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1Introduction

„If you learned how to make a cloud,
your time is not wasted.

— Bob Ross
(painter, instructor, and television host)

Much like painters, climate scientists strive to represent clouds accurately in their
work. Instead of paintings, climate scientists create global climate models (GCMs)
that predict the future climate. Clouds are crucial elements, affecting water and
energy cycles in the Earth-atmosphere system, and it is difficult to capture their
complexity in a GCM.

Focusing on individual clouds - whether large enough to be resolved by a GCM’s
spatial grid or smaller than the grid size and therefore parametrized - a model needs
to answer questions such as: How does cloud liquid and ice condensate distribute
horizontally and vertically? How intense is cloud turbulent mixing with surrounding
dry air? When and how much do clouds precipitate? And how would answers
to these questions change if clouds interact with aerosols or are surrounded by a
warmer and possibly moister atmosphere in a future climate?

Clouds affect the radiation budget at top-of-atmosphere (TOA), and their effects
vary according to their micro- and macrophysical properties. Clouds represent the
largest uncertainty for understanding and assessing Earth’s changing energy budget
(Boucher et al., 2013, and and references therein).

Clouds impact the TOA radiation budget as they reflect incoming shortwave
(SW) radiation back to space and emit longwave (LW) radiation towards TOA. SW
reflection generally cools Earth’s surface as less radiation reaches the surface level
for local absorption. Cloud albedo grows with amount of cloud liquid and ice water
and with the degree of cloud-aerosol interaction (Twomey, 1977) distributing the
same cloud water over more numerous but smaller cloud droplets or ice crystals. In
terms of optical properties, cloud albedo is proportional to cloud optical depth (COD)
and the inverse of cloud droplet size distribution. Whenever summarizing clouds
over a horizontal domain with a specific domain-average COD, domain cloud albedo
decreases as within-domain COD becomes more heterogeneous (e.g. Barker et al.,
1996; Kato et al., 2005). LW emission generally increases with cloud temperature
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and COD. A cloud located at higher (and naturally colder) altitudes therefore emits
less LW radiation and even absorbs surface-originated LW radiation, which the cloud
partly re-emits back down, thus warming Earth’s surface. Low clouds, on the other
hand, emit at a near-surface temperature. They can form large and optically thick
sheets covering the oceans, and thus efficiently reflect solar radiation. In turn,
low-clouds cool Earth’s surface. Recent estimates on the global net effect of clouds
imply that the SW cooling generally outweighs the LW heating by about 21.5±5 W
m−2 (Stephens et al., 2012), thus leaving - on average - a colder atmosphere behind
due to clouds.

Satellites and their remote-sensing instruments have provided valuable bench-
marks for GCM development. Broadband radiometry from space started with the
Earth Radiation Budget (ERB) experiment (Jacobowitz et al., 1979; Jacobowitz et al.,
1984; Kyle et al., 1993) and continues today with CERES (Clouds and the Earth’s
Radiant Energy System, Wielicki et al., 1996) on polar-orbiting Aqua and Terra
satellites, GERB (Geostationary Earth Radiation Budget, Mueller et al., 1999) on
geostationary Meteosat Second Generation satellites, and ScaRaB (Scanner for Radi-
ation Budget, Kandel et al., 1998) onboard Megha-tropiques in near-equatorial orbit.
Global net effect estimates historically changed through improved instrumentation-
and improved algorithms converting TOA SW or LW radiance measurements into
TOA SW or LW fluxes: from -16.6 W m−2 (Ramanathan et al., 1989), -26.8 W m−2

(Ardanuy et al., 1991), -32.4 W m−2 (Rossow and Zhang, 1995), to -20.0 W m−2

(Kiehl and Trenberth, 1997). Recent efforts combined active instruments, CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization, Winker et al., 2009) onboard
the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)
satellite and the CloudSat CPR (Cloud Profiling Radar), together with the passive
instrument MODIS (Moderate Resolution Imaging Spectro-radiometer) - all part of
the A-Train satellite constellation (Stephens et al., 2002) - to show that radiation
budget estimates crucially improved when combining information from all sensors
(Kato et al., 2011). The upcoming ESA-JAXA (European Space Agency and Japan
Aerospace Exploration Agency) satellite mission EarthCARE (Earth Clouds, Aerosols
and Radiation Explorer, Illingworth et al., 2015) - to be launched in 2020 - will
also use this combination of active (the Cloud Profiling Radar, CPR, as well as the
ATmospheric LIdar, ATLID) and passive (Multi-Spectral Imager, MSI) instruments.
The EarthCARE mission’s goal is to evaluate the state-of-the-art knowledge on cloud-
aerosol-radiation interaction. A radiative closure assessment compares 1) simulated
TOA SW and LW fluxes from 1D and 3D broadband radiative transfer models acting
on a 3D atmosphere of cloud and aerosol properties inferred from combined active-
passive retrieval (Barker et al., 2011) with 2) estimated SW and LW fluxes from SW
(0.25-4.00 µm) and Total Wave (TW, 0.25 - >50 µm) measurements performed by
the on-board BBR (Broadband Radiometer, Wallace et al., 2009). The comparison
will assess simulated and measurement-based TOA fluxes over horizontal domains
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of ∼100 km2, and requires a difference of no more than ±10 W m−2 in SW and LW
fluxes to claim understanding of cloud-aerosol-radiation interaction. In addition, ver-
tical heating rate profiles - a valuable byproduct from radiative transfer simulations -
can be trusted and used to assess current GCMs and their parametrizations.

This dissertation contributes in various ways to EarthCARE’s BBR-based flux esti-
mation and corresponding uncertainties. Chapter 2 quantifies a so-far unaccounted
uncertainty in SW and TW measured radiances that arises from the assembly of
individual BBR footprints of (∼0.6 km)2 size towards ∼100 km2 domains and the
fact that horizontal radiance fields are naturally heterogeneous. BBR instrument
performance and thus sampling density is in-flight adjustable. LW radiances need to
be inferred from staggered TW and SW radiances. We show the sensitivity of SW
and LW radiances to radiance heterogeneity and instrument performance by using
high-spatial resolution Landsat 8 imagery and mimicked BBR sampling. We finally
recommended a minimum instrument performance in order to keep resulting flux
uncertainties below 10 W m−2.

Chapter 3 presents a novel way to convert TOA SW radiances, measured over
clear-sky domains, into TOA SW fluxes. Instead of directly using state-of-the-art
CERES Angular Distributions models (ADMs; providing empirical conversion factors),
which are separately built per 1◦×1◦ longitude-latitude bin and per calendar month
to convert over land surfaces, we find a new representation of CERES ADMs that
dissolves spatio-temporal binning. This was possible through the use of additional
geophysical variables in Artificial Neural Networks (ANNs). Our results show how
important variables were identified and how well we reproduced CERES ADMs.

In theory, the conversion of SW radiances towards fluxes above low-level clouds
should be sensitive to the cloud droplet size distribution as well as cloud-topped
water vapor. This was confirmed by the precise and flexible in-house radiative
transfer code MOMO (Matrix-Operator Model, Hollstein and Fischer, 2012), which
was used to simulate azimuthally resolved TOA SW radiances for various cloud
optical properties as well as vertical temperature and moisture profiles. Chapter 4
shows that current CERES ADMs lack such sensitivity, demonstrates the construction
of new and refined ADMs by using several years of CERES-MODIS observation as
well as broadband radiative transfer simulations, and quantifies the impact onto
flux estimation. We specifically looked into the potential introduction of biases into
radiation budget climatologies.

Three BBR views and corresponding flux estimates should be colocated towards
their supposed domain of origin. While such colocation is straight-forward for
clear-sky conditions (colocation at surface level) or for opaque clouds (colocation
at cloud-top altitude), there is no obvious vertical level of colocation for broken
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or semitransparent clouds fields. Chapter 5 introduces a novel way to colocate.
Applied to the best estimate of the 3D atmosphere and constituents therein, 3D
Monte Carlo radiative transfer simulations produced photon paths. Such paths
allowed us to identify those measurements across the three views, which received
SW-scattered contributions from very similar vertical levels within the atmosphere.
We demonstrate the application to a 5000 km domain of A-train data and discuss
the performance and applicability of this novel method. Finally, Chapter 6 concludes
findings of this thesis.
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2EarthCARE’s Broadband
Radiometer: Unforeseen
Uncertainties Associated with
Cloudy Atmospheres

Abstract

The EarthCARE satellite’s Broadband Radiometer (BBR) consists of three telescopes
and a rotating chopper drum (CD). Together they yield alternating measurements
of totalwave (TW) (0.25 - >50 µm) and shortwave (SW) (0.25 - 4 µm) radiances
with point-spread functions that translate to ∼0.6 km diameter pixels. The mission
requires that SW and TW radiances be averaged over ∼100 km2 domains. Corre-
sponding average longwave (LW) radiances are differences between TW and SW
averages. It is shown that impacts on domain-average nadir radiances due to alter-
nating samples of TW and SW signals for realistic cloudy atmospheres are sensitive
to: variance of cloudy-sky radiances; CD rotation rate; and along-track length of
averaging domains. The BBR’s design allows for in-flight alteration of CD rate. An
approximate method is provided for estimating SW and LW uncertainties due to
CD rate. While the nominal rotation rate meets EarthCARE’s mission requirements,
reducing below ∼75% of that rate will lead to uncertainties for domain-average LW
radiances that will often exceed mission requirements. This could be mitigated by
increasing the size of averaging domains, but that would compromise the BBR’s role
in EarthCARE’s radiative closure assessment programme. Uncertainties for off-nadir
radiances are largely free of impacts arising from changes to CD rotation rate.

Tornow, F., Barker, H. W., Velázquez Blázquez, A., Domenech, C., Fischer, J.,
submitted to Journal of Atmospheric and Oceanic Technology, May 2018, in revision

5





2.1 Introduction

The EarthCARE (Earth, Clouds, Aerosols, and Radiation Explorer) satellite mission
is a collaboration between the European Space Agency (ESA) and Japan Aerospace
Exploration Agency (JAXA). It will be launched no sooner than the end of 2020, and
will yield radar, lidar, and multi-spectral imager (MSI) measurements for synergis-
tic retrieval of cloud and aerosol properties profiles for ∼(1 km)2 nadir columns.
EarthCARE’s goal (ESA, 2001; ESA, 2006) is that when broadband radiative transfer
models act on retrieved cloud and aerosol properties, estimated top-of-atmosphere
(TOA) fluxes for domains with areas ∼100 km2 will be, on average, within ±10 W
m−2 of fluxes inferred from radiances measured by its BroadBand Radiometer (BBR)
(see Illingworth et al., 2015). This “radiative closure assessment" experiment has
been a central driver to the overall design of the EarthCARE mission.

The BBR will measure TOA filtered radiances at nadir and two along-track oblique
views, with viewing zenith angles of ∼53◦, for a ∼30 km-wide swath (Wallace
et al., 2009). It consists of three telescopes, microbolometer arrays of detectors, a
rotating chopper drum mechanism (CDM), and a silica filter to produce SW radiances.
Radiances measurements alternate between totalwave (TW) (0.25 - >50 µm) and
shortwave (SW) (0.25 - 4 µm) with point-spread functions that amount to ∼0.6
km diameter pixels separated by ground sampling distance ds. Hence, SW and
TW measurements are separated by ds/2. The telescopes’ characteristics require
(mission-worthy) radiances to be averaged over (10 km)2 areas. As such, areas used
for the radiative closure experiment will be more rectangular but still cover ∼100
km2. They are referred to hereinafter as “assessment domains". Correspondingly,
longwave (LW) average radiances are differences between TW and SW averages.

By design, the CDM rotation rate can be adjusted whilst in orbit thereby facilitating
possible extensions to the mission’s lifetime (per. comm., A. Lefebvre 2018; Caldwell
et al., 2017b). Although standard radiometric performance assessments of the
BBR have occurred, uncertainties for assessment domain-average radiances due to
intermittent sampling of TW and SW radiances have not been quantified. Such
uncertainties can be expected when radiances exhibit significant fluctuations at
spatial scales near pixel size and, and are to be averaged over relatively small
assessment domains; such as cloud fields within EarthCARE-size assessment domains
(e.g. Barker et al., 2017). Given the BBR’s central role in Earth-CARE’s radiative
closure experiment, it is essential that BBR radiance uncertainties be quantified as
well as possible. Moreover, it is useful to know the approximate lower-bound on
CDM rotation rate so as not to compromise the closure experiment.

Hence, the primary purpose of this paper is to report on an investigation into the
dependence of nadir BBR radiance uncertainties on ds via CDM rotation rate. While
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analyses focus entirely on cloudy atmospheres, results apply to all scenes that exhibit
radiometric variability. Off-nadir radiances, being sufficiently over-sampled in the
along-track direction, are almost free of CDM-related sampling uncertainties and
are, therefore, not addressed here (see Wallace et al., 2009).

The second section explains the experimental design and simulation of BBR
measurements. The third section describes how uncertainties for mean radiances
arise due to the rotating CDM. Results are presented in the fourth section, and
conclusions in the final section.

2.2 Simulation of BBR measurements

In order to achieve spatially accurate BBR point-spread function (PSF) integrations
coupled with sampling separation distances ds, BBR measurements were simulated
by averaging high-resolution Landsat-8 imagery. Figure 4.1a shows the PSF resolved
at Landsat-8’s resolution of 0.03 km. At 50% of the PSF’s integrated energy, BBR
“pixels" are ∼0.58 km across, and their centers are separated across-track by 0.58
km also. At the CDM’s full (i.e., nominal) rotation rate, one revolution of the CDM
takes ∼0.23 s (Caldwell et al., 2017a). As shown in Figure 4.1b, each telescope
has four exposures per revolution: two each for the TW and SW bands. Hence,
with EarthCARE travelling at ∼7.21 km s−1, successive nadir-view pixels with the
same wavelength will have ds ≈ 0.8 km. Obviously, adjusting CDM rotation rate will
impact ds. Figure 4.1c shows conditions at half the CDM’s nominal rate. A detailed
description of EarthCARE’s BBR can be found in Wallace et al. (2009).

Landsat-8 Bands 5 (0.845 - 0.885 µm; 0.03 km pixels) and 10 (10.6 - 11.2 µm;
0.1 km pixels) were used to construct approximate, unfiltered BBR SW and LW
radiances; thus assuming a perfect spectral response. Broadband SW radiances
RSW , at 0.03 km resolution, were approximated by scaling Landsat-8’s Band 5
radiances by the ratio between broadband to Landsat-8’s filtered spectral incidence
at TOA. Also, radiances were then scaled to correspond to a solar zenith angle θ0 of
23◦ which is the smallest for EarthCARE’s orbit. Broadband LW radiances RLW , at
0.1 km resolution, were approximated by estimating Planck effective temperatures
from Landsat-8’s Band 10, using them in the Stefan-Boltzmann equation to get
broadband fluxes, multiplying them by a broadband effective transmittance of 0.65,
and dividing by π to get back to radiance. RSW and RLW are clearly approximations,
but what is important here is that, once integrated over PSFs, they are close to
expected BBR values and exhibit realistic spatial fluctuations. Totalwave radiances
are RTW = RSW +RLW .

8 Chapter 2 EarthCARE’s Broadband Radiometer: Unforeseen Sampling Uncertainties



Fig. 2.1: (a) Approximate representation of a BBR Point Spread Function for 0.03 km
Landsat imagery. (b) Schematic of alternating TW and SW PSFs at the BBR CDM
nominal rotation rate. (c) As in (b) except this is for half the nominal rate. (d) A
(58.4 km)2 Landsat Band 5 sample image, and (e) its integration and interpolation
to (1 km)2 (EarthCARE’s JSG).

After integrating RSW and RTW for each PSF they get interpolated onto a 1 km
grid which approximates EarthCARE’s Joint Standard Grid (JSG). The JSG is what
most of EarthCARE’s products will be reported on (see Figure 4.1d and Figure 4.1e).
Finally, JSG-level BBR radiances are averaged over assessment domains which were
originally planned to be (10 km)2 but will likely be closer to ∼5 km across-track by
∼21 km along-track (Illingworth et al., 2015; Barker et al., 2014a).

2.3 Definitions and general considerations

Let 〈S〉 and 〈T 〉 be assessment domain-average SW and TW radiances as would
be measured by the BBR. Their errors are

δ〈S〉 = 〈S〉 − 〈S〉 (2.1)

and
δ〈T 〉 = 〈T 〉 − 〈T〉 (2.2)

2.3 Definitions and general considerations 9



where 〈S〉 and 〈T〉 are true domain-averaged SW and TW radiances - arithmetic
averages of all RSW and RTW across an assessment domain. Since LW radiances are
not measured, domain-average LW BBR radiance 〈L〉 is defined as

〈L〉 ≡ 〈T 〉 − 〈S〉

= [〈LT 〉+ 〈ST 〉]− 〈S〉

= 〈LT 〉 − [〈S〉 − 〈ST 〉]

= 〈LT 〉 −∆TS〈S〉

(2.3)

where the subscript T indicates LW and SW radiances that comprise the TW PSFs.
∆TS〈S〉 is difference in mean SW radiances due to sampling with the TW and SW
bands. Note that in actual operations the SW channel is slightly contaminated by
thermal radiation. This is secondary to the issue at hand and has been neglected
here (see Velázquez-Blázquez et al., 2017). Figure 4.2 provides a graphic example of
how and why, in general, ∆TS〈S〉 6= 0 . Presented this way it is easy to see that at the
nominal rotation rate ∆TS〈S〉 are likely to be fairly small since sampling along-track
is quite dense. If, however, ds becomes too large and sampling too sparse, ∆TS〈S〉
can be sizable. Hence, error for 〈L〉 is

δ〈L〉 = 〈LT 〉 − 〈L〉 −∆TS〈S〉 (2.4)

where 〈L〉 represents true domain-averaged LW radiance - the average of all RLW
across an assessment domain. When the sun is down, then by definition 〈L〉 ≡ 〈T 〉
and δ〈L〉 = δ〈T 〉. In fact, since LW radiances usually vary much less than SW
radiances, even for moderately large values of θ0, it can often be expected that

δ〈L〉 ≈ −∆TS〈S〉 (2.5)

implying that

σ2(δ〈L〉) ≈ σ2(δ〈S〉) + σ2(δ〈ST 〉)− 2cov(δ〈S〉, δ〈ST 〉) (2.6)

When CDM rotation rates are large and ds are small, it is likely that δ〈S〉 ≈ −δ〈ST 〉,
meaning that equation 2.6 can be simplified to

σ(δ〈L〉) ≈ 2σ(δ〈S〉) (2.7)

This means that uncertainties in estimated mean LW radiances are approximately,
though slightly less than, double the magnitude of their SW counterparts, even when
LW radiances exhibit no fluctuations at all! This might seem counterintuitive but it
is demonstrated in the next section.
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Fig. 2.2: Top frames show a 5 × 21 km assessment domain of full SW radiances RSW , the
domain-average being 〈S〉 (see equation 2.1). Middle frames show PSF samplings
at the BBR’s nominal CDM rotation rate and at half the nominal rate. ds is ground
sampling distance. Their domain-averages are 〈S〉. Lower frames show SW signals
seen by the totalwave telescope which samples between successive samples on
the middle frames. Cross-track sampling is very good and independent of CDM
rotation rate. Hence, it was neglected in order to focus attention on along-track
sampling.

2.4 Results

Figure 4.3 shows ten Landsat 8 high-resolution images used in this study. These
images adequately represent a wide range of cloud types and radiance variability.
The BBR sampling process, described above, was applied to these radiances assuming
various CDM rotation speeds. Resulting BBR radiance estimates where compared
against “true" mean radiances for designated assessment domain sizes.
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Fig. 2.3: Ten pairs of (left) Landsat Band 5 (0.85 - 0.88 µm) and (right) Band 10 (10.6 -
11.2 µm) images used in this study to derive estimates of SW and LW BBR radiances.
Each image is 190 km× 180 km. SW and LW radiances range from 0 (black) to 290
(white) W m−2 sr−1 and from 25 (white) to 95 (black) W m−2 sr−1, respectively.
See Table 4.1 for details.
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Tab. 2.1: Characteristics of Landsat tiles shown in Figure 3. For domain sizes of 5 × 21 km, perceived heterogeneities (i.e., radiance variability as defined in
the text) and mean domain radiances were computed, sorted by SW radiance variability, and grouped into 1-percentile bins. Group averages (shown
for percentiles 16, 50, and 84) of radiance variability and mean radiance (in parentheses) for SW, LW, and TW radiances are listed. Values are in W
m−2 sr−1.

SW Radiance Variability
(SW Radiance Mean)

LW Radiance Variability
(LW Radiance Mean)

TW Radiance Variability
(TW Radiance Mean)

No. Landsat Scene ID & Location Description 16% 50% 84% 16% 50% 84% 16% 50% 84%

1
LC81330552016355LGN02

6.1-8.3◦N,
92.0-94.1◦E

sparse cumuli,
30% cirrus,

few high convective clouds

7.68
(17.62)

17.99
(28.93)

45.86
(41.85)

4.12
(78.83)

6.15
(74.69)

4.49
(78.76)

5.25
(96.45)

13.91
(103.62)

42.84
(120.62)

2
LC81900192017164LGN00

57.6-59.8◦N,
19.0-23.2◦E

80% cirrus,
above overcasting stratocumulus

few high convective clouds

16.82
(92.63)

25.16
(126.38)

42.48
(116.31)

3.52
(62.40)

3.21
(63.56)

4.24
(64.96)

14.30
(155.02)

23.04
(189.93)

40.47
(181.26)

3
LC81940712017160LGN00

14.8-17.0◦S,
5.1-7.3◦W

no cirrus,
50% cumulus of

various structures

21.82
(24.47)

39.84
(44.71)

54.70
(65.06)

2.69
(83.65)

3.21
(82.25)

3.34
(81.20)

19.50
(108.12)

37.15
(126.96)

51.89
(146.25)

4
LC82100172016062LGN01

60.3-62.6◦N,
5.5-10.3◦W

50% cirrus,
50% cumuli, some

high cloud shadows

29.04
(79.87)

41.20
(94.45)

54.64
(103.40)

3.50
(57.09)

3.49
(38.64)

4.73
(58.21)

26.18
(136.96)

50.83
(153.07)

50.83
(161.61)

5
LC82090172016119LGN01

60.3-62.6◦N,
4.0-8.7◦W

30% cirrus, 30% cumuli,
some high convection,

some islands

10.63
(16.94)

32.00
(64.37)

64.97
(113.90)

1.96
(67.27)

5.42
(55.35)

6.20
(55.20)

9.08
(84.21)

27.97
(119.72)

60.86
(169.10)

6
LC82090492017073LGN00

14.8-17.0◦N,
21.4-23.6◦W

50% cirrus,
few cumuli,
some islands

5.64
(23.82)

19.35
(66.79)

35.33
(98.70)

2.98
(80.49)

6.71
(64.41)

8.42
(55.23)

3.41
(104.31)

14.60
(131.20)

28.22
(153.93)

7
LC82320512017154LGN00

11.9-14.1◦N,
57.6-59.8◦W

50% cirrus,
sparse cumuli,
some altostrati

8.28
(23.88)

18.74
(45.58)

37.52
(81.74)

5.12
(81.03)

9.50
(67.37)

9.49
(60.13)

5.50
(104.96)

11.51
(112.95)

29.81
(141.87)

8
LC80180302016077LGN01

42.1-44.2◦N,
78.6-81.6◦W

50% cumulus
and altostratus,

mostly land surface

7.19
(38.24)

38.30
(79.31)

70.75
(150.70)

1.60
(71.60)

5.60
(64.58)

6.45
(55.70)

7.15
(109.84)

34.59
(143.89)

65.32
(206.40)

9
LC80900902017247LGN00

42.1-44.2◦S,
145.7-148.7◦E

50% cumuli,
50% cirrus,

30% land surface

20.09
(49.74)

37.51
(89.30)

66.20
(137.88)

3.83
(65.37)

5.38
(60.09)

5.60
(55.62)

17.83
(115.11)

33.33
(149.39)

61.73
(193.51)

10
LC81940222016270LGN02

53.3-55.6◦N,
10.6-14.5◦E

50% cirrus
mostly land surface

of heterogeneous reflectivity

6.70
(17.54)

16.74
(76.37)

28.40
(65.85)

2.82
(74.55)

4.24
(74.84)

4.43
(73.14)

4.06
(92.09)

14.86
(151.21)

27.47
(138.99)

2.4
Results
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Intuitively, radiance uncertainties due to incomplete sampling should increase
as radiances become increasingly heterogeneous across assessment domains. Near-
homogeneous fields, such as stratiform decks, where there is little to miss even when
sampling is sparse, should present well, while fields of scattered cumulus could be
sampled poorly (see Figure 4.2). To explore this, N assessment domains measuring
5 × 21 km2 (i.e., one option in EarthCARE’s configurable assessment domain size)
were sampled randomly from each tile. To isolate heterogeneity effects, assessment
domains were grouped by 1-percentile intervals of SW radiance variability σSW , as
defined by the standard deviation of SW radiances within an assessment domain.
Finally, within each interval, TOA SW, TW, and LW sampling uncertainties, defined
as the standard deviation of differences between sampled mean and true mean
radiances, were determined and compared to mission requirements. In order to
address sampling uncertainty during the EarthCARE mission, SW variability was
based on radiances resolved at 1 km2 (approximately the size of the EarthCARE’s
JSG). Sampling uncertainties for SW and TW radiances are discussed first. This is
followed by an assessment for the indirectly measured LW radiances.

