Model Selection Methods for Panel Vector

Autoregressive Models

INAUGURAL-DISSERTATION

zur Erlangung des akademischen Grades
eines Doktors der Wirtschaftswissenschaft
doctor rerum politicarum

(Dr. rer. pol.)

am Fachbereich Wirtschaftswissenschaft

der Freien Universitat Berlin

Freie Universitat ) | Berlin

vorgelegt von

Annika Schniicker

Berlin, 2018



Erstgutachter:

Zweitgutachter:

Tag der Disputation:

Prof. Dr. Helmut Liitkepohl

Freie Universitdt Berlin und DIW Berlin
Prof. Dr. Dieter Nautz

Professur fiir Okonometrie

Freie Universitat Berlin

11. Juli 2018



In memory of Hedwig



Acknowledgments

First and foremost, I am grateful for the support, advice, and encouragement of my su-
pervisor Helmut Liitkepohl. He gave me the opportunity to work independently on my
preferred topics and provided constant guidance. I would also like to thank my second
supervisor, Dieter Nautz, for his support and comments. I am very thankful to Tomasz
Wozniak for giving me the opportunity to visit the University of Melbourne, for being
an extremely attentive and kind host, and for fruitful discussions. I thank my co-author
Gregor von Schweinitz for the productive and inspiring cooperation. I am also grateful
for the constructive questions and comments of the participants of the regular Seminar
Empirical Macroeconomics of the Freie Universitat Berlin.

I wrote this dissertation as a member of the DIW Berlin Graduate Center. I am grateful
for the support of the GC and the great environment. In particular, I thank the GC
macro PhD students for hours of discussions and my GC 2013 cohort for a memorable
first year. I thank the GC team and especially Juliane Metzner and Georg Weizsécker for
their support and understanding particularly during the job market.

I am grateful to my officemates and friends, Niels Aka and Hedwig Plamper, for enjoy-
able conversations beyond economics and GC work. I also thank Pablo Anaya Longaric,
Daniel Bierbaumer, Caterina Forti Grazzini, Marie Le Mouel, and Ulrich Schneider for
uncountable lunches, coffee breaks, and their friendship outside the DIW.

I thank my family for their encouragement, their belief in me, and for fully endorsing
my decisions and priorities. Above all, I am extremely grateful for the endless support
and patience of Georg.

Berlin, May 2018 Annika Schniicker

IV



Erklarung zu Ko-Autorenschaften

Diese Dissertation besteht aus drei (Arbeits-)Papieren, von denen eines in Zusammen-
arbeit mit einem Koautor entstanden ist. Der Eigenanteil an Konzeption, Durchfithrung

und Berichtsabfassung der Kapitel lasst sich folgendermafsen zusammenfassen:

e Annika Schniicker:
“Restrictions Search for Panel Vector Autoregressive Models”

Eigenanteil: 100 Prozent

e Annika Schniicker:

“Penalized Estimation of Panel Vector Autoregressive Models: A Lasso
Approach”

Eigenanteil: 100 Prozent

e Annika Schniicker und Gregor von Schweinitz:
“International Monetary Policy Transmission”

FEigenanteil: 50 Prozent



Liste der Vorpublikationen

Working Papers
Schniicker, A., 2016. Restrictions Search for Panel VARs. DIW Discussion Papers

1612, Berlin
Vorpublikation von Kapitel 1

VI



Contents

Acknowledgments

Erklarung zu Ko-Autorenschaften
Liste der Vorpublikationen

List of Figures

List of Tables

List of Abbreviations

Summary

Zusammenfassung

Introduction and Overview

1 Restrictions Search for Panel Vector Autoregressive Models

1.1 Introduction . . . . . . . . . . ...
1.2 Literature . . . . . . . . . ..
1.3 PVAR Model Restrictions . . . . . ... ... ... ... ...
1.4 Selection Prior for PVAR Models . . . . .. ... ... ... ...
1.5 Monte Carlo Simulation . . . . .. .. ... ... .........
1.5.1 Simulation Set-Ups . . . . . . . ... ... ... ... ...
1.5.2 Results. . . .. ... ..
1.6  Empirical Application . . . . . .. ... ... ... ... ...
1.6.1 Data and Procedure . . . . . ... ... ... .......
1.6.2 Results. . . . ... .. . ...
1.7 Conclusions . . . . . . . . . ..
1.A Gibbs Sampler Algorithm . . . ... ... ... ... ... ....
1.B Hyperparameter . . . . . . . . . .. ...

1A%

VI

XI

XIII

XV

XVII

XIX

XXI

00 N W =



Contents

1.C Monte Carlo Simulation . . . . . ... ... .. .. ... ........ 29
2 Penalized Estimation of Panel Vector Autoregressive Models 31
2.1 Imntroduction . . . . . . . .. ... 31
2.2 Literature . . . . . . . . ... 34
2.3 The lasso for PVAR Models . . . . . . ... .. .. ... ... ..... 37
2.3.1 PVAR Model . . . .. . ... . 37
2.3.2 The lasso Estimator . . . . .. ... ... ... ... ..... 38
2.3.3 Extended Penalty Term and Loss Function for PVAR Models . 38
2.3.4 Asymptotic Properties . . . . . ... ... 43
2.3.5 Comparison to Other Estimation Procedures for PVAR Models 44
2.4 Simulation Studies . . . . . ... 47
2.4.1 Simulation Set-Ups . . . . . . . .. ... ... ... ... 47
2.4.2 Performance Criteria . . . . . . ... ... ... ... ...... 50
2.4.3 Simulation Results . . . . ... .. ... ... ... ... ... 51
2.5 Forecasting with Multi-Country Models . . . . . . . ... ... .. ... %)
2.5.1 Forecasting Including a Global Dimension . . . . . ... .. .. 5Y)
2.5.2  Forecasting Applications . . . . . .. ... 55
2.5.3 Results of the Forecasting Exercises . . . . . . . . .. ... ... o7
2.6 Conclusions . . . . . . . . . ... 60
2.A The lasso Estimator. . . . . . . . . .. ... ... ... . 62
2.B  Estimation of the Covariance Matrix . . . . . . ... ... ... .... 63
2.C Optimization Algorithm . . . . . . . ... ... ... ... .. ..... 64
2.D  Proof of Selection Consistency and Asymptotic Normality . . . . . .. 65
2.D.1 Proof of Asymptotic Normality . . . ... ... ... ... ... 66
2.D.2 Proof of Selection Consistency . . . . . .. ... ... ... ... 67
2.E Simulation . . . . . ... 68
2.E.1 Additional Simulation Results . . . . . ... ... ... ..... 68
2.E.2 Simulation Results for the Model with Covariance Estimated
with OLS . . . . . . . 71
2.F Forecasting Application. . . . . . . .. ... Lo 73
2.F.1 Penalty Parameters . . . . . . . . ... ... L. 73
2.F.2 Additional Results of the Forecasting Exercises . . . . . .. .. 73
3 International Monetary Policy Transmission 79
3.1 Imtroduction . . . . . . . .. . 79
3.2 Literature . . . . . . . . ... 82

VIII



Contents

3.3 Cross-Border Transmission of Monetary Policy . . . . . . ... .. ... 85
3.3.1 Monetary Policy in the United States, United Kingdom, and the
Euro Area . . . . . . . .. 85
3.3.2 Transmission Channels . . . . . . ... ... ... ........ 86
3.4 Methodology . . . . . . . . .. 88
3.4.1 Three-Country Structural VAR Model . . . . . . ... ... .. 88
3.4.2 Identification of Monetary Policy Shocks . . . . . ... ... .. 90
3.4.3 Bayesian Proxy Three-Country Structural VAR Model . . . . . 91
3.4.4 Prior and Posterior Distributions . . . . .. .. ... ... ... 95
3.5 Data . . . . . . 98
3.5.1 Proxy Series . . . . . ... 98
3.5.2 Variables in the VAR Model . . . . . . . ... ... ... .... 102
3.6 Results. . . . . . . . 105
3.6.1 Domestic Monetary Policy Transmission . . . . . .. ... ... 105
3.6.2 International Monetary Policy Transmission . . . . . .. .. .. 109
3.6.3 Discussion of the Results . . . . . .. ... ... .. ... .... 113
3.7 Conclusions . . . . . . . . ... 116
3.A Posterior Distributions . . . . . . ... ... oL 118
3.B  Estimation Algorithm . . . . . . . . ... ... ... ... L. 118
3.C Data . . . . . . . e 120
3.D Prior Choices . . . . . . . . . .. 122
3.E Relevance of the Proxies . . . . . . .. ... .. ... ... ....... 123
3.F Additional Proxy VAR Results. . . . . .. .. ... ... . ... ... 125
3.F.1 Results with High Relevance Prior for US and UK without Ad-
ditional Sign Restriction on Credit Spread Variable . . . . . .. 125
3.F.2 Results with Inverse Gamma Prior . . . . ... ... ... ... 128
3.F.3 Results for the EA with Different Monetary Policy Indicator . . 131
3.F.4 Results for the UK with Different Proxies . . .. .. ... ... 131
3.F.5 Results for Three-Country VAR Models with Identified US Mon-
etary Policy Shock . . . . . . ... ... 134
Bibliography XXVII
Eidesstattliche Erklarung XXXVI
Liste verwendeter Hilfsmittel XXXVII

IX






List of Figures

1.1

1.2
1.3
1.4

2.1
2.2
2.3
24
2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Range of posterior probabilities oz%? =0, T%C = 0, and ozé-';- = o’ and

ratio of restriction set with threshold value 0.5 . . . . . . . ... ... 15
Responses of US variables to a shock to the US interest rate . . . . . . 23
Responses of foreign interest rates to a shock to the US interest rate . 24

Share of restrictions set according to threshold value - simulations 1 and 2 29

Sparsity pattern of the coefficient matrix for model (1) . . . . . . . .. 59
Boxplots of MSEs and MSFEs relative to OLS for simulation 1 . . . . 69
Boxplots of MSEs and MSFEs relative to OLS for simulation 2 . . . . 70
Sparsity pattern of the coefficient matrix for model (1): lag 4 and 5. . 77
Sparsity pattern of the covariance matrix for model (1). . . . . . . .. 7
International monetary policy transmission . . . . . . .. .. .. ... 87
Monetary policy surprise series . . . . . . . . . . ... 99
Cross-correlations of monetary policy surprise series . . . . . . . . .. 101

Model (1): Responses of US variables to a contractionary US monetary

policy shock . . . . . . . .. 105
Model (2): Responses of UK variables to a contractionary UK monetary
policy shock . . . . . . ..o 107
Model (3): Responses of EA variables to a contractionary EA monetary
policy shock . . . . . . .. 108
Model (4): Responses of exchange rates and US variables to a contrac-
tionary US monetary policy shock . . . .. ... ... ... ... ... 109
Model (5): Responses of exchange rates and UK variables to a contrac-
tionary UK monetary policy shock . . . . . ... ... ... ... ... 110
Model (6): Responses of exchange rates and EA variables to a contrac-
tionary EA monetary policy shock . . . . . . ... ... ... ... .. 111
Model (7): Responses of US, UK, and EA variables to a contractionary
US monetary policy shock . . . . . ... ... ... oL 112

XI



List of Figures

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

Model (8): Responses of US, UK, and EA variables to a contractionary

UK monetary policy shock . . . . ... ... .. ... ... ... .. 113
Model (9): Responses of US, UK, and EA variables to a contractionary
EA monetary policy shock . . . . ... ... 00000 114

Model (1): Posterior distributions of byg¢ with different priors for o, s 123
Model (2): Posterior distributions of byx with different priors for o, yx 124
Model (3): Posterior distributions of bg4 with different priors for o, g4 125
Responses of US variables to a contractionary US monetary policy shock
without sign restriction . . . . . . ... ..o 126
Responses of UK variables to a contractionary UK monetary policy
shock without sign restriction . . . . . . . . . .. ... ... ... ... 127
Responses of US variables to a contractionary US monetary policy shock
- inverse Gamma prior . . . . . . ... 128
Responses of UK variables to a contractionary UK monetary policy
shock - inverse Gamma prior . . . . . . ... ..o 129
Responses of EA variables to a contractionary EA monetary policy
shock - inverse Gamma prior . . . . . .. ... L 130
Responses of EA variables to a contractionary EA monetary policy
shock - EA government bond 2-year rate as policy indicator . . . . . . 131
Responses of UK variables to a contractionary UK monetary policy
shock - proxy of Rogers et al. (2017) . . . . . . ... ... .. .. ... 132
Responses of UK variables to a contractionary UK monetary policy
shock - proxy around rate announcements of Gerko and Rey (2017) . . 133
Responses of foreign stock prices, exchange rates and US variables to a
contractionary US monetary policy shock . . . . ... ... ... ... 134
Responses of foreign interest rates, exchange rates and US variables to

a contractionary US monetary policy shock . . . . . ... .. .. ... 135

XII



List of Tables

1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8

2.9
2.10
2.11

2.12
2.13
2.14

Deviation for estimated coefficient matrix A and > from the true values 14
Accuracy of selecting DI restrictions: posterior probabilities p(ajy = 0) 16
Accuracy of selecting SI restrictions: posterior probabilities p(¢/% = 0) 16

Accuracy of selecting CSH restrictions: posterior probabilities p(ozé’} =

o 17
Mean squared forecast errors relative to unrestricted VAR model . . . 20
Posterior predictive density relative to unrestricted VAR model . . . . 21
10 highest posterior probabilities for the restrictions . . . . . . . . .. 22
10 lowest posterior probabilities for the restrictions . . . . . . . .. .. 23
Hyperparameters . . . . . . . . . . . ..o 28
Summary of simulation set-ups . . . . . ... ... 49
Overview of estimators . . . . . . . . . . ... ... ... ... ..., 51
Performance evaluation of estimators . . . . . .. ... ... ... ... 52
Mean squared forecast errors relative to OLS . . . . . .. . ... ... 54
Overview of empirical applications . . . . . . ... ... .. ... ... 56
Mean squared forecast error relative to OLS for model (1) . . . . . .. 57

One-step ahead mean squared forecast error relative to OLS for model

(1) . 58
Mean squared forecast error relative to mean forecast for model (2) and

model (3) . . . . 59
Diebold-Mariano Test: test statistic and p-values . . . . . . .. .. .. 68

Performance evaluation of estimators: covariance estimated with OLS 71

Mean squared forecast errors relative to OLS: covariance estimated with
Grid values for penalty parameters - Application . . . . . .. .. ... 73

Model (1): Two-steps ahead mean squared forecast error relative to OLS 74

Model (1): Six-steps ahead mean squared forecast error relative to OLS 74

XIIT



List of Tables

2.15

2.16

2.17

2.18

3.1
3.2
3.3
3.4
3.5
3.6

Model (1): Twelve-steps ahead mean squared forecast error relative to

Model (1): Average mean squared forecast error relative to OLS over
all forecast horizons . . . . . . ... Lo 75

Diebold-Mariano test for model (1): Test statistic and p-values - relative

to lassoPVAR . . . . . . . . 76
Diebold-Mariano test for model (2) and model (3): Test statistic and

p-values - relative to lassoPVAR . . . . . . . . . ... ... ... ... 76
Model specifications: Individual country VAR models . . . . . . . .. 102
Model specifications: Three-country VAR models . . . . . . . . .. .. 103
Relevance measure based on posteriors for b; and o,,; with different priors115
Variables of the United States . . . . . ... ... ... . ... .... 120
Variables of the United Kingdom . . . . . . .. .. .. ... ... ... 121
Variables of the euro area . . . . . . . . .. ... 122

XIV



List of Abbreviations

APD
BMA
BoE
BVAR
CA
cC
CPI
CSH
DE
DGP
DI

DK
EA
ECB
EBP
EME
ES
FAVAR
Fed
FOMC
FR
GDP
glasso
GLS
GR
GVAR
IE
IMF
IP

absolute percentage deviation
Bayesian model averaging

Bank of England

Bayesian vector autoregressive
Canada

cross-sectional shrinkage approach
consumer price index
cross-sectional heterogeneities
Germany

data generating process

dynamic interdependencies
Denmark

euro area

European Central Bank

excess bond premium

emerging markets economies
Spain

factor augmented vector autoregressive
Federal Reserve System

Federal Open Market Committee
France

gross domestic product

graphical least absolute shrinkage and selection operator
generalized least squares

Greece

global vector autoregressive
Ireland

International Monetary Fund

industrial production

XV



List of Abbreviations

IR

IT

JP

lasso
lassoPVAR

LS

MC
MCMC
MSE
MSFE
OECD
OLS
PL

PT
PVAR
REER
SA

SI

g4
SSSS
SSVS
SSVSP

SUR
SVAR
UK
UN
Us
VAR

interest rate

Italy

Japan

least absolute shrinkage and selection operator

least absolute shrinkage and selection operator for panel
vector autoregressive models

least squares

Monte Carlo

Markov Chain Monte Carlo

mean squared error

mean squared forecast error

Organisation for Economic Co-Operation and Development
ordinary least squares

predictive density

Portugal

panel vector autoregressive

real effective exchange rate

seasonally adjusted

static interdependencies

stochastic search specification selection

stochastic search specification selection

stochastic search variable selection

stochastic search variable selection for panel vector autore-
gressive models

seemingly unrelated regression

structural vector autoregressive

United Kingdom

unemployment rate

United States

vector autoregressive

XVI



Summary

Multi-country dynamic time series models, called panel vector autoregressive (PVAR)
models, allow for multilateral cross-border linkages and country-specific dependencies
among variables. Thus, these models are excellent tools for macroeconomic spillover
analyses. However, as they jointly model multiple variables of several countries, the
dimensionality of unrestricted PVAR models is large and the estimation feasibility
is thus not guaranteed with standard methods. Hence, model selection techniques
which restrict PVAR models and thereby reduce the dimensionality of the models are
necessary to ensure the estimation feasibility. Chapters 1 and 2 of this thesis propose
Bayesian and classical selection methods for PVAR models which search for restrictions
supported by the data and which take specific panel properties into account. Further-
more, theoretical arguments for commonly used recursive structural identification in
multi-country models are often insufficient. The third chapter analyzes international
monetary policy spillovers in a three-country vector autoregressive model using exter-
nal instruments to identify monetary policy shocks.

The first chapter introduces a Bayesian selection prior for PVAR models. The pro-
posed selection prior allows for a data-based restrictions search ensuring the estimation
feasibility. The prior is specified as a mixture distribution which allows to shrink param-
eters to restrictions or to estimate them freely. The prior specification differentiates
between domestic and foreign variables by searching for zero restrictions on lagged
foreign variables and for homogeneity across countries for coefficients of domestic vari-
ables. The prior, thereby, allows for a flexible panel structure and a restrictions search
on single elements. Furthermore, the prior searches for restrictions on the covariance
matrix. A Monte Carlo simulation shows that the selection prior outperforms alterna-
tive estimators for flexible panel structures in terms of mean squared errors measuring
the deviation of the parameter estimates from the true values. Furthermore, a forecast
exercise for G7 countries demonstrates that forecast performance improves for the pro-
posed prior focusing on sparsity in form of no dynamic interdependencies.

The second chapter proposes a new lasso (least absolute shrinkage and selection op-

erator) for estimating PVAR models. The penalized regression ensures the feasibility
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Summary

of the estimation by specifying a shrinkage penalty that accommodates time series
and cross section characteristics. It thereby accounts for the inherent panel structure
within the data. Furthermore, using the weighted sum of squared residuals as the loss
function enables the lasso for PVAR models to take into account correlations between
cross-sectional units in the penalized regression. The specification of the penalty term
allows to establish the asymptotic oracle properties. Given large and sparse models,
simulation results point towards advantages of using the lasso for PVAR models over
ordinary least squares estimation, standard lasso techniques as well as Bayesian esti-
mators in terms of mean squared errors measuring the deviation of the estimates from
their true values and forecast accuracy. Empirical forecasting applications with up to
ten countries and four variables support these findings.

The third chapter assesses the international macroeconomic spillover effects of mon-
etary policy shocks for the United States, the United Kingdom, and the euro area. The
Bayesian proxy three-country structural vector autoregressive model accounts for inter-
national interdependencies and traces the dynamic cross-border responses of macroe-
conomic variables to monetary policy shocks identified with external instruments. The
instruments for monetary policy surprises capture changes in high frequency govern-
ment bond future contracts around policy announcement dates. The results provide

no evidence for cross-border macroeconomic effects.

Keywords: Model selection, multivariate time series, large vector autoregressions,
multi-country models, panel data, selection prior, lasso, penalized regression, shrinkage
estimation, international monetary policy spillover, external instrument identification,

high-frequency identification

JEL Classification: C11, C32, C33, C52, E52, E5S, F42
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Zusammenfassung

Dynamische Zeitreihenmodelle fiir mehrere Lander, genannt Panel vektorautoregres-
sive (PVAR) Modelle, kénnen gleichzeitig multilaterale internationale Abhéngigkeiten
und landerspezifische Eigenschaften modellieren. Damit eignen sich diese Modelle her-
vorragend zur Analyse von globalen, makrockonomischen Entwicklungen und grenz-
iiberschreitenden Effekten. PVAR Modelle integrieren Variablen mehrerer Landern in
ein gemeinsames Modell. Somit ist die Dimensionalitét der nicht restringierten Modelle
so grof, dass diese haufig nicht mehr mit Standardmethoden geschétzt werden kénnen.
Um die Schétzbarkeit der Modelle zu garantieren, ist es notwendig, PVAR Modelle
mithilfe Methoden der Modellselektion zu beschranken und damit die Dimensionalitét
der Modelle zu reduzieren. Kapitel 1 und 2 dieser Dissertation fithren bayesianische
und frequentistische Selektionsmethoden fiir PVAR Modelle ein, die datenbasierte Re-
striktionen suchen und dabei spezifische Eigenschaften von Paneldaten beriicksichtigen.
Dariiber hinaus ist die strukturelle Identifizierung von PVAR Modellen aufgrund un-
zureichender theoretischer Argumente oftmals problematisch. Das dritte Kapitel ana-
lysiert internationale Effekte von geldpolitischen Schocks in einem PVAR Modell. Die
strukturelle Identifizierung der geldpolitischen Schocks basiert auf externen Instrumen-
ten.

Das erste Kapitel fiihrt einen bayesianischen selection prior fiir PVAR Modelle ein.
Die vorgeschlagene a-priori Verteilung ermdglicht eine datenbasierte Suche von Re-
striktionen, die die Schétzbarkeit des Modells garantieren. Die a-priori Verteilung ist
als Mischverteilung spezifiziert, die Parameter gegen Restriktionen schrumpft oder frei
schétzt. Die Spezifizierung der a-priori Verteilung unterscheidet zwischen inldndischen
und auslédndischen Variablen, indem nach Null-Restriktionen fiir ausléandische Varia-
blen und Homogenitéten zwischen Léandern fiir inldndische Variablen gesucht wird. Die
a-priori Verteilung nimmt somit eine flexible Panelstruktur an und fiihrt eine Restrik-
tionssuche basierend auf einzelnen Variablen durch. Die Ergebnisse von Monte Carlo
Simulationen zeigen, dass bei flexibleren Panelstrukturen die mittleren quadratischen
Abweichungen der geschitzten Werte vom wahren Wert mit dem vorgeschlagenen se-

lection prior geringer sind als bei alternativen Schatzmethoden. Ebenso demonstriert
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Zusammenfassung

eine Prognoseanwendung fiir G7 Léander, dass die Prognosefdhigkeit der eingefiihrten
a-priori Verteilung verbessert wird, wenn nach dem Fehlen von dynamischen Abhén-
gigkeiten gesucht wird.

Das zweite Kapitel fiithrt einen neuen lasso (least absolute shrinkage and selection
operator) zur Schétzung von Panel vektorautoregressiven Modellen ein. Dieser regu-
larisierte Regressionsschitzer gewéahrleistet die Schidtzung, indem eine Beschrankung
spezifiziert wird, die sowohl Eigenschaften von Zeitreihen- als auch von Querschnitt-
daten beriicksichtigt. Die in den Daten enthaltene Panelstruktur wird somit erfasst.
Aufserdem bertiicksichtigt die Spezifizierung der Verlustfunktion in der regularisierten
Schétzung als gewichtete Residuenquadratsumme Korrelationen zwischen den Quer-
schnittseinheiten. Die Spezifizierung der Beschriankung erlaubt es zudem, die asympto-
tischen Oracle Eigenschaften nachzuweisen. Die Monte Carlo Simulationen mit grofsen
und sparsamen Modellen demonstrieren die Vorteile des lasso fiir PVAR Modelle ge-
geniiber dem Kleinste-Quadrate-Schétzer, Standardvarianten des lasso und weiteren
bayesianischen Schéitzmethoden. So minimiert der lasso fiir PVAR Modelle die mittle-
ren quadratischen Abweichungen der geschétzten Werte von deren wahren Werten und
verbessert die Prognosegenauigkeit. Eine empirische Anwendung zur Prognose mit bis
zu zehn Landern und vier Variablen unterstiitzt die Ergebnisse.

Das dritte Kapitel untersucht die internationalen makrockonomischen Effekte von
geldpolitischen Schocks fiir die Vereinigten Staaten, Grofbritannien und fiir den Eu-
roraum. Das verwendete bayesianische Proxy strukturelle vektorautoregressive Modell
fiir die drei Lander kann multilaterale globale Verkniipfungen erfassen und zeichnet die
dynamischen grenziiberschreitenden makrookonomischen Auswirkungen von geldpoli-
tischen Schocks nach. Die strukturellen geldpolitischen Schocks werden mit externen
Instrumenten identifiziert. Die Instrumente erfassen Veranderungen der hochfrequenten
Daten fiir Futures auf Staatsanleihen an Tagen mit geldpolitischen Ankiindigungen. Die

Resultate zeigen keine Evidenz fiir grenziiberschreitende makrockonomische Effekte.

XX



Introduction and Overview

Large dynamic multivariate time series models, called large vector autoregressive (large
VAR) models, are an important tool for macroeconomic analyses. Policy makers in cen-
tral banks or government institutions are concerned with questions involving a large
number of time series to capture complex macroeconomic dynamics. Moreover, the
number of variables of interest can rapidly grow when the focus is on disaggregated
data or when a cross-sectional dimension is incorporated. Furthermore, large VARs be-
come increasingly relevant as large datasets for macroeconomic variables are available
and computational capacities exist to estimate these models. Among others, Bernanke
et al. (2005), Banbura et al. (2010), and Jarocinski and Mackowiak (2017) show that
VAR models including numerous time series perform well for forecasting and structural
analysis.

However, standard VAR models are limited by the number of variables which can
be included. These models therefore face a trade-off between estimation precision and
omitted variable bias. Including many variables in a VAR model with limited number of
time series observations reduces the estimation precision. The number of observations
can easily be lower than the number of parameters to estimate. In that case, standard
estimation techniques such as ordinary least squares are not feasible any more. Yet,
excluding variables from the model to reduce the dimensionality can cause an omitted
variables bias. This bias can have an impact on conclusions of structural analyses.
Additionally, the decision which variables to include in the model is often ad hoc as in
many cases economic theory may provide insufficient guidance.

Different model selection techniques for large VAR models overcome the issue of es-
timation feasibility by reducing the model dimension. Among them, Bayesian selection
methods reduce the parameter space by using specific prior distributions which shrink
coefficients. Classical shrinkage methods such as ridge regression or the least absolute
shrinkage and selection operator constrain ordinary least squares estimation by intro-
ducing penalty terms. These penalties lead to a shrinkage of coefficient estimates or set

parameters equal to zero. Moreover, the use of latent factors in a large model enables

'Kilian and Liitkepohl (2017), Chapter 16, elaborate further on this issue.
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Introduction and Overview

to extract certain information of multiple variables in a lower number of factors.

This thesis focuses on model selection methods for specific large VAR models, namely,
large dynamic multi-country time series models, called panel vector autoregressive
(PVAR) models. The dimensionality of PVAR models is large as they trace the dynamic
interactions of variables of multiple countries in one model. A PVAR model jointly in-
cludes multiple variables of several cross-sectional units. The unrestricted PVAR model
has three key characteristics. First, it allows for dynamic interdependencies by includ-
ing lagged endogenous variables of all countries in each equation. Second, the model
accounts for cross-country heterogeneities since coefficient matrices are country-specific.
Third, it captures static interdependencies as an unrestricted covariance matrix allows
for correlation between all error terms of all countries. Typical restrictions for PVAR
models ensuring the estimation feasibility are allowing interdependencies to exist only
between specific country and variable combinations or assuming that coefficients are
homogeneous across economies. This thesis focuses on medium-sized models as the
number of countries included does not exceed ten. These medium-sized models already
lead to model selection challenges.

To date, three approaches for estimating PVAR models exist in the literature. The
first two estimate a priori unrestricted PVAR models while the third approach restricts
the PVAR model beforehand. The first approach is introduced by Koop and Korobilis
(2015b) who propose a Bayesian selection prior, searching for homogeneity and no in-
terdependency restrictions across countries. The second approach is a Bayesian factor
approach proposed by Canova and Ciccarelli (2004, 2009). The factor approach re-
duces the dimension by aggregating information in country-specific, variable-specific
and common factors. The third approach sets a priori homogeneity or no dependency
restrictions based on theoretical arguments. Canova and Ciccarelli (2013) and Breitung
and Roling (2015) show how to estimate these simplified models.

Among others, Banbura et al. (2010), Song and Bickel (2011), Koop and Korobilis
(2015b), Nicholson et al. (2016), and Korobilis (2016) provide evidence that using
model selection techniques for VAR models which account for specific characteristics
such as time series or cross-sectional properties is beneficial in terms of forecasting
performance. In line with this, the first two chapters of this thesis introduce two dif-
ferent approaches for finding restrictions for PVAR models, ensuring the estimation
feasibility in a data driven way. The proposed selection methods search for restrictions
along one or more panel characteristics such as dynamic and static interdependencies
and homogeneity among coefficients.

In general, PVAR models are of great interest for empirical analyses. In the un-

restricted form they provide an extremely flexible way to model linkages and hetero-
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geneities across multiple variables of several countries. Globally interlinked financial
and real markets intensify the interest in spillover analyses. Accounting for an in-
ternational dimension is crucial, as a model can otherwise be affected by an omitted
variable bias due to excluding foreign variables. The application of PVAR models is
not restricted to the analysis of dynamics across countries. The models have a wide
range of applications as PVAR models can also be used to analyze for example sectoral,
firm-specific, or regional data.

However, beside the reduced form estimation, the structural identification of PVAR
models is challenging and mainly based on an easy to implement recursive identification.
Yet, determining the order of variables in a recursive identification for multi-country
models is troublesome due to the lack of theoretical justifications. The third chapter of
this thesis applies a three-country VAR model to a spillover analysis and demonstrates
a way how to structurally identify shocks in a multi-country model.

In the first chapter, Restrictions Search for Panel Vector Autoregressive Models, 1
propose a Bayesian selection prior for PVAR models. The prior differentiates between
own countries’ and foreign variables. It searches (i) for zero restrictions for coefficients
measuring the lagged impact of foreign variables, (ii) for homogeneity across countries
among coefficients of domestic variables, and (iii) for correlations between error terms
of different countries. The selection prior is a mixture of two normal distributions
centering on a restriction with a large and a small variance. The posterior puts more
weight on a restriction if it is supported by the data. The findings of a simulation and
an empirical application for G7 countries confirm the benefit of the prior. Compared
to priors based on less flexible panel structures, models with priors searching for no
dynamic interdependency restrictions reduce mean squared errors measuring the devi-
ations of coefficient estimates from the true values in the Monte Carlo simulations and
improve forecast performance.

Chapter 1 contributes to the literature on estimation strategies for PVAR models by
allowing for a flexible panel structure in the prior specification. It extends the prior of
Koop and Korobilis (2015b) by specifying a panel structure which separates domestic
and foreign variables. This flexible structure enables one to select the lag length of each
variable separately. The posterior probabilities for restrictions provide a ranking based
on which restrictions can be set. Furthermore, the prior takes the panel structure into
account and thus extends other selection priors for time series data. The flexible panel
structure assumed in the prior allows for a wide range of empirical applications being
especially beneficial for applications including real and financial variables.

The second chapter, Penalized Estimation of Panel Vector Autoregressive Models:

A Lasso Approach, proposes a new lasso (least absolute shrinkage and selection opera-
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tor) as an estimation method for PVAR models. This frequentist penalized estimation
technique reduces the number of estimated parameters using a penalty term. It sets
some coefficients to zero and shrinks others. I introduce a new specification of the
penalty term, which builds on characteristics of macroeconomic panel data. That is,
first, variables have a decreasing impact on a variable with increasing time distance.
Second, variables of one country have a larger impact on variables of the same coun-
try than on variables of other countries. To model these properties, the penalty term
consists of three parts: First, it constrains coefficients depending on the time distance
to the dependent variable. Thus, it captures that more recent variables carry more
information for the model. Second, the penalty constrains coefficients from the same
country differently than from foreign countries since variables from the same country
may be more relevant than variables from a different country. Third, a basic penalty
that varies across equations is used. Furthermore, a modified loss function of the opti-
mization problem includes the weighted sum of squared residuals. Thereby, the model
does not restrict correlations between error terms of different countries. The results
of Monte Carlo simulations and of an empirical forecasting exercise support the use
of the lasso for PVAR models. Compared to ordinary least squares estimation, the
proposed estimator improves the forecast accuracy, reduces mean squared errors, and
is also feasible in very large systems. The lasso for PVAR models outperforms other
estimation procedures for PVAR models in large systems.

Chapter 2 contributes to the literature, first, by proposing a new lasso suitable for
PVAR models. Second, the asymptotic properties of the lasso for PVAR models are
established building on the specification of the penalty term. The estimator asymptot-
ically selects the true variables for inclusion and estimates the nonzero coefficients as
efficiently as if the true underlying model were known.

The third chapter, International Monetary Policy Transmission based on joint
work with Gregor von Schweinitz, applies a Bayesian proxy structural three-country
VAR model to analyze cross-border effects of monetary policy transmissions. The anal-
ysis focuses on international macroeconomic effects of monetary policy spillovers for
the United States, the United Kingdom, and the euro area (EA). Conventional and
unconventional monetary policy shocks are identified with external instruments. The
structural VAR model is augmented with proxy series which embody the effects of
central bank announcements on high-frequency forward rates. A Bayesian selection
prior which searches for no dynamic interdependencies restrictions on foreign lagged
variables is used to estimate the three-country VAR model. The chapter addresses
two main questions. First, are there macroeconomic effects of international monetary

policy transmission and if so, what do they look like? Second, are there asymmetries
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across the US, UK, and EA regarding international monetary policy transmission? Our
results show no significant cross-border macroeconomic effects of monetary policy sur-
prises.

