FREIE UNIVERSITAT
BERLIN

Assisting in semantic enrichment of scholarly

resources by connecting neonion and Wikidata

Jakob Hoper, Claudia Miiller-Birn

TR-B-18-03
2018

FACHBEREICH MATHEMATIK UND INFORMATIK
SERIE B * INFORMATIK

Abstract

Explicit semantic enrichments make digital scholarly publications po-
tentially easy to find, to navigate, to organize and to understand. But
whereas the generation of explicit semantic information is common in
fields like biomedical research, comparable approaches are rare for do-
mains in the humanities. Apart from a lack of authoritive structured
knowledge bases formalizing the respective conceptualizations and termi-
nologies, many experts from specialized fields of research seem reluctant
to employ the technologies and methods that are currently available for
the generation of structured knowledge representations. However, human
involvement is indispensable in the organization and application of the
domain-specific knowledge representations necessary for the contextual-
ization of structured semantic data extracted from textual and scholarly
resources.

Over the past decade, various efforts have been made towards openly
accessible online knowledge graphs containing collaboratively edited, struc-
tured and cross-linked data. Such public knowledge bases might be suit-
able as a starting point for defining formalized domain knowledge repre-
sentations, with which the subjects and findings of a research domain can
be described. Extensive re-use of the widely adopted shared conceptual-
izations from a large collaborative knowledge base could be in more than
one way beneficial to processes of semantic enrichment, especially those
involving domain experts with less-technical backgrounds.

In this work, we discuss ways of enabling domain experts to semanti-
cally enrich their research resources by generating semantic annotations
in text documents using the scholarly reading and annotation software
neonion. We introduce features to the web-based software which improve
various aspects of the semantic annotation process by connecting it to
the collaboratively edited public knowledge base Wikidata. Furthermore,
we argue that the re-use of external structured knowledge from Wikidata
both fuels an enhanced workflow for assisted subject-matter-sensitive se-
mantic annotation, and allows for the knowledge base to benefit from the
structured data generated within neonion in return. Our prototype imple-
mentation extracts schematic terminological information from Wikidata
objects linked by local annotations and feeds it into the new recommender
system, where candidate descriptors for vocabulary amendment are being
determined, most notably by the association rule mining recommender
engine Snoopy.

This paper is a follow-up on the bachelor’s thesis “Assisting in se-
mantic development of knowledge domains by recommending terminol-
ogy”, submitted by Jakob Hoper under supervision by Prof. Dr. Claudia
Miiller-Birn. It elaborates in further detail on aspects of the presented
implementation that have not been exhaustively covered in said thesis.

1 Introduction and problem statement

Although most publisher’s digital publications are basically facsimilated coun-
terparts of the printed version, with the PDF as a prevalent file format, vari-

ous suggestions for alternative forms of scholarly digital online publishing have
been made over the past years. Apart from the desire to simply keep up with
the technical progress by actually making use of the many arising possibilities,
proposing new forms of digital publishing has been motivated by the necessity
to keep track of, organize, and make use of an ever-growing amount of published
scientific content.

The most frequently acknowledged issue is that scholars typically face a
much too high number of new publications in their respective field of study,
for them to be able to accomplish even the necessary amount of reading [17].
Many researchers and publishers expect or even already observe a deterioration
of scientific standards, arguing that the increasing throughput leads to declining
review process quality, and sloppy or fictatious citations [21, 19]'.

Conventional methods for information retrieval are based on the extraction
of syntactical features of documents and weighing them by statistical and dis-
tributional measures. Due to inherent properties of natural languages, these
approaches do not always provide satisfactory results.

Enriching digital publications with explicit structured representations of the
core concepts occuring in their content, on the other hand, enables machines
to make sense of embedded information in a way similar to a human recipient.
Annotated with machine-readible representations of conceptualizations shared
among publishing researchers, documents can be searched and navigated with
much less noise involved [5]. This way, users get search results that are more
useful to them, easier to discriminate amongst, and quicker to skim for their
core information.

The past decades have seen huge progress in automated extraction of implicit
semantic information from unstructured text resources, but most approaches
require extensive configuration, large corpora of training data or close human
supervision, and might not fit applications where these requirements can’t be
met [16].

Manual extraction of explicit semantic information by classification and iden-
tification of named entities, concepts, and relations of core interest to a pub-
lication’s author might be a viable alternative to automated natural language
processing in specified fields of research where a configuration applicable to the
knowledge domain has yet to be set up. This is a potentially labour-intensive
task, which furthermore might require more technical skill than anyone with
the appropriate subject-matter expertise is willing or able to master. In fact,
domain knowledge experts without a technical background are known to be hes-
itant about utilization of appropriate tools and technologies for the generation
or assessment of semantic enrichment of scholarly documents [4].

IFor instance, as pointed out in [19], whereas print journals can only publish as many
submissions as affordable with their alotment for printing, binding and shipping, the overall
quality of online journals has been said to be perceived as lower, as they are able to publish
way more articles at the same cost. The assumption of less quality control in e-journals, on
the other hand, would indeed cause them to receive poorer submissions, and in lower numbers.

2 User-centered semantic enhancement workflow

We present an approach which we expect to lower the hurdle that researchers
have to take in order to be able to create semantic enrichments of their published
research. To this end, a semi-automated workflow is being demonstrated which
assists in refining a controlled vocabulary and in manually creating semantic
annotations, while it at the same time hides the complexity of the underlying
knowledge organization systems. Instead of letting researchers configure their
domain-specific knowledge representations themselves, our approach integrates
the support of recommender systems in order to provide users with meaningful
vocabularies fitting the context of their research documents.

As a use case, unstructured textual documents from the open access online
journal Apparatus are being used as an example for highly specialized academic
research publications from the humanities. We developed tooling for the ac-
cess and re-use of external knowledge representations from the linked data hub
knowledge base Wikidata [6]. This enables us to assist users with intuitive means
for contextualization, conceptualization and publication of the structured data
they create as semantic enhancements of their textual resources.

Recommender System

ourate generate

create

Annotations :
Recommendations
AN)/

analyze

Z

Controlled Vocabulary
query
— — \
— look up entities

. . upload selected data
neonion WIKIDATA

Annotation Software Collaborative Knowledge Base

Figure 1: Integrating semi-automatic vocabulary alignment in neonion using external linked
data services

Realization of the workflow proposed in this research was executed in sev-
eral consecutive phases. Beginning with the implementation of a Wikidata client
library for communication with Wikidata via multiple API endpoints and in-
cluding the automated import of the actual journal articles meant for semantic
enrichment into Wikidata, the development of tooling and integrated functional-
ity needed for supporting the proposed workflow required a variety of extensions
and modifications to be applied to the existing neonion codebase.

The following sections elaborate on different phases of development. Sec-
tion 3 illustrates the pipeline for retrieval of journal metadata and their inges-
tion into Wikidata. In subsection 4.1, a general overview will be given on the
underlying architecture of the original neonion implementation, in order to pro-
vide background information for further development. The section ends with
a brief introduction of the three main categories under which all development
towards Wikidata integration in neonion falls.

3 Import of research resources into Wikidata

In order for the proposed workflow to support contribution of bibliographic ref-
erence to matchable Wikidata statements, import of Apparatus articles into
Wikidata is desirable for multiple reasons, including the implicit objective fol-
lowed by the Wikidata community to build an “organically growing hub” that
links different authority files [13].

Linked Open Data

—) Extract Metadata

Attt l
) Map Vocabularies ¢
Reify and populate ——Jp» |II |I I

Bibliographic WIKIDATA
Resources

Online Article Knowledge Base

Figure 2: Illustration of the automated process designed for import of online journal articles
into Wikidata

With the creation and population of a Wikidata item page holding an arti-
cle’s bibliographic information, it becomes a resource available via the Web of
Data. The general import process is illustrated in Figure 2. Without a Wikidata
item representing an article as a bibliographic resource, we could still use it as
a bibliographic reference for Wikidata statements by using property reference
URL (P854?%), but neither would we be able to make statements about the article
itself, nor could such a reference sustain its meaning if for any reason the web
resource providing the article’s metadata were to be moved or otherwise not
accessable anymore. Thanks to reification of the article’s metadata as its own
item, however, its property record can be expanded or modified later on, and
statements can be made about it either as subject or object, thereby relating
it to other resources available via Linked Data. An Apparatus article that has

’https://www.wikidata.org/wiki/Property:P854

https://www.wikidata.org/wiki/Property:P854

been given its own Wikidata item can be used as a bibliographic reference for
statements by using the stated in (P248%) property.

