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Abstract

Aims: Hypoxic pulmonary vasoconstriction (HPV) is a physiological response to hypoxia, which
optimizes ventilation-perfusion ratio (V/Q) by the redistribution of blood flow from poorly
ventilated to better aerated lung areas. In HPV, increases in intracellular Ca** concentration in
response to hypoxia trigger pulmonary artery smooth muscle cell (PASMC) contraction.
Transient receptor potential canonical 6 (TRPC6) cation channels that have translocated to
caveolae in the plasma membrane in response to hypoxia have been show to play a critical role
in this Ca®* response. Phosphatase and tensin homolog (PTEN) serves as scaffold for TRPC6 and
as such, regulates its abundance at the plasma membrane in endothelial cells. Therefore we
aimed to define the role of PTEN in HPV, with a specific focus on its role in the recruitment of
TRPC6 to caveolae in PASMC.

Methods and results:

Experiments were performed in the isolated perfused mouse lung model (IPL). Smooth muscle
specific PTEN deficiency attenuated pulmonary vasoconstriction in response to hypoxia but not
to angiotensin Il (Ang Il). PTEN in human PASMC was knocked down by siRNA and PTEN
deficient murine PASMC were isolated. In both cases the increase in intracellular Ca®*
concentration in response to hypoxia was attenuated compared to control cells. PTEN-TRPC6
interaction was assessed by co-immunoprecipitation and proximity ligation assay with both
assays confirming an increased interaction of PTEN with TRPC6 under hypoxic condition.
Caveolae were separated by sucrose gradient centrifugation, and PTEN and TRPC6 were found
to translocate to caveolae in response to hypoxia. Rho-kinase (ROCK) inhibition prevented
PTEN-TRPCS interaction, their translocation to caveolae, and the intracellular Ca** increase in
response to hypoxia in PASMC, and attenuated the HPV response in the IPL.

Conclusion: These data implicate a critical role for PTEN in HPV in that hypoxia triggers the
interaction of PTEN with TRPC6 in a ROCK dependent manner which is required for the
subsequent translocation of TRPC6 to caveolae and the elicitation of Ca** entry into and hence,
contraction of PASMC.



Abstrakt

Ziele: Die hypoxische pulmonale Vasokonstriktion (HPV) ist ein physiologischer Mechanismus,
bei dem der Blutfluss von schlecht zu besser beliifteten Lungenarealen umgeleitet wird, um
somit ein moglichst optimales Beliiftungs-Durchblutungsverhéltnis (V/Q) sicher zu stellen.

Dabei transloziert der Kationenkanal transient receptor potential canonical 6 (TRPC6) als
Reaktion auf hypoxische Bedingungen zu Caveolen an der Plasmamembran, wo er einen Ca**
Einstrom vermittelt der nachfolgend die Kontraktion der pulmonal-arteriellen glatten
Muskelzellen (PASMC) auslost.

Aufgrund bisheriger Ergebnisse, die eine Regulation von TRPC6 durch die Phosphatase
phosphatase and tensin homolog (PTEN) in endothelialen Zellen nachwiesen, soll in der
vorliegenden Studie die Rolle von PTEN in PASMC bei der HPV und speziell hinsichtlich der

Rekrutierung von TRPC6 in Caveolen untersucht werden.

Methoden und Ergebnisse: Versuche an isoliert-perfundierten Lungen (IPLs) von Maiusen,
deren glatte Muskelzellen spezifisch fir PTEN defizient waren, zeigten eine verringerte
vasokonstriktorische Reaktion auf Hypoxie. Dieser Effekt konnte jedoch nicht nach Stimulation
mit Angiotensin Il (Angll) nachgewiesen werden. Analog dazu hemmte ein siRNA vermittelter
PTEN knockdown in humanen PASMC den Hypoxie-induzierten Anstieg der zytosolischen Ca**
Konzentration ([Ca*'];). Ko-Immunoprizipitationen und Proximity Ligation Assays zeigten eine
verstirkte Interaktion von PTEN mit TRPC6 in humanen PASMC und Mauslungen als Reaktion
auf Hypoxie. In PASMC konnte sowohl fiir PTEN als auch fiir TRPC6 eine Translokation zu
den Kaveolen unter hypoxischen Bedingungen nachgewiesen werden, welche wiederum durch
die pharmakologische Inhibition der Rho-assoziiertem Protein Kinase ROCK blockiert wurde.
Diese Inhibition verhindert die Interaktion von PTEN mit TRPCS, den Hypoxie-induzierten Ca?*

Anstieg und die HPV sowohl in PASMC als auch in murinen Lungen.

