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Abstract

In this thesis we consider closed, embedded, smooth curves in the plane whose local total

curvature does not lie below −π and study their behaviour under the area preserving curve

shortening flow (APCSF) and the length preserving curve flow (LPCF). For the APCSF,

we show that under the above initial condition, the flow does not develop any singularities

in finite time but exists for all times and converges smoothly and exponentially to a round

circle after becoming convex in finite time. For the LPCF, we prove that under the above

initial condition, the flow does not develop collapsed singularities and if it exists for all

positive times, it converges smoothly and exponentially to a round circle after becoming

convex in finite time. For these results, the above initial condition on the local total

curvature is sharp. To exclude singularities, we introduce a distance comparison principle

and a monotonicity formula and use methods from the theory of curve shortening flow.



Zusammenfassung

In dieser Arbeit betrachten wir geschlossene, eingebettete, glatte Kurven in der Ebene,

deren lokale totale Krümmung nicht unter −π liegt, und studieren ihr Verhalten unter dem

flächenerhaltenenden, sowie dem längenerhaltenden Kurvenfluss. Für den flächenerhal-

tenden Kurvenfluss zeigen wir, dass unter der obigen Anfangsbedingung, der Fluss keine

Singularitäten in endlicher Zeit entwickelt, aber stattdessen für alle Zeiten existiert. Nach

einer bestimmten endlichen Zeit werden die Kurven konvex und konvergieren danach expo-

nentiell schnell zu einem runden Kreis. Für den längenerhaltenden Kurvenfluss schließen

wir unter der obigen Anfangsbedingung kollabierte Singularitäten aus und beweisen, dass

Lösungen, die für alle positiven Zeiten existieren, glatt und exponentiell schnell zu einem

runden Kreis konvergieren, nachdem sie in endlicher Zeit konvex wurden. Für diese Ergeb-

nisse ist die obige Anfangsbedingung an die lokale totale Kümmung scharf. Um die Sin-

gularitäten auszuschließen, beweisen wir ein Abstandsvergleichsprinzip und eine Mono-

tonieformel und benutzen außerdem Methoden aus der Theorie des Kurvenkürzungsflusses.
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Chapter 1

Introduction

In this thesis we investigate constrained curve flows for closed curves in the plane. The

classical curve shortening flow (CSF) is the gradient flow of the length functional of a

given initial smooth curve Σ0. That is, the flow decreases the length in the fastest possible

way. In fact, one seeks a one-parameter family of embeddings F : S1× [0, T ) → R2 with

F (S1, 0) = Σ0 and

∂F

∂t
(p, t) = −κ(p, t)ν(p, t) (1.1)

for all (p, t) ∈ S1× (0, T ). Setting Σt := F (S1, t), ν is the outward pointing unit normal to

Σt and κ is its curvature function.

Equation (1.1) can be seen as describing the motion of a superelastic rubber band,

with small mass in a viscous medium. One of the earliest sources in the literature for the

problem is the article by Mullins [Mul56], where it was used to model the behaviour of grain

boundaries. After that, Brakke [Bra78] studied the motion for varifolds in the setting of

geometric measure theory. In the parametric setting, the higher dimensional generalisation

mean curvature flow (MCF) was first studied for smooth, compact, convex, n-dimensional

hypersurfaces in Rn+1 for n ≥ 2 by Huisken [Hui84]. For an arbitrary smooth, embedded,

compact, n-dimensional hypersurface Σ0 in Rn+1 the problem is given as follows. Let

the embedding F0 : Σn → Rn+1 be a parametrisation of Σ0, where Σn is an abstract

n-dimensional manifold. We seek a one parameter family of maps F : Σn× [0, T )→ Rn+1

with F ( · , 0) = F0 satisfying

∂F

∂t
(p, t) = −H(p, t)ν(p, t) , (1.2)

for all (p, t) ∈ Σn× (0, T ), where H is the mean curvature of the evolving smooth hy-

persurface Σt := F (Σn, t). Huisken proved that closed, convex hypersurfaces evolving

under (1.2) stay convex and shrink smoothly and exponentially in finite time to a round