Metadata can be found in each Apparatus article’s HTML source code in
the form of <meta> elements applying terms from the Dublin Core vocabulary
using their @name attributes.

<meta name="DC.Rights" content="http://creativecommons.org/licenses/by/4.0"/>
<meta name="DC.Source" content="Apparatus. Film, Media and Digital Cultures of
< Central and Eastern Europe"/>

<meta name="DC.Source.ISSN" content="2365-7758"/>

<meta name="DC.Source.Issue" content="5"/>

Listing 1: Bibliographic metadata in an Apparatus article’s web resource’s HTML source
(excerpt)

3.1 Metadata mapping

Mappings between Dublin Core metadata terms and Wikidata properties were
defined following proposals for bibliographic metadata schema specifications like
the Wikidata wiki article Bibliographic metadata for scholarly articles in Wiki-
data*. For a more detailed discussion of bibliographic information in Wikidata
cf. [14].

Mappings for the Dublin Core vocabulary terms used in Apparatus article
sources and exploited for their reification in Wikidata are listed in Table 1 along
with their assigned Wikidata properties.

Some Dublin Core terms appear® to be used in combination with a finite set
of possible values, either explicitly indicated by a @scheme attribute given to
the <meta> element (e.g. DC.Date.issued), or simply because none other than
a few values ever occur (e.g. DC.Rights). In these cases, the elements of those
finite value sets were mapped to Wikidata items where applicable. Table 2 lists
1s0639-1 language codes occuring throughout the Apparatus corpus metadata
and the Wikidata items representing the natural language they identify. This
method of defining a micro-glossary with named entities for a small set of val-
ues with regards to a particular predicate has been used for the Dublin Core
properties Language, Rights and articleType.

The mappings between Dublin Core vocabulary terms and journal-typical
values from the input to Wikidata item and property pages for the output were
defined as a JSON object. It contains configuration for all Dublin Core terms
which the input resource’s (i.e. article’s) Wikidata item page representation is

Shttps://www.wikidata.org/wiki/Property:P248

‘https://www.wikidata.org/wiki/Wikidata:WikiProject_Source_MetaData/
Bibliographic_metadata_for_scholarly_articles_in_Wikidata

5Section 3.3 will discuss the challenges met during the supposedly straight-forward pro-
cess of translating the specific metadata at hand from its original vocabulary to Wikidata
descriptors.

https://www.wikidata.org/wiki/Property:P248
https://www.wikidata.org/wiki/Wikidata:WikiProject_Source_MetaData/Bibliographic_metadata_for_scholarly_articles_in_Wikidata
https://www.wikidata.org/wiki/Wikidata:WikiProject_Source_MetaData/Bibliographic_metadata_for_scholarly_articles_in_Wikidata

Dublin Core Term | Schema Wikidata Property

Contributor.Sponsor sponsor (P859)
Coverage.spatial main subject (P921)
Coverage.temporal main subject (P921)
Creator.PersonalName author name string (P2093)

author (P50)
Date.issued | Iso8601 | publication date (P577)

Identifier article ID (P2322)
Language | Is0639-1 | language of work or name
(P407)
Rights license (P275)
Source.DOI DOI (P356)
Source.Issue issue (P433)
Source.Volume volume (P478)
Subject main subject (P921)
Title title (P1476)
Title.Alternative item label (rdfs:label)
Type.articleType genre (P136)

Table 1: Dublin Core terms and their assigned Wikidata counterparts used in automatic
import of Apparatus bibliographic resources into Wikidata: left column lists the Dublin Core
vocabulary terms as provided by the Apparatus article source code in alphabetical order,
stripped of their DC. prefix. Right column shows labels and identifiers (in brackets) of the
Wikidata properties that have been used as equivalents during the imports.

to be populated with. Configuration objects, each of which being filed under its
respective Dublin Core term identifier, can contain the following entries:

o property: Identifies the Wikidata property to be used as an equivalent
for the Dublin Core input term.

e map: A small glossary of values or identifiers known to occur throughout
the journal corpus, alongside identifiers of the corresponding Wikidata
item pages.

e delimiter: Some attributes in the Apparatus metadata tend to contain
multiple individual values within the same metadata object’s content field.
To handle these cases, one ore more delimiting characters can be specified
as a regular expression, and will be used to split up input strings into mul-
tiple occurences of the respective property. Properties known to show this
characteristic are Sponsor, Coverage.spatial, and Coverage.temporal.

3.2 Import Automation

In order to be able to make statements about the Apparatus articles as bibli-
ographic resources in a way that enables easy conversion into Wikidata state-
ments for their optional upload, it is desirable to have Wikidata item pages

lang | Wikidata item
cs | Czech (Q9056)
de | German (Q188)
en | English (Q1860)
lv | Latvian (Q9078)
pl | Polish (Q809)
ru | Russian (Q7737)
uk | Ukrainian (Q8798)

Table 2: 1s0639-1 language codes and their assigned Wikidata item counterparts as used in
imports of Apparatus metadata

URL=http://www.apparatusjournal.net/index.php
for url in $(curl -s $URL/apparatus/issue/archive | grep -o
» $URL'/apparatus/issue/view/[0-9]\+'); do
curl -s "$url" | grep -o
o $URL'/apparatus/article/view/[0-9]\+/[0-9]\+";
done | sort -u

Listing 2: Crawler code for retrieval of individual Apparatus article resource locators

representing the individual publications published in any of the currently avail-
able Apparatus issues.

Fortunately, the html versions as which all Apparatus contributions have
been published so far contain detailed metadata in <meta> tags within the html
header. The following pages will detail on the steps that were taken in order
to retrieve, clean, arrange and pre-process the Apparatus metadata, so that
they could eventually be used for population of Wikidata item pages created as
representations of the respective journal contributions.

Harvesting of Apparatus metadata and creation of Wikidata item pages
representing Apparatus articles was executed by a collection of makeshift scripts
performing the several tasks involved. First, a simple crawler is used for retrieval
of all individual articles published in Apparatus. It is implemented as a BASH
script and utilizes the command-line tools curl and grep to extract unique
resource identifiers, starting at the Apparatus issue archive pageS. Listing 2
shows the commands used to crawl the journal website and extract individual
article URLs.

For any previously unknown resource, bibliographic metadata are extracted
from the HTML source code with regular expressions and written to a tempo-
rary XML file. This file is being processed by a Python script converting the
XML serialization of the metadata to a JSON file using the ElementTree API
from the XML Python standard library (3). The purpose of this step is the se-
rialization of harvested metadata into a file format more suitable for processing

Shttp://www.apparatusjournal.net/index.php/apparatus/issue/archive

http://www.apparatusjournal.net/index.php/apparatus/issue/archive

1

2

metadata = {}
for article in tree.findall("resource"):
url = article.attrib.get("url")
id_meta_element =
< article.find('./meta[@name="DC.Identifier"]")
ID = id_meta_element.attrib["content"]
metadatal[ID] = {"id": ID,
"url": url,
"meta": [child.attrib for child in
< article.getchildren()]}

Listing 3: Python snippet converting an XML structure (tree) to a JSON object

with script languages like BASH and Python than XML is, and the execution
of some further intermediate steps for pre-processing of the input and enhance-
ment of the resulting data structure in terms of optimization for the following
tasks. For instance, an additional HTTP request needs to be issued for each
article in order to retrieve its abstract page, where its DOI can be extracted
from.

During the final phase of this prototype pipeline, a PYTHON script reads the
pre-processed metadata from a JSON file and applies the mapping configurations
discussed in subsection 3.1.

Standard import procedure works as follows. The PYTHON import script de-
serializes an article’s list of metadata from a JSON file and prepares to loop
though it one item at a time. If needed, an empty Wikidata item page is being
created with immediate effect on the remote side.

For every item, the Wikidata property equivalent to the metadata term at
hand is being looked up in the mapping configurations. A request to the Wiki-
data API determines the type of the object value which that Wikidata property
can be used with within a statement (Literal, Date, URI, etc.). According to this
type contraints, a conforming Wikidata object instance is being prepared locally
using the API methods provided by the pywikibot” library. If the property’s
retrieved specifications indicate that objects used alongside it are expected to
be Wikibase item instances, an item search is being issued against the Wiki-
data Wikibase API endpoint®. Search results are being filtered for exact label
matches in order to avoid false positives. The remaining search results are be-
ing omitted if their number exceeds one, as this implies ambiguities that require
human involvement to resolve. However, if this strict Wikidata item search re-
turns exactly one result, it is then used to fill the object slot of the Wikidata
statement which is currently being prepared.