2.4.1 Uncertainties for SW and TW mean radiances

Figure 4.4 shows how SW sampling uncertainty σ(δ〈S〉) increases with reductions
to CDM performance for four tiles of very different composition and magnitudes of
sampling uncertainty. Tile 3, characterized by weak TOA SW radiance variability
(21.8 - 54.7 W m−2 sr−1, see Table 4.1), and tile 7, characterized by smooth filaments
of high-level clouds (8.3 - 37.5 W m−2 sr−1), lead to small SW uncertainties σ(δ〈S〉)
(1.9 and 0.7 W m−2 sr−1 at lowest performance, respectively) while tiles 4 and 8
have much larger SW uncertainties (2.8 and 3.2 W m−2 sr−1 at lowest performance,
respectively). Tiles with broken low-level cumuli exhibit bright and sharp features
which result in large TOA SW radiance variability σSW of up to 70.8 W m−2 sr−1

(see Table 1). Hence, SW sampling at largest ds would produce σ(δ〈S〉) of ∼3.2 W
m−2 sr−1, which when multiplied by π slightly exceeds the mission requirement of
10 W m−2 (tile 8 in Figure 4.4).

We believe that varying amounts of TOA SW radiance variability σSW caused
observed variety in TOA SW nadir radiance sampling uncertainty σ(δ〈S〉). Figure 4.5
shows σ(δ〈S〉) as a function of σSW and ground sampling distance ds for domains
measuring 5 km across-track and 21 km along-track. SW uncertainty increases
almost linearly with σSW .

This linear relationship between σSW and σ(δ〈S〉), shown in Figure 4.5, grows
not only progressively steeper, but also noisier due to progressively larger gaps
between BBR along-track SW footprints as ds increases. To understand the effects
of sparser along-track SW footprints, BBR sampling was done repeatedly on the
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Fig. 2.4: BBR LW (gray) and SW (black) uncertainties as functions of CDM rotation rate
expressed as ds for 5 × 21 km domains. Lines indicate median levels of tile-specific
SW radiance variability while bar ends denote 16th and 84th percentiles. Dotted
horizontal line indicates 10 W m−2 (mission required flux accuracy) divided by π.

Fig. 2.5: BBR SW uncertainty as functions of SW radiance field heterogeneity for 5 × 21 km
domains for various values of ds as indicated above each plot. Radiance variability
percentiles, 16 through 84, are shown for each tile. As in Figure 4.4, black dotted
lines indicate mission requirements. Assuming LW uncertainties to be roughly
twice the SW uncertainties (see equation 2.7), gray dashed lines mark 5/π W m−2

sr−1 which indicates the mission required limit for LW radiances uncertainties.
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central 50 km × 50 km portion of tile 5 to obtain several values of interpolated SW
radiances and SW errors for each 1 km2 cell. The standard interpolation method
was used: all overlapping SW footprints and their two-dimensional PSFs resolved at
30m were considered; each PSF was weighted by the PSF energy overlapping with
the cell; and all weighted PSFs were merged onto a horizontal field and normalized
to integrate to 1. In addition to interpolating SW radiances, the amount of energy
of the normalized PSF falling into each cell was determined. Cell coverage was
defined as the integral of normalized PSF values within a cell’s perimeter. Hence, a
coverage of “1" translates into to BBR sampling only within the cell, while a value
of “0" corresponds to no BBR footprint within the grid cell at all. Neither extreme
was observed as dense across-track samples always extended beyond cell perimeters
(leading to a coverage < 1), and – even at a ground sampling distance of 1.6 km –
each cell was partly sampled by at least one SW exposure (a coverage > 0). Similar
to σSW , sub-grid variability was extracted per grid cell based on 30m resolved
radiances. Figure 4.6 shows how 1 km2 sampling errors (y-axis) grew with sub-grid
variability (x-axis) and with lower coverage (darker colors). At lowest ds, coverage
varied between 0.6 and 0.7 and errors remained within ±15 W m−2 sr−1 (i.e. the
16th and 84th error percentiles at highest sub-grid variability), while greatest ds led
to a larger spread in coverage (between 0.1 and 0.7) and produced overall larger
errors (±30 W m−2 sr−1). Assembled to 21 × 5 km domains, such sampling errors
can partly compensate as one cell’s overestimation can outweigh a neighboring cell’s
underestimation. However, especially at larger ds, neighboring cells presented a
contrast in PSF coverage (not shown) preventing such error compensation: the high
coverage (∼0.7) of one cell (producing a low sampling error) was accompanied by a
poor coverage (∼0.1) of along-track neighbors thereby generating large sampling
errors. To conclude, SW errors have shown to grow with more heterogeneous
coverage through SW footprints - resulting from increased ds - and that can attribute
to steeper slopes of radiance uncertainties over 21 × 5 km domains against radiance
variability, as well as increased noise around slopes.

Summarizing above observations, as BBR SW sampling becomes sparse, radiance
uncertainties increase (up to 3.2 W m−2 sr−1), especially for very heterogeneous
radiance fields. Thus, only extreme conditions (50% CDM performance and largest
radiance variabilities) led to critical levels of uncertainty which exceed mission
requirements of 10 W m−2 when transformed into fluxes. The same goes for TW
sampled radiances (not shown) with TW uncertainties reaching 4.1 W m−2 sr−1. As
an alternative to domain size of 5 × 21 km, 10 × 10 km domains were considered,
too. Their SW and TW uncertainties (not shown) were up to 10% larger. For
larger solar zenith angles, SW and TW uncertainties would be smaller and their flux
equivalents would likely comply with mission requirements at CDM rotation rates
between 50% and 100% of the nominal rate.
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Fig. 2.6: For various ds (as indicated), BBR radiance errors over 1 km2 grid cells as functions
of sub-grid variability. Values were extracted from the central portion of tile 5 as
described in the text. Blue lines mark quantile regression of 16th, 50th and 84th

error percentiles.

2.4.2 Uncertainties for LW mean radiances

In contrast to the previous subsection, LW radiances are not directly observed, but
rather inferred from staggered measurements of TW and SW radiances. In effect,
the methodology relies on a dense sampling through both modes. According to
equation 2.7, LW uncertainties σ(δ〈L〉) are expected to be twice as large as σ(δ〈S〉),
especially, and counterintuitively, when LW radiance heterogeneity is much smaller
than its SW counterpart. Figure 4.4 shows how TOA LW radiance uncertainties
generally exceed and follow the rise of SW radiance uncertainties. As a result,
sampling at ds ≥ 1.4 km over tiles 4 and 8 produce LW uncertainties that exceed
mission requirements when transformed into LW fluxes.

At ds = 1.2 km, LW uncertainty jumps, occasionally accompanied by an abrupt
rise in SW uncertainty (e.g., tiles 3 and 4). Figure 4.7 confirms that the ratio of
LW to SW uncertainty increases with ds, peaking at ∼1.2 km with ratios near 2. A
doubling of SW uncertainties at ds = 1.2 km - or a 33% performance reduction -
would result in non-compliant LW uncertainties (see the central panel of Figure 4.5).
Neither levels of σSW nor σLW can explain error ratio fluctuations (see point size
and colors in Figure 4.7). Additionally, it was verified that 10 × 10 km assessment
domains have almost identical relationships (not shown).

Following this, we investigated why the LW inference process (i.e. subtracting
sampled SW from TW radiances to gain LW radiances) was sensitive to CDM per-
formance and effectively the along-track distance between subsequent TW and SW
footprints. We extracted additional information from the central portion of tile 5
(complementing extracted variables in section 2.4.1) on a 1 km2 grid: we measured
the size of SW-TW footprint overlaps; the coherence of SW and TW PSF weights;
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Fig. 2.7: Ratio of LW radiance uncertainties to SW radiance uncertainties as functions of ds

and a domains size of 5 × 21 km. SW heterogeneity is represented by dot size and
LW heterogeneity by dot color. Dashed horizontal lines mark the theoretical ratio
of 2 as predicted by equation 2.7.

and the resulting error of BBR-inferred LW radiance. Overlap size is determined
through the integral of SW plus TW PSF weights (resolved at 30m, again each
footprint weighted for interpolation, and across both SW and TW PSFs normalized
to integrate to 1) of all relevant footprints (i.e. all SW and TW footprints which
intersect the grid cell) integrated only within the overlap area (i.e. the area where
both SW and TW weights are non-zero). A theoretical maximum of “2" would be
reached if SW and TW were sampled simultaneously, while “0" indicated no overlap
at all (impossible at ds ∈ [0.8 km, 1.6 km]). Observed maximum values of about 1
(at a ds of 0.8 km) shows that SW and TW PSF effectively overlapped by about 50%.
Coherence of SW-TW PSF weights was measured as the covariance of SW and TW
PSF weights within the overlap area, denoted “PSF Covariance". Lowest (negative)
covariances were observed for ds of 1.2 km and indicated that locally high SW PSF
weights coincided with low TW PSF weights, and vice versa. Figure 4.8 shows how
1 km2 SW errors (x-axis with same values as y-axis of Figure 4.6) corresponded
to LW errors (y-axis) for different ds and effectively different levels of PSF overlap
size (dot size) and PSF covariance (dot color). For a ds of 0.8 km, we found largest
overlap sizes (approximately 1) and covariances (about 3E-8). The corresponding
slope between LW and SW errors (shown as a blue line and annotated in the plot)
was -0.3. Steepest slopes (approximately -1.2) were found for ds of 1.2 km and
higher. Overlap size was generally smaller (mean <0.77) and co-variances lower
(mean <0). LW errors with smallest overlap sizes (about 0.2, shown as smallest
points) correspond to even steeper slopes. In conclusion, we showed that SW errors
translated into larger LW errors (i.e. a larger LW/SW error ratio) when SW and TW
footprints overlapped less and their PSF weights were less coherent.
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Fig. 2.8: 1km2 LW errors as functions of SW errors for different CDM performances. Colors
mark the covariance of SW and TW PSF weights, while dot size indicates the
size of their footprint overlap (extracted as described in the text). Blue line and
annotations highlight the LW-SW error ratio.

In summary, it has been confirmed that, according to equation 2.7, LW uncertain-
ties are about twice as large as SW uncertainties (at ds ≥ 1.2 km or performance
reduction ≥ 33%) due to the sensitive nature of LW inferences from staggered SW
and TW sampling. To remain within mission requirements and to ensure that LW
uncertainties when converted to LW fluxes fall below 10 W m−2, CDM performance
should not be reduced beyond 25% (i.e., ds ≤ 1.0 km). Again, smaller LW uncertain-
ties can be expected for smaller SW uncertainties - arising from, for example, large
solar zenith angles.

2.5 Conclusion and discussion

The overall goal of the EarthCARE satellite mission is to retrieve cloud and
aerosol properties well enough that when acted upon by radiative transfer models,
estimated TOA fluxes for each ∼100 km2 domain will be within 10 W m−2 of fluxes
inferred from BBR measurements (ESA, 2001; ESA, 2006). Similarly, BBR radiances
can be used directly in EarthCARE’s radiative closure assessment. For a closure
either through fluxes or radiances, it is essential that BBR radiance uncertainties
be accounted for. Considering in-orbit adjustable CDM rotation rates, which when
reduced will extend instrument lifetime but also decrease along-track sampling rate,
it is important to find a compromise between lifetime and required radiometric
accuracy. This study analysed sampling uncertainties arising from both reduced
CDM performance and horizontal heterogeneity of radiance fields.

Using high-resolution Landsat 8 scenes, SW, TW, and LW sampling errors were
quantified for assessment domains of 5 × 21 km and various CDM rotation rates.
It was found that SW and TW sampling uncertainties are related approximately
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linearly to sample heterogeneity and increase with reduced instrument performance
(at lowest performance SW and TW uncertainties reached 3.2 W m−2 sr−1 and 4.1
W m−2 sr−1 for scenes with the greatest radiance variabilities of 70.8 W m−2 sr−1

and 65.3 W m−2 sr−1, respectively). LW are inferred from staggered SW and TW
radiances, and their uncertainties scaled with SW uncertainties by a factor ∼2 for ≥
33% performance reductions, even though LW fields exhibited much less variability.
It was shown that critical LW uncertainties (exceeding 10 W m−2) were achieved
when performance was reduced by more than 25% from the nominal rate.

Previous radiance error assessments focused on radiance unfiltering (Velázquez-
Blázquez and Clerbaux, 2010). It has been shown here that uncertainties arising
from the BBR’s sampling strategy represent a previously unrecognized source of
uncertainty. Both unfiltering and sampling errors can reach similar magnitudes.
Future research should examine whether these are independent sources of error.

As a final comment, it is interesting to note that had a lens filter been available that
allowed LW, rather than SW, radiances to be measured directly, uncertainties for LW
radiances would be much reduced with only minor increasees in SW uncertainties
relative to the BBR’s configuration. Recent payloads (e.g., RBI on JPSS-21, Mariani
et al., 2016) offer such filter. Alternatively, LW errors can be mitigated through
simultaneous TW and SW measurements (e.g. CERES, Wielicki et al., 1996) thereby
avoiding effects due to staggered measurements of radiances.
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3On the use of geophysical
parameters for the
top-of-atmosphere shortwave
clear-sky radiance-to-flux
conversion in EarthCARE

Abstract

We have investigated whether differences across CERES (Clouds and the Earth’s
Radiant Energy System) Top-Of-Atmosphere (TOA) clear-sky angular distribution
models, estimated separately over regional (1◦×1◦ longitude/latitude) and temporal
(monthly) bins above land, can be explained by geophysical parameters from MAC-
v1, ERA20C, and a MOD43B climatology. Our research aimed to dissolve binning
and to isolate inherent properties or indicators of such properties which govern the
TOA radiance-to-flux conversion in the absence of clouds. We colocated several
months of CERES SSF Edition 4 data with auxiliary data from MAC-v1, ERA20C,
and a MOD43B climatology. Looking at data per surface type and per scattering
direction - as perceived by the broadband radiometer (BBR) on board EarthCARE
(Earth Clouds, Aerosol and Radiation Explorer) - we identified optimal subsets of
geophysical parameters and trained Artificial Neural Networks (ANNs). Flux error
standard deviations on test data were on average 2.7 – 4.0 W m−2, well below the
10 W m−2 flux accuracy threshold defined for the Mission, with the exception of
footprints containing fresh snow. Dynamic surface types (i.e. fresh snow and sea
ice) required simpler ANN input sets to guarantee mission-worthy flux estimates,
especially over footprints consisting of several surface types.

Tornow, F., Domenech, C., Fischer, J.,
submitted to Journal of Atmospheric and Oceanic Technology, May 2018, in revision
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3.1 Introduction

In the absence of clouds, Earth’s surface and atmospheric constituents (i.e. absorb-
ing gases and scattering and absorbing aerosols) govern the angular distribution of
back-scattered solar radiation perceived at Top-Of-Atmosphere (TOA). Any unfore-
seen spatial or temporal variations of the surface’s appearance (such as the surface
roughness of a water body or the vegetation state over land) as well as atmospheric
composition (such as aerosol plumes or ozone variations) may translate into an
uncertainty for a radiance-to-flux conversion.

The gold standard of angular distribution models has been provided by the CERES
team (Su et al., 2015a) and is widely applied to other satellite missions performing
broadband radiometry (Viollier et al., 2009; Dewitte et al., 2008). The upcoming
ESA-JAXA mission EarthCARE (Illingworth et al., 2015), to be launched in 2020, will
be equipped with a broadband radiometer (BBR; e.g. Wallace et al., 2009; Caldwell
et al., 2017b) observing nadir as well as along-track forward and backward (both
at 55◦ viewing zenith angle). Apart from monitoring TOA fluxes, the mission will
conduct a radiative closure assessment, comparing BBR-derived longwave (LW) and
shortwave (SW) flux estimates with simulated fluxes. Broadband simulations will
act on active-passive retrievals of cloud and aerosol vertical profiles along the swath
(Barker et al., 2011). Agreement between measurement and simulation-based fluxes
(within 10 W m−2 over 100 km2 horizontal assessment domains) translates into
confirmed understanding of cloud-aerosol-radiation interaction and, ultimately, into
trusting simulated vertical heating rate profiles. In the closure assessment, clear-sky
scenes will pose less of a challenge. However, simulation biases - arising e.g. from
poorly characterized surface or aerosol spectral properties - could easily be identified
in a comparison to BBR-derived clear-sky fluxes.

To account for the complex nature of bi-directional reflectance distribution
over clear-sky scenes, the CERES team built regional (resolved at 1◦×1◦ lati-
tude/longitude cells) and temporal (resolved by calendar month) angular distribu-
tion models over land surfaces (CERES SSF Edition 4; Su et al., 2015a). In this study,
we investigate whether additional geophysical variables could help to dissolve re-
gional and temporal binning. We co-locate several data sets characterizing land and
atmosphere with CERES instantaneous observations. We identify essential subsets
for each surface type and scattering direction to serve as input for radiance-to-flux
converting ANNs. Finally, we propose operational modifications for EarthCARE.
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Tab. 3.1: A list of extracted CERES footprints, obtained after filtering for clear-sky and
BBR-like conditions.

No. of CERES footprints
Year Terra Aqua Mode

(FM1 & FM2) (FM3 & FM4)

2000 108828 / FAPS
2001 208492 / FAPS
2002 207365 67024 FAPS
2003 222016 208360 FAPS
2004 215843 274869 FAPS
2005 25655 25224 FAPS
2006 / / /
2007 2892051 2819907 cross-track

3.2 Data and Methodology

3.2.1 CERES SSF Edition 4

We obtained instantaneous TOA SW anisotropies - denoted as < throughout this
paper - from CERES SSF (Single Scanner Footprint TOA/Surface Fluxes and Clouds)
Edition 4, along with parameters on viewing and illumination geometry (i.e. solar
zenith angle θS , relative azimuth angle ϕ, and viewing zenith angle θV ) as well
as IGBP (International Geosphere-Biosphere Programme) types and their fraction
within each footprint. MODIS (Moderate-resolution Imaging Spectroradiometer)
cloud fraction served to filter out clear-sky footprints (i.e. ≤0.1% cloud fraction),
and VZA (viewing zenith angle) was used to select BBR-like viewing geometries (i.e.
θV ≤ 2.5◦ and 52.5◦ ≤ θV ≤ 57.5◦).

Anisotropy estimation over clear-sky scenes is thoroughly described in Su et al.
(2015a). In short, angular distribution models (ADMs) over water surfaces were
generated per interval of prevailing MODIS-based Aerosol Optical Depth (AOD)
and aerosol fine mode fraction, as well as 10 m wind speed. Sun-glint affected
geometries were handled separately. ADMs over land surfaces were established
individually for each grid box (1◦ latitude by 1◦ longitude) and calendar month.
Intervals of MODIS-based NDVI (Normalized Density Vegetation Index) and surface
elevation variability received further individual treatment. ADMs over snow and ice
surfaces were produced based on intervals of respective surface type fraction as well
as bright and dark categories. Talbe 4.1 lists details on extracted footprints from
both Aqua and Terra missions.
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3.2.2 Co-located Data

All footprints listed in Table 4.1 were spatially and temporally co-located via
the nearest neighbor approach with median total AOD from the MAC-v1 clima-
tology (resolved at 1◦ latitude/longitude and monthly steps; Kinne et al., 2013)
and a selection of atmospheric and surface parameters from ERA-20C (using the
years 2000-2007; resolved at T159 spectral or about 125 km spatial resolution,
and 3 h temporal resolution; Poli et al., 2016). We selected ERA-20C parameters
that characterize the appearance of surface or atmosphere and therefore potentially
explain TOA SW anisotropy variations. Based on 12 years (2002-2013) of MCD43GF
data (Moody et al., 2008), we use a climatology (at 1 km2 spatial and 16-day tempo-
ral resolution; pers. comm. Zhipeng Qu) of RossThick-LiSparse kernel weights (e.g.
Lucht et al., 2000) to serve EarthCARE level-2 processors. We co-located kernel
weights according to each CERES footprint’s field-of-view and resulting point spread
function (detailed description in Wielicki et al., 1996). From kernel weights in
visible (VIS, 0.3-0.7 µm and near-infrared (NIR, 0.7-5.0 µm) spectra, we calculated
surface reflectance (equation 4.1, shown for VIS reflectance rV IS) and albedos for
both black- and white-sky conditions (equation 4.2, shown for VIS white-sky albedo
aV ISw ). Finally, we produced Bottom-Of-Atmosphere (BOA) anisotropy corresponding
to each footprint’s viewing and illumination geometry (equation 4.3, shown for VIS
white-sky anisotropy RV ISw ). Kgeo and Kvol correspond to geometric and volumetric
kernels, respectively.

rV ISπ = fV ISiso + fV ISvol Kvol(θS , θV , ϕ) + fV ISgeo Kgeo(θS , θV , ϕ) (3.1)

aV ISw = fV ISiso + 0.189184fV ISvol − 1.377622fV ISgeo (3.2)

RV ISw = rV ISπ

aV ISw

(3.3)

All co-located parameters are listed in Table 4.2. We also computed two bi-
directional reflectance effects. The hotspot effect 1 + F (G) was computed as shown
in Rahman et al. (1993) (using MCD43GF-based VIS surface reflection under zenith
illumination and zenith viewing conditions r0, as well as instantaneous viewing and
illuminations angles):

1 + F (G) = 1 + 1− r0
1 +G

(3.4)

where
G = (tan2 θS + tan2 θV − 2 tan θS tan θV cosϕ)

1
2 (3.5)

r0 = (fV ISiso + fV ISvol Kvol(0, 0, ϕ) + fV ISgeo Kgeo(0, 0, ϕ))/π (3.6)
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Tab. 3.2: A list of co-located geophysical parameters to each CERES footprint, listed in Table 4.1.

