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Abstract

Systems biology is an interdisciplinary field of research that combines mathe-
matics, computer science, and engineering in order to analyse biological pro-
cesses. It has become more and more important in the last two decades, in
particular because of successful applications for human health and biotech-
nology. It aims at simulating biological systems as mathematical models
to support time- and cost-intensive research in laboratories. To do so, re-
searchers create formalisms, algorithms, and techniques which can be widely
used. One technique to obtain data describing biological entities is genome
sequencing. Using modern high-throughput sequencing, increasing knowl-
edge is gained about genomes which can then be used in order to reconstruct
metabolic processes and networks of the organisms. Success does not come
for free and data gathered with modern techniques is often too large to be
analysed by hand. Therefore, methods which extract relevant information
from data are in great demand.

In this thesis, we introduce different methods which reduce given data in
metabolic networks in a meaningful way. We present a technique which
computes minimal metabolic subnetworks which are still able to satisfy pre-
defined functionalities. We also develop a method to compute minimum
sets of elementary flux modes which compose the network, where the size is
significantly reduced compared to the whole set of elementary flux modes.
Furthermore, we provide procedures that reduce the number of variables in
a given problem in order to accelerate (already existing) algorithms by us-
ing information given by the data. Moreover, we develop a novel procedure
to compute minimal cut sets on a projected network. This enables us to
compute minimal cut sets of larger cardinality than before and to analyse
larger networks. This projection of metabolic networks also gives rise to
other applications such as computing minimal metabolic behaviours.

Even though we apply and suit our methods to real metabolic systems,
this thesis is focused on the mathematical methods. In order to create and
prove the new techniques we make use of (mixed integer) linear optimisation,
polyhedral cones, linear algebra, and oriented matroids.






Contents

1 Introduction 1
1.1 Metabolic networks . . . . . . . .. . ... L. 4
1.2 Mathematics for metabolic networks . . . . . . ... ... .. 7

1.2.1 Linear programming . . . . . . .. ... ... ..... 7
1.2.2 Polyhedral cones . . . . . ... ... ... ... .... 8
1.2.3 Oriented matroids . . . . ... ... ... ....... 9
1.3 Structure of this thesis . . . . . . . ... .. ... ... ... 10

2 Basics 11
2.1 Notation . . . . . . .. .. o 11
2.2 Metabolic networks . . . . . . .. ... Lo 12

2.2.1 Elementary flux modes . . . . . . . ... ... ... .. 13
2.2.2  Minimal metabolic behaviours . . . .. ... .. ... 14
2.2.3 Minimal cutsets . . . .. ... .. Lo 15
224 Bounds . ... .. ... 18
2.3 Mathematical basics . . . . ... .. ... o oL 18
2.3.1 Polyhedra . . . .. .. ... ... oL 18
2.3.2 Linear Programming . . . . . . . .. ... ... .... 25

iii



Contents

v

2.3.3 Mixed integer linear programming . . . . .. .. ... 31
2.3.4 Numerical instability . . . . . ... ... ... .. ... 33
2.3.5 Oriented Matroids . . . .. .. .. ... ... ..... 36
2.4 Handling metabolic networks . . . . .. .. .. ... ... .. 44
Computing EFMs exploiting FCA 49
3.1 Shortest elementary lux modes . . . . . ... ... ... ... 50
3.1.1 Mixed integer linear program to compute the shortest
elementary flux modes . . . . . ... ... ... .... 50
3.1.2 Computational results . . . . ... ... ... ... .. 52
3.2 Furtherwork . . . .. ... ... ... .. o7
Reduction of Networks 59
4.1 Introduction. . . . .. ... .. ..o 59
4.2 Background . . . . ... ..o 59
4.3 Methods . . . . . . .. 63
4.3.1 Basic MILP to compute a minimum subnetwork . . . 63
4.3.2 Conlflicting functionalities . . . . . . .. .. ... ... 64
4.3.3 Computing all minimum subnetworks . . . . ... .. 66
4.3.4 Reducing the number of binary variables . . . . . . . . 67
4.4 Results and discussion . . . . . ... ..o 71
4.4.1 Comparison with NetworkReducer . . . ... ... .. 71
4.4.2 Comparison with FASTCORE . . ... ... ..... 72
4.4.3 Network reduction for genome-scale metabolic networks 73
4.4.4 Case study: Helicobacter pylori 26695 . . . . . . . .. 77
4.5 Conclusion . . . ... ... o 79



Contents

5 Cones, Matroids, Networks 81
5.1 Oriented fundamental circuits and reaction splitting . . . . . 82
5.2 Computing a basis and oriented fundamental circuits . . . . . 88
5.3 Different bases . . . . .. ... L L L 89
5.4 Conclusion . . .. .. .. 91

6 Finding MEMo 93
6.1 Introduction. . . . . . . . .. ... 94

6.1.1 Intuition. . ... ... ... .. L oL 94
6.1.2 Contributions . . . . . .. ... 0oL 96
6.2 ERs, EFMs,and MMBs . . . ... .. ... ... ....... 98
6.3 Extreme rays of pointed augmented flux cones are EFMs. . . 99
6.4 Splitting a minimum number of reversible reactions . . . . . . 100
6.5 MEMo: Minimum set of Elementary Modes . . . . . . .. .. 103
6.6 Computational results and discussion . . . . . .. .. ... .. 108
6.7 Related work . . . . . .. ... 113
6.7.1 Extreme pathways . . .. ... ... ... ....... 113
6.7.2 Minimal metabolic behaviours . . ... ... ... .. 114
6.7.3 Minimal generatingset. . . . . ... .. ... ... .. 114
6.74 Subsetsof EFMs . . . ... ... ... ......... 115
6.8 Conclusion and further work . . . . . ... ... ... .... 115

7 Projections of flux cones 117
7.1 Imntroduction . . . . .. .. .. ... ... L 118
7.2 Methods . . . . . . . ... 119

7.3
7.4

7.2.1 Computing minimal metabolic behaviours via projection119

7.2.2 Projection and contraction . . . . ... ... ... .. 124
Results and discussion . . . . . . . . ... ... 132
Conclusion . . . . . . . . . s 135



Contents

8 Computing iMCSs using the dual approach

8.1 The dual approach . . . . .. .. .. .. ... ...,
8.1.1 Dualnetwork . . ... ... ... ... ...
82 Results. . . . ...
8.2.1 Projection . . . . ... ... oo
8.2.2 Computing shortest MCSs . . . . . . ... ......
8.2.3 Computing MCSs including a knock-out reaction . . .

8.3 Conclusion . . . . . . . ...

9 Conclusion

Bibliography

Notation

Index

10 Appendix

10.1 Appendix for RedNet . . . . . ... ... ... ... ....
10.1.1 Comparison with NetworkReducer . . . . ... . ..
10.1.2 Comparison with FASTCORE . . ... .. ... ..

10.1.3 New experiments . . . . . . . . .. . ... ... ...

10.2 Appendix for Computing iMCSs using the dual approach

10.2.1 Time: Computations using Tobalina’s tool . . . . . .

10.2.2 Cardinality: Computations using Tobalina’s tool . . .

Curriculum vitae

Declaration

Acknowledgement

vi

137
138
138
141
141
144
148

151

153

157

173

179

183
183
183
184

185

. 194

194

201

209

211

213



Chapter 1

Introduction

Systems biology is an interdisciplinary field of research that uses theoretical
approaches from mathematics, computer science, and engineering to analyse
complex biological processes such as gene expression, cellular organisation,
cellular signalling, or metabolism. Around the year 2000, the research fo-
cused on studying the functionalities of single genes and proteins, whereas
lately the structure and dynamics of networks got more and more attention
[Kitano, 2002]. One reason for this is that the data is available, especially
since new techniques are involved such as whole genome-sequencing and
high-throughput measurements [Margulies et al., 2005; Bentley et al., 2008].
Another reason is that applications showed promising results in medicine
and bio-engineering [Feist and Palsson, 2008; Oberhardt et al., 2009; Shlomi
et al., 2011; Bazzani et al., 2012; Erdrich et al., 2014].

A common approach to systematically represent and analyse cellular pro-
cesses is using networks. Here, the nodes of the network represent biological
entities such as enzymes or transcription factors, and edges indicate chemi-
cal or molecular interactions between them. There are three major types of
biological networks: signalling networks (interactions of receptors of a cell
and intracellular actions), gene regulatory networks (interactions of messen-
ger RNA and proteins), and metabolic networks. In this thesis, we consider
metabolic networks only, which involve chemical reactions and metabolic
pathways of an organism.

The metabolism of organisms tends to be very complex, and it is there-
fore a major challenge to find a trade-off between abstraction and precision
(e.g. having very simple or more complex interactions). Simple interactions
lead to networks that can be analysed by efficient algorithms and there-
fore large networks can be studied. Using more complex interactions often
hampers the analysis and only subnetworks can be examined.
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The reconstruction of genome-scale metabolic networks improved remark-
ably through access to more detailed information by genome sequencing,
[Francke et al., 2005; Notebaart et al., 2006; Duarte et al., 2007; Durot
et al., 2009; Henry et al., 2010; Thiele and Palsson, 2010; Ruppin et al.,
2010; Magnusdéttir et al., 2016] which makes it possible to reconstruct a
genome-scale metabolic network including not only some chemical reactions,
but all of them. Thus, both the number of available metabolic networks and
the size of the networks increased over the past years. This gives the oppor-
tunity to study more details of a cell or larger biological systems, as well as
to investigate the interactions between different organisms.

To handle this amount of data, mathematical and computational tools were
developed [Varma and Palsson, 1994; Segre et al., 2002; Price et al., 2004;
Terzer et al., 2009] and applied to study, e.g., the impact of a gene knock-out.
Using algorithms enables researchers to perform experiments in silico for de-
termining which approaches have the greatest potential for accomplishing a
task. This can reduce time and costs of experiments in laboratories. How-
ever, depending on the amount of information and complexity of the analysis
tool, it is often not feasible to include all given information. Therefore, one
has to decide for a level of complexity, i.e., the number of components and
the kind of interactions.

There are two fundamentally different approaches to analyse networks:
Those that analyse the time-dependent behaviour, the dynamics, and those
that analyse the structure, the topology. To do so, different mathematical
modelling approaches exist [Walhout et al., 2012]. In the first category,
continuous [Tyson et al., 2001; van Heerden et al., 2014; Riigen et al.,
2015; Waldherr et al., 2015] or stochastic modelling [Gillespie et al.,
2013] methods are used to study the dynamics of networks. However,
these approaches are computationally expensive and often do not scale to
genome-scale metabolic networks, so one can consider most of the time
only small networks or subnetworks. To analyse the topology of a network
one can use graph-based methods [Aittokallio and Schwikowski, 2006;
Jonnalagadda and Srinivasan, 2014] or constraint-based modelling [Terzer
et al., 2009; Bordbar et al., 2014; Klamt et al., 2018].

In this work, we study the topology of large metabolic networks, thus the
networks are considered independent from time, i.e., in steady-state. Consid-
ering only the topology of the system decreases the complexity by exclud-
ing dynamics and therefore allows to analyse much larger networks. But
analysing only the topology restricts the accuracy of possible predictions.
However, it can be used to detect knock-out targets to suppress unwanted
by-product pathways in order to improve the product yield. For exam-
ple OptKnock [Burgard et al., 2003] is a framework for identifying those
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knock-out strategies and was successfully applied for the development of
E. coli strains that produce lactate [Fong et al., 2005]. The SIMUP algorithm
[Gawand et al., 2013] was employed to modify E. coli to produce biofuel
precursors while utilising different sugars in order to reduce the competition
with food crops.

Analysing the structure of these networks is challenging by itself due to the
size of the networks and focus of many studies [Schuster and Hilgetag, 1994;
Varma and Palsson, 1994; Burgard et al., 2004; Klamt and Gilles, 2004;
Papin et al., 2004; Larhlimi and Bockmayr, 2009]. We address the issue
of complexity by introducing novel approaches for network reduction and
analysis.

To reduce metabolic networks we first need to define the desired outcome.
Those questions are usually brought up by biological or medical applications.
The next step is to find a way on how to reduce the network: the impor-
tant information has to be kept while the non-interesting data should be
excluded. To do so, mathematical methods have to be developed such that
they are applicable to large networks and the result fits the expectations.
The contributions of this thesis regarding this topic are the following:

We introduce a method for reducing the search space of an already known
method [De Figueiredo et al., 2009] which can be applied to similar methods
as well. Thus the running time of the algorithms is decreased and larger
networks can be analysed.

Furthermore, we develop a procedure which computes subnetworks main-
taining predefined functionalities. The subnetworks can then be used for
further analysis. The idea is not new and there exist methods to tackle this
problem, but these methods have various disadvantages. Either they com-
pute subnetworks of arbitrary size or only one functionality can be defined.
Here we develop a new method where the subnetworks are of minimum size
and several functionalities can be defined.

To compute these subnetworks we remove unwanted reactions. This causes
a change in the connectivity of the subnetwork compared to the original one.
But if we want to study the fragility or robustness of a network we have to
keep the connectivity. A solution to this is to not remove reactions but to
merge them together by performing a projection. The method we introduce
here is fast, applicable to large networks, and the description of the reduced
network is smaller than the description of the original network.

Last but not least we present a technique to reduce the number of generators
of a network. The introduced algorithm computes a minimal representation
for a network.
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For developing these methods we combine knowledge from different mathe-
matical disciplines, such as linear programming, linear algebra, and oriented
matroids. These methods are based on different underlying theories but they
share the concept of reducing, in a meaningful way, the information needed
to do further research on the underlying metabolic network.

1.1 Metabolic networks

A metabolic network represents a set of chemical reactions within an or-
ganism, a cell, or part of a cell. A chemical reaction is a process where
substrates are converted to products, e.g.

HNOy — H + NOg,

where HNOs is a substrate converted by a reaction into the products H and
NOs. A substance can function as a product in one metabolic reaction and
as a substrate in a different reaction. Substrates and products are also called
metabolites.

We use the stoichiometric matriz S € RY*% to represent a metabolic net-
work. The columns of S correspond to the set of reactions SR and the rows
to the set of metabolites 9. The entries of S are called stoichiometric coeffi-
cients . They are positive, S;; > 0, if metabolite j is produced by reaction ¢,
and negative, S;; < 0, if metabolite j is consumed by reaction ¢. Otherwise
Sj,i =0.

The reactions are divided into two categories: reversible and irreversible.
For example the reaction above can only produce H and NOs from HNOs.
Thus it can only operate in one direction and is therefore irreversible. If
the reaction were reversible, it would be able to produce HNO» from H and
NOgy as well. Furthermore, we distinguish between exchange and internal
reactions. Exchange reactions are transporters of the system. They cross
the boundary of the network (e.g. the membrane of a cell) and therefore
can transport metabolites in or out of the system. A well-known exchange
reaction is the biomass reaction. This reaction is an artificial reaction added
to the network in order to simulate growth. Biologists construct the biomass
reaction such that all necessary components, which the cell needs for grow-
ing, are consumed by it. The biomass reaction consumes all components of
biomass (e.g. amino-acids, lipids etc.) in the ratios the cell itself is made
of. The stoichiometric entries of the biomass reaction are chosen such that
they reflect the fractions of those metabolites in one cell, which are typi-
cally measured in the laboratory. One can also distinguish between external
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and internal metabolites, i.e., metabolites outside of the boundary or in-
side. Since stoichiometric matrices involve only internal metabolites (if the
system is in steady-state) we do not consider external metabolites here.

For a graphical representation of metabolic networks usually directed hy-
pergraphs are used. Here, reactions correspond to edges (or arcs), which
are directed to indicate the direction of the reaction and nodes correspond
to metabolites. Since a reaction can consume or produce more than one
metabolite, some edges are hyperedges connecting more than two nodes.
Figure 1.1 gives an illustration of a small network.

For a reaction ¢ € R to become active, i.e., to consume or produce metabo-
lites, an enzyme needs to catalyse reaction . Whether or not an enzyme
is produced depends on the corresponding gene(s) which encode the en-
zyme. If the gene is not expressed, the enzyme is not produced and there-
fore cannot catalyse the reaction. The description of a metabolic network
can include this information by, e.g., removing the corresponding reaction
[Price et al., 2004]. Since we are only interested in the topology of the
network, the networks we consider here do not include (time dependent)
regulatory information [Covert et al., 2001b], such as switching a gene on
and off during different phases. Such a model would require information on
metabolite concentrations and even though it is possible to measure such
concentrations C € Rgto experimentally, it was until recently very hard
to do so [Nielsen and Oliver, 2005; Villas-Boas and Bruheim, 2007]. Using
metabolimics [Goldansaz et al., 2017] it became possible to measure metabo-
lite concentrations, so that the concentrations of metabolites are known at
a time point ¢, i.e., C(t) and it is possible to compute the reaction rates
v € R%™: v(t) = v(C(t), k) which depend on kinetic parameters k, enzyme
concentrations and kinetic rate laws, such as mass-action kinetics [Waage
and Gulberg, 1864], Michaelis-Menten [Menten and Michaelis, 1913], etc. If
this information is available, a kinetic model can be built and we obtain a
system of ordinary differential equations (ODEs):

dc

T S-v(C, k). (1.1)
Kinetic parameters are hard to obtain [Bailey, 2001; Covert et al., 2001a;
Edwards et al., 2002] and the same holds true for kinetic rate laws and
enzyme concentrations [Nielsen and Oliver, 2005; Villas-Boas and Bruheim,
2007]. If the environment does not change it is often assumed that the ODE-
system (1.1) will reach a stationary point. This implies that the metabolite
concentrations C € R@O and the reaction rates v € R® are constant over
some time interval. The consequence of considering the system at steady-
state is enormous since no kinetic parameters are needed and the ODE-
system (1.1) becomes a system of homogeneous linear equalities:

Sv =0, (1.2)
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The corresponding stoichiometric matrix.

Figure 1.1: Example metabolic network with internal metabolites 9 =
{A,B,...,G}, reactions R = {1,2,...,11,12}, irreversible reactions Irr =
{1,2,6,7,8}, reversible reactions Rev = {3,4,5,9,10,11,12}, exchange
reactions Rex = {1,3,4,7,10,12}, and external metabolites M, =
{X1,..., X}
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which we can solve using linear algebra. To restrict the irreversible reactions
to operate in one direction we add inequalities vy, > 0, where vy, denotes
the reaction rates of the irreversible reactions. All vectors v which are in
steady-state and fulfil these inequalities will be called feasible flux vectors.
They are also called flux distributions or pathways.

For the whole thesis, we assume that the network is in steady-state. This
implies that we can employ mathematical tools related to systems of linear
equations and inequalities.

1.2 Mathematics for metabolic networks

1.2.1 Linear programming

There are several ways to analyse metabolic networks and one of them is
using linear programs (LPs). LPs are optimisation problems that have a
linear objective function and contain linear (in-)equalities as constraints
involving real variables. Furthermore, they are solvable in polynomial time,
see Chapter 13 in [Schrijver, 1998].

The best known approach for studying metabolic networks using LPs is flux
balance analysis (FBA) [Varma and Palsson, 1994]. FBA assumes that cells
evolved to grow as fast as possible, i.e., they maximise their growth rate
in a given environment. Typically FBA tries to mimic this by maximising
the biomass production rate. Without further constraints on uptake rates,
such as limitations on nutrients, this would be infinite. Thus, usually the
nutrient uptake rates are bounded. However, this results in FBA predicting
optimal growth yield instead of optimal growth rate, meaning it predicts how
efficiently an organism can grow given limited nutrients, but not how fast
it can grow. Using additional constraints, e.g. prohibiting some reactions
to carry flux, gives insight into the effect of different growth media or gene
knock-outs. One can, for example, simulate aerobic and anaerobic growth
by imposing or omitting a bound on oxygen uptake.

Solutions of LPs, especially for FBA, do not have to be unique. Computing
all solutions is in general not feasible, since there can be infinitely many. One
approach is to explore the optimal solution space, i.e., the space where all
optimal solutions live in, using flux variability analysis (FVA) [Mahadevan
and Schilling, 2003]. FVA computes for each reaction the maximum and
the minimum possible reaction rate assuming maximum yield. For FVA
we do not solve one LP only, but two LPs per reaction of the network. If
for a reaction the computed flux range (in the whole flux space) does not
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1. Introduction

contain 0 the reaction is essential for the organism [Klamt and Gilles, 2004].
This implies that the organism cannot grow if the reaction is removed. To
compute essential reactions different LP approaches can be used besides FVA
[Pharkya and Maranas, 2006; Suthers et al., 2009b]. Another widely used
approach where LPs are used is fluz coupling analysis (FCA) [Burgard et al.,
2004; Larhlimi et al., 2012b]. FCA examines how a knock-out of a reaction
affects the activity of other reactions to compute qualitative dependencies
between reactions. If some or all of the variables of an LP are integers we
talk about mized integer linear programs (MILPs). A typical example is
to have a boolean variable a; € {0,1} for each reaction i € R indicating
if reaction i is active (a; = 1) or not (a; = 0). To formulate an MILP is
the same routine as for LPs, but solving MILPs is NP-hard while LPs are
solvable in polynomial time [Schrijver, 1998].

The first contribution of this thesis is an MILP-based approach to use FCA
in order to reduce the size of the solution space of an MILP for metabolic
network analysis. This in turn reduces the solving time, making methods
applicable to larger networks than before. Furthermore, we develop an MILP
which reduces the size of a metabolic network by decreasing the number
of reactions while preserving predefined functionalities. We introduce an
algorithm which is applicable for user defined functionalities. The reduction
enables us to study certain properties of genome-scale metabolic networks
in more detail without considering the whole network.

1.2.2 Polyhedral cones

An alternative approach to represent and analyse metabolic networks is
using polyhedral cones. If there are no constraints on the reaction rates,
besides Sv = 0 and vp; > 0 (i.e., no upper or lower bounds on the reaction
rates), the solution space is unconstrained and called flux cone. A flux cone
is mathematically a polyhedral cone [Terzer, 2009a]. Using techniques from
the field of linear algebra and polyhedra, elementary flux modes (EFMs) can
be computed [Schuster and Hilgetag, 1994; Stelling et al., 2002; Zanghellini
et al., 2013]. EFMs are flux vectors that consist of a minimal set of active
reactions, i.e., reactions with a non-zero flux rate. Minimality means that no
proper subset of the active reactions can form a feasible flux vector. EFMs
are of great interest, since they are a complete description of the metabolic
network and therefore they can be used to represent every possible flux
vector.

In this thesis, we develop a method which finds a minimum set of EFMs
(MEMo) to describe the whole metabolic network and we provide new results
and connections between polyhedral cones and metabolic networks. We are

8
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able to significantly reduce the number of EFMs needed and therefore we
can compute these sets even for genome-scale metabolic networks. Such a
MEMo can be used for other applications, especially for applications where
the whole set of EFMs is needed but just too large to compute.

Closely related to the EFMs are the minimal cut sets (MCSs) which are
minimal sets of reactions as well [Klamt and Gilles, 2004; Klamt, 2006;
Pharkya and Maranas, 2006]. However, MCSs do not represent behaviours
of the network but can be used to prevent them. Whenever a set of reactions
of an MCS is removed from a metabolic network, certain behaviours are
not possible anymore. MCSs were employed to develop bacterial strains
for the biotechnological production of a variety of chemicals, from bio-fuel
precursors to pharmaceuticals or to better understand a given organism
[Melzer et al., 2009; Trinh et al., 2011].

1.2.3 Oriented matroids

The general strength of mathematics in analysing biological systems lies in
the abstraction. If a network or a question regarding the network can be
formulated mathematically, we can use all tools which fit to the underlying
theoretical concept. But also within mathematics there exist structures to
abstract certain properties. One of these structures are oriented matroids.
Since they are an abstraction they can be used to represent polyhedral cones
or metabolic networks [Reimers, 2014], but also linear spaces, oriented hy-
pergraphs, etc. Here, we explore the connections between polyhedral cones,
metabolic networks, and oriented matroids to gain new insights on metabolic
networks.

Using oriented matroids we gain new results about polyhedral cones of
metabolic networks and develop the method to compute a MEMo, as men-
tioned above. In addition, oriented matroids give rise to a procedure to
compute a new type of knock-out sets. With the newly created underlying
theory these knock-out sets can be computed efficiently. Thus, searching for
knock-out sets can be done in genome-scale metabolic networks, which was
not possible before or only with a huge effort.
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1.3 Structure of this thesis

First, we present in Chapter 2 notation and background information needed
for this work. This includes linear programming and mixed integer linear
programming as well as polyhedra and polyhedral cones, and finally oriented
matroids. Therefore, Chapter 2 forms the mathematical basis for this thesis.

In Chapter 3 a method to compute EFMs will be discussed. We reduce the
solution space and decrease the running time of a known MILP by using
coupling information of the reactions.

In Chapter 4 we use mixed integer linear programming to find minimum sub-
networks which fulfil given properties. A method is developed that allows
to define different functionalities which should be maintained by the sub-
network and where the resulting subnetwork consists of a minimum number
of reactions. We use FCA to decrease the running time of the method.

In Chapter 5 we focus on oriented matroids. We first clarify the connection
between an oriented matroid, a polyhedral cone, and a metabolic network,
where all reactions are reversible. We show new links between the three
objects. With these links we develop a procedure for finding a minimum
generating set of EFMs for a given metabolic network, where all reactions
are reversible.

In Chapter 6, we introduce an algorithm which, for a given metabolic net-
work, finds a minimum set of EFMs fully representing the underlying net-
work. To do so, we use the knowledge from Chapter 5 and develop new
theory about polyhedral cones and the structure of their related metabolic
networks.

Inspired by the Chapters 5 and 6 we introduce a new concept of cut sets and
a new method to compute them in Chapter 7. Based on projections of poly-
hedral cones and the connection between projecting variables of polyhedral
cones and reactions of metabolic networks we additionally employ oriented
matroids to project certain reactions such that the projected network can
be used to compute cut sets. Using projections leads again to networks con-
taining fewer reactions and therefore a lot of known methods can be applied
to genome-scale metabolic networks to compute cut sets where it was not
possible before. We discuss these methods and the results in Chapter 8.

In Chapter 9 we summarise the results of this thesis and give an outlook for
possible next steps and projects using this thesis as a basis or setup.

10



Chapter 2

Basics

In this chapter we introduce some basic notation, definitions and theorems
necessary for different parts of this work. Knowledge needed for a specific
topic only will be introduced in the section where it is used. We start with
some notation, then we introduce metabolic networks and some well-known
insights formally. Finally, we present some mathematical concepts regarding
polyhedral cones, linear programming, and oriented matroids.

2.1 Notation

For a vector x € R™ we denote by x; the i-th element of x. For a set H
of indices, xf is the subvector of x corresponding to these indices. We use
superscripts to refer to different vectors. For example, {z!,... 2!} denotes
a set of t vectors and we use a set of indices I here as well: 2! = {27 | i € I}.
If all elements of a vector should be greater or equal to zero we write z > 0
instead of x; > 0 for all 7. With é; € R™ we denote the i-th unit vector and
the identity matrix is denoted by E € R"*". We denote by A;, the i-th
row and by A, ; the j-th column of the matrix A. With Ag , resp. A, g, we
refer to a set of rows, resp. to a set of columns of A. We denote the rank of a
matrix A € R™*™ with p(A), where p(A) is the maximum number of linearly
independent columns in A. The horizontal resp. vertical concatenation of

A
matrices A, B is denoted by (A|B) resp. @ 0, are zero matrices of the

size m x n. Finally, B are the binary numbers, thus B = {0, 1}.

11
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2.2 Metabolic networks

As already mentioned the focus of this thesis lies on metabolic networks.
To fully describe a metabolic network, the set of internal metabolites 91,
reactions R, irreversible reactions Irr C R, and the stoichiometric matrix
S € RM™%R are needed:

Definition 2.1 (Metabolic network). A tuple N'= (9, R, S, Irr) with S €
RYX% denotes a metabolic network. Its internal metabolites are denoted by
M. The reactions are denoted by the set R, and Irr C R are the irreversible
reactions. S is the stoichiometric matriz.

Note that the set of reversible reactions, denoted by Rev, is the complement
of the irreversible reactions Rev = R \ Irr.

We noted before that the entries of the stoichiometric matrix S, the sto-
ichiometric coefficients are positive, S;; > 0, if reaction i € SR produces
metabolite j € M, negative, S;; < 0, if metabolite j € M is consumed by
reaction ¢ € R, and 0 otherwise. We assume that the stoichiometric co-
efficients are rational numbers for computational reasons. For the sake of
completeness we assume as well that we only deal with finite models, thus
the number of metabolites and reactions describing the network A is finite.

Since we do not consider a dynamical system, our network will always be
in steady-state, i.e., we only consider vectors v € R® such that Sv = 0.
Additionally, the entries corresponding to the irreversible reactions are all
non-negative, i.e., vy > 0. v is called a feasible flux vector and can be
interpreted as a steady-state flux distribution of the metabolic network N .
We call v; the reaction rate or flux rate of ¢ € R or the flux through reaction
i. If v; # 0 we call i an active reaction. The set of all feasible flux vectors
is called the flux cone:

Definition 2.2 (Flux cone and flux vector of a metabolic network). Let
N = (M, R, S, Irr), with S € R™R be a metabolic network. Ty = {v €
R% | Sv = 0, vy > 0} is called the flux cone of N'. The vectors v € Iy are

called flux vectors.

The constraints vy, > 0 restrict the irreversible reactions to carry flux in one
direction only. We consider flux vectors v € I'yr as reversible or irreversible
as well. If all non-zero entries of v correspond to reversible reactions only
then we call v a reversible flux vector. Note that v being reversible implies
—uv being a feasible flux vector too, thus —v € T'ys. If any of the non-zero
elements of v corresponds to an irreversible reaction then v is an irreversible

fluz vector, and therefore —v is not feasible.
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2.2.1 Elementary flux modes

One important set of flux vectors are the elementary flur modes (EFMs).
To define the EFMs we need the notion of support of a flux vector v € I's:

Definition 2.3 (Support). The set supp(v) := {i € R | v; # 0} is the sup-
port of a vector v € R”.

In metabolic networks the support of a flux vector v € I'ys corresponds to
the set of active reactions in v. We use the notion of support for a set of
vectors too. For example supp(I'ar) = {supp(v) | v € T'nr}.

Definition 2.4 (Min). Let V be a famliy of subsets of a set U. With the
operator Min we define the set of (inclusion) minimal subsets: Min(V) :=
{veV|AweV\{v} st wCov}.

We can now define the elementary flux modes of a metabolic network [Schus-
ter and Hilgetag, 1994].

Definition 2.5 (Elementary flux mode (EFM)). For a given metabolic net-
work N = (I, R, S, Irr), an elementary flux mode (EFM) is a feasible flux
vector v € I'xr \ {0} which has minimal support with respect to set inclusion,
i.e., the set of EFMs is Min(supp(I'y)).

We denote by £y the finite set of EFMs in the metabolic network N. An
EFM e € &y is called reversible if e,—e € I'pr, otherwise e is called irre-
versible. The set of reversible resp. irreversible EFMs by Sf\{/ev resp. S}\l}r.

EFMs define minimal sets of reactions that can operate together in steady-
state. Minimality means that if any of the reactions is deleted, then the
whole flux vector cannot operate in steady-state anymore. We refer to EFMs
not only by flux vectors v but also using the indices of the active reactions
of the flux vector v.

Example 2.6 (Elementary flux modes). For the network of Figure 1.1
there exist 18 EFMs with the following sets of active reactions: {1,2, 3,4},
{1,2,3,6,7}, {1, 2, 3,5,6, 8}, {1, 2, 3,6, 8,9, 10}, {1, 2, 3, 6, 8, 11, 12},
{1,2,4,5,9, 10}, {1, 2, 4, 5, 11, 12}, {1, 2, 5, 6, 7, 9, 10}, {1, 2, 5, 6, 7, 11,
12}, {1, 2, 5, 6, 8, 9, 10}, {1, 2, 5, 6, 8, 11, 12}, {3, 5, 9, 10}, {3, 5, 11,
12}, {3, 4, 5, 6, 8}, {4, 6, 7}, {4, 6, 8, 9, 10}, {4, 6, 8, 11, 12}, {9, 10, 11,
12}. The sets {3,5,9,10},{3,5,11,12},{9,10,11,12} are reversible EFMs,
which can carry fluz in both directions. We computed the EFMs using the
efmtool [Terzer, 2017a] which is explained in Subsection 2.3.1.4.

13
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EFMs are a popular approach to analyse metabolic networks because ev-
ery steady-state behaviour of the network can be represented with help of
the EFMs [Schuster and Hilgetag, 1994; Schuster et al., 2000]. Formally
speaking, the set Exr is a generating set or conic basis of the flux cone I' .
This means that every flux vector v € I'yy can be represented as a conical
combination v = Zee&\/ Aee, for some A, > 0. Note that for a reversible
EFM, we use two flux vectors, each representing one direction.

EFMs can be applied to study different properties of the underlying
metabolic network [Stelling et al., 2002; Zanghellini et al., 2013]. For
instance, they can be used to study the robustness of the network [Behre
et al., 2008] or to search a decomposition into EFMs for given flux vectors
[Schwartz and Kanehisa, 2005, 2006; Chan and Ji, 2011]. EFMs can also
be used to detect important pathways [Carlson and Srienc, 2004a,b|, for
example pathways which produce certain metabolites. Metabolic engineer-
ing can be done using EFMs [Trinh et al., 2006, 2008; Melzer et al., 2009;
Trinh and Srienc, 2009; Unrean et al., 2010; Trinh et al., 2011; Ruckerbauer
et al., 2015]. EFMs do not only play an important role in the research of
metabolic networks but also in this thesis. We improve an already existing
method to compute EFMs in Chapter 3. We reduce the solution space and
therefore speed up the running time of the algorithm for computing EFMs.
In Chapter 6 we introduce a new method to compute EFMs. The method
from Chapter 6 finds a minimum set of EFMs which describes the whole
metabolic network. The minimum number of EFMs needed to describe
the network is significantly smaller than the whole set of EFMs. Thus
such a set can be computed for genome-scale metabolic networks whereas
computing the whole set of EFMs is not possible.

2.2.2 Minimal metabolic behaviours

Computing the whole set of EFMs for genome-scale metabolic networks
is often not possible, since the number of EFMs grows exponentially with
the size of the network. [Larhlimi and Bockmayr, 2009] introduced a mini-
mum description of the flux cone I'\s based on minimal metabolic behaviours
(MMBs). Each MMB corresponds to a subset of EFMs with the same set
of active irreversible reactions. Larhlimi and Bockmayr defined them as
follows:

Definition 2.7 (Minimal metabolic behaviour). A metabolic behaviour is
a non-empty set of irreversible reactions D C Irr which carries flux in a fluz
vector v € Tnr: D = {i € Irr | v; # 0}. A metabolic behaviour is minimal if
there is no other metabolic behaviour D' contained in D.

14



2.2 Metabolic networks

Example 2.8 (Minimal metabolic behaviours). For the network in Fig-
ure 1.1 we can find three different MMBs: The first MMB consists of two
reactions, namely reactions 1 and 2. {1,2} is the set of active irreversible
reactions of the EFM {1,2,3,4} or {1,2,4,5,11,12}. The second MMB s
{6,7} which is the set of active irreversible reactions of the EFM {4,6,7}.
The last MMB is {6,8}, which is the set of active irreversible reactions
of the EFM {4,6,8,9,10}. Other EFMs contain this MMB as well, e.g.
{4,6,8,11,12}.

It can be shown that in order to obtain a minimal generating set of I'ys,
for each MMB one of the corresponding EFMs has to be chosen [Larhlimi
and Bockmayr, 2009], see also [Jevremovi¢ and Boley, 2013]. We make use
of MMBs to prove that a method we introduce in Chapter 6 computes a
minimum set of EFMs that represent a metabolic network A. Furthermore,
we use MMBs to compute minimal cut sets, which are introduced next.

2.2.3 Minimal cut sets

EFMs can be used for metabolic engineering. One strategy is to search
for genes whose knock-outs lead to a desired modification of the metabolic
network. One or several genes encode an enzyme which then catalyses a re-
action. Therefore, instead of searching directly for the genes, one can search
for reactions to be knocked-out, resp. removed. Those intervention strate-
gies are for example used to analyse the structural robustness of metabolic
networks [Deutscher et al., 2006; Behre et al., 2008]. Furthermore, they can
be employed to block a certain behaviour [Haus et al., 2008] or, the other
way around, to find most efficient pathways for the production of certain
compounds [Trinh et al., 2006; von Kamp and Klamt, 2014].

Suppose the goal is to prevent a target reaction from carrying flux. A set of
reactions which fulfils this goal is called a cut set [Klamt and Gilles, 2004]:

Definition 2.9 (Cut set). Given a metabolic network N = (9, R, S, Irr), a
target reaction tar € R, and a flux rate v, € R. A set of reactions £ C R
is called a cut set (with respect to the defined target reaction tar) if after the
removal of these reactions & from the network N it is no longer possible to
achieve a flux rate of most vy, for tar. Thus there exists no v € I'yr with
Utar > Vny and ve = 0.

A cut set which consists of only one reaction is called an essential reaction:
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Definition 2.10 (Essential reaction). Given a metabolic network N'° =
(M, R, S, Irr), a target reaction tar € R, and a flur rate vf,, € R. We
call a reaction j € R essential if, after removing j, it is no longer possible
to achieve a fluz rate of at least vi,, through the target reaction tar.

Typically, tar is the biomass reaction of N and vy, is 20% of the maximal
flux rate of tar [Klamt and Stelling, 2003].

We explain how to find the maximal rate through a given reaction in Section
2.3.2.1. An obvious essential reaction (a cut set of cardinality 1) would be
the target reaction itself. But it can be interesting to know other essential
reactions as well, especially since the target reaction is most of the time the
biomass reaction and it is not feasible to knock out an artificial reaction in
the laboratory. In Definition 2.9 we do not only consider a single reaction
but also a set of reactions as cut sets. Besides, it is possible to have not
only one but several target reactions. The minimality of cut sets is defined,
again, w.r.t. set inclusion:

Definition 2.11 (Minimal cut set (MCS)). A cut set ( C R (with respect
to a defined target reaction) is a minimal cut set (MCS) if no proper subset
of C is a cut set (w.r.t. the target reaction), thus if there does not ezists a
cut set & (w.r.t. the target reaction) with £ C (.

Since all feasible flux vectors of a network can be represented using EFMs,
one method for finding reactions of cut sets is searching for hitting sets
within the EFMs [Klamt and Gilles, 2004; Klamt, 2006].

MCSs can be computed from EFMs in the following way [Klamt and Gilles,
2004]: Suppose all EFMs are known and a target reaction is given. Let
EFMsta, be the set of those EFMs that involve the target reaction. Given
EFMst,,, we search for hitting sets, i.e., sets of reactions such that each
EFM in EFMsq,, contains at least one reaction of the hitting set. Inclusion-
minimal hitting sets are the MCSs we are looking for. Note that MCSs
found with this technique do not allow any flux through the target reaction,
i.e., vgar = 0 for all v € I'yr with vg = 0.

Example 2.12 (How to compute MCSs using EFMs). For the net-
work in Figure 1.1 there exist 18 EFMs, see Fxample 2.6. We choose re-
action 7 as the target reaction, see Figure 2.1 for illustration. There are
4 EFMs using reaction 7 with the supports {1,2,3,6,7}, {1,2,5,6,7,9,10},
{1,2,5,6,7,11,12}, {4,6,7}. In all these EFMs, reaction 6 is active. There-
fore, if reaction 6 is removed, there will be no feasible flux vector using re-
action 7. Consequently, reaction 6 is an MCS for the target reaction 7.
Minimal cut sets of cardinality 2 are {1,4} and {2,4}. The set {1,6} is
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Figure 2.1: Examples of minimal cut sets where reaction 7 is the target
reaction. A) If reaction 6 is not present, e.g. knocked out, there is no flux
through reaction 7. Therefore reaction 6 is an MCS of cardinality 1. B) If
the reactions 2 and 4 are not present, there is no flux through reaction 7.
Therefore reaction 2 and 4 form an MCS of cardinality 2.

not an MCS since it contains the MCS {6}. The remaining MCSs are
{3,4,5},{3,4,9,11},{3,4,10,12},{3,4,10,11},{3,4,9,12}.

Computing EFMs for genome-scale metabolic networks is often not possible,
since the number of EFMs grows exponentially with the size of the network.
Therefore the method described above may not be applicable in practice.

To address this problem, we propose in Chapter 7 to make use of minimal
metabolic behaviours (MMBs) [Larhlimi and Bockmayr, 2009], see Definition
2.7. The number of MMBs may be several orders of magnitude smaller than
the number of EFMs, see Table 7.1. Our idea is to use MMBs in the same
way as EFMs in order to compute MCSs that consist of irreversible reac-
tions only. The method can be applied to genome-scale metabolic networks
whereas most algorithms fail to compute the whole set of EFMs.

There exist other methods as well to compute MCSs of a metabolic network.
Several are based on linear programming [Burgard et al., 2003; Pharkya and
Maranas, 2006; Suthers et al., 2009b], while in [Goldstein and Bockmayr,
2015] lattice theory is used. In [Jungreuthmayer et al., 2013] the Berge al-
gorithm [Berge, 1984] is exploited, whereas [Nair et al., 2017] use swarm
optimisation. Methods to compute MCSs such that desired functionalities
of the network are not affected are presented in [Li et al., 2009; Hadicke and
Klamt, 2011]. Some utilise the fact that MCSs are EFMs in the dual net-
work [Klamt and Stelling, 2003; Ballerstein et al., 2012] or combine this fact
with LP formulations [von Kamp and Klamt, 2014; Apaolaza et al., 2017].
The complexity of computing minimal cut sets using different approaches is
discussed in [Acuna et al., 2009].
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2.2.4 Bounds

If we consider the flux cone 'y of a metabolic network N we do not have
any limitations on the flux rates. Therefore, we simulate an environment
where an infinite amount of nutrients is available. To compute the EFMs,
this is a feasible approach. But in silico experiments are often used to
predict the behaviour of an organism for in vivo experiments and therefore
the nutrient uptake rates have to be bounded. This is done by introducing
for each flux rate v; an upper bound u; € R and lower bound I; € R.
The flux cone 'y = {v e R% | Sv =0, vy > 0} is thus transformed into
Py={veR®|Sv=0, 1 <v<u}. Weassume Iy, > 0, thus the direction
of the irreversible reactions is already determined by their lower bounds and
we do not have to include the constraints vy, > 0 into Py.