Eventually, once a complete statement has successfully been put together

"https://www.mediawiki.org/wiki/Manual:Pywikibot
Shttps://www.wikidata.org/w/api.php

https://www.mediawiki.org/wiki/Manual:Pywikibot
https://www.wikidata.org/w/api.php

“Madagascar, Nisko, Theresienstadt, Auschwitz.” On the Visibility of Sites
in Claude Lanzmann’s The Last of the Unjust (2013) (qso113085) I v

Extemal sources v
Murmelstein (19
! ool
Other properties v
Wikimedia projects v
published in o
title Madagascar, Nisko, Theresienstadt, Auschwitz.* On the Visibility of Sites in Claude Lanzmannis

The Last of the Unjust (2013)8nbsp;<small>en]</small>
author name string Gertrud Koch

article ID a

license
instance of

language of work or

volume
publication date

main subject

performative utterance

narrative time grammatical l

full work available at

Related media

Figure 3: Bibliographic data of an Apparatus online article imported into a Wikidata item
page, as displayed by the Wikidata Reasonator tool®.

Dublin Core Term | Schema | Description
Date.created | ISO8601 | creation date!®
Date.dateSubmitted | Is08601 | date of submission!”
Date.modified | Iso8601 | last modified'®

Description Abstract (multilingual)
Identifier.URI Article abstract page URL
Source.ISSN Journal ISSN
Source Journal name (multilingual)
Type Text.Serial.Journal

Table 3: Dublin Core terms that are being used for metadata attributions by the Apparatus
publishers, and for which no adequate Wikidata property could or needed be provided for the
automated import method developed for this work.

expressing the bibliographic fact encoded in the current item of the input, it
will be equipped with a Wikidata reference entry accounting for its legitimacy
by specifying the article’s URL on the Apparatus website. The result is being
uploaded. Such input data that could not be successfully converted into Wiki-
data statements get logged, so that human experts can use them as a starting
point for quality control.

3.3 Challenges and Shortcomings

Even though the metadata that get published during the journal’s release work-
flow appears to be carefully created and validated, there are some imperfections
that require specialized workarounds or render particular metadata fields useless
to some degree.

The following section discusses some of the issues encountered during devel-
opment of the import pipeline.

Not all field values used in the journal’s article metadata are valid with
regards to the specified standard: Throughout the journal corpus, the language
Ukrainian is being identified by the 1s0639-2/3 language code ukr, even though
the @schema attributes of the enclosing <meta> elements indicate compliance
with the 1S0639-1 standard, where uk would be the correct representation.

There is also no actual consensus on the what exact set of properties is
considered appropriate for item pages describing academic journal articles. As
stated above (subsection 3.1 on page 5), the metadata import workflow was
configured according to a community proposal for the canonical structuring
of bibliographic metadata for scholarly articles, documented at pages in the
WikiProject Source MetaData category of the Wikidata Mediawiki.

However, this proposal is technically a work in progress, for just as brand
new Wikidata properties can be suggested, discussed and approved at any
time, said selection of bibliographic properties might change over time as well.

10Chronological order of values for fields with DC.Date. prefixes is somewhat inconsistent
throughout the Apparatus metadata.

10

This might be one reason for its occasional lack of specificity in defining a
schema '!'. In the original metadata importer’s implementation, Dublin Core
term Identifier.URI used to be mapped to Wikidata property reference URL
(P854), which is listed as a scholarly article metadata term suggestion in the
Source MetaData proposal. However, shortly after the ingestion of a an Appa-
ratus article into Wikidata, a bot would appear and replace the P854 statement
with one using property full work available at (P953'?) for attribution of the
URL linking to the article’s abstract.

In response to a complaint about one particular edit made by that bot follow-
ing this pattern, its developer recently suggested to use the property described
at URL (P973'?) instead, however both the discussion page and vote on the
original proposal of that property attest some confusion as to its exact semantic
meaning and proper use.

Up to the time of writing, no alternative equivalent Wikidata property could
be determined for the Identifier.URI Dublin Core descriptor used for specifi-
cation of an article’s abstract page in the Apparatus resource metadata, under
the premise that the original design choice in favor of adherence to the Source
MetaData group’s proposal is not to be compromised. For instance, the tem-
porarily considered candidate property official website (P856'*) might serve as
an acceptable substitute for the original attribution, but it is not a part of
the vocabulary proposed by the WikiProject concerned with structuring biblio-
graphic metadata.

Other bibliographic attributes lost some of their explicit meaning, as more
than one vocabulary descriptors from Dublin Core had to be mapped to a single
Wikidata property. An example of such a compromise is the use of property
main subject (P921'°) for attributions via term identifier Subject as well as
Coverage.spatial and Coverage.temporal.

From three Iso8601-encoded points in time at which different steps in the
editing and publishing process were recorded, the presented workflow did only
capture the one identified by Dublin Core term Date . issued, since the Wikidata
property publication date (P577'%) was the only applicable property for tempo-
ral information on bibliographic resources proposed by the Source MetaData
project, and the metadata terms specification by the Dublin Core Metadata
Initiative unambiguously defines issued as the term that is to be used when
providing a “date of formal issuance (e.g. publication)” of a resource!”. How-
ever, those Dublin Core terms concerned with temporal information occuring
in the journal’s metadata records (i.e. the ones in Table 1 and Table 3 whose

I For more on Wikidata’s community conduct for property creation and obstacles during
vocabulary mapping, cf. [13].
Phttps://www.wikidata.org/wiki/Property:P953
Bhttps://www.wikidata.org/wiki/Property:P973
Mhttps://www.wikidata.org/wiki/Property:P856
Bhttps://www.wikidata.org/wiki/Property:P921
6https://www.wikidata.org/wiki/Property:P577
http://dublincore.org/documents/dcmi-terms/

11

https://www.wikidata.org/wiki/Property:P953
https://www.wikidata.org/wiki/Property:P973
https://www.wikidata.org/wiki/Property:P856
https://www.wikidata.org/wiki/Property:P921
https://www.wikidata.org/wiki/Property:P577
http://dublincore.org/documents/dcmi-terms/

identifiers begin with prefix DC.Date.) turn out to better be handled carefully,
as they draw attention with some unexpected manifestations.

Not only doesn’t every Apparatus article contain the same number of tempo-
ral metadata fields. More importantly, there appears to be a lack of consistence
as to what events or which stages of the journal’s editorial and publishing pro-
cess get recorded for a respective article.

Even though the Dublin Core specification does not detail on for instance
whether its term created is supposed to indicate the moment of the original
resource’s creation or the point in time since when its copy has been present on
the publisher’s hosting infrastrusture, one can argue that either way the resource
could not have come into existence after its formal issuance by the publisher.

Interestingly though, of the 57 individual contributions currently retrievable
with the tooling introduced above, only 35 (61.4%) contain temporal metadata
consistent with this assumption. Where the recorded publication date of a re-
source preceeds its creation, both dates differ by up to 592 days'8.All affected
resources have the same journal issue number.

This section illustrated the fundamental flaw that lies in an automated ap-
proach towards the retrieval and processing of metadata from one loosely defined
schema and its projection and ingestion into another one. Both schemas are sub-
ject to possible changes, defined rather vaguely with room for interpretation,
and not being communicated with perfect accuracy. Therefore, tooling devel-
oped for dealing with the journal corpus in its current state and extent might
well require being patched repeatedly in order to keep up with potential schema
shifts or special cases in upcoming content.

4 Connecting neonion to Wikidata

The semantic annotating app and scholarly hyperreading workspace environ-
ment neonion offers functionality for collaborative methodical processing of
HrtML and PDF documents for academic research. It features shared commen-
tary, precise highlighting and semantic tagging of text ranges, including inter-
active entity linking and classifying based on a structurally highly formalized,
shared semantic vocabulary allowing for linking of ontological resources and
annotation of semantic relations.

The graphical interface that users are presented with by the neonion fron-
tend components utilizes the visual and interactive capabilities of contemporary
internet browser engines and employs a balanced mixed-initiative paradigm in
order to accommodate the methodical needs especially of non-technical scholars
with regards to digitally powered working with textual resources.

18The average timespan between publication and creation date is 135.45 days, with the
median being 2 days.

12

Snoopy Wikidata Wikidata
Recommender Query Service API
Service (SPARQL) (Wikibase)

neonion

>
Recommender Engine Entity Search

1

Django Framework
Database ORM Models |« Views
(SQL)
J I7’
A
Angular.js
HTML || controllers %@
Templates
LV LV

Figure 4: The architecture of the neonion web application

4.1 The neonion software architecture

The following segment will give a brief overview of neonion’s software architec-
ture, its main components, and some of its implementation characteristics at
the time when research for this work first began.

