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ABSTRACT

IIn this thesis, we will concentrate on the numerical study of classical and quantum
frustrated magnets. If we focus on the full set of problems which are contained in the
class of quantum spin systems, we see that the techniques which can deal with them

are plenty, but that the presence of frustration introduces several methodological hin-
drances. Whether it is the presence of a sign problem, or the extensive resources needed
to perform the computation, many of these methods are efficient only on a reduced subset
of frustrated systems. We will employ the pseudofermion-Functional Renormalization
Group (pfFRG) method as our method of choice to tackle two dimensional frustrated
quantum magnets, all of them modeled via a Heisenberg Hamiltonian. We will extend
the pfFRG formalism to include spin systems where the spin length is unrestricted,
S ≥ 1/2. With this extension we are able to study in detail what the effect of quantum
fluctuations are on the system. From the extreme quantum limit (S = 1/2) to the classical
limit (S →∞), the large-S extension of pfFRG allows us to manipulate the strength of
the quantum fluctuations and study in detail how the quantum to classical transition
happens. We apply this method to the study of incommensurate phases in the Heisenberg
honeycomb model. We map the phase diagram for different values of the spin length
and analyze how this length, and subsequently quantum fluctuations, affect the phases
found in the classical limit. Furthermore, we prove that in the classical limit, pfFRG
reduces to the Luttinger-Tisza formalism.

When quantum fluctuations can be neglected, we model our frustrated magnet as a
classical spin system. While this limit can easily be obtained from the large-S extension
of pfFRG, this methodology is constrained to the study of two point correlators at zero
temperature. To collect information regarding the behavior of our classical magnet beyond
the two point correlators we study classical spin systems via Monte Carlo simulations.
In this case we show how the method can be applied to continuous spin systems with
strong anisotropic interaction. Furthermore, we employ this technique to numerically
study α-Li2IrO3, a material which exhibits an incommensurate ground state but for
which a minimal model has not been determined. We study and compare the possible
minimal models that have been proposed. We reduce the number of minimal models by
showing that many of those that have been proposed do not reproduce the full set of
experimental results. Furthermore, we predict the magnetic behavior (for those models
which reproduce the experimental results) in the presence of an external magnetic field.
With this study we obtain magnetization processes and propose experiments which can
confirm if one of the studied models is the correct minimal model for α-Li2IrO3.
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ZUSAMMENFASSUNG

In dieser Dissertation werden wir uns mit der numerischen Erforschung frustrierter
klassischer und Quantenmagneten befassen. Wenn wir die vollstände Menge an
Problemen in der Klasse der Quanten-Spin-Systeme betrachten, dann sehen wir,

dass diese durch eine breite Anzahl von Methoden bearbeitet werden kann, Frustration
jedoch einige methodische Hindernisse mit sich bringt. Sei es das Vorhandensein eines
Vorzeichenproblems oder die erheblichen für die Rechnung benötigten Ressourcen, viele
dieser Methoden sind nur bei einer kleinen Menge frustrierter System effizient. Die
pseudofermionische funktionale Renormalisierungsgruppe (pfFRG) wird die Methode
unserer Wahl sein um zweidimensionale frustrierte Quantenmagneten, modelliert mit-
tels eines Heisenberg Hamiltonians, anzugehen. Wir werden den pfFRG Formalismus
so erweitern, dass er Spinsysteme unbeschränkter Spinlänge, S > 1/2, umfasst. Durch
diese Erweiterung sind wir in der Lage den Effekt von Quantenfluktuationen auf das
System zu untersuchen. Die Erweiterung der pfFRG für große S erlaubt uns die Stärke
der Quantenfluktuationen vom extremen Quantenlimit (S = 1/2) bis zum klassischen
Limit (S →∞) zu manipulieren und genau zu untersuchen wie der Quanten-klassische
Übergang stattfindet. Wir wenden diese Methode auf die inkommensurablen Phasen
des Heisenberg-Honeycomb-Modells an. Wir erkunden das Phasendiagramm für ver-
schiedene Werte der Spinlänge und analysieren wie sie und später Quantenfluktuation
die die Phase im klassischen Limes beeinflussen. Des Weiteren beweisen wir, dass pfFRG
im klassischen Limes den Luttinger-Tisza-Formalismus ergibt.

Wenn Quantenfluktuationen vernachlässigt werden können modellieren wir unseren
frustrierten Magneten als ein klassisches Spinsystem. Zwar kann dieser Limes leicht
aus der Erweiterung der pfFRG für große S gewonnen werden, ist jedoch auf Zweipunkt-
Korrelatoren bei T = 0 beschränkt. Um Informationen über das Verhalten unseren klas-
sischen Magneten über Zweipunkt-Korrelatoren hinaus zu gewinnen, untersuchen wir
klassische Spinsysteme mit Hilfe von Monte Carlo-Simulationen. In diesem Fall zeigen
wir wie diese Methode auf System mit kontinuierlichem Spin mit stark anisotropen
Wechselwirkungen angewendet werden kann. Weiterhin benutzen wir diese Methode um
α-Li2IrO3, ein Material, das einen inkommensurablen Grundzustand aufweist und für
das noch noch kein minimales Modell gefunden wurde, numerisch zu untersuchen. Wir
untersuchen und vergleichen die möglichen, vorgeschlagenen minimalen Modelle. Wir re-
duzieren die Anzahl minimaler Modelle indem wir zeigen, dass viele der vorgeschlagenen
Modelle nicht den vollen Umfang experimenteller Ergebnisse reproduziert. Weiterhin
sagen wir das magnetische Verhalten in einem externen Magnetfeld der Modelle, die die
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experimentellen Resultate reproduzieren, voraus. Mit Hilfe dieser Voraussage erhalten
wir Magnetisierungsprozesse und schlagen Experimente vor, die bestätigen können ob
eines der minimalen Modelle das Modell für α-Li2IrO3 ist.
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1
INTRODUCTION

I’m smart enough to be confused,

but not smart enough to resolve

the confusion.

Christian Fräßdorf, 2018

The central topic of this thesis will consist on the numerical study of frustrated

magnetic insulators. There are different ways in which magnetism can arise

in materials. From itinerant magnets modeled via RKKY interactions [2], to

impurity models exhibiting Kondo effects [3], the models which represent magnetic

behavior are plenty. In our case we will be interested in magnetic materials which can be

described by the Heisenberg Hamiltonian [4] and associated models. In its more general

formulation, the Heisenberg model takes the form

(1.1) H =∑
i j

Ji jSiS j ,

where the spins Si are located at sites i of a given lattice, and they interact via an

exchange coupling Ji j. We want to study the particular case when this model is frustrated.

A system is called frustrated when not all terms of the representative Hamiltonian can

be minimized simultaneously. More specifically, in the systems we are interested in,

many interacting degrees of freedom are present, and frustration can be understood

as these interactions competing with each other, each one favoring one particular type
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CHAPTER 1. INTRODUCTION

of correlation, which cannot all be realized at the same time. Frustration in magnetic

systems started to be intensively studied after the initial proposals by Anderson [5, 6].

He suggested that competing interactions can make it impossible for certain magnetic

systems to order, leading to a disordered ground state, the so called spin liquid state.

We can distinguish different classes of frustration in magnetic materials. One one

hand we have geometric frustration, where the lattice structure imposes several con-

straints on the system inhibiting the minimization of every term of the Hamiltonian

simultaneously. An example of this is that of an antiferromagnetic Ising model on the

triangular lattice [7]. In this case, not all spins can fulfill the antiferromagnetic condition

at the same time. This leads to an extensive configurational disorder in the spin orienta-

tion and a remnant zero point entropy. On the other hand, we can have non-geometric
frustration where the interactions themselves affect the behaviour of the system. An

example on non-geometric frustration emerges from different competing interactions

in the Hamiltonian. This competition leads to non-trivial spatial correlations, as e.g on

the honeycomb lattice with nearest and second neighbour antiferromagnetic Heisenberg

interactions [8]. Another form of non-geometric frustration arises from systems with

strong anisotropies. For example, Kitaev models [9], where the bond anisotropy induces

different interactions on different lattice bonds, and this leads to non-trivial phases,

which cannot always be observed in geometrically frustrated systems.

The Heisenberg model (Eq. 1.1) shines in its simplicity, it states that our insulating

magnet can be simply considered as spins localized on lattice sites, and completely omits

the existence of electrons and nuclei. However, even though the model is very simple,

a large number of materials can be modeled with it. With the Heisenberg model as a

starting point, many different associated models can be created. The Heisenberg model is

not constrained to act only on nearest neighbors, and not all spin components need to be

coupled via the same exchange coupling, an example of this last point is the famous XXZ

model, where two spin components are coupled via the same exchange, while the third

can be very different, changing not only in value, but sign. What is even more important,

the Heisenberg model can be studied both in their classical and quantum version giving

rise to some of the canonical examples not only for magnetic materials, but also for the

study of both quantum and thermal phase transitions. Some canonical examples in the

classical realm of associated Heisenberg models are those of the Ising and XY models. The

Ising model is a playground in which to study and learn spontaneous symmetry breaking

and thermal phase transitions, while the XY model was one of the first examples of

topological phase transitions exhibiting a Kosterlitz-Thouless transitions [10]. On the
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quantum limit, the transverse field Ising model is the canonical example for quantum

phase transitions, and the much more recent Kitaev model [9] is extremely studied for

it’s disordered ground states and exotic excitations.

With all of this in mind, we have to restrict our study to some part of the field, now

quite large, of frustrated magnetic insulators. In this thesis, we will study both sides of

the spectrum, those of classical and quantum magnetism, and we will analyze how this

limit comes about, and what the effects of quantum fluctuations are on the physics of

our model. Furthermore, we will study a particular set of ground states (helimagnetic

states) which arise in many different forms, either from a pure Heisenberg model, or

from extended models arising from the Heisenberg Hamiltonian.

Of course, a study like this, while interesting from a purely theoretical point of view,

is also motivated by experiments. Many materials exhibit Heisenberg like physics, both

in the quantum and classical limit. For example, LiHoxY1−xF4 [11] is a material that ex-

hibits physics like the one found in the transverse field Ising model, and ZnCu3(OH)6Cl2
[12] seems to realize a disordered ground state, a spin liquid, and can be modeled as a

quantum Heisenberg model. Another example of interesting quantum frustrated mag-

nets are those in which Kitaev interactions arise, as for example in α-RuCl3 [13] and a big

family of Iridate materials (IrO6) [14], which both are cases of Heisenberg-Kitaev models.

On the other hand, classical Heisenberg models also touch on reality. While it is not

expected that a purely quantum model (as a model fundamentally composed of quantum

objects as spins is) can be fully treated as a classical one, the study of the classical version

of Heisenberg models has been extremely fruitful. Many materials posses very small

quantum fluctuations which, when disregarded, can be seen as examples of classical spin

systems. The spin ices, Dy2Ti2O7 and Ho2Ti2O7 [15] are important examples of Ising

models where the fundamental excitations can be considered magnetic monopoles, and

YbMgGaO4 [16] seems to mimic a spin liquid state, in which the strong interactions, and

possibly a small amount of impurities, mimic the behavior of a spin liquid, and can too be

modeled as a classical magnetic system. This is by far not a comprehensive list of all the

materials which realize Heisenberg interactions, the list is extensive and here we just

wanted to point out many examples which indicate that the study of Heisenberg models

is not only interesting as a theoretical exercise, but fruitful from the experimental point

of view.

The question that arises is how one would model all of these materials, until one

finds that a Heisenberg model or associates are a good choice. Modeling any of these

materials is a joint effort, from the point of view of experimentalists and theorists alike.
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Whether theorists propose a model in which interesting physics arise, and this model

is later realized experimentally (as was the case of Kitaev interactions in the Iridates

family), or a material shows strange properties which pick the interest of theorists (as

the residual zero point entropy in Dy2Ti2O7), the modeling is usually non trivial.

As theorists interested in magnetic systems and magnetic order, the holy grail of

experimental techniques resides with the different neutron scattering and diffraction

techniques. Via neutron scattering and diffraction experiments, both in single crystal or

powder samples, we can study if our system orders magnetically, and if it does, what the

nature of this ordering is. This points in a theoretical direction, as not all models will

present the same types of order, and the minimal model of our system will rely on the

type of order it presents. If the material orders magnetically at low temperature, we can

consider as a first order approximation the neglect of quantum fluctuations, this is, we

treat our system as a classical spin system. This neglect readily present us with many

different tools to study the effective Hamiltonian, as analytical and numerical techniques

which can deal with classical magnetism are well known. If, on the other hand, the

system is not ordered at low temperature, we cannot neglect quantum fluctuations, and

the approaches treating the resulting Hamiltonian will be vastly different than in the

classical case.

But this is not the end of the story. To even start modeling a material we believe

realizes Heisenberg-like interactions, we need to know what the atoms in the material

are, which is the crystalline structure, and where each atom is in this structure. The

effort of experimentalists appears here through different experimental techniques, as

i.e. X-ray diffraction experiments, which can give us answers to questions related to the

crystal structure. Furthermore, the purity of the samples is a topic which cannot be left

aside, as the behavior of magnetic systems can drastically change (as is the case of spin

glass systems) in the presence of impurities. As such, the growth of pure samples, and

the theoretical understanding of the effect of impurities in the system is crucial.

Once the crystal lattice is clear, we need to know what the hybridization and possible

gap between atomic orbitals is, and what effects are at play, whether it is spin orbit

coupling or hyperfine interactions. Again, an effort from the theory part resides in em-

ploying analytical and numerical techniques as DFT, likewise these efforts are supported

by experiments such as µSR and NMR, which can give us information regarding the

microscopics of the material, for example, regarding line shifts and widths of the atomic

orbitals produces by crystal field effects (where the electronic levels of the magnetic ions

in our compound feel an electromagnetic field produced by the environment of the other
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atoms present in the material) and nuclear interactions, as well as providing information

regarding the magnetic order of our sample. At the same time, experiments as µSR and

NMR can give us information of whether the crystal field induces an easy axis or easy

plane anisotropy, which will point us, theorist, in the direction of Ising or XY models

respectively. Furthermore, these techniques allow us to probe the relaxation time of the

sample, which tells us something regarding the possible quantum fluctuations, as well

as possible freezing, of the magnetic degrees of freedom. This information determines

whether we are in the presence of spin glass-like states or spin liquids. It is also used to

study fundamentally different phenomena, as critical slowing down [17] and persistent

dynamics [18], which both are realized in pyrochlore materials. This is by no means an

exhaustive list of experimental techniques, extremely useful experiments (as for example

those regarding the thermodynamics of the materials) have not been mentioned here.

The aim of this section was to exemplify the effort, from experimentalist and theorist

alike, that are required to model these materials.

From a theoretical point of view, even though frustrated magnetic materials can be

described by well defined microscopic Hamiltonians, they cannot always be efficiently

solved. The field of frustrated quantum magnetic materials has seen a recent surge in

the production of numerical and analytical techniques aimed at tackling these problems,

but still a general and efficient methodology to solve these types of Hamiltonians is

lacking. Many methods work well in a reduced part of the field, as exact diagonalization

and tensor networks algorithms which are ideal to study systems with a small number of

lattice sites, as 1D and quasi-1D spin chains. However, many of these types of methods

are inefficient at studying 2 and 3D systems. On the other hand we could use Monte

Carlo method to deal with quantum systems. But the existence of a sign problem also

constrains the lattice sizes that can be studied considerably. Still, quantum magnetic

systems in 2 and 3D can be tackled theoretically employing novel numerical and theoret-

ical techniques. Employing quantum field theoretical methods [19, 20] or mapping the

interesting Hamiltonian to another basis in which the problem becomes tractable via

existent numerical methods [21] allows us to gain a valuable insight into the physics of

these systems. The situations becomes less complex in the realm of frustrated classical

magnetic materials, where quantum fluctuations can be neglected. In this case many

different techniques exist which can be employed to attack these problems. While the

methodology for these systems has been developed and used for much longer than for

their quantum counterparts, solving the classical analogous is still non-trivial, and

amounts to intense numerical and analytical efforts. Developing novel techniques to
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tackle the quantum and classical problems is still an active field of research, which

has seen a good number of successes in the past years. In particular we mention the

pseudofermion-functional renormalization group method, which will be treated in detail

in this thesis. Nonetheless, with the currently know techniques, the theoretical studies

for both quantum and classical frustrated magnetic systems provide a framework, which

not only can be used to interpret the available experimental results, but which allows

us to employ magnetic materials as a playground in which to study several different

phenomena.

In this thesis, we will not model materials from first principles, but we will instead

concentrate on the study of either models which show interesting physics and could or

have already been realized in experiments (as in Chapter 4 [8, 22–25]), or in materials for

which different models have been proposed but a careful comparative study employing

the same theoretical techniques has not been performed in full (we will study one

of these materials in Chapter 6 [14]). In Chapter 3 we will put a technique forward,

pseudofermion-functional renormalization group, which allows us to study and resolve

the ground state properties of quantum Heisenberg models in arbitrary lattices for 2

and 3D systems. Furthermore, we will apply this technique to study what happens

when quantum fluctuations are slowly suppressed, arriving at the classical limit in the

end. In Chapter 4 we will show how this method can be applied to study spin spiral

states in Heisenberg honeycomb models, both in spin 1/2 as well as higher spin systems,

which have already been realized experimentally. In Chapter 5 we will switch gears

and move to the purely classical realm of spin systems, also with the hopes of studying

spin spiral states. We will show how Monte Carlo simulations can be simply modified to

study classical Heisenberg magnets, what are the advantages and disadvantages of the

method, and how it can be modified to surpass some of the disadvantages. In Chapter 6

we will apply it to study α-Li2IrO3, a material which seems to realize Heisenberg and

Kitaev interactions and which possesses a spin spiral ground state. For this particular

material the question of which minimal model corresponds to it is still open, and it will

be our effort to reduce the number of possible models, as well as predicting the magnetic

behavior in a way which is experimentally realizable.
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2
THE HUBBARD AND HEISENBERG MODELS

Frustration is the name of the

game.

Linus Pauling.

The first question that arises when one looks at the Heisenberg model is: where

exactly does it come from? How can it be that the magnetic interactions in

a crystal, arising from atomic magnetic moments which are connected in an

arbitrary lattice structure, can be explained by such a simple Hamiltonian?

The derivation of the Heisenberg Hamiltonian from a full electronic model is well

known, and the aim of this introduction is to derive it again in a way that will make

clear not only it’s properties, but also how and why we will use it in this thesis. We will

also employ different extensions of the Heisenberg model, but the derivation of each one

of these can be traced back to a similar procedure as the one we will show next.

2.1 Electronic Hamiltonian and Hubbard model

Our derivation starts with a solid state system, a crystal composed of atoms localized

on lattice sites. Furthermore, and for the sake of simplicity, we will assume that we

have already performed the Born-Oppenheimer approximation and that the nuclei are

fixed on the lattice sites, such that we can concentrate on electronic Hamiltonians. The
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CHAPTER 2. THE HUBBARD AND HEISENBERG MODELS

effects of lattice distortions as phonons or Jahn-Teller effects will not be considered in

the following.

With these considerations in mind we can assume that our Hamiltonian consists of

two parts, a term describing electron dynamics

(2.1) H0 =
∫

dra†
σ(r)

[
p2

2m
+V (r)

]
aσ(r) ,

and another term describing electron-electron interactions

(2.2) H ee = 1
2

∫
dr

∫
dr′Vee(r−r′)a†

σ(r)a†
σ(r′)aσ′(r′)aσ′(r) ,

where a†
σ(r) creates an electron with spin σ at position r, V (r) is the periodic lattice

potential, and Vee(r− r′) is the electron-electron interaction potential. We have also

ignored relativistic terms as spin-orbit coupling. As this thesis progresses we will see

that these terms have to be taken into account in certain cases, specially when dealing

with heavy ions. We will omit these terms and concentrate on the atomic limit of this

Hamiltonian, where the nuclei are separated by a distance greater that the Bohr radius

of the valence electrons, in other words, the overlap of the electron wave function is

small.

If our interaction Hamiltonian were zero, we would be able to solve H0 employing

Bloch’s theorem, and we would obtain energy levels εnk and wave functions |ψnk〉 =
eikr|unk〉. Since we don’t want to study free electrons in a periodic potential, but instead

want to study the effect of interactions on electrons localized at the atomic positions, it

is worth to write our Hamiltonian in a basis of single particle states, which labels the

states according to their positions on the lattice sites, R. For this purpose we will use

Wannier states

(2.3) |ψRn〉 = 1p
N

B. Z.∑
k

e−ikR|ψnk〉 ,

where R labels the lattice sites, and the sum is over wavevectors inside the first

Brillouin zone. If the atomic overlap is zero, the Wannier states are simply atomic orbitals,

but usually a finite overlap exists. As such, the different energy levels become energy

bands. We will consider the simplest possible case, where the bands do not overlap and

the Fermi energy is contained fully within one band. With this we can drop the band
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index, n, and define the creation operator of Wannier states in terms of the creation

operators of Bloch states

(2.4) a†
σ(r)=∑

R
ψ∗

R(r)a†
Rσ =

∑
i
ψ∗

Ri
(r)a†

iσ ,

where a†
σ(r) is a creation operator in real space, a†

iσ is a Wannier creation operator,

and we have indexed the lattice sites by i. The connection with Bloch wavefunctions

comes from the Fourier transform of these operators

(2.5) a†
kσ =

1p
N

∑
i

eikRi a†
iσ .

Expressing the non interacting Hamiltonian in terms of Bloch wavefunctions, and

then using Eq.( 2.5) we obtain

(2.6) H0 =
∑
k
εka†

kσakσ = 1
N

∑
ii′

∑
k

eik(Ri−Ri′ )εka†
iσai′σ =

∑
ii′

a†
iσtii′ai′σ ,

where tii′ = N−1 ∑
k eik(Ri−Ri′ )εk are the hopping matrix elements. By the same proce-

dure the interaction term takes the form

(2.7) H ee =
∑

ii′ j j′

∑
σσ′

Uii′ j j′a
†
iσa†

i′σ′a j′σ′a jσ ,

where the matrix elements of the interaction are

(2.8) Uii′ j j′ =
1
2

∫
dr

∫
dr′ψ∗

Ri
(r)ψR j (r

′)V (r−r′)ψ∗
Ri′

(r′)ψR j′ (r
′) .

Adding both terms we obtain the tight binding model

(2.9) H =∑
ii′

a†
iσtii′ai′σ+

∑
ii′ j j′

Uii′ j j′a
†
iσa†

i′σ′a j′σ′a jσ .

Please note that here we are not considering matrix elements that couple different

bands, so we are effectively working in a single band model. While models where more

than one band are relevant exist, we will not consider them here.
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Certain terms in Eq.( 2.9) deserve a special mention. The direct terms, containing the

elements Ui j ji couple density fluctuations at different sites, which lead to the description

of charged density waves. Here we are interested in the study of spin fluctuations that

lead to magnetic phases, so we will not consider the direct terms in the following. Terms

that couple spin fluctuations are the exchange terms, where ii′ = j j′ = i j. These terms

can be written in a more amenable way noting that 1
2 a†

iασ
µ

αβ
aiβ = Sµ

i , obtaining

(2.10)
∑
i 6= j

Ui ji ja
†
iσa†

jσ′aiσ′a jσ =−2
∑
i 6= j

Ji j(SiS j + 1
4

n̂i n̂ j), .

where n̂i is the number operator on site i and Ji j =Ui ji j. This is a kinetic ferromag-

netic exchange term, and can contribute to ordering tendencies in metals. There can

be another way of obtaining this type of exchange following Hund’s rules: if we assume

the wave functions of the electrons can be factorized into the orbital part times the spin

part. Thinking of only two neighboring electrons, the Coulomb repulsion between them

will be minimized when the orbital wave function has the minimal possible overlap,

which means this wave function will be antisymmetric. Since the total wave function

needs to be antisymmetric, then the spin part will have to be symmetric, with both spins

pointing in the same direction. While this is a mechanism which can lead to magnetic

interactions, it is usually small in the atomic limit, since in this case the overlap between

wave functions decay exponentially with the atomic distance. In this limit, where the

direct ferromagnetic exchange is small, the dominant interaction arises from the matrix

elements which describe an on-site Coulomb interaction, Uiiii, which generates terms of

the form

(2.11)
∑
σσ′

Uiiiia
†
iσa†

iσ′aiσ′aiσ =
∑

i
Ui n̂i↑n̂i↓ .

One more consideration needs to be taken into account, in the atomic limit, the

hopping amplitude ti j also decays fast with distance, which effectively means that we

will at most have hopping up to first neighbors. With these considerations in mind, and

further assuming the system is translational invariant so the couplings are the same for

every bond in the lattice, the resulting Hamiltonian takes the form

(2.12) H =−t
∑
〈i j〉

a†
iσa jσ+U

∑
i

n̂i↑n̂i↓ =H t +Hu .

10



2.2. LARGE U LIMIT AND HEISENBERG MODEL

This is the famous Hubbard model, which while simple looking is non trivial to solve,

and which describes a lot of highly correlated electron systems in solid state physics. The

Heisenberg model we are interested in, arises as a natural, low energy effective model,

of the large U limit of the Hubbard model.

2.2 Large U limit and Heisenberg model

The behavior of the Hubbard model is determined by three parameters: the filling fraction

n, the interaction ratio U/t, and the adimensional temperature T/t. We will study the

large U limit, U /t À 1, as the principal mechanism for magnetic order in insulators.

At half filling, and in the limit U/t À 1, double occupancy is inhibited, since the

Hubbard interaction U is large, and as such the energy cost of double occupancy is

large. In these cases, the lowest energy configurations will be given by singly occupied

states. On the other hand, states with double occupancy are higher in energy. In the

limit of large U we can consider that our Hubbard term, HU , will be perturbed by

the hopping term, Ht, and as such attempt to project out the higher energy states to

obtain an effective low energy theory of the Hubbard model [26, 27]. We will perform

this projection following the downfolding technique, which aims at integrating out the

high-energy degrees of freedom. In this technique, we start by partitioning the Hilbert

space in two sets, one containing the low energy states without double occupancy

(2.13) S = {|n1↑,n1↓,n2↑,n2↓, ...〉|∀i : ni↑+ni↓ ≤ 1
}

and another containing the high energy states with one or more doubly occupied

states

(2.14) D = {|n1↑,n1↓,n2↑,n2↓, ...〉|∃i : ni↑+ni↓ = 2
}

The hopping term will couple the S and D subspaces, given that this term produces

the hopping of one electron in or out of an occupied site. Furthermore, it will partially

lift the degeneracy of the subspaces. Even though the dimension of these subspaces is

infinite, we can attempt to write the Hamiltonian in a matrix-like form

(2.15) H =
[

PS(H t +HU )PS PSH tPD

PDH tPS PD(H t +HU )PD

]
,
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where PS is an operators which projects on the low energy configurations S, and PD

projects on subspace D. Here, the upper left term is the Hamiltonian restricted to the

lowest energy states, S, while the lower right is restricted to the states in D. The off

diagonal elements describe transitions between states in S and D. We can obtain an

effective Hamiltonian which acts on the low energy subspace by studying the Green’s

function of the problem

(2.16) G(E)= (E−H )−1 ,

which can also be partitioned by introducing Eq. 2.15 into the expression for G(E).

By calculating the inverse of this “matrix” (please note that the elements are matrix

themselves so they won’t commute) and projecting over S we obtain

(2.17)

PSG(E)PS =
(
E−

[
PS(H t +HU )PS +PSH tPD

(
E−PD(H t +HU )PD

)−1
PDH tPS

])−1
,

which looks as the Green’s function for an effective Hamiltonian

(2.18) H eff = PS(H t +HU )PS +PSH tPD

[
E−PD(H t +HU )PD

]−1
PDH tPS .

Furthermore, noting that PSHU =HU PS = 0 we obtain

(2.19) H eff = PSH tPS +PSH tPD

[
PD (E− (H t +HU ))PD

]−1
PDH tPS .

There is no way to evaluate the inverse in the second term explicitly, so we will

perform perturbation theory in powers of t/U. In this expansion the first order in t
vanishes, and we obtain a Hamiltonian which is second order in t, which we call the t−J
model

(2.20) H t−J = PS

[
H t − t2

U

∑
〈i j〉〈 jk〉σσ′

a†
kσ′a jσ′ n̂ j↑n̂ j↓a†

jσaiσ

]
PS .

We can further write the t− J Hamiltonian as

(2.21) H t−J = PS

[
H t +HH + J′

]
,
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where, if we write 1
2 a†

iασ
µ

αβ
aiβ = Sµ

i we obtain

(2.22) HH = 4t2

U

∑
〈i j〉

(
SiS j −

n̂i n̂ j

4

)
,

and

(2.23) J′ = t2

U

∑
〈i j〉〈 jk〉i 6= j

∑
σ

(a†
kσ(1− n̂ jσ)aiσ−a†

k−σa†
jσa j−σaiσ)n̂ j−σ

In the case of half filling, both terms H t and J′ are annihilated by the projector PS,

and the only term that remains, minus a constant is the Heisenberg model

(2.24) HH = J
∑
〈i j〉

(
SiS j

)+const ,

with J = 4t2

U .

Even though the hopping is restricted to nearest neighbour, we can consider spin

exchange terms which extend beyond nearest neighbours. This is the superexchange

mechanism proposed by Anderson [26, 27], where the magnetic ions “communicate” with

each other through an intermediary ion, not necessarily magnetic, usually Oxygen or

Fluorine.. In these cases we would obtain again a Heisenberg Hamiltonian, but the

exchange coupling J would be modified. This exchange coupling would not only depend

on the orbitals through which the hopping is taking place, but also in the angle of the

atomic bond between orbitals. This hopping via an intermediary ion will be the basis of

the study of magnetism in insulators, given that this implies that even in the case of

insulating materials where the magnetic ions are not nearest neighbors, and as such we

do not expect direct hopping between them, the spins will be able to talk to each other.

For example, the simplest case we can think of is that of CuO2, where the hopping

occurs between the d−orbitals of Cu and the px-orbitals of Oxygen. Furthermore these

bonds form an 180o angle. When this is taken into account we obtain an exchange

integral J of the form

(2.25) J =
t4

pd

Ud +∆pd

(
1

Ud
+ 1

Ud +∆pd

)
> 0 ,

where tpd and ∆pd are the strength of the hopping and the level splitting, between p-

and d-orbitals respectively, and Ud is the Coulomb interactions on the Cu ions. In this
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case we see that the exchange is antiferromagnetic in nature. On the other hand, if we

would consider a 90o angle, the hopping would occur between the d-orbitals of Cu and

the px and py- orbitals of the Oxygen, obtaining

(2.26) J =−
8t4

pd Jxy

(Ud +∆pd)2
1

4(Ud +∆pd)2 − J2
xy

< 0 ,

In this case the exchange is ferromagnetic.

We see then, that the angle between the atoms can drastically change the behavior of

the system. Furthermore, there can be other types of interactions, for example spin-orbit

coupling, which would also drastically change not only the strength of the coupling but

the form of the interaction. For example, as we will see in Chapter 6, in systems where

the magnetic ion is surrounded by oxygens in an octahedral fashion, the exchange paths

change, and together with the spin-orbit coupling we obtain strongly anisotropic bond

dependent interaction. The study of magnetic insulators where the relevant mechanism

for the spin interaction is superexchange will be the central point of this thesis. We will

study in detail how the resulting Hamiltonians can be solved, both in the classical and

quantum limits, how different materials can be modeled by these Hamiltonians, and

what the effect of quantum fluctuations are on these systems.
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3
FUNCTIONAL RENORMALIZATION GROUP METHOD

We appear to live in the best of

all possible worlds, where the

computable functions make life

predictable enough to be

survivable, while the

noncomputable functions make

life (and mathematical truth)

unpredictable enough to remain

interesting, no matter how far

computers continue to advance.

Gottfried Wilhelm von Leibniz

Functional renormalization group (FRG) methods have been around for a consider-

able amount of time. Initially developed in the context of high energy physics, they

have been employed to tackle problems in various subfields (QCD[28],QED[29–

31], quantum gravity[32–34], etc). It has since then been adopted by the condensed

matter community, to study Hubbard-like systems, non-equilibrium phenomena, the

Kondo effect, and many other subjects. In this thesis, we will employ a pseudofermionic

version of FRG to treat 2 and 3D frustrated spin systems, study the effects that quantum

fluctuations produce in these systems, and search for one of their most sought after

phases, the spin liquid phase.
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The pseudofermionic FRG approach (PFFRG) to treat frustrated quantum magnetism

is a relatively new concept (the first paper dating back to 2010 [35]) and it was put

forward motivated by the lack of methodology currently existent to treat these type of

systems. While different analytical theories are developed to study some properties of

frustrated magnets, a general numerical treatment able to study different lattices and

Hamiltonians, detect their ground state properties, and give results that can be compared

with experiments was lacking. From the numerical point of view, most existent methods

fail at these type of studies, exact and powerful methods as exact diagonalization and

DRMG are extremely powerful to calculate energy spectrum and entanglement entropies

of 1D systems, but become extremely inefficient at higher dimensionality than 1. Other

more sophisticated tensor networks based algorithms, as PEPS, MERA, etc. are currently

in development, but whether they’ll be efficient in 2 and 3D highly entangled quantum

frustrated spin systems is an open question. As such, PFFRG was developed to explore

the ground state phase diagram of systems that cannot currently be efficiently studied

with other methods.

We will start this chapter by introducing the general FRG framework and later on

we will derive the precise flow equations for Heisenberg like Hamiltonians.

3.1 General FRG framework

Following the comment by Kopietz, Bartosch, and Schütz [36], renormalization group

theories are proud owners of the status of meta-theories, that is, theories about theories.

FRG shares this status, as an approach that analyzes in detail the underlying structure

of the quantum field theory of our choosing, and tries to solve it by studying one energy

scale at a time (from this the renormalization part in the FRG name). Since we want to

study a many body strongly interacting fermion system, the natural starting point is

the partition function. In essence, if we manage to calculate the partition function, then

we can get all the statistical/thermodynamical information we desire, the correlation

functions being of particular interest in this thesis. So we concentrate in the partition

function, the path integral form in particular, it’s underlying structure, and on the basic

building blocks, the bare Green’s function and the bare interactions. From here on, is

just a question of understanding how all this elements together can be manipulated into

giving us a structured way of studying the fundamental Hamiltonian.

We will sketch the derivation of the FRG framework (for more details please look

at Ref. ([36]), starting with a primer on functional methods. The starting point is repre-
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senting the correlation functions of the fermionic system by a functional integral of the

exponent of a general action S[ψ], and a properly normalized integration measure, such

that the partition function can be written as

(3.1) Z =
∫

D[ψ̄,ψ]e−S[ψ̄,ψ] ,

where ψ̄ and ψ represent Grassmann fields (we will concentrate on a fermionic

description, but a bosonic one is also possible). If we collect all the indices for Matsubara

frequencies and quantum numbers in a variable we denote k, and assume we are

interested in treating Hamiltonians consisting of a kinetic part

(3.2) H0(ψ̄,ψ)= ∑
k′,k

ξk′,kψ̄k′ψk ,

which defines the free propagator G0 (note that energy conservation means that G0

is diagonal in the Matsubara frequencies), and a two body interaction part

(3.3) Hint(ψ̄,ψ)= ∑
k′

1,k′
2,k1,k2

Vk′
1,k′

2,k1,k2ψ̄k′
1
ψ̄k′

2
ψk2ψk1 ,

then we can assume that the action can also be decomposed as S[ψ̄,ψ]= S0[ψ̄,ψ]+
Sint[ψ̄,ψ], where S0[ψ̄,ψ] is of a Gaussian form

(3.4) S0[ψ̄,ψ]=− ∑
k′,k

ψ̄k′[G0]−1
k′,kψk ≡−(ψ̄, [G0]−1ψ) .

As such, the non interacting partition function takes the form

(3.5) Z0 =
∫

D[ψ̄,ψ]e(ψ̄,[G0]−1ψ) ,

Adding source fields η that are of the same nature as the field components, i.e,

Grassmann variables, we obtain the generalized partition function Z(η̄,η)

(3.6) Z[η̄,η]=
∫

D[ψ̄,ψ]e−S[ψ̄,ψ]+(ψ̄,η)+(ψ,η̄) .