2.3 Mathematical basics

In this section we give some mathematical basics needed for this thesis.
We go into more details in the corresponding sections. The concepts we
consider here are polyhedral cones, linear programs (LPs), mixed integer
linear programs (MILPs), and oriented matroids.

We start with two definitions related to dependencies of vectors.

Definition 2.13 (Linearly independent). A set of vectors {z', ..., x'} is
t .
called linearly independent if > a;x* = 0 for oy € R implies that a; = 0 for

i=1
all 7.

Definition 2.14 (Affinely 1ndependent) A set of vectors {x!,... x'} is
called affinely independent if Z a;xt =0 and Z a; = 0 for a; € R implies
that a; = 0 for all 1.

2.3.1 Polyhedra

To use the mathematical concepts of polyhedra and cones we introduce in
this section some basics about polyhedra. We start by some fundamental
definitions and theorems related to polyhedral cones. The basis of this
section is the book [Schrijver, 1998].
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2.3.1.1 Basics and connection to metabolic networks

We begin with the definition of a cone:

Definition 2.15 (Cone). A subset I' C R™ is called a cone if any conic
combination of two elements x,y € I belongs to I again, i.e., Ax + py € T,
for any non-negative A\, u € R>q.

The cones we consider here are polyhedral cones:

Definition 2.16 (Polyhedral Cone). A cone I' C R is called polyhedral if
there exists a matriz A € R™*™ such that T' = {x € R" | Az > 0}.

They are called polyhedral cones because they are cones as well as polyhedra:

Definition 2.17 (Polyhedron). A set P = {x € R" | Az > b} with A €
R™*™ and b € R™ is called a polyhedron.

If b; = 0 for all 4, i.e., if the inequality system Az > b is homogeneous, then
P is a polyhedron and a cone.

A cone I is finitely generated if there exist finite sets G C I'yr such that
every flux vector v € I'yy can be obtained as a conical combination v =
> 9€6 Agg, Ag > 0 of the elements g € G. By a theorem of Farkas-Minkowski-
Weyl, a cone is polyhedral if and only if it has a finite set of generators.

Theorem 2.18 (Theorem 7.la in [Schrijver, 1998], pp. 87). A cone is
polyhedral if and only if it is finitely generated.

The lineality space of a polyhedral cone will play an important role:

Definition 2.19 (Lineality Space). Given a polyhedral cone I' = {z € R™ |
Az > 0}, with A € R"™ " the linear subspace A = {x € R" | Az =0} =
I'N(=T) is called the lineality space of I'.

We also need the definition of a face:

Definition 2.20 (Face). For a polyhedron P = {x € R" | Az > b}, we call
aset F={x € P|aTx =0b} a face of P, if aTx > b, a € R"\ {0} is a valid
inequality for P, i.e., I' C {x € R" | aTx > b}.

The dimension of a polyhedron P, and therefore also of a polyhedral cone,
is the maximum number of affinely independent points in P minus one. A
minimal proper face (MPF) is a face of the cone of dimension ¢ + 1, where
t is the dimension of the lineality space. A wvertex is a face of dimension 0.
Note that a face is a polyhedron too.
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Definition 2.21 (Facet). Given a polyhedron P = {x € R™ | Az > b}, with
A e R™™ andb € R™, a face F' of P is called a facet if dim(F') = dim(P)—
1.

We call all non-zero elements of a polyhedral cone rays:

Definition 2.22 (Ray). Non-zero elements of a polyhedral cone I' = {z €
R™ | Az > 0}, with A € R™*"™ are called rays of T

A polyhedral cone T is called pointed if A = {0}. This implies that whenever
x € I'\ {0}, we have —z ¢ I'. In other words, I" does not contain any line
{Az | A € R}, for x # 0. By basic linear algebra, the cone I' is pointed if
and only if the matrix A has full column rank, i.e., p(4) = n. See Figure
2.2 for the illustration of a non-pointed polyhedral cone.

Two rays z,2’ € I' are considered identical if ' = Az for some A > 0. The
rays which will play an important role for our purposes are the extreme rays:

Definition 2.23 (Extreme ray (ER)). Let I' = {x € R" | Az > 0}, with
A € R™™ be a polyhedral cone. A ray y € T'\ {0} is called an extreme
ray (ER) of T if there exist no two linearly independent rays x*,x* € T such
that y = ' + 22.

If ' is pointed the minimal proper faces have dimension one. They form a
unique minimum set of generators {g',...,g'} C I' which correspond to the
ERs of I'. See Figure 2.2 for an illustration.

To have a different characterisation of ERs of a pointed polyhedral cone we
can use the zero set:

Definition 2.24 (Zero set). We denote with Z(x) = {i | x; = 0} the set of
indices of entries of a given vector x € R™ which are zero. We call this set
the zero set.

The characterisation of the ERs is then as follows:

Theorem 2.25 ([Fukuda and Prodon, 1996] and [Jevremovié et al., 2008]).
A ray x of a pointed polyhedral cone T' = {x € R™ | Ax > 0} is an extreme
ray if and only if p(Az(az) ) = n — 1, where A € R™*" (with m < n) has
full rank (i.e., p(A) =n).

A particular type of polyhedral cone we consider here is the fluz cone:
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A B
generating vectors 3
(both for the same MPF) X A
4
4 lineality space T
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. . X
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Figure 2.2: (A) A non-pointed polyhedral cone in 3-dimensional space with
a lineality space of dimension 1 and 2 minimal proper faces (MPFs) of
dimension 2. The dashed vectors in one of the MPF's illustrate that the set
of generating vectors is not unique: one of the two vectors can be used as
well as any other vector in the MPF. To represent the whole polyhedral cone,
one vector of each MPF is needed and one basis vector of the lineality space.
(B) A pointed polyhedral cone in 3-dimensional space with 5 extreme rays.
The lineality space is {0}.

Definition 2.26 (Flux cone). A polyhedral cone T' is called a flux cone if

there exists a matrix B € R™*™ and an index set I C {1,...,n} such that
B
F={zeR"|| -B|xz>0}={x€R"| Bx =0, z1 > 0}.
EI,*

FEither B or I may be empty, but not both.

Clearly, the flux cone I'ys of a metabolic network ' = (9, %R, S, Irr), see
Definition 2.2, is a flux cone in the sense of Definition 2.26, with B =S and
I =Trr.

Proposition 2.27. Let I' be a flux cone. If x > 0 for all x € T', then I
18 pointed and the extreme rays of I' are exactly the rays in I' of minimal
support.

In [Schuster and Hilgetag, 1994; Gagneur and Klamt, 2004], this result is
proven for flux cones I' = I'ys originating from a metabolic network N.
In this case, Proposition 2.27 states that in a metabolic network where all
reactions are irreversible the extreme rays of I'yr are exactly the EFMs. The
proof in [Schuster and Hilgetag, 1994; Gagneur and Klamt, 2004] directly
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carries over to the more general case of flux cones in the sense of Definition
2.26 for which I = {1,...,n}.

In general, however, metabolic networks may contain reversible reactions to-
gether with reversible flux vectors v # 0 for which v, —v € T'yr. For example
in Figure 1.1, there is a reversible flux vector with support {3,5,9,10}. In
such networks the flux cone is not pointed and Proposition 2.27 does not

apply.

Similar to the method of verifying extreme rays, we can verify if a given flux
vector v is an EFM using the support of a vector:

Theorem 2.28 ([Urbanczik and Wagner, 2005a; Jevremovi¢ et al., 2008]).
Given a metabolic network N = (9, R, S,Irr) and its flur cone Ty, a fluz
vector v € 'z is an elementary flux mode of N if and only if P(Sx supp(v))
|supp(v)| — 1, where |supp(v)| is the number of non-zero entries of v.

If there exist reversible flux vectors the minimal generating set of the flux
cone is not unique anymore. One way to compute the whole set of EFMs is
by splitting all reversible reactions which is explained in the following.

2.3.1.2 Splitting variables

In many cases it is desirable to have a cone I' = {z € R" | Az > 0}
which is pointed. If the system Ax > 0 includes constraints x; > 0, for all
i € {1,...,n}, then the resulting cone will be pointed. In general, however,
a variable x; € R can take negative values, and we cannot simply add the
constraint x; > 0.

To overcome this problem, a well-known method also used in linear pro-
gramming [Schrijver, 1998] is to split variables. Splitting a variable z; € R
means replacing it by two non-negative variables Z;, Z,+; > 0, such that
T; = T; — Tpag. Note that this will change the structure of the cone and
increase the dimension of the underlying vector space by 1 for each split
variable.

Definition 2.29 (77). To describe the split variables transformation for-
mally and for several indices, we use a map w; : R® — R*"HI where
I = {i1,...,is} denotes the set of variables z;, i, € I,k € {1,...s} to
be split.

For x € R™ we get n(x) = T with ; = xj, for all j € {1,...,n} \ I, and
for each iy, € I:

fik = Ty, and EEn+k =0 if Ly, Z 0,
Z;, =0 and  Tpyrp = —x;,  if 5, <O0.

(2.1)
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By applying the map 77, a polyhedral cone I' = {z € R" | Az > 0}, with
A € R™*" is mapped to the augmented polyhedral cone

= {5: (z,y) e R™M | Ax — A,y > 0,27 >0,y > 0} ; (22)

with z € R", y € RII.

Definition 2.30 (7}, recombine). The inverse transformation wj : A
maps each vector T € T to z = 77 (z) such that x; = z;, for all j €
{1,...,n}\ I, and z;, = T3, — Tpyg, for allip € I,k e {1,...,s}.

If we apply 77, we say that we recombine the variables that were split before.

2.3.1.3 Splitting reversible reactions

In the case of metabolic networks, the variables corresponding to the ir-
reversible reactions, by definition, can take only non-negative values. In
order to obtain a pointed cone, we can split each reversible reaction into
two irreversible ones.

Example 2.31 (Splitting all reversible reactions). In Figure 2.3 all re-
versible reactions of the network in Figure 1.1 are split. After splitting,
there exists mo reversible flux vector anymore. For erxample, a flux vector
of the original network with support {3,5,9,10} has now either the support
{37,5%,97,10%} or {3%,57,97,107} (the reverse direction).

This leads to a new network N with the corresponding pointed flux cone
F/P\{FV. The uniquely determined extreme rays of this cone are called extreme
currents:

Definition 2.32 (Extreme Currents (ECs), [Clarke, 1988; Schuster et al.,
2000]). Let Ty be the fluz cone of a metabolic network N' = (M, R, S, Trr)
and let F/F\{/e" be the pointed polyhedral cone after splitting all reversible reac-

tions Rev. The ERs of 'RV are called extreme currents (ECs) of N.

It can be shown that after recombination, the ECs correspond exactly to the
EFMs of the metabolic network [Gagneur and Klamt, 2004]. In addition,
for each split reaction ix € I, there exists a 2-cycle:

Definition 2.33 (2-cycle). Let I'y be the flux cone of a metabolic network
N = (O, R, S, Irr) and let F{g be an augmented flux cone, where a subset

I C Rev of reversible reactions were split. All flux vectors v € f{g can be
recombined using the map w7} to become flux vectors in the cone I'yr. The
set of 2-cycles Il C F{g can be defined as follows:
I = {@efgmj:ow e{1l,....,n+ I\ {ig,n+ &},
and v, = Upqr # 0 for iy € I}.
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@@ 107
10+

Figure 2.3: Network from Figure 1.1 where all reversible reactions are split.
For example, reaction 3 is split into 3~ and 3*.

The set of 2-cycles are non-zero flux vectors in fé but after recombination
they become zero-flux vectors. These cycles do not have a biological meaning
and can be eliminated.

Splitting all reversible reactions will highly increase the number of variables
and thus the dimension of the vector space where the augmented cone lives.
Already for medium-sized networks, the number of extreme rays, which
corresponds to the number of EFMs (up to the 2-cycles), will be huge and
therefore computing the whole set may not be feasible or desirable. In
Chapter 5 and Chapter 6 we discuss how to obtain pointed polyhedral cones
by splitting only a subset of the reversible reactions. We show that the
ERs of the augmented cones correspond to a subset of the EFMs of the
underlying network which represents the whole metabolism.

2.3.1.4 Computing extreme rays and EFMs

Computing extreme rays is not easy. The most famous work regarding
this challenge is the Double Description method (DD-method) [Fukuda and
Prodon, 1996]. It is called the DD-method because for a matrix A € R™*"
of full rank, describing a pointed polyhedral cone I' = {x € R" | Az >
0} there always exists a matrix R € R™ ! which describes the same cone
I'={z €R"|z=R-\forsome\ € RL,}. The pair (4, R) is called a
double-description pair. The DD-method computes for a given A € R™*" a
matrix R € R™* such that the columns of R correspond to the extreme rays
of I'. There exist several tools which compute the ERs of a given pointed
polyhedral cone. polco [Terzer, 2017b, 2009a] is nowadays the fastest tool
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and is based on the DD-method, including many improvements. In this
work we use polco whenever we compute the ERs of a pointed polyhedral
cone.

There exist several methods for computing the set of all EFMs and most
of them are based on the DD-method [Fukuda and Prodon, 1996]. For
example efmtool [Terzer, 2017a] or metatool [Pfeiffer et al., 1999] split all
reversible reactions and compute the ERs of the augmented flux cone. In
[Gagneur and Klamt, 2004], a description of the DD-method for metabolic
networks is given. Another technique based on the DD-method is the null-
space algorithm in [Urbanczik and Wagner, 2005a]. Other approaches are
based on graph theory like gEFM in [Ullah et al., 2016] and a depth-first
algorithm in [Quek and Nielsen, 2014]. All these methods can compute
the whole set of EFMs. In practice, however, they often do not terminate
because the number of EFMs gets too large [Klamt and Stelling, 2002] and
the program runs out of memory.

We will see in Chapter 6 how reaction splitting can be used to find a min-
imum set of EFMs which describes the whole metabolic network. To do
so we also need some help from oriented matroid theory, for which we give
some basics in Section 2.3.5.

More recent approaches to compute a subset of EFMs are based on mixed-
integer programming which is introduced in the following section.

2.3.2 Linear Programming

As explained in Section 2.2.4, in silico experiments require bounds on the
flux rates. The steady-state assumption (Sv = 0) and the restriction on the
flux rates of the irreversible reactions (vr; > 0) define a polyhedral cone.
If the bounds on the flux rates (I < v < u) are included we do not have a
polyhedral cone anymore but a polyhedron, see Definition 2.17. One method
for analysing polyhedra is linear programming. The following subsection is
based on the notations used in [Schrijver, 1998], which is a comprehensive
introduction to the field of linear programming.

A general, finite dimensional, optimisation program can be defined as fol-
lows:

Definition 2.34 (Optimisation program).

min f(x)
st. gi(z) <0
r€eD,

with DCR", g,:D—R fori=1,...,m, and f : D — R.
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Instead of minimising we could also maximise. We call f(z) an objective
function and g;(x) < 0 (side) constraints. The definition of an optimisation
program is very general. The objective can be any function and so can be
the constraints. In this work we only consider linear programs (LP) which
means that f and g; are linear in « for all ¢. We can also define an LP using
vectors and matrices instead of f and ¢; which is convenient and which we
do in the following as well.

Definition 2.35 (Linear program (LP)).

min ¢’z
X
st. Ax <b
z € R,

with ¢ € R, A € R™*"™ b € R™, where ¢7 denotes the transpose of the
vector c.

Note that every LP can be brought to the form in Definition 2.35. For
example every equality constraint can be equally stated as two inequality
constraints.

A vector z* € R" is called a feasible solution for an LP if it fulfils all
constraints, i.e., if Az* < b. The feasible region or the solution space is
the set of all feasible solutions. A feasible solution z* € R™ is an optimal
solution if cTx* < Tz for all z € R™ with Az < b. Note that a feasible
solution does not have to exist. If a feasible solution exists, there does not
have to be an optimal solution and if there is an optimal solution it does
not have to be unique. The value z,,; = cTz* for an optimal solution z*
is called the objective value. If a finite optimal solution exists, this value is
unique for every optimal solution z*.

Every constraint of an LP can be considered as a half space in R which cuts
the solution space. Therefore A;.x < b; cuts all solutions x away for which
it holds A; .2 > b;. The intersections of all half spaces define a polyhedron.
See Figure 2.4 for an example.

The best known way to solve an LP is using the simplex algorithm [Dantzig,
1948]. Suppose the feasible region describes a pointed polyhedron, i.e. the
feasible region does not contain any line. Roughly speaking, the algorithm
starts by checking if a feasible solution exists. If this is the case, a feasible
vertex of the polyhedron is computed. If such a vertex exists the algorithm
tries iteratively to find a vertex next to the current position, while improv-
ing the objective value. The simplex algorithm stops, if either an optimal
solution is found, the problem is unbounded or the problem is infeasible.
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Figure 2.4: For each constraint, i.e., for each inequality, we have one half
space cutting R%. The turquoise area is the feasible region which is, in this
case, bounded.

It has been shown that, if some rules are followed, the simplex will termi-
nate and find an optimal solution. In the worst case the algorithm needs an
exponential number of iterations [Klee and Minty, 1972]. Fortunately, the
simplex method is very fast in practice [Borgwardt, 1982]. Another method,
which is proven to have a run time that is polynomial in the size of the input
is the ellipsoid method [Khachiyan, 1980]. For the first implementation the
running time of the method was worse than for the simplex method but in
1984 [Karmarkar, 1984] introduced an efficient method. Due to numerical
stability issues, most LPs are still solved using the simplex algorithm [IBM
Knowledge Center, 2010].

2.3.2.1 Application for LP: Flux balance analysis

The best known application of an LP studying metabolic network recon-
structions is fluz balance analysis (FBA) [Varma and Palsson, 1994]. This
method assumes the cell has evolved to maximise a certain biological ob-
jective, such as growing as fast as possible. Thus, in most applications,
the objective is to maximise the biomass production, i.e., the growth yield.
To do so, the artificial biomass reaction is added to the network. Since all
constraints involved are linear, an LP can be formulated:

max Upijo

v

st. Sv= 0
v < u
v € RM,
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where S € R™*% i5 the stoichiometric matrix, and [ € R®, resp. u € R™ are
lower bounds, resp. upper bounds on the flux rates.

2.3.2.2 Application for LP: Flux variability analysis

The algorithmic solution of an FBA problem max{cTv | Sv =0, [ <v < u}
gives one optimal flux vector v* € I'jr, maximising the biomass production.
This solution does not have to be unique. There can exist infinitely many
vectors, all of them maximising the growth yield. Therefore, computing all
optimal flux vectors cannot be done. To still analyse the optimal solution
space, thus all possible optimal flux vectors, fluz variability analysis (FVA)
[Mahadevan and Schilling, 2003] can be applied. Here, all reactions rates are
maximised and minimised, given that the biomass reaction has the maximum
reaction rate vy, , obtained by performing an FBA. To perform an FVA two
LPs have to be solved for each reaction.

For allt e R:

max v

v

st. Sv= 0
vz (2.4)
v < u
Upio= Ugio
v € RA

FVA gives the flux range for each reaction under the constraint that the
biomass reaction rate is maximal.

2.3.2.3 Application for LP: Flux coupling analysis

One way to understand the topology and robustness of a metabolic network
is Flux Coupling Analysis (FCA) [Burgard et al., 2004]. It can be performed
quite fast [David et al., 2011; Larhlimi et al., 2012b] and recently it has been
generalised via a lattice-theoretic framework [Reimers et al., 2015]. To detect
which reactions are coupled, LPs can be used [Burgard et al., 2004; David
et al., 2011; Larhlimi et al., 2012b].

Definition 2.36 (Blocked reaction). Given a metabolic network
N = (MR, S Irr). A reaction i € R is called blocked if v; = 0 for
allv € Ty = {v € R? | Sv =0, vy, > 0}.

To detect blocked reactions, the following two LPs can be used:
A reaction i € R is blocked if and only if

max{+v; | Sv =0, vy, >0} =0. (2.5)
v
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In a pre-processing step, blocked reactions can be removed from the network.
Thus, we assume from now on that the network contains only unblocked
reactions. For two unblocked reactions i, 7 € R we can define three different
coupling relations [Burgard et al., 2004; Larhlimi et al., 2012b].

Definition 2.37 (Coupling relations). Given a metabolic network N =
(M, R, S, Irr) and its flux cone T yr.

i:—gj: J is directionally coupled to i if and only if v; = 0 implies v; = 0
for allv € T .

i:<—>0j: J is partially coupled to i if and only if v; = 0 < v; = 0 for all
v E .

i~j:  jis fully coupled to i if and only if there exists A € R\ {0} such that
v; = Avj for all v € L'y.

Remark 2.38. If two reactions are fully coupled, then they are also partially
coupled (but not necessarily the converse).

The coupling relation =0 is reflexive and transitive, and thus defines a pre-

order [Schroder, 2003]. The relation 2 is also symmetric and therefore an
equivalence relation. This means that the set of reactions R can be par-

titioned into equivalence classes [i] = [1]7_)0 ={j e R| i<:—(>)j}. We have

R = Ujjjem [i], where R =R/ 29 denotes the set of all equivalence classes.

An equivalence class can be represented by any of its elements. We say
that ¢ is a representative of [i] or that [i] is the coupling class of i. Note

that [i] = [j] if and only if i:<—>0j . Coupling classes are similar to the enzyme
subsets introduced by [Pfeiffer et al., 1999]. Enzyme subsets are groups
of reactions that are fully coupled. Here, we relax this condition and also
consider reactions that are only partially coupled.

Definition 2.39 (Reaction coupling order <:_9). Given a metabolic network
N = (O, R, S, Irr).  The partial ordering on the coupling classes <= C
R x R defined by

[i] =g [j] 15 =%
is called the reaction coupling order (RCorder) induced by the coupling re-
lation =.

Note that this construction works, because Hisa preorder [Schréder, 2003].
Figure 2.5 shows an example network with its corresponding RCorder.
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(a) The sets {1,2},{5,6} and {4,7} are coupling classes, (b) Hasse diagram of
whereas {4, 7} are partially but not fully coupled. RCorder <.

Figure 2.5: Reaction coupling isa preorder of the reactions. It induces
a partial order == A knock-out of reaction 1 implies inactivity in reaction

3, 8 and others, but not in reaction 5. Thus, 1793 and 198 but - (1305)
This results in 1 <= 3 and 1 <=0 8 for the RCorder ==, but 1 and 5
are incomparable. The Hasse diagram visualises this by having downward
directed paths starting in the greater and ending in the smaller of each pair
of coupled reaction representatives, in our example from 3 to 1 and from 8
to 1, but not from 5 to 1. A knock-out of reaction 4 implies inactivity in all
reactions.

Example 2.40 (Coupling relations). The network in Figure 2.5a con-
tains two pairs of fully coupled reactions, namely {1,2} and {5,6}. The
reactions {4, 7} are partially coupled. These three sets can be represented by
1, 5 and 4. Figure 2.5b shows the Hasse diagram of <=0, where the nodes
represent reactions. If a reaction has zero flux, then exactly those reactions
that are connected by a path going strictly upwards have zero fluzx, too. For
example, reaction 1 is coupled to 3, i.e., 1i{>33, but 1 is uncoupled to reaction
5. More on Hasse diagrams can be found in [Schrdder, 2003].

FCA can be formulated using the following LPs:
Two unblocked reactions ¢, 5 € R are directionally coupled, if and only if

max{+v; | Sv =0, vy >0, v; =0} =0. (2.6)
v

To detect if ¢ and j are partially coupled one checks if 7 is directionally
coupled to j and vice versa. Detecting fully coupled reactions is slightly
more complicated and described in [Larhlimi et al., 2012b].

30



2.3 Mathematical basics

We make use of flux coupling information to further improve efficiency of
some algorithms presented in this work, see Chapters 3 and 4.

2.3.3 Mixed integer linear programming

In some applications for metabolic networks binary variables are used to
indicate if a reaction carries flux or not. Thus, for every reaction i € R,
a binary variable a; € B is introduced and constraints are added which
translate to a; = 0 & v; = 0. There exist algorithms which will find an
optimal solution for LPs within polynomial time. If (some of) the variables
are integers (as the binary variables a;) we talk about a mized integer linear
program (MILP). Although at the first sight one might think that these
extra requirements do not affect the problem that much, it has been shown
that solving MILPs is NP-hard, see [Garey and Johnson, 2002].

2.3.3.1 Application for MILP: Minimum network

One application of an MILP for a metabolic network N' = (90, R, S, Irr) is to
find a minimum set of reactions which is capable of maintaining predefined
growth rates. The corresponding MILP was introduced in [Burgard et al.,
2001] and refined in [Jonnalagadda and Srinivasan, 2014]. The MILP for
minimising the number of reactions needed to have a maximum biomass
yield is as follows:

g,% Zai—i— Z ay (2.7)
1ER

kERev
st. Sv=0 (2.8)
Ubio = Vhjo (2.9)
oa; <v; < May; Vi € Irr (2.10)
da; — Ma; <v; < Ma; — da; Vi € Rev (2.11)
[<v<u (2.12)

veR® aeB™ aecBRY

The objective (2.7) is to minimise the number of active reactions, i.e., to
minimise over the binary variables a; and a; indicating if a reaction carries
flux or not. Note that we have for each reversible reaction i € Rev two
binary variables a; and a;. Our system is in steady-state, which is ensured
by constraint (2.8) and the biomass reaction has the maximum biomass
yield (2.9). The relationship a; = 0 if and only if v; = 0 is ensured by
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the constraints (2.10) for the irreversible reactions, and for the reversible
reactions by the constraints (2.11). They are called big M constraints, where
M > 0 is a sufficiently large constant, e.g. some upper bound on the flux
rates. With é > 0 we denote a threshold indicating above which flux rate a
reaction is considered to be active. In practice & will be chosen between 1076
and 107% to indicate if a reaction is active [Erdrich et al., 2015]. Finally,
(2.12) constrains the flux rates due to their bounds.

2.3.3.2 Solving MILPs

The most common approach to solve MILPs [Land and Doig, 1960] is the
branch and bound method [Schrijver, 1998]. The algorithm can be illustrated
as a search tree. For example if we consider an MILP where the integer
variables a € B™ are binary, at step ¢ the variable a; is chosen. We branch
now by considering two different cases: a; = 0 and a; = 1, see Figure
2.6 for an illustration. If this is done for every variable the search tree
presents all possible cases for the values of a. Solving every case results
in a combinatorial explosion, where in each branching step the resulting
sub-problems are solved. Therefore, in each branching step the variables a
are considered as being continuous, i.e., the LP-Relazation is solved. After
computing both objective values (bounds) of the two sub problems (for a; =
0 and for a; = 1) the branch is chosen which delivers the better bound. Here
the next branching occurs, i.e., for variable a;11 the two different bounds
of the corresponding LP-relaxations are compared. If the better of the two
bounds is worse than a bound computed in a different part of the tree,
the search continues in the more promising branch. The algorithm stops if
a solution is found where all variables which have to be integer are indeed
integer variables and no better solution can be expected in any other branch
of the search tree. Doing so, the size of the search space is decreased since
most of the time only a part of the full search tree has to be investigated.
For more details we refer to [Schrijver, 1998].

There exist a lot of different solvers which can be used to solve LPs
or MILPs. Some of them are commercial, such as Gurobi [Gurobi Op-
timization, 2016] and CPLEX [IBM Knowledge Center, 2010], some are
non-commercial, e.g. SCIP (solving MILPs) including SoPlex (solving LPs)
of the Zuse Institute in Berlin [Maher et al., 2017]. SCIP can solve an MILP
exactly over the rational numbers, and the underlying LP solver SoPlex
performs iterative refinement [Gleixner et al., 2012, 2016].
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Figure 2.6: Illustration of the branch and bound method. In each node
the current LP-Relaxation of the problem is solved, i.e., all constraints of
the MILP are kept, but the integer variables are considered as continuous
variables. In the first step this delivers a first bound for the given MILP.
Then we branch, which is indicated by the arcs. In the first branch, the
first binary variable a1 is set to 0, resp. to 1, thus two new LP-Relaxations
are solved now and the direction (arc) with the better bound is considered.
If all bounds in the current branch are worse than bounds computed in a
different part of the search tree, the search continues in the branch where
the best bound was computed so far. If a solution is computed, where all
variables which should be integer are indeed integers and the bound cannot
be improved, the method stops and returns the solution. In the worst case
all possible values of a are examined.

2.3.4 Numerical instability

In the following we discuss the reasons for numerical instability, for more
information we refer to [Higham, 2002; Klotz, 2014]. The methods we in-
troduce in this thesis are implemented in MATLAB. Therefore, the examples
and functions used in the following are related to this language.

Numerical instabilities can be caused by the input data, the algorithm used
to solve the problem, or rounding errors. The problems we are dealing with
here are MILPs and therefore we need to solve systems of linear inequal-
ities, e.g., Az > b with A € R™" b € R™, and x € R"™, where some or
all variables have to be integers. Thus the input values are given by the
matrix A and the vector b. To solve the given MILPs we use MILP solvers
like CPLEX [IBM Knowledge Center, 2010] or Gurobi [Gurobi Optimization,
2016]. Rounding errors occur all the time. They become relevant or have
non-negligible impact especially for the big M formulations.

2.3.4.1 Condition

We start with discussing the effect of the input values on the accuracy of the
solution. The condition of a problem, e.g. of a given LP, is the sensitivity of
the solution w.r.t. the input.
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Lets consider as an example an LP

min cTz
X
sit. Ax <b
r € R,

with c € R, A € R™Xn b € R™,

To solve the LP, the simplex algorithm searches in each step a subset B of
rows of the matrix A such that Apg, is regular. We call such a sub matrix
a basis matriz. The solution in this step is then given by

rp = AB}*I)

The condition for such an LP characterises the effect of small perturbations
in b on the solution xp and is given by the condition number of the basis
matrix Ap, in the last step of the simplex:

Definition 2.41 (Condition number). The condition number k of a regular
matriz D € R™*™ is defined by k(D) = || D|||D7L||.

If we consider an LP as above, k(Ap ) is the rate at which the solution
xp will change w.r.t. a change in b. For example if the condition number
k(ABx) = 10* then one may lose up to k digits of accuracy.

A problem with a low condition number is called well-conditioned and a
problem with a high condition number is called ill-conditioned. If the condi-
tion number is infinite we say the problem is ill-posed which means that in
general no algorithm can be expected to find a reliable solution. A problem
is well-conditioned if small changes in the input lead to small changes in the
results whereas the problem is ill-conditioned if small changes in the input
may lead to large changes in the results.

There are in general several algorithms to solve a given problem. How much
an algorithm is reliable is classified by the stability. The stability indicates
the changes in the output value of the algorithm due to small changes in the
input.

The condition of a problem is independent from the stability of algorithms
for tackling it. But the choice of which algorithm to use is influenced by
the condition of the problem. One should always use an algorithm with the
highest possible stability given the accuracy requirements one needs. The
condition of MILPs depends on the analytic properties of the constraint
matrix.
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The maximal condition numbers of regular submatrices of stoichiometric
matrices for some metabolic networks used in this thesis, can be found in
the Tables 2.1 and 2.2. We computed them using CPLEX and the integrated
command CPLEX.Solution.quality.kappamax.value. According to [[BM,
2011; Klotz, 2014] a given problem is considered as well-conditioned if the
condition number  is smaller than 107, suspicious if 10” < x < 10'° and
ill-conditioned if 10'° < x < 10™. For x > 10'* the problem is considered
ill-posed.

Using big M constraints increases in general the condition number of the
problem.

2.3.4.2 Rounding errors

We recall that M > 0 is part of our constraint matrix, see Subsection
2.3.3.1. Since we are dealing with MILPs, we use solvers like CPLEX [IBM
Knowledge Center, 2010] to find the optimal solution. The methods used in
the solvers are based on well known MILP solving strategies such as branch
and bound. Inside of these methods several LPs have to be solved. This is
usually done by using the simplex method.

If we are using big M formulations our constraint matrix includes M. If
the simplex-algorithm searches for a basis matrix Ap . it can happen that
Ap « is considered as being regular although it is not. Or there is a loss
of precision while computing Ag}*. We consider an example how rounding
errors can cause difficulties using MATLAB.

Example 2.42 (Rounding errors). Assume that

1 M 1
Ap.=|0 0 M
1

Lo1o0

One can easily see that Ap , is singular, since det(Ap.) = 0. In MATLAB,
for M = 10'2, we obtain that det(Ap ) = 0, whereas for M = 1012 + 1e~*
it holds that det(Ap ) = —0.1110e 3. This means that small changes in the
mput influences the output enormously.

To overcome this problem different approaches exist. One is to use values for
M as small as possible and, if they exist, different values for M for different
variables. For example in our case, big M values are introduced to bound
reaction rates from above. Thus we can use the upper bounds of the reaction
rates given by the description of the underlying metabolic network. But we
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can still run into heavy numerical instabilities. The other approach is a
pre-conditioning step of the matrix: Instead of solving Ax = b, one solves
(C1ACY)y = C1b, x := Cay, where the matrices C1, Cs are chosen, such that
k(C1AC) < k(A) [Golub and Van Loan, 2012].

We use big M formulations in the inequalities (2.10) and (2.11) to connect
the flux rates with the binary variables. We give the condition numbers of
the corresponding matrices in the Tables 2.1 and 2.2. As one can see, intro-
ducing big M constraints increases the condition number of the constraint
matrix and therefore makes it more likely that numerical issues occur.

If numerical issues occur we can make use of indicator variables which are
integrated in CPLEX [IBM Knowledge Center, 2010]. This improves the nu-
merical stability significantly but increases the running time. CPLEX has two
strategies to deal with indicator variables. The first one is to reformulate
the constraints into big M constraints, but with values for M as small as
possible. The second one is to branch on the indicator variables and to
update bounds (and M) in the newly appearing branches. CPLEX chooses
one or a mixture of both strategies, depending on the possible values for M
[IBM Knowledge Center, 2010].

All further information needed for MILPs used in this thesis will be given
in the corresponding sections.

2.3.5 Oriented Matroids

Matroids and oriented matroids are applied in several fields, e.g. for (di-
rected) graphs [Finschi and Fukuda, 2002], vector subspaces or linear pro-
gramming [Bjorner, 1999]. Here we use this concept to gain insights into
metabolic networks. In the case of metabolic networks we always have repre-
sentable oriented matroids (matroids which can be represented by a matrix)
but we use the term oriented matroids.

As in most literature we use underlined notations for non-oriented matroids,
i.e., we denote a matroid by M and an oriented matroid by M. A matroid
M can be defined in several ways. Here we use a set of elements U and a
set C of circuits. We start with three examples for non-oriented matroids
before we give definitions.

Example 2.43 (Vector matroid). The first example for a matroid is the
vector matroid: Suppose U is a finite set of vectors of a vector space V.
We say that the corresponding matroid M is represented by U. A cycle is
a linearly dependent subset of U and a circuit C' is a minimal cycle: If any
vector is deleted from a circuit C € C the remaining vectors are not linearly
dependent anymore.
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model id condition number condition number big M
e_coli_core 1.00E4-02 2.06E+408
iAB_RBC_283 1.33E+4-02 3.21E+08
iIT341 7.65E+02 1.08E+11
iLLJ478 2.17TE403 2.73E4-08
iAF692 5.64E4-03 1.62E+14
iSB619 3.13E4-03 4.88E410
iNF517 4.34E4-03 1.51E+13
iHN637 2.73E403 3.03E4-07
iJB785 3.12E+07 1.01E+07
iJN678 8.10E+03 5.29E4-08
iAT_PLT_636 2.24E4-03 4.46E4-06
iNJ661 2.34E+04 5.13E+12
iJN746 2.14E4-03 6.04E+07
iJR904 7.31E403 4.18E+17
iYO844 7.61E403 1.31E+4+13
iND750 1.79E+04 2.10E+09
iAF987 1.90E+04 1.02E+413
iMM904 1.72E+06 9.86E+15
iPC815 8.55E+4-04 1.00E+17
iRC1080 3.30E+05 8.13E+419
iYL1228 1.42E4-04 2.07TE+14
iAF1260 3.25E4-04 8.99E+15
iAF1260b 3.79E4-04 1.25E+17
iSDY_1059 7.53E405 5.89E+13
STM_v1.0 2.55E+06 1.86E+413
iJO1366 1.37E+04 6.47TE+15
iSbBS512_1146 1.58E+408 7.89E+412
iSBO_1134 6.50E+4-05 5.07TE+13
iS_1188 4.94E4-05 2.02E+13
iSFV_1184 2.00E4-08 2.88E+14
iSF_1195 5.19E+05 2.18E+12
iSFxv_1172 3.50E4-05 3.53E+15
iSSON_1240 1.26E+4-08 9.29E+12
iECHT74115_1262 1.05E+4-06 1.40E+14
iE2348C_1286 1.03E4-06 6.46E+13
iG2583_1286 1.12E+4-06 6.09E+16
iECED1_.1282 5.19E4-08 4.81E+415
iECSP_1301 1.29E+4-09 9.49E+12
iML1515 2.72E+04 1.85E+16
iEC042_1314 1.25E+09 1.10E+13
iECNA114_1301 1.22E4-06 5.24E+416
iECs_1301 1.24E4-06 5.19E417

Table 2.1: The condition number of regular submatrices from sto-
ichiometric matrices of the first 42 models from the BiGG Models
database, [King et al., 2016], computed using the command
CPLEX.Solution.quality.kappamax.value. model id: the id of
the model as it can be found in the BiGG Models database. condition
number: the condition of a regular submatrix from the stoichiometric
matrix. condition number big M: the condition of a regular submatrix
from the matrix including the stoichiometric matrix and big M constraints
connecting binary variables and continuous variables, as in the constraints
(2.10) and (2.11). The value(s) for M are given by the upper bounds on
the flux rates.
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model id condition number condition number big M
iECIAI39.1322 2.02E4-08 3.38E+15
iZ.1308 1.20E+09 2.39E+16
iUTI89.1310 1.13E+09 6.08E+16
ic_1306 1.07E4-06 4.39E+12
iLF82_1304 1.32E+08 2.27E+14
iECOK1.1307 1.14E+406 1.03E+14
iECS88.1305 1.70E+08 1.71E+13
iECABU_¢1320 6.78E4-07 1.75E+16
iAPECO1.1312 1.29E4-06 4.52E+14
iNRG857_1313 1.42E+08 3.70E+14
iUMN146_1321 1.12E+06 2.55E+417
iECP_1309 1.23E+406 6.51E+13
iECUMN_1333 1.18E+406 7.91E+13
iB21.1397 1.41E+408 2.00E+-14
iBWG_1329 2.27E4-04 3.28E+13
iECD_1391 1.28E+06 1.11E+14
iECDH10B_1368 3.66E+4-04 1.49E+14
iECSF_1327 3.16E4-04 8.67TE+12
iEcSMS35.1347 5.52E4-08 1.68E+17
iECB_1328 1.12E+06 7.54E+15
iECBD_1354 1.13E+06 4.10E+14
iEcDH1.1363 9.65E+05 1.71E+15
iEcHS_1320 1.09E+-06 1.02E+14
iECDH1MES8569_1439 1.08E+09 1.02E+15
iEC55989_1330 5.68E+08 1.14E+14
iIETEC_1333 1.21E+09 1.49E+16
iEC0103.1326 5.92E4-08 1.30E+15
iY75.1357 7.10E+07 3.01E+12
iECO111.1330 1.23E+09 1.10E+14
iEcE24377_1341 3.07TE4-05 3.56E+14
iECTAT1.1343 1.81E+04 9.80E+12
iEcolC_1368 6.49E+08 8.36E+14
iECSE_1348 1.23E+09 5.42E+14
iUMNKS88_1353 1.27E+09 7.49E+16
iEKO11.1354 5.66E4-08 4.54E+13
iEC026-1355 1.12E+09 5.26E+14
iIECW_1372 1.06E+06 5.10E412
iWFL_1372 1.27E+06 4.24E4+17
iMM1415 1.76E+05 7.70E+14
RECON1 3.156E4-06 1.73E+16
iLB1027_ lipid 4.50E4-06 2.18E4-04
iCHOv1 9.72E4-04 3.07TE+13

Table 2.2: The condition number of regular submatrices from sto-
ichiometric matrices of the first 42 models from the BiGG Models
database, [King et al., 2016], computed wusing the command
CPLEX.Solution.quality.kappamax.value. model id: the id of
the model as it can be found in the BiGG Models database. condition
number: the condition of a regular submatrix from the stoichiometric
gwtrix. condition number big M: the condition of a regular submatrix
from the matrix including the stoichiometric matrix and big M constraints
connecting binary variables and continuous variables, as in the constraints
(2.10) and (2.11). The value(s) for M are given by the upper bounds on
the flux rates.
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Example 2.44 (Column matroid). The second example is the column
matroid. We consider a matriz A € R™*™ where the entries of A can be in
general from any field. The corresponding matroid M is represented by the
columns of A. The cycles are the sets of linearly dependent columns of A,
thus subsets of columns which are linearly dependent vectors. The circuits
are the minimal sets of linearly dependent columns.

Example 2.45 (Graphic matroid). The last example is the graphic ma-
troid. Suppose we have a given undirected graph G = (V,U), where V is the
set of vertices and U is the set of edges. Cycles in the matroid are cycles in
the graph, where the circuits are the cycles of G which consist of a minimal
set of edges.

In the case of oriented matroids the elements U have an orientation. There-
fore, for a graphic matroid the underlying graph is not undirected anymore
but directed.

In the case of a metabolic network where all reactions are reversible, the
matrix representing the oriented matroid is the stoichiometric matrix S €
RY%  The set of elements U are the columns of S, i.e., the reactions of the
metabolic network. Oriented cycles are feasible flux vectors and oriented
circuits correspond to elementary flux modes. Unfortunately, we cannot
consider a metabolic network as a graphic matroid, since metabolic networks
are usually hypergraphs.