Although an in-depth documentation of the application’s code base in its
entirety would not well serve the purpose of this report, it is in order to pro-
vide some context for the design choices and implementation details that will
be discussed in the upcoming sections of its remainder. This broad overview of
the software’s state prior to any changes initiated by the proposed work repre-
sents the practical background for those subsequently described extensions and
modifications.

As stated above, neonion is a web application providing an environment
for personalized collaborative enrichments of textual documents. Its graphical
user interface is being provided by a frontend implementation for the AngularJS
model-view-controller (MWC) javascript framework. Its backend consists of a
Python implementation run by the web framework Django, and a single-node
instance of the Elasticsearch document search engine.

The Django backend project is responsible for database access and object-
relational mapping, storage and retrieval of annotations in and from the search
engine instance, business logic, and operating HTTP services providing various

13

RESTful APIs for communication with the frontend. The neonion software
architecture does not make much use of the web template system provided by
the Django framework. Instead, many objects instantiating data models of
the multiple packages (or apps) that are part of the running Django project’s
configuration are serialized as JSON objects and sent to the frontend application
via the HTTP interface provided by Django views implementing basic REST API
endpoints.

If the Django template system is being used, it mainly serves Angular tem-
plates as static resources, so that all databinding and most of the rendering
of dynamic views is being delegated to the web client, i.e. the user’s internet
browser.

The frontend implementation contains corresponding service functions using
Angular’s own ngResource module for conveniently creating wrappers around
RESTful HTTP endpoints. These services connect the numerous Angular con-
troller classes to the backend application and serve them with javascript object
representations of database objects. Controllers are javascipt functions that
perform business logic and define a public scope for exposure of variables and
methods to any views whose directives request access to them as controllers.
The Angular framework injects all the declared dependencies into the respec-
tive services, controllers and view templates where dependency injections are
requested and which it can get hold of, it takes care of bi-directional databinding
between the views and their controller scopes, and finally processes and renders
HTML templates into dynamic views in the graphical user interface.

When a user opens one of her text documents in neonion, she can choose
between three modes for annotating its content: simply marking an arbitrary
text selection by adding a highlighting to it, commenting on a text range by
adding textual notes to it, or adding contextualization and/or classification to
a text range using semantic tagging.

The event processing, basic logic and the user interface widgets used for
realization of the features involved are based on the JavaScript library Annota-
torJS, or Annotator for short. The Annotator library takes care of extraction,
addressing and positioning of annotation ranges (using relative XPATH expres-
sions) with the purpose of storage and visualization, and provides means for
interface customization, event handler registration, and extension of base func-
tionality by adding plugins and custom widgets.

The neonion frontend application implements an Angular service and con-
troller for setting up an annotator instance, and connecting it to the neonion
data models and business logic. Apart from detailed configuration and added
graphical widgets, the annotator instance gets outfitted with two plugins during
its setup. The Store plugin is being shipped with the library and is used to
let an annotator instance automatically exchange annotations with an endpoint
that is to be specified by its URL, and expected to respond to a set of HTTP

14

methods according to the corresponding storage-related actions.'® It is config-
ured to communicate with an endpoint at the URL with relative path /store/.

The second plugin added to the annotator instance is the neonion plugin,
made available by injection of a custom prototype into the library’s namespace
and inheriting from an Annotator.Plugin() instance. The neonion plugin
defines hooks for various events fired by the Annotator library, and handlers
implementing the respective behaviour expected by the three different annota-
tion modes offered by neonion, including the creation of relations between two
semantic taggings using predicates from a controlled vocabulary.

4.2 Accessing Wikidata from within neonion

In order to meet the requirements that have been identified above, several fea-
tures need to be enhanced or newly developed and added to the neonion work-
bench.

We aim at enabling researchers and subject-matter experts even without any
technical background by concealing the complexity of the semantic technologies
which neonion provides for the customization of highly formalized controlled
vocabularies and domain knowledge schema specifications. This objective ne-
cessitates functionality that contributes to assisting untrained users in gener-
ating structured enrichments of their textual resources in a comprehensive and
intuitive manner, including integration into the graphical user interface in com-
pliance with the paradigms followed by neonion’s original design[12, 10].

The following section will discuss the specific additions this work made to
neonion in order to support the proposed workflow and assumed use case one
by one, and with focus on the user interface and interaction, beginning with
an enhanced and live version of the built-in entity search. Then, the entirely
new controls and functionalities created for the support of term suggestions
for vocabulary amendment will be illustrated, before the likewise newly created
page for the tabular representation of a document’s embedded structured fac-
tual content and its matching against and optional ingestion into Wikidata will
be presented.

Figure 5 shows screenshots of the frontend controls created or modified for
providing user interfaces to the features discussed in the following. The top-left
quarter shows the entity search dialog during creation of a semantic annotation
(subsubsection 4.2.1). The screenshot on the bottom-left depicts a list of vo-
cabulary recommendations (subsubsection 4.2.2). The right half of this figure
shows a list of factual statements that have been embedded within a document
via semantic annotation, each of them with a button whose appearance indicates
whether that statement does already exist in Wikidata (subsubsection 4.2.3).

197 e. GET, PUT, POST, DELETE and search, update, create, destroy, respectively.

15

beginning of the 1920s. While R H H
the first agit-trains, on which % © Daig Film Trains and Ag't
| W oriedvere reant o Unknoun Resource o e Steamers of the 1920s
"N support the Red Army forces at -« Person “
the front lines during the Dziga Vertov - 1896, 1 1954 and 19305
P Russian Civil War (1917-1923), Soviet documentary flmmaker L I
o Aleksandr Medvedkin's film train Dzigar Kongtrul Rinpoche o Q33391 (Lev Trotskii)
ten years later had a quite Tibetan painter Predicate Value Action
o different goal. In both cases, Jigme Khesar Namgyel [
. however, the State power and Wangchuck * 1980 P31 Qs &
Cx the Communist Party sent trains King of Bhutan (]
o and steamers to the periphery of Kand Jigord * 1860, 1 1938 -~ Q55193 (Vertov)
the vast Soviet territory to ounder of judo martial art . i
@ st SO o founder of judo martial ar Predicate Value Action
spread their political message Jigme Singye Wangchuck * 1955 []
and to educate the (mostly) King of Bhutan P31 Q5 3
illiterate populace as well as Show more results ...
children. The trains had many Q243652 (Hungarian)
uses. For example, political Predi Val Acti
leaders like Lev Trotskiioften redicate e ction
P31 Q7275
" the first agit-trains, on which
o Vertovworked, were meant to Q214623 (Arthur Holitscher)
sunnort the Red Armuv forces at " 2,
@21 | Concept Set Recommendations Predicate Value Action
profession (Q28640) 25203 3 P27 Q243652
language (Q34770) s X P31 Qs 3
order (Q193622) ws@ %
ity (Q515) ol x P106 Q36180 ®
historical country (Q3024240) v % Q1394755 (Aleksandr Medvedkin)
place of death (P20) nofl X) N
country of citizenship (P27) o x Predicate Value Action
award (Q618779) s % P31 Qs 3
medal (Q131647) i x)
award received (P166) s % Q36180 (writer)
T SRS - Predicate Value Action
uses. For example, political
leaders like Lev Trotskii often P31 Qzes40 i

Figure 5: Screenshots of integrated Wikidata functionality in neonion.

4.2.1 TItem search for entity linking

The search function has always been a fundamental feature of neonion’s seman-
tic tagging mode. However, when implementation of the proposed enhancement
began, the then latest release came with a non-recent dump of Wikidata items
representing instances of persons, along with instructions for importing these
into an elasticsearch index. Although this added to the effort necessary for de-
ployment of a fully-featured running neonion instance, the results were of little
use due to the scarcity and age of the shipped data dump.

The feature’s existing implementation was extended and overwritten where
suitable, in order to replace its default search endpoint location and configura-
tion with a newly created http endpoint providing an interface to the Wikidata
client module which has been written for integration of neonion and Wikidata.

The newly integrated live entity search implementation involves two steps.
First, the Wikidata Wikibase API?" is being queried, using the action parame-
ter to specify the wbsearchentities command?!. The resulting Wikidata item
page IDs are inserted into SPARQL queries which are then being sent to the Wiki-
data Query service (WDQ??). These additional requests are made for the sake

2Onttps://www.wikidata.org/w/api.php

21Incidentally, an update of the API implementation released during the phase of develop-
ment significantly improved the performance of the entity search

22nttps://query.wikidata.org/bigdata/namespace/wdq/sparql

16

https://www.wikidata.org/w/api.php
https://query.wikidata.org/bigdata/namespace/wdq/sparql

of filtering the current search results with respect to value constraints implied
by the information linked to the local vocabulary’s concept used for annotation.
More specifically, if the concept used for classification of the new annotation has
an equivalent Wikidata item assigned to it, only those entity search results will
be presented to the user that are an instance of (P31) either that very Wikidata
item, or of any Wikidata item having a transitive subclass of (P279) relation
with that item. The general SPARQL query used for this filtering step is shown
in listing 4.