Source Parameter Spatial & Temporal Resolution Co-registration Type

ERA-20C (Poli et al., 2016) Total Column Ozone ∼125km (T159); 3 hourly nearest neighbour
Total Column Water Vapour
Leaf Area Index High Veg.
Leaf Area Index Low Veg.
10m U Wind Component
10m V Wind Component
Forecast Surface Roughness
Charnock
Snow Depth
Sea-Ice Cover

MAC-v1 (Kinne et al., 2013) Median Total AOD 1◦ Lat./Lon.; monthly nearest neighbour

MCD43GF (Moody et al., 2008) VIS isotropic model parameter fV ISiso 1km; 16-day nearest in time;
(a climatology based on the VIS volume-scattering model param. fV ISvol weighted areal average
years 2002-2013; pers. comm. VIS geometric-scattering model param. fV ISgeo according to CERES
Zhipeng Qu) NIR isotropic model parameter fNIRiso instantaneous PSF

NIR volume-scattering model param. fNIRvol

NIR geometric-scattering model param. fNIRgeo
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The sun-glint reflectance rg (Cox and Munk, 1954) was computed as shown
in Wald and Monget (1983) (essentially using ERA-20C 10 m wind speed W10m =
(U2

10m + V 2
10m)1/2, the Fresnel reflection factor ρ(ω) for a perfectly smooth surface,

and above instantaneous illumination and viewing angles):

rg = πρ(ω)P (θn,W10m)
4 cos θS cos θV cos4 θn

(3.7)

where

P (θn,W10m) = 1
πσ2 exp

(
−tan2 θn

σ2

)
(3.8)

σ2 = 0.003 + 0.00512W10m (3.9)

θn = arccos
(cos θV + cos θS

2 cosω

)
(3.10)

cos 2ω = cos θV cos θS + sin θV sin θS cosϕ (3.11)

3.2.3 The Importance of Variables

To measure the importance of variables, one generally attempts to identify an opti-
mum subset Γ ∈ X = {x1, . . . , xN} of regressors xi (also referred to as independent
parameters where X denotes the full set of parameters) to predict the regressand
y (also known as the dependent parameter, in this study TOA SW anisotropy <).
We examined the importance of variables in two different ways. First, we applied
Random Forest Regression (thoroughly described in Breiman, 2001). In short, a
Random Forest consists of T decision trees (here T = 25) and, once trained, pro-
vides a constant predicted value ỹ at each end of each tree (essentially, an estimate
ỹ = f(ΓRF ) = ỹ|ΓRF , where ΓRF is the Random Forest essential subset). To train the
Random Forest, regressors were searched in several rounds for optimum split nodes
to further refine each tree’s structure and ultimately reduce errors of predictions
(i.e. ỹ is the mean of predicted values ỹ1(m), . . . , ỹT (m) from all trees for a sample
m). To identify the essential subset, we then used a permutation test (Strobl and
Zeileis, 2009) to measure the increase in Root Mean Square Deviation ∆RMSD of
predictions with one permutated regressor (where an individual tree’s prediction was
ỹt;xi for xi permutated) against a prediction with non-permutated regressors over
M random samples (here M = 1000). Generally, an irrelevant regressor xi should
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produce ∆RMSD = 0, while an important xi (providing at least one important
split-node in at least one tree) should give ∆RMSD > 0.

∆RMSD(xi) =

√√√√∑M
m=1

([
1
T

∑T
t=1 ỹt;xi(m)

]
− y(m)

)2

M − 1

−

√√√√∑M
m=1

([
1
T

∑T
t=1 ỹt(m)

]
− y(m)

)2

M − 1 (3.12)

Repeated 100 times, we identified parameters with a distribution of ∆RMSD

significantly larger (one-sided t-test with p < 0.1) than the ∆RMSD of an irrele-
vant variable. We assume these parameters have meaningfully contributed to the
construction of the Random Forest and the regression.

Second, we used Genetic Algorithms wrapping multi-linear regression (described
in e.g. Mehmood et al., 2012) to build a multi-linear model ỹ = f(ΓLM ) = ΓTLMw,
where ΓLM is the optimal subset of geophysical parameters for a linear model
(superscript T indicates its transpose) and w are the least square weights to approx-
imate ỹ, here TOA SW anisotropy <. The optimal subset ΓLM is identified using
a survival-of-the-fittest method, inspired by biological evolution theory. Starting
with an initial population of linear models - each with a random binary string of
length N indicating participation of a regressor xi (“0” or “1” to exclude or include
from the linear model, respectively) - fitter models (evaluated by a fitness function,
here through the Bayesian Information Criterion) are more likely to survive into the
next round. From all survivors, new linear models can be added to the population
through mutation (i.e. the random switch of a bit from 0 to 1, or vice versa, in
the binary string of a surviving model) or crossover (i.e. the random unification of
two surviving binary strings from two models). The newly generated population is
re-evaluated for fitness to determine new survivors, and so on. In the final round the
fittest linear model is presumed to consist of set ΓLM . In this study, we identified
subsets Γ1

LM through Γ100
LM from 100 repetitions (each using a population size of 500,

the Bayesian Information Criterion fitness function, linear ranking-based roulette
wheel selection, a mutation probability of 0.01, a crossover probability of 0.95, and
an elitism of 3 over maximum 50 iterations as defined in Scrucca et al., 2013). We
selected the subset which performed best (i.e. had the lowest RMSD) in a cross
validation on a separate set (using 25% of the training data) of size M .

ΓLM = arg min[RMSD(Γ1
LM ), ..., RMSD(Γ100

LM )] (3.13)

where

RMSD(ΓLM ) =

√√√√ 1
M − 1

M∑
m=1

[
ΓTLM (m)w − y(m)

]2 (3.14)
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3.2.4 Artificial Neural Networks

Inspired by the biological neural pathways in brains, regression with ANNs aims
to connect an input signal (here a subset of geophysical regressors X) to a learned
output (here TOA SW anisotropy <). Such connections (resembling biological
synapses) are usually not directly connecting in- and output, but involve at least one
intermediate layer (referred to as hidden layer) of nodes (i.e. artificial neurons) -
each receiving potential contribution from any neuron of the previous layer (the input
layer in cases with only one hidden layer). Through a transfer function (e.g. tanh)
the weighted sum of these contributions at each node provides modulated input to
the follow-up layer (the output layer in cases with only one hidden layer). Weights
(corresponding to synapse strength) are learned through training, most commonly
through the back-propagation algorithm. The resulting non-linear regression allows
us to approximate progressively complex relations with a growing number of hidden
layers. All ANNs in this study consisted of a single hidden layer. Both input and
output were standardized before training. To find the optimal number of hidden
neurons for each ANN, we repeated training for odd numbers of hidden neurons
from 3 to 2J − 1 (where J is the number of input parameters) and selected the best
performer using applied cross-validation (using 33% of the training data).

3.3 Results

To examine whether geophysical auxiliary parameters could explain variation in
CERES TOA anisotropy across regional and temporal models, we co-located several
million instantaneous clear-sky CERES footprints with an MCD43GF climatology
(providing bottom-of-atmosphere anisotropy information), the MAC-v1 aerosol cli-
matology, and ERA-20C re-analysis data (providing information on atmospheric
gases and numerous parameters relevant to the state of the surface). In preparation
for the EarthCARE mission, we focused on nadir viewing and 55◦ off-nadir viewing
radiance measurements only.

Section 3.3.1 demonstrates the capability of various parameters, such as leaf
area index, to serve as predictors for TOA anisotropy and introduces the separate
treatment of surface types and scattering directions. In Section 3.3.2 we present
optimal parameter subsets for TOA anisotropy estimation and assess performance
when they are used in Artificial Neural Networks. Finally, Section 3.3.3 presents
limitations and adaptations of this methodology for EarthCARE.
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3.3.1 Exploring the capability of geophysical parameters

Earth’s surface offers a rich set of characteristic appearances, each with a unique
bi-directional reflectance distribution. Similar to previous studies (e.g. Domenech
and Wehr, 2011), we used the IGBP surface classification (IGBP, 1992) to separately
perform radiance-to-flux conversions over forest (IGBP types 1, 2, 3, 4, and 5),
fresh snow (19), sea ice (20), savannah (8 and 9), grassland (10, 11, 12, and 14),
shrubland (6 and 7), desert (13 and 16), permanent snow and ice (15), and open
water (17) surfaces.

To introduce and demonstrate how powerful co-located and generated geophysical
parameters are for the prediction of TOA SW anisotropy, Figure 4.1 shows their
application in simple linear models. Note the initial spread in TOA SW anisotropy
(y-axis of the left column) - in part resulting from various illumination and viewing
geometries. The hotspot parameter (shown in Fig. 4.1a over the Saharan desert)
accounted for geometries and partly explained TOA anisotropy variations. BOA
VIS white-sky anisotropy (Fig. 4.1b) further explained resulting residuals. The VIS
black-sky anisotropy is complementary to the VIS white-sky anisotropy (Fig. 4.1g
and 4.1h).

The climatological surface anisotropy might fail to account for inter-annual or
non-seasonal changes of land surface characteristics. ERA-20C data could account
for this, e.g. through the leaf area index (LAI, shown in Figure 4.1i), potentially
serving as a proxy for enhanced volumetric scattering.

Atmospheric gases absorb parts of the solar spectrum, affecting off-nadir views
more than nadir views through respective atmospheric path lengths. Total column
ozone explained some anisotropy residuals (shown in Figure 4.1f). Aerosols may also
scatter and redistribute solar radiation within the upward hemisphere. The MAC-v1
climatology did not include single-scattering albedo (or aerosol type). However,
through a surface-specific application of AOD, we potentially uncover a relationship
between anisotropy changes and surface-specific aerosol mixtures. Figure 4.1c
and 4.1e show examples of explained anisotropy residuals.

3.3.2 Finding optimal subsets

Extracted geophysical parameters are applicable to the prediction of TOA SW
anisotropy. Regression towards TOA SW anisotropy with Artificial Neural Net-
works (as in Domenech and Wehr, 2011; Loukachine and Loeb, 2004; Capderou and
Viollier, 2006) requires - like most other regression methods - a careful selection of
input parameters. Including useless parameters could add unwanted noise while ex-
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Fig. 3.1: We present the use of co-located geophysical parameters to explain varying TOA
SW anisotropy for three surfaces at particular scattering directions (by row):
Saharan Desert Surfaces at backward scattering; Permanent Snow and Ice Surfaces
at nadir scattering; and Forest Surfaces at forward scattering. From left to right a
simple linear models evolves. A linear fit with an initial parameter (a), d), and
g)) leaves residuals which we aim to explain through an extended linear model
using an additional parameter (b), e), and h)) which still leaves residuals. A third
parameter (c), f), and i)) extends this linear model further. Colored lines mark
the observed probability density (blue to red from low to high). Black lines show
simple linear fits.
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cluding useful parameters may reduce performance (i.e. the bias-variance dilemma;
Theodoridis and Koutroumbas, 2009).

In order to identify which geophysical parameters are useful to each surface type
and scattering direction (nadir: θV ∼ 0◦; off-nadir forward: θV ∼ 55◦, and ϕ < 90◦

or ϕ > 270◦; off-nadir backward: θV ∼ 55◦, 90◦ ≤ ϕ ≤ 270◦), we applied two
variable importance techniques: Random Forest regression and subsequent permuta-
tion test and Genetic Algorithms applied to Linear Regression (see section 4.2.3).
Table 4.3 summarizes the selection of both methods.

Parameters relating to a scene’s brightness (normalized radiance) as well as gen-
eral illumination and viewing geometry (θS , ϕ, and θV ) were consistently selected
with the exception of fresh snow cases. As for general bidirectional reflectance distri-
bution effects, the hotspot parameter was consistently selected over land surfaces
free of fresh snow, while sun-glint reflectance was consistently selected only over
open water surfaces as well as sea ice. Selection through Genetic Algorithms tended
to include both hotspot parameter and sun-glint reflectance over almost all surface
types and scattering directions, while selection through Random Forests usually
included either hotspot parameter or sun-glint reflectance.
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Tab. 3.3: Results of parameter selections applied to each surface type and BBR-perceivable scattering direction (B - backward, F - forward, N - nadir). Dots
and their color connote selection method: selected by both Random Forest and Genetic Algorithms (black); excluded by both (blank); selected only
by Random Forest (green); and selected only by Genetic Algorithms (orange). “/” indicates general exclusion from parameter selection.
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Parameter//Scattering Dir. B F N B F N B F N B F N B F N B F N B F N B F N B F N

Normalized Radiance • • • • • • • • • • • • • • • • • • • • • • • • • • •
SZA • • • • • • • • • • • • • • • • • • • • • • • • • • •
VZA • • • • • • • • • • • • • • • • • • • • • • • • • • •
RAA • • / • • / • • / • • / • • / • • / • • / • • / • • /

P(SGA) • • • • • • • • • • • • • • • • • • • • • • • • • • •
Hotspot • • • • • • • • • • • • • • • • • • • • • • • • • • •

AeroCom Median AOD • • • • • • • • • • • • • • • • • • • • • • • • • • •
ERA Ozone • • • • • • • • • • • • • • • • • • • • • • • • • • •
ERA TCWV • • • • • • • • • • • • • • • • • • • • • • • • • • •

αsurf Black-sky VIS • • • • • • / / / • • • • • • • • • • • • • • • / / /
αsurf White-sky VIS • • • • • • / / / • • • • • • • • • • • • • • • / / /
αsurf Black-sky NIR • • • • • • / / / • • • • • • • • • • • • • • • / / /
αsurf White-sky NIR • • • • • • / / / • • • • • • • • • • • • • • • / / /

ERA LAI low veg. • • • • • • / / / • • • • • • • • • / / / • • • / / /
ERA LAI high veg. • • • • • • / / / • • • • • • • • • / / / • • • / / /
ERA 10m wind • • • • • • • • • • • • • • • • • • • • • • • • • • •
ERA surface roughn. • • • • • • • • • • • • • • • • • • • • • • • • • • •
ERA charnock • • • • • • • • • • • • • • • • • • • • • • • • • • •
ERA snow depth / / / • • • / / / / / / / / / / / / • • • / / / / / /
ERA ice cover / / / / / / • • • / / / / / / / / / / / / / / / / / /
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Climatological AOD - potentially explaining atmospheric scattering - appears
consistently relevant over most surface types with the exception of fresh snow, sea
ice, and nadir directed scattering over forest, savannah, grassland, and open water.
Gaseous absorption through atmospheric water vapor or ozone was sparsely selected
by both methods with no relevance over fresh snow surfaces. For permanent snow
and sea ice cases, on the other hand, both methods reported importance for at least
two out of three scattering directions.

MCD43GB-based land surface anisotropy - which captures local and climatolog-
ical bi-directional reflection effects perceived from a satellite perspective and is
available in VIS and NIR as well as under white-sky and black-sky conditions - was
frequently selected by both methods. For fresh snow cases we found less agreement
or even mutual exclusion (at forward-scattering). Parameters from ERA-20C - which
characterize the land surface state beyond climatological surface anisotropy - were
collectively excluded for many surface types. For at least two out of three scattering
directions, we found consistent relevance for high vegetation LAI over forest, surface
roughness and low vegetation LAI over savannah, and 10m wind over permanent
snow cases.

We believe that potential changes in land surface appearance mostly followed a
regular annual cycle and were therefore generally covered by above land surface
anisotropy. Reasons for the apparent importance of ERA-20C parameters could be
rooted in non-climatological surface conditions: e.g. irregular vegetation on/offsets
over forest and savannah regions as well as wind-driven formation of unusual
“Sastrugi” over permanent snow (e.g. Corbett and Su, 2015). Alternatively, LAI (of
low or high vegetation) was potentially selected due to its correlation to NDVI, which
served to estimate CERES ADMs (see Section 4.2.1).

Apart from fresh snow cases, we found a general agreement of both methods
on inclusion or exclusion of parameters. We interpret that a layer of fresh snow
alienates the surface anisotropy sufficiently to render the MOD43GF product useless.
Interestingly, Genetic Algorithms selected High Vegetation LAI as important. We
suspect that snow-covered forests might appear different enough in anisotropy
compared to plain snow fields, leading to the selection of this parameter.

The application of different input sets, as described in Table 4.4, to artificial neural
networks (Section 3.2.4) affected the ability to predict TOA SW fluxes on unseen
test data (shown in Table 4.4). Compared to CERES flux estimates, we generally
found poorest performance for the minimum input set (set d)), on average 0.52 -
1.08 W m−2 worse than the best performer. Using the complete parameter set (set
c)) slightly surpassed optimal parameter sets (sets a) and b)) for particular surfaces
like sea ice cases (by up to 0.47 W m−2) and forward and nadir-scattered light over
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savannah cases (by up to 1.39 W m−2). However, we found optimal sets to exceed
the performance of the complete parameter set in other cases (like nadir-scattering
over permanent snow and desert by a difference of 0.8 W m−2 and 1.97 W m−2,
respectively). Summarized over all surfaces, we found little performance difference
between optimal sets (on average 0.00 - 0.07 W m−2). From then on we used set a)
as final ANN input.
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Tab. 3.4: The test error of four different sets of ANN input: a) obtained from Random Forest Regression, b) obtained from Genetic Algorithms applied to a
Linear Model, c) all available parameters and d) only viewing and illumination geometric parameters (θS , ϕ, θV , and normalized radiance). For
each BBR viewing direction and surface type we bolded the best performing set (test error in W m−2, and in % in parentheses below)) and show
additional performance downgrade of all other sets.
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Backward a) Random Forest Regr. 6.51 +0.94 +0.09 2.26 2.83 +0.02 +0.04 2.98 1.28 +0.07
(3.14%) (+0.35%) (+0.03%) (1.40%) (1.56%) (-0.06%) (-0.06%) (1.07%) (1.66%) (+0.00%)

b) Genetic Algorithms +0.09 9.12 +0.47 +0.12 +0.22 +0.03 2.05 2.98 +0.02 2.69
(+0.07%) (3.67%) (+0.15%) (0.24%) (+0.06%) (+0.02%) (0.86%) (1.07%) (+0.00%) (1.40%)

c) All Parameters +0.03 +0.69 2.69 +0.06 +0.43 2.51 +0.14 +0.14 +0.03 +0.11
(-0.01%) (+0.12%) (1.15%) (+0.09%) (+0.13%) (1.37%) (+0.04%) (+0.08%) (+0.05%) (+0.04%)

d) Minimum +0.33 +1.04 +0.45 +0.69 +1.08 +1.68 +1.20 +1.98 +0.13 +1.08
(0.33%) (+0.31%) (+0.24%) (+0.33%) (+0.60%) (+0.67%) (+0.36%) (+0.68%) (+0.15%) (+0.34%)

Forward a) Random Forest Regr. +2.18 +2.37 +0.08 +0.11 +0.00 2.51 2.81 +0.05 +0.56 +0.25
(+1.67%) (+0.16%) (+0.07%) (-0.05%) (+0.02%) (1.46%) (1.06%) (+0.01%) (+0.57%) (+0.25%)

b) Genetic Algorithms 2.96 +0.06 +0.25 +0.04 3.10 +0.02 +0.78 2.64 +0.36 +0.25
(2.67%) (+0.00%) (+0.31%) (-0.11%) (1.63%) (-0.04%) (+0.31%) (0.94%) (+0.48%) (+0.25%)

c) All Parameters +0.17 +0.50 3.60 2.36 +0.20 +0.12 +0.29 +0.01 3.23 3.20
(+0.41%) (-0.50%) (1.16%) (1.46%) (+0.22%) (+0.40%) (+0.18%) (+0.00%) (3.62%) (2.24%)

d) Minimum +0.40 5.97 +0.76 +0.41 +0.76 +0.73 +2.22 +1.04 +1.80 +1.44
(+0.31%) (3.74%) (+0.46%) (+0.11%) (+0.36%) (+0.23%) (+0.78%) (+0.35%) (+1.77%) (+0.96%)

Nadir a) Random Forest Regr. +0.75 +0.22 +0.24 +1.39 +0.18 5.48 1.53 3.92 3.34 3.98
(+0.67%) (-0.06%) (+0.06%) (+0.64%) (-0.03%) (2.75%) (0.54%) (1.38%) (3.98%) (2.89%)

b) Genetic Algorithms 5.55 +0.62 +0.19 +0.06 +0.02 +0.17 +0.26 +0.03 +0.11 +0.06
(3.93%) (+0.08%) (+0.05%) (+0.11%) (-0.12%) (+0.05%) (+0.12%) (+0.01%) (-0.04%) (-0.03%)

c) All Parameters +0.01 +0.28 4.16 3.10 6.86 +0.16 +0.80 +1.97 +0.33 +0.48
(-0.02%) (-0.09%) (1.55%) (2.08%) (3.84%) (+0.11%) (+0.45%) (+0.72%) (-0.09%) (+0.01%)

d) Minimum +0.30 9.98 +0.51 +0.64 +0.64 +0.44 +1.01 +0.74 +0.73 +0.52
(+0.29%) (4.52%) (+0.18%) (+0.36%) (+0.25%) (+0.11%) (+0.45%) (+0.21%) (+0.78%) (+0.45%)
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The large flux errors over fresh snow surfaces (up to 9.98 W m−2) were due
to large absolute values (a product of snow’s high albedo in lower latitudes with
correspondingly low θS) and the apparent lack of suitable candidates relating to
TOA anisotropy (cf. Table 4.3). In effect, the minimum input (set d)) performed best
in 2 out of 3 scattering directions.

Figure 4.2 shows a global map of deviations in ANN predictions from original
CERES flux estimates. Regions in northern latitudes exceeding the mission require-
ment of 10 W m−2 could largely be attributed to fresh snow cases, while larger
uncertainties near Antarctica were caused by sea ice. Empty areas (e.g. the southern
ocean) were either persistently cloudy or footprints composed of multiple surfaces
(see Section 3.3.3).

Figure 4.3 presents which angular combinations (θS and ϕ) caused ANN predic-
tions to deviate from CERES estimates. We found that uncertainties increased near
the boundaries of sampled angles (e.g. shrubland), at lower θS (e.g. fresh snow),
and around pronounced anisotropy (such as the sun-glint region over open water).
The angular space that will be observed by EarthCARE’s BBR instrument (shown in
gray shade, pers. comm. ESA) was only partly covered by CERES samples, the result
of a difference in equator crossing time between EarthCARE (2:00pm) and Aqua
(1:30pm) or Terra (10:30am). To test how well ANNs predicted anisotropies over
unseen angular combinations, we manually excluded two regions (15◦ ≤ ϕ ≤ 25◦

and 155◦ ≤ ϕ ≤ 165◦ at 0◦ ≤ θS ≤ 80◦). Retrained ANNs using remaining samples
were applied over excluded regions. Compared against a training using complete
data, the increase in flux error was well below 1.5 W m−2 over most surface types.
Only open water (an average increase in excluded regions of 3.6 W m−2 or 4.48%),
grasslands (2.7 W m−2 or 1.56%), sea ice (2.5 W m−2 or 1.01%), fresh snow (2.1 W
m−2 or 0.92%), and permanent snow (1.9 W/ m−2 or 0.71%) cases demonstrated a
larger increase in excluded angular portions (shown in Figure 4.4). We attribute the
large increase over open water to the partial exclusion of dominant sun-glint area.
Interestingly, the performance of some (non-excluded) angular combinations (like
open water 50◦ ≤ ϕ ≤ 70◦ and fresh snow 70◦ ≤ ϕ ≤ 120◦) profited from ANN train-
ing using a reduced training set. This suggests that further sub-division in angular
space (beyond forward and backward scattering) allows for better performance.