Fazit: Unsere Daten weisen auf ein PTEN vermitteltes Zusammenspiel zwischen ROCK und
dem zytosolischen Ca®* Signalweg bei der HPV hin. ROCK induziert dabei die Interaktion von
PTEN mit TRPC6, die dann gemeinsam zu den Calveolen translozieren und dort den Ca?*

Einstrom und nachfolgend die Kontraktion der PASMC ausldsen.
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Aims

and results

Hypoxic pulmonary vasoconstriction (HPV) redistributes blood flow from poorly ventilated to better aerated areas
in the lung, thereby optimizing ventilation-perfusion ratio (V/Q). Pulmonary artery smooth muscle cell (PASMC)
contraction in response to hypoxia is triggered by Ca®" influx via transient receptor potential canonical 6 (TRPC6)
cation channels that have translocated to caveolae in the plasma membrane. Since phosphatase and tensin homolog
(PTEN) was suggested to regulate TRPC6 in endothelial cells, we aimed to define its role in the hypoxic response
of PASMCs and as a putative mediator of HPV.

In isolated perfused mouse lungs, smooth muscle specific PTEN deficiency attenuated pulmonary vasoconstriction
in response to hypoxia but not to angiotensin Il (Ang Il). Analogously, siRNA-mediated knock down of PTEN in
human PASMC inhibited the hypoxia-induced increase in cytosolic Ca®"  concentration ([Ca2+]i). Co-
immunoprecipitation and proximity ligation assays revealed increased interaction of PTEN with TRPC6 in human
PASMC and murine lungs in response to hypoxia. In hypoxic PASMC, both PTEN and TRPCé translocated to cav-
eolae, and this response was blocked by pharmacological inhibition of Rho-associated protein kinase (ROCK) which
in parallel prevented PTEN-TRPC6 interaction, hypoxia-induced [CaH]i increase, and HPV in PASMC and murine
lungs, respectively.

Our data indicate a novel interplay between ROCK and [Ca®"]; signalling in HPV via PTEN, in that ROCK mediates
interaction of PTEN and TRPC6 which then conjointly translocate to caveolae allowing for Ca®" influx into and

subsequent contraction of PASMC.

Keywords Hypoxia e Phosphatase and tensin

homolog

(PTEN) e Transient receptor potential canonical 6

(TRPC6) e Pulmonary artery smooth muscle cells (PASMC) e Rho kinase (ROCK)

1. Introduction

Hypoxic pulmonary vasoconstriction (HPV) is a physiological response
to alveolar hypoxia which redistributes pulmonary blood flow from
poorly aerated lung regions to better ventilated lung segments by an
active process of local vasoconstriction. Impaired HPV, as seen in a vari-
ety of lung diseases including pulmonary hypertension (PH), pneumonia,
or sepsis, results in submaximal oxygenation of arterial blood and limits
oxygen supply to systemic organs.F3 Global hypoxia, as seen at high alti-
tude or during chronic hypoxic lung diseases such as chronic obstructive
pulmonary disease, sleep apnea, or lung fibrosis may, on the other hand,
cause generalized and sustained pulmonary vasoconstriction leading to
vascular remodelling, right ventricular hypertrophy, and ultimately cor

pulmonale.4 Although various regulatory pathways involved in HPV have
been identified, considerable gaps in our knowledge and understanding
remain, and a unifying concept of the underlying signalling pathways has
not yet emerged. Thus, HPV continues to be an area of intense biomedi-
cal research with important clinical and therapeutic relevance.>®
Increases in the intracellular Ca>™ concentration ([Ca®"];) act as sec-
ond messenger signal triggering pulmonary artery smooth muscle cell
(PASMC) contraction in response to hypoxia.7’10 In PASMC, hypoxia
causes recruitment of transient receptor potential canonical 6 (TRPC6)
to caveolae'" where it is considered to initiate the PASMC [Ca®"];
response.12 However, the mechanisms regulating TRPC6 activation and
its recruitment to, or trafficking within, the plasma membrane in hypoxia
are poorly understood. In endothelial cells (ECs), phosphatase and tensin

* Corresponding author. Tel: 449 30450 528 501; fax: 449 30 450 528 920, E-mail: wolfgang kuebler@charite.de

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

50

55

60



J_ID: CARDIOVASCRES Customer A_ID: CVX076 Copyedited by: PR Manuscript Category: Original article Cadm

10

15

20

25

30

35

40

45

50

A. Krauszman et al.

homolog (PTEN), a lipid and protein phosphatase, has been shown to
serve as a scaffold for TRPC6, enabling cell surface expression of the
channel and subsequent Ca*" entry. Notably, this effect of PTEN is inde-
pendent of its phosphatase activity, but mediated through direct interac-
tion of PTEN with TRPC6 via its PDZ-binding domain."