Additional SPARQL queries might be issued in order to retrieve concept-
specific properties, such as a person’s dates of birth and death.

s and recording new ones (mostly the aforementioned historians),

them in audio(visual) counterpoints to the footage itself. A late but not

2 was added to the “ghetto” puzzle by Claude Lanzmann in his 220

1 Le Dernier des injustes / The Last of the Unjust (2013). This edits down

and 24 minute long 1975 interview with the last “Jewish Elder” and adds

it.5 Benjamin Murmelstein was not only a crown-witness of the

nd of the Holocaust but later also became a witness for the prosecution X Q KarlRahm
commandant of Theresienstadt, & Unknown Resource

the central provocation of Le Dernier des injustes was that in the

cling his 1970s interview material - originally intended for Shoah

used - Lanzmann broke his old rule of banning perpetrator footage from Karl Rahm * 1889, 1 1947 7
g extracts from the historical Theresienstadt “ghetto” footage can be

wo ways: Either Lanzmann no longer believes his own central credo

iprobable - or he tacitly condones the behaviour of Gerron and the other

ants in the “ghetto” Theresienstadt in 1944. Moreover, that would also be

“eallabharabar? Miwmnnlcbain vdham | anamnans beancfavme dicine bha

Figure 6: Screenshot depicting the entity linking feature of neonion’s semantic tagging mode.

The user interface rendition of a resulting list of valid candidates for entity
linking is shown in Figure 6. Initiated by a text range selection within the
document content, the semantic tagging sequence starts with the user picking
a concept for classification, followed by this search dialog being opened up for
manual identification of the currently annotated named entity. External equiv-
alents linked to the applied concept are used to restrict search results to valid
candidates. In the case of instances of the concept Person/Human (Q5), dates
of birth and death are displayed for orientation, if available. By clicking on
the icon next to the search result label, the user can open the corresponding
Wikidata item page in their browser in order to get more context.

4.2.2 Suggesting terminology for vocabulary amendment

Generation of recommendation candidates takes place in the background and
mostly runs Wikidata client and utility code written in Python and located in
the newly introduced wikidata Django app further detailed upon in subsec-
tion 5.2.

The recommender system consists of two main parts on the backend side:
the terminology extractor and the actual recommendation module. The termi-
nology extractor is being called every time an annotation is being created in the

17

SELECT distinct 7itemLabel 7item WHERE
{
VALUES 7item { 4y,%9,...,%, * . # results from wbsearchentities
s query
7item (wdt:P31/wdt:P279%) type . # type associated to meonion
» concept applied to annotation
SERVICE wikibase:label {
bd:serviceParam wikibase:language

n enll

}

by
LIMIT 100

Listing 4: SPARQL query filtering Wikidata entity search results according to type information
associated to the neonion concept used during classification of an annotated named entity

frontend and an external entity has been linked via the search function. When
this happens, a registered AnnotatorJS hook calls a local endpoint specifying
the linked entity and the concept used for classification, causing the terminology
extractor to execute.

The system thereby receives all Wikidata statements involving the linked
entity, plus all type information about the corresponding objects. Figure 8
illustrates the data retrieved and the information extracted during this step.

The resulting pieces of terminological knowledge are stored into the Elas-
ticSearch node running alongside the neonion deployment, right next to the
annotation store. The more terminological information is being collected, the
more input data can be fed into the active recommenders.

The recommender engine receives a regular call from the corresponding An-
gular frontend controller, causing it to run all recommenders that have registered
with it. Individual recommenders are simple Python functions returning a dic-
tionary with term identifiers as keys and their corresponding scores as values.
In order to register a function as a recommender, it simply need to be equiped
with the Python decorator @recommender, which takes a argument specifying
whether it generates concept or property candidates.

After execution of registered recommender implementations, the recommender
module creates PropertyRecommendation and ConceptRecommendation objects
from appropriate candidates using the Django ORM API. These objects can be
retrieved by the Angular controller concerned with suggesting recommendations
to the user and will be converted into regular Concept or Property instances if
a user decides to add them to their vocabulary.

Presentation of vocabulary recommendations in the web frontend takes the
form of a tabular list within a dropdown menu hidden in the document view’s
navigation bar. The availability of recommendations is being visually indicated,
so that users can notice incoming recommendations. Frontend rendition of a
current recommendations list is depicted in the bottom-left quarter of Figure 5.

18

1

2

3

from wikidata import terminology

@recommender ("concept")

def recommend_common_supertypes(conceptset):
" recommender description in docstring.
retrieve terminological axzioms grouped by object types
types = terminology.faceted_statements(conceptset, 'tpo')
...
return {term_id:scoring_function(term_id) for term_id in
- candidates}

nmn

Listing 5: Registration of single recommender implementation using the @recommender deco-
rator from recommender module.

For introduction of the new notion of recommendations, the neonion project’s
data model has been extended by multiple new classes inheriting from the
Django modeling library. The wikidata Django app developed during this work
defines classes for the new models ConceptRecommendation and Property
Recommendation, both inheriting from the shared base class Recommendation.

Whenever an instance of the Recommendation class needs to be created based
on the results of the recommender implementations discussed in subsection 5.2,
a wrapper object for the linking of an equivalent external resource is created in
form of LinkedConcept or LinkedProperty. It is assigned to the newly instan-
tiated recommendation object and holds the information necessary to create a
proper concept or property instance for use in a neonion concept set if a user
chooses to accept a recommendation.

4.2.3 Share subject-matter expertise by publishing verifiable facts

An additional page was introduced so that all statements embedded in a doc-
ument in form of semantic annotation and relation annotation can be viewed.
The Wikidata client code asynchronously looks up each statement on Wikidata,
and frontend controls get updated accordingly as soon as the results come in.

A button with a checkmark icon next to a statement indicates that the
statement does exist in Wikidata, the color of the checkmark icon shows whether
the remote statement has already been qualified with a bibliographical reference
to the Wikidata representation of the current document. An upward-pointing
arrow icon on the button next to a statement means that the statement is yet
to be uploaded into Wikidata.

A screenshot of a document’s embedded statement list alongside with Wiki-
data availability status indicators can be found in the right half of Figure 5.

19

wikidata annotationsets

Recommendation
ConceptSet
confidence: float
review_status: bool
LinkedConcept Concept
Concep dation
propertied
range
PropertyRecommendation LinkedProperty Property

Figure 7: Extensions made to the neonion data model

5 Building an extensible engine for integrating
content-based term recommenders

Connecting the semantic tooling provided by neonion to a remote source for
knowledge representations, including constraint-abiding live entity search during
semantic tagging of local resources, enables the system to request extending
context information on previously generated structured content in concurrency
to the user’s manual semantic enrichment.

The following sections will introduce yet another part of the newly devel-
oped Wikidata client code and its contribution to the neonion functionality.
Beginning with a collection of functions for extraction and analysis of implicit
terminological knowledge from the external ontological knowledge source, this
chapter contains discussion of different components involved in the generation
of vocabulary recommendations and some specific implementations. Follow-
ing the presentation of recommender strategies for both concept and property
candidate generation in subsection 5.2, the potential for integration of external
recommender services will be demonstrated by showing how the association rule
mining engine Snoopy provides reliable property recommendations as an exter-
nal web service via an HTTP endpoint. Based on the main objectives targeted
by the approach pursued during development of the Snoopy system, its under-
lying assumptions and the implications of the results, the concluding passages
will contain a recap on the various attempts towards viable term suggestion,
and a brief discussion on their most important aspects.

20

5.1 The Terminology Module

The terminology module in the new wikidata Django app contains methods for
retrieval of terminological knowledge from the remote knowledge base, its stor-
age in and retrieval from a local knowledge representation store, and various
operations on it. This section contains a brief description of the tasks it per-
forms and the tools it offers.

In order to efficiently run some basic candidate generators implemented for
concept and property recommendation over and over as user input is coming in,
simplified representations of related contents from the target knowledge base are
being stored in the local system. The idea behind this is that while the actual
structured data fed into the system by the annotating user changes frequently,
the terminological information as it is being harvested from the knowledge base
does not. Based on this assumption and the desire for possible restructuring
for optimizations, retrieval of related object types from a local store is being
preferred over repeatedly querying these type data from the external SPARQL
endpoint, same as argued by e.g. [20] and [15].