3.3.3 Modifications for EarthCARE

In order to apply the above approach operationally, dynamic surface types (fresh
snow and sea ice) need to be consistently assigned to CERES surface classes. We
delineated sea ice from ice-free ocean using ERA-20C sea ice fraction (greater than
zero). The best candidate to separate snow-free from fresh snow or permanent
snow cases was ERA-20C snow depth (greater than zero or greater than 4.9 m,
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Fig. 3.2: We present Error Standard Deviations of ANN-predicted (using set a)) clear-
sky TOA SW Fluxes of single-surface CERES footprints within 1◦ × 1◦ Latitude-
Longitude boxes. Individual footprints are either at nadir or 55◦ θV , aiming for a
BBR-like viewing geometry.

respectively). Naturally, snow depth fails to report the area covered by snow and
only indicates snow contamination in a footprint. Compared to CERES classes, we
identified the partial presence of sea ice, fresh snow, and permanent snow with
hit rates (and false alarm rates) of 97.1% (8.5%), 92.9% (42.1%), and 99.6%
(0.5%), respectively. We suspect that large false alarm rates over fresh snow resulted
from ERA-20C’s coarse resolution (approximately 125 km grid spacing). During the
EarthCARE mission ECMWF (European Centre for Medium-Range Weather Forecasts)
forecasts (using IFS 41r2) will provide information instead of ERA-20C. Reported
fields will have a finer spatial resolution (approximately 8 km grid spacing) and
potentially produce higher hit (and lower false alarm) rates.

To further assure operational fitness, we verified that anisotropy predictions over
mixed surfaces (roughly a third of all obtained CERES footprints) satisfied mission
requirements. To predict a TOA SW anisotropy <mix over a footprint containing
several surface types, we used the approach by Bertrand et al. (2005). <1 and
<2 denote predicted anisotropies over each surface type, and f1 and f2 respective
surface fraction.

<mix = f1<1ā1 + f2<2ā2
f1ā1 + f2ā2

(3.15)

Required surface type albedos, ā1 and ā2, were approximated from single-surface
footprints of similar latitude (categorized into tropical zone: 23.5◦ S- 23.5◦ N,
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Fig. 3.3: Standard Deviations of ANN-predicted (using set a)) clear-sky TOA SW Fluxes of
single-surface CERES footprints from original CERES SSF 4 estimates within 5◦

× 5◦ angular boxes of θS and ϕ. Individual footprints are at 55◦ θV , aiming for
a BBR-like off-nadir viewing geometry. The gray-shaded area highlight expected
angular combination seen by EarthCARE’s BBR when sampling globally.
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Fig. 3.4: Repeating the ANN training using an incomplete data set (excluding angular
portions of ϕ ∈ 15− 25◦, ϕ ∈ 155− 165◦, and θS ∈ 0− 80◦, highlighted by dashed
lines), we present changes in Standard Deviations of ANN-predicted clear-sky TOA
SW Fluxes compared against an ANN training using all available data (shown in
Figure 4.3).

40 Chapter 3 Geophysical parameters for clear-sky radiance-to-flux conversion in EarthCARE



Tab. 3.5: Uncertainties (in W m−2) resulting from the inclusion of mixed scenes in training
and testing of fresh snow, sea ice, and permanent snow footprints. Sets a.) and
d.) correspond to input sets shown in Table 4.4. Expected performances for all
other surface types are listed in Table 4.4 (set a.))

Surface Types

Fr
es

h
Sn

ow

Se
a

Ic
e

Pe
rm

. S
no

w

ANN Input Set set d.) set d.) set a.)

Fraction of mixed footprints 17.5% 74.2% 1.3%

Backward 11.64 5.41 2.75
(5.91%) (2.51%) (1.06%)

Forward 8.27 9.63 4.04
(6.33%) (7.01%) (1.55%)

Nadir 14.62 8.06 2.64
(8.83%) (4.88%) (1.14%)

mid-latitudes: 23.6◦ - 66.5◦ N/S, and polar regions 66.6◦ - 90◦ N/S) and solar
zenith angle (by increments of 5◦ from 10◦ to 85◦ θS). We found that the above
methodology worked reliably for snow- and ice-free mixtures: flux uncertainties
were of similar magnitude (not shown) as single-surface footprints (Table 4.4).
Only two combinations caused flux uncertainties larger than 10 W m−2: grassland
mixed with desert at nadir view with 17.84 W m−2 (2708 footprints or 0.07% of
all nadir cases) and shrubland mixed with open water at nadir view with 26.04 W
m−2 (14823 footprints or 0.37%). Assuming we had accurate information on snow
fraction, mixtures including snow or ice produced large uncertainties across observed
surface pairings (fresh snow: 16.1-194.1 W m−2, permanent snow: 15.6-150.2 W
m−2, and sea ice: 15.2-59.1 W m−2), particularly for combinations including stark
albedo contrasts, like with open water.

Due to our inability to determine surface fractions of fresh or permanent snow
and the large uncertainty above mixtures with snow or ice, we treated footprints
with any snow or ice contamination as single-surface footprints of respective snow or
ice type. We extended training as well as the test set, and repeated ANN training. For
fresh snow and sea ice which contained a large fraction of mixed footprints (17.5%
and 74.2% of snow and ice footprints were mixed, respectively) we discovered that
a simpler input set (set d)) resulted in lower flux uncertainties compared to set a).
Prediction over permanent snow (only 1.3% of permanent snow footprints were
mixed) remained optimal using set a). Application of re-trained ANNs on extended
test data resulted in higher flux uncertainties (Table 3.5) than a pure surface training
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and testing (cf. Table 4.4), clearly the result of introduced heterogeneity of mixed
surface footprints into ANN training and testing.

3.4 Discussion

The SW radiance-to-flux conversion over clear-sky scenes is challenging due
the spatial heterogeneity and temporal variation of factors driving bidirectional
reflectance distribution at TOA. The CERES solution for land surfaces involved
separate ADMs per regional and temporal bin, and further separation through
levels of surface specific parameters (such as NDVI, surface elevation variability, or
fractional coverage through snow or ice). We have successfully shown that the use
of additional parameters, relating to the geophysical state of surface and atmosphere
as well as viewing and illumination geometry, could explain variations across bins,
and thus help to dissolve binning. We presented the identification of optimal subsets
and their use as input to ANNs, applied per surface type and scattering directions
as perceived by EarthCARE’s BBR. To ensure mission-worthy flux estimates we
presented modifications concerning footprints partly covered in snow or ice.

We showed that ANNs performed better when optimal subsets of parameters
were used instead of their full set. Even though we applied two very different
selection methods for variable importance, we mostly found agreement on in- or
exclusion of parameters. Both the selection of the hotspot parameter over land
surfaces free of fresh snow and the selection of sun-glint reflectance over open water
confirm our understanding of general bidirectional reflectance effects established at
Earth’s surface. The additional and consistent selection of MCD43GF-based surface
anisotropy confirms that local climatological surface conditions further impact such
effects over all land types free of fresh snow. Apart from fresh snow scenes, AOD
- even though extracted from a climatology - was frequently selected, we presume
due to reoccurring spatial patterns like dust storms or biomass burning events
which impact TOA SW anisotropy through scattering or absorption. Atmospheric
gases (here total column water vapor and ozone) from ERA-20C, which could
likewise impact TOA SW anisotropy through absorption, were only occasionally
chosen. We found their selection foremost over sea ice and permanent snow surfaces,
presumably because only these regions have a large enough variability in respective
gas concentration. The identification of ERA-20C LAI of low and high vegetation
over savannah and forest surfaces, respectively, could further support the importance
of land surface anisotropy. On the other hand, their selection could simply be a
response to CERES-based stratification by NDVI.

As with any alternative statistical tool, our methods for determining variable im-
portance could potentially select meaningless variables. Noisy data, unrepresentative
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validation sets (used to select one optimal set over the other), or a method’s tendency
to include more or fewer variables are all factors that make some variable selections
controversial. We suspect that Genetic Algorithms had a tendency to include more
parameters: the method persistently identified an importance of sun glint reflectance
over land and the hotspot effect over water, both of which we find questionable.
However, ANN training, while unable to eliminate useless parameters altogether,
can reduce their weight to near zero. We can see in Table 4.4 that using the full
parameter set was close to, and in some cases actually was, the best performing ANN
input set.

The performance of ANNs indicates that we could successfully reproduce CERES
models. ANN’s overall relative errors - though covering only a portion of the viewing
zenith angular space - were near the CERES-defined goal of 2.3% over ocean, 1.6%
over land, and 2.0% over snow and ice (Su et al., 2015b).

TOA SW anisotropy over fresh snow remained largely unexplained. Future efforts
should continue to explore sources characterizing anisotropy fluctuations reaching
TOA. Radiative transfer simulations should also clarify the role of different aerosol
types in altering TOA SW anisotropy aloft different types of surfaces.
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4Top-of-atmosphere shortwave
anisotropy over liquid clouds:
sensitivity to clouds’
microphysical structure and
cloud-topped moisture

Abstract

We have investigated whether Top-of-Atmosphere Shortwave (TOA SW) anisotropy -
essential to convert satellite-based instantaneous TOA SW radiance measurements
into TOA SW fluxes - is sensitive to cloud-top effective radii and cloud-topped
water vapor. Using several years of CERES SSF Edition 4 data - filtered for over-
cast, horizontally homogeneous, low-level and single-layer clouds of cloud optical
thickness 10 - as well as broadband radiative transfer simulations, we built refined
empirical Angular Distribution Models (ADMs). The ADMs showed that anisotropy
fluctuated particularly around the cloud bow and cloud glory (up to 2.9-8.0%) for
various effective radii and at highest and lowest viewing zenith angles under varying
amounts of cloud-topped moisture (up to 1.3-6.4%). As a result, flux estimates
from refined ADMs differed from CERES estimates by up to 20 W m−2 at particular
combinations of viewing and illumination geometry. Applied to CERES cross-track
observation of January and July 2007 - utilized to generate global radiation budget
climatologies for benchmark comparisons with global climate models - we found that
such differences between refined and CERES ADMs introduced large-scale biases
of 1-2 W m−2 and on regional levels of up to 10 W m−2. Such biases could be
attributed in part to low cloud-top effective radii (about 8 µm) and low cloud-topped
water vapor (1.7 kg m−2) and in part to an inopportune correlation of viewing and
illumination conditions with temporally varying effective radii and cloud-topped
moisture, which failed to compensate towards vanishing flux bias. This work may
help avoid sampling biases due to discrepancies between individual samples and the
median cloud-top effective radii and cloud-top moisture conditions represented in
current ADMs.

Tornow, F., Preusker, R., Domenech, C., Carbajal Henken, C. K., Testorp, S., Fischer, J.,
submitted to MDPI Atmosphere, June 2018
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4.1 Introduction

Radiative fluxes – leaving the Earth-Atmosphere system through Top-of-Atmosphere
(TOA) and inferred from satellite measurements – are a key variable in diagnosing
the system’s current energy balance and – when observed repeatedly – to assess the
radiative effects of clouds and aerosols (e.g. Ramanathan et al., 1989). For stra-
tocumulus clouds - predominantly found over cooler regions of mid-latitude oceans
– the main effect is to reflect solar radiation (where a much darker ocean surface
would otherwise absorb) while emission of terrestrial radiation to space is similar
to cloud-free conditions (since low clouds emit at a near-surface temperature) (e.g.
Wood, 2012). In the presence of aerosols, cloud liquid water may distribute over
more numerous and smaller droplets which crucially alters cloud optical properties
and ultimately affects solar reflection (Twomey, 1977).

To convert instantaneous TOA broadband radiance measurements into correspond-
ing TOA fluxes, satellite missions (Viollier et al., 2009; Dewitte et al., 2008) have
been relying on CERES ADMs (latest version “CERES SSF Edition 4” as described
in Su et al., 2015a). The conversion for solar radiances to fluxes above clouds
is – apart from viewing and illumination conditions – a function of cloud phase
and cloud optical depth. The conversion factor, anisotropy, is resolved by viewing
geometry (Relative Azimuth Angles φ and Viewing Zenith Angle θv) given a certain
illumination geometry (Solar Zenith Angle θs). Anisotropy is mainly characterized by
the cloud glory (the direct reflection back to the sun), the cloud bow (the direction
of reflection at a scattering angle of about 140-145◦), and higher intensity at larger
θv in the forward-scattering direction. In theory, features of the scattering phase
function, such as cloud bow and glory, should correspond to the size distribution of
cloud droplets. This correlation is illustrated in Figure 4.1. Stratocumulus clouds and
their cloud-aerosol interaction should distribute reflected solar radiation differently
depending on their droplet size distribution (given a constant cloud optical depth).
Additionally, low clouds can have vast amounts of water vapor aloft. Such absorbing
gas (acting mainly beyond 0.8 µm) should have a stronger effect on upwelling radi-
ances at larger θv than at smaller ones due to respective atmospheric path lengths.
Accordingly, anisotropy should be dependent on levels of water vapor.

In this study, we hypothesize that TOA SW anisotropy changes significantly with
cloud microphysical properties, represented through the cloud-top effective radius,
and amount of moisture above clouds, represented through cloud-topped water
vapor. Using several years of CERES SSF Edition 4 data, we extracted footprints
of low-level and single-layer clouds above ocean which are overcast, horizontally
homogeneous, and had mean cloud optical depth of about 10 (Section 4.2.1). As
shown in Section 4.2.3, we built new empirical ADMs using CERES-measured SW
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Fig. 4.1: Broadband phase functions for three different cloud droplet effective radii Re.
Phase functions were spectrally integrated over the solar regime (0.25-4.00 µm)
and are based on Mie calculation in spectral subintervals, assuming a Gamma-
Hansen distribution with an effective variance of 0.11. Contributions from each
subinterval were weighted by corresponding spectral cloud extinction and solar
constant. Note that the y-axis of the inset is logarithmic, while the main plot is
shown in linear scale.

reflectances, MODIS-retrieved cloud-top effective radii, and estimates of cloud-
topped water vapor (Section 4.2.2). In section 4.3 we demonstrate that refined
ADMs had a sensitivity to above effective radii and water vapor, and that missing
such sensitivity resulted in regional and systematic underestimation of TOA SW
fluxes. Section 4.4 finally discusses results.

4.2 Material and Methods

4.2.1 TOA SW Reflectances

CERES Edition 4 SSF

We obtained TOA SW reflectances (0.3-5.0 µm) from CERES SSF Edition 4 (Su et
al., 2015a). Measurements were realized by CERES instruments (Wielicki et al.,
1996) on board Aqua and Terra satellites and operating in two modes: the Rotating
Azimuth Plane Scan (RAPS) mode (performed periodically during 2000-2005) and
cross-track scan mode (of the year 2007). CERES footprints covered areas of about
20 km diameter at nadir. For θv of up to 69.5◦, all footprints were collocated
with MODIS imagery as well as products derived from the CERES/MODIS cloud
algorithms (based on Minnis et al., 2011). Cloud information on MODIS pixel-basis
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Tab. 4.1: A list of CERES footprints, obtained after screening for low-level and single-
layer clouds, overcast conditions, a cloud optical depth of 10, and cases free of
horizontal inhomogeneity: in total 2470099 footprints.

No. of CERES footprints
Year Terra Aqua Mode

(FM1 & FM2) (FM3 & FM4)

2000 192604 / RAPS
2001 259810 / RAPS
2002 278305 85745 RAPS
2003 266966 223979 RAPS
2004 274189 276981 RAPS
2005 4730 62213 RAPS
2006 / / /
2007 273343 271234 cross-track

was used for statistics across CERES footprints, taking into account the instrument’s
point spread function (Wielicki et al., 1996).

We screened footprints for conditions typical of marine stratocumulus by selecting
mean cloud-top pressures between 700 and 1000 hPa of single-layer clouds, a mean
logarithmic cloud optical thickness τ̃ = exp (log τ) of 10 (permitting values between
9.75 and 10.25) as well as ocean surface fractions greater 95%. We also screened
overcast conditions (selecting cloud fraction f ≥ 99%), and cases free of horizontal
inhomogeneity (Barker et al., 1996; Kato et al., 2005) by using footprints of ν > 10,
where ν = τ2/σ(τ)2; where τ is the mean optical thickness and σ(τ) is the standard
deviation of mean cloud optical thickness. Table 4.1 summarizes extracted footprints
after screening.

Broadband Radiative Transfer Simulations

To supplement observations, we simulated TOA SW reflectances using the radiative
transfer code MOMO (Matrix-Operator Model; Hollstein and Fischer, 2012). Simu-
lations covered the solar spectrum between 0.25 and 4.00 µm through 53 spectral
subintervals, chosen such that water spectral refractive indices changed near-linearly
with wavelength. For each subinterval, non-correlated k-binning (Doppler et al.,
2014) produced – based on HITRAN-2008 database (Rothman et al., 2009) - be-
tween O(101 − 103) k-terms to represent gaseous absorption. We chose about 80
vertical layers between 0 and 120 km, vertically resolving the lowest 2 km of at-
mosphere at 25-100 m (except for cloud-top and cloud-topped inversion, resolved
at 5 m), 2-5 km altitude at 500 m, and 5-20 km at 2.5 km intervals. The choice
of 70 Fourier terms allowed for an azimuthal resolution of 6◦. θs (and likewise θv)
were resolved at 35 angles, most of them listed in the first column of Table 4.2. We
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used an isotropic ocean surface and Mie-calculated phase functions to represent
scattering and absorption by clouds droplets in each vertical layer, and assumed a
Gamma-Hansen droplet size distribution.

To cover realistic ranges of cloud-topped water vapor in simulations, we extracted
four representative temperature and moisture profiles from radiosonde observations
(Figure 4.2), covering between 3.2-20.1 kg m−2 of cloud-topped water vapor. To
explore potential scenarios of cloud vertical profiles which resemble stratocumulus
clouds of optical thickness 10 and were subject to weaker or stronger cloud-aerosol
interaction, we used the adiabatic theory (e.g. Brenguier et al., 2000). Adiabatic
clouds increase linearly in liquid water content (LWC) from cloud base to top
and have a vertically constant cloud droplet number concentration. Sub-adiabatic
conditions (i.e. an adiabaticity of < 1) capture the intrusion of dry air from aloft
and this reduces the linear slope of LWC accordingly. Figure 4.3 shows the resulting
13 scenarios of adiabatic clouds, assuming an adiabaticity of 0.6. All cloud scenarios
had a cloud top-pressure of 875 hPa.

4.2.2 Cloud-topped Water Vapor

To approximate the vertical column of water vapor located aloft marine low-
level clouds, we used the following variables: precipitable water PW , surface
skin temperature TS and surface pressure PS – all provided by the Goddard Earth
Observing System (GEOS Bloom et al., 2005) version 5.4.1 and collocated to CERES
footprints - as well as MODIS mean cloud top and cloud base pressure (PCT and
PCB, respectively). All fields were included in CERES Edition 4 SSF (introduced in
Section 4.2.1).

First, we approximated the amount of water in the cloud-topped boundary layer.
Taking the TS and the dry-adiabatic lapse rate, we derived the temperature at cloud
base level TCB. Applying the relation by Bolton (1980) (shown in Equation 4.1), we
determined the saturation vapor pressure es at cloud base temperature (here TCB
in ◦C) and then (in Equation 4.2) the mixing ratio r. Ww and Wair are molecular
weights of water and dry air, respectively.

es = 6.112 exp
( 17.67 TCB
TCB + 243.5

)
(4.1)

r = es
PCB

Ww

Wair
10−3 (4.2)

Assuming well-mixed conditions and thus a constant r within the cloud-topped
boundary layer, we integrated the vertical column of water vapor between surface
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Fig. 4.2: Four main clusters of vertical moisture profiles as observed during cloudy days
(ascertained through MODIS imagery) over 12 months (August 2016 to July 2017)
of radiosonde observations on St. Helena (http://catalogue.ceda.ac.uk/uuid/
c6fccd62a8ad4d9ea35fb825c3968910). Clusters were obtained through k-means
clustering using mixing ratios at three different heights (normalized with respect
to the cloud-top): 1.2, 1.4-1.6, and 2.3-2.7. Cloud-top levels were inferred from
highest observed vertical level (within the lowest 2.5 km) with a relative humidity
larger than 85%. For simulations we used temperature and moisture profiles of
the nearest neighbor to each cluster center.

4.2 Material and Methods 51

http://catalogue.ceda.ac.uk/uuid/c6fccd62a8ad4d9ea35fb825c3968910
http://catalogue.ceda.ac.uk/uuid/c6fccd62a8ad4d9ea35fb825c3968910


Fig. 4.3: The setup of thirteen adiabatic cloud experiments. Each experiment arrived at a
cloud optical depth of 10 and a cloud top pressure of 875 hPa. Across experiments,
both liquid water path (x-axis) and cloud-droplet number concentration (CDNC;
y-axis) varied. Accordingly, geometric extent (shown in color) and profiles of cloud
droplet effective radii (represented by cloud-top effective radius shown in dot size)
changed.
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and cloud-top. Finally, we subtracted the boundary layer integral from PW to gain
the vertical column of cloud-topped water vapor CTWV (as shown in Equation 4.3
where g is the gravitational constant and ρw is the water density).

CTWV = PW − 1
gρw

∫ PCT

PS

r dp (4.3)

With regard to Figure 4.2, boundary layers rarely had a vertically constant mixing
ratio. By using the ratio at cloud base, we potentially compensated an underes-
timation in the cloud-free boundary layer with an overestimation between cloud
base and cloud top. Our methodology, additionally, depended on a correct vertical
position of the cloud. In case of under- or overestimation of cloud base and top,
the effect on errors in cloud-topped water vapor should, however, be regularizing.:
e.g. an overestimation in cloud base and top height would result in lower boundary
layer mixing ratios (as the cloud base temperature was erroneously lower) which
would be integrated over a higher boundary layer. We mimicked a cloud base and
top underestimation of 50 hPa and found a median offset of -0.5 kg m−2 (-7.6%) in
cloud-topped moisture. Negative values in cloud-topped water vapor (found in 13%
of all footprints) were set to zero.

4.2.3 Angular Distribution Models

The general strategy to estimate instantaneous fluxes F from observed radiances
I0 is to empirically learn – per scene type and per illumination geometry θs - the
directional intensity of upwelling radiances with respect to the prevalent upwelling
flux. Therefore, the upward hemisphere (resolved by θv and φ) is discretized. Obser-
vations are sorted into angular bins. Once all bins of the upward hemisphere are
filled, fluxes (F̂ ) are estimated through the hemispheric integral of mean radiances
Î from each bin. The last step is to infer on anisotropy R (Equation 4.4).

R(θs, θv, φ) = πÎ(θs, θv, φ)
ˆF (θs)

= πÎ(θs, θv, φ)∫ 2π
0
∫ π/2

0 Î(θs, θv, φ)dθvdφ
(4.4)

A new radiance observation Io can be converted into an instantaneous flux F , as
shown in equation 4.5.

