Constrained Curve Flows

Dissertation
zur Erlangung des Grades eines Doktors der Naturwissenschaften
am Fachbereich Mathematik und Informatik

der Freien Universitat Berlin

vorgelegt von

Friederike Dittberner

2017



Erstgutachter: Prof. Dr. Klaus Ecker
Zweitgutachter: Prof. Dr. Jan Metzger

Tag der Disputation: 22. Mai 2018



Eidesstattliche Erklarung

Hiermit erklére ich, die vorliegende Arbeit selbstdndig und nur unter Benutzung der
angegebenen Hilfsmittel angefertigt zu haben. Die Arbeit hat in gleicher oder dhnlicher
Form noch keiner Prifungsbehorde vorgelegen und ist noch nicht veroffentlicht.

Berlin, den 24. August 2017 Friederike Dittberner



Abstract

In this thesis we consider closed, embedded, smooth curves in the plane whose local total
curvature does not lie below —7 and study their behaviour under the area preserving curve
shortening flow (APCSF) and the length preserving curve flow (LPCF). For the APCSF,
we show that under the above initial condition, the flow does not develop any singularities
in finite time but exists for all times and converges smoothly and exponentially to a round
circle after becoming convex in finite time. For the LPCF, we prove that under the above
initial condition, the flow does not develop collapsed singularities and if it exists for all
positive times, it converges smoothly and exponentially to a round circle after becoming
convex in finite time. For these results, the above initial condition on the local total
curvature is sharp. To exclude singularities, we introduce a distance comparison principle
and a monotonicity formula and use methods from the theory of curve shortening flow.



Zusammenfassung

In dieser Arbeit betrachten wir geschlossene, eingebettete, glatte Kurven in der Ebene,
deren lokale totale Kriimmung nicht unter — liegt, und studieren ihr Verhalten unter dem
flichenerhaltenenden, sowie dem langenerhaltenden Kurvenfluss. Fiir den flachenerhal-
tenden Kurvenfluss zeigen wir, dass unter der obigen Anfangsbedingung, der Fluss keine
Singularitidten in endlicher Zeit entwickelt, aber stattdessen fiir alle Zeiten existiert. Nach
einer bestimmten endlichen Zeit werden die Kurven konvex und konvergieren danach expo-
nentiell schnell zu einem runden Kreis. Fiir den langenerhaltenden Kurvenfluss schliefien
wir unter der obigen Anfangsbedingung kollabierte Singularitéten aus und beweisen, dass
Losungen, die fiir alle positiven Zeiten existieren, glatt und exponentiell schnell zu einem
runden Kreis konvergieren, nachdem sie in endlicher Zeit konvex wurden. Fiir diese Ergeb-
nisse ist die obige Anfangsbedingung an die lokale totale Kiimmung scharf. Um die Sin-
gularitdten auszuschlieflen, beweisen wir ein Abstandsvergleichsprinzip und eine Mono-
tonieformel und benutzen aulerdem Methoden aus der Theorie des Kurvenkiirzungsflusses.






Contents

1 Introduction

2 Constrained flows
2.1 Constrained gradient flows . . . . . . . ... oo Lo
2.2 Constrained mean curvature flows . . . . . . . ... ... ... ... ... .
2.3 Constrained curve flows . . . . . . . . ..

3 Evolution equations and first consequences
4 Estimates on curvature derivatives

5 Angles and local total curvature

6 Preservation of embeddedness

7 A non-collapsing estimate
7.1 Interior distance functions . . . . . . . . . . ...
7.2 Behaviour at a minimum of the ratio of the distance functions. . . . . . . .

8 A monotonicity formula

9 Singularity analysis
9.1 Rescaling . . . . . . . e
9.2 CONVErZencCe . . . . . v v v v v it e e
9.3 Limit flow . . . . . . . . .
9.4 Type-I singularities for the APCSF . . . . . ... ... .. ... .......
9.5 Collapsed singularities . . . . . . . . ... o
9.6 Type-II singularities for the APCSF . . . . . ... ... ... ........
9.7 T =o0forthe APCSF . . . . . . . . .. . . .

10 Convexity in finite time

11 Longtime behaviour
11.1 Uniform C%-convergence . . . . . . . . . . ...
11.2 Uniform C?-convergence . . . . . . . . . ..o uv ..
11.3 Uniform C°°-convergence . . . . . . . . . . . i
11.4 Exponential convergence . . . . . . . . . ... ... e

17
17
21
22

24

30

37

45

52
52
o8

73

78
80
90
93
96
101
102
104

105



A Notation and geometric definitions

Al CurvesinR? ... ... ...
A.2 Hypersurfaces in R*™™ | . .

B Useful theorems and equations
B.1 Background from analysis . .
B.2 Parabolic maximum principles

Bibliography

139
139
143

147
147
149

150



Chapter 1

Introduction

In this thesis we investigate constrained curve flows for closed curves in the plane. The
classical curve shortening flow (CSF) is the gradient flow of the length functional of a
given initial smooth curve . That is, the flow decreases the length in the fastest possible
way. In fact, one seeks a one-parameter family of embeddings F : S' x [0,T) — R? with
F(S%0) = % and

oF

ot
for all (p,t) € S'x (0,T). Setting ¥ := F(S4 ), v is the outward pointing unit normal to

Y and k is its curvature function.

(p.t) = —r(p,)v(p, ) (1.1)

Equation (1.1) can be seen as describing the motion of a superelastic rubber band,
with small mass in a viscous medium. One of the earliest sources in the literature for the
problem is the article by Mullins [Mul56], where it was used to model the behaviour of grain
boundaries. After that, Brakke [Bra78] studied the motion for varifolds in the setting of
geometric measure theory. In the parametric setting, the higher dimensional generalisation
mean curvature flow (MCF) was first studied for smooth, compact, convex, n-dimensional
hypersurfaces in R™*! for n > 2 by Huisken [Hui84]. For an arbitrary smooth, embedded,
compact, n-dimensional hypersurface ¥y in R**! the problem is given as follows. Let
the embedding Fy : ¥* — R"! be a parametrisation of ¥y, where ¥" is an abstract
n-dimensional manifold. We seek a one parameter family of maps F : ¥ x [0,T) — R*+!
with F'(-,0) = F satisfying

oF
ot
for all (p,t) € X" x (0,T), where H is the mean curvature of the evolving smooth hy-

(pvt) = —H(p,t)l/(p, t)’ (12)

persurface ¥y := F(X"t). Huisken proved that closed, convex hypersurfaces evolving
under (1.2) stay convex and shrink smoothly and exponentially in finite time to a round
point, that is, they shrink to a point and when suitably rescaled converge to a round unit
n-sphere. For curves in the plane, Gage and Hamilton [GH86] showed that embedded,
closed, convex initial curves evolving under (1.1) stay convex and embedded until they
smoothly and exponentially shrink to a round point. Grayson [Gra87] expanded the tech-
niques from [GH86] and proved that embedded, closed, potentially non-convex curves stay
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embedded and become convex in finite before they shrink to round point. So, for CSF,
arbitrary embedded curves in the plane stay embedded and only develop one singularity,
that is, when they shrink to a round point in finite time. In [Hui95], Huisken gave a
different proof for Grayson’s result, by bounding the ratio of the exterior and a suitable
function of the interior distance for the evolving curves. We give more details below.

In this thesis, we want to study the CSF, but ask that either the area enclosed by the
evolving curve or its length is maintained during the flow. The resulting two flows have
different motivations. The (enclosed) area preserving curve shortening flow (APCSF) can
be seen as the motion of a super elastic rubber band that surrounds an incompressible
fluid. It keeps the enclosed area of the curve fixed and decreases the length of the curve
the fastest way possible. The flow has applications for shape recovery in image processing.
The length preserving curve flow (LPCF) is the planar version of the so-called thread flow.
Imagine a wire I' in space which is either closed or has two endpoints. Let ¥ be a space
curve which is closed or attached to the ends of I'. Consider a soap-film (minimal/least
area surface) spanning this wire-thread boundary. An optimal theorem would be that
the thread flow starts with an arbitrary smooth surface spanning the wire—thread com-
bination and moves this towards a minimal surface by keeping the length of the thread
fixed and decreasing the area of the spanning surface in the fastest possible way. In the
limit the thread will consist of arcs of constant curvature. The latter is know to hold for
the thread boundary of a spanning minimal surface. For the LPCF, we remove the wire
and assume that the thread is closed and that the enclosed area increases the fastest way
possible until the thread forms a circle. If we surrounded the region in which the thread is
flowing by a large wire circle then the area between the thread and the wire circle would
be decreased by this flow. Hence, for both the APCSF and the LPCF, the limit curves
solve the isoperimetric problem. We call the resulting two flows constrained curve flows
(CCF). Concerning the evolution equation for the embedding, either one of the constrains
can be achieved by adding a global forcing term to the speed in (1.1).

We state the problem as follows. Let ¥ be an embedded, closed, smooth curve in R?,
parametrised by the embedding Fy : S' — R2. We seek a one-parameter family of maps
F:S'% [0,T) — R? with F(-,0) = Fp satisfying the evolution equation

oF

Sy 0:0) = (h(t) = 5(p. D) v(p.1) (1.3)

for all (p,t) € S! x (0,T), where the global term h : [0,7) — R is given by either

2 1
hap(t) = —— or %m:%éﬁml
t

for the APCSF respectively the LPCF and L(%;) := fEt dH! is the length of the curve.

The APCSF was first studied by Gage [Gag86]. Using the techniques from [GH86], he
proved that initially embedded, closed, convex curves stay embedded, smooth and convex,
and converge smoothly to a circle of radius 1/ A(Xg)/7, where A(Xy) is the enclosed area
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of the initial curve. An analogous result for the LPCF was obtained by Pihan [Pih98],
also using the techniques from [GH86] and [Gag86] and showing smooth, exponential con-
vergence to a circle of radius L(X)/(27).

For dimensions n > 2, a generalisation of (1.3) are the (enclosed) volume preserving
mean curvature flow (VPMCF) and the (surface) area preserving mean curvature flow
(APMCF). Let ¥ be a smooth, embedded, compact, n-dimensional hypersurface in R"**1
and let the embedding Fy : ¥ — R™*! be a parametrisation of ¥y, where X" is an abstract
n-dimensional manifold. We seek a one parameter family of maps F : ¥ x [0,T) — R**1
with F(-,0) = Fy satisfying

oF

oy 0:0) = (h(t) = H(p.D)w(p.1) (1.4)

for all (p,t) € ¥™ x (0,T), where the global term suffices A(0) > 0 and is given by either

B fEt HdH"™

s, H? dH"
hvp(t)_ Hn(zt) = =2

or hap(t) = W

for the VPMCEF respectively the APMCF.

The VPMCEF has been first studied by Huisken in [Hui87] for embedded, closed, uni-
formly convex hypersurfaces. He proved that the solution exists globally, stays uniformly
convex and converges smoothly and exponentially to a sphere. Escher and Simonett [ES98]
weakened the assumption on the initial surface and showed that embedded, compact,
closed, connected hypersurfaces in R™*! that are in a certain sense C't5-Hélder close
to a sphere converge smoothly to a sphere. In [Li09], Li proved smooth convergence of
immersed, orientable, closed hypersurfaces in R"*! to a sphere by only requiring that the
traceless second fundamental form is sufficiently small. In [MSS16], Mugnai, Seis and
Spadaro constructed global distributional solutions.

Similar results exist for the APMCF. McCoy [McC02, McC03] showed that every em-
bedded, closed, compact, strictly convex hypersurface converges smoothly and exponen-
tially to a sphere. In [HL15], Huang and Lin weakened the initial conditions, only requiring
that the L?-norm of the traceless second fundamental form of ¥ is small.

In [CRM16], Cabezas-Rivas and Miquel showed that mean convexity (that is, positivity
of the mean curvature) and positivity of the scalar curvature are non-preserved curvature
conditions for hypersurfaces of the Euclidean space evolving under either the VPMCF or
the APMCEF.

The VPMCEF has also been studied in the following non-Euclidean settings. In [EH91],
Ecker and Huisken used VPMCF to construct spacelike hypersurfaces of constant mean
curvature in cosmological spacetimes. In [HY96], Huisken and Yau proved with VPMCF
that every 3-dimensional, asymptotically flat manifold with positive mass is uniquely fo-
liated at infinity by stable spheres of constant mean curvature. They defined the centre
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of mass using this constant mean curvature foliation. In particular, they showed that,
for sufficiently large initial spheres, the solution of VPMCF exists for all times and con-
verges smoothly to a constant mean curvature sphere. For arbitrary ambient compact
Riemannian manifolds, Alikakos and Freire [AF03] showed that if the initial hypersurface
is sufficiently close to a small geodesic sphere, the evolution is defined for all times and
(under certain conditions) will converge smoothly to a leaf of a local foliation. In [Rig04],
Rigger constructed a foliation of asymptotically hyperbolic 3-manifolds by 2-surfaces with
constant mean curvature which are homeomorphic to spheres. Cabezas-Rivas and Miquel
showed in [CRMO7] that for compact hypersurface of the hyperbolic space which are con-
vex in a certain sense, convexity is preserved for all times and the flow converges smoothly
to a geodesic sphere.

Furthermore, there are the following results for VPMCF with Neumann free bound-
ary conditions. Athanassenas [Ath97] investigated axially symmetric surfaces between
two parallel hyperplanes and showed, for large volumes, smooth convergence to constant
mean curvature surfaces. In [Ath03], she proved that singularities form a finite, discrete
set along the axis of rotation and that type-I singularities are asymptotically cylindrical.
In [AK12], Athanassenas and Kandanaarachchi studied the convergence of axially symmet-
ric hypersurfaces. Assuming that the surface does not develop singularities along the axis
of rotation at any time, they showed smooth convergence to a hemisphere, when the initial
hypersurface has a free boundary and satisfies Neumann boundary data, and to a sphere
when it is compact without boundary. Cabezas-Rivas and Miquel generalised these re-
sults for revolution hypersurfaces in a rotationally symmetric ambient space, see [CRMO09]
and [CRM12]. In [Harl3], Hartley investigated the VPMCF with Neumann boundary
condition for hypersurfaces that are graphs over a cylinder. If the initial hypersurfaces are
sufficiently close to a cylinder of large enough radius, smooth convergence to a cylinder
follows. Furthermore, he showed that there exist global solutions to the flow that con-
verge to a cylinder, which are initially non-axially symmetric. In [MB14, MB15], Maeder-
Baumdicker studied APCSF for convex curves in the plane with Neumann boundary on
a convex support curve and showed smooth convergence to an arc for sufficiently short,
convex, embedded initial curves.

In this thesis, we study the constrained curve flows (1.3) for embedded, compact,
smooth initial curves ¥y which satisfy

/ kdH! > —7 (1.5)
FO([pv‘I])

for all p,q € S! (see Figure 1.1 for an illustration). We show for both floes that an initially
embedded curve satisfying (1.5) stays embedded as long as it is smooth. Moreover, condi-
tion (1.5) is sharp, that is, one can construct initial curves which violate (1.5) arbitrarily
mildly and for which the resulting flow self-intersects in finite time. An example is the
initial curve in Figure 1.2 with length sufficiently large compared to the C*®-norm of its
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Figure 1.1: An initial curve and an approximate sketch of the limit circles for both flows.

embedding and for which

/ kdH' < —7. (1.6)
Fo([p.a))

Note that for convex curves | Flp.q]) kdH' > 0 for all p,q € S'. For initial curves satisfy-
ing (1.5), we show that under the APCSF these curves do not develop any singularities
but exist for all times and converge smoothly and exponentially to a round circle, like the
convex initial curves above. For the LPCF, we can exclude a certain class of singularities
and show that solutions which exist for all positive times, converge smoothly and expo-
nentially to a round circle, like the convex initial curves above.

To explain our approach to proving the claim, let us concentrate on the theory of CSF.
For CSF, the maximal time of existence T is finite. It follows that the curvature has to
blow up for ¢ — T" with the lower bound

1

max |K(p,t)| 2 —F——
max In(p, ) 2 —mes

on its growth rate for all ¢ € [0,7). We call a curvature blow-up a singularity and
distinguish between two different kinds, as introduced in [Mul56]: For type-I singularities,

Co

there also exists an upper bound on the growth rate of the form
max k(p,t) < ——
pest (1) 2(T — 1)
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Folq) Fy(p)

Figure 1.2: An initial curve satisfying (1.6).

for all t € [0,T) and some time-independent constant Cy < oo. For type-1I singularities,
there is no such bound, that is,
limsupmax /2(T —t) k(p,t) = o©.
t—T peSt
To analyse singularities, one can follow Hamilton [Ham95a] (for Ricci flow) and Huisken—

Sinestrari [HS99] (for MCF') and introduce a sequence of smooth parabolic rescalings near
the point of highest curvature, that is,

Fy : SIX [—ak,Tk] — R2

for k € N. One can show, that ap — oo and Ty, — To, where Tw = 0 for a type-1
singularity, and Ty, = oo for a type-II singularity. Moreover, the embeddings F}, satisfy
again (1.1) for all k € N. By curvature gradient estimates and the Arzela—Ascoli theorem,
smooth convergence of Fy, — Fy, follows, where for S € {SL R},

Foo : S x (—00,Ts) — R?

also satisfies (1.1). Using his famous monotonicity formula in [Hui90], Huisken showed
that if an embedded curve develops a type-I singularity, the limit curves 32° := F (.S, 7)
of the rescaled solution have to satisfy the equation

f‘foo(pv'r) = <F00(p77_)7 VOO(p7 T)>

for all (p,7) € S X (—00,T). (In fact, he showed this result for all n > 1 and immersed
hypersurfaces.) Thus, it follows that the original curves ¥; have to be asymptotic to
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a homothetically shrinking solution around the singular point for ¢ — 7. Abresch and
Langer [AL86] had previously classified all such solutions as circles and lines. One con-
cludes, in case of a type-I singularity, that the curve shrinks to a round point. For the
type-1I singularities, Hamilton [Ham89] for convex initial curves and Altschuler [Alt91]
for non-convex initial curves showed that each of the above rescaling sequences (Fy)ren
converges to a translating solution Fs : R x R — R? and satisfies

Foo(DyT) = (V, Voo (P, T))

for a fixed vector v € R? and for all (p,7) € R x R. For curves in the plane, the only
solution of this kind is the so-called grim reaper which is, for all 7 € R, given by the graph
of the function

u(o,7) =1 —logcos(o),

where 0 € (—n/2,7/2). To exclude type-1I singularities Huisken [Hui95] considered the
extrinsic distance

d(p7Q7t) = ||F(pat) - F(Qvt)HRZ

Y(p,q.t) = Lft) sin<7rlL(z()’£i’)t>> ,

and the function

where (p,q,t) € S'x St x [0,T) and

(pra,t) = / an!
F([p,qlt)

is the length of the segment F([p,q],t). Then under (1.1), the infimum of the ratio d/¢
is strictly increasing in time unless ¥; is a circle. On the grim reaper infrxg(d/l) = 0, so
that type-II singularities can be excluded. Since T' < oo and a singularity has to form, it
has to be of type 1.

Outline of this thesis

In Chapter 2, we derive the equation (1.4) via the gradient flow approach for the volume
and the area functionals and define the VPMCF and the APMCF as well as the APCSF
and the LPCF. In Chapter 3, we prove evolution equations for the geometric quantities
under (1.3) and draw first conclusions. In Chapter 4, we estimate the derivatives of the
curvature and show that if the flow exists only on a finite time interval then the curvature
has to blow up.

In Chapter 5, we deduce a strong maximum principle for the local total curvature.
In Chapter 6, we show that the curve ¥; stays embedded for all ¢t € [0,7T) provided the
initial embedding ¥ satisfies (1.5) and prove that this condition is sharp. In Chapter 7,
we modify the distance comparison principle of Huisken [Hui95] and prove that, if the
initial embedding ¥ satisfies (1.5), the ratio d/v is bounded from below away from zero
uniformly in time.
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In Chapter 8, we derive an analogue of Huisken’s monotonicity formula for both
APMCF and VPMCEF, see also [MB14, MB15] for the APMCEF.

In Chapter 9, we assume that the maximal time of existence is finite and study cur-
vature blow ups via parabolic rescaling. We rule out type-I singularities for the APCSF
using the monotonicity formula in a similar way as in [MB14, MB15]. Furthermore, we
use the distance comparison principle from Chapter 6 in the same fashion as for CSF
in [Hui95] to exclude singularities that, after rescaling, satisfy infrxr(d/l) = 0. For the
APCSF, these are the type-II singularities.

In Chapter 10, we assume that a solution of (1.3) exists for all positive times and show
that it becomes convex in finite time. In Chapter 11, we rework the arguments for convex
theory from [GHS86], [Gag86] and [Pih98] to prove smooth, exponential convergence to a
circle. We summarise our results in Theorem 11.24 and Corollary 11.26.

In Appendix A, we give a short introduction to curves in the plane and to manifolds
in R, In Appendix B, we state useful theorems and equations.
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Chapter 2

Constrained flows

In this chapter, we derive the constrained gradient flows for the volume and the area
functionals and define the (enclosed) volume and (surface) area preserving mean curvature
flow (VPMCF and APMCF) as well as the (enclosed) area preserving curve shortening
and length preserving curve flow (APCSF and LPCF).

2.1 Constrained gradient flows

Let n,m > 1 and F : M™!1 — R"™™ be a smooth embedding of an orientable, compact,
(n+ 1)-dimensional hypersurface M := F(M"!) with boundary, so that ¥ := F(9M"+1)
is a smooth, compact, embedded, n-dimensional hypersurface without boundary in R*+™.
(Refer to Appendix A.2 for an introduction to differentiable submanifolds of R"*"™.)

We want to find two kinds of steepest descent L2-gradient flows. The first one shall
decrease the n-dimensional surface area of the boundary > and at the same time keep
the (n + 1)-dimensional enclosed volume of M fixed. The second one shall increase the
enclosed volume and at the same time keep the surface area of the boundary fixed. The
latter one was derived by Pihan [Pih98, Section B.2] in the setting of the thread flow,
where a part of the boundary X stays fixed in time. We will adapt his method to both
flows in the following. Let Z := Z; x Zs be a vector space of functions with

1 = {fliM%Rn+m|f1 S COO}

and

Iy = {fg:E—)Rn+m|f2€COO}.

For f = (f1, f2), 9 = (91,92) € Z, we define the inner product on Z

()= [ (g d s [ (g i, (2.1)
M p)
the volume functional

V(f) = / IH = H (M) (2.2)
f1(M)
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and the area functional
A= [ =), (2.3)
f2(%)

Consider a path ¢ = (¢1,¢2) : (=1,1) — Z in C?, along which both V and A are
continuously Fréchet differentiable, and which satisfies

#1(0) = idpy and $2(0) =idy .

The existence of such a path for m = 1 follows from the short time existence, Theorem 2.3.
Set
My = ¢1(t) (M) and Y= a(t)(X)
for t € (—1,1) and define the vector field v(t) = (vi(t), va(t)) by
d
i(t) i= — i
vilt) = 40 ()

for i = 1,2 and t € (—1,1). The Fréchet derivative of the volume functional V is then
given by

d

e V(e(r)) = DV(o(t))(v) = (VV(o(t)), V)1 -

T=t
On the other hand, the first variation of the area formula, Theorem B.6, and the divergence
theorem, Theorem B.7, imply
d (2.2) d

V) Y ) T /M divag, vy dH"!

%‘T:t
ThﬂéB] - / <V17 HMf> dHn+1 + / <V27 V2t> dH" ’
My 2t

where Hjy, is the mean curvature vector to M; and vy, is the outward pointing unit co-
normal to Y;. The above calculations hold for all differentiable vector fields v. It therefore
follows that the gradient of V' exists with respect to (-, -); and satisfies

—Hjy;, onM,;

(2.4)
vy, on >y

VV(o(t) = {

for all t € (—1,1). The same observation can be applied to the area functional A, so that

we obtain
T A@() = DAG)Y) = (VAG(0).v)z
as well as
d (2.3) d n Thm. B.6 . n
T A B ot () M [ dive, voan

since 9%; = (), and where Hy, is the mean curvature vector to ;. Hence, the gradient of
A exists with respect to (-, -); and can be written as

VA@(1) = {(iHE . (25)

for all t € (—1,1). We now derive both gradient flows separately.
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Volume preserving gradient flow. We are looking for the steepest descent flow for
the surface area A which at the same time keeps the enclosed volume V fixed. For given
o > 0, consider the level-set

S,(V):={FeT|V(F)=o}.

To maintain the initial volume during the flow, we need to move tangentially to the set
S, (V) with 0 = V(¢(0)). Since the surface area shall be decreasing, we have to move in
opposite direction to the tangential gradient with respect to (-, - ), which is given by

—vi=vt-v,

where V= is the normal part of the gradient. We calculate

(VV(E), V(E))y = 3V (V(F),V(F)); = ;Ve* =0

to see that the gradient of the level-set function is perpendicular to the level-set. It follows
that VV/||VV|| defines a unit normal to Sx(V') and (VA, VV/|[VV||); is the length of the
normal part of VA. We thus obtain

B Y0) \ YY)

~VIA@H) = <VA(¢“”’ V)] >z V@@ A0
VA1), TV (6(0))r .
= V0. TV (@) ¢ ) VA@L)- (26)

The identity (A.16) for the mean curvature yields
(VA((1)), VV(6(t); = /M (VA ((1)), (VV)1(6(2))) dH™
n / (TAN(6(), (VV)a(6(1))) dH

(24),(2:5) / (0, —Hpp,) dH"! + / (—Hs,,, vs,) dH"
M

¢
(A':16)/ diVEt vy, d?‘[n (27)
3t
and we calculate
(2.1) n n
(VV((0), TV (6(1); 2 /M 1TV (G(EDIP dHmH + /2 1(VV)a(6(0)) dH
t t
2.4
e
Mt Et
:/ |Hg, |2 dH™ + [ dH™ > 0. (2.8)
Mt Et

The identities (2.4), (2.5), (2.7), and (2.8) applied to (2.6) then imply the gradient flow
for the area functional with respect to (-, -)7, up to tangential diffeomorphisms, namely,

—h(t)HMt on Mt

—VTA(t) =
h(t)l/zt +Hy, onl;
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for t € (—1,1), where

fzt diVEt vy, dH™

h(t) := .
O = Ty P 1y, dwe

If we choose m = 1 so that ¥; are closed n-dimensional hypersurfaces in R"*! and H M, =
Hpgn+1 = 0 for all ¢t € (—1,1), we obtain the (enclosed) volume preserving and (surface)
area decreasing gradient flow

~VTA(t) = h(t)vs, + Hy, = (h(t) — Hs,) vy, (2.9)
where vy, is the outward unit normal to ¥, Hy, is the mean curvature and

Jy,, Hs, dH"

M) = g

Area preserving gradient flow. Next, we are seeking the steepest descent flow for the
enclosed volume V' which at the same time keeps the surface area A fixed. To maintain
the initial surface area, we have to move tangentially to the level-set

So(A):={F €T |A(F)=o0}

for 0 = A(¢(0)). Since the enclosed volume shall be increasing, we move in the direction
of the tangential gradient with respect to (-, - ); which is given by

vVi=v-v’.

Here, VA/|[VA]|| is a normal to S;(A) and (VV,VA/||VA|); is the length of the perpen-
dicular part of VV. This implies

VAG(H) \  VAG()
V) = V(@) <VV(¢“”’ VA <t>>H>I||VA<¢<t>>H
— VY1) - gzg E;i E Eg;ijmwt» (2.10)

and we calculate
(2.1)

(VA(o(1), VA($(t))r = /M (VA1 (¢(t))]|* dH" ! + /E 1(VA)2(o(1))||* dH”

(2:5)/ 02 dHn+1_|_ HHEt”QdHn
Mt Zt

|Hs, ||> dH" > 0. (2.11)
P

This time, we apply the identities (2.4), (2.5), (2.7), and (2.11) to (2.10) in order to deduce
the gradient flow on M; with respect to (-, -); up to tangential diffeomorphisms, namely,

—HMt on Mt

V'V(t) =
vy, + h(t)Hy, on %,
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for t € (—1,1), where
h(t) — sz leEt I/é;t dH"™ .
Js, IHs, |2 dH"

If we choose m = 1 so that ; are closed n-dimensional hypersurfaces in R™*! for all
t € (—1,1), then we find the (surface) area preserving and (enclosed) volume increasing
gradient flow

V'V (t) = h(t)Hs, + vy, = (1 — h(t)Hs,) vy, (2.12)
where He dig
h(t) = fE%
Js, HE, dH"

2.2 Constrained mean curvature flows

Let ¥y be a smooth, embedded, n-dimensional hypersurface in R**! without boundary.
Let the embedding Fy : ¥ — R"*! be a smooth parametrisation of . The initial
value problem for the (enclosed) volume preserving mean curvature flow (VPMCF) and
the (surface) area preserving mean curvature flow (APMCF) for hypersurfaces in R™*!
can be defined as follows.

Definition 2.1 (The volume and the area preserving mean curvature flow in R"*1). Let
Yo C R™! be given as above. We seek a one parameter family of maps F : ¥" x [0,T) —
R™*! satisfying F(p,0) = Fy(p) for all p € ¥" and the evolution equation

or

ot
for all p € ¥™ and ¢ € (0,7T), where H is the mean curvature of ¥; := F(X",t), v the
outer unit normal, and h : [0,7) — R is given by either

(p,t) = (h(t) — H(p,t))v(p,1) (2.13)

fzt HdH"
hop(t) i= =1
p3M
for the VPMCF or by
2 n
hap(t) == 7f2t " dHn
fEt HdH

for the APMCF. Additionally, we assume that h(0) > 0.
In this thesis we will be mainly concerned with planar curves that is the case n = 1.

Remark 2.2. (i) For the VPMCF, the evolution equation (2.13) follows directly from
the gradient flow (2.9). For the APMCF, the evolution equation that we deduce
from the gradient flow (2.12) is

G0 = (1= g 10 ) vion). (214
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Note that Pihan works with this speed in his thesis [Pih98]. To find the speed (2.13)
for the APMCF, we introduce a new time parameter

bt
T := do
/0 hap(a)

and define the embedding F : £"x [0,T/hap(T)) — R? by

Moreover,

0 0

L= ()=

or pl )8t
and, since the spatial derivatives are not affected by the transformation, H(-,7) =
H(-,t), v(-,7) =v(-,t), and hap(T) = hap(t) which implies

) = 05 0.0) g0 (1 1L 00 ) i)

= (hap(7) = H(p, 7)) &(p, 7).
(ii) Note that (2.13) is a quasilinear parabolic equation since
(A.17)
—H(p,t)l/(p, t) = H(pﬂf) = AZtF(p7t)

(iii) Static solutions to (2.13) are spheres. On S}, H = 1/R so that hyp, = hap = 1/R.

Theorem 2.3 (Short time existence, Huisken [Hui87, p. 36] for the VPMCF, Pihan [Pih98,
Theorems 4.3 and Corollary 4.4] for the APMCF). For a € (0,1) and k > 3, let o be
an embedded, closed, n-dimensional C*-hypersurface in R™', parametrised by a C*°-
embedding Fy : X" — R%. Then there exists a time T = T(|Fy||cs.) > 0 such that
the initial value problem (2.13) has a unique solution F € C*lk/2L.e/2(xn 5 (0,T)). In
particular, if Yo is smooth so is ¥y for all t € (0,T).

Remark 2.4. The proof in [Pih98] establishes short time existence for the speed (2.14).
As shown in Remark 2.2(i), the flows (2.13) and (2.14) can be transformed into each other
by varying the speed. Hence, short time existence for one flow implies short time existence
for the other.

2.3 Constrained curve flows

Constrained curve flows arise in the special case n = 1 of the constrained mean curvature
flow from Section 2.2. Let 3y be a smooth, embedded, closed curve in R?, parametrised
by the smooth embedding Fpy : S — R2. (Refer to Appendix A.1 for an introduction on
curves.) The initial value problem for the (enclosed) area preserving curve shortening flow
(APCSF) and the length preserving curve flow (LPCF) for curves in R? can be defined as
follows.
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Definition 2.5 (The area preserving curve shortening and the length preserving curve
flow for curves in R?). Let ¥y C R? be given as above. We seek a one parameter family
of maps F : St x [0,T) — R? satisfying the initial condition F(p,0) = Fy(p) for all p € S*
and the evolution equation

oF

S (0:0) = (h(t) = 5(p. ) v(p.1) (2.15)

for all p € St and t € (0,T). Here,  is the curvature, v is the outer unit normal to
¥ := F(S4t), and the global term h : [0,T) — R is given by either

fEt Kk dH!
hap(t) := T dH
t

for the APCSF or by
5, K2 dH!

hip(t) i= =4——
lp( ) fEt kdH!
for the LPCF.

Remark 2.6. (i) The total curvature of an embedded closed curve is

/ kdH! = 27
P

(see Theorem A.2). Thus, the global terms are given by

2 1
hap(t) = Li: and  hyp(t) = — / K2 dH

where L; := L(%;) is the length of 3.

(ii) Static solutions to (2.13) are circles. On S}, k = 1/R so that hap, = hy, = 1/R.



Chapter 3

Evolution equations and first
consequences

For fixed ¢ € [0,T), we can parametrise ¥; by arc length via the arc length parameter
s(-,t) (see Section A.1 for details). Set R; := L;/(2r). Then s(S',t) = Sj . The arc
length parametrisation

F(-,t):S}%t—HRQ
is given by

F(s,t) = F(p,t)

for s = s(p,t) € S}%t, p € Standt e [0,T). The evolution equation (2.15) applied to the
arc length parametrisation reads

oF O°F _

E(Svt) = @(S,t) + h(t)D(s,t) (3.1)
for all s € S}%w where U(s,t) = D(s(p,t),t) = v(p,t) and we used the identity (A.9) for
the curvature vector. The global term A is still given by either

27 1 -
hap(t) = I or hip(t) = 7 /S1 72 ds;
Ry

where (s, t) = R(s(p,t),t) = k(p,t), and ds; := ds(p,t) = v(p,t)dp. Whenever we will
calculate via the arc length parametrisation, we will do so at a fixed time.