And we can define the generating functional W(η̄,η)= Z(η̄,η)/Z
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(3.7) W[η̄,η]=
∫

D[ψ̄,ψ]e−S[ψ̄,ψ]+(ψ̄,η)+(ψ,η̄)∫
D[ψ]e−S[ψ] .

The n-particle Green’s function is no other than the coefficient of a functional Taylor

expansion of the generating functional, with respect to the fields

(3.8) G(k1, ....kn : k′
1, ....k′

n)= δn

δη̄k′
1
...δη̄k′

n

δn

δηk1 ...δηkn

W(η̄,η)|η̄=η=0

We can perform a perturbative expansion of this Green’s function in terms of the in-

teraction, Sint[ψ̄,ψ]. The two basic building blocks of this expansion are the bare Green’s

functions and the irreducible functions, and we can represent them in diagrammatic

form in terms of directed lines representing the bare propagators, G0, and vertices with

n-points corresponding to an interaction between n/2 particles.

(3.9) G0 =k k .

Eq. (3.9) shows the diagrammatic representation of the bare propagator, G0.

One subsequent point needs to be made, if we write the full diagrammatic expansion

we would notice that it contains subdiagrams that do not connect all the external points.

This means that the expansion of the n-particle Green’s functions contains diagrams

belonging also to Green’s functions of lower order. This in turn means that a n-th particle

Green’s function would not exclusively contain information about correlations involving

n-th fields. We can obtain a diagrammatic expansion only containing connected diagrams.

Literally, a diagram contributing to the n-particle Green’s function is called connected if

all vertices are connected by a sequence of lines and other vertices. The generators of

these objects can be obtained by the logarithm of W ,

(3.10) Wc(η̄,η)= ln[W(η̄,η)] .

The connected n-particle Green’s functions can then be obtained by the functional

derivative of Wc[36]:

(3.11) Gc(k1, ....kn : k′
1, ....k′

n)= δn

δη̄k′
1
...δη̄k′

n

δn

δηk1 ...δηkn

Wc(η̄,η)|η̄=η=0
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Figure 31: Relationship between the two par-

ticle connected and usual Green’s function.

We represent the two particle Green’s func-

tions by a gray circle. The single lines indi-

cate single particle Green’s functions.

The connection between the usual

Green’s functions and the connected

Green’s functions can be obtained simply

by the above expression. The single parti-

cle connected Green’s function equals the

usual Green’s function, as any single par-

ticle vertex contains only one propagation

line and as such is always a connected di-

agram. For the two particle Green’s func-

tion, evaluating the derivative and expressing it in diagrammatic language, we find the

expression shown in Fig. 31. In general the nth-particle Green’s function will be given in

terms of al the ith-particle Green’s functions, with i ≤ n.

The connected Green’s functions can also be decomposed in more fundamental pieces,

the one-particle irreducible n-particle vertex function. A one particle irreducible diagram

is such that cannot be disconnected by removing a single propagator line. An example of

this is given in Fig. 32.

Figure 32: Example of a one

particle irreducible diagram

that contributes to the one

particle irreducible two parti-

cle vertex function.

The generating functionals for the these objects can be

found renaming the derivatives of Wc as new Grassmann

fields, φ=−δWc(η̄,η)
δη̄

and φ̄= δWc(η̄,η)
δη

, and performing a Legen-

dre transform. As a consequence we obtain the generating

functional

(3.12) Γ(φ̄,φ)=−Wc(η̄,η)− (φ̄,η)− (η̄,φ)+ (φ̄, [G0]−1φ) .

Finally, via a functional derivative we can find the one-

particle irreducible vertex functions with n-legs

(3.13)

γn(k1, ....kn : k′
1, ....k′

n)= δn

δφ̄k′
1
...δφ̄k′

n

δn

δφk1 ...δφkn

Γ(φ̄,φ)|φ̄=φ=0 .

The relation between one-particle irreducible vertex func-

tions, γn, and the connected Green’s functions can be extracted as well from the diagram-

matic expansion. There are diagrams which can be decomposed into two pieces when

cutting one fermion line. An example of this is the three particle vertex shown in Fig. 33.

These diagrams are called one-particle reducible and are also contained in the con-

nected Green’s functions. However, for the FRG formulation we will use the so called

one-particle irreducible vertices, which are characterized by the fact that they cannot
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Figure 34: Diagrammatic expansion for the one particle vertex. The thick line represents the
one particle Green’s function. The thin lines are bare propagators G0, and the circles represent
one particle vertices.

be decomposed into two pieces when cutting one fermion line. The n-particle Green’s

function will be the sum of all one particle irreducible vertices.

Figure 33: One-particle re-

ducible diagram contributing

to the three particle vertex.

For example, the explicit expansion for the one particle

Green’s function G(k : k′) is of the form

Gc(k : k′)=G0(k : k′)+G0(k : l′)γ1(l′ : l)G0(l : k′)

+G0(k : l)γ1(l : l′)G0(l′ : m)γ1(m : m′)G0(m : k′)+ ...(3.14)

where a sum over internal indices is implicit. This series

expansion can be re-written as

(3.15) Gc(k : k′)=G0(k : k′)+G0(k : l′)γ1(l′ : l)Gc(l : k′) ,

which can be compared to Dyson’s equation

(3.16) Gc(k : k′)=G0(k : k′)+G0(k : l′)Σ(l′ : l)Gc(l : k′) ,

where Σ is the self energy. This way we can identify the one particle vertex with the

self energy, γ1 =Σ. Diagrammatically this means that the particle vertex functions γ1

will be connected by propagators to a chain that starts in k and ends in k′. Summing over

all possible chain lengths we obtain the expansion of the one particle connected Green

function, which is Dyson’s equation, which is shown in diagrammatic form in Fig. 34.

Please note that this means that the exact propagator is the one which is fully dressed

with the exact self-energy, which correspond to a sum of all terms in Fig. 34, an example

of this procedure is shown in Fig. 35.
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Figure 35: Two particle vertex af-

ter the self energy resumations (right)

have been performed. Thick lines cor-

respond to full propagators, while thin

ones are the bare propagators

Now we are ready to derive our FRG equations.

We will work with the one-particle irreducible ver-

tices that we have shown can be traced back all

the way to the Green’s functions. The heart of FRG

resides in the regularization of the bare Green’s

function by applying an infrared cutoff to the Mat-

subara frequencies,

(3.17) GΛ
0 =Θ(|ω|−Λ)G0(ω) .

Physically, this means that we are suppressing all the fermionic frequency com-

ponents below Λ, and as such we will obtain physical information about the original

Hamiltonian when all the propagators are considered, i.e. when Λ= 0. If we approach

the limit Λ→ 0 from the right we are successively adding the fermionic frequencies to

our system until we reach the original Hamiltonian (at Λ= 0).

There is a certain freedom regarding the choice of cutoff. We could implement it in

momentum space, or not necessarily with a Heaviside theta function, all these choices

depend on the system we want to study. What cannot be changed though is that two

limits need to be respected: GΛ
0 = 0 when Λ→∞, and GΛ

0 =G0 when Λ= 0. In our case,

we will choose a sharp cutoff function in frequency space, since this will lead to the

cancellation of internal frequency integrations in the FRG equations.

The FRG procedure studies how the changes in Λ affect the vertex functions by

retrieving differential equations for this elements. When we replace G0 by GΛ
0 every one

particle irreducible diagram contributing to the one particle irreducible vertex becomes

alsoΛ dependent. Given that the bare propagator enters multiplicatively in the diagrams,

via the product rule, these one particle irreducible diagrams will transform into a sum

over different subdiagrams, all of them differing only by one propagator line that is

differentiated with respect to Λ. We obtain γΛn summing up all possible Λ dependent one

particle irreducible n-particle diagrams terms.

In functional language: when we replace G0 by GΛ
0 the action and the different

generating functionals become Λ dependent. From the action

(3.18)
dSΛ[ψ̄,ψ]

dΛ
= d

dΛ
(−(ψ̄, [GΛ

0 ]−1ψ)+Sint[ψ̄,ψ]
)= ψ̄QΛψ

where QΛ = d
dΛ [GΛ

0 ]−1. And

(3.19)
dZΛ[η̄,η]

dΛ
=

∫
D[ψ̄,ψ]iψ̄QΛψe−S[ψ̄,ψ]+(ψ̄,η)+(ψ,η̄) .
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then, the generating functional for the connected Green’s functions becomes Λ depen-

dent Wc →WΛ
c , and from Eqs. (3.7) and (3.10) we obtain

(3.20)
d

dΛ
WΛ

c =−Tr[QΛGΛ
0 ]+Tr

[
QΛδ

2WΛ
c

δη̄δη

]
−

(
δWΛ

c

δη
,QΛδWΛ

c

δη̄

)
,

We remind the reader that we are not interested in the connected Green’s functions

but in the one-particle irreducible vertex functions. Using equations (3.12) and (3.20) we

can find the differential equation for the generators of the vertex functions, ΓΛ

(3.21)
d

dΛ
ΓΛ(φ̄,φ)=Tr[QΛGΛ

0 ]−Tr
[
QΛδ

2Wc

δη̄δη

]
.

Please note that since we performed a Legendre transform to go from one generating

functional to the other, the variables η̄ and η now are Λ dependent. We can eliminate

Wc from the above expression using the relation between the derivatives of Wc and the

generators Γ, which is

(3.22)

 δ2Wc
δη̄δη

−δ2Wc
δη̄δη̄

−δ2Wc
δηδη

δ2Wc
δηδη̄

=
 δ2Γ
δφ̄δφ

+ [G0]−1 δ2Γ
δφ̄δφ̄

δ2Γ
δφδφ

δ2Γ
δφδφ̄

− [[G0]−1]T


with this we obtain

(3.23)
d

dΛ
ΓΛ(φ̄,φ)=Tr[QΛGΛ

0 ]−Tr[GΛQΛR11] ,

with R11 a matrix element of the R matrix

(3.24) R =
1−[

−GΛ 0

0 [GΛ]T

] U δ2ΓΛ

δφ̄δφ̄
δ2ΓΛ

δφδφ
−UT

−1

with

(3.25) U = δ2ΓΛ

δφ̄δφ
−γΛ1 .

Now, to find the differential equations for the vertex functions we can expand ΓΛ in

powers of φ̄ and φ using Eq. (3.13)

(3.26) ΓΛ(φ̄,φ)=
∞∑

n=0

(−1)n

(n!)2

∑
k′

1,...,k′
n

∑
k1,...,kn

γΛn (k′
1...k′

n : k1...kn)φ̄k′
1
... ¯φk′

n
φk1 ...φkn ,
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and expand the matrix R in a geometric series. Finding the flow equations is then

just a matter of comparing coefficients of the fields φ̄ and φ on both sides of Eq. (3.23).

The differential equations we obtain for γΛ1 and γΛ2 are:

(3.27)
d

dΛ
γΛ1 (k′

1,k1)= 1
β

∑
k′

2,k2

γΛ2 (k′
1,k′

2 : k1,k2)SΛ(k2,k′
2)

d
dΛ

γΛ2 (k′
1,k′

2 : k1,k2)=1
β

∑
k′

3,k3

γΛ3 (k′
1,k′

2,k′
3 : k1,k2,k3)SΛ(k3,k′

3)

+ 1
β

∑
k′

3,k3

∑
k′

4,k4

[γΛ2 (k′
1,k′

2 : k3,k4)γΛ2 (k′
3,k′

4 : k1,k2)

−γΛ2 (k′
1,k′

4 : k1,k3)γΛ2 (k′
3,k′

2 : k4,k2)− (k′
3 ↔ k′

4,k3 ↔ k4)

+γΛ2 (k′
2,k′

4 : k1,k3)γΛ2 (k′
3,k′

1 : k4,k2)+ (k′
3 ↔ k′

4,k3 ↔ k4)]

×GΛ(k3,k′
3)SΛ(k4,k′

4) ,(3.28)

where SΛ is the so called single scale propagator given by SΛ =GΛQΛGΛ.

Eq. (3.27) and (3.28) are the so called flow equations for the self energy and two

particle vertex respectively. We notice that these equations are coupled to each other.

Since the Green’s function contains γΛ1 , the flow of this vertex will depend on γΛ1 itself

and on γΛ2 . For γΛ2 the story is similar, with the flow depending on γΛ1 , γΛ2 , and γΛ3 . In

general the flow of the nth-particle vertex will depend on the ith-particle vertices where

i ≤ n. The first term of the flow equation for the two particle vertex corresponds to the

three particle vertex. The next two are direct particle-hole terms, while the remaining

two are crossed particle-hole terms. We will describe each term in more detail in the next

section.

All that remains is identifying the initial conditions for these equations, which can

be derived remembering that the initial point of the calculation is Λ→∞ and GΛ
0 = 0 in

this limit. Since the bare Green’s function vanishes, the particle propagation disappears

and only the bare vertices remain. Extracting the bare vertices from the Hamiltonian in

Eq. (3.2) and (3.3) we obtain the following initial conditions

γΛ→∞
1 (k′,k)=−Σ(k′,k)=−ξk′,k ,(3.29)

γΛ→∞
2 (k′

1,k′
2 : k1,k2)=Vk′

1,k′
2,k1,k2 ,

γΛ→∞
n (k′

1, ...,k′
n : k1, ...,kn)= 0 for n ≥ 3 ,
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the third condition is special, in the sense that if the Hamiltonian would contain

interactions involving more than two particles some of these terms would be nonzero.

3.2 Slave fermionic approach for spin operators

Our implementation of the PFFRG method to spin systems is based on the Heisenberg

Hamiltonian, here we will study the case of 1/2-spins, to later concentrate on arbitrary

length spins. The Hamiltonian thus has the form

(3.30) H = ∑
(i j)

Ji jSi ·S j .

The basis of the implementation starts by expressing the elements of the spin opera-

tors in terms of two fermionic operators, f↓ and f↑ [37] such that

(3.31) Sz = f †
↑ f↑− f †

↓ f↓ , S+ = f †
↑ f↓ , S− = f †

↓ f↑ .

equivalently,

(3.32) Sµ

i =
1
2

∑
αβ

f †
iασ

µ

αβ
f iβ ,

where α,β=↑,↓ denote spin indices, f (†)
iα are fermionic annihilation (creation) operators

on site i, and σµ (µ= x, y, z) represent the Pauli matrices. This representation fulfills the

correct angular momentum algebra of spin operators

(3.33) [Sµ,Sν]= iεµνηSη

If we consider the pseudofermionic operators as our field operators then the resulting

Hamiltonian has the form (3.3). This quadratic form is precisely what we need to use

diagrammatic Feymann techniques. An important point needs to be dealt with now:

denoting the vector space of an arbitrary angular momentum operator L by VL, the

pseudo fermionic representation extends the spin-1/2 vector space V1/2 according to

(3.34) V1/2 →V0 ⊕V0 ⊕V1/2 ,
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where the symbol ⊕ denotes a direct sum. One finds that the physical spin-1/2

subspace V1/2 is represented by the two basis states | f †
i↑ f i↑, f †

i↓ f i↓〉 = |1,0〉 and |0,1〉 while

the two spin-0 subspaces V0 are given by the states |0,0〉 and |1,1〉. In order to treat

the original spin-1/2 model one needs to project out possible spurious admixtures from

the unphysical spin-0 states. This could be achieved by imposing a constraint on the

pseudofermion number,

(3.35) Q i =
∑
α

f †
iα f iα = 1 .

This is an extremely non trivial constraint to treat, given that the fermion number

has to be constrained at each point of the lattice (in cases where only one interacting

particle carry a spin, like a Kondo model where one magnetic impurity interacts with

a sea of non interacting electrons, the constraint can be dealt with exactly). We could

always treat the system approximately and replace the constraint (3.35) by the average

〈Q i〉 = 1. In cases where the system is translational invariant the constraint is identical

in each lattice point, so only one such condition remains. Furthermore, in our case case

the Hamiltonian presents particle-hole antisymmetry, which means that the Hamiltonian

changes sign under the exchange of creation and annihilation operators (this can be

proven simply by interchanging the creation and annihilation operators in Eqs. 3.31 and

using the anticommutation relations for the pseudofermions). As such this constraint is

equivalent to enforcing a µ= 0 chemical potential since the constraint aims to remove

two of the four states per site.

Another method to handle this constraint exactly has been proposed by Popov and

Fedotov [38]. We will briefly present this method for the sake of completeness, but please

note that in the next chapter we will show that this method is not necessary in our zero

temperature case.

Popov and Fedotov propose the introduction of an imaginary chemical potential of

the form µPF =− iπ
2β . This amounts to replacing the original Hamiltonian H by

(3.36) HPF = H−µPF N ,

where N =∑
i Q i, and H is written in terms of the fermionic operators. In their work,

Popov and Fedotov show that there is a mutual cancellation of unphysical contributions

arising from the sectors with Q i = 0 and Q i = 2 such that the expectation value of

a physical operator O , calculated with HPF within the entire Hilbert space, 〈O〉PF ,
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is identical to the expectation value calculated with the original Hamiltonian in the

constrained Hilbert space. While this approach has been applied to spin models at half

filling, it cannot be extended away from this limit. Furthermore, at T = 0, the schemes

with µ= 0 and µ=µPF are in principle not equivalent, given that the limit T → 0 and the

calculation of 〈O〉PF do not necessarily commute. In our formulation of PFFRG we will

consider a zero chemical potential as our Hamiltonian is particle hole symmetric and it is

easier to treat numerically. We can interpret this choice from a phenomenological point of

view: if we note that non or doubly occupied spin-0 sites are equivalent to vacancies in the

spin lattice, then creating such vacancy (via a fermion number fluctuation on a particular

site) means that the binding energy of a spin to its environment needs to be overcome.

It therefore is to be expected that at zero temperature the ground state of the fermionic

system lies entirely in the physical spin-1/2 sector and that unphysical occupations are

gapped excitations with an energy on the order of the exchange couplings. In Sec. 4.1.1

we will show that this is indeed the case, proving that at T = 0 the pseudo fermion

constraint is automatically fulfilled without any further methodological adjustments.

This proof will be based on the addition of level repulsion terms to the Hamiltonian.

In our case our study will be based on Heisenberg like Hamiltonians of the form in

Eq. (3.30), so the level repulsion term takes the form −A
∑

i S2
i . Since the eigenvalues

of S2
i are S(S +1), where S is the spin length, this implies that, if A is positive, this

term will shift the ground state energy of our Hamiltonian by a factor of S(S+1). In

our particular case the pseudofermions can generate two different spin lengths, total

spin 1/2 or 0, and in turn the level repulsion term will lower the energy of the spin-1/2

sector with respect to the spin-0. What we expect is that, if our assumption is correct

and indeed there is no pseudofermionic number fluctuation, then the inclusion of the

level repulsion terms in the Hamiltonian should not affect the results obtained from

it as the ground state would already be completely generated by spin-1/2. Please note

that we assume this considering that the energy scale of the level repulsion terms, A,

is positive (interesting results arise in the case of negative coupling as we will show

in the next chapter) and that in general A ¿ Ji j. If A would be of the order or bigger

than the Heisenberg couplings, the overall physics of the Hamiltonian would change, for

example, in the limit of A À Ji j we could treat our Hamiltonian as the Hamiltonian of

non interacting spin (arising from the extremely large level repulsion terms) perturbed

by a small interaction (coming from the Heisenberg part) which is very far from the

strongly interacting Heisenberg systems of interest.
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3.3 PFFRG framework

3.3.1 General form of the PFFRG equations for spin systems

We will now explicitly derive the PFFRG equations for the spin-1/2 case. In the next

chapter we will show a generalization to a Heisenberg model with spin operators of

arbitrary length [8]. We will concentrate on non-magnetic phases, i.e. phases which do

not break a symmetry of the Hamiltonian. To study long range ordered phases we would

have to include infinitesimal symmetry breaking terms in the Hamiltonian (as has been

done for superconductivity in Ref. [39]), which would increase the complexity of the

equations. Please note that even though we cannot access magnetically ordered phases,

we will still be able to detect magnetic instabilities as a breakdown of the flow.

Starting from the introduction of the pseudo fermions we see that without any

quadratic terms in the pseudo-particle Hamiltonian the bare fermionic propagator in

Matsubara space is simply given by

(3.37) G0(1′;1)= 1
iω1

δ(ω1 −ω1′)δi1′ i1δα1α1′ ,

where the index “1= {ω1, i1,α1}” denotes a multi index containing the frequency variable

ω1, the site index i1, and the spin index α1. Also note that in the zero temperature limit

considered here, the discrete Matsubara frequencies become continuous. The diagonal

structure of Eq. (3.37) in the frequency, site, and spin variables is due to energy conser-

vation, absence of any fermion hopping in the Hamiltonian, and isotropy in spin space

(coming from the non-magnetic nature of the phases), respectively.

Within PFFRG, the singularity of the propagator at ω1 = 0 is regularized by introduc-

ing an artificial infrared cutoff Λ implemented via a Heaviside step-function,

(3.38) GΛ
0 (1′;1)=Θ(|ω1|−Λ)G0(1′;1) .

This introduces a Λ-dependence in the self energy. Similarly as before, energy con-

servation, the absence of hopping, and isotropy in spin space gift the self energy with a

diagonal structure

(3.39) ΣΛ(1′;1)≡ΣΛi1
(ω1)δ(ω1 −ω1′)δi1′ i1δα1α1′ ,

which also extends to the single scale propagator SΛ.

Here and in the following we will denote the two particle vertex by ΓΛ (not to be con-

fused with the generating functional ΓΛ(φ̄,φ)), and the self energy by ΣΛ. As mentioned
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Figure 36: Diagrammatic illustration of the PFFRG flow equations for the self energy and
the two-particle vertex, see also Eqs. (3.40) and (3.41). The thick black lines represent
full propagators, GΛ while the black crossed lines are identified with the single scale
propagator SΛ.

before, this modification generates a Λ dependence of all fermionic irreducible one parti-

cle vertex functions with m-legs, ΓΛm, such as the self energy ΣΛ(1′;1)≡ΓΛ1 (1′;1) and the

two-particle vertex ΓΛ(1′,2′;1,2)≡ΓΛ2 (1′,2′;1,2). Following the standard FRG framework

we showed in the previous section (for more details please refer to [40, 41]), this depen-

dence can be described by an infinite hierarchy of coupled integro-differential equations

where the scale derivative dΓΛm/dΛ couples to all vertices ΓΛn with n = 1,2, . . . ,m,m+1.

The equations for the self energy and the two-particle vertex take the form

d
dΛ

ΣΛ
(
1′;1

)=− 1
2π

∑
2′2
ΓΛ

(
1′,2′;1,2

)
SΛ

(
2,2′) ,(3.40)

d
dΛ

ΓΛ
(
1′,2′;1,2

)= 1
2π

∑
3′3
ΓΛ3

(
1′,2′,3′;1,2,3

)
SΛ

(
3,3′)

+ 1
2π

∑
3′34′4

[
ΓΛ

(
1′,2′;3,4

)
ΓΛ

(
3′,4′;1,2

)
−ΓΛ(1′,4′;1,3)ΓΛ

(
3′,2′;4,2

)− (
3′ ↔ 4′,3↔ 4

)
+ΓΛ(2′,4′;1,3)ΓΛ

(
3′,1′;4,2

)+ (
3′ ↔ 4′,3↔ 4

)]
×GΛ(3,3′)SΛ(4,4′) ,(3.41)

where sums stand for Σ1 ≡
∫
ω1

dω1
∑

i1

∑
α1=↑,↓ and ΓΛ3 is the three particle vertex. The

diagrammatic form of these equations is depicted in Fig. 36. The right hand side of the

equation for the two particle vertex contains six terms, the first one is the three particle

vertex. The second is the particle-particle graph, and the remaining four represent

particle-hole graphs.
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As before, GΛ(ω)= [(GΛ
0 (ω))−1 −ΣΛ(ω)]−1 denotes the fully dressed propagator and

(3.42) SΛ(ω)=GΛ(ω)2 d
dΛ

(
GΛ

0 (ω)
)−1

,

is the single-scale propagator. This expression can be brought to a more convenient

form noticing that GΛ contains a step function Θ(|ω|−Λ) and it’s derivative gives a delta

function δ(|ω| −Λ). Morris’ identity ([42]) tells us that if we use broadened functions

δε(|ω|−Λ) = δ(|ω|−Λ+ ε) and Θε(|ω|−Λ) =Θ(|ω|−Λ+ ε) and take the limit ε→ 0 it can

be proven that

(3.43) δε(x−Λ) f (Θε(x−Λ))→ δ(x−Λ)
∫ 1

0
f (t)dt .

This identity straightforwardly leads to an expression of the single scale propagator

of the form

(3.44) SΛ(ω)= δ(|ω|−Λ)
iω−ΣΛ(ω)

We mentioned previously that we chose a sharp frequency cutoff given that it would

simplify the flow equations. This simplification is evident now looking at Eq. (3.44), given

that due to energy conservation the Matsubara sums are greatly simplified, with only

one sum remaining.

For a numerical evaluation of these equations, the infinite hierarchy needs to

be truncated. The most straightforward truncation scheme amounts to treating the

three-particle vertex ΓΛ3 as zero. This, however, leads to an insufficient feedback of

the self energy into the two-particle vertex flow such that all results effectively re-

main on a classical level. Particularly, quantum fluctuations needed for the description

Figure 37: Diagrammatic expression

of Eq. (3.45). A crossed line represents

a Λ-derivative in the propagator.

of magnetically disordered phases are almost com-

pletely neglected within such a scheme [35]. The

key improvement is achieved by the so-called

Katanin truncation [43] which neglects ΓΛ3 in

Eq. (3.41) but at the same time replaces the single-

scale propagator by the total derivative of the full

Green’s function

(3.45) SΛ −→− d
dΛ

GΛ = SΛ− (
GΛ

)2 d
dΛ

ΣΛ ,
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where the last equality arises from simply applying the quotient rule and the first term

of the utmost right hand side is the results of derivating GΛ
0 . The diagrammatic form of

the replacement is shown in Fig. 37, where we have denoted by a crossed out propagator

line the propagator that contains a Λ-derivative. When this replacement is inserted in

the second flow equation, new terms arise.

This scheme effectively takes into account a certain subset of three-particle vertex

contributions in Eq. (3.41), an example of one of these three particle contributions is

shown in Fig. 38.

Figure 38: Part of the three particle

contribution to the two particle ver-

tex generated by the Katanin trun-

cation (right hand side diagram). If

we replace the single scale propaga-

tor in the particle-particle term by the

self energy correction arising from the

Katanin truncation (Eq.3.45) the right

hand side term arises, which can be

seen as of the same type as the three

particle vertex as it has four external

legs and one loop.

Most importantly, the modified single-scale

propagator is given by the total derivative − d
dΛGΛ,

such that the complete feedback of the self en-

ergy into the two-particle vertex is always ensured

within the Katanin truncation. We can see the use-

fulness of this approach if we interpret the self en-

ergy as a pseudo fermion damping term in the full

propagator. In this picture the contribution of the

self energy plays a fundamental role as it can de-

stroy magnetic order by suppressing the fermionic

propagation. It seems then that this feedback is

essential for the proper description of quantum

fluctuations that lead to magnetically disordered

phases. If the Katanin truncation were not to be

implemented, one would expect that the results

of our PFFRG scheme would be biased towards

magnetically ordered phase, thankfully though, the

Katanin truncation balances the different terms in

such a way that all diagrams corresponding to magnetic order or disorder are accounted

for with the same weight, leading to an unbiased calculation.

3.3.2 Initial conditions

The initial conditions are taken in the limit Λ→∞, where the free propagator vanishes

identically. Hence, the only finite vertex function at Λ→∞ is the bare two-particle vertex

given by
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Γ∞(1′,2′;1,2)=1
4

Ji1 i2σ
µ
α1′α1σ

µ
α2′α2δi1′ i1δi2′ i2

×δ(ω1 +ω2 −ω1′ −ω2′)

− (ω1 ↔ω2, i1 ↔ i2,α1 ↔α2) ,(3.46)

where the factor ∼ 1/4σµσµ results from the pseudo fermion representation (3.32)

and a sum over µ is implicitly assumed. The last line guarantees that the fermionic

antisymmetry condition under the exchange of variables 1 ↔ 2 or 1′ ↔ 2′ is fulfilled.

Furthermore note that due to the absence of any quadratic fermionic terms in the

Hamiltonian, the self energy always vanishes identically at Λ→∞, but it will become

non-zero as the flow progresses.

The flow equations can be brought into a more convenient form by exploiting the

special site index structure of the two-particle vertex. Since all propagators GΛ(1′,1),

SΛ(1′,1) are diagonal in i1′ , i1 the spatial dependence of Γ∞(1′,2′;1,2) as indicated in

Eq. (3.46) is retained to all levels of diagrammatic approximations. This means that for

each diagrammatic contribution with site indices i1′ and i2′ on two external fermion

lines, the other two indices must either be given by i1 = i1′ , i2 = i2′ or i1 = i2′ , i2 = i1′ .

The spatial dependence of ΓΛ(1′,2′;1,2) can therefore be parametrized as

ΓΛ(1′,2′;1,2)=Γ̃Λi1 i2
(1′,2′;1,2)δi1′ i1δi2′ i2

×δ(ω1 +ω2 −ω1′ −ω2′)

− (ω1 ↔ω2, i1 ↔ i2,α1 ↔α2) ,(3.47)

where the new vertex Γ̃Λ fulfills the condition Γ̃Λi1 i2
(1′,2′;1,2)= Γ̃Λi2 i1

(2′,1′;2,1). Note

that the multi index “1” appearing in the argument of Γ̃Λ only stands for the frequency

ω1 and the spin α1, while the site indices are written as a subscript. Furthermore, the

δ-function in the frequencies in Eq. (3.47) guarantees that energy is conserved.

The initial conditions for Γ̃Λ takes the form

(3.48) Γ̃∞i1 i2
(1′,2′;1,2)= 1

4
Ji1 i2σ

µ
α1′α1σ

µ
α2′α2δi1′ i1δi2′ i2 .

3.3.3 Parametrization of the spin dependence

The parametrization of the vertices according to their spin dependences leads us to a

clearer picture of the underlying structure of our equations, and is fundamental for their
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numerical solution.

Considering the self energy, we know it is a local quantity in spin space, proportional

to the unit matrix, and is related to the Green’s function GΛ via Dyson’s equation. At

the same time, GΛ is related to the spectral function ρ(ω) via G(ω)= ∫ ∞
−∞

ρ(ε)
(ω−ε) dε, where

ω is a Matsubara frequency. Since the spectral function represents the distribution

of probabilities of a particle having an energy ω, it has to be an even function in the

presence of particle hole symmetry. Then GΛ is an odd function with vanishing real part,

and via Dyson’s equation we find that the self energy also result as a purely imaginary

odd function, ΣΛ =−iγΛ(ω).

Furthermore, the rotational invariance of our system will be conserved during the

flow. As a consequence, the two-particle vertex can be parametrized by spin-spin terms

∝ σ
µ

αβ
σ
µ

γδ
. What it is perhaps not obvious, is that even though the initial conditions

only contain spin-spin terms, the structure of our equations allow for the appearance

of density-density terms ∝ δαβδγδ at finite Λ, with the density term vanishing in the

limit Λ→∞. This way the two particle vertex, Γ̃Λi1 i2
(1′,2′;1,2) can be represented as in a

similar form as Eq. (3.47):

Γ̃Λi1 i2
(1′,2′;1,2)= (

Γ̃Λsi1 i2
(1′,2′ : 1,2)σµα1′α1σ

µ
α2′α2

+Γ̃Λdi1 i2
(1′,2′ : 1,2)δα1′α1δα2′α2

)
×δi1′ i1δi2′ i2δ(ω1 +ω2 −ω1′ −ω2′)

−(ω1 ↔ω2, i1 ↔ i2,α1 ↔α2) ,(3.49)

where s(d) correspond to spins (density) interactions, the δ-function ensures energy

conservation, and the numbers now only represent a short hand notation for frequencies.

We can now re derive the flow equations for both the self energy, ΣΛ, and the two

particle vertex, ΓΛ in terms of the parametrized vertices Γ̃Λs(d).

We will derive the new flow equations in the conventional truncation scheme, where

the single scale propagator adopts the form (3.44). Later on we will show that the Katanin

truncation scheme just modifies a portion of the flow equations.

3.3.4 PFFRG equations for the self energy

For the self energy, inserting the parametrization Eq. (3.49) into (3.40) and using

Eq.(3.39), we can see that evaluating the sum over spin variables becomes straight-

forward. At the same time the ω2 integration is also simple to calculate since Eq.(3.49)

contains a delta function on frequencies. Performing the above mentioned steps we obtain
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d
dΛ

γΛ(1)= 1
2π

∑
2=±Λ

(
−2

∑
j
Γ̃Λdi1 j(1,2 : 1,2)+3Γ̃Λsi1 i1

(1,2 : 2,1)

+ Γ̃di1 i1(1,2 : 2,1)
) 1
ω2 +γΛ(2)

,(3.50)

This equation can be rewritten by exploiting symmetries in frequency space. First,

since energy conservation apply, we can write one of the frequencies in terms of the other

three, which means we can rewrite the arguments of Γ̃Λs and Γ̃Λd as

(3.51) Γ̃Λs(d)i1 i2
(1,2 : 3,4)→ Γ̃Λs(d)i1 i2

(1+2,1−3,1−4) .

Please remember that the number notation now only represents frequencies. With

this in mind, we can rename s = ω1′ +ω2′ , t = ω1′ −ω1, and u = ω1′ −ω2 such that

Γ̃Λs(d)i1 i2
(1+2,1−3,1−4) → Γ̃Λs(d)i1 i2

(s, t,u). Naming 1 → ω, and performing the explicit

sum in Eq. (3.50) we thus arrive at the final equation for the self energy

d
dΛ

γΛ(ω)= 1
2π

[
−2

∑
j

(Γ̃Λdi j(ω+Λ,0,ω−Λ)− Γ̃Λdi j(ω−Λ,0,ω+Λ))

+3(Γ̃Λsii(ω+Λ,ω−Λ,0)− Γ̃Λsii(ω−Λ,ω+Λ,0))

+ Γ̃Λdii(ω+Λ,ω−Λ,0)− Γ̃Λdii(ω−Λ,ω+Λ,0)
] 1
Λ+γΛ(Λ)

(3.52)

3.3.5 PFFRG equation for the two particle vertex and Katanin
contribution

The two particle vertex can be obtained via a similar process as we used for the self

energy. The form of the fully parametrized equations is shown in Appendix . Here we

will show the equations without parameterizing the spin dependence, and we will point

out the explicit difference between the conventional and the Katanin truncation schemes.

The two particle vertex flow equation is
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d
dΛ

Γ̃Λi1 i2
(1′,2′ : 1,2)= 1

2π

∫ ∞

−∞
dω4

∫ ∞

−∞
dω3

∑
α3,α4[

Γ̃Λi1 i2
(1′,2′ : 3,4)Γ̃Λi1 i2

(3,4 : 1,2)PΛi1 i2
(ω3,ω4)

−∑
j
Γ̃Λi1 j(1

′,4 : 1,3)Γ̃Λji2
(3,2′ : 4,2)PΛj j(ω3,ω4)

+ Γ̃Λi1 i2
(1′,4 : 1,3)Γ̃Λi2 i2

(3,2′ : 2,4)PΛi2 i2
(ω3,ω4)

+ Γ̃Λi1 i1
(1′,4 : 3,1)Γ̃Λi1 i2

(3,2′ : 4,2)PΛi1 i1
(ω3,ω4)

+ Γ̃Λi2 i1
(4,2′ : 1,3)Γ̃Λi2 i1

(1′,3 : 4,2)PΛi2 i1
(ω3,ω4)

]
(3.53)

where we have defined

(3.54) PΛi1 i2
(ω1,ω2)=GΛ

i1
(ω1)SΛi2

(ω2)+GΛ
i2

(ω2)SΛi1
(ω1) .