point, that is, they shrink to a point and when suitably rescaled converge to a round unit

n-sphere. For curves in the plane, Gage and Hamilton [GH86] showed that embedded,

closed, convex initial curves evolving under (1.1) stay convex and embedded until they

smoothly and exponentially shrink to a round point. Grayson [Gra87] expanded the tech-

niques from [GH86] and proved that embedded, closed, potentially non-convex curves stay
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embedded and become convex in finite before they shrink to round point. So, for CSF,

arbitrary embedded curves in the plane stay embedded and only develop one singularity,

that is, when they shrink to a round point in finite time. In [Hui95], Huisken gave a

different proof for Grayson’s result, by bounding the ratio of the exterior and a suitable

function of the interior distance for the evolving curves. We give more details below.

In this thesis, we want to study the CSF, but ask that either the area enclosed by the

evolving curve or its length is maintained during the flow. The resulting two flows have

different motivations. The (enclosed) area preserving curve shortening flow (APCSF) can

be seen as the motion of a super elastic rubber band that surrounds an incompressible

fluid. It keeps the enclosed area of the curve fixed and decreases the length of the curve

the fastest way possible. The flow has applications for shape recovery in image processing.

The length preserving curve flow (LPCF) is the planar version of the so-called thread flow.

Imagine a wire Γ in space which is either closed or has two endpoints. Let Σ be a space

curve which is closed or attached to the ends of Γ. Consider a soap-film (minimal/least

area surface) spanning this wire–thread boundary. An optimal theorem would be that

the thread flow starts with an arbitrary smooth surface spanning the wire–thread com-

bination and moves this towards a minimal surface by keeping the length of the thread

fixed and decreasing the area of the spanning surface in the fastest possible way. In the

limit the thread will consist of arcs of constant curvature. The latter is know to hold for

the thread boundary of a spanning minimal surface. For the LPCF, we remove the wire

and assume that the thread is closed and that the enclosed area increases the fastest way

possible until the thread forms a circle. If we surrounded the region in which the thread is

flowing by a large wire circle then the area between the thread and the wire circle would

be decreased by this flow. Hence, for both the APCSF and the LPCF, the limit curves

solve the isoperimetric problem. We call the resulting two flows constrained curve flows

(CCF). Concerning the evolution equation for the embedding, either one of the constrains

can be achieved by adding a global forcing term to the speed in (1.1).

We state the problem as follows. Let Σ0 be an embedded, closed, smooth curve in R2,

parametrised by the embedding F0 : S1 → R2. We seek a one-parameter family of maps

F : S1× [0, T )→ R2 with F ( · , 0) = F0 satisfying the evolution equation

∂F

∂t
(p, t) =

(
h(t)− κ(p, t)

)
ν(p, t) (1.3)

for all (p, t) ∈ S1× (0, T ), where the global term h : [0, T )→ R is given by either

hap(t) =
2π

L(Σt)
or hlp(t) =

1

2π

∫
Σt

κ2 dH1

for the APCSF respectively the LPCF and L(Σt) :=
∫

Σt
dH1 is the length of the curve.

The APCSF was first studied by Gage [Gag86]. Using the techniques from [GH86], he

proved that initially embedded, closed, convex curves stay embedded, smooth and convex,

and converge smoothly to a circle of radius
√
A(Σ0)/π, where A(Σ0) is the enclosed area
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of the initial curve. An analogous result for the LPCF was obtained by Pihan [Pih98],

also using the techniques from [GH86] and [Gag86] and showing smooth, exponential con-

vergence to a circle of radius L(Σ0)/(2π).

For dimensions n ≥ 2, a generalisation of (1.3) are the (enclosed) volume preserving

mean curvature flow (VPMCF) and the (surface) area preserving mean curvature flow

(APMCF). Let Σ0 be a smooth, embedded, compact, n-dimensional hypersurface in Rn+1

and let the embedding F0 : Σn → Rn+1 be a parametrisation of Σ0, where Σn is an abstract

n-dimensional manifold. We seek a one parameter family of maps F : Σn× [0, T )→ Rn+1

with F ( · , 0) = F0 satisfying

∂F

∂t
(p, t) =

(
h(t)−H(p, t)

)
ν(p, t) (1.4)

for all (p, t) ∈ Σn × (0, T ), where the global term suffices h(0) > 0 and is given by either

hvp(t) =

∫
Σt
H dHn
Hn(Σt)

or hap(t) =

∫
Σt
H2 dHn∫

Σt
H dHn

for the VPMCF respectively the APMCF.