Retrieval and extraction of terminological knowledge about related objects is
being triggered by each succesful entity linking during creation of an annotation
in semantic tagging mode. The call issuing this operation is being invoked
by a hook registered with the central annotator instance as provided by the
AnnotatorJS library, which sends a request to a designated HTTP endpoint,
specifying the linked entity and the concept set as well as the actual concept
used in the annotation.

This endpoint gets handled by a Django view which calls the respective
method in the terminology module. There, a POST request gets sent to the Wiki-
data query service endpoint with a SPARQL query in its body. A generalization
of such a query is illustrated in 6. It requests all those Wikidata items along
with their types (via the P31 property) that are related to any of the specified
input entitites in that they co-occur with them in Wikidata statements either
as objects or subjects, along with the Wikidata properties that make up the
predicates of the statements and the actual related items themselves.

SELECT * WHERE {
7obj wdt:P31 7objecttype .
{ 7obj ?pr 7entity . }
UNION { ?entity 7p 7obj . }
MINUS { 7entity wdt:P279 7obj . }
VALUES ?entity { iy,ig,...,i, } -

Listing 6: SPARQL query used for retrieval of types which any instances of relate to a specific
set of items

The resulting data, combined with the related type information available for

21

Item key:
Q5 Human

Q515 City
Q649 Moscow
Q1773 Riga
08003 Sergei Eisenstein
Q11424 Film
¥ Q118976 Alezander Neuvsky
> > = P57 <> @ Q152350 Battleship Potemkin
A ~o o, 4226730 Silent film
A - . pjg © Q486972 Human settlement

P31 E Q
5 Q649
P5; P20
Q8003
Property key:
P57 PJQ P19 place of birth
P20 place of death
P31 instance of
P57 director
P279 subclass of

Figure 8: Example for implicit terminological knowledge and its extraction from Wikidata.
Solid lines represent factual statements about the seed entity highlighted in yellow, dotted
lines indicate ontological relations like instance of and subclass of, and dashed lines represent
some of the terminological axioms that can be inferred from these.

the concept that has been used for the creation of an annotation, allows for the
extraction of terminological axioms of the form (cg, p,c,) € (C' x P x C'), where
¢, and c, are types extracted from the subject and object of an assertional state-
ment, respectively, both elements of the set of all known types C, and p € P is
an element of the set of all known properties??.

Figure 8 illustrates the kind of terminological knowledge that becomes avail-
able though application of the SPARQL query shown in 6, based on a simplified
real-world example. The vertices in the depicted graph represent Wikidata item
pages closely related to a given seed item Q8003 (highlighted vertex at bottom-
center). Vertices connected by solidly drawn edges are explicitly linked together,
i.e. they co-occur in a Wikidata statement with the property indicated in the
edge label. Dotted arrows represent taxonomical relationsships either of type
instance of (P31) or subclass of (P279). Dashed lines show implicit terminolog-
ical projections of the explicitly stated relationships onto an abstraction layer
consisisting of the concepts being instantiated by the items directly linked to
the seed entity. These inferred axioms about item abstractions are the basis for
vocabulary suggestion.

With regards to the real-world data the example is based on, this means
that the assertional statements about the seed entity Q8003, representing Sergei
FEisenstein, constitute relationships between the well-known soviet film director
and other entities represented as Wikidata items. Those item pages contain

23Either ¢, or ¢, is the Wikidata item specified as the equivalent of the concept from the
vocabulary that has been used for classification of the original annotation.

22

information on class membership, expressed by instance of property (P31) oc-
curences linking an item page to one or more class item pages. The seed entity
Sergei Eisenstein is an instance of Wikidata class item Human (Q5), and the
vertices Q1773 (Riga) and Q649 (Moscow) on the bottom right both represent
Wikidata items that are instances of the class City (Q515). Based on the asser-
tional statements found about the seed entity and the instance of relations they
extend to, generalized claims can be made about concepts. In this example, the
observation that a human being has a place of birth (P19) and a place of death
(P20), and that both places are known to be cities suggests that in order to
make sense of a person’s bibliographic data, it might be necessary to be aware
and to comprehend the concept City. Therefore, the relationship established
between Human and City via the properties place of birth and place of death
constitutes terminological axioms representing the fundamental discovery that
cities are places where some people are born and some people die.
Consequently, the concept City as well as the the properties place of birth
and place of death make for term candidates for vocabulary recommendation.

SELECT 7type 7supertype WHERE {
VALUES 7type { t;,%9,...t, T .
?type wdt:P279 7supertype .

X

Listing 7: SPARQL query for retrieval of all pairs of items connected by a subclass of (P279)
relation that can be found for a set of items representing types.

Subsequently, a second SPARQL query, shown in 7, is sent to the Wikidata
query service endpoint. Its purpose is to obtain taxonomical information on
the hierarchical relationships between previously and most recently discovered
types, and those that might be found in Wikidata as generalizations of the
represented concepts, or in other words broader conceptualizations of currently
known types.

This request made to the Wikidata query service results in a list of tuples,
each of them containing one item from the original input set that has been sent
with the query and one item that is defined as a broader conceptualization of
it.

The resulting type taxonomy is a directed, acyclic?* graph G = (V, E) with
V and E being the set of vertices (types) and edges (subtype relationships),
respectively.

The resulting terminological and taxonomical knowledge is stored into the
search engine provided by the locally running ElasticSearch node otherwise used
as the annotation store. This way, axiomatic statements about type relations,

24The acyclicness of the underlying type taxonomy is getting enforced by Wikidata bots.

23

property statistics and type hierarchy can be retrieved efficiently for the com-
putation of candidates for concept and property recommendation.

5.2 The Recommender Module

The recommender module, located within the newly introduced wikidata app
for the neonion Django project, evaluates the terminological information gath-
ered from Wikidata during semantic annotation with entity linking, which was
described in the previous section. The module contains a simple registry mech-
anism for concept or property candidates generators. Subscribing client code
implementing candidate generators is internally being organized and executed
when required. The thereby obtained concept and property candidates for rec-
ommendation are submitted to some logical restrictions, before appropriate re-
sults enter the phase of actual recommendations available to the user.

Proper vocabulary recommendations are reified as instances of the applica-
tion’s data model handled by the Django framework’s object-relational mapping
(ORM), so that they can be persisted, accessed, but also migrated and ex-
changed in the same way as documents, user groups, and concept sets managed
by a deployed neonion instance.

Any candidates generated by the recommender module get checked for nov-
elty against the concepts and properties that already exist within neonion by
using Django’s database-abstraction API. Those candidates specifying a Wiki-
data identifier that is not already linked to any of the existing LinkedConcept
or LinkedProperty objects stored in the database backend are used as input
for candidate reification. This procedure creates a LinkedConcept or Linked
Property object for linking the external resource associated with the recom-
mended term, and an instance of the corresponding Recommendation subclass
shown by Figure 7 in subsubsection 4.2.2.

Recommendations instantiated from one of the two Recommendation sub-
classes are available to the frontend application via a route through the usual
stack of Django views and URL mapping to HTTP interfaces, where REST ser-
vice wrappers created by Angular’s ngResource utility pick up the payload
serialized to JSON and make it available to controller classes that bind the data
to user interface components via directives for the Angular template rendering
system.

The following passages give some specifics on how the recommender module
generates candidate lists from the previously aggregated terminological knowl-
edge.

5.2.1 Concept Recommendations

The basic concept recommender solution employed by the prototype begins
with ranking all item types found in the terminological knowledge store by the

24

frequency of their occurence. It then runs a variant of the eigenvector central-
ity algorithm?® on the type hierarchy taxonomy accessible via the terminology
module.

The formula for recomputation of each vertex’s score is shown in Equation 1.
The algorithms runs iteratively as long as the observed momentum exceeds a
certain threshold value.

v; = T, (1a)
JEN;
1
€T. . =
43N]

(1b)

The ranked results of the eigenvector application undergo an additional step
before being returned as a candidate list. Beginning with the highest scored
type, the generator iterates over the ranked list and for every items removes all
its subtypes from the list remainder. This prevents pollution of the recommen-
dation list that would occur caused by not only presenting false positives, or
items of little interest for the user, but also a potential number of their likewisely
useless supertypes.

5.2.2 Property Recommendations

Property recommendations are generated by querying the Snoopy rule mining
engine, running as an external webservice. As Snoopy requires collections of
seed properties as input, an additional recommender strategy needs to cover
cases where the user starts off with a vocabulary where no properties have been
assigned to any concepts yet. This “fallback” property recommender works
similar to the concept recommender introduced in the previous section, in that
it processes the terminological information gathered by the module described in
subsection 5.1.