Depending on the truncation scheme in use, the form of PΛi1 i2
(ω1,ω2) will be different.

If the conventional scheme is used, in which the third particle vertex is completely

disregarded, the single scale propagator has the form of Eq. (3.44) and we obtain

(3.55) GΛ(ω1)SΛ(ω2)= δ(|ω1|−Λ)
ω1 +γΛ(ω1)

Θ(|ω2|−Λ)
ω2 +γΛ(ω2)

.

Within the Katanin truncation scheme, the replacement Eq. (3.45) is done only in the

second flow equations, and it leads to

GΛ(ω1)SΛ(ω2)= δ(|ω1|−Λ)
ω1 +γΛ(ω1)

Θ(|ω2|−Λ)
ω2 +γΛ(Ω2)

+
( d
dΛ

γΛ(ω1)
) Θ(|ω1|−Λ)
(ω1 +γΛ(ω1))2

Θ(|ω2|−Λ)
ω2 +γΛ(ω2)

.(3.56)

This means that within the Katanin truncation scheme the right hand side of the

flow equation for the two particle vertex will contain a new term.

The five terms on the right-hand side of Eq. (3.53) can be easily distinguished

according to their site-index structure, as illustrated in Fig. 39. The first term is a

particle-particle term that generates ladder-type diagrams where the fermion lines

have the same orientation (see arrows in Fig. 39). The second term is special as it

contains an internal closed fermion loop associated with a site summation. This term

34



3.3. PFFRG FRAMEWORK

Figure 39: Diagrammatic illustration of the PFFRG flow equations for the self energy
and the two-particle vertex, see also Eqs. (3.52) and (3.53). The gray lines crossing
two fermion propagators denote the term PΛi1 i2

(ω1,ω2)=GΛ
i1

(ω1)SΛi2
(ω2)+GΛ

i2
(ω2)SΛi1

(ω1)
while slashes crossing only one line are the single scale propagators. Site indices i1, i2, j
illustrate the real-space structure of the flow equations. The five terms on the right-hand
side of the second equation are the particle-particle channel, the RPA term, two vertex
correction terms and the crossed particle hole term in the same order as they appear in
Eq. (3.53).

sums up RPA diagrams and will play an important role in the spin-S generalization

described in the next chapter. Most importantly, this is the only term in the PFFRG

equations where the vertex evolution d
dΛ Γ̃

Λ
i1 i2

does not only couple to the local vertex

Γ̃Λii or to itself, but also to any other vertex Γ̃Λi1 j and Γ̃Λji2
. As a consequence, the RPA

term generates long-range correlations between spins. The third and fourth terms in

Eq. (3.53) are referred to as vertex corrections, while the fifth term is the crossed particle-

hole channel summing up ladder diagrams with fermion lines of opposite orientation.

In general, the non-local nature of the RPA term is responsible for the formation of

magnetic long-range order. On the other hand, the ladder diagrams induce a strong

short-range binding between nearby spins leading to spin-singlet formation and to an

effective non-magnetic resonating-valence bond description. Given that in our approach

the terms that contribute to magnetic order and those that induce quantum fluctuations

are treated on the same level of approximation, magnetically ordered and disordered

phases can be described on equal footing, which establishes the strength of the PFFRG

method.

The last step of the derivation is straightforward though tedious, we show the final

flow equations in Appendix . It regards the replacement of Γ̃Λ with Γ̃Λs and Γ̃Λd in Eq.3.53

and performing the spin sums over α3 and α4 with the subsequent introduction of the
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frequencies s, t, and u. Comparing the contributions corresponding to the spin and

density interactions on both sides we obtain flow equations for Γ̃Λs and Γ̃Λd .

3.4 Technical aspects on the numerical solution

To numerically solve the PFFRG equations, several further steps of manipulating

Eq. (3.53) need to be performed. In the following we treat the definition of boundary

conditions for our real space dependence, as well as the appropriate approximation of

the continuous frequency variables by a discrete grid. Finally we will briefly explain the

numerical algorithm employed in the solution of the equations.

3.4.1 Treating the spatial dependence

Since our flow equations have summations which depend on the lattice sites, and the

numerics require a finite set, we need to treat this spatial dependence in a way in which,

for finite system sizes, we can distinguish between presence and absence of long range

order, and where the finite size effects are minimized. At the same time, given the site

summations involved, maintaining the translational invariance of our lattice intact

will allow us to speed up the calculation. In our numerics we will treat this spatial

dependence considering an infinite system where the spatial limit appears in the vertex

functions. We will consider an infinite system in which ΓΛi1 i2
6= 0 for i1 and i2 such that

(3.57) |Rγ

i1
−Rγ

i2
| < Lγ ,

where γ= {x, y, z}, Ri = (Rx
i ,R y

i ,Rz
i ) is the distance between sites i1 and i2, and L=

(Lx,L y,Lz), with Lx,y,z the number of unit cells in (x, y, z) direction where the condition

holds.

With condition (3.57), our effective system “size” will be defined in terms of L. For

example, for a simple cubic lattice we take Lx = L y = Lz = L, and our system size will

contain L3 sites. With this constraint, translational invariance is preserved, so our site

summations will be performed only over all the neighboring sites that fulfill the length

constraint. Please note that in the case of the two particle each RPA bubble contains

sums running over an index j, dealing with vertices between i1 and j, and j and i2,

while the self energy only contains one. Further lattice symmetries will be employed to

speed up the calculation.
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3.4.2 Frequency dependence and numerical approximation

Once we resolved the spatial dependence, we can concentrate on the treatment of the

frequencies.

First and foremost, the flow equations at zero temperature are formulated in terms

of a continuous set of frequencies. To achieve a numerical solution we need to discretized

the frequency dependence, i.e selecting our frequencies s, t, and u from an appropriate

grid. In general we will use a linear grid for the frequencies corresponding to several

orders of magnitude above the coupling strength, where the flow of the two particle

vertex is small and shows little variation, and a logarithmic grid at energy scales of the

order of the coupling strength and below, to obtain a good resolution of the small energy

scales where the interesting behavior of the flow is located. In principle, the frequency

arguments ω, ω1, ω2, and ω3 that appear on the right hand side of the flow equations for

Γ̃Λs(d) and ΣΛ(ω) will not coincide with grid points as they are given by combinations of s,

t, and u as mentioned before Eq. (3.52). To choose one point from the grid for each one of

these frequencies we use a linear interpolation based on the nearest grid point below

(ω<) and above (ω>) our desired frequency. This way, our self energy results

(3.58) γΛ(ω)= [γΛ(ω<)(ω>−ω)+γΛ(ω>)(ω−ω<)]
1

ω>−ω< .

and the two particle vertex

ΓΛs(d)i1 i2
(ω1,ω2,u)= [

ΓΛs(d)i1 i2
(ω1<,ω2<,u)(ω1>−ω1)(ω2>−ω2)

+ΓΛs(d)i1 i2
(ω1<,ω2>,u)(ω1>−ω1)(ω2 −ω2<)

+ΓΛs(d)i1 i2
(ω1>,ω2<,u)(ω1 −ω1<)(ω2>−ω2)

+ΓΛs(d)i1 i2
(ω1>,ω2>,u)(ω1 −ω1<)(ω2 −ω2<)

]
× 1

(ω1>−ω1<)(ω2>−ω2<)
.(3.59)

Finally, we point out that as we could use lattice symmetries to speed up the numerics,

we can also use frequency symmetries[44]. The vertex ΓΛs(d)i1 i2
(s, t,u) is invariant under

s → −s, t → −t, and u → −u. Furthermore, ΓΛsi1 i2
(s, t,u) is invariant and Γ̃Λdi1 i2

(s, t,u)

changes sign under s ↔ u. These symmetries reduce the computational power by a factor

of 16 since only 1/16 of the space spanned by the frequencies needs to be calculated.
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3.4.3 Numerical algorithm

The equations that remain to be solved are ordinary first order (coupled) differential

equations of the form

(3.60)
d

dΛ
ΥΛ = f (ΥΛ,Λ)

where Υ represents the self energy and two particle vertex, and f is the right hand

side of the flow equations.

The solutions of these equations can be found numerically via an iterative method,

for this we chose a Runge Kutta algorithm. Furthermore, a Runge Kutta order one,

otherwise known as the Euler method, is sufficient to solve it with minimal numerical

error. The algorithm consists on replacing the boundary ∞ by a large value and splitting

up the integration range into n small pieces, [Λ0,∞)→ [Λ0,Λ1], [Λ1,Λ2], ... , [Λn−1,Λn].

For the first step we get Υ=ΥΛn , from then the algorithm proceeds by introducing in the

integrand the previous values of Υ.

The pseudo code (ignoring the spatial dependence that only consists on nested “for”

loops on the lattice indices) has the form:

Algorithm 1 Euler method for the flow equations.
Define f (ΥΛ,Λ).
Input the initial conditions ΥΛn and Λn.
Input the step size h, and the number of steps n.
for (j = 0; j < n+1) do

m = f (ΥΛn , Λn)
Υn−1 = Υn + h*m
Λn−1 = Λn + h
Υn = Υn−1
Λn = Λn−1

end for

Please note that certain care needs to be taken regarding the third step, since the

step size, h, will change depending on the discretization of the continuous frequency Λ.

The algorithm is in principle straightforward, but using every possible symmetry in the

frequency and real space is essential, since the scaling with the different parameters

can require several CPU hours/days per data point. We can estimate the scaling of the

computation by looking at the most complex flow equation, the two particle vertex: for

the spacial dependence of the scaling we notice that the two particle vertex Γ̃Λi1 i2
depends
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on two sites. This is due to the fact that the lattice is translation invariant and as such

the two particle vertex will depend on the distance between the sites, but not the sites

themselves. As such we can fix i1 and calculate the two particle vertex for every site i2.

These scales with system size, N, as O (N). But at the same time the two particle vertex

contains a site summation running over all the sites in the lattice, which transforms the

scaling to O (N2). For the frequencies, we have three frequencies discretized over a grid

containing f points, which together with the Katanin truncation result in a scaling of

the form O ( f 4). Finally, our total computational scaling for a calculation consisting of N
lattice sites, provided translational invariance is not broken, and f frequency grid points,

results O (N2 × f 4).

For our results throughout this thesis we use a combination of a linear and logarithmic

grid consisting of up to 60 discrete values for each frequency variable. For the Λ grid we

will employ a scale in which Λn = 0.95Λn−1. Furthermore, the spatial dependence of the

vertex functions is treated with L = 10 according to our spatial constraint.

3.5 Calculations of the static spin-spin correlator

Finally, from our approach we can calculate the static spin-spin correlation function,

which gives us information on the magnetic properties related to two particle interactions.

We can calculate this quantity via Kubo’s formula. If we consider a small local magnetic

field at site i , we can ask what the effect on a spin on another site j will be, and treat

this as a perturbation to our Hamiltonian on site j. The response to this perturbation is

given by

(3.61) χi j(τ)= θ(τ)〈{Si(τ)S j(0)}〉 .

For the static correlator we can write

(3.62) χi j =
∫ ∞

0
dτ〈Tτ{Si(τ)S j(0)}〉 .

This has the form of a spin-spin correlator, which can also be interpreted as a

local susceptibility. We can replace the spin operators for pseudofermions, and see that

the form of the susceptibility resembles that of a two point Green’s function with the

superindices 1′ = 1 and 2′ = 2. We can expand the expectation value diagrammatically as

we have done in previous sections for the Green’s functions, and we find
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(3.63) χΛi j = δi j + .

which in explicit form reads

χΛi j =− 1
4π

∫
dωGΛ(ω)GΛ(ω)δi j − 1

8π2

∫ ∫
dωdω′GΛ(ω)GΛ(ω)GΛ(ω′)GΛ(ω′)

×
[
2ΓΛsi j(ω+ω′,0,ω−ω′)+ΓΛsii(ω+ω′,ω−ω′,0)δi j −ΓΛdii(ω+ω′,ω−ω′,0)δi j

]
.(3.64)

Exploiting translation invariance of the lattice and transforming the site variables

i1 and i2 into k-space yields the spin susceptibility χΛ(k) as a function of the RG scale

Λ. The magnetic properties of the system can be deduced from the Λ evolution of the

susceptibility.

Figure 310: Sketch of the susceptibil-

ity’s flow as a function ofΛ for the cases

of a magnetically disordered ground

state (green curve) and another pre-

senting LRO (red curve). We plot the

maximum of the Fourier transform of

the two particle susceptibility at the

dominant wavevector k as a function

of Λ.

We have formulated our full PFFRG derivation

considering that our system does not break time re-

versal symmetry. Furthermore, we have pointed out

the increase in complexity if we were to add time

reversal symmetry breaking terms to the Hamilto-

nian. This means that the flow equations will have

a physical solution as long as time reversal is not

broken, if this symmetry is broken then the results

lack physical meaning and the flow of the stud-

ied quantity breaks down. This property is used

in the analysis of our numerical results by study-

ing the behavior of the maximum of the two point

susceptibility in the reciprocal space at a given Λ,

χmax(k): In the case that our particular Hamilto-

nian presents magnetic long-range order (LRO) in

the ground state, and this LRO appears with wave

vector k, the corresponding maximal susceptibility

χmax(k) will grow as Λ is decreased, until a peak or

a kink indicates the magnetic instability breakdown of the RG flow as can be seen in

Fig. 310. Please note that with a dense frequency grid and in the thermodynamic limit,

i.e., without limiting the spatial extent of the two-particle vertex, these peaks would

grow and eventually become divergences. Otherwise, if the system does not exhibit LRO

in the ground state, a smooth flow of the susceptibility is expected, i.e. it does not show
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signatures of an instability down to Λ→ 0, as shown by the green curve in Fig. 310. We

have to be careful still with the interpretation of this analysis, as we are studying two

point correlators. The absence of a magnetic instability is not a smoking gun proof of a

disordered ground state without any type of symmetry breaking, as there might be an

instability in a higher order correlator (for example, a chiral state is expected to present

an instability in the three point correlator). It is worth noting that if the spatial con-

straint we mentioned before on the two particle vertex is too drastic, which would mean

working with a lattice size too small, the signatures of magnetic instabilities cannot

be clearly identified, as a relatively big system size is needed to identify LRO. In our

experience, system sizes with a lattice size L = 6, which is equivalent in our honeycomb

lattice benchmark to ∼ 70 sites, is enough to detect a clear magnetic instability. As the

size is increased the instability gets more pronounced, but the critical value at which it

happens, Λcrit, is not changed (please note that a good determination of Λcrit requires a

very dense discretization of the Λ scale).
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4
QUANTUM TO CLASSICAL CONNECTION

LARGE S GENERALIZATION FOR PFFRG

The part that is stable we are

going to predict. And the part

that is unstable we are going to

control.

John von Neumann, 1948

In the following chapter, we will introduce a large S generalization for the pseud-

ofermionic FRG framework. While this generalization might seem of pure academic

interest, there is a growing number of spin systems, many of them with experimen-

tal realizations, where novel phases appear at higher spin lengths than 1/2.

The traditional recipe for maximizing the effects of quantum fluctuations has pri-

marily involved spins of the smallest magnitude S = 1/2, but extremely interesting spin

phases can likewise occur in the extreme opposite limit of classical spins, S →∞. For

example, this limit is realized in pyrochlore materials known as spin-ices[45] which

are characterized by an extensive ground state degeneracy[46] and effective monopole

excitations[47], and in spiral spin liquid materials [48–50]. Furthermore, there are many

novel types of quantum phases that appear at a specific intermediate value of S (see e.g.

Refs [51–54]).

In the present chapter we will show how this generalization is obtained within

the PFFRG framework, and later on, as a first test, we will apply this scheme to the
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antiferromagnetic J1-J2 Heisenberg model on the honeycomb lattice with first (second)

neighbor interactions J1 (J2). Due to the frustrating effect of the J2 coupling, the system

shows rich magnetic behavior as a function of S and J2/J1, where the spin-1/2 case has

attracted particular attention.

4.1 Large S generalization

The first step of our approach to generalizing the S = 1/2 PFFRG method of the previous

chapter to arbitrary spin lengths S, consists on generating spins of length S in our

lattice sites. The most straightforward way in which we could do this is generalizing the

Pauli matrix representation σµ in Eq. (3.32) to higher angular momenta, as described,

e.g., in Ref. [55]. In such a scheme, the implementation of a spin-S degree of freedom

requires the introduction of 2S+1 fermions on each site with a pseudo fermion constraint

fixing the particle number to either 1 or 2S. This constraint could be implemented by

introducing a non-zero chemical potential, but in situations as we are interested in,

the problem of applying a chemical potential is that any finite µ will either deplete

the system completely (µ > 0) or induce the maximal fermion occupation (µ < 0), as

our Hamiltonians posses no hopping terms. To not deal with this complication, we will

approach the problem from a different perspective: we will generate our spin S in a given

site, by considering multiple copies of spin-1/2 degrees of freedom of different flavors on

each site [56–58]. Thus the finite chemical potential problem is avoided since for each

flavor κ a spin-1/2 degree of freedom is realized at half filling which corresponds to a

chemical potential µ= 0 as stated in the previous chapter.

To achieve the arbitrary S formulation, we have to rewriting our pseudo-fermionic

approach considering the different flavors. In our definition (3.32) we now add a sum

over the M spin flavors, i.e.

(4.1) Si →
M∑
κ=1

Siκ ,

where κ denotes the new “flavor” index. Inserting into the Hamiltonian (3.30) we

obtain

(4.2) H = ∑
(i j)

Ji j

(
M∑
κ=1

Siκ

)
·
(

M∑
κ′=1

S jκ′

)
.
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Please note that all flavors κ on site i interact with all flavors κ′ on site j via the

same coupling Ji j, but there is no coupling between spins of different flavors in the same

site. A coupling between different flavors in the same site can be added, this is what we

will reference in the next sections as level repulsion terms.

The question that arises when one introduces the different flavors is related to the

total spin our combination of pseudofermions of different flavors will generate. If we

study the modified pseudo-fermionic representation in Eq. (3.32) we see that in this case,

if we aim to set up a generalized spin-S PFFRG scheme, the pseudo-fermions acquire an

extra flavor index, and the representation takes the form

(4.3) Sµ

iκ =
1
2

∑
αβ

f †
iακσ

µ

αβ
f iβκ ,

where the operators f iακ fulfill the standard fermionic anti-commutation relation

(4.4) { f iακ, f †
i′α′κ′}= δii′δαα′δκκ′ .

S = 0

S = (M-2)/2
S = (M-1)/2
S = M/2

A

E

Figure 41: Scheme representing the energy of

the different spin sectors as a function of the on-

site level repulsion term strength. We show the

energy as a function of a ferromagnetic coupling

A for different values of the total spin length S. A

ferromagnetic level repulsion term will strongly

reduce the energy of the higher spin sector.

As mentioned in the previous chapter,

the operators f (†)
i↑κ, f (†)

i↓κ for a given site i
(and now also for a particular flavor κ)

will generate sectors in our Hilbert space

which correspond to spins of total length 0

and 1/2. This means that if we sum up M
of these operators we essentially are gen-

erating subspaces that correspond to net

spin lengths ranging from M/2 to 0. The

main problem is that, a priori, we cannot

state which spin length will correspond to

the ground state. Since we aim to use this

approach to study the ground state of spin

models with a certain fixed spin S = M/2,

we need to find out whether the subspace

corresponding to our desired spin length

S is the one in which the ground state of
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Eq. (4.2) is realized or whether the ground state has contributions from different sec-

tors. We can gain an intuitive understanding of which spin length will correspond to

the ground state if we think about Hund’s first rule. This rules states that for a given

electron configuration, the term with maximum multiplicity has the lowest energy. The

multiplicity being equal to 2S+1, where S is the total spin angular momentum for all

electrons. This means that according to this rule, the term with lowest energy is also the

term with maximum total spin S. In our particular case, given that the largest angular

momentum eigenvalues corresponds to S = M/2, it is natural to assume that the ground

state will be constructed from states with S = M/2 on each site.

We will show in Sec. 4.1.1 that this is indeed the case. We will do this by explicitly

adding the aforementioned level repulsion terms, of the form A(
∑M
κ=1 Siκ)2, with a ferro-

magnetic coupling, A. Since the eigenvalues of S2
i are S(S+1) then a ferromagnetic A

will shift the ground state energy of our Hamiltonian by a factor of S(S+1) as shown

in Fig. 41. What we expect is that, if the ground state is indeed composed exclusively

from S = M/2 states, then the inclusion of the level repulsion terms should not affect the

results obtained from PFFRG. This would be a clear indication that the ground state of

the modified Hamiltonian in Eq. (4.2) with M spin flavors is identical to the ground state

of the model (3.30) with spin length S = M/2.

To see how this modified pseudofermionic representation affects the flow equations,

we set up a diagrammatic theory with the new flavor indices κ. This is a straightfor-

ward process since we already know what the building blocks of our theory are. In the

diagrammatic theory with new flavor indices we obtain the bare propagator G0(1′;1)

(analogous to that in Eq. (3.37)

(4.5) G0(1′;1)= 1
iω1

δ(ω1 −ω1′)δi1′ i1δα1α1′δκ1′κ1 ,

where the δ-function on the flavor indices arises from the anticommutation relations

in Eq. (4.4). With this in mind we see that the bare interaction Γ∞(1′,2′;1,2) (i.e., the

two-particle vertex at Λ→∞, analogous to Eq. (3.46) also has a δ-function in the flavor

indices,

Γ∞(1′,2′;1,2)=Ji1 i2σ
µ
α1′α1σ

µ
α2′α2δi1′ i1δi2′ i2δκ1′κ1δκ2′κ2

×δ(ω1 +ω2 −ω1′ −ω2′)

− (ω1 ↔ω2, i1 ↔ i2,α1 ↔α2,κ1 ↔ κ2) .(4.6)
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where the multi indices also include the κ variables, i.e. “1= {ω1, i1,α1,κ1}”. By simple

inspection we notice that the index structure in Eqs. (4.5) and (4.6) is identical for the

indices κ and i. This simply means that the flavor index can be understood as an extra

site variable, and as such the sums can be dealt with exactly the same way as for site

indices. Furthermore, since the bare couplings Ji j do not depend on the flavor indices,

and the number of flavors is finite, the treatment of the multiple flavors is even simpler

than the case for the sites. A depiction of this process is shown in figure 42.

(a) (b) (c)

Figure 42: Scheme depicting the equivalence between different flavor pseudofermions and site
indices. (a) Each site here is a real space site where an spin lives. A red and black dot represents
a spin-S. (b) One spin-S site contains 2M pseudofermions corresponding to M different flavors.
(c) According to Eqs. (4.5) and (4.6) the flavor index can be considered as a site index. As such the
sum between flavors can be dealt in exactly the same way as a sum between real space indices,
which can be depicted as each flavor corresponding to the sites of an underlying lattice (red dots).

With this equivalence, the analog of Eq. (3.47) is immediately given by

ΓΛ(1′,2′;1,2)=Γ̃Λi1 i2κ1κ2
(1′,2′;1,2)δi1′ i1δi2′ i2δκ1′κ1δκ2′κ2

− (ω1 ↔ω2, i1 ↔ i2,α1 ↔α2,κ1 ↔ κ2) .(4.7)

As noted earlier, the exchange couplings Ji1 i2 in Eq. (4.6) do not depend on the flavor

variables such that there is no explicit κ dependence in the scheme. Consequently, the

couplings Ji1 i2 also remain independent of the flavor index yielding Γ̃Λi1 i2κ1κ2
(1′,2′;1,2)≡

Γ̃Λi1 i2
(1′,2′;1,2).

With this, the modifications of the PFFRG scheme are rather simple. If we look at

Eq. (3.40) and (3.41) we see that we will obtain a very similar equation, but where now

the sums stand for Σ1 ≡
∫
ω1

dω1
∑

i1

∑
α1=↑,↓

∑
κ1 . Following the exact same procedure as

described in the previous section we can obtain the flow equations for the self energy
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d
dΛ

γΛ(ω)= 1
2π

[
−2M

∑
j

(Γ̃Λdi j(ω+Λ,0,ω−Λ)− Γ̃Λdi j(ω−Λ,0,ω+Λ))

+3(Γ̃Λsii(ω+Λ,ω−Λ,0)− Γ̃Λsii(ω−Λ,ω+Λ,0))

+ Γ̃Λdii(ω+Λ,ω−Λ,0)− Γ̃Λdii(ω−Λ,ω+Λ,0)
] 1
Λ+γΛ(Λ)

(4.8)

and the two particle vertex.

d
dΛ

Γ̃Λi1 i2
(1′,2′ : 1,2)= 1

2π

∫ ∞

−∞
dω4

∫ ∞

−∞
dω3

∑
α3,α4[

Γ̃Λi1 i2
(1′,2′ : 3,4)Γ̃Λi1 i2

(3,4 : 1,2)PΛi1 i2
(ω3,ω4)

−2M
∑

j
Γ̃Λi1 j(1

′,4 : 1,3)Γ̃Λji2
(3,2′ : 4,2)PΛj j(ω3,ω4)

+ Γ̃Λi1 i2
(1′,4 : 1,3)Γ̃Λi2 i2

(3,2′ : 2,4)PΛi2 i2
(ω3,ω4)

+ Γ̃Λi1 i1
(1′,4 : 3,1)Γ̃Λi1 i2

(3,2′ : 4,2)PΛi1 i1
(ω3,ω4)

+ Γ̃Λi2 i1
(4,2′ : 1,3)Γ̃Λi2 i1

(1′,3 : 4,2)PΛi2 i1
(ω3,ω4)

]
(4.9)

The extra flavor sum that needs to be performed on the process only appear in the

site summations, as these are the RPA terms that couple spins, and thus flavors, on

different sites. Performing the sum over flavors explicitly, and using the anticommutation

relations, we find that this leads to the prefactors of M in front of the site summations.

Please note that there is no further modification of the flow equations. The Katanin

truncation can be implemented as before, as well as the vertex parametrization and the

numerical treatment of the resulting equations.

We see then that all terms in Eqs. (3.52) and (3.53) that contain a site summation∑
j now also acquire a flavor sum

∑M
κ=1 producing an extra factor M in these terms. In

this fashion we see that (provided the above assumption about the angular momentum

subspace of the ground state is correct) a spin-S generalization of the PFFRG only

requires an additional prefactor M = 2S in the first term on the right-hand side of

Eq. (3.52) (the new version of the equation is shown in Eq (4.8)) and 2M in the site

summation of Eq. (3.53) (i.e. the second term on the right-hand side of this equation, now

in Eq. (4.9). This is a somewhat expected result from a phenomenological point of view:

since the site summation lead to the RPA-like terms in the diagrammatic expansion, and

these are responsible for the onset of magnetic order, is no surprise that increasing the

spin length reinforces this term. Even though the bare couplings Ji j are independent

of the spin length, the RPA terms are reinforced the bigger S = M/2 is and thus the
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spin-spin interaction will be enhanced, as a consequence, the system will tend towards

some form of magnetic order. In other words, increasing the spin length makes the

ladder terms weaker, which is equivalent to decreasing the quantum fluctuations. Since

quantum fluctuations are responsible for the existence of disordered ground states in

clean quantum systems, we expect that for Heisenberg type systems, there will be a

critical value of S at which the possible disordered states are lost and magnetic order

appears. We will show how this can happen when we study the honeycomb lattice.

Though these results are expected, it is also remarkable from the numerical point

of view. We have shown that arbitrary spin lengths S can be easily implemented in the

PFFRG scheme, and that the implementation amounts to a multiplicative factor in the

equations. This factor does not change the computational scaling with system size, and

as such, any arbitrary spin length can be implemented without additional numerical

efforts.

Regarding the numerical solution, one more point needs to be clarified. As prefactors

of M appear in front of the RPA terms, it is expected that in the limit of big spin, S →∞,

the equations would contain divergences. Furthermore, the energy scale would change

with varying M since

(4.10) Γ̃Λ→∞ ∝ J
M

.

Then, to ensure a correct numerical convergence and normalize the energy scales for

different spin lengths we define

(4.11) Γ̄Λ = MΓ̃Λ .

Rewriting the flow equations in terms of Γ̄Λ, and rescaling the bare couplings as Ji j →
Ji j/M, we see that this would be equivalent to “exchanging” the factors proportional to

M in the RPA terms for factors proportional to 1/M in the rest of the terms. Furthermore,

(4.12) Γ̄Λ→∞ ∝ J ,

thus the energy scales are automatically rendered equal for every spin length.

4.1.1 Level repulsion terms

Above we have claimed that the ground state of the spin model in Eq. (4.2) featuring M
copies of spin-1/2 degrees of freedom on each site is constructed from states in the highest
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angular momentum sector, and we proposed an analogy with Hund’s first rule. To check

that these statements are correct we will consider additional level repulsion terms of the

form A(
∑M
κ=1 Siκ)2, and we will study the effect of this term on a known model. We will

study the Heisenberg honeycomb lattice with nearest neighbor interactions (see Fig. 46)

where the resulting Hamiltonian takes the form

(4.13) H = ∑
(i j)

Ji j

(
M∑
κ=1

Siκ

)
·
(

M∑
κ′=1

S jκ′

)
+ A

∑
i

(
M∑
κ=1

Siκ

)2

.
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Figure 43: Flowing PFFRG susceptibility for

the nearest neighbor honeycomb Heisenberg an-

tiferromagnet with onsite level repulsion terms

at S = 3/2, and varying negative values of A (due

to almost diverging susceptibilities, the RG flow

is not shown below the critical Λ scale)

The eigenvalues of the operator

(
∑M
κ=1 Siκ)2 present in the level repulsion

term are given by S(S +1) where the to-

tal angular momentum quantum num-

ber S can, in principle, take all values

0,1/2, . . . , (M−1)/2, M/2. When A is chosen

negative, the expected effect of the level

repulsion terms it to shift down in energy

the angular momentum sectors. This re-

duction will be more pronounced for the

highest angular momentum eigenvalue

S = M/2. If our assumption is correct, and

indeed the ground state of our Hamilto-

nian without the level repulsion term is

given by the biggest total angular momen-

tum, then we expect that further reducing

the energy of that subspace with respect

to the other ones should have no effects on

our results.

We tested this assumption for the honeycomb Heisenberg antiferromagnet with

nearest neighbor interactions J1 > 0. We will present plots showing the maximum of the

susceptibility χΛ(k), which is the Fourier transform of the spin-spin correlator calculated

according to Eq. (3.62), as a function of the cutoff parameter Λ. As mentioned before

the susceptibility’s RG flow breaks down whenever there exists an onset of magnetic

order, and we shall call the Λ value at which this breakdown happens critical, Λc. The

breakdown is observed as a change in the slope of the susceptibility curves, accompanied

by oscillations arising from the discretization of the continuous frequencies (as a clear
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example of this breakdown please look at Fig.44). The model studied here presents long

range Neel order, as such, the flow of the two particle correlator will break down. This

will appear as a kink in the slope of the susceptibility’s flow. Studying how this kink and

the overall behavior of the flow changes in the presence of the level repulsion terms, we

will explore whether our assumptions about the angular momentum corresponding to

the ground state are correct.
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Figure 44: Flowing PFFRG susceptibility for

the nearest neighbor honeycomb Heisenberg an-

tiferromagnet with onsite level repulsion terms

at S = 1/2, and varying negative values of A

In Fig. 43 we show the flow behavior

for the case of S = 3/2. We present different

susceptibilities corresponding to different

values of the level repulsion term strength

A, normalized with the exchange coupling

J1. It can be seen that the susceptibil-

ity’s flow behavior remains qualitatively

unchanged as A is decreased from zero,

except for an overall shift of the curves

towards higher values of Λ. This shift is

not surprising, as A and Λ both have the

dimension of an energy, and subsequently

the energy scale is modified when the val-

ues of A change. Increasing |A| while keep-

ing J1 fixed increases the overall energy

scale of the system such that the param-

eter Λ becomes renormalized. To account

for these effects, we repeated the calculations for rescaled values of A and J1. Phe-

nomenologically, we find that for fixed
√

A2 + J2
1 such artifacts are largely removed,

yielding an approximate collapse of all curves, see inset in Fig. 43. In the rest of the plots

in this section the susceptibility χΛ(k) (RG scale Λ) is given in units of 1/J1 (J1). In the

insets, energy scales are in units of
√

A2 + J2
1 to compensate for energy renormalization

effects in Λ.

We also studied the effect of level repulsion terms for the case of spin-1/2 systems. In

this case the level repulsion terms will change the energy of the two sectors mentioned

in section 3.2: the unphysical spin-zero sector, representing occupations such as singly

or doubly occupied sites, and the spin-1/2 sector. Our initial assumption was that the

spin-0 sector is energetically suppressed in the ground state given that fluctuations of

the pseudofermionic number are forbidden at zero temperature. If this is indeed the case,
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then we should see no qualitative difference in the behavior of the susceptibility’s RG

flow, as was the case for the spin-3/2 system. We show in Fig. 44 the RG flow behavior

of the susceptibility for the nearest neighbor honeycomb Heisenberg antiferromagnet

for S = 1/2. In analogy to the spin-3/2 case, the flow remains qualitatively unchanged

and shifts in Λ can again be compensated by keeping
√

A2 + J2
1 constant (inset in

Fig. 44). These results indeed shows that our initial assumption was correct, and that no

unphysical subspaces contribute to the flow.
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Figure 45: Flowing PFFRG susceptibility for

the nearest neighbor honeycomb Heisenberg an-

tiferromagnet with onsite positive level repul-

sion terms [see Eq. (4.13)]. Susceptibility for

J2/J1 = 0.1, S = 1/2, and positive level repulsion

terms A ≥ 0.

Additional calculations also confirm

the absence of any qualitative changes in

the RG flow for finite second neighbor in-

teractions J2 and varying S. In particular,

phase boundaries between different mag-

netic phases or melting transitions into

non-magnetic phases are never found to

be affected by A. We therefore conclude

that at least for the honeycomb Heisen-

berg model our assumptions about the

angular momentum sector in which the

ground state is located are correct. Fur-

thermore, we anticipate that also a wider

class of spin models shares this property

within the PFFRG framework.

It can also be studied what the effect of

an antiferromagnetic level repulsion term

will be. In this case, the energy levels in

the highest angular momentum sector undergo the largest relative increase, until above

a certain threshold of A, lower subspaces should become energetically preferred. It is

expected that the subspace with the smallest net spin (the unphysical spin-0 sector) will

be preferred after the threshold is reached.

The situation for J2/J1 = 0.1 and S = 1/2 is depicted in Fig. 45, where the absolute

value of A is varied within similar ranges as in Figs. 43 and 44 but with a positive sign.

Upon increasing A we first observe a decrease of the critical Λ, followed by a sudden

drop of the susceptibility at A ≈ 0.35, and almost vanishing responses above this value.

We interpret this behavior as a consequence of promoting the unphysical zero or doubly

occupied states. These results can be qualitatively understood with a simple analogy:
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if we promote total spin-0 states, what we are basically doing is diluting our system

by replacing the magnetic ions with non-magnetic ones. The states carrying S = 0 are

equivalent to having vacancies in the magnetic lattice, as such the bigger A is, the more

magnetic ions are missing, the more diluted our system is, drastically changing the

behavior of the magnetic susceptibility. When A is sufficiently large, the ground state

resides entirely in the unphysical sector of the Hilbert space, which can be seen as no

magnetic ions living in the lattice anymore, leading to a vanishing susceptibility.

4.2 Antiferromagnetic J1-J2 Heisenberg model on
the honeycomb lattice

To study how this method can be employed to understand the role of quantum fluctuations

in different magnetic systems, we apply this scheme to the antiferromagnetic J1-J2

Heisenberg model on the honeycomb lattice with first (second) neighbor interactions J1

(J2) (see Fig. 46), the Hamiltonian is given by

(4.14) H = J1
∑
〈i j〉

SiS j + J2
∑

〈〈i j〉〉
SiS j ,

Figure 46: Illustration of the honeycomb lat-

tice where J1 nearest neighbor (J2 second neigh-

bor) interactions are highlighted by red (dashed

blue) lines. The two sublattices are indicated by

numbers and the nearest neighbor distance is

assumed to be one.

where 〈i j〉 denotes a pair of nearest

neighbor sites while 〈〈i j〉〉 indicates second

neighbor sites. We are interested in the

antiferromagnetic version of the system,

so the corresponding exchange couplings

are J1 > 0 and J2 ≥ 0, respectively. The

ratio of the two couplings is denoted by

g = J2/J1.