F (θs) = πIo(θs, θv, φ)
R(θs, θv, φ) (4.5)

In CERES SSF Edition 4, liquid clouds over ocean were treated as a single scene
type. To consider stark intensity changes of upwelling radiances with cloud fraction
and cloud optical depth, collected radiances of each angular bin (resolved by 2◦ in θv
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and φ) served to produce a sigmoidal fit linking Î and ln(f τ̃). ADMs were therefore
based on hemispheric integrals of sigmoidal fits. In effect, resulting anisotropies are
a function of ln(f τ̃). In this study f ≈ 100% and τ̃ ≈ 10. Essentially, CERES TOA
SW anisotropy – per angular bin and per discrete illumination geometry (resolved at
2◦) – remained constant.

We produced new ADMs (hereafter referred to as “refined ADMs”) by incorporating
intensity changes of upwelling instantaneous reflectance ρo with cloud-top effective
radius Re and cloud-topped moisture CTWV . We produced a linear model per
angular bin and discrete illumination geometry of the following form (with least-
square estimates a, b, and c):

ln ρo(θs, θv, φ) = a+ b · lnRe + c · CTWV (4.6)

An example is shown in Figure 4.4. Similar to the CERES approach, we integrated
TOA albedos as a function of linear models and inferred on TOA SW anisotropies.
We produced a look-up table by applying linear models to Re between 5 and 25 µm
(by steps of 1 µm) as well as CTWV between 0 and 40 kg m−2 (by increments of 2
kg m−2).

In case of insufficient CERES observations within a bin (less than 10 or samples
with a spread in Re of smaller than 10 µm), we added reflectances from broadband
radiative transfer simulations (introduced in Section 4.2.1) to complement CERES
observations. This was generally necessary for θv beyond 70◦ and occasionally for
some bins at particularly low or high θs (as listed in Table 4.2).

4.3 Results

Empirical ADMs allow us to estimate instantaneous TOA fluxes from satellite
broadband radiometry. State-of-the-art shortwave ADMs (Su et al., 2015a, referred
to as “CERES SSF 4” ADMs) over cloudy scenes are sensitive to cloud fraction
f , cloud optical depth τ̃ , and cloud phase. In this study, we examined whether
ADMs should also be sensitive to the cloud micro-physical structure and amount of
absorbing atmospheric gas above the cloud layer.

We generated alternative ADMs (referred to as “refined ADMs”, Section 4.2.3),
using CERES SSF 4 data (Section 4.2.1, years 2000-2005), including CERES-observed
TOA SW reflectances as well as collocated MODIS-retrieved cloud-top effective radius
and estimated cloud-topped water vapor (Section 4.2.2). As shown in Section 4.2.1,
we restricted ourselves to fully overcast, horizontally homogeneous, low-level, and
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Fig. 4.4: For an exemplary angular bin (as specified in bottom left), we show collected
CERES-measured TOA SW reflectances (y-axis) against cloud-top effective radii (x-
axis; MODIS-retrieved mean value across each CERES footprint); both transformed
through the natural logarithm. Colors explain the inferred amount of cloud-topped
water vapor. Produced linear model (colored lines; Equation 4.6) - forming the
basis for ADMs - captured the general darkening with larger droplet sizes (predicted
for 5 to 25 µm) and with higher levels of cloud-topped moisture (predicted for 0,
15, and 30 kg m−2). Following the CERES methodology, the average reflectance in
this angular bin was represented by the black dot.
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Tab. 4.2: A list summarizing the availability and nature of CERES footprints per increment
of θs. To fill angular bins (resolved by φ and θv; here shown for θv between 0
and 70◦) within the upward hemisphere, CERES footprints (numbers shown in
second column) were in part supplemented by broadband simulations (fraction
of bins receiving support shown in third column). Colleted CERES samples varied
considerably in cloud-top effective radius (column four; showing minimum to
maximum of medians for each angular bin) and cloud-topped water vapour
(column five; correspondingly).

CERES Bins supplemented Min.–Max. in angular bin medians of
θs (◦) footprints with simulations (%) Cloud-top Re (um) Cloud-topped WV (kg m−2)

16.2 16144 33.3 5.9–26.2 0.0–30.8
18.8 29636 14.4 6.8–17.6 0.0–27.2
21.4 42413 7.1 6.8–14.8 0.0–20.7
23.9 53459 2.6 7.7–14.0 0.0–16.7
26.5 70327 1.5 9.1–16.5 0.0–15.6
29.1 84465 1.0 9.1–15.3 0.0–16.3
31.7 92215 0.8 8.8–15.5 0.0–14.3
34.3 103819 0.6 8.6–13.3 0.0–13.3
36.9 110576 0.3 9.5–13.9 0.9–12.0
39.5 111249 0.3 9.3–14.1 0.4–12.7
42.1 113933 0.2 10.1–14.1 0.0–12.3
44.7 110230 0.2 10.4–14.1 0.2–8.6
47.3 108844 0.8 10.7–15.4 1.0–8.7
49.9 103208 0.2 10.9–15.1 0.0–9.2
52.4 97595 0.6 11.1–17.3 0.3–7.9
55.0 85986 0.8 9.5–16.1 0.0–8.9
57.6 75292 1.3 11.0–15.4 0.0–9.2
60.2 67078 1.0 10.7–16.5 0.0–7.8
62.8 58011 1.8 11.5–18.0 0.0–10.5
65.4 45071 2.4 7.9–17.5 0.0–10.3
68.0 55063 2.1 12.2–20.1 0.0–7.4
70.6 43824 2.6 10.0–19.6 0.0–7.7
73.2 37792 4.0 11.7–21.9 0.0–12.0
75.8 30961 6.7 8.9–19.7 0.0–18.0
78.3 22864 14.1 10.8–22.5 0.0–16.6
80.9 16282 25.5 9.2–22.5 0.0–16.6
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single-level clouds of optical thickness 10 and added simulated reflectances to
angular bins in case of insufficient observations.

Refined ADMs show a marked difference in anisotropy across several cloud-top
effective radii (Fig. 4.5, top), predominantly around the cloud bow and cloud glory.
A higher cloud glory intensity for smaller droplets and an outward shift (in scattering
angle) of cloud bow intensity with larger droplet size is in line with Mie-calculated
phase functions (Fig. 4.1). For an Re of 10 µm, anisotropies from refined ADMs
agreed well with those from CERES SSF 4. Samples collected for this study showed
median Re around 10 µm in most angular bins (9.1- 15.3 µm at θs ≈ 29◦, Tab. 4.2).
We believe that CERES ADM construction used samples of similar characteristics and
therefore produced anisotropies reflecting median conditions. For higher levels of
cloud-topped water vapor (Fig. 4.5, bottom), we observed an increase in anisotropy
at lower viewing zenith angles and a decrease in anisotropy at higher θv. Table 4.3
summarizes the spread in anisotropy for various illumination geometries. Anisotropy
variations due to effective radii (2.9-8.0%) were generally larger than variations
due to cloud-topped moisture (1.3-6.4%). The uncertainty in anisotropy (based on
reflectance residuals of linear models) was of similar order of magnitude (3.2-5.3%)
for variations due to effective radii and variations due to cloud-topped moisture.
By reproducing the CERES approach (exemplarily shown in Figure 4.4 as black
dot) and extracting reflectance residuals, we approximated a corresponding CERES
uncertainty. Compared to CERES ADMs, uncertainties of refined ADMs were smaller
by a factor 1.2 – 1.7.

Refined and CERES ADMs should produce different flux estimates, especially for
departures from median conditions (e.g. small and large droplet size distributions).
In order to quantify flux deviations, we took mean reflectances of refined models for
three Re, three θs , and a fixed cloud-topped water vapor, and applied both refined
and CERES SSF 4 ADMs. A radiance Î was produced from a reflectance through
Î = ρ̂S cos θs, where S is the solar constant.

∆F (θs) = π · Îrefined(θs, θv, φ,Re, CTWV )·( 1
Rrefined(θs, θv, φ,Re, CTWV ) −

1
RCERES(θs, θv, φ)

) (4.7)

Figure 4.6 shows flux deviations between ADMs (computed according to Equ. 4.7)
of up to 20 W m−2. For an Re of 5 and 20 µm these deviations were located in the
forward scattering direction (φ between 0-45◦) and again in the direct backscatter
(cloud bow and glory). For an Re of 10 µm differences were mostly within 10 W
m−2 and showed a general positive bias. We suspect that employed simulations
(predominantly at θv of 70◦ and higher), which were free of horizontal heterogeneity
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Fig. 4.5: TOA SW anisotropy of refined ADMs at varius cloud-top effective radii (top, at
a θs of 29◦ and a steady cloud-topped water vapor of 4 kg m−2) and levels of
cloud-topped water vapor (bottom, at a θs of 32◦ and a steady cloud-top effective
radius of 10 µm). Colors indicate respective scenarios. Black dots mark TOA SW
anisotropy of CERES SSF 4. Error bars were based on reflectance residuals of linear
models propagated into TOA albedo and TOA anisotropy. To obtain corresponding
uncertainties for CERES (grey shade), we mimicked the CERES approach and
obtained reflectance residuals. Grey dashed lines indicate the cloud glory position.
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Tab. 4.3: A θs-resolved overview of the anisotropy spread due to extremes in cloud-top effec-
tive radius (second column displays the median absolute difference of anisotropy
at 25 µm and anisotropy at 5 µm normalized by the anisotropy at 10 µm at a
steady cloud-topped water vapor of 4kg m−2) and cloud-top water vapor (third
column displays the median absolute difference of anisotropy at 32 kg m−2 minus
anisotropy at 0 kg m−2 normalized by the anisotropy at 16 kg m−2 at a steady
cloud-top effective radius of 10 µm). We also show estimated anisotropy uncer-
tainties of refined ADMs (fourth column), CERES SSF 4 ADMs (fifth column), and
their ratio (column six). Uncertainties were produced as laid out in Figure 4.5
and in the text.

Median Anisotropy Median Anisotropy Median Ratio
Spread (%) Uncertainties (%) CERES/

θs (◦) Cloud-top Re Cloud-topped WV Refined CERES-like Refined

16.2 3.9 2.0 3.2 6.0 1.7
18.8 3.9 1.9 3.7 5.9 1.5
21.4 3.5 1.6 4.0 6.1 1.5
23.9 3.2 1.5 4.0 6.0 1.5
26.5 2.9 1.3 4.0 5.7 1.4
29.1 2.9 1.3 4.1 5.7 1.4
31.7 3.1 1.3 4.2 5.7 1.4
34.3 3.2 1.3 4.3 5.6 1.3
36.9 3.3 1.5 4.4 5.5 1.2
39.5 3.3 1.3 4.5 5.3 1.2
42.1 3.3 1.5 4.5 5.3 1.2
44.7 2.9 1.5 4.4 5.4 1.2
47.3 3.6 1.6 4.2 5.3 1.2
49.9 3.7 1.5 4.0 5.2 1.3
52.4 3.2 1.7 4.0 5.2 1.3
55.0 3.8 1.8 3.9 5.2 1.3
57.6 4.5 2.0 3.7 5.1 1.4
60.2 4.7 1.9 3.6 5.0 1.4
62.8 5.0 2.1 3.4 4.9 1.4
65.4 5.6 2.7 3.4 4.9 1.4
68.0 5.4 2.6 3.4 4.8 1.4
70.6 6.2 2.9 3.4 4.7 1.4
73.2 6.7 3.4 3.3 4.6 1.3
75.8 6.8 3.7 3.4 4.7 1.3
78.3 7.0 4.3 3.4 4.8 1.4
80.9 8.0 6.4 5.3 6.4 1.2
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Fig. 4.6: Using TOA SW reflectances predicted from linear models of refined ADMs for three
droplet effective radii (varying across panels horizontally) and three θs (denoted
as SZA; varying across panels vertically), we applied both refined and CERES SSF 4
ADMs to obtain differences in flux estimates (shown in color). Differences beyond
±20 are not further resolved. Linear models were give a constant cloud-topped
water vapor of 4kg m−2.

or 3D effects, produced rather higher reflectances compared to observations. In
effect, albedo was slightly overestimated and anisotropies at θv lower than 70◦ were
underestimated (by about -0.98% at an θs of 29◦ for θv between 0-70◦, cloud-top Re
of 10 µm, and CTWV of 4 kg m−2).

To facilitate a fairer comparison and to avoid further analysis involving an
anisotropy bias, we reproduced CERES SSF estimates (referred to as “CERES-like”
ADMs). In addition to the footprints shown in Table 4.1, we extracted all CERES
footprints of the years 2000-2005 which satisfied f τ̃ ≈ 10 and consisted only of
liquid condensate, roughly quadrupling the number of samples. As for refined ADMs,
we supplemented angular bins which lacked sufficient CERES observations with
simulations. Instead of supplementing an angular bin with all simulated reflectances
(i.e. one reflectance from each cloud scenario and moisture profile), we sampled
from simulations such that the distribution in cloud-top Re and their level of cloud-
topped water vapor corresponded to respective distribution and level of CERES
observations within the same θs interval. Since footprints had near constant f τ̃ ,
we skipped the sigmoidal fitting (Section 4.2.3) and simply averaged reflectances
per bin. Resulting CERES-like anisotropies compared well with original CERES SSF
estimates, and – as expected from the use of simulations beyond θv of 70◦ – were
also biased by about -0.98% (at θs of 29◦ for θv between 0-70◦). We recomputed
theoretical flux deviations using refined and CERES-like ADMs and found the posi-
tive bias successfully removed for a cloud-top Re of 10 µm, as shown in Figure 4.7.
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Fig. 4.7: Analogous to Figure 4.6, we compare refined ADMs with CERES-like ADMs at a θs

of 29◦.

Remaining residuals were mostly within 5 W m−2. We found that gathered samples
increased in CTWV with lower θs (Tab. 4.2) and reached angular bin medians of
up to 16.3 kg m−2 (at θs of 29◦). Again, CERES-like ADM construction could have
been subject to such sampling and therefore produced ADMs fit to moisture levels
higher than 4 kg m−2. Observed flux deviations potentially reflected this CERES
sampling bias in cloud-topped moisture.

The CERES cross-track mode collects flux estimates which – when assembled
to monthly statistics – provide optimal spatial sampling (Doelling et al., 2013)
and allow for benchmark comparisons with global climate model simulations. To
examine whether cross-track sampling and the use of refined rather than CERES-like
ADMs could produce systematic flux differences, we applied both ADMs to the center
months of winter (January) and summer (July) of 2007. Figure 4.8 shows largely
positive biases across the globe, reaching significant large-scale biases of about 1-2
W m−2 and local levels of up to 10 W m−2.

To investigate whether these large-scale biases were a result of irregular conditions,
we examined properties of cross-track samples falling into three regions: SE Atlantic,
NE Pacific, and Southern Ocean (highlighted as green rectangles in Fig. 4.8). As
shown in Table 4.4, we found a low median cloud-top effective radius (8.2 µm) and
low median cloud-topped water vapor (1.6 kg m−2) over the SE Atlantic in July. Flux
errors of individual samples (-6.4 – 7.9 W m−2) led to median flux deviation of 0.9
W m−2. We found slightly larger median flux differences (1.2 W m−2) in January
over the Southern Ocean. However, the distribution of cloud-top effective radius (a
median of 10.5 µm) and cloud-topped moisture (a median of 5.9 kg m−2) appeared
ordinary. We believe that deviations in cloud-top effective radius (7.2-16.2 µm) and
cloud-topped moisture (2.2 – 14.1 kg m−2) from median conditions paired with a
variety of viewing and illumination geometries created flux deviations (-6.0-7.0 W
m−2) which failed to cancel out to zero.
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Tab. 4.4: We present median conditions (in θs, cloud-top effective radius, and cloud-topped water vapor) and median flux errors together with their 5th and
95th percentiles (in parenthesis) for two selected regions (SE Atlantic (20◦S-0◦N, 5◦W-13◦E) and NE Pacific (15◦N-35◦N, 140◦W-120◦W) as shown
in Figure 4.8) and two calendar months (January & July of 2007). Asterisks mark significant differences identified in Figure 4.8.

SE Atlantic NE Pacific Southern Ocean
January July January July January July

No. of footprints 602 2286 655 2376 4474 1004
Solar Zenith Angle (◦) 26.6 (17.4–34.6) 41.7 (34.2–49.8) 54.8 (44.7–59.7) 19.0 (10.4–27.9) 44.0 (37.1–52.3) 84.7 (75.7–86.2)
Cloud-top Effectie Radius (µm) 11.0 (8.2–14.4) 8.2 (6.6–14.4) 11.6 (8.0–17.1) 10.4 (7.6–16.0) 10.5 (7.2–16.2) 12.3 (8.8–16.7)
Cloud-topped Water Vapour (kg m−2) 16.1 (5.5–29.0) 1.6 (0.0–15.2) 0.0 (0.0–8.3) 11.6 (1.9–32.5) 5.9 (2.2–14.1) 0.5 (0.0-5.9)
TOA SW Flux Difference (W m−2) 1.5 (-7.3–12.3) 0.9* (-6.4–7.9) 2.4 (-3.3–9.9) 0.7* (-9.6–12.8) 1.2* (-6.0–7.7) 1.1 (-3.0–10.9)
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We repeated the analysis with linear models only dependent on effective radius
(of the form: ln ρo(θs, θv, φ) = a+b · lnRe) and found similar biases; in part reducing
the median difference to CERES-like ADMs (Southern Ocean January: 0.6 W m−2;
SE Atlantic July: -0.1 W m−2) and in part increasing it (NE Pacific July: 2.3 W
m−2).

In summary, we show that TOA SW anisotropies of refined ADMs captured depar-
tures in cloud-top effective radius and cloud-topped water vapor from respective
median conditions. Using mean empirical reflectances of extreme cloud droplet size
distributions (cloud-top effective radii of 5 and 20 µm) and comparing CERES ADMs,
which were insensitive to such extremes, with refined ADMs, we found deviations
in estimated fluxes of up to 20 W m−2 at particular viewing and illuminations
geometries. When applied to CERES cross-track observations – serving radiation
budget climatologies - we demonstrated that the choice of ADM could introduce
significant large-scale biases of 1-2 W m−2, locally reaching levels of up to 10 W
m−2. In part, we could attribute large-scale biases to regions of persistently small
cloud-top effective radii and low cloud-topped water vapor.

4.4 Discussion

Current ADMs over cloudy scenes have been designed to change with cloud optical
thickness and cloud phase. However, a sensitivity towards cloud droplet size and
cloud-topped water vapor was not considered. We show that TOA SW anisotropy
changes substantially in situations deviating from median conditions (e.g. much
smaller or larger effective radii than 10 µm) which could ultimately lead to the
introduction of regional flux biases in monthly means. We identified anisotropy
driving factors which should be considered in future ADMs.

We believe that observed regional differences in TOA SW fluxes are a result of a
sampling bias. Such bias stems from the fact that individual samples rarely meet
ADM median conditions for factors impacting anisotropy (such as cloud effective
radius and cloud-topped moisture). Moreover, regional samples can deviate from
the median systematically (e.g. stratocumulus clouds near continents are more
likely to contain larger cloud droplet number concentrations leading to generally
smaller droplet sizes). Alternatively, regional samples can have a temporally shifting
deviation from median conditions as a changing climate might produce a progres-
sively warmer and moister atmosphere as well as additional cloud condensation
nuclei. However, even for regions which meet median conditions (and show a
distribution around it), compensation of flux errors (under- and overestimating
equally to reach correct monthly means) cannot be guaranteed, as shown in the
example “Southern Ocean”. It is the nature of polar orbiting, such as Aqua and

4.4 Discussion 63



Fig. 4.8: Applied to CERES cross-track measured TOA SW reflectances in January (top)
and July (bottom) 2007 over selected conditions (τ̃ of 10, 100% cloud cover,
homogeneous conditions), we found that refined angular distribution models
produced mostly higher flux estimates than CERES-like ADMs, shown as positive
regional flux biases. Insignificant differences (two-sided student t-test, 95% confi-
dence level) over 2 × 2◦ latitude-longitude boxes were marked with black crosses.
Anisotropy uncertainties were not considered.
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Terra, or geostationary satellites, such as the Meteosat series, to perceive regions
such that θs are co-occurring with certain combinations of θv and φ. To reach a
perfect compensation one needed to capture an underestimated Re (e.g. 15 µm;
provided that ADMs represent 10 µm as median condition) where there had been an
overestimation of Re (e.g. 5 µm) before under identical viewing and illumination
geometry.

Most regional flux biases were positive (up to 10 W m−2). Could stratocumulus
clouds be more reflective that previously reported? Global climate models persis-
tently produce “too-few-too-bright” low-level clouds (Nam et al., 2012) and show
regional biases to CERES EBAF, such as the AM-4 of about 20 W m−2 (Zhao et al.,
2018). Our samples represent a small portion of all low-level cases. Future work
should incorporate footprints of other cloud fractions and cloud optical thicknesses
to obtain a more representative picture.

Lastly, improved instantaneous flux from refined ADMs estimates should benefit
closure assessment experiments such as the future EarthCARE mission (Illingworth
et al., 2015). The foreseen broadband radiometer (BBR) will observe SW radiances
at three along-track viewing angles (nadir-viewing as well as θv ≈ 55◦ forward
and backward viewing) and, correspondingly, produce three SW flux estimates. In
contrast to the CERES cross-track mode – BBR viewing geometries will be much
closer to the principal plane and therefore more sensitive to cloud-top effective
radii. We expect a better agreement in estimated fluxes across the three along-track
views. Future work should verify such consistency of developed ADMs by using
multi-viewing instruments such as MISR (Diner et al., 1998).
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5On the use of Simulated Photon
Paths to Co-register TOA
radiances in EarthCARE
Radiative Closure Experiments

Abstract

The Earth’s Cloud, Aerosol and Radiation Explorer (EarthCARE) mission will retrieve
vertical profiles of cloud and aerosol properties by combining data from active and
passive instruments. The verisimilitude of retrievals will be assessed using data from
its broadband radiometer (BBR), which measures top-of-atmosphere (TOA) short-
wave (SW) radiances at three along-track viewing angles. BBR measurements will
be compared to their modelled counterparts, simulated by a 3D Monte Carlo (MC)
radiative transfer model acting on retrieved properties, thus defining a radiative clo-
sure experiment. Since cloud and aerosol microphysical and hence optical properties
within each assessment domain vary horizontally and vertically, one challenge facing
the closure process is selection of radiances that will foster the best assessments of
retrievals. This study investigates whether co-registration of radiances for closure
assessment can be aided by information pertaining to photon paths from the MC
model. Unlike methods that provide one effective reflecting layer (ERL), such as
cloud top altitude, simulated photon paths can account for several reflecting layers.
For this study, A-Train satellite data provided cloud properties. The MC model was
applied to this field to simulate BBR-like measurements. Cloud properties were then
perturbed randomly, to roughly represent retrievals, and the MC model reapplied to
them. The resulting sets of radiances mimicked EarthCARE measured and modelled
data thus allowing a test of closure and co-registration methodologies. Through the
use of 3D photon path information, the rate of identification of inaccurate cloud
retrievals improved over ERL approaches by ∼4% for Cirrus clouds and ∼15% for
broken clouds. For large-scale Deep Convective clouds, however, inaccurate photon
paths, ostensibly due to poor retrievals, reduced identification performance by 3%.