Remark 3.1. The total time derivative of the arc length parametrisation is given by

dF OF s OF
E(S(pﬂf)ﬂf) - E(&t)g(pﬂf) + E(‘g?t)

for s = s(p,t) € S}%t, p€Standte(0,T). Since %F is tangential to X,

dF\" _ JdF |\ oF
ar | T\ aV VT e

We only use the partial time derivative in (3.1) and omit the tangential movement since
the image ¥; € R?, t € (0,7), is the same for both motions. Therefore, we will below
omit the “~” above geometric quantities related to F if these depend on s rather than p.
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The following evolution equations can also be found in [Pih98, Proposition 5.7 and
Lemma 6.12] for the LPCF.

Lemma 3.2 (Evolution equations for geometric quantities). Let F': S!x (0,T) — R? be
a solution of (2.15). Then

gj =k(h— k) (3.2)
i{; _ _g:v,, (3.4)
‘2’: _ (2’;7, (3.5)

where v is the length element and T is the unit tangent vector to ¥y in direction of the arc

length parametrisation.

Proof of Lemma 3.2. We use the evolution equation (2.15) for the embedding, the defini-
tions (A.3) and (A.4) for % and 7, and the identity (A.7) for k to calculate at s = s(p, ?)

dv Al)a aF OF\'? 1 /09 0F OF

at 8t " op v \Ot dp’ Ip
0 GF oF (215) 1/0 oF
el i h— il
<f‘3p ot’ 0p> <8p(( k). 0p>

1 ov OF 1 .2 10v 10F
= H)<3p 8p> Y )<v3p v3p>

(A3),(A) ot — ) <c“;1; 7_> A o(h = w)k.

Next, we again use the definition (A.3) of % and the evolution equation (3.2) of v,

00 090 (10Y 10 (0, 0 (1)0
otds Ot \vdp) wvot\dp ot \v /) dp

621009 1 (h — k) 9
 wOpot 2" KU@p
(A3) 0 0 B 0
= 5591 — k(h E)%

To show (3.4), we apply the definition (A.4) of the vector 7, the evolution equations (3.3)
and (2.15) for % and F' respectively, and the Frenet—Serret equation, Lemma A.1, to

obtain

0T (A4) d OF (33)387F_ h— )8715
ot~ atos  osor T as
(2.15) O

= % ((h—k)v) —k(h—kK)T
S
Lem. A1 Ok ov v Ok
R Ul il O Pl



26 3 Evolution equations and first consequences

For (3.5), we observe that

0=0_92 0 (N0
ot o\ "\ T "ot /)

w N[, 0r\ G On
o’/ ot/ Os

which together with <%I/, V> = 0 yields

so that (3.4) implies

v _[ow N\ 0x .
ot N\Not'T )T T asT
For t € [0,T), let
L(t) ::/ d?-[lz/ dst:/ vdp (3.6)
P S}%t St

be the length of the curve ¥;, and
A(t) == / dH? (3.7)
Q

be the enclosed area of ¥; where €; C R? with 9 = ;.

Lemma 3.3 (Evolution equations for L and A). Let F : Stx (0,T) — R? be a solution
of (2.15). Then

dL
— =27h — / K% dsy (3.8)
dt gl
Ry
and
dA
— = hL — 2m. 3.9
pn ™ (3.9)

for allt € (0,T).

Proof. The evolution equation (3.2) of the length element and Theorem A.2 for the total
curvature yield

dL 3.6) d / ov (3.2)/
— 0 dp | = —dp = h— d,
dt dt < st Y p> g1 Ot P st d v dp

:h/ /idst—/ RsttThr&AQ%rh—/ K2 dsy .
S S S

1 1
Ry Ry
The first variation of the area formula, Theorem B.6, the divergence theorem, Theo-

1
Ry

rem B.7, the evolution equation (2.15) of the embedding, and again Theorem A.2 imply

dA 37) d 5 Thm. B.6 . OF 2
e dt/ﬂtd’H = /ﬂtdWQt(at)d?—[

Thf&B'7/ <8Far/> an! 2 / (h = k) (v,v) dH!
pn 8t it

:/ (h—/-@)d”H,l:h/ d?-ll—/ rdH TN L - o O
3t 3t 3t
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Lemma 3.4 (Isoperimetric inequality). For an embedded closed curve ¥ in the plane,
L? > 47 A
with equality if and only if ¥ is a circle.

Corollary 3.5 (L and A under the APCSF). Under the APCSF, for t € [0,T), the
enclosed area Ay = Ag is constant and the length of the curve L; is strictly decreasing
unless ¥y is a circle of radius \/Aog/m. Consequently,

Lo > Ly > 2+/mAy
for all t € (0,T) with equalities if and only if Xy is a circle.

Proof. Recall that h,, = 2m/L. We use the evolution equation (3.9) for the enclosed
volume of the curve and conclude that %A = 0 which implies A; = Ay for all t € [0,7).
The evolution equation (3.8) for the length of the curve, Cauchy-Schwarz (B.3), and
Theorem A.2 for the total curvature yield

L 38),(B3) 472 1 2 m Ae 4m2 (2m)2
A T
¢

dat - L L L L

with equality if and only if the curvature is constant on ;. The isoperimetric inequality,
Lemma 3.4, leads to the lower bound L% > 4w Ay = 4w Ay, with equality only on the circle.
If ¥, is a circle, the radius is thus given by L;/(27) = /Ao /7. O

Corollary 3.6 (L and A under the LPCF). Under the LPCF, fort € [0,T), the length
of the curve Ly = Ly is constant and the enclosed area A; is strictly increasing unless ¥y
is a circle of radius Lo/(2m). Consequently,

Ay < Ay < L/ (4m)
for allt € (0,T) with equalities if and only if ¥y is a circle.

Proof. Recall that hy, = [ #* dsy/2m. The evolution equation (3.8) for the length of the
Ry

curve then immediately implies that %L =0and L; = Lo for all t € [0,T). By the evo-
lution equation (3.9) for the enclosed volume of the curve and by Cauchy-Schwarz (B.3),

we obtain

dA 272
il S S —
iy A

with equality if and only if the curvature is constant on ;. This holds for embedded
curves if and only if ¥ is a circle of radius L;/27m = Ly/2m. Furthermore, the isoperimetric
inequality, Lemma 3.4, leads to the upper bound 474; < L? = L% with equality only on
the circle. O

Remark 3.7. Since, by Corollary 3.6, for the LPCF the length of the curve is indeed not
changing, we can parametrise by arc length via the arc length parameter s : S'x[0,T) — R
with s(S',¢) = Sp, = S}%o for all t € [0,T). The arc length parametrisation F : S}%O X
(0,T) — R? evolves according to (3.1) and

1
hip(t) = o /Sl k% dsy .
Ro



28 3 Evolution equations and first consequences

Lemma 3.8. Let F : S'x [0,T) — R? be a solution of (2.15) with initial curve Xo. Then,

hap(®) < [Klmax(t)  and hlp(t)gmin{wmax(t) /S 1 |n|dst,L(EO)milax(t)}

2 2
Ro

for allt €[0,T).

Proof. For all t € [0,T), we can estimate the global terms by

1 1
Rap = — Kk dsy < |K|max— dst = |K|max -
L st L st
Ry Ry
and
1 x
=t [ s s [ .
21 si 27 st
Rg Ro

Lemma 3.9 (Evolution and bounds for hap). Let F : S x [0,T) — R? be a solution
of (2.15) with initial curve Xo. Then hay, is strictly increasing on [0,T) unless ¥; is a
circle of radius \/Ao/m. Consequently,

27 us
2 R (0) < By (1) < ] — 1
0< 2 = hap(0) < huplt) < /5 (3.10)
for all t € (0,T) with equalities if and only if Xy is a circle.
Proof. Recall that h,, = 27/L and apply Corollary 3.5. O

Lemma 3.10 (Lower bound for hyp). Let F : S'x [0,T) — R? be a solution of (2.15) with
iatial curve Yg. Then

2
0< =2 < hy(t) (3.11)
Lo

for all t € (0,T) with equality in the middle inequality if and only if ¥ is a circle.

Proof for Lemma 3.10. Cauchy—Schwarz (B.3) and Theorem A.2 for the total curvature

yield
1 B3 1 ’ 2r)?2  2r
hyy = — 2ds, > ds, | A _ T
P or st st = 21 Lo </Sl " St) 2rLy Ly
Ro Ro
with equality if and only if ¥; is a circle. O

Lemma 3.11. Let F : S'x [0,T) — R? be a solution of (2.15) with initial curve $o. Then

o(p, ) = exp (/Ot k(b — 5)(p, 7) d7> o(p, 0)

for every (p,t) € S (0,T). Hence, the curve ¥4 is reqular for allt € [0,T) (see Section A.1
for a definition).

Proof. The claim follows directly from the evolution equation (3.2) of the length element
and Lemma B.1. O
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Corollary 3.12. Let F : S' x [0,T) — R? be a solution of (2.15) with initial curve Yo
and let ty € [0,T). Then the operator % is uniformly elliptic on 3, for all t € [0, to].

Proof. For (p,t) € S'x [0,T) and s = s(p,t) € S}%t,

62_1(9(18)_182 1<6F 82F>a

05> vdp \vdp) w2ap* wvi\adp Ip*/ dp
Since F € C*®(S! x [0,T)), B%F7 g—;F and |k|max are bounded on [0,%p]. Lemma 3.11
yields that 1/v is bounded on [0, %] so that the operator 88722 is elliptic on [0, ¢o]. O

Next, we show that the solution stays in a bounded region during the time of existence
if T < co. We thank Theodora Bourni for the idea to the proof of the following Lemma.

Lemma 3.13 (Boundedness on finite time intervals). Let F': S'x[0,T) — R? be a solution
of (2.15) with initial curve Xo. Let T < oo and suppose that supjgryh < oo. Then there
exists a constant ¢ = c(]/i\max(O),sup[(J’T) h) < oo such that

[1E(p,t) = F(p, 0)]| < 2ct
forallp e S' and t €[0,T).
Proof. Set
¢ := max {|/1|max(0), sup h}

[0,7)

and let v € R? ||v|| = 1, be arbitrary. We use the evolution equation (3.1) and the
identity (A.9) of the curvature vector to calculate

2
<§t - 552) ((F(p,t) = F(p,0),v) + 2ct)

(3.1),(A.9) h(t) (v (p,t),v) — k(p,0) (v(p,0),v) + 2¢

> —sup h — |K|max(0) +2¢ >0
[0,1)

and

2
<§‘t . g) ((F(p,t) = F(p,0),v) — 2ct)

= h(t)(w(p,t),v) — £(p,0) (¥ (p, 0),v) — 2¢

< sup b+ |K|max(0) —2¢ <0
[0,7)

for s € S}%t and t € (0,7). The weak maximum principle, Theorem B.16, yields
—2ct < (F(p,t) — F(p,0),v) < 2ct

for all p € S! and ¢ € [0,T). For fixed p € S! and ¢ € (0,T), choose v = F(p,t) —
F(p,0)/|[F(p,t) — F(p,0)|| to obtain

I|F(p,t) — F(p,0)] < 2ct. O



Chapter 4

Estimates on curvature derivatives

In this chapter we bound the derivatives of the curvature for smooth solutions of (2.15)
like in [Pih98, Section 6.3]. His methods work for both flows. In [Gag86] very little detail
is given. We also show that if the maximal existence time 7' is finite, the maximum of the
curvature has to blow up when time approaches T

Lemma 4.1 (Evolution equations for the curvature). Let F' : St x (0,T) — R? be a
solution of (2.15). Then

g  0?
<8t — a82>/€ = (H — h>/€2 (41)
o  0*\0k "k
for allt € (0,T) and n € N, where
Pn:Pn<h,m,g§,...,gS:> (4.3)

s a polynomial in all its entries and Py = 0.

Remark 4.2. The evolution equation (4.1) of the curvature consists of a diffusion term
g—;n and a reaction term (k — h)x2. For the classical CSF (1.1), the reaction term is &3
which causes the curvature to blow up in finite time. For the constrained curve flow, this
behaviour is weakened by the global term for points with positive curvature and amplified

for points with negative curvature.

Proof. We follow the lines of [Pih98, Proposition 5.7 and Lemma 6.13]. For (4.1), we use
the definition (A.6) of x, the evolution equations (3.3), (3.4) and (3.5) for %, 7 and v
respectively, the fact that <%T, T> = 0, as well as the Frenet—Serret equation, Lemma A.1,
to obtain

<9f-”~(A:.6)_3<V a7’>:_<a’/ a7'>_<,, aa7’>
ot ot \ ' 0Os ot’ Os " Ot Os
(3.5),(3.3) ok Ot 0 or 0
- <asT’ a> - <V’838t —rh =)

Lem. A1 _ g _% _ al (_6) 825 2
G <1/, 9 < 8su>> + k(h — K) <1/, 9s) — 22 " (h—k).
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We prove (4.2) by induction over n. The rule (3.3) for interchanging the spatial and time
derivative and the evolution equations (4.1) for the curvature yield

00k (33) 0 Ok (h— H)ﬁ%
otds  0s 0Ot 0s
4 0 (& 2 .
P (882 (h—K)K (h K)Iias
Pk Ok 20K Ok
=53 —thﬁl%-i-?):‘i 5 (h—/ﬁ;)/ﬁ;a
Pk

Ok
=93 + (4/673}1)/%%.

For the induction step, we assume (4.2) to hold for all i € {1,...,n} for a fixed but
arbitrary n € N. We abbreviate

, Ok
R = %

and again use (3.3) to calculate

n) . 8”%&

d (). 2™
an K 5am

0
el k™M (h ) e ()
" gsar” (TR
(4.2) 0 82H(n) (n) (n+1)
s ( 5.2+ (n+3)k — (n+2)h) k"™ + Po_y | + (k — h)kk
oA n n
=9 + (n+ 3)266"k™ — (n + 2)hi' k™)
P
+ ((n+3)k—(n+ 2)h)/-m("+1) + le + (k — h)rK D
2,.(n+1)
= MT + ((n+4)k — (n—|—3)h)mﬂ("+1) +P,. O
s

Corollary 4.3 (Pihan [Pih98, Proposition 5.8], see also [Hui87, Theorem 1.3]). Let F :
Stx [0,T) — R? be a solution of (2.15) and let k > 0 on Xg. Then k > 0 on ¥ for all
te (0,7).

Proof. Assume that there exists a point (pg,tp) € S! x (0,T) with r(po,to) = 0. We
estimate

Lem. 3.8 3
k< e(Bo)|K|pax < 00

max

|(h = &)

on S' x [0,7). Hence, we can apply the strong maximum principle, Theorem B.17(iii),
with respect to the evolution equation (4.1) of k and obtain that x = 0 on S! x [0, ]
Since ¥; is closed for t € [0, to], this is a contradiction. O

Corollary 4.4. Let F : S'x (0,T) — R? be a solution of (2.15). Then

o 0 k)’
o 0%\ [0\ e\ 0"k \?
8”
n 2(9—;13”,1 (4.5)

for allt € (0,T) and n € N, where P,_1 is defined in (4.3).
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Proof. We follow the lines of [Pih98, Corollary 6.14]. The evolution equation (4.1) of the
curvature implies

OK? 0%k
kT L 9(k— h)KS.
5 arw +2(k—h)k
Furthermore,
k2 0 (. Ok Pk oK\
= o) =2kea 2 22 )
0s? 8s< K&s’) "osr T (88)

Subtracting the above two equalities yields (4.4). To prove (4.5), we again abbreviate
k(M) = %/ﬁ. By the evolution equation (4.2),
92k (™)

%(K(n))Q — 9 52 + 2((n +3)k — (n+ 2)h)/€<l€(n)>2 n 2/{(n)Pn71

and again

2
0?2 2 0 I 52k Ak
Y (. o < MY ") _9,.(n)
0s2 (KJ ) Os (2’i Js > 2k 0s2 +2 0s '

Subtracting the above two equalities yields the claim. O

Proposition 4.5 (Bounds on curvature derivatives). Let F : S'x[0,T) — R? be a solution
of (2.15) with initial curve ¥o. Let n € N and, for 1 € {0,...,n — 1}, C; be a constant
such that

'k

sup @

t€[0,T)

(t) < (.

max

Then there exists a constant C, = Cp, (n, Coy...,Cn_1, ‘%/@{max(())) such that

"k

osm Cn

sup
te(0,T)

max

Proof. We prove the claim by induction over n in a similar fashion to [Pih98, Proposi-

tion 6.15]. Assume that there exists a constant Cy so that |k|max < Cp on [0,7). We

abbreviate k' = %K, and k(™ = %m. Let A = A(Cp) be a positive constant to be

chosen later. The evolution equations (4.4) and (4.5), and the estimate h < ¢(Cp) from
Lemma 3.8 imply

( oz > ()2 + Ar?) D g (8’””/)2 1 2(dr — 3h)r (')

ot 0s? ds
_op (28 2+2A( — h)K?
88 K K
Lem. 3.8
<" 2((4k = 3h)K — N) (1) + e1(Co) - (4.6)

We estimate
(4k — 3h)k < A(Ch)

and set
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Then, (4k — 3h)k — A < —1/2 and
2 (4.6)
((gt - (;932) ((H/)2 + Alﬁiz) < (W) 4= —(K)? = AP+ AR + ¢
< —((K)? + AK?) + c2(Co) .

Assume, that ((x')? + Ax?) reaches a value
K > max { ((x')* + A/{Q)max(O), e}

for the first time. Then, at that time

0 82 N2 2

which is a contradiction. Hence,

(") + Ak?)_ (t) <max {(()* + /\/<52)maX (0),c2}

max

and thus
"f/’max(t) < 01(007 |/‘$,‘max(0))

for all t € [0,T). The induction step is done in the same manner. We assume for arbitrary
but fixed n € N that there exist constants C; for [ € {0,...,n — 1} so that

'k

sup
t€[0,T)

max

Let A be again a positive constant to be chosen later. We use Young’s inequality (B.1) to
estimate 2"tV P, < 2(k(™*t1)2 4 2(P,)? and the evolution equation (4.5) to obtain

(3 2) () eate)

2

(n+1) ,

— 9 <3ﬂ8 ) +2((n+4)k — (n+ 3)h)/<c</<;(”+1)> 4ok p.
S

2

(n) 2

—2A (82 ) +2A((n+2)/<a—(n+1)h)/i(/<a(")> +2A0xMP,
S

< 2(((n +4)k— (n+3)h)k+1— A) (M"H))Q +e3(A)P, . (4.7)
We estimate
((n+4)k — (n+3)h)k < A(n, Co)

and choose 5
A(n,Cy) =+ 3
Then

((”+4)’€—(n+3)h)/ﬁ;+1—1\§—%
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and from (4.7) it follows that

(53 ) () o)) == (<) v
g_(@mmf+A@wf)+q,

where ¢4 = c4(n, Cy, ..., Cy). Like before, we assume that (K(n+1))2 + A(m(”))Q, reaches a

value
K > max { <(/<(”+1))2 +A (&(”))2> (0), 64}

for the first time. Then, at that time,

og(;_§g<@wmf+A@wf>g4«HMw

which is a contradiction. Hence,

<<,{(n+1>)2 A (K<n>)2>

and thus

(t) < max { <<,€(n+1))2 LA (K(”))2>

(1) < ¢(Co,. o, Coy || (0)) =2 Gt
for all t € [0,T). O

(0), 04}

max max

}ﬁ(n-i-l)‘
max

Lemma 4.6. Let F : S'x (0,T) — R? be a solution of (2.15). Then,

om H2m Ok gntam—2,
<8tm a 882m> os™ =h Hgnt2m—2 + Poyom—3 (4.8)

for allt € (0,T) and n,m € N, where P, is defined in (4.3).

Proof. We prove the claim by induction over m. The evolution equation (4.2) yields the
claim for m = 1. We assume that (4.8) holds for some m > 2 and use again (4.2) to obtain
omt 9 +2 +2m—2
S = = (WO PO 4 B )
(12 (r2m+2) | ((n+2m+3)k — (n+2m + 2)h) k"™ 4 Pyion o
+ P 4P s
— /‘i(n+2(m+1)) + PlK(n+2(m+1)—2) +Pn+2(m+1)—3 . 0
Corollary 4.7. Let F : S'x [0,T) — R? be a solution of (2.15) with initial curve Xo. Let
neN, meNU{0} and
sup ”%‘max(t) < CO-
t€[0,T)

Then there exist constants Cy m = Cpom (n,m, o, Co) such that

o o
ot™ Qs

sup
te[0,T)

(t) < Cpm -

max
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Proof. The case m =0 and n = 1 is Proposition 4.5, where

Ok

Ci=0C <C()7 95

(0)> = C1(X0, Co) -

For m = 0 and n = 2, Proposition 4.5 yields
0’k

tes[gg’) 052 | x|

with

0%k
Cy = Cy| Cy, Ch, 952 (0) ) = C2(X0, o) .

For arbitrary m,n € N, Lemma 4.6 and again Proposition 4.5 imply

— 2
M 9"k \2 Lom. 46 [ O"2my gntam=2 . Lem. 4.5
=\ genrzm T Dggmama tPiam—3) = Cnjam = Cnm,

o™ dsm
where
an—',—le,£
Cn,m = Cmm (n, m, C(), . ,Cn+2m_1, W (0)) = Cmm(n, m, 20, C()) . D
max

Corollary 4.8. Let F : S'x [0,T) — R? be a solution of (2.15) with initial curve Xo. Let
n e N, me NU{0} and
sup |K|max(t) < Cp.
te[0,T)

Then there exist constants C_'n,m = _nm(n,m,T, Y0, Co) such that

o™ "k

_— < Chm -
otm opn (1) < Con

sup
te[0,T)

max

Proof. Lemmata 3.8 and 3.11 implies
0 < c1(T, o, Co) < v(p,t) < (T, X, Co) (4.9)

for all (p,t) € S! x [0,T). By identity (A.3) for the arc length differentiation and Propo-
sition 4.5,

0K (A.3) Ok Prop.4.5 _
—(p,t)| = t)— t),t < T
ap(p7 ) U(pv )85 (8(]?, )7 ) (4_9) Cl( ) 07C0)

for all (p,t) € S!x [0,T). Furthermore, we estimate

o, ol or o'
op’ Op?

v—(p,t)| =
55 Pt
so that, for n € N, by Proposition 4.5 and an induction argument over n,

opn| 0s

For n,m € NU {0}, we use Lemma 4.6 and (4.10) to obtain

(A.8) (4.

4.9)
v k| < (T, o, Co)

- — -1
)| =

Prop.4.5 _ _
€ Co(n, T, %0,Co,Chy .., Co) = Co(n, T, 50,Co) . (4.10)

am on (4.10) _ _
" Pn+2m’ < Cn+2m = Cn,m(nv m, T7 207 CO) . O

Lem. 4.6 |
ot™m Op™
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Proposition 4.9. Let F : S'x [0,T) — R? be a solution of (2.15) with initial curve Yo,
where T is the maximal time of existence. If T < 0o, then |Kk|max — 00 fort — T.

Proof. We follow the lines of [Hui84, Theorem 8.1] and show the claim by contradiction.
Assume that there exists a constant Cy < oo with supp 7) |£[max < Co. By Lemma 3.8,

sup h < ¢(20, Co) . (4.11)
[0,7)

Let (t1)ren be a sequence in [0,T) with ¢, 2 T for k — oco. Then, for all p € S! and
k < I, by the evolution equation (2.15) and (4.11),

(4.11)
Hdt(215)/ h—kldt < 2Co(t —ty).
ty

Hence, (F(-,t))ken is a uniform Cauchy sequence of smooth functions on S' which,
by Theorem B.13, has a continuous limit Fr : S' — R2. By standard real analysis Fr is
independent of the chosen sequence. By Corollary 4.8, for all n,m € NU{0}, ¢ € {0,...,n}
and j € {0,...,m}, there exist constants C; ; = C; ; (i, j, T, X0, Co), so that, for all p € St

tl
< /
tk

Cor. 4.8
dt < Cn,m(tl - tk) 5

ot OnF
otm+1 gpn

8m8"F b — 8m8"F( b)
8tm8" P atm op™ P

_1)/ om o
173

otm Op™
where ¢, m = cum(n,m,Co,C1,...,Cij,...,Cnm) = cpm(n,m,T, %0, Cp). Thus, for all
m,n € NU {0}, (8;; ng:LF( . ’tk))keN is a uniform Cauchy sequence of smooth functions
on S' which has a continuous limit F;"™ : S' — R?. Since the convergences are uniform,

Theorem B.14 yields that Fr € C°°(S!) with

o> ((h=r)v)

O™ O"Fr _ pnm

atm Jpn T
for every n,m € NU{0}. Furthermore, F'(-,t) — Fr(-) smoothly for ¢ / T. The short
time existence, Theorem 2.3, applied to the initial smooth curve Y yields that there

exists a time
T = T(|Frlcse) > T

and a smooth solution F : St x (T,T) — R? of (2.15) with F(-,t) — Fr(-) smoothly for
t \, T. Hence, we have found a smooth extension of F to [0, T). This is a contradiction. [J



Chapter 5

Angles and local total curvature

In this chapter, we exploit the relationship between angles of tangent vectors and local
total curvatures and prove a strong maximum principle for the latter.

Define 9 : St x [0,7) — [0,27) to be the angle between the z1-axis and the tangent
vector, such that

arccos((e1, Tp)) if (ea, Tp) >0
D(p,t) =
2. %) {27‘(‘ — arccos((e1, Tp)) if (eg, 7)) <0.
Since v = (T2, —T1),
cos(¥) = (e1,T) = — (e, v) and sin(9) = (e2, 7) = (e1,v) . (5.1)

For a fixed time ¢t € [0,T), we can define the angle ¥ via the arc length parameter by
9 S}%t — R. As explained in Remark 3.1, we can omit the “~” for simplicity.

Lemma 5.1 (Derivatives of ¥, [GH86, Lemma 3.1.5]). Let F' : S'x (0,T) — R? be a
solution of (2.15). Then
09 09 Ok
9s ot 0s’
Proof. By (5.1), we can write 7 = (cos(),sin(?)) and v = (sin(9), — cos(¢)). We differ-
entiate the tangent vector

K and (5.2)

or _orow _ o
ds 09 0s 0s
and combine the above calculation with the Frenet—Serret equation, Lemma A.1. Differ-

entiating in time yields

or _orov _ oo
ot oot ot
The claim follows from the evolution equation (3.4) of 7. O]

According to the definition of the total curvature, we define the local total curvature
0:S!'xS'x [0,T) — R by

O(p. q.t) = / Y ) o, Ddr (5.3)



38 5 Angles and local total curvature

6(q,p)
0(p,q

Figure 5.1: 6(p,q) =27 — 0(p, q).

where we integrate in direction of the parametrisation with outward unit normal (A.5),
that is, for p,q € [0, 27),

q
/ K vdr if p<q
P

2 q
/ /@vdr—i—/ Kvdr if g <p.
P 0

By Theorem A.2, for p,q € [0,27), p < g,

0(p.qt) = (5.4)

P q 2m
o ThA-2 / Koudr = / Kvdr —l—/ Kvdr +/ kodr & 0(p,q,t) +6(q,p,t) (5.5)
st 0 P q
(see Figure 5.1). Furthermore,
q e1nl. . q 1 /1_9
6(p,q,1) :/ k(r tyo(r, t) dr FE 1/ L 00 e = 0(q,t) — O(p.t) + 2m0, (5.6)
p P

where w(p, q,t) € Z is the local winding number. Hence, 6 is the angle between the tangent
vectors at two points F'(p, t) and F(q,t) modulo the local winding number (see Figure 5.2).
If ¥; is embedded and convex, then

q
0<0(p,q,t)= / kodr < / kodr PEA2on (5.7)
P St

for all p,q € S!.

Tr

— 0(p, q) 0(q,7)

Figure 5.2: 6(p,q) > 0 and 6(q,7) < 0.
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Lemma 5.2. Let ¥ = F(S') be an embedded, closed curve in the plane. Then

sup 0 =27 — min 0.
SixSt SixSt

Proof. If ¥ is convex, the claim follows directly from (5.7). If ¥ is non-convex, then

mingi, 1 @ < 0 and maxgi, g 6 > 27. Let the maximum of # be attained at pg,qg € S*,

that is,

5.5

(5.5)
max (Po, qo) 7 — 60(qo, po)

Then, for all p,q € St, p # q,

5.8 5.5
2m — 60(qo, o) (&0 9(po, qo) > 6(q,p) D o — 9(p,q) .

Consequently,
0(q0,p0) < 0(p, q)

for all p,q € S!, p # ¢, which implies
min 6 = 6(qo, po) 8 2T — max 6.

Six St Six St

Theorem 5.3. Let F : S'x (0,T) — R? be a solution of (2.15). Then

0
9 A £) =
<8t Et> 9(paQa ) 0

(5.8)

for all p,q € S* and t € (0,T). Moreover, all spatial and time derivatives of @ are smooth

in St x Stx [0,T).

Proof. We differentiate at p,q € S',

a q
0 a/ wodr=—r, and  7,(0) 2 8/ Kodr = k.
P p

v, Op vg 0q

According to the two-point differentiation (A.10), for a,b € R,

(aTp @ qu)Z(H) = azrf,(H) + b27'§(0)

and

(5.9)
Ay, 0 = 72(9) + 73(9) =" T4(kq) — Tp(kp) -

(5.9)

(5.10)

The evolution equations (3.2) and (4.1) of the length element and the curvature and

integration by parts imply

q s(q;t) q
@ (E;:’)) 8/ K vdr (3;2) / % ds; + / H@ dr
ot ot J, s(p,t) ot p Ot

s(g,t) 2 q
4D / <gs';" — (h— n)ﬁ) ds¢ + / k(h — k)k vdr
s(p,t)

p

= Tq(Kq) — Tp(kp) .

(5.11)
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Subtracting (5.10) from (5.11) yields the claim. Moreover, since

n 0"k
Tp(ﬁp) = @(S(pvt)at)a

we obtain for n,m € N,

(5.9) n(?”*lka ok
(aTp ® b7¢)"0(p,q,t) =" W(S(Qat)’ t) — anm(s(}?,t%t)
as well as omg om-1 5 gm—1
m (511) m— j B m— j
atm (pu Q7t) - atm,1 68 (S(Q7t)7t) 825””“1 68 (S(pvt)at)
and for n > 2
om om an—lﬁ N om an—ll,<v

o (aTp &b 74)"0(p,q,t) = anW(S(q’ t),t) —a WW(S@’ t),t).
Since F is closed and smooth, all spatial and time derivatives of § are smooth in S'x S'x
[0,T). O

For t € [0,T), define

Omin(t) := i 0(p,q,t d Omax(t) := O(p,q,t).
(t) oo (p.q;t)  an (t) pomax (psa,t)

Corollary 5.4 (Maximum principles for ). Let F : S' x (0,7) — R? be an embedded
solution of (2.15).

(i) (Weak maximum principle). For allt € [0,T) and for all p,q € S* there holds
Omin(0) < 0(p, 1) < bsup(0) -
(ii) (Strong mazimum principle). Let to € (0,T) such that for some po,qo € S', po # qo,
(a) 0(po,qo,to) = suPsixsixjo,r) 0, o
(b) 0(po, qo, to) = infgigix o) 0-
Then,
(a) 8 = maxgi,six(o4] 0 0 Stx Stx [0,t0], or
(b) 0 = mingi, g1y, 0 in Stx Stx [0, ).
(iii) Suppose Ouin(0) < 0, then 0min(0) < 8(p,q,t) for all p,q € S' and t € (0,T).
Remark 5.5. A similar result for the angle 9 was attained in [Gra87, Lemma 1.9].

Proof of Corollary 5.4. By the definition (5.4) of 8, for fixed p € S! and ¢ € [0,T),

. G4) . 1
lim 0(p,q,t) =" lim kodr =0
NP e Jp

and

) (5.4) ) q 27
lim 0(p, q,t) =" lim kodr + Kvdr = Kvdr = 27 .
q/'p a/'rJo P st
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Hence, 6 is discontinuous along the diagonal {p = ¢} C S'x S'. The set
S:=8'x8"\{p=4q}

is an oriented cylinder. The closure S has two boundaries

0S)- = {(p,p)|peS'} and (08); = {(}i}%r,p> ’pESl} ,

where

0=0 on (9S)_ x[0,T) and 0=2r on (90S)+ x[0,T).

However, by Theorem 5.3 and the continuity of the integral, 6 is smooth in S x [0,7).
Claims (i) and (ii) are immediate consequences of the weak and strong maximum principle,
Theorems B.16 and B.17, and the evolution equation of §, Theorem 5.3, applied to S x
[0,7"). For claim (iii), we first state that by (i),

Gmin(o) < 9(p7 q, t) < esup(o)
for all t € [0,7) and for all p,q € S'. Suppose that there exists a time tg € (0,7T) and
(po, qo) € S with

0(po, g0, to) = Omin(0) < 0.
Then (ii) yields

0= min 0=0L;(0)<0
SIxS1x[0,t0]

in St x S x [0,%9]. But 6(p,p,t) = 0 for all p € S' and for all + € [0,T) which is a
contradiction. O

We need the following result from Angenent.