Chapter 3 contributes to the literature, first, by focusing not only on the effects of
US monetary policy transmission but also on the UK and EA. Second, we analyze
the international macroeconomic effects of conventional and unconventional monetary
policy shocks using a three-country model that allows to capture interlinkages and het-
erogeneities across the US, UK, and EA. Third, we rely on external instruments for the
identification of monetary policy shocks and thus apply an alternative identification
to the recursive identification commonly used in multi-country models. The external
instrument identification allows us to focus on one shock in a multi-country model

without suffering a bias from the neglect of international shock components.
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CHAPTER 1

Restrictions Search for Panel Vector Autoregressive
Models

1.1 Introduction

Intensifying international goods and knowledge flows, as well as trade agreements,
demonstrate the importance of international interdependencies among economies. With
these interlinkages empirical analyses require taking both the connections and het-
erogeneities across countries into account. Recent literature stresses the benefits of
including a global dimension while forecasting national and international key macroe-
conomic variables. Studies using factor models with global factors or multi-country
models which account for international linkages provide evidence on improved forecast
performance (see e.g., Pesaran et al., 2009; Greenwood-Nimmo et al., 2012; Ciccarelli
and Mojon, 2010; Koop and Korobilis, 2015a; Dovern et al., 2016; Garratt et al., 2016;
Huber et al., 2016; Bjornland et al., 2017). Similar, structural spillover analyses disre-
garding country-specific information and global dependencies could end up with biased
results regarding spillover effects and transmission channels (see e.g., Canova and Cic-
carelli, 2009; Georgiadis, 2017; Kilian and Liitkepohl, 2017).

One tool that is able to consider dynamic and static global interdependencies as
well as cross-sectional heterogeneities is the unrestricted panel vector autoregressive
(PVAR) model. A PVAR model includes several countries and country-specific vari-
ables in one model. Thus, lagged foreign variables can impact domestic variables,
meaning that dynamic interdependencies exist. Static interdependencies between two
variables of two countries occur if the covariance between the two is nonzero. Finally,
the PVAR model accounts for heterogeneity across countries since the coefficient ma-
trices can vary across economies. This strength of PVAR models comes at the cost of a
large number of parameters to estimate - usually set against a relatively low number of

time series observations for macroeconomic variables. To overcome this problem, the
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researcher has to set restrictions on the PVAR model. Typical restrictions for PVAR
models are set along interdependencies and homogeneities across countries.

This paper conducts a data-based restrictions search for dynamic and static interde-
pendencies and cross-sectional heterogeneities specifying a Bayesian selection prior for
PVAR models. The prior searches (i) for zero restrictions for coefficients measuring the
lagged impact of foreign variables, (ii) for homogeneity across countries among coeffi-
cients of domestic variables, and (iii) for correlations between error terms of different
countries.

The idea of the selection prior is to reduce the dimension of the PVAR model by
constraining the parameter space for specific variables. The prior is a mixture of two
normal distributions centering around a restriction with a small variance and a large
variance. Thus, the first part of the distribution restricts the parameter space while the
second part allows for an unrestricted estimation. For which variables the parameter
space is restricted, depends on the data. The posterior distribution puts more weight
on a restriction if it is supported by the data.

The restricted part of the here proposed prior on lagged foreign coefficients shrinks
coefficients to zero, thus, to no dynamic interdependency restrictions. The restricted
part of the prior on lagged domestic coefficients shrinks a parameter to the coefficient
estimate of another country, thus, to homogeneity restrictions. These prior speci-
fications separate domestic and foreign variables, although foreign variables are not
separated on a country basis as priors are set on single lagged coefficients and not on
variables grouped for each country. Furthermore, the prior on the covariance matrix
of the PVAR model allows for shrinkage to no static interdependencies.

By accounting for panel characteristics in the restrictions search but allowing for
a flexible structure, the paper adds to the literature on selection priors. George and
McCulloch (1993) develop a selection prior for multiple regression models. Based on a
hierarchical prior variables are selected which are included in the model. George et al.
(2008) extend the stochastic search variable selection (SSVS) to the use for vector
autoregressive (VAR) models. Koop and Korobilis (2015b) develop a selection prior
for PVAR models. Their stochastic search specification selection (S*) builds closely
on George et al. (2008) but adds a restrictions search for homogeneity of domestic
autoregressive coefficients across countries. Further, in contrast to SSVS, they run the
restrictions search on whole matrices including all variables of one country. In order
to distinguish the algorithm here proposed from S* and SSVS, the algorithm is called
stochastic search variable selection for PVAR models (SSVSP).

The panel structure of the SSVSP, separating domestic and foreign variables, is less

restrictive than the structure assumed by Koop and Korobilis (2015b). By implement-
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ing their prior on country matrices, Koop and Korobilis (2015b) assume a specific panel
structure; namely, all variables of one country are treated in a similar way: either re-
stricted or not. The flexible panel structure of the SSVSP has the advantages that,
first, the SSVSP can provide evidence supporting the exclusion of a single lag of a
variable. A clear ranking of posterior probabilities of which variables to include in the
model and which coefficients are homogeneous can be developed. Using the S* prior of
Koop and Korobilis (2015b) decides on excluding a single variable based on the results
for a matrix-wide search. Second, compared to the commonly used Minnesota prior
for large Bayesian VAR models, which assumes a specific shrinkage depending on the
lag number, the SSVSP takes the panel structure into account. Koop and Korobilis
(2015b) as well as Korobilis (2016) provide evidence that a prior for PVAR models
which accounts for the inherent panel dimension within the data improves forecast
accuracy and reduces mean squared errors. In addition, in a set-up where country
grouping for restrictions does not hold, Korobilis (2016) demonstrates that the abso-
lute deviation from the true value is lower for SSVS than it is for S*. This result
contributes to the argument for a restrictions search on single elements. Third, the
SSVSP prior has a wider range for empirical applications than does the more rigid S*.
Applications, including financial and real variables, can especially benefit from a less
restrictive form since the SSVSP can incorporate variable specific restrictions.

These advantages are reflected in the results of both a Monte Carlo simulation and a
forecasting exercise. First, the results of the Monte Carlo studies show that especially
when a more flexible panel structure is present, the posterior estimates of the SSVSP
deviate less from the true values than the ones of S*. Furthermore, the SSVSP is ac-
curate in the selection of the restrictions displayed in the posterior probabilities for no
interdependencies and homogeneities. Second, the results of the empirical application
demonstrate that forecast performance improves for the SSVSP specifications which
focus on sparsity in form of no dynamic interdependencies.

In the following, section 1.2 relates the paper to the relevant literature. Section 1.3
describes possible restrictions for PVAR models. Section 1.4 introduces the stochastic
search variable selection for PVAR models. Next, in section 1.5 the performance of
the SSVSP is evaluated based on two Monte Carlo simulations and in section 1.6 an

empirical application is conducted. Finally, section 1.7 concludes.

1.2 Literature

The paper contributes to the Bayesian selection prior literature by providing an es-

timator which takes the panel dimension into account but allows for a flexible panel
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structure. The selection prior literature starts with the paper of George and McCulloch
(1993), who developed the prior for multiple regression models. The procedure, which
the authors call stochastic search variable selection (SSVS), selects the variables that
should be included in the regression model. This is achieved by using a hierarchical
prior for the coefficients of the right hand side variables. The variables that should
be included in the model occur more frequently when sampling from the conditional
posterior distributions in the Gibbs sampler. George et al. (2008) further develop the
SSVS, extending it for use with VAR models. They set a hierarchical prior on the au-
toregressive coefficients and find close to zero elements. Additionally, the authors use
the prior for structural identification. They decompose the covariance matrix into two
upper triangular matrices and let the SSVS algorithm find additional zero restrictions
by searching for the elements of the decomposition matrix that are close to zero. Ko-
robilis (2008) and Jochmann et al. (2010) show that forecast performance is improved
for VAR models when using the SSVS. The first paper uses the SSVS in a factor model
that includes a large number of macroeconomic variables for the United States. The
second paper allows for structural breaks. Using data for the United States, the au-
thors show that forecasts improve mainly due to the usage of the SSVS and not due
to the consideration of structural breaks. Subsequently, Korobilis (2013) extends the
selection priors further to nonlinear set-ups. However, all these papers do not account
for a cross-sectional dimension.

Koop and Korobilis (2015b) are the first to develop a selection prior for PVAR mod-
els. Their stochastic search specification selection (S*) builds closely on George et al.
(2008) but adds a restrictions search for homogeneity of domestic autoregressive coef-
ficients across countries. Further, in contrast to SSVS, they run the restrictions search
on whole matrices including all variables of one country and, thus, assume a specific
matrix panel structure. Therefore, the authors call their procedure specification search.
Koop and Korobilis (2015b) demonstrate with their Monte Carlo simulation that S*
estimates are closer to the true values than OLS estimates. Using data for sovereign
bond yields, industrial production, and bid-ask spread for euro area countries from
January 1999 to December 2012, they show that the model fit improves when taking
the characteristics of a panel model into account compared to a BVAR model without
restrictions search. Thus, the results of Koop and Korobilis (2015b) provide evidence
that accounting for the panel dimension in a prior for PVAR models is beneficial in
terms of model fit. Korobilis (2016) comes to the same conclusion. He compares differ-
ent prior specifications for PVAR models. For larger PVAR models, priors taking the
panel dimension into account deviate less from the true values than other VAR priors.

In addition, priors with a panel dimension improve the forecasting performance that
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he demonstrates for the same empirical application as in Koop and Korobilis (2015b).
For small samples, however, the Bayesian shrinkage priors cannot outperform the OLS
estimates.

A drawback of the prior of Koop and Korobilis (2015b) is the specific country group-
ing assumed for the restrictions. The grouping constrains statements about interde-
pendencies and heterogeneities on the country level. Thus, differences among variables
of a specific country are neglected. Which variables are driving linkages and where
homogeneity exist among variables, cannot be assessed. The restrictions search on the
matrix-level can lead to exclusions of potentially important variables since all variables
of one country are treated in a similar way being restricted or not. Instead, the SSVSP
searches for restrictions for each variable and thus can provide evidence supporting the
exclusion of a single lag of a variable.

Besides the Bayesian selection prior, as yet, the literature follows two further strands
to overcome the curse-of-dimensionality problem in PVAR models: using a Bayesian
factor approach and setting restrictions beforehand. My suggested selection prior com-
plements the existing approaches by providing an alternative that overcomes issues of
the factor approach and the use of an a priori restricted model.

The Bayesian factor approach is proposed by Canova and Ciccarelli (2004, 2009).
Their Bayesian cross-sectional shrinkage approach aggregates the parameters into lower
dimensional factors and thereby reduces the number of parameters to estimate. These
factors consist of a variable-specific, a country-specific, and a common factor. Canova
and Ciccarelli (2012), studying dynamics of the European business cycle, and Cic-
carelli et al. (2016), analyzing spillovers in macro-financial linkages across developed
economies, apply the cross-sectional shrinkage approach. Billio et al. (2016) extend
the approach to a Markov-switching model. Koop and Korobilis (2015a) broaden it to
time-varying parameter PVAR models additionally allowing for time-varying covariance
matrices. An issue with the cross-sectional shrinkage approach is that the structural
identification is more complex since the error term includes two components coming
from the equation estimating the factorized parameters and from the estimation of the
VAR model. Furthermore, the factors condense the information in the variables. This
aggregation can have an impact on the dynamics of the model.

A second way is to assume no dependency and homogeneity across the panel units.
Setting a priori assumptions, however, is troublesome as theoretical justification is of-
ten insufficient. The assumptions must be based on a solid theoretical background
which is not likely to be satisfied in macroeconomic panels. Examples setting assump-
tions include Love and Zicchino (2006), Gnimassoun and Mignon (2016), and Attinasi

and Metelli (2017), assuming homogeneity and no dynamic interdependencies, while



Chapter 1 Restrictions Search for Panel Vector Autoregressive Models

Ciccarelli et al. (2013) or Comunale (2017) restrict for no dynamic interdependencies.
Pérez (2015) and Wieladek (2016) use a Bayesian approach and assume no dynamic
interdependencies. By setting these restrictions the researcher reduces the number of
parameters in the models. Estimation procedures for these kinds of models are de-
scribed in Canova and Ciccarelli (2013) and Breitung and Roling (2015).

Besides PVAR models, other dynamic times series models which are suitable for mod-
eling a large number of time series accounting for an international dimension are global
VAR (GVAR) models, factor augmented VAR (FAVAR) models, and large Bayesian
VAR (large BVAR) models. GVAR models introduced by Dees et al. (2007) combine
a single country VAR model with international variables constructed as the weighted
averages from several countries. The weights depend on a connectivness measure such
as trade flows. However, the weights only allow for a rather rigid interdependency
structure as weights are usually constant over time and the same for each variable.
FAVAR models as introduced by Bernanke et al. (2005) augment a VAR model with
latent factors. The factors are extracted from variables which are not included in the
VAR model. Given the factor structure the structural identification of these models
is challenging. Moreover, the aggregation through the factors can affect the responses
of the variables of the model to structural shocks. Large Bayesian VAR models use
Bayesian shrinkage as done by Banbura et al. (2010). The standard priors used for
large BVAR models do not account for the panel dimension in the data. Thus, these
priors are less suited for multi-country analyses.

The paper adds to the literature on using multi-country models for forecasting. As
PVAR models allow for international interdependencies, they are excellent tools for
forecasting. The suggested prior specification provides a flexible structure which is
applicable to a wide range of forecasting applications. Several studies provide evidence
that models including a multi-country dimension is beneficial for forecasting. Cic-
carelli and Mojon (2010) and Bjgrnland et al. (2017) use a factor model for inflation
and GDP forecasts, respectively. Koop and Korobilis (2015a) indicate that using a
panel VAR, estimated by a factor approach, for forecasting key macroeconomic indi-
cators of Euro zone countries can lead to improvements in forecasts. Pesaran et al.
(2009), Greenwood-Nimmo et al. (2012), Dovern et al. (2016), Huber et al. (2016), and
Garratt et al. (2016) provide evidence that forecasts based on GVAR models improve

forecast performance relative to univariate benchmark models.
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1.3 PVAR Model Restrictions

A PVAR model for country ¢ at time ¢ with ¢ =1,..., N and t = 1,...,T is given by
Yir = An Yo + ApYi o+ ..+ AipYi_p + Uy, (1.1)

where Y1 = (Y4_1; -, Yny—y) and y;; denotes a vector of dimension [G x 1] where the
number of country-specific variables is defined as G.' All matrices A;, have dimension
[Gx NG| forlag p =1, ..., P. The index i denotes that the matrices are country specific
for country i. The u; are uncorrelated over time and normally distributed with mean
zero and covariance matrix ;. The assumption of normally distributed error terms
is used for deriving the posterior distributions as the form of the likelihood function
is determined by the normality assumption. The covariance matrix between errors of
different countries is defined as E(u;uj,) = ¥y Vi # j with dimension [G x GI.
The PVAR model for all N countries can then be written as

Y, =AY, 1 +AY, o+ ...+ ApY,_p+ U, (1.2)

The Y; and U; are [NG x 1]-vectors. The U; is normally distributed with mean zero
and covariance matrix ¥ that is of dimension [NG x NG]. The [NG x NG|-matrix A,

for one particular lag p is defined as

11 k. 1G

apir " Gy QpIN

_ 11 Lk G
Ap= a0 Oy
G1 Gk GG

ApN1 T QpNj T Qp NN

The element ozgfij refers to the coefficient of lag p of variable k of country j in the
equation of variable [ of country 7. Thus, it measures the impact of lag p of variable k
of country j on variable [ of country .

A structural form of the PVAR model is derived by decomposing the covariance
matrix ¥ into ¥ = U~V ! where U is an upper triangular matrix. Therefore, the
structural identification is based on a recursive order. An element wff of the upper
triangular matrix W defines the static relation between variable [ of country ¢ and vari-
able k of country j.

This structural PVAR model can account for dynamic interdependencies (DI), static

! Although this specification does not include a constant, it can be extended to include one.
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interdependencies (SI), and cross-sectional heterogeneities (CSH).? By allowing for
these interdependencies and heterogeneities, unrestricted PVAR models provide an
extremely flexible way to model linkages and heterogeneities across multiple variables
of several countries. However, the large number of free parameters in the unrestricted
PVAR model requires some kind of model selection. A straightforward way of reduc-
ing the dimension of a PVAR model is imposing restrictions using the panel structure
inherent in the data. It can be expected that interdependencies and heterogeneities
across countries only exist for specific country and variable combinations. Therefore,

for some coefficients the following restrictions can hold:

1. No dynamic interdependencies (DI): no lagged impact from variable [ of

country 4 to variable k of country j for lag p if alf;; = 0 for j # 1.

2. No static interdependencies (SI): no correlation between the error term of

equation [ of country i, ul,, with the error term of equation k of country j, u?t, if

lk_ . .
i =0for j#i.

3. No cross-sectional heterogeneities (CSH): homogeneous coefficient across

. . lk o lk. . .
the economies for lag p if a7, = o, for j # .

In total, [ NG — G) NG| dynamic interdependencies, [(N(N — 1)/2)G? static interde-
pendencies, and [(N(N — 1)/2)G?] cross-sectional heterogeneities restrictions can be

defined.® The essential part is to determine for which country and variable combina-

tions these restrictions hold.

1.4 Selection Prior for PVAR Models

The unrestricted PVAR model with one lag can be rewritten as
Y; = Zt_lOé + Ut, (13)

where « is the vectorized matrix A and Z;_; = (Iyg ® Y;—1). The model is simplified
to a model including only one lag.* Otherwise, the restrictions search for dynamic
interdependencies would provide guidance for lag length selection.

Each element of « is drawn from a mixture of two normal distributions centering
around the restriction, either with a small or large variance. The coefficient either

shrinks to the restriction (small variance case) or is estimated with a looser prior

2Canova and Ciccarelli (2013) provide a survey of the PVAR model restrictions.

3Note that while SI restrictions are symmetric, this is not (necessarily) the case for DI restrictions.

4Focusing on the model with one lag allows to drop the lag index p from the notation. Thus, the
coefficient aﬁ»’; is the coefficient for p = 1.
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(larger variance case). Thus, the algorithm imposes soft restrictions by allowing for a
small variance. In contrast to Koop and Korobilis (2015b), the restrictions search is
completed for each single element and not on whole matrices that include all variables
for a given country.

The SSVSP algorithm has specific priors for the parameters of A and for the covari-
ance matrix building on the DI, SI, and CSH restrictions. The DI restrictions impose
limits on the coefficients of the lagged foreign endogenous variables. The DI prior is

given by

| Vo g~ (1= W%I,ij)N(O ) + v ng(Oa 73)

yDLij ~ Bernoull@(le’U).

The prior distribution of o/- is conditional on the hyperparameter vk 4j which is set
to be Bernoulli distributed. If 4{}; ;; is equal to zero, of¥ is drawn from the first part of
the normal distribution with mean zero and variance 72.5 If 4%, ij 1s equal to one, oz”“
is drawn from the second part of the normal distribution with mean zero and variance
75. The values of 77 and 75 must be chosen such that 77 is smaller than 77. Thus,
if o ij = 0, the prior is tight in the sense that the parameter is shrunk to zero and
no dynamic interdependency is supported by the data. Whereas the prior is loose for
’)/%Cl,ij =1

The SI prior is set on the elements of the upper triangular matrix, W. If SI restrictions
are found, the structural PVAR model is overidentified since additional zero restrictions
can be set on top of the recursive ordering. A clear advantage of this decomposition is
that it assures that by construction every simulated X is positive definite.

The prior for SI restrictions follows the same logic as the DI prior:

1/’? | vay i~ (1= ’Yfgkl,ij)N(O K1) + Vo N0, K3)

Vet ~ Bernoulli(wl ;).

kk

kk)2 are

The prior is set for all j # . To assure positive variance elements, the (
gamma distributed, (%)% ~ G(a, b). The elements for the same country, Yk for | # k,
are normally distributed with mean zero and variance x3. All Zj elements (5 # 1)
are drawn from the specified hierarchical prior. The parameter x? is smaller than x3.
If v ij 18 equal to zero, the parameter shrinks to zero showing that the data do not
support static interdependency. The selection prior can be used to estimate the reduced

form of a PVAR model by not applying a Cholesky decomposition and not searching

"How wl[’;[’ij is set is described in detail in 1.B. This holds also for the CSH and SI priors.
6Compare also to Koop and Korobilis (2015b).
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for static interdependency restrictions but by assuming a standard distribution for the
PVAR model variance, e.g. an inverse Wishart distribution.

Searching for homogeneity across countries is not as straightforward as searching for
the zero restrictions for dynamic and static interdependencies. The main contribution
of Koop and Korobilis (2015b) is the development of a procedure how to search for
CSH restrictions. Possible homogeneity across countries is assessed for the coefficients
measuring the impact of domestic variables on variables of the same country. The CSH

prior is given by

O‘é’?‘ ’ 785H ~ (1 - VE‘USH)N(O‘éfy 5%) + WEUSHN(O7 fg)

Vosu ~ Bernoulli(méigy).

The prior is for all j # 4. There are (N(N —1)/2)G? = K combinations of coefficients
that are checked for homogeneity. The index w =1, ..., K refers to a specific combina-
tion. Again, £2 is smaller than £2. The main difference to the DI and SI prior is that
instead of shrinking the parameter to zero in the first part of the normal distribution,
the mean is equal to the coefficient for which homogeneity is being checked, aé’} = alf
in mean.

To be able to check all possible combinations, the procedure of Koop and Korobilis
(2015Db) is followed, who define a selection matrix ' = Hle I'y. The matrix I'y, is an

identity matrix of dimension [NG x NG| with two exceptions. The diagonal element
Ik
JJ
element olf is set equal to (1 —v%g;). If all coefficients are heterogeneous, all I',, are

at the position o is set equal to v#gy and the off-diagonal element referring to the
identity matrices. To impose the CSH restrictions, the posterior mean of a is multi-
plied by the selection matrix I'.

The prior specification is based on the assumption of a stationary VAR model. The
prior shrinks the coefficient estimates to zero. If stochastic trends are present in the
data, a prior accounting for integrated variables can shrink coefficient estimates to a
multivariate random walk as suggested in the Minnesota prior of Litterman (1986) and
Doan et al. (1984). Such an extension could be easily implemented in the model as the
unrestricted part of the normal distributions can be set up in a Minnesota prior way. If
cointegration relations exist, the use of vector error correction models with appropriate
priors is more suitable (for a survey on Bayesian estimation of vector error correction
models see Koop et al., 2005; Karlsson, 2013).

To summarize, consider a simple 3-countries-2-variables example, where the variables
are ordered such that the first two equations model the dynamics of the two variables

of the first country, equations three and four of the second country and the last two
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equations of the third country. The coefficients of A, which are checked for dynamic
interdependencies, are marked with DI and the coefficients checked for homogeneity
are marked with CSH. The elements of the covariance matrix which are checked for

static interdependencies are marked with SI:

CSH CSH DI DI DI DI SI SI SI SI

CSH CSH DI DI DI DI SI SI SI SI
A DI DI CSH CSH DI DI . SI SI

DI DI CSH CSH DI DI |’ SI SI

DI DI DI DI CSH CSH

DI DI DI DI CSH CSH

The prior specification has the advantage that it allows the usage of the Gibbs
sampler to sample from the posterior distributions.” The means of the posterior dis-
tributions are used as point estimates for the coefficients.

The outcome of the algorithm can be interpreted in two ways: model selection and
Bayesian model averaging.® The researcher can select one specific restricted PVAR
model based on the posterior means of ypr,vsr, and yosgy. The researcher can set
the restrictions successively until the model with the best fit is found. In addition, a
threshold value can be used, often set to 0.5 by the selection prior literature. If the
posterior mean of v is below the threshold value, the restriction is set. Alternatively,
the outcome of the algorithm can be used as a Bayesian model averaging (BMA) result.
Thus, the posterior means averaged over all draws are taken as coefficient estimates.
Since each draw leads to a specific restricted model, the BMA results average over all
possible restricted models.

One problematic issue is that the selection prior requires the SUR form of a VAR
model, leading to the inversion of large matrices. This leads to a computationally
demanding algorithm for medium and large size VAR models.® To overcome this prob-
lem, Koop (2013) develops a natural conjugate selection prior for VAR models. Here,
no MCMC methods must be used. However, the natural conjugate selection prior has
two disadvantages.'® First, each variable can only be either included or excluded in
the whole VAR system. Second, the natural conjugate specification requires a specific
covariance prior. Thus, a restrictions search for the covariance elements of the VAR

model is not possible. Hence, for the purpose, being able to include static interdepen-

"The Gibbs sampler algorithm is described in detail in 1.A.

8Compare to the general survey in Koop and Korobilis (2010) or the specific explanation for the S*
in Koop and Korobilis (2015b).

9Both Koop (2013) and Korobilis (2013) elaborate further on this issue.

0Koop (2013) explains the disadvantages of the natural conjugate prior in detail.
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dencies and to allow for dynamic interdependencies that are not homogeneous across
countries, the natural conjugate SSVS prior is not an alternative. Instead, the compu-
tational burden is accepted for having a differentiated prior that is able to account for
the characteristics of a PVAR model, which should be less of a problem with increasing

computational capacities.

1.5 Monte Carlo Simulation

1.5.1 Simulation Set-Ups

In order to evaluate the prior, two Monte Carlo simulations are conducted.!'* For
both Monte Carlo simulations data are generated from a PVAR model which includes
three countries, two variables for each country, one lag, and 100 observations. First, it
is assumed that both dynamic and static interdependencies as well as cross-sectional
heterogeneities exist for specific variable and country combinations. In particular,
country 2 has a dynamic impact on country 1 and country 1 on country 3. Country
3 does not impact the other two countries dynamically. Coefficients are homogeneous
between countries 2 and 3. Static interdependencies exist between country 1 and 2.
This example has a clear country grouping structure. A scenario like this is given by

the first Monte Carlo simulation where the following parameter values are set:

08 0 0202 0 0 10050500
0 07 0303 0 0 01050500
g _ | 00 0605 0 0 f 0, fO0 1 000
0 0 0 05 0 0 00 0 1 00
03 =04 0 0 06 0.5 00 0 0 10
02 04 0 0 0 05 00 0 0 01

Second, no clear country grouping for interdependencies and homogeneities is as-

sumed. Hence, a less restrictive panel structure exists. The second Monte Carlo simu-

11100 samples, each with a length of 100 are simulated. The Gibbs sampler is done with 55000
draws, of which 5000 draws are disregarded as draws of the burn-in-phase. The calculation is
based on a further development of the MATLAB code provided by Koop and Korobilis (2015b)
(https:/ /sites.google.com/site/dimitriskorobilis/matlab /panel var restrictions).
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lation incorporates these properties and has the following true parameters:

08 0 02 0 02 0 1005 0 00
0 07 02 0 02 0 01 0 0500
gre _| 00 0605 0 0 f . |00 1 000
0 0 0 03 0 0 00 0 1 00
03 =04 0 0 06 05 00 0 0 10
0 0 0 0 0 05 00 0 0 01

The performance of the SSVSP is compared to the performance of different prior
specifications. A model with no restrictions search is used as the benchmark mark
model, referred to as unrestricted VAR model. This model is estimated using the
SSVSP prior but with fixed ~ values such that each parameter is drawn from the
distribution with the larger variance. Furthermore, the SSVSP is compared to the
S* and to the SSVS of George et al. (2008).'2 The SSVS prior sets the DI prior on
all lagged values and the SI prior on all covariance elements. Thus, no distinction
between domestic and foreign variables is made. Additionally, two specifications of the
SSVSP are analyzed. First, the SSVSP only searches for DI restrictions (abbreviated
with SSVSP _DI), meaning that the 7 values for the SI and CSH priors are set to one.
Second, the restrictions search is only done for CSH restrictions (SSVSP_ CSH).

The performance of each estimator is checked via the absolute percentage deviation
(APD) statistic and mean squared errors (MSE):

1 (NG)? 1 (NG)?
APD = ; — alrue d MSE = ; — alrue)?,
(NG)2 ZZI: ’ «Q az | al (NG)2 Zz_l: (Ck Oéz )

APD (MSE) measures the absolute (squared) deviation of the estimated coefficient ay;,
given by the posterior mean averaged over all simulation draws, from the true value,
afrue 13 The same statistics are computed for 3. Furthermore, the accuracy of the

SSVSP to find the restrictions is evaluated. The posterior probabilities that aﬁ? =0,
Ik Lk
i i

to the true values. These posterior probabilities are calculated as the proportion of

= 0, and aé-];- = «; im mean are compared among themselves and in relation

W%I,ij,yfgkmj, and ¢gy draws that equal zero averaged over all Gibbs sampler draws

and all simulated samples. The higher the proportion of v draws that equal zero, the

12The prior hyperparameters used in the Monte Carlo simulations for all different priors are 1.1.
13Koop and Korobilis (2015b) uses the absolute deviation and Korobilis (2016) use the mean absolute
deviation statistics to evaluate the performance of estimators in Monte Carlo simulations.
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Table 1.1: Deviation for estimated coefficient matrix A and X from the true values

Simulation 1 Simulation 2
A p A p
APD MSE APD MSE APD MSE APD MSE
SSVSP 0.043 0.004 0.163 0.042 0.036 0.004 0.085 0.026

SSVSP DI 0.026 0.001 0.142 0.030 0.023 0.002 0.074 0.020
SSVSP_CSH 0.041 0.004 0.182 0.051 0.037 0.004 0.088 0.028
St 0.048 0.010 0.109 0.068 0.056 0.011 0.080 0.022
SSVS 0.067 0.008 0.060 0.007 0.066 0.009 0.052 0.006
unrest VAR 0.027 0.001 0.109 0.020 0.027 0.002 0.079 0.020

Note: Absolute (APD) and squared (MSE) deviation of the estimates from the true value for co-
efficient matrix A and covariance X, average over 100 MC draws and all coefficients. Coefficient
estimates are the posterior means averaged over all MC draws. Lowest values for each column are
in bold. SSVSP_DI: SSVSP with only DI restrictions. SSVSP _CSH: SSVSP with only CSH re-
strictions. S*: prior of Koop and Korobilis (2015b). SSVS: prior of George et al. (2008). Unrest
VAR: parameters drawn from unrestricted part of distributions. Simulation 1: DGP has matrix panel
structure. Simulation 2: DGP has flexible panel structure.

higher is the probability that no dynamic and no static interdependencies exist and

coefficients are homogeneous.

1.5.2 Results

The results of the Monte Carlo study demonstrate that, first, the SSVSP outperforms
the S* in terms of closeness to the true coefficients. This especially holds when a
less restrictive panel structure is present. Second, the SSVSP accurately selects the
restrictions for the DGPs of both simulations. This is validated by the higher posterior
probabilities for no interdependencies and homogeneity for parameters which are truly
zero or homogeneous compared to the probabilities for nonzero and heterogeneous
parameters.

As table 1.1 shows, the estimated coeflicients which are the posterior means av-
eraged over all simulation draws from the SSVSP are on average slightly closer to
the true values compared to S* for both simulations. In particular, the S* per-
forms weaker in simulation 2, where a less restrictive panel structure is present, since
the grouping structure on which the restrictions search is done is not present in
the data. Furthermore, the APD and MSE of A favor SSVSP DI for both simula-
tions with APDggsysp pr = 0.026 and MSEgsysp pr = 0.001 for simulation 1 and
APDgsysp pr = 0.023 and MSEssysp pr = 0.002 for simulation 2. However, the
unrestricted VAR model outperforms the SSVSP and S*. Doing the restrictions search

only for CSH reduces the average deviation from the true values only in simulation 1
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Figure 1.1: Range of posterior probabilities ag? =0, ’L/JZC = 0, and ozé»’; = olf and ratio
of restriction set with threshold value 0.5
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Note: Posterior probabilities, p(aﬁ? =0), p( Z“ =0), and p(aé—’; = al¥) are calculated as the propor-

tion of ’ygﬂl,ij, 759]61,1‘]" and v& gy draws that equal zero averaged over all Gibbs sampler draws and all
simulated samples. Ratios are calculated as the number of restrictions set with threshold 0.5 aver-
aged over all Gibbs draws for each simulated draw relative to all simulated draws. True coefficients
are the parameters set when simulating the DGPs. Simulation 1: DGP has matrix panel structure.
Simulation 2: DGP has flexible panel structure.

compared to the SSVSP. This indicates that the gain is not explained by the reduced
number of restrictions on which the search is done for but rather by searching for no
dynamic interdependencies. Thus, the use of a prior which incorporates no dynamic
interdependencies is beneficial for the DGPs of both simulations.

For ¥ the lowest values for APD and MSE are obtained with the SSVS. In general,
deviations from the true values are higher for 3 compared to A. This could be a result
of using a symmetric distribution rather than the usually preferred inverse Wishart
distribution for covariances.

Furthermore, the SSVSP algorithm is accurate in selecting the restrictions. Posterior
probabilities that no interdependencies or heterogeneities exist are higher for true zero

or homogeneous values compared to nonzero or heterogeneous values, shown in the
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Table 1.2: Accuracy of selecting DI restrictions: posterior probabilities p(ag? =0)

Simulation 1 Simulation 2
- - 0.2 0.2 0 0 - - 0.2 0 0.2 0
0.26 0.38 0.88 0.78 0.50 0.62 0.38 0.59
- - 0.3 0.3 0 0 - - 0.2 0 0.2 0
0.06 0.18 0.83 0.76 0.31 0.70 0.30 0.70
0 0 - - 0 0 0 0 - - 0 0
0.71 0.75 0.85 0.73 0.82 0.73 0.84 0.65
0 0 - - 0 0 0 0 - - 0 0
0.7  0.77 0.89 0.79 0.8 0.75 0.86 0.71
0.3 -04 0 0 - - 0.3 -04 O 0 - -
0.15 0.03 0.79 0.64 0.19 0.03 0.76 0.67
0.2 0.4 0 0 - - 0 0 0 0 - -
0.25 0.05 0.78 0.66 0.86 0.79 0.8 0.71

Table 1.3: Accuracy of selecting SI restrictions: posterior probabilities p(¢//% = 0)

Simulation 1 Simulation 2
- - 0.5 0.5 0 0 - - 05 0 0 0
0.56 0.54 0.72 0.80 0.49 0.95 0.78 0.95
- - 0.5 -05 0 0 - - 0 0.5 0 0
0.56 0.50 0.7, 0.76 0.91 0.20 0.89 0.91
- - - - 0 0 - - - - 0 0
0.84 0.86 0.90 0.93
- - - - 0 0 - - - - 0 0
0.91 0.91 0.92 0.93

Note: Posterior probabilities, p(aﬁ’;- =0) and p(z/)ﬁf = 0) in italic, are calculated as the proportion of

Y5145 or rather 45 ;. draws that equal zero averaged over all Gibbs sampler draws and all simulated
samples. Simulation 1: DGP has matrix panel structure. Simulation 2: DGP has flexible panel
structure.

first graph of figure 1.1. The first graph presents the range of posterior probabilities
for simulations 1 and 2 for true zero or homogeneous coefficients and true nonzero or
true heterogeneous coefficients. The second graph demonstrates the range of the ratios
of restriction set when doing model selection. The ratios are calculated as the number
of restriction set for each MC draw relative to all simulated draws given a threshold
value of 0.5.'* The ratio of restrictions set is higher for true zero and homogeneous
values than for nonzero and somehow for heterogeneous values. Thus, the first graph
demonstrates the accuracy of selecting restrictions in case of BMA while the second

graph underlines it for model selection.