A nice introduction to oriented matroids is the book [Bjorner, 1999], which
is used as a basis for the following section. Based on this book, we now give
a proper definition of oriented matroids.

2.3.5.1 Basics for oriented matroids

Let U be a set. A signed subset of U is a pair X = (X1, X ™) with a set
of positive elements X C U and a set of negative elements X~ C U such
that X N X~ = (. The support of X is the set supp(X) = XTUX". An
oriented matroid is a pair M = (U, C) where C is a family of signed subsets
of U, called the oriented circuits of M, which satisfy the circuit axioms:

Definition 2.46 (Oriented Matroid). A tuple M = (U,C) with a set of ele-
ments U and oriented circuits C € {—,0,+}Y is called an oriented matroid
if the following axioms are satisfied:

1. 0¢C.
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2. XelC = —XecC

3. For all X, Y € C we have: supp(X) C supp(Y) = X =Y or
X=-Y.

4. X, Y €C, X # Y andu € (XTNY ™) = there exists a Z € C with
ZTC(XTuYhH\{u} and Z= C (X~ UY ")\ {u}.

Oriented circuits are a certain type of oriented cycles. To define oriented
cycles we need the notion of a dependent set. The idea of a dependent
set comes from linear algebra where linearly dependent sets are considered.
This concept is generalised in oriented matroids. For example in a graphic
matroid a dependent subset forms a directed cycle in the underlying graph.

Since we consider only oriented matroid represented by a matrix, we give
the definition of an oriented cycle related to those matroids:

Definition 2.47 (Oriented cycle). Let M = (U,C) be an oriented matroid,
where U is the set of columns of a given matriz A. A cycle X of M is a
dependent subset E of U, thus a set of linearly dependent columns of A.

Every oriented matroid M has an underlying (non-oriented) matroid M.
In the underlying matroid the cycles do not have an orientation. Thus the
cycles are not a result of the sign function but only the support of it.

One important fact about oriented circuits is that every oriented cycle of
the oriented matroid is a composition of these oriented circuits (Proposition
3.7.2 in [Bjorner, 1999)):

Definition 2.48 (Composition). The composition X oY of two signed sets
X, Y is the signed set defined by (XoY)t = XTU(YT\X7) and (XoY)™ =
X-U(Y—\X").

In this work, we consider oriented matroids which are based on metabolic
networks. We give some short notions and definitions about the connection
between oriented matroids and metabolic networks based on [Reimers, 2014].

Since the elements will have an orientation, the first definition we need is
the sign function together with the sign vector:

Definition 2.49 (Sign function). The sign function of a number A € R is
defined as follows:

-1 ifA<0
o(A) =40 if A=0
1 if A>0
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Definition 2.50 (Sign vector). The sign vector o(z) € {—,0,+}" of a
vector x € R™ is the result of applying the sign function component-wise to
x.

We usually denote the sign vector of a vector x by using the corresponding
capital letter, thus X = o(z).

Definition 2.51. Let X be the sign vector of x € R™. We denote with X+
(resp. X~ ) the indices of all non zero elements in the vector X where the
corresponding entry is positive (resp. negative), thus: X+ = {i | o(x;) =
+}={i|xz; >0} (resp. X~ :={i|o(x;)=—-}={i |z <0}).

We use the notion of a sign vector o for a set of vectors too. For example
o(A) for a matrix A € R™*™ means that o is applied to every column of A.
In combination with the minimal operator Min we denote non-empty signed
sets with inclusion-minimal support. For example Min(o(A)) is the set of
non-empty signed columns of minimal support of A.

A metabolic network where all reactions are reversible can be considered as
an oriented matroid:

Proposition 2.52 (Proposition 2.5.1 in [Reimers, 2014]). Let S € R¥>%
denote a stoichiometric matriz. Then the tuple (R,C) defines an oriented

matroid, where C = Min(V) with V = {o(v) | Sv = 0,v # 0}.

We can now define the flux mode matroid (Definition 2.5.2 in [Reimers,
2014]):

Definition 2.53 (Flux Mode Matroid). Let S € R™ % be q stoichiometric
matriz, where M is the set of (internal) metabolites and R the set of reac-
tions. Then Mg = (R,C) denotes the oriented matroid obtained from S.
This oriented matroid is called the flux mode matroid.

In general there exist irreversible reactions in a metabolic network. There-
fore not all oriented circuits of the flux mode matroid correspond to EFMs,
resp. to feasible flux vectors. We say that a circuit X corresponds to a sign
vector of an EFM if and only if all irreversible reactions have non-negative
signs. Thus:

Proposition 2.54. Consider a metabolic network N' = (9, R, S, Irr). The
sign vectors of the EFMs of N are a subset of the circuits C of the flur mode
matroid Mg:

o(EFMs) ={X € C | X; € {0,+} for all i € Irr}.
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Figure 2.7: Illustration of the same metabolic network as in Figure 1.1,
except that all reactions are reversible. The number of EFMs, resp. oriented
circuits, is 24. All EFMs of the network in Figure 1.1, where the reactions
{1,2,6,7,8} are irreversible are contained in these 24 EFMs.

Proof. All signed vectors of feasible flux vectors of N are oriented cycles
of the flux mode matroid Mg. The EFMs are defined as minimal sets of
active reactions that can operate together in steady-state. Therefore they
correspond to oriented circuits of the flux mode matroid, given that the
elements corresponding to irreversible reactions are 0 or +. O

As already mentioned the flux mode matroid contains oriented cycles which
do not correspond to feasible flux vectors. But we can still use the idea of
oriented matroids to get a different view of our network.

2.3.5.2 Fundamental Circuits

In the following we consider a specific subset of circuits of a matroid, the
fundamental circuits. They can be computed in incremental polynomial time
[Boros et al., 2003] and all other circuits and cycles of the underlying matroid
can be generated with them. We make use of the idea of fundamental circuits
in Chapter 5 which serves as a basis for Chapter 6 where we introduce a
method to compute a minimum set of EFMs needed to represent all possible
flux vectors of a metabolic network A/. To illustrate the following concepts
we utilise the metabolic network in Figure 2.7, which is the same as in Figure
1.1, except that all reactions are reversible.

Definition 2.55 (Matroid bases). Let U be a set of elements and M be a
matroid on U. Bases of M are the maximal subsets of U which contain no
circuit.
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Remark 2.56. There exists in general more than one basis for a matroid.

Example 2.57 (Basis of a vector matroid). Consider for example a
vector matroid, where U is a finite subset of a vector space V. Then a basis
of M is a basis of the vector space V.

The Steinitz exchange theorem, see Theorem 7 on page 115 in [Kung, 1986],
for bases of vector spaces demonstrates that there are several bases, that
all of them have the same number of elements, and that no basis can be
a proper subset of another basis. In the case of matroids we refer to this
attribute as the exchange property.

Example 2.58 (Basis of a column matroid). For a column matroid,
where U is a set of columns of a matriz A € R™*™  q basis is a mazximal
set of linearly independent columns. If the rank of the underlying matriz is
r then each basis has a cardinality of r. Thus, for the network in Figure 2.7
a basis would be a mazximal subset of reactions such that the corresponding
set of columns of the stoichiometric matriz S is a linearly independent set
of vectors.

Example 2.59 (Basis of a flux mode matroid). Consider the network
in Figure 2.7. The set of reactions B = {1,2,3,5,6,9,11} is a basis for
the corresponding flux mode matroid, since the matriz S, g and the matriz
S both have rank 7 and |B| = 7. A different basis would be the set B =
{2,5,6,8,10,11,12}. In total there exist 268 different bases for the network
in Figure 2.7.

We discuss the number of different bases in Section 5.3 and give an upper
bound.

Definition 2.60 (Oriented fundamental circuit (FC), [Bjorner, 1999]
p. 115). If M s an oriented matroid on U, B is a basis of M, and
u € U\ B then there exists a unique circuit C(u,B) of M contained in
BUw. Furthermore C(u,B) supports a unique oriented circuit C'(u,B) up to
sign reversal (—C'(u, B) ), thus there exists an oriented circuit C(u,B) which
has the same support as C(u,B). C(u,B) denotes the basic or oriented
fundamental circuit (F'C) of u with respect to B.

Example 2.61 (Fundamental circuits of a flux mode matroid). Con-
sider again the network in Figure 2.7. As mentioned in Example 2.59 the
set of reactions B ={1,2,3,5,6,9,11} forms a basis for the underlying flux
mode matroid. It is not possible to create a feasible flux using only the
reactions in B. But for each reaction i € R\ B we can find an EFM:

i=4 :C(i,B)={1,2,3,4} with C = (+,+, +, +,0,0,0,0,0,0,0,0).
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i=7:C(i,B)={1,2,3,6,7 with C = (+,+,+,0,0,+,+,0,0,0,0,0).
i=8 :C(i,B) ={1,2,3,5,6,8} with C = (+,+,+,0,—,+,0,+,0,0,0,0).
i=10 : C(i,B) = {3,5,9,10} with C = (0,0,—,0,+,0,0,0,+, +,0,0).

B
i,B) ={3,5,11,12} with C = (0,0,—,0,+,0,0,0,0,0,+,+).
Given a matroid M on a set of elements U, computing a basis of M and
enumerating the corresponding FCs for the computed basis can be done in
incremental polynomial time [Boros et al., 2003].

2.4 Handling metabolic networks

To use and exchange metabolic networks, in general the Systems Biology
Markup Language (SBML) [Hucka et al., 2003] is used. Here, metabolic
networks are represented in an XML machine-readable format. Most of the
metabolic network reconstructions nowadays, and all models used in this
thesis, are published in SBML-format. To read these models we used the
COBRA-Toolbox, version 2.0.5 [Schellenberger et al., 2007].

For most of the models, there exist blocked reactions (see Definition 2.36)
and dead-end metabolites [Mackie et al., 2013]:

Definition 2.62 (Dead-end metabolite). Consider a metabolic network
N = (MR, S, Irr). A metabolite m € M is called a dead-end metabolite
if there exists a reaction i € R which produces (resp. consumes) m but no
reaction in R that consumes (resp. produces) m.

The reversibility of the reactions involved in a metabolic network A is given
in the XML-file as well as the lower and upper bounds. Unfortunately not
each reaction which is declared as being reversible can carry positive and
negative flux. Those reactions are technically irreversible. See Figure 2.8
for an illustration of dead-end metabolites, blocked reactions, and reactions
which are declared as reversible but are irreversible. To detect blocked reac-
tions, dead-end metabolites, and truly reversible reactions we implemented
an algorithm based on LP and used this algorithm as a pre-processing step
for the models. Given the model, including the upper and lower bounds on
the reaction rates, we maximise and minimise the flux through each reac-
tion. If the minimum value is non-negative then the reaction is irreversible.
If both the maximum and the minimum flux are zero, the considered reaction
is blocked. After removing all columns corresponding to blocked reactions
from the stoichiometric matrix S, zero-rows in S correspond to dead-end
metabolites.
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Figure 2.8: The network is a modified version of the network in Figure 1.1.
Here, reactions 3 and 5 are removed. As a consequence, metabolite B is a
dead-end metabolite. This implies that reaction 2 is blocked, thus metabolite
A is a dead-end metabolite as well and reaction 1 is blocked. Finally, reaction
4 can carry flux in only one direction, thus 4 is not reversible as assumed.

2.4.0.1 Number of reactions vs. unblocked reactions

Blocked reactions will never carry flux in a metabolic network and therefore
will never be part of an MCS or EFM. For all methods introduced in this
thesis we computed, in a pre-processing step, all blocked reactions of the
network using linear programming and removed them from the network.

We illustrate the number of blocked reactions in Figure 2.9 for all 84 net-
works of the BiGG Models Database [King et al., 2016]. For almost all
networks the number of blocked reactions in relation to the total number of
reactions is more or less the same (roughly 40% of the reactions are blocked).
The figure gives a first impression on the result, whereas the explicit num-
bers can be found in the Tables 2.3 and 2.4. All computations were done on
a desktop machine with four processors Intel(R) Core(TM) i5-6500, CPU
3.20GHZ, each with 1 thread. We used CPLEX [IBM Knowledge Center,
2010] as an LP solver.
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un- non-
network id mets rxns blocked dead-end time
rxns mets
e_coli_core 72 95 87 68 1
1AB_RBC_283 342 469 453 333 5
iIT341 485 554 436 381 8
iLJ478 570 652 385 331 12
iAF692 628 690 484 417 12
iSB619 655 743 450 381 13
iNF517 650 754 513 435 12
iHN637 698 785 524 448 15
iJB785 768 849 741 671 25
iJN678 795 863 675 597 23
1AT _PLT_636 738 1008 1008 738 20
iNJ661 825 1025 740 579 25
iJN746 907 1054 652 539 23
iJR904 761 1075 667 450 27
1YO844 990 1250 657 500 34
iND750 1059 1266 631 479 39
iAF987 1109 1285 840 708 52
iMM904 1226 1577 893 650 59
iPC815 1552 1961 1065 761 76
iRC1080 1706 2191 1583 1102 163
iYL1228 1658 2262 1223 830 102
iAF1260 1668 2382 1532 1032 138
1AF1260b 1668 2388 1554 1040 154
iSDY_1059 1888 2539 1502 1026 165
STM_v1.0 1802 2545 1597 1086 163
iJO1366 1805 2583 1705 1155 196
iSbBS512_1146 1910 2591 1540 1018 161
iSBO_1134 1908 2591 1530 1022 155
iS_1188 1914 2619 1504 1017 169
iSFV_1184 1917 2621 1516 1026 157
iSF_1195 1917 2630 1512 1022 170
iISFxv_1172 1918 2638 1554 1045 166
iISSON_1240 1936 2693 1601 1066 180
iECH74115.1262 1918 2694 1636 1083 175
iE2348C_1286 1919 2703 1641 1087 183
1iG2583_1286 1919 2704 1644 1087 195
iECED1.1282 1929 2706 1644 1087 190
iECSP_1301 1920 2712 1646 1087 194
iML1515 1877 2712 1744 1147 244
iEC042_1314 1926 2714 1644 1084 188
iIECNA114_.1301 1927 2718 1656 1091 185
iECs_1301 1923 2720 1646 1087 178

Table 2.3: Number of reactions and time for the preprocessing for the first
42 networks (according to their number of reactions) of the BiGG Models
Database [King et al., 2016]. network id: The id of the network on the BiGG
Models Database. mets: number of metabolites. rxns: number of reac-
figns. unblocked rxns: number of unblocked reactions. non-dead-end
metabolites: number of non-dead-end metabolites. time: time needed to
compute all blocked reactions and dead-end metabolites in seconds.
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un- non-
network id mets rxns blocked dead-end time
rxns mets
iECIATI39.1322 1953 2721 1569 1044 170
171308 1923 2721 1646 1087 193
iUTI89.1310 1940 2725 1662 1096 200
ic_1306 1936 2726 1656 1090 186
iLF82_1304 1938 2726 1650 1082 193
iECOK1_.1307 1941 2729 1670 1096 179
iECS88_1305 1942 2729 1653 1088 180
iECABU_c1320 1942 2731 1663 1094 185
iAPECO1_.1312 1942 2735 1668 1096 178
iNRG857_.1313 1943 2735 1675 1100 180
1UMN146_1321 1942 2735 1670 1096 179
iECP_1309 1941 2739 1668 1094 176
iECUMN_1333 1935 2740 1657 1093 174
iB21_1397 1943 2741 1650 1089 170
iBWG_1329 1949 2741 1739 1164 197
iECD_1391 1943 2741 1650 1089 171
iECDH10B_1368 1947 2742 1736 1160 200
iECSF_1327 1951 2742 1743 1162 204
iEcSMS35.1347 1947 2746 1673 1102 187
iECB_1328 1951 2748 1660 1096 172
iECBD_1354 1952 2748 1651 1089 170
iEcDH1.1363 1949 2750 1667 1099 186
iEcHS_1320 1963 2753 1645 1094 173
iECDHIMES8569_1439 1950 2755 1670 1101 190
iEC55989_1330 1953 2756 1670 1103 185
iETEC_1333 1962 2756 1658 1095 188
iECO103_.1326 1958 2758 1660 1096 178
iY75.1357 1953 2759 1670 1101 195
iEC0O111_.1330 1959 2760 1651 1089 170
iEcE24377_1341 1972 2763 1655 1092 180
iECIAT1_1343 1968 2765 1638 1089 172
iEcolC_1368 1969 2768 1653 1092 187
1IECSE_1348 1957 2768 1664 1098 176
iUMNKS88_1353 1969 2777 1665 1098 183
iIEKO11.1354 1972 2778 1655 1098 186
iEC0O26.1355 1965 2780 1666 1098 185
iIECW_1372 1973 2782 1668 1102 190
iWFL_1372 1973 2782 1668 1102 185
iMM1415 2775 3726 2432 1665 343
RECON1 2766 3741 2467 1586 250
iLB1027_lipid 2172 4456 4047 1814 870
iCHOv1 4456 6663 4280 2213 1281

Table 2.4: Number of reactions and time for the preprocessing for the next
42 networks (by the number of reactions) of the BiGG Models Database
[King et al., 2016]. network id: The id of the network on the BiGG Models
Database. mets: number of metabolites. rxns: number of reactions. un-
blocked rxns: number of unblocked reactions. non-dead-end metabgz
lites: number of non-dead-end metabolites. time: time needed to compute
all blocked reactions and dead-end metabolites, in seconds.
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Chapter 3

Computing EFMs exploiting
FCA

The work presented in this chapter has been done in collabora-
tion with Yaron Goldstein and Alexander Bockmayr and is published
in  Proceedings of the Strasbourg Spring School on advances in Sys-
tems and Synthetic Biology under [Rohl et al.,, 2015], available at
https://assb.lri.fr/Proceedings/LivreStrasbourg-15.pdf

EFMs play an important role in the analysis of metabolic networks. Al-
though they are of great interest, it is still hard to compute them, since
their number grows exponentially with the number of reactions involved in
the network. Therefore, it is desirable to develop methods which simplify
the computation of EFMs in a given network.

For the approaches presented in this chapter we use flux coupling relations
in order to reduce the solution space for EFM computation. Fluxz Coupling
Analysis (FCA) determines coupling relations between the reactions in a
network, see Section 2.3.2.3. As a reminder, two reactions are partially
coupled, if zero flux through one reaction implies zero flux through the other.
Whenever there are several reactions that are partially coupled to each other,
it is sufficient to take one reaction of this class as a representative for the
activity of those reactions. There is no need to check if the other reactions
in this class carry flux or not.

In this chapter we improve a given MILP, originally presented by
[De Figueiredo et al., 2009], to compute shortest EFMs containing one
target reaction. We reduce the number of binary variables and consequently
the size of the search space significantly with the help of the representatives.
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Including additional information on directional coupling relations leads to
further improvements.

3.1 Shortest elementary flux modes

In the following we assume that the metabolic networks consist of irreversible
reactions only. If the original network contains reversible reactions, then
these reactions can be split into two irreversible reactions (one for each
direction), see Section 2.3.1.2.

3.1.1 Mixed integer linear program to compute the shortest
elementary flux modes

In 2009 [De Figueiredo et al., 2009] introduced an algorithm that allows
enumerating EFMs of a given metabolic network ' = (9, 9R, S, Irr) using
an MILP:

(shortestEFMs) minZai (3.1)
O en
5.t Sv =0 (3.2)
a; < v; 1 ER (33)
v; <M - a VieR (3.4)
Y ai>1 (3.5)
i€ER
Y Ztai< (> zf) -1 k={1,....,K} (3.6)
ieR (IS0
a; € {0,1},v; >0, YieR (3.7)

where K is the total number of EFMs we want to compute. In each step
ke {l,...,K}, the MILP is solved and a new constraint (3.6) is added to
exclude the EFMs computed so far.

The algorithm minimises (3.1) the number of active reactions in a steady-
state flux vector (3.2). As before, S denotes the stoichiometric matrix and
v is a flux vector. To determine the active reactions, binary variables are
used such that a; = 1 if and only if reaction ¢ is carrying flux. If a; = 0,
then v; = 0, see (3.4), thus reaction ¢ is not allowed to carry flux. Here,
M > 0 is some big constant (“Big M”). Conversely, a; = 1 implies v; > 1,
which is ensured by (3.3). To get a feasible flux vector different from the
zero flux, (3.5) forces at least one reaction to be active. By definition, Z¥
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3.1 Shortest elementary flux modes

equals 1 if reaction ¢ carries flux in the EFM which was computed in the
k-th step, otherwise ZF is 0. Thus (3.6) guarantees that the EFMs which
were computed in the previous steps are not enumerated again. For more
details, we refer to [De Figueiredo et al., 2009]. Since v € R% are continuous
variables, a € B are binary variables, and all constraints involved are linear,
shortestEFMs is a mixed integer linear program, see Section 2.3.3.

Based on the reaction coupling order, see Section 2.3.2.3, we can now use
binary variables corresponding to the coupling classes [i] instead of using
binary variables for every individual reaction. Thus we can rewrite the
algorithm of De Figueiredo et al. in the following way:

(shortestEFMsyep) min > il ag (3.8)
[f]er
s.t. Sv=20 (3.9)
ap < vj V[i] € R and Vj € [i] (3.10)
v; <M -ay V[i] € R and Vj € [i] (3.11)
> ap>1 V[i] € R (3.12)
[f]eRr
> Zhay < (> Zf) —1Vk=A{1,...,K} (3.13)
[i]eR [{]eR
ag) € {0,1} V[i] € R (3.14)
v; >0 Vie R (3.15)

|[¢]] in (3.8) denotes the cardinality of the coupling class [i]. Thus, we com-
pute the shortest EFMs w.r.t. the number of reactions and not the number
of representatives.

The main advantage of our method is that we need only ‘?‘ instead of |9R]
binary variables. For many genome-wide networks, this reduces the number
of 0-1 variables by about one half, as shown in Table 3.2.

To further improve our approach, we may add the coupling constraints (3.16)
and explicitly help the solver to set coupled variables to their correct values:

ag; < v; if j=1 with 1 € [i], V[i] € R. (3.16)

Here we use directional coupling properties of the representatives, i.e., if re-
action [ € R is directionally coupled to reaction j € JR then all reactions in
the same coupling class as [ are directionally coupled to reaction j. There-
fore if j is not active, none of the reactions of the coupling class of [ are.
With this additional information, we do not reduce the number of binary
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3. Computing EFMs exploiting FCA

variables, but may speed up the running time of the algorithm. We call the
MILP consisting of all constraints of shortestEFMs,e, and containing the
constraints (3.16) shortestEFMscoup.

3.1.2 Computational results

In a preprocessing step, we identified blocked and coupled reactions for
different genome-scale metabolic network reconstructions, using the software
F2FC [Larhlimi et al., 2012b,a]. The results are given in Table 3.1. From
this, we created Table 3.2, which shows the effect of using coupling classes
instead of the original set of (unblocked) reactions, regarding the number
of binary variables used to solve the MILP. For most of the networks it is
sufficient to work with as few as a third of the original number of reactions.
Figure 3.1 gives a graphical representation of the results from Table 3.2 and
relates them to the time needed to compute them using results from Table
3.1. The larger the network is, the longer it takes to compute the blocked
reactions and the representatives.

Next we computed EFMs using shortestEFMs,¢, and shortestEFMs qyp On
different metabolic networks. All computations were done on a desktop
machine with two processors Intel(R) Core(TM) i5-2400S, CPU 2.50GHZ,
each with 2 threads. Table 3.3 shows how long it takes to calculate a desired
number of EFMs, namely 10, 100 and 1000. In Table 3.4 the time ratio of
the original algorithm compared to the ones introduced here is shown. Using
coupling classes results in smaller MILPs (less binary variables), so we can
expect shorter running times. The results in Table 3.3 meet these expec-
tations especially for a large number of EFMs. In most cases, the method
shortestEFMs oy, combining coupling classes with directional coupling con-
straints yields the best results.
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3.1 Shortest elementary flux modes

model unblocked fully partially time
reactions coupled coupled

S. cerevisiae iIND750 744 791 84 20 sec

M. tuberculosis iNJ661 800 8567 7588 20 sec

S. aureus iISB619 583 1204 874 12 sec

H. pylori iIT341 501 4167 5212 6 sec

E. coli textbook 95 44 0 0.5 sec

Table 3.1: Number of reaction couplings (computed with F2FC [Larhlimi
et al., 2012b,al) for different genome-wide metabolic networks and the cor-
responding running times. model: the name of the model, where all models
were taken form the BiGG Models database, [King et al., 2016]. unblocked
reactions: number of unblocked reactions. fully coupled: number of fully
coupled pairs (where several pairs can form a representative resp. coupling
class). partially coupled: number of partially coupled pairs (where several
pairs can form a representative, resp. coupling class, also together with fully
coupled pairs of reactions). time: time F2C2 needed to compute the shown
results.

model reactions unblocked representatives
S. cerevisiae iND750 1266 744 446
M. tuberculosis iINJ661 1025 800 412
S. aureus iISB619 743 583 292
H. pylori iIT341 554 501 209
E. coli textbook 95 95 60

Table 3.2: Number of representatives for different genome-wide metabolic
networks (computed with F2FC [Larhlimi et al., 2012b,a]). reactions: num-
ber of reactions of the given models. model: name of the model, where
all models were taken form the BiGG Models database, [King et al., 2016].
unblocked: the number of unblocked reactions. representatives: the
number of coupling classes.

93



3. Computing EFMs exploiting FCA

Model Nr. of EFMs Method
all reps coup
10 16 sec 2 sec 0.6 sec
E. coli textbook 100 5.5 min 23 sec 8 sec

1000 5.75 hrs 3.5 min 1.5 min

10 11 sec 16.5 sec 15.5 sec

H. pylori iIT341 100 18 min 44 sec 32 sec
1000 46.5 hrs 15 min 16.5 min

10 29 sec 7 sec 6 sec

S. aureus iISB619 100 55 min 51 sec 37 sec

1000 29.75 hrs 10 min 7.5 min

10 10 sec 43 sec 38 sec

M. tuberculosis INJ661 100 3.5min 2.5 min 1 min
1000 34 min 1.5 hrs 30 min
10 29 sec 7 sec 6 sec

S. cerevisiae iIND750

100 1.75 hrs 1.5 min 1 min

Table 3.3: Time needed to compute a given number of EFMs for different
modelling approaches. all: Each unblocked reaction ¢ has its own binary
variable a; = 1 < v; > 1 (original MILP from [De Figueiredo et al., 2009]).
reps: Only coupling class representatives [i] € %R have binary variables
a =1 & v; > 1 for j:e?l, with [ € [i] . coup: Same as reps, but with
additional directional coupling constraints a;) < vj, for all [i] € R with ji(>]l,
where | € [i]. We were not able to compute 1000 EFMs for the network
S. cerevisiae iIND750 due to lack of memory.
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3.1 Shortest elementary flux modes

Model EFMs Thme ratio
reps coup

10 8.7 27.7

E. coli textbook 100 13.7 38.9
1000 96.5 220.7

10 0.66 0.7

H. pylori iIT341 100 23.7 32.6
1000 187.1 167.7

10 4.2 5

S. aureus iISB619 100 64.1 88.6
1000 178 239.4

10 0.2 0.3

M. tuberculosis iINJ661 100 14 2.9
1000 0.4 1.1

10 4 4.4

S. cerevisiae iIND750

100 64.9 98.7

Table 3.4: Speed up of the algorithms compared to the standard algorithm
[De Figueiredo et al., 2009]. For example, 8.7 means that the method reps
is 8.7 times faster than all. We were not able to compute 1000 EFMs for
the network S. cerevisiae iND750 due to lack of memory.
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102]

10* -

Figure 3.1: The number of reactions, unblocked reactions, and representa-
tives of the five networks are compared. For each network there are three
circles. The outer circle indicates the total number of reactions in the net-
work, where the volume for all networks is normalised to 1. The volume
of the next smaller circle relates to the number of unblocked reactions and
the volume of the smallest circle corresponds to the number of representa-
tives (in relation to the total number of reactions). On the y-axis in log
scale the time (in seconds) needed to compute the blocked reactions and the
representatives is shown.
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3.2 Further work

Exploiting coupling information on reactions of a given metabolic network
can be used to decrease the solution space whenever binary variables are
used to indicate if a reaction carries flux or not.

For example [David and Bockmayr, 2014] introduce a method based on the
MILP of the previous section. The MILP they propose enumerates EFMs
where two given target reactions are involved. If only one target reaction
is given, the MILP corresponds to ShortestEFMs. Thus, in a preprocessing
step coupling classes can be determined and used to decrease the running
time needed to compute shortest EFMs involving two target reactions.

There exist several methods based on MILP for computing MCSs of a given
metabolic network A/ [Li et al., 2009; von Kamp and Klamt, 2014; Tobalina
et al., 2016; Apaolaza et al., 2017], where it is also feasible to apply the
method introduced here.

In general, it is possible to exploit coupling relations between reactions, or
variables, not only for metabolic networks but for other networks as well.

In the next chapter we introduce a method for finding a functional subnet-
work of a given metabolic network such that given requirements are kept.
The method is also based on MILP and we apply coupling information on
the reactions in Section 4.3.4 in order to decrease the running time.
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Chapter 4

Reduction of Networks

The work presented in this chapter has been done in collab-
oration with  Alexander —Bockmayr and is published in BMC
Bioinformatics under [Rohl and Bockmayr, 2017], available at
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/
512859-016-1412-z.

4.1 Introduction

To analyse genome-scale metabolic network reconstructions, a large variety
of constraint-based methods has been developed over the years [Lewis et al.,
2012]. Some methods can be applied to genome-scale network reconstruc-
tions with several thousands of reactions. Others are limited to small or
medium-sized models, like for example the computation of elementary flux
modes [Schuster and Hilgetag, 1994], minimal cut sets [Klamt and Gilles,
2004] or the dynamical version of FBA coupled with enzyme costs [Waldherr
et al., 2015]. In such situations, a natural question is whether it is possible
to reduce the given large network to a smaller one of practical size.

In this chapter we introduce an MILP which computes a minimum subnet-
work such that predefined functionalities are kept. In order to decrease the
running time we make use of the technique introduced in Chapter 3.

4.2 Background

[Erdrich et al., 2015] introduced a method called NetworkReducer, which
reduces large metabolic networks to smaller subnetworks, while preserving
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4. Reduction of Networks

relevant biological properties of interest. The algorithm in [Erdrich et al.,
2015] is divided into two parts: network pruning and network compressing.
In the compressing step, reactions belonging to the same enzyme subset
[Pfeiffer et al., 1999] are lumped together. In the pruning step removable and
non-removable reactions are identified such that the subnetwork consisting of
the non-removable reactions fulfils four requirements, which can be specified
by the user:

(a) Set of protected metabolites Y™ all metabolites in T™ must be retained
in the subnetwork.

(b) Set of protected reactions Y™ all reactions in Y™ must be retained in
the reduced network.

(c) Set F of protected functionalities (or phenotypes) for the subnetwork.
We assume that any protected functionality f € F can be described by
a corresponding system of linear inequalities: Dyv < dy.

(d) Minimum degrees of freedom: dof > dof ,;,- Here, the degrees of free-
dom dof correspond to the dimension of the null space of the stoichio-
metric matrix S, i.e., dof = |R| — p(9).

The overall goal of NetworkReducer is to find a subnetwork containing as
few reactions as possible such that all requirements (a) — (d) can be satisfied
by a suitable flux vector. An example is given in Figure 4.1.

The method of [Erdrich et al., 2015] searches for a suitable subnetwork
by iterating over the reactions. In every iteration, the flux through one
particular reaction is set to zero and a linear program (LP) is solved to check
if the remaining reactions still form a feasible subnetwork. Feasibility means
that there exist non-zero flux vectors satisfying the steady-state condition
and the other requirements. To identify the reaction to be eliminated a
flux variability analysis (FVA) [Mahadevan and Schilling, 2003], see Section
2.3.2.2, is done and a reaction with the smallest overall flux range is selected.
Thus in every iteration, an LP is solved and an FVA is performed. Each
FVA involves solving up to 2-|9R| LPs, where |2] is the number of reactions.

An important aspect of the method in [Erdrich et al., 2015] is that it does
not necessarily compute a minimum subnetwork (with respect to the number
of active reactions), see Figure 4.2 for an example. The method that we
develop here always finds a feasible subnetwork with a minimum number
of active reactions. A subnetwork satisfying the requirements (a) — (c) can
be obtained by solving only one mixed-integer linear program (MILP). If
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Figure 4.1: Solid arcs correspond to active reactions, dotted arcs to
inactive reactions. In Figure 4.1a, the flux vector satisfies the function-
ality of carrying flux through the biomass reaction while having oxygen
uptake. In Figure 4.1b, the functionality is carrying flux through the
biomass reaction while there is no oxygen uptake. Combining the two
flux vectors leads to the network in Figure 4.1c, which contains seven
active reactions. A minimum subnetwork enabling both functionali-
ties with only six reactions is given in Figure 4.1d. The correspond-
ing binary variables for Figure 4.1d would have the following values:
al = 1,CL2 = 1,a3 = 1,a4 = 1,(15 = 1,a6 = 0,0,7 = O,Clg = 1, where a;
corresponds to reaction 3.

©
@@

Figure 4.2: If in the first step of the pruning procedure the flux through
reaction 1 is set to zero, reaction 1 is removable and reactions 2 and 3
are non-removable. If in the first step reaction 2 or 3 is set to zero, both
of them would be removable and reaction 1 would be non-removable.
The resulting subnetwork is then smaller than the first one.
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this subnetwork does not fulfil the dof-requirement (d), we exclude this
subnetwork and compute a new subnetwork by solving the MILP again.
This method turns out to be much faster than the algorithm introduced
in [Erdrich et al., 2015]. More importantly, we are guaranteed to obtain a
minimum subnetwork regarding the number of active reactions, which is not
the case for NetworkReducer. However, due to the minimality condition, our
method cannot preserve flux variability in the same way as NetworkReducer
does.

A second related work is the FASTCORE algorithm of [Vlassis et al., 2014].
This method is also based on solving several LPs but without performing
an FVA in between. Thus it is a very fast approach. However, the resulting
subnetworks are not minimum and only protected reactions can be specified,
but no protected metabolites, functionalities, or degrees of freedom.

An early approach for network reduction was introduced by [Burgard et al.,
2001], see Section 2.3.3.1 and later improved in 2014 by [Jonnalagadda and
Srinivasan, 2014]. This method also allows computing minimum subnet-
works using an MILP approach. However, only one functionality can be
formulated and not several ones like in NetworkReducer.

Altogether, our method can be seen as a network reduction algorithm that
merges features from NetworkReducer and the method in [Burgard et al.,
2001], such that we can specify biological requirements like in [Erdrich et al.,
2015] and compute all minimum subnetworks using an MILP, similar to
[Burgard et al., 2001].

The organisation of this chapter is as follows. In Section 4.3 we develop the
underlying MILP methods. We start with the basic algorithm and then de-
scribe several improvements. In Section 4.4 we compare our MILP approach
with the existing methods NetworkReducer and FASTCORE. Furthermore, we
apply it to a collection of genome-scale network reconstructions and discuss
the results. Section 4.5 presents the conclusions of this chapter.

A software tool implementing the algorithms described in this chapter is
available at https://sourceforge.net/projects/minimalnetwork/.
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4.3 Methods

4.3.1 Basic MILP to compute a minimum subnetwork

We always assume that our network is in steady-state, i.e., Sv = 0, with
bounds on the reaction rates | < v < w. FEach functionality f € F is
described by a system of linear inequalities: Dyv < dy. For example, we may
require that the biomass reaction has to carry at least 99% of its maximal
rate: vBj, > 0.99 - max(vpio).

We will use binary variables a; € {0, 1} to indicate whether or not reaction
i carries flux in the subnetwork. Thus we need the relationship a; = 0 if
and only if v; = 0. For an irreversible reaction ¢ € Irr, this can be achieved
using constraints of the form

(5(li S V; S Mai. (41)

For reversible reactions, we use another binary variable a; and the con-
straints

da;—Ma; <v;<Ma;—9da;, a;+a; <1. (4.2)

To force protected irreversible reactions to carry flux, we use the constraints
a; = 1 for all i € Y = YR N Irr. Enforcing flux through a protected
reversible reaction can be realized in a similar way with the constraints
a; + a; = 1, for all i € TRV = YR N Rev.

For any protected metabolite m € T™, let %, be the set of reactions involv-
ing m. By Irr,, resp. Rev,, we denote the set of irreversible resp. reversible
reactions in MR,,. If R, contains at least one protected reaction i, metabo-
lite m will be protected by reaction i. However, if R, N Y™ = (§, further
constraints are needed to protect m:

dait+ > a1, Yme T, (4.3)

IERM i€Revm
where T)¢ = {m € Y™ | R,,, N TH = (}.

In [Erdrich et al., 2015], an additional requirement is to have a minimum
number of active reactions. Here we do not include this restriction for the
following reasons. First, we will search for the minimum number of active
reactions such that all the other requirements are fulfilled. Second, in [Er-
drich et al., 2015] the minimum number of active reactions is always set to
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1. Since there exist reactions which are forced to carry flux, this constraint
is redundant.

To find a subnetwork which contains the minimum number of active reac-
tions, we minimize over the sum of the binary variables a;, a;, which indicate
whether a reaction carries flux. The resulting MILP is the following:

MinNW-0) mi ; a .
( )glalgiezyaz +k€zR:ev ay (4.4)
Sv=0,l<v<u

Dyv < dy VfeF

da; <wv; < Ma; Vi € Irr
da;—Ma; <vi< Ma; —da; Vi € Rev
a;+a; <1 Vi € Rev
a;=1, ap+a=1 Vi e T Wk e TReY
Zai+ Z a; > 1, VmeTéwet
1E€ERM i€Revm

v; € R, a; € {0,1} Vie R

a, € {0,1} Vk € Rev

4.3.2 Conflicting functionalities

In the case study considered in [Erdrich et al., 2015], the resulting subnet-
work should keep two desired functionalities: at least 99.9% of the maximal
growth rate under both aerobic and anaerobic conditions should be main-
tained. These two requirements cannot be realized with the same flux vector
v because they imply two opposite states of the reaction os that transports
O3z into the network. We would need a vector v with v,, > § and v,, = 0 at
the same time, which is not possible.

MinNW-0 computes one feasible flux vector v of the network. But, to get
a subnetwork which fulfils the two functionalities we need one flux vector
which fulfils the aerobic condition and another one for the anaerobic condi-
tion, see Figure 4.1. To realize this with a single MILP we have to modify
MinNW-0. First, we search for a flux vector v° which contains the protected
metabolites and protected reactions. Additionally, for each functionality
j € F we search for a flux vector v/ satisfying D;v? < d; and corresponding
binary variables. For example, in Figure 4.1, we would have a; = 1 in case
la) and a; = 0 in case 1b). Due to (4.1) and (4.2), this would imply a; = 1
and a; = 0 at the same time, which is not possible. Thus we have to use
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different binary variables a{ for Ug . With this, the inequalities (4.1) and
(4.2) become

dal <vl < Ma] Vi eA{0,...,|F|},Vierr  (4.5)
dal —Ma] <vl! <Ma] —da], Vje{0,...,|F|},VieRev, (4.6)
al +al <1 Vj e {0,...,|F|},Vi € Rev.  (4.7)

Using the new variables a?, we reformulate the constraints for the protected
reactions: al = 1, for all i € YU, Enforcing flux through a reversible
reaction is realized in a similar way by a? + EL? =1, for all i € TRV, Finally,
the constraints for the protected metabolites become

Z al + Z al >1, Vme . (4.8)

1ERm 1€Revm,

To obtain a minimum subnetwork, we have to minimize the total number of
active reactions. Thus, we need binary variables a; with the property

a; = 0 if and only if ag =0 for all j € {0,...,|F|}, or equivalently
a; = 1 if and only if a? = 1 for some j € {0,...,|F|}.

For irreversible reactions, this can be encoded by the constraints
a; < Zag < (1+|F])-ai, Vielr, (4.9)

and for reversible reactions we get

|7
ai < Y (al+al) < (242|F])-a;, Vi€ Rev. (4.10)
=0
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The resulting MILP is the following:

a,a,v 4

(minN'W) min Z a; (4.11)
SU

Svj:(), <l <u
Dj’l)jgdj

5a£§v§§Maf
5a{—Mdf§v{§Ma{—5ag
al +al <1

ad =1, a) +a) =1

Vi e{0,...,|F|}
Vied{l,...,|Fl}

Vi €{0,...,|F|}, Vi€ Irr
Vj € {0,...,|F|}, Vi € Rev
Vj € {0,...,|F|},Vi € Rev
Vi e T Wk e TReY

Za?—i— Z al > 1, Vm e Tet
1ERM i€ERevm
7l
a; < Zaf < (1+|F)) - a, Vi € Irr
j=0
IFl A
ai < > (al+al) < 2+2|F])-a, Vi € Rev
j=0
vaR, af,aiE{O,l}, Vi € R
al € {0,1} VE € Rev

minNW computes a subnetwork with minimum number of active reactions
while satisfying all the requirements.

Figure 4.1 illustrates the following example:

Example 4.1 (Example for minNW). The network in Figure 4.1a fulfils
the functionality regarding the aerobic condition, while the network in Figure
4.1b fulfils the anaerobic condition. The combination of the minimum sub-
networks corresponding to each functionality does not lead to a minimum
subnetwork for both, see Figure 4.1c. The minimum subnetwork for this
example is given in Figure 4.1d.

4.3.3 Computing all minimum subnetworks

There are scenarios where we have to compute more than one subnetwork.
For instance, consider the case where the minimal dof (requirement (d)) is
larger than 1. If the subnetwork computed with minNW does not have the
required dof, we have to compute a different subnetwork. Furthermore, the
computed minimum subnetwork need not be unique. Thus there may exist
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different subnetworks which all fulfil the requirements and have the same
number of active reactions. So we may be interested in finding all minimum
subnetworks. To compute different subnetworks we can use the MILP minNW
in an iterative way. Whenever a minimum subnetwork is found, we formulate
a constraint which excludes this subnetwork as a feasible solution and solve
the (extended) MILP again. For that purpose we formulate the following
constraints:

(0 =ZHai+> Zf1—a) =1, k=1,2,... (4.12)
1ER iER

where Zf = 1 if reaction ¢ carries flux in the subnetwork which was computed
in the k-th step, otherwise Zf = 0. Thus, (4.12) guarantees that at least
one inactive reaction will become active, or at least one active reaction will
become inactive in the new solution.