Proposition 5.6 (Zero sets of solutions of parabolic equations, Angenent [Ang88, Theo-
rems A-D]). Let u: S x (0,t9) — R be a classical solution of

ou 0%u Ou
— = t)=— + b(p,t t
gt ~ Py T )5+ clp,
with either
(i) S = [0,1] and u is bounded with either Dirichlet, Neumann or periodic boundary

conditions, or
(ii) S =R and |u(p,t)| < Aexp(Bp?) for some A, B < co.

Assume that the coefficients satisfy

d d o2 o 0
1 Z4. —a, —a,b, —b, —b and L>®
a, a ’8ta’ 8pa’ 8p2a’ T ap ana c &

on S x (0,tg). Then, for any t € (0,ty), the set of zeros of u(-,t)

z(t) == {p € S|u(p,t) = 0}

is finite for S = [0,1] and discrete for S = R. In addition, if for some p1 € S and
t1 € (0,to), u(p1,t1) has a multiple zero (i.e., if u and %u vanish simultaneously), then,
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(i) for S =10,1], #z(t) strictly decreases for t € (t1,1), and
(ii) for S =R, there exits a neighbourhood U = [p1 — e, p1 +¢€| X [t1 — 0,11 + d] such that

o u(prte,t) #0 for|t—t1| <§
e u(-,t+0) has at most one zero on the interval [py — €,p1 + €]

o u(-,t—0) has at least two zeros on the interval [p1 — €,p1 + €.

Corollary 5.7 (Zero set of the curvature). Let S € {SLR}. Let F: Sx (0,T) — R? be an
embedded solution of (2.15) for S =S! or of CSF for S =R with k 0. Let to € (0,T).
Then, for any t € (0,tg), the set

z(t) = {p € S| «(p,t) = 0}

is finite for S = S' and discrete for S = R. In addition, if at some point (p1,t1) € Sx(0,to)
we have k(p1,t1) =0 and %m(pl,tl) =0, then

(i) for S =S, #2(t) strictly decreases for t € (t1,t9), and
(ii) for S =R, there exits a neighbourhood U = [p1 — e, p1 +¢€| X [t1 — 0,11 + d] such that

o k(pr e, t)#0 for|t—t1| <§
e k(-,t+0) has at most one zero on the interval [p1 — €,p1 + €]

o k(-,t—0) has at least two zeros on the interval [p1 — e, p1 + €].

Remark 5.8. A similar version of this statement for CSF can be found in [Gra87,
Lemma 1.9], see also [Manl1, Proposition 4.3.1].

Proof of Corollary 5.7. The curvature suffices the evolution equation

‘ 2 31 1
Or 4D Ok (2 A 8< a“)ﬂn—h)%{"

ot 052 vdp \vdp
1 0% 1 JOF 0°F\ 0k 5
~ ) gy

with h = 0 for CSF. Define the coefficients

1 1 /OF 0°F
=, b‘__v4<8p’8p@> and c:=(k—h)k

and let tgp € (0,7). Lemma 3.11 about the regularity of the curve can also be applied to
S = R, that is, the length element v is bounded from above and from below away from
zero on [0, tp]. Furthermore, also v~! is bounded on [0, tg]. By Corollary 4.7, all derivatives
of k are bounded in (0,%p). Thus, the derivatives

0 0 0? 0 0

O 2o L0 % and Lo
o’ ap® 92wt M By

are bounded on [0, tg] and we can apply Proposition 5.6 to x : S x (0,t9) — R. O
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Corollary 5.9. Let F : S x [0,T) — R? be a solution of (2.15) with initial curve Y.
Then,

d 1 Ok
- Et\m\d% = -2 > 88(s,t)‘

{s€s(Sht) | k(s,t)=0}

fort € (0,T). Consequently, there exists a scaling invariant constant Cp, = Cp(Zg) > 1
such that
h(t) < Chlklmax(t)

forallt € [0,T), where Cy, = 1 for the APCSF for all embedded curves and for the LPCF

in case the curve is convexr. Moreover,

(e | ) i) (9.0 < olp.) < xp(e(Ch) | ) ) (9.0

for every (p,t) € Stx (0,T).

Proof. We follow the lines of [Alt91, Theorem 5.14]. A similar proof can be found

in [Manll, Proposition 4.3.2]. For t € (0,T), the integral [ |x|ds; is positive and
R

finite. Let t

S = {SCS}gt‘/@(s,t) >0 for all s € S or (s, t) <0 for all s € S}

be the family of open intervals S in S}%t where k # 0. By Corollary 5.7, S; = S}zt. For
S € S, we define [s7,s5] := S and sign(S) := sign(x(s,t)) for s € S. Then k(s?,t) =0
for ¢ = 1,2 and, for consecutive segments Sy, So and Ss,

sgl = 5‘192 and 352 = sf3 . (5.12)

Furthermore, we observe that either

. Ok Ok
sign(S) > 0, g(sf,t) >0 and g(sg,t) <0
or 3 3
. K K
sign(S) <0, %(sf,t) <0 and E(sg,t) >0

so that in both cases

sin(s) (G065, - G680 ) = - | Freto| - [Foeo] . a9
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e SES F(S,t)
(3.2),(4.1) 53 0%k 9
= Z / sign(S) 552 (h—r)k* ) + k(h — K)K| dst
SeS, ¥ 51 5
) 2 0%k
= Z sign(S) . @dst
SeS, 81
Ok Ok
= 3 sien(s) ( Geisf.0) - 60
SES:
(5:12),(5.13) Z %(8 t)’ <0
ds

{s€s(S% ) [ r(s,t)=0}
for t € (0,T). Thus, [y | dH! is decreasing in time on [0, T'). By (5.6), the integral is the

sum over the absolute value of the angles between inflection points, it is scaling invariant.

The conclusions about the local terms and the length element follow directly from
Lemmata 3.8 and 3.11. O



Chapter 6

Preservation of embeddedness

In this chapter, we show that under the initial condition €,;,(0) > —7 the curves ¥; stay
embedded for ¢ € [0,7).

The extrinsic distance function d : S! x St x [0, T) — R is given by
We define the vector w : (S'x S'x [0,T)) \ {d = 0} — R? by

F(g,t) — F(p,1t)
d(p, q,t)

w(p,q,t) =

(see Figure 6.1 for an illustration).

Lemma 6.1. Let ¥ = F(S!) be a curve in the plane and p,q € S' with d(p,q) # 0. If
(W, Tq —Tp) =0, then (w, 74 + Tp>2 = |7 + Tl

Proof. For unit tangent vectors, we have
(Tp+ T4, Tg = Tp) = ITplI” = 74> = 0.

Thus, w and 7, + T, are both perpendicular to 7, — 7, and are therefore parallel, that

is, L(w, T4+ Tp) = 0. Using |w| = 1, we calculate
(W, g+ 1) = [[W[?|l7g + 7> arccos® (L (w, 74 + 7)) = |74 + 7. u
F(g,t) F(p,t)
w(p,q,t)

Figure 6.1: The vector w.
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Lemma 6.2 (Spatial derivatives of d). Let p,q € S, d(p,q) # 0, a,b € R and &(p, q) :=
aty, @ bry. Then

£(d) = (w, b — a"'p> (6.1)
and
2 1 2 1 2 2 2
£(d) = — (W, bTy —atp)” + gHqu —atp|® + (W, kg — a’Kp) | (6.2)
where kK = —kV is the curvature vector.

Proof. The definition (A.10) of the two-point differentiation implies

§(d) =&(I1F (g, t) = F(p, 1))

=~ (F(.0) = F(p.0), (7 © br) (Fla,1) ~ F(p, 1))
P20 2 (F (g, 0) — F(p,0),bro(F(0,) — a7, (F(p, 1))

= (w,bry —at)p) .

Next, we calculate

1 a( 1 OF
(g,t) 0q \v(p,t) Op

and use (6.1) and the Frenet—Serret equation, Lemma A.1, to differentiate twice:

Ve, Tp = ”

(p,t)> =0 (6.3)

&) = e(e() ™ ¢ (Pla.0) - Flpt).bry —amy) )
OIS o (F(0,0) = F(p 1), b, — ay)? + < org = oyl
+ 4 (@) = Pp.0). 0,7, — Vi, )
Ler. A1 —é (W, bTy — aTp)® + é”ln’q —arp|? + (W, b’k — a’Kp) . O

Corollary 6.3. For p,q € St with d(p,q) # 0,
(Tp ®0)(d) = — (W, Tp) and (06 7¢)(d) = (w,Tyg)
as well as
2 1 2 1 2
(Tp©1g)7°(d) = 4 (W, Tg+7p)" + EHTq + TplI7 (W, kg — Kp)

Lemma 6.4 (Evolution equation for d). Let F : S'x (0,T) — R? be a solution of (2.15).
Then

od

a: <Wa"5q_"5p>+h<w7uq_’/p> (6.4)

for p,q € St and t € (0,T) with d(p,q,t) # 0.
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N
P NTANY,
Figure 6.2: See Remark 6.6(iii).

Proof. The evolution equation (2.15) for the embedding yields

o = DRt~ F. 1)
- % <F(q,t) — F(p,t), %Z;(q,t) - %Z(p,t)>
CL) 1w, (h— kg)vg + (h— Kyp)vy)

=h(w, vy —Vp) + (W, K — Kp) .

O]

Theorem 6.5 (Preservation of embeddedness). Let ¥y be a smooth, embedded curve sat-
isfying Omin > —m, and let F : S' x [0,T) — R? be a solution of (2.15) with initial curve

Y. Then ¥y = F(S4t) is embedded for all t € (0,T).

Remark 6.6. (i) Lemma 5.2 yields that mingi, g1 6 > —7 implies maxgi, g1 0 < 3.

(ii) Counterexample 6.7 shows that in order for embeddedness to be preserved it is crucial

to assume that the initial local total curvature lies in the interval [—m, 37].

(iii) In Figure 6.2 the angles are all between —7 and 3, for example,

0(p,q) = —m, O(q,p) =3m, 0(q,7) =27, O(r,q) =0, O(r,p)=m.

Proof of Theorem 6.5. Let

47
0. —
se<,L0>

(6.5)



48 6 Preservation of embeddedness

and define d. : S'x S'x [0,7) — R by

de(p,q,t) == d(p,q,t) —¢et.

Since Y is embedded, d.(p,q,0) = d(p,q,0) > 0 for all p,q € S', p # q. Assume that the
curve Y; touches itself for the first time at time to € (0, T') and points po, g0 € S*, po # qo-
Since

d=(po, qo, to) = —eto <0

and d is in CO(S'x S'x [0,p)), there exists a time t; € (0,%9) and points p,q € S, p # q,
with

de(p7Q7t1) =0
for the first time. Then
od, 9
2SS0, gd) =0 and  €(d)20 (6.6)

at (p,q,t1) and for all £ € Ty ¢,)% ® Tp(g,)Xe- Furthermore,

d(p,q,t1) = et1 >0 (6.7)
and
d ad. (6.6),(6.5) 47
a, b B = 9 7t + 9 < . 68
. (pa,t) = —, - (P q,t) T (6.8)

By (6.6), (6.7) and &(d.) = £(d) for all § € T, ;)X © Tp(q4,)2t, Corollary 6.3 yields
0=—(w,7p) and 0= (w,Tg) (6.9)

at (p,q,t1) so that 7, = +7,. Assume that 7, = 74. Since ¥, is embedded, the curve
has to cross the connecting line between F'(p,t1) and F(q,t1), that is, there exists a point
p < r < q with

de(p,r,t1) = d(p,r,t1) —et1 < d(p,q,t1) —et1 = de(p,q,t1) =0
This is a contradiction. Hence, 7, = —74. By (5.1),
cos(¥p) = — cos(Vy) and sin(¥p) = —sin(dy)

so that ¥, — ¥, = 7 and

0, t1) 2 2nk + 7 (6.10)
for k € Z. By Remark 6.6, § € [—, 3| initially and, by Corollary 5.4(iii),

Omin (t) > Omin(0) > —7
for all t € (0,7). Lemma 5.2 yields

Omax(t) < 37
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for all t € (0,7). Thus, (6.10) implies that 6(p, ¢, t1) = 7 and since ¥; is embedded for all
te [0, tl],

—Vp =V =W. (6.11)
By (6.7), (6.9) and Lemma 6.1,
<W>Tp+7'q>2 = ||p + 74l1? (6.12)

and, by Corollary 6.3, (6.6) and £2(d.) = £2(d),

Cor.6.3,(6.6) 1 5 1 9
0 < _Q<Wa7'p+7'q> T EHTP“‘T@{H +{w, kg — Kp)
(6;2) <W, Kg — K',p> (613)

at (p,q,t1). However, the evolution equation (6.4) of the distance and the bounds (3.10)
and (3.11) for the global terms yield

ad . (6.11),(6.13)  (3.10),(3.11) 4
. (paQ7t) (6:4)h<wqu_yp>+<waf<'q_"‘/p> > 2h > i,
Ot |1, Lo
which contradicts (6.8). O

The next example shows, why the condition iy (0) > —m is sharp.

Counterexample 6.7. Gage [Gag86, p. 53| suggested the following counterexample. Pi-
han [Pih98, Section 5.4] gave an incomplete proof for its validity which we will fix here. If
we allow local total curvature smaller than —7, then there exist counterexamples for any
given minimum

emjn(O) < —T.

For the curve in Figure 6.3, Onin = 0(p1,p2) € (=27, —7). We will construct a solution
of (2.15) with embedded initial curve ¥y that intersects itself in finite time. Fix Ky > 0.
Let S be the set of all smooth, embedded, closed curves in R? that satisfy Omin < —,

[ Follcs.asty < Ko (6.14)
and
L(2) = Ly > 87Ky, (6.15)

where Lg is chosen big enough so that curves like in Figure 6.3 are in S. By the short
time existence, Theorem 2.3, there exists a time 7" = T'(Kj) so that
[Fll ¢s.as110/20 (s10,7/2)) < K1(Ko) -

In particular,

OF! OF!
o 0:t) = (. 0)| < K112, (6.16)
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Figure 6.3: See Counterexamples 6.7

where F'! := (F,e;), and, by (2.15) and (6.16),
—K1t%% < (h(t) — k(p,t)) v} (p, t) — (R(0) — K(p,0))v  (p,0) < Kt/ (6.17)

for all p € S' and for all ¢ € [0,7/2], where v! := (v, e1). Set

T —a/2
751 = tl(Ko) := min {12—‘, <Lof(1> } . (618)

Then (6.17) holds for ¢ € [0,¢;]. Let ¥ € S be a curve like in Figure 6.3, which is symmetric
about the zy-axis. Let p,q € S! be located as in the picture so that

v(p,0) = —v(q,0) = —e; and k(p,0) = k(q,0) =0. (6.19)

We use the lower bounds (3.10) and (3.11) for the global term to estimate

OF! 2.15 (6.17) o

W(p’ t) ( = : (h(t) - n(p’t))yl(p7 t) < (h(O) - H’(p7 0))1/1(]), O) + -[{ltl/2
(3.10),(3.11) 21 T o(6.15) T
6.18),6.19) L(X0) Lo Ly (6:20)

and likewise

1 .
I 00) 2 (h(t) — nla. ) 0.0) 2 (O) — wla.0) (a.0) — Kt

(3.10);3.11) A T (6£5) T
©6.18).6.19) L(Z0) Lo Lo

(6.21)
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for t € [0,¢1]. We can smoothly deform a curve like in Figure 6.3 to achieve arbitrarily
small distance between F'(p,0) and F'(q,0) without exceeding the upper bound (6.14) or
changing the length (6.15). Hence, we can choose an embedded initial curve ¥y with

7t
F'(p,0) = —F'(q,0) = TL;
Then,

b gpt (6:20),(6:22) ¢, 7ty

Flp,t)) =F'(p,0)+ | —-t)dt < 50— 7=

(p,t1) (. 0)+ | 1) 2Lo Lo

" FY(q,t1) = F'(q,0) + ! aFl( t) dt CAYe _mh | mh
g t1) = F'(q, ot = o Lo

so that the curve has crossed itself by the time ;.

(6.22)

<0



Chapter 7

A non-collapsing estimate

In this chapter we will adapt the methods from Huisken [Hui95] to obtain estimates that
imply a certain non-collapsing behaviour of the evolving curves. The main tool used in
this chapter is a comparison between the behaviour of the extrinsic and intrinsic distance
function. First, we continue to calculate various spatial and time derivatives of the distance
functions. The expressions for the spatial derivatives can all be found in [Hui95].

7.1 Interior distance functions

The intrinsic distance function [ : S x S'x [0, 7)) — R is given by
q
l(p,q,t) = / v(r,t)dr.
P

Remark 7.1. Notice that for an embedded closed curve F(S'), I(p,q) = L — I(q,p) and
d/l > 0, where we set (d/l)(p,p) = 1 for p € S!. The curve segment F([p,q]) is a
straight line if and only if d =1 on [p,q] x [p,q]. Otherwise, there exist pg,qo € S! with
d(po,qo0) < l(po,qo), implying ming, (4 (d/l) < 1. The infimum of the ratio d/I thus
measures how close a curve is to being a line.

Let F(S!) be a circle of radius R. Then, for all p,q € S!, there exists an angle
B(p,q) € (0,7] with
l(p,q) = B, 9)R,

where R := L/(2m). By the geometric definition of the sine function,

sin(g) = d}{; and B = é

(see Figure 7.1 for an illustration) so that

. [ L . ([~
d= 2Rs1n<2R> = 7T51n<L> .

This motivates the definition of the function ¢ : S'x S! x [0,T) — R with

(o, g,1) 1= fjsin(”l(p’q’t)) , (7.1)
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F(q)

R 1/2
d/2

B/2
F(p)

Figure 7.1: Motivation for the function
where L; < co. We set (d/v)(p,p,t) =1 for p € St and t € [0,7T), then (d/¥)(-, -,t) €
CO(Stx St).
Lemma 7.2 (Sine and Cosine). For «, 5 € R,

sin(a £ B) = sin(a) cos(3) £ cos(a) sin(fB) (7.2)
cos(a £ ) = cos(a) cos(f) F sin(«) sin(f) . (7.3)

Remark 7.3. Since sin(m — «) = sin(«),
- 4 l t
o (8528 (= fn) )

Y(p,q,t) = ¥(q,p,t).

Hence, we will later assume that [ < L;/2. For embedded closed curves, we have d /v > 0.

so that

On a circle d = ¢ and thus d/¢) = 1. If a closed curve ¥ is not a circle, then there exist
p,q € St so that d(p,q,t) < ¥(p,q,t) and thus mingi,g1(d/¥)) < 1. The minimum of the
ratio d/1 is thus a measurement of how close the curve is to being a circle.

Lemma 7.4 (Spatial derivatives of [). Let p,q € S, a,b € R and ¢ := aT, ® br,. Then
(D =b—a and (1) =0. (7.4)

Proof. By definitions (A.4) and (A.10) of the tangent vector and the two-point differenti-

ation,
a 0 b o a
£(0) = (an@qu)</p Udr) = (Zap + v@q) (/p vdr) =b—a

and it follows that &2(1) = 0. O
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Lemma 7.5 (Evolution equation for ). Let F : S'x (0,T) — R? be a solution of (2.15)
Then

I q q
a:h/ nvdr—//vadr.
ot » »
Proof. The evolution equation (3.2) for the length element yields
o o [1 70 d
:/ vdr = Udr:/ﬁ(h—/f)vdr. O
ot ot J, p Ot »

Lemma 7.6 (Spatial derivatives of ¢). Let p,q € S', a,b € R and & := at, ® bry. Then

) =cos(T)0-0)  ana 2wy =-Tan( ) 0-ar.

T ik

(7.5)

(7.6)
Proof. The spatial derivatives (7.4) of [ imply

6(w) =cos( 7 ) €0

) = ¢(cos( T ) 0= ) =~ sin( ] ) 0-a)0)

—% sin<71:l> (b—a)?.

and

O
Lemma 7.7 (Evolution equation for ). Let F : S'x (0,T) — R? be a solution of (2.15).
Then
l q q
a—d}:cos - h/ fm)dr—/ K% vdr
ot L » »

1

Yoo [ 2 a(TH) - s T
+ - (27Th /S1 K vdr) {s1n<L> 7 cos< >} . (7.7)
Proof. The evolution equations (3.8) and (7.5) for L and [ imply
op _ 0 (L. (T
ot~ ot \x "\ L
_vdL g (wY L (a (ro aldL
Tra\T) T L)\t P
(3.8),(7.5) l

(27rh — / K2 vdr) sin(ﬂl)
T st L
q q
+ cos(ﬁl) (h/ Kvdr — / K2 vdr)
L P P

! 2
-7 <27Th—/81/£ vdr) }
q q
:cos<7rl> (h/ H’Ud?“—/ /@%}d?“)
L P P

1

ml ml ml
Z(91h — 2 inl =) - 2= .
+ < mh /SlH ’Ud?") {Sln<L> LCOS( )}7

L
where we only rearranged terms in the last line.
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a7

Figure 7.2: The upper graph is sin(z)/z, the lower one is cos(z).

Lemma 7.8. For z € [—m, 7],
sin(x) > x cos(x)

with equality if and only if x =0 (see Figure 7.2 for an illustration).

Proof. For z € (—n/2,0) U (0,7/2), we calculate,
. .9
d <s1n(m)> _ .o (x) 1 -

dax \ cos(z) cos?(x)  cos?(x)

Hence, |sin(z)/cos(z)| > |z| for z € (—n/2,0) U (0,7/2). On (—m, —7/2) U (7/2,7),
sin(x)/x > 0 and cos(z) < 0. For x = 0, we have that sin(x)/z = 1 = cos(x). For z = +m,
sin(z)/x = 0 and cos(z) < 0. O

—_—

Corollary 7.9. Under the APCSF the function v evolves according to
q q
8—w:cos m 27T/ m;dr—/ w2 vdr
ot L L J, »
1 [/ (2m)? 9 & l ml
+W(L—/Slf<c vdr | 4 sin ) 1esl T (7.8)
92 q q
< cos m ﬂ/ /ﬂ}dr—/ kZvdr ) | (7.9)
L L J, »

with equality in (7.9) if and only if either Xy is a circle, or [ = 0.
Proof. Since | € [0, L], we have 7l/L € [0, 7], and Lemma 7.8 implies

(™) eos(™) 5 0
sin 7 Lcos )2

with equality if and only if [ = 0. By Cauchy—Schwarz (B.3),

W—/ /{2vdr§(27£)2—(27r)2 =0
Sl

L L

with equality if and only if ¥; is a circle. Hence, (7.9) equals (7.8) if and only if [ = 0 or
>t is a circle. O

Corollary 7.10. Under the LPCF the function v evolves according to

oy (nl “ ‘,
Fn —COS<L> <h/p /ﬂ}dr—/p K vdr) . (7.10)
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Proof. For the LPCF, the global term is given by h = fsl k2 vdr/(27), so that the second
term in the evolution equation (7.7) of v is zero and we are left with (7.10). O

Next, we calculate the derivatives of the ratio d/.

Lemma 7.11 (Spatial derivatives of d/v). Let p,q € S!, d(p,q) # 0, a,b € R and
§:=at, ®bry. Then

d d ml
§<¢> = ; (W,brq —atp) — e cos<L> (b—a)

and
d 1 , 1
& <1/1> i (w,brq —aTp)” + @Hb"q — ary|?
1 2(b—a) l
~ % (w, V2 kgvy — a2/<p1/p> R (W,bTq —atp) cos<L>

d l d l
+ ﬁ% sin(i) (b—a)*+ 2$ cos? <7;) (b—a)?.

Proof. The spatial derivatives (6.1) and (7.6) of d and ¢ imply

(5) = pe - ew) = § by = amy) = Syeos( T ) 6-a).

By also applying the second spatial derivative (6.2) and (7.6) of d and v, we obtain

§2<Z> - §<;§(d) - 1;250#))

1 1 d 1 d
= JSZ(CZ) ~ 2 (&(d), &(¥)) — @52(1&) T2 (£(v),&(d)) + 2@ €)1
1 1 1
= " <_d (w,brg — a‘rp>2 + gHb’rq —atp|* - (w, Vhgvy — aQHpr>>
- 52 (W, brq —atp) cos<7£l) (b—a)+ 522 Sin(?) (b—a)?
+ 253 cos? <7Z> (b—a)?. O
Corollary 7.12. For p,q € S' with d(p, q) # 0,
d 1 d l
(Tp®0) <1/1> ==7 (W, Tp) + e cos(?) (7.11)
d 1 d l
(0 Tyq) <¢> = v (W, Tq) — e cos(l) (7.12)
as well as
d 1 1
(Tp @ Tq)2 (¢> = _@ (W, Tq — Tp>2 + @HTCI - 7'1D||2
+ L (W, kg — Kp) (7.13)
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and

d 1
(tp© Tq)2 (77[)) = _@ (W, T + Tp) d?/) HTq + TpH2

+l<w& — Kp) — — (W, T +T>cos<ﬂl>
1/} ) Vg P wQ q p L

+4152L i <7FZ> —1—8530 52 <7rl> . (7.14)

Lemma 7.13 (Evolution equation for d/). Let F : S'x (0,T) — R2? be a solution
of (2.15). Then

gt(Z) _11p<<w’“q—ﬁp>+h<w’"q_yp>>

'(52COS<7TZ> (h/pqﬁvdr—/qu{Q’UdT‘>
+ 77522 </Sl HQUd’I"—Q’]Th> {sin(?) — 7ZCOS(?)} .

forp,q € St and t € (0,T) with d(p,q,t) # 0.

Proof. The identity follows directly from the evolution equations (6.4) and (7.7) of the
distance functions d and 2. O

Corollary 7.14. Under the APCSF the ratio d/v evolves according to

o (d 1 2m
i) = (o) T mve =)
_QIZZQCOS(EZ> (?/j)qﬁvdr—/pqmzvdr>
d 21)? l l l
+ rwz (/Sl K2 vdr — ( Z) ) {sin(l) — ECOS<TL>} (7.15)

o [4 q
- 1;)12608(7;> <I7j/ /ﬂ;dr/ K> vdr) , (7.16)
p P

for p,q € St and t € (0,T) with d(p,q,t) # 0, where the third term in (7.15) vanishes if
and only if either ¥, is a circle or l =0, such that in particular equality holds in (7.16).

Proof. For the APCSF, we have that h = 27/ L. We use the estimate (7.9) for the evolution
of ¥ to estimate (7.15) from below. O

Corollary 7.15. Under the LPCF the ratio d/iv evolves according to

]

- $COS<?) (h /q Kovdr — /q K> vdr> . (7.17)
P P

forp,q € St and t € (0,T) with d(p,q,t) # 0.
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Proof. The claim follows from Lemma 7.13 since for the LPCF

/ﬁ2vdr27rh:(). OJ
Sl

7.2 Behaviour at a minimum of the ratio of the distance
functions

In this section we prove that, under the initial condition €, (0) > —m, the ratio d/v is
bounded from below uniformly in time. We start with a lemma which hold for general
closed, embedded, planar curves.

Lemma 7.16. For a € R, 1+ cos(a) = 2cos?(a/2).
Proof. By (7.3),

(

1 + cos(a) S + cos?(a/2) — sin?(a/2) = cos?(a/2) + cos?(a/2) = 2cos?(a/2). [

Lemma 7.17. For p,q € St,

0
|Tp + TqH2 = 4 cos® <(1)2, q)> )

Proof. We abbreviate 6 := 6(p, q) and use the identity (5.6), that is, 6 = ¥, — 9, + 27w.
The representation (5.1) of 7 and the subtraction rule (7.3) for the cosine function imply

(Tp,Tq) &l ((cos(Vp),sin(dp)), (cos(dy),sin(dq)))
= cos(¥)p) cos(¥y) + sin(V,) sin(Vy) @8 cos(Vq — Up) 58 cos(6) .

Lemma 7.16 yields
0
T 4+ 1% = To,Tp) +{Tg, Tg) +2{(Tp, Ty) =2+ 2cos(f Lemﬁ7'164c082 — . O
P q P Tp 9 Tq p» Tq 5

Lemma 7.18. Let 0(p,q) € (0,7] and (w,Tp) = (W, T4) = cos(0(p,q)/2) for a vector
w € R2. Then either

(i) (w,v,) = —(w,v,) = —sin(0(p, q)/2), or
fii) (w,0y) = — (w,0g) = 1.

Proof. The angle 0 := 6(p, q) is invariant under rotations in the plane, thus we may assume
w = ej. Since /2 € (0, 7/2], the definition (5.1) of ¥ and the assumptions yield

5.1)

cos(Vp) (3 (e1,Tp) = cos(i) >0

and 0
cos(y) (%D (e1,Tq) = COS<2> >0.
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Hence,
0 0 (5.6)
Uy, Uy € {2,27{'—2} and Vg —Vp+ 21w ="0€ (0,7, (7.18)
where w € Z.
Case (a): Assume that
0 0
ﬁpzﬂq:§ or ﬂp:ﬁq:27r—§.
From (7.18) follows that 27w € (0, 7] which is impossible for w € Z.
Case (b): Assume that
o 0
19p227r—§ and 19q:§.
Then 0 p
(e1,vp) (%0 sin(v¥,) = sin <—2 + 27rk> =— sin<2>
and p p
(e1,vq) D sin(vq) = sin(2 + 2771) = sin<2>
as claimed.
Case (c): Assume that
0 0
19,,25 and 19q227r—§.
From (7.18) follows that
—0+42rw =20 ¢€ (0,n],
so that
mw =6 € (0,7]
which yields # = w and w = 1. Hence,
T 3T
’lgp = 5 and 19(1 = —?
so that 51
. . (T
(e1,vp) ="sin(vy) = s1n<§) =1
and 5
(e1,vq) = sin(dy) = sin<27r> =-1
as claimed. O

We thank Theodora Bourni for ideas used in the proof of the next Lemma.
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Lemma 7.19 (Global spatial minima of d/i). Let ¥ = F(S!) be an embedded, closed
curve in the plane. Let p,q € S', p # q, such that ¥ crosses the connecting line between
F(p) and F(q). Then (d/v)(p,q) cannot be a global spatial minimum for the function d/v.

Proof. Let ¥ = F(S') be an embedded, closed curve in R? so that it crosses the connecting
line between F(p) and F(q) (see Figure 7.3 for illustrations). That is, there exists an r € S,

r # p,q, with
F(r) = F(p) + w(p,q)||F(r) — F(p)| -
Set
d:=d(p,q), dy :==d(p,r) and dy :=d(r,q).
Then

d=dy+ds.

Furthermore, set

| = l(pv Q) 5 ll = l(pv 7”) and l2 = l(’l“, q) ’
in Lll >0 nd n LZQ >0
S I a 5 I3
cos Lll <1 and cos Ll? <1
L L '

This and the addition rule (7.2) for the sine function implies

si M = si mh coS il + si ml2 cos ™
in i = smi 7 L T L
71'[1

Since 1,13 € (0, L),

as well as

0=s(p) <s(r) <s(q).

(7.19)

(7.20)

(7.21)

)

(7.22)

0=s(p) <s(q) <s(r).

Figure 7.3: F(r) lies on the connecting line between F'(p) and F(q).
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Set
Yi=9(pq),  Yr=vpr) and = 9(rq)
and assume that d/1 attains its global minimum at (p,q). Then
d_d d_d
(N (R
We parametrise ¥ by arc length, so that s(p) = 0. Then either 0 = s(p) < s(r) < s(q) or
0 = s(p) < s(q) < s(r) (see Figure 7.3).

and (7.23)

(a) Assume that 0 = s(p) < s(r) < s(q). Then | = [ + [ and the definition (7.1) of ¢
and (7.22) imply

Ty . (wl\ (722) (7wl . [l (11 ™ ™
Lz/; = s1n<L> < s1n<L + sin 7 = Lwl—i-Lng. (7.24)

(b) Assume 0 = s(p) < s(q) < s(r). Then | = L — (I3 + l2) so that the subtraction
rule (7.2) for the sine function and (7.22) yield

0 () g (2L Tl
¥ T ) T L

T2 o () cos <7T(ll+l2>> — cos(n) sin<”(l1+l2)>

L L
. 7T(l1 + lg) (1.22) | 7l . 7o
—sm< 17 ) < sm<L>—|—sm<L>
T, T
= L% + LT/JQ- (7.25)

Hence, in both cases,

(7.24),(7.25

)
(4 Y1+ o (7.26)
which together with (7.19) and (7.23) yields

dy (7:23) d (7.19),(7.26) dy + do dy (7:23) d (7.19),(7:26) dy + do

—_— > = > and — > —

(1 P Y1 + o (25} (0 Y1+ o
so that

di (1 +p2) > (di +d2)n and da (Y1 + 2) > (d1 + da)t2 .

Adding both inequalities implies

(di + d2) (1 + 2) > (di + d2) (1 + o)

which is a contradiction. Thus, d/v cannot have a global minimum at (p, q). O
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Now we can prove a similar result to [Hui95, Theorem 2.3].