Plenty of studies have been performed

on this particular variant of the Heisen-

berg honeycomb model. It is known that

while the quantum system, S = 1/2, re-

mains antiferromagnetically ordered up

to J2/J1 ≈ 0.2, an abundance of numerical

studies indicate an intermediate magnetically disordered phase above this value [59–73].

The precise nature of this phase is still debated, but there is growing numerical evidence
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that it might again be split up into a potential plaquette valence bond solid (a state in

which pairs of spins couple into spin-0 singlets, and where these singlets order in a pla-

quette fashion in the honeycomb lattice, thus preserving the lattice rotational invariance)

at smaller J2/J1, and a staggered dimer crystal phase at larger J2/J1 (also known as

lattice nematic, a state in which there is also dimerization present, but the dimers order

in a staggered fashion, breaking the rotational invariance of the lattice)[64, 66, 67, 70].

Concerning the opposite, classical, limit S →∞[74] it has early been realized that

above the classical antiferromagnetic phase (which is stable up to J2/J1 = 1/6) the system

features a continuous set of degenerate incommensurate spiral ground states[60, 75]

where it is known that quantum fluctuations at large S select a certain finite subset

of these states[60] via an order by disorder mechanism. We will not concentrate on a

detailed study of the different phases in the S = 1/2 case, as it has previously been

studied with PFFRG[59]. We will actually concentrate on the effect finite spin lengths,

S > 1/2, have on the different phases, and in how the presence of quantum fluctuations

affect the phase diagram. For sake of completeness we mention that with the PFFRG

framework it has been shown for the S = 1/2 case that there indeed exists a magnetically

disordered phase within the range J2/J1 ≈ 0.15 . . .0.6 [59]. Probing this regime with

respect to the formation of different types of valence-bond crystals, strong staggered

dimer responses are found near the upper boundary of this phase, in agreement with

other numerical studies[64, 66–70]. Near the lower phase boundary (J2 ∼ 0.2) the PFFRG

dimer responses are small, possibly pointing at the existence of a spin liquid phase.

We will show that at relatively large spin lengths the phase diagram quickly resem-

bles the classical one. In particular, already at S = 1, PFFRG shows no indication of a

magnetically disordered phase (it is worth noting that numerical investigations based on

coupled cluster and DMRG approaches indicate the possibility of a small non-magnetic

phase in the S = 1 case[76, 77]). Instead, the system exhibits two regimes with different

types of incommensurate magnetic spiral phases. At S = 3 the magnetic phase diagram is

almost indistinguishable from the one at S →∞ except that, as mentioned before, quan-

tum fluctuations select specific states from a continuous set of degenerate classical states

via an order by disorder mechanism. This selection is found to be in agreement with

earlier semiclassical studies of the system.[60]. At the end of this chapter we will also

prove that at S →∞, when the PFFRG equations can be solved analytically, we exactly

reproduce the known classically ordered states. More generally, we will also demonstrate

that for arbitrary lattices the PFFRG becomes identical to the Luttinger-Tisza method

in this limit.
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4.2.1 Phase diagram in the J2/J1-S plane via PFFRG

Figure 47: Phase diagram in the g-S plane. We

find a non-magnetic (NM) phase at S = 1/2 and

three magnetically ordered phases: an antiferro-

magnetic (AF) state represented by blue squares,

and two spiral phases S1 (red triangles), and S2

(green diamonds).

We now apply the spin-S generalization

of the PFFRG method discussed in the

last section to the antiferromagnetic J1-

J2 Heisenberg model on the honeycomb

lattice as illustrated in Fig. 46.

We will work with a lattice size con-

sisting of 10 unit cells in each direction,

i.e L = 10, and we will take advantage of

the rotational invariance of the lattice to

speed up the numerics. The Hamiltonian

is given by Eq.4.14.

Numerically solving the PFFRG equa-

tions for varying parameters in the g-S
plane we obtain the phase diagram shown

in Fig. 47. For S = 1/2 we reproduce the

phases that have previously been found

within PFFRG (see Ref. [59]): An extended

non-magnetic phase at g ≈ 0.2 . . .0.6 is

framed by an antiferromagnetic phase at 0 ≤ g . 0.2 and an incommensurate spiral

phase at g & 0.6. When quantum fluctuations are slowly suppressed, meaning, when S
is increased, the phase diagram changes drastically.

Already at S = 1, the tendency towards magnetic order is strong enough that the

non-magnetic phase is completely eaten up by magnetic long-range order presenting

incommensurate wavevectors (See Fig. 49). This leads, in total, to three magnetically

ordered phases at S = 1: an antiferromagnetically ordered regime at 0≤ g . 0.19 and two

spiral phases we will name “S1”, and “S2” at 0.19. g . 0.53 and g & 0.53, respectively.

While this sequence of phases persists for larger values of S, the locations of the two

phase transitions shift towards the classical values 1/6 (for the boundary between the

antiferromagnetic phase and the S1 spiral), and 0.5 (between S1 and S2), see Fig. 47.

This implies that for intermediate values of the spin length, 1/2 < S 5 3/2 quantum

fluctuations are suppressed enough as to destroy the non magnetic states, but not

enough that the boundaries of the phases will coincide with those in the classical limit.

To demonstrate how the onset of magnetic long-range order for all spin lengths S ≥ 1

appears within our framework, we show in Fig. 48 the PFFRG flow of the susceptibility
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for the highly frustrated case g = 0.3 and varying values of S. While at S = 1/2 we do not

observe an instability feature as Λ is decreased, hinting at a magnetically disordered

phase, for all values S ≥ 1 we find pronounced kinks at Λ≈ 0.2 associated with the onset

of magnetic order. With increasing S the susceptibility grows and the kink becomes
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Figure 48: Λ flow of the maximal k space com-

ponent of the susceptibility χΛ(k) for g = 0.3

and increasing values of S. While the flow for

S = 1/2 does not show signatures of an instabil-

ity, for S ≥ 1 we find a kink in the susceptibility

at Λ ≈ 0.2 that gets more pronounced with in-

creasing S.

more pronounced, signaling an increase in

the tendency towards magnetic order. The

point at which the kink appears does not

change with different spin length, as we

have rescaled the equations following the

discussion at the end of section 4.1. We will

use the point at which the kink appears

in k space to identify the type of magnetic

order.

To study in more detail the types of

magnetic orders detected in the system,

we plot in Fig. 49 the k space resolved

susceptibilities at S = 3/2 within the three

ordered phases, along with real space illus-

trations of the spin patterns. In the anti-

ferromagnetic phase (Fig. 49(a)) magnetic

Bragg peaks are located at the corners of

the extended Brillouin zone. As g is in-

creased the system first establishes planar

incommensurate spiral order of S1 type, which is characterized by magnetic wave vectors

residing at the edges of the extended Brillouin zone, as shown in Fig. 49(b). In the S1

phase the susceptibility presents a ring-like shape. Along these rings the susceptibility

is actually not uniform in k space, but small maxima of the form kmax = (q, q′) at the

edges of the Brillouin zone can be detected.

This can be contrasted with the selection of wavevectors via quantum fluctuations

described in Ref. [60]. Please note that in the classical limit, where the quantum fluc-

tuations disappear, the selection effect is not present, and we obtain a continuous set

of degenerate ground states. To sketch the spin pattern of this phase in real space

(Fig. 49(b)) we extract the maximum wavevector from our PFFRG susceptibility and

construct a planar spiral which – upon Fourier transformation – yields a dominant Bragg

peak in k space at exactly the same position. As a characteristic feature of this state,
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Figure 49: Upper panel: Susceptibility χΛ(k) in reciprocal space for the three magnetically
ordered phases at S = 3/2. (a) antiferromagnetic state at g = 0, (b) S1 spiral at g = 0.3, and (c)
S2 spiral at g = 0.9. All plots correspond to Λ values right above the instability feature during
the RG flow. Outer (inner) hexagons indicate the boundaries of the extended (first) Brillouin
zone. Lower panel: Below each susceptibility profile we depict the corresponding real space spin
patterns which yield magnetic Bragg peaks in k space at the marked positions (black dots).
Arrows illustrate the unit vectors of the honeycomb lattice and indicate the pitch angles of the
spiral state along these directions.

the spiral pitch angles along the lattice vectors indicated in Fig. 49(b) are identical,

while the angle between spins in the two sublattices is almost 90o. Further increasing

g the system enters the S2 spiral phase, which shows magnetic Bragg peaks at the

kx = 0 line (or symmetry related positions), see Fig. 49(c) (kmax = (0, q)) . These peaks

correspond to a planar spiral with pitch angles of opposite signs but same absolute value.

Furthermore, along one of the three nearest neighbor directions, pairs of spins are in

parallel orientation.

The overall movement of the magnetic wave vectors in k space upon increasing g
can be tracked. We illustrate it in Fig. 410 for S = 3/2. In the antiferromagnetic phase

the magnetic Bragg peaks remain at the corner position of the extended Brillouin zone

(black dots in Fig. 410) and start moving along the Brillouin zone boundary as the system

enters the S1 phase. At the transition between the S1 and S2 spirals, the peaks reside

exactly at the midpoints of the edges (purple squares). Further increasing g they move
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Figure 410: Position of the magnetic wave vectors in reciprocal space at S = 3/2 for increasing
values of g: While the antiferromagnetic state is characterized by susceptibility peaks at the
corners of the extended Brillouin zone, in the S1 (S2) spiral the maxima move along the Brillouin
zone edges (radial kx = 0 direction or symmetry related directions

towards the center, in the limit g →∞ these points should reside at the corners of the

first Brillouin zone, as this limit corresponds to the 120◦ Néel order. In this limit, the

nearest neighbor coupling can be neglected, and as such the honeycomb lattice decouples

into two triangular lattices with 120◦ Néel order each.

4.3 Classical Limit, S →∞
4.3.1 RPA solution

To shed more light on the spin-S generalization of the PFFRG method and the approx-

imations associated with it, we now consider the classical limit S →∞ where the flow

equations can be solved analytically. Starting from the PFFRG equations (4.8) and (4.9),

we have argued that an arbitrary spin length S can be implemented via a simple mul-

tiplicative factor M = 2S in the internal closed fermion loops. In the limit S →∞ these

terms are the only ones that remain, and the classical limit is effectively recovered. In

this limit, the flow equations have the form

(4.15)
d

dΛ
γΛ(ω)= 1

2π

[∑
j

(Γ̃Λdi j(ω+Λ,0,ω−Λ)− Γ̃Λdi j(ω−Λ,0,ω+Λ))
] 1
Λ+γΛ(Λ)

,

and

(4.16)
d

dΛ
Γ̃Λi1 i2

(1′,2′;1,2)=− 1
2π

∑
34

∑
j
Γ̃Λi1 j(1

′,4;1,3)Γ̃Λji2
(3,2′;4,2)PΛj j(ω3,ω4) .
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Here, we have omitted the prefactors M to avoid diverging terms at S →∞, and used

the notation where sums stand for Σ1 ≡
∫
ω1

dω1
∑
α1=↑,↓. Furthermore, for the equation

corresponding to the self energy, we have performed the frequency integration and spin

sum implicitly, as shown in the previous chapter. For the following argument, it will

be useful not to look at Eq. (4.15) in it’s present form, but to study the analogous of

Eq. (3.50). In this case, the flow equation for the self energy takes the form

(4.17)
d

dΛ
γΛ(1)=− 1

2π

(∑
2

∑
j
Γ̃Λdi1 j(1,2 : 1,2)

)
1

ω2 +γΛ(2)
,

Due to the special spin-index structure of Eq. (4.16), the property Γ̃∞i1 i2
(1′,2′;1,2)∝

σ
µ
α1′α1σ

µ
α2′α2 of the initial conditions [see section (3.3.2)] is retained during the entire

RG flow. This can be seen remembering that the full PFFRG scheme at finite S also

contains density terms of the form δα1′α1δα2′α2 (see Eq. (3.49)). If we introduce Eq. (3.49)

in the the right hand side of Eq. (4.16) we can see that the density terms vanish

identically. Furthermore, if the density terms are zero throughout the flow, we see

that Eq. (4.17) contains all spin sums of the form
∑
α2σ

µ
α1α1σ

µ
α2α2 = 0 and thus the self

energy is identically zero throughout the full RG flow. As the self energy is contained in

the Katanin contribution [see Eq. (3.56)], this term in the single scale propagator also

remains identically zero.

In the following we will concentrate on a static PFFRG approach, which consists on

only taking into account the zero-frequency components of the vertex functions. This

approach is not suitable for the full PFFRG scheme, as it leads to a self energy identical to

zero during the full RG flow. This can be seen putting all frequencies to zero in Eq.( 3.52)

and employing the symmetric relations in frequency space mentioned in section 3.4.2.

In our case, since in the limit S →∞ the self energy identically vanishes, we can look

at the frequency arguments in Eq. (4.16) and concentrate only on the static component,

ω1′ = ω2′ = ω1 = ω2 = 0, of the two-particle vertex. In this approach, such component

completely decouples from all other components thanks to the delta function in the

parametrization of the two particle vertex. This allows us to perform the frequency

integration analytically, given that the explicit form of PΛj j(ω3,ω4) (Eq. (3.55)) contains a

term of the form

(4.18)
δ(|ω3|−Λ)

ω3

Θ(|ω4|−Λ)
ω4

+ δ(|ω4|−Λ)
ω4

Θ(|ω3|−Λ)
ω3
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and the two particle vertex has a frequency structure of the form Γ̃Λi1 i2
(1′,2′;1,2)∝

δ(ω1+ω2−ω1′−ω2′) (Eq. (3.49)). Using PΛj j(ω3,ω4) explicit form, and employing Eq. (3.49)

we can perform the integration over ω3 and ω4 and will obtain a term proportional to

2/Λ2 in the static case. At the same time, the spin sums are straightforward to perform,

using Eq. (3.49) and the identity between Pauli matrices σµσµ
′ = δµµ′ I + iεµµ′νσν we

obtain after some algebra a term proportional to −σµα1′α1σ
µ
α2′α2 . All this combined yields

a flow equation of the form

(4.19)
d

dΛ
Γ̃Λi1 i2

= 2
πΛ2

∑
j
Γ̃Λi1 jΓ̃

Λ
ji2

where the prefactor 1/Λ2 is the result of the frequency integration and Γ̃Λi1 i2
(without

arguments “1”, “2”, . . .) parametrizes the static two-particle vertex component via

(4.20) Γ̃Λi1 i2
(1′,2′;1,2)

∣∣
ω1′=ω2′=ω1=ω2=0 = Γ̃Λi1 i2

σ
µ
α1′α1σ

µ
α2′α2 .

This vertex is initially given by Γ̃∞i1 i2
= 1

4 Ji1 i2 .

To simplify the remaining spatial dependence of Eq. (4.19) we Fourier-transform ΓΛi1 i2

using

(4.21) Γ̃Λa(i)b( j)(k)= ∑
∆R=Ri−R j

e−ik(Ri−R j)Γ̃Λi j .

Here, a(i)= 1,2 denotes a function that returns the sublattice index of site i on the

honeycomb lattice (b( j) is defined in the same way) and Ri is the position of the two-site

unit cell that contains site i. If we Fourier transform the right hand side of Eq. (4.19)

∑
j
Γ̃Λi1 jΓ̃

Λ
ji2

→ ∑
R jb( j)

∑
Ri1−R j

∑
R j−Ri2

e−ik(Ri1−R j)e−ik′(R j−Ri2 )Γ̃ΛRi1 a(i1)R jb( j)Γ̃
Λ
R jb( j)Ri2 a(i2) =

= ∑
R jb( j)

∑
Ri1−R j

∑
Ri1−Ri2

e−iR j(k−k′)e−ikRi1 eiRi2 Γ̃ΛRi1 a(i1)R jb( j)Γ̃
Λ
R jb( j)Ri2 a(i2) ,(4.22)

Carrying our the sum over R j we obtain a delta function δkk′ . Furthermore, noticing

that Γ̃ΛRi1 a(i1)R jb( j)Γ̃
Λ
R jb( j)Ri2 a(i2) can be written as a matrix element [Γ̃Λ×Γ̃Λ]Ri1 a(i1)Ri2 a(i2)

we obtain

(4.23)
∑

j
Γ̃Λi1 jΓ̃

Λ
ji2

→ ∑
Ri1−Ri2

e−ik[Γ̃Λ× Γ̃Λ]Ri1 a(i1)Ri2 a(i2) = [Γ̃Λ× Γ̃Λ]a(i1)a(i2)(k) .
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Figure 411: Fermionic two-particle vertex in RPA approximation: Dashed lines denote bare
exchange couplings Ji1 i2 and arrows illustrate free fermion propagators.

This shows that since the Fourier-transform is only performed with respect to the

unit-cell coordinates without involving the sublattice positions, different k components

in the flow equations decouple. Writing the Fourier transform of Eq. (4.19) in matrix

form we find,

(4.24)
d

dΛ
Γ̃Λ(k)= 2

πΛ2

[
Γ̃Λ(k)

]2
.

Given that there is more than one atom per unit cell, the vertex ΓΛ(k) in this equation

is understood as a 2×2 matrix in the sublattice indices, and the square on the right-hand

side is a standard matrix product. The analytical solution of Eq. (4.24) is given by the

ansatz

(4.25) Γ̃Λ(k)=
[

2
πΛ
12×2 +

(
Γ̃∞(k)

)−1
]−1

,

where Γ̃∞(k) is the Fourier-transform of the bare exchange couplings 1
4 Ji j, using

Eq. (4.21), and 12×2 denotes the two dimensional identity matrix. It can be straightfor-

wardly shown that the ansatz is a solution of Eq. (4.24)

d
dΛ

Γ̃Λ(k)= d
dΛ

[
2
πΛ
12×2 +

(
Γ̃∞(k)

)−1
]−1

=

−
( d
dΛ

[
2
πΛ
12×2 +

(
Γ̃∞(k)

)−1
])[

2
πΛ
12×2 +

(
Γ̃∞(k)

)−1
]−2

(4.26)

Since Γ̃∞ does not depend on Λ we obtain,

d
dΛ

Γ̃Λ(k)= 2
πΛ212×2

[
2
πΛ
12×2 +

(
Γ̃∞(k)

)−1
]−2

= 2
πΛ2

[
Γ̃Λ(k)

]2
.(4.27)

This equation has the form of an RPA solution. Illustrated in Fig. 411 is the diagram-

matic expansion of 4.25 in terms of the exchange couplings Γ∞(k). The equivalence
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of the PFFRG and the pseudo fermion RPA in the limit S →∞ can be seen from the

diagrammatic expansion. If we expand the RPA equation (Eq. (4.25)) for the two particle

vertex we obtain a Dyson-like equation

(4.28) Γ̃Λ(k)= Γ̃∞(k)+ Γ̃∞(k)
2
πΛ
12×2Γ̃

∞(k)+ Γ̃∞(k)
2
πΛ
12×2Γ̃

∞(k)
2
πΛ
12×2Γ̃

∞(k)+ ...

Where 2
πΛ12×2 takes the place of a fermion bubble. For each given order in the

exchange couplings expansion, J, the RPA terms are those diagrams with the maximal

number of closed fermion loops (in Fig. 411, this means that the n-th term on the right

hand side is of n-th order in J and contains n−1 loops), as in the classical limit the RPA

terms contain a prefactor of 2S, these terms are the only ones that remain when we take

the limit S →∞.

We can think about this solution from a classical mean field perspective. In this

case, the RPA approximation relates the susceptibility to the inverse of a function that

contains the temperature and the Fourier transform of the exchange couplings. In our

case the form is the same, specially since the Fourier transform of our couplings is

encoded in ΓΛ→∞(k), but Λ takes the place of the temperature. Even though our scale

Λ cannot be considered a temperature, since we have derived our formulation at T = 0,

both Λ and T set the cutoff energy scale of the problem, and as such have a similar effect

over the susceptibility in this limit.

The key outcome of Eq. (4.25) is the wave vector kRPA at which the two-particle vertex

diverges first as Λ is decreased. We mentioned before that the wavevector corresponding

to the maximum susceptibility determines the type of magnetic order the system presents

at the critical Λ. In the classical limit, unlike the full PFFRG scheme, instabilities appear

as real divergences, nonetheless taking the Λ point at which this divergence occurs as

our critical Λ and studying the wavevector corresponding to the maximum susceptibility,

kRPA, we can also determine the type of magnetic order the system develops. Interestingly,

Eq. (4.25) implies that in order to find kRPA, we need to minimize the eigenvalues of

the initial interaction matrix Γ∞(k). Such a minimization procedure is, in turn, a well

known method for finding the classical magnetic order of a spin system. We will denote

the eigenvalues of Γ∞(k) by λm(k) below and we generalize the discussion to arbitrary

lattices with n sites per unit cell. All relations in Eqs. (4.21)-(4.25) then become n×n
matrix equations.

We first denote the eigenvalues of the matrix 2
πΛ1n×n + [Γ∞(k)]−1 by λ′

m(k). It follows

that the eigenvalues of [Γ∞(k)]−1 are given by 1/λm(k) (with m = 1, . . . ,n).
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(4.29) λ′
m(k)= 2

πΛ
+ 1
λm(k)

.

where the constant term originates from 2
πΛ1n×n.
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Figure 412: Degenerate spiral magnetic wave

vectors of the classical antiferromagnetic J1-J2

honeycomb Heisenberg model in reciprocal space.

At 1/6< g < 1/2 the degenerate states form con-

tours around the corners of the extended Bril-

louin zone, see red ring for g = 0.3. For g > 0.5

the contours are around the corners of the first

Brillouin zone, see blue ring for g = 0.9.

From Eq. (4.25) we can see that the

two-particle vertex ΓΛ(k) will diverge

when the matrix 2
πΛ1n×n+ [Γ∞(k)]−1 has a

vanishing eigenvalue λ′
m(k) at some wave

vector k. Then we obtain

(4.30) Λ=−2
π
λm(k) .

It follows that each negative eigen-

value λm(k)< 0 can cause a diverging ver-

tex ΓΛ(k) when Eq. (4.30) is fulfilled. This

condition also indicates that as Λ is de-

creased from infinity, the first divergence

occurs when the smallest (negative) eigen-

value λm(k) satisfies Eq. (4.30) (here, the

term “smallest” refers to a minimization

with respect to k and m). This proves that

the classical magnetic order found within

an RPA scheme occurs at the wave vec-

tor kRPA that minimizes the eigenvalues

of Γ∞(k).

We calculated the wave vectors kRPA for arbitrary g by minimizing the wavevectors

of the interaction matrix, and compared the results with Ref. [60], where the exact phase

diagram is determined via a direct minimization of the classical energy. Throughout

the phase diagram we find perfect agreement of the two approaches demonstrating that

for the J1-J2 honeycomb Heisenberg model the spin-S generalization of the PFFRG

approach becomes exact (see Fig. 412). For small g the system shows antiferromagnetic

order which remains stable up to g = 1/6. At 1/6< g < 1/2 one finds contours of degenerate

classically ordered states forming rings in k space around the antiferromagnetic order

position (red rings in Fig. 412). With increasing g the rings become larger, merge at

g = 0.5 and then form new rings-like features around the corners of the first Brillouin

zone (blue lines in Fig. 412).
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4.3.2 Equivalence to the Luttinger-Tisza method

Previously we mentioned that the wavevector that determines the magnetic order,

kRPA, can be obtained via a minimization of the eigenvalues of the interaction matrix.

Coincidentally, this approach is identical to the Luttinger-Tisza (LT) approximation[78,

79] for arbitrary classical spin models. LT method provides a simple framework to

construct approximate classical ground states[80–83]. Instead of minimizing the classical

energy under the hard constraint |Si|2 = S, normalizing the spin length on each site i
separately, the minimization is done subject to a weak constraint of the form

(4.31)
∑

i
|Si|2 = N ,

where N is the total number of lattice sites.

We will now show that with this condition the LT method reduces to the same

minimization of eigenvalues λm(k) of Γ̃∞(k) that yields the RPA solution. We will start

with a brief description of the LT method as was shown in Ref. [80].

For a generic system in a lattice that can be separated in different sublattices, we

start by defining our exchange couplings Ji j in terms of a function α(i) which indicates

which spins are in which sublattice

(4.32) Ji j = Jα(i)β( j)(Ri j) ,

where Ri j is the distance vector between spins in sublattices α and β in sites i and j.
Now we can define the Fourier transform of our spin components

(4.33) S̃α(q)= 1√
Nsub

∑
i∈α

Si e−iq.ri ,

where Nsub is the number of lattice sites in sublattice α, q is a wavevector in the

Brillouin zone. Fourier transforming the exchange couplings

(4.34) J̃αβ = 1
2

∑
j 6=i

Jα(i)β j(Ri j)eiqRi j ,

where J̃αβ, if our system consists of n sublattices, are the elements of an n×n matrix.

Further substituting in the Hamiltonian, which we will regard as that of the standard

Heisenberg model, we find
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(4.35) H =∑
q

∑
αβ

J̃αβ(q)S̃α(q)S̃β(−q)

Now, let’s regard λµ(q) as the eigenvalues of this coupling matrix at wavevector q,

and uµα(q) to the corresponding eigenvector. Then we can write

(4.36) S̃α(q)=∑
α

w̃µuµα(q) ,

where w̃µ are three dimensional coefficients. The total energy will be given by

(4.37) H =∑
q

∑
µ

λµ(q)|w̃µ(q)|2 .

It’s easy to see now that, if λmin is the minimum eigenvalue of the matrix J̃(q) and

QLT is the wavevector that minimizes λmin, then H ≥ Nλmin(QLT).

We have shown that the Luttinger-Tisza method reduces to the same minimization

as our S →∞ case. But a caveat needs to be taken into account: in the context of the LT

method, the wave vector QLT ≡kRPA that minimizes λmin(Q) is referred to as “optimal”

LT eigenmode. If there exists a degenerate set of these modes (as is the case for the

J1-J2 honeycomb Heisenberg model), classical ground states can be constructed by linear

superpositions of the corresponding plane waves. Whether these states are the actual

ground state of the system depends on whether it fulfills not only the weak constraint,

but the strong constraint too. If this is the case, such a configuration represents the

exact solution of the classical problem. It can be proven that a normalized spin state can

always be created with the eigenmodes QLT for Bravais lattices. When the lattices are

non Bravais, the modes QLT are not always sufficient to obtain a spin state[80, 82] that

satisfied the strong constraint. If we want to obtain the true ground state we need to add

extra modes to our constructions which do not correspond to the absolute minimum of

λm(q). While in such situations the LT method is no longer exact, the wave vectors QLT

still allow to construct phase diagrams of classical spin models which typically closely

resemble the exact ones.

Now, one would notice that the J1-J2 honeycomb model discussed here is an example

where the LT method still works, and gives the exact result for a non-Bravais lattice. The

reason why this is the case can be traced back to the equivalence of the two sublattices.

The initial two-particle vertex Γ̃∞(k) for this Hamiltonian is of the form
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(4.38) Γ̃∞(k)=
[

γ0 γx − iγy

γx + iγy γ0

]

with

γ0(k)= J2

2

(
cosk++cosk−+cos

p
3 ky

)
,

γx(k)= J1

4
(1+cosk++cosk−) ,

γy(k)= J1

4
(sink++sink−) ,(4.39)

and

(4.40) k± = 3kx

2
±
p

3 ky

2
.

Where the nearest neighbor lattice distance is set to one and the sublattice structure

follows the convention of Fig. 46. From the form of the interaction matrix we see that all

eigenvectors um(k) of Γ∞(k) will have have sublattice components with equal norm, i.e.,

|um
1 (k)|2 = |um

2 (k)|2. The explicit form of these eigenvectors is

(4.41) uα(k)=β{± γx(k)− iγy(k)√
γx(k)2 +γy(k)2

,1} ,

where α= 1,2 and β is a normalization constant. Calculating the norm of the different

sublattice components we find |um
1 (k)|2 = |um

2 (k)|2 =β. Since the Luttinger-Tisza method

works if one can find a normalized spin configuration composed of eigenmodes of the

kRPA (and of symmetry related wavevectors) we can see that in this case it is possible to

write the spins as a superposition of plane waves

(4.42) {S(R)a,S(R)b}= ∑
kRP A=±QRPA

eikRPARuα(QRPA)

Since all sublattices components of the eigenvectors have equal norm, then spins on

both sublattices can be normalized simultaneously, thus fulfilling the strong constraint.

Finally, one important point needs to be clarified, we mentioned that the LT method

is not exact for non Bravais lattices, and we have proven that RPA is equivalent to the

66



4.3. CLASSICAL LIMIT, S →∞

LT approach. But RPA includes all possible pseudo-fermion Feynman diagrams in the

classical limit, reason for which one would expect the RPA result is always exact, which

in turn would mean the LT approach is also always exact. This contradiction can be

clarified by noting that FRG schemes yield physical results only in the limit Λ= 0. In

every discussion here, the instabilities occur at a finite critical Λ = Λc such that the

RG flow has to be stopped before the physical limit Λ = 0 is reached. Therefore, any

result obtained at a finite RG scale may still be subject to errors. While proposals to

track the FRG flow into symmetry broken phases exist and reach the physical limit (for

example for superconductivity in a BCS model[39]) in out PFFRG approach this implies

an enormous complication of the method. In such type of generalization the self energy

would no longer vanish at S →∞ but the loop term in Eq. (4.15) would contribute which

would increase the complexity of the equations and a numerically precise solution is, in

principle, not ensured.

In conclusion, we developed a general framework that allows one to study in detail

the effect of quantum fluctuations on spin systems. Starting from the classical limit,

S →∞ we can study how quantum fluctuations modify the classical ground state of a

system. We implemented a systems with S > 1/2 considering M copies of spin-1/2 degrees

of freedom on each lattice site. Using onsite level-repulsion terms we showed that in our

framework spin systems tend to realize the largest possible local spin magnitude S = M/2

in the ground state. Furthermore we showed that this property survives when the onsite

level-repulsion terms are excluded, such that no further projection is necessary to fix the

spin length. Finally, we show that for the case of S = 1/2 the constraint of having single

pseudo fermion occupancy is automatically satisfied in the ground state, justifying the

treatment of the particle constraint in previous PFFRG studies.

To test this method we studied the antiferromagnetic J1-J2 honeycomb Heisenberg

model, exploring the phase diagram as a function of g = J2/J1 and S. Studying the effect

of the quantum fluctuations induced by the presence of a frustrating J2 interaction we

show that they are strong enough to melt down the magnetic order at 0.2 . g . 0.6.

When the quantum fluctuations are diminished, i.e, when the spin length is increased,

the phase diagram quickly resembles the classical one. In particular, already at S = 1 we

find no evidence of non magnetic states, instead finding two spiral phases at g & 0.2, and

an antiferromagnetic phase at g . 0.2. We observe that these spin spiral phases exhibit

a set of maxima in the momentum resolved spin susceptibility, which are located along

rings enclosing either the corners of the first, or extended, Brillouin zone. At a finite

spin length quantum fluctuations induce an order by disorder mechanism which selects
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a particular wavevector from these rings. Increasing S (or equivalently, decreasing

quantum fluctuations) the signal becomes more evenly distributed along these rings

until in the limit S →∞ we obtain an continuous degeneracy of states along these rings.

This means that the spiral states are degenerated for all wave vectors along rings in k
space, in agreement with the solutions found for the classical states. More generally, we

prove that for S →∞ the PFFRG method becomes identical to the LT approach.

Comparing our results with other methods (the S = 1/2 case has already been dis-

cussed in detail in an earlier PFFRG work[59]) we note that the existence of a non-

magnetic intermediate phase is supported by the vast majority of previous studies[60–

73]. However, there is an ongoing debate regarding the nature of this non magnetic

state [64, 66–70]. Comparing results in the opposite limit S →∞, the continuous set of

degenerate classical states as well as the selection of states out of this manifold[60] by a

quantum order by disorder mechanism are correctly captured within our approach.

In the case of intermediate spin magnitudes S, and to the best of our knowledge,

there are few works to compare with, two of them investigating the S = 1 case [76, 77]

and one studying the S ≥ 1 case [84]. The detailed studied for S = 1 find indications

for a narrow non-magnetic phase around g = 0.3, whereas our approach and the study

performed by Li et. al[84] detects magnetic order throughout the phase diagram. Since

the pfFRG study is unbiased towards any form of magnetic order or disorder, and since

we proved that there are no contributions from spurious admixtures of spin subspaces

which can increase quantum fluctuations, we believe in the accuracy of our results in

this limit, despite the differences observed with other methodologies.

Finally we note that another difference with know results appears when one studies

large enough J2. Refs. [76] and [77] both find stripy order while we detect incommensu-

rate spiral phases. In the quantum limit, S = 1/2, the ground state has been a topic of

debate. Some methods identify spiral order[59, 61, 69] while others find a stripy state

[62, 71, 72]. The stripy order usually comes together with a quantum locking of the mag-

netic wavevector, where the wavevector is localized at a high-symmetry point. However,

when quantum fluctuations are decreased the strength of this quantum locking becomes

weaker, hence strengthening spiral order tendencies. The origin of this differences can

arise from particular properties of each study. The coupled cluster method applied in

Ref. [77] did not probe the system with respect to spiral order, which could be the reason

while they are not detected. In the case of the DMRG studies in Ref. [76], they report

conflicting spin patterns in this parameter regime when extrapolating the results to the

thermodynamic limit. In this case the reason for not detecting incommensurate order
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can arise from the fact that these type of studied restrict the lattice to cylinder. This

is, periodic boundary conditions are applied in one direction. Since periodic boundary

conditions are incompatible with incommensurate order, then they might mask spiral

order states in the DMRG study. Since PFFRG is not implemented on a finite system,

commensurate and incommensurate types of magnetism can both be described on equal

footing within this approach. Which lead us to rely on the quality of our results.

69





C
H

A
P

T
E

R

5
NUMERICAL METHODS FOR CLASSICAL MAGNETISM

Monte Carlo originated as a form

of emergency first aid, in answer

to the question: What do we do

until the mathematician arrives?

George Dyson, 2012

A t the beginning of this thesis we concentrated on the study of quantum frustrated

spin models and their quantum fluctuations. We also mentioned that the study

of frustrated quantum many body systems is not trivial at all, since most of

the time there is not an exact solution, and numerical methods that can treat these

systems efficiently are lacking. As a way to attack the latter problem we developed

an FRG formalism that would work not only in the quantum but also in the purely

classical limit. And we showed how in the classical limit FRG provides exact results

within the RPA approximation for a certain class of systems . Considering the classical

limit of our frustrated spin systems an interesting question arises: is there a way in

which these systems can be computationally studied without having to resort to FRG (or

it’s associated RPA limit)? Furthermore, is there a way to extract further information,

besides the correlation function, regarding the classical Hamiltonian? The answer to both

these questions is yes, in fact, many methods, approximate or otherwise, exist to treat

classical spin systems, independently of whether they are frustrated or not. The study of

the frustrated part of the spin system’s family is far from trivial even in the classical case,
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the competing interactions produce a rough landscape of energies that has to be dealt

with carefully. But what is remarkable is that for many years, the study of classical spin

systems has been an extremely active field of research, not only because of the academic

interest in the classical version of certain Hamiltonians, but also since for many systems

the results obtained within the classical description match the experimental evidence

extremely well.

One of the most prominent numerical methods to study classical spin systems is the

Monte Carlo method. Many Monte Carlo studies have proven invaluable for the under-

standing of many condensed matter phenomena. Among others, it has been employed in

the theoretical description of multiferroic behavior in different materials (see for example

Refs. [85–87]), and in the description of thermodynamic properties of spin ice systems

[15, 20, 88, 89], paved the way to the understanding of spin ice most famous low energy

fluctuations, the magnetic monopoles [90, 91], and has been the chosen method to study

classically disordered systems and their associated properties (look at Ref. [92] for a brief

overview on Monte Carlo methods applied to glassy systems written by the fathers of the

field).