Solving minNW iteratively and adding the constraints (4.12) in each step, we
are now able to enumerate all minimum subnetworks.

4.3.4 Reducing the number of binary variables

To further improve efficiency, we will make use of flux coupling information,
see Section 2.3.2.3, Chapter 3, and [Burgard et al., 2004; Larhlimi et al.,
2012b; Goldstein and Bockmayr, 2015; Rohl et al., 2015].

The main advantage of introducing coupling classes is that, if one reaction in
a class is not carrying flux, no other reaction in the class does, and vice versa.
Therefore, in every approach where binary variables are used to indicate if
a reaction appears or not, it suffices to consider one reaction from every
coupling class instead of considering all of them. Depending on the number
of reactions and associated coupling classes, this may significantly reduce
the number of required variables, see Table 4.1. Based on the equivalence

relation <:—(>), we now use binary variables corresponding to the coupling classes
[r] instead of having binary variables for each individual reaction. Thus we
can rewrite the algorithm minNW in the following way:
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(minNW), ., min > [[i]| aj (4.13)
[i]eRr

Svl =0, 1<v/ <u vj € {0,...,|F|}

Djvl < d; vie{l,...,|F|}

5afi]§v§§Mafi] Vi €{0,...,|F|}, [i] € Irr, s € [i]
§al _Ma{ﬂ <l < Ma{ﬂ —5a{i] Vi € {0,...,|F|}, [i] € Rev,s € [i]

]
+ajy <1 vj € {0,...,|F|}, [i] € Rev

iy
CL?Z} =1, CL?Z-/] + EL%/] =1 \V/[Z] c ’I‘Irr7 [’Ll] € YTRev
a([)ﬂ + Z C_l([)i] >1, VYm € Té\/[et
[{]€Rm [{]€Revm
7l B
ay) < Zafi] < (IF+1) - ag V[i] € Irr
=0
|F| . . -
ap) < Z(afi] +ag) < (2+2|F)) - ap V[i] € Rev
7=0
afﬂ,a[i} €{0,1},2/ €R Vil e R,s € R
al € {0,1} V[i'] € Rev

Here, |[7]| denotes the cardinality of the coupling class [i]. Thus, we compute
the smallest subnetwork with respect to the number of active reactions and
not with respect to the number of active representatives. Irr denotes the
representatives of the irreversible reactions, and Rev those of the reversible
reactions. Similarly, TI' resp. TRev is the set of representatives of protected
irreversible resp. protected reversible reactions. With T(J)W ¢ we denote the
representatives which include a protected metabolite.

To exclude previously enumerated subnetworks the constraints (4.12) can
be adapted in the following way:

Y (L=Zfag+ Y, Zh(l—ap) =1, k=1,2,... (4.14)
[i]leRr [i]eRr

Using representatives we need only ‘ﬁ’ instead of || binary variables. For
many genome-wide networks, this reduces the number of 0-1 variables by
about 1/2, see the examples in Table 4.1 and Figure 4.3.
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model reactions unblocked representatives
Mus musculus 3726 2436 1489
E. coli 1JO1366 2583 2369 1399
S. Typhimurium LT2 2545 1620 1047
S. boydii CDC' 3083-94 2592 1546 1016
K. pneumoniae MGH 78578 2262 1223 804
Y. pestis CO92 1961 1065 639
S. cerevisiae S288c 1577 885 558
G. metallireducens GS-15 1285 845 330
M. tuberculosis iNJ661 1025 800 412
B. subtilis 168 1250 658 342
P. putida KT2440 1056 652 282
C. ljungdahlii DSM 13528 785 526 215
H. pylori iIT341 554 501 209
M. barkeri str. Fusaro 690 484 174
S. aureus iISB619 743 465 224
T. maritima MSB8 652 385 148

Table 4.1: Number of representatives for different genome-wide metabolic
networks (computed with F2FC [Larhlimi et al., 2012b,a]). All models are
from BiGG Models database [King et al., 2016]. model: name of the model.
reactions: number of reactions. unblocked: number of unblocked reac-
tions. representatives: number of representatives.
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Figure 4.3: This figures represents thé_results from Table 4.1. Each of the 16 networks is represented by one colour. The largest and most
transparent bar indicates the total number of reactions, written on the y-axis. The middle bar corresponds to the number of unblocked
reactions and therefore to the number of binary variables needed if coupling of the reactions is not exploited. Finally, the smallest bar
indicates the number of representatives of the network.
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4.4 Results and discussion

4.4 Results and discussion

We implemented our MILPs in MATLAB and used CPLEX [IBM Knowledge
Center, 2010] as a solver like in [Erdrich et al., 2015]. For NetworkReducer
resp. FASTCORE we used the implementation provided by the authors of [Er-
drich et al., 2015] resp. [Vlassis et al., 2014]. All computations were done on
a desktop machine with two processors Intel(R) Core(TM) i5-2400S, CPU
2.50GHZ, each 1 thread. For algorithm minNW,,, we computed the cou-
pling classes for partially coupled reactions using the software F2FC [Larhlimi
et al., 2012b,a]. Due to numerical instabilities, see Section 2.3.4, we decided
to use indicator variables in CPLEX. The use of indicator variables is straight-
forward. For example, the big M constraint da < v < Ma is replaced by
a=0=v=0, a=1= v >0, where a € {0,1} is the indicator variable,
see Section 2.3.4.2 for more details. While indicator variables drastically in-
crease the running time, we still outperform the algorithm in [Erdrich et al.,
2015].

4.4.1 Comparison with NetworkReducer

In a first experiment, we ran our implementations on the two metabolic
network reconstructions and functionalities considered in [Erdrich et al.,
2015]. Table 4.2 shows the running time for calculating a subnetwork with
the desired properties.

For Synechocystis sp. PCC 6803 [Knoop et al., 2013], the subnetwork com-
puted by NetworkReducer [Erdrich et al., 2015] contains 462 reactions and
thus 9 reactions more than the minimum subnetwork with 453 reactions ob-
tained by our method. The two subnetworks have 413 reactions in common.
49 reactions in the larger subnetwork cannot be found in the minimum sub-
network, while 40 reactions in the minimum subnetwork do not appear in
the larger one.

For the E. coli 1AF1260 model [King et al., 2016] we get similar results. The
subnetwork computed by NetworkReducer contains 35 reactions more than
the minimum subnetwork obtained by our method. Both networks have 424
reactions in common. There are 51 reactions that can only be found in the
subnetwork computed with NetworkReducer, while there are 12 reactions
which appear only in the minimum subnetwork.
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Algorithm Synechocystis E. coli
time reactions | time reactions

NetworkReducer 5.5 min 462 6 hrs 455

minN'W 31 sec 453 1 hr 416

Table 4.2: Time needed to compute a subnetwork with given requirements
resp. constraints. NetworkReducer: The algorithm introduced in [Er-
drich et al., 2015]. minN'W: The MILP introduced here, using indicator
variables. Synechocystis denotes the model Synechocystis sp. PCC 6803
from [Knoop et al., 2013]. E. coli is the model Escherichia coli iAF1260
from [King et al., 2016].

rxns time
model rxns FAST- FAST-
CORE CORE

rxns time

minN'W minN'W

M. tuberculosis
iNJ661
H. pylori 26695 501 319 0.6 sec 306 2 min

1025 134 0.12 sec 62 2.5 hrs

Table 4.3: model: Name of the model. Both models were taken from BiGG
Models database [King et al., 2016]. rxns: number of unblocked reactions
in the original network. rxns FASTCORE: number of the reactions in the
subnetwork computed with FASTCORE. time FASTCORE: running time
of FASTCORE. rxns minINW: number of the reactions in the subnetwork
computed with minNW. time minIN'W: running time for the algorithm minNW
using indicator variables.

4.4.2 Comparison with FASTCORE

FASTCORE [Vlassis et al., 2014] is a heuristic algorithm which is much faster
than our method. However, the computed subnetworks are not minimum
as can be seen from Table 4.3. The subnetwork computed with our method
is not contained in the subnetwork computed with FASTCORE. For H. pylor:
26695 there are 22 reactions that appear only in the FASTCORE subnetwork
and 9 reactions which can be found only in the minimum subnetwork. Sim-
ilarly, for M. tuberculosis iNJ661, there are 78 reactions that appear only in
the FASTCORE subnetwork and six reactions which can be found only in our
subnetwork. The names of the reactions for both examples are given in the
Appendix in Section 10.1.
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4.4.3 Network reduction for genome-scale metabolic net-
works

As a proof of concept we applied our methods to compute minimum subnet-
works for 16 metabolic network reconstructions taken from BiGG Models
[King et al., 2016] under different scenarios. For each type of organism in
BiGG we considered one model (except for human recon because there is
no biomass reaction). An overview of the results is given in Table 4.4, the
time relation between using indicator variables for each reaction and using
indicator variables for representatives is shown in Figure 4.4. In some cases
we had only one minimum subnetwork, while for some models and scenarios
we found different ones. For example, in the case of H. pylori 26695, we get
16 distinct minimum subnetworks, which will be discussed in Section 4.4.4.

Following [Klamt and Gilles, 2004], we call a reaction essential if after re-
moving this reaction it is no longer possible to achieve at least p% of the
maximal biomass production rate, see Definition 2.10. Like in [Klamt and
Gilles, 2004], we choose p = 20. A minimum subnetwork where it is possi-
ble to achieve a maximal biomass rate constitutes a subnetwork where all
essential reactions can be active and so all essential reactions have to be
included in the subnetwork. We will give the number of essential reactions
for the different models to give an idea about how many reactions are ad-
ditionally needed to have a functional minimum subnetwork including all
essential reactions.

The scenarios for the different networks and some conclusions are given next,
full details can be found in Section 10.1 of the Appendix. The bounds on
the flux rates are the default rates given by the BiGG Models database [King
et al., 2016].

For the networks Mus musculus, E. coli iJO1366, S. Typhimurium LT2,
S. boydii CDC 3083-94, and K. pneumoniae MGH 78578 the requirements
are that at least 99.9 % of the maximal biomass rates for the aerobic and
anaerobic case can be realized by the subnetwork. For Y. pestis CO92 the re-
quirements are that at least 99.9 % of the maximal growth rate with glycine
uptake and the maximal growth rate without glycine uptake can be real-
ized by the subnetwork. For S. cerevisiae S288c the maximal biomass rate
with ethanol exchange and without ethanol exchanged has to be realized by
the reduced subnetwork. For G. metallireducens GS-15, C. ljungdahlii DSM
13528, and T. maritima MSBS the maximal biomass rate with HoO up-
take and without HoO exchanged has to be realized by the reduced subnet-
work. For M. tuberculosis iNJ661 one requirement is that at least 99.9 %
of the maximal growth rate can be achieved. Additionally, we defined 36
protected reactions. For B. subtilis 168 the requirements are that at least
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99.9 % of the maximal growth rate with hydrogen uptake and the maximal
growth rate without hydrogen uptake can be realized by the subnetwork. For
P. putida KT2440 one requirement is that at least 99.9 % of the maximal
growth rate can be achieved. Additionally, we defined protected reactions
to keep the TCA cycle. For H. pylori 26695 one requirement is that at least
99.9 % of the maximal growth rate can be achieved. Additionally, we de-
fined 28 protected reactions. A detailed discussion of this test case will be
given in the next subsection. For M. barkeri str. Fusaro the requirements
are that at least 99.9 % of the maximal growth rate with ammonia uptake
and the maximal growth rate without ammonia uptake can be realized by
the subnetwork. For S. aureus N315 the maximal biomass rate with glucose
uptake and without glucose uptake has to be realized by the subnetwork.
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rxns mets reps

model rxns mets €58 in in in t.ime . time

rxns SNW SNW SNW minNW minNW., SNWs
Mus musculus 2436 1665 247 351 351 241  13.5 hrs 50 min 1
E. coli 1JO1366 2369 1159 363 562 601 262 12 min 10 min 1
S. Typhimurium LT2 1620 1098 305 458 455 277 26 min 25 min 1
S. boydii CDC' 3083-94 1546 1019 441 445 450 209 4.5 hrs 7.5 min 1
K. pneumoniae MGH 78578 1223 830 203 338 340 188 5 min 3 min 1
Y. pestis CO92 1065 761 279 339 339 171 2 hrs 1.75 hrs 1
S. cerevisiae S288c 885 639 262 290 289 195 20 min 12 min 2
G. metallireducens GS-15 845 710 544 557 567 153 4 min 49 sec 1
M. tuberculosis iNJ661 1025 580 314 427 425 168 1 hr 13 min 1
B. subtilis 168 658 500 270 296 300 134  4.75 hrs  2.75 hrs 1
P. putida KT2440 652 539 300 344 348 116 1 hr 14 min 7
C. ljungdahlii DSM 13528 526 448 369 383 389 118 26 sec 7 sec 44
H. pylori 26695 501 381 265 321 323 89 9 sec 9 sec 16
M. barkeri str. Fusaro 484 417 289 364 369 90 25 sec 24 sec 20
S. aureus iISB619 465 387 71 122 127 75 28 sec 27 sec 1
T. maritima MSB8 385 331 267 282 280 87 14 sec 5 sec 28

Table 4.4: Computational results using indicator variables. model: name of the model. All models are from the BiGG Models
database [King et al., 2016]. rxns: number of unblocked reactions in the original network. mets: number of metabolites in
the original network after removing dead-end-metabolites. ess rxns: number of essential reactions in the original network.
rxns in SNW: number of the reactions in the minimum subnetwork. mets in SN'W: number of the metabolites in the
minimum subnetwork. reps in SN'W: number of the representatives in the minimum subnetwork. time minNW: running time
for the algorithm minNW. time minNW..p: running time for the algorithm minNW.,. SN'Ws: number of minimum subnetworks
which fulfil all the requirements. For detecting the running time, only one subnetwork was computed.
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Figure 4.4: Each network considered in Table 4.4 has its own colour, the names of the networks are given by the z-axis. The y-axis
shows the relative time needed to compute a subnetwork using indicator variables for each reaction or using indicator variables for each
representative. Thus, since the centres of all circles are above 1 it is always faster to use representatives. The volume of the outer circle
corresponds to the number of reactions in relation to the number of representatives, which is indicated by the volume of the inner circle:
the volume of the outer circle is always one and the volume of the inner circle was computed correspondingly. For most networks it can be
seen that the smaller the number of representatives is (the smaller the volume of the inner circle is), the faster it is to use representatives
(the higher the circle is). The most advantage can be seen for the network S. boydii CDC 3083-94, where it is 36 times faster using
representatives.
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4.4 Results and discussion

4.4.4 Case study: Helicobacter pylori 26695

In this section we discuss the results for computing several minimum subnet-
works for the metabolic network H. pylori 26695 using indicator variables.
The requirements are the following:

1. There are 28 protected reactions.

2. The maximal biomass yield is 20.2606, and the subnetworks should be
able to produce at least 99.9% of this yield.

In total we computed 16 subnetworks each containing 321 reactions, which
is the minimum number needed to fulfil the requirements. The time needed
to compute all these minimum subnetworks was 127 seconds with minNW and
33 seconds with minNW,e,. Altogether the 16 minimum subnetworks use 329
different reactions, which can be found in the Appendix. 311 reactions are
present in every subnetwork, among them all the 265 essential reactions of
H. pylori. Only 18 reactions are not present in every subnetwork: CCP,
G3PD1, D-Amino acid dehydrogenase, FUMt3, Glycerol-3-phosphate de-
hydrogenase (NADP), SUCFUMt, L-alanine dehydrogenase, Anthranilate
synthase, Formate-tetrahydrofolate ligase, D-Alanine exchange, D-alanine
transport via proton symport, L alanine reversible transport via proton sym-
port, L-Alanine exchange, ANS2, GAR transformylase-T, NO3t2, NO3t3,
Catalase. Figure 4.5 shows the distributions of these reactions in the 16
subnetworks.
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(a) The z-axis gives the names of the reactions. The y- (b) The z-axis again corresponds to the reactions. The y-
axis shows the number of subnetworks where the reaction is axis corresponds to the subnetworks. A dot means that the
present. reaction is present in the subnetwork.

Figure 4.5: The two illustrations show the distribution of the reactions which are not present in all subnetworks. In Figure
4.5a each reaction (x-axis) has a bar. The bar indicates in how many subnetworks the reaction can be found. For example,
reaction CCP can be found in every subnetwork except 1 (there are in total 16 subnetworks) and reaction CAT can be found
in only one subnetwork. Figure 4.5b illustrates where the reactions are found. Again the z-axis corresponds to the reactions.
Thus a dot at (1, CCP) means that CCP appears in subnetwork 1. CCP can be found in every subnetwork except in the
second one, whereas CAT can be found only in the second one.
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4.5 Conclusion

Additional insight can be obtained by analysing co-occurrence patterns of
the 18 non-essential reactions. Some of these reactions are mutually ex-
clusive regarding the minimum subnetworks. For example, all subnetworks
that contain reaction CCP do not contain CAT and vice versa. The same
holds for the pair FTHFLi and GART, and the pair ANS and ANS2. Re-
garding the functionalities of these reaction pairs, one can easily check that
the two reactions in each pair do basically the same. Therefore, it is suf-
ficient if only one of them is present. In opposite to this, we can see that
DALAt2r and EX ala__D(e) form a cycle since they always appear in the
same subnetworks. The same holds for ALAt2r and EX ala__L(e). Both
cycles also seem to be mutually exclusive, thus only one of them is present
in the subnetworks. Similar observations can be made for the cycle formed
by NO3t2 and NO3t3, which is mutually exclusive to the cycle formed by
SUCFUM¢t and FUMt3.

One may ask whether the reactions that never appear together in the same
subnetwork are also mutually exclusive regarding EFMs, i.e., whether or
not there exists an EFM involving both reactions [Marashi and Bockmayr,
2011]. While this holds for the reaction pair FTHFLi and GART and the
pair CCP and CAT, it is not true for the other reactions.

4.5 Conclusion

We presented in this chapter an MILP approach we developed to compute
for a given large metabolic network one or more minimum subnetworks pre-
serving biological requirements that can be specified by the user. Compared
to previous work [Burgard et al., 2001; Vlassis et al., 2014; Erdrich et al.,
2015], our method guarantees minimality of the subnetwork regarding the
number of active reactions while preserving all the given requirements. In
case there exist several minimal solutions, we are able to enumerate all of
them. This may give additional insight into how the network is function-
ing and which reactions are really needed to satisfy the requirements. We
applied our algorithms to several genome-scale metabolic networks and we
always found the minimum subnetworks in reasonable time.

Once these subnetworks have been computed, further analysis becomes pos-
sible by using methods that are not applicable to the original network. For
example, one may compute EFMs and MCSs. In addition, one can take a
closer look at the reactions involved in one or all minimum subnetworks in
order to get a better understanding of their role in the network.
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Chapter 5

Polyhedral Cones, Oriented
Matroids, and Metabolic
Networks

So far we only used MILP to analyse metabolic networks. MILP is a strong
tool and can be applied to answer different questions regarding metabolic
networks. However, for some questions MILP is not the right choice. Here,
as in Chapter 3, we want to compute EFMs of a given network. Compared
to the method in Chapter 3 we do not want to compute shortest EFMs but
a subset of EFMs which can be used to represent every possible behaviour
of the network. We start by considering only networks where all reactions
are reversible. In Chapter 6 we extend our findings to metabolic networks,
where irreversible reactions exist as well.

In this chapter, we recapitulate the connection between polyhedral cones,
oriented matroids, and metabolic networks and present new results that
strengthen this connection.

All definitions regarding metabolic networks, polyhedral cones and oriented
matroids needed in the following can be found in the Sections 2.2, 2.3.1, and
2.3.5 respectively.

We give a first idea about the connection of metabolic networks, polyhe-
dral cones, and oriented matroids: all three systems have minimum sets of
generators. For a metabolic network a minimum subset of the elementary
flux modes, see Definition 2.5, can be a generating system, for a polyhedral
cone there exists a finite set of rays, see Definition 2.22, and for an oriented
matroid the oriented fundamental circuits can be used, see Definition 2.60.
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We show the connection between these three sets and use new information
to introduce a method on how to find a minimum set of elementary flux
modes which fully describes the underlying metabolic network.

5.1 Oriented fundamental circuits and reaction
splitting

To show the connections between oriented matroids, polyhedral cones and
metabolic networks we consider here a network where all reactions are re-
versible. An illustration can be found in Figure 2.7. The flux cone 'y is
described by the steady-state assumption only: T'yy = {v € R® | Sv = 0},
thus 'y is a linear subspace. The set of elements U of the related flux mode
matroid Mg = (R, C) is the set of columns of the stoichiometric matrix S,
which we identify with the reactions R of the network N, see Definition
2.53. Since all reactions are reversible it holds that Tys = Ay = {v € R™ |
Sv = 0, Vlrr — 0}.

According to Proposition 2.52, the tuple (R, C) defines an oriented matroid,
where C = Min(V) with V = {o(v) | Sv = 0,v # 0}. This oriented matroid
is called the flux mode matroid, see Definition 2.53. Since the metabolic
network considered in this chapter contains only reversible reactions there
exists for each oriented cycle X € C of Mg a ray v € I'yy with o(v) = X
and vice versa. The EFMs of N are flux vectors consisting of a minimal set
of active reactions, thus they are rays in I'ys of minimal support. Oriented
cycles in Mg of minimal support are oriented circuits of Mg, therefore there
exists a bijection between the EFMs of N and the oriented circuits of Mg,
see Table 5.1 for an overview. This connection is not true, if there exist
irreversible reactions in N, see Proposition 2.54. We discuss this issue in
Chapter 6.

So far we have a connection between the flux vectors in a network A/, the
rays in 'y = Aps, and the oriented cycles in Mg. Furthermore we have
seen the relationships between EFMs in NV, the rays of minimal support in
I'sr, and the oriented circuits in Mg.

Metabolic Network Flux cone Oriented Matroid
Flux vector Ray Oriented cycle
EFM Ray of minimal support Oriented circuit

Table 5.1: This table connects metabolic networks, polyhedral cones, and
oriented matroids. The connections are only valid if all reactions in the
metabolic network are reversible.
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In the following we consider a connection between the oriented fundamental
circuits of Mg and certain rays, resp. EFMs in A/. We use the network in
Figure 2.7 for an illustration:

Example 5.1 (Flux cone and flux mode matroid if all reactions are re-
versible). The stoichiometric matriz S € R™*%® of the network in Figure
2.7 has rank 7. As in Example 2.59, a basis for the corresponding flux mode
matroid consists of seven reactions, e.g. B = {1,2,3,5,6,9,11}. For each
i € R\ B exists one oriented fundamental circuit, see Example 2.61.

To connect the oriented fundamental circuits to I' s we use reaction splitting,
see Section 2.3.1.2 and 2.3.1.3. For this we first consider the lineality space
of a polyhedral cone after splitting a subset of reactions. Generalizing a
result from [Larhlimi and Bockmayr, 2008], we get:

Proposition 5.2. Let I' C R" be a polyhedral cone with lineality space A.
For a set of variables I C {1,...,n}, the lineality space AL of the reconfigured
cone T (see (2.2) ) is given by:

/N\I:{(J(D c RtHI :EEAcmdszO}},

where 1 = 0 means x;,, =0 for all iy, € 1.

Proof. For the cone I' = {x € R™ | Ax > 0} the lineality space is A = {x €
R™ | Az = 0}. Splitting the variables in I delivers the cone I/ = { (Z)) €

R (A, —A.r) <i> >0, xy > 0, w > 0}. For the lineality space we
get:

Al = x) e R (4, —A. ) (QU) =0, 21 =0, w= 0}

¢ ;
{(g) e R | (4, —A, ) <g> —0, 27 = 0}
{(”") e R | Az =0, g;f_o}

1)

T

0

e R+ xEAandsz()}

O

We can use this proposition to obtain a first result regarding the connection
of the basis of a matroid and the corresponding polyhedral cone:
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Theorem 5.3. Let N' = (9, R, S, Irr) be a metabolic network where all
reactions are reversible. Furthermore let I'ar be the flux cone with Ay = Ty,
where the dimension of An is t. Let Mg be the corresponding flux mode
matroid of N and let B be a basis of Mg.

After splitting the reactions of the set R\ B the augmented polyhedral cone

fff\B s pointed.

Proof. Let Mg = (R,C) be the flux mode matroid and T'yy = {v € R% |
Sv = 0} be the flux cone of N with p(S) = |%R| — ¢. Since all reactions are
reversible it holds that Ay = ' with dim(Ax) = ¢.

Let B be a basis of Mg. B consists of |9R| — ¢ linearly independent columns
of S. Thus it holds that p(Ss ) = |B|.

According to (2.2) we denote with fi‘/\g the flux cone derived from I'ys by

splitting the reactions of the set 28\ B. Since Axr = I'yr and by Proposition
5.2 the following holds:

Ki‘/\B — {(8) e Rt | v € Ay, vgnp = 0}
= {(8) eRPIH | v € Ty, vy = 0}
= {<8> € R [ Sv =0, vy 3 = 0}
— {<8) e RIS, pug =0, vy = 0}

Because p(S. ) = |B| it follows for all v € I'yr with S, gvg = 0 that vg =0
and therefore K?\{/\B = {0}. Thus ff/\B is a pointed polyhedral cone. O

Since fi‘/\lg is pointed it can be completely described by its extreme rays.

It is shown in [Larhlimi and Bockmayr, 2009] that there exists a 1-1-
correspondence between the minimal proper faces (MPFs), see Definition
2.20, of a flux cone and the minimal metabolic behaviours (MMBs), see
Definition 2.7. If a polyhedral cone is pointed, the MPFs are the set of
ERs. From this we can deduce the following proposition:

Proposition 5.4. Let I'yr be a pointed flux cone of a metabolic network
N = (O, R, S, Irr). The ERs of T'xr are equivalent to the flux vectors of T zr
with minimal support w.r.t. the irreversible reactions.

We denote the support w.r.t the irreversible reactions with suppy,,, thus for
v € 'y we have suppy,,(v) = {i | i € Irr, v; # 0}. Note that suppy,,(v) is
the metabolic behaviour of v.
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Using Proposition 5.4 we can consider the pointed polyhedral cone r \B, its
ERs, and its connection to Mg more closely:

Theorem 5.5. Let N = (M, R, S, Irr) be a metabolic network where all
reactions are reversible with the flur cone I'ny = Ay and dim(Ay) = t.
Let Mg be the corresponding flur mode matroid of N and B an arbitrary
but fized basis of Mg. Let Fm\B be the pointed polyhedral cone derived by
splitting the reactions of the set R\ B in Ty. The sign vectors of the ERs

of fi‘/\B are, after recombination, the oriented fundamental circuits of Mg

(w.r.t. the set B C R).

Proof. Let B be an arbitrary but fixed basis of Mg and t = |R\ B|. For
each i € R\ B there exists a fundamental circuit X € Mg with supp(X) C

B U {i}, see Section 2.3.5.2. It holds that Fm\B = {<§> e RMIH+ | (5] —

S m\B) <2> =0, vg\g > 0, x > 0}. Since F/\/\ is pointed, the ERs of Fm\B

are the rays of I' N\ which have minimal support w.r.t. the set of irreversible

reactions, which is the set 28 \ B in v and all entries of x. For v € T'yr we
have o\ 5(v) = v with v; = v; for all j € B and for each iy € 93\ B we have
V), = vy, and Upqp = 0, if v;, > 0 or v;, = 0 and V4 = —v;, if v;, <0, see
Definition 2.29 and Equation (2.1).

What we need to show is:

i) for each ER v € f?\q/\B it holds that X = o(v) for v = 7753\3(5) is an
oriented fundamental circuit of Mg w.r.t. B and

ii) for each oriented fundamental circuit X w.r.t. B of Mg with X = o(v)

and v € Ty the ray v = my\5(v) is an ER of Fm\B.

We denote with C(i,B) the oriented fundamental circuit X of Mg with
supp(X) C BU {i}, where i € R\ B.

i) Al ERs v € I‘m\B \ {0} have minimal support w.r.t. the irreversible reac-

tions. In T’ /\/\ the irreversible reactions are the split reactions thus the set
M\ B and their split counterparts. It holds that |suppy,,(v)| = 1: Since B is
a basis of M it holds that p(S. ) = |B| = |R|—t = p(S). For each i € R\ B
the column S ; is therefore hnearly dependent on the columns of S, 5. This

implies that for each i € R\ B there exists a ray v € 'y with v = g\ 5(v)

and suppy,, (V) = 7. The rays with this property are ERs of 1:/93/\6 since they

have minimal support w.r.t. the irreversible reactions of 1:/93/\6. This implies
that for each ER 7 € T\* it holds for v = 7§y 5() that o(v) = C(i, B),

thus X = o(v) is an oriented fundamental circuit of Mg w.r.t. B.
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ii) For all i € R\ B there exists a ray v € I'yy with o(v) = C(i,B). Ac-
cording to Definition 2.29 we have that myx\5(v) = v € FJD\Q/\B. It holds that
suppy,(v) = {i}. Thus all rays v € f%\g \ {0} corresponding to a funda-
mental circuit of Mg w.r.t. B have minimal support w.r.t. the irreversible

reactions in 1:]93/\6 and are therefore ER in f??/\B, see Proposition 5.4. O

We give now an intuition to the meaning of Theorem 5.5. Note again that
the cone ff/\lg, and in particular the set of ERs, does not have to be unique.
The set of ERs depends on B C fR, a basis of the matroid Mg¢. Depending
on BB we have a set of oriented fundamental circuits of the oriented matroid
Mg which correspond to the sign vectors of the recombined ERs of ff/\g.
Example 5.6 (Oriented fundamental circuits correspond to ex-
treme rays). Lets illustrate Theorem 5.5 by the network in Figure 2.7,
with M = {A,...,G} and R = {1,...,12}. From Ezample 2.59 we know
that one basis for the network is given by B = {1,2,3,5,6,9,11}, since
p(Ss5) = p(S) = 7, where S € R™12 is the stoichiometric matriz of the
network. There exist five oriented fundamental circuits w.r.t. B. The five
non-basis elements are R\ B = {4,7,8,10,12}. In Figure 5.1 the non-
basis reactions are split and no reversible flux vector exists. Therefore the
corresponding polyhedral cone f%\s is pointed. The recombined ERs of the
augmented polyhedral cone are {+1, +2, +3, +4}, {+1, +2, +3, +6, +7},
{+1, +2, +3, =5, +6, +8}, {3, +5, +9, +10}, {3, +5, +11, +12} and
the reverse of each ray. The sign vectors of the ERs of this cone are, after
recombination, the oriented fundamental circuits of the flux mode matroid
Mg = (R,C) w.r.t. the basis B. Another basis for the network in Figure
2.7 is given by B = {1,2,4,7,8,10,11}. The rank of S, is again seven.
There exist again five oriented fundamental circuits w.r.t. B and splitting
the reactions of R\ B delivers a pointed polyhedral cone fff\B where the ERs
correspond to the oriented fundamental circuits, see Figure 5.2. Note that
the 2-cycles (see Definition 2.33), i.e., the vectors consisting of two direc-
tions of a split reaction, e.g. {+4,—4}, are feasible flux vectors in 1:3)\;/\37 but
no ERs. This can be seen by applying the rank test, i.e., Theorem 2.25.

Note that the ERs of f?}\g describe f?\%/\s fully, thus they can be used to

generate every ray of F%\B. After recombination they are EFMs of the
network N' = (9, R, S, Irr). Since every ray v € fff\B (except the 2-cycles)
corresponds to a ray in I'ys (and vice versa) and therefore to a flux vector
of NV, the set of recombined ERs of fi‘/\B is a subset of EFMs of N/ which

can be used to generate every other flux vector in .
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5.1 Oriented fundamental circuits and reaction splitting

Figure 5.1: A basis of the un-
derlying matroid Mg is B =
{1,2,3,5,6,9,11}. In the network
the reactions of R \ B are split.
There exists no reversible flux vec-
tor anymore.

Figure 5.2: A different basis of the
underlying matroid Mg is B =
{1,2,4,7,8,10,11}. Again, the re-
actions of R\ B are split and there
exists no reversible flux vector in
the modified network.

Figure 5.3: Both networks are the same as in Figure 2.7 except that the
non-basis elements were split w.r.t. the given bases. In both examples there
exists no feasible reversible flux vector. Thus the corresponding polyhedral
cones ff/\B are pointed. For both bases the cones ff/\B have ten different
ERs which correspond, after recombination, to five EFMs (up to orientation)
of the original network and which are the oriented fundamental circuits of

Mg w.r.t the given basis.
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5.2 Computing a basis and oriented fundamental
circuits

To compute a basis we need an important concept from matrix theory
[Gilbert and Gilbert, 2014, p.85]. A matrix B™f € R™*" is in reduced
column echelon form if the following properties hold (see Figure 5.4):

1. The first non-zero element in column k is a 1 in row jg, for k =
1,2,...,r (this 1 is called a pivot).

2. 1<j1 <ja<---<jr <m (i.e., for each change in columns from left
to right, the pivot appears in a lower row).

3. For k =1,...,r, the pivot in column £ is the only non-zero element
in row ji.

4. Each of the last n — r columns consists entirely of zeros.

To compute a basis of a matrix A we can transform A to the reduced row
echelon form (which is the transpose of the column reduced echelon form,
see Figure 5.4). The pivot elements then refer to the columns of A which
define the basis.

We give now the algorithm from [Khachiyan et al., 2005] to find fundamen-
tal circuits. We can use this algorithm to compute all oriented fundamental
circuits, because every fundamental circuit X has exactly two possible orien-

(1) 0 0 0 0 0\«

x 0 0 0 00

0 (1) 0 0 0 0« jo
Breef — 0 0 @ 0 0 0 — J3

* * * 0O 00

* * * 0O 00

00 0 (1) 0 0f«Jr

* * * * 0 0

Figure 5.4: B is a matrix in reduced column echelon form, where * are
appropriate values in R.
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tations, X and —X, and leads therefore two oriented fundamental circuits.

Algorithm 1: Compute Oriented Fundamental Circuits
Input : Matrix A which represents the oriented matroid M = (U, ?)
where U is the set of columns of A
Output: Fundamental circuits of M
1 B « ReducedRowEchelonForm(A) ;

/* Compute the reduced row echelon form of A */
2 B < basis of M;

/* B are the pivot elements of B™® */
3 fori e U\ B do
X+ C(i, B);

/* unique oriented circuit contained in BUj,
e.g. computed solving A, gy;z =0 (since B is a
basis there exists a unique solution), with

Xi = o(z) x/
5 end
6 F U, +X*
/* F is the set of oriented fundamental circuits of M
w.r.t. B */

7 return F;

If an oriented matroid M is represented by a matrix A € R™*", with n > m,
and p(A) = m then there exist n —m oriented fundamental circuits w.r.t. a
given basis. To compute all oriented fundamental circuits w.r.t. a given basis
n — m LPs have to be solved, thus it can be done in polynomial time.

5.3 Different bases

Let NV = (9, R, S, Irr) be a metabolic network, where all reactions are
reversible and let Mg be its underlying flux mode matroid. Let furthermore
'y be the corresponding flux cone and Ay its lineality space, where the
dimension of A is t. Note that it holds that I'yy = Axr. A basis B of
Mg consists always of ¢ columns of S, but is not unique. So one question
is, how many different bases exist for a given network? A trivial upper
bound would be the number of every combination of ¢ different reactions,
o () = D) (B~ 4D
t tt—1)---1
reactions of the network A, where all reactions are reversible. But this
bound is not exact as can be seen in Figure 5.5.

, where |9| is the number of
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Figure 5.5: The stoichiometric matrix of the original network, where no
reaction is split (see Figure 2.7) has a rank of seven. But not all sets of
seven reactions form a basis B of the underlying flux mode matroid Mg.
For example the reactions B = {2,4,7,8,10,11,12} are not a basis, since
the reactions {7,8,11,12} C B form a feasible reversible flux vector.

Example 5.7 (Not all sets of t reactions form a basis). The di-
mension of Ax for the network of Figure 2.7 is seven. We could choose
B = {2,4,7,8,10,11,12}, thus R\ B = {1,3,5,6,9}. But the polyhedral
cone fi{/\s is not pointed as can be seen in Figure 5.5, where the reactions
of R\ B are split. The reactions {7,8,11,12} can still form a reversible flux

vector. Furthermore p(S« ) = 6 and p(S) =7, thus B is not a basis of Mg.

To compute an exact bound for a given network, we can consider every set
of t reactions and check if they correspond to a basis B. This can be done
by computing the Tutte-polynomial [Welsh, 1999] of the matrix S.

Definition 5.8 (Tutte Polynomial, [Welsh, 1999]). Let M = (U,C) be a
matroid represented by a matrix A. The Tutte polynomial for two variables
T,y 1S
T(M;z,y) = Z (z — 1)PU=PE) () 1) IFl=p(F)
FCU

where p(F) is the mazimum size of a linearly independent set in F'.

The number of different bases for a matroid M is given by T (M;1,1),
[Jaeger et al., 1990]. For x = 1 = y most of the terms of the Tutte-
polynomial equal zero, except for those cases where the exponent is zero
as well. This is the case for the terms (z — 1)P)=,(F) if p(U) = p(F)
and for the term (y — 1)/FI=P(F) if |F| = p(F), thus if F is a basis for
M. For example the Tutte-polynomial for the network in Figure 2.7 is:
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27 4 525 4+ 20y + 142® + 12ty + 8x3y? + 5ay3 + 3wy 4 ° 4 2324 + 2623y +
212292 +13xy> +4y* +2423 4+ 3122y + 222y % 4+ Ty3 + 1522 + 182y + Ty +4x +4y).
For x = 1 = y this equals to 268 which is exactly the number of different
bases.

We used the SAGE toolbox [The Sage Developers, 2016] to compute the Tutte-
polynomial. We applied this to the reversible part of metabolic networks in
the next chapter, see Table 6.2.

Using the Tutte-polynomial gives an exact bound for the number of differ-
ent bases of the matroid and therefore for the number of different sets of
MR\ B, a minimum set of reactions which can be split to obtain an aug-
mented pointed polyhedral cone f%\g. The drawback is that computing the
Tutte-polynomial to determine the number of different bases is computa-
tionally very expensive. To compute the Tutte-polynomial every subset of
the columns of S is considered and the rank of those subsets is computed.
To compute the number of different bases it would be sufficient to compute

the rank of all subsets of S which have a cardinality of p(S), thus |9R| — ¢.

5.4 Conclusion

In this chapter we considered the relation between polyhedral cones and
metabolic networks. The flux cone, a polyhedral cone, is an appropriate de-
scription of the underlying metabolic network. A polyhedral cone is always
finitely generated and so are metabolic networks, i.e., the number of EFMs
is finite. The elementary flux modes are a widely known generating set for
metabolic networks, although they are a superset of flux vectors needed to
generate every possible behaviour of a network.

If a polyhedral cone is pointed the minimum generating set is unique: the
extreme rays. The flux cone is pointed if no reversible flux vectors exist.

To get an augmented pointed flux cone one can split the whole set of re-
versible reactions. The extreme rays are, after recombination, the whole
set of elementary flux modes. But it is in general sufficient to split only a
subset of the reversible reactions. If the dimension of the lineality space of
the non-pointed flux cone is t, it is sufficient to split a certain subset of ¢
reactions.

In this chapter we considered the case where all reactions are reversible.
What elementary flux modes are for metabolic networks, the oriented cir-
cuits are for oriented matroids. A minimum set of oriented circuits which
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5. Cones, Matroids, Networks

can be used to compute all remaining oriented circuits are the oriented fun-
damental circuits. These oriented circuits are not unique, but depend on the
corresponding matroid bases. But there exists a bijection between these ori-
ented fundamental circuits and the extreme rays of the augmented pointed
cone which is derived by splitting a minimum set of reversible reactions.

How the results of this chapter can be generalised to metabolic networks
including irreversible reactions will be discussed in the following chapter.
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Chapter 6

Finding MEMo

A preliminary version of this chapter has been done in collaboration with Alexan-
der Bockmayr and appeared as a conference paper in Proceedings of the Lyon Spring
School on advances in Systems and Synthetic Biology under [R6hl and Bockmayr,
2017], available at https://assb.lri.fr/Proceedings/LivreLyon-17.pdf. A long
journal version is currently under preparation.

As emphasised in the last chapter, if all reactions of a metabolic network
N = (M, R, S, Irr) are reversible, there is a direct connection between the
flux cone I'yy and the flux mode matroid Mg. The topic of this chapter will
be the general case, where irreversible reactions are involved.

The flux cone I'yy = {v e R% | Sv =0, vy > O} is still a complete and
suitable description of the underlying network, whereas the flux mode ma-
troid Mg = (R, C) is a superset of the stoichiometric network: all circuits
X € C with X = — for some i € Irr are sign vectors of non-feasible vectors
regarding the metabolic network. But we can use the knowledge gained in
Chapter 5: We will present a method based on reaction splitting to compute
minimum sets of EFMs (MEMo) that generate the whole flux space.

It is often impossible to compute the set of all EFMs, due to their huge
number. From a practical point of view, this might also not be necessary
because a subset of EFMs may already be sufficient to answer relevant bio-
logical questions. The number of EFMs in a MEMo may be by several orders
of magnitude smaller than the total number of EFMs. Using MEMos, we
can compute generating sets of EFMs in metabolic networks where the whole
set of EFMs is too large to be enumerated.
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6.1 Introduction

While the EFMs are of great theoretical and practical interest, already for
medium-sized metabolic networks it is often not possible to enumerate all of
them, since their number grows exponentially with the size of the network.
Thus, over the last 20 years, various methods have been developed to com-
pute some or all EFMs in a given metabolic network, see e.g. [Fukuda and
Prodon, 1996; Pfeiffer et al., 1999; Gagneur and Klamt, 2004; Urbanczik
and Wagner, 2005a; De Figueiredo et al., 2009; Terzer, 2009b; Rezola et al.,
2011; David and Bockmayr, 2014; Pey and Planes, 2014].

In this chapter, we study minimum sets of EFMs that generate the full flux
cone I'yr. We study their mathematical properties and develop an algorithm
to compute them. We start with a formal definition.