Proposition 7.20 (Behaviour at a minimum of d/v). Let ¥y be a smooth, embedded
curve satisfying Omin > —7m. Let F: S'x [0,T) — R? be a solution of (2.15) with initial
curve Xg and let ty € (0,T). Suppose that d/v attains a local spatial minimum at (p,q)
at time tg. Then the following holds:

(1) if 0(p,q,to0) € (0,7] and (w,v,) = — (w,vy) = —sin(6/2), then

0 d
ar - ) 7t >07
Ko <1/)> (p,q,)

or

(i1) if 0 € (m,2m) U (2m,3m) or 0 = w and (w,v,) = — (w,v,) = 1, then (d/¢)(p, ¢, o)
cannot be a global spatial minimum, that is,

L ipato) > min (-, - 1)
wp7Q7 0 Slelw s 75 00)

(iii) if 0(p,q,to) € (—m,0), then (d/¢)(p, q,to) is bounded below by a positive constant

d
C* = C*(%) < min —(-, -,0):
(°>—§P£§1¢(”)’

(iv) if O(p, o) € {0,27}, then

(a) for the APCFS,

0 d
o - ) 7t >07
8t|t:t0 <¢> (p q )

(b) for the LPCF, (d/v)(p,q,to) cannot be a global spatial minimum, that is,

4 ipate) > min (-, - 1)
wPaQaO Sl><81¢ y “Hl0) -

Theorem 7.21 (Lower bound on d/v). Let ¥y be a smooth, embedded curve satisfying
Omin > —7. Let F: S'x [0,T) — R? be a solution of (2.15) with initial curve Xo. Then
d .
(0
for all p,q € S and all t € [0,T) and where C* = C*(Xg) > 0 is the constant from
Proposition 7.20.

Proof. Assume that d/i falls below C* and attains v € (0, C*) for the first time at time
t1 € (0,T) and points p,q € S!, p # ¢, so that

. d . d
C >’Y:¥(p7Q7t1):SIE<1§1 E() 7t1) (727)
is a global minimum and
0 d
v — ,q,t) <0. 7.28
5 (5) wan (7.28)
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Recall that in Proposition 7.20(ii) and (iv)(b) the minimum is not a global minimum.
Hence, for the APCSF, Proposition 7.20(i) and (iv) contradict (7.28), and Proposi-
tion 7.20(ii) and (iii) contradict (7.27). On the other hand, for the LPCF, Proposi-
tion 7.20(i) contradicts (7.28), and Proposition 7.20(ii)—(iv) contradict (7.27). O

Proof of Proposition 7.20. Let X be an embedded closed curve in R? satisfying the initial
condition (p, ¢,0) > —x for all p, ¢ € S'. By Theorem 6.5, ¥; is embedded for all t € [0, T).
Remark 6.6 implies that 6(p, ¢,0) € [—, 37] for all p,q € S'. From the maximum principle
for 0, Corollary 5.4, it follows that

0(p,q,t) € (—m,3n) (7.29)

for all p,q € St and t € (0,T).

Fix tp € [0,T). If 34, is a circle, then Remark 2.6(ii) implies that ¥; is a circle for all
t > to. Furthermore, Remark 7.3 yields that d/v = 1 on S! x S! for all t > t,.

From now on assume that ¢y € (0,7") and that ¥;, is not a circle. As stated in
Remark 7.3, mingi, g1 (d/v) < 1 at tg. Let p,q € S', p # ¢, be points where the spatial
minimum of d/t at ty is attained and assume w.l.o.g. that s(p,t9) < s(q,t9). Again by
Remark 7.3, we can assume that (p, q,t9) < L, /2. We have

d
0< a(pa(LtO) < 17

and for all § € Tp(p10)Xt0 D Tr(q,t0) St

E(Z) (p,q,t0) =0 (7.30)
as well as
& (Z) (p,q,t0) > 0. (7.31)

In the following, we abbreviate the distance functions
d:=d(p,q,to), l:=1p,qto), v:=1v({pqts) and Ly :=1L,
the unit tangent and normal vectors
Ty :=T(p,to), Tq:=7(qto), vp:=v(pty) and v,:=v(qto),
the curvature and the curvature vectors
kp = K(p,to), kq:=r(q,t0), Kp:=k(pty) and kKe:=k(qto),

and the length element, the local total curvature as well as the vector w

F(g,to) — F(p, to)
d(p,q;to) '

v:=uv(rty), 0:=0(p,qty) and w:=w(p,q,ty)=
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The first spatial derivative of d/1) in the direction of the vector £ = 7,®0 is given by (7.11).
Combined with (7.30) this yields

0 (7.50) (tp @0) <Z> (710 —; (W, Tp) + 52 cos(?) ,

so that at (p,to),

(W, Tp) = zcos(zl> >0. (7.32)

The left hand side is non-negative since d/v) > 0 and [ < L/2. Equality holds if and only
if | = L/2. For the vector £ = 0@ 7, we refer to (7.12) to obtain

(n0) Ay Lo d
0" = (O@Tq)<w> = w(w,7q> wQCOS<L>’
so that at (g, tp) we also have
d ml
= — — ] >0. .
(W, Tq) " cos( L) >0 (7.33)

We now consider the two cases 7, # 7, and 7, = 7.

Case 1: Assume that 7, # 7,.Subtracting (7.32) from (7.33) yields (w, T, — 7)) = 0.
By Lemmata 6.1 and 7.17,

(w, Tq+ Tp>2 bem:6-1 HTq + Tp||2 v 4 cos’ <z) ’ (7.34)
On the other hand, adding (7.32) and (7.33) yields

(W, Tqg+Tp) = 2;2 cos<7;l> , (7.35)

so that, by (7.34), (7.35) and d/¢ < 1,
6 d ml ml
COS<2)‘ =9 COS<L> < COS(L> . (7.36)

0 € (—m0)U(0,2m) U (27, 37).

From (7.29) it follows that

For # = 7, Lemma 7.18 provides that either

) = (worh = —sin(§) o (w) =~ (war) = 1.

We now look at the different intervals separately.
(a)Assume that 6 € (0, 7] and

(W, 1) = — (w, g) = — sin<g> (7.37)
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Figure 7.4: Case 1(a), § € (0, 7] and (w,v,) = — (w,v,) = —sin(0/2).

(see Figure 7.4 for an illustration). Since wl/L € (0, 7/2] and the cosine function is axially

symmetric and monotonically decreasing on (0,7/2], (7.36) implies

2wl
0> —. .
> 17 (7.38)
Furthermore,
(7.37) . (0
(W, kg — Kp) = —kq (W, 1g) + kp (W, 1) =" —(Kp + Fg) sin 9/ (7.39)

We differentiate d/v at (p, q,to) twice with respect to the vector { = 7, © 74 (see (7.14))
and calculate using the definition (7.1) of 9,

T

. 1 1
2
= —— (W, T+ Tp) +@H7q+7'p”2+*<wa’iq_"p>

Y
—i<w7' + 7,) cos m +ﬁﬁs' ml %—Sicos2 ml
2 W Ta T Tp L) M\ L e L

(1.1),(7.34) 1 1 1
= ||Tq+7'pH2+7H7'q+7'p”2+*<wa"3q_’ip>

(135 dip di) "
d of ml 472d d of
— 8$ cos (L) + LTWw + 8$ coS <L>
(7.39) 1 9 Am%d

—E(ﬁp%—mq) sin<2) + ek

We abbreviate & := (k) + kq)/2 and obtain

6 42
2/<asin<2> < %d. (7.40)
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Since the sine function is positive and monotonically increasing on (0,7/2], we conclude

with d/1 < 1 that
7.38
d<v (21) Lsin<7rl> ( < : Lsin<0> ,
T L T 2

so that (7.40) implies

pean(0) O 4R 4w L (0N ar (0
K sin > S Iz L27rsm )= Lsm 5 )

Since sin(#/2) > 0 for 6 € (0, 7], we can divide by it to achieve

<27T
K 7

Since hap = 27/ L (see (3.10)) and hy, > 27/Lo = 27 /L (see (3.11)), we have h > 27 /L > &
for both flows and

2
h—n>h—%20. (7.41)

(1) Les(2) 2

holds for all 8 € (0, 7] (see Lemma 7.8), and we obtain

Furthermore, the inequality

. (0 (71:41),(742) § 0 27
(h — k) sm<2> B cos<2> <h - L> . (7.43)
Cauchy—Schwarz (B.3) and the definition (5.3) of 6 imply
q (B.3) | q 2 5 3) 02
/ K2vdr > (/ /ﬂ)dr) 58 9— (7.44)
P L \Jp l

We use the definition (5.3) of # to estimate the evolution equations (7.16) and (7.17) of
d /v for both flows

9 d\ (7.16),(7.17) |
- > — _ —
(%t_to( ) = (h<W>’/q vp) + (W, Ky Kp>>

(8 (4

d l q q
+2cos<7r> (/ /i2vd7'—h/ /ﬂ)d?")
(G L » P

(5.3),(7.36),(7.37) 1 0 o0\ /62
> — ((2h —2K) sin() + cos() ( - h9>> (7.45)
(7.39),(7.44) ¥ 2 2 l
with equality in the first line for the LPCF and strict inequality for the APCSF (see
Corollary 7.14), since 3, is not a circle. By (7.38),
62 62rl 270
—_— > = —,
[ [ L L

62 2
l_h0>0<L_h>'

so that
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Figure 7.5: Case 1(b). ¥4, is crossing the connecting line between F(p,to) and F(q,to).

We can therefore estimate (7.45) further to deduce

gtt_to (Z) > ;<2 (h— k) sin<g> - 0608(2) <h - 22)) . (7.46)

By (7.43), the left-hand side of (7.46) is strictly positive, and

0 d
= —]1>0
at|t:to <7[)>

(b)Assume that 6 € (m,2m) U (2m,37) or = m and (w,v,) = —(W,vg) = 1 (see
Figure 7.5 for an illustration). Define the straight line segment

for 6 € (0, 7] as claimed.

S:={zxeR¥|z=(1-\NF(p,to) + A\F(q,to) for A € [0,1]}

through F(p,to) and F(q,tp). By (7.32) and (7.33), (w,T4) = (w,Tp) € [0,1). Since Xy,
is closed and Fy, is continuous, ¥;, has to cross S between F(p,to) and F(q,t) at least
once. Lemma 7.19 implies that the ratio d/v cannot have a global minimum at (p, g, to)
(it could still, however, attain a local minimum a this point). Hence,

By the compactness of S! x S!, the global minimum of (d/v)(-, -,ty) exists at a point
(po, qo) which was treated in Case 1(a) and will be further treated in Case 1(c) and 2.

(c) Assume that 6 € (—m,0) (see Figure 7.6 for an illustration). By the short time
existence, Theorem 2.3, F € C*(S'x [0,T)) with T = T(||F(-,0)||c3.«) > 0. Theorem 6.5
and Lemma 7.13 imply that

d

€ Cx((S'x "\ {p=q}) x [0, 7)) nC°(S'x S'x [0,T)) . (7.47)
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Figure 7.6: Case 1(c), 6 € (—m,0).

Since (d/)(p,p,t) = 1 for all p € S! and ¢t € [0,7) and mingi,g1 d/9(-, -,0) < 1, there
exists € > 0 so that for [p — q| < e mod (27),

d 3 d

E(p7Q7t> > quiléll J(a 70)
for all ¢ € [0,7/2]. We define the set
T) | d 3 d
N e 1, ql _ .
A_{(p7Q7t)€S X S" % |:O)2:| ‘ E(paQat)>ZSrﬂ<léll ¢(770)} (748)

with {p = ¢} x [0,7/2] C A, and the closed complement

B:_»<Slx81x Ppgi>\\A, (7.49)
where S!' x S'x {0} € B. By (7.47),
MIFCOllese) = mgx | 2 ()] < . (7.50)

For (p,q,t) € B, let
T0 = min{T S (O7t] ‘ (ﬁv 67 T) € B} ’

Then, by the definition (7.49) of B,

d,  _ (749) 3 . d
E(Z%(LTO) = Zgr%;lélla( 9 70)
so that
d, 3 . d o, d,_ _
'¢m%t—4£@¢ ﬁﬂ w@%ﬂ—wwﬁm)
</ta DN 50,7 dr < At — ) < At (7.51)
= - 8t ¢ D, q, =~ 0) > . .
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We choose
(7.50) . 1 . d T T
t1 =t1(X0) = mm{zmglnﬂéﬁ E(, "O>’2} € <0,2} (7.52)
and distinguish between three different cases.
(i) Assume that ty € [0,¢1] and (p,q,to) € A. Then
d d (7.48) 3 d
- =— tp) > — min —(-, - :
7 w(p,q, 0) = 4&%11@[)( ,+,0) (7.53)
by definition of the set A.
(11) Assume that to € [0,¢1] and (p, q,tp) € B. Then
d _d (7.51) 3 d
—=— to)) > —Atp+ - min —(-, -
” ¢(p7Q7 0) = 0+4SI{1X1§1¢( ;5 0)
3 . d (752)1 d
Z_A“JFZSIPQQ@(""O) > §«£1§11E(""0) (7.54)

is a lower bound.

(i4i) Assume that ty € (t1,T). Corollary 5.4(iii) applied with the initial time ¢; yields

(7.29)
—T < Opin(t1) < Omin(to) <0

so that the monotone behaviour of the cosine on (—m,0) implies

cos<6min<t0)> > Cos<6min<tl)> > 0. (7.55)

2 2

From 0 < ! < L/2 it follows that 1 > cos(nl/L) > 0 so that again the monotone behaviour
of the cosine on (—m,0),

d d wl\ (7.36) 0 Omin(to) ) (7:55) Omin (t1)
et had - = - > > . .
m > 77Z)COS(L> cos<2> _cos< 5 > cos 5 (7.56)

d (7.53),(7.54) d Omin (t1)
— > in< — min —(-, -,0), = C*"(Xp) >0
v min { 5 Jpin 1/1( ) cos< > > } (Zo)

as claimed.

Case 2: Assume that 7, = 7. By the definition (5.1), ¥, = ¥4 + 27k for some k € Z
so that 6 = 2k7 (see (5.6)). By (7.29), 6 can only be zero or 27 (see Figure 7.7 for an
illustration). We now look at both flows separately.
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Figure 7.7: Case 2.

(a) For the APCSF, it follows from 7, = 7, and embeddedness of ¥, that v, = v,
which implies

(W,vg—vp,) =0. (7.57)
The identity (7.13) for the second derivative of d/vy along £ = 7, ® T, and (7.31) yield

d) (1) 1
v) "W

By (7.57), (7.58), the definition (5.3) of 0, and ha, = 27/L, the evolution equation (7.15)
for d/vy reduces to

()2 en(T) (e 77)
; ﬂjﬂ ( [ wvir - (2?2) {sin<7;l> - ?cos(?) } (7.59)

We now examine different lengths separately.

(7.31)

0 < (mp® Tq)2< (W, kg — Kp) - (7.58)

(i) Assume that | = L/2. Then cos(nl/L) = 0 and sin(7l/L) = 1, so that (7.59) yields
0 a\ (7.59) (g </ 5 (27T)2>
— - > — kK vdr — ——1] >0
8t ‘t:to (¢) - Ww2 Sl L
since, by assumption, ¥, is not a circle.

(ii) Assume that [ < L/2. Since ¥4, is not a circle, Corollary 7.14 implies that
the second term on the right-hand side of (7.59) is positive. Moreover, cos(wl/L) >
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cos(m/2) = 0, as the cosine function is strictly decreasing on the interval [0, 7/2]. This
and (7.44) reduce (7.59) to

Ot |i—iy \ Y P2 L l L)
For & = 0, the right-hand side is zero. For 8 = 27, we conclude from [ < L, that

0/l =2n/l > 2n/L, and thus

o 2
- TS0

L
which also leads to gtlt ) (d/¢) > 0.
—to

0 d
— — >0
O |1=¢, <¢>

for the APCSF and 6 € {0, 27} as claimed.

Hence, in both cases,

(b) For the LPCF, the evolution equation (7.17) of d/v¢ cannot be estimated as in
the case of the APCSF. Thus, we argument like in Case 1(a)(ii). Since | € (0, L/2] and
d/vy € (0,1), and by (7.32) and (7.33), we obtain

. 33) d l
v () T Seon () 0.

Define the straight line segment
S:={zxeR%|z=(1-\F(p,to)+ \F(q,tg) for X € [0,1]}

through F(p,tp) and F(q,tp). Since 7, = 74 and (w,T,),(W,Tp) € [0,1), both vectors
point to the same side of S. Since ¥, is closed and Fy, is continuous, ¥, has to cross S
between F(p, tg) and F(q,to) at least once (see Figure 7.8 for an illustration). Lemma 7.19
implies that the ratio d /1) cannot have a global minimum at (p, ¢, tg) (it could still, however,
attain a local minimum a this point). Hence,

d > mi d ( o)
— > min —(-, - .
Q,Z) o ¢ y "5 L0
By the compactness of S! x S!, the global minimum of (d/v)(-, -,ty) exists at a point

(
(po, qo) with 7p, # T4, which was treated in Case 1(a)(i) and (b). O
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Figure 7.8:

Case 2(b), X4, is crossing the connecting line between F'(p,to) and F(q,to).



Chapter 8

A monotonicity formula

In this chapter, we consider smooth, embedded, n-dimensional hypersurfaces in R"+!
without boundary. For solutions F' : X" x (0,7) — R"! to the problem (2.13), we
derive a monotonicity formula analogue to the one in [Hui90] for MCF. For the APMCF
with boundary the formula has already been introduced in [MB14, MB15]. The same
proof holds for the VPMCF. (Refer to Appendix A.2 for an introduction to differentiable
hypersurfaces of R"+1.)

Definition 8.1. For zp € R" and ty € R, define the backward heat kernel @ ;o) :
R"™ x (—o0,tg) — R by

- 1 |l — ol®
(o) = e 2y ) &

Lemma 8.2. Let z,70,90 € R", tg,70 € R, t € (—00,t0), A >0 and 19 > \3(t —to). Then

1
P (yo,m0) ()\(37 — 20), )‘2(t - tO)) - V(p(a:o-i-yo/)\,to—&-m//@)(xa t).

Proof. For y = Az — x9), we calculate

Yo\ ||?
ly = yoll* = Mz — 0) — wol|* = A? Hx — <xo + X) H

and for 7 = A\2(t — to),

7'0—7':7'0—)\2(15—150):>\2<(%+t0>—t) :

Then, by the definition (8.1) of the backward heat kernel,

d (y T) — 1 exp _||y_y0||2
(vo,70) 1 (4m (19 — 7))"/2 4(to — 7)

- A exp(_ & — (o + yo/A>||2>
(4 ({7022 +10) = 1)) TP\ (/3 + 10) — 1)
1

- F(I)(Io-&-yo//\,to-i-ro/)ﬁ)(.%',t) . —
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For a solution F : 3" x [0,T) — R™™! to the problem (2.13) with initial surface 3,
define the auxiliary function f:[0,7) — R by

£(t) = exp(—; /O t h2(a)da> (8.2)

(see [Ath03, Proposition 3.2] or [MB15, Proposition 4.9]).

Lemma 8.3. We have f(t) € (0,1] for allt € [0,T). Furthermore, if sup ) h < oo, then
there exists a constant ¢ = c(supjy 1) h) > 0 such that f > ¢ on [0,T).

Proof. This follows directly from the definition (8.2) of f. O
Lemma 8.4. Let F : X" x (0,T) — R be a solution of (2.13). Then

af _
dt

d

1 2
d = [ dH*= | (h—H)HdH".
2 I o dt/z,, " /zt( JH dH

Proof. We differentiate

da _d L[, 1, L[, 1,
n dtx( Q/Oh(a)da>——2h exp —2/0h(a)da __ihf

and
N —~ g ,JOF 9 OF Z o
B Saettan) = Lo (G0 S0 = Vi (G (= 1w
= Vath— g7 (5. 5 ) = Vath - )
so that

& d?-[" Bt\/ (p,t)dp = / (h—H)H+\/g(p,t)dp = / (h—H)HdH". O

In the following, we set H(z,t) = H(p,t) and v(z,t) = v(p,t) for z = F(p,t).

Theorem 8.5 (Monotonicity formula, [Hui90, Theorem 3.1], see also [MB15, Proposi-
tion 4.9]). Let F : X" x (0,T) — R™*! be a solution of (2.13). Then

d n
(o)

! (HH’”‘ g

T —x0)t

2(to — t)

e §

2

for to € (0,T) and t € (0,tg), where (x — x0)* := (x — 20, V) v is the normal part of the
vector * — x.
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Proof. Since x = x(t) with %x(t) = (h — H)v, we derive

d (n/2)4n p<_||93—960||2>

at P @010 = (e — )1 P\ (g — o)

1 Nl = ao?
+ (4 (to — t))/2 eXp( A(to— 1) )
y <_2<x —zo,(h—H)v) |z - 960”2>
4ty —1) 4ty —1)2

R @0, o —aol?
= 5 ((to — t) — (h — H) (to — t) - Q(to — t)2> q)(ﬂco,to) (83)

so that

d n
it (1], B )

Lem. 8.4 f n
=g | WP dH | (h— H)H Dy ) dH"
(8.3) ¢ Tt

! n (¢ —a0,v) |l —xo|? .
i 2 D <(tO_t) (b= H) (to — 1) B 2(ty — t)2> D (a0,t0) AH" -

Rearranging terms yields

d n
it (/[ pem )

h? T — xo,V n n
=7 p) (_2 h (H - <O)>)> D (gg,0) AH" = f H? D (z,0) AH
t

2(to — t s
il e " (8.4)
s \2(to — t) 2to—1)  4(tg — 1) D (z0,t0) .
We apply the divergence theorem, Theorem B.7, to the vector v = (z — z)® (z0.t0) and
obtain
/ <-’IJ — X0, HV> q)(xoyto) dH" = / diVZ‘t ((l’ — .’L'O) (I)(xo,to)) den7 (85)
boN %,
where

divy, ((x — o) (I)(zo,to)) = divs, (T — 20) P(g,10) T <($ — o), VEt‘l)(aco,to)> :

For z € ¥, (A.13) yields

divy, z = divye F(p,t) A3,

and (A.12) implies for a unit tangent frame {7;};en of 3,

2 n
S (A12) 1 Hﬂﬁ — 2| 2(x —xo, 7i(w))
V7 o t0) (47 (tg — t))"/2 exp 4(tg — ) ; A(tg —t) T

- <:I" — Zo, T’L>
= (2,10) Z 2(to — 1) Ti- (8.6)
1

1=
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By combining the last four identities, we conclude

<1’—x0,HV> n
f S oo

n 2

$0,T1
E B (3 1) AH"
/( 2(to — 1) 4t0—t ) (ao.to) 4

=1

so that the last integral at the right-hand side of (8.4) becomes

n (@ —wo,v) |l — a||?
H — @ n
/Et <2(to —5 T 20—t At — 1)z ) Teot) e
= (x—z0,v) | N~ (@ —20,7)" [l — ol .
-/, <2H o0 T Al 17 ) e

Next, we observe that

n
—HCC - mOH2 + Z <JI - .'BO,Ti)Z = - <$ - .TO,V>2 )
i=1

and

)

2 <x—x0,u>_<x—x0,u>2__ _<x—x0,1/>2
B+ H (to — 1) 4(tg — )2 ' 2(tg — t)

so that (8.4) reduces to

d n
i (1], pem )

f 9 n <$ — X0, V> n
) boN h2® (g,10) AH™ + f 5, M m Peoto)
N N P L 0
o 2Atg—1) | T

Following [MB14, p. 11], we observe that

so that, for a = H — (z — zg,v) /(2(to — 1)),

d n
(1 )

2 Js, 2(to — 1) 2tg—1) | ) o)
As a last step we calculate
_ _ . 12
H_ <‘T Zo,V Hy — .’IZ’ Zo,V > H+ ':C xO) ,
2(to — t 2(to — t) 2(to — t)

where (z — xg)* := (x — zg, V) v is the normal part of the vector z — xg.

(8.7)
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Theorem 8.6 (Weighted monotonicity formula, [Eck04, Theorem 4.13]). Let F' : ¥" X
(0,T) = R* ! be a solution of (2.13) and ¢ : R*™ x (0,T) — R in C*'. Then

d n
it (1, 2o )

sAGs =il

f

2 Jy,

-

0 n
+ ( Agt>(pq)(x07t0) M

5
forto € (0,T] and t € (0,tp).

Proof. The proof is like the one for Theorem 8.5 with one additional step. When applying

the divergence theorem, Theorem B.7, in (8.5), we now use the vector v = (2 —x0)® P (4, +,)

instead and deduce
/2 <1‘ — X0, HV> %) (I)(xo,to) dH" = /Z dngt ((l‘ - 370)90 ¢($07t0)) dH" s
t t

where

diVEt (('1: - "BO)SO Q(z‘o,to)) = ngp(p(xo,to) + SO <($ - ‘TO)7 vth(mo,t0)>
+{(& = 20), V¥0) Bz ) -

Since V¥*¢ = 74()7; we can utilise the gradient of ®,, ;) (sce (8.6)) again to find

<(w — xo),V214p>
2(to — 1)

(I)(IO»tO) = - <v2tq)(azo,to)a vzt@>

so that integration by parts (B.4) yields the extra term

<(‘T B l‘o), v2t90> n __ n
/zt Wo—t) o T | A5 Raom B

The minus sign comes from the operation in (8.7). O



Chapter 9
Singularity analysis

In Proposition 4.9 we have shown that the curvature blows up if 7' < oo. In this chapter, we
assume T < oo and investigate curvature blow-ups for embedded constrained curve flows
with Op,in(0) > —7. We adapt the techniques from CSF to show that for the APCSF, the
curvature does not blow up in finite time and conclude T' = co. For the LPCF, we exclude
collapsed curvature blow ups. Proposition 4.9 motivates the following definition.

Definition 9.1 (Singularity, blow-up sequence). We say that a solution F': S'x [0,T) —
R? of (2.15) develops a singularity at T < oo if

|| max (t) — o0
fort S T. A sequence (pg,tr)ren in S'x [0, T) with
|5 (Pks t)| = |6 max (tr) — 00

is called blow-up sequence.

Lemma 9.2 (Singular point for the APCSF). Let F : S'x [0,T) — R? be a solution of the
APCSF with T < oo. Then there exists a point o € R? and a blow-up sequence (pg, tg)ren
with

F(pr,tr) — xo
for k — oo so that the solution (X¢)icpo,ry has no smooth extension beyond time T in any

neighbourhood of xo. The point xo is called a singular or blow-up point of the flow at
time T

Proof. For the APCSF, Corollary 3.5 and Lemma 3.9 imply that the length of the curve
L; and the global term h,, are bounded for all ¢ € [0,7"). Hence, Lemma 3.13 yields
that there exists a radius R = R(X,T) > 0 so that ¥; C Bg(0) for all ¢t € [0,T). By
Proposition 4.9,

|k max (t) — 00
for t N~ T. Let (pg,tx)reny be a blow-up sequence. Since (F(pg,tr))ken is a bounded
sequence in Bgr(0), there exists a point xop € R? and a subsequence with

F(pr,te) = xo

for £ — oo. O
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Lemma 9.3 (Hamilton’s trick [Ham86, Lemma 3.5]). Let f : [a,b] x (0,T) — R be in C1.
Then fmax(t) := max,eqp f(p,t) is locally Lipschitz for t € (0,T) and at a differentiable
time,
dfmax
dt

()< sup { 5 0.1) | & lat] with F9.0) = a0 |-

Lemma 9.4. Let f : [a,b] — R be Lipschitz. Then f’ exists almost everywhere, is bounded
and

b
)~ s = [ fat.

Lemma 9.5 (Lower blow-up rate for the curvature). Let F': S'x [0, T) — R? be a solution
of (2.15) with initial curve ¥ and T < co. Then

1
> .

V2(Crh +1)(T — 1)

for allt € [0,T), where the constant Cy, is defined in Corollary 5.9.

| max (t)

Proof. We follow the lines of [Hui90, Lemma 1.2]. By Proposition 4.9, |k|max(t) — oo for
t—T. Forte (0,T),let s € S, so that x*(s,t) = k2, (t). Then

0% K>
sz (s,t) <0.

By the evolution equation (4.4) of curvature and Corollary 5.9,

2 2,2 Cor. 5.9
% s % Yok — W) < 2(Ch + 1)K (9.1)

at (s,t). Since k2, is Lipschitz, by Rademacher’s theorem, Theorem B.5, 2 4 k2 . exists
for almost every ¢t € (0,7"). By Hamilton’s trick, Lemma 9.3,

dr? Lem. 9.3 OK? 1 9 9
max < : —
0 (t) < max {8t (p,t) ‘ p € S with xk“(p,t) Hmax}
1) 4 oo o2 2
< max {2(C’h + 1)x*(p, t) ‘p € S* with k“(p,t) = Kmax}
(Ch + 1) max( ) (92)

for almost every t € (0,7). Assume that there exists a time ¢y € [0,7) where x2,, = 0.
Then ¥y, is a line segment in R? which contradicts that ¥; is closed for all ¢ € [0, 7).
Hence, £2,,.(t) > 0 for all ¢ 6 [0,T) and k2,
Theorem B.5, implies that 4 k-2 (¢) exists for almost every ¢ € (0, 7). Thus,

is Lipschitz as well. Rademacher’s theorem,

k2 L, dr2,, 02
max — max > 72 1 .
dt ~Kmax dt = (Ch + ) (9 3)

for almost every t € (0,7). Since k.-, is Lipschitz, we can apply Lemma 9.4 and inte-

max

grate (9.3) over an interval [t,t;] C [0,T) to obtain
1 1

max(tk) R?nax(t) N

—Q(Ch + 1)<tk — t) . (9.4)
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Let t € [0,T) and (t;)ken be a sequence with ¢t € (¢,T) for all k € N, t; T and
K2 . (tx) = oo for k — oo. Taking the limit & — oo in (9.4) yields

1
Finax ()

for all t € [0, 7). O

<2(ChL+1)(T —1)

Like for MCF, we distinguish between singularities with controlled curvature growth
and those without.

Definition 9.6 (Type-I and type-II singularities). Let F : St x (0,T) — R? be a solution
of (2.15) with T' < oco. We say that a singularity is of type I, if there exists a constant
Co > 1 so that

< %
T V2(C+ 1D)(T -t

for all t € [0,T), where the constant C}, is defined in Corollary 5.9, and of type II, if such
a constant does not exist, that is,

|| max (t) (9.5)

lim sup |K|max(t) VT —t = 00. (9.6)
t—=T

9.1 Rescaling

We want to rescale the curves ¥; near a singular point as ¢ — T° < oo. The following
rescaling technique for type-I singularities was introduced in [HS99, Remark 4.6]. We will
use for type-I singularities of the APCSF, since, by Lemma 9.2 the existence of a singular
point zg € R? is guaranteed.

Definition 9.7 (Type-I rescaling for the APCSF). Let (pg, tx)ren be a blow-up sequence
in St x [0,T) with t;, /T for k — oo and

2 2 2
K ,t) = max Kk (p,tr) = max K (p,t
(pk k) peSt (p k) SIx[0,t] (p )

for each k € N. Furthermore, we assume that there exists a singular point 2y € R? so that
F(pg, tx) — o

for k£ — oco. We set
)\i = ﬁz(pk,tk) and ap = —)\%T

and define the rescaled embeddings F}, : S x [a,0) — R? by

Fi(p,7) := Ak [F<p,T+ >‘712<> E xo] . (9.7)

The next parabolic rescaling we will use to cover type-I singularities of the LPCF.
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Definition 9.8 (Type-I rescaling for the LPCF). Let (pg,tx)ren be a blow-up sequence
in St x [0,T) with ), /T for k — oo and

2 2 2
K ,tr) = max Kk (p,tr) = max kK (p,t
(P, th) = maxc™(p, te) = 0 ax (p, 1)
for each £ € N. We set
)\% = K% (pg, tr) and Qy = —)\iT

and define the rescaled embeddings F}, : S x [ay,0) — R? by

Fi.(p,7) == A [ (P,T+ )\2) - F(pk,tk)} : (9.8)

The following rescaling technique for type-1I singularities was introduced in [Ham95a,
Proof of Theorem 16.4] for Ricci flow, and applied to type-1I singularities of MCF in [HS99,
p. 11]. We will use it for type-II singularities of both flows.