4The share of restrictions set for threshold values 0.6, 0.7, 0.8, and 0.9 for simulation 1 and 2 are
given in 1.C.
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Table 1.4: Accuracy of selecting CSH restrictions: posterior probabilities p(al = alk)

n

Simulation 1 Simulation 2
coefficients  true ol true olf  p(at = olF) true olf  true off  p(alt = olf)
all & adl 0.8 0.6 0.61 0.8 0.6 0.65

% & a3l 0 0 0.73 0 0 0.79
al? & ads 0 0.5 0.19 0 0.5 0.28
alf & a3’ 0.7 0.5 0.54 0.7 0.3 0.30
0511 & Oz}% 0.8 0.6 0.63 0.8 0.6 0.64
a3t & a2l 0 0 0.75 0 0 0.82
041% & ad? 0 0.5 0.18 0 0.5 0.27
a2 & a3 0.7 0.5 0.57 0.7 0.5 0.40

% & all 0.6 0.6 0.79 0.6 0.6 0.75
adl & Oz%zl,) 0 0 0.80 0 0 0.80

sl & al? 0.5 0.5 0.64 0.5 0.5 0.57
ass & a3 0.5 0.5 0.65 0.3 0.5 0.48

Note: Posterior probabilities, p(a! aj ] = al¥) in italic, are calculated as the proportion of Y&g draws

that equal zero averaged over all Gibbs sampler draws and all simulated samples. Simulation 1: DGP
has matrix panel structure. Simulation 2: DGP has flexible panel structure.

In detail, looking at simulation 1 and DI restrictions, the probabilities that o} =0
are considerably higher for true zero parameters than for true nonzero values. The
first are in a range between 0.64 and 0.89 while the latter one are between 0.03 and
0.38. Table 1.2 provides the detailed results for the posterior probabilities for oz”“ =0.
Turning to simulation 2, if no dynamic interdependencies occur in truth, the proba-
bilities that aﬁ? = 0 are between 0.59 and 0.86. Thus, they are clearly higher than
the probabilities for the parameters which dynamically affect the dependent variables,
between 0.03 and 0.38. Findings are in the same range for the ratio of restrictions set.

The SSVPS selects accurately the SI restrictions in both simulations as shown in
figure 1.1 and table 1.3. This is true since for both simulations the probabilities that

Z“ = 0 and ratios of restriction set are higher for true zero compared to nonzero pa-
rameters. The results for simulation 1 show that probabilities are in a range of 0.72
and 0.91 for zero values while for the existing static interdependencies probabilities are
between 0.50 and 0.56. For simulation 2 the probabilities for no static interdependen-
cies, between 0.78 and 0.95, are clearly higher for the true zero values compared to the
probabilities for nonzero values, 0.20 and 0.49.

Moreover, the SSVSP is mostly accurate in the selection of the cross-sectional het-
ol

i)

erogeneity restrictions. The detailed results for p( are presented in table 1.4.

For both simulations probabilities that the coefﬁcnents are homogeneous are higher for
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true homogeneous coefficients (with few exceptions for simulation 2). However, espe-
cially for true values which are close to each other but not equal, the probabilities for
homogeneity are relatively high with values above 0.5. Again, the same holds for the
ratio of restrictions set. This slightly weaker performance of the SSVSP to pick the
correct CSH restrictions compared to DI and SI was already visible in the APD and
MSE results for the SSVSP CSH.

1.6 Empirical Application

1.6.1 Data and Procedure

Using an empirical application as an example, the SSVSP is validated based on its
forecasting performance, on the restriction posterior probabilities, and on an impulse
response analysis. The PVAR(1) model includes three key macroeconomic variables
for the G7 countries - a growth rate of industrial production (IP), a CPI growth rate
(CPI), and a short term interest rate (IR). The countries are Canada (CA), Italy (IT),
United Kingdom (UK), France (FR), Japan (JP), Germany (DE), and the United
States (US). The data are from the OECD and have monthly frequency from 1990:1
through 2015:2.' The model which is considered here serves as an illustration for the
performance of the SSVSP. In many ways it is not the best model for the DGP as it,
for example, takes into account only a fraction of variables which could be of interest
for assessing the question of global spillovers or conducting forecasts. Furthermore, the
lag order one is set by assumption and is not further validated.

At first, forecasts are provided for 12 horizons for the period beginning from January
2005 through the end of the sample.!® To obtain the forecasts a predictive distribution
is simulated based on the reduced form of the PVAR model with normally distributed
error terms. The reduced form model is the model where no SI restrictions search is
done and the covariance matrix is drawn from an inverse Wishart distribution.!” The
forecasts are evaluated using the mean squared forecast error (MSFE) and the average
predictive likelihoods (PL). The MSFE is calculated as the difference between the es-
timated forecast, which is given by the posterior mean of the predictive distribution,
and the true value given by the data. The MSFEs for a specific variable and horizon

are averaged over all forecasts. The PL is the posterior predictive density evaluated at

15The hyperparameters of the prior distributions are set as in the Monte Carlo simulations. Detailed
information is provided in 1.B. 110,000 draws are computed for the Gibbs sampler, the first 10,000
are disregarded as burn-in-phase.

16The forecasts for the included 21 variables are generated iteratively. Forecasts start conditional on
the data from January 1990 to December 2004.

1"The covariance matrix is drawn from an inverse Wishart distribution with 7" degrees of freedom and
identity matrix plus sum of squared residuals as scaling matrix.
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the true observation ;.

The forecast performance is compared to the unrestricted VAR model, SSVSP DI,
SSVSP CSH, S*, and SSVS. Furthermore, two specifications are added which access
the selection property of the SSVSP: SSVSP setDI v1 and SSVSP_ setDI v2. The
SSVSP setDI vl uses the outcome of the SSVSP and sets zeros whenever the pos-
terior probability for a DI restriction is larger than 0.99. The SSVSP _setDI v2 uses
0.5 as a threshold value.

For the structural analysis the variables are ordered in a recursive way. The industrial
production growth rate is ordered first, CPI growth rate second, and the short term
interest rate third. The monetary policy shock for one country is thus identified by
the assumption that the interest rate does not react contemporaneously to unexpected
changes in real variables while a monetary policy shock instantaneously impacts the
two real variables. The recursive country ordering is based on the openness of a coun-
try. Openness is measured based on yearly import and export data for the economies.
The higher the trade of a country is, the more open it is. The countries are arranged
in ascending order meaning that the most open country, the United States, is ordered
last. Thus, US variables can influence all other countries contemporaneously but are

not affected by the variables of the remaining G7 countries.

1.6.2 Results

The results of the empirical application demonstrate three key findings. First, the MS-
FEs and PLs results favor the SSVSP DI and the two selection models, SSVSP _setDI vl
and SSVSP _setDI v2, indicating that restrictions search is beneficial since sparsity
in form of no dynamic interdependencies exist. However, the very large number of
restrictions searched for in the SSVSP leads to relatively weak forecast performance.
Second, the posterior probabilities for the restrictions indicate that domestic interest
rates and inflation evolve unaffected by lagged foreign industrial production growth
rates, validated by high posterior probabilities for no dynamic interdependencies. The
interest rate of a country depends likely statically and dynamically on foreign interest
rates. No heterogeneities are in particular found for the effect of domestic industrial
production growth on the domestic interest rate and inflation. Third, the impulse re-
sponse analysis supports the reliability of the results. In the following the key findings
are explained in more detail.

Table 1.5 shows in percent the number of MSFEs which are smaller or equal to one
averaged over all variables for forecast horizons 1, 2, 4, 6, and 12. The MSFEs are
given relative to the unrestricted VAR model. Thus, a MSFE smaller than one indi-

cates improved forecast performance relative to the unrestricted VAR model. Between
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Table 1.5: Mean squared forecast errors relative to unrestricted VAR model

number of MSFEs < 1(in %)
horizon 1 horizon 2 horizon 4 horizon 6 horizon 12

SSVSP 38.10 42.86 33.33 28.57 33.33
SSVSP_ DI 100.00 85.71 85.71 95.24 90.48
SSVSP_CSH 33.33 38.10 19.05 23.81 52.38
SSVSP_setDI vl 0.00 0.00 52.38 07.14 66.67
SSVSP _setDI  v2 4.76 4.76 52.38 71.43 80.95
St 42.86 33.33 38.10 33.33 47.62
SSVS 19.05 9.52 66.67 95.24 76.19

Note: MSFE relative to unrestricted VAR model. Forecasts for 12 horizons for Jan 2005 to end of
the sample. Unrestricted VAR model: parameters drawn from unrestricted part of distributions. S*:
prior of Koop and Korobilis (2015b). SSVS: prior of George et al. (2008). SSVSP_DI: SSVSP with
only DI restrictions. SSVSP CSH: SSVSP with only CSH restrictions. SSVSP _setDI v1: threshold
0.99 to set zero DI restrictions. SSVSP_setDI v2: threshold 0.5 to set zero DI restrictions. ¥ drawn
from inverse Wishart distribution with 7" degrees of freedom and identity matrix plus sum of squared
residuals as scaling matrix. 110,000 Gibbs draws, 10,000 disregarded as burn-in-phase.

28.57% and 42.86% of the MSFEs of the SSVSP are below or equal to the MSFEs of
the unrestricted VAR model. Thus, the SSVSP cannot improve the forecasts compared
to the unrestricted VAR model. This is quite similar to the performance of the S*.

The SSVSP DI performs particularly well. It outperforms the unrestricted model
at the best in 100.00% of the cases (horizon 1) and at worst in 85.71% of the cases
(horizons 2 and 4). Since the number of restrictions which are examined in the SSVSP
are high, the information in the data might not be enough for the estimation. Thus,
the improved performance of the SSVSP DI could be a result of the reduced number
of restrictions. However, only searching for CSH restrictions does not lead to improve-
ments compared to the SSVSP. The SSVSP DI captures the high probabilities for no
dynamic interdependencies which are present in the data. The probability for homo-
geneity seems to be lower. Excluding dynamic interdependencies based on a specific
threshold improves the forecast performance for the higher horizons. The two speci-
fications, SSVSP _setDI vl and SSVSP _setDI v2, can particularly well pick up the
sparsity in the data. The model with a lower threshold value, SSVSP setDI v2, leads
to higher improvements.

The performance of the SSVS is volatile, ranging from 9.52% to 95.24% of MSFEs
below or equal to one. It performs well for the last three reported horizons. The SSVS
also searches for dynamic interdependencies, thus, it is similar to the SSVSP DI spec-
ification. With the exception that the SSVSP DI distinguishes between domestic and
foreign variables. The results of the SSVS support the finding that the MSFEs favor

priors which capture the possibility of no dynamic interdependencies. The S* includes
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Table 1.6: Posterior predictive density relative to unrestricted VAR model

number of PLs > 0 (in %)
horizon 1 horizon 2 horizon 4 horizon 6 horizon 12

SSVSP 33.33 28.57 47.62 23.81 38.10
SSVSP_ DI 57.14 42.86 42.86 42.86 61.90
SSVSP_CSH 28.57 19.05 38.10 23.81 57.14
SSVSP setDI vl  28.57 28.57 47.62 47.62 42.86
SSVSP setDI v2  28.57 52.38 52.38 61.90 66.67
54 47.62 47.62 33.33 33.33 38.10
SSVS 47.62 38.10 57.14 71.43 61.90

Note: PL: posterior predictive density evaluated at the true observation y, 5, compared to unrestricted
VAR model. Forecasts for 12 horizons for Jan 2005 to end of the sample. Unrestricted VAR model:
parameters drawn from unrestricted part of distributions. S*: prior of Koop and Korobilis (2015b).
SSVS: prior of George et al. (2008). SSVSP DI: SSVSP with only DI restrictions. SSVSP_CSH:
SSVSP with only CSH restrictions. SSVSP _setDI v1: threshold 0.99 to set zero DI restrictions.
SSVSP setDI v2: threshold 0.5 to set zero DI restrictions. ¥ drawn from inverse Wishart distribu-
tion with T degrees of freedom and identity matrix plus sum of squared residuals as scaling matrix.
110,000 Gibbs draws, 10,000 disregarded as burn-in-phase.

DI but assumes a specific matrix structure which does not seem to be supported by
the data.

Table 1.6 presents in percent the number of PL, in difference to the unrestricted
VAR model, which are higher or equal zero. In general, a higher PL indicates a better
performance since the posterior predictive density covers the true observation with a
higher probability. The results are generally in line with the findings based on the
MSFEs but differ in magnitude and also in horizons. In particular, the PL results
favor the SSVSP DI, SSVSP setDI vl, and SSVSP_setDI v2 as well as the SSVS.
In contrast to the extremely volatile MSFE results, the SSVS outperforms the SSVSP
at all horizons. However, the SSVSP DI exceeds the SSVS at two and is equally good
at one out of five horizons. Again, the results point to the direction that no dynamic
interdependencies are present in the data and a prior which can pick up these charac-
teristics performs well.

Compared to the findings based on the MSFEs the prior specifications are less often
able to outperform the unrestricted VAR model. This could be explained by a higher
parameter uncertainty of the selection priors since they are a mixture of two distri-
butions. The higher uncertainty is reflected in the posterior predictive density. The
results are in general in line with Korobilis (2016) who also shows a high volatility in
the performance as well as improved forecasting results for the SSVS compared to the
S%. However, combining the advantages of both priors, the panel dimension of the S*

and the single restrictions search of the SSVS, in the SSVSP does not seem to pay
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Table 1.7: 10 highest posterior probabilities for the restrictions

DI SI CSH
ol plalk =0) 0 p(¥i; =0) o aff  pal = alf)
ayrpe 100 JPvs 099 ajfe dbmpE 1.00
A M Y /R AN
A U 1 S Y Y Y
agyp 1.00 oy 0.99 St apnin 1.00
o 1.00 L 0.99 anir aShuEl 1.00
aSi s 1.00 e 099  agy aSph 1.00
al vy 1.00 DD 0.99 apillt apebe 1.00
oORE L0 PO 099 alIE alEE 10
agryp 100 peps 099 adida apsie 1.00
agsip 1.00 Do 0.99 apper  OpebE 1.00

Note: 10 highest posterior probabilities are presented for DI, SI, and CSH restrictions. The probabil-

ities, p(alk = 0), p(Y¥ = 0), and p(aly = alf), are calculated as one minus the posterior means for

Vgl,ij: ’yfgk’l’ij, and y¢gy. The probabilities measure the proportion of ngj, ngk’l,ij, and y¢gy draws
that equal zero averaged over all Gibbs sampler draws meaning that the coefficients are drawn from
the restricted part of the distribution.

off due to the large number of restrictions to search for. As Korobilis (2016) shows
the approach of Canova and Ciccarelli (2009) has no clear advantage, measured by
forecasting performance, over the selection priors.

Tables 1.7 and 1.8 provide the ten highest and ten lowest posterior probabilities for
the restrictions, p(af = 0), p(¥l¥ = 0), and p(ali = olf). The SSVSP can provide
a detailed ranking on how likely a restriction should be set based on the data on a
variable basis. The algorithm is able to detect a nuanced structure of the restrictions
present in the data. Since the presented PVAR model serves as an illustration, the
economic findings should not be over-interpreted.

The posterior probabilities provide evidence that restrictions are especially supported
for the industrial production variable while it is vice versa for interest rates. Table 1.7
provides the ten highest posterior probabilities. Probabilities are high, indicated by
ones, that no dynamic impacts of foreign lagged IP growth on interest rates and CPI
growth exist. Additionally, industrial production growth seems to be fairly independent
from other variables, shown by the high probabilities for no static interdependencies
between IP growth and other variables. Finally, the probabilities for homogeneity of
coefficients are especially high for the industrial production variables in other equa-
tions.

Table 1.8 presents the ten lowest posterior probabilities for restrictions. Lagged for-
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Table 1.8: 10 lowest posterior probabilities for the restrictions

DI CSH
aj plofl = 0 = alt aly p(alf = aif)
ol 000 WS 000 afSPST oG 00
agym 0.00 o 0.00 OpibE  Oueus 0.06
A he 0.01 o 0.00 i 0.06
appiK 0.01 e 0.00 anin | agsoe 0.07
o8003 wpd 000 o ol o7
oSHEIT00n wlEIE 000 aliE WSEIETT o0
agips  0.04 CAUs 0.00 otk alplp 0.09
ol oo WIS om0 R WlNE 00
L Y YO/ S L A R
oI 005 WERST 000 oSELETT aGHST 010

Note: 10 lowest posterior probabilities are presented for DI, SI, and CSH restrictions. The probabil-
ities, p(aﬁ? =0), p( ff = 0), and p(aé-’;

%), are calculated as one minus the posterior means for

Vgl,ij: ’yfgk’l’ij, and y¢gy. The probabilities measure the proportion of ngj, ngk’l,ij, and y¢gy draws
that equal zero averaged over all Gibbs sampler draws meaning that the coefficients are drawn from
the restricted part of the distribution.

Figure 1.2: Responses of US variables to a shock to the US interest rate
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Note: Solid line shows response, dotted lines present 68% Bayesian credible interval.

eign interest rates seem to affect the domestic variables. Furthermore, US variables
have a dynamic impact on other countries’ variables. Both findings are supported by
low probabilities for no DI. The lowest probabilities for the SI restrictions are found
for combinations of the same variable, in particular for inflation and the interest rate.
Heterogeneity is favored - low probability for no CSH - for the effect of inflation on
inflation and of the interest rate on industrial production growth.

The impulse response analysis sheds light on the reliability of the findings. Exem-
plary, the responses to a shock to the US interest rate, presented in figure 1.2 for US
variables and in figure 1.3 for foreign interest rates, is discussed. A contractionary US
monetary policy, shown by an increase in the US interest rate, leads to a rise in US CPI
growth in this system. The response of industrial production growth is insignificant.

The increase of inflation in response to a tightening in the monetary policy is in line
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Figure 1.3: Responses of foreign interest rates to a shock to the US interest rate
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with the price puzzle. The price puzzle refers to this result contradicting theoretical
models and empirical findings which would claim that a rise in the interest rate leads to
a decline in inflation. The puzzle is expected for VAR models which just include indus-
trial production growth, inflation, and a short term interest rate and have a structural
identification based on a recursive system. The finding of the price puzzle underlines
that the estimated PVAR model here can only serve as an illustration and has its clear
limitations.

The foreign interest rates immediately raise in response to a tightening in the US
monetary policy. The increases in the interest rates are lower, below 0.5, than the
initial raise in the US interest rate, which is normalized to one. The UK interest rate is
initially affected most, followed by the Canadian and German interest rate responses.
After around two horizons the effect of the US shock is insignificant for the interest
rate of the United Kingdom, Germany, and Italy. The responses of the interest rates
of Japan and France are lowest. For Japan the response is insignificant after the first
horizon while for France the response is insignificant for all horizons. The raise in the
Canadian interest rate lasts longest and comes to zero after propagation horizon six.

To sum up, the impulse response functions support that the results based on SSVSP
are in line with theoretically expected responses from a recursively identified system
with the three included variables. The illustrative model provides evidence that the

results obtained using the SSVSP are plausible.

1.7 Conclusions

This paper introduces the SSVSP as an extension of the Bayesian S* proposed by Koop
and Korobilis (2015b). The SSVSP is an alternative Bayesian estimation procedure for
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PVAR models that is able to fully incorporate dynamic and static interdependencies
as well as cross-country heterogeneities. It allows for a flexible panel structure since it
only distinguishes between domestic and foreign variables. Using a hierarchical prior,
the SSVSP searches for restrictions that are supported by the data.

The results of the Monte Carlo simulations demonstrate that the SSVSP outperforms
the S* in terms of deviation from the true values in particular when a less restrictive
panel structure is present. The average deviation of the estimated parameters from
the true values for the simulation with a flexible panel structure is less for the SSVSP,
APDggysp = 0.036, than for S*, APDgs = 0.056. The SSVSP DI, where a mix-
ture prior is only set on the parameters measuring dynamic interdependencies, has the
smallest deviation from the true values of all models. Furthermore, the accuracy of
the SSVSP in selecting the restrictions is proven by the posterior probabilities for no
interdependencies and homogeneity.

The results of the empirical application are summarized in three main findings. First,
the forecast performance is especially good for the SSVSP DI and the two selection
models, SSVSP_setDI _v1 and SSVSP _setDI v2. Thus, restrictions search for no
dynamic interdependencies is beneficial. However, the performance of the SSVSP is
limited by the very large number of restrictions searched for. Second, posterior prob-
abilities for DI and SI restrictions show that interest rates likely depend on foreign
interest rates while foreign industrial production growth does not impact other do-
mestic variables. Third, responses to a shock in the US interest rate are in line with
expected impulse response functions.

The SSVSP prior can be further developed. The SI restrictions search, based on
data, is an initial way to achieve structural identification, but it is limited by the fact
it is built on a recursive system. Furthermore, in this specification, the hyperparam-
eters are fixed for all parameters that are estimated. George et al. (2008) propose a
default semi-automatic approach to select the hyperparameters which vary for each
coefficient. Trying this approach leads to hyperparameters that tend to be so small
that the majority of values are drawn from the loose part of the prior. Koop and
Korobilis (2015b) specify distributions for the hyperparameters as also suggested in
Giannone et al. (2015). This allows them to have varying and less subjectively chosen
hyperparameters.

To sum up, the findings of the Monte Carlo simulations conducted and the exem-
plary empirical application encourage the use of the SSVSP to estimate PVAR models.
However, further research regarding both the recursive structural identification and the

specified hyperparameters should be undertaken.
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Appendix

1.A Gibbs Sampler Algorithm

The full unrestricted PVAR model with one lag including N countries and for each

country G variables can be written as
Y, =Zi1a+ U,

where « is the vectorized [NG x NG]-coefficient matrix A for lag one. The Z;_; =
(Ing ® Y1) where Y, 1 = (yi;_1,--»Yni—1)" and y; denotes a vector of dimension
[G x 1]. The Y; and Uy are [NG x 1]-vectors. The U, is normally distributed with mean
zero and covariance matrix X that is of dimension [NG' x NG]. The element o}" refers
to the coefficient of variable k of country j in the equation of variable [ of country 1.

The Gibbs sampler algorithm has the following three steps:

Step 1: Sample a from a normal posterior conditional on X, yp;, vosu-

« ’ EKVDI/VCSH NN(F,ucha);

where V, = (D'D) '+ X7 '@ X' X) ! with X =Y;_; and po = Vo (X' @ X' X)aors).
D is a diagonal matrix with D = diag(hil, ..., h§{%;). The value of h depends on ~yp;
and yosu:
hif _ T, if V%I,ij =0

Ty, if W%I,ij =1

for the parameters, where DI restriction search is done (i # j) and

&, if Yosy =0

hlk —
JJ . w
&, if Yosag =1

for the block diagonal parameters where CSH restriction search is done. agrs is the

OLS estimate of a. The posterior mean is restricted with the selection matrix I'.
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Step 2: Update vp; and yosy from Bernoulli distribution:

Ak o~ Bernoulli(r', )
Ik
o _ _ "2pry

T L=
DI,ij lk lk
U1DI,ij + U2DI,ij

Yosu ~ Bernoulli(mdgy)

w
V205
w w :
v1tsy + 0205y

w _
TosH =

Hereby, ull[’)“lvij = f(oz%€ | 0,7)probpr and UQ%LZ»J- = f(oz%C | 0,72)(1 — probpr). f()
denotes the probability density function of the normal distribution with mean zero
and variance 77 or 75 evaluated at all.

This shows that a priori the researcher assumes that it is equally likely that a dy-

The parameter probp; is set equal to 0.5.

namic interdependency between two variables of country ¢ and j are zero or nonzero.

vitsy = f(aé']; | 045?7 $)probesy and V20650 = f(aé-’;- | 0,&5)(1 — probesy). Again,

probegsy is set equal 0.5. Depending on ~¢gy the elements in I'), are updated.

Step 3: Update ¥ = U~"W~! and ;. The variance elements, ¥)%*, are drawn from a
Gamma distribution: T
it~ g (a+ 2.0).
where n =1, ..., NG and
b+ 0.55SE,, n=1

b+ 0.5(SSEp, — 8. (Sur + (RR))'s,) n=2,...NG

Note that 11! is assigned to By, ¥?2 to By, ..., and Y¥§% to Byg. T is defined as the
length of the time series and SSFE as the sum of squared residuals. S, is the upper-

left n x n submatrix of SSE, and s, = (S, ..., Sn—1,,)" contains the upper diagonal

elements of SSE. R is a diagonal matrix with R = diag(ril, ..., r§%). The value of r

depends on ~yg;:

w ) B if ”Ylskl,ij =0
iy . ’
Ko, 1f %lskf,ij =1

1k
ij
for all i # j and has the dimension [ng; x 1], where ngr = 1,.., Ng; and Ng; is the

Define the vector v = (113, ...,%§%, y)'. Thus, ¢ contains the covariance elements,

length equal to the number of SI restrictions. The elements of ¥ are updated from a

normal distribution:

wﬂsr | a, 1, ysr ~ N(:unsn Vnsz)'
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Hereby, fing, = =0 (S,q,—1 + (R'R)™1)7ts,,, and V

i nsr

= (Spg;—1 + (R'R)™1)~L. The
element ¢}* is the variance element in the same row of ¥ as ¢ = vy, for all i # j.
The off-diagonal elements of the covariance matrix that belong to one country are

drawn from a normal distribution with mean zero and variance xs.

1.B Hyperparameter

Table 1.9: Hyperparameters

o T2 & S K1 ke a b

02 4 02 4 03 4 0.01 0.01

A value of 4 = 0.2 and 75 = 4 means that the variance of the tight prior equals
0.04 and 16 for the loose prior. The criterion that the variance of the first part of
the normal distribution is smaller than the second part is clearly fulfilled. Several
other specifications are also checked. The accuracy of the algorithm in selecting the
restrictions varies with the specification of the hyperparameters. If the 7, ki, and
& are chosen too small, the majority of values is drawn from the second part of the
normal distribution (v equals one with a very high probability). Still, 7 equals more
often one in the cases no restriction is set in the true specification of the Monte Carlo
simulation. Values for hyperparameters smaller than or equal to 0.1 prove to be too
small, resulting in the difficulties mentioned. George et al. (2008) propose a default
semi-automatic approach to selecting the hyperparameters. The values are not fixed,
but varying for each coefficient. For example 7y ; = cl\/W and mo; = ca/var(w;)
whereby ¢; = 0.1 and ¢ = 10. wvar(w;) is the OLS estimate of the variance of the
coefficient in an unrestricted model. x and ¢ are set in an equal manner. Trying this
approach also leads to hyperparameters smaller than 0.1. The hyperparameters of the
other priors are set to the proposed default values of the authors. For S* the small
variance values are set to 0.1 and the high variance values to square root of 10, for
the SSVS small variance values are set to 0.1 and high variance values to 5 as used by
Koop and Korobilis (2015b) and George et al. (2008).
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1.C Monte Carlo Simulation

Figure 1.4: Share of restrictions set according to threshold value - simulations 1 and 2
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Note: First graph shows results for simulation one, second for simulation two. Number of draws
of ’ch[,ija’%qk[,ija and ygy that equal zero averaged over all Gibbs sampler draws as a ratio of all
simulated samples for a given threshold. True coefficients are the parameters set when simulating
the DGPs. Simulation 1: DGP has matrix panel structure. Simulation 2: DGP has flexible panel
structure.
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CHAPTER 2

Penalized Estimation of Panel Vector Autoregressive
Models: A Lasso Approach

2.1 Introduction

Growing international interlinkages in the financial and real sector are a defining fea-
ture of the global economy and have risen in importance over recent decades. This
involves major economic policy implications as highlighted for example by numerous
IMF reports and notes on spillovers. Theoretical papers demonstrate that ignoring in-
ternational spillovers could lead to biased impulse response functions and to inaccurate
forecasts. Georgiadis (2017) stresses that the accuracy of spillover effects increases sig-
nificantly when they are estimated with multi-country models instead of bilateral vec-
tor autoregressive models. Furthermore, leaving out variables capturing international
connections could lead to an omitted variable bias impacting structural analyses, as
discussed, for example, by Kilian and Liitkepohl (2017). In addition, Pesaran et al.
(2009) point out that not accounting for linkages across countries can lead to less ac-
curate forecasts of macroeconomic variables. Consequently, multi-country models with
several variables, such as panel vector autoregressive (PVAR) models, are necessary to
capture global spillovers in economic analyses.

The strength of PVAR models is to account for interdependencies and heterogeneities
across nations by jointly modeling multiple variables of several economies. PVAR mod-
els enable the modeling of dynamic interdependencies by augmenting country specific
models with lagged foreign variables. These models allow for static interdependen-
cies measured by potential nonzero covariances between the error terms of different
countries. Moreover, PVAR models take cross-country heterogeneities into account by
specifying country-specific coefficient matrices. However, estimating these models is
challenging because a large number of parameters is usually set against a short time

series. Due to the curse of dimensionality, estimation of these models is thus often
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infeasible.

This paper, first, proposes a new lasso (least absolute shrinkage and selection oper-
ator) that is suitable for estimating PVAR models and, second, establishes the asymp-
totic oracle properties of this estimator. The proposed estimator modifies the standard
lasso in two respects. First, the lasso for PVAR models takes the panel structure
inherent to the data into account. This is achieved by introducing penalty terms incor-
porating time series and cross-sectional properties. Second, it allows for an unrestricted
covariance matrix at the same time. This is done by specifying the loss function of
the estimation problem as the weighted sum of squared residuals, thereby, accounting
for the correlation between error terms of different cross section units. Thus, the lasso
provides a frequentist solution to the curse of dimensionality problem by using the
panel structure to ensure the estimation feasibility.

Furthermore, this paper establishes the asymptotic oracle property of the lasso for
PVAR models. That means, asymptotically the lasso selects the true variables to be
included in the model and estimates nonzero parameters as efficiently as if the true
underlying model is known. This property is an important feature for a variable selec-
tion estimator and is not achieved for the standard lasso. Since the newly introduced
penalty term varies across variables and is therefore closely related to the adaptive
lasso, the asymptotic oracle property can be derived.

In general, the lasso, as proposed by Tibshirani (1996), regulates the dimension of
the model by constraining the estimation problem with a linear penalty term. The
penalization determines the sum of the absolute values of the regression coefficients,
that is, the Li-norm of the coefficient matrix, to be less than a fixed value. Thus, the
penalty term governs the degree of shrinkage. By forcing some coefficients to be zero
and shrinking others, the lasso chooses the variables to be included in the model.

The main advantages of the lasso technique applied here are threefold.! First, the
specified penalty parameters of the lasso for PVAR models account for the inherent
panel structure within the data. The penalty terms build on a specific expected struc-
ture in panel data models. That is, interdependencies are assumed to only exist between
specific variables and cross section combinations and decrease over lags. This structure
is in line with the specification of the Minnesota prior for vector autoregressive (VAR)
models. The lasso uses this structure to reduce the dimension of the parameter space
by setting specific coefficients to zero. In particular, the penalty terms capture that
more recent lags provide more important parts of the dynamics than more distant ones

and that lags of domestic variables are more important than lags of foreign variables.

1Other methods to ensure the feasibility of the estimation are factor approaches, Bayesian shrinkage
priors, selection priors, and classical shrinkage methods, such as the ridge regression. Some methods
that have been used for PVAR models are described in section 2.5 in detail.
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As demonstrated by Song and Bickel (2011) and Nicholson et al. (2016, 2017), includ-
ing grouping structures or time series properties in the specification of the lasso for
estimating VAR models can improve forecast accuracy compared to the normal lasso
penalty. The authors let the penalty term vary across lags and include grouping struc-
tures by using group lasso techniques as proposed by Yuan and Lin (2006). This allows
them to capture similar sparsity patterns in the coefficient matrix. Likewise, contri-
butions on Bayesian selection priors for PVAR models support that accounting for the
inherent panel dimension within the data can enhance forecasting performance.?

Second, considering an unrestricted covariance matrix by the specification of the
loss function includes possible correlations between error terms in the estimation of
the parameters. In penalized regressions, coefficients derived using generalized least
squares deviate from those derived by ordinary least squares. Using the sum of squared
residuals as the loss function disregards possible correlations between variables, thereby
restricting the covariance matrix to the identity matrix. Hence, this procedure imposes
strict assumptions on the dependence structure between the cross-sectional units. Lee
and Liu (2012) show this for the use of lasso for VAR models. Basu and Michailidis
(2015), Ngueyep and Serban (2015), and Davis et al. (2016) modify the loss functions
in the lasso optimization for VAR models and allow for unrestricted covariances in the
penalized estimation.

Third, the lasso for PVAR models benefits from the same properties as the lasso
proposed by Tibshirani (1996). That is, the lasso reduces the dimension of the esti-
mated model. Thereby, it ensures the feasibility of the estimation if the number of
parameters per equation exceeds the number of observations. Furthermore, the lasso
simultaneously selects and estimates the model. It allows for a flexible lag structure
across equations since the lasso can choose different lag orders for each equation of the
model. Moreover, the lasso is able to improve forecast prediction accuracy by reducing
the variance of the predicted values.

The lasso for PVAR models is of interest for empirical work since it provides a so-
lution to ensure the estimation feasibility for PVAR models. That is relevant since,
first, PVAR models are typically large including several countries and variables per
country to capture macroeconomic relations. Second, the dimension of PVAR mod-
els grows fast as adding a country increases the number of equations and columns of
the coefficient matrices while adding variables means including them for each country.
The lasso for PVAR models can be used for estimating reduced form VAR models. It
can select the subset of variables that should be included in the model and serve as

a flexible lag length selection tool. Due to the selection of the relevant variables the

2See, for example, Koop and Korobilis (2015b), Korobilis (2016) and Schniicker (2016).
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PVAR model estimated via lasso is easily interpretable and might be used for further
structural analysis or forecasting.

The results of three simulations and an empirical application support the use of the
lasso for PVAR models. It improves the forecast accuracy measured by mean squared
forecast errors relative to estimating the PVAR model with OLS, relative to Bayesian
panel VAR methods, and relative to single country models. Accounting for the panel
dimension in the penalty terms increases the forecast performance as using a lasso ap-
proach without such specific penalty terms leads to larger mean squared forecast errors.
The gain in forecast accuracy relative to other estimation techniques is, in particular,
found for large systems in simulations and an empirical application. For smaller mod-
els, the lasso for PVAR models performs equally to the models of comparison.

Furthermore, the dimension reduction of the lasso techniques results in smaller mean
squared errors, measuring the deviation of coefficient estimates from their true values,
for all simulations compared to OLS. The benefit in terms of lower mean squared error
is higher for large and sparse models. The lasso provides a frequentist alternative to
estimate PVAR models which is competitive to alternative techniques. This is sup-
ported by mean squared errors of the lasso techniques in the same range with Bayesian
panel VAR methods and single country models.

In the following, the paper is related to the relevant literature in section 2.2. In
section 2.3 the lasso for PVAR models is introduced and its asymptotic properties are
discussed. Other estimation strategies for PVAR models are reviewed. Next, in section
2.4 three simulation studies evaluate the performance of the lasso for PVAR models
along different criteria. A forecasting exercise on example data is conducted in section

2.5 while section 2.6 concludes.