Definition 6.1 (MEMo). Let N' = (O, R, S,Irr) be a metabolic network
with flux cone I'nr and set of elementary flux modes Enr. A Minimum set
of Elementary Modes or MEMo is a minimum set U C Enr such that every
v € I'nr can be represented as a linear combination

v= > deet+ Y Af

e€UNEReY feunexr

for some Ae, Ay € R, with Ay >0, for all irreversible f € U N EJI\?.

A MEMo U can be used to represent every other flux vector as a conical
combination, in particular all EFMs not belonging to /. The minimum
number of EFMs needed to represent the whole flux cone is in general much
smaller than the number of all EFMs. Therefore, it may be possible to
compute a MEMo in a reasonable amount of time even for large networks
where the set of all EFMs can not be enumerated.

6.1.1 Intuition

We begin by providing some intuition on how to compute MEMos using the
example in Figure 1.1. As emphasised in Section 2.3.1 the flux cone 'y =
{v eR% | Sv =0, vy > 0} is a finitely generated polyhedral cone. If the
polyhedral cone is pointed there exists a unique minimal set of generators,
the extreme rays (ERs). In general, flux cones of metabolic networks are
non-pointed because they contain reversible flur vectors v # 0 for which
both v, —v € T'ps.

Following [Larhlimi and Bockmayr, 2009] we call reversible reactions, which
can carry flux in a reversible flux vector, fully reversible reactions.
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Definition 6.2 (Fully reversible reaction). Let I'zr be the flux cone for a
metabolic network N' = (I, R, S,Irr). A reversible reaction i € Rev is
called fully reversible if there exists a flux vector v € I'yr with v; # 0 and
vy = 0, thus if © is active in a reversible flux vector. Otherwise © is called
pseudo-irreversible. We will denote the set of fully reversible reactions of a
network N = (9, R, S, Irr) by Frev C Rev.

Example 6.3 (Reversible flux vectors and fully reversible reactions). The
network in Figure 1.1 contains flux vectors that consist of reversible reac-
tions only. For example, vT = (0,0,—1,0,1,0,0,0,1,1,0,0) is a vector with
support {3,5,9,10} and can operate in both directions. Thus, the reactions
3,5,9, and 10 are fully reversible and vT is a reversible flux vector. In ad-
dition, reactions 11 and 12 of the network in Figure 1.1 are fully reversible
as well. On the other hand, reaction 4 is reversible, but not fully reversible:
Whenever reaction 4 is active at least one irreversible reaction is active as
well.

As mentioned before, the set Ep of EFMs is a finite generating set of the
flux cone I'yy. However, En need not to be minimal. A well-known method
to compute the set of all EFMs consists in reducing the lineality space Axs
to {0} by splitting all reversible reactions in N, leading to a new network
N and a pointed flux cone FReV, see Section 2.3.1.3 for more details and
examples. The ERs of FReV are the extreme currents (EC) of N and are the
whole set of EFMs of N after recombination.

However, the set of Eor of EFMs need not be minimal for I'y/.

Example 6.4 (Not all EFMs are needed). For the network in Figure 1.1
the set of reactions {1,2,3,4} is the support of the EFM vT = (1, 1, 1,
1, 0, 0, 0, 0, 0, 0). The reactions {3,5,11,12} are the support of an
EFM as well w7 = (0, 0, =1, 0, 1, 0, 0, 0, 0, 0, 1, 1). Note that
reaction 8 has a positive fluz of 1 in v and a negative flux of -1 in w. The
sum of v and w generates another EFM, v7 = (1, 1, 0, 1, 1, 0, 0, 0, 0,
0, 1, 1), consisting of the reactions {1,2,4,5,11,12}. Thus, the EFM with
the support {1,2,4,5,11,12} is redundant and not required in a minimum
generating set of EFMs for the network in Figure 1.1.

In this chapter, we present a method for finding a minimum number of
reversible reactions such that after splitting these reactions no feasible re-
versible flux vector exists in the modified network N. Therefore, the modi-
fied flux cone I' 5 is pointed. We will show that the ERs of I' iz correspond
to a MEMo of the original network A/, c.f. Definition 6.1. The method is
based on the idea presented in the last Chapter 5, where the special case was
considered that all reactions of N are reversible. The method introduced in
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Chapter 5 is applied to the lineality space Aar in order to transfer the idea
to metabolic networks including irreversible reactions.

Example 6.5 (Splitting a minimum set of reversible reactions). For the
network in Figure 1.1, it is sufficient to split only two reversible reactions,
for example 3 and 9, see Figure 6.1, to obtain a modified fluz cone I i which
is pointed. There are 5 ERs of I i, which correspond to 5 EFMs in N. Thus,
only 5 instead of 18 EFMs are needed to generate I'ar. The minimum set
of reversible reactions to split is not unique. Instead of splitting 3 and 9 as
in Figure 6.1 one could also split the reactions 10 and 12, as in Figure 6.2.
Again, we obtain a MEMo containing 5 different EFMs, which however are
different from the 5 EFMs in the MEMo obtained by splitting the reactions 3
and 9. Finally, not any set of two reversible reactions can be split to obtain
a pointed cone. For example, splitting reactions 11 and 12 will not eliminate
all reversible vectors, as shown in Figure 6.3.

The corresponding flux cone is

77777777777777777777777777777777777777777777777777 | pointed, with 7 extreme rays with
11 '~ the following supports:
{1,2,4,5,11,12},{3%,5,11, 12},

@!©@ {37,5,11,12},{4,6,7},{4,6,8,11,12},

3 - {97,10,11,12},{97,10,11,12}.

! After recombination, because of the
- 2 : )

! @ ! 2 reversible EFMs, this results in

! @ . a MEMo if size 7-2=5, where the

‘ @4’ contained EFMs have the following

| | supports:

B { ————————————— ——————————————— o {1,2,4,5,11,12},{3,5,11,12}, {4,6,7},

{4,6,8,11,12},{9,10,11, 12}.

Figure 6.1: The fully reversible reactions 3 and 9 are split, leading to a
pointed flux cone for the new network. The transformed network does not
contain any reversible flux vectors.

6.1.2 Contributions

The contributions of this chapter are the following:

e We prove that whenever a (sub-)set of reversible reactions is split and
the corresponding augmented flux cone is pointed, the extreme rays of
the pointed augmented flux cone correspond to EFMs of the original
network (Theorem 6.7).

e We introduce a method and provide an implementation for finding a
minimum number of reversible reactions such that after splitting these
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The corresponding flux cone is

®!-127 pointed, with 7 extreme rays with
===+ the following supports:
124 11 93,4}, (3,4, 5, 6,8,

| b _
= @ -_1 {3’5’97 10 }7{375797 10 }7
®\_©1L {3,5,11,12"7},{3,5,11,127},{4,6,7}.

107 After recombination, because of the
= 2 . ’
: @ | 2 reversible EFMs, this results in
@ : a MEMo if size 7-2=5, where the
; ©4’ | contained EFMs have the following
3 7 supports:
R IR 11,2,3,4),3,4,5,6,8}, 3,59, 10},

{3,5,11,12},{4,6,7}.

Figure 6.2: The fully reversible reactions 10 and 12 are split, leading to a
pointed flux cone for the new network. The transformed network does not
contain any reversible flux vectors.

1 @ !

| 7

3 3. /1'1+ The transformed network still
! @ 9] . contains reversible flux vec-
! 5 — 10

3@ @ " tors. Thus, the corresponding
*—>@ . cone is not pointed. Support
3 6] - of the reversible flux vector:

©—— - {3,5,9,10}
,,,,,,,,,,,,,,,,,,,, mm

Figure 6.3: The fully reversible reactions 11 and 12 are split.

reactions the resulting augmented flux cone is pointed. Additionally,
we prove the correctness of the method (Theorem 6.9).

e We prove that the extreme rays of the pointed augmented flux cone
(after splitting a minimum set of reversible reactions) correspond to
a MEMo, needed to fully describe the underlying metabolic network
(Theorem 6.15).

e We apply this method to several metabolic networks and the results
show that the number of EFMs in a MEMo is by several orders of
magnitude smaller than the number of all EFMs (Section 6.6).

The chapter is organised as follows: We start in Section 6.3 by proving that
extreme rays of pointed augmented flux cones correspond to EFMs of the
underlying metabolic network. In Section 6.4 we show how to find a mini-
mum set of reversible reactions to split such that the resulting augmented
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flux cone is pointed. We show in Section 6.5 that the extreme rays of the
pointed augmented flux cone (after splitting a minimum set of reversible
reactions) correspond to a MEMo. Finally, in Section 6.6 we provide com-
putational results for various genome-scale metabolic networks that were
obtained by the software that we implemented. Related and future work
are discussed in Section 6.7 and Section 6.8.

6.2 ERs, EFMs, and MMBs

The following proposition summarises what is known about the relation-
ship between extreme rays, EFMs, and MMBs, The detailed mathematical
background on polyhedral cones can be found Section 2.3.1 and [Schrijver,
1998].

Proposition 6.6. Let I'zr be the flur cone of a metabolic network N .

1. If all reactions are irreversible, then I'nr is pointed and the extreme
rays of Tnr are exactly the EFMs of N [Schuster and Hilgetag, 1994;
Gagneur and Klamt, 2004].

2. If there are reversible reactions and U is pointed, then the extreme
rays of I'xr form a subset of the set of EFMs in N .
However, not every EFM needs to be an extreme ray [Jevremovié et al.,
2010]. The extreme rays are exactly the vectors in T nr with inclusion-
minimal support in Irr.

3. If s is not pointed, then there is a 1-1 correspondence between the
MMBs of N and the minimal proper faces of T'nr [Larhlimi and Bock-
mayr, 2009].

Proof. We have only to prove the last part of 2). By [Larhlimi and Bock-
mayr, 2009] (or 3)) there is a 1-1 correspondence between the minimal proper
faces of a flux cone and the MMBs. All vectors in a minimal proper face F
have the same support in Irr, which is exactly the MMB corresponding to
F'. If a polyhedral cone is pointed, the minimal proper faces are the extreme
rays. O

In general, a metabolic network may contain reversible reactions together
with reversible flux vectors v # 0, for which v, —v € T'sr, and the flux cone
is non-pointed. For example, in Figure 1.1, there is a reversible flux vector
with the support {3,5,9,10}. If there exist reversible flux vectors, a minimal
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generating set of the flux cone is not unique anymore. It may consist of an
arbitrary flux vector for each minimal proper face of the flux cone, together
with a vector space basis of the lineality space, see Section 8.8 in [Schrijver,
1998]. Computing a minimal generating set by one of the standard software
tools usually does not deliver a set of EFMs. In order to obtain a minimal
generating set consisting of EFMs, one can transform the flux cone into a
pointed cone.

6.3 Extreme rays of pointed augmented flux cones
are EFMs

We give a short reminder about notation regarding reaction splitting. All
details can be found in Section 2.3.1.3.

In the case of metabolic networks, the variables corresponding to the irre-
versible reactions, by definition, can take only non-negative values. In order
to obtain a pointed cone, we can split all reversible reactions into two irre-
versible ones, see Figure 2.3 and Example 2.31 in Section 2.3.1.3. This leads
to the pointed augmented flux cone l:f\{f"’. The uniquely determined ERs of

I:J}\{fv are called extreme currents [Clarke, 1988].

It can be shown that after recombination, they correspond exactly to the
EFMs of the metabolic network [Gagneur and Klamt, 2004]. In addition,
for each split reaction iy € Rev, there exists a 2-cycle v € f/P\“/eV with
V), = —Up+k, and v; = 0 otherwise, see Definition 2.33. In general we denote
with ff\/ the augmented flux cone obtained by splitting the set of reactions
I C Rev in 'y and with II; the corresponding 2-cycles.

In this section, we prove that whenever an augmented flux cone is pointed
after splitting a set of reversible reactions, the ERs are EFMs of the under-
lying metabolic network after recombination.

Already in [Schilling et al., 2000], it has been shown that splitting only
the internal reversible reactions delivers an augmented flux cone which is
pointed (assuming that there is at most one exchange reaction per internal
metabolite). After recombination, the extreme rays of this cone are called
extreme pathways (EPs), see Section 6.7.1 for further discussion.

Extending the results in [Schilling et al., 2000], we show next that if splitting
a subset I C Rev of reversible reactions results in an pointed augmented flux
cone I‘JI\/ then the ERs of FJI\/ after reconfiguration define a subset of EFMs
in the metabolic network N.
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Theorem 6.7. Let I'yr = {v e R% | Sv =0, vy > 0} be the flux cone of a
metabolic network N'. Let I C Rev be a set of reversible reactions such that
the augmented cone ff\/ obtained by splitting the reactions in I is pointed.
With exception of the 2-cycles, the extreme rays of fjl\/ after recombination

are elementary flur modes in N.

Proof. By splitting the reactions in I we get the metabolic net-

work N = (9, R, 5,Irr) with % = R U Ly, S = (S | —S.7) and
Irr = Irr U T U Iy Here, I is the set of additional irreversible reactions
obtained by splitting the reactions in I. The corresponding flux cone is

= v ~ (U
F/V:r,fv:{<w) e RIPHIT S<w> =0, v >0, v7 >0, w > 0}.

Let € being an ER of 'y and e = mj(€) the corresponding flux vector in
I'pr. By Proposition 6.6, the ERs of the pointed cone ' are EFMs in N.

By the rank test for EFMs, this implies p(S, supp(@)) = [supp(e)| — 1.

Suppose first that for all ¢, € I we have ¢;, = 0 or €, = 0, i.e., there is no
non-zero flux through both directions of a former reversible reaction. Then
|Supp(g)| = ]supp(e)\ and p(S*,supp(E)) = p(S*,supp(e)) (by the definition of
S=(S| —S,.1)). It follows that p(S. supp(e)) = [supp(e)| — 1. Using again
the rank test, this shows that e is an EFM in T'y/.

Suppose now that there exists 75, € I with ¢;, # 0 and €44 # 0. Since € is
an EFM of NV, it follows €;, = €,4,; and €; = 0, for all j € R\ {ix, n + k}.
Hence, € is a 2-cycle, which we excluded from our considerations. ]

Thus, whenever the augmented flux cone ff\/ is pointed, the recombined ERs
of fjl\/ correspond to a subset of EFMs in the original metabolic network
N. The remaining EFMs of N correspond to rays inside of ff\f and can be
obtained from the ERs by conical combinations. In the following we develop
a method for determining a minimum set of reversible reactions that have
to be split in order to obtain a pointed cone.

6.4 Splitting a minimum number of reversible re-
actions

We show in this section that there exist minimum sets of reversible reactions
such that, after splitting these reactions, the augmented flux cone becomes
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6.4 Splitting a minimum number of reversible reactions

pointed. These sets always contain t fully reversible reactions, where t is
the dimension of the lineality space. We note that splitting one reaction
reduces the dimension of the lineality space by at most 1, see [Larhlimi and
Bockmayr, 2008]. Therefore at least ¢ reversible reactions have to be split
in order to obtain a pointed cone.

Definition 6.8 (minFrev). Let I'zr be the flux cone of a metabolic network
N. Lett be the dimension of the lineality space Ayr. A minimum set of
fully reversible reactions is a set minkrev of t fully reversible reactions such
that the flux cone Fj{}inFre" obtained by splitting the reactions in minFrev is
pointed. We denote by minFrevgy, the set of the t additional irreversible
reactions obtained by splitting. Thus

SminFrev _ g~ - /9|4t ~ 0=
F‘/r&m eV = {U S Rl | | (S | _S*,rninF‘rev)v = 0’ UlrrUminFrev U minFrevgpiis > 0}

The next theorem states that for any metabolic network A there exists a
minimum set of fully reversible reactions minFrev.

Theorem 6.9. Let T'y be the flux cone of a metabolic network N'. If t is
the dimension of the lineality space Ayr, then there exists a set minFrev of
t fully reversible reactions such that the cone FX}inFreV obtained by splitting
the reactions in minFrev is pointed.

Proof. The idea of the proof is the following. As a vector space, the lineality
space Ay has a basis consisting of ¢ linearly independent vectors. In order
to obtain a pointed flux cone, we intuitively have to destroy Aus, i.e., all
vectors in the basis. We do this by splitting one reaction in each vector of
the basis. To make sure that each of these reactions is present in exactly one
basis vector, we make use of the reduced column echelon form, cf. Figure 5.4.

We may assume that 'y is not pointed, hence Ay # {0}. Let B € RI%Ixt
be a matrix whose columns (lv)l, . ,I;t) form a basis of the lineality space
Apr, where t > 1 is the dimension of Ay. By applying elementary column
operations, we can obtain the reduced column echelon form B*¢f of B, see
Figure 5.4, which is uniquely determined by B [Gilbert and Gilbert, 2014,
p.85]. The columns (b!,...,b") of B™ define again a basis of Ay. The
row indices ji, ..., j, for the pivot 1’s in B! are exactly the indices of the
fully reversible reactions we are looking for. To see this, define minFrev =
{j1,...,4r}. From t = p(B) = p(B**") = r, we get r = t. Since b?k =1#0,
for k=1,...,r =t, we have minFrev C Frev.

After splitting the reactions in minkrev we get the augmented flux cone
Fﬁ\nfinFreV, which by Proposition 5.2 has the lineality space

KKI;HFTGV _ {<8> ¢ RI%I+[minFrev| | v € Ay and ViinFrev = 0} .
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6. Finding MEMo

Since (b',...,b") defines a basis of Ay, any v € Ap can be written as
v = 22:1 \pbF, for some A\, € R. The matrix B is in reduced column-
echelon form. This means that for each j € minFrev there is exactly one b%s

with bfj =1, and for all k # k;, it holds bé? = 0. Since for (S) € INXX?HFWV we

have v; = 3%y Akbh = A, 05 = Ay, =0, forall j € minFrev, it follows that
A =0, for all k € {1,...,t}. This implies v = 0 and thus AR = {0},
which proves that I‘j\nfinpre" is pointed. ]

Based on the previous proof, Algorithm 2 summarizes how to find a mini-
mum set minFrev such that fj{}inFreV is pointed. First we compute a basis
of the lineality space An of I'yr. Let B be the matrix whose columns are
the vectors of this basis. Next we transform B in the reduced column ech-
elon form (e.g. in MATLAB using rref). The row indices of the pivots then
correspond to the indices of the reactions that form the set minFrev.

Algorithm 2: Finding a minimum set of fully reversible reactions
Input : Stoichiometric matrix S
Set of irreversible reactions Irr
Output: Minimum set of fully reversible reactions minFrev
1 B < basis(Ay);
/* columns of B are vectors of the basis of the lineality
space Ap x/
2 B' < ReducedColumnEchelonForm(B) ;
3 minFrev < row indices of the pivots of Breef:
4 return minFrev;

We note that the set minFrev computed by Algorithm 2 does not depend on
the particular basis B of A because two matrices B, B’ with the same col-
umn space have the same reduced column-echelon form [Gilbert and Gilbert,
2014].

Example 6.10 (Compute minFrev). The flux cone for the network in Figure
1.1 has a lineality space of dimension 2. Therefore any set minFrev contains
two reactions. The lineality space can be described by the matrix

10 11 12

1 9

0 0 0 -1 -1
T —
B‘(o 11 -1 —1)‘

We can see that only the fully reversible reactions 3,5,9,10,11, and 12 are
active in the lineality space. Furthermore, B is already in reduced column

)
-1
0

O O N
O = W
O O =~
o O O
O O
o O
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echelon form and thus B = B™®. The pivot elements are 8 and 9, therefore
minkrev = {3,9}. These are the reactions which are split in Example 6.5.
Splitting reactions 8 and 9 delivers an augmented flux cone which is pointed.
This can be seen from the modified network in Figure 6.1, since there exists
no feasible flux vector that is reversible.

6.5 MEMo: Minimum set of Elementary Modes

The main result of this section is that the extreme rays of an augmented flux
cone Fj{}inFre", where minFrev is a minimum set of fully reversible reactions,
after recombination form a Minimum set of Elementary Modes or MEMo,
cf. Def. 6.1. We start by using Proposition 6.6 to prove the following result:

Proposition 6.11. Let minkFrev be a minimum set of fully reversible reac-
tions in a metabolic network N such that I‘J‘{}inFre" 18 pointed. Then the set
of extreme rays of the augmented cone Fj\n/ianeV does not contain any 2-cycle.

Proof. By the definition of the lineality space Ay and the set Frev, we have
Ay ={v eR%| Sv=0,v =0} = {v € R | S, Rey VRey = 0,01y = 0} =
{'U eR™ | S Frev UFrev = O>vlrrU(ReV\FreV) = 0} From dim(Ay) = ¢, we get
p(Si Frev) = |Frev| —t.

By Proposition 5.2, it follows that K}I\I}HF‘”GV = {(v ] 0)T e RI%IH[minFrev] |
S*,Frev\minFrev UFrev\minFrev = 0, UlrrU(Rev\Frev)UminFrev — 0} Since F/\m/mFrev is
pointed, this implies p(S, Frev\minFrev) = [Frev| — | minFrev| = [Frev| —t =
p(SiFrev). For each i, € minFrev, the column S, ;, is therefore linearly
dependent on the columns of S, mev\minfrev- Thus, there exists a flux vec-
tor v € Iy \ {0} with v;, = 1 and supp(v) C (Frev \ minFrev) U {i}.
I/tvfollows that Tyinfrev(v) = U € Fj{}mFreV and suppﬁ;('ﬁ) = {ix}, with
Irr = Irr UminFrev U minFrevgpi;. This implies that v has minimal support
w.r.t irreversible reactions in Fj\nfmp‘fe". According to Proposition 6.6, v is an
ER of Tnfrev,

Suppose there exists an ER w € fj\nfinpre" with w;, # 0 # Wp4x. This would

imply that supp;—(v) S suppy.(w), which is a contradiction. It follows
that the set of ERs of l:j{}inFreV does not contain any 2-cycle. O

From the proof of Proposition 6.11 we can deduce the following corollaries:
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6. Finding MEMo

Corollary 6.12. Let € be an extreme ray in fﬂin“e". Then there is at
most one reaction j € minkrevUminFrevg,, with e; # 0. If €; # 0, for
some j € minFrevUminFrevy,, then €; = 0, for all i € Irr. Moreover,
s €) is a reversible EFM of the original network N .

n (
minFrev

Corollary 6.13. For each ip € minkrev there exist ezactly two ea-
treme rays e,f € Fj\“/mFreV such that €;, # 0 and foyr # 0. After
recombination, both € and f define a single reversible EFM e in T
with supp(e) = supp(m} inprev(€)) = SUPP(T) ey (f)).  Altogether, the

t reactions in minkFrev define 2t extreme rays in I’j{}inFreV and t linearly
independent reversible EFMs in N .

The following proposition relates the supports of the extreme rays of f}{}i““e"
to the minimal metabolic behaviours (MMBs) of N.

Proposition 6.14. Let minFrev be a minimum set of fully reversible reac-
tions in a metabolic network N such that f}{}inFreV is pointed. The non-empty
supports suppy,,(€) of the extreme rays € of fj\n/inFreV are exactly the minimal
metabolic behaviours of N .

Proof. Let D be an MMB in A and let v € Ty such that suppy,,(v) = D.
By Lemma 2 in [Jevremovié¢ and Boley, 2013], there is a decomposition
v=-e+y, with e,y € Ty, éminFrev = 0 and yr; = 0. For € = mTpinFrev(€) and
Irr = Irr U minFrev U minFrevgp)i, it follows that supp;~—(€) = suppy,,(€) =
suppy,,(€) = suppy,,(v) = D. Suppose € is not an extreme ray in f/n\}inFre". By
Proposition 6.6, there exists w € fﬁinﬁe" with ) # supp7—(w) G supp7(€).
For w = 7] i prey (W) € Tnr this implies suppy,, (w) = suppy—(w) & D, in

contradiction to D being an MMB in I'y.

Conversely, let € be an extreme ray in f}‘\}inFre" with suppy,(€) # 0.
By Corollary 6.12, we have supp;-(€) = suppy,(€). Assume D =
SUPP1e (T Frey (€)) = Suppy,(€) is not an MMB in A. Then there exists
v € T with (0 # suppy,,(v) & D. As before, we consider a decomposition
v =u+y, with u,y € Uy, UminFrev = 0 and yp; = 0. For & = minFrev (u) we
get suppz—(u) = suppy,, (u) = suppy,,(v) G D = supps=(€), in contradiction
to € being an extreme ray in f?\}inFreV. O

We prove now one of our main theorems, stating that for any minimum
set of fully reversible reactions minkrev, the extreme rays of Fj\nfmpre" after
recombination define a MEMo of N.
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6.5 MEMo: Minimum set of Elementary Modes

Theorem 6.15. Let minFrev be a minimum set of fully reversible reactions
in a metabolic network N such that fAm;nFreV is pointed. After recombina-
tion, the extreme rays of the pointed cone f}{}mFreV define a minimum set of
EFMs or MEMo in N'. Any set of EFMs of smaller cardinality cannot be a
generating set for the flux cone I'zr.

Proof. According to [Schrijver, 1998, Sect. 8.8], a minimum set of generating
vectors for I'nr always consists of one vector in each minimal proper face of
Iy and a vector space basis of Ayr. According to Corollary 6.12, there are
two types of extreme rays € € F}{}inFreV:

Case 1: supphr(g) 7‘é 0 and gminFrevainFrevsplit = 0. Let e = ﬂ—:ninFrev(g)

be the recombined vector. By Proposition 6.14, suppy,,(€) = suppy.(€) is
an MMB D in N. By [Larhlimi and Bockmayr, 2009] this implies that
e belongs to the minimal proper face defined by D. Since suppy.(e) #
0, we also have e € Ap. By Proposition 6.6, the extreme ray € is an
EFM in fj{}inFreV. Thus, supp(€) is inclusion-minimal in fj\n/mFreV. Since
€minFrev UminFrevy,;, = 0, We have supp(e) = supp(e€), which implies that e is
an EFM in T'ys (otherwise, there would exist v € T'xr \ {0} with supp(v) C
supp(e), and for v = supp(mminfrev(v)) we would get supp(v) = supp(v) C
supp(e) = supp(€), which is a contradiction).

Case 2: e; # 0 for some j € minFrev UminFrevg,;;, and er, = 0. According
to Corollary 6.12, all ERs with this property lead to t reversible EFMs in
N, which after recombination generate A

In conclusion, after recombination, the ERs with the first property represent
the MPFs of 'y and the ERs with the second property form a basis of Ays.
Altogether, the recombined ERs of fﬁnﬁe" form a minimum set of EFMs
generating I'ar, and therefore define a MEMo. O

Corollary 6.16. For a given metabolic network N the number of EFMs in
a MEMo is always s + t, where s is the number of minimal proper faces in
Ianr and t is the dimension of Axr.

Algorithm 3 describes how to compute a MEMo given a minimum set of fully
reversible reactions minFrev, which can be obtained by Algorithm 2. First,
the reactions in minFrev are split in order to get the pointed augmented flux
cone f?\}inFre". Next, we compute the ERs of fj{}inFreV using an existing tool
based on the double description method [Fukuda and Prodon, 1996], e.g.,
polco [Terzer, 2017b] or cdd [Fukuda, 2005].

105



6. Finding MEMo

Algorithm 3: Finding MEMo
Input : Stoichiometric matrix S
Set of irreversible reactions Irr
A minimum set of fully reversible reactions minFrev
Output: MEMo
/* A minimum set of EFMs, describing the underlying
metabolic network */

1 § — (S’ - S*,minFreV);

/* S consists of the columns of S and the negative of the
columns corresponding to the reactions of minFrev */
2 [ < (Irr UminFrev UminFrevgp );
/* H contains the indices of the irreversible reactions

of the pointed augmented cone fj\nfinFreV, including the

split reactions of the set minkFrev x/
3 ER < extreme rays of fﬁ{}in“ev = {0 e R+ | S5 =0, 77 > 0};
/* use polco to compute the ERs of IN“}I\}iHFreV */
4 MEMo < recombination(ER);
/* apply 7). o to the ERs of fﬁ\nfmFreV */

5 return MEMo;

The MEMos that can be obtained by Algorithm 3 are not unique. Their
elements depend on the set minFrev of reactions that are split. As the
following example shows, different minimum sets minFrev of fully reversible
reactions may result in the same MEMo. Furthermore, there exist MEMos
that cannot be obtained by Algorithm 3.

Example 6.17 (Different MEMos). For the mnetwork in Figure
1.1 there exist three different reversible EFMs with the supports
{3,5,9,10},{3,5,11,12}, {9,10,11,12}. Each two of them form a
basis of the lineality space A, thus there are 3 bases.  There ex-
ist three MMBs {2},{6,7},{6,8}, see Ezample 2.8, which correspond
to three minimal proper faces of the flux cone I'jr. The minimal
proper face for the MMB {6,7} contains only one EFM with support
{4,6,7}. The other two minimal proper faces each contain three EFMs,
namely {1,2,3,4},{1,2,4,5,9,10},{1,2,4,5,11,12} for the MMB {2}
and {4,6,8,9,10},{3,4,5,6,8},{4,6,8,11,12} for the MMB {6,8}. The
remaining 8 EFMs lie in the interior of the cone. By choosing one basis
for the lineality space and one EFM for each minimal proper face, we get
i total 3-1-3 -3 =27 possible MEMos.

By enumeration, we can determine that there exist 12 different mini-
mum sets of fully reversible reactions minkrev for the network in Figure
1.1, which give rise to & different MFEMos.  For example, the two
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minFrev sets {3,9} and {3,10} result in the same MEMo. A MEMo
that cannot be obtained by choosing a minFrev set and computing the

extreme rays of the cone f}{}i“Frev is the set of EFMs with the supports
{1,2,3,4},{4,6,7},{4,6,8,9,10},{3,5,9,10},{3,5,11,12}.

Since there exist different MEMos a question which arises is if the computed
MEMo using Algorithms 2 and 3 together is unique for the same metabolic
network. The answer is yes and is given in the next theorem. For the proof
of the theorem in this section we need the notion of column space:

Definition 6.18 (Column space and column equivalent, [Artin, 1998]).
Consider a matriz B € R™*™. The column space of B are all linear combi-
nations of the columns of B: BA =Y " | \ib?, with b® being the i-th column
of B and \; € R. Matrices are column equivalent if and only if they have
the same column space. If two matrices are column equivalent they always
have the same reduced column echelon form (elementary column operations
do not affect the column space of a matriz).

Theorem 6.19. Given a metabolic network N'= (9, R, S, Irr) and its cor-
responding flux cone I'nr. If the order of the columns of the stoichiometric
matriz S is not changed, the set minFrev C Frev, found using Algorithm 2,
1 always the same and therefore unique.

Proof. Let Tyy = {v € R™ | Sv = 0, vy > 0} be the flux cone of
N = (MR, S, Irr) and Ay its lineality space. Algorithm 2 computes a
set minFrev by first computing a basis for Ayr. Let B denotes a matrix con-
sisting of basis vectors for Ay. All matrices B representing a basis for Ay
have, per definition, the same column space and therefore, they are column
equivalent and have the same reduced column echelon form.

Consequently, the reduced column form is the same for all bases for Axr and
the set minkrev as defined in Definition 6.8 is always the same for a given
stoichiometric matrix S, when using Algorithm 2. In particular, the ERs of
fK}inFreV? and therefore the computed MEMo, using Algorithm 3, for a given
stoichiometric matrix S is always the same. ]

In order to find a different set of minFrev we have to change the column
space of B. Since B represents the null space of S changing the column
space of B can be done by changing the order of the columns of S, Frev.
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6.6 Computational results and discussion

We implemented our method in MATLAB using porco [Terzer, 2017b] to
compute the extreme rays of a pointed cone. Our software is available
at https://sourceforge.net/projects/findingmemo/. In the following, we
present computational results for various metabolic network reconstructions
taken from BiGG Models [King et al., 2016], KEGG [Kanehisa and Goto,
2000] (together with KEGGtranslator [Wrzodek et al., 2013]), and the
BioModels Database [Li et al., 2010]. Table 6.1 summarises the main
characteristics of the metabolic networks studied. In Table 6.2, we study
the size of the MEMos compared to the number of extreme pathways (EPs)
and EFMs, which were computed with porco [Terzer, 2017b] resp. EFMTOOL
[Terzer, 2017a]. In Figure 6.4, we compare the number of flux vectors in
a MEMo to the number of EPs and EFMs for those networks for which
we were able to compute the EPs and EFMs. Since the number of EFMs
of a MEMo is much smaller than the number of all EFMs, it is faster to
compute them see Table 6.3.
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Figure 6.4: Comparison of the number of flux vectors of the three different
generating sets we discussed in this article. We set the number of all EFMs
to 100% and compare the vectors of the other sets accordingly. The bars
overlay and the largest number is always on the top. Hence, if there is no
blue bar for the EFMs FEscherichia coli MG1655 the number of EPs and
the number of EFMs are the same. Note that there is always a yellow bar
indicating the size of the MEMo even it is hard to see. This shows how

small the number of flux vectors in a MEMo is, compared to the whole set
of EFMs.
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network rxns mets rev intrev frev t
FEscherichia coli carbon metabolism ([Chassagnole et al., 2002]) 34 18 34 18 32 15
Citrate cycle (TCA) [Kanehisa and Goto, 2000] 35 22 31 25 30 12
Pentose phosphate pathway [Kanehisa and Goto, 2000; Wrzodek et al., 2013] 57 34 31 18 27 8
Glycolysis / Gluconeogenesis [Kanehisa and Goto, 2000; Wrzodek et al., 2013] 61 32 42 28 33 13
Pyruvate metabolism [Kanehisa and Goto, 2000; Wrzodek et al., 2013] 81 28 34 29 24 12
FEscherichia coli MG1655 [King et al., 2016] 87 68 34 28 0 0
Rhizobium etli iOR363 [Resendis-Antonio et al., 2007; Li et al., 2010] 194 371 71 60 0 0
Buchnera iISM197 [Li et al., 2010; MacDonald et al., 2011] 261 255 17 11 0 0
Mycoplasma pneumoniae iJW145 [Li et al., 2010; Wodke et al., 2013] 306 266 73 47 0 0
Blattabacterium cuenoti iCG238 [Li et al., 2010; Gonzélez-Domenech et al., 2012] 350 364 73 60 5 2
Mycoplasma genitalium iPS189 [Suthers et al., 2009a; Li et al., 2010] 351 346 107 26 3 1
Mannheimia succiniciproducens iISH335 [Hong et al., 2004; Li et al., 2010] 374 316 58 49 3 1
Blattabacterium iCG230 [Li et al., 2010; Gonzélez-Domenech et al., 2012] 412 358 71 59 5 2
Helicobacter pylori 26695 [Schilling et al., 2002] 452 396 94 82 31 6
Human Erythrocyte iAB-RBC-283 [Li et al., 2010; Bordbar et al., 2011] 469 342 123 68 10 2
Helicobacter pylori iCS291 [Schilling et al., 2002; Li et al., 2010] 493 396 94 67 31 6
Clostridium thermocellum iSR432 [Li et al., 2010; Roberts et al., 2010] 581 564 95 95 32 20

Table 6.1: Characteristics of different metabolic networks used for the comparison in Tab. 6.1 network: name of the network.
rxns: number of unblocked reactions. mets: number of metabolites. rev: number of unblocked reversible reactions. intrev:
number of unblocked internal reversible reactions. frev: number of unblocked fully reversible reactions. t: dimension of the

lineality space of the flux cone.
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network rxns MEMo EPs EFMs

Escherichia coli carbon metabolism [Chassagnole et al., 2002] 34 15 52 6,421
Citrate cycle (TCA) [Kanehisa and Goto, 2000] 35 16 1,564 3,870
Pentose phosphate pathway [Kanehisa and Goto, 2000] 57 27 1,607 5,155
Glycolysis / Gluconeogenesis [Kanehisa and Goto, 2000] 61 29 1,716 19,464
Pyruvate metabolism [Kanehisa and Goto, 2000] 81 49 27,361 47,708
Escherichia coli MG1655 [King et al., 2016] 87 2,572 100,274 100,274
Rhizobium etli iIOR363 [Resendis-Antonio et al., 2007; Li et al., 2010] 194 6,147 N/A N/A
Buchnera iSM197 [Li et al., 2010; MacDonald et al., 2011] 261 245 1,863 N/A
Mycoplasma pneumoniae iIJW145 [Li et al., 2010; Wodke et al., 2013] 306 1,593,880 N/A N/A
Blattabacterium cuenoti iCG238 [Gonzalez-Domenech et al., 2012] 350 376 1,863 N/A
Mycoplasma genitalium iPS189 [Suthers et al., 2009a; Li et al., 2010] 351 190,471 N/A N/A
Mannheimia succiniciproducens iISH335 [Hong et al., 2004; Li et al., 2010] 374 2,064,760 N/A N/A
Blattabacterium iCG230 [Li et al., 2010; Gonzélez-Domenech et al., 2012] 412 84 N/A N/A
Helicobacter pylori 26695 [Schilling et al., 2002] 452 150,138 N/A N/A
Human Erythrocyte iIAB-RBC-283 [Li et al., 2010; Bordbar et al., 2011] 469 6,179 N/A N/A
Helicobacter pylori iCS291 [Schilling et al., 2002; Li et al., 2010] 493 150,138 N/A N/A
Clostridium thermocellum iSR432 [Li et al., 2010; Roberts et al., 2010] 581 1,039,267 N/A N/A

Table 6.2: Size of MEMos, number of EPs and EFMs for different networks. rxns: number of unblocked reactions of the network.
network: name of the network. MEMo: size of a minimum set of elementary modes. EPs: number of the extreme pathways. EFMs:
number of the elementary flux modes. N/A: The programs used here (PoLco [Terzer, 2017b] and EFMTOOL [Terzer, 2017a]) could not
handle the size of the models resp. the number of EPs or EFMs.
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network rxns MEMo EPs EFMs
Escherichia coli carbon metabolism [Chassagnole et al., 2002] 34 0.62 sec 6 sec 3 sec
Citrate cycle (TCA) [Kanehisa and Goto, 2000] 35 0.34s 0.6sec 0.3sec
Pentose phosphate pathway [Kanehisa and Goto, 2000] 57 0.5sec 0.4 sec 0.5 sec
Glycolysis / Gluconeogenesis [Kanehisa and Goto, 2000] 61 0.5sec 0.3 sec 0.9 sec
Pyruvate metabolism [Kanehisa and Goto, 2000] 81 0.5 sec 1.4 sec 2 sec
Escherichia coli MG1655 [King et al., 2016] 87 1.6 sec 17 sec 9 sec
Rhizobium etli iIOR363 [Resendis-Antonio et al., 2007; Li et al., 2010] 194 5 sec N/A N/A
Buchnera iSM197 [Li et al., 2010; MacDonald et al., 2011] 261 2.5 sec 2 sec N/A
Mycoplasma pneumoniae iIJW145 [Li et al., 2010; Wodke et al., 2013] 306 5 min N/A N/A
Blattabacterium cuenoti iCG238 [Gonzédlez-Domenech et al., 2012] 350 10.6 sec 2 sec N/A
Mycoplasma genitalium iPS189 [Suthers et al., 2009a; Li et al., 2010] 351 3 min N/A N/A
Mannheimia succiniciproducens iISH335 [Hong et al., 2004; Li et al., 2010] 374 3 min N/A N/A
Blattabacterium iCG230 [Li et al., 2010; Gonzéalez-Domenech et al., 2012] 412 7.8 sec N/A N/A
Helicobacter pylori 26695 [Schilling et al., 2002] 452 1 min N/A N/A
Human Erythrocyte 1IAB-RBC-283 [Li et al., 2010; Bordbar et al., 2011] 469 15 sec N/A N/A
Helicobacter pylori iCS291 [Schilling et al., 2002; Li et al., 2010] 493 1 min 5 sec N/A N/A
Clostridium thermocellum iSR432 [Li et al., 2010; Roberts et al., 2010] 581 6.5 min N/A N/A

Table 6.3: Time to compute a MEMo, EPs and EFMs for different networks. rxns: number of unblocked reactions of the network.
network: name of the network. MEMo: time to compute a minimum set of elementary modes. EPs: time to compute the extreme
pathways. EFMs: time to compute the elementary flux modes. N/A: The programs used here (poLca [Terzer, 2017b] and EFMTOOL
[Terzer, 2017a]) could not handle the size of the models resp. the number of EPs or EFMs.
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6.7 Related work

In all networks that we considered the number of fully reversible reactions
and the number of internal reversible reactions is greater than or equal to
the dimension ¢ of the lineality space Ajs. While there always exist internal
reversible reactions, it can happen that there are no fully reversible reac-
tions. In this case, t = 0 and the original flux cone is already pointed, i.e.,
there is no need to split any reaction before computing a MEMo. This holds
for the networks Escherichia coli MG1655 [King et al., 2016], Rhizobium etli
iOR363 [Resendis-Antonio et al., 2007; Li et al., 2010], Buchnera iSM197 [Li
et al., 2010; MacDonald et al., 2011], and Mycoplasma pneumoniae iIJW145
[Li et al., 2010; Wodke et al., 2013]. For all these networks, there exist in-
ternal reversible reactions which are split to compute the extreme pathways
(EPs). This implies that the number of EPs is larger than the number of flux
vectors in a MEMo. For example, instead, of 2,572 EFMs in a MEMo for
the network Escherichia coli MG1655 [King et al., 2016] there exist 100,274
EPs. For this network, the number of EFMs and EPs is the same, although
not all reversible reactions are internal.

For the networks Mannheimia succiniciproducens iISH335 [Hong et al., 2004;
Li et al., 2010], Helicobacter pylori 26695 [Schilling et al., 2002], Helicobac-
ter pylori 1CS291 [Schilling et al., 2002; Li et al., 2010], and Clostridium
thermocellum iSR432 [Li et al., 2010; Roberts et al., 2010] we were not able
to compute the EPs because polco was running out of memory, while we
were always able to compute a MEMo.

We compared the size of the different generating sets (MEMo, EPs, and
EFMs) in Figure 6.4. There, we defined the number of EFMs as 100%.
The number of EPs or the number of flux vectors in a MEMo are related
accordingly. Again, we use only the networks for which we were able to
compute the EPs and the whole set of EFMs.