Tornow, F., Barker, H. W., Domenech, C., (2015),
Quarterly Journal of the Royal Meteorological Society, 144 (693), 3239-3251, DOI:
https://doi.org/10.1002/qj.2606
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5.1 Introduction

Changes to cloud and aerosol properties influence Earth’s radiation budget, hydro-
logical cycle, and climate at all scales, and so knowledge of their physical attributes
is essential for confident modelling of local and global climatic change (Boucher
et al., 2013). To adequately assess and improve the representations of cloud, aerosol,
and radiation in global models requires sound information pertaining to their spatial
and temporal properties on a global scale (e.g. Webb et al., 2001; Zhang et al.,
2005; Cole et al., 2011). Following the lead of satellites in the so-called A-Train
(Stephens et al., 2002; Wielicki et al., 1996; Winker et al., 2009), the Earth’s Cloud,
Aerosol and Radiation Explorer (EarthCARE) mission, to be launched no sooner
than 2016, will be equipped with a lidar (ATLID), a cloud profiling radar (CPR), and
a passive multi-spectral imager (MSI). A synergistic algorithm using data from all
three sensors (cf. Delanoë and Hogan, 2010), and a suite of additional algorithms
that operate on data from individual sensors will furnish profiles of cloud and aerosol
properties for 1 km2 columns along its nadir-track (ESA, 2001).

In contrast to previous missions, EarthCARE was designed from the outset to assess
the verisimilitude of its retrieved products. This will be achieved via a radiative
closure experiment using data from EarthCARE’s fourth instrument; a broadband
radiometer (BBR) which will measure reflected solar and emitted thermal radiances
at three along-track viewing angles. For each three dimensional (3D) assessment
domain D, with cross-sectional areas of ∼100 km2, measured BBR values will be
compared to their simulated counterparts that will be obtained by applying 3D
radiative transfer models to the retrievals. For nadir BBR radiances associated with
D, there is little ambiguity that those radiances are determined much, but not
entirely, by cloud and aerosol microphysical and hence optical properties (hereafter
denoted as attenuators) in D. Hence, closure assessments performed with nadir
radiances are quite straightforward. Unfortunately, however, nadir BBR radiances
are often highly correlated with nadir MSI narrowband radiances which will be
employed in the retrieval process. As such, closure tests with nadir radiances are
neither too demanding nor too informative.

On the other hand, closure tests using radiances from the BBR’s two off-nadir
views are generally much more demanding and involve data not used for retrievals.
The complication with them arises because off-nadir views can be much less deter-
mined by attenuators in D, for radiances associated with them have lines-of-sight
that traverse other domains. The challenge is therefore to establish which off-nadir
radiances afford the best “view” of D. This amounts to a problem of co-registering
off-nadir radiances with attenuators in D. Difficulties increase as cloudiness becomes
partial or semi-transparent. Thus, the main point of this study is to demonstrate that
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existing co-registration methods lack the ability to adequately determine which radi-
ances will provide the best closure assessments, and to offer an alternate method that
is especially suited to missions with active and passive sensors. For this exploratory
study, only shortwave BBR radiances are considered.

In the following section, EarthCARE’s closure assessment experiment is recounted
briefly along with a discussion on the importance of co-registering radiances for
closure assessment. Section 5.3 explains the conventional approach to radiance
co-registration along with the new alternate method. Section 5.4 discusses a metric
for establishing retrieval accuracy. Sections 5.5 and 5.6 present data and models
used in this study in as well as results. The final section offers a summary and
conclusion.

5.2 EarthCARE’s radiative closure assessment

The objective of EarthCARE’s radiative closure assessment is to aid developers of
EarthCARE’s cloud and aerosol retrieval algorithms, and users of their products, by
demonstrating how well its BBR radiances can be reproduced by radiative transfer
models that operate on the retrieved cross-section (RXS) (see Illingworth et al.,
2015). BBR measurements consist of shortwave (SW) and totalwave (TW) channels
with a nadir view and forward and backward along-track views at a viewing zenith
angle of ∼55◦. The telescopes are aligned such that they observe approximately a
10 km wide swath centred on the ∼1 km active-passive RXS.

Using the scene construction algorithm of Barker et al. (2011), 3D domains will
be constructed around the RXS using both the RXS profiles and MSI narrowband
radiances. The cross-track width of the constructed domain will exceed the BBR’s
footprint by at least 10 km on both sides. 3D radiative transfer models will then be
applied to the constructed domains thereby producing simulated BBR data (Barker
et al., 2012). From early on, the success of EarthCARE’s retrievals has been expressed
in terms of being able to reproduce BBR radiance-inferred fluxes to within ∼10 W
m−2 for each assessment domain D. When radiances are being compared, they will
be multiplied by π so that their magnitudes will be commensurate with fluxes.

The radiative closure assessment will begin by comparing nadir measured and
modelled BBR radiances. For at least two reasons this is the weakest test. First,
active-passive synergistic retrieval algorithms (e.g. Delanoë and Hogan, 2010) might
rely much on MSI nadir radiances which are often highly correlated with BBR nadir
radiances (Barker et al., 2014b). Hence, there is not a clean separation between
variables used by retrievals and their assessment. Second, the purpose of the closure
test is to assess the entire retrieved column. Of all radiances, nadir radiances are
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determined much by conditions near cloud tops; retrievals well below cloud tops
will often figure only weakly into the assessment.

The assessment will then progress to off-nadir radiances. Arguably, these radiances
afford the most stringent assessment of retrievals for not only do these views differ
radically from that used by the retrieval algorithms, but regions well below cloud
tops can, at times, determine off-nadir radiances much thus providing a stronger test
of the retrieved profile than that afforded by nadir radiances alone (cf. Barker et al.,
2014a).

The final step in the assessment involves comparing fluxes simulated explicitly by
the radiative transfer models at the specific altitude zD to upwelling fluxes deduced
from the application of angular distribution models (ADMs) to BBR measured
radiances. An ADM uses information about angular characteristics of reflected
or emitted radiation, ideally for a set of scenes characterized by geophysical and
meteorological parameters, to estimate corresponding fluxes (e.g. Suttles et al.,
1988; Domenech and Wehr, 2011). While these comparisons involve quite different
quantities, and thus facilitate a satisfactory closure assessment, they carry additional
uncertainty into the assessment via the ADMs and co-registration of measured
radiances to the flux level zD.

This study is limited to assessments involving radiances; assessment of fluxes is
considered in a separate study. However, as with flux estimation, a crucial step when
using radiances in closure assessments is establishment of the most appropriate
radiances. In other words, how should radiances be co-registered to an assessment
domain? The importance of this question to TOA closure assessment is addressed in
the following section together with potential solutions.

5.3 Co-registering radiances: requirements and
methods

This section begins by explaining issues associated with, and the importance of,
co-registration of radiances for closure experiments. This is followed by discussion
of co-registration of radiances to an effective reflecting layer within D, as well as a
new method that utilizes information retrieved from the active-passive sensors.
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5.3.1 Requirements to co-registration of off-nadir radiances

In contrast to nadir observations, oblique radiances will have lines-of-sight that
traverse 3D domains other than the particular D which is being assessed. Hence,
oblique TOA radiances have the potential to contain much information about the
nature of attenuators in several domains in addition to D. To allow for an assessment
of D via oblique TOA radiances, the most meaningful radiances must be identified.
Without identification, a contrast between oblique TOA radiance measurement and
simulation would merely indicate retrieval inaccuracy, but would be unrelated to any
particular geophysical or meteorological conditions. The problem is minimized when
D has a strongly reflecting layer that is clearly visible in oblique radiances (e.g Wylie
et al., 1998; Zong et al., 2002). In general, however, clouds can be semi-transparent
with multiple reflecting layers present in D, and clouds in D can be either blocked by
clouds in front of D, or their contribution to radiances overpowered by backlighting
from reflecting layers or surfaces behind D (cf. Barker et al., 2014a). Hence, when
observing D from an off-nadir perspective, the following question arises: which
off-nadir radiances are most useful for assessing retrievals in D?

A possible answer to this question might be the use of radiances with contributions
from D-like attenuators that arise from regions outside of D. Here, D-like implies
similar cloud and aerosol properties to those in D. Following this idea, if attenuators
in neighbouring domain are D-like and at altitudes close to the dominant attenuators
in D, radiances that pertain mostly to these attenuators might be appropriate for
use in the assessment of D? Consequently, finding off-nadir radiances with lines-
of-sight that traverse D and adjacent domains with D-like attenuators that match
the nadir line-of-sight (D’s vertical attenuating structure) would, therefore, be likely
candidates for assessing retrieval inaccuracies in D.

Figure 5.1 provides a schematic illustration of this problem when three radiances
are co-located with the top of the highest reflecting layer (HRL) (see section 5.3.2).
The left side represents the most tractable situation: a single, highly reflecting layer
whose top is in plain view to all three viewing directions, and, hence, the same
attenuating structure is commonly observed. The majority of the information in
all radiances comes from clouds within, and near the top of D. The right side
illustrates a more complex case: an upper-level semi-transparent cloud layer above
a small, but dense, low cloud that is situated mostly in D. In this case, off-nadir
radiances co-located with the HRL contain information about the underlying surface
and the higher cloud layer, but not the lower cloud which represents the bulk
of the retrieved attenuators in D. According to the hypothesis presented in the
previous paragraph, the best choice of off-nadir radiances to be used for assessment
of retrievals in D would be those that intersect both the lower cloud and the higher
cloud structure; not those co-located with the HRL. Section 5.3.3 presents a method,
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Fig. 5.1: Panel A shows a single, strongly reflecting layer (heavily shaded), which forms
the common surface for all three radiances (IF , IN , and IB). In panel B, the
same layer is now semi-transparent (lightly shaded) and located above a small
dense cloud. If IF , IN , and IB that were used in Panel A are also used in Panel B,
contributions to radiances will no longer stem from a well-defined region of cloud,
but instead from very different clouds, and potentially even surfaces.

which supports finding the oblique radiances that are most likely to pass through
D-like attenuators.

5.3.2 Co-registration at the effective reflecting layer

From the description of the problem given in section 5.3.1, finding ideal off-nadir
radiances for assessment of retrievals in D requires much information about the 3D
structure of attenuators in and around D. However, satellites that carry only passive
radiometers provide very limited information about the vertical structure of cloud.
Given this shortage of information, a solution has been to take a single vertical level
for each D where off-nadir radiances intersect. This effective reflecting layer could
be at a constant height, such as the surface (SRF) (Smith et al., 2004; Loeb et al.,
2002).

If, however, one has estimates of cloud top heights, the effective reflecting layer can
be at each domain’s HRL; that is, the uppermost layer whose reflectance significantly
exceeds that of a pristine atmosphere (Moroney et al., 2002). Once the height of
this layer, hERL, in D is established, the horizontal shift lobl, before and after the
nadir observation, needed for the forward and backward views to intersect at hERL
can be defined as

lobl = (H − hERL) tan θv (5.1)

5.3 Co-registering radiances: requirements and methods 73



where H is the satellite’s altitude, and θv is off-nadir viewing zenith angle (θv =
55◦ for EarthCARE’s BBR). Letting D be at along-track position i, co-registration at
hERL provides the set S(i) of backward-viewing, nadir-viewing, and forward-viewing
radiances:

S(i) = {IB(i+ lobl), IN (i), IF (i− lobl)} (5.2)

As outlined in the previous subsection, the cloud-top layer is ideal for co-registration
when the cloud is optically thick and the view of it from off-nadir directions is not
blocked. In addition, a largly horizontally homogenoues structure (e.g. a more
extended lower cloud layer in Figure 5.1) allows finding off-nadir lines-of-sight
that traverse entirely through attenuators that resemble those in D. However, the
more horizontally heterogeneous the local structure, the more likely it is that nearby
D-like attenuators are rare or non-existent.

5.3.3 3D Monte Carlo photon paths and Maximum Similarity
co-registration

The following sub-subsections present a new source of information based on
results from a 3D Monte Carlo RT model, and a way to use this information for
radiance co-registration.

3D Monte Carlo model and photon paths

In order to improve co-registration of nadir and off-nadir radiances so as to enhance
the usefulness of radiative closure assessments that employ the three BBR radiances,
a 3D Monte Carlo RT model (Barker et al., 2003) will be applied to active-passive
retrievals of cloud and aerosol.

Monte Carlo RT models are classic Monte Carlo solutions to the integro-differential
transport equation subject to, usually, non-analytic boundary conditions. Ensembles
of photons are injected across a 3D domain containing retrieved cloud and aerosol
properties, as well as gas and surface parameters. Photon paths and locations of
scattering events (involving Earth surfaces, cloud ice crystals, cloud droplets, aerosol
particles, and air molecules) are determined by selecting values from probability
distributions and randomly-generated numbers. Let ζj→i,k be the nth photon cluster
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contribution emerging at the top of the domain at the ith column due to a scattering
event involving the kth constituent in the jth column at altitude z. Thus,

ζj→i,k(n) = w(n)ωo(n)pk(θ, ϕ, θ′, ϕ′, z(j))

exp
[
−
∫ zM(i)

z(j)
β(z′) dz′

] (5.3)

where pk(θ, ϕ, θ′, ϕ′, z(j)) is the kth constituent’s bidirectional function, which
describes the probability of radiation travelling in direction (θ′, ϕ′) being scattered
at altitude z(j) in the jth column into direction (θ, ϕ) toward the sensor at the top
of the ith column at altitude zM(i), ωo(n) is single-scattering albedo, w(n) is the
weight a photon cluster had upon arriving at z(j) after previous collisions, and β(z)
is extinction due to all constituents along the path from z(j) to zM(i). An expression
similar to ζ describes contributions from surface reflection. Horizontal dimensions
of columns are fixed at ∆y across-track, and variable ∆x along-track.

Summing over all contributions, simulated radiance at zM(i) is

I±,0(i) = 1
Ncell

∑
k

∑
n

ζj→i,k(n) (5.4)

where Ncell is the number of photon clusters injected onto the top of each column.
Implicit in I is spectral integration, meaning that terms in I are actually spectral-
dependent. BBR measured counterparts of I±,0 are I±,0. Since the sum of photon
cluster contributions represents the total TOA radiance, each cluster contribution
can be regarded as a radiance contribution (Marchuk et al., 1980).

Using the same MC model as used here, Barker et al. (2014a) used all radiance
contributions leaving a domain D to estimate whether oblique TOA radiances
receive sufficient radiation scattered from clouds and aerosols in order to carry out a
meaningful radiative closure assessment of retrieval quantities in D. Here, on the
other hand, radiance contributions stemming from scattering events are accumulated
for each cell. Figure 5.2 illustrates the extracted information for nadir and forward
line-of-sight radiances. Each simulated radiance has stored information on the
vertical origin and amount of radiance contribution along its line-of-sight. These
photon paths allow consideration of 3D effects, as presented in the next part.

Maximum Similarity co-registration

In order to evaluate retrieved parameters in D, off-nadir radiances are required
(section 5.3.1). To identify the off-nadir radiances (for each forward and backward
viewing angle) that will be most useful for drawing conclusions about the quality of
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Fig. 5.2: Schematic showing the concept of radiative contributions to top-of-atmosphere
(TOA) radiance that derive from scattering events, due to certain attenuators,
at various positions along lines-of-sight (nadir: CN (i), forward view: CF (i)) as
simulated by a 3D MC model (shades of grey correspond to varying amounts
of radiance contribution). The assessment domain of interest, D(i), reaching
from the surface (SRF) to TOA, is fully captured by CN (i), while CF (i) contains
contribution from neighbouring domains. Summing over all layer contributions
for all types of attenuators yields TOA radiance (IN (i) and IF (i), respectively).
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retrieval in D, many methods use a common surface in D, where all views intersect
(section 5.3.2). A hidden assumption to make, however, is atmospheric homogeneity
along the satellite track; ensuring that lines-of-sight of selected radiances always
traverse through a similarly characterized atmosphere in- and outside of D. But it is
easy to see the possibility of co-registered radiances being inconsistent in cases of
partial or semi-transparent clouds. The previous sub-subsection presented a source
of information that might be usual when dealing with inhomogeneous clouds. This
sub-subsection aims at exploiting the newly gained information.

Instead of defining D’s structure by a common surface (e.g. its highest reflecting
layer), this approach uses the profile of reflecting layers along the nadir line-of-sight.
To find an off-nadir radiance and take inhomogeneity into account, we compare
this nadir profile pair-wise against a subset of oblique profiles. Subsequently, a
similarity measure identifies the oblique profile, which best resembles the nadir
profile, and attributes the according off-nadir radiance of that oblique profile to D.
This approach is hereafter referred to as Maximum Similarity (MXS) co-registration.
Similar to an assumed true effective reflecting layer, MXS co-registration is based on
the assumption that the retrieved 3D atmosphere, used in the MC model, is a good
approximation of the actual distribution of attenuators. The following discussion
presents the MXS co-registration method.
To define the structure of domain D at along-track position i, use the vertical profile
of radiance contributions, CN , as observed by the nadir view, with

CN (i) = (ζi,m=1, . . . , ζi,m=nz ) (5.5)

where nz is number of vertical layers, and ζi,m is radiance received from the mth

layer.
To find the off-nadir radiance which consists of radiative contributions coming
from an attenuating structure most similar to D’s structure, first, select a subset
of potential off-nadir candidates. These off-nadir radiances should intersect the
nadir column with their lines-of-sight. Therefore, all off-nadir radiances between
the intersection at TOA, at along-track position i, and the intersection close to the
surface at along-track position i± lSRF (for forward/backward view) are considered,
with lSRF derived from equation 5.1 with hERL = 0 km. To illustrate this, the set of
off-nadir forward view profiles

F (i) = {CF (i), . . . , CF (i+ ∆lSRF )} (5.6)

will be compared, piece-wise, to the nadir profile. To achieve this, a similarity metric
is used. The cosine similarity sF (e.g. Kohonen et al., 2001), defined as

sF =
〈
CN
‖CN‖

,
CF

‖CF‖

〉
= cos τ =

∑nz
m=1C

m
N · CmF

‖CN‖‖CF‖
(5.7)
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Fig. 5.3: Schematic showing a fictitious cloud extinction field (darkening shades correspond
to increasing extinction). A backward-viewing radiance is to be selected for
assessment of retrieved cloud products in column D(i). The highest reflecting
layer method uses radiance at location i + lHRL; co-registering to the surface
uses radiance at location i+ lSRF ; the maximum similarity (MXS) method uses
radiance at location imax

B .

where τ is the angle between vectors CN and CF , describes the extent to which D’s
nadir and, in this case, forward profiles resemble one another. When sF = 1, both
profiles are identical; when sF = 0, they bear no similarity at all. In general, the
off-nadir radiance contribution profile that most resembles that of D’s nadir profile
is defined as

imaxF = arg max
i

[sF (i), . . . , sF (i+ ∆lSRF )] (5.8)

with the TOA radiance IF (imaxF ) to be used to assess retrievals in D. Performing
this procedure for forward and backward views yields a set SMXS of co-registered,
multi-angular TOA radiances for each D designated as

SMXS(i) = {IB(imaxB ), IN (i), IF (imaxF )} (5.9)

Taking the entire profile into account, radiance co-registration can be performed for
any collection of attenuators in D.

Figure 5.3 contrasts MXS co-registration with the previously presented single
effective layer approaches (for backward viewing). This schematic demonstrates
how various methods of co-registering off-nadir radiances can lead to substantially
different radiances being selected for use in the assessment process.
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5.4 Performance measure of co-registation methods

This section elaborates on an objective metric for evaluating co-registration meth-
ods with respect to their larger purpose in EarthCARE: identification of inaccurate
cloud property retrievals in 3D domains.

In detail, co-registration aims at selecting off-nadir radiances such that their lines-
of-sight traverse through the same or a similar atmospheric 3D structure as the nadir
view. Supposing that similar atmospheric structures are retrieved with a similar
degree of accuracy, successful co-registration leads (for each domain) to a set of
BBR measured, and corresponding selected MC simulated radiances, which differ
similarly at each of the three viewing angles due to underlying retrieval inaccuracies.
If, on the other hand, co-registration fails to select appropriate off-nadir radiances,
that is, nadir and off-nadir views observe different atmospheric structures likely
retrieved with individual inaccuracies, radiance differences (between measurement
and simulation) among viewing angles are assumed to appear inconsistent. There-
fore, we propose to measure the agreement of radiance differences among all three
view angles to infer the performance of a co-registration method in the framework of
EarthCARE’s radiative closure assessment. The following presents a detailed concept
for the performance metric along with underlying assumptions.

For evaluation purposes, it is presupposed that D’s or a D-like attenuating struc-
ture (i.e., its clouds and aerosols) reflect radiation according to a characteristic
bidirectional function. Capturing three viewing angles of that bidirectional function
should provide an indication of the successfulness of the co-registration method.
Facing inaccurate retrieval, it is assumed additionally that bidirectional function will
be amplified or reduced at all directions. In other words, the relative difference dvi
between measured Iv and simulated radiance Iv defined as

dvi = Iv(i)− Iv(i)
Iv(i)

(5.10)

is assumed to be equal over all three viewing zenith angles v ∈ {B,N, F} for a
domain at along-track position i.

Assuming equal relative differences simplifies evaluation of co-registration meth-
ods. The assumption reflects a well retrieved shape of D’s bidirectional function
but not of its intregration, the albedo. The main idea of the metric is to reward a
co-registration method that manages to point at a common bidirectional function,
and thus obtain relative differences of a similar magnitude over nadir and selected
off-nadir views.
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Fig. 5.4: This graphic concerns the co-registration performance metric of section 5.4. For
illustration a 2D space is shown, instead of 3D space. Co-registered relative
differences in nadir dN and forward dF (centred through their respective means
dN and dF ) form a cloud of points around the ideal vector ~u (dashed line),
representing equal relative differences. The first eigenvector ~w1 (solid line) in
the 2D relative radiance difference space is computed for selected domains. The
performance measures the alignment of both ~u and ~w1.

Considering all three viewing angles, we obtain the triplet

mi =
(
dBi , d

N
i , d

F
i

)
(5.11)

of relative differences for each domain. According to our assumption, the coordinates
of mi ideally form a point on the line ~u = (1, 1, 1)n, with n ∈ R, as shown in
Figure 5.4. Considering nD assessment domains yields nD points around ~u.

To determine how well the nD points agree with ~u, first form the set X ∈ R3×nD

of all nD triplets. This ”centering matrix“ is defined for all three dimensions as

X = [m1, . . . ,mnD ]−
( 1
nD

IT [m1, . . . ,mnD ]
)
I (5.12)

where I is the column-vector of nD Ones, and T denotes the matrix transpose.
Consequently, the second term of equation 5.12 establishes a mean-value of 0, for
each of the three columns in X.
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From the covariance matrix XXT one can obtain eigenvectors W = [~w1, ~w2, ~w3]
with W ∈ R3×3, and corresponding eigenvalues λ = [λ1, λ2, λ3] from

XXTW = λW (5.13)

The first eigenvector ~w1 will most likely correspond to the variance of a similar
direction as the vector ~u as illustrated in Figure 5.4. The projection of the normalized
eigenvector ~w1 onto normalized ~u reveals how parallel both vectors are, and thus how
equal relative TOA radiance differences among viewing angles are. The eigenvalue
λ1 tells the percentage of explained variance by this eigenvector. Accordingly, define
co-registration performance P as

P =
(

~w1
||~w1||

· ~u

||~u||

)
· λ1 · 100% (5.14)

For P = 100%, all points are located on ~u. In the worst case, P = 0%; points in
X form a line perpendicular to ~u. For all other cases, ~w1 might still line up with ~u,
but due to scattering of points around ~u it may be that either λ1 < 1 or, alternatively,
~w1 and ~u do not line-up, leading to an inner product smaller than 1. In the latter
case, scattering of points around ~w1 may reduce P further.