2.2 Literature

By introducing the lasso for PVAR models, this paper contributes, first, to the litera-
ture on the use of the lasso techniques for VAR models and, second, to the literature
on estimation procedures for PVAR models.

Hsu et al. (2008) establish the usage of the lasso for VAR models. The authors, along
with Kascha and Trenkler (2015), report that the lasso improves forecast performance
compared to the use of information criteria for model selection. Ren and Zhang (2010)
and Ren et al. (2013) build on Zou (2006), who propose adaptive weights for penal-
izing coefficients differently, and develop adaptive lasso techniques for VAR models.
Ren and Zhang (2010) propose the adaptive lasso and the hybrid adaptive lasso which

first determines the lag order by some information criterion for VAR models. Ren
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et al. (2013) build on the adaptive lasso and propose a two step adaptive lasso leading
to unbiased estimates of the nonzero coefficients. Their results provide evidence that
the adaptive lasso outperforms the lasso in terms of forecasting performance, thus in-
dicating the benefit of coefficient specific penalties. Kock and Callot (2015) establish
non-asymptotic oracle inequalities for the lasso and adaptive lasso for high-dimensional
VAR models. The authors further show that the lasso provides asymptotically con-
sistent estimates and that the adaptive lasso is asymptotically equivalent to the least
squares estimator that only includes true nonzero parameters.?

To date, two main extensions of Tibshirani’s lasso are proposed in the context of
VAR models. As mentioned, one strand of the literature broadens the specification of
the penalty term to include special characteristics. The second group modifies the loss
function in order to allow for unrestricted covariance matrices. However, the papers
are either part of the first or the second group. One exception is Ngueyep and Serban
(2015), who propose a penalized log-likelihood scheme applying penalties for higher
lags and within group or between group penalties. Thus, the authors take into account
the covariance matrix and allow for special characteristics. Yet, they still restrict the
covariance matrix in their approach to a block structure by assuming no dependence
across groups. This paper fills the gap by combining the weighted sum of squared
residuals as the loss function with penalty terms that incorporate data properties. In
addition, the paper broadens the specification of the penalty terms used so far by the
introduction of the new penalty term for PVAR models.

The first group consists of papers which further develop the penalty term. Song and
Bickel (2011) and Nicholson et al. (2016, 2017) estimate VAR models with the lasso but
use penalty parameters which are able to incorporate time series properties or grouping
structures in the coefficient matrix. They do so by letting the penalty term vary across
lags. The authors include a grouping structure by using group lasso techniques as pro-
posed by Yuan and Lin (2006). This allows them to capture similar sparsity patterns in
the coefficient matrix. Song and Bickel (2011) present different grouping structures: an
universal grouping which sets lasso penalties on the diagonal and group lasso penalties
on the off-diagonal elements and segmented grouping combining lasso, group lasso and
group lasso penalties for subgroups. The variants additionally penalize increasing lag
length. Nicholson et al. (2016) propose a hierarchical VAR model as an alternative to

lag length selection methods. The authors describe different penalization structures for

3This paper focuses on the lasso estimated in a frequentist way and does not cover Bayesian lasso

approaches. Bayesian lasso variants are, for example, discussed by Park and Casella (2008) and
Kyung et al. (2010). Korobilis (2013), Gefang (2014), and Billio et al. (2016) use Bayesian lasso
approaches for VAR models. Additionally, papers use the lasso for panel data regressions. Since
this paper concentrates on the estimation of panel VAR models, these approaches are not further
discussed. Other contributions include Ando and Bai (2016) and Su et al. (2016).
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lags: the lag length can vary across equations but not within equations and one variant
with milder assumptions on diagonal elements. Nicholson et al. (2017) demonstrate
the forecast performance of various penalty schemes for VAR models with exogenous
variables. The penalty schemes are a group lasso for each lag of endogenous variables
and one for exogenous variables as well as a sparse group lasso allowing within group
sparsity. The three studies compare the different penalty structures to models using
the normal lasso approach. The findings of all three studies demonstrate that including
time series and grouping characteristics lead to improved forecast performance.
Papers in the second group modify the loss function and generate weights for the
sum of squared residuals. Lee and Liu (2012) explain that the choice of the loss func-
tion (sum of squared residuals or weighted sum of squared residuals) is crucial in the
context of VAR models. In a VAR model the covariance matrix impacts the estimated
parameters in a constraint regression. Using the sum of squared residuals as the loss
function disregards possible correlation between variables and thereby restricts the
covariance matrix to the identity matrix. Lee and Liu (2012), Basu and Michailidis
(2015), Ngueyep and Serban (2015), and Davis et al. (2016) use a weighted sum of
squared residuals as their loss function and hence allow for an unrestricted covariance
matrix. As yet, the literature on estimating VAR models with the lasso follows two
main approaches to estimate the covariance matrix: a two-step approach or a joint like-
lihood approach. Lee and Liu (2012) describe two plug-in methods, where in a first step
either the coefficient matrix or the covariance is estimated, followed by the estimation
of the other. The authors use a graphical lasso (glasso), following, in particular, Fried-
man et al. (2008). In addition, they present a doubly penalized likelihood approach
to jointly estimate the coefficient and covariance matrix in a L1-regularized regression.
Basu and Michailidis (2015) propose another option by estimating the covariance ma-
trix using residuals of an initial lasso estimation with sum of squared residuals or a
glasso approach. Further, they present a joint penalized maximum likelihood approach.
Davis et al. (2016) compare their two-stage approach using tools from the frequency
domain with a lasso approach weighted with the inverse covariance matrix. Updating
until convergence, the covariance matrix is estimated using the residuals of the lasso
estimation. Ngueyep and Serban (2015) propose a penalized log-likelihood scheme ap-
plying penalties for higher lags and within group or between group penalties.
Furthermore, the paper extends the current literature on the estimation of PVAR
models. As yet, the literature mainly uses three kinds of model selection methods: the
cross-sectional approach of Canova and Ciccarelli (2004, 2009), the Bayesian selection
prior of Koop and Korobilis (2015b), and a priori assumptions of no dependence or ho-

mogeneity across the panel units. A detailed description of the alternative estimation
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strategies is provided in 1.2 of chapter 1 of this thesis. Some alternative estimators for
PVAR models are described in 2.3.5.

2.3 The lasso for PVAR Models

The lasso for PVAR models modifies the traditional lasso of Tibshirani (1996) in two
ways. First, a specific penalty term is introduced which captures time series and
cross-sectional properties. Second, the loss function of the lasso optimization problem
is weighted with the inverse covariance matrix, thereby allowing for an unrestricted

covariance matrix.

2.3.1 PVAR Model

Panel vector autoregressive models include several countries and country-specific vari-
ables in one model. A PVAR model with N countries and G variables per country for

t=1,..,T is given by
Yie = AinYio1 + ApYi o+ .+ ApYip + ua, (2.1)

where y;; denotes a vector of dimension [G X 1] for country ¢ with ¢ = 1,..., N.* The
Yiop = (Yiy_ps - Yni_p) are of dimension [NG x 1] and the coefficient matrices A;p of
dimension [G x NG] for P =1, ...,p. The u;; ~ N(0,%;;) and the covariance matrices
across countries are given by X;; for ¢ # j.

In compact form, the PVAR model can be written as
}/; == BXt,1 + Ut, (22)

where Y; = (yi;, .-, Y;) and the coefficient matrix B is of dimension [NG x NGp|. The
vector X;_; includes all lagged variables, X; 1 = (Y;_1,...,Y;—,)’, and is of dimension
[NGp x 1]. The U, is normally distributed with mean zero and covariance matrix 3 of
dimension [NG x NG|. The unrestricted PVAR model allows for dynamic and static
interdependencies as well as for heterogeneities across countries. The X; ; includes
lagged values of every variable in each equation. The unrestricted B-matrix and the
covariance matrix Y enable country-specific coefficients and correlations between error
terms of all possible variable-country combinations. This PVAR model has (NG)?p

(NG+1)
2

unknown parameters of the B-matrix and NG parameters of . Variables are

ordered per country meaning that the first G rows of the system model variables of

4Although this specification does not include a constant as common in the lasso literature since data
are usually standardized, it can be extended to include one.
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country one, while the rows NG — G + 1 to NG describe the variables of country N.
The large number of parameters can lead to the curse of dimensionality problem. The

lasso provides a solution to deal with this issue.

2.3.2 The lasso Estimator

Tibshirani (1996) proposed the lasso for a linear regression model with multiple regres-
sors. The coefficient estimates are obtained by minimizing the sum of squared residuals
subject to a linear constraint. The penalization term regulates the sum of the absolute
values of the regression coefficients, the Li-norm of the coefficients, to be less than a
fixed value. The lasso forces the coefficients to lie in a specific area that is centered
around zero. Thereby, it shrinks some coefficient and constrains others to be equal to
zero. The Li-norm determines the geometric shape of this constrained region. It has
two properties that are crucial for the features of the lasso. Coefficients can equal zero
due to the possibility of corner solutions and, second, the constrained region is convex,
which simplifies the optimization procedure.

Introducing a shrinkage penalty in the regression enables coping with situations in
which T' < NGp, can improve prediction accuracy, and produce interpretable models.?
If T < NGp, the number of parameters per equation exceeds the number of observa-
tions, ordinary least squares is not feasible since no unique solution exists. If the true
model is sparse, meaning that some of the true coefficients are zero, the lasso finds a
solution by constraining the estimation. Furthermore, the lasso reduces the variance of
the estimated coefficients, thereby improving prediction accuracy. Due to the selection
property of the lasso the interpretation of the model is enhanced. By setting some co-
efficients to zero, a subset of variables that simplifies the identification of core driving
variables of the system is selected.

The three mentioned properties clarify for which situations the lasso is well suited,
namely for large, sparse systems for which the researcher’s aim is to provide forecasts
and to analyze main driving forces. The bias introduced by the lasso is accepted in

order to gain these properties.

2.3.3 Extended Penalty Term and Loss Function for PVAR Models

The optimization problem of the lasso for PVAR models modifies the lasso of Tibshirani
(1996) in two ways. The weighted sum of squared residuals is used as the loss function
instead of the sum of squared residuals. Furthermore, a penalty term capturing the time

series and cross section properties is introduced. The resulting optimization problem

STibshirani (1996) and Hastie et al. (2015) discuss these three properties in detail.
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is given by:
K K Kp Kp !
argmin Z Z Wi (Yk -> bkam) (Yj -> bijm>
km =1 j=1 m= m=
kK - 1 1
Z Z km |bkm| )

k,‘: m=1

(2.3)

where by, is the element of the B-matrix in the k-th row and m-th column. K is the
number of countries times the number of variables for each country, K = NG. The
Y; and X,, are of dimension [1 x 7| for j = 1,..., K and m = 1, ..., Kp. The wy; is
an element of the inverse of the covariance matrix, X! = Q. The A, is the penalty
parameter and |by,,| denotes the absolute value of by,,. As common in the lasso litera-
ture, Y; is demeaned and standardized. The latter is done in order to have comparable
units for all variables when choosing the penalty parameters.

Furthermore, the stability of the VAR model is assumed. This assumption is needed
for the derivations of the asymptotic results (see 2.3.4). To model data with cointegra-
tion relations a vector error correction model is more suitable. However, the estimation
of the cointegration relations is not straightforward in the case of the proposed lasso.
Here, an extension of the estimation procedure along the lines of for example Liao and
Phillips (2015) would be necessary. Liao and Phillips (2015) propose a lasso for vector
error corrections models and apply a penalty on the coefficient matrix and a penalty on
the cointegration rank. The author set a group lasso penalty on the coefficient matrix
of the lagged differences. Furthermore, they use an adaptive penalty function for rank
selection penalizing a function of the eigenvalues of the cointegration matrix.

The optimization problem of the lasso for PVAR models is solved using a coordinate
descent algorithm as proposed in Friedman et al. (2007) and Friedman et al. (2010).
This iterative algorithm updates from Bj.,, the coefficient matrix B in iteration iter,
to Bjter+1 by a univariate minimization over a single by,,. It iterates over all elements in
B till convergence is reached.” The coordinate descent algorithm can be used since the
non differentiable part of the optimization problem is separable. Convexity and sepa-

rability of the problem ensure the existence of a global solution. The lasso estimator,

5The optimization algorithm and the derivation of the lasso estimator are described in detail in 2.C
and 2.A. For more details regarding the optimization algorithm see Friedman et al. (2007), Friedman
et al. (2010) and Hastie et al. (2015).

“Convergence is achieved when max(|Biter — Biter—1]) < €. The € is chosen such that the lasso
solution converges to the OLS estimate for a penalty parameter set to zero and weighted sum of
squared residuals as the loss function.
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which is called lassoPVAR in the following, has the form:

) ~ ~ M
blasso — (b m) ’b m) . m 2.4
o sign ( by k Yo X X . (2.4)
with X« . X«
P D i Wik (Y5 = D000 b5 Xi) X7, N (Ye = 2o b Xi) X5, (25)
hm = e X X!, X X! ‘

As pointed out by Lee and Liu (2012), in a VAR model correlations between error
terms have an impact on the estimated parameters in a restricted regression.® It can
be easily seen from the above stated lasso estimator bi2%%° that the covariance affects
the value of bi25% for elements wy, # 1 and wj, # 0 for j # k. When ¥ equals the
identity matrix, the estimator bi%55° reduces to the lasso estimator based on the sum of
squared residuals as the loss function.

The covariance matrix Y is estimated using a two-step approach. The first step esti-
mates the covariance matrix via graphical lasso, while in the second step the estimated
s plugged into the lasso estimation of b{2%%°. Friedman et al. (2008) demonstrate that

the covariance matrix is estimated by maximizing the Gaussian penalized log-likelihood
log det(Q2) — tr(SQ) — p ||Q| (2.6)

with respect to the nonnegative definite inverse of the covariance matrix = 71, The
matrix S is the empirical covariance, tr(S€) is the trace of SQ and ||€?|| is the sum of
the absolute values of each element of 2. For p > 0 the regression is penalized, while
for p = 0 the classical maximum likelihood estimator is obtained. The details of the
glasso are in 2.B. As pointed out by Banerjee et al. (2008), 3 is invertible even in the
case when the number of variables is larger than the number of observations due to the
regularization using p > 0.

An alternative way to estimate the covariance matrix, as done by, for example,

Tibshirani (1996), is to use the least squares estimator

=

Y — BX)(Y — BX)'
(Y = BX)(Y ~ BX)'
where kk is the number of degrees of freedom. The degrees of freedom adjusted least
squares estimator is a consistent estimator for constrained regression problems, al-
though zero restrictions can reduce the number of degrees of freedom. Another option

is to use the number of degrees of freedom for the lasso, which is the number of nonzero

8See Lee and Liu (2012) for details. This is similar to the well-known fact that for VAR models, OLS
is unequal to GLS in the case of parameter constraints.
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parameters.” However, in contrast to the glasso estimation, this approach can lead to
problems for the invertibility of the covariance matrix in large systems. This is why
the glasso approach is used here.

The second extension of the lasso for PVAR models is the modification of the penalty
term. The A, denotes the penalty parameter. If \g,, = 0, the estimated coefficients
equal the OLS solutions. If Ag,, > 0, the parameters are shrunk to zero. To allow for

a specific time series and cross section penalty, A, consists of three parts:
)\km = /\k pa C. (27)

1. Basic penalty - \;. This part varies across equations. A\, > 0 will force coeffi-

clents to zero.

2. Time series penalty - p®. It captures that more recent lags provide more
information than more distant ones. The penalty increases with the lag order, p,
for a > 0. The time series penalty part allows the penalty to vary across lagged

variables.

3. Cross section penalty - ¢ > 1, if foreign variable. The penalty models that

lags of domestic variables have a larger impact than lags of foreign variables.

The penalty parameters vary across equations (due to ;) and across lagged variables
(due to p* and ¢). The parameters o and ¢ are fixed for the whole model.

The cross section penalty separates domestic and foreign variables. However, all
foreign variables are treated in a similar way as c is fixed for the whole model. That
is done to simplify the selection of the penalty parameter. A c¢ varying across differ-
ent countries complicates the determination of the optimal penalty parameters and
increases the computational time. For some empirical application a more flexible ¢
might be appropriate. Such a flexibility can be build in by grouping countries and
having different ¢ parameters for sub-groups of countries. Following the idea of GVAR
models, the ¢ parameter can also be modeled depending on exogenous connectivity
measures such as trade weights.

Optimal penalty parameters are determined via a rolling cross-validation technique.
The penalty parameters are chosen such that they minimize one-step ahead mean

squared forecast errors.'®

9Regarding the degrees of freedom for the lasso see Biithlmann and van de Geer (2011) for details.

10The n-fold cross-validation technique for choosing the optimal penalty parameter is not applied here
due to the time dependence in the PVAR model. By choosing the optimal penalty parameter that
minimizes one-step ahead mean squared forecast errors, this paper follows Song and Bickel (2011),
Nicholson et al. (2016, 2017). However, in contrast, Bergmeir et al. (2018) justify the use of the
standard n-fold cross-validation techniques for autoregressive processes.
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penalty parameter selection

| | | |
[ I I |

1 Ty T T

initialization forecast evaluation

Like Song and Bickel (2011), the sample is split in three periods: The first period
from 1 to T} — 1 is used for estimating the model, based on the second period from
Ty to Ty — 1 different penalty parameters are evaluated, and the third period from
T, to the end of the sample is later used for forecast evaluation of the lasso.!! The
model is estimated in a rolling scheme taking the observations from ¢ to T3 +¢ — 1
for t = 1,..., T, — Ty. For each t the out-of-sample forecast accuracy for a specific

penalty parameter A, is measured by the one-step ahead mean squared forecast error
for variable k, k =1,..., NG:

To—T
1 .
MSFEMem)r = T, ; (Ve — Yeer1)?,

where f/k,tﬂ denotes the estimated one-step ahead forecast for variable k. For simplic-
ity only A\ is determined via cross-validation, while a and ¢ are pre-set to a = 0.6 and
¢ = 1.4 for the simulation and a = 0.6 and ¢ = 1.8 for the application. These values are
preselected in a small cross-validation exercise. The search for the optimal )y is done
over a grid of penalty parameter values whereby at the maximal value all coefficients
equal zero.!? The forecast performance is evaluated for the period T, to T by MSFEs
based on rolling window forecasts with the fixed penalty parameters determined for
the period 1 to T, — 1.

The application of the lasso for PVAR models is not limited to the currently con-
sidered PVAR model in which the cross sections are countries. Other possible cross-
sectional dimensions are, for example, industries and regions. More generally, the cross
section penalty can be understood as a higher penalty for variables of a cross section

unit different than the one of the variable being explained.

UFor estimation, for the simulation the periods are 7o = T — 20 and T} = T» — 20 and for the
application To = T — 20 and T = T5 — 60. Extending the period for penalty parameter selection
comes at the cost of longer computational time.

2For the simulations: A% = maz(maz(XY’)) and A" are six values between 0.01 and
(1/NGp)A7r*®. For the applications: A\*** = max(max(XY")) and /\i”d are twelve values between
0.01 and (1/T)A;**. See 2.F.1 for details on the grid values for the application.
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2.3.4 Asymptotic Properties

As a variable selection method, the lasso for PVAR models should satisfy the oracle
properties.!> This means, first, asymptotically the lasso selects the correct sparsity
pattern. With probability tending to one, it sets true zero parameters to zero while
not restricting nonzero parameters to zero. Second, the nonzero parameters are as
efficiently estimated as if the true subset of relevant variables is known. Thus, for the
oracle properties to hold, selection consistency and asymptotic normality has to be
satisfied as T' goes to infinity.!4

The asymptotic analysis follows the steps established in Song and Bickel (2011) and
Lee and Liu (2012). Assume that the data Y; are generated from an underlying model
as in equation (2.1) where U; ~ N (0, ) and that the PVAR model is stable. That is,
all roots of det(Ix — Az — Ag2® — ... — A,2P) are outside the unit circle.

Define the true parameter matrix as B*. Assume that the covariance matrix is
known. The inverse of the covariance matrix is denoted as 2. If € is estimated
consistently, it can be shown that the results derived in the following hold. The true
coefficient in the k-th row and m-th column of B* is defined as b},,,. The vectorized true
coefficient matrix is given by b* = vec(B*). Let J = {(k,m) : b},, # 0} denote the set of
subscripts of nonzero parameters. The number of nonzero parameters, the cardinality
of J, is given by |J| = s. The lasso estimator of b*, as derived from the optimization
problem in equation (2.3) under the [1 x NG?p]-vector of penalty parameters, \, is
denoted as b. The b% is the vector of true nonzero parameters with dimension [s x 1]
and by is the estimator of b%. Let Z = Ix ® X', where X is the [Kp x T]-matrix of
right hand side lagged variables.

Define ar = Ay, for k,m € J and ¢ = Mgy, for k,m ¢ J. Assume that the lag length
p can increase with growing 7. Thus, Ag,, is time dependent since it depends on p.
The ar is defined as the penalty term )\, for a true nonzero parameter. The cr gives
the penalty term for true zero parameters. The specified penalty terms in lassoPVAR
allow for different penalization of each variable. The introduction of time series and
cross section penalty terms leads to stronger penalization of close to zero coefficients.
Thus, the distinction of the penalty term in ar and cr is justifiable. Furthermore, the

following assumptions are made:
(A1) T == plim ZZ'|T exists and is nonsingular.

(A2) Nonzero parameters exist. The cardinality of J is nonzero, |J| = s > 0.

13For the definition of the oracle property, see, for example, Lee and Liu (2012) and Kock and Callot
(2015).

14 An increasing number of cross sections N increases the number of free parameters by adding equa-
tions and variables in each existing equation and not the number of time series observations.
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(A3) Assume that vTap — 0.

(A4) Assume that vTep — oo.

Thus, assumptions (A3) and (A4) require different rates of convergence properties for

the penalty parameters associated with zero and truly nonzero coefficients.
Theorem 1. Under the assumptions (A1) to (A4) the following results hold:
(R1) Selection consistency: plim by, =0 if bf, = 0.

(R2) Asymptotic normality: /T(b; — b%) 4N, (Q® ;Y.

The proof of the theorem is provided in 2.D. The (2 ®I'); is the covariance matrix
obtained by removing the row and column of 2 ® I' corresponding to the elements
(k,m) ¢ J. Results (R1) and (R2) imply that if the penalty parameters satisfy the
conditions given in (A3) and (A4), then lassoPVAR satisfies asymptotically the oracle
properties. Theorem (R1) states the selection consistency. That is, for T — oo, a true
zero parameter, by, with (k,m) ¢ J, is estimated consistently, meaning that, equaling
zero. The second result, (R2), establishes the asymptotic normality for true nonzero

parameters, b; ~ with (k,m) € J.

2.3.5 Comparison to Other Estimation Procedures for PVAR Models

This section describes three further lasso specifications, the estimation of individual
country VAR models, as well as the alternative existing estimation procedures for
PVAR models in the literature, to which the performance of the lasso for PVAR mod-
els is compared. The alternative PVAR estimation methods are restricted least squares,
the selection prior of Koop and Korobilis (2015b), and the cross-sectional shrinkage ap-
proach of Canova and Ciccarelli (2009).1% As a general benchmark model, the PVAR
model is estimated with ordinary least squared - this model is referred to as OLS.
However, while it can serve as a benchmark for small models, OLS' is unfeasible for
larger models for which T' < Kp.

Lasso with basic penalty. The first alternative lasso approach is a lasso with
weighted sum of squared residuals as the loss function but without a penalty which
explicitly captures panel properties. The time series penalty, «, is set to zero and the
cross section penalty, ¢, equals one. Thus, the penalty parameter A, reduces to .
In the following, this estimator will be referred to as lasso VAR.

Post lasso. Second, a post lasso is considered. The post lasso consists of two es-

timation steps, as explained by Belloni and Chernozhukov (2013). In the first step, a

15The two Bayesian approaches are only briefly described in this paper. See Koop and Korobilis
(2015b), Canova and Ciccarelli (2004, 2009, 2013) for details.
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lasso optimization problem is solved based on the proposed specification with weighted
sum of squared residuals along with time series and cross section penalties. In the
second step, the nonzero elements of the first step are re-estimated with OLS. Thus,
the post lasso reduces the bias of the nonzero elements introduced via lasso shrinkage.
This estimator is called post lassoPVAR.

Adaptive lasso. The third lasso alternative is the adaptive lasso, as proposed by
Ren and Zhang (2010) for VAR models following the idea of Zou (2006). While the
lasso shrinks all coefficients constantly depending on the penalty parameter, the adap-
tive lasso penalizes large nonzero coefficients less than very small coefficients. This is

achieved by adaptive weights. Zou (2006) proposes weights, which are data-dependent,

OLS
km

for the penalty parameter, wy,, = where b is the OLS estimate and v a

constant. OLS estimates close to zero will increase the penalty parameter, leading
to increased shrinkage, while large nonzero coefficients will decrease the penalty pa-
rameter. The adaptive lasso applied here, referred to as adaptive lasso VAR, uses the
weighted sum of squared residuals and sets & = 0 and ¢ = 1. One issue of the adaptive
lasso is the choice of the unbiased estimator for the weights. For very large models,
OLS is not feasible if T < Kp. An alternative is to use ridge estimates or post lasso
estimates as weights.!6

The lassoPVAR allows for different penalty parameters for different coefficients. The
specification of the time series and cross section penalties captures close to zero co-
efficients and penalizes those stronger. Consequently, lassoPVAR can be seen as an
adaptive lasso.

Single-country VAR. This model assumes both a block-diagonal coefficient matrix
and a block-diagonal covariance matrix. Hence, the model allows for no interdepen-
dencies across countries. Estimating the whole system is equal to an estimation of
each single-country VAR model separately. The model is estimated with OLS. The
estimator is called single VAR.

Restricted least squares. An estimation approach for PVAR models used in the
literature, which is discussed here, is a restricted least squares estimation, called restLS.
In this approach restrictions are set a priori. The here used restricted LS estimates a
block-diagonal system ordering the variables in country blocks. Such a model assumes
no dynamic interdependencies between countries. Setting the off-diagonal elements to
zero reduces the number of free parameters. However, the assumption of no dynamic
interdependencies between various economies is theoretically hard to justify. No re-

strictions are set on the covariance matrix.

16Compare with, for example, Kock and Callot (2015). However, using the post lasso will increase
computation time while using ridge estimation requires further determination of hyperparameters.
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Stochastic search specification selection. Another approach for estimating
PVAR models is the Bayesian selection prior of Koop and Korobilis (2015b) called
stochastic search specification selection (SSS5S). The authors define weighted normal
distributions as prior distributions that center around a restriction with a small or a
large variance. Thus, the first part of the distribution shrinks the estimated parameter
toward the restriction (small variance) while the second part allows for a more freely
estimated parameter (large variance). Depending on a hyperparameter, which is set
to be Bernoulli distributed, a parameter is drawn from the first or second part of the
distribution. Koop and Korobilis (2015b) specify three different priors based on the
possible restrictions: They search for no dynamic interdependencies, no static interde-
pendencies and for homogeneity across coefficient matrices.

The prior centering around the no dynamic interdependency restriction is specified
for an off-block-diagonal matrix of B of variables belonging to one country. The dy-

namic interdependency prior has the following form:

Bij ~ (1 =~Z"N(O, 771) +~F N (0,73 1)
%‘[j)l ~ Bernoulli(zP), Vj #i

where B is a off-block-diagonal matrix of B and 77 < 73. If v]7 = 0, B;; is shrunk to
zero, if ’yDI = 1, B;; is more freely estimated. Setting the prior on a block of variables
of one country leads to a similar treatment of all variables of one country being either
restricted (shrunk to zero) or not. The cross-sectional homogeneity prior is set on the

diagonal coefficient matrices of the B matrix. The prior has the following form:

B ~ (1 - ’YSSH)N(BJJ)TIII) + %JSHN( 2 12 1)

ngH ~ Bernoulli(n®*®), Vj #i

where B;; and Bj; are block-diagonal matrices of B and 7 < n3. If 75" = 0, By
is shrunk to B,;. Koop and Korobilis (2015b) specify a hierarchical normal mixture
prior for the off-diagonal elements of the covariance matrix to build in no static in-
terdependencies. Since no restrictions are set on the covariance matrix for the lasso
solution and the forecast comparison is done on the reduced form, no restriction search
for static interdependencies is done in the following exercises. The covariance is drawn
from an inverse Wishart distribution. A Markov Chain Monte Carlo algorithm samples
the estimated parameters as the posterior means.

Cross-sectional shrinkage approach. Another Bayesian estimation procedure
for PVAR models is the cross-sectional shrinkage approach, C'C, proposed by Canova

and Ciccarelli (2004, 2009). Here, the parameters are factorized into common, country-
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specific, and variable-specific time-varying factors. Canova and Ciccarelli (2009) specify

the model in a hierarchical structure:

b:AF+€t
}/;:ZtAF‘i‘Et
Et:Ut+Zt6t

e ~N(0,2 ® o*I)
e ~ N0, (I +0%Z,2,)%)

where A is a [NG?*p x f] matrix of loadings, F is an [f x 1] vector of factors, and
Z; = I ® X;_1. Since the factors, F', are of a lower dimension than the vectorized
B matrix, b, f < NG?p holds. The specified prior distributions for the covariance
matrices are inverse Wishart and b ~ N (AF, Y ® 0I). The number of factors are N
common factors for coefficients of each country, G common factors for coefficients of
each variable, and one common factor for all coefficients.

An advantage of the approach is that it takes into account time variation. As one
limitation, the cross-sectional shrinkage approach groups coefficients due to factorizing,
however, it does not consider zero values in a specific way.!” The procedure does not

use possible sparsity for dimension reduction.

2.4 Simulation Studies

2.4.1 Simulation Set-Ups

The finite sample performance of the lassoPAVR is evaluated based on three Monte
Carlo simulations. In the first simulation set-up data is generated from a stationary
PVAR(1) model model that includes two countries and two variables per country.
The number of time series observations is 100. The underlying PVAR model has the

parameter matrix
09 08 0 O

0 09 0 O
06 06 09 0
0.6 0.6 0.8 0.9

true __
1 =

and normally distributed error terms, U, ~ N(0, £"¢) with ¥*¢ : ¢;; = 0.2 and 0;; =
0.1 for ¢ # j. The PVAR model represents a scenario where the second country has

no dynamic impact on variables of the first country while the first country’s variables

17Korobilis (2016) elaborates further on this point.
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affect the variables of country 2. This set-up could be a model including one big and
one small economy, justifying the block of zeros in the upper part of the A;-matrix.
A second property of the model is that domestic variables have a greater impact than
foreign variables have.

The number of parameters of this model is moderate. The coefficient matrix has 16
free coefficients out of which 10 are true nonzero coefficients. As a result, the methods
aiming for dimension reduction, such as the lasso approaches and the two Bayesian
procedures, are not able to provide substantial benefit by reducing the number of
parameters to estimate. Rather, the simulation is conducted to analyze whether these
methods perform comparable to standard OLS in terms of mean squared error and
forecast accuracy.

In the second simulation data is generated from a stationary PVAR(4) with U; ~
N(0, Xfrue), 3trve : gy = 0.2, 055 = 0.1 for @ # j, and T = 100. The model includes
three countries and two variables per country. The set-up illustrates a larger and sparse

model with parameter matrices

(0.6 0.5 0 0
0 06 0 0 0 0
04 04 06 05 0 04
0 04 0 06 0 0
04 04 04 0 06 0
0 04 0 04 0 06

Ag"ue — 07 Ag"ue — 07
0.35 0.3 0 0

0

0 035 0 0 0
03 03 035 03 0 03

0

3

0

true __
Al e

Airue —
0 0.3 0 0.3 0

03 03 03 0 035 0
0 03 0 03 0.35]

The model includes dynamic and static interdependencies as well as cross-sectional
heterogeneities. It incorporates a time series pattern by lower coefficients for higher
lags. Thus, the impact of a variable is smaller for lag four than for lag one. The
second and third lag have no impact. This structure could be motivated by a model
using quarterly data depicting seasonal patterns. In addition, foreign variables affect
domestic variables less compared to the effect of domestic variables.

The second simulation provides a larger and sparser model than the model in simu-
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Table 2.1: Summary of simulation set-ups

Simulation (1) Simulation (2) Simulation (3)

lag length 1 4 4
number of countries N =2 N=3 N =4
number of variables G=2 G=2 G=14
number of nonzeros in B 10 34 432
number of elements in B 16 144 1024
fraction of nonzeros in B 62.50% 23.61% 42.19%

lation one. The coefficient matrices have 144 free parameters, out of which 34 are true
nonzero coefficients, hence 23.61% of all coefficients of B are true nonzero coefficients.
However, this model is still rather of medium size. The simulation enables analyzing
whether efficiency gains compared to the benchmark OLS can already be found in
medium sized models.

The DGP of the third simulation is based on a PVAR(4) with four countries and
four variables per country. The U; are normally distributed with U; ~ AN(0, X%¢),
Yrue s g = 0.2, 055 = 0.1 for ¢ # j, and the length of the time series is 7' = 100. The
coefficient matrices for lag p = 1, ..., 4 are lower triangular matrices where the diagonal
elements are given by

(—0.8)P=Y0.8.

A column of the off-diagonal elements below the diagonal is given by
05—(p—1) 05—(p—1) 05—(p—1) 0

repeated for each country. The coefficient matrices model that foreign lags are less
important and that with increasing lag length the impact of the variables decreases.
This large and sparse model allows for dynamic and static interdependencies as well
as for heterogeneous coefficients across economies. In total, B has 1024 coefficients, of
which 432 are nonzero coefficients, thus 42.19% are nonzero coefficients. The constant
is set to zero in all three simulations without loss of generality since the data are
standardized. Table 2.1 summarizes the simulation set-ups. The underlying models
of simulation one and two are chosen to be all relatively small so that they allow
the comparison to Bayesian PVAR model methods and least squares estimators. For

simulation three some estimators are not feasible.
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2.4.2 Performance Criteria

The performance of the lasso for PVAR models is evaluated along the following crite-

ria.!®

1. Correct sparsity pattern: The measure calculates how often the evaluated
procedure takes the correct decision whether to include or exclude a variable.
It measures how often are true relevant variables included and true irrelevant

discarded averaged over all Monte Carlo replications.

2. Fraction of relevant variables included: It counts the number of true rele-
vant variables included in the models relative to the number of all true nonzero

coefficients averaged over all Monte Carlo replications.

3. Number of variables included: Reports the average number of variables in-
cluded in the model. This measure evaluates the dimension reduction done by

the estimator.

4. MSE: The mean squared error of the parameter estimates for one Monte Carlo

replication is calculated as

K Kp

MSE = 33 (e — W)’

p k=1 m=1

where by, is the estimate of the true parameter birue. The MSEs are averaged

over all Monte Carlo replications.