In addition to Ca*" signalling via TRPC6, HPV requires activation of
Rho kinase (ROCK)."*'® which is considered to act predominantly
through its Ca*" sensitizing effects. Consistent with this notion, we
recently showed that EC-derived sphingosine-1-phosphate (S1P) medi-
ates HPV in a ROCK-dependent manner, and triggers the translocation
of TRPC6 to caveolae and its activation in PASMC."®

Importantly, PTEN activity has previously been reported to be regu-
lated by RhoA and its effector ROCK in pre-osteoblasts, as siRNA-based
silencing of RhoA or inhibition of ROCK by Y27632 both decrease
PTEN activity. This effect has been proposed to be dependent on direct
interaction of PTEN with ROCK as shown by co-immunoprecipita‘cion.17
Rho furthermore regulates PTEN'’s localization in chemotaxing neutro-
phils via phosphorylation and interaction of the two proteins.18
Activation of the Rho-ROCK-PTEN pathway has also been shown to
mediate EC permeability changes in response to S1P."

Based on the reported roles and regulation of PTEN in other cell
types, we hypothesized that PTEN may play a critical role in HPV, and
provide a key missing link between Rho/ROCK signalling and TRPC6-
mediated Ca®" influx into PASMC. Here we show that PTEN and
TRPC6 interact in PASMC in response to hypoxia or S1P in a ROCK
dependent manner, and that this interaction is required for their translo-
cation to caveolae and the subsequent increase in PASMC [Ca“]i that
result in smooth muscle contraction and HPV.

2. Methods

This is a short version of the protocols used, further details are provided
in the Supplementary Material.

2.1 Animals

Male C57/Bl6 mice (25-30g) were obtained from Charles River
(Canada); mice with a conditional deletion in PTEN in smooth muscle
cells (SMCs) were generated by crossing PTENx/flox (from Dr Tak W.
l"lak)20 with tet-O-Cre and SMA-rtTA strains (kindly provided by Dr
Dean Sheppard; UCSF)*' to yield tet-O-Cre'® ;SMA-rtTA®"; PTEN""
(SMC-specific knock out mice) and tet-O-Cre® ;SMA-rtTA®PTENT
WT (control). All animals received care in accordance with the Guide for
the Care and Use of Laboratory Animals (NIH Publication 8th edition,
2011). Experiments were approved by the Animal Care and Use
Committee of St Michael’s Hospital. PTEN knockout mice and the con-
trol group received doxycycline in food (2g/kg, TD.140011, Envigo,
Madison, WI) for 1week prior to experiments to induce gene knock
out.

2.2 Isolated perfused mouse lung

Isolated perfused mouse lung (IPL) were prepared from male
C57Bl6, tet-O-Cre® :SMA-rtTA®-PTEN™, and tet-O-Cre'®; SMA-
rtTA®PTEN"Y™T mice as previously described in?% In brief, mice
were anaesthetized with 250 mg/kg avertin via IP injection, depth of
anaesthesia was confirmed by toe pinch. Following anaesthesia and tra-
cheotomy the heart was catheterized and pulmonary artery pressure
(PAP) was recorded continuously. Lungs were only included in the study
if perfusion pressure was stable and below 20 cm H,O during the initial

10 min of baseline perfusion and if lungs showed no macroscopic signs of
hemorrhage, atelectasis, or edema.

2.3 Cell culture

PASMCs, culture media kits (SmGM-2 BulletKit, CC-3182) and subcul-
ture supplies including HEPES buffered saline solution (CC-5024),
trypsin/EDTA solution (CC-5012) and trypsin neutralizing solution (CC-
5002) were purchased from Lonza (Clonetics PASMC, Lonza, Basel,
Switzerland). Cells were cultured according to manufacturer’s instruc-
tions and used within the first six passages of growth from three different
batches.

2.4 Protein extraction

Cells were grown to confluence and treated as indicated in text, then
lysed following standard protocols. Protein concentration was measured
by BCA assay (Thermo Fischer Scientific, Waltham, MA) and samples
were stored at -80 °C.

2.5 Hypoxia exposure in vitro

Experiments for hypoxia exposure of PASMC were performed in a
custom-built hypoxia chamber. After 5 min of hypoxia cells were lysed
following standard protocols and placed on ice immediately.

2.6 Western blotting
The following antibodies were used following standard western blotting
procedures: TRPC6 1:1000—Alomone Lab, Jerusalem, Israel: ACC-
017%% PTEN 1:1000—Cell Signaling, Boston, MA: 95525*% GAPDH
1:1000—Santa Cruz, Dallas, TX: sc-25778; Caveolin-11:500—BD
Biosciences, San Jose, CA: 610407.