In the next chapter we will employ large scale Monte Carlo simulations to study con-

tinuous spin systems, in particular we will study a particular Kitaev material for which

exciting experimental results have been recently published but Monte Carlo studies

have not yet been performed. We will show how the classical description reproduces the

latest experiments with a high degree of accuracy, and contrast our results to other, not

so robust, numerical methods. As such, in the present chapter we will give an introduc-

tion to the Monte Carlo method, paying particular attention to the implementation on

continuous spin variables, and we will show in detail how our algorithm was developed.

Furthermore, we will introduce the parallel tempering and iterative minimization al-

gorithms as a way to improve the convergence of the method in the presence of many

competing interactions.

5.1 Equilibrium thermal Monte Carlo method

Monte Carlo (MC) methods are part of a broad family of stochastic simulation methods.

Simply put, MC probes the phase space of a statistical problem stochastically, taking

into account the random thermal fluctuations of the system that appear from state

to state. Its aim is to estimate the thermal expectation value of a given quantity O

(this can be a magnetization, correlation function, etc). In these type of simulations we
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create a model system and evolve it through a variety of states in such a way that the

probability of the system being in a particular state m, at a given simulation time t, is

equal to the probability weight ωm(t) that the state would have in a real system. We will

concentrate on systems governed by a Hamiltonian H at constant temperature, which

will be implemented in the form of a thermal reservoir (please note that even though

the formulation of the method relies on a constant temperature, we are still able to

study thermal phase transitions with it). The effects of this reservoir in our simulations

can basically be considered as gifting the system with dynamics. In the particular

case of classical spin systems, the dynamics are governed by a Boltzmann distribution.

Effectively, what we are doing with MC is taking our Hamiltonian H, setting it into an

initial random state, choosing a temperature T that will remain constant throughout the

simulations, and letting time pass (this does not mean real time dynamics, the system

is evolved to reach equilibrium and the time being referred here is a time given in

simulation steps, also called Monte Carlo time), during this time the system will evolve

through a set of thermal states until it reaches equilibrium, ideally this equilibrium

corresponds to the minimal energy state at that given temperature.

5.1.1 Principles of Monte Carlo simulations

In the present section, we will detail the fundamentals of Monte Carlo (MC) techniques.

The simplest implementation of MC to solve spin systems was formulated by Metropolis

et.al. in 1953 [93, 94](here we will use a modified version called Metropolis-Hastings al-

gorithm [95]). In this implementation, the simulation generates configurations following

a Markovian chain, i.e, at each step a new configuration of the system will be generated

from the immediately previous one. In accordance with importance sampling, we will

choose the transition probability rate from one state to the other over a certain time,

Wi→ j, as dependent on the energy difference between the initial and final state according

to a Boltzmann distribution, e−β∆E.

(5.1) Wi→ j =Wi j =min
(
1, e−β∆E

)
Metropolis’ implementation is extremely effective for two reasons: first, it can be

proven that whatever the initial state, a Markov chain in the Metropolis implementation

will eventually sample the full phase space associated to our statistical ensemble at a

given temperature. This is an extremely important point given that we want to ensure an

ergodic simulation. If the implementation of the simulation results to be path dependent
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then the simulation is non ergodic, as there might exist states that cannot be reached, as

such our simulation would be biased and, in principle, uncontrolled. This would mean

that there exist a non zero probability of equilibrating the system in a state that is not

the real equilibrium state of the system just because the real equilibrium state was

rendered unreachable by an unfortunate and somewhat fortuitous selection of path.

Or what might be even worse, our simulation might never reach equilibrium. On the

other hand, we could avoid the memory dependence by randomly sampling the phase

space every time, and weighting the contribution of the selected state with a Boltzmann

factor. While this completely rules out any kind of history dependence, the configurations

generated in this fashion will contribute very little to the real evolution of the system

towards an energy minimum, especially in cases where a specific state is expected, as

is the case of the Ising model below the critical temperature. We can see now that a

Markovian process in which the steps are random, but connected to the evolution of the

system without depending on it’s history, while at the same time sampling a Boltzmann

distribution is the optimal choice for our unbiased simulations.

We will now show that a Metropolis type implementation [96], based on a Markov

chain, fulfills the detailed balance condition ensuring that the Boltzmann distribution is

the equilibrium distribution of the chain, and thus leading to the transition probability

of the form 5.1.

We define a stochastic process at discrete times {t1, t2, ...} for a system with a finite

set of states {S1,S2, ...}. If the system is in state X t at time t then we can consider the

conditional probability of the system being in a state X tn = Sin as:

(5.2) P(X tn = Sin |X tn−1 = Sin−1 , X tn−2 = Sin−2 , ..., X t1 = Si1) .

If the system follows a Markovian process, the previous expression reduces to

(5.3) P(X tn = Sin |X tn−1 = Sin−1) ,

and this expression can be considered a transition probability from state Sin−1 to Sin

in a time interval ∆t = tn− tn−1. At the same time we can study the probability transition

rate from one state to the other in the limit ∆t = tn − tn−1 = 0 as

(5.4) Wi j =W(Si → S j)= lim
∆t→0

P(X tn = S j|X tn−1 = Si)
∆t

,
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with the usual requirements for transition probabilities

(5.5) Wi j ≥ 0 ∀i, j, and
∑

j
Wi j = 1 .

With this we can construct the total probability of the system being in state S j at

time tn:

(5.6) P(X tn = S j)=
∑

i
P(X tn = S j|X tn−1 = Si)P(X tn−1 = Si) .

The master equation determining the evolution of the probability with time can be

obtained from the Chapman-Kolmogorov equation which states that the probability of

being in a give state S3 at time t3 = t1 +2 while we where at S1 at time t1 is given by

(5.7) P(X t3 = S3|X t1 = S1)=∑
S2

P(X t3 = S3|X t2 = S2)P(X t2 = S2|X t1 = S1) .

Which simply states that, knowing the initial an final state, the probability of jumping

from one to the other is given by the sum of the probabilities of jumping to all possible

intermediate states. We can now take the transition probability P(X t3 = S3|X t2 = S2)

and expand it in a Taylor series around zero for small time steps ∆t = t3 − t2

(5.8) P(X t3 = S3|X t2 = S2)= (1−α∆t)δ(S3 −S2)+∆tW23 +O (∆t)2 ,

the δ-function represents the probability of staying in the same state after no time

has passed is one. The correction factor in front stems from the fact that the probability

needs to be normalized, and as such we need to consider the case in which no transition

occurs at all in ∆t, which equals to (1−α∆t), where

(5.9) α(S2)=∑
S3

W32 ,

i.e. the probability rate of transition from any state S3 towards state S2.

Introducing Eq. (5.8) into Eq. (5.7),
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P(X t3 = S3|X t1 = S1)=∑
S2

[
P(X t2 = S2|X t1 = S1)δ(S3 −S2)

−∆tαδ(S3 −S2)P(X t2 = S2|X t1 = S1)

+∆tW23P(X t2 = S2|X t1 = S1)
]

,(5.10)

using Eq. (5.9)

P(X t3 = S3|X t1 = S1)= P(X t2 = S3|X t1 = S1)

−∑
S2

[
∆tW32P(X t2 = S3|X t1 = S1)

+∆tW23P(X t2 = S2|X t1 = S1)
]

,(5.11)

dividing by ∆t, and taking the limit ∆t → 0 we find the differential form of the

Chapman-Kolmogorov equation, also called the master equation

d
dt

P(X t3 = S3|X t1 = S1)=

=∑
S2

(
W23P(X t2 = S2|X t1 = S1)−W32P(X t3 = S3|X t1 = S1)

)
(5.12)

We notice that all the transition probabilities are for a given S1 at a time t1, then we

can recast this equation in terms of the probability of the system to be in state S3 simply

by multiplying both sides by P(X t1 = S1) and summing over S1. Then we find

(5.13)
d
dt

P(X t3 = S3)=∑
S2

(
W23P(X t2 = S2)−W32P(X t3 = S3)

)
.

This is the master equation. If the system is in equilibrium, and for arbitrary states

Si and S j, then we can see that dP(X tn=S j)
dt = 0 and consequently

(5.14)
∑

i
WjiP(X tn = S j)=

∑
i

Wi jP(X tn = Si) .

This expression takes a stronger form when we ask not that the sum of all the terms

are equal, but that for each pair i, j the condition holds. This is the Detailed balance
condition.
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(5.15) WjiP(X tn = S j)=Wi jP(X tn = Si) .

This means that if we choose a probability rate that respects detailed balance we can

ensure that this probability is the equilibrium distribution of our Markov chain, as we

have proven that detailed balance is a sufficient condition to ensure the stationary nature

of our master equation. However, if we expect that the equilibrium probability of the

system to be in a given state with energy E j at time t follows a Boltzmann distribution,

(5.16) P(X tn = S j)= e−E jβ

Z
,

where Z is the partition function, then we can see that this probability is not usually

known, since we lack knowledge about Z. We can avoid this problem if we generate a

Markov chain of states, which produces the j-th state from state i-th, then the transition

probability of producing state j from i is the ratio of the probabilities of being in state Si

and S j. This means that our transition rate can be chosen as

Wi j = e−∆Eβ when ∆E > 0

Wi j = 1 when ∆E < 0(5.17)

which is precisely condition 5.1. We see now that Eq. (5.15) is respected, and as such

we can choose a probability of the form P j(t)= e−E jβ.

In essence, any transition rate of a Markovian process that satisfies detailed balance

is acceptable and it will lead to the equilibration of an unbiased simulation after a

certain Monte Carlo time teq. The desired Boltzmann distribution being the equilibrium

distribution in our case.

In the language of the Ising model, given in Eq. (5.18) (in the presence of an external

magnetic field h)

(5.18) H = J
∑
i j
σiσ j −h

∑
i
σi with σi =±1 .

generating a new state following an importance sampling Markovian process amounts

to, in principle, flipping a random spin from +1 to −1 (or vice versa). Calculating the

energy difference ∆E of the system with and without the spin flip (please note that the
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process of flipping the spin is the so called “update algorithm” in the literature) we can

determine if the flip will be accepted or not. We iterate this process until convergence is

reached. We show the pseudo-code for the Importance sampling Metropolis-Hastings in

Algorithm 2.

Algorithm 2 Importance sampling Metropolis-Hastings algorithm
Generate an initial state with spins in random ±1 orientations.
for (j = 0; j < Monte Carlo steps) do

for (p=0; p < System size) do
Choose a site i at random
Flip that spin
Calculate ∆E
if ∆E ≤ 0 then

accept the move
else if ∆E > 0 then

Generate a random number r / 0< r < 1
if r < e−∆Eβ then

accept the move
else

discard the move
end if

end if
end for

end for

Importance sampling is the crucial part of the previous algorithm, given that it

accounts for the proper entropic contributions. Even if a new configuration has higher

energy, it can still be accepted given that at finite temperature and in thermal equilibrium

the free energy (F =U −TS with U =< H >) is minimum. We could always accept the

spin flip following an uniform distribution, i.e accept if ∆E < 0 and discard otherwise, and

this would indeed minimize the energy, but is only at T = 0↔β→∞ that the transition

probability to states of higher energy tends to zero and this simple minimization is

physically feasible.

Please note that having a convergence in the simulation doesn’t necessarily mean we

are in the minimal energy state of the system at temperature T, as we might have landed

on a local energy minimum. In general, depending on the system the global minimum is

not ensured within this simple algorithm. For systems with simple energy landscapes

is relatively easy to detect if the system is in a local minima or not, but as we shall

see in the next section, for systems with a rough energy landscape, as is the case for

simulation of Heisenberg Hamiltonians, the algorithm needs to be further modified and
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extra diagnostics need to be performed on the final state to asses whether it is the global

minimum or not.

Once the simulation reaches equilibrium, it is continued for a certain amount of time

to calculate statistical averages. One of the strengths of MC methods reside in the ability

to accumulate the spin configurations at different times and thus calculate statistical

quantities from one single simulation. While a certain amount of statistical noise is

expected, this can always be reduced by performing several different simulations and

averaging the results. In this context, the order parameters of different phases can be

calculated after equilibration via a statistical average. For example, the ferromagnetic

order parameter for an Ising model, i.e, the magnetization in the z− direction, can be

calculated after equilibrium as

(5.19) 〈m〉 = 1
NM

M∑
i=0

N∑
m=0

Sz
i

where N is the number of Monte Carlo steps in the simulation, and M is the number

of sites. The sum over N in the above expression is the statistical average, i.e the average

of the quantity Si at different steps of the simulation. We define one Monte Carlo step,

also called Monte Carlo sweep, as M spin flips, meaning, we will choose as many spins

at random to flip as spins there are in our system (second loop in Algorithm 2). This is

a way to be able to consider every spin in the system on one iteration of the algorithm.

Note that since the spins are chosen at random nothing ensures that we will choose

different spins every time. This way, if the simulations employs N Monte Carlo steps, we

randomly choose a spin to flip N ×M times.

From the fluctuations of the energy, E, and different order parameters we can extract

the associated susceptibilities, e.g. the specific heat of the ferromagnetic order parameter

(5.20) Cv = 1
T2

(〈E2〉−〈E〉2) ,

while the magnetic susceptibility has the form

(5.21) χ= 1
T

(〈m2〉−〈m〉2) .

Finally, from the stored spin configuration we can calculate the correlation function

as
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(5.22) Ci j = 〈Si ·S j〉−〈Si〉〈S j〉 ,

where the average stands for statistical average. One point needs to be further

clarified: Since the update algorithm flips one spin at a time, then consecutive states will

be highly correlated to each other. If we calculate a given observable A with correlated

configurations, we can end up with biased results. To avoid this problem it is important

that for each system we measure the autocorrelation time of our simulation, τ, this

time describes the time it takes for two measurements to be decorrelated. As such,

the statistical averages in our MC simulation, after the system has been thermally

equilibrated, can only be taken every τ steps. If a thermal phase transition is studied, the

divergence of the correlation length induces longer relaxation times, thus slowing down

the simulation. Different methods have been proposed to deal with this effect (Wolff

cluster method [97] and Swendsen-Wang [98] to name a few) that involve cluster moves

or worm updates. We will not deal with these modifications in this thesis since they are

in general not applicable to frustrated systems.

5.1.2 Boundary conditions and finite size effects

Throughout this thesis we will be interested in bulk properties of different materials, but

our systems will, understandably, be finite. This is the reason for which it is necessary to

explore the different types of boundary conditions that we could apply in our simulation.

The choice will depend on the type of system and states we want to study. In principle,

since we want to work with bulk properties it would be tempting to choose periodic

boundary conditions (PBC), since this represents bulk physics extremely well. While the

finite size effects do not disappear (and in some cases this is good as it leads to estimates

of critical exponents), they are minimized with PBC, and this has the fundamental

advantage that the studied sizes can be reduced and as such the simulation will speed

up. The introduction of PBC needs to be done with care, as there are cases in which the

ordered state of the system has a special configuration which does not coincide with an

arbitrary choice of PBCs.

This last point will become relevant in the next section: if we expect that the ground

state of our system will be incommensurate to the lattice, meaning that the real space

period of the state is an irrational number in units of the lattice spacing, then PBCs

are not the right choice of boundary conditions. They would implicitly make the system

adopt a commensurate state, which would lead to the miss-identification of the phases,
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or to a lack of convergence in our code. In that case we need to completely forgo PBCs

and instead employ free edge boundary conditions (FEBCs). In this case the spins on

the edges of the lattice see no neighbors where PBCs would introduce one. This choice

of boundary condition is less than ideal, as it introduces heavy finite size effects and

surface and corner effects. To obtain a representative physical system in the presence

of FEBC, system sizes have to be considerably bigger than for PBCs, and we need to

limit our study to the bulk of the lattice (i.e. away from the edges). Everything is not lost

though, as even though we lose some much needed computation time studying bigger

sizes, we not only gain the possibility of studying incommensurate states, but also the

appearance of domain walls and small energy fluctuations can be representative of the

behavior of real materials, and as such interesting to study on themselves.

5.2 Implementation for continuous spin variables

For systems with continuous degrees of freedom things can change drastically, not in

terms of the algorithm (the modification to Algorithm 2 will be straightforward) but in

terms of performance and data analysis. In these cases, the spins do not take discrete

values as in Ising or Potts models, but vary continuously on a circle (as is the case for

XY models) or on a sphere (for Heisenberg models). As such, several complications arise:

while in systems with discrete degrees of freedom the elementary excitations (spin flips)

cost a finite amount of energy, systems with continuous spins will have excited states

that cost an infinitesimal amount of energy. This implies that the spectrum of elementary

excitations in continuous spin systems will be gapples at low temperatures, which leads

to an energy landscape that contains multiple energy minima, as creating a defect or

domain wall costs an infinitesimally small amount of energy, and once is created it can

move through the lattice without further energy cost. This makes the determination of

the true minimal energy equilibrium state much more complicated than for e.g. Ising

models. At the same time, thermal fluctuations are more prominent in continuous models

which smears out the different phases and transitions.

Metropolis algorithm (Algorithm 2) can still be employed to study continuous spin

systems, but with some caveats. We need to define a way to chose a random orientation

for our spins, we cannot simply flip the spin between two positions as in the Ising model,

which brings complications of it’s own: first, how does one choose the spin orientation

in such a way that the distribution of possible directions is uniform? The most straight-

forward way would be to choose new random orientations of the spin components (in
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Cartesian coordinates) and normalizing the total spin length to unity. Implementing this

would translate into selecting a real random number in the range [−0.5,0.5] for each

component and then normalizing to unity, but this would not give a uniform distribution

in a unit sphere since spins will tend to point towards the corners of a cube more often.

While other such proposals that provide uniform distributions of spin components in

Cartesian coordinates exist, we will opt to track the coordinates of our spins in polar

coordinates. As we will work with large system sizes, we need to keep in check our

memory usage. An efficient code that can deal with heavy memory requirements is

fundamental if we aim to surpass finite size effects brought by our implementation of

FEBC. In this case polar coordinates are a good choice since we have to keep track of

two numbers instead of three (since the vector is always on unit length). To choose the

angles such that we obtain a uniform distribution on a sphere we choose two random

variables u and v in (0,1) and define the polar angles as

(5.23) θ = 2πu φ= cos−1(2v−1) ,

this is enough to ensure a uniform distribution of spin coordinates. Of course, we

still need to transform to Cartesian coordinates to calculate the energy and one would

think that this is an extremely time consuming process. We have performed bench-

marks of our code comparing many different ways to chose our spins (Marsaglia’s

algorithm [99] among them) and the polar coordinates selection, and reached the

conclusion that the update in terms of polar coordinates is the most efficient one.

Figure 51: Sketch of the update algorithm for

continuous spin variables. For a given spin, only

a new configuration within the cone can be cho-

sen. Once the spin is moved to the new orienta-

tion, a new cone is generated from which the new

orientation will be chosen.

Once we know how to choose random spin

orientations, the second caveat appears, in

a system with continuous degrees of free-

dom at low temperature, simply choosing

a random new orientation of our spin will

generally produce large energy changes,

which will decrease the acceptance ratio

considerably and require extensive simu-

lation time. As such, an update algorithm

that chooses random spin orientations in

the sphere is inefficient. The ratio can be

increased via a modification of the update

algorithm that we can extract from one of
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the fundamental property of classical spin systems at low temperature: in these cases the

excitations can be considered spin waves, where the spins precess around a fix axis, it is

then not expected that small temperatures will produce a big deviation of the spins from

their original position, as such, we can restrict the space of random spin orientations

from which we will select the new one to a cone around the original position (see Fig. 51).

The size of the cone has to be carefully chosen, since a choice too narrow will again slow

down the dynamics considerably. Careful initial trials where performed for the codes

used in this thesis to ensure the optimal size. Please note that this does not mean that

the ground state will be close to the original random state. With this update algorithm

ergodicity is preserved, as spins can still change position drastically after enough sweeps.

5.2.1 Parallel tempering

Up to now Metropolis-Hastings algorithm has not been modified (except for a more

sophisticated update algorithm), and in principle it needs no further modification. Once

the new random orientation is chosen the process stays unaltered, we calculate ∆E and

accept the move according to our detailed balance condition.

As we mentioned previously, we are interested in the study of Hamiltonians with

continuous spins, and furthermore, with many competing interactions as we are search-

ing for the low temperature properties of frustrated systems. This in turn means that

the energy landscape is increasingly complicated, with multiple energy minima, where

these minima might be states consisting of only one stable phase which is higher in

energy than the ground state, and separated from the ground state by a large energy

barrier which cannot be surpassed at low temperatures. Or it many consist on many

domains separating domains of the same state (please note that as we have previously

stated creating domains cost a certain energy, but moving them around the lattice does

not provided the area of the domain does not change). We will see in the next chapter

that the closer we are to a phase boundary the local energy minima multiply and the

tendency to form magnetic domains is increased. To ensure we reach the true energy

minima of the system we will implement two modifications to the Metropolis’ algorithm,

one of them, parallel tempering, is aimed at avoiding local energy minima altogether, the

other one we will define in the next section, called iterative minimization, and will be

employed in an attempt to reduce the magnetic domains that might remain.

Parallel tempering was first devised [100] as means of speeding up the equilibration

process of systems presenting quenched disorder and glassy behavior. This algorithm

relies on the replica trick, simultaneously simulating N identical copies of the system,
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the replicas, at a range of temperatures {T1,T2, ...TN }. After a certain number of Monte

Carlo sweeps has taken place a swap move is performed. A swap move consists of N

iterations of the following: two replicas at neighboring temperatures Ti and Ti±1 are

randomly chosen and exchanged. The time evolution of all replicas will still follow a

Boltzmann distribution, but with different β values, as such, if we make the exchange

β↔β′, then there will be an energy difference given by

(5.24) ∆E = (βE+β′E′)− (β′E+βE′)= (β−β′)(E−E′)=∆β∆E .

Employing this ∆E we find that our transition probability now takes the form

(5.25) Wi j =min
(
1, e∆β∆E

)
and this exchange will be accepted or rejected according to a Metropolis algorithm.

We present the pseudo code for the swap move in Algorithm 3

Algorithm 3 Parallel tempering
Randomly select a given replica i at temperature Ti
Randomly select a neighboring replica i′ with Ti′ = Ti+1 or Ti′ = Ti−1
Calculate ∆E

if ∆E ≤ 0 then
Exchange temperatures Ti′ ↔ Ti

else if ∆E > 0 then
Generate a random number r / 0< r < 1
if r < e∆E then

Exchange temperatures Ti′ ↔ Ti
else

do nothing
end if

end if

We can see now that if both temperatures where equal, the move would always be

accepted and if, on the other hand, the temperatures are close together, the chance of

acceptance is also high. In short, when the temperatures are similar then the correspond-

ing Boltzmann distributions will overlap substantially. In a manner of speaking, if both

temperatures are close to each other then there will be thermal states that belong to

both replicas, and as such the energy change upon exchanging them will not be so drastic

and the acceptance rate will increase.
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For a given replica, the swap moves induce a random walk through temperature

space, with the replicas diffusing to a high temperature region, where the equilibration is

rapid, and back to a low temperature region where the simulation naturally slows down.

This way the simulation efficiently explores complex energy landscapes and surmounts

local energy minima in which it might get stuck. With this in mind we aim at maximizing

the number of round trips one replica performs (how many times the lowest temperature

replica visits the highest temperature region and returns to it’s original position), this

will depend on the choice of the given temperature set for our simulation. One would

in principle consider that, given the appropriate conditions for a large scale parallel

simulation, the more temperatures one uses the better as the temperatures can be closer

and closer together thus increasing the acceptance rate considerably. But, since the

movement of the replicas in temperature space is diffusive, the time scale for round-trips

scales approximately as the square of the number of temperatures. Following the work

in Ref. [101] we will chose a temperature set such that the probability for a swap at

neighboring temperatures is flat. This is a good choice provided the specific heat of the

system is constant, i.e no phase transition occurs at the studied temperatures. If this is

the case then a good approximation is given by a geometric progression of temperatures:

(5.26) Ti = T1

i−1∏
i=1

R with R =
(

TN

T1

)1/(N−1)
,

where T1 is the minimum temperature, TN is the maximum, and Ti are the N −2

intermediate temperatures. As we will explore low temperature properties away from

thermal phase transitions, we will implement this temperature set, if thermal excitations

and associated transitions are of interest then the algorithm needs to be modified as

proposed by Katzgraber et.al. [102].

5.2.2 Iterative minimization

As mentioned before, within the implementation of FEBCs the appearance of domain

walls cannot be avoided. If our system is in a state that possesses any sort of degeneracy

the domains will consist of different versions of the same state, e.g in a ferromagnetic

Ising model the ordered state has a two fold degeneracy, as such the system can induce

magnetic domains where the total magnetization has two different orientations. In cases

where the phase diagram is more complex, if we choose exchange couplings which locate

us close to a phase boundary, the magnetic domains can consist of two different phases,
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one type of domain will be formed by the expected ground state for the selected exchange

couplings, while the other will be given by the phase we are close to. This is another way

in which our simulation gets trapped in a local minima. In principle parallel tempering

will not always get rid of this problem, as higher temperatures can induce the appearance

of domain walls that cannot be broken at low temperature.

To solve this problem, we will use an iterative minimization (IM) algorithm[103, 104].

In this method, a local field is calculated, hloc for a given spin at site i,

(5.27) hloc
i =−∑

j 6=i
Ji jSi ,

in a sense, we calculate an effective local field generated by all the spins which whom

the spin at site i interacts via the Hamiltonian H. In this way, the Hamiltonian can be

written as

(5.28) H =−∑
i

hloc
i ·Si .

The method selects one spin at random, and aligns it with the local field, this is

iterated N times, where N is the number of spins in the system. Later on we calculate the

average energy change (between the system with the original spin orientation and the

system with the spin aligned with it’s local field) of all the moves and if it is lower than a

certain threshold (we chose this threshold as ∆E < 10−20) the algorithm ends. In principle

this method can be used as a stand alone method to find the ground state of different

classical Hamiltonians at T = 0 as it completely disregards thermal fluctuations. In that

case we would start our simulation on a random state, and orient random spins with their

local field until the threshold is reached. We chose to employ it instead as an improvement

algorithm of our MC method since IM comprises a very slow relaxation time, if a long

wavelength magnetic excitation is present in the system, it will take the IM method a

considerably longer simulation time to make it disappear than MC, which constrains

the system size greatly. As we have stated, we aim at studying incommensurate states

which require extensive system sizes, then the IM method alone is out of the question.

We show the pseudo code for the IM method in Algorithm 4.

One would be worried that employing IM as a further equilibration algorithm of

a MC simulation would drastically change the observed physics, as MC is based on

thermal excitations driving the dynamics while IM completely disregards them. And

indeed this would be a problem if we where studying high temperature phases and
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Algorithm 4 Iterative Minimization
input the low T state obtained from MC
while ∆E > 10−20 do

for p = 0, p <(N +1) do
Randomly select a spin Si
Calculate the local field hloc

i
Calculate the energy change for this move
Update the spin Si =hloc

i
accumulate the energy change ∆E

end for
∆E = ∆E

N
end while

their transitions. In our case, we will focus on low temperature properties well below

the smallest energy scale of the Hamiltonian (T ∼ 0.01Jmin, where Jmin is the smallest

exchange coupling in the system), and as such a final minimization via IM will not affect

the ground state obtained via MC, but it will reduce the domain walls that might appear

in it. Furthermore, since the energy of the system is minimal in the ground state (at

T = 0), then all spins are aligned with their local field, which justifies the use of IM to

study ground state properties.

In conclusion: we have implemented a Metropolis algorithm for continuous spins to

treat Heisenberg like Hamiltonians with an arbitrary number of interactions. Focusing

on the study of incommensurate states of the next chapter we explained the need to

implement free edge boundary conditions and the associated difficulties. Furthermore,

we implemented two extra algorithms to ensure a proper equilibration of the low temper-

ature states and to deal with the effects of the FEBCs. When everything is taken into

consideration, the final code used to map the phase diagram of continuous spin systems

consisting of N spins reduces to: M Metropolis Monte Carlo sweeps interlaced with P

parallel tempering swaps. Once the low T state was equilibrated we employed iterative

minimization with a threshold E. While the number of iterations for every step vary

for system to system, for the different models studied thought this thesis we employed

(unless stated otherwise) N = 2400 or 5400 sites, M = 106 with 105 used for equilibration

and the rest to calculate the averages. The parallel tempering swaps where performed

with either 16 or 32 replicas, every 100 MC sweeps, as such is P = 16 or 32 , finally

E = 10−20.
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6
MAGNETISM IN THE CLASSICAL LIMIT

PHYSICS OF α–Li2IrO3

Perhaps the material is the

simulation approaching your

computer’s results.

Daniel Litinski, 2018

Now that we have shown how our Monte Carlo method works, we can employ it

in the study of low temperature properties of classical magnets. In particular,

since the algorithms don’t change when different Heisenberg like or anisotropic

interactions are employed, we will concentrate in models that present bond dependent

interactions. In particular, we will study a compound belonging to the broad family of

Kitaev materials.

In 2006 Alexei Kitaev put forward an exactly solvable model [9], the now called Kitaev

honeycomb model, which belongs to a wider range of quantum compass Hamiltonians

[105]. The distinguishing feature of the quantum compass models is that the spin-spin

interactions along each bond are anisotropic, and depend on the orientation of the bond.

We show the spin Hamiltonian corresponding to Kitaev interactions in equation 6.1.

(6.1) H = K
∑
<i j>

∑
γ

Sγ

i Sγ

j ,
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where γ = {x, y, z}, and where different bonds couple different components of the

spin. We show in Fig. 61 the different bond interactions in the honeycomb lattice. One

of the most relevant features of Kitaev’s honeycomb model consists on the fact that it

can be solved exactly. Reformulating the spin operators in terms of Majorana fermions

the Kitaev-honeycomb model can be mapped onto a Z2 gauge theory with static flux

excitations describing a spin liquid ground state.

A detailed study of quantum compass models or of the particular Kitaev model is

beyond the scope of this chapter, but it suffices to say that Kitaev’s model is special in the

sense that for spins 1/2 it harbors both gapped and gappless spin liquids. This proposal

kick-started a quest for experimental realizations of model 6.1, and since then many

materials have been synthesized that have been proposed to realize Kitaev interactions

(Na2IrO3[106], Li2IrO3[107–109], RuCl3[110], Ba3IrTi2O9[111]).

Figure 61: Color coded honeycomb lattice

showing the Kitaev exchanges Sx
i Sx

j (blue),

S y
i S y

j (red), and Sz
i Sz

j (green) for nearest

neighbor interactions.

Until now, though, these materials

not only present Kitaev interactions but

also are accompanied by Heisenberg and

other bond dependent exchanges, we will

call these models extended Kitaev mod-
els. These perturbing interactions have a

strong effect on the ground state of the

these materials. Even though Kitaev inter-

actions give rise to spin liquid states, the

perturbation are so strong that in the ex-

periments they give rise to classical mag-

netic order. One of the materials in which

we will be interested in this chapter is α–

Li2IrO3. While the quest for materials which only realize a Hamiltonian of the form

6.1 is still ongoing, the theoretical understanding of extended Kitaev models remains

challenging. These extended models are in principle not exactly solvable, and as such

approximate analytical methods, or numerical simulations need to be employed. In

particular, the question of which minimal model α-Li2IrO3 realizes has not been settled.

We aim in this chapter to give an overview of the physics of this material, and study the

different proposed Hamiltonians via large scale Monte Carlo simulations to compare

the different models with the accepted experimental evidence. Furthermore, we will go

one step beyond and study the magnetization processes of the different models, with the

intention of predicting their behavior in an experimentally reproducible way.
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Figure 62: Diagram showing the formation of spin-orbit entangled j = 1/2 local moments
arising from ions in a d5 electronic configuration. A canonical example of this process is
the Ir4+ ions in α–Li2IrO3. Figure adopted from [112].

This chapter is structured in the following way: First we will present the current

understanding of the generation of bond dependent interactions in real materials, focus-

ing on α–Li2IrO3. Following we will study extended Kitaev models based on symmetry

allowed interactions, that will lead us to a minimal model that accurately reproduces the

low temperature experimental signatures of this material. We will also study a model

put forward in Ref. [1] based on DFT calculations. Finally we will make predictions on

the magnetization behavior of both models.

6.1 Bond dependent interactions

We will start this chapter by briefly describing the main properties of materials like

α-Li2IrO3 composed of transition metal oxides with partially filled 5d shells in an octahe-

dral environment (in α–Li2IrO3 the 5d transition metal Ir4+ are the magnetic ions). Ma-

terials such as this present a rich behavior arising from the combinations of electronic cor-

relations, spin orbit entanglement, and crystal field effects [113]. In the presence of both

strong electronic correlations and spin orbit coupling, it can be shown that these materi-

als form spin orbit entangled Mott insulators. We will be interested in the particular class

of Mott insulators in which the local moments are spin-orbit entangled j = 1/2 Kramers

doublets arising from a d5 electronic configuration in an octahedral environment. The

environment around the magnetic ion (please see Fig. 63 for the crystal structure of

α–Li2IrO3) contains six O atoms that form an octahedron around the metal ion. In these

cases the d-orbital splits, thanks to the crystal field of the ligands, into a high energy

empty eg pair and a lower energy, three-fold degenerated, t2g level containing one hole.

This way five electrons, with a total s = 1/2, are located in the t2g levels, each one realizing

an effective l = 1 orbital moment. The strong spin orbit coupling also affects the elec-
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tronic levels, splitting the t2g into two bands with corresponding je f f = 3/2 and je f f = 1/2.

Furthermore one hole is localized in each metal ion in such a way that the je f f = 3/2 band

is full and the remaining je f f = 1/2 band is half-filled. This process if schemed in Fig. 62.

Figure 63: Refined crystal structure of α–

Li2IrO3, showing unit cell as a black outline.

Here we present the basal plane layer showing

the honeycomb of edge-sharing IrO6 octahedron.

The Ir ions are represented by gold spheres, Li

as purple, and O as red. Figure extracted from

Ref. [114].

One important point needs to be clarified

before moving on: in chapter 4 we men-

tioned that the classical limit of our spin

system is given by S →∞. And we men-

tioned that increasing the spin length can

be interpreted as decreasing the quan-

tum fluctuations. Theoretically this can

be proven by studying the overlap of co-

herent spin states as the spin length is

increased [115] and noticing that the over-

lap vanishes in the classical limit. The ex-

perimental reason for why a system com-

posed of atomic spins 1/2 (that in principle

are quantum objects) can be studied clas-

sically, as we will do in this chapter, is

related to the experimental evidence sug-

gesting that the ground state of α–Li2IrO3

is a magnetically ordered phase. In cases

such as this, a good first approach is to

completely neglect quantum fluctuations

and study the purely classical case. Please

note that previously, in chapter 4 we studied another model, in which the classical

limit moves the boundaries between different phases, but does not change the nature of

the magnetic long range orders present in the quantum limit. As such, in this particu-

lar model we could also in principle neglect quantum fluctuations and proceed with a

classical treatment as a first approach in the parts of the phase diagram showing LRO.

One more detail needs to be pointed out, for the material we will study in this chapter

the crystal field presents no easy axis (easy plane) anisotropy that could force the local

moments to point in a particular direction (plane). As such we will model our system

of spins as vectors living on a sphere. It has to be noted that there are cases where the

crystal field not only splits the energy levels but also selects particular directions (planes)

for the movement of the local moments. This is the mechanism by which spin ices [45]

92



6.1. BOND DEPENDENT INTERACTIONS

(XY models) can be considered as classical spins pointing only in a particular direction

(taking values in one particular plane).

With this in mind, now we can study where the particular interactions that will

be used to model α–Li2IrO3 arise from. Jackeli and Khaliullin [116] realized that the

geometric orientation of the octahedron affects the exchange paths between magnetic

ions located at the center of these octahedra. If the IrO6 octahedron share a corner, as in

the case of Sr2IrO4 [117], there is one single Ir-O-Ir exchange path with the bond in a

180o configuration. It can be calculated in a similar way as was done in Chapter 1, that

in this case the dominant super-exchange interaction is of Heisenberg type between the

two je f f = 1/2 moments. On the other hand, if the octahedron share an edge (as in the

case of α–Li2IrO3) there are two possible Ir-O-Ir exchange paths with a 90o geometry.