Definition 9.9 (Type-II rescaling). Let (pg, tx)ren be a sequence in S'x [0, T — 1/k] with

1 1
2 ti) ([T ===t | = 2p, ) ([T —=—t
- (prs ) EoF (p,t)egg%},{ﬂuk] w(p,t) k
for each k € N. We set

1
)\i = /€2(pk,tk) ) Qp = —)\ztk and Tk = )\i <T — E — tk> .
and define the rescaled embeddings F}, : S x [ay, Ti] — R? by
Fk(p,T) = A |: <p,tk+ )\2> —F(pk,tk)] . (99)

To treat all rescaling techniques at once, we define

_ T [, 0) x (type-I)
= , T = and Ty 1= 9.10
- {tk * { [, Th] * {F(pk, tk) (type-1I). (910

Then (9.7), (9.8) and (9.9) combine to the rescaled embedding Fy, : S' x J;, — R? with

For every k € N and 7 € J;, we can parametrise the rescaled curve Zf := F,(S% 7) by arc
length (see Section A.1 for further details). In the following, set

b=+ (9.12)
Ak

For p € S, the rescaled length element is given by

x| 5 “H — (. t) (9.13)

‘ 8Fk
o p)
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and the rescaled arc length parameter by

5x(p,7) = on(p, ) / " o(a7) dg = o(p,7) / " v, ) dg

= ok(p, 7)\e[s(p, t) — s(pk,t)],

where we define

P L(ZF
1, if / vg(q,7)dg < (2 r)
Uk(pa 7-) = p; L(Ek)
-1, if / vp(q, 7)dg > ——=.
Dk 2
Then we have for all k¥ € N and for all 7 € J,
Sk(pr,7) =0 (9.14)
and
L(X%) L(EF)
1 _ T T _ a1
sk(Sh, 1) = [_ 5 ' 9 = SL(Elﬁ)/(gﬂ) ) (9.15)

where we identified —L(X*)/2 and L(X¥)/2 in the last equality. For k € N and 7 € Jj, we
can parametrise the curve X¥ by arc length via the parametrisation Fj(-,7) : si(S47) —
R? with

Fy(s,7) = Fy(s; " (5,7),7) and Fy(sip(p,7),7) = F(p, 7). (9.16)

The unit tangent vector is invariant under rescaling

rupr) B2 L O, o
N X

(9.13) Ay, 1 OF (A.4)
= = —(p,t) = T(p,t
e o(p. 1) Op (p,t) (p,t)

where still t = 5, + 7/)2, as well as the the unit outer normal
vi(p,7) = (Ti(p, 7). —Th(p, 7))

The rescaled curvature is given by

ki (p, T) @) < 1 Ori v >(p )
k\V, = —\ Q5 Vi )
v Op
(13 1 /107 (A 1
2L ) 0 i, (9.17)

We use the scaling behaviours (9.13) and (9.17) of the length element and the curvature
to calculate the rescaled global term

B fz'; K dH! 9.13),0017) A [y, kdH' 1

Rop (T) = —F——— = — =t = —h,, (¢ 9.18
P,k‘( fzﬁ dHl )\z fzt dHl )\k p() ( )
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for the APCSF and

fzk Ky dH! 9.13),0017) A} Jy, K Zant

: i mMer o2 9.19
P 4(7) ok g dH1 )\3 Js, rwdH! Akhlp(t) (9-19)

for the LPCF. From (9.12) follows

0 10

2
E = Yza and dr = )\kdt,

thus differentiation of the rescaled embedding (9.11) yields

%}}(p, T) = ;T (Mg [F(p,t) — xg]) = i\é%};(p’t)
= >\1k(h(t) — k(p,t))v(p,t) = (hp(7) — kk(p, 7)) Vi(p, T) . (9.20)

For each k € N, the rescaled evolution equation (9.20) is again a constrained curve flow.
Like for the original embedding, the evolution equation (9.20) holds also for the arc length
parametrisation (see (3.1)). To show convergence of the rescalings, we need to introduce
yet another parametrisation. We follow the idea of [MB15, Proposition 7.1.10]. Define the
intervals

[ \/TAE \/ﬂ'Algék} Cor - [—Lk, Ij] ®15) si(S% 1) for APCSF

I =
F Lk Lk ] Cor. 3.6 |:_L¢ L§:| (9.15)

(9.21)
1
= for LPCF
g 5 3 sE(S5T) or LPCF,

for all 7 € Ji, where LF := L(XF) and A¥ := A(ZF). For k € N, let 19 € Ji. By (9.21),
I, C sk(SI, 7'0) so that s,;l(lk,To) C S! is well-defined. Define the embeddings Fy 7 -
I x J. — R? by

Fk,To (S, T) = Fk (81;1(87 TO)) T) . (922)

Then, for each k € N,

_ 9.16) ~
Fkﬂ—o(',To) = Fk(skl(‘ ,T()),T()) ( = ) Fk(-,T()) : Ik — RZ (923)

is an arc length parametrisation and

9.14

9.22 _ .
“22 B (571 0,70),7) "2 Fu(pg.7) (9.24)

Fkﬂ'o (07 )

for all 7 € Jj. Furthermore, Fj, ;, satisfies again the evolution equation (9.20) and

(9.21)
|Kk,mo lmax (T) = max |kp o (p, 7)| < max |k (p, 7)| = [Kk|max(T) (9.25)
pEl} peSt

for all T € Jj.
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Lemma 9.10 (Properties of the type-I rescaling). Let F': S'x (0,T) — R? be a solution
of (2.15) with T < oo. For the type-I rescalings 9.7 and 9.8 in case of a type-1 singularity,

AL — 00 and o — —00 (9.26)
for k — oo. Let 19 € R and kg € N such that 19 € J, for all k > ko, then
Fier(0,7%) € Bcz2(0) and n%vm 0,7) =1,
where

1
(Cr+1)" 2(Ch+1)

Tk = —)\i(T—tk) S —2
for all k > kg. Moreover, for § > 0,

C C,C
max _ |Kpr| < =0 and max hp < h-0
I x [y, —62] d [, —62]

for all k > ky.

Proof. First, we consider the type-I rescaling 9.7 for the APCSF. We follow in parts [MB14,
Lemma 7.1.8 and Proposition 7.1.10]. By Lemma 9.2, there exists a singular point zg € R?
and with corresponding blow-up sequence (pg, tx)ren in S'x [0, 7). By the definition (9.5)
of a type-I singularity and Corollary 5.9, we calculate for p € S' and t,; € [0,T),

(2.15) [t
w0 a "< [0 w0l

173

t
HF@JD—F@JMHS/
73

Cor.5.9 (9.5) ty Cy

t
< 2/ Klmax(t) dt < 2 —dt
il 1) W VAT

tk

= Cy [— VAT — 1) + /AT — tk)} < Co/AT —ty).  (9.27)

Since the sequence (py,)ren is bounded, there exist a point pp € S! and a subsequence with

Pk — Po (9.28)
for k — oo. We employ (9.27) for p = p;, and obtain

IF (pr, t1) — F(pu, )| < Co/AT — 1) (9.29)

for all k,1 € N. By Definition 9.7, we can choose Iy = lp(k) large enough so that, for fixed
keN,

| F(pi, 1)) — wol| < Con/A(T — ty) (9.30)

for all I > lyp. Estimates (9.29) and (9.30) imply

1E (s tr) = woll < | F(prs t) — F(pr, )l + [1F (1, 1) — o]

(9.29),(9.30)
< 3Co/A(T —ty) (9.31)
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for fixed k € N and for all [ > ly(k). For given £ > 0, choose ky = ko(g) large enough, so
that

3Co/A(T — ty) < g
for all k > ko. Then (9.31) yields
g
1E(pr, te) — ol < 5 (9.32)

for all k& > ko(e) and [ > lp(k). By the convergence (9.28) and the continuity of the
embedding F' in its spatial argument, we can further choose Iy large enough, so that also

g

for [ > ly. Hence,

(9.32),(9.33) ¢ ¢
1E'(po, ) — zoll < [ (po, t) = F(pr, ti) | + 1F'(pros tre) — ol - < 5+ 5=¢
for all k > ko(e). Since € > 0 was chosen arbitrarily, we obtain
F(po,tr) — xo (9.34)
for k — oco. Definition 9.7 and the type-I condition (9.5) yield
M T ) < s (9.35)
and the estimate (9.27) implies
1Fp0 1)~ Flpo, )] S 2C0/AT 53] £ 0.
We send | — oo in the above inequality and obtain with (9.34),
Aellzo — F(po, te) || < 263 (9.36)

for all k € N. The definition (9.7) of the rescaled embedding provides, for 75, := A (ty —T),

-
F(Z?o,TJr I;) —
Ak

(9.36)

9.7
1o, )l = < 2C§ (9.37)

for all k € N. By the convergence (9.28), for given § > 0, there exists k1 € N so that
Ipk — po| < ¢ for all k > kg. By the continuity of the rescaled embedding, for given € > 0,
there exists § > 0 so that, for |px — po| < J, we have

1E% (Prs ) — Fre(po, ) || < €. (9.38)

Hence, for given € > 0, there exists k; € N so that

(9.24
1m0 (0, 7 || 20 1 Fs (s 7o)l < 1 (i ) — B (o, 7) | + [ Fie(pos ) |

9.37),(9.38
g )s+2C§

for all k > k1. Choosing ¢ = C3 yields Fj ., (0,7%) € Bscz (0) for all k > k.
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For the type-I rescaling 9.8 for the LPCF, we immediately obtain, for 7 := /\,2C (tx,—T),

9.8 T
Fi(pk, k) (&) A [F <pk,T+ )\g) —F(pk,tk)} =0
k

9.24
Fior (0, 7) 2V

for all k > k.

We follow the lines of [MB15, Corollary 4.8], to bound the sequence

(7h = = AT = t)) ey - (9.39)

We estimate
ap DTS e < ez, U2 <o
for all k£ € N. The rescaling behaviour (9.17) of the curvature yields

(9.24) 917) 1 e\ (9.39) 1 Defs. 9.7,9.8
ey (0,7%) = Kp(pryTh) = P%Q (pk;,T + )\2> = pfiz(pk,tk) =1
k k k
Using Definition 9.7 and 9.8 and the lower blow-up rate from Lemma 9.5, we estimate
(9.39) Defs. 9.7,9.8
Teo= AT —ty) = =k (e ) (T — t)
(T — tk) _ 1

20C, +1)(T —t)  2(Cp+1)

and, by the type-I assumption (9.5),

Lem. 9.5

9.39 Defs. 9.7,9.8
7 2 “M(T —t) =" = (P tr) (T — t)
Cg(T —tg) Cg

T2C, + (T —ty)  2(Ch+1)

(9.5)

for all £k € N.

For the curvature estimate for both rescalings, let 6 > 0, k € N, 7 € [ag, —62] and
p € St. Then, the type-I condition (9.5) rescales to

9.7),(9.8) 1
i (p, 7)) (T

(95) 1 C C
" /{(p,T—F;Q) < " 0 < \/0—~ (9.40)
K k b\ =2Ch+ D/ VT
Hence,
(9.25) (940)
max |kpr| < max |k < —
It x [, —62] ’ Six [ag,—62] d
and (9.40)
Cor. 5.9 9.40
max_ hg Cr max |Kklmax < CuCo
[, —6?] [o,—0?] o
for each k € N.
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Lemma 9.11 (Properties of the type-II rescaling, Huisken-Sinestrari [HS99, Lemma 4.3]).
Let F : S'x (0,T) — R? be a solution of (2.15) with T < oco. For the type-II rescaling 9.9
in case of a type-II singularity,

A — 00, ap — —00 and T — o0 (9.41)
for k — oo. Let 19 € R and ko € N such that 19 € Ji for all k > kg, then
Fr7y(0,0) = 0 and Ky (0,0) =1
for every k > ko and for any € > 0 and any T > 0, there exists a ky > ko such that

max /ﬁ%70<1+6 and max hyp < CpvV1+¢
IkX[Oék,T] ’ [ak:T]

for all k > ky.

Proof. We follow the lines of [HS99, Lemma 4.3]. Let 79 € R and ko € N so that 79 € Ji
for all k£ > ky. By definition,

(9.22

9.9
Fiory(0,0) “2? By (g, 0) %)

=0

and
(9.24) (917) 1 Def. 9.9
R (0,0) 7= 7 (P, 0) 7= 5% (o th) = 1
k

for every k > ko. Let M > 0 be arbitrary. By the definition (9.6) of a type-II singularity,
there exist t € [0,7) and p € S* so that

KZ(ﬁvD(T_D >2M .
We fix # and choose k1 > kg, so that £ < T —1/k and x%(p,t)/k < M for all k > k;. Then

R2(5,7) (T L t‘) = 25T D)~ R50) > M

o

and Definition 9.9 yields

1 Def. 9.9 1
T3 P 62 (o, 1) <T % tk) > R(p.0) (T T t) > M.

Since M was chosen arbitrarily, it follows that T}, — oo and thus also A\, = &2 (P, ti) — 00
for k — oo. Since t; 7 T, we conclude that o = —/\ztk — —oo for k — oo. For the
curvature estimate, it again follows from Definition 9.9 that

K2 (p, 1) <T -y~ t) < K (pr,ty) (T — T tk> =" T (9.42)

forall pe St, ¢t €[0,T —1/k] and k € N. Let € > 0 and T > 0 be given. Since Ty — oo,
there exists again k1 € N so that, for all k£ > k1, T < T} and

T
0 — . 9.43
<Tk_T<s-: (9.43)
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For 7 € [ay, T), it is t :==t;, + 7/A2 € [0,T — 1/k), and we can use the scaling behaviour
of the curvature and (9.42) to estimate

9 ©017) 1 4 < T > (9-42) T —1/k—t
ki(p,T) =" —kK e+ — <
k. 7) SACLRIDY: T—1/k— (tp +7/A2)
Ty T T (943)
= < = =1 = < 1 9.44
Tt -To-T T _T te (944)
for all p € S! and k > k;. Hence,
5 (925 5 (9-44)
max_ ki, < max_ ki < l+e
IkX[Oék,T] ’ Slx[ak,T]
and 04
Cor. 5.9 9.44
max hy OS Cp, max |Kglmax < CpV1+e
[O‘va] [O‘va]
for all k& > max{ko, k1}. O
Define
T 0 for the type-I rescaling
= 00 for the type-II rescaling.

Lemma 9.12. Let F : S'x [0,T) — R? be an embedded solution of (2.15) with initial
curve Yo and T < oo. Let 7 € (—00,T) and M,e > 0. Then, there exists kg € N such
that for all k > kg,

LESYy > M, AEH > M

and
hk(T) <e

for the APCSF and for the LPCF if supjq ) hn, < 00. Moreover, let 7o € (—00,Tw) and
let I C R be bounded and J C (—o00,Ts) be compact and kg € N so that I C Iy, 19 € Ji
and J C Ji. Then there exist ¢y = c¢1(X0,70,7) and ca = c2(X0, 70, T) such that

cll|l < L(Fq7 (I, 7)) < co|1]
for all T € Ty and k > ko, and there exists R = R(X, Co, 10, |I],|J]) such that
Fiero(1,7) € Br(0)
forallT e J and k > kg.

Proof. Let 7 € (—o00,Ts). Let kg € N so that 7 € Ji for all £ > ky. By the scaling
behaviour (9.13) of the length element, the behaviour of the length of the curve (see
Corollaries 3.5 and 3.6) and the behaviours (9.26) and (9.41) of A,

Xk Dy /A2
Cors. 3.5,3.6 9.26),(9.41
= AL <E£k+7/x\i> > AL(Eg) TS o
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for k — oo. For k > kg, let QF € R? be the domain with ¥ = 9QF. Then

AEH) = [ a2 91%/ dH>
Qf 15 RHT/AZ

Cors. 3.5,3.6 9.26),(9.41
= MAGE, p2) 2 MAR0) 24D o

for k — oo. The scaling behaviour (9.18) and the bound (3.10) for hyp, yield

(9.18) 1 T (310 /7
ha, =" —hap t < —0

for k — oo. Likewise, if supjy 1y hip = ¢ < 0o, the scaling behaviour (9.19) for Ay, implies

9.19) 1 c
hlp,k()( ))\hlp<tk+)\2)_)\k_>0

for k — oco. Let 79 € (—00,Ts) and I C R be a bounded interval. Then there exists
ko € N so that I C I for all k > ky. Corollary 5.9 and Lemmata 9.10 and 9.11 yield for
p €I and for 7 € (70, Two),

1 Lems. 9.10,9.11 T )
mvkﬂ—o (p7 TO) < exp <_C(20) /To (’ik‘,m)max (U) d0> Vk, o (p7 TO)
Cor.5.9
< Vk, 1o (pa T)
Cor. 5.9

2 exp <c(zo> / C(2.). () da) Ok (P, 70)

0
Lems.9.10,9.11
<

(X0, 70, T)Vk,r (P5 T0)
and for 7 € (—o0, 1),

Lems. 9.10,9.11

T0
(S0 10, oem (0.7) & exp(—c@o) / (ﬁzm)m&xw)da) Vo (92 7)

Cor.5.9
< Uk, 19 (pa TU)
Cor.5.9

259 (c(zo) [ ()@ da) Vi (92 7)

Lems.9.10,9.11 1
< - -
= C(EO’T[)’T> ,Uk',TO (p7 T)

for all k > k. By (9.23), Fj, -, (-, 70) is an arclength parametrisation so that vy (-, 79) = 1
and in both above cases,

0 < c1(X0,70,7) < Ukro(, 7) < €2(E0,70,7) < 00

forallp e I, 7 € J, and k > ko. (In fact, the constants only depend on 7 in case of a
type-1I singularity and for 7 € (79, 00).) Moreover,

61(2077—077—)’]’ S L(Fk,To(Iv T)) - /Uk,To(p7T) dp S 02(2077—077—)’I|
I
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for all 7 € J; and k > ko. Let J C (—00,Ts) be compact and k; > kg so that J C Jj for
all £ > k1. By the above estimate,

c1(30, 710, J) 1| < L(Fi 7y (1, 7)) < c2(20, 10, J)| ] (9.45)

for all 7 € J and k > k1. By Lemmata 9.10 and 9.11,

Lem. 9.10 Lem. 9.11
Frr(0,71) € B3y (0) or Fr 7y (0,0) “"="00 (9.46)
where 71, € [~C2/4,1/4], and by Lemma 3.13,
HFvaO((LTk?) - Fkﬂ'o(o>7—)H < 2R’Tk - 7—| or HFk’,TO(OaO) - Fk,To(()?T)H < 2R’T‘

with R = R(Eo,sup[ak@] hk). In view of the upper bound on A from Lemmata 9.10
and 9.11, and utilising (9.45) and (9.46), we can choose R = R(X¢, Cy,70,1,J) > 0 to
obtain

Fyr(I,7) C Br(0)

forall 7 € J and k > k;. O

9.2 Convergence

In this section we show that the sequence (9.22) of rescaled embeddings converges locally
in the domain of definition and the ambient space, smoothly along a subsequence to a
maximal, embedded, convex or concave, smooth, ancient solutions.

For k € N, we define the intervals

C Ji C (—00,0) for the type-I rescaling
Ji = [ag, Tk] _ (9.47)
=T, CR for the type-II rescaling,

where, for the type-I rescaling, (Tj)ren is a sequence with
o < Tk /‘ 0 (9.48)
for k — oo. For the type-II rescaling, (1} )ren is defined as in Definition 9.9.

Theorem 9.13 (Convergence of the rescaling). Let F : S! x [0,T) — R? be a smooth,
embedded solution of (2.15) with initial curve Xy and T < co. Let 19 € (—00,Tw) and
ko € N such that 19 € Jy for all k > ko. Then, for the rescaling (9.11), the sequence of
embeddings

(sz,m : Ik X Jk — RQ)kaO

(see (9.22)) converges for k — oo along a subsequence, uniformly and smoothly on compact

subsets I x J C R x (—00,Tx) with 0 € I to a mazimal, smooth, ancient limit solution
Feory : R X (—00,Ts) — R? which satisfies

855:70(])7 T) = (hOO (T) — Koo,1o (P, T))Voo,m (P, T) s (949)
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where
hap,oo(T) =0 and hip,oo(T) >0

fort € (=00, Tx). Moreover, Foo 1,(+,70) is an arc length parametrisation and L(37°7°) =
oo for all T € (—00,T). For the type-I rescaling in case of a type-I singularity, Too = 0
and there exists a time Too € [—CZ/4,—1/4] such that

Foo 7,(0,7o0) € B3c,(0) and |Koo,m (0, Too)| = 1

as well as
Co

sup | Koo, 7| < 5 and sup  hipoo <
R (—o00,—42] (—00,—62]

CrCo

for all § < 0. For the type-1I rescaling in case of a type-1I singularity, Too = 0o as well as

Feo 7,(0,0) =0, SUP |Koo,m| = |Koo,m (0,0) =1 and sup hip oo < Ch .
RxR R

Remark 9.14. For the APCSF, the limit solution satisfies CSF, that is,

oF,
8070'770 (p7 T) = —HRoo,1p (p7 T)Voo,To (p7 T)

for (p,7) € R x (—00, Tso)-

Proof of Theorem 9.13. The proof follows similar lines to those of [Eck04, Remark 4.22 (2)]
and [MB15, Proposition 4.7]. Let (pk,tr)ken be a sequence in S!x [0,T) according to
Definition 9.7, 9.8 or 9.9. By Lemma 9.12, L(3% ) — oo and A(SE ) — oo for k — o0, so
that we can find a subsequence (py, tx)ren With

I, C I and I, — (—00, 00) (9.50)

for all k € N and for k — oo (see the definition (9.21) of I;). By the behaviours of ay and
Ty (see (9.26) and (9.48) for a type-I singularity and (9.41) for a type-II singularity), we
can find a subsubsequence (pg, tx)ren so that

Ji C Jpt1 and Jr = (—00,Two) (9.51)

for all £ € N and for £ — oo (see the definition (9.47) of Ji). Let 19 € (—o00,Tx),
0elCcRand JC(—00,Tx), I and J intervals, and ko € N so that 7 € J, I C I}, and
J C J for all kK > kg. We have that the first spatial derivative

8Fk T0
— =Tl =1
‘ 85 H k7 0”
and, by Lemmata 9.10 and 9.11,
Lems. 9.10,9.11
max |Kg.(p, T < c
(p,T)GIXJ| k. 0(p )’

for all k > ko, where ¢ = ¢(Cy, Tk, ) for the type-I rescalings. With the above uniform bound
for the curvature, we can apply Corollary 4.7 and have bounded derivatives gt%%“k,m
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of the curvature on I x J for all n,m € NU{0} and k > ko as well, where the bounds only
depend on n and ¥y, and also Cy and T}, for the type-I rescalings. Thus, all derivatives
of the curvature are uniformly bounded on I x J. By Lemma 9.12, there exists R =
R(Xo,Co,10,1,J) > 0 so that

Fk:,ro (Ia 7—) - BR(O)

for all 7 € J and k > ky. For every n,m € NU {0} and k > ko, the functions

(nm) _ O™ 0" -
are bounded and equicontinuous in k£ by the fundamental theorem of calculus. For each
n,m € NU {0}, the Arzela—Ascoli theorem, Theorem B.12, yields that sequence

k77—0

(B 1x 7 - R?)
k> ko

has a uniformly converging subsequence for each n, m € NU{0}. Theorem B.14 employed
to the functions F,gnmm) for every n,m € NU{0} implies that (Fjr,)
in space and time to the smooth limit

J> ko COTIVETEES smoothly

Foory: I x J—R2.
We pick sequences (I});en and (Jp)en, with
0Oejcl;1CR and J; C Jiy1 C (=00, Too)
for all [ € N and
I - R and J = (=00, To) (9.52)

for I — oo. By (9.50) and (9.51), we can repeat the above argument for every [ € N. The
sequence
(F("”’” X T — R2>

koo K>k
(n,m)
Fk‘,‘l’o )k2k171

(ijm) K>k has a subsequence that converges smoothly in space and time to the smooth

coincides with ( on I;_1 xJ;_1. By the same argument as above, the sequence

limit
Foo,To,l : Il X Jl — RZ

which equals Fi 7, ;-1 on [;_1 x J;_;. Hence, the diagonal subsequence

(Fk,-ro I x Jp— RQ)kal

converges for k,! — oo smoothly in space and time to the smooth limit flow
Foory : R X (=00, Th) — R?

which equals Fi 7,; on I} x J; for every [ € N. In the above step we have applied
the limit behaviours (9.52) of [; and J;, and where T5, = 0 for the type-I rescalings
(see (9.48)) and T\, = oo for the type-II rescaling (see (9.41)). Since Fj -, (-, ) is an arc



9.3 Limit flow 93

length parametrisation for every k € N, Fi, -, (-, 70) is as well by the smooth convergence.
Lemma 9.12 yields for bounded intervals I C R that

Cl(EOaTOvT)‘I‘ < L(FOO,TO(LT)) < 02(2077—077)‘1‘

for all 7 € (—o00, Tw), which implies L(X7"™) = L(Fso 1, (R, 7)) = 0.

For a type-I singularity, by Lemma 9.10, the sequence (7 )ren is bounded and has a
convergent subsequence with

— Too € G !
T T, — y—
e 2(Ch+1)" 2(Cp + 1)
so that
2 Co
Koo (0,700) =1, Foo 7,(0,To0) € B3, (0) and sup |Koo, | < 5
Rx(—o00,—82]
for all § < 0. For a type-II singularity, Lemma 9.11 implies that
Foo.7y(0,0) =0 and Ko (0,0) =1 (9.53)

and that for any € > 0 and any T > 0,

sup /ﬁ?,om <l+e.
Rx(—00,T

Sending T — oo and € — 0 yields

sup k2, <120 k2 (0,0).
RxR

The evolution equation (9.49) for the APCSF follows from the behaviour of the global

term hgpp for B — oo (see Lemma 9.12). For the LPCF, by Lemmata 3.10, 9.10, 9.11
and 9.12,

Lems. 3.10,9.12
0 < hlp,oo(T)
CrnCo

Lems.9<.10,9.11 for 7 € (—o0, —6%] C (—00,0) for the type-I rescaling

Ch, for 7 € R for the type-II rescaling. O

9.3 Limit flow

In this section, we study the limit flows obtained in Theorem 9.13 and show in particular,
that each curve is strictly convex or concave.

Lemma 9.15 (Preservation of strict convexity/concavity of the limit flow). Let F': R x
[0,T) — R? be a solution of (9.49) and let k > (<) 0 on Xg. Then k > (<) 0 on 3y for
allt € (0,T).
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Proof. Assume that there exists a point (po, t9) € Rx (0,7 with k(pg, to) = 0. We proceed
as in Corollary 4.3 on the interval I := (pg — 1,po + 1) C R. We estimate

Cor. 5.9
[(h=r)e] < (Ch+ 1)k < 00

on I x [0,T) and employ the strong maximum principle, Theorem B.17, with respect
to the evolution equation (4.1) of k. It follows that K = 0 on I x [0,%y], which is a
contradiction. O

Proposition 9.16 (Convexity /Concavity of the limit flows). Let F : S'x (0,T) — R? be a
smooth, embedded solution of (2.15) with T < co. Each limit flow Fs 7, : RX (—00, Tso) —
R?, as obtained in Theorem 9.13, is either strictly convex or strictly concave.

Proof of Proposition 9.16. We follow the lines of [Al1t91, Theorems 5.14 and 7.7]. A similar
proof can be found in [Manll, Proposition 4.3.2]. Corollary 5.9 implies

/ k| dH' = >

{ses(Sl, t) | k(s,t)=0}

8:(8,75)’ <0 (9.54)

for t € (0,7). Thus, the integral th |k| dH' is decreasing in time on (0,T). We deduce

k| dH' = C < oo (9.55)
p3M
for t — T. Let t1,ty € (0,T). Integrating (9.54) yields

t2
ndHl—/ mml:—2/
/Etu [ t 3

2 L {scs(SLt) | k(s,t)=0}

s, t)‘ dt . (9.56)

We rescale according to (9.11). Let 71,7 € R with 71 < 75 and k¢ € N so that [, 2] C Ji
for all k > ko (see (9.47) for the definition of Jk). Then

11_}1](()10 tr + )\2 =T (9.57)

for all k > ko and for i = 1,2 (see (9.10) for the definition of ¢). Since the integral

k| dH! = / kdH'| = 0(s?,s5 .t
/Et|| > S 10655, 55, 1)

SeS SeS
is the sum over the absolute value of the angles between inflection points, it is scaling

invariant and (9.56) also holds for the rescaled flow, that is,

T2 a
2/7 Z %(8,7‘) dr
L {s€s,(SL7T) | ki (s,7)=0}
(9267/ y,ﬁkycml—/ | A
ok s
(611 ] dHY — / 1] d! (9.58)
Etk-ﬁ-rl//\% tgtTo/A2
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for all k > ko. Taking the limit & — oo in (9.58) yields

' 2 Ok
< Tk
oszpm \[ Y [Gen)r
L7 {s€sk(Sh7) [ ki (s,7)=0}
O Jim || dH" — il d#’
k—ro0 bt /A2 DN /22
k k20 %%
(955),(95T) ~ _ ~ _ (9.59)

Let 0 € I C R be a bounded interval, 79 € (—00,T) and k1 > ko so that I C I and
T0 € J for all k£ > k1. By Lemma 9.12,
c1(Xo0, 70, 71, 7o) | £ L(F7y (1, 7)) < c2(X0, 70, 71, 2) 1] (9.60)

for all 7 € [r1, 7). By Theorem 9.13, there exists a subsequence (pg,t;)r>k, so that the
embeddings (Fy -, : Ix X Jp — R?)>k, converge smoothly on Ix [r1, 2] along a subsequence
to a smooth flow Fi -, : R X (—00,T) — R2. Observe that

7o [_Cl|f| Clﬂ]

27 2
. L(Fyr(I,7)) L(Fyr (I, 4
00 [ L(Fin (7)) L(Fi r>>]<9:15>3mu,7>
2 2 ’
(giQ) _L (Fk (81;12([, 7'0)7 7')) 7 L (Fk (3];12(17 7—0)7 T)) (9é5) Sk(Sl, 7_) (9.61)

for all k£ > k;. Fatou’s lemma, Lemma B.9, (9.59) and (9.61) yield

2 OKoo,mg
0< /T1 ) Z P (s,7)| dT
{s€T| Koo,y (s,7)=0}
m 2 OFk n
Thm. 9.13 /7'1 lim inf _ > 7/{8’; “(s,7)| | dr
{SEI | Kk,7g (s,‘r):O}
Lem.B.9 T2 Ok
< liminf —0 d
< 1;1_1)})13 /n ) Z (s,7)| dr
{SGI | Fke,mg (S,T):O}
(9-61) 2 Ok (9.59)
< = .
< hkni}g‘}f j Z s (3,7’)‘ dr 0
b {s€sk(SY7) | Kk(s,m)=0}
Since I C R was chosen arbitrarily,
2 8/€OO7TO
/T Z T( ,T) dT = 0 .

1 {scR| Koo, 7 (s,7)=0}
We send 71 — —oc0 and 79 — T, and obtain, for almost every 7 € (—o00, Tt ),

2.

{seR| Koo, (s,7)=0}

8’%0,70

5 (s,7)|=0. (9.62)
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Thus, for almost every 7 € (—00,Tw), %HOO’TO(S,’ﬂ = 0 whenever ke 5, (s,7) = 0. Fix
73 € (—00, T ), where (9.62) holds. Since Fi -, satisfies (9.49) with Koo, Z 0, we can
apply Corollary 5.7 to obtain that there exists no points s € R with Koo 7,(s,7) = 0 for
T € (13, To0). By Lemma 9.15, strict positivity or negativity of the curvature is preserved
under (9.49), so that e r, > 0 0T Kooy < 0 0on X7 for every 7 € (73, T ). Now we can

o0, To
T

send 73 — —oo so that, for every time 7 € (—00, T ), the curve 3 is strictly convex

or concave. OJ

9.4 Type-I singularities for the APCSF

In this section, we only consider the APCSF. We assume that a singularity develops in
finite time and is of type I, that is, it satisfies condition (9.5). This setting has already been
exploited in a similar fashion in [MB14, Chapter 7]. We refer also to [Whi97, Section 11]
for a characterisation of singularities for almost Brakke flows with bounded global terms,
using a monotonicity formula and a result of [Ilm95].

Proposition 9.17 (Structure equation for homothetically shrinking solutions of CSF,
see [Eck04, p. 13] or [Manll, Proposition 1.4.1]). Let S € {SYR}. If an initial curve
Fy: S — R? satisfies

&(p) = A (Fo(p) — w0, vo(p))

at every point p € ¥ for some constant X > 0 and xo € R?, then it generates a homotheti-
cally shrinking solution of CSF.

Proposition 9.18 (Shape of the limit flow for type-I singularities for the APCSF). Let
F :S'x[0,T) = R? be a smooth, embedded solution of the APCSF with initial curve Yo
and T" < 0o. For the type-1 rescaling in case of a type-I singularity, each limit Fo -, :
R x (—00,0) — R2, as obtained in Theorem 9.13, is a homothetically shrinking solution of
CSF. Moreover, for all T < 0 and R > 0, there exists a constant C = C (X, T, R, T) such
that H}(X2°™ N Bgr(0)) < C.