2.7 Immunoprecipitation

One millilitre PASMC lysate was rotated with 20 pL Protein A/G beads
(GE Healthcare, Mississauga, ON) for 30 min at 4 °C for pre-clearance.
After centrifugation at 6000 rpm and 4 °C for 1 min the supernatant was
collected, 1:100 anti-PTEN (Cell Signaling, Boston, MA: 9552S) was
added to 750 pg total protein sample, and samples were rotated over-
night at 4 °C. The next day, 25 pL of Protein A/G beads (GE Healthcare,
Mississauga, ON) was added and samples were kept rotating for 1h.
Beads were washed thrice with lysis buffer and boiled with 30 pL
Laemmli buffer (BioRad, Canada).

2.8 Ca’?" imaging in PASMC

Changes in PASMC [Ca®']; were measured as previously described.’®
PASMCs cultured on coverslips were loaded with HBSS containing
5 pmol/L fura-2-acetoxymethyl ester (fura-2AM) (Life Technologies,
Carlsbad, CA) dissolved in Pluronic F-127 (20% solution in DMSO) (Life
Technologies, Carlsbad, CA), then mounted in a heated chamber
(Warner Industries; Saint-Laurent, QC, RC-21B + PH-2) at 37°C. Fura-
2 fluorescence was excited by monochromatic illumination (Polychrome
V; TillPhotonics, Victor, NY) at A = 340 and 380 nm and collected at an
emission wavelength of 510 nm via a custom-built upright fluorescence
microscope equipped with appropriate dichroic and emission filters and
a digital camera. After background correction, the 340/380 ratio was cal-
culated using TillVision 4.0 software (Till Photonics, Germany).

2.9 siRNA transfection
PASMC were seeded on 6-well plates. At 70% confluency cells were
transfected with siRNA (On Target PTEN siRNA and non-targeting
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control; Dharmacon, Ottawa, ON) using Effectene Transfection
Reagent from Qiagen (Toronto, ON) according to manufacturer’s
instructions.

2.10 Immunofluorescence microscopy
Following exposure to normoxia or hypoxia, cells were fixed with paraf-
ormaldehyde and standard immunofluorescence staining protocols
were performed.

2.11 Proximity ligation assay

Protein—protein interaction was assessed by proximity ligation assay
(PLA) (DuolLink assay; Sigma Aldrich, Oakville, ON). Samples were pre-
pared as described for immunofluorescence microscopy. After incuba-
tion with two primary antibodies from different species and directed
against two putatively interacting proteins, two species-specific secon-
dary antibodies directed against the different primary antibodies with
complementary oligonucleotide sequences at their ends (PLA probes)
were added. PLA probes in close proximity (<40nm) were joined by
enzymatic ligation, and the resulting signal was amplified with rolling cycle
amplification and visualized using fluorescently labelled complementary
oligonucleotides by confocal laser spinning disk microscopy. Raw, single
plain images were quantified in Image] (National Institute of Health,
USA).

2.12 Isolation of caveolar fractions by
sucrose density gradient

ultracentrifugation

Isolation of caveolar fractions from PASMC and probing for caveolar
abundance of proteins of interest was performed as recently reported
using sucrose gradient centrifugation.16

2.13 Isolation of PASMC from murine lungs
Under deep anaesthesia, the murine heart and lungs were carefully
removed. The trachea, the vena cava and the left lungs were pinned
down. The pulmonary artery (PA) was microsurgically separated
from the adjacent vein and bronchi, and small pieces of the isolated
artery were placed in a T25 flask with droplets of SMC medium
containing an additional 15% FBS. These were cultured for 2 weeks
before use.

2.14 Statistical analysis

Statistical analyses were performed with GraphPad Prism using Mann-
Whitney U test for two independent groups, or One-way Anova for
more than two groups. For analysis of multiple cells per isolation (Figures
2CD and 5B) a hierarchical linear model (with random effect, build
nested terms) was used with SPSS Statistics. Data are shown as mean +
SEM, differences were considered significant (*) at P < 0.05.