5. MSFE: The h-step ahead mean squared forecast error for one Monte Carlo repli-

cation is calculated as

1 T_hmaz 1 K
MSFE = > =D Vurn — Yigen)’
T - h . T2 -1 “ K ; 1( Jit+h ]7t+h)
=Ty =

where ?},t—i-h = B)A(Hhmm_l denotes the iteratively estimated h-step ahead fore-
cast for t with ¢t =1T5,....,T — 1 and h =1, ..., hynaz, hmae = 12. The MSFEs are

averaged over t, over all variables and over all Monte Carlo replications.

Table 2.2 lists the estimators that are compared in the simulation studies. The OLS
estimator serves as a benchmark. However, for larger models, where T' < Kp, OLS is
not feasible. The lag length of estimated PVAR models is set to the true lag length,
which means one in the first simulation and four in the second and third simulations.

18 Tibshirani (1996), Ren and Zhang (2010) or Kock and Callot (2015), for example, use similar criteria
to assess the performance of the lasso.
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Table 2.2: Overview of estimators

lassoPVAR lasso for PVAR models with weighted sum of squared residu-
als, time series and cross section penalties, Ap,, = \xp™c

lassoVAR lasso for PVAR models with weighted sum of squared residu-
als, \pm = A\, a=0and c=1

post lassoPVAR post lasso for PVAR models: first step estimates lasso for
PVAR models, with weighted sum of squared residuals, time
series and cross section penalties, A, = A\pp“c,
second step re-estimates nonzero elements with OLS

adaptive lassoVAR  adaptive lasso for PVAR models with weighted sum of squared
residuals, weights depend on OLS estimate, Ay, = Ag, a =0

and c =1

SSSS selection prior of Koop and Korobilis (2015b)

ccC cross-sectional shrinkage approach of Canova and Ciccarelli
(2009)

OLS ordinary least squares estimation of PVAR model

restLS restricted least squares estimation, block diagonal sys-
tem on coefficient matrix, assumption of no dynamic
interdependencies

single VAR least squares estimation, block diagonal system for coefficient
matrix and covariance, assumption of no dynamic and static
interdependencies

2.4.3 Simulation Results

Table 2.3 and 2.4 contain the evaluation of the various estimation procedures along
the five performance criteria for simulation one, marked as (1), simulation two, (2),
and simulation three, (3). The first four columns present the results for the lasso tech-
niques, the next two columns for the Bayesian methods, and the last three for the
least squares estimators. The performance criteria are averages over 100 Monte Carlo
replications.?

Overall, the simulation studies provide supporting evidence that the use of the lasso
for PVAR models is beneficial in terms of lower mean squared errors and mean squared
forecast errors relative to OLS. The forecast performance is additionally improved rel-
ative to the selection prior of Koop and Korobilis (2015b) and the factor approach of

Canova and Ciccarelli (2009). Accounting for the panel characteristics in the penalty

YFurther results for the simulations are given in 2.E.1.
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Table 2.3: Performance evaluation of estimators

lasso techniques Bayesian methods least squares

lasso  lasso  post adaptive single

PVAR VAR lasso lasso SSSS CC restLS VAR  OLS
Correct sparsity pattern in %
(1) 55.13 54.69 55.13 53.06 - - 37.50 37.50 37.50
(2) 40.83 54.54 40.83 51.43 - - 34.72  34.72 76.39
(3) 4791 51.96 4791 51.52 - - 39.06 39.06 57.81
Fraction of relevant variables included in %
(1) 31.90 34.40 31.90 38.50 - - 60.00  60.00 100.00
(2) 3841 57.26 3841 51.29 - - 47.06  47.06 100.00
(3) 44.18 62.85 44.18 59.98 - - 33.33  33.33  100.00
Number of variables included
(1) 5.20 5.63 5.20 6.19 16 16 8 8 16
(2) 50.91 83.48 5091 74.94 144 144 48 48 144
(3) 440.38 643.12 440.38 613.76 - - 256 256 1024

Mean squared error relative to OLS

(1) 0.9649 0.9654 0.9735 0.9578 0.9753 0.9631 0.9707 0.9700 -
(2) 0.5806 0.6426 0.6890 0.6335 0.8723 0.5755 0.5987 0.6232 -
(3) 0.2487 0.2819 - 0.2827 - - - 0.2394 -

Note: (1): Simulation 1, (2): Simulation 2, (3): Simulation 3. The correct sparsity pattern measures
how often true relevant variables are included and irrelevant ones excluded. The fraction of relevant
variables included counts the number of true relevant variables included in the models relative to
the number of all true relevant variables. The number of variables included measures the dimension
reduction. MSEs are relative to OLS. All measures are averaged over 100 Monte Carlo replications.

terms leads to better performance in terms of MSEs and MSFE relative to the lasso-
VAR which does not include time series or cross section properties in the penalty terms.

The lassoPVAR includes true relevant and discards irrelevant variables in 55.13% of
all simulation draws of the first, in 40.83% of the second, and in 47.91% of the third
simulation. The fraction of relevant variables included by lassoPVAR is 31.90%, sim-
ulation one, 38.41%, simulation two, and 44.18%, simulation three. The other lasso
techniques reveal similar numbers while restLS and single VAR find the correct sparsity
pattern in fewer cases but more often detect the fraction of relevant variables included.
The number of detection of the correct sparsity pattern as well as the fraction of rel-
evant variables included are low for all methods. The only exception, in some cases,
is OLS. However, OLS does not reduce the dimension and, hence, is not feasible for
larger systems.

The lasso techniques clearly reduce the dimension of the models. The lassoPVAR

includes 32.50% of all variables in simulation one (number of variables included is
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on average 5.2), 35.35% in simulation two (50.91 variables included), and 43.01% in
simulation three (440.38 variables included). That means that for (1) lassoPVAR in-
cludes fewer variables than the true number of nonzero coefficients, for (2) it picks
too many variables, while for (3) it selects around the true number of nonzero coeffi-
cients. Hence, lassoPVAR performs best in the largest simulation with true nonzero
coefficients around 40%. For model (2), which is the sparsest model, the performance
of lassoPVAR is weaker. This might be due to the underlying model in simulation
two, which sets the whole lags two and three to zero. This structure might be better
captured by a model setting a whole block of coefficients to zero. These findings are
also partly reflected in the numbers for the correct sparsity pattern and the fraction of
relevant variables included.

The lower dimension reduction of lasso VAR compared to lassoP VA R might be driven
by the specification of the penalty terms. The penalty terms of lassoPVAR introduce
additional penalties on higher lags and foreign variables, which results in more vari-
ables excluded. restLS and single VAR reduce the number of variables by one-half in
(1), one-third in (2), and one-fourth in (3). SSSS and CC are shrinkage approaches.
Therefore, S55S includes all variables. Since C'C' uses factors to reduce the number of
parameters, the first three performance criteria are not applicable.

Compared to the benchmark OLS, all estimators reveal lower mean squared errors in
all simulations. As expected, due to the moderate number of parameters in simulation
one, the gain - measured in lower MSEs - of using lasso or the Bayesian methods is lower
compared to the gain in the larger and sparser set-ups of simulations two and three.
The MSEs, relative to OLS for simulation one, are in a range between 0.95 and 0.97 for
all estimators. In simulation (2), lassoPVAR leads to a substantial reduction of 0.42 in
the MSEs relative to OLS and performs second best compared to all other estimators.
Only CC has a lower MSE at 0.5755. The adaptive lassoVAR and post lassoPVAR
do not yield improvements compared to lassoPVAR. The fact that the second stage
OLS estimation of post lassoP VAR relies on the possibly misspecified model of the first
step of the lasso estimation could explain the performance of the post lassoPVAR. For
simulation three some models are infeasible. The lassoPVAR clearly outperforms OLS
with a MSE of 0.2487. Only single VAR has a slightly lower value, 0.2394. The weak
performance of OLS, particularly in terms of MSE for the larger models, reflects the
problem of overfitting.

The usage of the selection methods leads to a sizable reduction in mean squared fore-
cast errors compared to OLS for all simulations, as shown in table 2.4. The presented
one-step ahead, two-steps ahead, and six-steps ahead MSFEs are averaged over all ¢,

all countries and variables and over the MC replications. The last three rows show the
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Table 2.4: Mean squared forecast errors relative to OLS

lasso techniques Bayesian methods least squares
lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS cc restLS VAR

MSFE for h = 1

(1) 09541 0.9551 0.9606 0.9511 1.0170 0.9775  0.9531 0.9586
(2)  0.7318 0.7731 0.8183 0.7659 1.1948 0.7335  0.7390 0.7613
(3)  0.1362 0.1716 - 01724 - - - 01375

MSFE for h =2
(1) 0.9953 0.9953 0.9958 0.9953 1.0000 1.0000 0.9948 0.9948
(2) 0.7707 0.8170 0.8476 0.8117 1.2549 0.7754 0.7825  0.8056
(3) 0.1468 0.1874 - 0.1869 - - - 0.1477

MSFE for h =6
(1) 1.0000  1.0000  1.0000 1.0000 1.0000  1.0000 1.0000  1.0000
(2) 0.9262 0.9361 0.9410 0.9343 1.3866 0.9451 0.9316  0.9329
(3) 0.0827 0.0966 - 0.0967 - - - 0.0828

MSFE average over 12 horizons
(1) 0.9957 0.9958 0.9964 0.9955 1.0014 0.9982 0.9956  0.9961
(2) 0.9083 0.9248 0.9351 0.9227 1.7136 0.9193 0.9136  0.9216
(3) 0.0740 0.0901 - 0.0899 - - - 0.0741

Note: (1): Simulation 1 - DGP of simulation 1 is generated from a two-country two-variable model
with one lag, B has 16 coefficients, 10 true nonzero. (2): Simulation 2 - DGP of simulation 2 is
generated from a sparse three-country two-variable model with four lags, B has 144 coefficients, 34
are true nonzero. (3): Simulation 3 - DGP of simulation 3 is generated from a four-country four-
variable model with four lags, B has 1024 coefficients, 432 are true nonzero. MSFEs are relative to
OLS and average over all ¢, all countries and variables and over 100 Monte Carlo replications.

MSFEs additionally averaged over 12 forecast horizons. Lowest MSFEs per row are
marked in bold.

Even in the simulation with a small model, where dimension reduction is not re-
quired, MSFEs are lower for all estimators compared to OLS, except for SSSS, and are
in a similar range compared among all estimators. For forecast horizon six, the esti-
mators perform equally well. In the second simulation, the use of lassoPVAR improves
the forecast accuracy for all horizons and produces the lowest MSFEs relative to all
other methods. Hence, the results provide evidence that accounting for the inherent
panel structure within the data by time series and cross section penalties pays off in
terms of improved forecast accuracy. Averaged over 12 horizons, the MSFE is 0.9083, a
gain of around 0.09 in forecast performance relative to OLS. The largest improvement
is found for horizon one with a gain of around 0.27. The lassoPVAR also produces

the lowest MSFEs in simulation three and substantially improves the forecast accuracy
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relative to OLS, with a MSFE averaged over 12 horizons of 0.0740.
For the covariance estimation of lassoPVAR the optimal selected p is equal to zero.
Estimating the covariance with the two-step least squares procedure leads to similar

performance results which can be found in 2.E.2.

2.5 Forecasting with Multi-Country Models

2.5.1 Forecasting Including a Global Dimension

This section assesses the forecasting performance of the PVAR model estimated with
lassoPVAR for an empirical application. Of great interest for applied researches and
policy makers are forecasts of macroeconomic variables. The forecasting exercise can
shed light on whether forecasts of key macroeconomic variables of interlinked coun-
tries have to account for possible spillovers across countries. Since panel VAR models
can exploit international interdependencies and commonalities, they are well suited as
forecasting models including a global dimension.

Several studies stress the benefits of accounting for international dependences while
forecasting national and international key macroeconomic variables. Ciccarelli and
Mojon (2010) and Bjgrnland et al. (2017) use a factor model for inflation and GDP
forecasts. The authors report improved forecast performance when accounting for na-
tional and global factors. Koop and Korobilis (2015a) indicate that using a PVAR
model, estimated by a factor approach, for forecasting key macroeconomic indicators
of euro zone countries can lead to improvements in forecasts. Dees et al. (2007) fore-
cast inflation of four euro area countries applying sectoral data. Their results provide
evidence that forecasts with sectoral PVAR models outperform random walk or au-

toregressive models in the short run.?’

2.5.2 Forecasting Applications

In this paper, forecast performance is evaluated for three different models, described
in table 2.5. The benchmark model, model (1), includes monthly log changes in the
harmonized index of consumer prices (CPI) and industrial production growth (IP) for
five countries: Germany (DE), France (FR), Italy (IT), the United Kingdom (UK), and
the United States (US). The second model extends the country set to ten countries by
adding Denmark (DK), Greece (GR), Ireland (IE), Portugal (PT), and Spain (ES).

200ther papers use global VAR (GVAR) models to account for international linkages in forecasts.
Pesaran et al. (2009), Greenwood-Nimmo et al. (2012), Dovern et al. (2016), Huber et al. (2016),
and Garratt et al. (2016) provide evidence that GVAR models improve forecast performance relative
to univariate benchmark models.
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Table 2.5: Overview of empirical applications

Model (1) Model (2) Model (3)

N=5G=2p=6 N=10,G=2,p=6 N=6,G=4,p=F6

countries ~ DE, FR, IT, UK, US DE, DK, ES, FR, GR, DE, ES, FR, IT, UK,
IE, IT, PT, UK, US  US

variables CPI, IP CPL, IP  CPL IP, REER, UN
T 131 131 131
NGp 60 120 144

Finally, the third model additionally uses the changes in unemployment rates (UN)
and the real effective exchange rate (REER) for six countries: DE, ES, FR, IT, UK,
and US.

The number of parameters per equation is larger than the number of observations
for model (3) and very close to it for model (2). Hence, for these two models, OLS
and estimators dependent on OLS, like adaptive lasso, SSSS, and CC, are not feasible.
The data provided by the OECD cover the period from 2001:1 to 2016:6. All models
include six lags.?!

An out-of-sample forecast exercise is conducted. The forecasts are made for the pe-
riod from 2011:7 to 2016:6. The up to twelve-horizons forecasts are iterated forecasts
and are calculated by Yt+h = EXt+h_1 for h = 1,...,12. The estimation is based on
the data up to 2011:6 for the first forecasts and then rolling forward so that the same
amount of time series observations is used for every forecast. That is, the estimated
coefficient matrix, B , used to calculate the forecast for 2011:7 is computed based on
the various compared estimators using the observations from the start of the sample
in 2001:1 to 2011:6. The next forecast, for 2011:8, is then based on data from 2001:2
to 2011:7. The choice of performing iterated rather than direct forecasts is motivated
by the results of Marcellino et al. (2006), according to which iterated forecasts are pre-
ferred to direct ones despite theoretical findings demonstrating stronger robustness to
model misspecification of the latter. The forecasts are evaluated by mean squared fore-
cast errors. The forecasting performance of lassoPVAR is compared to the previously

explained variants.

2IThe data are seasonally adjusted. Inflation is calculated as the log-differences of consumer price
indices. UN is the difference of the unemployment rate from one period to the last period. The time
series are stationary, de-meaned and standardized.
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Table 2.6: Mean squared forecast error relative to OLS for model (1)

lasso techniques Bayesian methods least squares
lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS ccC restLS VAR
MSFE for h =1
0.5708  0.5839 0.6166  0.5825 1.7722 0.6002 0.6114 0.6763
MSFE for h =2
0.5988 0.5978 0.6524  0.5976  1.7055  0.5749  0.6050 0.6453
MSFE for h =6

0.6985  0.7123 0.7372 0.7143 2.6418 0.6624  0.7153 0.7532

MSFE for h =12
0.7873 0.7951 0.8056 0.7953 45683  0.7615 0.7775  0.7790

MSFE average over 12 horizons
0.6783  0.6869 0.7136 0.6870 2.8079  0.6528  0.6884 0.7155

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all ¢t and are relative
to OLS, MSFEs smaller than 1 indicate better performance relative to OLS. Average are the MSFEs
additionally averaged over all horizons.

2.5.3 Results of the Forecasting Exercises

Table 2.6 presents the averaged mean squared forecast errors relative to OLS for one-
step, two-steps, six-steps, and twelve-steps ahead forecasts for model (1). Additionally,
the last row indicates forecast performance averaged over twelve forecast horizons.??

First, the use of lassoPVAR improves forecast performance relative to OLS. The
mean squared forecast error averaged over all countries, variables, ¢ and horizons of
lassoPVAR has the second lowest value with average MSFE of 0.6783. That means
that on average using lassoPVAR for forecasting leads to a gain of 0.3217 in forecast
accuracy compared to OLS. lassoPVAR produces stable forecasts over all twelve fore-
cast horizons with MSFE relative to OLS in a range of 0.79 and 0.57. The benefit
of using lassoPVAR relative to OLS is greatest for one-step ahead forecasts with a
gain in forecast performance of 0.4292. None of the other estimators is statistically
significantly better in terms of MSFEs than the lassoPVAR.?3

Second, accounting for the time series and cross-sectional characteristics in the
penalty terms leads to gains in the forecast accuracy. On average, lassoPVAR out-
performs lasso VAR for all but one of the forecasts horizons. Third, the results provide

evidence that the use of multi-country models compared to single-county models is

22Further results on country and variable basis are in 2.F.2.
23Results for the Diebold-Mariano Test assessing the statistical significance of the difference in MSFEs
of the models are in 2.F.2.
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Table 2.7: One-step ahead mean squared forecast error relative to OLS for model (1)

lasso techniques Bayesian methods least squares
lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS cc restLS VAR

Variable specific mean squared forecast errors
CPI 0.5755 0.5768 0.6122 0.5777 1.4021 0.5612 0.5943 0.6253

IP 0.5661 0.5910 0.6211 0.5872 2.1424  0.6392  0.6285 0.7273
Country specific mean squared forecast errors

DE 0.5531 0.5846 0.6131 0.5908 1.0841 0.5163 0.5466 0.6234
FR 0.6176 0.6200 0.6809 0.6214 2.1145  0.6771  0.7055 0.7935
IT 0.7265 0.7563 0.7258 0.7485 2.3525  0.7998  0.8594  0.9906
UK 0.5956 0.6010 0.6119 0.5924 2.3022  0.6804  0.6064 0.6220
US 0.3613  0.3575 0.4515 0.3593 1.0080 0.3273 0.3389 0.3520

Mean squared forecast errors averaged over countries and variables
Average 0.5708 0.5839 0.6166 0.5825 1.7722  0.6002  0.6114 0.6763

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all £ and are relative to
OLS, MSFEs smaller than 1 indicate better performance relative to OLS. CPI denotes log differences
of the consumer price index, while IP denotes the log differences of industrial production.

beneficial to improve forecast performance. MSFEs of lassoPVAR and CC, both mod-
els accounting for interdependencies across countries, are lower than for the single VAR
model.

Table 2.7 presents disaggregated results providing variable and country specific one-
step ahead mean squared forecast errors relative to OLS. The largest gain in forecast
performance of the lassoPVAR is found for industrial production growth forecasts with
a gain of 0.4339. lassoPVAR outperforms the other techniques for aggregated forecasts
for FR, IT, and the UK. The mean squared forecast errors are particularly low for the
US for selection methods compared to OLS. Variables of other countries have a low
impact on US variables, thus, including these variables does not seem to improve the
forecasts for the US.

The results of the larger applications, model (2) and model (3), strengthen the find-
ings. Since OLS is not feasible, table 2.8 compares MSFE of lassoPVAR and single
VAR relative to the mean forecast. The mean forecast is calculated as the mean of
the data used for the forecast. On average and for most of the horizons lassoPVAR

outperforms the mean forecasts and the forecasts based on the single country model.

58



Chapter 2 Penalized Estimation of Panel Vector Autoregressive Models

Table 2.8: Mean squared forecast error relative to mean forecast for model (2) and

model (3)

N=10,G=2,p=6 N=6,G=4,p=6
lassoPVAR single VAR lassoPVAR single VAR
MSFE for h =1

0.9068 0.9807 0.9948 1.0402
MSFE for h =2

0.9540 1.0011 1.0476 1.0536
MSFE for h =6

0.9588 0.9764 0.9333 1.0104
MSFE for h =12

0.9519 0.9253 0.9234 0.9321
MSFE average over 12 horizons

0.9526 0.9608 0.9495 0.9925

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all ¢ and are relative to
the mean forecast, MSFEs smaller than 1 indicate better performance relative to the mean forecast.

Average are the MSFEs additionally averaged over all horizons.

Figure 2.1: Sparsity pattern of the coefficient matrix for model (1)
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CC shows good performance for small systems, but is infeasible for systems in which
the number of parameters per equation exceeds the number of time series observations.
That this is a relevant issue for applications, is shown in model (2) and (3) which are
of reasonable or even still small size for models addressing potential macroeconomic
questions in the context of international spillovers. A second issue with the factor
approach is the difficulty mentioned for structural identification.

The sparsity pattern of the coefficient matrix for model (1) is given in figure 2.1.24
The largest dynamic interdependencies across countries are found for the first and
second lags. Own lags have the largest impact, as shown by the darker colors for
diagonal elements. In addition, US variables affect variables of other countries, in
particular for lags one and two. For benchmark model (1), 600 parameters of the
coefficient matrix are estimated. The lassoPVAR reduces the dimension by setting 458

coefficients to zero. Thus, 23.67% of the estimated coefficients are nonzero elements.?

2.6 Conclusions

This paper develops a lasso technique for PVAR models, named lassoP VAR, and shows
the asymptotic oracle properties of it. It specifies a penalized estimation problem using
the weighted sum of squared residuals as the loss function and a penalty incorporating
both time series and cross section properties. Thereby, it allows for an unrestricted
covariance matrix, meaning that the estimation accounts for possible correlation be-
tween variables. The penalty term uses the inherent panel structure within the data. It
specifies that more recent or domestic lags provide more information than more distant
or foreign lags. As a result, a higher penalty is set for higher lags and foreign variables.

The main results of the paper are as follows. The lassoPVAR has the asymptotic
oracle property meaning that selection consistency and asymptotic normality are es-
tablished. Furthermore, the lasso for PVAR models achieves lower mean squared fore-
cast errors, thus increasing forecasting performance compared to estimating the PVAR
model with OLS. Compared to other Bayesian PVAR methods and single county mod-
els, the lassoPVAR improves forecasts, especially for larger models, while mean squared
forecast errors are in a similar range for smaller models. These findings are supported
by the simulation results and a forecasting exercise that includes up to ten advanced
economies and up to four macroeconomic variables. Moreover, accounting for time
series and cross section properties in the penalty term is beneficial for the forecast
performance as lassoPVAR outperforms a lasso estimator without specific penalties.

Additionally, the dimension reduction of the lasso techniques leads to reduced mean

24The sparsity pattern for lag 4 and 5 as well as for the covariance matrix are given in 2.F.2.
25The optimal penalty parameter p in the estimation of the covariance is selected to equal zero.
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squared errors compared to OLS in the conducted simulations.

The method proposed in this paper may be of interest for applied researchers, since
the lasso for PVAR models is able to deal with the curse of dimensionality problem
in a multi-country model. lassoPVAR ensures the estimation feasibility by using the
panel structure in the data and allows at the same time to include interdependencies
and heterogeneities across countries in the model. The results presented show that the
proposed lasso technique is a useful tool for estimating large PVAR models in practice.

However, the researcher must be aware that the performance of the lasso is sensitive
to the suitability of the analyzed model for the penalized estimation technique. The
lasso generally performs well in systems with a large number of parameters and exist-
ing sparsity. When few coefficients are large and the others close to zero, the lasso has
usually low mean squared errors, while a good performance is not ensured for models
deviating from these properties. This point is stressed by Hansen (2016) and is visible
in the differences in results for the simulations with DGPs generated from a small and
from a larger and sparse model. However, the benefit of the lasso for PVAR models is
already visible through reduced mean squared errors and improved forecast accuracy
in a simulation of moderate size with 165 parameters.

In future research, it may be interesting to further assess different specifications of
the penalty term in the context of PVAR models. One possibility to capture the panel
structure is the use of the group lasso, as proposed by Yuan and Lin (2006). The group
lasso treats variables in groups, setting whole blocks to zero. This structure might be
especially useful for analyses including smaller countries and globally more influential
countries. Furthermore, variables in multi-country models might be highly correlated.
This issue can be addressed with the elastic-net invented by Zou and Hastie (2005).
This procedure is able to select groups of correlated variables while the lasso selects

one variable out of a set of correlated variables.
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Appendix

2.A The lasso Estimator

The optimization problem of the lasso for PVAR models minimizes over by,,. The by,
is the element of the B-matrix in the k-th row and m-th column. K is the number of
countries times the number of variables, K = NG. The Y; and X, are of dimension
[1xT]forj=1,..,K and m =1, ..., Kp. The wy; denotes an element of the inverse of
the covariance matrix, ¥~! = . The A, is the penalty parameter and |by,,| denotes

the absolute value of bg,,. The optimization problem is rewritten as

1 Kp Kp !
argmin T Wkk <Yk — bpm X, — Z bkz’Xi> (Yk — b Xy — Z bkiXi>

bkm

i#Em i#Em
K Kp Kp !
+ Zwkj (Yk - bkak - Z bkzXz> (3/] - bijk - Z bﬂX1>
j#k i#Em i#=m
K Kp Kp !
+ ijk <Y} — b]ka — Z bﬂXz) (Yk - bkak — Z b]mXZ>
K K Kp Kp !
+ Z Zwﬂ (Y; — b]ka — Z bﬂX,> <}/l — blka — Z bl,XZ>
J#k l#k i#m i#Fm
K Kp
JFk i#Em

This simplifies to

T

Kp
Wik (—2bkamYk’ + bron Xon X bk, + 2k X Y X{bpi + Rl)
i#Em

K Kp
+2) " win (—bkaij’ + by Xom Y X{bji + 1%2) + Ry

JF#k i=m
K Kp
+ e [Brm| + > ) N [brenl
J#k i#m
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where Ry, Ry and Rj3 collect the terms without by,. Taking the derivative with respect

t0 bim:

Kp
1
- [wkk <—2XmY,g + 2X 0 X! b + 2X 0, ; X{bki)

K Kp
+2 Z Wik <—me;, + Xm Z Xz/b]z> + Sign(bkm)Akm

Jj#k i=m

=0.

Thus, bi25% is equal to

lasso __ .
b = sign

<Z§;k win(V; = 2000 b X)X, N Ve —>ih, bkiXi)Xrln>

S win(Y; — S b X)X, N (Ve — Yok, b Xi) X0,
e’
kakaX;n

2.B Estimation of the Covariance Matrix

The covariance matrix is estimated using a graphical lasso (glasso) approach. Following
Friedman et al. (2008) the subgradient of

log det(2) — tr(SQ) — p |||

with respect to €2 is given by
W—-S8—pI'=0

with W = 3. The elements of I' give the sign of each element of €2 by being either 1

or -1. For solving the glasso problem the partition

Qi1 wio B I 0
(,L)b W9 B 0, 1
is used. Here, Wy, is the (NG — 1) x (NG — 1) block of W except the j* row and

column, w5 are the non-diagonal elements of the j column and row of W and wss is

[Wn W12

/
Wig Wo2

the j'" diagonal element of W. The notation is the same for 2. The partition of the

matrix is done rotatively so that each j** row and column is once ordered last. Now,
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to solve for wio the subgradient is expressed as

Wiz — S12 — pY12 =0

Wiz —si2+pv =0

where 15 is the sign of wys, 2z = —o = Wit wig, y12 = sign(wis) = sign(—wyu Wit wis).
Since woy > 0, sign(wia) = —sign(z). The solution of the subgradient Z gives than the
value for wyy and wiy = —Zwsy. Since the diagonal elements of the covariance matrix

are positive, wy; = s; + p V 1.

The glasso has the following three steps:

1. Set initial value W = S + pl. For diagonal elements w;; = s; + p V ¢ do not
update.

2. For each j =1, ..., NG update until convergence:
a) Partition W and S.
b) Solve Wi1z — s15 + pv = 0.

C) Wi = WHZ.
3. Compute wiy = —Zwas.

The optimal p is chosen over a grid of values by minimizing BIC, = log(ip) +
%df (p) as done similarly in Kock and Callot (2015). The degrees of freedom, df (p),
are the number of nonzero elements in . Since the penalty parameter p does not vary
along the elements of the covariance matrix, the BIC criterion can be used which is
faster than the cross-validation technique. The selection of the penalty parameter is

done for the period up to 73.

2.C Optimization Algorithm

The optimization problem is solved by a coordinate descent algorithm as proposed in
Friedman et al. (2007) and Friedman et al. (2010). As a starting value B is set equal
to a zero matrix. The covariance is estimated in the glasso step. The optimal penalty
parameters are determined via a cross-validation technique minimizing MSFEs. The
search of the optimal penalty parameters is done over a grid of values. The grid has
a length of six for the simulations and twelve for the applications. This rather short
length is due to the fact that using a finer grid increases computational time. The
algorithm updates every element by, for k =1,..., K and m = 1, ..., Kp. The following

steps are repeated until convergence is achieved. Update by, as follows:
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1. Calculate

P (Ve — 02, b Xi) X7, N Sk win(Yy = S b X)X,
fm = XX/ Wik Xm X,

\ App®c  for foreign variables
km —

AP

o for domestic variables

where A\, > 0, a > 0, ¢ > 1, and p is the lag length.

3. Calculate Ay, = %k)‘kk%
m<im

4. Calculate b5 as

Bkm — S\km for Bk:m > O, S\km < |l~7km|

blasso

km Ekm + :\km for l;km < O’ S‘km < |Z~)km| .

0 for S\km 2 ’Bkm|

5. Set the B-matrix of iteration iter equal to values obtained in the last iteration,

Biter—1, that is Bjie, = Bijier—1 for iteration iter.

Convergence is achieved when max(|Bjer — Biter—1|) < € where € is a small number.
The € is chosen such that the lassoPVAR converges to the OLS solution for a penalty
parameter set to zero and weighted sum of squared residuals as the loss function. For
the smaller simulation a conservative value of 0.0000001 is chosen, while for the large
simulation (model 3) € = 0.0001.

2.D Proof of Selection Consistency and Asymptotic Normality

(R1) Selection consistency: plim by, = 0 if b}, = 0.
(R2) Asymptotic normality: v7'(b; — b%) % A°(0, D).

The vectorized true coefficient matrix is given by b* = wvec(B*). Let J = {(k,m) :
b, # 0} denote the set of subscripts of nonzero parameters. The lasso estimator of b*
is denoted as b. The b% is the vector of true nonzero parameters with dimension [s x 1]
and b is the estimators of b%. Let Z = I;x ® X’ where X is the [Kp x T]-matrix of right
hand side lagged variables. The y = vec(Y) and u = vec(U) are a vector of dimension
[KT x 1]. The proof follows the line of arguments as in Song and Bickel (2011) and
Lee and Liu (2012).
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2.D.1 Proof of Asymptotic Normality

Let 8 = /T (b—b*). For the proof it is assumed that Q is known. If € is a consistent
estimator of €2, it can be easily shown that the same steps apply. The lasso optimization

problem for the model y = Zb+ u is given by:

L(B) = (y—Z <b* +%>)/(Q®[T> (y—Z (b* +—>)+T§§Akm

k=1 m=1

, B
T

Using 3 = argminL(f) = argmin(L(3) — L(0)) it follows
B B

L(B) — L(0) = (y—z(bw%))/m@m (y—Z (b+%)>

Y Qe Iy — 2+ TS A ( b+ i; b |)
(= ZbY(Q® L)y — Z5) — (z%) Q& )y - 25")

+ (Z%>/ Qe Ir) (Z%) (g - Z6Y(Q® Ir) (4%)

K Kp
ﬁkm
- 20 (Q @ Ip)(y — Z6) + T Mo ( b+

- %5’2’(9 @ Ir)Zf3 — = (y - 20") (@@ Ir)Zp

\/T
+Ti§/\km( |bm\).

* Bkm
k=1 m=1

T

- i)

By assumption (A1) for 7' — oo

L / o l !
TﬁZ(Q@]T)Z/B—B(Q@)TZZ)B

-6 (Qen)s

and, since u ~ N (0,2 ® I),

1 *\/ _Lu/
ﬁ(y—Zb Y(Q® Ir)Z = o= Q@ Ir)Z
L N0, QRT).
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Note that Q = X! and

1 y / 1 _L / uu/ L
E(ﬁZ(Q(@IT)Uu(Q@[T)Zﬁ)— Z'(Q® Ir)E( )(Q@IT)Z\/T

g

=78 IrQeIr)Z

=N

=—(OQ®72'7Z)—>0xT.

~

Under assumptions (A2) to (A4) the last term TS0, S52 N\, (165, + ﬁ’“T,}ﬂ )

has the following asymptotic behavior for T" — oo:

VT N (107, + 22| = [0f,)) = 0 for b}, #0
VT N (|Bom]) — 00 for b}, =0

since for bf, = 0, it holds that c;v/T — oco. For bf, # 0, since apv/T — 0, it follows
that VT Agm — 0 and VT(|bf,, + BI“T;\ —05m]) = Brmsign(by,,). As a result

i> BQ@T);8; —28;D; if Bem = O0V(k,m) ¢ J

00 if otherwise

where 3, consists of By € J and Dy N(0,(2®T),. The objective function L(j)
is minimized by
. |8 =(@en);'D,
Brm =0 V(k,m) ¢ J

Thus, (R2) follows,
By =VT(by = b5) S N(0,(Q®T),)

2.D.2 Proof of Selection Consistency

For selection consistency to hold the probability that the coefficient estimate of a
true zero parameter is different from zero converges to zero as T goes to infinity,
P(bgm # 0) — 0 V(k,m) ¢ J. Suppose there is a by, # 0 for (k,m) ¢ J. The
Karush-Kuhn-Tucker conditions give the following:

0= 5{1(6) T)\kmsign(l;km).

km

As shown by Song and Bickel (2011) for T — oo the first term is dominated by the
second. Since ¢V T — o0, the equation cannot equal zero. Thus, P(I;km #0) — 0.
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2.E Simulation

2.E.1 Additional Simulation Results

Table 2.9: Diebold-Mariano Test: test statistic and p-values

lasso techniques Bayesian methods least squares
lasso post adaptive single
VAR lasso lasso SSSS ccC restLS VAR OLS
horizon 1
(1) -0.37 -3.33 0.02 -6.53 -3.59 0.09 -0.74 -9.43
0.36 0.00 0.51 0.00 0.00 0.54 0.23 0.00
(2) -7.95 -9.81 -6.12 -17.90 -0.14 -0.86 -4.75 -15.56
0.00 0.00 0.00 0.00 0.45 0.20 0.00 0.00
(3) -16.86 - -16.79 - - - -0.70 -41.44
0.00 - 0.00 - - - 0.24 0.00
horizon 2
(1) 0.39 -2.69 0.33 -1.86 -1.58 0.78 0.97 -1.46
0.65 0.00 0.63 0.03 0.06 0.78 0.83 0.07
(2) -2.13 -2.19 -2.14 -2.12 -0.69 -1.41 -1.90 -2.13
0.02 0.01 0.02 0.02 0.25 0.08 0.03 0.02
(3) -2.11 - -2.11 - - - -0.29 -2.17
0.02 - 0.02 - - - 0.38 0.02
horizon 6
(1) 0.01 0.60 1.23 0.91 -0.52 1.99 1.14 1.03
0.50 0.73 0.89 0.82 0.30 0.98 0.87 0.85
(2) -1.07 -1.07 -1.10 -1.13 -1.11 -1.23 -1.13 -1.11
0.14 0.14 0.14 0.13 0.13 0.11 0.13 0.13
(3) -1.12 - -1.13 - - - -0.59 -1.12
0.13 - 0.13 - - - 0.28 0.13

Note: (1): Simulation 1, (2): Simulation 2, (3): Simulation 3. Values of Diebold-Mariano test statistic
and p-values which are presented in italic. MSFEs are compared to MSFEs of lassoPVAR. MSFEs

are averaged over all variables and countries and all MC draws.
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Figure 2.2: Boxplots of MSEs and MSFEs relative to OLS for simulation 1

13F T ]
121 * * . o b
. ' : * ! —
: e ' !
- - - 1
0y 1 1 1 1 | : - —_
1 1 ! 1 | . ! 1
L 1 1 1 1 , ! 1
n L L 1 1 1 1
s 1r .
.
] 1 T 1 1
09 ! X | : | | | L
. 1 -+ . 1 1 4
-+ - . -+ | ! .
08 : ! 4 . J
-4
1 1 1 1 1 1 1 1
« ¥ 3 § 8 8 8 ¢
> > @ © @ 7 >
o 2 o a €N 2 ®
2 @ 2 & =
2 = 8 E 5
(a) Mean squared errors relative to OLS
T
2t . .
1.8 i
16 |
Wwq4r * 4
w14 .
%) .
> —
12+ ! - .
—_ — 1 ——
1 1 . T ! 1 -
BEEo8 88 s
T 1
; ] M " | i ; T
0.8 - -4 L - * B
* - - . - *
.
1 1 1 1 1 1 1 1
o o Q o [} Q (2] o
= = g 2 A © 7 S
8 ° = < » $ v
2 @ 2 g )
ke “ & ! =

(b) One-step ahead mean squared forecast errors relative to OLS
Note: DGP of simulation 1 is generated from a sparse two-country two-variable model with one lag.