Instead of simply rank property suggestions by the number of their occurence
or the number of unique object item classes they co-occur with, variants of the
tf-idf weighting scheme were chosen as a ranking function, with the property in
question being considered the “document” [11].

Based on experiments with possible variants, the number of distinct types co-
occuring with a property was chosen as the metric on which term and (inverse)
document frequency was determined. The alternatives are listed in Figure 9,
with tf-idf, being the method of choice.

While this approach towards recommending properties supposedly suitable
for describing the entities that have been previously annotated exclusively re-
lies on information available for those particular entities, the aforementioned
Snoopy approach takes into account what globally emerging patterns the Wiki-
data properties occur in.

25Cf. introduction on PageRank in [11, pp. 424].

25

pEP idf, idf, idf, tf-idf, tf-idf, tf-idf
P21 (sex or gender) 3.59 4.24 0.89 1.20 0.94 0.89
P735 (given name) 3.59 252 0.78 098 275 0.78
P2632 (place of detention) 331 424 1.28 2.65 1.70 1.28
P106 (occupation) 278 215 0.73 1.62 3.23 0.73
P27 (country of citizenship) 2.45 3.35 0.78 2.23 1.52 0.78
P166 (award received) 236 238 1.28 5.20 6.66 1.28
P19 (place of birth) 1.98 279 0.78 3.06 2.28 0.78
P57 (director) 4.67 4.93 2.64 4.67 4.93 2.64

Figure 9: The tf-idf variant used for property weighting applied to different metrics available
for properties

5.3 Using the Snoopy system

The Snoopy system[7] is an association rule mining engine designed to provide
semi-automatic support for collaborative workflows involving manual population
of semi-structured and schema-less knowledge bases[9].

Among its main objectives, it aims at the stabilizing enforcement of implicit
schema information emerging from collaboratively aggregated datal8].

The upcoming sections touch upon the challenges that come with evolving
knowledge bases, changing schema requirements, employment or absence of au-
thoritatively maintained schema specifications, and other issues that arise from
knowledge aggregation, especially in collaborative initiative.

Based on those considerations, the underlying principles and assumptions of
the Snoopy system will be described and its application for alignment of collab-
oratively built semi-structured content with emergent schemas will be discussed
both in general and regarding its actual employment during realization of the
use case and workflow presented in this paper.

The Snoopy client code to be registered to the recommender module queries
a Snoopy webservice for recommendations based on the list of properties that
have been assigned to the same concept in the neonion local vocabulary. The
more seed properties the input sent to Snoopy contains, the higher the confidence
values of the candidate properties returned. By repeating this for every concept
in a neonion concept set, the properties that are most likely to be useful to the
annotator can be determined.

5.3.1 Schema proliferation and heterogeneity

The quintessential problem targeted by the Snoopy system lies in the hetero-
geneity of vocabulary usage inevitably materializing during the population of a
semi-stuctured knowledge base by a large community of contributors. Without
an explicit schema whose constraint specifications impose restrictions upon the
range of valid properties and attribute values that are available to the contribu-

26

tors, heterogenous use of vocabulary terms is prone to lead to idiosyncrasy and
inconsistency.

Absence of a fixed schema carries the risk of schema drift and proliferation,
manifesting as synonymy of spawning vocabulary terms and properties, ambi-
guities due to lack of shared conceptualizations, and other effects leading to
increased noise, and a decline in performance and meaningfulness of the aggre-
gated contents.

However, defining static schemas, especially for coverage of numerous subject
domains that might be part of a knowledge base intended for universal world
knowledge, involves assumptions and predictions about the data expected to be
modeled[2]. Any attempt to define and maintain such a fixed schema will likely
run into problems while trying to keep up with the demands of contributions
and contributors in a collaborative environment, and it has been shown that
purposeful conduct with the intention of clear-cut, unambiguous and authorative
schema maintenance does not prevent pollution and proliferation[8]. Moreover,
there’s the issues of over- and underspecification that might lead to complex
data modeling challenges arising with the evolution of resources and divergence
between them and even carefully designed schema components|1].

5.3.2 Towards alignment with emergent implicit schemas

The Snoopy system evaluates the entire knowledge base during computation
of association rules. An association rule predicts the co-occurence of certain
disjoint item subsets taken from a global set of items, and consists of an an-
tecedent, a consequent, and a confidence value supporting the prediction that
an observation of the former implies presence of the latter.

In our scenario, Snoopy receives a set of property identifiers and returns a
list of property identifiers taken from the consequent parts of association rules
that match the specified input list.

The underlying assumption is that the most likely properties to be useful for
expressing information about a certain resource are the ones that are used most
frequently in combination with the properties already used on that resource.
This is a kind of popularity-based metric and thus enforces the adoption of an
implicit schema embedded in the collaborative community efforts. Where the
semi-structured, to a certain extent schema-free nature of a knowledge base al-
lows for competing, synonymous, redundant properties to be applied, the Snoopy
approach gives preference to those that have been used most. By suggesting rec-
ommendations generated with this approach, a collaborative system encourages
its users to choose the most frequently applied property over its competitors
that have been used in similar context. Thanks to the repeated evaluation of
the knowledge base, every time the most popular choice gets picked, its support
and thereby its likelyhood to be suggested to users increases.

When a property becomes more likely to be suggested to collaborators for
adding to the information about a half-populated resource, the number of people
who know of it also grows. This leads to a more consistent shared conceptualiza-

27

tion, making it less likely that is misused. Therefore, the implicit schema that is
being enforced by the recommender suggesting the most popular properties over
time aligns with the shared conceptualization that the user base agrees upon.

6 Future Work

The presented prototypical realization of features for the proposed workflow
shows that domain-specific vocabulary customization can easily be integrated
in existing software solutions by connecting a large collaborative knowledge
base as an external terminological authority. This conclusion discusses further
improvements that are thought to add to the usefulness of the presented results.

6.1 Semantics-aware, content-based term recommendation

The presented implementation presents users with a list of concept and property
recommendations as suggestions for addition to the vocabulary they use, mean-
ing that manual review of them is pending. These suggestions appear in order
of their confidence value until the user either decides to add them to the vocab-
ulary or to dismiss them entirely. However, apart from this definitive explicit
user feedback on suggested terms, there is also the implicit feedback a user gives
by continuously ignoring a suggested concept or property pending review. This
implicit feedback, materializing in either the duration for which a recommenda-
tion has been sitting in the suggestion list or the number of times it has been
suggested to the user as a result of them actively opening the recommendations
list, could be taken into account for filtering and sorting. Such incorporation of
implicit feedback by the absence of user interaction has been demonstrated in
[18], where recommendations have a time-to-live (TTL) value, which decreases
over time and affects the position at which the recommendation gets shown.

Our implementation’s recommendation backend generates property recom-
mendation in several ways, the most significant of which makes use of an external
web service running the association rule mining engine Snoopy [7]. The results
of these generators are used to assign properties to concepts where they are ap-
plicable in terms of domain and range, which means that only those properties
get suggested that in effect can be used to relate two Wikidata items to each
other. In contrast to this restriction, Wikidata statements about items can also
assign literal values via some properties, like strings, URLs, or points in time.
Accordingly, future improvements of our prototype could reflect this capability
by evaluating the property target value type information available in the Wiki-
data property metadata, as it has been demonstrated in the automated import
pipeline for reification of Apparatus journal articles into Wikidata item pages
in subsection 3.2.

This would of course require the controls provided by the graphical user
interface to adjust to the determined value types of the properties available for
relation annotation, for instance during the entity linking phase of annotation

28

creation. Currently, the entity linking dialogue only suggests possible Wikidata
item matches for the selected text range meant for annotation. For the sake of
this projected enhancement, however, it should also allow for the classification
of a text selection as a string literal or a date in the Gregorian calendar, so
that the resulting annotation can be found by the connector function used for
neonion’s relation annotation feature described in [3].

References

1]

Ziawasch Abedjan, Johannes Lorey, and Felix Naumann. “Reconciling on-
tologies and the web of data” In: 21st ACM International Conference
on Information and Knowledge Management, CIKM’12, Maui, HI, USA,
October 29 - November 02, 2012. 2012, pp. 1532-1536. poI: 10. 1145/
2396761 . 2398467. URL: http://doi.acm.org/10.1145/2396761 .
2398467.

Ziawasch Abedjan and Felix Naumann. “Amending RDF entities with new
facts”. In: European Semantic Web Conference. Springer. 2014, pp. 131-
143.

André Breitenfeld. “Link the World — A usability study on annotation-
based manual relation extraction”. Master Thesis. Berlin, Germany: Freie
Universitédt Berlin, Nov. 2016.