3. Results

3.1 PTEN is required for intact HPV

To test for a potential role of PTEN in HPV we generated SMC-specific
PTEN knockout mice (SMC PTEN KO). Inducible deletion of PTEN
from SMCs in mice was confirmed by western blot analysis of an SMC
rich organ (intestine) and an organ containing minimal amounts of SMC
(heart). PTEN levels were significantly reduced in the intestines of KO
mice as compared with wild type (WT) controls while no significant

difference in PTEN expression was detectable in the heart (Figure 1A).
Baseline perfusion pressures in isolated lungs did not differ between WT
and SMC PTEN KO mice (Figure 1B). We next tested the vasoconstric-
tion response to hypoxia and Ang Il in the IPL model by measuring the
PAP change in response to a switch from normoxic (21% O,) to hypoxic
(1% O,) ventilation or bolus infusion of Ang II, respectively. Although
WT lungs showed the characteristic pressure response to hypoxia, SMC
PTEN KO lungs had a largely reduced HPV (Figures 1C and D). PTEN
deficiency in SMCs did, however, not prevent vasoconstriction in
response to Ang Il (Figure 1D). Inhibition of PTEN'’s phosphatase activity
by the vanadate compound VO-OHpic did also not attenuate HPV
(Figure 1E), suggesting that the role of PTEN in HPV is independent of its
phosphatase activity. VO-OHpic increased Akt phosphorylation (Figure
1F), demonstrating that the applied dose was effective in inhibiting
PTEN??’in the isolated lung preparation.

3.2 PTEN knockdown attenuates hypoxia-
induced PASMC contraction and [Ca*"];
increase

Ca>* entry into PASMCs is a known prerequisite for HPV. Hence, we
next tested whether loss of PTEN in PASMC may attenuate PASMC
[CaH]i signalling in response to hypoxia. PASMCs were transfected with
PTEN-specific or control siRNA (siPTEN or siCtrl, respectively), and
effective silencing of PTEN by ~50% was confirmed by Western Blot
(Figure 2A). PASMC treated with scrambled siRNA showed the charac-
teristic [Ca®"; increase in response to hypoxia; yet, silencing PTEN with
siPTEN significantly reduced this response (Figure 2B and C). A similar
effect was observed in murine PASMC in that cells isolated from SMC
PTEN KO mice had a reduced [Ca2+]i response to hypoxia compared
with cells from WT animals (Figure 2D).

3.3 Hypoxia and S1P induce PTEN
interaction with TRPCé through ROCK

In ECs PTEN has been shown to interact with TRPC6, a cation channel
that plays a key role in HPV. To probe for a similar interaction of PTEN
with TRPC6 in PASMC:s in response to either hypoxia or S1P, a central
mediator of HPV, we immunoprecipitated PTEN from PASMC following
either 5min of hypoxia (in the presence or absence of the ROCK
inhibitor Y27632) or normoxia, or S1P treatment (Figure 3A), and
blotted the immunoprecipitates for both PTEN and TRPCé. Co-
immunoprecipitation showed increased interaction of PTEN with
TRPC6 in PASMC stimulated with either hypoxia or S1P as compared to
normoxic controls. As TRPC6 and PTEN are both regulated by
ROCK,"1928 we probed for the effects of the ROCK inhibitor Y27632
on the interaction of TRPC6 with PTEN. Y27632 blunted the hypoxia-
induced interaction, indicating a regulatory role of ROCK that will
be followed up further below. A similar increase in TRPC6/PTEN inter-
action was detected in whole lung lysates (Figure 3B) of IPLs exposed to
hypoxia for 3 min as compared with normoxic controls. Increased inter-
action of PTEN with TRPC6 in PASMC in response to hypoxia or S1P
was also confirmed by PLA (Figure 3C and D) where red puncta
indicate interaction of the 2 proteins while nuclei were stained with
DAPI (blue). Y27632 again blocked TRPC6/PTEN interaction in
response to hypoxia or S1P, while lysophosphatidic acid (LPA), a known
ROCK activator, recapitulated the effects of S1P and hypoxia, thus cor-
roborating a regulatory role of ROCK in the interaction of PTEN with
TRPCé.
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Figure | HPV requires SMC PTEN. (A) Representative immunoblots and quantitative data (n = 4-8) show that SMC PTEN KO reduced PTEN expression
in SMC-rich intestines, but not in the heart. (B) Quantitative data shows that baseline pressures are similar in IPL of KO animals compared with WT controls
(n = 10 each). (C) Representative tracings of PAP in IPL experiments show attenuated vasoconstriction in response to hypoxia (1% O) in lungs of SMC
PTEN KO mice compared with WT. (D) Group data show attenuated PAP increase (APAP) 5 min after start of hypoxia but not in response to Ang Il (1 pg
bolus for 5 min) in SMC PTEN KO mice; (n = 5-6, respectively) compared with WT mice (n = 7 both). (E) VO-OHpic (10 uMol/L) did not affect the PAP
response to hypoxia in isolated lungs of C57BU/6 mice (n = 6 each). (F) Lungs were collected and snap-frozen after 30 min of perfusion in the presence or
absence of VO-OHpic (10 pMol/L). Representative western blot of lung lysates and quantitative data show levels of p-Akt normalized to total Akt in the
presence or absence of VO-OHpic (10 pMolL) (n = 5). Group data are means £ SEM, *P < 0.05 vs. WT (AD) or control (Ctrl; F).