Proof. Let o € R? be arbitrary. For t € [0,T), define the monotonicity quantity

O (zo.1) (1) := f (1) /Z D (o (w,t) dH' . (9.63)

The monotonicity formula, Theorem 8.5, yields

d
— O, (1) <0 (9.64)
dt

for t € (0,T). Hence, the monotonicity quantity is monotonically decreasing and strictly
positive, so that the limit

thﬁnjl" G)(QEO,T) (t>

exists and for any sequence (ti)ren with t 7T for k — oo,

Lim © g,y (t) = Hm O gy 1)(t)- (9.65)
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Since the global term h,y, is bounded by (3.10), we can apply Lemma 8.3 to conclude that

fele]] (9.66)
on [0,T) with ¢ = ¢(30,T) > 0 and
. . (9.66)
T f(t) = lim () =0 "€ fe.1]. (9.67)

Since the right-hand side of (9.67) is independent of the chosen sequence, the left-hand
side is. For k € N, y = Ap(z — z9) € R? and 7 = A}(t — T) € [, 0), Lemma 8.2 rescales
the backward heat kernel according to

1 1
P,0)(y,7) = Yk(b(:vo-&-o/)\k,T—i-O/)\i)(xat) = qu)(xo,T)(xat)' (9.68)

The auxiliary function is scaling invariant, that is,

Ju(T) = exp(i /a h2 (o) da>

1 [T+7/28 ) 7\ (9.66)
= exp —2/0 h*(p)dp | = f(T + )\2> € [q1], (9.69)
k

where we substituted o = T + p/A? and do = A} dp. Let 7 € (—00,0) and ko € N so that
T € [y, 0) for k > ko. For the sequence

we obtain
(9.67) .. . T\ (9.69) ..
co =" lim f(ty) = klggof<T+ )\12) =" lim fi(7)
Since the left-hand side is independent of 7, the right-hand side is and

co = lim f(ty) = lim fi(7) = foo(7) (9.70)

for any sequence (t;)reny and any 7 € (—o00,0). Let (Agx)ren be a sequence of positive
real numbers with A\ — oo for k& — oo. We rescale the flow according to the type-I
rescaling (9.7) with respect to the sequence (Ag)ren and consider the rescaled curves %F
for 7 € [ag,0). We observe that we receive a factor of Ay from the scaling behaviour (9.13)
of the length element, and a factor of 1/A; from the scaling behaviour (9.68) of the
backward heat kernel, and no scaling factor from the auxiliary function by the scaling
invariance (9.69). Hence, the monotonicity quantity translates, for ¢ := T + 7/ )\%, by

9.63
O (wo,1) (tk) L) f(tk)/Z D (401 (1) dH!

tr

() /E oy 7) M = Oy (7). (9.71)

T



98 9 Singularity analysis

Lemma 9.2 implies that there exists a singular point zy € R? and a blow-up sequence
(Pks tk)ken With

F(pg,tr) = xo and |5(Pks tr)| = [Klmax(te) — 00

for k — oo. Let 19 € (—00,0) and ko € N so that 79 € [ag,0) for k& > ko. We rescale
according to Definition 9.7 with respect to z¢ and (pg,tx)ren and consider the rescaled
embeddings Fj, -, : I x [ag,0) — R? (see (9.22)). Let 0 € I C R be a bounded interval,
[T1, 2] C (—00,0) and k1 > kg so that I C I} and [11,72] C o, 0) for all & > k;. Since
Kkry = Kk on Fy - (1, 7),

Fiory(I,7) C Fi(S',7) = 2% (9.72)

and the embeddings Fj suffice (2.15) (see (9.20)), we can apply the monotonicity for-
mula 8.5 and estimate similar to [Bak10, Proposition 6.6] or [Cooll, Proposition 5.8],

" fk I L2 1
2 0 = )Wk + o ot 2| @00 dH'd
/ 5 /Fk e (Rhzo = Fk)kiry + 5| F || R + 5 (0.0) dH d7
07 (7 12
/ fk / < Kk — h’k‘) Hf‘-’:k + yT >¢(070) dHldT
Sk -
k

Thm. 8.5
= 9( )(7'1) - @l(CO o)(7'2)

(9.71) T2
= O ><T+ )\2> ~ Owom) <T+ Ai> (9.73)

for all £ > k;. Since
Ti
T+ 5 —=T
AR
for k' — oo and ¢« = 1,2, and by the existence of the limit (9.65), the right-hand side
of (9.73) converges to 0 for k — oco. By Theorem 9.13, the sequence (F}, r,)ken converges
smoothly on I x [11,72] to a smooth flow Fu -, : R x (—00,0) — R%. For 7 € [y, ),

Lemma 9.12 and Fatou’s lemma, Lemma B.9, imply

12 L2
lim inf —h < Z_1l | @0 dH!
12 12
= h&gﬁ/}( (Kkyro — P )Vieyrg + v 2 e v >‘I)(0,0)”k,fodp
Lem. B.9 L L2 L2
> /I timinf | (| (kpry = P )Wk + =5 ||+ 8k + =5 || ) ®0,0)Vkimo | AP
12
Lem.9.12
Thm. 9.13 2/1 Fooro + Zo 7 ®(0.0) oo, AP
vt
= 2/ Koo,mg + — @(0’0) dHl > 0. (974)
Fao g (I,7) —27
Thus, (9.70), (9.73) for k — oo and (9.74) yield
T2 1 2
0< / CQ/ Kooyro T~ P(0,0) dH'dr < 0.
T1 FOQ,TO (IaT) _27-
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Since I C R was chosen arbitrarily, we deduce

/T2/
1 2070

Hence, for almost every T € [1, 73] and for almost every y € X777

2
@(070) dHld’T = O .

yL

oo + —27

2
=0.

yt
H"”voo,ro(yaT) + “or

By Theorem 9.13, F -, is smooth in space and time, so the above equation holds for

every T € [11,72] and every y € X277, By Proposition 9.17, the limit curve X777 is a
homothetically shrinking solution on the interval (71,0). Sending 73 — —oo yields the

claim for all negative times.
For the area estimate, let again be I C R a bounded interval, R > 0 and 7 € (—00,0).
Then there exists again k1 > ko so that I C Iy, 7 € [ay,0) and

T T

T-—=>=
A2 T2

(9.75)

for all k& > k;. By (9.64), the monotonicity quantity is decreasing in time and we can
estimate with the definition (8.1) of the backward heat kernel and the behaviour of the
length of the curve (see Corollary 3.5),

(9.72)
/ Do)y, 7)dH' < / D00y (y, 7) dH'
Fk,To(I’T) 2&
(9.66),(9.69) 1
< ol
(9.71) c ET_T/)%
(9.64),(9.75) 1 T
g / (I)(:L’O,T) (l‘, ) dHl
C ET/2 2

(8.1) 1 = xol? 1
 o/An(T = T/2) /zm eXp< 4T - T/2)> i

o frpp Conds Lo C(%0,T) (9.76)
T ev2rT T 2T B 007 ‘

Like before, Theorem 9.13 and Fatou’s lemma, Lemma B.9, imply

,
D40 1) <m,T - AQ) dr'
k

(9.76)
C > liminf / D9y dH' = lim inf / D (0,0)Vk,ro AP
Fk,ro (LT) k=00 I

k—o00

k—o0

= / D90y dH' (9.77)
Foo,rg (I,7)

Lem.B.9 L Thm.9.13
> /hm inf (<I>(070)Uk,70) dp = /(I)(O,O)Uoo,fo dp
I I
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and the definition (8.1) of the backward heat kernel yields

(9.77)
>

‘I)(o,o)(ny) dH!

b / exp<—”y||2> A’
V—4rT Foo,ro (I,T)NBR(0) AT

1 / < R? > 1

>_ 1 exp| ——— ) dH
V—4nT Foo,7o (I,7)NBR(0) —4r

2
= ! exp(—R> Hl(Foo,To (I, T) N BR(O)) .

\/};OO,TO (IvT)mBR(O)
(.1)

Since I C R was chosen arbitrarily,
RQ
4 ) < 0(207 Ta Ra 7-)

—4r

HI (227 N Br(0)) < CvV—4rnT exp(

holds for all 7 € (—o0,0). O

Theorem 9.19 (Homothetically shrinking solutions of CSF, Abresch-Langer [AL86, The-
orem A] see also [Hall2, Theorem 5.1] and [Manl1l, Proposition 3.4.1]). Let S € {R/Z,R}
and let F : S — R? be a unit speed curve representing a homothetic solution of the curve

shortening flow. If S = R/Z, then F(R/Z) is
(i) an m-covered circle, or
(i) a member of the family of Abresch—Langer curves.
If S =R, then F(R) is
(7ii) a line R x {0}, or
(iv) a curve whose image is dense in an annulus of R2.

Theorem 9.20 (Nonexistence of type-I singularities for the APCSF). Let F : S'x(0,T) —
R? be a smooth, embedded solution of the APCSF with T < oo. Then a type-I singularity
cannot form at T.

Proof. We follow the lines of [MB15, Proposition 4.12]. Assume, that a type-I singularity
occurs at time 7. Lemma 9.2 implies that there exists a singular point z9 € R? and a cor-
responding blow-up sequence (pg, tx)ren. We rescale according to the type-I rescaling 9.7
with respect to xg and (pg, tx)ken. For 79 € (—00,0), Theorem 9.13 yields that the rescaled
embedding Fy ,, : I x Jp — R? (see (9.22)) converge on compact subsets in the domain
of definition and the ambient space to a curve shortening flow F -, : R X (00,0) — R?
with

1. L(X7™) = oo for all 7 € (—00,0), and
2. Kooy Z00n R x (—00,0).

By Theorem 9.18, Fi 7, is
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3. a homothetically shrinking solution, and
4. HYZZ™ N Bg(0)) < C(Z, T, R, 7) for all 7 < 0 and R > 0.

Property 3 implies that 37, 7 € (—00,0), is one of the four types of homothetically
shrinking solutions listed in Theorem 9.19. But property 1 contradicts (i) and (ii), prop-
erty 2 contradicts (iii), and property 4 contradicts (iv). Thus, the singularity could not
have been of type I. O

9.5 Collapsed singularities

We say that a singularity is collapsed, if inf), jer (doo,ry /loo,7 ) (P, ¢, T) = 0 for every time
T € (—00, T ). In this section, we rule out collapsed singularities.

Theorem 9.21 (Non-existence of collapsed singularities). Let Xy be a smooth, embedded
curve satisfying Omim > —m, and let F : S'x [0,T) — R? be a solution of (2.15) with
initial curve Yo and T < oo. Then every limit flow Foory @ R X (—00,Tao) — R2, as
obtained in Theorem 9.13, satisfies infy qer (oo, /loo,7) (P, q, T) > C*, where C* is given

in Theorem 7.21, at any time T € (—00,Tw,). Hence, the singularity cannot be collapsed.

Proof. We follow the idea of [Hui95, Theorem 2.4]. By Proposition 4.9, the curvature
blows up for time approaching 7" < co. We rescale according to (9.11) and consider the
rescaled embedding Fj, : S' x J, — R?. For k € N, p,q € S! and 7 € J;, we obtain

— T
dk<p7 q, T) = )\kd(}?, q, tk + )\2>
k

— T
lk(pv q, T) = )‘kl <p7 q, tk + )\2>
k

L(SE) = ME(Sy o)

and, by definition (7.1) of ¥,
. T
wk(paQaT):)‘kw paQatk—FF .
k
Hence, the ratio d/1 is scaling invariant and Theorem 7.21 implies

d;, (9:10) d Thm.7.21
min — > min — > C (9.78)
SIxSIx Js % SIxSIx[0,T) ¢
for all k € N. Let 79 € (—00,T) and ko € N so that 79 € Ji for k > ko. We consider the
embeddings F -, : I X Jr — R? (see (9.22)). Since

(9.22)

Fk’TO(Ik’T) = Fk(slzl(IvaOLT) - Fk(Slv T) = Ek

for all 7 € J; and k > kg, we obtain

. dk,‘ . d (9.78)
min 0 > min Zk >
T x Iy X Ty, ﬂ}k,m SIXSIx Ty, Wk

o (9.79)
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for all k£ > kg, where

(9.80)

71 L(EF) (7wl (gt
wk»70<p7Q7t) (:) ( )Sln< k, 0(p q )> .

L(2F)

Let [p,q] C R and 7 € (—00,Ts). Then there exists k1 > ko so that [p,q] C I and
T € Jy for all k > ky. For ky < k < o0, Fj,,(-,70) is an arc length parametrisation (see
also (9.23) and Theorem 9.13), that is,

sy, Ha,70)

9.22 _ _
lk‘,TO (p7 q, TO) ( = : lk (Sk 1(p7 TO)a Sk 1(q7 TO)v TO) = / Uk(ra TO) dr
sy, H(p70)
sy, " (a,70) sy, - (p,0)
= / vk (r,70) dr — / vk (r, 70) dr
0 0

(A2 sk(sy (g, 70),m0) — sk(sy ' (P, 70),70) =q—p.

Lemma 9.12 implies
Uk (s 4, 7) < €2(X0, 70, 7)|q — D

for k > k1 and
7le’,7'() (pa q, 7-)

TSI
for k — oo. Since sin(z)/z — 1 for x — 0,
Dk 080  L(ZY) (ﬂlk o (P: 4 T)>
: 4, T) = : 1 9.81
lk‘ﬂ'() (p 7 ) Wlk,‘ro (p> q, 7-) L(Eﬁ) ( )

for k — oo. By Theorem 9.13, the embeddings (Fj r,)k>k, converge uniformly and
smoothly along a subsequence on [p, ¢] x {7} to a smooth flow Fi ;. In particular,

lero (0,4, T) = Lo (P, ¢, T) and i ro (P ¢, T) = doo,7y (P, q, T) (9.82)

for k — oo. Hence

079 d T U, 7 .82),(9. doo
cr < @(p’qﬁ): k,0(7 7 )(982)_(5381) o

a ¢k,7’0 ¢k,7’0

for k — oco. Since p,q € Rand 7 € (—o0, Tw) were chosen arbitrarily, the claim follows. [J

dszO

(p,q,7) (p,q,7).

lkﬂ'o ZOO:TO

9.6 Type-1I singularities for the APCSF

In this section, we only consider the APCSF. We assume that a singularity develops in finite
time and that it is of type II, that is, it satisfies property (9.6). We know from Section 9.2
that the limit flow of the rescaling is an eternal solution of CSF (that is, it exists for all
7 € R) which curvature is never zero. Hence, we can proceed as in [Hui95, Theorem 2.4].

Theorem 9.22 (Hamilton [Ham95b, Main Theorem B]). Any strictly convex eternal so-
lution of MCF where the mean curvature assumes its maximum value at a fixed point in
space time, must be a translating solution of MCF.



9.6 Type-II singularities for the APCSF 103

A\ 4

Figure 9.1: The rotated grim reaper x = —log(cos(y)) for y € (—n/2,7/2).

Proposition 9.23 (Structure equation for translating solution of CSF, see [Manl11, Propo-
sition 1.4.2]). If F: R x (0,T) — R? is a translating solution of CSF, then there exists a
vector v € R? such that

K(p,7) = (v,v(p,T)) (9.83)
for every point p € R and every 7 € (0,T).
The following name was introduced by Calabi (see also [Gra87, p. 298]).

Definition 9.24 (Grim reaper). We call the graph of the function u(-,7):(—7/2,7/2) —
R, where 7 € R and
u(o, 1) := 7 — log(cos(0))

the grim reaper (see Figure 9.1 for an illustration).

Lemma 9.25 (Characterisation of translating solutions of the CSF, see [Manll, p. 15]).
A curve ¥ = F(R), parametrised by arc length, that satisfies k(s) = (v,v(s)) for some
vector v € R? and for all s € R, is the grim reaper for a fived T € R.

Remark 9.26. The above statement has also been proved in [Alt91, Proof of Theo-
rem 8.16].

Proposition 9.27 (Shape of the limit flow for type-II singularities of the APCSF). Let
F :S'x (0,T) — R? be a smooth, embedded solution of the APCSF with T < oco. For
the type-II rescaling in case of a type-II singularity, each limit Foo -, : R x R — R?, as
obtained in Theorem 9.13, is the grim reaper up to rotation.

Proof. Theorem 9.13 yields that the limit flow satisfies

Sup ’KVOO,T[)’ = |H007T0(070)| =1.
RxR

By Proposition 9.16 it consists of strictly convex or concave curves X7 ° for 7 € R.
If Koo,y < 0, we change the direction of parametrisation so that ke, > 0. Since the
curvature attains its maximum at the point (0,0) € R xR, Theorem 9.22 yields that Fi

is a translating solution. By Proposition 9.23, ¥77™

o0, T

for each 7 € R. Lemma 9.25 implies that 37" is the grim reaper for every 7 € R. O

satisfies the structure equation (9.83)
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Corollary 9.28 (Non-existence of type-II singularities for the APCSF). Let ¥y be a
smooth, embedded curve satisfying Omin > —m, and let F : S' x 0,T) — R2 be a solution
of the APCSF with initial curve X9 and T < oo. Then a type-1I singularity cannot form
at T.

Proof. By Proposition 9.27, any blow-up limit curve 7™, 7 € R, is given (up to rotation)

by the grim reaper. The grim reaper is asymptotic to two parallel lines of distance 7. Let
7 € R. We can find a sequence of points (pj,q;)jen in R x R with

dOOyTO(pja Qj77—) <m

for all j € N and

lOOﬂ'O(pj’ qj, T) — 0
for 7 — oco. Hence,

dOOT
inf —"(-, -, 7)=0.
RxR loo 7o

Theorem 9.21 excludes these kinds of singularities. O

9.7 T'= oo for the APCSF

Theorem 9.29. Let X¢ be a smooth embedded, closed curve satisfying Omin > —m. Then
there erists a unique embedded solution F : S'x [0,00) — R? to the APCSF with initial
curve Xy and F € C®(S! x (0,00)).

Proof. By the short time existence, Theorem 2.3, there exists a unique solution F €
C> (S x (0,T)) to the initial value problem (2.15) with T' < co. By the bound (3.10) for
hap and Lemma 3.13, the curves stays in a bounded region on [0,7"). Theorem 6.5 implies
that the curves remain embedded on (0,7). Assume that 7" < co. By Theorem 9.20 and
Corollary 9.28 neither a type-I nor a type-II singularity can form in the interval [0,T)
so that curvature stays bounded on [0,7] by a constant C(3¢,T"). Like in the proof of
Proposition 4.9, we can extend the flow beyond T" and repeat the above argument. Hence,
for every time T" < oo, there exists a constant C'(Xg,7”) < oo so that

|| max(t) < C

for all ¢t € [0,7"). Applying again Proposition 4.9 yields that the short time solution can
be extended to a smooth solution on (0, c0). O



Chapter 10

Convexity in finite time

In this chapter, we show that a smooth, embedded solution F : S!x (0, 00) — R? of (2.15)
becomes convex in finite time. Like in [MB15, Section 7], we use the following Gagliardo—
Nirenberg interpolation inequality.

Theorem 10.1 (Gagliardo—Nirenberg interpolation inequality, [Nir59, pp. 125], see also
[Aub98, Theorem. 3.70]). Let f € C®(S'). Let q,r € R with 1 < ¢,r < 0o and j,m €
NU{0} with0<j<m. Let p >0 and o € [j/m,1] with

1 1 1-—
—ito(rom)+ B s
p r q

& f

dxi

so that p is non-negative. Then there exist constants ¢ = c1(m,j,p,q,r,0) and ca =
ca(m, j,p,q, 7,0, 1) such that
dmf

P 1/p r ofr (1-0)/q
(L@l ) = (L 1G] o) (o)
/n
+ o </ |f|“dfv> . (10.1)
Sl

Ifr =1/(m —j) # 1, then (10.1) is not valid for o = 1. If [ fdx = 0, then the last

integral term in (10.1) can be omitted.

Corollary 10.2. Let f € C®(SY). Let p > 2 and o € [0,1) with

Then there exist constants ¢y = c1(p,0) and ca = ca(p, o) such that

1/p df\? a/2 L\ (-0
() "ze ([ (£ ) (L)
1/2
+ ¢ (/Slf2da:> . (10.2)

If o1 fdx =0, then the last integral term in (10.2) can be omitted.
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Proof. We chose j =0, m =1 and ¢ = 2 in Theorem 10.1. O

Lemma 10.3. Let f € C*°((0,00))NL((0,00)) with f >0 and & f < c(1+ f)3 for ¢ > 0.
Then f(t) — 0 fort — oo.

Proof. We follow the lines of the proof of [MB15, Corollary 7.5]. Assume that there exists
0 > 0 and a sequence (tx)gen With tx — oo for £ — oo and

f(tg) >0 (10.3)
for all £ € N. The assumption on f yields
d a
(1 -3
S+ n=20+ )70 <o

Fix k € N. We integrate from ¢ € (0, ;) to tx and obtain
—(L+ftR) 2+ A+ ()7 < ety — 1)
The assumption (10.3) implies
L+ ft) 2 <elty—t)+(1+6)72
so that . (146
A+ 2 (th—t)+ (1402  cltr—t)(1+06)2+1
for t € (0,tx). Choose € > 0 so that

“EAroreEto)

Then
2(6 — ce(1 4 0)?) =20 — 2ce(1 4+ 8)* > 0 + dee(1 +6)* = 5(1 + ce(1 +6)?)

and, for all ¢t € (ty — e, tx),
1+96 1+9 §—ce(1+0)2

)
(ce(1+0)2+1)/2 S e P e ozl T 2 (104)
Since ¢ and € are independent of k, inequality (10.4) holds on (t; — €, t)) for every k € N,
so that ~
/ ft =
0
This contradicts f € L((0,00)). O

Lemma 10.4. Let F : S'x [0,00) — R? be a smooth, embedded solution of the LPCF with
mitial curve Xgo. Then

/ (hp — K)dsg = 0 and hip = —
Sl Ly

fort — oo, and there exists constants ¢ = ¢(Xg) such that

dh
sup — <c¢ and / / h—k) dsgdt <c.
[0 OO) dt Sl
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Proof. By Remark 3.7, hy, = [q1 k% dsy/(27) and by Cauchy-Schwarz (B.3),
Ro

(B:3)
% =2 (h—r)dsy > 0

Sl
Ro

for t € (0,00), with equality only on the circle. We integrate from ¢ > 0 to 7 < oo and
use the isoperimetric inequality, Lemma 3.4,

Lg Cor. 3.6 L?_ Lem. 3.4
Z0 Pt T >

A > A — A = h—k)dsgdt > 0.
4 4 ” © \/5\/8}2( ) dsy dt 2
0

Sending ¢ — 0 and 7 — oo yields
L2 o)
02/ / (h — k) dsgdt > 0. (10.5)
471' 0 s1
Ro

We deduce with Corollary 10.2 for p = 4 and ¢ = 1/4 and Young’s inequality (B.1) for
p=4/3 and ¢ =4 as well as for p = q = 2,
1/274
K2 dst>

Cor.10.2 Ok \2 1/8 3/8
/ K ds; S e (/ <R> dst> (/ K2 dst> +c </
Sk, sk, \0s Sk, s
3 2
(B.1) 1 2
< — <8H> ds; + ¢ / k2ds; | +c / k2 ds; (10.6)
2w S}%O 88 S}%O S}:io

for a constant ¢ > 0. Again, by Corollary 10.2 for p =3 and o = 1/6,

9\ 2 1/12 5/12 1/273
/ k3ds < |c / (/{> dsy / k2 ds, +c / k2 ds, (10.7)
S sy, \OP Sk, Shy
so that with Young’s inequality (B.1) for p = 3/2 and ¢ = 3 as well as for p = 4 and
q= 4/37
L,
1/4 9/4 5/2
(10.7),(B.1) 2
< c (/ (?) dst> (/ K2 dst> +c (/ K2 dst>
shy 09 h h
3 5/2
(B.1) 1 2
< — % ds; + ¢ k2ds; | +c¢ K2 ds; i (10.8)
2T st 88 st st
Ry Ry Ry

We use the evolution equations (3.2) and (4.1) for the length element and for the curvature,

1
Ro

1
Ro

K3 dst/ K2 dsy
S

1
Ro
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Remark 3.7 and integration by parts (B.4) to calculate

dh Rem.37 1 d 9 1 / OK? / 5 OU

&0 Rem. 37 2 @ dsy | = — g i

dt or dt (/S}% " 8t> o < P T S T
0

7o
2
(3:2),(41) 1/ < Pk (h_ﬁ)ﬁg> dst+2i W3 (h — k) v dp
™

8}30 ’i@ ™ Jst1
4 1 2 1 1
(]3:4) —/ <8/{) ds; — —5 K3 dst/ k2 ds; + / KA ds;
T S}%O 88 47T S}{O 8}30 271' S}zo

(10.6),<(10.8) . </ 2 )3 N (/ . >5/2 (/ . >2

< n c K* ds +c K° dst

S};{O S}%O S}%O
< e(h® + h®? + h?) (10.9)

for all t € (0,00). With Young’s inequality, we estimate
h* <h3+1< (h+1)>
for o € {2,5/2} and conclude

d dh (10.9)
S| (h—k)dsy = Lo < clh+1)* = —
0

]
<0/
S

for all ¢ € (0,00). With (10.5) we can apply Lemma 10.3 to the non-negative function

(Loh — 27 + 27 + Lo)°

3
(h— k) ds; + 1)

1
Ro

£(t) = /g (h— r) ds,

1
Rg
to obtain

2
/ (h—k)ds; = 0 and therefore h— X
S Lo

1
Ro

for t — oo. Together with (10.9) this yields that supyg o) %h is bounded from above. [

Lemma 10.5. Let F': S'x (0,00) — R? be a smooth, embedded solution of (2.15). Then
there exists a constant ¢ > 0 such that

d ) ok’ dh
— — < — - - —
it Jsy (h—k)*ds; < /S}% <8s> dsy + 2A 7 (h — k) dsq

S}%t
5/3
(h — k)? dst>

+C(/S}%t(h_ﬁ)2d8t>3+c</8}at
2 3/2
+Ac</Sl (h—m)zdst> +Ac</S (h—ﬁ)2dst>

for all t € (0,00), where A =0 for the APCSF and A =1 for the LPCF.

1
Ry
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Proof. We follow the lines of [MB15, Lemmata 7.3 and 7.4]. Write
k=h—(h—k).
Then
(h—k)3k = h(h — r)® = (h— k) (10.10)
and

(h—k)?k* = (h — k) (h* = 2h(h — K) + (h — k)?)
=h3(h —K)? = 2h(h — K)> + (h — K)*. (10.11)

The evolution equations (3.2) and (4.1) for the length element and for the curvature, and
integration by parts (B.4) yield

4
dt S}%

t
(3.2) dh Ok
= _— 2 —_—
/S%at(h k)35 ds, + / (h )(dt 8t> ds,

2
(2)/ (h — mzstm— h—r dst+2/ (h — k) ((%;Hhﬁ)ﬁ?) ds
st Sl S 88

Ry

‘ dh o\
(]3:4)/ (h— k) Kd8t+27 (h—ka) dst_2/ <H> d5t+2/ (h — k)*K* ds;
S}{t dt S}%t 88 si

(h — k)% ds,

dh ok’

+2% (h_H)dSt_Q/S}% (85) dSt
t
+2h2/ (h — k)*ds; —4h/ (h—/f)?’dst—i—Q/ (h — k)*ds,
S}%t S}%t g}%t
h
= —2/ (&;) dsi + 24 / (h—fi)dsﬁ/ (h— )" ds;
Sk, s dt sk,
- 3h/ (h — k) ds; + 2h2/ (h — k)2 ds; . (10.12)
Sl Sl

For the APCSF, by definition of the global term,

2
/(h—fs)dst:Lth—/ Kkdsy = Ly— — 21 =0. (10.13)
st sk, Ly

Like in [MB15, Corollary 7.4], we use Corollary 10.2 with p = 4 and ¢ = 1/4 and Young’s



110 10 Convexity in finite time

inequality (B.1) with p =4/3 and g = 4 as well as for p = ¢ = 2, to estimate

/ (h — k)t ds;
S}%t
4
Cor.10.2 9 3/8 9 1/2
< c — dst — R)“dsy + Ac / (h— K)*dsg
(B.1) sl Sk,
3 2
(B.1) 1 9
< / — dst +c / dst + Ac / (h—kr)*dsy | (10.14)
2 Sl S}%t

where we defined
N {0 for the APCSF

1 for the LPCF

in view of (10.13) and the last sentence in Corollary 10.2. Again by Corollary 10.2 with
p =3 and 0 = 1/6 and Young’s inequality (B.1) for p = 3/2 und ¢ = 3 as well as for p = 4
and ¢ = 4/3, we obtain

/ (h — k)3 ds,
sk,
1/12 5/12
Cor. 10.2 2
< c / <8K> dsy / (h — k)2 dsy + Ac /
(B.1) Sk, 0s sk, S1

1/273
(h — k)* dst>
Ry

9 5/3 3/2
(B.1) 1 Ok 2 2
< / — ) dsi+c / (h— k) dsy + Ac / (h — kK)*ds; . (10.15)
2 Jsp, 08 Sk Sk

Altogether, with the bounds on the global terms (see Lemma 10.4 for the LPCF),

qa
dt

(10.12),(10.13) 2
< —/ <6KJ> dst+2Adh (h—/i) dsy
(10.14),(10.15)  Jsk, 0s dt
3 5/3
+c / (h—r)?ds; | +c / (h — k)2 ds;
Sk, Sk,
2 3/2
+ Ac / (h — k)2 ds; | + Ac / (h — k)*ds; . O
Sk, Sk,

Lemma 10.6. Let F : S' x [0,00) — R? be a smooth, embedded solution of (2.15) with

initial curve Xo. Then
/ (h — k)2 ds; — 0
S}%t

/ / (h — k)2 ds; dt < oo
0 S}{t

(h — k)2 ds;
1

fort — oo and
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Proof. We treat both flows separately.

For the APCSF, h = 27 /L, so that

2 L(2m)?
/ hmdst:%r /idst:t(L;T): h2ds; .
Sk, tJst, i Sk,

Like in [Hui87, p. 47], the evolution equation (3.8) for the length of the curve yields

dL(Sg)/
at  Js

).

for all t € (0,00). We integrate from £ > 0 to 7 < co and deduce that

(hK, - Hz) ds; = / (—hH + 2hk — /{2) ds;

1 1
Ry SRt

(—h2 + 2hk — /ﬁ?z) dsy = —/ (h — k) ds,

1 1
Ry Sk,

Cor. 3.5 T 9
Lo > L€ZLE—LT—/ / (h—/ﬁ) dstdtZO.
€ S}%t

Send € — 0 and 7 — oo yields

Lo > / / (h—k)* ds; dt > 0. (10.16)
0 JSk,

Lemma 10.5 and Young’s inequality (B.1) imply

3
d Lem. 10.5
— (h — k)2 ds; eg c / (h— k) ds; | +¢ /
dt Jst, Sk, s

3
(h — k)? dst> ,

5/3
(h — Kk)? dst>

1
Ry

where ¢ = ¢(Xp). Like in [MB15, Corollary 7.5], we define

f(t) ::/S (h — k)2 ds; > 0

1
Ry

so that, with the bound (10.16), Lemma 10.3 yields the claim for the APCSF.

For the LPCF, we calculate with Remark 3.7,

/1 (h — k)?ds; = / (k% — 2hk + K2) ds; = Loh® — 4wh + 2rh
S S

Ro }?/0
= Loh® — 2nh = h(Loh — 27)
9)  dA
- h/ (h — ) ds; 22 22t (10.17)
Sl dt
Ro
for all t € (0,00). Lemma 10.4 yields
: em.10.4 27% 27
/ (h—/i)QdSt (10:17) L0h2—27th _.1)0.4 2ms an”t _0
st Lo Lo

Ro
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for t — oo. Since

3.11)  Lem.10.4 ‘A, Cor.3.6 Cor.3.6 [2
(<)h <1 00, da > and Ag < Ay !
dt 47
for all t € ( , we also obtain
* dA L
/ / h — k) ds; dt 1017)/ d < uph[O—A0}<oo. O
Sl [0,00) 2

Lemma 10.7. Let F : S' x [0,00) — R? be a smooth, embedded solution of (2.15) with

mnitial curve Xo. Then )
/ / <8/{) dsydt < 00.
0 JSg, s

/ (h—kK)ds; =0 (10.18)
Sl

Proof. For the APCSF,

for all t € [0,00). For the LPCF, by Cauchy—Schwarz,
/ (h—kK)ds; >0
S}%

so that Lemma 10.4 yields

° dh Lem. 104
/ / (h — k) dsydt < sup / / —Rk)dsgdt < (10.19)
o dtJsy [0,00) 4 Sk,

where ¢ = ¢(Xp). For both flows, Lemma 10.6 implies that there exists a time ¢y > 0 so

that
/ (h— k) ds; < 1
Sk,

p
—k)?%ds; | < — k)%ds; )
(/S}%(h 12d ) </S}%t(h 12d (10.20)

for all p > 1. From Lemmata 10.5 and 10.6, we obtain

00 Ok 2
— | dsgdt
Lem 10. 5 dh
/ / h — k) dstdt+2A/ / (h — k) ds dt
to dt Sl to t S}%t
3 o 5/3
+c/ / (h — k)2 ds; dt+c/ / (h— k) ds; | dt
to S}%t to S}%t
0o 3/2 . 2
+ Ac/ / (h — k)% ds, dt + Ac/ / (h—k)*ds; | dt
to Sk, to Sk,

Lem. 10.6,(10.18) 00 Lem. 10.6
< / (h/{)2dstdt+cA+c/ / (h — k)% ds; dt e
(10.19),(10.20) st St

for all £ > ty, and thus



113

Since ¥; is smooth for ¢ € [0, to],

to 2
/ / <8HJ) dss dt < oo
0 JSk, s

as well. O
For the next result, we need the following theorem.

Theorem 10.8 (See [GT83, Theorem 7.26(ii)]). Let @ C R™ be open. For

0§m<k—ﬂ<m+1 and a:k—ﬁ—m
p p

the space WEP(Q) is continuously embedded in C™(Q), and compactly embedded in
C™B(Q) for any B < a.

Theorem 10.9 (Convexity in finite time). Let F' : S1x[0,00) — R? be a smooth, embedded
solution of (2.15) with initial curve Xo. Then there exists a time Ty > 0 such that ¥, is
strictly convex fort > Tp.