Based on the simplifying assumption, the metric clearly fails if the bidirectional
function of D or a D-like structure is incorrectly retrieved or if the assumed optical
properties for clouds are incorrect. In this case, it could be that a well working
co-registration method is penalized incorrectly. In case a co-registration method
selects off-nadir radiances which do not point at D or D-like structures, but, by pure
chance have similar relative differences to their counterparts compared to the nadir
view, we would falsely reward a poor co-registration method. As the performance
metric evaluates numerous domains at the same time, chances are low to alter the
performance critically.

5.5 Test data and Monte Carlo model runs

To test the algorithms proposed here, this study employs data from the following
A-Train satellite instruments: CloudSat’s Cloud-Profiling Radar (CPR); CALIPSO’s
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar; Tera’s
MODIS (Moderate Resolution Imaging Spectroradiometer); and CERES (Clouds and
Earth’s Radiant Energy System). Data from these sources have been coordinated
(Sun-Mack et al., 2010; Kato et al., 2010) into the CERES-CALIPSO-CloudSat-
MODIS (CCCM) product. This study used a 5,000 km-long section of CCCM data
measured on 5 July 2006 over the equatorial Pacific (from 143.54◦W, 17.25◦S to
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Fig. 5.5: Cross-section of A-train-derived cloud extinction coefficient used in this study.
The track was measured on 5 July 2006 over the equatorial Pacific Ocean (from
143.54◦W, 17.25◦S to 153.48◦W, 27.32◦N).

153.48◦W, 27.32◦N). Figure 5.5 shows retrieved cloud extinction cross-section. The
vast majority of the track was over ocean.

CCCM data provides CERES radiances close to nadir. For the present study,
however, BBR data are required at the three EarthCARE viewing angles. Hence, they
had to be generated by applying a 3D Monte Carlo model to CCCM data. But first,
the CCCM cross-section needed to be expanded cross-track. This was achieved by
applying the Barker et al. (2011) scene construction algorithm. The constructed
domain was 31 km wide, but only the central 10 km were used for analyses; with
across-track buffer-zones of 10 km to the East and 11 km to the West.

A control set of BBR-like measurements were produced by applying the MC model
to the constructed CCCM domain. In the MC model, gaseous transmittances (H2O,
CO2, O3) were computed using the correlated k-distribution method (Li and Barker,
2005; Salzen et al., 2013). Optical properties for liquid droplets (Wiscombe, 1980)
and ice crystals (Yang et al., 2013) were resolved into four bands consisting of 31
quadrature points in the range of 0.25 to 4.0 µm (for details see Barker et al., 2014b).
Rayleigh scattering was included as was attenuation by continental tropospheric
aerosol (Deepak and Gerbers, 1983) which blanketed the domain with optical depth
0.15 at wavelength 0.55 µm with extinction decreased exponentially with altitude
at a scale height of 1 km. Two types of surfaces were used: Cox and Munk (1956)
distribution of wave slopes coupled with Fresnel reflection; and Lambertian (Barker
and Davies, 1992). For more details, see Barker et al. (2012). No instrument filter
functions were applied.

In addition to the control set, a perturbed set was generated, too. The perturbed
domain was the same as the control except that cloud liquid and ice water contents
and droplet effective radii and crystal effective diameters were invested with random
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Fig. 5.6: Radiance contribution fields for nadir (left) and foreward view (right). In both
plots, the domain number indicates the column at which the radiance contribution
arrived. As such, the Cirrus cloud appears at smaller domain numbers in the
forward view. Figure 5.9 shows co-registration results for the same sector.

uncorrelated variations (up to ±25% of the absolute property value) (per. comm.
Pavlos Kollias, 2014; Robin Hogan, 2014). This domain was meant to represent
the retrieved version of the control domain. The MC model was then applied to
the perturbed domain producing TOA radiances at the three viewing directions as
well as photon paths and contributions necessary for the application of the method
described in section. Figure 5.6 presents a sample for nadir and forward viewing
radiance contributions.

In order to estimate MC uncertainties, both control and perturbed simulations were
performed 100 times using 3×106 photons per sample for a total of 3×108 photons
over the domains of each experiment. Each sample of the perturbed experiment used
a unique random perturbation of the control field.

5.6 Results

As noted before, EarthCARE will perform a closure assessment in order to verify
cloud and aerosol properties retrieved for small 3D domains. A closure using
TOA radiances involves a comparison of measured BBR radiances against their
simulated counterparts; for nadir and, more importantly, off-nadir viewing angles.
However, off-radiances need to be carefully selected so as ensure that they suitably
correspond to the 3D domain defined by the nadir footprint. Co-registration aims
at the common observation of the same or a similar attenuating structure. Because
attenuators (clouds and aerosols) within each domain may appear in different heights
and be vertically complicated, different co-registration methods have aimed to
improve attribution by using different sources of information pertaining to height and
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complexity. Foremost, Cirrus clouds appear semi-transparent at solar wavelengths,
and so multiple reflecting layers are likely to contribute to single SW TOA radiance.
To investigate whether a new source, namely 3D MC photon paths, could improve
the selection of relevant oblique radiances, the new co-registration method and two
existing ones, namely SRF and HRL, were applied to test cases.

As shown in section 5.5, EarthCARE’s BBR-measured and simulated TOA radiances
were mimicked by applying the 3D MC model to A-train satellite data and generating
data for control and perturbed experiments. Based on a horizontal resolution of 1 km2

of the 10 km × 5000 km track, we averaged domains over (10 km)2, overlapping
their neighbour by 9 km in the along-track direction.

Figures 5.7-5.14 show details of co-registration at the surface (SRF), at the highest
reflecting layer (HRL), and by Maximum Similarity (MXS) for parts of the track.
Figures 5.7, 5.9, 5.11, and 5.13 show results of co-registration as well as cross-
sections of relative differences in cloud extinction

δαext = (αperturbed
ext − αcontrol

ext )
αcontrol

ext
(5.15)

between perturbed and control experiments. Of course, in the EarthCARE mission
actual extinction, αcontrol

ext , is unknown and the goal is to retrieve αperturbed
ext . Coloured

points show each domain’s reference level. As outlined in section 5.3.2, the SRF
and HRL co-registration methods choose simulated and measured TOA radiances
for forward and backward views that intersect a particular reference level. In order
to illustrate the choice made the MXS method, equivalent reference levels were
determined in the panels of the figures denoted by MXS.

If at least one of the three attributed TOA radiance pairs differed by more than
10/π W m−2 sr−1 (where 10 W m−2 is EarthCARE’s goal), the reference level was
coloured magenta; otherwise it was coloured green. Dashed lines illustrate lines-of-
sight of co-registered TOA radiances, for two sample domains in Figure 5.7. As one
may notice, oblique lines-of-sight were symmetric around the nadir line-of-sight for
SRF and HRL, but not in MXS co-registration. This is because MXS co-registration
selects independent subsets of forward and backward radiances.

Corresponding to Figs. 5.7, 5.9, 5.11, and 5.13, Figs. 5.8, 5.10, 5.12, and 5.14
present the co-registered differences between TOA radiances of control of perturbed
experiment, collectively for all three viewing angles. From top to bottom, the panels
show results for SRF, HRL, and MXS co-registration. Again, a grey shaded area
highlights differences of up to 10/π W m−2 sr−1. Over SRF, HRL, and MXS co-
registration the nadir TOA radiance differences remained unchanged, but forward
and backward differences shifted due to a changing attribution by co-registration
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Fig. 5.7: Co-registration at the surface (SRF), the highest reflecting layer (HRL), and by
Maximum Similarity (MXS) for a region containing Cirrus and Cirrostratus clouds.
Highlighted in magenta and green are intersections for nadir with off-nadir lines-
of-sight, as shown for two samples. For SRF and HRL, intersections correspond
to single reference levels, i.e. surface and highest reflecting layer, for most parts
forming a horizontal layer. For MXS, equivalent reference levels are provided
separately for forward and backward view. More details are given in section 5.6.
Relative extinction differences are between the control and perturbed experiments,
and range roughly between −10% to 75% for this region.

methods. Consequently, a changing attribution of oblique radiances to domains led
to more or less overlap of forward, nadir, and backward TOA radiance differences.
The higher the degree of overlap and the more agreement in shape of the lines, the
more we managed to attribute off-nadir radiances, which show a similar difference
to their perturbed counterpart as the radiances in the nadir view do; and the higher
the performance in identification of inaccurately retrieved domains, which are listed
separately on the plots.

First, three regions were analyzed in order to understand the effectiveness of
co-registration methods when Cirrus, and broken, clouds are present.

As shown in figure 5.7, δαext were smaller for Cirrus and larger for Cirrostratus
clouds. Accordingly, exceeding of the radiance difference threshold took predomi-
nately place in latter domains. Focusing on the horizontal extend of the magenta-
coloured reference levels, the spread at SRF (section 1530-1600) went beyond do-
mains of larger δαext (section 1550-1580). In contrast, HRL and MXS co-registration
managed to narrow down this spread. Figure 5.8 shows the improved overlap for
HRL and MXS over SRF co-registration. As sample 1 and 2 in Fig. 5.7 indicate, HRL
and MXS co-registration chose oblique TOA radiances for each domain individually.
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Fig. 5.8: Co-registered TOA radiance differences between control and perturbed experiments
for all three viewing angles along with the performance for the three co-registration
methods: (SRF) at the surface; (HRL) at the highest reflecting layer, and (MXS) by
Maximum Similarity. The threshold refers to EarthCARE’s radiative flux threshold,
divided by π.
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Hence, both co-registration methods were able to select similarly affected radiances
for all viewing angles which intersected the same perturbed area.

A cloud-free region (around section 1530-1540) in between cloudy domains
received large TOA radiance differences for SRF and HRL co-registration. The
surface of the cloud-free domains were partly invisible to the backward view. In
other words, the backward line-of-sight pointing at the surface of the cloud-free
domains intersected neighbouring Cirrostratus clouds whose properties differed
from those of clouds in the domain being assessed. Contrary to HRL co-registration,
3D photon paths provide information about the 3D cloud structure. Figure 5.8
confirms the difference between HRL and MXS co-registration for these domains
in the backward view. Consequently, MXS co-registration selected a line-of-sight in
the backward view which pointed at a surface close-by without intersecting critical
clouds and attributed the corresponding backward TOA radiance differences to the
cloud-free domains. Overall, MXS co-registration (81.81%) performed better than
HRL (68.38%) and SRF (50.78%).

Figure 5.9 presents a Cirrus cloud edge with large δαext. The right half of the
region consisted largely of an unperturbed, lower cloud structure. Ideally, domains
containing perturbed Cirrus clouds were attributed with larger TOA radiance dif-
ferences and labelled as inaccurately retrieved. For SRF co-registration, we found
again a much broader region of inaccurately retrieved domains than perturbed
ones (section 3600-3745). Co-registering at HRL, domains identified with inaccu-
rate retrievals were less extensive (section 3600-3730). However, around domain
3740, unperturbed domains were still marked as inaccurately retrieved. Using MXS
co-registration, only perturbed domains were correctly identified as inaccurately
retrieved.

Figure 5.10 confirms that the big difference between SRF and both HRL and MXS
co-registration where the latter had approximately +40% more correct identifica-
tions. The poorly co-registered cloud edge (section 3740-3750) is, however, clearly
visible in the HRL derived forward view.

Figure 5.11 shows a Cirrus cloud with δαext as large as 25%. At lower altitudes,
cloud structures with smaller δαext were present. Considering the cloud top height
in HRL in contrast to SRF co-registration, led to an enhanced separation of accurate
and inaccurate retrievals in the left half of the region. The knowledge about multiple
reflecting layers, for MXS co-registration, resulted in an even finer separation.
Figure 5.12 underlines the difference between MXS and HRL co-registration with
MXS resulting in an improvement of 9% in identification performance.

5.6 Results 87



SRF

Domain

H
e
ig

h
t 
[k

m
]

3650 3700 3750 3800

0
1

2
3

5
7

9
1
1

1
4

1
7

2
0

2
4

2
9

3
4

Cirrus cloud−free

HRL

Domain

H
e
ig

h
t 
[k

m
]

3650 3700 3750 3800

0
1

2
3

5
7

9
1
1

1
4

1
7

2
0

2
4

2
9

3
4

Cirrus cloud−free

accurately retrieved
inaccuretely retrieved

MXS

Domain

H
e
ig

h
t 
[k

m
]

3650 3700 3750 3800

0
1

2
3

5
7

9
1
1

1
4

1
7

2
0

2
4

2
9

3
4

Cirrus cloud−free

Intercep. Nadir/Backward
Intercep. Nadir/Forward

Fig. 5.9: Same as Fig. 5.7 but this is for the edge of a Cirrus cloud that exhibited large
differences between the control and perturbed simulations (between −5% and
35%).
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Fig. 5.10: Same as Fig. 5.8 but applicable to Fig. 5.9.
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Fig. 5.11: Same as Fig. 5.7 but for Cirrus clouds above low-level clouds. Relative extinction
differences range roughly between −1% and 25%.

Thus, based on the three regions looked at here, which are fairly representative of
demanding conditions in general, it seems safe to conclude that having the additional
information from the Monte Carlo simulations results in improved identification of
inaccurate retrievals.

In addition, Table 5.1 presents identification performances of co-registration
methods for some specific cloud types along the track. Echoing the results presented
above: MXS co-registration is superior to other methods for Cirrus clouds, identifying
+4% more inaccurate retrievals, and cloud-free domains (mostly part of broken
cloud fields, cp. Fig. 5.5) for which it identified +15% more inaccurate retrievals.

While there was little difference in identification performance among co-registration
methods for Cumulus clouds, the few domains that contained Deep Convective
clouds saw the MXS method slightly less successful at identified inaccurate retrievals
(−3%).

A potential pitfall to relying on information gleaned from simulated radiances is
that perturbed cloud properties - that is, inaccurate retrievals - alter distributions of
photon paths relative to true distributions. This might negatively impact the MXS
co-registration selection process of oblique TOA radiance differences. As a result,
the ability of MXS co-registration to identify inaccurate retrievals could decrease.

An example for limited performance of MXS co-registration is shown in Fig. 5.13.
δαext were large, up to 80%, over the region of Deep Convective clouds. Conse-
quently, extracted photon paths acted on stronger perturbed cloud properties, and
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Fig. 5.12: Same as Fig. 5.8 but applicable to Fig. 5.11.

Tab. 5.1: Performance values for all regions along the cross-section shown in Fig. 5.5 and
additionally for specific cloud/scene types. Comparing co-registration at the sur-
face (SRF), the highest reflecting layer (HRL) or via Maximum Similarity (MXS),
bold-face values indicate the co-registration method with the best performance
for selected domains.

Domain No. Characteristics P(SRF) [%] P(HRL) [%] P(MXS) [%]
1400-1600 Cirrus and Cirrostratus Clouds 50.78 68.38 81.81

1600-1800 Cirrus Clouds 61.4 80.47 89.35

2800-3000 Deep Convective Clouds (horizontally heterogeneous) 49.62 90.23 92.04

3000-3200 Deep Convective Clouds (horizontally homogeneous) 36.14 82.10 78.17

3600-3800 Cirrus Clouds and cloud-free zones 47.49 87.27 89.32

1052/5000 Only domains with Cumulus Clouds 84.37 85.75 85.27

1933/5000 Only domains with Cirrus Clouds 71.94 87.38 91.98

181/5000 Only domains with Deep Convective Clouds 75.52 93.12 89.98

1286/5000 Only cloud-free domains 0.45 0.45 15.01
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Fig. 5.13: Same as Fig. 5.7 but for deep convective and Cirrostratus clouds with relative
extinction differences between −10% and 75%.

were, potentially, less reliable. As Fig. 5.14 shows, applying MXS (92.04%) over HRL
co-registration (90.23%) was less profitable.

For HRL and MXS co-registration, TOA radiance differences below 10/π W m−2

sr−1 were concurrently attributed to domains of low δαext (section 2820-2830),
although located in the midst of domains containing larger δαext. Observing the
total extinction of the domains marked in green, we found they were characterized
by a strongly reflecting cloud top layer, in contrast to more transparent clouds
nearby (outside of 2820-2830). Clear, when extinction is weak near cloud top,
underlying reflecting layers can contribute much to TOA radiances. If retrieved
inaccurately, the layers below cloud top provide inconsistent backscattered radiation
and lead to an exceeding of the threshold as photon paths might not resemble
their real counterparts particularly well. Accordingly, the selection process by MXS
co-registration can be affected adversely.

It might also be that horizontally heterogeneous domains, as seen in Fig. 5.13,
were assumed to support the individuality of photon paths. A large variety of atmo-
spheric paths would provide a small set of suitable paths and, hence, prevent MXS
co-registration from selecting a path, which only appeared similar due to inaccu-
rate retrieval. In addition to the heterogeneous region, we applied co-registration
algorithms to a horizontally homogeneous and largely inaccurately retrieved region
(section 3000-3200). As a result, we observed a lower performance for MXS than
HRL co-registration.

5.6 Results 91



−
2

5
−

2
0

−
1

5
−

1
0

−
5

0
5

SRF  − Performance: 49.62 %

−
2

5
−

2
0

−
1

5
−

1
0

−
5

0
5

HRL  − Performance: 90.23 %

−
2

5
−

2
0

−
1

5
−

1
0

−
5

0
5

nadir
forward
backward
< Threshold

2800 2850 2900 2950 3000

MXS  − Performance: 92.04 %

Domain

T
O

A
 r

a
d

ia
n

c
e

 d
if
fe

re
n

c
e

 [
W

/m
²/

s
r]

Co−registered TOA radiance differences

Fig. 5.14: Same as Fig. 5.8 but applicable to Fig. 5.13.
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In summary, we show how 3D photon paths, extracted from 3D MC simulations,
support radiance co-registration in the presence of Cirrus and broken cloud fields.
As summed up in table 5.1, we still found advantages of MXS co-registration over
other co-registration methods for large-scale inaccuracies of cloud parameters. Only
in the special case of horizontal homogeneity and inaccurate retrieval on a larger
scale, we expect accidentally high similarities between nadir and oblique MC photon
paths resulting in mistaken selection by MXS co-registration.

5.7 Summary and Conclusion

EarthCARE will retrieve vertical profiles of cloud and aerosol properties by com-
bining data from active and passive instruments. In order to check the verisimilitude
of the retrieved properties, a radiative closure assessment is foreseen (see Illingworth
et al., 2015; Barker et al., 2014a) in which EarthCARE’s BBR radiances, measured
at three viewing angles, will be compared to modelled radiances simulated by 1D
and 3D radiative transfer models. Differences between measured and simulated
radiances and fluxes will hopefully help retrieval algorithm developers and users
understand the performance characteristics of the algorithms and their retrieved
products.

After broadening the retrieved cross-section across-track, it will be operated on
by radiative transfer models with simulated and measured radiances partitioned
into 3D domains of (10km)2 area. As the attenuators in each domain will generally
scatter shortwave (SW) radiation at different heights, it is not obvious how best
to select the oblique TOA radiances that align most with nadir radiances so as to
optimize the quality of the comparison between measured and modelled radiances.
This problem of co-registering radiances for the purpose of performing a closure
experiment was the main point of this study.

In contrast to previous co-registration methods, such as the highest reflecting
layer (HRL) of a domain, photon path information, produced by application of a
3D MC model to the retrieved atmosphere, was employed. The intention is to use
this information for situations in which the assumption of a single reflecting layer is
inadequate, such as for semi-transparent or broken cloud fields.

In this study, we used a 5000 km-long track of A-train satellite data. Application
of a MC SW model using A-train-derived cloud and aerosol properties provided a
control experiment consisting of BBR-like radiances. These radiances were meant
to represent EarthCARE BBR observations. A second perturbed experiment, with
randomly altered cloud profiles that mimic imperfect retrieval of cloud properties,
yielded corresponding radiances that are to be compared to control values in order
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to assess the quality of the retrievals (which in this idealized setting are represented
by the randomly altered A-train retrievals). Additionally, the perturbed simulations
output 3D photon path information as needed by the new radiance co-registration
method.

By using a performance measure for identification of inaccurate retrievals, it was
shown that the Maximum Similarity (MXS) co-registration method, using 3D MC
photon paths, successfully supported radiance co-registration and outperformed
previous 2D-based methods, for most parts of the track, such as co-registration
at the HRL and the surface (SRF). As expected, the largest improvements were
for Cirrus clouds and broken cloud fields. This was especially so in the tropics
where convective cloud structure can be very inhomogeneous, and in mid-latitudes
where semi-transparent cirrus clouds can partially obscure lower clouds. In these
cases the HRL method does not always represent the optimal intersection of the
three BBR lines-of-sight as potentially important reflecting layers below the HRL go
unacknowledged.

In special cases, i.e. for inaccurate retrieval on a large scale over a horizontally
homogeneous atmosphere, we suspected perturbations to affect photon paths, such
that their information content may become misleading for co-registration purposes.
In contrast to an uncertain HRL, simulated radiances and photon paths are products
of the same source. Naturally, an ideal MC model acting on fairly well-retrieved
parameters is expected to establish both more realistic radiances and photon paths;
and vise versa. We suggest future experiments on reduced and enhanced degrees of
perturbation, to know where the limits of photon path reliability are.

The tests performed here idealized the radiative closure assessment by only
perturbing cloud properties. EarthCARE will also face uncertainties in surface and
aerosol properties, especially over land. Further experiments will have to include
errors in the specification of surface and aerosol optical properties (cf. Barker et al.,
2014b) and more realistic errors and uncertainties in cloud retrievals. Ultimately,
this will require full end-to-end simulations of EarthCARE’s processes.

Finally, this novel co-registration approach might also benefit Angular distribu-
tion models (ADMs), converting single- or multi-angular TOA radiances into TOA
radiative fluxes. Relying on radiances originating from different scene types, MXS
could ensure that off-nadir radiances point at a scene type of interest. Consequently,
we see a large potential in MC photon paths to improve ADM’s radiance to flux
conversion.
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6Conclusion

This work contributes in various ways to the estimation of top-of-atmosphere (TOA)
shortwave (SW) and longwave (LW) fluxes and their uncertainties, which are based
on BBR radiance measurements onboard the upcoming EarthCARE mission.

We assess a so-far unaccounted sampling uncertainty of BBR-measured SW and
totalwave (TW) radiances assembled towards ∼100 km2 assessment domains. Uncer-
tainties arise from irregular sampling through ∼(0.6)km2 footprints within domains
and a naturally heterogeneous radiance field. Sampling becomes increasingly ir-
regular as BBR instrument performance is reduced to conserve mission lifetime.
We evaluate uncertainties using Landsat 8 imagery and repeated mimicry of BBR
nadir sampling under various levels of instrument performance, and measure how
far BBR-obtained radiances depart from actual mean radiances over domains. We
observe that uncertainty in SW and TW radiances increases linearly with radiance
heterogeneity and near-linearly with reduced instrument performance. We find that
the uncertainty of LW radiances, which are inferred from staggered SW and TW mea-
surements, is particularly sensitive to instrument performance and can amount to
twice the SW uncertainty – even though LW radiances are horizontally homogeneous
within domains. In order to keep radiance uncertainties below a flux equivalent of
10 W m−2, we recommend to reduce instrument performance no further than 25%
of its nominal value.