3.4 PTEN mediates TRPCé recruitment to
caveolae in a ROCK-dependent manner
Caveolae are specialized membrane microdomains enriched in cholesterol,
sphingolipids, and proteins that serve as signalling hubs in the plasma mem-
brane. Caveolae play a critical role in Ca®" influx via TRPC6 in pulmonary
microvascular ECs* and PASMC,"" in that they regulate the abundance of
functional TRPC6 at the plasma membrane. To test whether PTEN and/or
ROCK may play a role in TRPC6 translocation to caveolae, we prepared

caveolar fractions by sucrose gradient centrifugation of PASMC lysates.
When compared with normoxic controls (Figure 4A, B, and D), we found
both PTEN and TRPCé translocated to caveolae. As TRPC6/PTEN inter-
action had been inhibitable by Y27632, we next tested whether the traf-
ficking of the two proteins to caveolae in response to hypoxia similarly
required ROCK. Pretreatment of PASMC with Y27632 reduced the abun-
dance of TRPC6 and PTEN in caveolae, indicating that the translocation of
both proteins occurred in a ROCK-dependent manner (Figure 4C and D).
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Figure 2 PASMC [Ca®"]; increase in response to hypoxia requires PTEN. (A) Representative immunoblot and quantitative data from four independent
isolations show effective knockdown of PTEN by PTEN-specific sSiRNA (siPTEN) as compared with scrambled siRNA (siCtrl). Each experiment has been
normalized to its corresponding control group from the same gel. (B) Representative tracings of the 340/380 nm fura-2 fluorescence ratio (normalized to
baseline) in PASMC show a reduced [Ca®"]; response to hypoxia (1% O,) in PASMC transfected with siPTEN as compared with siCtrl. Group data show
hypoxia-induced [Ca*']; increase in siPTEN and siCtrl PASMC (C) or murine PASMC isolated from SMC PTEN KO or WT mice (D) (data from three to
five independent experiments, respectively).Group data are means £ SEM, *P < 0.05 vs. siCtrl (A,C) or WT (D).

3.5 ROCK mediates PASMC [Ca'];
response to hypoxia and HPV

Analogous to the effects of PTEN knock-down, inhibition of ROCK also
inhibited the hypoxia induced [Ca*']; increase in PASMC as measured
by fura-2 ratiometric imaging (Figure 5A and B). Finally, ROCK inhibition
attenuated HPV in IPLs (Figure 5C), consolidating the functional relevance
of ROCK for the outlined signalling pathway.

4. Discussion

In this study, we identify a previously unrecognized regulatory role for
PTEN in HPV. This role relates to its function in PASMC, as SMC-
specific knockout of PTEN attenuated the characteristic pulmonary
vasoconstrictive response to hypoxia, but not to the systemic vasocon-
strictor Ang Il. This role of PTEN in PASMC is independent of its phos-
phatase activity, as it was not blocked by the PTEN inhibitor VO-OHpic
at effective pharmacological concentrations. Instead, PTEN may act as a
scaffold for the polymodal cation channel TRPC6 which mediates
PASMC Ca®" entry in response to hypoxia,'? as (i) hypoxia triggered the
interaction of PTEN with TRPC6 in both intact lungs and isolated

PASMC, and (ii) PTEN knock-down blocked the hypoxia-induced
[Ca*"]; increase in PASMC. Both PTEN and TRPCé translocated to cav-
eolae in PASMC in response to hypoxia in a ROCK-dependent manner.
ROCK inhibition in turn blocked PTEN-TRPC6 interaction, inhibited the
PASMC [CaH]i response to hypoxia, and attenuated HPV. Taken
together, these findings identify a new signalling pathway for HPV in that
hypoxia, and/or the hypoxia-generated mediator S1P, stimulate a
ROCK-dependent interaction between PTEN and TRPCé6 in PASMC
which is required for the effective recruitment of TRPCé6 to caveolae
and the subsequent influx of Ca* that ultimately triggers PASMC con-
traction (Figure 6).