Proof. Lemma 10.7 implies that there exists a sequence (tx)gen With ¢t — oo for k — oo

so that
2
/ <6“> dsy, — 0 (10.21)
si 63
Rtk

for K — oo. Hence, there exists kg € N so that for all k£ > kg

ok \
/ () dsy, < 1. (10.22)
st 88
Rtk

We employ Theorem 10.8 for n = 1, m = 0, p = 2 and 8 = 0 to obtain that W12(S)
is compactly embedded in C°(S'). Furthermore, CO(S') c L*(S'), and ||f[|r2s1) <
V27| fllcosty for every f € CO(S!). Hence, C°(S!) is continuously embedded in L*(S')
and

whsh) — c%s') < L*Sh).

compact continuous

Let f € W12(S1). By Ehrling’s lemma, Theorem B.15, for all € > 0 there exists a constant
C(e) > 0 so that

[ fllcosty < el fllwrz@ty + CENfllrzesy - (10.23)
Lemma 10.6 and (10.21) yield

h(ty) — k(- ;) € W2 (S}%tk)
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for each k € N. Hence, we can use (10.23) to estimate

max ‘h(tk) — H(S,tk)‘

sES}atk
) 1/2 1/2
(10.23)
< e / O dst, +e / (h—k)? dsy,
sl 83 si
Rtk Rtk
1/2
+ C(e) / (h— k)" dsy,
Sk,
1/2
(10.22) )
< e+C(e) / (h— k)" dsy, (10.24)
Sk,
for all k£ > kg. Choose
T
g = 5(20) = m
to deduce
1/2
(10.24) )
max |h(ty) — k(s,t)| < = 4 C(o) / (h— k)" dsy, . (10.25)
s, 2Lo sh

@2z

Lemma, 10.6 implies that there exists k1 > kg so that for all k£ > kq

/Sl (h—/<;)2 dst, < (20(50)[/0)2 )

Rtk
Thus,
(10.25)
max ‘h(tkl)—ﬁ(s,tklﬂ < —
SES}%% Lg
1

Since h > 27/Lo > 0 (see (3.10) and (3.11)), we conclude that x > 0 on S! at t,. From
Corollary 4.3 it follows that x > 0 for all ¢t > ¢;,. Hence, the claim holds for Ty = t;,. O



Chapter 11

Longtime behaviour

In the previous chapters we proved that if ¥ is a smooth, embedded, closed curve sat-
isfying Omin > —m, then unique short time solution of the APCSF can be extended to a
smooth embedded solution (X);c[0,00) Which becomes convex at finite time Ty < co. For
the LPCF, we showed that an immortal solution (¥¢);c[0,0c) becomes convex at finite time
Ty < oo. In this chapter we derive global higher derivative estimates for the curvature
of convex curves and show that convex solutions (%);c[7; o0) converge exponentially and
smoothly in time to a round circle. This was already shown in [Gag86] for the APCSF and
in [Pih98] for the LPCF. We repeat and extend the arguments here for the sake of com-
pleteness. We mostly follow the lines of [GH86, Section 5] for rescaled convex CSF, [Gag86|
for convex APCSF, and [Pih98, Chapter 7] for convex LPCF. Note that Pihan considered
the speed 1 — hlg)llﬁ (compare Remark 2.2(i)), so his calculations are somewhat different.

11.1 Uniform C"-convergence

In this section, we show that convex initial curves evolving under (2.15) converge to a
circle in C°.

Lemma 11.1 (Isoperimetric inequality, [Gag83]). For a closed, convex C?-curve in the

/ HZdSZﬂ
S A

1
R

plane,

with equality if and only if the curve is a circle.

Lemma 11.2 ([Gag86, Corollary 2.4] and [Pih98, Lemma 7.7]). Let X7, be a smooth,
embedded, convex curve of area Ar, = wR2 for the APCSF and length L1, = 2mRy for
the LPCF. Let F : S*x [Ty, 00) — R? be a solution of (2.15) with initial curve Yq,. Then
there exists a constant D = D(Xg,) > 0, such that

L? 2t
(A — 471') < Dexp<—R%>

for allt > Ty.
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Proof. For the APCSF, we follow the lines of [Gag86, Corollary 2.4] and use the evolution
equation (3.8) for the length of the curve, the fact that the area is constant in time (see
Corollary 3.5), hap = 27/L, and the isoperimetric inequality, Lemma 11.1, to estimate

d [ L? 2L dL (
4 3.8 2 4!
dt(A ”) A dt < L Et dH)
Lem<111 2L 2 L 4 L?
S

for 7 > Ty. By Lemma B.1,

L? o L% 2t
Sty < -y O _4r | =D(T -=
(At ﬂ-) N eXP( ATO ) (ATO W) ( TO) eXP( Rg)

where we used Ag, = A; for all ¢ > T.

For the LPCF, we follow the lines of [Pih98, Lemma 7.7] and employ the evolution
equation (3.9) for the area, the fact that the length is constant in time (see Corollary 3.6),
hip = fEt k2 dsy/(27), and the isoperimetric inequalities, Lemmata 3.4 and 11.1, to esti-

d (L? L?dA 39) L* [ L o 1
dt(A _47r)__AQcﬁf - e <27T/2“ aH ‘2”>

Lem. 1.1 12 /Ll A Lem, 3.4 472 (L2 A
= _2A?<7TA_ W) - _L2<A_7r

mate

for 7 > Ty. Again by Lemma B.1,

L2 472 L% 2
Tt yn) < Ty 41 | = D(Z _Z
(5 ) zow( 3] (52 ) - pmarenn(51)

where we used L7, = L; for all ¢t > Tj. ]

Proposition 11.3 (Bonnesen isoperimetric inequality, [Oss79, Theorem 4 (21)]). For an
embedded, closed curve 3 in the plane,

L2 2

Z — 47 > I(rcirc - rin>2 > 07

where Teire and Ty, are the circumscribed and inscribed radius of X.

Corollary 11.4 ([Pih98, Corollary7.8]). Let X1, be a smooth, embedded, conver curve
of area A1, = wR2 for the APCSF and length L1, = 2nRq for the LPCF. Let F : S! x
[T, 00) — R? be a solution of (2.15) with initial curve Xr,. Then there exists a constant
D = D(Xr,) > 0 such that

2

— (7 - 2 ex _2
At( mrc(t) m(t)) <D p( R%)

for all t > Ty.
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Proof. The claim follows directly from Lemma 11.2 and Proposition 11.3. O

Proposition 11.5 (C°-convergence of convex curves, [Pih98, Proposition 7.9]). Let X7,
be a smooth, embedded, convex curve of area A, = 7TR(2) for the APCSF and length
L1, = 27 Ry for the LPCF. Let F : S' x [Ty, 00) — R? be a solution of (2.15) with initial
curve Yq,,. Then ¥y = F(S4t) converges in C° to a circle of radius Ry for t — oc.

Proof. We can then apply Corollary 11.4 for ¢ > Ty to conclude that the inscribed and
circumscribed radius converge towards each other, that is,

Teire(t) = rin(t) = 0 (11.1)

for t — oo. For embedded, closed, convex curves, we can estimate

A(Brin) \/Z
=\ ) < 2
s ™

where A(B,, ) is the area of the inscribed ball, and

£ < L(BTcirc>
2 — 27w

= Tcirc »

where L(B,,,.) is the length of the circumscribed circle. The above two inequalities and
the isoperimetric inequality, Lemma 3.4, imply

A, Lem.34 [,
nn(t)swﬁ < ﬁgmrc(t)

for all ¢ > Tj and the convergence (11.1) yields

Lt At
— =1/ ——=0
2T ™

for t — oco. For the APCSF, the enclosed area is constant so that

L [A
7t_> J:ROa
2T T

for the LPCF, the length is constant so that

[A L
7t_>70:R0

T 2
L /A
R—%— pu

Hence, ¥; converges to a circle of radius Ry for ¢ — oo. ]

for t — oo. For a circle of radius R,
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11.2 Uniform C?-convergence

In this section, we again assume that ¥7;, is convex. By Corollary 4.3, ¥; is strictly convex
for all t > Tp. Like introduced in Chapter 5, let 9 : S! x [Ty, 00) — [0,27) be the angle
between the xi-axis and the tangential vector at the point F'(p,t). Since ¥; is strictly
convex on (7p,00), J(-,t) is injective for each t € (1p,00). We want to use ¥ as spatial
coordinate and define T to be a new time variable so that 7 =t as well as

% =1 and gi =0. (11.2)
For a C'-function f:S' — R, we then have,
Of _0f 00 o1 0f
Os 00 0s oY
Hence, the spatial derivatives transforms according to
19 0 0 (11.3)

vop  0s 00
In the following sections, we use the coordinates (1J,7) on S' x (Tj, c0).

Lemma 11.6 ((GH86, Lemma 4.1.3] and [Pih98, Lemma 6.12]). Let F : S'x (Tp, 00) — R?
be a smooth, strictly convex solution of (2.15). Then
2
% = 52% — (h— k)%, (11.4)
Proof. The proof can be found in [GH86, Lemma 4.1.3] for CSF and [Pih98, Lemma 6.12].
For k = (¥, T), by the evolution equation (5.2) of the angle and the transformation (11.3)
of the derivatives,
0V (52) Ok (11.3) Ok
o~ os o
so that, by (11.2),
Ok 0k 0V  OkOT (112) . <8m)2 Ok

ot ovor " or o o) Tor

Prary 0 (k) (OkN' L 0%
02— oo\ "aw) T "\aw) TF au2-

Subtracting the last two equations and using the evolution equation (4.1) of the curvature

Furthermore,

with respect to t yields

Ok ,0%. Ok 0%k (41) 9
ar Mol o o o R -

We define, for 7 > Tj,

max |k|max(0) for the APCSF
m(r) = { 7€To] (11.5)
1 for the LPCF.
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Lemma 11.7 ([Gag86, Lemma 3.4 and Corollary 3.5] and [Pih98, Lemma 6.9]). Let X,
be a smooth, embedded, convex curve. Let F : St x [Ty, 00) — R? be a solution of (2.15)
with initial curve Xg,. Then there exists a constant Dy = Do(X7,) > 0 such that

2
/S1 <gg> d19</glm2d19—|—Dom

for all T > Ty, where m is defined in (11.5).

Proof. For the APCSF, we follow [Gag86, Lemma 3.4 and Corollary 3.5]. By Corol-
lary 3.5, the length of the curve is decreasing so that a%L < 0 and we observe

o< |
S

We use the evolution equation (11.4) of the curvature, the time-independency (11.2) of ¥,
hap = 27 /L, and integration by parts (B.4) to estimate

d 2 oK\
% o (K, — (879> —2h:‘€> dy

(11:2) <2ng” 0ROk 2h&<> i + 27TaL/ K2 ds;
st T

k2 ds; = / kdY < 2T Kmax - (11.6)
Sl

1
Ry

0v ot 09 or

(B4) 0’k ok 2w |OL / 9
= /812</£+8219 h) o dv 72 | r 5 K* ds;
t

(11.4)(11.6) %k 2 A2k oL

5 2 L _ AT Fmax | OL

= /S 2n <“+ 20 h) R R

472 Kpax OL
> .
- L? 07 (D

for all 7 > Ty. For 19,7 € (Tp,00), 79 < 7, with the definition (11.5) of m, %L <0 and

L; > \/Ar,/(4m) (see Corollary 3.5),

T A% Kppax OL T 1 0L . 1 1
/ e a— d7 > 4% max KmaX/ 0 dr (11:5) —4772m(7') ( — )

. L2 o7 [To,7] 7, L2 07 L, Ly,
Cor. 3.5 4 1
> dn?m(r) T = —c(Sq,)m(r) . (11.8)
ATO LTO

We integrate (11.7) from 79 to 7 and use (11.8) to obtain

/Sl (/ﬁz(’ﬁ,T) - <gg(q9,7))2 - 2h(7),€(1977)> 4

oK 2
> /§1 (/{2(?9,7'0) - <879(’l9,7'0)> — 2h(7‘0)/€(’0,7‘0)) dy — C(ETo)m(T)

> —c(Xq,)m(T).
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Rearranging terms yields

2
/ <‘%> d19</ /@Qdﬁ—2h/ kdd + o(S1,)m
st \ 0¥ st st

(11.6),(11.6)
< / K2 di + c(Sr)m .
Sl

For the LPCF, we follow [Pih98, Lemma 6.9]. We use the evolution equation (11.4) of
the curvature, hy, = [g; £ d¥/(27), and integration by parts (B.4) to calculate

[ (e G

(11.2) Ok Ok 0 Ok Ok
- /S ( “or Zovaran) VM, 5 P
(B.0) Ok ) 0k
= /812<K+8219 h) o d
2
(11.4) 9 0%k
/812,% <n+82?9 h> d > 0 (11.9)

for all 7 > Ty. For 19,7 € (Tp, ), 19 < 7, we integrate (11.9) from 7y to 7 and conclude
with the convergence of the global term from Lemma 10.4,

I, [/@2(19, - <ggw, T)ﬂ 49— 22
Lem. 10.4

oK 2
= /S1 [K2(19’To) - <819(19’ TO)> ] dy —2nh* (1) >  —c(Zq).

ok )
— <
/Sl (8’[9) dl?_/Sll{ d19+C(ETO)

where we estimated —h?(7) < 0. O

Hence,

Let X7, be a smooth curve of length L. For 7 > T}, define

D*(7) = D* (¥, 7)

2w D
Vor + ;}T 0 for the APCSF in case m(7) = Kmax(T)
To
V271 + /Dy for the APCSF in case m(7) < k2,.(7)
= Dom(T) . 2 (11.10)
Vor + 271‘L7 for the APCSF in case m(7) > kZ .. (T)
To
v D
V2r + 27 T 0 for the LPCF,
To

where m is defined in (11.5) and Dy in Lemma 11.7.
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Lemma 11.8 ([GH86, Paragraph 4.3.6] and [Pih98, Lemma 7.1]). Let X7, be a smooth,
embedded, conver curve. Let F : S'x [Ty,00) — R? be a solution of (2.15) with initial
curve Xq,,. Let T > Ty, 91,92 € St and § € (0,7/2]. If |91 — ¥2| < 5, then

(91, 7) = K02, 7)| < D*(T)V8 Kmax(7),
where D* is defined in (11.10).

Proof. We follow the lines of [GH86, Paragraph 4.3.6] and [Pih98, Lemma 7.1]. Corollar-
ies 3.5 and 3.6 provide

L, Cors.3.5,3.6 LT
Fmax(7) 2 5 2 S (11.11)

Let § € (0,7/2]. For |91 — ¥2| < §, Cauchy—Schwarz (B.3), Lemma 11.7 and va+b <
Va -+ Vb imply

J2
(0, 7) — w02 < [ |58

(B.3) Ok 2 1/2
< |91 — V2|2 / ( 19¢> dv
01 — s (ﬂl 619( )

Lem.11.7 1/2
ESVY </ K2(9,7) do + ng(T)>
Sl

< V5 (2742, (7) + Dom(r))
<5 (m&maX(T) + Dom(7)>

< Vo kmax (T )<\ﬁ+ Dom(r )> : (11.12)

9, 7)|d9

Hmax(T)

where we used Kmax(7) > 0 for 7 > Ty. For the APCSF, the definition (11.10) of D*
yields, that in case m(7) = Kmax(7),

D, < (11.11) 2w D
’imax(T) LTO

in case m(7) < k2. (1),

Va4 YR e /B,

max(T)

and in case m(7) > w2, (7),

D (11.11) 21/ D )
Va4 YPom(r) W o 2my/ Dom() (110) pe
Hmax(T) LTO
For the LPCF, we deduce with m =1,

/ (11.11) /D

<
ﬁmax(T) - LTO

All together, this yields the claim

(11.12)

|’€(191’T) - 5(19277—)’ < \[Klmax( ) . J
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ray

arc

fat line

Figure 11.1: The arc of length w with curvature greater than M.

Definition 11.9 (Generalised median curvature). For for 7 > Ty and w € (0, 7), define

the generalised median curvature

*
w

k() == sup {b | [s(-,7)| > b on some interval of length w} .

Lemma 11.10 (Gage-Hamilton [GH86, Lemma 5.1]). Let ¥ C R? be a, smooth, embedded,
closed, convex curve. Then

-1
K Tin < [1 — K(w) (Tm(: — 1>} ,
Tin

where K : (0, 7] — [0,00) is a positive decreasing function with K(w) — oo for w \, 0 and
K(m)=0.

Proof. We repeat the proof here for the sake of completeness. Fix M < k}. By Defini-
tion 11.9 of the generalised median curvature, the set S := {¢ € S!|x(¥) > M} contains
an interval of length at least w. By changing the parametrisation we can assume that
(—w/2,w/2) C S. We construct a circular arc of curvature M and of angle w which is
tangent to the curve ¥ at ¥ = 0 (see Figure 11.1). Since ¥ is convex, ¥ must lie in the
region bounded by the arc and the rays tangent to the ends of the arc. Moreover, the con-
vexity assumption insures that ¥ lies within the fat lines shown in Figure 11.1, while the
estimate k() > M on (—w/2,w/2) ensures that the fat lines lie within the cone formed
by the circular arc and the rays. Since the inscribed circle lies within the cone and the
circumscribed circle must encircle every point on the curve, we see that, for given M, w
and 7i,, the smallest r¢. is obtained for the configuration shown in Figure 11.2. From
Figure 11.2 and trigonometry, we determine that [b| = 1/M,

Tin w 1/M 1/M
_oom ) = — 11.13
v =) - Fra - e (11.13)

and

2rcirc 2 Tin + |a’ . (1114)
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Figure 11.2: Inscribed and circumscribed radius.

The identity (11.13) implies

=37 (o )

as well as

Tin

Tin 1 1
'“'ZW"d‘:W‘M<m<M‘1>' (1L.15)
Hence, by (11.14) and (11.15),

(11.14) lal

Tcire 1

2Tin

1
2
aws 11 {rin_l (1_1”
2 2ryy, |cos(w/2) M \ cos(w/2)

= % <1 - erm> <cos(<1u/2) - 1) '

1
M in < ’
S TR (@) (rewe/Tin — 1)

Tin

Rearranging terms yields

where we defined

. 1 -1 _ 2cos(w/2)
Kw):=2 (cos(w/Q) B 1) 1 —cos(w/2) "

Since M can be chosen arbitrarily close to &, this proves the lemma. O
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Lemma 11.11 ([GHS86, Corollary 5.2] and [Pih98, Lemma 7.11]). Let X7, be a smooth,
embedded, conver curve. Let F : S'x [Ty,00) — R? be a solution of (2.15) with initial
curve Xg,. Let € € (0,1) and 7 > Ty. Then

nar<{o-a ix((55)) (55 -]}

where K is defined in Lemma 11.10 and D* in (11.10).

Proof. The proof can be found in [GH86, Corollary 5.2] and in [Pih98, Lemma 7.11]. Let
€€ (0,1) and 7 € (Tp,00). Let ¥g € S! be a point with

’i(1907 T) = ’imax(T) . (1116)

By definition (11.10), D* = D*(Sq,,7) > V2. Set

£ \2 1
5= (5) <o (11.17)
and let ¥ € (99 — /2,99 + 6/2). Lemma 11.8 yields
Lem. 11.
0 < Koman(7) — 50, 7) "E 1 (00, 7) — 10, 7)) "L DVE bman (7)) - (11.18)

By Definition 11.9 of the generalised curvature,

(11.18) Def. 11.9
o<(1fD*\/5),z.;max(T) < R(,T) < RI(T). (11.19)

Since ¥, is embedded, closed and convex for 7 € (Tp, 00), Lemma 11.10 yields

0 < (1= D"VB) k(rrialr) ' wi(rIrin(r)

Lem 11,10 [1 K@) (r;:;c((:)) B 1)}1 .

The definition (11.17) of ¢ yields the claim. O

Corollary 11.12 ([GHS86, Proposition 5.3] and [Pih98, Corollary 7.12]). Let X7, be a
smooth, embedded, conver curve. Let F : St x [Ty, 00) — R? be a solution of (2.15) with
initial curve Xqy,. For every e € (0, 1), there exists a time 19 € (Tp, 00) such that

Nmax(T)Tin(T) < (1 — 6)2

for all T > 1.
Proof. We extend ideas of [GH86, Proposition 5.3] and [Pih98, Corollary 7.12]. Corol-

lary 11.4 implies that, for every § > 0, there exists a time 74(d) > Tj so that

Tcirc(T) - rin(T) S

A
S
™
b
S
5
D
5
|
‘ 3
N—
A
[«%)
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for all 7 > 7p, and thus

Tin(T) = rin(T)

rae(r) 9 (11.20)

Recall the definitions (11.5) and (11.10) of m and D*. For the APCSF, we define
I :== {7 € [10,00) | M(T) = Kmax(T)}

and
I := {7 € [r0,00) | m(T) > Kmax(T)} -

Then m is monotone increasing on I; and constant on every connected subinterval of Is.
We distinguish between three cases.

(i) Assume that supp, ym < co. Then D* = D*(Er,,sup|, ) m) is independent of
time.

(i4) Assume that supy; .ym = 0o and sup{r € I2} =: 73 < oo. Then [r3,00) C I and
D* = D*(Xq,,m(73)) is independent of time.

(ii1) Assume that supj, .ym = oo and sup{7 € Io} = co. Assume there exists 7 €
[T0,00) so that (71,00) C Ia, then m(7) = m(m) < oo for all 7 € (71,00). This
contradicts supy,, .ym = oo. Hence, I consists of infinitely many disjoint open
intervals I t, k € N. And, for all 7 € I, D*(7) = D*(Xr,) is independent of time.

For the LPCF, D* = D*(Xr,) is independent of time by definition. Further recall that K,
as defined in Lemma 11.10, is a positive decreasing function that satisfies K (w) — oo for
w N\, 0 and K(m) = 0. Thus, for any 7 > 7 for the LPCF and for the APCSF in cases (i)
and (i), and for 7 € I in case (ii), D* is independent of time. By Proposition 11.5,
rin(7) > ¢(X1,) > 0 for all 7 > Ty. Hence, for given ¢ € (0,1), we can choose § > 0 and
70(8) > Tp so that

3

rn(r) = K((/D)?) (11.21)
for all 7 > 79. Combining (11.20) and (11.21) yields
Teire(T) £
(™) = K((/D"?)
and )
1e<i —K((;) ) <’“;;C((:)) - 1)
for all 7 > 7y. This and Lemma 11.11 imply
Lem. 11.11 2 : -1
() "2 -0 -k ((5)7) (L= -]}
< 1 (11.22)

(1—-¢)?
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for any 7 > 7y for the LPF and for APCSF in cases (i) and (i), and for 7 € I; in case (iii).
In case (i), define the sequence

(Tk =sup{r € Iy} € Il)keN'

Then 7, — oo for k — oo. By Proposition 11.5, 7iy(7%) > ¢(X7,) > 0 for all k£ € N. Thus,
for given € € (0,1) and for all £ € N,

(11.22) 1
m(7) = m(Tk) = Fmax(Tk) < m (11.23)
for all 7 € Iy, since 7, € I;. Hence,
(11.22),(11.23) 1
o0 & sup m(t)= sup m(7) < —
TE[10,00) Tel Ul C(l — 8)

which is a contradiction. So case (i) could not have happened and we are in case (i)

or (ii). O

Proposition 11.13 ([GH86, Theorem 5.4] and [Pih98, Proposition 7.13]). Let X1, be a
smooth, embedded, convex curve. Let F : Stx [Ty, 00) — R? be a solution of (2.15) with
initial curve Xq,. Then k(- ,T)rin(7) = 1 uniformly for 7 — oo.

Proof. We follow the lines of [GH86, Theorem 5.4] and in [Pih98, Proposition 7.13]. Fix
g0 € (0,1/2). Corollary 11.12 implies that there exists a time 79 > Tp so that

Cor.11.12 1
<

’i(ﬁvT)Tin(T) < Kmax(T)rin(T) (11.24)

1—60

for all ¥ € S! and for all 7 > 7y. Hence, the set of functions
F = {K(‘,T)Tin(T) St R } T> 7'0}

is uniformly bounded. By definition (11.10), D* > v/27. Lemma 11.8 yields that, for all
(5§7T/2 and ’191—192| <(57

Lem.11.8

(11.24) p*
501, T)rin(r) — (02, P)rin(T)] "L DB i (Pman(r) | 2 DY

1-— <00}
for 7 > 719. Thus, F is equicontinuous and we can apply the Arzela—Ascoli theorem,

Theorem B.12, to deduce that, for all sequences (73 )ren with 79 < 7, — oo for k — oo,
there exists a subsequence (7%)gen so that the sequence

(fk() = /{(-,Tk)’l”in(T]g) G‘F)keN (11,25)

converges uniformly to a continuous function f : S' — R (which may depend on the
subsequence). By the preservation of strict convexity (see Corollary 4.3), and the lower
bound on 7y, (see Proposition 11.5), there exists a constant so that fx > ¢ > 0 on S! for
all & € N. We employ Corollary 11.12 again to conclude that, for every ¢ € (0,1), there
exists kg € N so that

9 (11<25) Cor. 11.12 1
fk;( ) = Kmax(Tk)rin(Tk) (1 — 6)2
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for all ¥ € S! and for all k > ky. We let ¢ — 0 and obtain
c< f(M¥) <1

for all ¥ € S'. Furthermore, the sequence (1 / fk) ken 18 uniformly bounded between 1 and
1/c on S! for every k € N, and converges to

1« 1
?.S H[l,c].

Since S! is compact, we can apply Fatou’s lemma, Lemma B.9, and obtain
em. B.9 1

1 1 L
——dY = lim inf d9 < liminf
st f(l?) sl k—oo fk(’l9) B k—oo  Jg1 fk(ﬁ)
(11.25) lim inf 1 / L dv (1L3) lim inf B / dsr,
k—o0 Tin(Tk) St I€(19, Tk) k—ro0 Tin(Tk) s(Shre)

LTk Prop. 11.5

dy

= liminf
k—o0 Tin(Tk)

27,

where we used in the last step that L, — 27Ry and ri,(7;) — Ro for & — oo (see
Proposition 11.5). Since f < 1, the above estimate yields

1 1 1 1
1> — ——d¥>mn—-=——2>1
21 Js1 f(V) st f maxg f
so that f = 1 on S!. It follows that every sequence (73 )xen has a subsequence so that f —
1 uniformly on S'. Furthermore, every subsequence has a subsubsequence so that fj, — 1
uniformly on S!'. Hence, for all sequences (7% )ren With 79 < 7% — 00, &( -, 7%)7in (k) — 1
uniformly for & — oo and thus (-, 7)rin(7) — 1 uniformly for 7 — oco. O

Corollary 11.14 (C?-convergence of convex curves, [Pih98, Corollary 7.14]). Let Y7, be a
smooth, embedded, convex curve of area Ag, = 7TR(2) for the APCSF and length L1, = 27 Ry
for the LPCF. Let F : S' x [Ty, 00) — R? be a solution of (2.15) with initial curve Y, .
Then

Hmax(T) 1 1
1 il il
p— -1, k(0,T) — o and h(T) — o

for every ¥ € S! and for T — oo. Hence, the flow converges uniformly in C? to a circle of
radius Ry which solves the corresponding isoperimetric problem.

Proof. By Proposition 11.5, 3; is strictly convex for 7 € (T, 00). By Proposition 11.13,
KO, T)rin(1) = 1
for all ¥ € S! and for 7 — co. Hence, it also holds that
Kmax (T)Tin(7) = 1 and Fomin (T)Tin(7) — 1

for 7 — oo and the first claim follows. By Propositions 11.5, the curve converges to a circle
of radius Ry. This yields the second claim. For the APCSF, h,, = 27 /L, hence the third
claim, follows from Proposition 11.5. For the LPCF, the third claim is given by Lemma 10.4
and follows also from the above curvature convergence using 1/Ry < hip < Kmax (see (3.11)
and Corollary 5.9). O
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Corollary 11.15 (Boundedness of curvature derivatives I). Let £y be a smooth, embedded
curve of area Ay = ™R3 for the APCSF and length Ly = 2n Ry for the LPCF. Let F :
Stx [0,00) — R? be a solution of (2.15) with initial curve Xo. Then, for every n € N,
there exists a constant Cy, = Cy(n, o) such that

for allt > 0.

Proof. By Theorem 10.9, there exists a time Ty > 0 so that the curves are strictly con-
vex on (Tp,00). Proposition 4.9 implies that the curvature is bounded on (0,7p] and
Corollary 11.14 implies that the curvature is bounded on (7p,o0). Hence, we can apply
Corollary 4.7 with T" = oo to find that, for all n € N, the arc length derivatives are
bounded. O

Corollary 11.16 (Boundedness of curvature derivatives II, [Pih98, Corollary 7.15]). Let
Y1, be a smooth, embedded, convexr curve of area Ax, = wR% for the APCSF and length
L1, = 27Ry for the LPCF. Let F : St x [Ty,00) — R? be a solution of (2.15) with
initial curve Xq,. Then, for all n € N, there exists a constant C, = C_'n(n, Y1,) and time

70 = 10(X0) > T such that
"k

A
0" Cn

max
St

on [r9, 00).
Proof. By Corollary 4.3, the curves are strictly convex on (7p,00). By Corollary 11.14,
for every ¢o € (0,1/Ry) there exists 19(co) > Tp such that

Kmin = €0
on [1p,00). For ¢y = 1/(2Ry), the transformation (11.3) of the derivatives and Corol-
lary 11.15 imply

oK 1 % Cor. 11.15 CI(EO) _

il = =: b
a§<’19(87t),7'(t)) H(S,t) 88( ) = co Cl( O)
for all t € [19,0), and, for n > 2,
0"k 1 9\"
st W(ﬁ’ ™) _Hgl}?tx (m(s,t) (98> R<87t>’
< c(n,co,C1,...,Cp) =: Cp(n,Xo). O

11.3 Uniform C*-convergence

In this section, we show that, for convex solutions of (2.15), the derivatives of the curvature
with respect to ¥ converge to zero.
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Theorem 11.17 (C*°-convergence of convex curves, [Pih98, Proposition 7.17]). Let X,
be a smooth, embedded, convex curve of area Ay, = mwR% for the APCSF and length
L, = 27 Ry for the LPCF. Let F : St x [Ty, 00) — R? be a solution of (2.15) with initial
curve X1,. Then, for all n € N, (%;/i — 0 uniformly for 7 — oco. Hence, the curves
converge uniformly in C> to a circle of radius Ry.

Proof. We follow the lines of [Pih98, Proposition 7.17]. Corollary 11.14 implies that the
curvature and the global terms are uniformly bounded by a constant Cy > 0 on [Tp, c0).
We abbreviate in the following

Ok 0"k
/ Pyp— Pp—
R = 8719 and K/(n) = W .
Corollary 11.16 implies that there exists a time 79(3g) > Tp so that, for every n € N,
1,99 € SY, e > 0 and 7 > 7,

J2
M1, 7) — K™ (9, 7)( < / £V (9, 1) dﬁ‘ < Chy1(n, Bo) |91 — 9o|1/2.
9

1

Thus, ™ is uniformly continuous in space for each n € N and fixed time. Let (Tk)ken be
a sequence with 7, — oo for £ — oo. Then, for fixed n € N, the sequence

(/i(”)( ) St — R) ren

is bounded and equicontinuous. The Arzela—Ascoli theorem, Theorem B.12, implies that,

for each n € N, there exists a subsequence (ﬁ(")( . ,Tk)) that converges uniformly to a

keN
continuous function f, : S' — R which may depend on the subsequence. We proceed by
induction over n. For n = 0, we use Corollary 11.14 to conclude that the sequence

(R(',Tk) .St —>R)k€N

converges pointwise to 1/Ry for k — oo. Furthermore, as stated above, there exists a
subsequence (7x)ken SO that
1
(k'(-,7%) : S' — R)keN
converges uniformly to a continuous function f; : S' — R which may depend on the

subsequence. Since the convergence is uniform, there exists ky € N so that
(-, )| < 2f1 € L'(SY) (11.26)

for all k£ > kg. Fix Y9 € S'. By (11.26) and the uniform convergence, we can apply the
dominated convergence theorem, Theorems B.10, and Theorem B.14 which allow us to
interchange the limit with the integral bounds and differentiation. Thus, for all 9 € S*,

B 9 9
9) = = do =2 [ lim # d
f1(9) 59 19Ofl(ff) 7= 55 ﬂoki)ﬂ;o/i(ffﬁk) o
Thm.B.10 O .. v Thm.B.14 .. v,
99 kovoo AO“(J’Tk)d” Koo 09 Jy, wlo. ) do
0 Thm.B.14 O .. Cor.11.14 0 1
= lim - x(J LB 9y k(o A
i 5910 7k) 99 i, F(0:7k) 89 Ry
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By the same argument, every subsubsequence (£'(-,7x)),en converges uniformly to 0.
Hence, k' converges uniformly to 0 as 7 — oo. For the induction step, we assume that
(™ — 0 uniformly for 7 — co. Again, since the convergences are uniform and there exists
ko € N so that

KO )| < 24 € L1SY)

for all £ > kg, Theorems B.10 and B.14 allow us to interchange the limit with the integral
bounds and differentiation. Thus, for all ¥ € S!,

o Y o [?
fn+1(7_9) = 819/19 f’rz—l—l(o—) do = 819/19 lim Iﬂ?(n+1)(0, Tk) do
0

o k—o0

Thm.B.10 O . v (n41) Thm.B14 . O [V (n+1)
=" 35 klglgo N K (o,7%)do = klgx;o 99 N K (o, 1) do
.0 Thm.B.14 O . 0
- = () LB A4 2 (n) - 0=
ST 9o 1) = 50 =0

The same argument as for n = 0 above yields that x(™t1) converges uniformly to 0 as
T — 0. [

11.4 Exponential convergence

In this section, we show that, once the curve is convex, the curvature converges exponen-
tially to 1/Ry and all curvature derivatives converge exponentially to zero. In the end of
the section we state the main results of this thesis. In the following, let again be Ty > 0
be the time where the curve is convex.

Lemma 11.18 (Wirtinger’s inequality, see e.g. [AE06, p. 91]). Let f : [a,b] — R be in
Ct with b—a < 7 and f(a) = f(b) =0. Then

b 2 b 2
2 (b—a) df
o=t () v

Lemma 11.19 ([GH86, Lemma 5.7.9] and [Pih98, Lemma 7.23]). Let X1, be a smooth,
embedded, convex curve of area Ar, = TFR(Q) for the APCSF and length L1, = 2w Rq for
the LPCF. Let F : St x [Ty, 00) — R? be a solution of (2.15) with initial curve ¥7,. Let
B € (0,1). Then there exists a time 19 > Ty such that

9k \? 92k\2
4 — < -
7 <aﬁ> ‘w—/sl (W) @

Proof. We follow the lines of [GH86, Lemma 5.7.9] and [Pih98, Lemma 7.23]. The system

for all T > 1.