(a) Boxplots show mean squared errors of estimates of B relative to OLS calculated as the average

true
km

over the deviations of each by, from the true value b for 100 replications. (b) Boxplots shows
one-step ahead mean squared forecast error relative to OLS for 100 replications. MSFE is averaged

over t and all variables.
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Figure 2.3: Boxplots of MSEs and MSFEs relative to OLS for simulation 2
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(b) One-step ahead mean squared forecast errors relative to OLS
Note: DGP of simulation 2 is generated from a sparse three-country two-variable model with four
lags. (a) Boxplots show mean squared errors of estimates of B relative to OLS calculated as the
average over the deviations of each b from the true value birue for 100 replications. (b) Boxplots

shows one-step ahead mean squared forecast error relative to OLS for 100 replications. MSFE is

averaged over t and all variables.
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2.E.2 Simulation Results for the Model with Covariance Estimated with

OLS

Table 2.10: Performance evaluation of estimators: covariance estimated with OLS

lasso lasso post adaptive
PVAR VAR lasso lasso
Correct sparsity pattern in %
(1) 55.31 54.94 55.31 53.37
(2) 37.05 52.57 37.05 48.76
Fraction of relevant variables included in %
(1) 30.70 33.00 30.70 37.60
(2) 31.35 53.09 31.35 47.68
Number of variables included
(1) 4.99 5.39 4.99 6.06
(2) 40.67 77.80 40.67 68.64
Mean squared error relative to OLS
(1) 0.9632 0.9634 0.9692 0.9582
(2) 0.5711 0.6344 0.6512 0.6240

Note: (1): Simulation 1 - DGP of simulation 1 is generated from a two-country two-variable model

with one lag, B has 16 coefficients, 10 true nonzero. (2): Simulation 2 - DGP of simulation 2 is

generated from a sparse three-country two-variable model with four lags, B has 144 coefficients, 34

are true nonzero. The correct sparsity pattern measures how often true relevant variables are included

and irrelevant excluded. The fraction of relevant variables included counts the number of true relevant

variables included in the models relative to the number of all true relevant variables. The number

of variables included measures the dimension reduction. All measures are averaged over 100 Monte

Carlo replications.
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Table 2.11: Mean squared forecast errors relative to OLS: covariance estimated with

OLS

lasso lasso post adaptive

PVAR VAR lasso lasso
MSFE for h =1
(1) 0.9550 0.9555 0.9615 0.9550
(2) 0.7299 0.7733 0.7991 0.7627
MSFE for h = 2
(1) 0.9953 0.9953 0.9953 0.9953
(2) 0.7692 0.8161 0.8276 0.8057
MSFE for h =6
(1) 1.0000 1.0000 1.0000 1.0000
(2) 0.9232 0.9317 0.9313 0.9300
MSFE average over 12 horizons
(1) 0.9959 0.9959 0.9964 0.9958
(2) 0.9065 0.9232 0.9262 0.9198

Note: (1): Simulation 1 - DGP of simulation 1 is generated from a two-country two-variable model
with one lag, B has 16 coefficients, 10 true nonzero. (2): Simulation 2 - DGP of simulation 2 is
generated from a sparse three-country two-variable model with four lags, B has 144 coefficients, 34
are true nonzero. MSEs are relative to OLS. MSFEs are relative to OLS and average over all ¢, all

countries and variables. All measures are averaged over 100 Monte Carlo replications.
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2.F Forecasting Application

2.F.1 Penalty Parameters

Table 2.12: Grid values for penalty parameters - Application
Model (1) Model (2) Model (3)

AL 0.376 0.528 0.6193
A2 0.3427 0.4809 0.5639
X 0.3094 0.4338 0.5085
XL 0.2762 0.3867 0.4531
X2 0.2429 0.3396 0.3977
X6 0.2096 0.2925 0.3424
AL 0.1764 0.2454 0.287
XS 01431 0.1984 0.2316
X0 0.1098 0.1513 0.1762
A0 0.0765 0.1042 0.1208
AL 0.0433 0.0571 0.0654
A2 0.01 0.01 0.01

2.F.2 Additional Results of the Forecasting Exercises

The tables 2.13, 2.14 and 2.15 show the forecast evaluation split up into country and
variable averages for two-steps ahead, six-steps ahead and twelve-steps ahead forecasts.
Table 2.16 presents the average over all twelve forecast horizons. The differences in
forecast performance along the two variables are exploited by averaging over all coun-
tries for each variable. The differences across countries are evaluated based on the
MSFE averaged over the two variables.

lassoPVAR outperforms OLS for all variables for all horizons. The same holds for all
countries. For one-step ahead forecasts lassoP VAR dominates the other estimators for
IP and FR, IT, and the UK. For higher forecast horizons CC' performs best in general.
On average as for the six-steps ahead forecasts, lassoP VAR has the lowest MSFE for IP
forecasts. For all horizons, forecast accuracy of the lassoPVAR is improved compared

to lasso VAR for all countries and variables.
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Table 2.13: Model (1): Two-steps ahead mean squared forecast error relative to OLS

lasso techniques Bayesian methods least squares
lasso lasso post adaptive single
PVAR VAR lasso lasso SS88S cc restLS VAR

Variable specific mean squared forecast errors
CPI 0.6831 0.6936 0.7029 0.6924 1.7323 0.6530 0.6676 0.6987

IP 0.5145 0.5020 0.6019 0.5028 1.6788 0.4968 0.5423 0.5919
Country specific mean squared forecast errors

DE 0.5570  0.5499 0.6342 0.5574 1.1186 0.4938 0.5380 0.6127
FR 0.6479 0.6352 0.7464 0.6391 1.9491 0.6046 0.6771 0.7256
IT 0.7256  0.7162 0.7846 0.7137 1.8606 0.6898 0.7822 0.8296
UK 0.6051 0.6276 0.6050 0.6186 2.5384  0.6755  0.5821 (.5822
Us 0.4584  0.4603 0.4917 0.4592 1.0611 0.4107 0.4454 0.4764

Mean squared forecast errors averaged over countries and variables
Average 0.5988 0.5978 0.6524 0.5976 1.7055 0.5749  0.6050 0.6453

Table 2.14: Model (1): Six-steps ahead mean squared forecast error relative to OLS

lasso techniques Bayesian methods least squares
lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS cc restLS VAR

Variable specific mean squared forecast errors
CPI 0.7811 0.8054 0.7730 0.8070 2.9802 0.6926 0.7749 0.7961

IP 0.6159 0.6192 0.7015 0.6216 2.3033  0.6323  0.6556 0.7103
Country specific mean squared forecast errors

DE 0.6315 0.6349 0.7076 0.6410 1.6743 0.5625 0.6466 0.7042
FR 0.7882 0.7950 0.8618 0.7986 3.8808 0.7126 0.8389 0.9034
IT 0.7810 0.7865 0.8369 0.7909 1.9969 0.7648 0.8561 0.9075
UK 0.7575 0.8015 0.6934 0.7964 3.6124  0.7688  0.7036  0.6908
US 0.5342 0.5435 0.5865 0.5444 2.0444 0.5035 0.5311 0.5602

Mean squared forecast errors averaged over countries and variables

Average 0.6985 0.7123 0.7372 0.7143 2.6418 0.6624 0.7153 0.7532

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all ¢ and are relative to
OLS, MSFEs smaller than 1 indicate better performance relative to OLS.
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Table 2.15: Model (1): Twelve-steps ahead mean squared forecast error relative to OLS

lasso techniques Bayesian methods least squares
lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS cc restLS VAR
Variable specific mean squared forecast errors
CPI 0.7792 0.7933 0.7891 0.7934 4.0400 0.7063 0.7686 0.7884
IP 0.7954 0.7970 0.8220 0.7972 5.0966  0.8166  0.7864 0.7697
Country specific mean squared forecast errors
DE 0.8006 0.8077 0.8166 0.8084 4.2114 0.7753 0.7918 0.7904
FR 0.8124 0.8124 0.8628 0.8123 6.1899 0.7802 0.8138 0.8401
IT 0.7929 0.7994 0.8211 0.8001 5.0366 0.7739 0.8021 0.7880
UK 0.9751 0.9955 0.9204 0.9950 3.3784  0.9534  0.9274 0.9201
US 0.5556  0.5604 0.6068 0.5606 4.0252 0.5245 0.5524  0.5565
Mean squared forecast errors averaged over countries and variables
Average 0.7873 0.7951 0.8056 0.7953 4.5683 0.7615 0.7775 0.7790

Table 2.16: Model (1): Average mean squared forecast error relative to OLS over all

forecast horizons

lasso techniques Bayesian methods least squares
lasso lasso post adaptive single
PVAR VAR lasso lasso SSss CC restLS VAR
Variable specific mean squared forecast errors
CPI 0.7320 0.7478 0.7428 0.7478 2.6527 0.6684 0.7278 0.7517
IP 0.6247 0.6261 0.6845 0.6263 2.9632 0.6372  0.6490 0.6793
Country specific mean squared forecast errors
DE 0.6290 0.6318 0.6828 0.6347 2.3950 0.5851 0.6298 0.6706
FR 0.7399 0.7413 0.7990 0.7417 3.7452 0.7065 0.7692 0.8065
IT 0.7339 0.7382 0.7742 0.7394 2.7701 0.7059 0.7935 0.8345
UK 0.7922 0.8214 0.7547 0.8167 3.1534 0.7997 0.7581 0.7544
US 0.4968 0.5020 0.5576 0.5026 1.9760 0.4667 0.4914 0.5116
Mean squared forecast errors averaged over countries and variables
Average 0.6783 0.6869 0.7136 0.6870 2.8079 0.6528 0.6884 0.7155

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all ¢ and are relative to

OLS, MSFEs smaller than 1 indicate better performance relative to OLS.
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Table 2.17: Diebold-Mariano test for model (1): Test statistic and p-values - relative
to lassoPVAR

lasso techniques Bayesian methods least squares

lasso post adaptive single

VAR lasso lasso SSSS ccC restLS VAR OLS
h=1 -0.68 -2.48 -0.82 =777 -0.12 -2.48 -0.72 -6.95

0.25 0.01 0.21 0.00 0.45 0.01 0.24 0.00
h=2 0.36 -2.31 0.27 -3.69 1.28 -1.36 -0.03 -3.82

0.64 0.01 0.61 0.00 0.90 0.09 0.49 0.00
h=6 -1.19 -1.75 -1.29 -2.10 1.53 -1.59 -0.70 -1.92

0.12 0.04 0.10 0.02 0.94 0.06 0.24 0.03
h=12 -1.17 -0.94 -1.23 -1.54 1.04 0.67 0.87 -1.61

0.12 0.17 0.11 0.06 0.85 0.75 0.81 0.05

Note: The forecast period is from 2011:7 to 2016:6. Values of Diebold-Mariano test statistic and
p-values which are presented in italic. MSFEs are compared to MSFEs of lassoPVAR. MSFEs are

averaged over all variables and countries.

Table 2.18: Diebold-Mariano test for model (2) and model (3): Test statistic and p-
values - relative to lassoPVAR

N=10,G=2,p=6 N=6,G=4,p=6
single VAR mean single VAR mean
h=1 -4.39 -1.03 -0.17 -0.12
1.00 0.00 0.43 0.45
h=2 -3.00 -0.18 0.62 0.65
1.00 0.09 0.73 0.74
h=6 -1.88 0.80 -1.90 -1.18
0.99 0.10 0.03 0.12
h =12 -1.36 1.44 -1.36 -0.55
0.94 0.16 0.09 0.29

Note: The forecast period is from 2011:7 to 2016:6. Values of Diebold-Mariano test statistic and
p-values which are presented in italic. MSFEs are compared to MSFEs of lassoPVAR. MSFEs are

averaged over all variables and countries.
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Figure 2.4: Sparsity pattern of the coefficient matrix for model (1): lag 4 and 5
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Figure 2.5: Sparsity pattern of the covariance matrix for model (1)
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CHAPTER 3

International Monetary Policy Transmission!

3.1 Introduction

The global financial crisis displayed the large risks of international contagion on finan-
cial markets. It showed how monetary policy can have international effects through
exchange rate channels and foreign interest rates. In this light, it is key for policy
makers and researcher alike to understand the cross-border effects of monetary policy.
The interest in and relevance of this question is enhanced further in light of uncon-
ventional monetary policy measures, whose full effects are only slowly uncovered. In
particular, an expansive monetary policy shock in one country may have cross-border
effects due to exchange rate pressure and capital flows. Central banks may need to
adjust their policy in reaction to foreign monetary policy action in order to reach their
own inflation target. Thus, the effect of international monetary policy transmission on
macroeconomic variables is of particular interest.

In this paper, we analyze empirically the degree of international transmission of mon-
etary policy shocks of the United States, Great Britain, and the euro area (EA). The
paper focuses on two main questions. First, are there macroeconomic effects of inter-
national monetary policy transmission and if so, what do they look like? Second, are
there asymmetries across the US, UK, and EA regarding international monetary policy
transmission? We use a Bayesian proxy three-country structural vector autoregressive
model to trace the dynamic effects of conventional and unconventional monetary policy
shocks on domestic and international macroeconomic variables. We estimate a three-
country vector autoregressive (VAR) model including jointly variables for US, UK, and
EA and use high-frequency data to identify separately one by one the monetary policy
shocks of the US, UK, and EA. We successively augment the VAR, first, with a proxy

IThis chapter is based on joint work with Gregor von Schweinitz. We gratefully acknowledge the
financial support of the Leibniz Research Alliance "Crises in a Globalised World".
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series constructed for the US to identify the US monetary policy shock, second, with
a proxy for the UK for the identification of the UK monetary policy shock and, third,
with a proxy for the EA to identify the EA monetary policy shock. In the following
we use the term "country" also to describe the euro area.

The paper contributes to the literature, first, by analyzing not only cross-border
effects of the US but also assessing effects of policy measures of the European Central
Bank (ECB) and the Bank of England (BoE). Few papers analyze macroeconomic ef-
fects of international monetary policy transmission from central banks other than the
Federal Reserve System (Fed). Kucharukov et al. (2016) and Bluwstein and Canova
(2016) analyze spillovers from the ECB finding effects on exchange rates of European
countries which are not part of the European Monetary Union and effects on output
and inflation which vary across economies. Gerko and Rey (2017) find spillovers from
the US to the UK but not vice versa. Rogers et al. (2014, 2017) provide evidence for
financial spillovers for monetary policy shocks of the UK, Japan, and the EA.

Second, the paper complements the extensive literature on financial spillovers with
a focus on macroeconomic effects using a three-country model accounting for linkages
across the three economies. Recent studies such as Hausman and Wongswan (2011),
Glick and Leduc (2012), Bauer and Neely (2014), Neely (2015), and Fratzscher et al.
(2018) provide evidence that conventional and unconventional monetary policy of the
Fed has cross-border financial spillover effects.

Third, we use external instruments to identify one monetary policy shock for each
country in a multi-country VAR model. Structural identification in multi-country mod-
els is a challenge and usually solved with recursive identification where the order of
variables matters. Papers using two-country VAR models for studying monetary policy
transmission mostly base their identification on block-exogeneity. These assumptions
are hard to justify when focusing on countries other than the US or when adding
more countries. Chen et al. (2016), Kucharukov et al. (2016), and Bluwstein and
Canova (2016) are recent examples for studies analyzing international monetary policy
spillovers based on recursive identification schemes. External instrument identification
allows us to identify similar shocks for different countries. We use changes of forward
rates around central bank announcements to identify monetary policy shocks in VAR
models (see e.g., Faust et al., 2003, 2004; Gertler and Karadi, 2015; Cesa-Bianchi et al.,
2016; Miranda-Agrippino, 2016; Caldara and Herbst, 2016; Hachula et al., 2016; Gerko
and Rey, 2017; Rogers et al., 2017). At the core of this identification lies the assump-
tion that forward rates embody all expectations about a change of central bank policy
until maturity. If rates change in a short window around central bank announcements,

this change has to come from a change in expectations, i.e., an unexpected monetary
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policy shock.

The model with the identified US monetary policy shock uses monthly data from
January 1973 to June 2017, the VAR model with the identified UK monetary policy
uses data from January 1982 to March 2017, and for the VAR model with the iden-
tified EA monetary policy shock data range from January 2000 to October 2017. To
analyze monetary policy shock transmission the VAR models include variables such as
a monetary policy indicator, consumer price index, industrial production, unemploy-
ment rate, credit spread, stock price index, long term government rate, lending rate,
and exchange rates. The external instruments used for identification of the monetary
policy shocks measure conventional and unconventional monetary policy. We take the
proxy of Gertler and Karadi (2015) for the US, the series of Gerko and Rey (2017) for
the UK, and of Rogers et al. (2017) for the EA.

We estimate a Bayesian proxy three-country structural VAR model following the
procedure of Caldara and Herbst (2016) but expanding it to the three-country dimen-
sion. A challenge is to ensure the estimation feasibility of the rather large VAR model.
We use that the model includes three countries and adjust a Bayesian selection prior of
Korobilis (2013) such that it utilizes the panel structure similarly as proposed in chap-
ter 1. The prior searches for zero restrictions on lagged foreign variables and thereby
reduces the model dimension. Our prior works under the hypothesis that domestic
lags are more important than foreign lags and not all foreign lags have an impact on
domestic variables. The Bayesian selection prior with a panel structure determines in
a data-driven way which foreign lags can be set to zero. The posterior distribution sets
zero coefficients on some foreign lags and is thus capable to estimate a rather large
three-country VAR model. In short, we follow approaches that are also employed to
estimate panel vector autoregressive (PVAR) models (see chapter 1).

Our results show asymmetries regarding the importance of foreign monetary policy
for domestic variables. A US monetary policy shock spills-over to the UK and EA caus-
ing an appreciation of the exchange rates, while a UK monetary policy shock affects
the British-Pound-Euro exchange rate but does not impact the exchange rate to the
US dollar. Exchange rates do not respond to a monetary policy shock of the EA. We
find no evidence for substantial macroeconomic effects. Our findings do not suggest the
need for policy actions of central banks to prevent harmful macroeconomic spillover
effects caused by foreign monetary policy shocks. However, the insignificance of our
findings in the multi-country models might be explained by the shock identification
and the high estimation uncertainty.

In the following, section 3.2 relates the paper to the previous literature. Section

3.3 briefly describes the monetary policy frameworks of the Fed, the Bank of England
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and the European Central Bank and the transmission channels of monetary policy
spillovers. In section 3.4 the Bayesian proxy three-country VAR model as well as the
identification strategy are introduced. Section 3.5 provides an overview of the data and

in section 3.6 the results are presented. Finally, section 3.7 concludes.

3.2 Literature

The paper contributes to the literature, first, by focusing not only on the effects of US
monetary policy transmission but also on the UK and EA. Second, we analyze inter-
national macroeconomic effects of conventional and unconventional monetary policy
shocks using a three-country model that allows to capture interlinkages and hetero-
geneities across the US, UK, and EA. Third, we do not rely on any block-exogeneity
assumption or recursive identification but use external instruments to identify the mon-
etary policy shocks of the three central banks.

Our first contribution expands the literature on spillovers from the UK and EA. Some
recent studies focus on international macroeconomic effects of monetary policy shocks
other than the US. Kucharukov et al. (2016) and Bluwstein and Canova (2016) analyze
spillovers of the ECB’s unconventional monetary policy to European Union countries
which are no members in the European Monetary Union. Both studies base their iden-
tification of the monetary policy shock on a recursive structure or block-exogeneity
assumptions. Kucharukov et al. (2016) focus on the transmission of conventional and
unconventional monetary policy of the ECB using two-country VAR models. They
construct a synthetic indicator of EA monetary conditions to measure the monetary
policy of the ECB. The authors find effects on inflation and output for conventional
monetary policy transmitted by exchange rates and interest rates while unconventional
monetary policy mainly affects exchange rates and only causes output responses for
some countries. Using two-country Bayesian mixed frequency VAR models Bluwstein
and Canova (2016) study spillovers of EA unconventional monetary policy measured
based on balance sheet variables. EA unconventional monetary policy shocks cause
positive or insignificant output reactions while inflation responds for some countries
negatively and for some positively. Spillovers occur via an exchange rate channel and
financial channels.

Furthermore, Gambacorta et al. (2014) use a panel VAR model to study cross-
border effects of conventional monetary policy of eight advanced economies identified
with sign and zero restrictions as an exogenous innovation to the central bank balance
sheet. They focus on domestic effects and only allow for correlations among residuals

of the same endogenous variable across economics. Output responses are similar and
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positive across countries while prices respond differently. Gerko and Rey (2017) use
external instruments to identify US and UK monetary policy shocks in a VAR model.
They differentiate between effects of movements in the policy instruments and forward
guidance. The authors provide evidence for spillovers from the US monetary policy to
the UK while they find no evidence for spillovers from the UK to the US. A tightening
in the US monetary policy causes an increase in the UK mortgage spread and leads to
an appreciation of the British pound.

Few studies focus on financial spillover effects of monetary policy from different cen-
tral banks than the Fed. Rogers et al. (2014) use intraday changes in government bond
yields around policy announcements for the US, UK, EA, and Japan. Their regression
results show that foreign bond yields are affected. The effects are strongest for the
US monetary policy to non-US yields. Fratzscher et al. (2016) focus on unconven-
tional monetary policy of the ECB and find that financial markets in the euro area are
mainly affected. In their event study they show evidence for increased equity prices,
lower credit risk and negligible effects on international yields. Rogers et al. (2017) use
external instruments in two-country VAR models to identify unconventional monetary
policy shocks for the US, UK, EA, and Japan and to assess effects on domestic and
foreign interest rates and exchange rates. The study does not analyze effects on for-
eign real variables and of non-US shocks on non-US variables. The dollar depreciates
in response to an expansionary US monetary policy shock disentangled into a target
surprise, forward guidance surprise and asset purchase surprise. Foreign short term
and long term interest rates decrease. US interest rates react to UK and Japanese
monetary easing positively while the ECB easing shock causes a raise in US interest
rates.

With our second contribution, focusing on international macroeconomic effects of
monetary policy shocks in a three-country model, we relate to the literature on inter-
national monetary policy transmission. International monetary policy spillovers are to
a great extent analyzed in two-country VAR models focusing on the effect of conven-
tional monetary policy of the US. These models do not account for global interlinkages
besides bilateral linkages. Furthermore, the structural identification of monetary pol-
icy is mainly based on block-exogeneity assumptions. Thus, these models are to a
great extent used to analysze the effect of US monetary policy on a small country in
order to justify the identifying assumptions. Two-country VAR models carry the risk
that identified shocks mix a national and an international component, where the latter
is not explicitly considered as international dependencies are not part of the model.
Georgiadis (2017) points out this issue for identification which is not based on addi-

tional exogenous series such as narrative approaches or high-frequency identification.
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Several studies such as Kim and Roubini (2000), Kim (2001), Canova (2005), and
Mackowiak (2007) provide evidence that conventional US monetary policy shocks are
transmitted globally affecting advanced and emerging markets mainly through interest
rate spillovers. Chen et al. (2016) study macroeconomic effects of quantitative easing
of the Fed in a global vector error correction model for seventeen advanced economies
and emerging market economies (EME). The authors show that cross-border spillovers
vary across economies and are larger for emerging markets. They find positive ef-
fects on output growth and inflation and an appreciation pressure for EME. Advanced
economies respond to a negative monetary policy shock of the US by loosening their
monetary policy while EME respond in various ways. Their identification is based on
a recursive scheme.

Several recent studies focus on international financial spillovers of monetary policy
shocks of the US. Our paper extends this literature by also assessing real effects. The
papers on international financial spillovers rely on an alternative identification strat-
egy and use high frequency data for the identification of the monetary policy shocks
in event study approaches. They provide evidence for large international financial
spillovers from conventional and unconventional US monetary policy. Hausman and
Wongswan (2011) focus on the effect of conventional US monetary policy on foreign
equities, interest rates, and exchange rates. They find that for the 49 analyzed coun-
tries equity indexes mainly react to target surprises while exchange rates and long
term interest rates respond to a path surprise capturing news about the revision in the
future policy path. Using an event study approach Glick and Leduc (2012) analyze the
impact of asset purchase programs of the US and the UK on financial asset prices of
advanced economies. While the US shock causes long-term interest rates to decrease
internationally, the UK shock has negligible effects in magnitudes. Both monetary
policy shocks lead to a fall in the respective currency. Bauer and Neely (2014) find
evidence that the asset purchases of the Fed reduce Canadian long-term yields, while
for Australia, Germany and Japan portfolio balance effects are visible. Neely (2015)
shows that unconventional monetary policy of the Fed lowers long-term yields interna-
tionally and leads to a depreciation of the US dollar. Fratzscher et al. (2018) analyze
the effects of US quantitative easing on portfolio flows providing evidence for strong
impacts on inflows to emerging market economies.

With our third contribution, using external instrument identification in a multi-
country model, we relate to the literature on using external instrument identification
with high-frequency data for monetary policy shocks in VAR models. Gertler and
Karadi (2015) use surprises in Fed funds futures to identify US monetary policy shocks
in a VAR model. Cesa-Bianchi et al. (2016) provide an instrument for UK monetary
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policy shocks using changes in 3-month sterling futures contracts. Miranda-Agrippino
(2016) proposes to project raw monetary policy surprise series onto a set of central
banks’ forecasts in order to assure the exogeneity of the monetary surprises. She pro-
vides series for the US and UK. Caldara and Herbst (2016) use a Bayesian Proxy VAR
model to identify US monetary policy shocks with high frequency data. Hachula et al.
(2016) identify unconventional monetary policy surprises of the ECB with the high

frequency identification in a VAR model.

3.3 Cross-Border Transmission of Monetary Policy

3.3.1 Monetary Policy in the United States, United Kingdom, and the

Euro Area

The central banks of the US, UK, and EA all follow slightly different monetary frame-
works. In particular, meeting schedules and the information flow regarding monetary
policy decisions and the underlying now- and forecasts of central banks differ. As these
differences are important for our identification strategy of monetary policy shocks, we
briefly describe the monetary framework of the three central banks.

The monetary policy of the Fed is set by the Federal Open Market Committee
(FOMC). The FOMC holds eight regularly scheduled meetings per year, plus addi-
tional meetings when needed.? After every meeting, there is a press release, which
contains (a) the decision on the monetary policy stance (i.e., an interest rate decision),
and (b) the macroeconomic forecasts on which the FOMC decision is based. That is,
the press release provides markets with news on target interest rates. In particular,
an increase of federal fund futures from shortly before the meeting to shortly after the
press release can be seen as a tightening monetary policy shock.? In addition to a
monetary policy shock, the press release conveys additional information on expected
future macroeconomic developments. Jarocinski and Karadi (2017) use this differen-
tiation to solve the puzzle that stock markets do not necessarily react to interest rate
surprises. Three weeks after every FOMC meeting, the Fed releases minutes. However,
there is wide agreement in the literature that these minutes do not contain significant
additional information for markets that can be employed to identify monetary policy
shocks.

The federal funds rate reached its effective lower bound by November 2008. At the

same time, the Fed set up a first large-scale asset purchase program. In this period

Zhttps://www.federalreserve.gov /monetarypolicy /fomccalendars.html
3This interpretation entails that the FOMC decided on higher target interest rates than previously
expected.
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of unconventional monetary policy, the FOMC also put a stronger focus on forward
guidance (i.e., providing the public with additional information on expectations).

The Monetary Policy Committee of the Bank of England meets monthly to set target
interest rates and the monetary policy stance. After the meeting (on either the first or
second Thursday of the month), there is a press release which only communicates the
new target interest rate. That is, contrary to the Fed, press releases after meetings only
can trigger a monetary policy shock. Meeting minutes are reported on the Wednesday
two weeks after every meeting. These communications in turn provide information on
central bank expectations. In addition, the BoE releases an inflation report comment-
ing on the current and prospective economic developments. This report is published
four times a year on the second Wednesday of February, May, August and November.
Gerko and Rey (2017) argue that the clear separation of monetary policy shocks from
central bank information across time implies that shock identification is cleaner in the
case of the UK.

The BoE needed to conduct unconventional monetary policy from March 2009 on-
wards, when its policy rate was reduced to 0.5%. At that time, it also set up an asset
purchase program. Forward guidance was, however, only introduced in August 2013.

The Governing Council of the European Central Bank meets every two weeks and
decides on its monetary policy every six weeks.? Its decision is directly communicated
in a press release and conference. An account of the Governing Councils’s meetings is
published four weeks after each monetary policy meeting. The information content of
the different parts of communication of the ECB are comparable to those of the Fed.
That is, the majority of new and relevant information is already released in the press
release and during the press conference accompanying the monetary policy decision.

The ECB reduced the policy rate by 50 basis points on 8 October 2008. It subse-
quently started with the introduction of unconventional monetary policy actions by in-
troducing the Longer-Term Refinancing Operations, the Securities Market Programme,

and the Outright Monetary Transaction.

3.3.2 Transmission Channels

Monetary policy does not only have domestic effects, but can also affect foreign economies
through a multitude of channels. The most important of these are the exchange rate
channel and different financial channels, which are summarized in Figure 3.1.

The exchange rate channel can affect trade and import prices. Thus, it can cause

macroeconomic spillovers across borders by stimulating a reaction of foreign output and

4https: //www.ech.europa.eu/press/govedec/html /index.en.html and
https://www.ecb.europa.eu/ecb/orga/decisions/gove/html/index.en.html
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Figure 3.1: International monetary policy transmission
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inflation. A monetary policy easing in the domestic country boosts domestic output
and consumption. Thus, it also increases imports and thereby affects foreign output
positively. However, this demand effect is counteracted by a substition effect. As do-
mestic interest rates fall and expected inflation increases, the exchange rate depreciates.
This implies an expenditure-switching effect since domestic goods become cheaper in
comparison to foreign goods. The substitution from imports to domestic output damp-
ens foreign economic development. The aggregate transmission of domestic monetary
policy via the exchange rate channel depends on the relative strength of the demand
and the substitution effect.

The exchange rate channel can be affected by potential policy coordinations across
economies. Obstfeld and Rogoff (2002) argue that international spillovers of monetary
policy are unintended, which implies that gains from policy coordinations may in prac-
tice only be small. Taylor (2013), however, argues that foreign monetary policy actions
can trigger a pressure to deviate from planned domestic monetary policy in order to
prevent exchange rate movements.

While for conventional monetary policy the exchange rate channel is the main trans-
mission mechanism, the period of zero interest rates and unconventional monetary
policy triggered a vast literature that addresses the importance of various financial
spillover channels.® Unconventional monetary policy can have international effects via

the portfolio balance channel, the liquidity channel, and the signaling channel. Large

®See for example Glick and Leduc (2012), Bauer and Neely (2014), Neely (2015), Fratzscher et al.
(2016), and Fratzscher et al. (2018) for a detailed description of the various financial channels.
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asset purchases programs were targeted to decrease long-term yields, improve financial
conditions and thus stimulate economic growth. The portfolio balance channel passes
on domestic monetary policy by increased asset purchases which decrease long-term
yields as the supply of long-term securities is reduced. Investors in turn purchase both
alternative domestic and foreign assets as substitutes. This leads to an increase in
foreign asset prices boosting foreign consumption, investment and output.

The liquidity channel works through improved financial conditions directly. An as-
set purchase program provides market liquidity on international financial markets. It
can thus stimulate consumption and investment domestically and internationally. This
leads to a boost in the domestic and foreign economy affecting output and prices.

The signaling channel affects the economy through central bank communication.
A central bank can communicate via statements, speeches, policy announcements or
reports on the economic development. By releasing information about central bank
expectations, it provides new information to market participants, and may influence
expectations. In particular, investors might adjust their expectations for future short-
term interest rates in response to an announcement of a large asset purchase program,
which directly affects long-term interest rates. Similarly, weaker growth forecasts an-
nounced by the central bank causes a change in expectations of investors and leads to

lower long-term yields and lower asset prices.

3.4 Methodology

3.4.1 Three-Country Structural VAR Model

We analyze international monetary policy spillovers using a three-country vector au-
toregressive model with variables for the US, UK, and EA.® The VAR model for one
country ¢ with ¢ = 1,2, 3, G; country-specific variables and G = Gys + Gux + Gga

variables of all countries for t = 1,...,T is given by’
Yir = Ci + Qi1 + PiaYi—2 + oo+ Piple—p + Wit wir ~ N(0, L) (3.1)

The ¢; is a country-specific intercept term and ¢;p are the [G; X G]-coefficient matrices
for lags P = 1,...,p. The G; country-specific variables for one country i are given in
y;x which is a [G; x 1]-vector. The y,_p = [yit_P,yét_P,yét_P}, contains the lagged
variables of all countries for lags P = 1,...,p. Thus, the model allows for dynamic in-

terdependencies across economies. That means, lagged endogenous variables of foreign

SNote that we use the term "country" also to describe the euro area.
"Note that we will later relax the assumption of a common sample size T for all models.
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countries can impact variables of the domestic country. The country-specific intercept
term and coefficient matrices enable to model country heterogeneities in the three-
country VAR model. The u;; is normally distributed with covariance matrices across
countries ¥;; for ¢ # j.

