten Hälfte folgt diese Arbeit dem Konzept der
Variation der Flächennormalen, welche als Normal-Voting-Tensor (NVT) bezeichnet wird, und leitet
eine Beziehung zwischen dieser und dem Formoperator ab. Damit wird das Konzept von Richtung-
skrümmungen und mittlerer Krümmung um die duale Representation einer triangulierten Fläche er-
weitert. Ein Normal-Voting-Tensor wird für jedes Dreieck einer Geometrie definiert und als element-
basierter Normal-Voting-Tensor (element-based NVT, ENVT) bezeichnet. Später wird aus dem ENVT
ein Deformationstensor extrahiert, der die Anisotropie einer Fläche enthält. Basierend auf diesem
Deformationstensor wird die mittlere Krümmung definiert.

Ein neu eingeführter Entrauschungs-Algorithmus für polyedrische Flächen benutzt den ENVT
als Formoperator. Dabei wird eine binäre Optimierungstechnik auf den spektralen Komponenten
des ENVT angewendet. Dieser Algorithmus erhält scharfe Kanten in der bearbeiteten Geometrie
und hat eine deutlich erhöhte Konvergenzrate. Des Weiteren wird das Konzept des ENVT-basierten
Flächen-Entrauschens zu einem Entrauschungsalgorithmus für Punktwolken erweitert.

Diese Arbeit untersucht auch ein
”
Robust Statistics Framework“ zum Filtern von Flächennor-

malen und führt eine robuste und hochqualitative Zwei-Schritt-Methode zum Entrauschen von
polyedrischen Flächen ein. Diese Methode nutzt die Tukeys-bi-weight-Funktion als robusten Schätzer
und stoppt dadurch die Diffusion an scharfen Kanten und erzeugt glatte umbilische Regionen. Ein
Schema zum Vertex-Update wird eingeführt, das einen Laplace-Operator auf Basis differentieller
Koordinaten zusammen mit einer Zwangsbedingung für Rechtwinkligkeit zwischen Kanten und
Flächennormalen benutzt, um hochqualitative Flächen ohne falsch orientierte Normalen zu erzeu-
gen. Dadurch wird der Algorithmus u.a. robuster gegen Rauschen mit starker Intensität.

In der zweiten Hälfte der Arbeit werden die vorgeschlagenen Geometrie-Prozessierungsalgo-
rithmen auf Optische-Kohärenztomographie-Scandaten (Optical Coherence Tomography, OCT) an-
gewendet, um die Form der menschlichen Retina/Netzhaut zu quantifizieren. Diese ist Teil des
zentralen Nervensystems und weist eine ähnliche Zellzusammensetzung auf wie das Gehirn. Da-
her können viele neurologische Erkrankungen die Form der Retina beeinflussen. Neuroimmuno-
logische Störungen verursachen bekanntermaßen unter anderem Veränderungen in zwei wichti-
gen Regionen der Retina: der Fovea und dem Sehnervenkopf (optic nerve head, ONH). Diese
Arbeit enthält eine genaue und robuste Form-Modellierung dieser Regionen, führt eine paramet-
rische Modellierung der Form der Fovea mittels kubischer Beziér-Kurven ein und leitet verschiedene
3D-Formparameter ab, die die Form der Fovea mit hoher Genauigkeit quantifizieren. Für den
ONH wird ein 3D-Formanalyse-Algorithmus eingeführt, um die Formveränderung bei verschiedenen
neurologischen Erkrankungen zu vermessen. Der vorgeschlagene Algorithmus nutzt triangulierte
2-Mannigfaltigkeiten für Oberflächen zweier retinaler Schichten zur Bestimmung mehrerer 3D-
Formparameter. Durch das Erkennen dieser spezifischen Formveränderungen kann zukünftig die
Diagnose und Verlaufsbeobachtung neurologischer Erkrankungen vereinfacht werden.
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