7 Literatur


29 Peeters P, Raynaud SD et al.: Fusion of TEL, the ETS-Variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood (1997) 90:2535-2540


Miyoshi H, Shimizu K et al. : t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA (1991) 88:10431-10434


43 Harbott J, Viehmann S et al.: Incidence of TEL/AML1 fusion gene analyzed consecu-
44 Loh ML, Rubnitz JE: TEL/AML1-positive pediatric leukemia: prognostic significance
45 Loncarevic IF, Roitzheim B et al.: Trisomy 21 is a recurrent secondary aberration in
childhood acute lymphoblastic leukemia with TEL/AML1 gene fusion. Genes Chromo-
somes Cancer (1999) 24:272-277
46 Rubnitz JE, Downing JR et al.: TEL gene rearrangement in acute lymphoblastic leu-
1157
47 Seeger K, Adams HP et al.: TEL-AML1 fusion transcript in relapsed childhood acute
48 Rubnitz JE, Behm FG et al.: Low frequency of TEL-AML1 in relapsed acute lympho-
blastic leukemia supports a favorable prognosis for this genetic subgroup. Leukemia (1999) 13:19-21
49 Loh ML, Silverman LB et al.: Incidence of TEL/AML1 fusion in children with relapsed
50 Ramakers-van Woerden NL, Pieters R et al.: TEL/AML1 gene fusion is related to in
vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia.
51 Ford AM, Fasching R et al.: Origins of „late“ relapse in childhood acute lymphoblastic
52 Invitrogen BV, Groningen, Netherlands: Product Specification for pCR® 2.1-TOPO,
3908 nucleotides.
53 Satake N, Kobayashi H et al.: Minimal residual disease with TEL-AML1 fusion tran-
script in childhood acute lymphoblastic leukaemia with t(12;21). Br J Haematol (1997)
97:607-611
54 Shurtleff SA, Buijs A et al.: TEL/AML1 fusion resulting from a cryptic t(12;21) is the
most common genetic lesion in pediatric ALL and defines a subgroup of patients with an
55 Rubnitz JE, Pui C-H et al.: The role of TEL fusion genes in pediatric leukemias. Leu-


61 Hiebert SW, Sun W et al. : The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol (1996) 16:1349-1355


Uchida H, Downing JR et al. : Three distinct domains in TEL-AML1 are required for transcriptional repression of the IL-3 promotor. Oncogene (1999) 18:1015-1022


90 Beishuizen A, Verhoeven MJ et al.: Analysis of Tg and T-Cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: Implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood (1994) 83:2238-2247
91 Szczepanski T, Willemse MJ et al.: Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides im-