Ca*t influx is the essential second messenger that triggers actin-
myosin interaction and thus, the characteristic contraction of PASMCs in
response to hypoxia. TRPC6 has been identified as a cation channel that
is critical for both hypoxia-induced Ca>* entry into PASMC and subse-
quent HPV in intact lungs.12'3o'31 Although TRPC6 by itself may not be
the only cation channel mediating hypoxia-induced Ca*" influx in
PASMC, which has also been shown to involve voltage-gated Ca*"
channels,*>** TRPC6 activation has emerged as a key initiating event.
Specifically, (i) TRPC6'®, yet not L-type channel inhibition>*3°
an almost complete loss of the PASMC Ca®" response to hypoxia and
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Figure 3 Hypoxia increases the interaction of PTEN with TRPC6 in a ROCK-dependent manner. (A) PASMCs were exposed to either normoxia (n),
hypoxia (h; 1% O,), or hypoxia in the presence of Y27632 (Y; 5uMol/L), or to S1P (S; 10uMol/L) for 5 min. Representative immunoblots show TRPC6 and
PTEN expression in PASMC for whole cell lysate (input) and after immunoprecipitation for PTEN (Co-IP). Group data from n = 5-7 independent replicates
showing TRPCé6-over-PTEN ratio normalized to the normoxic control group from the same gel, demonstrate increased interaction of PTEN with TRPC6 in
response to hypoxia and S1P, respectively. (B) Isolated lung were ventilated with normoxic or hypoxic (1% O,) gas for 3 min, and tissue was snap-frozen
and lysed. Representative immunoblots show TRPC6 and PTEN expression after immunoprecipitation for PTEN; group data from n = 6 replicates show
quantification of TRPCé-over-PTEN ratio normalized to the normoxic control group from the same gel. (C) Representative images show PLA for the inter-
action between PTEN and TRPC6 in PASMC following exposure to either normoxia, hypoxia, or S1P(10puMol/L) for 5 min, in the presence or absence of
Y27632 (5 pMol/L), or LPA (3 pMol/L) for 15 min. Red puncta indicate sites of interaction between PTEN and TRPC6, nuclei are counterstained in blue with
DAPI. (D) Group data show quantification of the PLA from eight cells from three independent experiments each. Group data are means + SEM, *P < 0.05

vs. normoxia, #P < 0.05 vs. hypoxia and $P

<0.05vs.S1P.
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Figure 4 Hypoxia causes ROCK-dependent translocation of TRPC6 and PTEN to caveolae. Caveolar fractions were isolated from PASMC (input: whole
cell lysate) by sucrose gradient centrifugation, and identified by the presence of the marker protein caveolin-1. Representative immunoblots show
(A) absence of PTEN and TRPC6 from caveolae of normoxic PASMC, but (B) recruitment to caveolar fractions within 15 min of hypoxia (1% O,), that was
(C) blocked by Y27632 (5 pMol/L). (D) Group data from n = 3-5 independent experiments each show caveolar recruitment of TRPC6 and PTEN, expressed
as fraction of protein detected in caveolar fractions. Group data are means + SEM, *P < 0.05 vs. normoxia.

(if) TRPC6-mediated cation entry serves as initial trigger for activation of
voltage-gated Ca®" channels via membrane depolarization.”? Following
stimulation by hypoxia,11 TRPC6 translocates to caveolae, specialized
membrane microdomains that act as signalling hubs for outside-in-signal-
ling and play key roles in regulating the abundance of ion channels at the
plasma membrane and resulting ion fluxes, including those of Ca?*.""1®
However, the exact mechanisms underlying the hypoxia-induced
recruitment of TRPC6 to caveolae remain unclear.

Recently, our group identified a critical role for endothelial-derived
S1P as putative intercellular mediator during HPV, downstream of neu-
tral sphingomyelinase activation.'® In this work, we showed that $1P sig-
nalling is required for the translocation of TRPCé to caveolae, and its
activation to trigger Ca”" influx into PASMC. We further demonstrated
that S1P receptor-2 mediated activation of PLC is required for HPV, pre-
sumably acting via DAG synthesis and subsequent TRPC6é activation®®
that synergized with a parallel activation of the Rho/ROCK signalling
pathway to elicit pulmonary vasoconstriction.® Notably, although the
sphingolipid-mediated recruitment and activation of TRP channels in
response to hypoxia is present in PASMC per se,'® the HPV response in
the intact lung requires additional input from the endothelium as a con-
ducer of the hypoxic signal from the alveolar capillaries to the feeding
arteries.

In ECs PTEN, a lipid and protein phosphatase protein, serves as a scaf-
fold for TRPC6 after thrombin stimulation, enabling cell surface expres-
sion of the channel and subsequent Ca** entry. Notably, this effect of
PTEN is independent of its phosphatase activity, but mediated through
direct interaction of PTEN with TRPCé via its PDZ-binding domain."*
This is in line with our finding that inhibition of PTEN phosphatase activ-
ity did not affect HPV. Instead, we show by two different approaches,