In this case, when considering hopping only between the p-orbitals we see that, for the

symmetric Heisenberg exchange, both paths interfere destructively if we only consider

paths arising only from the je f f = 1/2 bands, and that this path is significantly reduced

when considering the full multi-orbital model. Further calculations including hopping

between d-orbitals (which in 4d and 5d elements are diffuse which leads to a bigger

direct overlap between them) arrive at more significant deviations from the pure Kitaev

model. What is consistent is that, even in the case where all hopping paths are taken

into account, the dominant interaction is of Kitaev type, and bond dependent couplings

enter into play.

The bond directionality stems from the fact that a pair of Ir are linked between

two neighbor octahedra sharing an edge, which induces different orientations of the t2g

orbitals, as their lobes point exactly along the axis of the Ir-O-Ir bonds, and these bonds

are not the same for all Ir-O-Ir triads. Many works have shown that these bond dependent

interactions are of Ising type, between the two je f f = 1/2 moments, with a magnetic

easy axis perpendicular to the plane spanned by the two exchange paths[118–120]. If we

represent these two local 1/2 moments by vectors of the SU(2) spin 1/2 Pauli matrices

algebra, S1 and S2, it can be calculated that this bond geometry naturally couples only

one component of the spin, which is precisely the Kitaev exchange in equation 6.1.

With these considerations in mind a generic model for the magnetic interactions

between spin-orbit entangled j = 1/2 moments was determined [120, 121],

(6.2) H = J
∑
i j

SiS j +
∑

i j∈γ−bonds

(
KSγ

i Sγ

j +Γ(Sα
i Sβ

j +Sβ

i Sα
j )

)
,

where γ= {x, y, z}, and where α and β indicate the two spin components perpendicular
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to γ. J represents a Heisenberg coupling, while the bond dependent terms contain Kitaev

interactions coupled by K , and a Γ exchange that couples two orthogonal spin components,

α and β, along the bond with Kitaev interactions in the γ spin component. In this class

of materials the specific model may vary, not always been exactly of the form 6.2 or

including interactions of different ranges, but it is a distinguishing feature of most

Kitaev materials that the dominant interaction has been proposed to be of Kitaev type,

K À J, K .

For α–Li2IrO3 many experimental studies have been performed, and up to the mo-

ment the consensus is that the ground state of this material is a long range ordered state,

in which spins form incommensurate counterotating spirals with a tilted rotation plane

[14]. Different variations of model 6.2 have been proposed for α–Li2IrO3, in particular

Kimchi et. al. have proposed [122] a slightly different model where the bond dependent

interaction is allowed by the crystallographic symmetry. This model was studied by

the authors in a toy model consisting of 1D zig-zag chains, and it can be seen that the

Hamiltonian can be taken to a similar form as Eq. 6.2, but the coupling strength, their

respective signs, and the symmetries, change drastically. We will study the model pro-

posed by [122], but we will employ large scale Monte Carlo in the precise crystallographic

configuration of α–Li2IrO3 instead of the 1D toy model. We will also study a variant of

the model shown in Eq. 6.2 with coupling strengths obtained via DFT calculations, and

other further models which might present a similar ordered ground state as the one

expected for α–Li2IrO3.

6.2 Characteristics of α−Li2IrO3

As mentioned before, we will concentrate on the study of a particular material believed

to be representative of extended Kitaev models, α−Li2IrO3. This material, isostructural

to Na2IrO3, possesses a layered crystal structure where the Ir4+, surrounded by an

octahedral cage of oxygens, form a honeycomb lattice (see Fig. 63). This lattice resides in

the [111] Cartesian plane, with one bond parallel to the [1̄10] direction.

Both compounds, Na2IrO3 and α−Li2IrO3, present long range order [107], showing

anomalies in the specific heat and in the magnetic susceptibility at a critical temperature

Tc ∼ 15K (experimental data extracted from [107] is shown in Fig. 64), with a Curie-

Weiss temperature of Θ = −125(6)K and Θ = −33(3)K respectively. Na2IrO3 presents

a zig-zag ordered state and it would be expected that, given the similarities in the

thermodynamic anomalies, α−Li2IrO3 would also present a zig-zag order. While the
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Figure 64: Top: Specific heat as a function of temperature for NA2IrO3 (blue), α−Li2IrO3 (black),
and the nonmagnetic compound Li2SnO3. Inset shows the difference heat capacity ∆C and
the difference entropy ∆S for the Li compound. Bottom: Zero field magnetic susceptibility as
a function of temperature for the Na and Ir compounds. The red curve represents a fit by the
Curie-Weiss expression χ = χ0 +C/(T −Θ). The insets (a) and (b) show the anomaly at Tc for
NA2IrO3 and α−Li2IrO3, respectively. In both cases, a clear peak corresponding to the transition
towards long range order is seen at Tc ∼ 15K . Figures extracted from [107].

thermodynamics show similarities in the behavior of the Na and Li compound, recent

studies performed on single crystals and powder samples of α−Li2IrO3 have shown that

the magnetic order present in this material is not of zig-zag type, but of spiral nature.

Magnetic resonant X-ray diffraction (MRXD) together with magnetic powder neutron

diffraction determine a magnetic structure composed of counterrotating incommensurate

coplanar spin spirals [14], with a propagation wavevector q= (0.32(1),0,0). At the same

time they are able to determine that the plane of rotation of the spirals is uniform

between the different sublattices and tilted with respect to the lattice plane by 80o. In

their studies they see that the MRXD, at a temperature of 5K , present satellite peaks

at positions τ+q, where τ are the positions of allowed structural reflections τ= (h,k, l),
with h+k =even. We show a scan of the magnetic diffraction along the [h,0,6] plane in

Fig. 65(b).

Similarities have been found between the ground state of α−Li2IrO3 and the two

structural polytypes, β−Li2IrO3 and γ−Li2IrO3, which correspond to hyper-honeycomb

and stripy-honeycomb magnetic lattices respectively. All three of these polytypes are

members of the “harmonic honeycomb” structural series, and the similarities in their

magnetic ordering have lead to proposals of universality between the members of the

family of harmonic honeycomb Iridates [122].

It has been shown previously that the magnetic ordering of the β and γ structures

are well described by a dominant antiferromagnetic Kitaev interaction, combined with
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other smaller exchange terms, like Heisenberg or bond dependent terms, [122–125], in

particular the counterrotating spirals can be modeled via a bond dependent interaction

in the zz−bonds. Furthermore, these materials present an alternating tilt of the rotation

plane that can be reproduced via a change in the sign of the Kitaev interaction along the

zz-bonds. [122].

Figure 65: (a) Schematic diagram for the [hk6]

reciprocal plane of α−Li2IrO3 showing struc-

tural peaks (black circles), measured magnetic

peaks (blue diamonds), and the absence of peaks

(pink crosses). The lattice points are indexed

by their magnetic basis vectors. (b) Intensity of

the magnetic resonant X-ray diffraction scanned

along the (h,0,6) direction. Structural peaks ap-

pear at integer h = 0, 2 (points rescaled by

3×10−4) with their magnetic satellite points at

positions h = 0± q, 2± q. The red line indicates

the calculated magnetic scattering intensity for

a magnetic structure corresponding to incom-

mensurate counterotating spin spirals with a

tilted plane of rotation and a magnetic wavevec-

tor q = 0.32. Figure extracted from [14].

Given the similarities between the dif-

ferent polytypes we predict that the model

which correctly describes the magnetic

structure of α–Li2IrO3 will be composed

of dominant Kitaev interactions, supple-

mented by weaker Heisenberg and bond

dependent terms. While in principle this

proposal is in agreement with what is

known of the β and γ polytypes, the partic-

ularities of the minimal model have not yet

been defined. Many models have been pro-

posed which reproduce some characteris-

tics of the α polytype, but which have been

tested only in toy models, or by a Luttinger-

Tisza (LT) approximation, which are not

ensure to succeed at the detection of in-

commensurate states. In the following we

will study the models that have been pro-

posed until now, and propose some of our

own, under the light of a common method,

a Monte Carlo simulation. We aim at ex-

ploring the possible ground states of the

different models via a method which is not

biased towards any type of magnetic order,

and which can deal with the incommensu-

rate nature of the expected ground state

appropriately. At the same time, we will go one step beyond and study the magnetization

properties of the different models whose ground state match the experimental signatures

of the material. Our aim is that the differences in the magnetization processes with

different field directions can provide an efficient experimental route to probe which of
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the proposed models is the more feasible one.

6.3 Models

We will classify the different models according to the range of their interactions, into

nearest, second, and third neighbor models. All the models we will study here are

variations of the extended Kitaev-Heisenberg model shown in Eq. 6.2. Here we will show

some of their basic common features. More information regarding the particularities of

each model will be given as the results are shown, as the construction of some of these

models heavily rely on the results found for others.

The nearest and second neighbor models are based on the following Hamiltonian

(6.3) H =∑
n

[
Jn

∑
<i j>n

Si ·S j +Kn
∑

<i j>n

∑
γ

Sγ

i Sγ

j + Ic
∑
<i j>

Sr i j
i Sr i j

j + Id
∑
<i j>

Sr i j
i Sr i j

j

]
where < i j >n denote a sum over n-th neighbors, γ = x, y, z indicates the bond in

which the Kitaev coupling acts, and Si = (Sx
i ,S y

i ,Sz
i ) denotes the classical spin operator

acting on site i. The terms containing the couplings Ic and Id are Ising terms that couple

the spins components parallel to the bond orientation, i.e Sr i j =S · r̂i j, where r̂i j is the

unit vector connecting the spins in sites i and j. In the real material, the octahedral

cage enclosing the Ir atoms is not perfect, and presents deformations. This deformations

induce a bond anisotropy on the interactions, where the couplings of the Ising terms is

not the same on the zz-, and xx- and yy-bonds. For this, we choose Ic to be active only on

the zz-bonds, while Id acts on the rest of them (zig zag bonds). A diagram of the lattice

and the Kitaev interactions is shown in Fig. 66

Please note that the Kitaev model has a particular symmetry in the bond isotropic

case, where a 60o rotation in real space and spin space leave the ground state invariant.

We will work with two nearest neighbor models, the model we will name “Ic-model”

will contain dominant ferromagnetic Kitaev interactions K1 < 0 as well as small anti-

ferromagnetic Heisenberg terms J1 > 0, the Ising term is ferromagnetic as well, Ic < 0.

The “IcId-model” will also include terms with Id < 0. For the second neighbor models

we will have the “2N-model” with J1 > 0, J2 < 0, K1 < 0, and K2 > 0, while “2NIc-model”

will include terms with Ic < 0. The different models with their respective interactions

are shown in Table 61.

For the third neighbor case we will use the model proposed by Winter et.al. based on

DFT calculations [1]. The Hamiltonian, for the zz-bonds takes the form
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Figure 66: (a) Color coded honeycomb lattice showing the Kitaev exchanges Sx
i Sx

j (blue),
S y

i S y
j (red), and Sz

i Sz
j (green) for nearest neighbor interactions. The Ic terms act on the

the zz-bonds which in this figure correspond to the vertical bonds. The Id term acts on
the remaining zig-zag bonds, xx and yy. (b) Extended Brillouin zone of the honeycomb
lattice (inner hexagon is the first Brillouin zone). Ferromagnetic (FM) order presents
peaks in the center of the first Brillouin zone, while antiferromagnetic (AFM) order
resides at the corner of the extended zone scheme.

Model J1 K1 Ic Id J2 K2 J3
Ic > 0 < 0 < 0 - - - -
IcId > 0 < 0 < 0 < 0 - - -
2N > 0 < 0 - - < 0 > 0 -
2NIc > 0 < 0 < 0 - < 0 > 0 -

J1 K1 Γ1 J2 K2 Γ2 J3
W Yes Yes Yes Yes Yes Yes Yes

Table 61: Different interactions present in each model, together with the names we
will assign to each model throughout this thesis. While Ic- and IcId-models are nearest
neighbor models, 2N- and 2NIc-models are second neighbors. The more extended model
we will study is Winter’s model (“W-model”) which contains interactions up to third
neighbors (see text). The double lines separate the nearest, second, and third neighbor
interactions.

(6.4) H =∑
n

[
Jn

∑
<i j>n

Si ·S j +Kn
∑

<i j>n

Sγ

i Sγ

j −Γn
∑

<i j>n

(Sα
i Sβ

j +Sβ

i Sα
j )

]

where (α,β,γ) = (x, y, z). In this model the Γ-exchange term couple the spin compo-

nents that are perpendicular to the spin component coupled via the Kitaev terms. For

this model, that we will name “W-model”, we will study the bond isotropic version of the

Hamiltonian in Eq. 6.4, but also a version which introduces large bond anisotropies in

the nearest neighbors interactions. Defining the bond anisotropy constant by δ we obtain
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JXY
1 = J1 −δ JZ

1 = J1 +δ
K XY

1 = K1 −δ K Z
1 = K1 +δ

ΓXY
1 =Γ1 −δ ΓZ

1 =Γ1 +δ
ΓXY

2 =Γ1 −δ ΓZ
1 =Γ1 +δ ,(6.5)

where the quantities J1, K1, Γ1, and Γ2 are understood as bond averaged interactions.

In Table.62 we show the bond average value of the different couplings together with the

anisotropic component δ that reproduce the experimental results.

δW Bond average W Anisotropic interactions
J1 0.14 0.2 JXY

1 = 0.06 JZ
1 = 0.34

K1 0.34 -1 K XY
1 =−1.34 K Z

1 =−0.66
Γ1 0.195 1 ΓXY

1 = 0.805 ΓZ
1 = 1.195

K2 0 -0.275 K XY
2 =−0.275 K Z

2 =−0.275
Γ2 -0.06 0.275 ΓXY

2 = 0.335 ΓZ
2 = 0.215

J3 0 0.3 JXY
3 = 0.3 JZ

3 = 0.3

Table 62: Values that reproduce the experimental results with the corresponding bond
anisotropies for the W-model. All values are given in terms of |K1|.

6.3.1 Method

The numerical simulation consist on a Monte Carlo simulations implementing a Metropolis-

Hastings algorithm. As mentioned in the previous chapter, even though we want to study

ground state properties of the bulk, some of these ground states are incommensurate

phases which, to the effect of the algorithm, means that our system will need free edge

boundary conditions (FEBs). The presence of FEBs carries some added effects, and as

such the system will exhibit edge modes that are, in principle, not relevant to the study

of the ground state, plus it will enhance the appearance of domain walls. We show in

Appendix B that the edge modes do not affect the bulk properties of the data, provided

the lattice sizes are sufficiently big. We achieve this via a benchmark of our code imple-

menting FEBs against the results of Ref. [126] for the Kitaev-Heisenberg model (J1 6= 0,

K1 6= 0) with periodic boundary conditions.
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Figure 67: Reciprocal space diagram

of the honeycomb lattice showing in

red the positions of the magnetic Bragg

peaks corresponding to the ground

state of α–Li2IrO3. The black dots

correspond to the allowed structural

Bragg peaks τ, while the red stars cor-

respond to the satellite peaks τ+ q.

The inner hexagon is the first Brillouin

zone, while the outer hexagon is the

extended Brillouin zone.

To minimize the creation of domain walls, and

to increase the acceptance rate, we will implement

an iterative minimization and parallel tempering

algorithms respectively, with system sizes ranging

from 2400 up to 5400 sites. To identify the differ-

ent states in the phase diagram we will rely on

the study of the Fourier transform of the spin-spin

correlation function

(6.6) Ci j = 〈Si ·S j〉−〈Si〉〈S j〉 ,

where the average is taken over different Monte

Carlo sweeps. For the ground state of α–Li2IrO3 we

expect to find peaks at positions indicated by the

red stars in Fig. 67 in accordance with the results of

[14], in particular with their results shown here in

Fig. 65. We can determine the propagation wavevec-

tor of the magnetic spirals from the maxima of the

Fourier transform of Eq. 6.6, as they will be located at the points τ±q, with q= (±q,0)

the propagation wavevector. At the same time, and since Monte Carlo produces the spin

pattern of the state, we confirm our results by calculating the relative angle between

nearest neighbor spins in one spiral.

To study the magnetization processes we will be interested in the ferromagnetic order

parameter,

(6.7) |FMOP | =
1
N

|∑
i
〈Si〉| ,

where the average is taken over different Monte Carlo sweeps, the magnetization in

the direction of an externally applied field,

(6.8) MH =M.H= 1
N

(FMOPxHx +FMOP yHy +FMOPzHz) ,

where N is the number of sites, Si represent the spin at site i, and FMOPi is the

i-th component of the ferromagnetic order parameter. Please note that while FMOP

probes the existence of a ferromagnetic state in the system, it does so without taking into

account the possible directions of the magnetic polarization. To probe the existence of a

ferromagnetic order with a particular polarization the ferromagnetic order parameter
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has to be projected onto this direction. As we will include magnetic fields, we choose to

study the projection of FMOP in the direction of the field, as we know that at high enough

intensities the system will polarize in that direction. To estimate critical fields we will

also employ the associated response function of the ferromagnetic order parameter, the

magnetic susceptibility

(6.9) χ= dFMOP

dH
= 1

N
1
T

∑
i

(〈S2
i 〉−〈Si〉2)

where H is the magnitude of the applied magnetic field, and T is the temperature of

the simulation.

6.4 Nearest neighbor models

6.4.1 Heisenberg-Kitaev-Ic model (Ic-model)

We begin the study of our different models by analyzing a nearest neighbor model which

qualitatively captures the features of the spin spirals along the harmonic honeycomb

family of Li2IrO3 compounds. Both β and γ polytypes suffer from a phase transition to a

LRO state at Tc = 38K , magnetic X-ray diffraction experiments show that both materials

order in a spin spiral state with counterrotating magnetic spirals propagating with a

(q,0) wavevector, where q = 0.57(1) in units of 2π. As mentioned before, the α polytype

also shares the same groundstate properties as its sibling compounds. For this reason

Kimchi et. al. proposed [122] a nearest neighbor Hamiltonian that is capable of capturing

the qualitative features of the ground state properties common to these three compounds.

The Hamiltonian, corresponding to the Ic-model, takes the form of Eq. 6.3 with Id = 0,

(6.10) H = J
∑
<i j>

Si ·S j +K
∑

<i j>γ

∑
γ

Sγ

i Sγ

j + Ic
∑

<i j>zz

Sr i j
i Sr i j

j .

where < i j >γ indicates the bonds in which the interactions acts. This Hamiltonian

contains terms that are symmetry allowed by the microscopic structure of the materials,

and in their paper[122] Kimchi and collaborators studied it via a reduction to a 1D chain

model and a subsequent solution employing an LT approximation. While the results

they have obtained are in good qualitative agreement with what is known for these

materials, the methods used are approximate. The 1D toy model relies on the reduction

of the Hamiltonian in Eq. 6.10 to that of decoupled zig-zag chains by taking the Ic term
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to zero and introducing a second neighbor Heisenberg interactions. This Hamiltonian is

solved by proposing an ansatz for the spin components and then the interchain coupling

arising from the Ic terms is slowly introduced. They subsequently solve the perturbed

Hamiltonian by an LT approximation. They find that even when the second neighbor

interactions is zero and the Ic term is completely introduced, the spin spirals survive

in the phase diagram. As such, we opt for studying the model in Eq. 6.10 exactly, via

Monte Carlo simulations. This gives us the chance to test whether the appearance of spin

spiral states in this model exist without recurring to approximations given that LT is an

approximation, that cannot ensure the correct ground state when treating non-Bravais

lattices and incommensurate states, while MC methods are exact up to stochastic noise.

In the following we will show the obtained phase diagram for the Ic-model, and the

properties of the spiral phases present in it.

6.4.1.1 Phase diagram

Figure 68: Phase diagram for model shown in

Eq. 6.10. Blue squares represent the st-Z order

(see text), green squares the spiral phase, and

black dots correspond to ferromagnetic order

Employing large scale Monte Carlo simu-

lations we are able to map the phase dia-

gram of the Ic-model in the phase space of

the J and Ic couplings. In all the models

we will study, the dominant coupling is the

Kitaev exchange, which we consistently

set to −1. The obtained phase diagram can

be seen in Fig. 68. This diagram shows

evidence of the strong Kitaev interactions

present, displaying a broad region where

the stripy phase lives, which is a promi-

nent feature of the Kitaev-Heisenberg

model as shown in Appendix. B.

At the boundary Ic = 0 (J 6= 0) we re-

cover the Kitaev Heisenberg model, which

presents a stripy phase for these values

of J and K . A stripy phase is such that

one pair of spins on nearest neighbors are

aligned ferromagnetically, while the other two are aligned antiferromagnetically. This

order is three fold degenerated in this case, with the spins orienting themselves along

one of the Cartesian spin directions, i.e the spins will all have one component equal ±1
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and the other two equal 0. For example in Fig. 69 we see green (red) dots representing

spins pointing in the (0,0,−1) ((0,0,1)) direction. Furthermore, this state is affected by a

spin locking effect. This mechanism is that by which the neighbors in which the spins are

ferromagnetically aligned are correlated to the spin direction in which the spins aligned,

in the sense that if our spins are aligning in the z direction, then the neighbors which

will align ferromagnetically are those coupled by the zz-bonds. The name of this state

comes from the fact that it can be seen as stripes of spins propagating along the lattice

(In Fig. 69 we show the propagation direction by a blue arrow).

As soon as we set Ic 6= 0 the degeneracy of the stripy phase is broken, and a stripy

in the z direction is chosen (we will name this phase st-Z), which we show in the phase

diagram by blue squares. This break down of the degeneracy is not surprising, as the Ic

terms reinforce ferromagnetic order over the zz-bonds.

zz

xx yy

Figure 69: Sketch of the stripy order

in the z-direction. Red (green) dots rep-

resent spins oriented in the +z (−z)

direction. The blue arrow indicates the

propagation direction of the stripe, and

the kitaev coupling on each bond is in-

dicated.

On the other limit, when J = 0 and Ic 6= 0 the

model in Eq. 6.10 reduces to two ferromagnetic

couplings, which produces a large ferromagnetic

phase which survives up to finite J (black dots in

Fig. 68). The case Ic = 0 and J = 0 is special, as

this point reduces to the Kitaev model, which is a

macroscopically degenerate state without LRO. For

finite J and Ic we find an incommensurate spiral

phase (green squares in Fig. 68) which we will study

in detail in the next section. It is worth noting that

Kimchi et.al report the existence of a small area

where the st-X and st-Y phases should be present,

and they locate it at the intersection of the spiral

and st-Z phase.

6.4.1.2 Spiral properties

The incommensurate order present in the phase diagram (green squares in Fig. 68)

exhibits signatures of incommensurate counterotating spirals. This spiral phase propa-

gates in the horizontal direction according to Fig. 66 (the direction perpendicular to the

zz-bonds), with a wavevector that varies from 0.5 to 0.30 in units of 2π. The phase of

rotation tilted with respect to the lattice plane remains constant throughout the phase

diagram at θ = 54o, i.e, the rotation plane is oriented parallel to the XY-Cartesian plane.

This phase mostly reproduces the experimental structure determined from neutron
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diffraction except for the tilt of the rotation plane (we find a tilt of 54o and the expected

value for the tilt angle is 80o). For this reason we will postpone further discussions

regarding this phase until the next section, where we analyze in detail the IcId-model,

which reproduces the experimental results fully, and is derived from the present model.

6.4.2 Heisenberg-Kitaev-Ic-Id model (IcId model)

6.4.2.1 Phase diagram

Figure 610: Phase diagram for the IcId-model.

Blue squares represent the st-Z order, orange

triangles are st-XY, red diamonds the 120o, green

squares the spiral, and black dots correspond to

ferromagnetic order. The open marks show the

zone boundaries between the st-XY, st-Z, 120o,

and incommensurate phases. The line of open

circles in the ferromagnetic phase indicates the

line along which a U(1)-like behavior appears.

We study the model described in Eq. 6.3

setting fixed values for the Heisenberg and

Kitaev interactions J/|K | = 0.2, K /|K | =
−1, which we know from the previous sec-

tion show the presence of a stripy and an

incommensurate phase at finite Ic. To an-

alyze the effect of bond dependent inter-

actions we allow the couplings Ic and Id

to move in the range {−1, ...0}. Studying

both the real space configuration of the

spins, as well as the correlation function

in reciprocal space we are able to map

the phase diagram for finite Ic and Id.

We show this phase diagram in Fig. 610.

We observe a rich behavior, with differ-

ent commensurate-incommensurate tran-

sitions. The experimentally relevant phase

corresponds to the green squares.

The regime Id = 0 was shown in the

previous section, and it corresponds to a

cut along the line J = 0.2 in Fig. 68. All

our results in this limit are consistent with

what we have found for the Ic model. In

the Ic = 0 regime: for moderate values of

Id (Id >−0.25) we observe a degenerate stripy phase, that we denote st-XY (orange tri-

angles), while for smaller Id we obtain a 120o order (red diamonds). This latter state was

previously studied via a soft spin approximation, and identified as an incommensurate
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spin spiral propagating in the vertical direction of Fig. 66.

Figure 611: Top: Fourier transform of the cor-

relation function for the order present in the

Ic = 0 regime, for Id = 0.5. The maxima are lo-

cated close to the corners of the first Brillouin

zone. Bottom: 120o order in the triangular lat-

tice. Blue lines indicate the neighbors which lie

parallel to each other.

While the Fourier transform of the cor-

relation function present maxima close

to the first Brillouin zone, Fig. 611(top),

which would indicate a spiral-like state

that is approaching the 120o order, the

spin pattern in the real space shows that

the state is that of a distorted 120o.

The distortion can be understood if we

think of the origin of the 120o order in

the honeycomb lattice. This state can be

constructed with a pure second neighbor

Heisenberg Hamiltonian, in this case both

triangular sublattices decouple, and each

presents a 120o states. A depiction of the

spin pattern of this state in the triangular

lattice is shown in Fig. 611(bottom). In this

case, we see that second neighbors in the

underlying triangular lattice are parallel

to each other. In our model we see that, for

high enough |Id|, the distortion present in

the 120o order can be understood as long

wavelength spin spirals propagating over

the second neighbors. In the language of

spin spirals, the 1200 state can be seen as

a spin spiral state with wavevector 0.33

in units of 2π, the distortion here appears

as a small deviation from this wavevector, on the order of 10%. This deviation can

be observed in the Fourier transform of the pseudo-1200 state present in our model

(Fig. 611(top)). While in the 120o state the maxima lie on the corners of the first Brillouin

zone, here they appear slightly away from them. For smaller |Id| and non zero |Ic| the

distortion becomes more pronounced, with the wavevector deviating more from 0.33. We

expect that in the limit Id →∞ we recover the exact 120o order.

The stripy phase in the Ic = 0 regime arise as a superposition of st-X and st-Y

phases. We will call it, st-XY phase, according to the literature. The appearance of this
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superposition can be understood remembering that previously we have mentioned that

the Heisenberg-Kitaev model stabilizes a triple degenerated stripy phase (see appendix

B and [126]), each of which we denote as st-X, st-Y, and st-Z respectively. As we have

also seen in the case of the Ic model, the inclusion of a small bond dependent interaction

strengthening one particular bond, breaks the degeneracy of the stripy phase. In the

case of the Ic model (where the Ic terms strengthen the ferromagnetic ordering over the

zz-bonds) we saw that, as expected, the stripy phase selected is that which has spins

over the zz-bond coupled ferromagnetically. Is then easy to understand why, in the case

where Ic = 0 and Id 6= 0, the selection happens in the x- and y-bond, as the Id terms

strengthen the ferromagnetic interaction equally in them.

When both Ic and Id are non-zero, we see a clear separation of phases through the

line Ic = Id. For the stripy phases this is again intuitive, as we expect a different selection

of stripes based on which coupling is dominant. It is expected, and indeed observed, that

throughout this line, and where the stripy phases are located, there is a superposition of

st-X, st-Y, and st-Z states.

Figure 612: Ferromagnetic order for the

model shown in Eq. 6.11 with parameters

Ic = 0.5 and Id = 0.5.

Beyond the line Ic = Id a counterro-

tating spiral state dominates the phase

diagram. This phase reproduces well the

experimental results for α−Li2IrO3 and

will be studied in detail in the next section.

Finally, we note that, at high enough

values of |Ic| and |Id| the model adopts an

in plane ferromagnetic order. This order

lives on both sides of the Ic = Id line, pre-

senting a ferromagnetic order with a net

magnetization in the direction of the zz-

bonds when |Ic| > |Id|, and perpendicular

to it in the |Ic| < |Id| case.

Understanding the behavior of the fer-

romagnetic phase will be crucial to under-

stand the magnetization plots given that

the experimentally representative point is

close to this phase. In Fig. 610 we observe a ferromagnetic phase (full black dots) which

is separated in two by the line Ic = Id (line with open black dots). On the left side of this

line (Id > Ic) we encounter ferromagnetic polarization on the direction perpendicular to
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the zz-bonds. On the other side (Ic > Id) the magnetic vector is also in plane but parallel

to the zz-bonds. Both cases posses the same type of low energy fluctuations, these being

domain walls separating different orientations of the magnetic polarization. The line in

the phase diagram separating both polarization is of special interest given that the low

energy fluctuations of the system are of a different nature. All over the line Ic = Id the

low energy fluctuations are vortex-antivortex pairs, where antivortices are extended over

a number of unit cells. An example of a spin pattern presenting this behavior is shown,

for a calculation over 2400 sites, in Fig. 612.

These vortex fluctuations where studied in systems ranging from 24 to 5400 lattice

sites, and they consistently appear in all the studied system sizes over this particular

line in the phase diagram, which rules out this behavior as a finite size effect. This

low energy behavior reminds us (though it is not necessarily the same physics) of the

behavior of XY-models when Ic = Id and Ic ≥ 0.46.

This behavior can be understood following a symmetry argument. The Ic (Id) term

posses a rotational invariance along the Z Cartesian axis (XY plane). When Ic = Id,

there is no preferred symmetry axis or plane, instead the preferred orientation is the

lattice plane, and, as both these off-diagonal terms are of the same strength, there is no

preferred bond direction, which implies that an on-plane XY-like behavior could emerge.

6.4.2.2 Spiral properties

Figure 614: Heat map of the wavevec-

tor for the regime Ic/K > 0.5. The black

like represents the line of wavevector

q = 0.32, in units of 2π.

A big part of the phase diagram on Fig. 610 is domi-

nated by an incommensurate phase (green squares).

This state represents an incommensurate counter-

rotating spiral which propagates in the horizontal

direction according to Fig. 66 (the direction perpen-

dicular to the zz-bonds). In the regime Id = 0 the

wavevector varies between 0.5 and 0.4 (in units of

2π) and the plane of rotation is tilted with respect

to the lattice plane by 54o, i.e, the rotation plane is

oriented parallel to the XY-Cartesian plane. This co-

incides with what it is found for the Ic model when

a cut on the phase diagram over the line J = 0.2 is

performed.
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Figure 613: Spiral structure obtained from Monte Carlo simulations for the couplings Ic =−0.5
and Id =−0.35. The wavevector and tilt angle coincide with the experimental results q = 0.31(1)
and θ ∼ 80o. The circular drawings on the upper right indicate the rotation direction of two
neighboring spirals. Blue circles show the plane of rotation, with the plane tilt. By a, b, c, and d
we mean to label the four spirals that appear in one single slab of hexagons, with spins of each
sublattice forming one spiral along the slab. Finally, and for the sake of completeness we indicate
the bonds that correspond to the Kitaev interaction as defined in the model.

Figure 615: Heat map of the rotation

plane’s tilt for the SP phase in the

regime Ic/K > 0.5. The black like repre-

sents the experimental value obtained

for the wavevector, q = 0.32 in units of

2π.

In the regime where both Ic 6= 0 and Id 6= 0 the

commensurate phases mentioned previously sur-

vives for values of Id down to −0.4 and for values

of Ic such that |Ic| > |Id| −0.4 for |Id| < 0.2, and

|Ic| > |Id| for 0.2 < |Id| < 0.4. We show in Fig. 613

a real space pattern of the spin spiral, at a point

in the phase diagram which reproduces the exper-

imental results. In this regime some properties of

the spiral phase are modified. As Ic and Id are

varied the wavevector changes, but in this case

it changes between 0.5 and 0 (wavevector 0 cor-

respond to the onset of ferromagnetic order). The

rotation plane’s tilt now also varies along the phase

diagram, between ∼ 50o (consistent with the spin

spiral known to appear at Id = 0) and ∼ 90o.
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In Fig.614 and 615 we show two heat maps, one for the wavevector and another

for the tilt angle of the rotation plane, respectively. We can clearly see the variation of

these quantities in the phase diagram. In the heat map corresponding to the wavevector

(Fig. 614) we indicate with a black line the zone of wavevector q = 0.32 (in units of 2π)

and superimpose this line over the tilt angle heat map (Fig. 615). Please note that this

mark is a guide to the eye, it does not arise from a fit to the data.

Further confirming the existence of counterrotating spin spirals reproducing the

experimental results, we show the Fourier transform of the correlation function in

Fig. 616. This figure was calculated for the parameters Ic =−0.5 and Id =−0.35, which

reproduce the wavevector and rotation plane tilt found in experiments. The correlation

function presents maxima at the experimentally expected positions. They appear as

satellites of the Γ point, with positions τ+q, where τ indicates the location of the Γ

points and q= (±0.32(1),0) in units of 2π, which coincide with the experimental results

discusses in section 6.2, and in particular, with the findings shown in Fig. 65.

Figure 616: Correlation function for the incommensurate spin spiral state at Ic = −0.5 and
Id = −0.35. We observe maxima as satellite points of the Γ point, and secondary maxima as
satellites of the K points.
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6.5 Second neighbor models

6.5.1 Next Nearest Neighbors Heisenberg-Kitaev model
(2N-model)

We proceed now to study the 2N model, which consists of first and second Heisenberg and

Kitaev interactions. We show in Fig. 617 the exchange couplings in the honeycomb lattice

for this model. The Hamiltonian corresponding to the 2N model is given by Eq. 6.11.

(6.11) H = J1
∑
<i j>

Si ·S j +K1
∑
<i j>

∑
γ

Sγ

i Sγ

j + J2
∑

<<i j>>
Si ·S j +K2

∑
<<i j>>

∑
γ

Sγ

i Sγ

j

This model was previously studied in the context of the Li2IrO3 family via PFFRG

[127]. In their paper, Reuther et. al parametrize the different couplings via two angles,

P1 and P2, as J1 = cos(πP1/2), K1 = −sin(πP1/2), J2 = −gcos(πP2/2), K2 = gsin(πP2/2),

and map the phase diagram of 6.11 for P1 ∈ (0,1) and P2 ∈ (0,1).

Figure 617: (a) Color coded honeycomb lattice

showing the Kitaev exchanges Sx
i Sx

j (blue), S y
i S y

j

(red), and Sz
i Sz

j (green) for nearest (full lines)

and second (dotted lines) neighbor interactions.

They find two incommensurate spiral

phases for P2 & 0.5, the spirals SP1 and

SP2, while for values below 0.5 they find

a ferro and antiferromagnet. Studying the

maximum of the susceptibility they find

that the state SP1 corresponds to maxima

outside of the first Brillouin zone, while

the SP2 has maxima inside the first zone.

We will employ Monte Carlo simulations

to study the classical equivalent of this

model, and we will restrict ourselves to the

value g = 0.8, as according to the evidence

in Ref.[127] the phase diagram does not change drastically for different values of g.

6.5.1.1 Phase diagram

The phase diagram for model 2N is shown in Fig. 618. Please note that since the aim

of this study is to identify the nature of the spiral phases, we have not gone to great

lengths mapping the boundary in between the phases in this model. While it is expected

that the boundaries between the quantum and classical phase diagram will shift, we

have previously seen cases in this thesis where the quantum to classical limit affects the
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position of the boundaries but not the nature of the phases when LRO is expected. For

this reason, we leave the study of the precise boundaries for future work, as we don’t

anticipate fundamental differences between those of the quantum and classical phase

diagram. In the phase diagram shown in Fig. 618 the phase boundaries will be located

somewhere over the white spaces.