The VPMCF has been first studied by Huisken in [Hui87] for embedded, closed, uni-

formly convex hypersurfaces. He proved that the solution exists globally, stays uniformly

convex and converges smoothly and exponentially to a sphere. Escher and Simonett [ES98]

weakened the assumption on the initial surface and showed that embedded, compact,

closed, connected hypersurfaces in Rn+1 that are in a certain sense C1+β-Hölder close

to a sphere converge smoothly to a sphere. In [Li09], Li proved smooth convergence of

immersed, orientable, closed hypersurfaces in Rn+1 to a sphere by only requiring that the

traceless second fundamental form is sufficiently small. In [MSS16], Mugnai, Seis and

Spadaro constructed global distributional solutions.

Similar results exist for the APMCF. McCoy [McC02,McC03] showed that every em-

bedded, closed, compact, strictly convex hypersurface converges smoothly and exponen-

tially to a sphere. In [HL15], Huang and Lin weakened the initial conditions, only requiring

that the L2-norm of the traceless second fundamental form of Σ0 is small.

In [CRM16], Cabezas-Rivas and Miquel showed that mean convexity (that is, positivity

of the mean curvature) and positivity of the scalar curvature are non-preserved curvature

conditions for hypersurfaces of the Euclidean space evolving under either the VPMCF or

the APMCF.

The VPMCF has also been studied in the following non-Euclidean settings. In [EH91],

Ecker and Huisken used VPMCF to construct spacelike hypersurfaces of constant mean

curvature in cosmological spacetimes. In [HY96], Huisken and Yau proved with VPMCF

that every 3-dimensional, asymptotically flat manifold with positive mass is uniquely fo-

liated at infinity by stable spheres of constant mean curvature. They defined the centre
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of mass using this constant mean curvature foliation. In particular, they showed that,

for sufficiently large initial spheres, the solution of VPMCF exists for all times and con-

verges smoothly to a constant mean curvature sphere. For arbitrary ambient compact

Riemannian manifolds, Alikakos and Freire [AF03] showed that if the initial hypersurface

is sufficiently close to a small geodesic sphere, the evolution is defined for all times and

(under certain conditions) will converge smoothly to a leaf of a local foliation. In [Rig04],

Rigger constructed a foliation of asymptotically hyperbolic 3-manifolds by 2-surfaces with

constant mean curvature which are homeomorphic to spheres. Cabezas-Rivas and Miquel

showed in [CRM07] that for compact hypersurface of the hyperbolic space which are con-

vex in a certain sense, convexity is preserved for all times and the flow converges smoothly

to a geodesic sphere.

Furthermore, there are the following results for VPMCF with Neumann free bound-

ary conditions. Athanassenas [Ath97] investigated axially symmetric surfaces between

two parallel hyperplanes and showed, for large volumes, smooth convergence to constant

mean curvature surfaces. In [Ath03], she proved that singularities form a finite, discrete

set along the axis of rotation and that type-I singularities are asymptotically cylindrical.

In [AK12], Athanassenas and Kandanaarachchi studied the convergence of axially symmet-

ric hypersurfaces. Assuming that the surface does not develop singularities along the axis

of rotation at any time, they showed smooth convergence to a hemisphere, when the initial

hypersurface has a free boundary and satisfies Neumann boundary data, and to a sphere

when it is compact without boundary. Cabezas-Rivas and Miquel generalised these re-

sults for revolution hypersurfaces in a rotationally symmetric ambient space, see [CRM09]

and [CRM12]. In [Har13], Hartley investigated the VPMCF with Neumann boundary

condition for hypersurfaces that are graphs over a cylinder. If the initial hypersurfaces are

sufficiently close to a cylinder of large enough radius, smooth convergence to a cylinder

follows. Furthermore, he showed that there exist global solutions to the flow that con-

verge to a cylinder, which are initially non-axially symmetric. In [MB14,MB15], Maeder-

Baumdicker studied APCSF for convex curves in the plane with Neumann boundary on

a convex support curve and showed smooth convergence to an arc for sufficiently short,

convex, embedded initial curves.