6.7 Related work

In the following, we discuss a number of papers that are closely related to
our work.

6.7.1 Extreme pathways

In our approach, we compute a MEMo by splitting a minimum subset of
reversible reactions. A closely related concept is the set of extreme pathways
(EPs) [Schilling et al., 2000; Papin et al., 2004], which are computed by
splitting all the internal reversible reactions. As shown in [Papin et al.,
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2004; Schilling et al., 2000], splitting only the internal reversible reactions
always delivers an augmented flux cone which is pointed (given that there is
only one exchange reaction per internal metabolite). This cone is unique and
so are its extreme rays. After recombination, these extreme rays are called
extreme pathways. The assumption that there exists only one reversible
exchange reaction per metabolite is not true for all metabolic networks.
Examples where this condition does not hold are the Escherichia coli carbon
metabolism [Chassagnole et al., 2002] or RECON1 [King et al., 2016; Duarte
et al., 2007]. For computing a MEMo we do not need any condition on the
network. However, the main advantage of our approach is that the number
of EFMs in a MEMo is typically much smaller than the number of EPs, see
Table 6.2.

6.7.2 Minimal metabolic behaviours

Larhlimi and Bockmayr [Larhlimi and Bockmayr, 2009] introduce a unique
minimum outer description of the flux cone I'yy based on minimal metabolic
behaviours (MMBs) and the lineality space Ay. Each MMB corresponds
to a minimal proper face of the flux cone or to set of flux vectors with the
same minimum set of active irreversible reactions. Larhlimi and Bockmayr
show that for each MMB there exists a corresponding EFM, but they do
not consider reaction splitting and do not present a method for computing
a minimal generating set consisting of EFMs only.

6.7.3 Minimal generating set

Jevremovic and Boley [Jevremovié¢ and Boley, 2013] introduce a method for
finding a minimum generating set of flux vectors which corresponds to a
set of EFMs and therefore is a MEMo. However, their approach is different
from the one introduced here. We exploit splitting reversible reactions, while
they use a method based on generating a basis of the null space of I'y.
Additionally, they only prove that the reversible generating flux vectors are
EFMs, but do not consider the irreversible flux vectors. We prove that all
generating flux vectors obtained by our approach are EFMs. The authors of
[Jevremovi¢ and Boley, 2013] only mention that the minimum set of EFMs
is not unique. Here we discuss this issue in a systematic way and show how
to obtain different MEMo’s by splitting different sets of reversible reactions.
Furthermore, we provide a MATLAB tool to compute MEMos and illustrate
the impact of our method by computational results for various genome-scale
metabolic networks.
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6.7.4 Subsets of EFMs

When computing only a subset of EFMs and not the whole set, several issues
arise. One drawback of computing a MEMo is that the resulting set of EFMs
is not unique. This problem was already addressed by Schuster et al. in
[Schuster et al., 2002]. We prove in Section 6.5 that there exists a bijection
between the irreversible EFMs in a MEMo and the MMBs of the network.
Thus, the set of active irreversible reactions is the same for all EFMs in all
different MEMos, while the set of active reversible reactions is not, therefore
giving rise to the non-uniqueness of MEMos. As the authors of [Schuster
et al., 2002] point out, not all EFMs of biological relevance may be contained
in a MEMo. This is a valid argument for computing the whole set of EFMs.
However, for genome-scale metabolic networks this is often not feasible, or
the number of EFMs is too large to search for relevant EFMs. In such cases,
a MEMo is a good alternative for studying the underlying metabolic network
because it is smaller but still represents the whole network.

A typical application for EFMs is the decomposition of a given flux vector
into a set of EFMs. If the whole set of EFMs cannot be computed but
a MEMo is available, we can decompose the flux vector into EFMs using
this MEMo. The EFMs of a MEMo can provide new insight on the im-
portance of certain pathways or reactions for the whole network, especially
since their irreversible part is unique. In fact, investigating which EFMs
are exchangeable and why, for each metabolic network individually is an
interesting task. Doing so, it could be possible to study robustness of the
underlying metabolic network. The EFMs of a MEMo could also be used to
discover similarities to other networks by detecting subsets of EFMs which
can be found in other networks as well.

6.8 Conclusion and further work

In this chapter we introduced the concept of a minimum set of elementary
modes (MEMo) necessary to generate the flux cone of a metabolic network.
We presented a method to compute these MEMos. We implemented our
algorithm using MATLAB and showed that the size of MEMos often is by
several orders of magnitude smaller than the number of EPs or EFMs. One
drawback of the MEMos is that they are not unique because they depend
on the set of fully reversible reactions which have to be split. However, one
can show that the set of irreversible reactions involved in the MEMos is
unique and that they will always be part of the MEMos independently of
the reactions that are split. The biological relevance of the MEMos has to
be further investigated. The need of having smaller sets of generating flux
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vectors has been addressed by various papers [De Figueiredo et al., 2009;
Kaleta et al., 2009; Schilling et al., 2000; Rezola et al., 2011; Jevremovi¢ and
Boley, 2013; Arabzadeh et al., 2018]. We expect that MEMos give rise to
new opportunities for analysing large genome-scale metabolic networks.
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Chapter 7

Projections of flux cones

This chapter is based on a joint article with Alexander Bockmayr, which is currently
under revision.

From EFMs of a metabolic network A/ we come now to the dual of EFMs:
to minimal cut sets (MCSs). EFMs are generators of the network and can
be used to construct every pathway and every behaviour of the underlying
network. MCSs for metabolic networks are sets of reactions which, if they
are removed, prevent a target reaction from carrying flux, see Section 2.2.3
for a detailed introduction.

To compute MCSs different methods exist. Due to combinatorial explosion,
most of them fail to compute MCSs of higher cardinality or fail to compute
MCSs for genome-scale metabolic networks when they use EFMs.

We introduce in this chapter irreversible minimal cut sets (iMCSs). These
are MCSs that consist of irreversible reactions only. The advantage of iMCSs
is that instead of using EFMs one can use minimal metabolic behaviours
(MMBs) to compute iMCSs. Since the number of MMBs can be by several
orders of magnitude smaller than the number of EFMs, computing iMCSs
of higher cardinality becomes possible for genome-scale metabolic networks.
We present a new method to compute MMBs by projecting the original flux
cone on the set of irreversible reactions, which reduces the problem size.
Using oriented matroid theory, we give an efficient and computationally
easy way for performing the projection.

In Chapter 8 we will use the projected flux cone and apply other methods
besides using MMBs to compute iMCSs.
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7.1 Introduction

MCSs were first introduced in [Klamt and Gilles, 2004] and have many appli-
cations [Wilhelm et al., 2004; Klamt, 2006; Imielinski and Belta, 2008; Clark
and Verwoerd, 2012; Gruchattka et al., 2013; Machado and Herrgard, 2015;
Harder et al., 2016; Gerstl et al., 2015; von Kamp and Klamt, 2017; Apao-
laza et al., 2017]. Various methods exist to compute MCSs [Jungreuthmayer
et al., 2013; Nair et al., 2017; Haus et al., 2008; Goldstein and Bockmayr,
2015; Ballerstein et al., 2012; von Kamp and Klamt, 2014; Tobalina et al.,
2016]. The method that we consider in this chapter [Klamt and Gilles, 2004;
Klamt, 2006] is based on EFMs and an illustration for this procedure can be
found in Example 2.12. Computing EFMs for genome-scale metabolic net-
works is often not possible, since the number of EFMs grows exponentially
with the size of the network. Therefore the method described in Example
2.12 may not be applicable.

To address this problem, we propose here to use projections in order to
reduce the size of the underlying polyhedral cones. The projection of the
flux cone I'nr onto the set of irreversible reactions Irr leads to a smaller cone
projr, (I'ar), which is again a flux cone, but where only irreversible reactions
are active. To compute MCSs, we can apply the methods mentioned before
to projp,(I'ar) instead of I'r in order to compute MCSs. The resulting cuts
are MCSs of N that consist of irreversible reactions only. Therefore, we call
them irreversible minimal cut sets (iMCSs).

Definition 7.1 (Irreversible Minimal Cut Set). Given a metabolic network
N = (O, R, S, Irr), a target reaction tar € R, and a flur rate vj,, € R. A
set of reactions £ C R is called a cut set (with respect to the defined target
reaction tar) if after the removal of & from the network N it is no longer
possible to achieve a flux rate of more than vy, for tar. Thus there exists no
v € Iy with viar > v, and vg = 0. An irreversible minimal cut set (iMCS)
is an (inclusion-)minimal cut set { C Irr consisting of irreversible reactions
only.

Note that an iMCS is always an MCS while the converse is not true. We will
show that the EFMs of the projection proj,,.(I'a) are the minimal metabolic
behaviours (MMBSs) of the network /. We can use MMBs in the same way
as EFMs (see Example 2.12) in order to compute iMCSs instead of MCSs.

Suppose the whole set of MMBs is known and an irreversible target is chosen.
The set MMBs;,, consists of all MMBs which contain the target reaction.
Within MMBSst,, minimal hitting sets are searched which are MCSs. Since
they consist of irreversible reactions only, they are iMCSs. Note that iMCSs
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found with this technique do not allow any flux through the target reaction,
i.e., vgar = 0 for all v € T'yr with vg = 0.

Example 7.2 (Using MMBs to compute iMCSs). The network in
Figure 1.1 has three different MMBs: {1,2},{6,7}, and {6,8}. We apply the
method from Example 2.12 to compute MCSs, but instead of EFMs we now
use MMBs. The target reaction is reaction 7. The only MMB containing
reaction 7 is {6,7}. Therefore, the iMCSs for reaction 7 are {6} and {7}.

The classical method to perform projections is Fourier-Motzkin elimination,
see e.g. [Ziegler, 1995]. In general, Fourier-Motzkin elimination leads to
a combinatorial explosion in the number of linear inequalities needed to
describe the projected cone. However, in the special case of flux cones, we
can use the theory of oriented matroids to avoid this if we project along
reversible reactions on the set of irreversible reactions. This enables us to
perform the projection efficiently also on genome-scale metabolic networks.

7.2 Methods

Most of the basic definitions and theorems utilised in the following can be
found in Section 2.3.1. We consider here a special class of polyhedral cones,
the flur cones, see Definition 2.26.

7.2.1 Computing minimal metabolic behaviours via projec-
tion

Up to now there are three ways for enumerating all MMBs in a metabolic
network. The first one is to compute all EFMs and to search for the MMBs
contained in them. Since this method involves enumerating the whole set
of EFMs, it is usually not applicable to genome-scale networks. A closely
related approach is to compute a minimum set of generators for the flux
cone, e.g., by using the double description method [Fukuda and Prodon,
1996]. The supports of the generators that do not belong to the lineality
space then correspond to the MMBs [Larhlimi and Bockmayr, 2009]. A third
method is using mixed integer linear programming [Rezola et al., 2011] to
compute so-called generating flux modes (GFMs), from which again the
MMBs can be obtained.

In the following, we introduce a new method to compute the set of all MMBs
using projection of polyhedral cones. We show that the set of MMBs can
be obtained as the set of supports of the extreme rays of the projected cone

pI‘Oj Irr (FN) .
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Definition 7.3 (Projection). Forz € R" and H C {1,...,n} the projection
of z on H is defined as projy(x) = (xg,0). Similarly, for a polyhedral cone
I' CR", we define projy(I') = {projy(z) | z € T'}.

It is well-known that projy(I') is again a polyhedral cone [Ziegler, 1995].
Projections of the flux cone of a metabolic network have been considered
before in the literature [Wiback and Palsson, 2002; Covert and Palsson, 2003;
Urbanczik and Wagner, 2005b; Wagner and Urbanczik, 2005; Urbanczik,
2006; Marashi et al., 2012]. Here we show that the projection projz (I'ar) of
the flux cone I'ys of a metabolic network N' = (91, R, S, Irr) will be again
a flux cone in the sense of Definition 2.26, if we project along one or more
reversible reactions on a superset H D Irr of the set of irreversible reactions.

B
Theorem 7.4. LetT' = {x € R" | Az > 0} be a flux cone with A= | —B
EI,*
For any H D I the projection projy (') is again a fluz cone.

Proof. For any k € {1,...,n} the projection in direction of k on the set
Hi ={1,...,n} \ {k} can be realised by Fourier-Motzkin elimination, see
e.g. [Ziegler, 1995]. Here a matrix A/* is constructed such that proj m, (I) =

{x € R" | A/*z > 0,2;, = 0}. The matrix A/* contains the following rows:

e the rows A; . from A, for all ¢ with a;;, = 0.
e the rows a; yAj« + (—a;)Aix, for all 4,5 with a; ; > 0,a;; <0.

For the sake of convenience we divide the row indices of A into three sets:
JO={ilaip=0} JT={ila,>0}, J ={i|aix <0}

If k ¢ I then J° will contain all rows corresponding to £ I J 0 can contain
rows corresponding to B as well. Furthermore we have Ay, = —A;-
because A describes a flux cone. Following from this, the rows of A/* can
C
be ordered such that A’* = | —C' | and therefore proj m,, (') is a flux cone
E[,*
as well. Repeating this construction for all kK ¢ H D I, we conclude that
projy (') is again a flux cone. O

In the following, we consider the special case of flux cones I' = 'y and
H = TIrr. This means that we project along all the reversible reactions
on the set of all irreversible reactions. By Theorem 7.4, the projection
projr, (I'a7) is again a flux cone in the sense of Definition 2.26. Every vector
(UL, 0) € projp,,(Car) can be lifted to a vector v = (Vryy, VRev) € Tr of the
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original network by adding suitable components for the reversible reactions.
The flux cone proj,,(I'a) is pointed since only irreversible reactions can
be active. However, proji.(I'a7) does not necessarily describe a metabolic
network. An example is given in Figure 7.1, which shows that projecting the
flux cone along a reversible reaction is different from deleting this reaction
from the network.

We next show that the MMBs of a metabolic network A can be obtained
from the extreme rays of the pointed cone projy,(I'zr).

Theorem 7.5. I'y = {v € R* | Sv = 0, v, > 0} be the fluz cone of a
metabolic network N = (MM, R, S,Irr). The supports of the extreme rays of

the pointed cone projr,,. (L) are exactly the minimal metabolic behaviours
of the network N .

Proof. By Theorem 7.4 the cone projp,,(I'y) is a flux cone. Furthermore,
we have v > 0 for all v € proj;,,.(I'ar), because v, > 0 and vRey = 0.
Thus proj,, (I'ar) is pointed and we may apply Proposition 2.27 to conclude
that the extreme rays of proj,, (I'a7) are the rays in projy,, (I'ar) with minimal
support. Since the supports of the rays in proj,,.(I'x) are just the metabolic
behaviours in A, the result follows. ]

Theorem 7.5 leads to a new approach for computing the set of MMBs of
a metabolic network N. First compute an inequality description of the
projection projr.,(I'ar), then compute the extreme rays of projp,,(I'yr) and
their supports.
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Figure 7.1: A) Metabolic network A involving three reactions, where the
third one is reversible. The network has three EFMs: e! = (1,0,1), € =
(0,1,—1), and €® = (1,1,0). B) The corresponding flux cone I' = {z € R? |
x1 — x9 — x3 = 0,217,292 > 0}, shown in light grey, is a pointed cone and
spanned by the EFMs e! and e?, which are the extreme rays of the cone.
The third EFM e? lies inside I' and is a conic combination of e! and e?. The
lineality space is {0}. Projecting I' in direction of the reversible reaction 3
results in the projected cone projr; o (I') = {x € R3 | 23 = 0,71, 22 > 0},
shown in dark grey. It is again a pointed cone and is generated by the
vectors g' = (1,0,0) and g2 = (0, 1,0), which correspond to the two MMBs
{1} and {2} of N. C) Removing reaction 3 results in the network in C),
which has only one EFM, namely e!.
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Time Target Time

network rxns irr MMBs EFMs MMBs MMBs iMCSs iMCSs
Eischemchza coli MG1655 [Orth et al., 2010; 87 41 9572 100,274 5.7s 1151 957 1138
King et al., 2016]

Rhizobium etli iIOR363 [Resendis-Antonio et al.,

2007; T et al., 2010] 194 104 6147 N/A 26s 651 60 60s
Buchnera iISM197 [Li et al., 2010; MacDonald 944 170 945 N/A 7 146 200 1308
et al., 2011]

Blattabacterium cuenoti iCG238

[Gonzalez-Domenech et al., 2012] 308 197 374 N/A 7.7s 128 184 138s
Blattabacterium iCG230 [Li et al., 2010; ] )
Gonzélez-Domenech et al., 2012] 400 192 82 N/A 6.7s 32 159 115s
Mycobacterium tuberculosis iNJ661 [Jamshidi

and Palsson, 2007; Li et al., 2010] 427 296 501 N/A 13s 350 381 449s
Salmonella Typhimurium STM_v1_0 [Li et al.,

2010; Thiele et al., 2011] 458 316 97 N/A 11.8s 96 321 386s
Helicobacter pylori iCS291 [Schilling et al., 2002;

Li ct al., 2010] 444 271 150,132 N/A 325s 148,608 187 Shddminls

Table 7.1: Comparison of the number of EFMs, number of MMBs, number of target MMBs, number of iMCSs, and time to
compute these sets for different networks. network: name of the metabolic network. rxns: number of unblocked reactions
of the network. irr: number of unblocked irreversible reactions of the network. MMBs: number of minimal metabolic
behaviours. EFMs: number of the elementary flux modes. N/A: The programs used here (poLco [Terzer, 2017b] and
EFMTOOL [Terzer, 2017a]) could not handle the size of the models resp. the number of EFMs. Time MMBs: Time to
compute MMBs using projection. Target MMBs: number of MMBs involving the target reaction (biomass reaction).
iMCS: number of irreversible minimal cut sets. Time iMCSs: Time to compute iMCSs.
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7.2.2 Projection and contraction

In this section, we apply the theory of oriented matroids to give an efficient
procedure for computing an inequality description of the cone projp, (I'ar).

The classical method for projection of polyhedral cones is Fourier-Motzkin
elimination [Ziegler, 1995]. In general, this can lead to a combinatorial ex-
plosion in the number of linear inequalities needed to describe the projected
cone. In our case we are concerned with the special case flux cones of the
B
formI' = {xr € R" | Az > 0} with A = | —B |, and we always project
EI,*

along components k ¢ I. As we have seen in the proof of Theorem 7.4,
this implies that all changes in the row structure of A during projection will
occur in the equational part Bx = 0, while the matrix Ey , representing the
linear inequalities is not be changed. Since the homogeneous linear equation
system Bz = 0 describes an oriented matroid [Bjorner, 1999], see Definition
2.46, the projection of flux cones can be performed efficiently via contraction
of oriented matroids.

We denote an oriented matroid as M = (U,C) where U is a set and C is the
family of oriented circuits of M. The equivalent of projection for oriented
matroids is called contraction:

Proposition 7.6 (Proposition 3.3.2 in [Ziegler, 1995] on page 110). Let
M = (U,C) be an oriented matroid. For X € C and H C U we denote by
X| g the signed set (Xt NH, X~ NH). The family Min({X |y | X € C}) of
non-empty intersections of circuits of M with H that have inclusion-minimal
support is the set of circuits of an oriented matroid on H. This matroid is
called the contraction of M to H and will be denoted by contr g (M).

In our case, we consider a special class of matroids which are called rep-
resentable. Let B € R™*V be a matrix and let U be the set of columns
of B. The oriented matroid Mp = (U,C) represented by B is given by
C = Min(V), where V = {o(z) | Bx =0, z € RV}. Here o(x) € {—,0,+}V
denotes the signed set obtained by applying the sign function component-
wise to the vector x, and Min(V) is the set of non-empty signed sets in V
with inclusion-minimal support.

We next state one lemma and three propositions needed to prove Theorem
7.11.

Lemma 7.7. Let A C B C {+,0,—}Y be families of signed subsets of a set
U. If X € Min(B) and X € A, then X € Min(A).
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Proof. The proof is obvious. O

Proposition 7.8. Given a metabolic network N = (I, R, S,Irr), let
contriy (Mg) = (Irr,Cry) be the contraction of the oriented matroid
Mg = (R,C) to Irr. For families of signed subsets D C {+,0,—}* and
T C{+,0,-}* let Dy = {Y|ir € D} and TP* = {X € T | X~ = 0}.
Then

(Min(Clpr))P?* = Min((Clr)"*).

Proof. C: (Clr)P?® C Clyyy and Lemma 7.7.

D: Let X € Min((Cly)P?®). Then X € (Cli)P?® C Clir and X~ = (.
Suppose X is not minimal in C|y,. Then there exists X ec e with
supp(X) = XT U X~ C supp(X) = Xt UX~ = X+ and in particular
X # +X.

Without loss of generality, we can choose X € {W € Cly. | supp(W) C
supp(X)} such that X~ is inclusion-wise minimal.

Case 1: X € (C|pr)?°®. This implies that X is not minimal in (C|p )P,
which is a contradiction.

Case 2: X ¢ (C|pe)P**. Then X~ # () while X~ = 0.

Let Y,Y € C such that Y| = X and }7|Irr = X.

Since X~ #@and XTUX~ C Xt thereexistsu e XTNX-CYTNY~.
From X # X we get Y # +Y.

By matroid axiom (4), there exists Z € C with Z+ ¢ (Yt UY ™)\ {u} and
Z= c(Y-UY")\ {u}. It follows

o ZH C(XTUXH)\ {ul = (XT\ {u})UX+

Irr

o Z- C (X~ UX )\ {u} =X\ {u}

Irr

o supp(Zi) = (£, U Zp,,) S [(XTUXH)U(X-UX)\{u} = [(XTU

X7 U X UK\ fu} = XF\ {u} € X*.

Thus we found W = Zy,; € Q\Irr with supp(W) C supp(X) and W~ C X,
contradicting the choice of X . O

Proposition 7.9. Given a metabolic network N = (9, R, S, Irr) and a
signed set Y € {+,0,—}® we have Y € Min({o(v) | Sv = 0,v € R%}) A
Y~ NIrr =0 if and only if Y € Min({o(v) | Sv = 0, vy > 0}).

Proof. =: Lemma 7.7

<: Let Y € Min({o(v) | Sv =0, vy > 0}). Suppose Y € Min({o(v) | Sv =
0,v € R™}).

Then there exists Y € {o(v) | Sv = 0,0 € R™} with supp(Y) € supp(Y)
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and in particular Y # +Y.

Without loss of generality, choose Y such that ¥~ NIrr is inclusion-minimal.
If Y~ NIrr = (), then Y would not be minimal in {o(v) | Sv = 0, vy, > 0},
which is a contradiction.

Thus Y- NIrr # @ and (Yt UY-)NIrr C (Yt NY )Nhr =Yt Nhr. It
follows that there exists v € Irr withu € YT NY ™.

By matroid axiom (4), there exists Z € {o(v) | Sv = 0,v € R%} with
ZtC(YTuYyH)\{u}and Z= C (Y- UY )\ {u}.

Then supp(Z) C (supp(Y) Usupp(Y))\ {u} C supp(Y)\ {u} and Z~ NIrr C
(Y~ NIrr) U (Y~ NTrr) \ {u} = (Y~ NIrr) \ {u} € Y~ NIrr, contradicting
the minimality assumption in the choice of Y. O

Proposition 7.10. In a metabolic network N = (9, R, S, Irr) we have
Min({Y|r | Y € Min({o(v) | Sv = 0, vy > 0,0 € R™*}}) = Min({o(v)|1r |
Sv=0,v > 0,v € R%}).

Proof. C: Let X € Min({Y|ny | Y € Min({o(v) | Sv = 0,vy > 0,v €
R¥1)}) and suppose X ¢ Min({o(v)|ir | Sv = 0,vpy > 0,0 € R%}).
Then there exists v € Ty with supp(o(v)|ny) = supp(v) NIr C X.
Furthermore, there exists w € I'ar with supp(w) C supp(v) such that
Y = supp(w) € Min({o(v)|iy | Sv = 0,vr; > 0,0 € R™}) is inclusion-
minimal.

It follows that Y|y, = supp(w) NIrr C supp(v) NIrr € X, contradicting the
minimality of X.

D: Let X € Min({o(v)|ur | Sv = 0,01 > 0,0 € R1}).

Let v € I'yy with X = o(v) |1

There exists w € 'y with supp(w) C supp(v) and Y = supp(w) €
Min({o(v)|1r | Sv = 0, v > 0,v € R™}) is inclusion-minimal.

Then Y|y = supp(w) NIrr C supp(v) NIrr € X and by the minimality of
X it follows Y|, = X. O

Using the previous lemma and propositions we can now prove our main
theorem:

Theorem 7.11. The minimal metabolic behaviours of a metabolic network
N = (O, R, S, Trr) with flux cone Tnr are exactly the oriented circuits X of
the contraction contr,(Msg) for which X~ = 0. If T € R¥*IT js q matriz
representing contry, (Mg) then

projlrr(r./\f) = {U € Rm ‘ T'UIrr = Oavlrr > O7URev = 0}

Proof. Let contry(Mg) = (Irr, Cry) be the contraction of Mg = (R,C) to

126



7.2 Methods

Irr. Let CP°° be the family of circuits X € Cp,, with X~ = (). We have

Irr

cr* = Min({Y|m | Y €CHN{X | X~ =0}
PRI Min({Y | Y €C, Y™ NI = 0})
= Min({Y |1r | Y € Min({o(v) | Sv = 0,v € R%*}), Y~ N1Irr = 0})
PRI Nin({Y |y | Y € Min({o(v) | Sv = 0,01 > 0,0 € R*1)})
PrO};TlO (

Min({o(v)|1: | Sv =0, vy > 0,0 € Rm})

The last set just defines the MMBs in N. If T' represents contry,, (Mg), then
by definition Cr; = Min({o(x) | Tx = 0,2 € R }). It follows that

cre = Min({o(x

Prog?.g Min
in
in
in
n
in

| Te =0,z c R N{X €Cpp | X— =0}

)
{o(x) | Tx =0,z > 0,z € RI"™})
{o(v) | Tvr: = 0,01 > 0, VRey = 0,v € R1Y)
{Supp( ) | T = 0,0 = 0,VRey = 0,0 € Rm})
{o(V)|1e | Sv = 0, vy > 0,v € R%Y})

{supp(projy, (v)) | v € Tar})
{supp(w) | w € projy,(T'x)})

Il
SEEEE

Thus in R™, the two pointed cones T' = {v € R™ | Twpy = 0,01y > 0, VRev =

0} and pro Jlrr(F ) have the same set of minimal support vectors. By Propo-
sition 2.27 they have the same set of ERs and therefore are identical. O

Example 7.12 (Compute MMBs using the contracted matriz). Con-
sider again the network N'= (9, R, S, Irr) in Figure 1.1. Let Mg = (R,C)
be the oriented matroid represented by the stoichiometric matriz S € RT*%R,
This matroid contains 24 oriented circuits, where we identify two oriented
circuits X and Y if X = =Y. Among those, 18 correspond to EFMs, for
example {+1,+2,4+3,+4} or {—4,+6,+7}. The remaining 6 oriented cir-
cuits {—7,+8, +9, +10}, {+1, +2, +4, +5, +7, =8}, {—3, +5, +7, =8}, {+1,
+2, 45, +6, +7, =8}, {+1, +2, +4, +5, —6, —8}, {—7, +8, +11, +12} do not
correspond to a feasible flux vector. In each of these, there is an irreversible
reaction with negative flur. Contracting Mg on Irr results in the oriented
matroid contry, (Mg)represented by the matriz

1 2 6 7 8
T A1 -1 0 0 O '
E\0 0O 1 -1 -1
By Theorem 7.11, the matriz T also describes the flux cone projp, (L) =

{v € R | Twpy = 0, v > 0, VRey = 0}, in which all active reactions are
irreversible.

By Proposition 2.27, the extreme rays of projn,, () are exactly the EFMs
of the network represented by proj,,(I'ar), which is shown in Figure 7.2.

127



7. Projections of flux cones

Qo

M
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Figure 7.2: Projection of the network in Figure 1.1 on the set of irreversible
reactions. Reactions 1, 2 are independent from reactions 6, 7, 8. The
metabolites that were connected to the reversible reactions have been re-
moved.

The supports of these extreme rays are {1,2},{6,7},{6,8}, which are the
MMBs of the original network from Figure 1.1. The oriented circuits of
contryy (Mg) include these MMBs (as signed sets) and one additional ori-
ented circuit {—7,+8}.

Thus, in order to compute the matrix 7" in Theorem 7.11 that describes
the projected flux cone projp,,(I'ar), we may use contraction of oriented
matroids. For an oriented matroid Mp represented by the matrix B €
R™*" " computing the matrix representing the contraction can be done by
basic linear algebra as we emphasise in the following.

7.2.2.1 Contraction via deletion in the dual matroid

Proposition 7.13 (Proposition 3.3.1 in [Bjorner, 1999] on page 110). Let
M = (U,C) be an oriented matroid and let A C U. The family C\ A =
{X € C | supp(X) C U\ A} is the set of circuits of an oriented matroid
M\ A= (U\A, C\ A), which is called the deletion of A from M.

An alternative notation for the contraction contry (M) of M = (U,C) on
H C U is to write M/A with A= U \ H [Bj6rner, 1999, p. 111].

Proposition 7.14 (Proposition 3.4.9 in [Bjorner, 1999] on page 123). Let
M = (U,C) be an oriented matroid on a set U and let A be a subset of U.
Then

(M\A) = M /A

(M/A)" = M"\ A,

where M* is the dual oriented matroid of M.
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Since M** = M, the contraction of M on H = U \ A can be realised by the
deletion of A in the dual matroid M*.

If an oriented matroid Mp = (U,C) is represented by a matrix B € R™*U,
then the dual matroid M7 can be obtained in the following way [Ziegler,
1995, p.166]: Suppose the matrix B representing Mp is given as B = (E, |
@), where E, is the identity matrix of r elements. Then the dual matroid
M7, is represented by the matrix C = (=QT | E,—,). Thus to compute
the dual of the oriented matroid M p we have to bring B to the form B =
(Er | @), which is computationally easy. To do so, we can use Gaussian
elimination [Artin, 1998; Gilbert and Gilbert, 2014]. By this, the row space
is not changed, thus B = (E, | Q) describes the same matroid as before
Gaussian elimination was applied.

To perform the contraction of Mp on H = U\ A, we delete A in M7;. This is
done by removing in the matrix C' € RV*™ that represents M the columns
corresponding to A C U. Finally, we compute (M*\ A)* = (M/A). With
this approach, no combinatorial explosion will occur like in Fourier-Motzkin
elimination.

Example 7.15 (Contraction via deletion in the dual matroid). The
oriented matroid Mg = (R, C) we consider here is given by the set of reac-
tions R = {1,...,12} of the network in Figure 1.1, thus Mg is a fluz-mode
matroid, see Definition 2.53. The stoichiometric matriz S € R™R s the
following:

4 B G U/ T

Af1 -1 0 O 0 0 0 0 0 0 0 0
Bfo 1 -1 0 -1 0 0 0 0 0 0 0
clo 1 0 -1 0 -1 0 0 0 0 0 0
S=D|0o o0 0 0 1 0 0 1 -1 0 -1 0
El10 0 0 O 0 1 -1 -1 0 0 0 0
Fl{0 O 0 0 0 0 0 0 0 0 1 -1

G \0 O 0 0 0 0 0 0 1 -1 0 0

To compute the dual matroid Mg we first have to bring S to the form
(B, | Q) which can be done by first bringing the matriz into the row re-
duced echelon form e.g. using Gaussian elimination [Artin, 1998; Gilbert
and Gilbert, 2014]. The result is the following matriz:

A4 d MWEd M@ ¢4 (3
1 00 -1 00 -1 -10 0 0 0
010 -1 00 -1 -10 0 0 0
001 -1 00 -1 -2 0 1 0 1
s*f— 109 00 0 10 0 1 0 -1 0 -1
000 0 01 -1 -10 0 0 0
000 0 00 0 O 1 -1 0 0
000 0 00 0 O 0 0 1 -1
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Since we want to have an identity matriz in the front we have to change
the order of the columns of S™ef :

ERERERCET £
1 00 0 0 0O 0 -1 -1 -1 0 0
010 0 0 0 0 -1 -1 -1 0 0
o0 1.0 0 0 0 -1 -1 -2 1 1
o0 0 1 0 0 0O 0 0 1 -1 -1
B=lo oo 0o 1.0 0 0 -1 -1 0 0
O 0 0001 0 0 0 0 -1 0
o0 0000 1 0 0 0 0 -1
E, Q

The dual matroid MY is represented by the matriz C = (—QT | En—,), where
B = (E, | Q). Thus

4 4 @ @[ 7 18
1 1 1 o 0 o0 o0 1 0 0 O 0
1 1 1 0o 1 .0 O 0 1 0 O 0
1 1 2 -1.1.0 0 0 O 1 O 0
¢=lo o -1 1 0 1 0 0 0 0 1 0
o 0 -1 1 0 0O 1 0 0 0 O 1
_QT En—r
In order to contract Mg on Irr = R \ Rev we delete Rev =

{3,4,5,9,10,11,12} in MY, resp. the corresponding columns in C':

ERENURGNE

1 0 O

Q

Il
OO =
OO = =
S O = =
SO O
OO = OO

C" represents the matroid MY \ Rev. Since it holds (M% \ Rev)* =
(Mg /Rev) we have to compute the dual of MG \ Rev as we did for M.

We first compute the reduced row echelon form:

ERCEmE
1100 0
c™ =10 01 0 1
00 0 1 -1

The last two rows are zero so we can omit them. The matrix QQ consists of
the columns corresponding to 2 and 8. Therefore the matrix representing the
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matroid Mg /Rev is

[~]

T -1 0 1 0 0 .
0O -1 0 1 -1
Which is T in Ezample 7.12 after reordering the columms.

In our computational experiments, we used for this operation the software
SAGE [The Sage Developers, 2016]. Once the matrix 7" has been obtained,
we can compute the extreme rays of the cone projy,.(I'yr). By Theorem 7.5
their supports are exactly the MMBs of V.

Given the set of MMBs, computing iMCSs becomes a hitting set problem,
see the following subsection and [Klamt, 2006].

7.2.2.2 Computing iMCSs as hitting sets

Given the set of MMBs of a network A/, computing the iMCSs of N is a
hitting set problem. In general, this has the following form: Given a set of
elements 2 and a family T of subsets L C €2, find the smallest subsets of 2
that contain at least one element in each set of T. In our case, 2 = Irr and
T = MMBsy,, is the family of MMBs involving the target reaction tar. We
assume that there are no blocked reactions in the network, i.e., reactions
which always have zero flux.

We solve the hitting set problem using MILP. For each subset I C Irr we
associate a vector x € {0, 1} such that z; = 1 if reaction j € I and x; = 0
if reaction j ¢ I. Then the formulation to enumerate iMCSs of minimum
cardinality is

(P) minimize Z xj

j€lrr

subject to Z xz; > 1, VD € MMBsq;,
Jj€D
T € {0, 1}.

Our goal is to enumerate all iMCSs and not only those of minimum cardi-
nality. So whenever we find a new solution z* at iteration ¢, we add a linear
inequality to reject this solution at iteration ¢+1. If x is a candidate solution
at iteration i + 1 we require supp(z*) ¢ supp(x), which can be formulated

as Z]Esupp(a:*) T < |supp(:v*)] -1
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7.3 Results and discussion

We implemented our method in MATLAB. We used the software SAGE (http:
//www.sagemath.org) [The Sage Developers, 2016] for computing the pro-
jection via contraction and the software polco [Terzer, 2009b] for enumer-
ating the extreme rays. All computations were done on a desktop machine
with two processors Intel(R) Core(TM) i5-2400S, CPU 2.50GHZ, each 1
thread. To evaluate our method, we considered a selection of medium-sized
metabolic networks from BioModels Database [Li et al., 2010]. The number
of unblocked reactions ranges from 87 up to 444.

While EFMs could be computed for only one network, the set of MMBs
could be obtained for all these networks in a relatively short amount of time
see Table 7.1.

All these networks contain a biomass reaction, which became the target
reaction for computing the iMCSs. The hitting set approach allowed us
to enumerate all iMCSs for these networks, where the iMCSs lead to a
zero flux through the target reaction. For several networks, the maximal
cardinality of the iMCSs did not exceed 5, and for these networks, most
iMCSs have even cardinality 1. In Blattabacterium iCG230, we only have
iMCSs of cardinality 1 (152 iMCSs) and cardinality 2 (7 iMCSs). Salmonella
Typhimurium STM_v1_0 is another example with 296 iMCSs of cardinality 1,
19 of cardinality 2, and 6 of cardinality 3, cf. Table 7.2.
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eel

network rxns irr iMCSs cardinality

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
Escherichia coli MG1655 [Orth 87 41 57| 4 15 17 4 23 8§ 13 23 48 13 16 29 6 13 16
et al., 2010]
Rhizobium etli iOR363
[Resendis-Antonio et al., 2007] 194 104 60 29 18 13 0 0 0 0 0 0 0 0 0 0 0 0
Buchnera iSM197 [MacDonald 244 170 200 | 165 18 11 6 0 O 0 0 0O 0O 0O 0 0 0 0
et al., 2011]
Blattabacterium cuenoti iCG238
[Gonzdlez-Domenech et al., 2012] 308 197 184 | 165 6 9 4 0 0 0 0 0 0 0 0 0 0 0
Blattabacterium iCG230
[Gonzdlez-Domenech et al., 2012] 400 192 159 | 152 7 0 0 0 0 0 0 0 0 0 0 0 0 0
Mycobacterium tuberculosis iNJ661
[Jamshidi and Palsson, 2007] 427 296 381 | 233 102 20 26 0 0 0 0 0 0 0 0 0 0 0
Salmonella Typhimurium
STM_v1_0 [Thiele et al., 2011] 458 316 321 | 296 19 6 0 0 0 0 0 0 0 0 0 0 0 0
Helicobacter pylori 105291 444 271 187 | 95 37 14 19 2 3 0 0 0 0O O O O 0 O

[Schilling et al., 2002]

Table 7.2: Comparison of the number of EFMs, number of MMBs, number of target MMBs, number of all iMCSs and time
to compute these sets for different networks. The description of Escherichia coli MG1655 [Orth et al., 2010] was taken
from the BiGG Models Database [King et al., 2016], whereas the remaining ones are all taken from BioModels Database [Li
et al., 2010]. network: name of the metabolic network. rxns: number of unblocked reactions. irr: number of unblocked
cardinality: The number of all iMCSs of the

irreversible reactions.
corresponding cardinality.

iMCS: number of irreversible minimal cut sets.
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7. Projections of flux cones

Figure 7.3: Cardinality of iMCSs for Escherichia coli MG1655 [King et al.,
2016]. Each bar illustrates the number of iMCSs of the cardinality given on
the z-axis. The number of iMCSs can be found on the y-axis.
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7.4 Conclusion

We introduced the new concept of irreversible minimal cut sets, which can
be computed using minimal metabolic behaviours. To find the MMBs of a
metabolic network N\, we project the flux cone I'ys on the set of irreversible
reactions Irr C R. The supports of the extreme rays of the pointed cone
projp.(Ca) are the MMBs of .

One direction of future research is to project I'ar on a set H 2 Irr containing
not only irreversible, but also some reversible reactions. These reversible
reactions could be some promising candidates for MCSs. For example, it
might be known that it is easy to knock out these reactions experimentally.

A second line of research is applying linear programming techniques and
duality to compute MCSs on the projected cone projp,,.(I'ar). Such MCSs
are iMCSs for the original network. It was shown in [Ballerstein et al., 2012]
that the MCSs of a flux cone I'ys correspond to a subset of EFMs in a dual
cone I'y,. Therefore computing MCSs in I'ys can be done by computing
EFMs in I'},. Since projp,,(I'ar) is a flux cone, it is possible to compute
EFMs in the dual cone projp,, (I'a)*, which gives iMCSs in I'ys. In Chapter
8, we further explore this approach.
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Chapter 8

Computing iMCSs using the
dual approach

This chapter is based on a joint article with Alexander Bockmayr, which is currently
under revision.

In the last chapter we introduced a method for computing iMCSs, see Defi-
nition 7.1. Considering a metabolic network A" = (9, R, S, Irr) we project
the corresponding flux cone 'y, = {v e R% | Sv =0, v > O} onto the set
of irreversible reactions along the reversible reactions. Every vector (vpy,0)
in projp,, (') can be lifted to a feasible flux vector v € T'yr of the original
network by adding components corresponding to the reversible reactions and
suitable flux rates. The polyhedral cone proj,,(I'ar) is pointed since only
irreversible reactions can be active and the supports of the extreme rays of
projr, (I'ar) correspond exactly to the MMBs of the original metabolic net-
work N. Furthermore, since we project only along the reversible reactions,
the projection can be computed in an efficient way because no inequalities
are involved. In Chapter 7 we used the MMBs to compute iMCSs, based
on the method explained in Section 2.2.3 where EFMs are used to compute

MCSs.

The network sizes for which we are able to compute the MMBs are still
limited. The bottleneck is computing the extreme rays of proji..(I'a) by
polco [Terzer, 2009b], while doing the projection is feasible even for very
large networks. In this chapter we make use of the dual approach [Burgard
et al., 2003; Ballerstein et al., 2012] for computing MCSs of N but do not
apply it to I'yr but to the projection projy,, (I'ar).
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A) B)

<>
@/\gﬂ’ <z

@ @ target
s ,L.Suz;)\

Figure 8.1: A) A metabolic network with 5 reactions and 2 metabolites. The
dual network can be found in B). Here we have 5 metabolites and 2 internal
reactions. The exchange reactions are independent from the primal network
[Ballerstein et al., 2012]. See Example 8.1 for a detailed explanation.

8.1 The dual approach

The dual approach is based on the Farkas’ lemma and linear programming
duality [Larhlimi and Bockmayr, 2007; Ballerstein et al., 2012; von Kamp
and Klamt, 2014]. As shown in [Ballerstein et al., 2012], the MCSs in a
network A for a given target reaction tar € R correspond to EFMs in a
dual network N{,,. Intuitively speaking, the metabolites in N}, correspond
to the reactions in N and vice versa, see Figure 8.1 for illustration. The
stoichiometric matrix of NV, is the transposed stoichiometric matrix of the
primal network A, where some columns have to be added. Exploiting this
duality, one can use MILP to enumerate MCSs of increasing size [Larhlimi
and Bockmayr, 2007; von Kamp and Klamt, 2014]. Further extending these
methods, [Tobalina et al., 2016] compute MCSs that contain a predefined

knockout reaction tar’ # tar.