Figure 618: Phase diagram for the 2N-model.

Pink dots represent antiferromagnetic order,

black dots correspond to ferromagnetic order,

red diamonds to a spiral phase SP1, and green

squares to another spiral phase SP2.

The phase diagram presents two

commensurate and two incommensurate

phases. Pink dots represent antiferromag-

netic order, black ones indicate the onset of

ferromagnetic order. We indicate by red di-

amonds the incommensurate spiral phase

SP1, and by green squares the phase SP2.

We will study these phases in detail in the

next section.

The ferro and antiferromagnetic phases

exhibit clear features in the correlation

function which confirms their nature. How-

ever, when we study the real space pattern

of the spins we find that these phases come

together with domain walls as well as with

vortex-like defects. As our numerical cal-

culations have been performed at low tem-

perature, and the iterative minimization

algorithm probes ground state properties,

we are lead to believe that this vortices are

ground state properties of the Hamiltonian. In Fig. 619 left we show a magnification

of the real space spin pattern of the ferromagnetic state for P1 = 1 and P2 = 0.6. We

show the zone in which a vortex like structure is present viewed directly from above the

lattice plane. While in Fig. 619 right we show the associated Fourier transform of the

correlation function for this state, calculated with the same spin pattern that is shown

in the left side. The maxima resides at the Γ point, as it is expected for a ferromagnet.

Furthermore, secondary maxima are present in the corners of the extended Brillouin

zone.
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Figure 619: Left: real space spin pattern for the ferromagnetic state at P1 = 1 and P2 = 0.6
showing a vortex-like defect in the center. The filled circle indicates the center of the defect. Right:
Fourier transform of the correlation function for the same ferromagnetic state.

6.5.1.2 Spiral properties

The two incommensurate spin spiral phases we find correspond to the red diamonds

in Fig. 618 (SP1), and to the green squares (SP2). Upon examination of the correlation

function (Fig. 620) we see that the SP1 phase present maxima outside of the first Brillouin

zone, while the maxima corresponding to the SP2 phase are contained within the first

Brillouin zone.

Figure 620: Fourier transform of the correlation function for the 2N-model shown in Eq. 6.11
with parameters P1 = 0.6 and P2 = 0.8 (SP1 phase, left) and P1 = 1 and P2 = 0.7 (SP2 phase,
right).

The structure factor for the SP2 phase resembles that of α−Li2IrO3, with satellites
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around the Γ point and very faint secondary maxima around the K points. However,

unlike the expected signal for the Iridate material, an degeneracy is present, in which

the maxima appear in the three symmetry related positions, which would indicate that

the spin spirals propagate in the three directions allowed by the Kitaev symmetry. On

the other hand, the spiral phase SP1 presents only maxima as satellite peaks around

the K points.

Figure 621: Spiral structure obtained for the

model shown in Eq. 6.11 within the phase SP1,

i.e. parameters P1 = 0.6 and P2 = 0.8. (top) and

within phase SP2, P1 = 1 and P2 = 0.t. (bottom).

Upon a closer inspection of the real

space spin pattern we see that for both

the SP1 and SP2 phases, the actual spi-

ral present in this model does not coin-

cide with that of α−Li2IrO3. In the experi-

mental case one observes co-planar spirals,

where the plane of rotation can be defined

by (S1×S2)·S3, where Sx (with x = {1,2,3})

are consecutive spins on a single spiral

(this type of spiral was observed in both

nearest neighbor models). However, the

2N-model exhibits a non-coplanar heli-

magnet, where a plane of rotation cannot

be defined. This is not strange, as there

are different types of spin spirals, all be-

longing to the family of helimagnets [128],

and indeed some of these are non-coplanar.

For example, a non-coplanar case are conic

spin spirals which rotate not in plane, but

in a cone, and are relevant to the study of

multiferroic behavior [129, 130].

While both spirals are non-coplanar,

we can further distinguish them by study-

ing their nearest neighbor correlations. Calculating the correlation function up to nearest

neighbors, and Fourier transforming it, we obtain Fig. 622. From here we see that the

main distinguishing feature between both non-coplanar spirals resides in the nature

of the nearest neighbor correlations. While the maxima are broadened, we see that for

phase SP1 we find maxima in the corners of the extended Brillouin, which indicates

antiferromagnetic nearest neighbor correlations. On the other hand, SP2 has a maximum
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in the Γ point, which coincides with ferromagnetic correlations.

Figure 622: Fourier transform of the nearest neighbor correlation function for the 2N-model
shown in Eq. 6.11 with parameters P1 = 0.6 and P2 = 0.8 (SP1 phase, left) and P1 = 1 and P2 = 0.7
(SP2 phase, right).

6.5.2 2NIc model

Since α−Li2IrO3 presents bond dependent interactions, a question that arises after

studying the 2N model is what the effect of other symmetry allowed interactions are in

this model. It is not absurd to think that an Ic-like term could break the degeneracy and

perhaps induce a coplanar spiral. For this purpose we will now study a modification of

the 2N model, where we introduce an Ic term of the same form as used in the Ic- and

IcId-models. The Hamiltonian results.

(6.12)

H = J1
∑
<i j>

Si ·S j +K1
∑
<i j>

∑
γ

Sγ

i Sγ

j + J2
∑

<<i j>>
Si ·S j +K2

∑
<<i j>>

∑
γ

Sγ

i Sγ

j + Ic
∑
<i j>

Sr i j
i Sr i j

j

As before we parametrize the different couplings via two angles, P1 and P2, as J1 =
cos(πP1/2), K1 =−sin(πP1/2), J2 =−gcos(πP2/2), K2 = gsin(πP2/2), and set g = 0.8. The

coupling Ic will take values in the range {−1,−0.9, ...,0}. We run Monte Carlo simulations

for the pairs {P1 = 0.5,P2 = 0.5}, {P1 = 0.5,P2 = 1}, {P1 = 1,P2 = 0.5}, {P1 = 1,P2 = 1}, and

{P1 = 0.9,P2 = 0.9} as a way to probe the effect of the Ic term at different points in the

phase diagram.

6.5.2.1 p1 = 0.5, p2 = 0.5
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Figure 623: Stripy phase in the 2NIc-model, for

Ic = 1.

For the limit Ic = 0 an antiferromagnetic

state is realized, as shown in Fig. 618.

This state is degenerate, with spins able to

point in different symmetry allowed direc-

tions. For Ic >−0.5 the state remains an

antiferromagnet, but now the degeneracy

disappears and the ground state selects

the state with spins pointing in plane and

perpendicular to the zz-bonds, as shown

in Fig. 623. For Ic <−0.5 the state changes

slightly, maintaining its antiferromagnetic nature, but with the staggered magnetization

in a direction perpendicular to the lattice plane.

This selection of states from a degenerate set is not surprising since the effect of the

Ic term is that of destroying the discrete symmetry arising from the Kitaev interactions

(please remember that this symmetry is such that, without the Ic term, the Hamiltonian

remains invariant on a 60o rotation on spin and real space).

6.5.2.2 p1 = 1, p2 = 0.5

Figure 624: Stripy phase in the 2NIc-model,

for Ic = 1. The spins are colored according to the

conventions in Fig. 623.

For these set of parameters, a ferromag-

netic state is realized, where vortex-like

defects appear. When the value of Ic is non

zero, the vortex defects disappear, and we

find a ferromagnetic state with a net mag-

netization in the direction of the zz-bonds.

This configuration is reached for the small-

est values of Ic studied and remains un-

changed through the whole range. Here,

two possible orientations of the net mag-

netization are possible, and they appear through the simulation separated by extended

domain walls expanding through the system.

6.5.2.3 p1 = 0.5, p2 = 1

In the case of the 2N model, i.e, the case for Ic = 0 realized a helimagnetic state, which

was studied in detail in the previous section. The inclusion of a finite Ic >−0.2 breaks

the degeneracy of the spin spiral states, and spirals only propagate in the direction
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perpendicular to the zz-bonds. The nature of the spin spiral also changes with respect to

the case Ic = 0, the spirals are still non-coplanar, but the nearest neighbor correlations

are not purely antiferromagnetic, as the Ic term introduces a ferromagnetic binding

in the zz- bonds. For Ic < −0.2 domains of stripy order appear, growing in size and

overpowering the phase diagram as Ic decreases. For Ic =−0.3 the stripy phase already

dominates the phase diagram, with domain walls separating different orientations of the

spins. In this stripy phase, the spins are in plane, aligned in the direction of the zz-bonds.

We show in Fig. 624 the resulting stripy phase for the case Ic = 1.

6.5.2.4 p1 = 1, p2 = 1, and p1 = 0.9, p2 = 0.9

For the limit Ic = 0 we observed a spin spiral state which we analyzed in the previous

section. When Ic > 0 the non-coplanar nature of the spin spiral disappears, the anisotropy

along the zz-bonds introduced by the ferromagnetic Ic term enforces a ferromagnetic

in plane alignment of the spins in this bond, which transforms the spin spiral into an

antiferromagnetic state. As Ic decreases the state remain unchanged.

6.6 Third neighbor model

Until now we have been studying models that were devised with symmetric considera-

tions in mind. The atomic structure of α−Li2IrO3 induces bond dependent interactions,

of which Kitaev exchange is the dominant one. Furthermore the symmetry of the mate-

rial allows for longer range interactions and other bond dependent exchanges beyond

Kitaev exchange. In the following we will study a model which was obtained via DFT

calculations performed by Winter, et al [1]. In their work, they propose a model with

Heisenberg, Kitaev, and other bond dependent interactions, some of them ranging up to

third neighbors. The effective Hamiltonian obtained results in

H =J1
∑

<i j>1

Si ·S j +K1
∑

<i j>1

Sγ

i Sγ

j +Γ1
∑

<i j>1

(Sα
i Sβ

j +Sβ

i Sα
j )

+K2
∑

<i j>2

Sγ

i Sγ

j +Γ2
∑

<i j>2

(Sα
i Sβ

j +Sβ

i Sα
j )+ J3

∑
<i j>3

Si ·S j(6.13)

Where Xn, with X = J, K , or Γ, represent the exchange coupling for an interaction

between nth-neighbors,
∑

<i j>n represents a sum over nth-neighbors, and {α,β,γ} =
{x, y, z} indicate the spin component.
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Ref. [1] report strong bond anisotropies in the model, an observation which coincides

with previous proposals for this material [122]. To gain an intuitive understanding of

such a complex Hamiltonian we will proceed to study the isotropic case, in which the

exchange couplings for each interaction are the same for each bond. Afterwards we will

introduce bond anisotropies based on Ref. [1].

6.6.1 Isotropic W-model

6.6.1.1 Phase diagram

We will start by mapping part of the phase diagram of the isotropic case for the model

shown in Eq. 6.13. In their work they show that this model has the peculiarity of the

Kitaev and Γ exchanges to be equal in magnitude and opposite in sign, i.e K i = −Γi.

The isotropic case was already studied by Winter and collaborators employing the LT

method. For this reason we can constrain ourselves to the parts of the phase diagram

which indicate in the soft spin approximation to contain incommensurate phases. We

will employ a dominant Kitaev coupling K =−1 supported by (here and in the following,

all exchange couplings are given in units of |K1|) K2 =−0.275, Γ1 = 1, Γ2 = 0.275, J1 ∈
(−0.1, ...,0.4), and J3 ∈ (0, ...,0.4).

Figure 625: Phase diagram for the isotropic

case of the Hamiltonian shown in Eq. 6.13. Black

dots correspond to ferromagnetic order, light blue

squares to stripy order. The incommensurate

states are represented by green squares, and

the Neel state by red diamonds.

The phase diagram is shown in

Fig. 625. We observe three commensurate

phases, and an incommensurate one. In

the limit J3 = 0 we observe a transition

from a ferromagnetic to a stripy phase at

J1 ∼ 0.15. Since our model contains two

dominant interactions, K1 and Γ1, it is

not surprising to observe that many of

the states that appear in the phase dia-

gram are on the lattice plane. For example,

the ferromagnetic state is one in which

spins are ordered in the lattice plane. The

presence of off diagonal bond dependent

terms in the Hamiltonian can induce the

appearance of vortex-like defects when the

ground state (as we have seen in the pre-

vious sections) is collinear. In this case the
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ferromagnetic state presents vortex-like

defects which increase in number as we

increase the interaction strength. For example, we show in Fig. 626 two spin patterns

obtained at J3 = 0.1, J1 = 0.1 and J1 = 0.15. We notice that as J1 is increased the number

of defects increases.

Figure 626: Ferromagnetic spin patterns for the ferromagnetic state of the isotropic W-model
obtained at J3 = 0.1, J1 = 0.1 (left) and J1 = 0.15 (right).

At a critical value of J1 (which depends on the value of J3 & 0.05) the defects dominate

the ground state and the system enters into a spiral phase (green squares in Fig. 625. If J1

is further increased the system can enter a stripy phase (J3 . 0.1), an antiferromagnetic

phase (J3 & 0.25), or remains in the spiral phase. Both antiferromagnetic and stripy

phases have spins oriented perpendicular to the lattice plane. This means that the stripy

phase is a st-Z phase. Both phases are two fold degenerated, and this is seen in the spin

pattern as domains separating these degenerate states. We have confirmed the existence

of these phases via a LT minimization, which also confirms the results of Ref. [1].
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6.6.1.2 Spiral properties

Figure 627: Correlation function for the spiral

phase found in the isotropic W-model. We ob-

serve a degenerate set of maxima inside the first

Brillouin zone

The incommensurate order present in this

model exhibits the signatures of a co-

planar counterrotating spin spiral. The

fundamental difference between these spi-

rals and the ones appearing in α-Li2IrO3

is that in this case, the spirals are degener-

ate. Since the model is bond isotropic, the

spin spirals can propagate in three sym-

metry allowed directions, i.e. The propa-

gation direction can be perpendicular to

the x-, y- or z bonds. This means that our

state will contain domain walls separat-

ing spin spirals propagating in one of the

three allowed directions. This can be seen

in Fig. 627 where we show the Fourier

transform of the correlation function. Here

we see that indeed, we obtain maxima inside the first Brillouin zone, and that these are

three fold degenerated. The study of the wavevector and nature of the spirals confirm

that these spirals are the same ones we obtain with the IcId-model, except for the fact

that there is a degeneracy in the state.

The material we are interested does not seem to show any type of degeneracy of the

ground state in the powder MRXD measurements, which point to the fact that, since

Winter et. al. [1] have found strong bond anisotropies in their work, these anisotropies

need to be included in the model to break the degeneracy. In the following we will include

these anisotropies and study what their effect is on the phase diagram and the spiral

properties of the system.

6.6.2 Anisotropic W-model

To study the anisotropic W-model we first need to determine what there anisotropies

are. In their work, Winter et. al. [1] determined (via a combination of DFT and exact

diagonalization on a small cluster of hexagons) that the model presents large anisotropies

in various parameters. The values of the exchange parameters are shown in table 63.

Studying this table it becomes clear that an analysis considering that the model is
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Bond Jn Kn Γn
X1, Y1 −1.0 −13.0 +6.6
Z1 −4.6 −4.2 +11.6
X2, Y2 +0.9 −2.9 +3.0
Z2 −0.9 +0.1 +1.5
X3, Y3 +4.7 −0.2 0
Z3 +4.4 +0.4 −0.1

Table 63: Values of the anisotropic interactions as obtained in Ref. [1]. All interactions are
given in meV. For the study of the anisotropic model we have selected those interactions
which are greater than one (bold).

bond isotropic is an excessive simplification, if we aim at modeling the material, there

anisotropies need to be taken into account. We will introduce them in our model (where

we will also only consider those who are greater than one) in the following way: we will

first express every coupling in terms of |K1|. Next, for a given coupling α (which now is

expressed in units of |K1|) we have an anisotropy which differentiates the X and Y bond

(αXY ) from the Z bond (αZ).

δW

J1 0.14

K1 0.34

Γ1 0.195

K2 0

Γ2 -0.06

J3 0

Table 64: Values of the

anisotropy constants for the W-

model, extracted from Ref. [1]

following the process described

in the text. All values are

given in terms of |K1|.

We will define αm as the bond average of the ex-

change coupling α, and δ as the anisotropy constant

(with an appropriate sign) such that (for a direct com-

parison please look at Eqs. 6.5)

(6.14) αXY =αm −δ αZ =αm +δ

This way, calculating the bond average from Table 63 we

can determine what the anisotropy for each exchange

is. The values obtained for the anisotropy constants are

given in Table. 64

If we were to study the bond isotropic model in Ta-

ble. 63, we would obtain a a zig-zag type of order. In the

phase diagram shown in the previous section, no zig-zag

order is present, as we have concentrated in mapping a

part of the phase diagram which exhibits incommensu-

rate spirals. If we were to map the full phase diagram

we would see (and we have confirmed this via numerical simulations) that for J3 & 0.4 a

zig zag phase is present. In the bond anisotropic case, where the interaction couplings

reduce to those shown in Table. 63, we again obtain a zig zag state. By changing the
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6.6. THIRD NEIGHBOR MODEL

bond averages but maintaining the anisotropic parameters δ constant, we can map a

phase diagram including anisotropies. Please note that changing the bond averages is

not a radical idea, since the values obtained by Winter, et. al. [1], have been obtained via

diagonalizations on small clusters. Furthermore, the uncertainty in the crystal struc-

ture which has been resolved until this point indicates that while the nature of the

interactions might not change, their couplings could.

6.6.2.1 Phase diagram

Figure 628: Phase diagram for the anisotropic

case of the Hamiltonian shown in Eq. 6.13. Black

dots correspond to ferromagnetic order, light blue

squares to stripy order. The incommensurate

states are represented by green squares.

The phase diagram of the anisotropic W-

model is shown in Fig. 628. We map the

phase diagram for various values of J1

and J3, we do this by maintaining the

anisotropy values constant and varying

the bond average. The phase diagram

presents two dominant phases, a ferromag-

netic state (black dots) and an incommen-

surate state (green squares). At the bot-

tom right corner a small stripy phase is ob-

served (blue squares). A comparison with

the the phase diagram for the isotropic

model (Fig. 625) indicates that both the fer-

romagnetic phase and the spin spiral state

are displacing the rest of the phases. Fur-

thermore, the ferromagnetic phase also

eats away part of the spin spiral phase.

The ferromagnetic phase present in

this model contains an in plane net mag-

netization, in the direction perpendicular

to the nearest neighbors zz-bonds (Fig. 617). Domain walls separate the two domains

containing the two possible orientations of the polarization. Furthermore these domain

walls are given by spins aligned antiferromagnetically. As J1 and J3 are increased the

domains multiply, until the system enters the spiral phase.

To understand how this transition happens we can look at Fig. 629. In this figure

we sketch the projected spin pattern on the lattice [111] plane for a cut though a fixed

value of J3, where the system suffers a phase transition from a ferromagnetic state to
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(a) (b) (c)

Figure 629: Sketch depicting the commensurate/incommensurate transition in the anisotropic
W-model projected on the [111] plane for J3 = 0.2. (a) Ferromagnetic state at J1 =−0.1. (b) When
J1 is increased (here we show J1 = 0) ferromagnetic domains are separated by antiferromagnetic
domain walls (green dots depict spins pointing outside the page, and purple are spins pointing
inside the page). (c) at a critical value of J1 ∼ 0.15 the system enters the spiral phase which can
be depicted in the [111] plane as alternating ferromagnetic/antiferromagnetic domains.

a spiral state. To simplify the argument we have assumed for this discussion that the

angles between the resulting spirals is 45o and there is no tilt angle in the rotation

plane. But careful study of the numerical results shows that this picture is still valid

for arbitrary wavevector and rotation plane tilt. 1 Then, for this particular example,

we see that at small values of J1 the state presents no domain walls (Fig. 629(a)). As

J1 is increased domain walls start to span the length of the system, separating big

domains of ferromagnetic order (Fig. 629(b)). For even bigger J1 the system now contains

ferromagnetic and antiferromagnetic domains spanning two sites in the vertical direction,

each. This is seen in Fig. 629(c), which corresponds to spin spirals of a wavevector such

that the angle between spins is 45o.

6.6.2.2 Spiral properties

As can be seen from Fig. 628, a big part of the phase diagram is dominated by an

incommensurate state. These spirals are of the same nature of those found for the

IcId model. In essence, the state is such that planar spirals propagate in the direction

perpendicular to the zz-bond. Furthermore, the spirals counterotate, with those formed

by spins on sublattice a and c rotating with opposite chirality to those formed by the

spins of sublattices b and d (see Fig. 630). A real space pattern of the spirals can be

observed in Fig. 630, where we show a spiral which coincides with the experimental

1The reason for choosing this particular example is that of convenience, given that at this angle and
plane tilt, the spin spiral can be seen as alternating ferromagnetic/antiferromagnetic domains of size two.
For another wavevector there would also be ferromagnetic and antiferromagnetic domains but the size of
these regions would not be the same.
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a
b

c
d

zz
yy xx

Figure 630: Spin pattern for the spiral phase found in the bond anisotropic W-model. We observe
incommensurate couterotating spirals propagating in the direction perpendicular to the zz-bonds.
The wavevector and plane of rotation of this phase coincide with those found in the MXRD
experiments.

results for α-Li2IrO3, exhibiting a wavevector (q,0) where q = 0.32 in units of 2π, and a

tilt of the rotation plane of ∼ 800.

Figure 631: Heat map of the wavevector (top)

and rotation plane’s tilt (bottom) for the spiral

phase in the anisotropic W-model. The dotted

line represents the calculated wavevector, q =
0.32(1) in units of 2π.

Comparing this spiral with that found

for the bond isotropic model, it is not sur-

prising to notice that the effect of the

anisotropies was that of destroying the de-

generacy of the spiral phase. Recall that

in the bond isotropic model our spirals

were planar spirals, but also degenerate,

where the degeneracy came from the fact

that the Hamiltonian retained the dis-

crete Kitaev symmetry, and as such the

spirals were free to propagate in three

possible direction. In the anisotropic case

this degeneracy is destroyed, a fact which

can already be observed in the ferromag-

netic phase, where the spins are ordered

in only one particular direction. Through-

out the phase diagram, we notice that

the wavevector and tilt angle change. In
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Fig. 631 we show a heat map of the variation of the wavevector (Fig. 631 top) of the tilt

angle (Fig. 631 bottom) as the exchanges J1 and J3 are modified.

Figure 632: Fourier transform of the correlation

function for the spiral phase (J1 = 0.3, J3 = 0.3).

This state reproduces the experimental features:

wavevector (q,0) with q = 0.32, and tilt of the

plane of rotation of 80o.

The dotted line indicates the region of

the wavevector map where the wavevec-

tor coincides with the experimental value

q = 0.32(1). Superimposing this dotted line

on the tilt angle heat map we show there is

a broad region of the phase diagram where

the experimental results are reproduced.

Please note that this heat maps and the

dotted lines are a guide to the eye, where

an interpolation has been performed be-

tween the points obtained from our simula-

tions. Non the less our simulations clearly

show an extended region where the exper-

imental values are recovered.

In Fig. 632 we show the Fourier trans-

form of the spin pattern shown in Fig. 630.

From this we observe that the maxima are

located inside the Brillouin zone as satellite peaks of the Γ point, and secondary maxima

appear as satellite points of the K points. From this Fourier transform we can further

extract a wavevector (q,0), q = 0.31 in units of 2π, which coincides with the analysis

performed on the real space spin pattern. Furthermore, these results are consistent with

the experimental results shown in Section 6.2.

6.7 Magnetization process

Up to this point, we have performed an analysis, based on Monte Carlo simulations, of

the possible minimal models for α-Li2IrO3. All these models where proposed either on the

basis of symmetry allowed interactions, or on DFT studied. Having compared the results

for all the models we have determined that only two of those reproduce the experimental

features of the material. While all models present incommensurate spin spiral phases,

only the IcId- and anisotropic W-models reproduce not only the counterotating nature

and wavevector of the spirals present in α-Li2IrO3, but also the tilt of the rotation plane.

Now, if any of these two models is indeed the minimal model of α-Li2IrO3, we want
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to predict what the behavior of these models would be in a way which can be verifiable

experimentally. For this we have chosen to study the magnetization processes of the

different models by applying an external magnetic field in different directions. Given

the strong bond anisotropy of both models, the behavior in the presence of external

magnetic fields will be different depending on the direction of the field. As we will

see, the magnetization processes of the IcId- and anisotropic W-models are radically

different, which indicates an experimentally feasible way of reducing the number of

possible minimal models further. It can be that the magnetization processes of α-Li2IrO3

coincide with one of these two models, which would be evidence of the validity of one

of them, or that it is different from both of them, which would mean a different model

needs to be put forwards.

6.7.1 IcId-model

We will study the magnetization processes of the IcId-model (Eq. 6.3) for magnetic fields

in three different directions: H ∥ [111], H ∥ [1̄10], and H ∥ [112̄]. Of these three directions,

[111] corresponds to the direction perpendicular to the lattice plane, while [1̄10] is the

direction parallel to the zz- bonds and [112̄] the direction perpendicular to those bonds.
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Figure 633: Magnetization in the direction of

the field as a function of field intensity for three

different field directions.

We will concentrate on the point of

the phase diagram that reproduces the

experimental results: Ic = −0.5 and Id =
−0.35, in units of the Kitaev coupling, |K |.
Fig. 633 shows the magnetization curves

for the different directions of the field. We

observe that for field directions in the lat-

tice plane (H ∥ [1̄10], H ∥ [112̄]) the criti-

cal field is much lower than for the out of

plane direction (H ∥ [111]). This indicates

the existence of an easy plane anisotropy.

The origin of this easy plane can be seen

from the position of the experimentally rel-

evant point in the phase diagram. This

point is close to the phase boundary be-

tween the spiral and the ferromagnetic phase.
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Figure 634: Magnetization in the global [112̄]

direction (green) and ferromagnetic order param-

eter (blue) as a function field intensity. Inset:

susceptibility of FMOP as a function of field.

We have seen before that the ferromag-

netic phase is such that the spins point in

plane, in a direction that depends on the

values of Ic and Id. Since our spiral phase

is so close to the boundary with a ferro-

magnetic phase, a small reinforcement of

one of the bond dependent terms will drive

the system towards a ferromagnetic state.

Applying a magnetic field in the direction

of one of the bonds then is equivalent to

reinforcing one of the Ising terms, and as

such the magnetization in these directions

is easy. Furthermore, we also compare the

magnetization in the direction of the field

(M.H) with the ferromagnetic order pa-

rameter (FMOP ) and analyze the suscepti-

bility, χ/H, of the ferromagnetic order parameter (FMOP ) to determine the critical field

at which ferromagnetic order is realized. (FMOP ) will probe the system for the presence

of a ferromagnetic state, while M.H will probe whether the polarization vector is in the

direction of the field or not.
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Figure 635: M.H in the global [1̄10] direction

(green) and FMOP (blue) as a function field inten-

sity. Insets: susceptibility of FMOP as a function

of field.

For both in plane direction, [112̄] and

[1̄10] (Figs. 634 and 635), we observe the

same behavior in both the FMOP and

M.H. The magnetization monotonically

increases until saturation is reached at

rather small critical fields (in compari-

son with the relevant couplings of the

model). The susceptibility curves show a

peak that indicates a phase transition to-

wards the fully polarized state. The tran-

sition towards saturations for all field di-

rections resembles the well know param-

agnetic/ferromagnetic transition of many

magnets, in which small domains showing

ferromagnetic correlations form at small
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fields, and whose size grows with increas-

ing intensity of the external field until they dominate the system.
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Figure 636: M.H in the global [111] direction

(blue) and FMOP (green) as a function field inten-

sity. Inset: susceptibility of FMOP as a function

of field.

In the case of the field in the [111]

direction the behavior between M.H and

FMOP is rather different. Both curves in-

crease monotonically up to H = 0.5 (un-

less stated otherwise, the magnetic fields

are given in units of |K |), at this point

they separate into two different behav-

iors. While M.H keeps slowly growing un-

til saturation at approximately H = 0.8,

the ferromagnetic order parameter sud-

denly reaches saturation at H = 0.6. This

indicates a stable intermediate state in

which the ferromagnetic state is realized

in a direction not parallel to the applied

field. The resulting ferromagnetic state is

a state where the spins are out of plane,

their z-component aligned parallel to the external field, while their x- y-component are

aligned along the zz-bonds.

We determine the critical fields consistent with the susceptibility simulations. We

obtain a critical field Hcrit = 0.05 (in units of the Kitaev exchange coupling) for a field

direction [1̄10], Hcrit = 0.1 for the magnetic field in the [112̄] direction, and Hcrit = 0.8

for the field in the [111] direction.

6.7.2 Anisotropic W-model

Now, we will study the magnetization processes for the anisotropic W-model with the

same field directions as for the IcId model, this is H ∥ [111], H ∥ [1̄10], and H ∥ [112̄].

As we shall see, the magnetization processes change drastically from those in the IcId

model, given the strong off-diagonal and further neighbor interactions present in the

model.

In Fig. 637 we show the magnetization in the direction of the field for the three field

directions studied. We observe that the polarized state is reached at H ∼ 0.25 in the

[1̄10] direction, while for the magnetic field in the [112̄] direction the critical field is

H ∼ 1.5 and H ∼ 4 for the field in the [111] direction. This behavior points towards the
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existence of an easy axis anisotropy in the [1̄10] direction (please remember that the

[1̄10] direction is the direction parallel to the zz-bonds). Note that we have dedicated

a big part of the numerical effort to fields H . 1.5, which correspond to experimentally

realizable fields.
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Figure 637: Magnetization in the direction of

the field as a function of field intensity for three

different field directions, H ∥ [111], H ∥ [1̄10],

H ∥ [112̄]

We show in Fig. 638(top) the magne-

tization curve for an applied magnetic

field in the [1̄10] direction. We observe

that the magnetization monotonically in-

creases with an increasing slope at small

fields up to H ∼ 0.25 (unless stated oth-

erwise all fields are in units of |K1|),
at which point it suddenly reaches sat-

uration. This behavior, and the associ-

ated presence of an easy axis anisotropy

can be understood following the argu-

ment developed in section 6.6.2.1 for

the ferromagnetic/spiral phase transition.

In this case we stated that, in the spiral

phase, the spin pattern projected over the

[111] plane, is that of alternating ferro-

magnetic and antiferromagnetic domains,

where the ferromagnetic domains are oriented in the direction parallel to the zz-bonds,

this is, in the [1̄10] or [112̄] directions. If we introduce a small magnetic field in one of

these two direction, the effect of it is of decreasing the wavevector of the magnetic spiral,

which is evidenced in the projection on the [111] plane as the increase on the size of the

ferromagnetic domains, until they overpowerd the system. In Fig. 638(bottom) we show

the change in the spiral wavevector, calculated from the resulting spin pattern obtained

from Monte Carlo, as a function of field. It can be seen that at small fields, H < 0.15 the

change in the wavevector is not pronounced, ranging from q = 0.31 to q = 0.25 (in units

of 2π). On the other hand, for H < 0.15, the wavevector decreases rapidly, reaching q = 0

at H ∼ 0.3, a vanishing wavevector would then be interpreted as a ferromagnetic state. It

is also at H ∼ 0.3 that we observe the maxima in the susceptibility of the ferromagnetic

parameter (inset of Fig. 638(top)). The maxima of the susceptibility, together with the

decreasing wavevector and the saturation point of both OPM.H and OPFM , show that

the critical field for this field direction is Hcrit ∼ 0.3.
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Figure 638: Top, main figure: Magnetization in

the global [1̄10] (green curve) and ferromagnetic

order parameter (blue curve). Top, inset: suscep-

tibility of the ferromagnetic order parameter as

a function of field. Bottom: change in the asso-

ciated spiral wavevector (q) as a function field

intensity

For the other in plane direction, H ∥
[112̄] (the direction perpendicular to the

zz-bonds) the behavior at small fields is

radically different. In Fig. 639(top) we

show that the magnetization grows mono-

tonically with a constant slope, reaching

saturation at H ∼ 1.5. At H = 0 the state is

a planar counterrotating spiral as shown

in the previous section, but for H > 0 a

continuous transition between a countero-

tating planar spiral and a counterotating

conical spiral is realized.

As the name indicates, a conic spiral

is a helimagnetic state in which the spiral

does not rotate in a plane but in a cone

around a certain common direction, which

in this case is the propagation direction of

the spiral. Since the magnetic field is ap-

plied in the direction parallel to the prop-

agation direction, at moderate fields the

spins cant in that direction, which trans-

form the plane of rotation into a cone. We

show in Fig. 639(bottom) a scheme of this

process. We indicate the direction of propa-

gation (which coincides with the direction

of the applied field, [112̄]) as well as the

direction perpendicular to it ([1̄10]). At low

fields the canting in the spins induces the

transition from a rotation plane to a rotation cone. As the field increases the cone gets

narrower, until at high fields the spins point in the direction of the field, thus reaching

saturation.

Since the model contains strong in plane interactions, saturation is only achieved at

strong magnetic fields for out of plane directions. In the case of a magnetic field in the

[111] direction (direction perpendicular to the lattice plane) the saturation is reached at

H ∼ 4 (in units of the Kitaev coupling) as can be observed in Fig. 640(left). In this case,
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as well as in the IcId-model, both order parameters saturate at different field intensities.

Both the ferromagnetic order parameter and the magnetization in the direction of the

field have to saturate at high enough fields, but while the ferromagnetic order parameter

saturates at H ∼ 0.4, the magnetization in the direction of the field does not completely

saturate up to the biggest calculated fields.
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Figure 639: Top: Magnetization in the global

[112̄] direction (green curve) and ferromagnetic

order parameter (blue curve) as a function field

intensity. Inset: susceptibility of the ferromag-

netic order parameter as a function of field. Bot-

tom: scheme showing the change from a rotation

plane towards a rotation cone (see text).

A magnetic field in the [111] direction

tilts the spins in this direction, producing

a net magnetization, up to the biggest cal-

culated field, which is deviated from the

magnetic field direction. The magnetiza-

tion process can be understood recalling

Fig. 629. Here we mentioned that the spin

spiral state can be considered as arrange-

ments of ferromagnetic/antiferromagnetic

domains of spin in the [111] plane. When

a magnetic field is applied in perpendic-

ular to the direction of the ferromagnetic

domain’s polarization (as is the case here,

since the [111] plane is the lattice plane),

the spins of the ferromagnetic domains

will be tilted in the direction of the field.

The same will happen to the spins in the

antiferromagnetic domains which are not

already pointing parallel to the field, but

the tilt angle will not be the same as

the one in the ferromagnetic domains. In

Fig. 640(right) we show the spin pattern

at H = 0.35, where the tilt in the direction

of the field can be observed.

6.8 Discussion

We have studied a variety of extended Kitaev Hamiltonians as minimal models of α-

Li2IrO3. The experimental studies of this material indicate a strong bond anisotropy,

which led us to study models which contain strong anisotropic bond dependent interac-
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Figure 640: Left: Magnetization in the global [111] direction (green curve) and ferromagnetic
order parameter (blue curve) as a function field intensity. Right: real space spin pattern at
H = 0.325

tions beyond Kitaev interactions. Furthermore we have considered interactions ranging

from nearest to third neighbor models. While all models share similarities with each

other, we have shown that the range of the interactions can produce radical differences

in the behavior of the system.

Our nearest neighbor models (Ic- and IcId-models) exhibit a phase diagram where a

big part of it presents an incommensurate counterrotating coplanar spiral state. For the

Ic model we encounter a spiral state whose wavevector coincides with that of α-Li2IrO3

on a section of the phase diagram. However, whether in the Iridate material the plane of

rotation is tilted away from the lattice plane by ∼ 80o, in this model the plane of rotation

is parallel to the XY Cartesian plane (54o tilt with respect to the lattice plane). This can

be understood realizing that a Hamiltonian only containing the Ic term is equivalent

to and XY model, where in this case the model posses a U(1) symmetry around the

Cartesian z-axis. This mean that in a Hamiltonian only containing the Ic term the spins

are constraint to take values on a circumference, and this circumference is parallel to the

XY plane. When the Kitaev and Heisenberg terms are included, the U(1) symmetry is

broken, but there is a residue of this symmetry, which is exhibited in the rotation plane

of the spin spiral state. The introduction of a small term of the same nature as the Ic but

over the xx- and yy-bonds (IcId-model) will induce a tilt of the rotation plane, and we

have shown that the IcId model reproduces all the experimental features of α-Li2IrO3.