In this thesis, we study the constrained curve flows (1.3) for embedded, compact,

smooth initial curves Σ0 which satisfy∫
F0([p,q])

κ dH1 ≥ −π (1.5)

for all p, q ∈ S1 (see Figure 1.1 for an illustration). We show for both floes that an initially

embedded curve satisfying (1.5) stays embedded as long as it is smooth. Moreover, condi-

tion (1.5) is sharp, that is, one can construct initial curves which violate (1.5) arbitrarily

mildly and for which the resulting flow self-intersects in finite time. An example is the

initial curve in Figure 1.2 with length sufficiently large compared to the C3,α-norm of its
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Σ0

Σap
∞

Σlp
∞

Figure 1.1: An initial curve and an approximate sketch of the limit circles for both flows.

embedding and for which ∫
F0([p,q])

κ dH1 < −π . (1.6)

Note that for convex curves
∫
F ([p,q]) κ dH1 ≥ 0 for all p, q ∈ S1. For initial curves satisfy-

ing (1.5), we show that under the APCSF these curves do not develop any singularities

but exist for all times and converge smoothly and exponentially to a round circle, like the

convex initial curves above. For the LPCF, we can exclude a certain class of singularities

and show that solutions which exist for all positive times, converge smoothly and expo-

nentially to a round circle, like the convex initial curves above.

To explain our approach to proving the claim, let us concentrate on the theory of CSF.

For CSF, the maximal time of existence T is finite. It follows that the curvature has to

blow up for t→ T with the lower bound

max
p∈S1
|κ(p, t)| ≥ 1√

2(T − t)
on its growth rate for all t ∈ [0, T ). We call a curvature blow-up a singularity and

distinguish between two different kinds, as introduced in [Mul56]: For type-I singularities,

there also exists an upper bound on the growth rate of the form

max
p∈S1

κ(p, t) ≤ C0√
2(T − t)
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F0(p)F0(q)

Figure 1.2: An initial curve satisfying (1.6).

for all t ∈ [0, T ) and some time-independent constant C0 < ∞. For type-II singularities,

there is no such bound, that is,

lim sup
t→T

max
p∈S1

√
2(T − t)κ(p, t) =∞ .

To analyse singularities, one can follow Hamilton [Ham95a] (for Ricci flow) and Huisken–

Sinestrari [HS99] (for MCF) and introduce a sequence of smooth parabolic rescalings near

the point of highest curvature, that is,

Fk : S1× [−αk, Tk]→ R2

for k ∈ N. One can show, that αk → ∞ and Tk → T∞, where T∞ = 0 for a type-I

singularity, and T∞ = ∞ for a type-II singularity. Moreover, the embeddings Fk satisfy

again (1.1) for all k ∈ N. By curvature gradient estimates and the Arzelà–Ascoli theorem,

smooth convergence of Fk → F∞ follows, where for S ∈ {S1,R},

F∞ : S × (−∞, T∞)→ R2

also satisfies (1.1). Using his famous monotonicity formula in [Hui90], Huisken showed

that if an embedded curve develops a type-I singularity, the limit curves Σ∞τ := F∞(S, τ)

of the rescaled solution have to satisfy the equation

κ∞(p, τ) = 〈F∞(p, τ),ν∞(p, τ)〉

for all (p, τ) ∈ S × (−∞, T∞). (In fact, he showed this result for all n ≥ 1 and immersed

hypersurfaces.) Thus, it follows that the original curves Σt have to be asymptotic to
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a homothetically shrinking solution around the singular point for t → T . Abresch and