8.1.1 Dual network

We explain in the following the formulation of the dual problem step by
step based on [Ballerstein et al., 2012; von Kamp and Klamt, 2014; Tobalina
et al., 2016].

Assume a metabolic network N/ = (9, R, S,Irr) and its flux cone T'yr is
given. We consider the network at steady-state:

Sv =20 (8.1)
vy 2> 0.
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MCSs are defined w.r.t. a target reaction tar € R and a certain value v{,,.
For example tar is the biomass reaction and vf,, is 20% of the maximal
biomass rate. We call a minimal set of reactions £ C R an MCS if the
maximum value of vg,, is less than or equal v{,,. for all v € 'y with v = 0.
See Section 2.2.3 for details.

Thus, we want to prevent with an MCS that there exists a flux vector v € I'pr
with
yT U 2> Ui);kam (8'3)

where y € B™ with y; = 0 for i € %\ tar and yi.r = 1. Note that for several
target reactions the formulations are accordingly.

An MCS ¢ C R is a minimal set of reactions that would make the set of
constraints (8.1),(8.2), and (8.3) infeasible. A set of possible constraints
which can be added to make them infeasible is:

v = O. (8.4)

An MCS corresponds to a minimal subset of the constraints (8.4), such that
(8.1), (8.2), and (8.3) become infeasible.

Altogether, the constraints (8.1), (8.2), (8.3), and (8.4) define the infeasible
primal problem:

Sv= 0
Ulrr Z 0
yT U2 U:ar
Vs — 0

veR™? yeB™

In order to search for a subset of constraints from the set (8.4) such that
the constraints (8.1), (8.2), and (8.3) become infeasible one can consider the
corresponding dual:

u
TE| - E P =
(STIE| = Erly) - | . | =0 (8.5)
w
Vi - W > 0 (8.6)

vp > 0,on > 0,w >0
UERm,UpER%,vnERm,wéR

where § > 0 denotes a threshold, indicating above which flux rate a reac-
tion is considered to be active. Practically ¢ is chosen to be between 1076
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and 10~%. E denotes the identity matrix and Ep,, the identity matrix cor-
responding to the irreversible reactions where |Rev| zero-rows are added at
the positions of the reversible reactions. We denote in the following the
concatenated matrix (ST|E| — Ep|y) with N.

The constraints (8.5), (8.6), (8.7), and (8.8) define the dual network N, =
(0T, |*, N, Irr™), where 9" denotes the metabolites in the dual network, JR*
the reactions and Irr* the irreversible reactions. N is the stoichiometric ma-
trix of N, with (u,vp,vn,w)T being the dual flux vector. Thus the number
of reactions JR* of the dual network corresponds to the size of (u,vp, vn,w).
The irreversible reactions Irr* are related to vp, vn, and w. The variables of
u are related to the steady-state constraints in (8.1), vp, resp. vn, variables
are linked to (8.4), resp. (8.2), and w corresponds to (8.3). An MCS of N
w.r.t. tar € R is an EFM in this dual problem that contains w and has
minimal support in vp: if vp; # 0 then i is part of an MCS for NV w.r.t. tar
[Ballerstein et al., 2012; von Kamp and Klamt, 2014; Tobalina et al., 2016].
The constraint (8.6) rules out a trivial solution.

Example 8.1 (Dual network). We consider the metabolic network given
in Figure 8.1. The primal network N has five reactions and two metabolites,
where reaction 1 is the only reversible reaction. We choose reaction 5 as a
target reaction. The stoichiometric matriz is

48 8 W b
A(-1 1 -1 -1 0

S =
B 0 0 1 1 -1

Let the mazimal rate of reaction 5 be 10, so that vi,, = 2 (20% of the
mazimum value). The primal (infeasible) problem is then the following:

11 -1 -1 0) _,
o0 1 1 -1)Y7

V2,345 > 0
(0,0,0,0,1) - v > 2
1 0 0 0 O
01 0 00
0010 0fv=0 (8.9)
000 10
0 00 01

The corresponding dual is:
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1 0l10000/0 0O 0 0 0] 0 .
1 0/01000/0 -1 0 0 0|0
1 1/00100/0 0 -1 0 0|0 ;’Z —0
1 1/00010/0 0 0 -1 0|0 ;)
0 —1/0 000 1/0 0 0 0 —1]| 1
S~—— ~~ ~~
ST E EIrr Y
2-w >0

For computing MCSs of A/ w.r.t tar we can compute EFMs in A%, using the
constraints (8.5), (8.6), (8.7), and (8.8). We can make use of the MILP in
[De Figueiredo et al., 2009], see Chapter 3, where the k-shortest EFMs are
computed. Thus we compute the k-shortest MCSs. The binary variables,
indicating which reactions are part of the computed MCS, are zp and zv and
it holds that zp; = 0 < vp; = 0 and zn; = 0 < vn; = 0. For more details
we refer to [Ballerstein et al., 2012; von Kamp and Klamt, 2014; Tobalina
et al., 2016].

Building on this method [Tobalina et al., 2016] compute MCSs which always
contain a specific, predefined reaction knock-out. Thus, in the dual network

oor all EFMs are computed including the predefined reaction knock-out so
this method is also based on MILP.

The definition of the dual network N5, as above is based on Farkas’ Lemma
[Schrijver, 1998], which can be applied to any matrix, not only stoichiometric
matrices. Therefore we can define a dual flux cone I'* for a general flux cone
B
I' as well, where I' = {z € R" | Az > 0}, with A= | —B |. The dual flux
EH,*
cone is then given by I'" = {u € R™ | (B, g)Tu > 0, (B, o\#)Tr = 0},

8.2 Results

All computations were done on a desktop computer with eight processors
Intel(R) Core(TM) i7-2600, CPU 3.40GHZ, each with 2 threads.

8.2.1 Projection

We used the software SAGE [The Sage Developers, 2016] for computing the
projection via contraction. We performed the projection on all 84 networks
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of the BiGG Models Database [King et al., 2016], which took between 32
seconds (for a network of 87 unblocked reactions) and 35 minutes (for a
network of 4047 unblocked reactions), see Table 8.1, Table 8.2, and Figure
8.2.
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8.2.2 Computing shortest MCSs

To compute k-shortest MCSs and iMCSs we used the already existing im-
plementation by [Tobalina et al., 2016], who provide a MATLAB script, using
cplex [IBM Knowledge Center, 2010] as an MILP solver. We used the re-
sulting matrices describing proji,.(I'yr) and the description of the original
flux cone 'y and compared the results.

8.2.2.1 Time differences

We computed 10, 100, and 300 iMCSs using both, the original and the
projected flux cone for the 77 different networks including a biomass reaction
which became the target reaction. For both, the original flux cone I'r and
the projected flux cone, only iMCSs were computed. Figure 8.3 illustrates
the relative time of the computations, where the details can be found in
the Appendix in Section 10.2.1. Computing 10 iMCSs is sometimes faster
using the original flux cone and sometimes faster using the projected flux
cone. For computing 100 or 300 iMCSs it is almost always faster using the
projected flux cone.

8.2.2.2 Cardinality

We used the 300 iMCSs to compare their cardinality with 300 MCSs we
computed using the original flux cone I'yr. We end up with iMCSs of larger
cardinality than computing MCSs (which include all the iMCSs), see the
Tables in the Appendix in Section 10.2.2.
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network id size normal cone size projected cone time
e_coli_core 68 x 87 16 x 40 32
iAB_RBC_283 333 x 453 136 x 264 32
iIT341 381 x 436 213 x 276 34
iLJ478 331 x 385 171 x 228 30
iAF692 417 x 484 245 x 321 39
iSB619 381 x 450 192 x 275 35
iNF517 435 x 513 203 x 296 42
iHN637 448 x 524 266 x 351 46
iJB785 671 x 741 440 x 543 100
iJN678 597 x 675 405 x 497 79
iAT _PLT_636 738 x 1008 316 x 559 134
iNJ661 579 x 740 335 x 515 82
iJN746 539 x 652 283 x 401 69
iJR904 450 x 667 243 x 475 63
iYO844 500 x 657 220 x 385 63
iND750 479 x 631 210 x 381 59
iAF987 708 x 840 429 x 574 111
iMM904 650 x 893 307 x 586 109
iPC815 761 x 1065 450 x 774 163
iRC1080 1102 x 1583 1102 x 1091 340
iYL1228 830 x 1223 495 x 925 205
iAF1260 1032 x 1532 661 x 1185 316
iAF1260b 1040 x 1554 662 x 1200 373
iSDY_1059 1026 x 1502 627 x 1133 311
STM_v1_0 1086 x 1597 711 x 1249 346
iJO1366 1155 x 1705 732 x 1312 391
iSbBS512.1146 1018 x 1540 622 x 1169 334
iSBO_1134 1022 x 1530 630 x 1168 297
iS_1188 1017 x 1504 604 x 1127 286
iSFV_1184 1026 x 1516 605 x 1136 288
iSF_1195 1022 x 1512 601 x 1129 294
iSFxv_1172 1045 x 1554 627 x 1171 311
iSSON_1240 1066 x 1601 638 x 1206 323
iECH74115_1262 1083 x 1636 658 x 1246 342
iE2348C_1286 1087 x 1641 657 x 1243 347
iG2583_1286 1087 x 1644 662 x 1254 358
iECED1.1282 1087 x 1644 657 x 1249 344
iECSP_1301 1087 x 1646 662 x 1256 344
iML1515 1147 x 1744 719 x 1350 427
iEC042_1314 1084 x 1644 662 x 1257 347
iECNA114.1301 1091 x 1656 660 x 1260 348
iECs_1301 1087 x 1646 662 x 1256 343

Table 8.1: Sizes of the flux cones and time for the projection for the first
42 networks (w.r.t. the number of reactions) of the BiGG Models Database
[King et al., 2016]. network id: The id of the network in the BiGG Models
Database. size normal cone: size of the flux cone of the original network:
unblocked reactions and non-dead end metabolites. size projected cone:
size of the projected flux cone of the original network: number of columys
and rows of the matrix describing the projected flux cone. time: time in
seconds needed to project onto the irreversible reactions (using the network
without the blocked reactions).
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network id size normal cone size projected cone time
iECIAI39_1322 1044 x 1569 613 x 1177 313
iZ.1308 1087 x 1646 662 x 1256 347
iUTI89.-1310 1096 x 1662 660 x 1261 363
ic_1306 1090 x 1656 654 x 1254 334
iLF82_.1304 1082 x 1650 645 x 1243 342
iECOK1.1307 1096 x 1670 660 x 1269 337
iECS88_1305 1088 x 1653 660 x 1260 335
iECABU_¢1320 1094 x 1663 659 x 1262 339
iAPECO1.1312 1096 x 1668 660 x 1267 333
iNRG857_1313 1100 x 1675 660 x 1268 344
iUMN146_1321 1096 x 1670 660 x 1269 341
iECP_1309 1094 x 1668 659 x 1267 334
iECUMN_1333 1093 x 1657 655 x 1255 330
iB21.1397 1089 x 1650 658 x 1253 332
iBWG_1329 1164 x 1739 726 x 1335 375
iECD_1391 1089 x 1650 658 x 1253 330
iECDH10B_1368 1160 x 1736 721 x 1331 376
iECSF_1327 1162 x 1743 726 x 1338 382
iEcSMS35.1347 1102 x 1673 664 x 1271 334
iECB_1328 1096 x 1660 662 x 1262 331
iECBD_1354 1089 x 1651 658 x 1254 326
iEcDH1_.1363 1099 x 1667 663 x 1266 333
iEcHS_1320 1094 x 1645 662 x 1251 334
iECDH1MES8569-1439 1101 x 1670 663 x 1268 338
iEC55989_1330 1103 x 1670 664 x 1268 339
iETEC_1333 1095 x 1658 664 x 1263 332
iEC0O103.1326 1096 x 1660 661 x 1262 338
iY75.1357 1101 x 1670 663 x 1268 340
iECO111.1330 1089 x 1651 660 x 1259 330
iEcE24377_1341 1092 x 1655 663 x 1260 329
iECIAT1.1343 1089 x 1638 663 x 1251 356
iEcolC_1368 1092 x 1653 663 x 1261 331
iECSE_1348 1098 x 1664 663 x 1266 337
iUMNKS88_1353 1098 x 1665 664 x 1268 334
iEKO11.1354 1098 x 1655 663 x 1257 332
iEC026-1355 1098 x 1666 663 x 1268 342
iECW_1372 1102 x 1668 665 x 1269 334
iWFL_1372 1102 x 1668 665 x 1269 337
iMM1415 1665 x 2432 855 x 1576 700
RECON1 1586 x 2467 525 x 1314 620
iLB1027_ lipid 1814 x 4047 1355 x 3653 2075
iCHOv1 2213 x 4280 943 x 2527 1720

Table 8.2: Sizes of the flux cones and time for the projection for the second
42 networks (w.r.t. the number of reactions) in the BiGG Models Database
[King et al., 2016]. network id: The id of the network on the BiGG Models
Database. size normal cone: size of the flux cone of the original network:
unblocked reactions and non-dead end metabolites. size projected cone:
jigg of the projected flux cone of the original network: number of columns
and rows of the matrix describing the projected flux cone. time: time in
seconds needed to project onto the irreversible reactions (using the network
without the blocked reactions).
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Figure 8.3: We consider here 76 networks the BiGG Models Database. The ids of the networks can be found on the z-axis. The networks
are ordered according to their number of reactions. For each number of computed iMCSs (10,100, or 300) there exists a differently shaped
marker: a circle for 10 iMCSs, a square for 100 and a diamond for 300 computed iMCSs. Their positions illustrates the relative time
(y-axis) needed to compute the given number of iMCSs using the original flux cone vs. the projected flux cone. If the marker is above
the line it means that using the projected cone is faster. For example computing 100 iMCSs is always faster, for the network 151188
it is roughly 3.7 times faster using the projected cone. If the marker is below one, which is almost always the case when 10 iMCSs are
computed, it is faster to use the original cone. For example computing 300 iMCSs in the original flux cone is 1.4 times faster in the
original flux cone. As one can see, for computing a small number of iMCSs it does not make a huge difference, using the original or the
projected flux cone. But for larger numbers of iMCSs especially in bigger networks the benefit increases.
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8. Computing iMCSs using the dual approach

8.2.3 Computing MCSs including a knock-out reaction

Finally we considered the computation of iMCSs containing a specific re-
action knock-out. We applied the software of [Tobalina et al., 2016] to the
original stoichiometric matrices as well as to the reduced matrices after pro-
jection, and compared the results for both cases. Like in [Tobalina et al.,
2016], we used the biomass as target reaction. For each irreversible reaction,
we set a time limit of 1 minute to compute a single iMCS that contains this
reaction. If no MCS can be found within 1 minute, the computation was
stopped and we moved on to the next irreversible reaction. We report on the
39 networks in the BiGG database for which the total computation time for
this experiment did not exceed 3 days. Except for one network, we were able
to compute more iMCSs using the projection, see Figure 8.4 and Table 8.3.
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Figure 8.4: We consider in this figure all networks from the BiGG Models Database for which the total computation time took less
than 3 days, using the method of [Tobalina et al., 2016]. The biomass reaction is the target reaction for computing the MCSs and one
additional irreversible reaction is defined as knock-out reaction. We loop over all irreversible reactions of the network. In step ¢, reaction
1 is defined as a knock-out reaction and the program tries to compute an iMCS for the target reaction containing ¢. After 1 minute,
or if an MCS has been found, the next step starts. The y-axis indicates the number of MCSs that were found. The transparent bar
(which includes the non-transparent bar) indicates the number of MCSs computed using the projected network, the non-transparent bar
indicates the number of MCSs computed for the original cone. For all networks, we were able to compute more MCSs using the projected
network.
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network id Nr. normal Nr. projected difference
iG2583.1286 847 1133 286
iECED1.1282 845 994 149
iECSP_1301 868 996 128
iML1515 877 1350 473
iECNA114.1301 862 1135 273
iECs_1301 866 1007 141
121308 841 1008 167
iUTI89.1310 841 1032 191
ic_1306 896 1055 159
iLF82_1304 836 1088 252
iECOK1.1307 861 1106 245
iECS88_1305 835 1055 220
iECABU_¢1320 855 1090 235
iAPECO1.1312 845 1121 276
iUMN146_1321 831 1037 206
iBWG_1329 937 1226 289
iECD_1391 833 1135 302
iECDH10B_1368 924 1231 307
iECSF_1327 959 1277 318
iEcSMS35.1347 851 1066 215
iECB_1328 871 1183 312
iECBD_1354 824 1078 254
iEcDH1.1363 819 1148 329
iEcHS_1320 854 1150 296
iECDH1MES8569_1439 836 1065 229
iEC55989_1330 858 1080 222
iETEC_1333 844 1061 217
iEC0103.1326 846 1108 262
iY'75.1357 826 1074 248
iECO111.1330 879 1042 163
iEcE24377_1341 863 1101 238
iECIATI1.1343 854 666 -188
iEcolC_1368 832 1117 285
iECSE_1348 865 1018 153
iUMNKS88_1353 830 1023 193
iEKO11.1354 835 1162 327
iEC026-1355 842 1129 287
iWFL_1372 840 1179 339
iLB1027 lipid 546 2916 2370

Table 8.3: We applied the program of [Tobalina et al., 2016] to the orig-
inal stoichiometric matrices and to the matrices after the projection was
performed. As a target reaction we had for all cases the biomass reaction.
We looped over all irreversible reactions and compute an iMCS. After one
minute, or after an iMCS was found, the next step started with a new knock-
out reaction. network id: the id of the network as it can be found in the
BiGG Models Database. Nr. normal: the number of iMCSs which were
found using the original flux cone. Nr. projected: the number of iMCSs
#itich were found using the projected flux cone. difference: the number
of iMCSs we found more when using the projected flux cone instead the
original.



8.3 Conclusion

8.3 Conclusion

As for the previous chapter, a direction of future research is to project I'ar
on a set H D Irr containing not only irreversible, but also some reversible
reactions.

In general, computing iMCSs using projection in order to decrease the size of
the dual problem is a good start for analysing the structure of the metabolic
network when the MMBs cannot be computed.

Altogether, searching for iMCSs in projected flux cones is a promising new
method for computing MCSs in genome-scale metabolic networks
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Chapter 9

Conclusion

This thesis is a mathematical contribution to the study of metabolic net-
works. We tackled the unfavourable combination of large genome-scale
metabolic networks and algorithms which are NP-hard and therefore very
sensitive to the size of the input. We developed different techniques to sig-
nificantly reduce the amount of information needed about the network, in
order to analyse certain behaviours or to compute more efficiently properties
of the underlying network.

The focus of the thesis was the analysis of metabolic networks in steady-
state. The mathematical foundation for our algorithms is mixed integer
linear programming in Chapters 3 and 4, and a combination of linear algebra
and oriented matroid theory in Chapters 5, 6, and 7.

One contribution in the field of MILP is that we showed that coupling infor-
mation on reactions of the metabolic network can substantially reduce the
number of binary variables in an MILP and thus speed up the average time
to enumerate shortest EFMs by a factor of 40. The developed method can
be applied to any MILP where binary variables are used to indicate the ac-
tivity of reactions. Furthermore, we introduced a novel MILP to compute a
subnetwork while preserving predefined functionalities. The existing meth-
ods were either not able to cope with more than one functionality [Burgard
et al., 2001] or could not compute the smallest subnetwork [Erdrich et al.,
2014]. The MILP we introduced accounts for different functionalities as well
as for a minimum subnetwork. Thus, it combines the advantages of the pre-
vious methods and eliminates their drawbacks. Additionally, the running
time of the computation was reduced by an average factor of 8 compared to
the former approach [Erdrich et al., 2014]. Using coupling information on
reactions again reduces the search space and decreases the running time by a
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factor of 4. The method for reducing a given network while predefined func-
tionalities are kept is a promising tool for analysing genome-scale metabolic
networks in more detail, thus focusing on certain properties or behaviours.
In this thesis we only considered very prominent scenarios, such as aerobic
and anaerobic growth, but any scenario which can be formulated using lin-
ear constraints is a valid input. Using this approach can help to find (sets
of) reactions and metabolites which are important or necessary for certain
functionalities. The method was applied within the Mathematics in Life
Sciences research group to the metabolic network of Yeast 6 [Heavner et al.,
2013] in order to reduce the network to a size at which dynamic modelling
becomes feasible [Reimers, 2017]. After the reduction, the behaviours of the
reduced network were well correlated to results from wet lab experiments.
Thus, this tool is an important contribution to the already existing linear
programming tools, such as FBA, FCA, and FVA.

To conclude on MILPs: Since LPs are solvable in polynomial time, they
are the current standard for the analysis of metabolic networks, but they
cannot model the discrete constraints arising in some problems. A lot of open
questions regarding metabolic networks can be answered using MILPs where
using LPs is neither sufficient nor satisfactory. Modern MILP solvers are
fast enough to handle large metabolic networks and are, for some problems,
a better choice than comparable LP approaches. MILPs cannot be solved
more efficiently than LPs, but can be used to describe constraints which
cannot be formulated using continuous variables only.

However, not all questions can or have to be formulated as MILPs. In the
last three chapters of this thesis no MILPs were used to analyse metabolic
networks. Instead, we used linear algebra and oriented matroids.

The main contribution of Chapters 5 and 6 was the introduction of a novel
minimal description for metabolic networks called MEMo and an algorithm
to compute it. A MEMo is a minimum set of EFMs such that every flux
vector of the network can be generated using a conical combination of the
EFMs included in this MEMo. To introduce and prove the correctness of
this method, we made use of linear algebra, polyhedral cones, and oriented
matroids. We applied the method to several metabolic networks and the size
of the whole set of EFMs is on average 65 times larger than the sizes of the
MEMos. EFMs give important insights into the metabolic network [Stelling
et al., 2002; Carlson and Srienc, 2004b; Chan and Ji, 2011]. Unfortunately,
computing the whole set of EFMs for a given metabolic network is not
feasible for genome-scale networks using a standard computer. Even if the
whole set would be known, exploring all EFMs is in its own a challenge since
the number of EFMs grows exponentially with the size of the network. We
were able to compute MEMos for networks where computing the whole set of
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EFMs failed because the program ran out of memory. Thus, such a MEMo
can be used to further analyse flux vectors and the importance of reactions
of a metabolic network if computing the whole set of EFMs is not possible.
However, computing a MEMo for any given genome-scale metabolic network
was not possible using the given computing capacity and the capability of the
enumeration tool polco [Terzer, 2017b]. Computing only a subset of EFMs
is not a new idea [De Figueiredo et al., 2009; Machado et al., 2012] and
also computing a subset of EFMs which can still be used to generate every
behaviour of the metabolic network was already introduced by computing
the extreme pathways (EPs) [Schilling et al., 2000]. However, EPs are not
a minimum set and the number of EFMs contained in EPs can be very
large. A typical application for EFMs is for example the decomposition of
a given flux vector into a set of EFMs. If the whole set of EFMs cannot be
computed but a MEMo, we can decompose the flux vector into EFMs using
this MEMo. Although EFMs contained in a MEMo are not unique, they can
provide new insight into the importance of certain pathways or reactions for
the whole network. In fact, investigating which EFMs are exchangeable and
why, for each metabolic network individually is an interesting task. Doing
so, it could be possible to study robustness of the underlying metabolic
network. Another idea is to figure out how the network was assembled or to
discover similarities to other networks by detecting subsets of EFMs which
can be found in other networks as well. We conclude that the concept of a
MEMo is a promising start for a new sort of examination of metabolism.

The contribution of the last two chapters was a novel method to efficiently
reduce the representation of a network while keeping the overall topology.
Using this method allowed us to compute MCSs faster or of larger cardi-
nality than using the original representation of a network. We projected
the flux cone which is typically done by applying the Fourier-Motzkin elim-
ination [Urbanczik and Wagner, 2005b; Marashi et al., 2012] resulting in
a combinatorial explosion regarding the number of constraints describing
the projected cone. Since we project onto the irreversible reactions, we can
make use of oriented matroids. This enables us to do the projection in
O(n?), where n is the number of reactions, while the number of constraints
does not increase. Using oriented matroids, we proved that the extreme rays
of the projected flux cone are the minimal metabolic behaviours (MMBs)
[Larhlimi and Bockmayr, 2009] of the original metabolic network. These
MMBs can be used in the same fashion as the whole set of EFMs for com-
puting MCSs, but the resulting MCSs consist of irreversible reactions only
and are therefore called irreversible MCSs (iMCSs). Since the number of
MMBEs is several orders of magnitude smaller than the number of EFMs, we
were able to apply the method to larger networks than the method using
EFMs. Not all MCSs are iMCSs, therefore not all MCSs can be found with
the technique introduced here. But if it is not possible to compute the whole
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set of EFMs we can use this technique in order to compute all iMCSs instead
of no MCSs at all. Additionally, we used two already existing methods for
computing MCSs and applied them to the projected flux cone in Chapter 8.
We were able to compute iMCSs of larger cardinality than when using the
original flux cone. Using the projected cone is most of the time faster than
using the original one. This approach can be used for analysing the robust-
ness or fragility of a metabolic network or of a given reaction. A possible
extension would be to also project onto reversible reactions in addition to
the irreversible reactions. Then one can compute EFMs and MCSs of the
projected flux cone to analyse the impact of those reversible reactions as
well. Furthermore, the projection of flux cones could be further extended in
order to analyse the connectivity of metabolic networks, the importance of
certain reactions, or certain metabolites.

The amount of metabolic network models available is steadily increasing.
Analysis of these models shows great potential in industry and personalised
medicine. However, to truly unleash the potential of network analysis, these
methods must scale up to genome-scale models. Currently a lot of methods
like computing EFMs cannot be applied to large networks. This thesis
showed the potential of analysing and exploiting the mathematical structure
underlying these networks, especially by exploiting the connections between
metabolic networks, mixed integer linear optimisation, linear algebra and
oriented matroid theory. The results of this thesis give us hope that existing
analysis methods can be scaled up to larger problems and that new methods
can be introduced which are applicable to genome-scale metabolic networks.
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Notation

All notations used in the thesis:

set of binary numbers
set of natural numbers

: set of rational numbers

[ ]
7Oz &

set of real numbers

e R>(: set of non-negative real numbers

e 1;: i-th element of the vector z € R"

e x: vector containing the elements of the indices of H

e x > 0: all elements of x € R™ are non-negative, hence x; > 0 for all 4
e A;,: i-th row of a matrix A € R™*"

e A, ;: j-th column of a matrix A € R"™*"

o Ay, resp. A, pg: rows, resp. columns of a matrix A € R™*" corre-
sponding to the indices of the set H

e p(A): the rank of a matrix A € R™*, the maximum number of linear
independent columns of A

e supp(z): support of a vector x.

e Min: minimal subsets of a set: Min(V) := {v € V |/[£Bw € V\
{v} s.t. w C v}.

A
e (A|B) or @ : concatenation of two matrices A and B: columns and

rows wise
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o(x) € {—,0,+}": sign vector of a vector z € R"

X resp. X: all positive, reps. negative non-zero elements of X,
hence Xt = {i|z; >0} = {i| o(x;) = +}

X oY': composition of two signed vectors: (XoY )t = XTU(YT\X™)
and (XoY)" =X U\ X")

i:eg)j: the reactions ¢ and j are partially coupled: if v; =0 < v; =0
for all v € I'ys

X‘F: contraction of M to F' denoted by M /A where A = U\ F', where
FCU.

projy(I'): projection of I' onto the variables i € H

I'7: polyhedral cone, related to I' = {z € R | Az > 0}, where the
variables i € I are split: I/ = {(‘z) c R™UI| (A —Au)) <§> 2
0, zy >0, y > 0}.

Names of variables:
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R: set of reactions

Irr: set of irreversible reactions

Rev: set of reversible reactions

Intgey: set of internal reversible reactions
M set of metabolites

S': stoichiometric matrix

M: matroid

M. oriented matroid

B: basis of a matroid M

Mg: flux mode matroid corresponding to the metabolic network de-
scribed by the stoichiometric matrix § € R¥>*%

C resp. C: circuits resp. oriented circuits
I': polyhedral cone

['y: flux cone related to the metabolic network N' = (9, R, S, Irr)



v € I'pr: feasible flux vector

P: polyhedron

A: lineality space

Ay lineality space of the flux cone 'y, thus Ay = I'petworkN (= ar)

e 7 map

II: 2 cycles

Frev: fully reversible reactions

e minkrev: set of minimum number of fully reversible reactions, s.t.
splitting them the augmented cone I‘j{}inFreV is pointed

€. k-th unit vector
Abbreviations

e DD: Double Description

e EFM: Elementary Flux Mode

e EP: Extreme Pathway

e ER: Extreme Ray

e FBA: Flux Balance Analysis

e FC: Fundamental oriented Circuit
e FCA: Flux Coupling Analysis

e FrevEFM: Recombined ERs of the pointed cone fﬁﬁev. Unique set of
EFMs. Can describe whole flux space I'ys, but is not a minimum set
of EFMs

e FVA: Flux Variability Analysis

o GFM: Generating Flux Modes

e iMCS: irreversible Minimal Cut Set
e LP: Linear Programming

e MCS: Minimal Cut Set
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MEMo: Recombined ERs of the pointed cone f}"{}i“Frev. Minimum set
of Elementary flux Modes

MILP: Mixed Integer Linear Programming
MMB: Minimal Metabolic Behaviour
MPF: Minimal Proper Face

RMS: Reversible Metabolic Space

SBML: Systems Biology Markup Language
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2-cycle, 23

basis, 42, 83, 88-91

Big M, 35-36, 50

binary variable, 31, 50

biomass reaction, 4, 7, 27, 63, 73,
74, 77

branch and bound, 32

chemical reaction, 4
circuits, see oriented circuits
column matroid, 39
column space, 107
composition, 40
condition number, 37, 38
cone, 19
coupled, 29

directionally, 29

fully, 29

partially, 29
CPLEX, 32
cplex, 144

Double Description method, 24

efmtool, 13, 108

elementary flux modes, 8, 13-14,
16, 22, 41, 49-52, 95, 99,
108

equivalence class, 29

extreme currents, 23

extreme pathways, 108

extreme ray, 20, 24, 85, 99

F2C2, 52, 53, 71

face, 19

facet, 20

FASTCORE, 62, 71-72

feasible solution, 26

flux balance analysis, 7, 27-28

flux cone, 8, 12

flux coupling analysis, 8, 28-31
application, 50-52

flux mode matroid, 41

flux variability analysis, 7, 28
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flux vector, 7, 12
fundamental circuits, see oriented
fundamental circuits

graphic matroid, 39
growth rate, 7
growth yield, 7, 27
Gurobi, 32

hypergraph, 5

indicator variables, 36, 71
irreversible minimal cut set,

117-135, 137151

lineality space, 19, 83
linear program, 7-8, 25-31

MEMo, 93-116
metabolic network, 4-7, 12, 81
metabolite, 4
concentration, 5
external and internal, 5
minkrev, 101
minimal cut set, 9, 15-17, 117,
137
minimal metabolic behaviour,
14-15, 117
mixed integer linear program, 8,
31-32, 50-52, 63-71

NetworkReducer, 59, 62, 71
numerical instability, 33—35

optimal solution, 26

oriented circuits, 39, 41, 82

oriented cycle, 40, 82

oriented fundamental circuits,
42-44, 83, 85, 88-89

oriented matroid, 9, 3644, 81

polco, 24, 108

polyhedral cone, 8-9, 19, 81
pointed, 20

polyhedron, 19

ray, 20, 82



reaction, 4 SCIP, 32

active, 5, 12 sign vector, 41
blocked, 28 simplex algorithm, 26
essential, 8, 16, 73, 77 solution space, 7, 26
exchange and internal, 4 SoPlex, 32
fully reversible, 95 split variable, 22-25
irreversible, 4, 7, 12 steady-state, 5, 12
pseudo-irreversible, 95 stoichiometric matrix, 4, 12
rate, b stoichiometric coefficient, 4,
reversible, 4, 12 12

reaction rate, 12 support, 13

reduced column echelon form, 88
reduced row echelon form, see
reduced column echelon

Tutte Polynomial, 90

uptake rates, 7

form
representative, 49, 53 vector matroid, 36
SAGE, 91 zero set, 20
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Chapter 10

Appendix

10.1 Appendix for RedNet

10.1.1 Comparison with NetworkReducer

For the reduction of Synechocystis sp. PCC 6803:

Reactions which were in the subnetwork computed with NetworkReducer
but not in the subnetwork computed with the MILP-approach minNWw:

PP0007, GS0008, PP0014, PP0009, PT0009, GS0010, GS0004, GS0018,
PP0010, PP0013, PT0001, PP0001, TRO050, PP0011, GE0001, PP0012,
GS0013, TRO0051, GS0014, PP0003, GS0011, TRO0052, PR0001, PDC,
EtOH_ex, Bio T, PR0028, PY0016, PR0016, PR0029, PP0020, PR0032,
PR0033, PT0026, PR0O030, TE0008, PR0031, PR0051, PT0021, PRO0O04,
GE0002, PR0035, PR0049, PR0036, PR0050, TR0036, TR0003, TR0006,
TR0002.

Reactions which were in the subnetwork computed with the MILP-approach
minNW but not in the subnetwork computed with NetworkReducer:

TR0050, TR0023, GL0003, RI0004, PU0011, PG0008, RI0002, GE0015,
CP0007, LI0009, QT0001, TP0002, QT0013, CA0008, LI058, CP0021,
QT0014, AG0020, PY0020, GL0001, LI0004, GL0004, CA0004, PU0010,
FO0017, TR0015, LI0033, PY0007, LI0057, GL0005, LI0002, BMO007,
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GE0004, PR0023, PR0003, PR0027, PR0035, PR0042, TR0055, PR0046.

For the reduction of E. coli i1AF1260:

Reactions which were in the subnetwork computed with NetworkReducer
but not in the subnetwork computed with the MILP-approach minNW:

R_ACALDtex, R_ACALDtpp, R_ADNKI1, R_AKGt2rpp, R_AKGtex,
R_CYTBDpp, R.D_LACt2pp, R.D_LACtex, R_.EX_acald_e_, R_.EX_akg_e_,
R.EX fe2 e, R.EX fore, REX gluLe, REXlacDe, REX pyre.
R_FBP, R_FE2tex, R_FE2tpp, R_FORt2pp, R_FORtex, R_FORtppi,
R_FRD3, R_GART, R_GLUN, R_GLUSy, R_GLUt2rpp, R_GLUtex,
R_.GLYCTO4, R_GRXR, R.GTHOr, R.ICL, R.LDHD, R_MEI,
R_ME2, R.NADTRHD, R.NDPK1, R.NDPK6, R_PAPSR2, R_PPCK,
R_PPM, R_PPS, R.PUNP1, R_PYRt2rpp, R_PYRtex, R.SUCCt2_2pp,
R_THRt2rpp, R_-THRt4pp, R-TRPS2, R_-TRPS3, R_URIDK2r, R_RFD_new.

Reactions which were in the subnetwork computed with the MILP-approach
minNW but not in the subnetwork computed with NetworkReducer:

R.ACOTA, R.ADK1, R.ADNK1, R.CYTBDpp, R.DPR, R.EX_.mn2.ec._,
R.EX_02.e., R.GAPD, R.GARFT, R MTHFD, R_RNTR3c, R_.RNTRA4c.

10.1.2 Comparison with FASTCORE

For the reduction of M. tuberculosis iNJ661 :

Reaction which were in the subnetwork computed with FASTCORE but not
in the subnetwork computed withthe MILP-approach minNW:

TALA, SUCCt2r, RPI, RPE, PSP.L, PSERT, PRPPS, PREPTTA,
PREPTHS, PPAtr, PHTHS, PHTHDLS, PGCD, PDIMAT, PDIMAS,
MMM?2, MME, MMCD, METS, METAT, UMPK_copy2, TKT2, TKTI,
MALS, L.LACD3, ICL, H20t, GLYCL, GLUDxi, GLNS, GHMT2r,
FRDO3r, FRDO2r, EX_he, EX h2oe, EX_cytde, ORPT, OMPDC,
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OCOAT1, NTPP4, NTD4, NH4t, NDPK1, MTHFR2, DHORTS, CYTDt2,
CYTBD2, CTPS1, CITL_copyl, CBPS, ASPTA, ASPCT, ARGSS, ARGSL,
ARGDr, ARACHTA, AHCi, ADNK1, FASm280, FASm260, FASm240,
FASm220, FAS80_L, FAS200, FAS180, FAS160, FAS140, FAS120, FAS100,
FACOALPREPH, FACOAL200, EX_succe, EX_ppa,e, EX_pdima_e,
EX nh4_e, ADK1, ACCOAC, ACACCT.

Reactions which were in the subnetwork computed with the MILP-approach
minNW but not in the subnetwork computed with FASTCORE:

TALA, PFK, MALS, L_LACD3, GLYCL, GLUDxi.

For the reduction of H. pylori 26695:

Reactions which were in the subnetwork computed with FASTCORE but not
in the subnetwork computed with the MILP-approach minNW:

ACt2r, ALAt2r, ANS2, APRAUR, CO2t, DAAD, DB4PS, DHPPDA,
EX_ac(e), EX ala_L(e), EX_co2(e), EX_h2co3(e), EX_urea(e), GTPCII,
H2C03D, H2CO3TP, PMDPHT, RBFSa, RBFSb, RNDR4, UREA,
URIDKZ2r.

Reactions which were in the subnetwork computed with the MILP-approach
minNW but not in the subnetwork computed with FASTCORE:

ACt2r, ALAt2r, AMAOTr, AOXSr, DASYN_HP, DPCOAK, EX ala_D(e),
FLDO, UAGDP.

10.1.3 New experiments

Mus musculus: The maximal biomass rate with oxygen uptake is 1.3634
h~!. Without oxygen, the rate is 0.0971 h—!. Per default the lower bound of
oxygen is -100 mmol/gDW /h and -1 mmol/gDW /h of glucose. The upper
bounds of both are 100000 mmol/gDW /h. The requirements are that at
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least 99.9 % of both rates can be realized by the subnetwork. The original
network consists of 2436 non-blocked reactions. All the requirements can
be fulfilled by using 338 reactions. The number of essential reactions for
having at least 20% of the biomass reaction is 274.

E. coli iJO1366: The requirements are that at least 99.9 % of the
maximal growth rate under aerobic conditions (37.9623 h~!) and at least
99.9 % of the maximal growth rate under anaerobic conditions (28.6643
h=1) can be realized by the subnetwork. The original network consists of
2369 non-blocked reactions. Per default the lower bounds of oxygen and
glucose are both -1000 mmol/gDW /h. The upper bounds of both are 1000
mmol/gDW /h. All the requirements can be fulfilled by using 562 reactions.
The number of essential reactions for having at least 20% of the biomass
reaction is 363.

S. Typhimurium LT2: The requirements are that at least 99.9 %
of the maximal growth rate under aerobic conditions (34.4108 h~!) and
under anaerobic conditions (18.3065 h™!) can be realized by the subnetwork.
The original network consists of 1620 non-blocked reactions. Per default
the lower bounds of oxygen and glucose are both -1000 mmol/gDW /h. The
upper bounds of both are 1000 mmol/gDW /h. All the requirements can
be fulfilled by using 458 reactions. The number of essential reactions for
having at least 20% of the biomass reaction is 305.

S. boydit CDC 3083-94: The requirements are that at least 99.9
% of the maximal growth rate under aerobic conditions (0.9828 h=1) and at
least 99.9 % of the maximal growth rate under anaerobic conditions (0.2418
h~!) can be realized by the subnetwork. The original network consists
of 1546 non-blocked reactions. Per default the lower bound of oxygen is
-1000 mmol/gDW /h and the one of glucose is -10 mmol/gDW /h. The
upper bounds of both are 1000 mmol/gDW /h. All the requirements can
be fulfilled by using 445 reactions. The number of essential reactions for
having at least 20% of the biomass reaction is 441.

K. pneumoniae MGH 78578: The requirements are that at least
99.9 % of the maximal growth rate under aerobic conditions (32.3593
h~!) and under anaerobic conditions (16.8005 h~!) can be realized by the
subnetwork. The original network consists of 1223 non-blocked reactions.
Per default the lower bounds of oxygen and glucose are both -1000
mmol/gDW /h. The upper bounds of both are 1000 mmol/gDW /h too. All
the requirements can be fulfilled by using 338 reactions. The number of
essential reactions for having at least 20% of the biomass reaction is 203.

Y. pestis CO92: The maximal biomass rate with glycine uptake is

186



0.2836 h~!. Without glycine, the rate is 0.0886 h=!. Per default the lower
bound of oxygen is -20 mmol/gDW /h, -2 mmol/gDW /h of glucose and
-2.2 mmol/gDW /h of glycine. The upper bounds of oxygen and glucose
are 100000 mmol/gDW /h, the one for glycine is 1000 mmol/gDW /h. The
requirements are that at least 99.9 % of both rates can be realized by the
subnetwork. The original network consists of 1065 non-blocked reactions.
All the requirements can be fulfilled by using 339 reactions. The number of
essential reactions for having at least 20% of the biomass reaction is 279.

S. cerevisiae S288c: The maximal biomass rate with ethanol ex-
change is 0.2879 h™!. Without ethanol, the rate is 0.2311 h™!. Per default
the lower bound of oxygen is -2 mmol/gDW /h, -10 mmol/gDW /h of glucose
and 0 mmol/gDW /h of ethanol. The upper bounds of all three reactions
are 9999999 mmol/gDW /h. The requirements are that at least 99.9 % of
both rates can be realized by the subnetwork. The original network consists
of 885 non-blocked reactions. All the requirements can be fulfilled by using
290 reactions. The number of essential reactions for having at least 20% of
the biomass reaction is 262.