Including the three countries in one model, the large reduced form three-country

VAR model can be written as
Y = Pxyq + up, up ~ N(0,%), (3.2)

where ® is a [G x Gp + 1]-coefficient matrix and z;_1 = [1,y,_1, ..., yt_p]' is the matrix
of lagged endogenous variables.® The covariance matrix X is of dimension [G x GI.
The covariance matrix is unrestricted. Thus, the model allows for correlation among
all country and variable combinations.
The three-country structural vector autoregressive (SVAR) model in compact form
is given by
Agys = Az + e, (3.3)

’

where Ay is the invertible matrix of contemporaneous dependencies and A = [c’, Al A;J
contains a constant and lagged dependencies. The y; = [y}, ¥4, V4] contains the vari-
ables of all countries. The z; 1 = [1,¥;_1,..., %, is the matrix of lagged endogenous
variables. The vector of structural shocks, e, is of dimension [G x 1].

The structural form parameters are linked to the reduced form parameters through
¥ = (AyAy)~! and thus & = A;'A. Let X, be the lower triagonal Cholesky component
of ¥ and € any [G x G] orthogonal rotation matrix. The vector of reduced form errors,

Uy, is linked to the structural errors, e;, by:
Ut = Aalet = EtTQet. (34)

Two different orthogonal matrices © and Q can give different structural parameters
without affecting the likelihood of the model which only depends on the reduced-form
errors. Thus, to identify the structural parameters additional restrictions are needed.
The identifying restrictions are set on €) by choice of a suitable prior distribution.
As we use a Bayesian proxy SVAR model, the identifying restrictions are additional
information coming from including the proxy data. That is, the proxy informs the

choice of €2, and the prior on € is updated based on the proxy data.

8The exact estimation of parameters in ® under a Bayesian selection prior is explained in section
3.4.4.
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3.4.2 Identification of Monetary Policy Shocks

We use a high frequency approach to identify monetary policy shocks in a structural
VAR model. The general idea of this approach is to use an exogenous series which is
highly correlated to the structural shock of interest and unrelated to all other struc-
tural shocks. Loosely speaking, the structural shock of interest can be identified by
employing the exogenous series as an instrument. Faust et al. (2003) as well as Faust
et al. (2004) introduce to use high frequency data as measure for monetary policy
shocks in SVAR models. The authors follow the idea of the event study literature to
use high frequency financial data to identify monetary policy shocks (e.g., Kuttner,
2001; Giirkaynak et al., 2005). Faust et al. (2003) identify a monetary policy shock
by matching the impulse responses of exchange rates and interest rates to the shock
in an open economy VAR model to the changes of the high frequency financial data
around monetary policy announcements of the Fed. Faust et al. (2004) use the match-
ing requirement for the response of interest rates in a VAR model to those from federal
funds futures data to the monetary policy shock. Recently, Stock and Watson (2012)
and Mertens and Ravn (2013) use external instruments for structural identification
in macroeconomic dynamic time series models. Stock and Watson (2012) identify six
structural shocks in a high-dimensional dynamic factor model using constructed shocks
given in the literature as external instruments. Mertens and Ravn (2013) identify tax
shocks in a VAR model with the help of narratively identified changes in tax liabilities.
Gertler and Karadi (2015) use a proxy series based on high frequency data to identify
a monetary policy shock in a structural VAR model.

The monetary policy surprise series are constructed as the price changes of future
government bond contracts around monetary policy announcements. It is based on the
assumption that the only additional information affecting interest rate futures (i.e.,
financial market expectations on future interest rates) in a short window around cen-
tral bank communication events is the central bank communication itself. Under this
assumption, high-frequency information on futures can be used to create a proxy for
the size and direction of monetary policy shocks. Importantly, the changes in future
prices reflect the adjustment of the expectations of market participants regarding (i)
the future movement of the target rate, (ii) forward guidance regarding longer-term
plans of the central bank and (iii) information on central bank forecasts of economic
development.

Let m;; be the proxy constructed from the changes of high frequency government
bond future contracts of one country ¢ around policy announcement days of the coun-
try’s central bank. Partition the [G x 1]-vector of structural shocks of the SVAR model

given in equation (3.3), e, into e, = [enrpiy, €h,]'. Let earpiy be the shock of interest.
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The eppiy is the structural monetary policy shock of country ¢ in the VAR model
including variables from all three economies. The [(G — 1) x 1]-vector ey; contains
all other G — 1 structural shocks. The proxy m;, needs to fulfill the following two
conditions to identify the structural monetary policy shock of one specific country,

EMPit:

E(m;eppit) # 0
E(meh,) =0

The first condition implies that the proxy needs to be correlated to the structural
monetary policy shock of interest. That means, the proxy can be a noisy measure
of the structural shock but needs to carry some information about it. The second
condition means that the proxy needs to be uncorrelated to all remaining structural
shocks of the VAR model, including foreign monetary policy shocks. By using high
frequency data to calculate the price changes, the assumption of no correlation can be
justified. Importantly, its validity with respect to actually identified shocks can also
be tested. In our case, it suffices to test the correlation of proxies. Thus, the proxy
m;, is informative about the monetary policy shock of one country and is orthogonal
to all other structural shocks in the VAR model, ey ;.

We aim at identifying one by one three monetary policy shocks: for the US, UK, and
EA. The identification for each shock is based on a proxy series from the literature,
which is constructed from respective government bond future contracts and monetary
policy actions of the Fed, BoE or ECB.

Under the validity of the second assumption above, it is possible to focus in one VAR
model only on the identification of one monetary policy shock of a specific country. The
reason for this is that the external series are orthogonal to each other. Each series thus
does indeed only contain information on one monetary policy shock. An alternative
way is to jointly identify three monetary policy shocks in one model using three proxies,

which is computationally less efficient.

3.4.3 Bayesian Proxy Three-Country Structural VAR Model

We use a Bayesian proxy three-country structural VAR model following Caldara and
Herbst (2016). The model leans on Stock and Watson (2012) and Mertens and Ravn
(2013) using a Bayesian implementation. We estimate a three-country VAR model and
identify the three shocks, eypust, empuke, and eyppay, individually in succession.
We successively augment the VAR, first, with a proxy series constructed for the US

to identify the US monetary policy shock, second, with a proxy for the UK for the
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identification of the UK monetary policy shock and, third, with a proxy for the EA to
identify the EA monetary policy shock. A proxy constructed around announcement
days of one of the three central banks is linked to the unobserved monetary policy

shock of the same country i for t =1, ..., T by
Mt = bienpit + 0y iVi, iz ~ N(0,1) and v,y L e;. (3.5)

Equation (3.5) captures the two conditions for the proxies. First, if the coefficient b; is
nonzero, the proxy is informative about the structural shock, ejsp;¢. The ratio of b; /o,
can be seen as a measure of the informativeness of the proxy for the structural shock.
A large ratio of b; to 0,,; means that the proxy is informative about the structural
shock. Weak identification is present, if the ratio is small and, thus, if the proxy is
less informative about the monetary policy shock. If b; = 0, the proxy is not able
to identify the monetary policy shock. Second, the proxy is orthogonal to all other
structural shocks of the system, v;; L e;.

An important feature of the identification via high frequency data in the Bayesian
proxy SVAR model is that the proxy can be a noisy measure of the structural shock.
Only the assumptions stated beforehand of non-zero correlation between the proxy and
the identified shock and no correlation with all other shocks are needed. The reliability
of the proxy can then be investigated by considering the posterior distributions of b;
and o, ;.

For simplicity, the variables in the SVAR model are ordered such that the structural
shock of interest is ordered first. The monetary policy indicator variable is the first
variable in the system. Thus, the first equation of the SVAR model given in (3.3) is

the monetary policy equation:
Ao et = Ape)Te—1 + enrpig (3.6)

where A 14 and Afj,) denote the first row of matrix Ay and A, respectively. Combining
equations (3.5) and (3.6) gives the following relation of the monetary policy equation

of the SVAR model and the proxy equation:

mit = bi(AO,[lo]yt - A[lo]xtq) + 0viVi¢

'AD,[lo}yt + t = - ‘A[la}xt—l + Vg

V,% v,1 Ou,i

9Note that we will relax the assumption that the sample size, T, is equal for the proxy data and the
VAR data.
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The proxy three-country SVAR model augments the SVAR model with the proxy
equation. Combining (3.3) and (3.7) gives:

Ao 0 Ye -
B JIZZ- AO»[I'] 0'1]]-71' Myt

The structural parameters Ag and A are a function of the reduced from parameters @,

A
— = An)

Tu,i

“ ] . (3.8)

the reduced form covariance matrix ¥, and a rotation matrix €2. That is, Ay L=%,0
with ;. denoting the lower triangular Cholesky decomposition of ¥, and A = ¥,,Q2.
So far, an equal sample size, T, for the proxy data and VAR data as well as along
different model specifications is assumed. It will get clear from the following expression
of the joint likelihood given in (3.9), that it is possible to have different sample sizes for
the proxy data and the VAR data. Furthermore, the beginning and end dates of the
proxy and VAR data can vary across different model specifications depending on the
variables (and countries) included. Let T}, denote the sample size of the VAR data, T},
the sample size of the proxy data, and ¢, the beginning of the proxy data. Let y.z,
denote the data of the variables included in the VAR model. The sample size T}, varies
across model specifications. The longest possible sample size is chosen for each model.
Let m;4,,..1,, denote the proxy data for country . The beginning of the proxy data,
tim, can be later than the beginning of the VAR data. The beginning, t;,,, and end
of the proxy data, T},, varies across the proxies for the US, UK, and EA.'° The exact
sample sizes are given in section 3.5 (see for a summary table 3.1 in section 3.5.2).
The orthogonal matrix €2 does not depend on the VAR model data y.r, but is
informed by the exogenous proxy data, m;,,..1,,. That is why, following Caldara and
Herbst (2016), the joint likelihood of the Bayesian proxy three-country SVAR model

can be expressed as

p(yLTy, Tt T "I), X, 0, b;, Uv,i) = p(ylzTy |‘I>, 2)p(mi,t1m:Tm |y1:Ty; ®, 3,0, b;, Uv,i)-
(3.9)
The likelihood function is split into the first part which is a standard likelihood func-
tion for the reduced form VAR model parameters and the second part which gives
the conditional likelihood of the proxy mjy,,,.r,, given the data yi.7,, reduced form
coefficients and the parameters of the proxy equation. The conditional likelihood

P(Mi gy, lt1m,, ©,5,Q, 05, 0,;) is normally distributed with mean [y, and

:Tm‘ylzTy

10 A5 the sample sizes for the VAR data and proxy data vary across models depending on which vari-
ables and countries are included, the exact notation would require an additional model specification
index for the sample sizes. For a better clarity this index is neglected and the exact sample sizes
are given in the model specification table 3.1 and are clearly marked below each graph in the result
section.
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variance Vi, , whereby

m:Tm |y1:Ty

!
p— _1 — . .
Homg oy lyrr, = biQ[ol]Ztr Uy = bzeMPz,t

(3.10)

M tqy:Tm ‘yl:Ty - O-Uvi’

where (1) denotes the first column of €.

We estimate the model using a Metropolis-within-Gibbs algorithm. The split of
the joint likelihood into the standard likelihood of y;.7, and the conditional likelihood
of mjy,,..1,, enables the separate estimation of the reduced form parameters and the
structural parameters. However, the reduced form parameters are updated in light of
the proxy. That is, draws from the posteriors p(®, X|yi.1,) are accepted based on the
evaluation at the conditional likelihood of m;¢,, .1,,. The algorithm combines a Gibbs
sampler for coefficient draws with a Metropolis acceptance step, where new draws are
accepted based on their effect on the likelihood of the proxy p(m;,,,.1,.|-)- Thus, we do
not have standard reduced form posteriors but posterior distributions updated based on
the structural identification. The parameter draws of ® and > are not only conditional
on the data but on the proxy data and parameters coming from the structural form,
2, b;, and 0,;. Hence, our proxies inform the estimation of the reduced and structural
form parameters. The exact updating of reduced form parameters is given in 3.B.

The Bayesian proxy three-country SVAR model has several advantages. First, the
influence of the proxies on reduced form parameters implies that more weight is put
on those parameters that are consistent with the structural shocks. The strength
of this “shift” depends on the informativeness of the proxy, which ensures that a clear
identification of structural errors is accompanied by accepting reduced form coefficients
based on the proxy data.

Second, the separate estimation of reduced form parameters and shock identification
in one draw allows to have different numbers of observations 7, and 7,,. Similar
to the majority of the literature on proxy VAR models, we only require that proxy
observations are a subset of observations of the data of endogenous variables. This
is useful since in most application scenarios the high frequency data for the proxies
are only available for a shorter period starting at a later date than the data for the
macroeconomic variables (7, > T,,,). Still, for the variables included in the VAR model
data starting earlier than the first available proxy data can be used for the estimation
of the reduced form parameters. The matrices ¢ and ¥ are drawn based on longer
time series, while the update step of the reduced form parameters and the draws of (2,
b;, and 0, ; can use a shorter sample determined by the availability of the proxy data.

Third, the Bayesian approach simplifies the dealing with the weak identification

problem and inference by adding subjective information. Weak identification leads
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to nearly flat likelihoods and thus a strong dependence of the posterior on the prior
distribution. However, it still allows to sample from the posterior distribution. The
specification of the prior distributions for the parameters of the proxy equation (3.5)
adds additional (subjective) information to the model impacting strongly the posterior
distributions.

Fourth, especially in the panel framework a large number of parameters have to
be estimated. Since the reduced form can be estimated in a separate step, we can
set a specific suitable prior distribution for our three-country model which remains
independent of the proxy. Through shrinkage this prior allows us to estimate the large

number of parameters assuming a panel structure.

3.4.4 Prior and Posterior Distributions

We use a Bayesian shrinkage approach for the estimation of reduced form parameters.
Our Bayesian selection prior assumes a specific panel structure. It is thus an extension
of the selection prior of Korobilis (2013). To ensure the estimation feasibility of our
model the prior on reduced form coefficients reduces the dimension of the VAR model
in two ways. First, the prior introduces Bayesian shrinkage. We take the commonly
used Minnesota prior for VAR models. In the equation of variable y;, this prior intro-
duces a higher shrinkage on lags of variables y;, j # 4, and higher lags in general. This
shrinkage is done by an increasingly tighter variance in the prior specification around
a prior mean of zero. Second, the prior assumes a panel structure to set additional
zero restrictions. The prior builds on the hypothesis that domestic variables are en-
dogenously driven by all of their own lags, but not by all lags of all foreign variables.
That is, some foreign lagged variables are excluded from the system. The exclusion
is determined by a data based search for zero restrictions on the lagged coefficients of
foreign variables while domestic lags are left unrestricted. The exclusion of coefficients
facilitates estimation of the model even in cases of a large number of parameters to
estimate.

The estimation procedure we are using follows the approaches to estimate panel vec-
tor autoregressive models. PVAR models combine several macroeconomic variables for
multiple countries in a single model and therefore account for international spillovers.
The characteristics of a PVAR model are that it captures dynamic and static interde-
pendencies as well as heterogeneities across countries. That is, PVAR models include
lagged variables of all countries in each equation (dynamic interdependencies), allow
for correlation between error terms of all country and variable combinations (static in-
terdependencies), and have country-specific intercepts and coefficient matrices (cross-

country heterogeneities) (e.g., Canova and Ciccarelli, 2013). Our three-country VAR

95



Chapter 3 International Monetary Policy Transmission

model is a PVAR model focusing on the relation between the US, UK, and EA. The
estimation strategies for PVAR models use the panel structure of the model to set
restrictions or reduce the parameters space. As yet, the literature on estimating PVAR
models follows mainly three approaches: setting restrictions in line with theoretical ar-
guments, using a Bayesian factor approach proposed by Canova and Ciccarelli (2004,
2009) or using Bayesian selection priors as done by Koop and Korobilis (2015b).

The dynamic interdependency restrictions we are searching for in our model are a
typical characteristic of PVAR models. Searching for no dynamic interdependencies in
PVAR models is motivated by the findings of Koop and Korobilis (2015b), Korobilis
(2016), and Schniicker (2016). The authors provide evidence that the estimation can
be improved by reducing mean squared estimation errors if the panel dimension of the
data is accounted for in the specification of the prior. We allow for a flexible panel-
structure since a zero restriction can be set on each coefficient separately not assuming
that all variables of one country are restricted in the same way.

The idea of the selection prior is to select the non-zero parameters in the model
depending on an indicator. We use a binary selection indicator v for the inclusion deci-
sion of each coefficient in the model. If 7 is set to zero, the coefficient is set to zero. If
is one, the coefficient is freely estimated. The binary indicators on each variable follow
a Bernoulli distribution with a posterior probability that scales a prior probability of
inclusion by the likelihood gains in case of inclusion. Hence, the exclusion of variables
is data-driven.

The zero restrictions of this model thus imply a spike-and-slab mixture distribution
on reduced form coefficients, that is, a distribution with a point mass at zero (the
spike) and the posterior distribution in case of 7 = 1 (the slab). The zero restrictions
in the model are introduced by assuming a mixture distributions on the reduced form
coefficients. The lagged coefficients of foreign variables are either set to zero or drawn
from a posterior distribution based on a Minnesota prior. The lagged coefficients of
domestic variables are only based on the Minnesota prior (i.e., these coefficients are
always included). The intercept term is also left unrestricted. Let ¢ be one arbitrary
element of ®, the [G x Gp + 1]-coefficient matrix of the reduced form VAR model, and
let v be the corresponding binary selection indicator. Then the reduced form coefficient

¢ is drawn from the posterior distribution in the following way

o=0 if v=0 for foreign lag
¢ ~ p(®lyr1,, ) if v=1 for foreign lag
¢ ~ p(®lyr1,, ) for domestic lag and constant.
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If v = 1 for foreign lags or ¢ is a domestic lag coefficient or a constant, ¢ is drawn from
the posterior distribution p(®|y.7,,%). If v = 0 for foreign lags, ¢ is set to zero. !

As Caldara and Herbst (2016) we assume a mixture proposal distribution as the
prior for the reduced form covariance matrix ». As explained above, we give the proxy
the possibility to inform the posterior distribution of reduced form coefficients (in the
form of a Metropolis acceptance step). That is, we allow for the possibility that the
posterior of ¥ given y.7, and my,,, .1, can be different from the posterior given y.z, .
This implies that drawing a candidate Y from the latter posterior distribution may
be inefficient. To improve on this, Caldara and Herbst (2016) propose the mixture in
order to put additional weight on draws of the variance-covariance matrix that fit well
to the proxy. Specifically, we draw ¥ from a weighted average of two inverse Wishart
distributions. The first distribution or, equivalently, its scaling matrix and degrees of
freedom is determined by the Minnesota prior and the data and denoted by p(X|y1.7, )
The second inverse Wishart distribution ZW(X%4, d), uses the last draw $°¢ from the
Gibbs sampler as scaling matrix, and prespecified degrees of freedom d. Let p be the
weight of the posterior inverse Wishart distribution determined by the data, then the

mixture proposal distribution for ¥ is
p(Elyz,, M, d) = pp(Slyrr,) + (1 = p)IW(E, d). (3.11)

A p < 1 gives some weight on a distribution based on previous draws (instead of
the data) and thus includes a random walk like behavior. That is, p < 1 gives the
algorithm an additional opportunity beyond simple rejection of new draws to keep
candidate draws for the variance-covariance matrix in regions that fit well to the proxy.
Other than in the case of the selection indicator for the reduced form coefficients, the
parameter p is not drawn from a distribution, but is set at a fixed value.

Further, we set the following prior distributions for the proxy equation. We take a
normal prior for b;, b; ~ N (bos, Vs:). For the standard deviation of the measurement
error, o,;, we use two different prior specifications: a so called high relevance prior
and an inverse Gamma prior. The high relevance prior, following Caldara and Herbst
(2016), states the subjective assumption that o, ; is equal to a specific proportion, «,

of the standard deviation of the proxy data, oy, , with probability 1. That is, the

m:Tm’?

1A detailed description of the implementation of such a selection prior can be found in Korobilis
(2013). The prior is closely related to the selection prior proposed in chapter 1, but does not search
for homogeneity and static interdependency restrictions. Moreover, the spike and slap prior used in
this chapter sets actual zeros while the selection prior of chapter 1 shrinks coefficients to zero. By
setting zeros on foreign lagged coefficients the prior used here is closely related to the frequentist
lasso approach introduced in chapter 2.
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high relevance prior is given by

Opi = QX Omyy oy

The « is set to 0.2 or 0.4. The detailed prior choices are given in 3.D. This prior states
a tight relationship between the proxy and the SVAR model. The posterior equals the
prior as the prior is not updated by the data. We also try a less informative prior and
use an inverse Gamma distribution for o, ;, 0,; ~ ZG(s;, S,;). The parameter s; is the

degrees of freedom parameter and S, ; the centering coefficient.'?

3.5 Data

3.5.1 Proxy Series

For the identification with external instruments we use for the US the shock series
constructed by Gertler and Karadi (2015). The proxy series for the UK is taken from
Gerko and Rey (2017) and for the EA from Rogers et al. (2014, 2017). The proxy series
are plotted in figure 3.2. They cover different time episodes. All three proxies capture
the periods of conventional and unconventional monetary policy.

Gertler and Karadi (2015) construct the proxy series with changes in the three month
ahead federal funds futures on FOMC dates between January 1990 and June 2012.
They measure the price differences in a 30 minutes window around policy announce-
ments, which carry the overwhelming amount of new information on monetary policy
in the US, as argued already above. However, policy announcements also include in-
formation on macroeconomic expectations in the Fed. Thus, policy announcements
provide two dimensions of information to market participants, which materializes in a
mixture of monetary policy shocks and what has been called “central bank informa-
tion shocks” in some of the literature (Nakamura and Steinsson, ming; Jarocinski and
Karadi, 2017). In our analysis, as in the large majority of the literature, we are not
able to disentangle these two shocks. However, given the shock series in Figure 3.2, we
can at least hypothesize on the relative strength of the latter shock: the Fed increased
the amount of information contained in the policy announcements (forward guidance)
over time, taking a large step forward during the recent period of interest rates at the
zero lower bound. During the same period, the shocks should be largely driven by
central bank information, as the zero lower bound was not expected to end soon and
thus effectively anchoring futures at zero as well. As can be seen, these shocks are

quite small during this period, compared to the larger shocks earlier in the sample.

12The posterior distributions are given in 3.A.
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Figure 3.2: Monetary policy surprise series
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Note: US monetary policy surprise series of Gertler and Karadi (2015), UK series of Gerko and Rey
(2017), EA series of Rogers et al. (2017).

Moreover, we can savely argue that central bank information shocks are most likely
smaller in the earlier part of the sample than during the period at the zero lower bound,
as a lower amount of information should also lead to smaller shocks. Another critique
raised by Miranda-Agrippino (2016) states that the proxy series may be predictable
both by publicly available financial market variables and private central bank forecasts.
Although the differences between “raw” proxies and their unpredictable component are
not large, the former may result in sometimes counterintuitive impulse-response func-
tions. However, she notes that this problem can be accounted for in two ways. First,
we could use the unexplained part of the proxy as an instrument instead of the “raw”
proxy. Second, we could account for the publicly available information in the VAR
model directly by including a risk variable like the excess bond premium in the US or
comparable measures in the UK and Eurozone, see also Caldara and Herbst (2016) for
a longer discussion of this issue.

Gerko and Rey (2017) use three months short-sterling futures for the UK between

January 2000 and January 2015. They construct the price changes in a window ten
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minutes before to twenty minutes after the monetary policy announcement. Other
than in the US, the timing structure of monetary policy actions of the BoE allows
to disentangle the effect of target rate announcements and central bank information
about the future policy actions or future economic developments. Since the BoE re-
leases minutes of meetings and inflation reports on different dates than short press
announcements only containing the actual interest rate decision, the proxies can be
constructed separately for the two policy actions. As Gerko and Rey (2017) we use
the proxy constructed around minutes and inflation reports. Rate announcements
release information about changes in the policy rate and asset purchases. During the
recent period of constant low interest rates the rate announcements carry little informa-
tion about the monetary policy. The proxy constructed around minutes and inflation
reports, however, is informative about monetary policy actions since it reveals infor-
mation about forward guidance. In contrast, since the federal funds futures of the US
capture information about rate changes but also due to the timing information about
the central bank’s view of the economy, the constructed proxy aggregates information
about rate announcements and forward guidance. Thus, the proxy is also informative
for the zero-lower bound period.'?

For the EA instrument, Rogers et al. (2017) use the spread between Italian and Ger-
man 10-year government bond yields as the external instrument following Rogers et al.
(2014). Rogers et al. (2014) argue that taking the spread between Italian and German
yields is done to account for the fact that the unconventional monetary policy of the
ECB was aimed at reducing the intra-European yields rather than affecting German
yields. The changes are constructed in a fifteen minutes before and one hour forty-
five minutes after window around policy announcements for August 2007 to December
2015. In months where no policy announcement takes place the price change is set to
zero, while for more than one announcement per month the price changes are summed
up.

By analyzing both conventional and unconventional monetary policy in a linear
model we assume no structural changes in the monetary policy transmission. As argued
above, while the changes of future government bond rates are mainly driven by rate
announcements during conventional monetary policy periods, futures react mainly to
forward guidance measures during unconventional monetary policy periods. Although
the magnitude of the composition of the monetary policy shocks changes during the
periods, the shocks always capture announcement effects due to new information on

monetary policy and on macroeconomic expectations of the central banks. We fol-

13See also the discussion in Gerko and Rey (2017) about the information content of rate announcements
and minutes and inflation reports.
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Figure 3.3: Cross-correlations of monetary policy surprise series
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Note: Cross-correlation functions for US monetary policy surprise series of Gertler and Karadi
(2015), UK series of Gerko and Rey (2017), and EA series of Rogers et al. (2017). The lag values on
the x-axis show the cross-correlation between one proxy at ¢ and the second proxy at t + lag. The

dotted lines depict the critical values at the 5% level.

low recent papers such as Gertler and Karadi (2015), Miranda-Agrippino (2016), and
Cesa-Bianchi et al. (2016) by analyzing conventional and conventional monetary policy
jointly in a linear model.

The exogenous variables we use as proxies of our three structural shocks should en-
sure that the monetary policy shocks in the US, UK, and EA are orthogonal to each
other, both contemporaneously and intertemporally. Due to the linear and univariate
relationship between proxy and shock, a necessary although not sufficient condition
for this is that these properties also hold for the proxies. The contemporaneous cor-
relations between the proxy series is negligible, for the proxies of US and UK -0.0009,
US and EA 0.0097, EA to UK 0.0902. Figure 3.3 shows the intertemporal correlations
between the proxy series. The graph on the upper left depicts the cross-correlation
function for twelve leads and lags of the US and UK monetary policy proxies. The
cross-correlation function, CCF(mys, myk), gives the correlation between miyg ik
and myg, for k = —12,...,0,...12. The value of the cross-correlation function at lag

zero shows the contemporaneous correlation. The graph on the upper right shows the
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Table 3.1: Model specifications: Individual country VAR models

VAR data

proxy data

variables included

Individual country VAR models

(1) Jan 1973 to Jan 1990 to US 1-Y rate, US CPI, US IP, US UN, US EBP,
June 2017 June 2012 US Dow Jones Index, US 10-Y rate, US prime
rate banks
(2) Jan 1982 to July 1997to UK 5-Y rate, UK CPI, UK IP, UK UN, UK
Mar 2017 Jan 2015 mortgage spread, UK FT index, UK 10-Y rate,
UK prime lending rate
(3) Jan 2000 to Oct 2007 to Italian 5-Y rate, EA CPI, EA IP, EA UN, EA
Oct 2017 Dec 2015 mortgage spread, EA Euro share index, EA 10-Y

yield, EA loans to non financial corporations

Individual country VAR models with exchange rates

(4) Jan 1973 to Jan 1990 to US 1-Y rate, US CPI, US IP, US UN, US EBP,
June 2017 June 2012 US Dow Jones Index, US 10-Y rate, US prime
rate banks, exchange rates US to UK and US to
EU
(5) Jan 1982 to July 1997to UK 5-Y rate, UK CPI, UK IP, UK UN, UK
Mar 2017 Jan 2015 mortgage spread, UK FT index, UK 10-Y rate,
UK prime lending rate, exchange rates US to UK
and EU to UK
(6) Jan 2000 to Oct 2007 to Italian 5-Y rate, EA CPI, EA IP, EA UN, EA
Oct 2017 Dec 2015 mortgage spread, EA Euro share index, EA 10-

Y yield, EA loans to non financial corporations,
exchange rates US to EU and EU to UK

cross-correlation function for the US and EA and the bottom graph for the UK and
EA. All plots provide no evidence for cross-correlation among the proxy series, con-
temporaneously and for all leads and lags. One exception is the correlation between
the US proxy at ¢t + 9 and the UK proxy at ¢ which lies outside the 95% confidence
interval. However, given a total of 75 tested correlations, we should expect a larger
number of tests which fail to reject. There would also be no economic explanation why

there should be a negative correlation with a nine months lag.

3.5.2 Variables in the VAR Model

We empirically investigate monetary policy spillovers in nine different model speci-
fications. A summary of the individual country VAR models and models including
exchange rates is given in table 3.1 and of the three-country VAR models in table 3.2.
The first three specifications are individual country models including only variables

of one country. We include eight country-specific variables in the single-country VAR
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Table 3.2: Model specifications: Three-country VAR models

VAR data proxy data variables included

Three-country VAR models

(7) Jan 1991 to Jan 1990 to US 1-Y rate, US CPI, US IP, US EBP, US Dow
June 2017 June 2012 Jones Index, US 10-Y rate, exchange rates US
to UK and US to EU, UK CPI, UK IP, EA CPI,
EA TP
(8) Jan 1991 to July 1997to UK 5-Y rate, UK CPI, UK IP, UK mortgage
Mar 2017 Jan 2015 spread, UK FT index, UK 10-Y rate, exchange
rates US to UK and EU to UK, US CPI, US IP,
EA CPI, EA TP
(9) Jan 2000 to Oct 2007 to Italian 5-Y rate, EA CPI, EA IP, EA mortgage
Oct 2017 Dec 2015 spread, EA Euro share index, EA 10-Y yield,
exchange rates US to EU and EU to UK, US
CPI, US IP, UK CPI, UK IP

models: monetary policy indicator, log consumer price index, log industrial production,
unemployment rate, credit spread, log stock price index, a long term interest rate, and
a lending rate, all measured at monthly frequency. Model (1) includes the variables
for the US. The model is augmented with the US proxy to identify the US monetary
policy shock. The single-country VAR model for the US is estimated with data from
January 1973 to June 2017 for the variables included in the VAR model and proxy
data from January 1990 to June 2012. Model (2) is the individual country model for
the UK including the UK variables and identifies the UK monetary policy shock. The
single-country VAR model for the UK uses data from January 1982 to March 2017 and
proxy data from July 1997 to January 2015. To analyze spillovers from the EA mone-
tary policy shock to EA variables, model (3) is used in which EA variables are included
and the EA monetary policy shock is identified. The EA model is based on data from
January 2000 to October 2017 and proxy data from October 2007 to December 2015.

Models (4), (5), and (6) additionally include exchange rates. Model (4) adds to the
variables included in model (1) exchange rates from the Euro and British pound to the
US dollar and covers the same sample period as model (1). Model (5) extends model
(2) by including exchange rates from the Euro and US dollar to the British pound for
the same time period as in model (2). Model (5) includes exchange rates with respect
to the Euro and the variables of model (3) for the same period as in model (3).

The three-country VAR models (7), (8), and (9) include variables for all countries
jointly. Model (7) is augmented with the US proxy and thus the US monetary policy
shock is identified. The model includes twelve variables. UK and EA CPI and IP
are added to six US variables and the exchange rates with respect to the US dollar.
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The data range from January 1991 to June 2017 (proxy data from January 1991 to
June 2012). Model (8) is the UK version of model (7). That is, the UK monetary
policy shock is identified with the UK proxy, six UK variables, the exchange rates to
the British pound and US and EA CPI and IP are included. The data range from
January 1991 to March 2017 (proxy from July 1997 to January 2015). Model (9) is the
multi-country model where the EA monetary policy shock is identified. It adds to six
EA variables the exchange rates to the Euro and US and UK CPI and IP. Data cover
the period from January 2000 to October 2017 (proxy from October 2007 to December
2015). The data coverage for all models is determined by the availability of the data
and the longest possible sample size is chosen.

Besides the log consumer price index (CPI) as a measure for prices and the industrial
production (IP) variable as a measure of real activity, the unemployment rate (UN) is
also included in the models. A credit spread variable is added to account for financial
channels, as this improves the estimation of the model (Gertler and Karadi, 2015; Cal-
dara and Herbst, 2016; Miranda-Agrippino, 2016). The credit spread variable is the
excess bond premium for the US (US EBP), and mortgage spreads for the UK and EA
(i.e., the differences between the mortgage rate and bank rate or three month rate, re-
spectively Euribor). Stock prices capture financial spillover channels. The stock price
index is the Dow Jones industrial share price index for the US (US DOW JONES IN-
DEX), the Financial Times Stock Exchange index for the UK (UK L FT INDEX), and
the Datastream Euro share price index for the EA (EA EURO SHARE INEX). Stock
prices may increase due to the portfolio balance channel or be negatively affected by the
signaling channel. Long term government bonds and the lending rate as a measure of
financial conditions capture financial spillovers as well. The long term rates are the US
10-year treasury rate (US 10-Y RATE), the 10-year British government securities (UK
10-Y RATE), and the EA 10-year government bond yield (EA 10-YEAR YIELD). The
lending rates are the US prime rate charged by banks (US PRIME RATE BANKS),
the UK major banks prime lending rate (UK PRIME LENDING RATE), and the EA
loans to non financial cooperations (EA LOANS NON FINL CORPS). We add ex-
change rates to capture the exchange rate channel for monetary policy transmission.

The monetary policy indicator is the 1-year treasury yield for the US (US 1-Y RATE),
the 5-year yield from British government securities for the UK (UK 5-Y RATE), and
the 5-year Italian government bond yield for the EA (ITALIAN 5-Y RATE).!* By tak-
ing a long term government bond rate as the monetary policy indicator in the structural

VAR model instead of short term interest rates such as the federal funds rate, the model

14Details on the data are given in 3.C.
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Figure 3.4: Model (1): Responses of US variables to a contractionary US monetary
policy shock
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Note: US monetary policy surprise series of Gertler and Karadi (2015). Responses of US variables to
a 25 basis point increase in the US treasury l-year rate. A sign restriction is set on the response of
the excess bond premium on the monetary policy shock. The response it set to be positive. The gray
shaded areas is the 90% Bayesian credible set, the light gray shaded are the 68%. VAR model data
from Jan 1973 to June 2017. Proxy data from Jan 1990 to June 2012.

can capture unconventional monetary policy action. Impulse responses are normalized

to a 25 basis point increase in the monetary policy variable.