{1, V2 cos(nd), V2 sin(m?)} (11.27)

nezZ

forms an orthonormal basis of the periodic functions in the Hilbert space C?([0, 2n]) with
respect to the L?-inner product (see e.g. [HL99, p. 124]). By the transformation (11.3) of
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the derivatives, we have ds; = di/k so that

/ Sln(ﬂ) d’l_9 _ Sin<3> dst — COS(27T) _ COS(O) — 1 — 1 = O (1128)
st K g}?t Rt
and
/ cos(d) . COS<S> ds, = sin(27) — sin(0) = 0. (11.29)
s K Sk, Ry

Integration by parts (B.4) yields

. i 1
0(11:28)/ sm(ﬁ)dﬁ:/ 78(308(19)(1?9
Sl

K

and

@
1
|

T
2]
=4
=

Q

%‘QD

VN

I

N———
Q
<

\

T
2]
=4
=
M)—‘

Q|

S| =
Q.
<

Additionally, we have

0 (1 1 0k
O=—| —=|—-)dd= | —=—=dJ.
/Sl (919(/{) /Sl K2 OV
Hence, 1/ ﬂ2%m is orthogonal to the first five basis functions of the basis (11.27). Since

all the other basis functions are zero at at least four points in [0, 27] with distance < 7/2,
there exists a number ip > 4 and points ¥; € S!, i € {1,...,4g}, so that

1 0k

s
105 — Diy1] < 3

and

forie {1,...,ip — 1} and

Wi — (27 +91)| <

bl 3

Since 1/ ,%28%/1 is periodic on [0, 27], 4 is even. Define the intervals
I := [0;, 0i41]

fori e {1,...,i0— 1} and
L, = [0, 91] U [91‘0, 27‘(] .

Then |I;| < /2 for all i € {1,...,ip}. We apply Wirtinger’s inequality, Lemma 11.18, to
the function 1/ /{2%5 on the intervals I;, where we identify I;, = [0;,, 27 + 601]. This yields

1 9r\° 1 0 (1 0k\]?
e < = S e
A () @< i), 90 (v | @
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for all i € {1,...,ip} and thus

1 Ok 1 o /1 0k\]?
— ) w< — ) aw.
/Sl (H2 819) / [619 (I-i2 619)]

For € > 0, Peter—Paul (B.2) implies
1 ox\? (11.30) o /1 0k\]?
- < T
i (Gegs) @ < [ |5 (age) | @

[ [ ey o

Js [K2092 0 K3\ OY
/ 1 7026\ 4 9%k [0K\> 4 0K

= — =] - —=—=— | — —|— dv9
st | K%\ 092 K5 092 \ Y Bl

(B.2) 1 (8% 1\ 1 [0k

< —

2 [ Joaok (5] 4 (5 1) (M)]dﬁ

For arbitrary 8 € (0,1), it is possible to choose £(/3) > 0 small enough so that

[ 4 B 52(4+1/5)] (1/Ry —¢)*
(

1/Ry+¢e)* (1/Ry—e)? 1+ 4e
1/Ry —e\* 1 4
e AL ) —— >45.
<1/R0+5> 8<5+4> iz =Y

By Corollary 11.14, we can choose 19(8) > Tp large enough so that, for 7 > 7,

1 < k< 1 n
— — & K -_— 9
Ry Ry

and, by the uniform convergence in Theorem 11.17, for 7 > 79,

or| (1L
RO el .

We use (11.31), (11.33) and (11.34) to estimate, for 7 > 79,
S e
" e () (o) ()]
)

5

)]

(123)(1/1}%3/ @292) dv + (1}1};;1—/;/9 (g>4
(%)

max

<

x

<>

144 / 2k g9y A1/ k\?
- (1/R0 — 6)4 st 0192 (1/R0 — 6)6 Sl U
(1134) ] 4 4¢ / 2k \° 2(4+1/e) / 0
S o) A9+ =
(1/Ro—€)4 st 092 l/Ro—E 9

Rearranging terms yields

N

(1/R:+€)4_E£12/(j%:—1/51] (1/1Ri;f ( > /(879/;>2d19

for 7 > 79, which, together with (11.32), proves the claim.

(11.30)

(11.31)

(11.32)

(11.33)

(11.34)

dd
Ok \?
/Sl (w) w
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Lemma 11.20 ([GH86, Lemma 5.7.10] and [Pih98, Lemma 7.24]). Let X1, be a smooth,
embedded, convex curve of area Ar, = wR% for the APCSF and length L1, = 2mRy for
the LPCF. Let F : S'x [Ty, 00) — R? be a solution of (2.15) with initial curve Xq,. Let
B € (0,1). Then there exists a time 19 > 1y and a constant D = D(X7,, X5, 70) > 0 such

that )
Ok 28T
bl <D _2F
/sl (%) W= exp( R%)

Proof. Analogous results can be found in [GH86, Lemma 5.7.10] and [Pih98, Lemma 7.24].
We use the evolution equation (11.4) of the curvature and integration by parts (B.4) to

for all T > 1.

calculate

) Ok \? Ok 0 [0k
&él (&9) =2 Sw&a(&)‘w
aLs) 8/@8< 5 0K

v _ 2
Lo o\" gz “)“>d19

_ Ok [0 [ 40k 0 9 3
=2 [, 30 [ () ~ gy’ =) o
2.\2 2
(B-4) 2/ [_,QQ <gﬂ’;> — (2h/€—3/€2) <gg) ] dg. (11.35)
Sl

Let 5 € (0,1) be arbitrary. Choose

~(8) € (i 1> and  £(v, 8) € (o, 6]1%0>

so that
(4y+2) (1 —eRg)*> —3(1+eRp)* > 8. (11.36)

Corollary 11.14, implies that there exists 19(g,7, 8) = 70(8) > To so that, for all 7 > 7,

1 1
e < k< 11.37
Ry “SFTRTE (11.37)
as well as
1 <h< iy (11.38)
— —c — +¢ .
Ry -~ T Ry

and, by Lemma 11.19,

0%k 2 ok
— > — . .
[(ZFarzon [ (20 o
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Hence,
5} Ok \®  (11.35) NN NS
(11.37),(11.38) 1 2 92k \>
< _ _ i
<o) [ G) @
1

(11.39) 1 2 Ok \?
< _ — _ Z
=™ <Ro 6) /sl <319> W
1 2 1 2 o\
2z 2) 2 (mre) | L(5) @
_ _i o 2 2 / 8/‘% 2
- [(47+2)(1 £Ry) 3(1+5Ro)} 8 <&9 )

(11.36) 2
2 (8) a9
R§ Js1 \ 0V

for all 7 > 79. We apply Lemma B.1 to solve the above ODE inequality and estimate, for

/S1 (gg(ﬁ,ﬂf di < exp (—125%(7 - m) /S1 <gg(19770)>2 o -

Lemma 11.21 (See also [Pih98, Theorem 7.28]). Let X1, be a smooth, embedded, convex
curve of area Ar, = wR3 for the APCSF and length Ly, = 2wRy for the LPCF. Let
F : S'x [Ty,00) — R? be a solution of (2.15) with initial curve $r,. Let 8 € (0,1) and
n € N. Then there exists a time 79 > Ty and a constant D, = Dp(n, 31, 3r,70) > 0

such that
< Dn exp _L2
(n+1)R;

all 7 > 7,

o
o™

max

)
Dest (9,7)

for all T > 7.

Proof. For n € NU {0}, C"TL(St) ¢ C™(S!) C L*(S'). Furthermore, every bounded se-
quence in C"*1(S!) has a convergent subsequence in C™(S!) and I fll 2ty < V2r|| fllonesy
for every f € C™(S'). Hence,

crrish) = ors') <= LS.

compact continuous

Let f € C"1(S!). Ehrling’s lemma, Theorem B.15, yields that, for all § > 0, there exists
a constant C'(d) > 0 so that

[ fllen(sty < 6l fllentisty + CO) fll2sty -
For 6 = 1/2, we obtain

max | D" f] < max [D" L] + Cllf [ 2(e) - (11.40)
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Let £ > 0 and define k. : [0,27/¢) x (Tp,00) — R by
ke(V,T) := k(ed, 7).
Then

"k K
S €55 (e9,7) (11.41)

for n € N. Let 8 € (0,1). By Corollary 11.16 and Lemma 11.20, there exists a time
70(83,X0) > Tp and constants Cy,11 = Cpi1(n, X7y, 5ry) and D = D(Xq,, X0y, 70) S0 that

"k 0" Ke
(%1”(19, 7) 819”(19’7)'

1/2

-(9,7) =

e" max . (1141)
9eSt

— (e
9" (e9,7) ﬁe][[&%f/a)

e[ (Grn) w)
+ 3; </027r/€ (gg(eﬁ 7))2 dﬁ)
([ (o)

< e"TICLL + C/eV'D exp (—672—>
Lem. 11.20 R3

for all 7 > 19. Thus,

max
9e[0,2m/€)
(11.40) ok,

aﬁn-i-l

IN

- (9, 7)

max
9€[0,27/¢)

1/2
8n+1ﬁ

(11;41) n+1
= ¢ oyn+1

9eE[0,27/e)

(e, 7)

an—l—l

H W(ﬁﬂ')

=¢ max
9eSt

Cor.11.16
<

Ok
o9 agn

where D, = Dy, (n, X1, %7, 70). We choose

max
Jest

9, 7)

< D, [6—1—51/2 "exp( ]i%)] ) (11.42)

then
2 ey () o (Y ()
R2 (n+1/2)R3 R? (n+1/2)R3
and
n (11.42) _
max 219 (W, 7)| < 2D, exp( (—1—51;2)R3> < 2D, exp <_(nf71-)R3>
for all 7 > 7. O

Corollary 11.22. Let Xy be a smooth, embedded curve of area Ay = WR% for the APCSF
and length Ly = 27 Ro for the LPCF. Let F : S' x [0,00) — R? be a solution of (2.15)
with initial curve Xo. Let B € (0,1) and m,n € NU{0}, m 4+ n > 0. Then there exists a
constant Dy, ., > 0 such that
o™ "k Bt

<D —
atm s 7 )‘ = ”’mexp( (n+2m + 1)Rg>

ma.
seSl

for allt > 0.
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Proof. By Lemma 4.6, we can express time derivatives of the curvature in terms of spatial
derivatives of the curvature. Hence, it suffices to show the claim for m = 0. By The-
orem 10.9, there exists a time Ty > 0 so that X; is strictly convex for ¢ > Ty. By the
transformation (11.3) of the derivatives, the boundedness of the curvature, t = 7, Corol-
lary 11.16 and Lemma 11.21 implies that, for 5 € (0,1), there exist a time 79(3, 3¢) > Tp
and constants Cy, ..., Cn_a, D1, ..., D, > 0 depending only on n, X1, g, and 79 so that

Lem. 11.21 _ _ _ _ I513
< C(n,CO7...,Cn_27D1,...,Dn)eXp —m
for all 7 =t > 19. On the other hand, Corollary 11.15 implies that ‘%ﬁ‘ is bounded on
[0, 0] by a constant C),(n,%p). Choosing D, sufficiently large, yields the claim. O

Remark 11.23. By repeating the proof of Lemma 11.20 for higher derivatives of the
curvature and using a Sobolev inequality, we can also achieve a better exponential decay
(see also [GH86, Lemmata 5.7.13-5.7.15] for a similar approach). More precisely, for
g € (0,1) and m,n € NU {0}, m + n > 0, there exists a time-independent constant

Dy, > 0 so that
o™ 0"k

a(svt)‘ S Dn,m exp <_2Rﬁgt>

max
ot Ds" 2

SGS}%t

for all t > 0.

We summarise our results in the following and two theorems. We call a solution
immortal if it exists for all positive times.

Theorem 11.24 (Exponential convergence for immortal solutions). Let ¥g be a smooth,
embedded curve of area Ay = WR% for the APCSF and length Ly = 2w Ry for the LPCF.
Let F : S'x [0,00) — R? be a solution of (2.15) with initial curve Xy. Then the evolving
surfaces ¥y = F(SLt) are contained in a uniformly bounded region of the plane for all
times. And, for all B € (0,1), there exists a time-independent constant C > 0 such that,
for allt >0,

(i) |Kmax(t) — Fmin (1) < Cexp(—%t),
(i) |k(p,t) —1/Rp| < C’exp<f%t) for all p € St,
0
(i#i) |h(t) —1/Ro| < Cexp(—%t), and
0

(iv) %%m(p,t)’ < Cexp(—mﬂ for all p € S* and all n,m € N.

Hence, the solution converges smoothly and exponentially to a circle of radius Ry.

Remark 11.25. Following Remark 11.23, we can obtain exponential decay of exp <—%t>

Rj
in Theorem 11.24(i)—(iv).
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Proof of Theorem 11.24. Since, by assumption, the solution exists for all times, Propo-
sition 4.9 yields that the curvature is uniformly bounded on every finite time interval.
By Lemma 3.13, the curves stay in a bounded region on every finite time interval. The-
orem 6.5 implies that the curves remain embedded on (0,00). By Theorem 10.9, there
exists a time Tp > 0 so that the curves are strictly convex on (7p,00). For the first order
curvature convergence, we partially follow the lines of [Pih98, Proposition 7.27]. Fix ¢t > 0.
Let s1,s9 € S}%t be the points where the curvature attains its maximum and minimum.
By Corollary 11.22, there exists a time-independent constant D; > 0 so that

%2 Ok
—d
/S1 0s 5t

Cor.11.22 "
dsy Orﬁ LoDr eXP(6> ;

[Fmax(t) = Fmin(t)| = |K(s2,t) — K(s1,1)] =

/ Ok
< 7
S}at 88

where we used L; < Lg for both flows. This proves claim (i). For claim (ii), first consider
a fixed time t > Ty, where X, is strictly convex. We observe that for the APCSF,

NN SR s S LI EaU

i 7ﬁcirc(t) A(Brcirc(t)) - At AO Ry
il = L < Kmax(t) -

VADB ) rin(t)

1 2 1
Kmin(t) < — /1 kds; = < "@max(t) .
SRO

IN

IN

For the LPCF,
Lo Ly Ry~

The intermediate value theorem yields for both flows that there exists a point sg € S}%t
with x(so,t) = 1/Rp, and we can estimate, for s € S} »

1 50k
- — | = t — — -
wlot) = | = It = wton.0) = | [ G
Cor. 11.22
< [ 1% a5, 2 LoDy exp( - 2L (11.43)
1 Js R2
SRt 0

The boundedness of the curvature on [0,7p] yields the claim for all £ > 0. For claim
(iii), we estimate for the APCSF with the upper bound (3.10) on the global term and
Kmin < 7T/Lt = hapa

(3.10) [ 1 1 (11.43) pt
— —hap(t) = =— —hap(t) £ — — Kmin(t) < LoD —— 11.44
00 o~ halt) = 7 hpl) < 1 — () = LaDrexp( ) (1140

0
and for the LPCF, by the lower bound (3.11) on the global term and Corollary 5.9,

(3.11) 27 1 Cor.5.9 1 (11.43)
0 < hlp<t> - fO = hlp(t) - = < /fmax(t) — < LoDy eXp(

t
= = "R —}i) (11.45)

0

for all ¢ > 0. For claim (iv), we use the evolution equation (3.2) of the length element and
the above inequalities to estimate for p € S!, + > 0 and 3 € (0, 1),

(11.43),(11.44) Bt
v < cexp| —— | v
> (11.45) p( R(%)

0v (3.2) 1

— = — < _ =
T k(h K,)U|I€|<’h o
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for a time-independent constant ¢ = ¢(Xg, D1) > 0. By Lemma B.1,

o(p,t) T u(p,0) exp (c /Ot exp (—f;) dT>
0

— (o) exp (—"?g exp (—22) + "(?’)) < ¢(S0. D1, B) (11.46)
0

for every p € S' and ¢t > 0. By identity (A.3) for the arc length differentiation and
Corollary 11.22,

Cor. 11.22

v(p, t)%(s(p, t),t)] < c¢Dyexp <_£’;>
0

s

for every p € S! and t > 0. We observe that

or o
Op’ Op?

so that we can estimate, for every m,n € NU {0}, m +n > 0,
o™ I"k

o 0% o ON
ot™ opn otm™ \  0Os
Cor.11.22

t
S C(n7m7ﬂ7207D17"‘7Dn+2m)exp(_(n+27§+1)R2> '
0

(A.8) (11.43),(11.46)

ov
'U2|"€| S 6(207D17/8)7

s

|
|2

_ 1

(A.3)

To show that the curves stay in a bounded region, we estimate

t (11.43),(11.44) t 3
IFe) - Fp.0) < [ Ietp.r) = h(lar < e [ exp(—QT) dr<c
0 (11.45) 0 R

for all p € S and ¢ € (0, 00), where c is independent of time. O

Corollary 11.26 (Solutions to the APCSF). Let ¥ be a smooth, embedded, closed curve
of area Ay = TR3, satisfying Omin > —m. Then there exists a unique, smooth, embedded
solution F : S'x [0,00) — R? to the APCSF with initial curve ¥o. Hence, Theorem 11.2/
holds and the solution converges smoothly and exponentially in a bounded domain to a
circle of radius Ry.

Proof. By Theorem 9.29, there exists a unique embedded solution F : S' x [0, 00) — R?
to the APCSF with initial curve X9 and F € C*®(S' x (0,00)). Hence, we can apply
Theorem 11.24. O



Appendix A

Notation and geometric definitions

In this appendix we give short introductions to curves in R? and hypersurfaces in R*+™.,

A.1 Curves in R?
Let I = [a,b] C R be an interval. A C*-map, k € NU {00},
F:I—R?

is called parametrised curve of class C* in R2. A parametrised curve is called regular or

immersed if
dF

dp

for all p € I. A curve is the equivalence class [F] of regular parameter transformations

(p) #0

with image
Y= F(I) CR?.

We say that a curve is embedded if the map F : I — F(I) is injective. The immersion or
embedding is called proper if for all compact subsets K C R? the pre-image F~'(K N X)
is compact. A CF-curve is called closed if

A

@ =0

P

for all 0 < I < k. We can identify a and b so that the parametrisation is given by
F: S/l) — R2, where p = (b—a)/(27). For F : S}, — R?, we can define the parametrisation
F:S!' < R? by F(p/p) := F(p). Hence, we can assume w.l.o0.g. that p = 1 so that, for
arbitrary curves, the pre-image is given by

S e {I =10,2n],S, R}.

For a parametrisation F' : I — R? of a regular curve X, we define the length element
v : I — R of the curve by

o) =0 (A1)
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The length of the curve is then given by

L:=L(%) ::/Ed”Hl:/Ivdp.

The arc length parameter s : I — [0, L] is defined as

s(p) := /Opv(r) dr, (A.2)

L
L:/ ds.
0

The intrinsic distance between two points is

so that we also have

wm:éﬁmm

Notice that

s(q) F(q)
l(p,Q)ZS(Q)—S(p)Z/ dSZ/ dH!.

Differentiating (A.2) yields
ds

dfp(p) =v(p).
Let f:[0,L] — R with f: s~ f(s) be a C'-function. Then
Y ) = o) G 0) = ) (5)

so that

d 1 d
ds(p) ~ v(p)dp’ (49)

For a C?-curve, s is differentiable and s’ is positive, thus the inverse function theorem,
Theorem B.4, yields that the inverse s~! : [0, L] — I exists. We define the anti-clockwise
arc length parametrisation F = F o s~ : [0, L] — R? of ¥ by

F(q) = F(s™(q))

for g € [0, L] so that F = F o s and

for p € I. If ¥ is a closed curve parametrised by F : S! — R? the arc length parameter
is given by s : S' — SlL J(2m) and F : SlL Jom) R? parametrises ¥ by arc length (see
Figure A.1). If ¥ is parametrised by F' : R — R? the arc length parameter is given by
s:R — R and F : R — R? parametrises ¥ by arc length. Define the image of the arc
length parameter as
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s 7
@ @
Jop
¥ CR?
S
F
_0_
dsp
Si/(Zﬂ')

Figure A.1: The embeddings and the unit tangent vectors.

where S € {I,S',R}. Differentiating F at s = s(p) yields

dF
ds

The unit tangent vector field T to ¥ at s = s(p) in direction of the arc length parametri-
sation is given by

1 dF dF
Tp=7(p) = ﬁ?p( p) =

For the outward unit normal,

vp :i=v(p) = (T2(p), —71(p)) = v(s) (A.5)

(see Figure A.2). The curvature r : S — R is defined as

K(s) = — (Vor, 1) = — <CZ, u> (A.6)

Note that
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Figure A.2: The unit tangent vector and outward normal.

so that curvature k : S — R is given by
1 /d*F
K(p) = —3 <dp2 ,u> (A.8)
The curvature vector is defined as
K:i= —KU.
Lemma A.1 (Frenet-Serret Equations). Let F : S — R? be an arc length parametrisation

of a C?-curve ©. Let T = d%ﬁ’ and v = (12,—71). Then

dr dv
= —KV and = KT.

ds ds
Proof. The vector fields 7 and v are both of unit length. Since <d%7',7'> = 0, both %’T
and v are normal vectors and, by (A.6),

dr (A3) &2F d2F (A.6)
ds  dsz  \ads2’V)¥V T TR

Since <d%1/, V> = 0, both %I/ and 7 are tangent vectors and, by (A.7),

d—y = d—y )T (A0 KT L]
ds \ds’ N '
The first identity in Lemma A.1 can also be stated as
- d*F

Let f: S — Rbein C2 and f : S — R so that flp) = f(s(p)) The arc length
differentiation at s = s(p) is then given by

p
Tp(f):d—‘i.

For a function f:S x S — R in C?, the two-point arc length differentiation with respect
to a vector £, 4) € Tpp) X @ Tr(g)Z; §(p,g) = aTp © b1y for p,q € ¥ and a,b € R, is given
by

$pa) (1) @) = (aTp @ b7y) (f)(p,q) = a7y (f)(p, @) +b74(f)(p,q) - (A.10)
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Theorem A.2 (Theorem on turning tangents, [Kiih06, Theorem 2.28]). Let F : S' — R?
an embedded C?-curve with outward pointing unit normal (A.5). Then the total curvature

//id'Hl = 2.
>

A.2 Hypersurfaces in R"™™

of ¥ is given by

Let M™, n > 1, be an abstract, smooth, compact, n-dimensional manifold without bound-
ary and F' a smooth embedding with

F:M"— R"™

for m > 1. Set M := F(M"). For all p € M™ and v,w € T,M", the embedding F' induces
an isomorphism
dFy : TyM™ — Tpgy M,

and the first fundamental form or metric Gy, : T,M"™ x T, M"™ — R with
Gp(v, W) 1= (dFy(v), dFp(w)) .

If {pi}1<i<n are coordinates for M™ at p, then the matrix entries of the metric are

50) = (48, () 5 (50 ) ) = (G0 500 -

where (-, - ) denotes the Euclidean inner product in R"*™. We define by g the determinant

of the matrix (gi;);; and by (g%);; its coordinate dependent inverse. The corresponding
Levi-Cevita connection V := VM on M is given by

Vow = dF; ! ((Dar, o dFp(w) ") -

Here D is the standard connection in R™*™, and T denotes the tangential component
with respect to M, that is the orthogonal projection onto dF(p)(T,M") = TpyM. The
connection can be evaluated in coordinates in terms of the Christoffel symbols Ffj defined

by
P o
SR
Virop,  Uop

where I‘fj is explicitly given by

A i — .

Tk — —-
Op;  Op;  Opy Op;Op; Oy

1]

Here and in the following, we sum over repeated indices. Then,

2
ok OF _< 0°F aF> OF A1)

T opy — \Opidp; Op/ Opr
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)i 0 — J0
For vectors v =\ ; and w = ;0

[ Ok &) 0
Vew =\ [ — T | — .
v < opi T Opx,
For a 1-form w = w/dp?,
Ow”

va = A <(9

ik k

The tangential gradient, grad,; or V, of a function f € C''(M) is given by

G(grady f,v) = G(Vf,v) = df (v) = v(f)

for all v € TM. In coordinates this reduces to

o\ of
G<Vf, 31%) - Opi

so that we obtain

L Of 0
V=" -~
f=9 Op; Op;j
and also
Vf=Df - (Df,vi)vi = Dr f1;=1i(f)Ti (A.12)

for an orthonormal tangent frame {7;}1<i<n for T,y M and an orthonormal normal frame
{viti<kem for (TpgyM)*. We write the i-th component

Vif =Ve f =V i) =(Ti(f)Tj, i) = 7;(f) (15, 7) = Ti(f) -

We will use the abbreviation V; for both V o and Vi ,. The tangential divergence div,y :
op;

T,M — R of a tangent vector field v = )\"£ is given by

7

A\ o
T\
Op; T

diVMV =

and also
divas v = divgatm v — (Dy, v, V) = (D, v, T5) .

For the embedding vector F', we therefore have
diVMF:<DTiF,’Ti>: <’TZ',’T1'>:7’L. (Alg)

For w =df = a—f_dpi, we obtain the Hessian of the function f
Op;

WA 3f>7

(Hessas f)(v, w) = (V21) (v, w) = (Vo) (w) = X <ap,-apj 0y

or in coordinates

B B o\ g 0
Viij:V(mea%f—<Vaamvf78p>—(Hesst)(api’am) )

J
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The Laplace-Beltrami operator Ay of a function f € C?(M) is defined as
AMf = diVM(Vf) = gijvivj'f

and also given by

1 0 0
Anf = —-2(vgg" L r) .
mf N <\/§g o, f>

We define the second fundamental form A, : T,M x T,M — (Tp(p)M )J‘ by
Ay (v,w) = = (Dyp,(v)dFp (W), v(p)) vi(p)
= (dFy(W), Dap,v)Vk(p)) vi(p) -

In coordinates {p;}1<i<n,

o 0 oF 8uk>
A= Ay o) = (22,500
! P (31% 3pj> <8pi ap; | "

__<82FV> __OF y OF
Opiop;” opidp; Y opy’

The mean curvature vector H : M — (Tp(p)M )L is the trace of the second fundamental

form

. ./ OF Ovy

H:=—g"A;; = —¢g" <,>uk:—div Vi)V . A4
Using (A.11) we can also calculate that

o O*F OF\ (a1 ./ 0°F
Ay F =g¥ Tk R Y A
M g (3pz' Op;  Opy, ) g < OpiOp;’ V7> “

. /OF Ov
— g -y = Al
g <3pi’ 8pj>V7 H, (A.15)

where 7,5,k =1,...,nand y=1,...,m.

For a submanifold ¥ of M, the mean curvature vector is given by
Hx(p) = — divs (vi(p))vi(p) — divs(vs(p))vs(p),
where vy is the unit co-normal of Y. Since vy tangential to M,
(Hy,vy) = —divy vy (A.16)

and on X, using (A.11) restricted to X,

2
(A1s) 4 [ O°Fy 5 i OF
Agp, W29 g [ 22 wpk
2l 9z (31%319;' Y Opy

2 2
(A11) 44 0 F, ij 0 F;
= g yV vy+g VY, ) Uy
z <8pi8pj K 7 x Op;iOp;

ij aFI ov ij aF| vy

where 7,5,k =1,....n—land y=1,...,m.
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If m =1, M has only one unit normal v. In this case the second fundamental form of
M has the simpler form

A(v,w) =—(Dyw,v)v = h(v,w)v.

The coefficients of the operator h : TM xT'M — R, with respect to an orthonormal frame

{Ti}1<i<n, are given by
hij = h(Ti,7;) = (A(T4,7j),v) = = (D7,Dr F,v) = (D, ,F, Dy v) .
The norm of the second fundamental form is given by
Al = g"*g" hyhij = K7 hy;
and the mean curvature vector is given by
H= —gijhiju =—Hv,

where we define the mean curvature H of M as the trace of the second fundamental form.
With (A.14) we conclude that
H=divv.
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Useful theorems and equations

B.1 Background from analysis

Lemma B.1. Let f : [0,7) — R be in C' and o : [0,T) — R be in CON L. Let
Lf(t) < a(t)f(t). Then

t
) <exp( [ atr)ir) f10)

for allt €[0,T).

Proof. Set

g(t) = exp<— /Ota(f) d7> .

d d
- (97) =g<;;—af> <0.

Integrating yields the claim. O

Then %g = —ag and

Lemma B.2 (Young’s Inequality /Peter—Paul Inequality). Fora,b € R and 1/p+1/q =1,

P |ple
ap < 1ol 1o (B.1)
p q
with equality if and only if |a|P = |b|?. For e >0,
P bl
ab < Sl O (B.2)
p g(I/pq

Lemma B.3 (Cauchy-Schwarz Inequality). For f,g: M — R in L2,

1/2 1/2
n 2 n 2 n
/M|fg|d7-l §</Mf d”H) (/Mg d?-l) . (B.3)

Theorem B.4 (Inverse function theorem). Let f : R — R be in C' and f'(x) # 0 for
x € R. Then the inverse f~! exists at f(z) and (f_l)’ (f(@) = ()" (2).

Theorem B.5 (Rademacher’s theorem, see [Fed69, Theorem 3.1.6]). Let U C R™ be open
and f : U — R™ be Lipschitz continuous. Then f is differentiable almost everywhere in

U.



148 B Useful theorems and equations

Theorem B.6 (First variation of the area formula, [Sim83, p. 51]). Let M C R"™™™ be
a smooth, compact, n-dimensional manifold with boundary. Let U C R™™™ be a open
and bounded such that M C U. Let ¢ : U x (—=1,1) — U be a one-parameter family of

CEL_diffeomorphisms. Set My := ¢(M,t) and v(p) := Bd’g;’t)‘t:o. Then

d

— H"(Mt):/ divy, vdH" .
dtlt:O M

Theorem B.7 (Divergence theorem, [Sim83, p. 43], [DHTK10, p. 304], [Eck04, p. 116]).
Let M C R™™ be a smooth, compact, n-dimensional manifold with boundary. Let v be a
C'-vector field on M. Then

/ divys vdH" = —/ <V, HM> dH™ + / <V, V3M> dHn_l ,
M M oM

where (-, +) is the Fuclidean inner product.

Corollary B.8 (Integration by parts). Let M be a manifold with boundary OM, f,g :
M — R in W20 C2% Then

[ aswgane = [ p(vg )it [ (G, B

Lemma B.9 (Fatou’s lemma, [AE06, Theorem 3.7]). Let (2,0,du) be a measure space
and let (f; : @ — [0,00))ien be a sequence of non-negative integrable functions such that
liminf; . fﬂ fidp < oo. Then

/liminf fidp < liminf/ fidup.
0 —00 1—00 0

Theorem B.10 (Lebesgue dominated convergence). Let I C R be an interval. Let (f; :
I — R);en be a sequence of integrable functions with f; — f pointwise almost everywhere
on I and there exists an integrable function g : I — R with |f;| < g almost everywhere in

I. Then f is integrable on I and

lim [ fidx = /fdx.
1— 00 I I

Theorem B.11 (Arzela—Ascoli, [AMR93, Theorem 1.5.11]). Let (M,dy) and (N,dy)
be metric spaces, with M compact and N complete. A set F C C°(M, N) is relatively
compact if and only if it is equicontinuous and all the sets F(m) = {f(m)|f € F} are
relatively compact in N.

Corollary B.12. Let K C R" be compact and let (f;i : K — R™);en be a sequence of
bounded and equicontinuous functions. Then (fi)ien has a uniformly convergent subse-
quence.

Theorem B.13 (C%-convergence of function sequences, [Rud76, Theorem 7.12]). Let I C
R be an interval. Let (fi: I — R);en be a sequence of CO-functions with f; — f uniformly
on I. Then f € C°(I).
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Theorem B.14 (C'-convergence of function sequences, [Rud76, Theorem 7.17]). Let I C
R be an interval. Let (f; : I — R);en be a sequence of C'-functions such that the sequence
(fi(x0))ien converges for some point xg € I. If (f! : I — R)en converges uniformly on I,
then f; — f € CY(I) uniformly and lim; o f/ = f' on I.

Theorem B.15 (Ehrling’s lemma, [RR04, Theorem. 7.30]). Let (X, ||-||x), (Y, |- |ly) and
(Z, |l - llz) be Banach spaces. Assume that X is compactly embedded in'Y and that'Y is
continuously embedded in Z, that is,

X <Y < Z.

compact continuous

Then, for every € > 0, there exists a constant C(g) > 0 such that, for every f € X,

Iflly <ellfllx +Ce)lfllz-

B.2 Parabolic maximum principles

Let © C R™ be open and bounded. For ¢ € (0,T], we define the parabolic cylinder
Qr :=Q x (0,¢)
and the parabolic boundary
PQ; = (2 x {0}) U (99 x (0,1]).
Let f:Q x [0,T] = R*! in C%1(Qr) N C°(Q7). We define the parabolic operator

L(f):= g{ — a"sz-ij — biVZ-f —cf,

where a;;, bj,c € L° and where (a¥ )i; is uniformly elliptic, that is, there exists A > 0 so
that A€ < a;;6& < A|€]]? for all £ € R™HL,

Theorem B.16 (Weak maximum principle, see [Fri64, Chapter 1.1 and 1.2]). Let Q C R"™
be open and bounded. Let f € C*1(Qr) N C°(Qr) be a solution of Lf <0 in Qr.

(i) If c =0, then supg,. f < suppq,. f-
(i) If c >0 and f <0 on PQr, then supg, f < suppq,. f-
(iii) If c € L> and suppq,, f <0, then supg,. f < 0.

Theorem B.17 (Strong maximum principle, see [Fri64, Chapter 1.1 and 1.2]). Let Q C R"
be open, bounded and connected. Let f € C*1(Q7) N C°(Qr) be a solution of Lf <0 in

Qr. Let (po,to) € Qr \ PQr with f(po,to) = maxg- [ and either
(i) ¢=0, or

(i) ¢ >0 and f(xo,t9) >0, or

(iii) ¢ € L™ and f(xg,tg) =0,

Then f is constant in Qy, .
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