G. metallireducens GS-15: The maximal biomass rate with HsO
uptake is 5.8178 h™!'. Without HO, the rate is 2.2028 h~!. Per default the
lower bound of H20O is -1000 mmol/gDW /h and of glucose 0. The upper
bounds of both are 1000 mmol/gDW /h. The requirements are that at
least 99.9 % of both rates can be realized by the subnetwork. The original
network consists of 710 non-blocked reactions. All the requirements can
be fulfilled by using 557 reactions. The number of essential reactions for
having at least 20% of the biomass reaction is 544.

M. tuberculosis iNJ661: One requirement is that at least 99.9 %
of the maximal growth rate (0.0525 h™!) can be achieved. Additionally
we defined 36 protected reactions. The original network consists of
1025 non-blocked reactions. Per default the lower bound of oxygen and
glucose are both -1 mmol/gDW /h. The upper bounds of both are 999999
mmol/gDW /h. All the requirements can be fulfilled by using 427 reactions.
The number of essential reactions for having at least 20% of the biomass
reaction is 314.

Protected reactions for the network M. tuberculosis iNJ661:

Succinyl-CoA synthetase (ADP-forming), Succinate dehydrogenase, Pyru-
vate decarboxylase, Pyruvate kinase, PPGKr, Propanoyl-CoA: succinate
CoA-transferase, Phosphoenolpyruvate carboxykinase, Phosphogluco-
mutase, Phosphoglycerate mutase, Phosphoglycerate kinase, Glucose-6-
phosphate isomerase, Phosphofructokinase, PEPCK re, PDHbr, PDHa,
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Pyruvate dehydrogenase, Pyruvate carboxylase, Malate dehydrogenase,
Triose-phosphate isomerase, L-lactate dehydrogenase, Isocitrate dehydroge-
nase (NADP), Hexokinase (D-glucose:ATP), Glycogen synthase (ADPGlc),
Glyceraldehyde-3-phosphate dehydrogenase, Fumarase, OXGDC, Enolase,
Citrate synthase, Aldehyde dehydrogenase (acetaldehyde, NAD), FRDS5,
FRD, Fructose-bisphosphatase, Fructose-bisphosphate aldolase, Acetyl-CoA
synthetase, Aconitase.

B. subtilis 168: The maximal biomass rate with hydrogen uptake is
0.1247 h~!'. Without hydrogen, the rate is 0.1186 h™!'. Per default the
lower bounds of oxygen and hydrogen are -9999999 mmol/gDW /h and of
glucose -1.7 mmol/gDW /h. The upper bound of oxygen is 0 and the one
of glucose and hydrogen are 9999999 mmol/gDW /h. The requirements are
that at least 99.9 % of both rates can be realized by the subnetwork. The
original network consists of 658 non-blocked reactions. All the requirements
can be fulfilled by using 296 reactions. The number of essential reactions
for having at least 20% of the biomass reaction is 270.

P. putida KT2440: One requirement is that at least 99.9 % of the
maximal growth rate (1.4000 h=1) can be achieved. Additionally we defined
protected reactions to keep the TCA cycle. Per default the lower bounds
of oxygen and glucose are both -20 mmol/gDW /h. The upper bounds are
9999999 mmol/gDW /h. The original network consists of 652 non-blocked
reactions. All the requirements can be fulfilled by using 344 reactions.
The number of essential reactions for having at least 20% of the biomass
reaction is 300. Protected reactions for the network P. putida KT2440:

Acetate kinase, Aconitase, Aconitase (half-reaction A, Citrate hydro-lyase),
Aconitase (half-reaction B, Isocitrate hydro-lyase), Oxoglutarate dehy-
drogenase (lipoamide), Oxoglutarate dehydrogenase (dihydrolipoamide
S-succinyltransferase), Citrate synthase.

C. ljungdahlii DSM 13528: The maximal biomass rate with HoO
uptake is 0.2245 h—!. Without H,O, the rate is 0.2027 h=!. Per default the
lower bound of H9O is -1000 mmol/gDW /h and of glucose 0. The upper
bounds of both are 1000 mmol/gDW /h. The requirements are that at
least 99.9 % of both rates can be realized by the subnetwork. The original
network consists of 526 non-blocked reactions. All the requirements can
be fulfilled by using 383 reactions. The number of essential reactions for
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having at least 20% of the biomass reaction is 369.

H. pylori 26695: One requirement is that at least 99.9 % of the
maximal growth rate (20.2606 h™!) can be achieved. Additionally we
defined 28 protected reactions. Per default the lower bound of oxygen is
-1000 mmol/gDW /h and the one of glucose is 0. The upper bounds of both
are 1000 mmol/gDW /h.

Protected reactions for the network H. pylori 26695:

Aconitase, AKO, ATP synthase (four protons for one ATP), BC10 new,
Citrate synthase, CYOO HP, Enolase, FADOX, Fructose-bisphosphate
aldolase, Fructose-bisphosphatase, NAD(P)H-flavin oxidoreductase, FRD5,
FRDO, Fumarase, Glyceraldehyde-3-phosphate dehydrogenase, Isocitrate
dehydrogenase (NADP), LDH D1, Malate synthase, MDH4, NADPHQR,
NDH 1, 2-oxoglutarate synthase (rev), PDH2, Glucose-6-phosphate
isomerase, Phosphoglycerate kinase, Phosphoglycerate mutase, Phospho-
enolpyruvate synthase, Triose-phosphate isomerase.

Reactions which were in all minimal subnetworks in H. pylori 26695:

1-deoxy-D-xylulose 5-phosphate synthase, 1-deoxy-D-xylulose reductoi-
somerase, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase
(dmpp),  1-hydroxy-2-methyl-2-(E)-butenyl  4-diphosphate reductase
(ipdp), 2,3-diketo-5-methylthio-1-phosphopentane degradation reaction,
2-C-methyl-D-erythritol  2,4-cyclodiphosphate synthase, 2-C-methyl-
D-erythritol 4-phosphate cytidylyltransferase, 2-dehydropantoate 2-
reductase, 2-oxoglutarate decarboxylase, 2-oxoglutarate synthase (rev),
2-succinyl-6-hydroxy-2,4-cyclohexadiene 1-carboxylate synthase, 3,4-
Dihydroxy-2-butanone-4-phosphate synthase, 3-dehydroquinate dehy-
dratase, irreversible, 3-dehydroquinate synthase, 3-deoxy -D-manno-
octulosonic -acid 8-phosphate synthase, 3-deoxy-D-arabino-heptulosonate
7-phosphate synthetase, 3-deoxy-manno-octulosonate-8-phosphatase, 3-
methyl-2-oxobutanoate hydroxymethyltransferase, 3-phosphoshikimate
1-carboxyvinyltransferase,  4,5-dihydroxy-2,3-pentanedione cyclization
(spontaneous), 4-(cytidine 5-diphospho)-2-C-methyl-D-erythritol kinase,
4-aminobenzoate synthase, 5,10-methylenetetrahydrofolate reductase
(NADH), 5-Methylthio-5-deoxy-D-ribulose  1-phosphate dehydratase,
5-amino-6-(5-phosphoribosylamino)uracil reductase, 5-methylthioribose ki-
nase, 5-methylthioribose-1-phosphate isomerase, 6-carboxyhexanoate-CoA
ligase, 8-amino-7-oxononanoate synthase, ADP-D-glycero-D-manno-
heptose epimerase, AKO, AMMQT6, ASPO2, ATP synthase (four
protons for one ATP), Acetate exchange, Acetate kinase, Acetate re-
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versible transport via proton symport, Acetyl-CoA carboxylase, Aconitase,
Adenine phosphoribosyltransferase, Adenosylmethionine decarboxylase,
Adenosylmethionine-8-amino-7-oxononanoate transaminase, Adenylate
kinase, Adenylosuccinate lyase, Adenylosuccinate synthase, Adenylsucci-
nate lyase, Agmatinase, Alanine racemase, Ammonia exchange, Ammonia
reversible transport, Anthranilate phosphoribosyltransferase, Arabinose-
5-phosphate isomerase, Arginase, Arginine decarboxylase, Asparagine
synthetase, Aspartate 1-decarboxylase, Aspartate carbamoyltransferase,
Aspartate kinase, Aspartate transaminase, Aspartate-semialdehyde dehy-
drogenase, BC10 new, BTS2, Beta-ketoacyl-ACP synthase (2), BiomassHP
published, C140SN, C160SN, C180SN, C181SN, C190cSN, CLPNS HP,
CO2 exchange, CO2 transporter via diffusion, CTP synthase NH3,
CYOO HP, Carbamoyl-phosphate synthase (glutamine-hydrolysing),
Chorismate mutase, Chorismate synthase, Citrate synthase, Cysteine
synthase, Cytidylate kinase (CMP), D-alanine-D-alanine ligase (reversible),
D-glycero-D-manno-hepose 1-phosphate adenyltransferase, D-glycero-D-
manno-heptose 1,7-bisphosphate phosphatase, D-glycero-D-manno-heptose
7-phosphate kinase, DASYN HP, DHNAOT?2, DHNPA, DHORD3, DHPS,
DTMP kinase, Dephospho-CoA kinase, Dethiobiotin synthase, Diamino-
hydroxyphosphoribosylaminopyrimidine = deaminase, Diaminopimelate
decarboxylase, Diaminopimelate epimerase, Dihydrodipicolinate reduc-
tase (NADPH), Dihydrodipicolinate synthase, Dihydrofolate reductase,
Dihydrofolate synthase, Dihydroneopterin monophosphate dephosphory-
lase, Dihydroneopterin triphosphate pyrophosphatase, Dihydroorotase,
Dimethylallyltranstransferase, EX pime LPAREN e RPAREN, Enolase,
FADOX, FMN adenylyltransferase, FRD5, FRDO, Formate exchange,
Formate transport via diffusion, Fructose-bisphosphatase, Fructose-
bisphosphate aldolase, Fumarase, GDP-D-mannose dehydratase, GFUCS,
GLYCTO1, GMP synthase, GTP cyclohydrolase I, GTP cyclohydrolase
II, Geranyltranstransferase, Glucosamine-1-phosphate N-acetyltransferase,
Glucose-6-phosphate isomerase, Glutamate dehydrogenase (NADP), Glu-
tamate racemase, Glutamine phosphoribosyldiphosphate amidotransferase,
Glutamine synthetase, Glutamine-fructose-6-phosphate transaminase,
Glyceraldehyde-3-phosphate dehydrogenase, Glycerol kinase, Glycine
hydroxymethyltransferase, reversible, Glycolaldehyde dehydrogenase,
Guanylate kinase (GMP:ATP), H+ exchange, HCO3 equilibration reaction,
Heme transport via ABC system, Homoserine O trans acetylase, Homoser-
ine dehydrogenase (NADPH), Homoserine kinase, IMP cyclohydrolase,
IMP dehydrogenase, Indole-3-glycerol-phosphate synthase, Inorganic
diphosphatase, Isochorismate synthase, Isocitrate dehydrogenase (NADP),
KAS HP, KAS HP2, KDOCT, L arganine reversible transport via proton
symport, L lactate reversible transport via proton symport, L-Arginine
exchange, L-Histidine exchange, L-Isoleucine exchange, L-Lactate ex-
change, L-Leucine exchange, L-Methionine exchange, L-Valine exchange,
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L-glutamate 5-semialdehyde dehydratase (spontaneous), L-histidine trans-
port via ABC system, L-isoleucine transport via ABC system, L-leucine
transport via ABC system, L-methionine transport via ABC system,
L-valine transport via ABC system, LDH D1, LPADSS HP, LPSSYN
HP, LacR, MDH4, MECDPDH, MOAT HP, Malate synthase, Malic
enzyme (NAD), Malonyl-CoA-ACP transacylase, Mannose-1-phosphate
guanylyltransferase (GDP), Mannose-6-phosphate isomerase, Metbl,
Methenyltetrahydrofolate cyclohydrolase, Methionine adenosyltransferase,
Methylenetetrahydrofolate dehydrogenase (NADP), Methylthioadenosine
nucleosidase, NAD kinase, NAD synthase (nh3), NAD(P)H-flavin oxidore-
ductase, NADPHQR, NDH 1, Naphthoate synthase, Nicotinate-nucleotide
adenylyltransferase, Nicotinate-nucleotide diphosphorylase (carboxylating),
Nucleoside-diphosphate kinase (ATP:CDP), Nucleoside-diphosphate kinase
(ATP:GDP), Nucleoside-diphosphate kinase (ATP:UDP), Nucleoside-
diphosphate  kinase = (ATP:dADP), Nucleoside-diphosphate kinase
(ATP:dCDP), Nucleoside-diphosphate kinase (ATP:dGDP), Nucleoside-
diphosphate kinase (ATP:dTDP), O-succinylbenzoate-CoA ligase, O-
succinylbenzoate-CoA synthase, O-succinylhomoserine lyase (L-cysteine),
02 exchange, O2 transport diffusion, Octaprenyl pyrophosphate synthase,
Ornithine transaminase, Orotate phosphoribosyltransferase, Orotidine-5-
phosphate decarboxylase, PABB, PASYN HP, PDH2, PGPP HP, PGSA
HP, PIMEtr, PPTGS, PSD HP, PSSA HP, Pantetheine-phosphate adeny-
lyltransferase, Pantothenate kinase, Pantothenate synthase, Phenylalanine
transaminase, Phosphate exchange, Phosphate reversible transport via
symport, Phospho-N-acetylmuramoyl-pentapeptide-transferase (meso-2,6-
diaminopimelate), Phosphoenolpyruvate synthase, Phosphoglucomutase,
Phosphoglucosamine mutase, Phosphoglycerate dehydrogenase, Phos-
phoglycerate kinase, Phosphoglycerate mutase, Phosphomannomutase,
Phosphopantothenate-cysteine ligase, Phosphopantothenoylcysteine
decarboxylase, Phosphoribosylaminoimidazole carboxylase, Phosphori-
bosylaminoimidazole carboxylase (mutase rxn), Phosphoribosylaminoim-
idazole synthase, Phosphoribosylaminoimidazolecarboxamide formyl-
transferase, Phosphoribosylaminoimidazolesuccinocarboxamide synthase,
Phosphoribosylanthranilate isomerase (irreversible), Phosphoribosylformyl-
glycinamidine synthase, Phosphoribosylglycinamide formyltransferase,
Phosphoribosylglycinamide synthase, Phosphoribosylpyrophosphate
synthetase, Phosphoserine phosphatase (L-serine), Phosphoserine transam-
inase, Phosphotransacetylase, Prephenate dehydratase, Prephenate
dehydrogenase, Protoheme exchange, Pyrimidine phosphatase, Pyrroline-
5-carboxylate reductase, Quinolinate synthase, RFA HP, RFAC HP, Ri-
boflavin kinase, Riboflavin synthase, Ribonucleoside-diphosphate reductase
(ADP), Ribonucleoside-diphosphate reductase (CDP), Ribonucleoside-
diphosphate reductase (GDP), Ribonucleoside-diphosphate reductase
(UDP), Ribose-5-phosphate isomerase, Ribulose 5-phosphate 3-epimerase,
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S-adenosylhomocysteine nucleosidase, S-ribosylhomocysteine cleavage
enzyme, SHSL2r, Sedoheptulose 7-phosphate isomerase, Serine O-
acetyltransferase, Shikimate dehydrogenase, Shikimate kinase, Sink
ahcys(c), Sink needed to allow 4-hydroxy-5-methyl-3(2H)-furanone to leave
system, Sink needed to allow S-Adenosyl-4-methylthio-2-oxobutanoate
to leave system, Spermidine synthase, Succinate exchange, Succinate
transport via proton symport, Succinyl-diaminopimelate desuccinylase,
Succinyldiaminopimelate transaminase, Superoxide dismutase, TMDST,
Tetrahydrodipicolinate succinylase, Thiamin exchange, Thiamine trans-
port via ABC system, Thioredoxin reductase (NADPH), Threonine
synthase, Transaldolase, Transketolase, Triose-phosphate isomerase,
Tryptophan synthase (indoleglycerol phosphate), Tyrosine transaminase,
U23GAAT HP, U2GAAT, U2GAAT2, UAGAAT HP, UAGDP2, UDP-
N-acetylenolpyruvoylglucosamine reductase, UDP-N-acetylglucosamine 1-
carboxyvinyltransferase, UDP-N-acetylglucosamine diphosphorylase, UDP-
N-acetylglucosamine-N-acetylmuramyl-(pentapeptide)pyrophosphoryl-
undecaprenol N-acetylglucosamine t..., UDP-N-acetylmuramoyl-L-alanine
synthetase, = UDP-N-acetylmuramoyl-L-alanyl-D-glutamate  synthetase,
UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimelate
synthetase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-
diaminopimeloyl-D-alanyl-D-alanine synthetase, UDPglucose 4-epimerase,
UHGADA HP, UMP kinase, UNK2, USHD HP, UTP-glucose-1-phosphate
uridylyltransferase (irreversible), Undecaprenyl-diphosphatase, Urea ex-
change, Urea transport via facilitate diffusion, Uridylate kinase (dUMP),
Valine transaminase.

M. barkeri str. Fusaro: The maximal biomass rate with ammonia
uptake is 0.0268 h~!. Without ammonia, the rate is 0.0095 h~!. Per
default the lower bound of ammonia is -9999999 mmol/gDW/h and of
glucose 0. The upper bounds of both are 9999999 mmol/gDW/h. The
requirements are that at least 99.9 % of both rates can be realized by the
subnetwork. The original network consists of 484 non-blocked reactions.
All the requirements can be fulfilled by using 364 reactions. The number of
essential reactions for having at least 20% of the biomass reaction is 289.

S. aureus N315: The maximal biomass rate with glucose uptake is
8.0759 h~'. Without glucose, the rate is 4.8154 h™'. The requirements
are that at least 99.9 % of both rates can be realized by the subnetwork.
The original network consists of 465 non-blocked reactions. Per default
the lower bounds of oxygen and glucose are -1000 mmol/gDW /h. The
upper bounds of both are 1000 mmol/gDW /h. All the requirements can
be fulfilled by using 122 reactions. The number of essential reactions for
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having at least 20% of the biomass reaction is 71.

T. maritima MSB8: The maximal biomass rate with HoO uptake
is 0.2284 h~'. Without HO, the rate is 0.1043 h~!. Per default the lower
bound of H20 is -1000 mmol/gDW /h and of glucose 0. The upper bounds
of both are 1000 mmol/gDW /h. The requirements are that at least 99.9
% of both rates can be realized by the subnetwork. The original network
consists of 385 non-blocked reactions. All the requirements can be fulfilled
by using 282 reactions. The number of essential reactions for having at
least 20% of the biomass reaction is 267.
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10.2 Appendix for Computing iMCSs using the
dual approach

We provide here some computation results. We used the method provided
by [Tobalina et al., 2016].

10.2.1 Time: Computations using Tobalina’s tool

Following we show results we obtained computing a given number of MCSs
using the script provided by [Tobalina et al., 2016]. We computed iMCSs
using the original and the projected flux cone for all networks from the
BiGG Models Database [King et al., 2016] which include a biomass reaction
(which was the target reaction). In each table the results for several networks
can be found.

network id: The id of the network on the BiGG Models Database. Nr
iMCSs: computed number of iMCSs. time original cone: time (in sec-
onds) needed to compute the given number of iMCSs in the original cone.
time projected cone: time (in seconds) needed to compute the given num-
ber of iMCSs in the projected cone. relative time: relative time needed to
compute the given number of iMCSs in the original cone compared to the
time needed using the projected cone.
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time

time .
network id Nr. iMCSs original | pro- rela?lve

cone jected time

cone
iNF517 10 3.72 1.89 1.9
iNF517 100 90.85 25.76 3.5
iNF517 300 220.63 307.87 0.7
iHN637 10 3.42 1.94 1.7
iHN637 100 75.19 18.77 4
iHNG637 300 105.65 147.45 0.7
iJB785 10 4.6 2.34 1.9
iJB785 100 129.78 23.68 5.4
iJB785 300 171.15 79.89 2.1
iJN678 10 5.83 3.56 1.6
iJN678 100 108.87 62.63 1.7
iJN678 300 116.25 139.61 0.8
iNJ661 10 6.93 2.45 2.8
iNJ661 100 151.87 27.85 5.4
iNJ661 300 199.37 176.55 1.1
iJN746 10 4.36 1.94 2.2
iJN746 100 110.47 27.18 4.0
iJN746 300 220.34 127.33 1.7
iJR904 10 5.42 2.13 2.5
iJR904 100 163.67 44.59 3.6
iJR904 300 413.21 3470.9 0.1
iYO844 10 6.29 2.04 3
iYO844 100 140.5 23.82 5.8
iYO844 300 341.45 831.65 0.4
iND750 10 4.39 1.98 2.2
iND750 100 119.11 26.78 4.4
iND750 300 333.39 422.98 0.7
iAF987 10 7.72 3.75 2
iAF987 100 185.17 65.18 2.8
iAF987 300 232.78 158.11 14
iMM904 10 7.96 3.41 2.3
iMM904 100 202 58.47 3.4
iMM904 300 904.74 7451.6 0.1
iPC815 10 10.81 3.51 3
iPC815 100 239.87 35.79 6.7
iPC815 300 561.4 799.45 0.7
iYL1228 10 8.09 4.07 1.9
iYL1228 100 304.93 45 6.7
iYL1228 300 721.87 671.75 1
iAF1260 10 15.7 14.96 1
iAF1260 100 267.36 213.12 1.2
iAF1260 300 858.29 698.43 1.2
Table 10.1
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196

time

time .
network id Nr. iMCSs original | pro- rela?lve

cone jected time

cone
iAF1260b 10 14.37 14.12 1
iAF1260b 100 299.49 210.84 1.4
iAF1260b 300 858.73 714.9 1.2
iSDY_1059 10 10.03 12.41 0.8
iSDY_1059 100 275.76 114.79 24
iSDY_1059 300 956.48 844.14 1.1
STM_v1.0 10 10.61 15.35 0.6
STM_v1.0 100 259.59 166.67 1.5
STM_v1.0 300 522.03 651.11 0.8
iJO1366 10 11.96 15.52 0.7
iJO1366 100 298.89 266.76 1.1
iJO1366 300 639.19 737.32 0.8
iSbBS512_1146 10 11.71 13.36 0.8
iSbBS512_1146 100 259.87 125.93 2
iSbBS512_1146 300 931.68 802.77 1.1
iSBO_1134 10 17.92 13.8 1.2
iSBO_1134 100 438.95 169.67 2.5
iSBO_1134 300 793.02 901.53 0.8
iS_1188 10 17.04 11.41 1.4
iS_1188 100 396.48 105.59 3.7
iS_1188 300 898.43 612.89 14
iSFV_1184 10 13.74 11.12 1.2
iSFV_1184 100 267.1 97.04 2.7
iSFV_1184 300 813.46 543.42 14
iSF_1195 10 17.16 10.72 1.6
iSF_1195 100 327.34 95.33 3.4
iSF_1195 300 900.21 621.7 14
iSFxv_1172 10 15.59 12.97 1.2
iSFxv_1172 100 295.51 105.29 2.8
iSFxv_1172 300 912.71 615.1 14
iSSON_1240 10 11.37 11.82 0.9
iSSON_1240 100 286.05 123.57 2.3
iSSON_1240 300 945.38 741.46 1.2
iECH74115_1262 10 11.96 13.44 0.8
iECH74115.1262 100 286.11 122.8 2.3
iECH74115_1262 300 975.04 709.68 1.3
iE2348C_1286 10 15.51 15.11 1
iE2348C_1286 100 350.26 121.83 2.8
iFK2348C_1286 300 943.23 686.27 1.3
1G2583_1286 10 11.29 14.3 0.7
iG2583.1286 100 285.99 117.54 2.4
1G2583.-1286 300 970.75 625.94 1.5
Table 10.2



time

time .
network id Nr. iMCSs original . pro- relaFlve

cone jected time

cone
iECED1.1282 10 12.65 14.53 0.8
iECED1_1282 100 302.32 125.97 2.3
iECED1_1282 300 949.33 706.32 1.3
iECSP_1301 10 11.58 13.83 0.8
iECSP_1301 100 299.57 111.53 2.6
iECSP_1301 300 967.46 673.95 1.4
iML1515 10 12.46 17.67 0.7
iML1515 100 306.07 249.36 1.2
iML1515 300 1106.3 1499.3 0.7
iEC042_1314 10 12.14 14.89 0.8
iEC042.1314 100 313.36 126.75 2.4
iEC042.1314 300 929.27 720.44 1.2
iECNA114.1301 10 12.39 14.8 0.8
iECNA114.1301 100 253.7 130.09 1.9
iECNA114.1301 300 1050.3 785.74 1.3
iECs_1301 10 14.12 14.9 0.9
iECs_1301 100 227.55 131.57 1.7
iECs_1301 300 1006.4 752.61 1.3
iECIAI39.1322 10 11.29 10.57 1
iECIAI39.1322 100 255.92 90.32 2.8
iECIAI39.1322 300 998.69 637.59 1.5
iZ.1308 10 13.05 14.88 0.8
iZ.1308 100 342.24 131.84 2.5
iZ.1308 300 1025.8 752.7 1.3
iUTI89.1310 10 11.58 15.7 0.7
iUTI89.1310 100 346.11 131.61 2.6
iUTI89.-1310 300 921.2 697.96 1.3
ic_1306 10 13.18 15.47 0.8
ic-1306 100 313.83 205.57 1.5
ic-1306 300 1006.9 885.66 1.1
iLF82_.1304 10 11.44 14.63 0.7
iLF82.1304 100 281.53 130.9 2.1
iLF82_.1304 300 1002.2 771.52 1.2
iECOK1.1307 10 14.19 14.74 0.9
iECOK1.1307 100 330.72 157.33 2.1
iECOK1.1307 300 1033.7 733.25 1.4
iECS88_1305 10 11.85 14.6 0.8
iECS88_1305 100 260.83 146.71 1.7
iECS88_1305 300 988.1 683.37 14
Table 10.3
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time

time .
network id Nr. iMCSs original . pro- rela‘flve

cone jected time

cone
iECABU_¢1320 10 12.79 14.91 0.8
iECABU_¢1320 100 307.85 137.38 2.2
iECABU_¢1320 300 1017.9 692.52 14
iAPECO1.1312 10 11.5 14.72 0.7
iAPECO1.1312 100 284.07 138.23 2
iAPECO1_1312 300 1003.5 756.72 1.3
iNRG857_1313 10 12.7 15.82 0.8
iNRG857_1313 100 296.37 151.53 1.9
iNRG857_1313 300 1118.8 774.48 14
iUMN146-1321 10 11.66 15.69 0.7
iUMN146_1321 100 336.86 129.51 2.6
iUMN146_1321 300 1066.7 745.19 14
iECP_1309 10 11.46 14.93 0.7
iECP_1309 100 234.68 130.25 1.8
iECP_1309 300 964.16 701.24 1.3
iECUMN_1333 10 15.08 14.09 1
iECUMN_1333 100 223.53 111.38 2
iECUMN_1333 300 852.58 668.38 1.2
iB21.1397 10 14.96 13.06 1.1
iB21.1397 100 309.4 115.8 2.6
iB21.1397 300 1095.2 750.11 14
iBWG_1329 10 15.93 14.54 1
iBWG_1329 100 356.67 213.48 1.6
iBWG_1329 300 815.63 693.38 1.1
iECD_1391 10 13.53 13.06 1
iECD_1391 100 384.91 115.81 3.3
iECD_1391 300 1021.9 750.14 1.3
iECDH10B_1368 10 14.89 16.13 0.9
iECDH10B_1368 100 368.16 234.13 1.5
iECDH10B_1368 300 772.36 689.5 1.1
iECSF_1327 10 21.86 13.3 1.6
iECSF_1327 100 368.12 218.4 1.6
iECSF_1327 300 803.02 678.55 1.1
iEcSMS35.1347 10 15.47 15.05 1
iEcSMS35.1347 100 329.95 133.37 2.4
iEcSMS35.1347 300 1036.5 739.45 1.4
iECB_1328 10 13.78 13.97 0.9
iECB_1328 100 284.36 120.41 2.3
iECB_1328 300 967.93 687.05 1.4
Table 10.4
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time

time .
network id Nr. iMCSs original . pro- relaFlve

cone jected time

cone
iECBD_1354 10 15.49 14.62 1
iECBD_1354 100 280.94 112.19 2.5
iECBD_1354 300 1047.5 740.2 14
iEcDH1_.1363 10 16.27 14.21 1.1
iEcDH1.1363 100 231.95 124.05 1.8
iEcDH1.1363 300 974.78 725.05 1.3
iEcHS_1320 10 11.52 15.17 0.7
iEcHS_1320 100 191.56 118.66 1.6
iEcHS_1320 300 923.79 695.49 1.3
iECDH1MES8569_1439 10 15.38 14.62 1
iECDH1ME8569_1439 100 258.29 117.93 2.1
iECDH1ME8569_1439 300 961.29 695.8 1.3
iEC55989_1330 10 13.36 14.14 0.9
iEC55989_1330 100 285.86 130.3 2.1
iEC55989_1330 300 983.52 704.04 1.3
iETEC_1333 10 12.14 14.92 0.8
iETEC_1333 100 281.72 210.17 1.3
iETEC_1333 300 920.7 922.43 0.9
iEC0O103-1326 10 14.32 13.97 1
iEC0O103.1326 100 313.92 132.72 2.3
iEC0O103.1326 300 1014.7 733.64 1.3
iY75.1357 10 15.39 14.3 1
iY75.1357 100 308.99 116.25 2.6
iY75.1357 300 970.79 694.79 1.3
iECO111.1330 10 16.34 15.48 1
iECO111.1330 100 339.57 133.69 2.5
iECO111.1330 300 1031.2 671.57 1.5
iEcE24377_1341 10 14.06 15.6 0.9
iEckE24377_1341 100 315.44 137.55 2.2
iEcE24377_1341 300 1003.5 735.81 1.3
iECIAI1.1343 10 11.22 16.41 0.6
iECIATI1.1343 100 257.7 117.42 2.1
iECIAI1_.1343 300 646.43 625.98 1
iEcolC_1368 10 11.62 14.25 0.8
iEcolC_1368 100 269.26 118.57 2.2
iEcolC_1368 300 880.3 706.04 1.2
iECSE_1348 10 11.54 13.34 0.8
iECSE_1348 100 276.51 126.37 2.1
iECSE_1348 300 992.89 716.74 1.3
Table 10.5
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time

time .
network id Nr. iMCSs original . Ppro- relat‘;lve

cone jected time

cone

iUMNKS88_1353 10 15.06 15.56 0.9
iUMNKS88_1353 100 238.71 125.53 1.9
iUMNKS88_1353 300 1027.6 700.89 1.4
iIEKO11.1354 10 16.9 15.28 1.1
iIEKO11.1354 100 224.72 125.88 1.7
iEKO11.1354 300 1036.8 735.07 14
iEC026-1355 10 13.07 14.05 0.9
iEC0O26-1355 100 270.47 122.56 2.2
iEC026-1355 300 991.09 720.59 1.3
iIECW_1372 10 11.87 12.3 0.9
iIECW_1372 100 305.59 119.5 2.5
iECW_1372 300 971.51 707.72 1.3
iWFL_1372 10 13.16 12.28 1
iWFL_1372 100 289.42 119.56 2.4
iWFL_1372 300 983.33 706.67 1.3
iMM1415 10 38.01 21.59 1.7
iMM1415 100 981.9 359.02 2.7
iMM1415 300 11005 54895 0.2
iLB1027_ lipid 10 79.44 49.92 1.5
iLB1027_ lipid 100 1706.1 906.78 1.8
iLB1027_ lipid 300 4068.9 4266.8 0.9
iCHOv1 10 96.76 30.58 3.1
iCHOv1 100 2337.7 467.6 4.9
iCHOv1 300 26197 22744 1.1
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10.2.2 Cardinality: Computations using Tobalina’s tool

Following we show results we obtained computing a given number of MCSs
using the script provided by [Tobalina et al., 2016]. For computing MCSs we
used the original flux cone and for computing iMCSs we used the projected
flux cone for all networks from the BiGG Models Database [King et al.,
2016] which include a biomass reaction (which was the target reaction). In
each table the results for several networks can be found.

network id: The id of the network on the BiGG Models Database. Card:
cardinality of the MCSs. Nr M CSs: number of MCSs of the corresponding
cardinality computed. For the first 4 networks we computed 1000 MCSs
for the last two we computed 500. Nr iMCSs: Number of MCSs of the
corresponding cardinality computed. Difference: The difference between
MCSs and iMCSs of a certain cardinality. For the first network we computed
1000 MCSs. If we computed more, we probably computed also MCSs of
cardinality 6 or higher.
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network id Card Nr MCSs Nr iMCSs Difference
iHN637 1 716 540 176
2 100 78 22

3 53 12 41

4 41 14 27

5 0 0 0

6 0 26 -26

7 0 4 -4

8 0 98 -98

9 0 49 -49

10 0 87 -87

iJB785 1 864 749 115
2 46 70 -24

3 0 21 -21

4 0 38 -38

5 0 32 -32

iJN678 1 861 749 112
2 49 43 6

3 0 4 -4

4 0 14 -14

5 0 29 -29

6 0 71 -71

iNJ661 1 724 590 134
2 83 42 41

3 103 14 89

4 0 8 -8

5 0 46 -46

6 0 96 -96

7 0 76 -76

8 0 38 -38

iJN746 1 584 434 150
2 194 54 140

3 132 46 86

4 0 222 -222

5 0 153 -153

iJR904 1 510 246 264
2 128 21 107

3 272 28 244

4 0 27 -27

5 0 44 -44

6 0 44 -44

iYO844 1 318 231 87
2 92 50 42

3 0 18 -18

4 0 40 -40

5 0 71 -71

iND750 1 289 215 74
2 121 48 73

3 0 40 -40

4 0 103 -103

5 0 4 -4

Table 10.6



network id Card Nr MCSs Nr iMCSs Difference
1AF987 1 410 402 8
2 0 8 -8
iMM904 1 278 219 59
2 132 48 84
3 0 29 -29
4 0 55 -55
5 0 59 -59
iPC815 1 317 247 70
2 93 63 30
3 0 100 -100
iYL1228 1 313 246 67
2 97 63 34
3 0 75 =75
4 0 26 -26
iAF1260 1 389 303 86
2 21 77 -56
3 0 30 -30
iAF1260b 1 389 303 86
2 21 74 -53
3 0 33 -33
iSDY_1059 1 368 288 80
2 42 37 5
3 0 85 -85
STM_v1.0 1 395 324 71
2 15 79 -64
3 0 7 -7
1JO1366 1 410 358 52
2 0 51 -51
iSbBS512_1146 1 377 292 85
2 33 45 -12
3 0 73 -73
iSBO_1134 1 379 292 87
2 31 68 -37
3 0 49 -49
iS_1188 1 371 288 83
2 39 61 -22
3 0 61 -61
iSFV_1184 1 382 296 86
2 28 62 -34
3 0 52 -52
iSF_1195 1 369 284 85
2 41 62 -21
3 0 63 -63
iSFxv_1172 1 373 287 86
2 37 60 -23
3 0 63 -63
iISSON_1240 1 370 285 85
2 40 64 -24
3 0 61 -61

Table 10.7
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network id Card Nr MCSs Nr iMCSs Difference
iECH74115.1262 1 375 294 81
2 35 65 -30
3 0 50 -50
iE2348C_1286 1 375 294 81
2 35 63 -28
3 0 52 -52
iG2583_1286 1 375 294 81
2 35 61 -26
3 0 55 -55
iECED1_.1282 1 378 295 83
2 32 62 -30
3 0 53 -53
iECSP_1301 1 375 294 81
2 35 61 -26
3 0 55 -55
iML1515 1 356 282 74
2 54 93 -39
3 0 34 -34
iEC042_1314 1 375 294 81
2 35 60 -25
3 0 56 -56
iECNA114_1301 1 375 294 81
2 35 61 -26
3 0 55 -55
iECs_1301 1 375 294 81
2 35 61 -26
3 0 55 -55
iECIAI39.1322 1 358 277 81
2 52 82 -30
3 0 51 -51
iZ._1308 1 375 294 81
2 35 61 -26
3 0 55 -55
iUTI89_1310 1 375 294 81
2 35 61 -26
3 0 54 -54
4 0 1 -1
ic_1306 1 370 290 80
2 40 61 -21
3 0 59 -59
iLF82_1304 1 375 294 81
2 35 62 -27
3 0 54 -54
iECOK1_.1307 1 375 294 81
2 35 62 -27
3 0 54 -54
iECS88_1305 1 375 294 81
2 35 61 -26
3 0 55 -55
iECABU_¢1320 1 375 294 81
2 35 60 -25
3 0 56 -56

Table 10.8



network id Card Nr MCSs Nr iMCSs Difference
iAPECO1_1312 1 375 294 81
2 35 61 -26
3 0 55 -55
iNRG857.1313 1 375 294 81
2 35 61 -26
3 0 55 -55
iUMN146.1321 1 375 294 81
2 35 60 -25
3 0 56 -56
iECP_1309 1 375 294 81
2 35 60 -25
3 0 56 -56
iECUMN_1333 1 377 294 83
2 33 62 -29
3 0 54 -54
iB21_1397 1 379 298 81
2 31 41 -10
3 0 71 -71
iBWG_1329 1 410 353 57
2 0 57 -57
iECD_1391 1 379 298 81
2 31 41 -10
3 0 71 -71
iECDH10B_1368 1 410 347 63
2 0 62 -62
iECSF_1327 1 410 353 57
2 0 57 -57
iEcSMS35.1347 1 375 294 81
2 35 60 -25
3 0 56 -56
iECB_1328 1 375 294 81
2 35 63 -28
3 0 53 -53
iECBD_1354 1 379 298 81
2 31 41 -10
3 0 71 -71
iEcDH1_.1363 1 375 294 81
2 35 61 -26
3 0 55 -55
iEcHS_1320 1 375 293 82
2 35 62 -27
3 0 55 -55
iECDH1IMERg569_1439 1 375 294 81
2 35 61 -26
3 0 55 -55
iEC55989_1330 1 375 294 81
2 35 61 -26
3 0 54 -54
Table 10.9

205



206

network id Card Nr MCSs Nr iMCSs Difference
iETEC_1333 1 375 294 81
2 35 62 =27
3 0 54 -54
iEC0103_.1326 1 376 295 81
2 34 61 -27
3 0 54 -54
iY75.1357 1 375 294 81
2 35 61 -26
3 0 55 -55
iECO111_.1330 1 375 294 81
2 35 61 -26
3 0 54 -54
iEcE24377_1341 1 375 294 81
2 35 62 -27
3 0 54 -54
1ECIAT1.1343 1 377 296 81
2 33 64 -31
3 0 49 -49
iEcolC_1368 1 375 294 81
2 35 61 -26
3 0 55 -55
iECSE_1348 1 375 294 81
2 35 62 =27
3 0 53 -53
iUMNKS88_1353 1 375 294 81
2 35 61 -26
3 0 54 -54
iEKO11_.1354 1 375 294 81
2 35 61 -26
3 0 55 -55
iEC026.1355 1 375 294 81
2 35 61 -26
3 0 55 -55
iECW_1372 1 375 294 81
2 35 61 -26
3 0 54 -54
iWFL_1372 1 375 294 81
2 35 61 -26
3 0 54 -54
iMM1415 1 208 124 84
2 157 89 68
3 44 35 9
4 1 87 -86
5 0 75 -75
iLB1027_ lipid 1 410 354 56
2 0 56 -56
iCHOv1 1 130 76 54
2 208 114 94
3 69 70 -1
4 3 54 -51
5 0 94 -94

Table 10.10



Zusammenfassung

Systembiologie ist ein interdisziplindres Feld, welches Mathematik, Infor-
matik und Ingenieurwissenschaften vereint, um biologische Prozesse zu
analysieren. Aufgrund erfolgreicher Anwendungen in der Medizin und
Biotechnologie wurde dieses Feld in den letzten zwei Jahrzehnten immer
wichtiger. Ziel ist es, biologische Systeme mathematisch zu beschreiben
und somit die bendtigte Zeit und Kosten der Forschung in Laboren zu
reduzieren. Um dies zu realisieren, werden Algorithmen und Techniken
entworfen, die eine breite Anwendung finden. Durch moderne DNA-
Sequenzierung konnen Daten generiert werden, die biologische Entitaten
beschreiben. Hierdurch wird immer mehr Wissen gewonnen, welches zur
Rekonstruktion von metabolischen Netzwerken beitragen kann. Nachteil
dieser neuen Techniken ist, dass die so gesammelten Daten oft zu grof3
sind um sie von Hand zu analysieren. Daher braucht es automatisierte
Methoden, die relevante Informationen extrahieren.

In dieser Arbeit stellen wir verschiedene Algorithmen vor, die gegebene
metabolische Netzwerke sinnvoll reduzieren. @ Wir préasentieren einen
Algorithmus, der von einem gegebenen Netzwerk minimale Teilnetzwerke
berechnet, in denen weiterhin vordefinierte Prozesse stattfinden konnen.
Zudem entwickeln wir eine Methode, um eine minimale Teilmenge der
elementaren Flussmodi zu berechnen, die das Netzwerk vollstdndig erzeugen
und beschreiben kénnen. Die Gréfle dieser Teilmengen ist im Vergleich zu
der Gesamtmenge der elementaren Flussmodi signifikant reduziert. Dariiber
hinaus stellen wir ein Verfahren vor, welches die Anzahl der Variablen eines
gegebenen Problems reduziert, um somit (bereits existierende) Algorithmen
zu beschleunigen. Desweitern entwickeln wir eine neue Methode die minimal
cut sets in einem projizierten Netzwerk berechnet, wodurch wir minimal cut
sets von groferer Kardinalitat als zuvor berechnen konnen. Die Projektion
von metabolischen Netzwerken fiihrt auch zu anderen Anwendungen, wie
zum Beispiel die Berechnung von minimal metabolic behaviours.

Schwerpunkt diese Arbeit ist die Entwicklung mathematischer Methoden,
deren Anwendungsbereich metabolische Netzwerke sind. Um diese Mod-
elle zu erstellen und zu validieren verwenden wir lineare ganzzahlige Opti-
mierung, polyedrische Kegel, lineare Algebra und orientierte Matroide.
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