Langer [AL86] had previously classified all such solutions as circles and lines. One con-

cludes, in case of a type-I singularity, that the curve shrinks to a round point. For the

type-II singularities, Hamilton [Ham89] for convex initial curves and Altschuler [Alt91]

for non-convex initial curves showed that each of the above rescaling sequences (Fk)k∈N
converges to a translating solution F∞ : R× R→ R2 and satisfies

κ∞(p, τ) = 〈v,ν∞(p, τ)〉

for a fixed vector v ∈ R2 and for all (p, τ) ∈ R × R. For curves in the plane, the only

solution of this kind is the so-called grim reaper which is, for all τ ∈ R, given by the graph

of the function

u(σ, τ) = τ − log cos(σ) ,

where σ ∈ (−π/2, π/2). To exclude type-II singularities Huisken [Hui95] considered the

extrinsic distance

d(p, q, t) := ‖F (p, t)− F (q, t)‖R2

and the function

ψ(p, q, t) :=
L(Σt)

π
sin

(
π l(p, q, t)

L(Σt)

)
,

where (p, q, t) ∈ S1× S1× [0, T ) and

l(p, q, t) :=

∫
F ([p,q],t)

dH1

is the length of the segment F ([p, q], t). Then under (1.1), the infimum of the ratio d/ψ

is strictly increasing in time unless Σt is a circle. On the grim reaper infR×R(d/l) = 0, so

that type-II singularities can be excluded. Since T <∞ and a singularity has to form, it

has to be of type I.

Outline of this thesis

In Chapter 2, we derive the equation (1.4) via the gradient flow approach for the volume

and the area functionals and define the VPMCF and the APMCF as well as the APCSF

and the LPCF. In Chapter 3, we prove evolution equations for the geometric quantities

under (1.3) and draw first conclusions. In Chapter 4, we estimate the derivatives of the

curvature and show that if the flow exists only on a finite time interval then the curvature

has to blow up.

In Chapter 5, we deduce a strong maximum principle for the local total curvature.

In Chapter 6, we show that the curve Σt stays embedded for all t ∈ [0, T ) provided the

initial embedding Σ0 satisfies (1.5) and prove that this condition is sharp. In Chapter 7,

we modify the distance comparison principle of Huisken [Hui95] and prove that, if the

initial embedding Σ0 satisfies (1.5), the ratio d/ψ is bounded from below away from zero

uniformly in time.
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In Chapter 8, we derive an analogue of Huisken’s monotonicity formula for both

APMCF and VPMCF, see also [MB14,MB15] for the APMCF.

In Chapter 9, we assume that the maximal time of existence is finite and study cur-

vature blow ups via parabolic rescaling. We rule out type-I singularities for the APCSF

using the monotonicity formula in a similar way as in [MB14, MB15]. Furthermore, we

use the distance comparison principle from Chapter 6 in the same fashion as for CSF

in [Hui95] to exclude singularities that, after rescaling, satisfy infR×R(d/l) = 0. For the

APCSF, these are the type-II singularities.

In Chapter 10, we assume that a solution of (1.3) exists for all positive times and show

that it becomes convex in finite time. In Chapter 11, we rework the arguments for convex

theory from [GH86], [Gag86] and [Pih98] to prove smooth, exponential convergence to a

circle. We summarise our results in Theorem 11.24 and Corollary 11.26.

In Appendix A, we give a short introduction to curves in the plane and to manifolds

in Rn+m. In Appendix B, we state useful theorems and equations.

Acknowledgements

I would like to thank Klaus Ecker for giving me the opportunity to write this thesis

after almost five years not being in academia. I am very grateful for his support and

guidance, but also for giving me a lot of freedom, and, not to forget, for introducing me

to constrained curve flows. I had the greatest luck to have had Theodora Bourni and Mat

Langford as my colleagues and friends over the years. I deeply appreciate all the helpful

discussions and good times we had. I thank Mat, Stephen Lynch, Stephen McCormick

and Kati Dittberner for proofreading some earlier version of this thesis language wise. I

thank Carsten Hartmann for encouraging me to consider going back to Maths and writing

a PhD thesis in the first place. Also, I would like to thank the SFB 647 – Space Time

Matter – for funding me for the first 2 years and 4 months and the BMS for funding me

for the last 8 months of my PhD candidature. Lastly, I thank my family and friends for

their support.