When a second neighbor Heisenberg-Kitaev model is considered (2N-model) also two

spiral states are present in the phase diagram, but these spirals are non-coplanar. We
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expected that the introduction of an Ic term, inducing a ferromagnetic alignment over

the zz-bonds would modify the spiral states into coplanar spirals. We do not see this in

any part of the phase diagram. Furthermore, one would expect that the introduction of an

Id term would modify the plane of rotation, but not the wavevector, as we have shown in

the nearest neighbor model that only an Ic term is enough to generate incommensurate

counterotating spirals, so a further modification of the 2NIc- model was not attempted.

We can conclude then, that the 2N- and 2NIc-models are not minimal models for α-

Li2IrO3.

While the introduction of second neighbor interactions do not reproduce the exper-

imental results, recent DFT calculations [1] have put forward a model, the W-model,

which indicate that further neighbor interactions are needed. We tested this model, in

both its bond isotropic and anisotropic forms. Given that the experiments performed

on α-Li2IrO3 indicate strong bond anisotropy, is no surprise that the model which re-

produced the experimental features of the material is the bond anisotropic W-model.

While the isotropic third neighbor model presents incommensurate spirals, they do not

propagate on only one direction, but can propagate in three symmetry allowed directions.

Unsurprisingly, the introduction of anisotropies destroy the degeneracy by selecting a

preferred propagation direction.

In the third neighbor models, the interactions are slightly different than in the models

previously studied. We modeled the bond dependent interactions in the nearest and

second neighbor models as Ic/d
∑

<i j> Sr i j
i Sr i j

j , with Sr i j
i = Si ·ri j, where r i j is the bond

between sites i and j. This in turn takes the form, for the zz-bonds (the expression for

the remaining bonds is analogous)

(6.15) Ic
∑
<i j>

Sr i j
i Sr i j

j = Ic(Sx
i Sx

j +S y
i S y

j +Sx
i S y

j +Sx
j S

y
i )= Ic(Sx

i Sx
j +S y

i S y
j )+ IcΓ

xy ,

which has the form of the Γ terms included in the W-model, supplemented by two

Heisenberg terms. This expression indeed shows that the connection between the nearest

neighbor and the anisotropic W-model could be achieved by adding further interactions

in the IcId model and finely tuning the bond anisotropy parameters in the W model.

Since both IcId- and anisotropic W-models reproduce the experimental features of

the specific heat, we proceed to calculate the Curie-Weiss temperature within a mean

field approach. For the IcId-model we find an anisotropic susceptibility χ= (χxx,χyy,χzz)

arising from the Ic and Id terms, where the associated Curie-Weiss temperatures are

given by
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(6.16) Θxx =Θyy = S(S+1)
3Kb

(−3J− Ic − Id −K) ,

(6.17) Θzz = S(S+1)
3Kb

(−3J−2Id −K) .

At the point of interest (Ic = −0.5 and Id = −0.35), where experimental results

are reproduced, we obtain positive Curie-Weiss temperatures: Θxx =Θyy = 16.35K and

Θzz = 14.38K in units of the Kitaev coupling.

In the case of the W-model we also find an anisotropic susceptibility, in this case

arising from the anisotropy of the nearest neighbor Heisenberg and Kitaev interactions

(6.18) Θxx =Θyy = S(S+1)
3Kb

(−3JXY
1 −K XY

1 −2K2 −3J3) ,

(6.19) Θzz = S(S+1)
3Kb

(−3JZ
1 −K Z

1 −2K2 −3J3) ,

Evaluated at the experimentally relevant point shown in Table. 62 we obtain Θxx =
Θyy = 20.15K and Θzz =−17.17K .

The experimentally measured Curie-Weiss temperature [107] was obtained from a

fit to the high temperature magnetic susceptibility for polycrystalline samples, Θexp =
−33(3)K . Since the experiments have been performed on a polycrystalline sample, the

Curie-Weiss temperature obtained is the average of the anisotropic Curie-Weiss temper-

atures. In the case of the IcId- and anisotropic W-models we obtain an averaged Curie-

Weiss temperature ΘIc Id
av = 15.7K and ΘW

av = 7.58K . As previously shown, a considerable

part of the phase diagram for the anisotropic W-model reproduces the experimental

results. This would indicate that a different selection of coupling strengths could mod-

ify the averaged Curie-Weiss temperature of the model as to obtain the experimental

value, while maintaining the overall behavior of the system to be the same as in the

neutron diffraction experiments. For example, for coupling strengths such that the bond

averages are J1 = 0.2 and J3 = 0.5 we obtain a averaged susceptibility ΘW
av = −7.41K .

In this case, the behavior of the model still reproduces the neutron diffraction results,

but now the sign of the calculated Curie-Weiss temperature coincides with that of the

experiments. While we could do a similar analysis for the IcId-model the region of the
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phase diagram that reproduces the results in much more reduced, and as such the

variation of the exchange parameters is not enough to change the sign of the Curie-Weiss

temperatures. Given that the experiments where performed at high temperature the

comparison between our ground state calculations and the experimental results are not

sufficient to determine if the anisotropic W-model is the minimal model of α-Li2IrO3.

Furthermore, extra thermodynamic studies on single crystals would prove useful at

determining the anisotropic susceptibilities and the respective signs of the associated

Curie-Weiss temperatures.

We also studied the magnetization processes for both IcId- and W-models. In both

cases we find a strong anisotropy in the magnetic response, with different behaviors

for different directions of the applied field. For the IcId-model we find a strong easy

plane anisotropy, arising from the off diagonal terms of the Hamiltonian. Since these

terms favor in plane orderings, the tendency to order ferromagnetically when an in-plane

magnetic field is applied is strong, which presents in our study as a lower critical field for

in-plane rather than out of plane directions of the external field. Furthermore, since the

experimentally representative point of this phase is close to an in-plane ferromagnetic

phase with polarization in the [1̄10] direction, small fluctuations favoring this type of

in-plane ferromagnetic state quickly drive the system towards this phase, which explains

the difference in the critical fields for the external field in the [1̄10] and [112̄] directions.

The tendency to in-plane ordering is also observed in the magnetization behavior when

a field in the [111] plane is applied, as there exist an intermediate state where the

magnetization has a net component in the direction of the field, but also a component

in the lattice plane direction. For increasing field strength the lattice plane component

decreases in magnitude until full saturation in the direction of the field is reached. For

intermediate fields the three directions show similar magnetic behavior, which resembles

that of a ferromagnetic/paramagnetic transition, where ferromagnetic domains with

polarization parallel to the direction of the external field are induced, and which grow

in size as the field is increased. Finally, we mention that, since the magnetic field are

expressed in terms of K , we can extract the value in Tesla since H = 1 in units of |K | is

equivalent to gµBH/|K | = 1. The gyromagnetic factor is believed to be anisotropic, given

the deformations of the octahedral cage of Oxygens, but the exact value is not known.

Recent calculations [131] show that the g factor can drastically change depending on the

octahedral deformation, with values ranging from ∼ 1.5 to ∼ 4 for the parallel component

of the gyromagnetic factor (the component in the lattice plane), and from ∼ 2.5 to ∼ 0.5

for the out of plane component. Given the strong variation of this parameter and the
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lack of experimental data, we employ an isotropic factor g = 2. Finally, if we assume the

interaction strength of the Kitaev interaction to be −4.5meV (as proposed in Ref. [14]),

we obtain the critical fields of ∼ 31T for the [111] field direction, ∼ 6T for [112̄], and

∼ 2.7T for [1̄10].

For the case of the anisotropic W-model the behaviors is quite different. While the

system also exhibits an anisotropic magnetic response, in this case it possesses a strong

easy axis anisotropy. Additionally, assuming that the overall energy scale of the couplings

determined by DFT is correct we find that the critical field for an external field in the

[111] direction results ∼ 200T, while it is ∼ 111T for the [112̄] direction, and ∼ 22T

for [1̄10]. While such high fields are hard to achieve in experiments (for continuous

field the world record is at approximately 45T), the low field regime already exhibits

a high anisotropy which can be probed experimentally. This anisotropy can be traced

back to the Hamiltonian of the model, where strong off diagonal terms are present. In

particular the nearest neighbor Γ exchange, which induces an in-plane configuration of

spins, is equal in magnitude to the nearest neighbor Kitaev exchange, which makes these

two interactions the dominant ones in the model. Equally, the anisotropy drastically

changes the magnetic behavior at intermediate fields. For fields in the [1̄10] direction,

the magnetization suddenly increases at |H| ∼ 0.25 (in units of the nearest neighbor

Kitaev coupling) indicating the possible discontinuity of the transition, while for fields

in the [112̄] and [111] directions the transition is continuous, exhibiting a continuous

transformation of the spin pattern (in the case of the [112̄] field direction, from a planar

spiral towards a conical spiral).

The similarities in the ground states found for both systems indicate that one of them

could prove to be the minimal model of α-Li2IrO3. The differences in specific heat as

well as different magnetization behaviors indicate that further experimental studies

are needed to decide which one, if any, is the model corresponding to this material.

While the Curie-Weiss temperature for the IcId-model does not reproduce the sign found

from the calorimetric experiments, the nature of the experiments (the powder average

and the high temperature measures) could obscure further details which could help

clarify the discrepancy. Furthermore, studies on single crystals would prove valuable

as in these cases the different crystallographic directions could be probed to assert the

existence of anisotropic susceptibilities. In the case of the anisotropic W-model, we find

that for a careful choice of parameters we can reproduce the sign of the Curie-Weiss

temperature. While Ref. [1] proposes a set of values for all couplings (which were chosen

as the starting point for our study), in both isotropic and anisotropic cases these values
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do not correspond to spiral phases. By changing the couplings of the nearest and third

neighbor Heisenberg exchanges we find a range of values where the experimental results

are obtained. This indicates that further studies regarding the quantum chemistry as

well as the crystal structure of the material are necessary to further determine the

strength of the couplings.

To further distinguish the models, magnetization measurements can be fruitful. While

the critical field for W-model are far beyond current capabilities, interesting studies

can be performed at low field. In particular, for the IcId-model the calculated critical

fields are within the possibility of experimental realization, while for the W-model, the

anisotropy present at low fields can be measured experimentally (we remind the reader

that the critical field measured for a field in the [1̄10] direction in W-model is 22T, which

is reachable experimentally). In particularly, the low field behavior, which is different for

the different field directions, could be observed in single crystals.

We conclude then, pointing out that questions remain open regarding the minimal

model of α-Li2IrO3. We have reduced the number of possible models and explored the

different magnetization behavior of those models which reproduce the experimental

signatures of the material. We expect that magnetization measurements can point in

the direction of one these models being correct in the low temperature limit. However,

we recommend further studies: We expect that electronic structure calculations could

clarify the current situation in which the obtained exchange couplings do not lead to the

experimentally measured spin pattern. On the other hand, as pointed out in Ref. [1],

the crystal structure of the material is not well understood. The recent growth of single

crystals could help refine the crystal structure. Furthermore, our study of the W-model

suggest that modest long-range interactions can stabilize the counterotating spirals

found in α-Li2IrO3, but that anisotropy is crucial to obtain a non degenerate state. Since

materials realizing Kitaev interactions show strong bond anisotropy, it cannot be dis-

carded that perhaps a different combination of interactions with a different combination

of anisotropies could also reproduce the experimental results and be relevant in real

materials. We further mention that also more Monte Carlo studies can be beneficial.

By studying the finite temperature magnetization curves, we might encounter lower

critical magnetizations and interesting intermediate states which could be easier to

realize experimentally (as it was recently done for β-Li2IrO3 [132]). Furthermore, a

study of the full phase diagram in the presence of different external magnetic fields could

help model future materials which could be realized. Finally, we mentioned that both

models could also reproduce the observed behavior in β-Li2IrO3 and γ-Li2IrO3, which
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indicated that further numerical studies of both models in three dimensional lattice as

hyper-honeycomb and stripy-honeycomb are necessary.
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7
CONCLUSIONS AND OUTLOOK

The awesome splendor of the

universe is much easier to deal

with if you think of it as a series

of small chunks.

Terry Pratchett

We have studied frustrated magnetic systems in their quantum and classical ver-

sion. We extended the pfFRG scheme shown in Chapter 3 to include arbitrary

spin lengths (Chapter 4), and showed that this formalism can be employed to

study the effect of quantum fluctuations on a given model. We showed how this approach

can be used, by employing it to study the nearest and next nearest antiferromagnetic

Heisenberg honeycomb model, and we proved that in the limit of infinite spin length,

when we recover the classical limit, pfFRG reduces to the Luttinger-Tisza approach.

The large-S extension of pfFRG has had great success at studying the effects of

quantum fluctuations in several different systems. Buessen [133] et. al. employed it to

study the classical to quantum transition and the subsequence appearance of spin liquids

in diamond lattices, Iqbal and collaborators studied the effect of different spin lengths

on the pyrochlore lattice [134] and the stability of spiral states on MnSc2S4[135]. At the

same time the large-S expansion has recently been complemented by a large-N extension

where the flow equations are formulated now with a pseudofermionic approach based on

a SU(N) spin representation [136, 137].

139



CHAPTER 7. CONCLUSIONS AND OUTLOOK

pfFRG for spin systems is a new technique, and it is still currently being developed.

Nevertheless, the present state of the technique makes it very versatile for the study of

different systems without the need to modify the basic formulation. Plenty of materials

can be modeled as Heisenberg Hamiltonians with competing interactions, and pfFRG is

a technique designed to study the phase diagram of models which cannot be accessible

with other techniques. Furthermore, pfFRG is not constrained to particular lattices or

low dimensionality, and does not suffer from a sign problem. The large-S implementation

is straight forward, as it amounts to adding a multiplicative factor to some terms in

the flow equations, which extends the strength of the method now including all spin

lengths and, as a consequence, both the purely quantum and classical limit, with the

added benefit of recovering an exact solution within the classical limit.

Many questions remain open which can be addressed with pfFRG. For example,

long ranged interactions can be treated with relative ease, as has been shown in

Refs. [138, 139] for the case of Coulomb interactions. With both the large-S and the

dipolar interactions implementations many interesting phenomena can be studied. In

many frustrated magnets Coulomb phases emerge (as in Heisenberg kagome or spin ice

systems), whose properties can be very different in the presence or absence of dipolar in-

teractions. These phases are heavily studied in the classical limit and become particularly

interesting when quantum fluctuations are included. The effect of quantum fluctuations

on Coulomb phases in the presence of Coulomb interactions has not been fully studied,

and pfFRG offers a good numerical first approach to deal with this particular topic.

A particular interesting problem resides on the fact that, at the moment, the algo-

rithm relies on the translational invariance of the lattice, but that many interesting

phenomena can be studied, both in the classical and quantum limits, when translational

invariance is broken. The introduction of hard boundaries in the system induces edge

defects, whose behavior in a quantum spin liquid state is not well understood. pfFRG

provides a framework in which (assuming a good code parallelization and sufficient CPU

power is provided) analyzing the properties of the edge states in spin liquids can be

straightforwardly obtained. Translational invariance can be broken in many different

ways. A natural question that arises is what would happen if the reason the trans-

lational invariance is broken is not due to edges, but due to defects in the magnetic

lattice. Disorder arising from dilution or stuffing of the magnetic ions can also be studied

within pfFRG. In the classical limit it has long been known that frustration and disorder

are the two main ingredients of spin glass states, and are a topic of intense research

up to date. In the quantum limit, the effects of atomic disorder in a spin liquid state

140



have not been studied in detail giving the lack of methodology available to tackle this

problem. Furthermore a detailed pfFRG study of how edge states change in the presence

of disorder could help discern between spin glasses and spin liquids in the quantum

limit.

We have shown that the classical limit can be exactly recovered within pfFRG, but we

have also mentioned that in the classical case many powerful methods exist which can

treat these systems and provide further information beyond the zero temperature two

point correlation function. To this end we have shown how Monte Carlo simulations can

be employed to study effective models for continuous (spin space) frustrated magnetism

(Chapter. 5). We showed how the introduction of open boundary conditions can be an

asset to study incommensurate phases, and showed that a modified update algorithm

together with parallel tempering and iterative minimization schemes are extremely

useful to study magnetic insulators that exhibit strong spin orbit coupling.

We studied one material in particular, α-Li2IrO3 (Chapter. 6), where the most recent

experiments indicate the presence of an incommensurate spin spiral ground state. The

many minimal models that were proposed for this material had not been studied under

the light of a common framework. Employing large scale Monte Carlo we performed

a comparative analysis of the models, and determined that only two out of six models

reproduce the full set of experimental results. These two models belong to the same

category of Hamiltonians, both presenting strong ferromagnetic Kitaev couplings and

secondary Heisenberg and off diagonal terms. They differ, though, on the extent of these

interactions. One of the models is a purely nearest neighbor model, while the other

presents interactions ranging up to third neighbors. This elevates the question of how

minimal a minimal model needs to be. While we would be tempted to select the nearest

neighbor model as the minimal one (given the reduced number of interactions) there

cannot be discarded that the actual material allows for longer range interactions which

would modify the results of further experiments. To resolve this issue we studied the

magnetization processes of the two models which reproduce the known experimental

results up to date. The two studied models show a very different behavior at both the

high and low magnetic field regimes. The nearest neighbor model exhibits an anisotropic

magnetization for different field directions, but the magnetization process is consistently

the same for all the studied directions. In the case of the third neighbor model, an

anisotropic magnetization behavior is also detected, but the magnetization processes

are different for the different directions. We proposed that a low field study of α-Li2IrO3

with the field in the directions studied in this work could help discern which one of the
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studied models belongs to the material, or if another model needs to be put forward.

Furthermore, we proposed x-Ray diffraction experiments and pointed out the need for

further quantum chemical studies to determine the exchange couplings of the model

with higher accuracy.

It needs to be pointed out that there is a proposal of universality between the three

members of the Li2IrO3 family, given that they share similar ground state properties.

Furthermore, it has been shown that a nearest neighbor model (the Ic-model) can

reproduce some of the ground state properties common to all of these materials. Therefore,

the next question to answer would be whether the nearest and third neighbor models

also reproduce the ground state of all these materials. We would expect that the minimal

models for the three of them are extremely similar. A good test of universality, which

would help determine which minimal model is the correct one, will be to check how the

nearest and third neighbor models perform in the lattices corresponding to the β and γ

members of the family (hyper- and stripy-honeycomb lattices respectively).

Besides that test, the door is now open to the study of thermal phase transitions

in these materials. While we know that in the absence of an external field α-Li2IrO3

orders at a critical temperature below 15K , we have not studied the effect of thermal

fluctuations on the magnetization processes. This can be a fruitful endeavor, since

thermal fluctuations can decrease the critical fields, or induce exotic intermediate states

which can be accessed experimentally. While we are a step closer to defining what the

minimal model of α-Li2IrO3 is, the previous discussion indicates that a lot of work

remains to be done. Within the Monte Carlo framework developed in this thesis, the

proposed studies are straightforward to resolve, and these will be the next steps in our

study of the Li2IrO3 family.
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FLOW EQUATIONS FOR THE TWO PARTICLE VERTEX

Here we present the FRG flow equations for the simetrized two particle vertex ΓΛs and

ΓΛd . This can be obtained by replacing Γ̃Λ with Γ̃Λs and Γ̃Λd in Eq.3.53 and performing the

spin sums over α3 and α4 with the subsequent introduction of the frequencies s, t, and u.

Comparing the contributions corresponding to the spin and density interactions on both

sides we obtain the following flow equations for the two particle vertex,

d
dΛ

ΓΛs i1 i2
(s, t,u)= 1

2π

∫ ∞

−∞
dω′

{
[−2ΓΛs i1 i2

(s,−ω2′ −ω′,ω1′ +ω′)ΓΛs i1 i2
(s,ω2 +ω′,ω1 +ω′)

+ΓΛs i1 i2
(s,−ω2′ −ω′,ω1′ +ω′)ΓΛd i1 i2

(s,ω2 +ω′,ω1 +ω′)

+ΓΛd i1 i2
(s,−ω2′ −ω′,ω1′ +ω′)ΓΛs i1 i2

(s,ω2 +ω′,ω1 +ω′)

−2ΓΛs i1 i2
(s,ω1′ +ω′,−ω2′ −ω′)ΓΛs i1 i2

(s,−ω1 −ω′,−ω2 −ω′)

+ΓΛs i1 i2
(s,ω1′ +ω′,−ω2′ −ω′)ΓΛd i1 i2

(s,−ω1 −ω′,−ω2 −ω′)

+ΓΛd i1 i2
(s,ω1′ +ω′,−ω2′ −ω′)ΓΛs i1 i2

(s,−ω1 −ω′,−ω2 −ω′)
]

×PΛ(ω′, s+ω′)
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+
[

2
∑

j
ΓΛs i1 j(ω1′ +ω′, t,ω1 −ω′)ΓΛs ji2

(ω2 +ω′, t,−ω2′ +ω′)

+2
∑

j
ΓΛs i1 j(ω1 −ω′, t,ω1′ +ω′)ΓΛs ji2

(ω2′ −ω′, t,−ω2 −ω′)

+ΓΛs i1 i2
(ω1′ +ω′, t,ω1 −ω′)ΓΛs i2 i2

(ω2 +ω′,−ω2′ +ω′, t)

−ΓΛs i1 i2
(ω1′ +ω′, t,ω1 −ω′)ΓΛd i2 i2

(ω2 +ω′,−ω2′ +ω′, t)

+ΓΛs i1 i2
(ω1 −ω′, t,ω1′ +ω′)ΓΛs i2 i2

(ω2′ −ω′,−ω2 −ω′, t)

−ΓΛs i1 i2
(ω1 −ω′, t,ω1′ +ω′)ΓΛd i2 i2

(ω2′ −ω′,−ω2 −ω′, t)

+ΓΛs i1 i1
(ω1′ +ω′,ω1 −ω′, t)ΓΛs i1 i2

(ω2 +ω′, t,−ω2′ +ω′)

−ΓΛd i1 i1
(ω1′ +ω′,ω1 −ω′, t)ΓΛs i1 i2

(ω2 +ω′, t,−ω2′ +ω′)

+ΓΛs i1 i i
(ω1 −ω′,ω1′ +ω′, t)ΓΛs i1 i2

(ω2′ −ω′, t,−ω2 −ω′)

−ΓΛd i1 i i
(ω1 −ω′,ω1′ +ω′, t)ΓΛs i1 i2

(ω2′ −ω′, t,−ω2 −ω′)
]

×PΛ(ω′, t+ω′)

−[
2ΓΛs i1 i2

(ω2′ −ω′,−ω1 −ω′,u)ΓΛs i1 i2
(ω2 −ω′,ω1′ +ω′,u)

+ΓΛs i1 i2
(ω2′ −ω′,−ω1 −ω′,u)ΓΛd i1 i2

(ω2 −ω′,ω1′ +ω′,u)

+ΓΛd i1 i2
(ω2′ −ω′,−ω1 −ω′,u)ΓΛs i1 i2

(ω2 −ω′,ω1′ +ω′,u)

+2ΓΛs i1 i2
(ω1 +ω′,−ω2′ +ω′,u)ΓΛs i1 i2

(ω1′ +ω′,ω2 −ω′,u)

+ΓΛs i1 i2
(ω1 +ω′,−ω2′ +ω′,u)ΓΛd i1 i2

(ω1′ +ω′,ω2 −ω′,u)

+ΓΛd i1 i2
(ω1 +ω′,−ω2′ +ω′,u)ΓΛs i1 i2

(ω1′ +ω′,ω2 −ω′,u)
]

×PΛ(ω′,u+ω′)
}

,(A.1)

d
dΛ

ΓΛd i1 i2
(s, t,u)= 1

2π

∫ ∞

−∞
dω′

{
[

3ΓΛs i1 i2
(s,−ω2′ −ω′,ω1′ +ω′)ΓΛs i1 i2

(s,ω2 +ω′,ω1 +ω′)

+ΓΛd i1 i2
(s,−ω2′ −ω′,ω1′ +ω′)ΓΛd i1 i2

(s,ω2 +ω′,ω1 +ω′)

+3ΓΛs i1 i2
(s,ω1′ +ω′,−ω2′ −ω′)ΓΛs i1 i2

(s,−ω1 −ω′,−ω2 −ω′)

+ΓΛd i1 i2
(s,ω1′ +ω′,−ω2′ −ω′)ΓΛd i1 i2

(s,−ω1 −ω′,−ω2 −ω′)
]

×PΛ(ω′, s+ω′)
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+
[

2
∑

j
ΓΛd i1 j(ω1′ +ω′, t,ω1 −ω′)ΓΛd ji2

(ω2 +ω′, t,−ω2′ +ω′)

+2
∑

j
ΓΛd i1 j(ω1 −ω′, t,ω1′ +ω′)ΓΛd ji2

(ω2′ −ω′, t,−ω2 −ω′)

−3ΓΛd i1 i2
(ω1′ +ω′, t,ω1 −ω′)ΓΛs i2 i2

(ω2 +ω′,−ω2′ +ω′, t)

−ΓΛd i1 i2
(ω1′ +ω′, t,ω1 −ω′)ΓΛd i2 i2

(ω2 +ω′,−ω2′ +ω′, t)

−3ΓΛd i1 i2
(ω1 −ω′, t,ω1′ +ω′)ΓΛs i2 i2

(ω2′ −ω′,−ω2 −ω′, t)

−ΓΛd i1 i2
(ω1 −ω′, t,ω1′ +ω′)ΓΛd i2 i2

(ω2′ −ω′,−ω2 −ω′, t)

−3ΓΛs i1 i1
(ω1′ +ω′,ω1 −ω′, t)ΓΛd i1 i2

(ω2 +ω′, t,−ω2′ +ω′)

−ΓΛd i1 i1
(ω1′ +ω′,ω1 −ω′, t)ΓΛd i1 i2

(ω2 +ω′, t,−ω2′ +ω′)

−3ΓΛs i1 i1
(ω1 −ω′,ω1′ +ω′, t)ΓΛd i1 i2

(ω2′ −ω′, t,−ω2 −ω′)

−ΓΛd i1 i1
(ω1 −ω′,ω1′ +ω′, t)ΓΛd i1 i2

(ω2′ −ω′, t,−ω2 −ω′)
]

×PΛ(ω′, t+ω′)

−[
3ΓΛs i1 i2

(ω2′ −ω′,−ω1 −ω′,u)ΓΛs i1 i2
(ω2 −ω′,ω1′ +ω′,u)

+ΓΛd i1 i2
(ω2′ −ω′,−ω1 −ω′,u)ΓΛd i1 i2

(ω2 −ω′,ω1′ +ω′,u)

+3ΓΛs i1 i2
(ω1 +ω′,−ω2′ +ω′,u)ΓΛs i1 i2

(ω1′ +ω′,ω2 −ω′,u)

+ΓΛd i1 i2
(ω1 +ω′,−ω2′ +ω′,u)ΓΛd i1 i2

(ω1′ +ω′,ω2 −ω′,u)
]

×PΛ(ω′,u+ω′)
}

.(A.2)

The frequencies ω′
1, and ω′

2 are related to the s, t, and u frequencies by

(A.3) ω′
1 =

1
2

(s+ t+u) ω′
2 =

1
2

(s− t−u)

while for ω′
1, and ω′

2 we have the relations

(A.4) ω1 = 1
2

(s− t+u) ω2 = 1
2

(s+ t−u) .
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HEISENBERG-KITAEV MODEL

To fully comprehend the physics of the models studied in this thesis, we need to

carefully analyze what the effects of the free edge boundary conditions (FEBs)

are on our system since, as mentioned in Chapter 5, we will be studying incom-

mensurate phases, which imply that periodic boundary conditions (PBCs) cannot be

implemented. To this end, we will benchmark our code by studying the Heisenberg-Kitaev

model on the honeycomb lattice,

(B.1) H = J
∑
<i j>

Si ·S j +K
∑
<i j>

∑
γ

Sγ

i Sγ

j .

This model contains exactly solvable points and has been studied in detail by Price et.
al [126] via Monte Carlo simulations employing PBCs. We will reproduce some of the

results in Ref. [126], to show how (in the case of FEBs), at big enough system sizes we

recover the bulk behavior expected from a simulation employing PBCs.

We perform Monte Carlo simulations on the Hamiltonian shown in Eq. B.1, for sizes

ranging from 24 to 5400 sites. The temperature of the simulations is consistently chosen

as T = 0.001. We employ 2×105 Monte Carlo sweeps from which 1×105 are used as

equilibration steps. The runtime for 2400 sites comprised 1.5 days of CPU time on a

single node, as the Metropolis algorithm cannot be parallelized. We concentrate here in

the behavior of a simple Metropolis-Hastings algorithm, without recurring to parallel

tempering or iterative minimization schemes, to test the effectiveness of the Monte Carlo

code. In this thesis further modifications of the code were performed to reduce the effects

of domain walls and of rough energy landscapes as mentioned in chapter 5.

147



APPENDIX B. HEISENBERG-KITAEV MODEL
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Figure B1: Phase diagram for the Heisenberg-Kitaev model. We observe a phase transition from
a ferromagnetic state to a stripy phase occurring at α= 1/3. The points α= 0, α= 0.5, and α→∞
are exactly solvable, where α= 0.5 presents an emergent SU(2) symmetry.

We have mapped the phase diagram for the Heisenberg-Kitaev model. We parametrized

the exchange couplings as K = 2α and J = 1−α and calculated the ground state for values

between α= 0 and α= 1. We show the phase diagram in Fig. B1.

The phase diagram exhibits two phases, at α< 1/3 we obtain a ferromagnetic state,

while for α> 1/3 the state is a triple degenerated stripy phase. We have described the

stripy phase in Chapter 6. This phase is degenerated owing to the symmetries of the

Kitaev interaction, allowing for the three possible stripy phases, st-X, st-Y, and st-Z.

B.1 Real space configuration

Since the Heisenberg-Kitaev model does not contain bond dependent interactions, we

will select the lattice plane as the Cartesian XY-plane, and observe the real space spin

pattern on the YZ plane where both Néel and stripy phases are easy to distinguish. We

will choose to show phases where the spins are oriented maximally in the z-direction

to ease the comparison, but states where spins are aligned in other directions are also

possible, and have been also obtained within our approach.

We study the real space configurations for different values of α to compare with the

low temperature results of [126]. We show the results for α= 0, α= 0.5, and α= 0.75

obtained from a calculation employing 216 sites.

For the case α= 0 we recover the antiferromagnetic Heisenberg model. In Fig B2 we

show one of the simulations performed, in which the system exhibits a Neel order, where

(in this case) the spins are ordered ferromagnetically on the z directions. In this case the

lattice can be partitioned into two sublattices where the spins in one sublattice points

in the [001] direction (red arrows) while on the other sublattice the spins points in the

[001̄] direction (pink arrows).

For the stripy phases,we show the spin pattern for α= 0.75 (Fig. B3). In this case

we observe that in the center of the system, the spins point in two directions forming

stripes that span the system. In this case we separate the system in four sublattices, two

with spins pointing in the +z directions (red and pink spins), and two in the −z (blue
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Figure B2: YZ plane of the real space configuration for the α= 0 case.

and green). The finite size effects are noticeable here, where the spins deviate from the

±z orientation, and where this deviation is more pronounced at the boundaries of the

system. Even for this small system size, where the finite size effects are considerable,

the simulation already reproduces the known results for the Heisenberg-Kitaev model

for these parameters.

Figure B3: YZ plane of the real space configuration for the α= 0.75 case.

For the stripy an important point needs to be mentioned. The point α= 0.5 is special,

since at this point the obtained stripy phase becomes and exact ground state of the

system, which can be seen as a ferromagnetic state in a rotated basis. It can be proven

also that in this case the system exhibits a SU(2) symmetry [126]. In Fig.B4 we show a

spin pattern for this case. The ground state realizes a stripy phase, but in this particular

case the spins are not arranged along only one direction, owing to the emergent symmetry

of the state. While in the α= 0.5 case some disorder in the state can be seen, these finite

size effects are not as pronounced as in the rest of the stripy state.
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Figure B4: YZ plane of the real space configuration for the case α= 0.5 which presents
an emergent SU(2) symmetry.

These findings coincide with what was reported in Ref. [126] for the full phase

diagram. We have purposefully showed results for a relatively small system size (216

sites), to exemplify the effect of FEBs. In the following we will calculate the Fourier

transform of the correlation function and study in detail how the finite size effects shown

here for small systems could affect bigger system sizes.

B.2 Correlation function

We proceed to show in Fig. B5 the Fourier transform of the correlation function for both

the antiferromagnetic and stripy phases, obtained from simulations on 2400 sites.

Figure B5: Fourier transform of the correlation function. Left: AF state for α= 0. Right: Stripy
phase for α= 0.75
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Fig. B5(left) shows the Fourier transform for the antiferromagnetic state. We observe

the distinct features of the Néel phase, presenting maxima at the corners of the extended

Brillouin zone. On the other hand, the stripy phase (Fig. B5, right) presents two maxima

as well as secondary maxima on the sides of the extended Brillouin zone. This maxima

indicate that, in this particular simulation, the state is dominated by a st-Y phase.

The secondary maxima on the sides of the extended Brillouin are effects arising from

the FEBs, where small regions of the system realize the other two degenerate stripy

phase. These regions can take the form of magnetic domains, or can be generated by the

presence of a domain wall as we will see in the following section.

B.3 FEBs effect on big system sizes

Even though the effect of FEBs is still noticeable in system sizes as big as 2400 sites,

the behavior of the system is not radically affected by them. While the presence of FEBs

has the tendency to generate domain walls where the ground state might be degenerate,

the simulations consistently converge to states that correspond the true behavior of the

system.

In the following, we show the results of two identical simulations, run with different

stochastic seeds, for the case α = 0.75 and 5400 sites. In this case, both simulations

converge to the stripy phase on the z-direction. Fig. B6 shows the stripy phase for a

simulation in which no domain walls have been generated. In this case, away from

the bulk the spins deviate from their ±z orientation, but it is only close to the edges

of the system where the effects of FEBs destroy the stripy order. Furthermore, these

deviations do not take any form. When the spins deviate from the ±z direction, they do it

by inducing a non-zero x- and/or y-spin components arranged according to the st-X and

st-Y phases.

Figure B6: Real space snapshot of the XZ plane for the ground state of the case α= 0.75
case using 5400 sites.
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On the other hand, Fig. B7 shows a spin pattern where a domain wall has been

generated in the middle of the system. In this case, both sides of the domain wall present

a stripy order, but the orientation of the sublattices is flipped. In this case, the domain

wall also generate non-zero x- y-spin components which are arranged accordingly to the

st-X and st-Y phases.

Figure B7: Real space snapshot of the XZ plane for a local minima spin configuration for
the α= 0.75 case using 5400 sites.

While in Fig B7 the effects of FEBs seem to be more noticeable than in Fig.B6, the

correlations for both states are the same, i.e, the Fourier transform of the correlation

function presents the same characteristics as Fig. B5.

In this thesis we will implement further algorithms to minimize the effect of FEBs, but

while their effect can be minimized, they cannot be eliminated eliminated. To eliminate

them entirely, we would have to implement periodic boundary conditions, which are not

compatible with the incommensurate states we wish to study.

With this in mind, and the comparison of our results to the work in Ref. [126], we are

ensured that while FEBs will induce domains (when the ground state is degenerated)

and edge defects in the systems, these effects will not modify the nature of the studied

system nor their correlations. If the simulations is able to converge to a low temperature

state (please note that here we are not considering other effects such as local minima

or critical slowing down of dynamics which would mean the simulation might never

converge) then we are confident that this state will be a low temperature state of the

studied Hamiltonian.
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