We present an algorithm for the conversion of BBR-measured TOA SW radiances
into TOA SW fluxes over clear-sky domains. We find a new representation of state-of-
the-art CERES angular distribution models (ADMs). Through the use of additional
geophysical variables - obtained from an aerosol optical depth climatology, ERA-
20C reanalysis, and climatology of MCD43BGF surface bidirectional reflectance
distribution function parameters - we unite spatially and temporally separate CERES
ADMs towards new ADMs per surface type and BBR-perceived scattering direction.
We show which geophysical parameters are important and how well artificial neural
networks perform when using essential parameters. With the exception of domains
containing fresh snow, we reproduce CERES estimates with an uncertainty of 2.7 –
4.0 W m−2. Fresh snow surfaces are hardly characterized by any of above parameters
and that results in larger uncertainties of 8.3 – 14.6 W m−2.
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We investigate whether the conversion of BBR-measured TOA SW radiances
to fluxes above low-levels clouds is significantly sensitive to cloud microphysics
and cloud-topped moisture. We generate new ADMs that account for cloud-top
effective radii and cloud-topped water vapor by using CERES-MODIS observations
and broadband simulations. We find that TOA SW anisotropy can vary by 2.9-8.0%
due to extremes in cloud-top effective radii, and by 1.3-6.4% due to extremes in
cloud-topped water vapor, while anisotropy uncertainty is 3.2-5.0%. Compared to
state-of-the-art CERES ADMs, which lack these sensitivities, new radiance-to-flux
conversions show differences of up 20 W m−2 – especially for particularly small and
large cloud-top effective radii (5 and 20 µm, corresponding to particularly strong
and weak cloud-aerosol interaction, respectively). When applying ADMs to CERES
cross-track measurements, which produce radiation budget estimates as a benchmark
for global climate models, new ADMs produce TOA SW flux estimates 1-2 W m−2

larger than CERES ADMs. We can attribute such flux biases in part to conditions
of persistently small effective radii and low amounts of cloud-topped water vapor.
This work therefore identifies additional factors impacting TOA SW anisotropy that
future radiance-to-flux converting ADMs should consider to avoid sampling biases.

We introduce a new method of colocating individual measurements of SW radi-
ances and corresponding flux estimates from BBR’s three views towards a common
assessment domain. By using photon paths, produced by 3D Monte-Carlo radiative
transfer simulations acting on active-passive retrievals of a cloudy atmosphere, we
are able to colocate even under conditions of broken and semitransparent clouds
where no obvious vertical level exists that current methods would use for colocation.
Applied to a 5000 km frame based on A-Train satellite observations, we find that the
use of photon paths improves colocation by 4% for cirrus clouds and 15% for broken
cloud fields when compared against a colocation at cloud-top height level.

Once the EarthCARE mission is launched, the radiative closure assessment will
compare BBR-based TOA flux estimates with simulated TOA fluxes, based on 1D
or 3D radiative transfer simulations acting on active-passive retrievals of clouds
and aerosols. By providing a better understanding of BBR-based TOA fluxes and
their uncertainties, this work will improve the mission’s radiative closure assessment
which will strengthen the science community’s understanding of the interaction
among clouds, aerosols, and radiation.
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7Zusammenfassung

Die vorliegende Arbeit leistet verschiedene Beiträge zur messgestützten Schätzung
von Strahlungsflüssen am Oberrand der Atmosphäre sowie deren Unsicherheiten.
Die Schätzungen basieren auf Strahldichtemessungen des BBR an Bord der geplanten
Satellitenmission EarthCARE.

Wir untersuchen die Unsicherheiten von BBR-gemessenen Strahldichten im Nadir
über ∼100km2 großen Gebieten. Mögliche Unsicherheiten kommen durch die
ungleichmäßige Erfassung ∼(0.6km)2 großer Ausleuchtbereiche innerhalb eines
Gebietes die natürliche horizontale Heterogenität des Strahlungsfeldes zustande.
Ein gezieltes Herunterregeln der BBR-Leistung ermöglicht eine Verlängerung der
Lebensdauer der Mission, resultiert allerdings in zunehmend ungleichmäßiger Er-
fassung der Strahlungsfeldes. Für diese Arbeit werden die Unsicherheiten durch
Simulation verschiedener BBR-Leistungslevel an räumlich hochaufgelösten Landat-8-
Messungen abgeschätzt. Die Ergebnisse zeigen, inwieweit BBR-basierte Strahldichten
von eigentlichen Gebietsmitteln abweichen. Unsicherheiten kurzwelliger und to-
talwelliger (kurzwelliger plus langwelliger) Strahldichten nehmen linear mit der
horizontalen Heterogenität des jeweiligen Strahlungsfeldes innerhalb der Gebiete
zu und steigen nahezu linear mit reduzierter Leistung an. Wir zeigen weiterhin,
dass langwellige Strahldichten, die von räumlich versetzten kurz- und totalwelli-
gen Messungen abgeleitet werden, eine deutlich höhere Sensitivität gegenüber
der BBR-Leistung aufweisen. Es zeigt sich eine Verdopplung der Unsicherheit von
langwelligen gegenüber kurzwelligen Strahldichten, sogar wenn Gebiets-interne
langwellige Strahlungsfelder horizontal homogen sind. Um eine Unsicherheit resul-
tierender Strahlungsflüsse von unter 10 W m−2 zu gewährleisten, empfehlen wir die
Leistung um nicht mehr als 25% vom nominellen Wert zu reduzieren.

Wir präsentieren einen Algorithmus zur Umwandlung von solaren Strahldichten
in solare Strahlungsflüsse am Oberrand der Atmosphäre über wolkenfreien Gebieten.
Wir zeigen eine neue Abbildung gängiger CERES Winkelverteilungsmodelle. Durch
kollokierte geophysikalische Parameter (einer Klimatologie Aerosol-optischer Dicken,
ERA-20C Reanalyse-Daten, sowie einer Klimatologie von MCD43BGF-basierten Pa-
rametern für bidirektionale Reflexionsverteilungsfunktionen über Landoberflächen)
können räumlich und zeitlich separate CERES Modelle vereint werden, und neue
Winkelverteilungsmodelle per Landoberflächenklasse und per BBR-erfassbarer Streurich-
tung erzeugt werden. Es wird dargestellt, welche geophysikalischen Parameter für
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die Erzeugung relevant sind und mit welcher Genauigkeit CERES Modelle repro-
duziert werden. Neue Modelle weichen um 2.7-4.0 W m−2 von CERES Modellen
ab, wenn Fälle mit Neuschneeereignissen ausgeschlossen werden. Neuschnee und
dessen bidirektionale Reflexionsverteilung wird durch geophysikalische Parameter
nicht erfasst. In diesen Fällen beträgt die Abweichung 8.3-14.6 W m−2.

Wir untersuchen die Umwandlung von gemessenen solaren Strahldichten in
solare Strahlungsflüsse am Oberrand der Atmosphäre über tiefen Flüssigwasser-
wolken. Es wird die Sensitivität gegenüber der Wolkentröpfchengrößenverteilung
und der Wasserdampfmenge über Wolken analysiert, die herkömmliche CERES
Winkelverteilungsmodelle nicht berücksichtigen. Mit Hilfe mehrjähriger CERES-
MODIS Messungen sowie Breitband-Simulationen mit dem Strahlungstransfermodell
MOMO, erstellen wir neue Winkelverteilungsmodelle, die eine Sensitivität gegenüber
Wolkenoberkanten-Effektivradius und Wasserdampfsäule über den Wolken zulassen.
Die Ergebnisse beschreiben eine Variabilität der solaren Anisotropie von 2.9-8.0%
zwischen extremen Effektivradien sowie 1.3-6.4% zwischen extremen Wasserdampf-
säulengehalten. Die Unsicherheit der Anisotropie beträgt 3.2-5.0%. Im Vergleich zu
CERES Winkelverteilungsmodellen weichen Strahlungsflussschätzungen um bis 20
W m−2 ab. Insbesondere bei sehr kleinen und großen Effektivradien (5 und 20 µm,
entsprechend einer sehr starken und schwachen Wolken-Aerosol-Interaktion, respek-
tive) wird eine große Abweichung beobachtet. Bei der Anwendung auf CERES Cross-
Track Messungen, die als Grundlage zur Validierung von Klimamodellen dienen,
schätzen die neu beschriebenen Winkelverteilungsmodelle 1-2 W m−2 höhere solare
Strahlungsflüsse als CERES Modelle. Teilweise kann diese Differenz bestimmten
Regionen zugeordnet werden, die stets kleine Wolken-Effektivradien und niedrige
Mengen Wolken-überlagerten Wasserdampfs ausweisen. Diese Arbeit identifiziert
somit zusätzliche Anisotropie-Faktoren, die zukünftige Winkelverteilungsmodelle
berücksichtigen sollten, um regionale, systematische Fehler in Strahlungsflusss-
chätzungen zu vermeiden.

Wir stellen eine neue Methode zur Kollokation von individuellen Strahldichte-
messungen der drei BBR-Beobachtungsrichtungen sowie zugehörigen Strahlungsfluss-
schätzungen zu gemeinsamen Gebieten vor. 3D Monte-Carlo Strahlungstransfer-
simulationen, die auf eine aktiv-passiv gemessene Atmosphäre angewendet werden,
generieren Photonenpfade pro BBR-Messung. Die simulierten Photonenpfade er-
lauben eine Kollokation auch unter schwierigen Bedingungen, wie z.B. teilweiser
oder semi-transparenter Bewölkung, an denen herkömmliche Methoden scheit-
ern. Angewendet auf eine 5000 km lange Szene aus Satellitendaten des A-Trains,
beobachten wir eine Verbesserung der Kollokation von 4% bei Zirrusbewölkung
und 15% für Fälle teilweiser Bewölkung, verglichen mit einer Methode, die die
Wolkenoberkantenhöhe zur Kollokation nutzt.

100 Chapter 7 Zusammenfassung



Mit dem anstehenden Start der EarthCARE Mission wird das Strahlungsschließungs-
experiment BBR-basierte und simulierter Strahlungsflüsse am Oberrand der Atmo-
sphäre vergleichen. Durch neu gewonnene Erkenntnisse hinsichtlich BBR-gestützter
Strahlungsflüsse und deren Unsicherheiten trägt diese Arbeit zum besseren Verständ-
nis über die Wechselwirkung von Wolken, Aerosolen und Strahlung innerhalb der
Wissenschaftsgemeinschaft bei.
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2.1 (a) Approximate representation of a BBR Point Spread Function for 0.03
km Landsat imagery. (b) Schematic of alternating TW and SW PSFs at
the BBR CDM nominal rotation rate. (c) As in (b) except this is for half
the nominal rate. (d) A (58.4 km)2 Landsat Band 5 sample image, and
(e) its integration and interpolation to (1 km)2 (EarthCARE’s JSG). . . 9

2.2 Top frames show a 5 × 21 km assessment domain of full SW radiances
RSW , the domain-average being 〈S〉 (see equation 2.1). Middle frames
show PSF samplings at the BBR’s nominal CDM rotation rate and at
half the nominal rate. ds is ground sampling distance. Their domain-
averages are 〈S〉. Lower frames show SW signals seen by the totalwave
telescope which samples between successive samples on the middle
frames. Cross-track sampling is very good and independent of CDM
rotation rate. Hence, it was neglected in order to focus attention on
along-track sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Ten pairs of (left) Landsat Band 5 (0.85 - 0.88 µm) and (right) Band
10 (10.6 - 11.2 µm) images used in this study to derive estimates of SW
and LW BBR radiances. Each image is 190 km × 180 km. SW and LW
radiances range from 0 (black) to 290 (white) W m−2 sr−1 and from 25
(white) to 95 (black) W m−2 sr−1, respectively. See Table 4.1 for details. 12

2.4 BBR LW (gray) and SW (black) uncertainties as functions of CDM
rotation rate expressed as ds for 5 × 21 km domains. Lines indicate
median levels of tile-specific SW radiance variability while bar ends
denote 16th and 84th percentiles. Dotted horizontal line indicates 10 W
m−2 (mission required flux accuracy) divided by π. . . . . . . . . . . . 15

2.5 BBR SW uncertainty as functions of SW radiance field heterogeneity for
5 × 21 km domains for various values of ds as indicated above each plot.
Radiance variability percentiles, 16 through 84, are shown for each
tile. As in Figure 4.4, black dotted lines indicate mission requirements.
Assuming LW uncertainties to be roughly twice the SW uncertainties
(see equation 2.7), gray dashed lines mark 5/π W m−2 sr−1 which
indicates the mission required limit for LW radiances uncertainties. . . 15
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2.6 For various ds (as indicated), BBR radiance errors over 1 km2 grid
cells as functions of sub-grid variability. Values were extracted from
the central portion of tile 5 as described in the text. Blue lines mark
quantile regression of 16th, 50th and 84th error percentiles. . . . . . . . 17

2.7 Ratio of LW radiance uncertainties to SW radiance uncertainties as
functions of ds and a domains size of 5 × 21 km. SW heterogeneity is
represented by dot size and LW heterogeneity by dot color. Dashed hor-
izontal lines mark the theoretical ratio of 2 as predicted by equation 2.7. 18

2.8 1km2 LW errors as functions of SW errors for different CDM perfor-
mances. Colors mark the covariance of SW and TW PSF weights, while
dot size indicates the size of their footprint overlap (extracted as de-
scribed in the text). Blue line and annotations highlight the LW-SW
error ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 We present the use of co-located geophysical parameters to explain
varying TOA SW anisotropy for three surfaces at particular scattering
directions (by row): Saharan Desert Surfaces at backward scattering;
Permanent Snow and Ice Surfaces at nadir scattering; and Forest Sur-
faces at forward scattering. From left to right a simple linear models
evolves. A linear fit with an initial parameter (a), d), and g)) leaves
residuals which we aim to explain through an extended linear model
using an additional parameter (b), e), and h)) which still leaves residu-
als. A third parameter (c), f), and i)) extends this linear model further.
Colored lines mark the observed probability density (blue to red from
low to high). Black lines show simple linear fits. . . . . . . . . . . . . . 31

3.2 We present Error Standard Deviations of ANN-predicted (using set a))
clear-sky TOA SW Fluxes of single-surface CERES footprints within 1◦

× 1◦ Latitude-Longitude boxes. Individual footprints are either at nadir
or 55◦ θV , aiming for a BBR-like viewing geometry. . . . . . . . . . . . 38

3.3 Standard Deviations of ANN-predicted (using set a)) clear-sky TOA SW
Fluxes of single-surface CERES footprints from original CERES SSF 4
estimates within 5◦ × 5◦ angular boxes of θS and ϕ. Individual foot-
prints are at 55◦ θV , aiming for a BBR-like off-nadir viewing geometry.
The gray-shaded area highlight expected angular combination seen by
EarthCARE’s BBR when sampling globally. . . . . . . . . . . . . . . . . 39

3.4 Repeating the ANN training using an incomplete data set (excluding
angular portions of ϕ ∈ 15 − 25◦, ϕ ∈ 155 − 165◦, and θS ∈ 0 − 80◦,
highlighted by dashed lines), we present changes in Standard Deviations
of ANN-predicted clear-sky TOA SW Fluxes compared against an ANN
training using all available data (shown in Figure 4.3). . . . . . . . . . 40
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4.1 Broadband phase functions for three different cloud droplet effective
radii Re. Phase functions were spectrally integrated over the solar
regime (0.25-4.00 µm) and are based on Mie calculation in spectral
subintervals, assuming a Gamma-Hansen distribution with an effective
variance of 0.11. Contributions from each subinterval were weighted
by corresponding spectral cloud extinction and solar constant. Note
that the y-axis of the inset is logarithmic, while the main plot is shown
in linear scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Four main clusters of vertical moisture profiles as observed during
cloudy days (ascertained through MODIS imagery) over 12 months (Au-
gust 2016 to July 2017) of radiosonde observations on St. Helena (http:
//catalogue.ceda.ac.uk/uuid/c6fccd62a8ad4d9ea35fb825c3968910).
Clusters were obtained through k-means clustering using mixing ratios
at three different heights (normalized with respect to the cloud-top):
1.2, 1.4-1.6, and 2.3-2.7. Cloud-top levels were inferred from highest
observed vertical level (within the lowest 2.5 km) with a relative humid-
ity larger than 85%. For simulations we used temperature and moisture
profiles of the nearest neighbor to each cluster center. . . . . . . . . . . 51

4.3 The setup of thirteen adiabatic cloud experiments. Each experiment
arrived at a cloud optical depth of 10 and a cloud top pressure of 875
hPa. Across experiments, both liquid water path (x-axis) and cloud-
droplet number concentration (CDNC; y-axis) varied. Accordingly,
geometric extent (shown in color) and profiles of cloud droplet effective
radii (represented by cloud-top effective radius shown in dot size)
changed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 For an exemplary angular bin (as specified in bottom left), we show col-
lected CERES-measured TOA SW reflectances (y-axis) against cloud-top
effective radii (x-axis; MODIS-retrieved mean value across each CERES
footprint); both transformed through the natural logarithm. Colors
explain the inferred amount of cloud-topped water vapor. Produced
linear model (colored lines; Equation 4.6) - forming the basis for ADMs
- captured the general darkening with larger droplet sizes (predicted for
5 to 25 µm) and with higher levels of cloud-topped moisture (predicted
for 0, 15, and 30 kg m−2). Following the CERES methodology, the
average reflectance in this angular bin was represented by the black dot. 55
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4.5 TOA SW anisotropy of refined ADMs at varius cloud-top effective radii
(top, at a θs of 29◦ and a steady cloud-topped water vapor of 4 kg m−2)
and levels of cloud-topped water vapor (bottom, at a θs of 32◦ and a
steady cloud-top effective radius of 10 µm). Colors indicate respective
scenarios. Black dots mark TOA SW anisotropy of CERES SSF 4. Error
bars were based on reflectance residuals of linear models propagated
into TOA albedo and TOA anisotropy. To obtain corresponding uncer-
tainties for CERES (grey shade), we mimicked the CERES approach and
obtained reflectance residuals. Grey dashed lines indicate the cloud
glory position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Using TOA SW reflectances predicted from linear models of refined
ADMs for three droplet effective radii (varying across panels horizon-
tally) and three θs (denoted as SZA; varying across panels vertically),
we applied both refined and CERES SSF 4 ADMs to obtain differences in
flux estimates (shown in color). Differences beyond ±20 are not further
resolved. Linear models were give a constant cloud-topped water vapor
of 4kg m−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Analogous to Figure 4.6, we compare refined ADMs with CERES-like
ADMs at a θs of 29◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Applied to CERES cross-track measured TOA SW reflectances in Jan-
uary (top) and July (bottom) 2007 over selected conditions (τ̃ of 10,
100% cloud cover, homogeneous conditions), we found that refined
angular distribution models produced mostly higher flux estimates than
CERES-like ADMs, shown as positive regional flux biases. Insignificant
differences (two-sided student t-test, 95% confidence level) over 2 ×
2◦ latitude-longitude boxes were marked with black crosses. Anisotropy
uncertainties were not considered. . . . . . . . . . . . . . . . . . . . . 64

5.1 Panel A shows a single, strongly reflecting layer (heavily shaded), which
forms the common surface for all three radiances (IF , IN , and IB). In
panel B, the same layer is now semi-transparent (lightly shaded) and
located above a small dense cloud. If IF , IN , and IB that were used
in Panel A are also used in Panel B, contributions to radiances will no
longer stem from a well-defined region of cloud, but instead from very
different clouds, and potentially even surfaces. . . . . . . . . . . . . . 73
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5.2 Schematic showing the concept of radiative contributions to top-of-
atmosphere (TOA) radiance that derive from scattering events, due
to certain attenuators, at various positions along lines-of-sight (nadir:
CN (i), forward view: CF (i)) as simulated by a 3D MC model (shades
of grey correspond to varying amounts of radiance contribution). The
assessment domain of interest, D(i), reaching from the surface (SRF) to
TOA, is fully captured by CN (i), while CF (i) contains contribution from
neighbouring domains. Summing over all layer contributions for all
types of attenuators yields TOA radiance (IN (i) and IF (i), respectively). 76

5.3 Schematic showing a fictitious cloud extinction field (darkening shades
correspond to increasing extinction). A backward-viewing radiance is
to be selected for assessment of retrieved cloud products in column
D(i). The highest reflecting layer method uses radiance at location
i+ lHRL; co-registering to the surface uses radiance at location i+ lSRF ;
the maximum similarity (MXS) method uses radiance at location imaxB . 78

5.4 This graphic concerns the co-registration performance metric of sec-
tion 5.4. For illustration a 2D space is shown, instead of 3D space.
Co-registered relative differences in nadir dN and forward dF (centred
through their respective means dN and dF ) form a cloud of points
around the ideal vector ~u (dashed line), representing equal relative dif-
ferences. The first eigenvector ~w1 (solid line) in the 2D relative radiance
difference space is computed for selected domains. The performance
measures the alignment of both ~u and ~w1. . . . . . . . . . . . . . . . . 80

5.5 Cross-section of A-train-derived cloud extinction coefficient used in this
study. The track was measured on 5 July 2006 over the equatorial
Pacific Ocean (from 143.54◦W, 17.25◦S to 153.48◦W, 27.32◦N). . . . . 82

5.6 Radiance contribution fields for nadir (left) and foreward view (right).
In both plots, the domain number indicates the column at which the
radiance contribution arrived. As such, the Cirrus cloud appears at
smaller domain numbers in the forward view. Figure 5.9 shows co-
registration results for the same sector. . . . . . . . . . . . . . . . . . . 83

5.7 Co-registration at the surface (SRF), the highest reflecting layer (HRL),
and by Maximum Similarity (MXS) for a region containing Cirrus and
Cirrostratus clouds. Highlighted in magenta and green are intersections
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layer. For MXS, equivalent reference levels are provided separately
for forward and backward view. More details are given in section 5.6.
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experiments, and range roughly between −10% to 75% for this region. 85
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third column). Colleted CERES samples varied considerably in cloud-
top effective radius (column four; showing minimum to maximum of
medians for each angular bin) and cloud-topped water vapour (column
five; correspondingly). . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 A θs-resolved overview of the anisotropy spread due to extremes in
cloud-top effective radius (second column displays the median absolute
difference of anisotropy at 25 µm and anisotropy at 5 µm normalized by
the anisotropy at 10 µm at a steady cloud-topped water vapor of 4kg
m−2) and cloud-top water vapor (third column displays the median
absolute difference of anisotropy at 32 kg m−2 minus anisotropy at 0 kg
m−2 normalized by the anisotropy at 16 kg m−2 at a steady cloud-top
effective radius of 10 µm). We also show estimated anisotropy uncer-
tainties of refined ADMs (fourth column), CERES SSF 4 ADMs (fifth
column), and their ratio (column six). Uncertainties were produced as
laid out in Figure 4.5 and in the text. . . . . . . . . . . . . . . . . . . . 59

4.4 We present median conditions (in θs, cloud-top effective radius, and
cloud-topped water vapor) and median flux errors together with their
5th and 95th percentiles (in parenthesis) for two selected regions (SE
Atlantic (20◦S-0◦N, 5◦W-13◦E) and NE Pacific (15◦N-35◦N, 140◦W-
120◦W) as shown in Figure 4.8) and two calendar months (January
& July of 2007). Asterisks mark significant differences identified in
Figure 4.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Performance values for all regions along the cross-section shown in
Fig. 5.5 and additionally for specific cloud/scene types. Comparing
co-registration at the surface (SRF), the highest reflecting layer (HRL)
or via Maximum Similarity (MXS), bold-face values indicate the co-
registration method with the best performance for selected domains. . 90
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