André Breitenfeld et al. “Enabling Structured Data Generation by Non-
technical Experts”. In: Mensch und Computer 2017 - Tagungsband. Ed.
by Manuel Burghardt et al. Regensburg: Gesellschaft fiir Informatik e.V.,
2017, pp. 181-192.

Michael Clarke and Pam Harley. “How Smart Is Your Content? Using
Semantic Enrichment to Improve Your User Experience and Your Bottom
Line”. In: Science Editor. Vol. 37. Jan. 2014, pp. 40—44.

Fredo Erxleben et al. “Introducing Wikidata to the Linked Data Web”.
In: The Semantic Web - ISWC 2014 - 13th International Semantic Web
Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part
I. 2014, pp. 50-65. DOI: 10.1007/978-3-319-11964-9_4. URL: http:
//dx.doi.org/10.1007/978-3-319-11964-9_4.

Wolfgang Gassler, Eva Zangerle, and Giinther Specht. “Guided Curation
of Semistructured Data in Collaboratively-built Knowledge Bases” In:
Future Generation Computer Systems 31 (Feb. 2014), pp. 111-119. 1SSN:
0167-739X. DOI: 10.1016/j . future.2013.05.008. URL: http://dx.
doi.org/10.1016/j.future.2013.05.008.

29

https://doi.org/10.1145/2396761.2398467
https://doi.org/10.1145/2396761.2398467
http://doi.acm.org/10.1145/2396761.2398467
http://doi.acm.org/10.1145/2396761.2398467
https://doi.org/10.1007/978-3-319-11964-9_4
http://dx.doi.org/10.1007/978-3-319-11964-9_4
http://dx.doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1016/j.future.2013.05.008
http://dx.doi.org/10.1016/j.future.2013.05.008
http://dx.doi.org/10.1016/j.future.2013.05.008

[13]

[14]

[15]

Wolfgang Gassler, Eva Zangerle, and Giinther Specht. “The Snoopy Con-
cept: Fighting heterogeneity in semistructured and collaborative informa-
tion systems by using recommendations”. In: 2011 International Confer-
ence on Collaboration Technologies and Systems, CTS 2011, Philadelphia,
Pennsylvania, USA, May 23-27, 2011. 2011, pp. 61-68. DOI: 10.1109/
CTS . 2011 .5928666. URL: https://doi.org/10.1109/CTS.2011.
5928666.

Wolfgang Gassler et al. “SnoopyDB: Narrowing the Gap Between Struc-
tured and Unstructured Information Using Recommendations”. In: Pro-
ceedings of the 21st ACM Conference on Hypertext and Hypermedia. HT
2010. Toronto, Ontario, Canada: ACM, 2010, pp. 271-272.

Eric Horvitz. “Principles of mixed-initiative user interfaces”. In: Proceed-
ings of the SIGCHI conference on Human Factors in Computing Systems.
ACM. 1999, pp. 159-166.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. In-
troduction to Information Retrieval. New York, NY, USA: Cambridge Uni-
versity Press, 2008.

Miiller-Birn, Claudia and Kliwer, Tina and Breitenfeld, André and Schlegel,
Alexa and Benedix, Lukas. “neonion — combining human and machine in-
telligence”. In: Proceedings of the 18th ACM Conference Companion on

Computer Supported Cooperative Work € Social Computing. New York,
2015, pp. 223-226.

Joachim Neubert. “Wikidata as a Linking Hub for Knowledge Organi-
zation Systems? Integrating an Authority Mapping into Wikidata and
Learning Lessons for KOS Mappings”. In: Proceedings of the 17th Eu-
ropean Networked Knowledge Organization Systems Workshop co-located
with the 21st International Conference on Theory and Practice of Digital
Libraries 2017 (TPDL 2017), Thessaloniki, Greece, September 21st, 2017.
2017, pp. 14-25. URL: http://ceur-ws.org/Vol-1937/paper2.pdf.

Finn Arup Nielsen, Daniel Mietchen, and Egon L. Willighagen. “Scholia,
Scientometrics and Wikidata” In: The Semantic Web: ESWC 2017 Satel-
lite Fvents - ESWC 2017 Satellite Events, Portoroz, Slovenia, May 28 -
June 1, 2017, Revised Selected Papers. 2017, pp. 237-259. DOI: 10.1007/
978-3-319-70407-4_36. URL: https://doi.org/10.1007/978-3-319-
70407-4_36.

Tommaso Di Noia et al. “SPrank: Semantic Path-Based Ranking for Top-
N Recommendations Using Linked Open Data”. In: ACM TIST 8.1 (2016),
9:1-9:34. DOI: 10.1145/2899005. URL: http://doi.acm.org/10.1145/
2899005.

Eugen Ruppert. “Unsupervised Conceptualization and Semantic Text In-
dexing for Information Extraction”. In: The Semantic Web. Latest Ad-
vances and New Domains - 13th International Conference, ESWC 2016,
Heraklion, Crete, Greece, May 29 - June 2, 2016, Proceedings. 2016,

30

https://doi.org/10.1109/CTS.2011.5928666
https://doi.org/10.1109/CTS.2011.5928666
https://doi.org/10.1109/CTS.2011.5928666
https://doi.org/10.1109/CTS.2011.5928666
http://ceur-ws.org/Vol-1937/paper2.pdf
https://doi.org/10.1007/978-3-319-70407-4_36
https://doi.org/10.1007/978-3-319-70407-4_36
https://doi.org/10.1007/978-3-319-70407-4_36
https://doi.org/10.1007/978-3-319-70407-4_36
https://doi.org/10.1145/2899005
http://doi.acm.org/10.1145/2899005
http://doi.acm.org/10.1145/2899005

[19]

[20]

[21]

pp. 853-862. DOI: 10.1007/978-3-319-34129-3 _54. URL: https:
//doi.org/10.1007/978-3-319-34129-3_54.

David Shotton et al. “Adventures in Semantic Publishing: Exemplar Se-
mantic Enhancements of a Research Article”. In: PLOS Computational
Biology 5.4 (Apr. 2009), pp. 1-17. DOI: 10.1371/journal.pcbi.1000361.
URL: https://doi.org/10.1371/journal.pcbi.1000361.

Yordan Terziev et al. “Ontology-based Recommender System for Infor-
mation Support in Knowledge-intensive Processes”. In: Proceedings of the
15th International Conference on Knowledge Technologies and Data-driven
Business. i-KNOW ’15. Graz, Austria: ACM, 2015, pp. 1-8.

F. T. Ulaby. “Electronic journals versus print: Publishing in the elec-
tronic age [Point of view]”. In: Proceedings of the IEEE 94.6 (June 2006),
pp- 1043-1044. 1sSN: 0018-9219. po1: 10.1109/JPROC.2006.875788.

Tacopo Vagliano et al. “Content Recommendation through Semantic An-
notation of User Reviews and Linked Data - An Extended Technical Re-
port”. In: CoRR abs/1709.09973 (2017). arXiv: 1709.09973. URL: http:
//arxiv.org/abs/1709.09973.

Brian Whitworth and Robert S. Friedman. “Reinventing Academic Pub-
lishing Online. Part II: A Socio-technical Vision”. In: First Monday 14.9
(2009). URL: http://firstmonday . org/htbin/cgiwrap/bin/ojs/
index.php/fm/article/view/2642.

31

https://doi.org/10.1007/978-3-319-34129-3_54
https://doi.org/10.1007/978-3-319-34129-3_54
https://doi.org/10.1007/978-3-319-34129-3_54
https://doi.org/10.1371/journal.pcbi.1000361
https://doi.org/10.1371/journal.pcbi.1000361
https://doi.org/10.1109/JPROC.2006.875788
https://arxiv.org/abs/1709.09973
http://arxiv.org/abs/1709.09973
http://arxiv.org/abs/1709.09973
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/2642
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/2642

	Introduction and problem statement
	User-centered semantic enhancement workflow
	Import of research resources into Wikidata
	Metadata mapping
	Import Automation
	Challenges and Shortcomings

	Connecting neonion to Wikidata
	The neonion software architecture
	Accessing Wikidata from within neonion
	Item search for entity linking
	Suggesting terminology for vocabulary amendment
	Share subject-matter expertise by publishing verifiable facts

	Building an extensible engine for integrating content-based term recommenders
	The Terminology Module
	The Recommender Module
	Concept Recommendations
	Property Recommendations

	Using the Snoopy system
	Schema proliferation and heterogeneity
	Towards alignment with emergent implicit schemas

	Future Work
	Semantics-aware, content-based term recommendation