3.6 Results

3.6.1 Domestic Monetary Policy Transmission

Figure 3.4, 3.5, and 3.6 show the dynamic responses of domestic variables to a domestic
contractionary monetary policy shock for the US, UK, and EA in the individual coun-
try models (1), (2), and (3). The impulse response functions are based on models with
tight priors for the standard deviation of the measurement error in the proxy equation,

oy,i- Results based on the less informative inverse Gamma prior are given in 3.F.2. All

105



Chapter 3 International Monetary Policy Transmission

models include four lags and a constant.'®

We find similar reactions of stock prices to domestic monetary policy shocks for the
US, UK, and EA. A monetary tightening causes a drop of the country’s stock price
index. Furthermore, the monetary policy shocks of the US and UK increase the 10-year
rate of the respective country. In general, monetary policy shocks identified around Fed
and BoE announcements cause more pronounced responses of domestic variables than
the shock by the ECB. This finding might be partly explained by the identification
strategy and partly by analyzing the aggregated effects on the euro area and not on
individual euro area countries.

The 25 basis point increase in the US 1-year treasury yield leads to a lagged increase
in the unemployment rate as shown in figure 3.4 (model 1). CPI and industrial pro-
duction do not react significantly. The monetary tightening causes a positive reaction
of the excess bond premium. This is in line with the findings of Gertler and Karadi
(2015) and Gerko and Rey (2017) who show an increase in the excess bond premium on
impact and in line with the sign restriction set. The Dow Jones price index decreases
on impact as expected for the signaling channel. The monetary tightening raises the
ten year rate by around 20 basis points. In reaction to the monetary tightening lend-
ing rates increase comparable to the reaction of the 1-year rate impairing the financial
conditions.

A monetary tightening in the UK has no clearly significant impact on CPI and on
the unemployment rate and a modest negative impact on IP as shown in figure 3.5
(model 2).'% The 25 basis point increase in the 5-year yield from British government
securities leads to a modest increase of the mortgage spread on impact, which is in line
with previous findings of Gerko and Rey (2017) and Cesa-Bianchi et al. (2016). As in
the US, the stock price index declines significantly. The monetary tightening causes
an increase of the 10-year rate with a peak impact of just below 20 basis points. The
lending rate does not react significantly.

The US and UK model include an additional identifying restriction. A sign restric-

tion is set on the responses of the US excess bond premium and the UK mortgage

15The Metropolis-within-Gibbs algorithm is based on 10,000 draws with a burn-in phase of 1000 draws.

16Figure 3.23 in 3.F.4 shows the results for the UK monetary policy shock using changes around
rate announcements as the proxy series constructed by Gerko and Rey (2017) instead of the proxy
constructed around minutes and inflation reports. The responses are not significant, in particular
also the response of the 5-year rate. The findings support the view that changes around rate
announcements carry only limited information about the monetary policy actions during the zero
lower bound period. Figure 3.22 presents the results for the UK monetary policy shock of Rogers
et al. (2017). The instrument is constructed as the changes in long gilt futures yield around meetings
of the Monetary Policy Committee and asset purchase announcements. Inflation reports and the
detailed minutes are rarely included. Thus, the results might also be explained by the construction
of the proxy not carrying enough information regarding the monetary policy actions of the BoE.
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Figure 3.5: Model (2): Responses of UK variables to a contractionary UK monetary
policy shock
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Note: UK monetary policy surprise series of Gerko and Rey (2017). Responses of UK variables to
a 25 basis point increase in the 5-year yield from British government securities. A sign restriction is
set on the response of the mortgage spread on the monetary policy shock. The response it set to be
positive. The gray shaded areas is the 90% Bayesian credible set, the light gray shaded are the 68%.
VAR model data from Jan 1982 to March 2017. Proxy data from July 1997 to Jan 2015.

spread to the monetary policy shock. The responses are restricted to be positive. The
sign restriction is in line with the evidence of Gertler and Karadi (2015) and Gerko and
Rey (2017) who find positive reactions of the excess bond premium and the mortgage
spread, respectively. The impulse response functions without the sign restrictions are
shown in 3.F.1. Both spreads respond negatively to the monetary policy shock causing
a price puzzle in the case of the US and a positive reaction of UK industrial production
and the unemployment rate.

A 25 basis points increase in the Italian 5-year rate causes a significant modest drop
in the EA stock price index on impact as shown in figure 3.6 (model 3). The unem-
ployment rate rises significantly after around five months while CPI and IP do not
react significantly. The EA mortgage spread increases modestly with the raise getting

barely significant after around seven months. The 10-year rate increases on impact,
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Figure 3.6: Model (3): Responses of EA variables to a contractionary EA monetary
policy shock
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Note: EA monetary policy surprise series of Rogers et al. (2017). Responses of EA variables to a 25
basis point increase in the Italian gross yield of benchmark 5-year rate. The gray shaded areas is the
90% Bayesian credible set, the light gray shaded are the 68%. VAR model data from Jan 2000 to Oct
2017. Proxy data from Oct 2007 to Dec 2015.

albeit insignificantly. Loans to non financial corporations also react insignificantly.
The insignificant effects could be mainly driven by the identification strategy. An issue
with the EA model is that a particularly tight prior has to be set such that the identi-
fied monetary policy shock leads to a response of the Italian 5-year rate without large
credible sets. The proxy for the EA seems to carry less information to identify the
monetary policy shock compared to the other two proxies and thus requires a tighter
prior on the standard deviation of the measurement error in the instrument equation,
which facilitates estimation of the linear relationship between proxy and the monetary
policy shock.'” Furthermore, it may be particularly difficult to find effects on the ag-

gregated EA level as the single EA countries might react in various ways to a monetary

17The prior specifications are explained in 3.D. Additional results for the EA 2-year government bond
rate as the policy indicator are in 3.F.3. The proxy seems to carry insufficient information to identify
a monetary policy shock with the EA 2-year government bond rate as the policy indicator.
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Figure 3.7: Model (4): Responses of exchange rates and US variables to a contrac-
tionary US monetary policy shock
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Note: US monetary policy surprise series of Gertler and Karadi (2015). Responses to a 25 basis point
increase in the US treasury l-year rate. A sign restriction is set on the response of the mortgage
spread on the monetary policy shock. The response it set to be positive. The gray shaded areas is
the 90% Bayesian credible set, the light gray shaded are the 68%. VAR model data from Jan 1973 to
June 2017. Proxy data from Jan 1990 to June 2012.

policy shock of the ECB. Some recent papers provide evidence for heterogeneous effects
across euro area countries of unconventional monetary policy shocks of the ECB on, for
example, government bond yields, industrial production and CPI (see e.g., Ciccarelli
et al., 2013; Georgiadis, 2015; Hachula et al., 2016; Boeckx et al., 2017; Burriel and
Galesi, 2018).

3.6.2 International Monetary Policy Transmission

Figures 3.7, 3.8, and 3.9 show the impulse responses of exchange rates and domestic
variables to monetary policy shocks for the US, UK, and EA in models (4), (5), and
(6). Figure 3.10 gives the reactions of US, UK, and EA variables to a US monetary
policy shock in model (7). Figures 3.11 and 3.12 show the impulse responses of foreign
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Figure 3.8: Model (5): Responses of exchange rates and UK variables to a contrac-
tionary UK monetary policy shock
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Note: UK monetary policy surprise series of Gerko and Rey (2017). Responses to a 25 basis point
increase in the 5-year yield from British government securities. A sign restriction is set on the response
of the mortgage spread on the monetary policy shock. The response it set to be positive. The gray
shaded areas is the 90% Bayesian credible set, the light gray shaded are the 68%. VAR model data
from Jan 1982 to March 2017. Proxy data from July 1997 to Jan 2015.

variables to UK and EA monetary policy shocks in models (8) and (9). The models
are based on tight priors for the standard deviation of the measurement error in the
proxy equation.

Our results provide some evidence for international spillovers via the exchange rate
channel. The cross-border transmission of monetary policy shocks is asymmetric across
the US, UK, and EA. A US monetary policy shock causes an appreciation of the US
dollar with regard to the British pound and Euro. The British pound appreciates with
regard to the Euro but not to the US dollar in reaction to a UK monetary policy shock.
A EA monetary policy shock leads to no significant reaction of the exchange rates. We
find no evidence of cross-border macroeconomic effects.

A monetary tightening in the US is transmitted to the EA and UK by the exchange

rate channel. Exchange rates drop modestly on impact as shown in figure 3.7 (model 4).
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Figure 3.9: Model (6): Responses of exchange rates and EA variables to a contrac-
tionary EA monetary policy shock

EA 2-Y RATE

EA EURO SHARE INDEX

L L L L L L L L L L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 [ 5 10 15 20 25 30 35 40 45 50

EA 10-YEAR Yield

. I I I I I I I I I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

EA LOANS NON FINL CORPS

I I I I I L i I L
"o 5 10 15 20 25 30 35 40 45 50

EXCHANGE RATE US to EU

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

EXCHANGE RATE EU to UK

Note: EA monetary policy surprise series of Rogers et al. (2017). Responses to a 25 basis point increase
in the Italian gross yield of benchmark 5-year rate. The gray shaded areas is the 90% Bayesian credible
set, the light gray shaded are the 68%. VAR model data from Jan 2000 to Oct 2017. Proxy data from
Oct 2007 to Dec 2015.

The dollar appreciates with regard to the British pound and the Euro. The response
gets insignificant for both exchange rates after ten months. Rogers et al. (2017) show
that as a reaction to an expansionary US monetary policy shock the dollar depreciates
with respect to foreign currencies. Gerko and Rey (2017) find an appreciation effect of
the US dollar to the British pound as response to a monetary tightening.

A UK monetary policy shock spills-over to the EA via exchange rates. A 25 basis
point increase in the UK 5-year yield increases the exchange rate of the Euro to the
British pound as shown in figure 3.8 (model 5). The British pound appreciates with
regard to the Euro. The exchange rate of the US dollar to the British pound raises
on impact. The response is only statistically significant at the 68% confidence bands.
Gerko and Rey (2017) also find no significant appreciation effect of the British pound
with regard to the US dollar for a UK monetary policy shock.

A monetary policy shock of the ECB causes no significant exchange rate reaction as

111



Chapter 3 International Monetary Policy Transmission

Figure 3.10: Model (7): Responses of US, UK, and EA variables to a contractionary
US monetary policy shock
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US monetary policy surprise series of Gertler and Karadi (2015). Responses of US, UK, and EA
variables to a 25 basis point increase in the US treasury 1-year rate. A sign restriction is set on the
response of the mortgage spread on the monetary policy shock. The response it set to be positive.
The gray shaded areas is the 90% Bayesian credible set, the light gray shaded are the 68%. VAR
model data from Jan 1991 to June 2017. Proxy data from Jan 1991 to June 2012.

shown in figure 3.9 (model 6). As explained above, this finding can be driven by the
identification strategy or be explained by the aggregated EA level. However, adding
the exchange rates to the single country VAR models leads to mainly insignificant re-
actions of the domestic variables in all three models.

We find no evidence of macroeconomic spillovers across the US, UK, and EA.'® Fig-
ure 3.10 shows the responses of US, UK, and EA variables to a contractionary US
monetary policy shock (model 7). Foreign consumer prices and industrial production
do not respond significantly. In contrast to the previous findings, the US monetary
policy shock does not cause a significant reaction of US variables and exchange rates.

Confidence bands are considerably larger than in the single country VAR models. Fig-

8Further results for three-country VAR models are given in 3.F.5.
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Figure 3.11: Model (8): Responses of US, UK, and EA variables to a contractionary
UK monetary policy shock
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Note: UK monetary policy surprise series of Gerko and Rey (2017). Responses of US, UK, and EA
variables to a 25 basis point increase in the 5-year yield from British government securities. A sign
restriction is set on the response of the mortgage spread on the monetary policy shock. The response
it set to be positive. The gray shaded ares is the 90% Bayesian credible set, the light gray shaded are
the 68%. VAR data from Jan 1991 to March 2017. Proxy data from July 1997 to Jan 2015.

ure 3.11 gives the responses of US, UK, and EA variables to a UK monetary policy
shock (model 8). Figure 3.12 shows the reactions of US, UK, and EA variables to a
EA monetary policy shock (model 9). Again, no evidence for international spillovers
is found. Adding more variables does not change the insignificance of the results. The

insignificant reactions are further discussed in the next section 3.6.3.

3.6.3 Discussion of the Results

Regarding our results three issues have to be taken into account. First, to identify the
monetary policy shocks, high relevance priors are necessary. Otherwise, the proxies
seem to carry insufficient information for identification. Second, sample sizes for the

proxy data and the data of the VAR model differ across VAR models and also across
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Figure 3.12: Model (9): Responses of US, UK, and EA variables to a contractionary
EA monetary policy shock
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Note: EA monetary policy surprise series of Rogers et al. (2017). Respounses of US, UK, and EA
variables to a 25 basis point increase in the Italian gross yield of benchmark 5-year rate. The gray
shaded ares is the 90% Bayesian credible set, the light gray shaded are the 68%. VAR data from Jan
2000 to Oct 2017. Proxy data from Oct 2007 to Dec 2015.

single country models and the three-country models. Third, the chosen selection prior
for the three-country model seems to only partly help to counter the high estimation
uncertainty due to the relatively large number of variables included. These aspects
might be the main reasons for finding insignificant results.

High relevance priors are needed to identify monetary policy shocks. The prior
on the standard deviation of the measurement error of the proxy equation is crucial
as it determines the relevance of the prior. This prior states a tight relation and
thus that the prior is very informative about the structural shock. The prior set is
0y =02 X 0o, for the US and UK proxy and oy, pa = 0.4 X Oy, for the
EA proxy. In addition, while the prior for b; is set to A/(0,0.01) for the US and UK,
the prior is set to N(0.2,0.0001) for the EA.

The relevance of the proxies is measured by b7/(b7 + o7;) (see also Caldara and
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Table 3.3: Relevance measure based on posteriors for b, and o,,; with different priors

single country VAR percentiles of relevance measure

prior on o, ; 0.05 0.16 0.50 0.86 0.95
(1) US high relevance 019 0.64 077 081 0.84
(1) US high relevance with signrest 0.28 042  0.57 0.70  0.75
(1) US inverse Gamma 0.00 0.00 0.02 0.05 0.08
(2) UK high relevance 0.30 038 046 053 0.57
(2) UK high relevance with signrest 0.47  0.54 0.63 0.69 0.72
(2) UK inverse Gamma 0.00 0.00 0.02 0.06 0.08
(3) EA high relevance 097 097 097 097 097
(3) EA inverse Gamma 0.02 0.03 0.04 006 0.07

Note: The relevance of the proxies is measured by b7 /(b7 + o7 ;). The measure is given for different

percentiles of the posteriors of b; and o,,;. The high relevance prior is 0, ; = 0.2 X oy, , ., for the

T

US and UK proxy and oy, pa = 0.4 X Oy, ,, .5 for the EA proxy.

Herbst, 2016). That is, given equation (3.5) the relevance measure is the squared cor-
relation between m;, and ey p;;. This value is comparable to the reliability indicator
of the proxy of Mertens and Ravn (2013). The larger the relevance measure, the more
informative is the proxy for the identification. Table 3.3 shows for the single country
VAR models (1), (2), and (3) the relevance measure for the high relevance prior and
the inverse Gamma prior on o, ; calculated with the posterior distributions for b; and
0y,i- In mean, the relevance measure is 0.77 for high relevance prior for the US, 0.46 for
the UK, and 0.97 for the EA. These values are considerably higher than the relevance
values for the inverse Gamma prior. Here, the measure ranges in mean between 0.02
and 0.04. Thus, without the high relevance priors, the proxies carry very low informa-
tion for the identification of the monetary policy shocks. Including the sign restriction
increases the relevance for the UK. 3.E gives the posterior distributions of b; for the
high relevance prior and the inverse Gamma prior on o, ;.

However, the high relevance prior for the US and UK seem to cause puzzling reac-
tion contradicting economic theory as shown in 3.F.1. That is why, an additional sign
restriction is set on the US excess bond premium or the UK mortgage spread to absorb
the effects of the high relevance prior.

Furthermore, the models are based on different time samples. In particular, the
proxy data for the EA cover a considerably shorter period than the US and UK prox-
ies. The data range for the EA variables is also shorter than for the other two countries.
This has to be taken into account when comparing results across countries.

Moreover, by including several variables in the three-country VAR models the es-
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timation uncertainty increases. The selection prior on the reduced form coefficients
is chosen to counter the higher uncertainty by reducing the dimension of the model
through setting zero restrictions. However, the insignificant results for international
monetary policy transmission could be an indication that the high estimation uncer-
tainty cannot be offset by the selection prior in the form employed in this paper. It
is important to note that this fact is not changed by the information on reduced-form
coefficients coming from our proxies. Even if we shut down this channel by accepting
every draw from the normal-Wishart posterior distribution, the impulse-responses in
the multi-country model remain insignificant. An alternative explanation could be that
the multi-country VAR model allows to correctly model a high number of channels for
the transmission of monetary policy. If these channels counteract and partly cancel
each other, the overall effect of monetary policy shocks may indeed be insignificant.
However, this explanation is unlikely, as at least some of the channels should be visible
in a significant reaction of financial market variables even if aggregate macroeconomic

effects are insignificant.

3.7 Conclusions

In the context of highly interlinked financial and real markets the effects of cross-
border transmission of monetary policy are important to analyze. Unintended harmful
spillover effects and increased global instabilities may call for the need of policy coordi-
nation. The start of the zero lower bound period and the implementation of unconven-
tional monetary policy measures of central banks rise the question of the international
effects of unconventional monetary policy. While recent literature provides evidence
for financial spillover, the macroeconomic effects are less clear.

We analyze empirically the international transmission of monetary policy shocks of
the US, UK, and EA. We use a Bayesian proxy three-country structural vector au-
toregressive model. The model captures interdependencies across the economies as it
jointly models variables of all countries in one model. The three-country VAR model
allows us to trace the dynamic cross-border effects of monetary policy shocks. We
use external instruments constructed from high-frequency government bond futures to
identify the monetary policy shocks. With this identification strategy we avoid the
recursive identification scheme commonly employed in multi-country models, which is
questionable as there is no clear theoretical indication regarding the ordering of vari-
ables in panel VAR models.

Our findings provide no evidence of strong cross-border transmission of monetary

policy shocks. First, international spillovers from monetary policy shocks seem to have
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no substantial effect on macroeconomic variables globally. Second, there are some
asymmetries between the effects of the spillover of US monetary policy shocks and sur-
prises of the UK and EA. While a US monetary policy shock causes a modest reaction
of exchange rates to the British pound and Euro, the UK monetary policy shock affects
only the exchange rate to the Euro. A EA monetary policy shock does not spill-over
to exchange rates. Third, domestic monetary policy shocks lead to drops in domestic
stock prices for all three regions.

The insignificance of our results in the multi-country VAR model point to deficien-
cies in the estimation and shock identification of panel VAR models. It is not yet clear
which endogenous variables are necessary to correctly specify a multi-country VAR
model and how prior distributions (specifically, the selection prior and the prior distri-
bution for ¢, ;) need to be chosen to counter the estimation uncertainty arising from

parameter proliferation. This is an area for future research.
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Appendix

3.A Posterior Distributions

The posterior distributions of b; and o, ; are obtained by:

p(bi» Uu,z"yl:Ty, Vi t1m T s 3, Q) :p(bi)p(av,i)p(mi,tlm:Tm |y1:Ty7 ,3,Q, by, Uv,z‘)

Svi(si —2) }

_1 1 - _
Od/;,i;exp {_i(bi - bi)‘/ﬁl(bi - bz)}
S S (5. — 2
X 0, Leap {——SU’Z(SZ )} ,

20'1)71'

where

7 [/ —1 —1 /!

bi = Voi(Vy; boi + 0, imie; )
[/ —1 —1 / \—1
Vo= (Vi + 0, €ei16,)

Si = 8; + T

Svi = Svi(si —2) + (miy — biesr) (Mg — bieiyr)'.

Thus, the posterior distributions of b; is a normal distribution and for o,; an inverse
Gamma distribution given by b; ~ N (b;, ;) and o,; ~ ZG(5;,S,:). Note that the
distributions of b; and o, ; still depend on the reduced form parameters and 2 due to

€;.

3.B Estimation Algorithm

We estimate the Bayesian proxy three-country SVAR using a Metropolis-within-Gibbs

algorithm. The algorithm has the following steps at iteration iter:

old

V8"

ld pold
1. Draw reduced form parameters, ®, X|y1.z,, Miyy,,.1,, 27, 094, 0
a) Draw Y"ev

b) Draw rev
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c) If a < a, accept new draw and set ®¢" = "W and " = Y%, Otherwise

set Piter = @old apd Liter = 394 The probability « is given by

S p(mi,tlm:Tm |y1:Ty; @new) Enew’ Qnew’ b?ld, O.g{;i)p(znew)q(zolﬂznew) .
p(mi,tlm:Tm |y1:Ty; (I)old’ Eold’ Qold) b?ld’ O.old)p<20ld)q(2new|2()ld) 9

and a ~ U(0, 1).

. - ld 1old sold
2. Draw the rotation matrix Q|y1.7,, M ,,,.:1,,, ¢, b9, 3¢

a) Draw an independent standard normal matrix of dimension [G x G] and

take the QR-decomposition of this matrix to get 2.

b) If a < a, accept new draw and set Q" = Qe Otherwise set Q%" = !,

The probability « is given by

A p(mi,hm:Tm ‘yl:Ty; (I)iter, Eiter’ Qnew’ b?ld’ O.g{gl)p(znew)q(zolﬂznew)
o (M, T, |y1:Ty’ Piter | Yiter (yold bgld’ Ug{;i)p(xold)q(z]new|zold) )

and a ~ U(0, 1).
3. Draw b; of bly1.r,, Miy,,,,, Q7,09 004 from N (bi, Vii).

it ld _old - a
4. Draw o i|y1.1,, Mty O, 070, 007 from ZG (5, Sy4)-

)

Step (2) updates € based on the ratio of the conditional likelihoods. We accept a new
draw of 2 with a higher probability if it leads to a closer scaled version of the structural
shock.

The algorithm allows the estimation based on different lengths of time series of y.7,,
and m;4,,. .7, The matrices ® and X are drawn based on longer time series, while the
update step in (1c) and the draws of €, b;, and ,,; can use a shorter sample determined
by the availability of the proxy data.

Furthermore, the algorithm easily allows for the inclusion of additional restrictions
such as sign or magnitude restrictions. These additional restrictions can be checked

for in step (2).
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3.C Data
Table 3.4: Variables of the United States
Variables Description and Source
US CPI US consumer price index, all items less
food and energy (seasonally adjusted
(SA), logarithm), Source: US Bureau of
Labor Statistics
US IP US industrial production index (SA, log-

US UNEMPLOYMENT RATE

US 1-Y RATE

US 10-Y RATE

US PRIME RATE BANKS

US EBP

US DOW JONES INDEX

EXCHANGE RATE US to EU

EXCHANGE RATE US to UK

arithm), Source: Federal Reserve

US unemployment rate (SA, logarithm),
Source: US Bureau of Labor Statistics

US Treasury yield adjusted to constant
maturity, 1 year, Source: Federal Reserve

US Treasury yield adjusted to con-
stant maturity, 10 year, Source: Federal
Reserve

US prime rate charged by banks
(monthly average), Source: Federal
Reserve
excess bond premium, Source: Federal
Reserve

Dow Jones industrial share price index
(SA, logarithm), Source: Reuters

exchange rate US dollar to 1 Euro,
Source: Datastream

exchange rate US dollar to 1 British
pound, Source: Datastream
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Table 3.5: Variables of the United Kingdom

Variables

Description and Source

UK CPI

UK IP

UK UNEMPLOYMENT RATE

UK 5-Y RATE

UK 10-Y RATE

UK PRIME LENDING RATE

UK MORTGAGE SPREAD

UK L FT INDEX

UK consumer price index all items (SA,
logarithm), Source: Main Economic In-
dicators, OECD

UK industrial production index (SA, log-
arithm), Source: ONS

UK unemployment rate (SA, logarithm),
Source: International Financial Statistics
(IMF)

yield from British government securi-

ties, 5 year nominal zero coupon, Source:
Bank of England

British government securities, 10 year
nominal zero coupon, Source: Bank of
England

UK major banks prime lending rate,
Source: Reuters

Variable rate mortgage spread over Bank
Rate, Source: A millennium of macroe-
conomic data for the UK, BoE

UK FT all share index (SA, logarithm),
Source: Reuters
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Table 3.6: Variables of the euro area

Variables Description and Source

EA CPI EA consumer price index, all items (SA,
logarithm), Source: European Central
Bank

EA IP EA industrial production index (SA, log-
arithm), Source: Eurostat

EA UNEMPLOYMENT RATE EA unemployment rate (SA, logarithm),
Source: European Central Bank

ITALIEN 5-Y RATE Italian gross yield of benchmark 5-year
BTP, Source: Bank of Italy

EA 2-Y RATE EA government bond yield, 2 year,
Source: European Central Bank

EA 10-YEAR Yield EA government bond yield, 10 year,
Source: European Central Bank

EA LOANS NON FINL CORPS EA loans to non financial corporations

over one million Euro, 1 to 5 years,
Source: European Central Bank

EA MORTGAGE SPREAD EA mortgage rate minus 3-month Euri-
bor, Source: European Central Bank

EA EURO SHARE INDEX EM Datastream Euro share price index
(SA, logarithm), Source: Datastream

EXCHANGE RATE EA to UK exchange rate Euro to 1 British pound,

Source: Datastream

3.D Prior Choices

The selection hyperparameter v in the selection prior for the reduced from coefficients
is drawn from a Bernoulli distribution with prior probability of 0.5. Thus, under the
prior setting a zero restriction or no zero restriction is equally likely. The parameter p of
the mixture distribution for ¥ is set to 0.9, d is set equal to the number of observations.
The overall tightness of the Minnesota prior is set to 0.2, the parameter scaling down
the variance for the coefficients of a distant lag to 3.5, the relative tightness of the
constant is set to 0.5, and the hyperparameter for the covariance between coefficients
is set to 0.5.

The prior for b; is set to N'(0,0.01) for the US and UK and AN(0.2,0.0001) for the
EA. The high relevance prior for o,; is 0,; = 0.2 X Omisy, 1 for the US and UK and
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0vi =04x0, , . forthe EA. The less informative prior for o, ; is an inverse gamma
vyt MM tq T v,

distribution with degrees of freedom 2 and mean 0.02.

3.E Relevance of the Proxies

Figure 3.13: Model (1): Posterior distributions of by¢ with different priors for o, s

1500 T T T T T 1500

1000

1000

500 [- 500 [-

(a) high relevance prior (b) high relevance prior and sign restriction

1500

1000

500 |-

(c) inverse Gamma prior
Note: The posterior distributions for bys with a tight prior for o, yg and with a loose prior for

ov,us. The model uses the US monetary policy surprise series of Gertler and Karadi (2015).
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Figure 3.14: Model (2): Posterior distributions of by with different priors for o, yx

700 700

600 |-

400 -

300

100 [

-0.2 -0.1 0

(a) high relevance prior (b) high relevance prior and sign restriction

700

500

(¢) inverse Gamma prior
Note: The posterior distributions for byx with a tight prior for o, yx and with a loose prior for

ou,uk- The model uses the UK monetary policy surprise series of Gerko and Rey (2017).
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Figure 3.15: Model (3): Posterior distributions of b4 with different priors for o, ga

800 T T T T 800

600 -

500 [-

400 -

300 [

200 [

100 [

I I I I I I I I
0 0.5 1 15 2 25 0.5 1 15 2

(a) high relevance prior (b) inverse Gamma prior
Note: The posterior distributions for bp4 with a tight prior for o, g4 and with a loose prior for

ov,E4. The model uses the EA monetary policy surprise series of Rogers et al. (2017).

3.F Additional Proxy VAR Results

3.F.1 Results with High Relevance Prior for US and UK without Addi-
tional Sign Restriction on Credit Spread Variable

3.F.1 shows the impulse response functions for the single country VAR models for the
US and UK with high relevance prior and without additional positive sign restrictions
on US EBP and UK mortgage spread. No sign restriction on the excess bond premium
leads to a price puzzle for the US. Figure 3.16 shows a significant positive reaction of
US CPI while the excess bond premium drops on impact. This response is insignificant.
The reaction of the other variables are comparable to the responses shown in figure
3.4. Without an additional sign restrictions some impulse responses of the UK model
contradict theoretical arguments. IP increases on impact and the unemployment rate
decreases, figure 3.17. The mortgage spread drops significantly. In contrast to figure

3.5 the stock price index raises on impact but the reaction is not significant.
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Figure 3.16: Responses of US variables to a contractionary US monetary policy shock

without sign restriction

US 1-Y RATE
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Note: US monetary policy surprise series of Gertler and Karadi (2015). Responses of US variables to
a 25 basis point increase in the US treasury 1-year rate. The gray shaded areas is the 90% Bayesian
credible set, the light gray shaded are the 68%. VAR data from Jan 1973 to June 2017. Proxy data

from Jan 1990 to June 2012.
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Figure 3.17: Responses of UK variables to a contractionary UK monetary policy shock
without sign restriction

UK 5-Y RATE UK MORTGAGE SPREAD

- L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

UK CPI UK L FT INDEX

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

UK 10-Y RATE

L L L L L L L L L ~ L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

UK UNEMPLOYMENT RATE SA UK PRIME LENDING RATE
2 4
0 t

-2

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Note: UK monetary policy surprise series of Gerko and Rey (2017). Respounses of UK variables to a
25 basis point increase in the 5-year yield from British government securities. The gray shaded areas
is the 90% Bayesian credible set, the light gray shaded are the 68%. VAR data from Jan 1982 to
March 2017. Proxy data from July 1997 to Jan 2015.

127



Chapter 3 International Monetary Policy Transmission

3.F.2 Results with Inverse Gamma Prior

3.F.2 shows the impulse response functions for the single country VAR models for the
US, UK and EA. The prior on the standard deviation of the measurement error, o, ;,
in the proxy equation is assumed to be inverse Gamma with degrees of freedom of
2 and centering coefficient 0.02. The distribution for the standard deviation of the
measurement error determines the tightness of the relationship of the proxy and the

SVAR. This prior specification is not very informative.

Figure 3.18: Responses of US variables to a contractionary US monetary policy shock

- inverse Gamma prior
US 1-Y RATE

» 7\ | 0
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Note: US monetary policy surprise series of Gertler and Karadi (2015). For the proxy equation a
loose prior is used for the standard deviation of the measurement error, o, ; ~ ZG. Responses of US
variables to a 25 basis point increase in the US treasury l-year rate. The gray shaded areas is the
90% Bayesian credible set, the light gray shaded are the 68%. VAR data from Jan 1973 to June 2017.
Proxy data from Jan 1990 to June 2012.
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Figure 3.19: Responses of UK variables to a contractionary UK monetary policy shock

- inverse Gamma prior
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Note: UK monetary policy surprise series of Gerko and Rey (2017). For the proxy equation a loose

prior is used for the standard deviation of the measurement error, o,; ~ ZG. Responses of UK

variables to a 25 basis point increase in the 5-year yield from British government securities. The gray
shaded areas is the 90% Bayesian credible set, the light gray shaded are the 68%. VAR data from Jan
1982 to March 2017. Proxy data from July 1997 to Jan 2015.
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Figure 3.20: Responses of EA variables to a contractionary EA monetary policy shock
- inverse Gamma prior
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Note: EA monetary policy surprise series of Rogers et al. (2017). For the proxy equation a loose prior
is used for the standard deviation of the measurement error, o, ; ~ ZG. Responses of EA variables to
a 25 basis point increase in the Italian gross yield of benchmark 5-year rate. The gray shaded areas
is the 90% Bayesian credible set, the light gray shaded are the 68%. VAR data from Jan 2000 to Oct
2017. Proxy data from Oct 2007 to Dec 2015.
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3.F.3 Results for the EA with Different Monetary Policy Indicator

Figure 3.21: Responses of EA variables to a contractionary EA monetary policy shock
- EA government bond 2-year rate as policy indicator
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Note: EA monetary policy surprise series of Rogers et al. (2017). Responses of EA variables to a 25
basis point increase in the EA government bond 2-year rate. The prior on the standard deviation of
the measurement error, o, ;, in the proxy equation is assumed to be inverse Gamma with degrees of
freedom of 2 and centering coefficient 0.02. The gray shaded areas is the 90% Bayesian credible set,
the light gray shaded are the 68%. VAR data from Jan 2000 to Oct 2017. Proxy data from Oct 2007
to Dec 2015.

3.F.4 Results for the UK with Different Proxies

Figure 3.22 gives the responses using the monetary policy surprise series of Rogers
et al. (2017). This proxy does not distinguish between rate and minutes and inflation
report announcements. Figure 3.23 uses the monetary policy surprises around rate
announcements of Gerko and Rey (2017) as proxy. Thus, it captures the changes in
the target rate but does not include the announcements additionally made in minutes

and inflation reports.
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Figure 3.22: Responses of UK variables to a contractionary UK monetary policy shock
- proxy of Rogers et al. (2017)
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Note: UK monetary policy surprise series of Rogers et al. (2017). Responses of UK variables to a 25
basis point increase in the 5-year yield from British government securities. The prior on the standard
deviation of the measurement error, o, ;, in the proxy equation is assumed to be inverse Gamma with
degrees of freedom of 2 and centering coefficient 0.02. The gray shaded areas is the 90% Bayesian
credible set, the light gray shaded are the 68%. VAR data from Jan 1982 to March 2017. Proxy data
from Oct 2008 to Dec 2015.
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Figure 3.23: Responses of UK variables to a contractionary UK monetary policy shock
- proxy around rate announcements of Gerko and Rey (2017)
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Note: UK monetary policy surprise series around rate announcements of Gerko and Rey (2017).

Responses of UK variables to a 25 basis point increase in the 5-year yield from British government

securities. The prior on the standard deviation of the measurement error, o, ;, in the proxy equation

is assumed to be inverse Gamma with degrees of freedom of 2 and centering coefficient 0.02. The gray
shaded areas is the 90% Bayesian credible set, the light gray shaded are the 68%. VAR data from Jan

1982 to March 2017. Proxy data from July 1997 to Jan 2015.
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3.F.5 Results for Three-Country VAR Models with Identified US Mone-

tary Policy Shock

Figure 3.24: Responses of foreign stock prices, exchange rates and US variables to a
contractionary US monetary policy shock
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Note: US monetary policy surprise series of Gertler and Karadi (2015). Responses of US, UK and

EA variables to a 25 basis point increase in the US treasury l-year rate. A sign restriction is set on

the response of the excess bond premium on the monetary policy shock. The response it set to be

positive. The gray shaded areas is the 90% Bayesian credible set, the light gray shaded are the 68%.
VAR model data from Jan 1973 to June 2017. Proxy data from Jan 1990 to June 2012.
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Figure 3.25: Responses of foreign interest rates, exchange rates and US variables to a
contractionary US monetary policy shock
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Note: US monetary policy surprise series of Gertler and Karadi (2015). Responses of US, UK and
EA variables to a 25 basis point increase in the US treasury 1-year rate. A sign restriction is set on
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