namely co-immunoprecipitation in intact lungs and PLA in cultured
PASMC that hypoxia as well as S1P trigger the interaction of PTEN with
TRPCé. This finding is in line with previous data from ECs demonstrating
that cell migration is regulated by S1P through activation of PTEN.* The
relevance of the detected interaction between PTEN and TRPC6 is high-
lighted by the fact that siRNA-mediated knock-down of PTEN attenu-
ated the characteristic increase in PASMC [Ca*']; in response to
hypoxia, which had been identified to be mediated by TRPC6."> The
importance of PTEN/TRPC6 interaction is furthermore underlined by
our finding that SMC PTEN KO using a Cre-lox system attenuated HPV
in ex vivo perfused mouse lungs. Loss of PTEN in SMC did; however, not
attenuate vasoconstriction in response to Ang Il. Although this finding
does not preclude differences in the vasoconstriction response to other
pharmacological agonists, it suggests that the role of PTEN in vasocon-
striction may be specific for the response to hypoxia. Of relevance,
SMC-specific PTEN deletion in mice has been demonstrated to result in
age-dependent spontaneous PH.* We and others have shown that HPV

H,39'40 which is considered

is attenuated in mice with chronic hypoxic P
to contribute to systemic hypoxemia in PH patients.*" In this study, how-
ever, experiments were conducted at an age of 8-12 weeks, i.e. prior to
the onset of spontaneous PH, which was confirmed by the fact that lungs
of SMC PTEN KO mice had similar baseline perfusion pressures as those
of WT mice. Hence, while other key signalling molecules involved in
HPV including TRPC6,"> connexin 40,*> CFTR,"® or TRPV4™ are typi-
cally also involved in the development of chronic hypoxic PH,'64450 the
described role of PTEN seems to present a rare case of a signalling path-
way with opposing effects on HPV and PH. Importantly, this notion
opens up the possibility that the inhibition of HPV (and thus, the hypoxe-
mia caused by the resulting V/Q mismatch) are not exclusively caused by
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Figure 5 ROCK inhibition prevents [Ca*']; signalling and HPV response. (A) Representative tracings of the 340/380 nm fura-2 fluorescence ratio (normal-
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Figure 6 Schematic outline of the proposed role of PTEN in HPV:
Hypoxia, either directly and/or via formation of S1P, activates ROCKin
PASMC, which mediates the interaction between PTEN and TRPC6
and their translocation to caveolae, where TRPC6 facilitates Ca** entry
and subsequent PASMC contraction.

an increased basal tone of the pulmonary resistance vessels which limits
their ability to constrict further, but may in part result from activation of
signalling pathways with opposing effects on HPV and PH.

Rho/ROCK signalling plays a central signalling role in SMC contrac-
tion, largely through its Ca*t sensitizing role by inhibiting myosin light
chain phosphatase.’ Accordingly, Rho/ROCK signalling has been impli-
cated in HPV,M'51 a notion that was confirmed in this study in that HPV
was markedly reduced by Y27632. In addition, however, Y27632 has
been shown to directly inhibit hypoxia-induced increases in PASMC
[Ca®**1," a finding that was again confirmed in this study, and that indi-
cates that Rho/ROCK signalling may, in addition to its Ca®*-sensitizing
effects, act upstream of TRPCé-mediated Ca** entry in hypoxic
PASMC. The latter notion is consistent with previous data from primary
podocytes in which Rho-mediated PLCe stimulation was shown to acti-
vate TRPC6.”

In line with the newly identified role of PTEN in HPV and its previously
reported regulation by ROCK,'®"? we found inhibition of ROCK to pre-
vent the interaction of TRPC6 with PTEN and their translocation to cav-
eolae. The mechanism, however, by which ROCK mediates the
interaction and caveolar recruitment of PTEN and TRPC6 in hypoxia
remains to be resolved. Notably, dephosphorylated PTEN was shown to
recruit to a protein complex to the plasma membrane whereas phos-
phorylation of the molecule prevented this response.®>>> Hence, PTEN
may become indirectly dephosphorylated in a ROCK-dependent man-
ner, as previously shown for neuronal cells®**° through a pathway that
has not yet been identified. Dephosphorylated PTEN may then facilitate,
through direct protein—protein interaction, the recruitment of TRPC6é
to caveolae. However, as co-immunoprecipitation as well as proximity
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ligation and caveolar recruitment assays using specific phospho- and
non-phospho-PTEN antibodies failed to yield reproducible results (data
not shown), presumably due to limited antibody specificity, the exact
mechanism by which ROCK mediates PTEN-TRPC6 interaction must
remain speculative at the present stage.

In conclusion, we report here a new critical role of PTEN in hypoxia-
induced vasoconstriction and Ca>* signalling in PASMC. In response to
hypoxia or S1P, PTEN interacts and translocates with TRPC6 into cav-
eolae in a ROCK-dependent manner, thus highlighting the intricate inter-
dependence between Ca®* and Rho/ROCK signalling in HPV.
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