Chapter 2

Constrained flows

In this chapter, we derive the constrained gradient flows for the volume and the area

functionals and define the (enclosed) volume and (surface) area preserving mean curvature

flow (VPMCF and APMCF) as well as the (enclosed) area preserving curve shortening

and length preserving curve flow (APCSF and LPCF).

2.1 Constrained gradient flows

Let n,m ≥ 1 and F : Mn+1 → Rn+m be a smooth embedding of an orientable, compact,

(n+ 1)-dimensional hypersurface M := F (Mn+1) with boundary, so that Σ := F (∂Mn+1)

is a smooth, compact, embedded, n-dimensional hypersurface without boundary in Rn+m.

(Refer to Appendix A.2 for an introduction to differentiable submanifolds of Rn+m.)

We want to find two kinds of steepest descent L2-gradient flows. The first one shall

decrease the n-dimensional surface area of the boundary Σ and at the same time keep

the (n + 1)-dimensional enclosed volume of M fixed. The second one shall increase the

enclosed volume and at the same time keep the surface area of the boundary fixed. The

latter one was derived by Pihan [Pih98, Section B.2] in the setting of the thread flow,

where a part of the boundary Σ stays fixed in time. We will adapt his method to both

flows in the following. Let I := I1 × I2 be a vector space of functions with

I1 :=
{
f1 : M → Rn+m | f1 ∈ C∞

}
and

I2 :=
{
f2 : Σ→ Rn+m | f2 ∈ C∞

}
.

For f = (f1, f2), g = (g1, g2) ∈ I, we define the inner product on I

〈f, g〉I :=

∫
M
〈f1, g1〉 dHn+1 +

∫
Σ
〈f2, g2〉 dHn , (2.1)

the volume functional

V (f) :=

∫
f1(M)

dHn+1 = Hn+1(f1(M)) , (2.2)
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and the area functional

A(f) :=

∫
f2(Σ)

dHn = Hn(f2(Σ)) . (2.3)

Consider a path φ = (φ1, φ2) : (−1, 1) → I in C2, along which both V and A are

continuously Fréchet differentiable, and which satisfies

φ1(0) ≡ idM and φ2(0) ≡ idΣ .

The existence of such a path for m = 1 follows from the short time existence, Theorem 2.3.

Set

Mt := φ1(t)(M) and Σt := φ2(t)(Σ)

for t ∈ (−1, 1) and define the vector field v(t) = (v1(t),v2(t)) by

vi(t) :=
d

dτ |τ=t

φi(τ)

for i = 1, 2 and t ∈ (−1, 1). The Fréchet derivative of the volume functional V is then

given by
d

dτ |τ=t

V (φ(τ)) = DV (φ(t))(v) = 〈∇V (φ(t)),v〉I .

On the other hand, the first variation of the area formula, Theorem B.6, and the divergence

theorem, Theorem B.7, imply

d

dτ |τ=t

V (φ(τ))
(2.2)
=

d

dτ |τ=t

Hn+1(φ1(τ)(M))
Thm. B.6

=

∫
Mt

divMt v1 dHn+1

Thm. B.7
= −

∫
Mt

〈v1,HMt〉 dHn+1 +

∫
Σt

〈v2,νΣt〉 dHn ,

where HMt is the mean curvature vector to Mt and νΣt is the outward pointing unit co-

normal to Σt. The above calculations hold for all differentiable vector fields v. It therefore

follows that the gradient of V exists with respect to 〈 · , · 〉I and satisfies

∇V (φ(t)) =

{
−HMt on Mt

νΣt on Σt

(2.4)

for all t ∈ (−1, 1). The same observation can be applied to the area functional A, so that

we obtain
d

dτ |τ=t

A(φ(τ)) = DA(φ(t))(v) = 〈∇A(φ(t)),v〉I
as well as

d

dτ |τ=t

A(φ(τ))
(2.3)
=

d

dτ |τ=t

Hn(φ2(τ)(Σ))
Thm. B.6

=

∫
Σt

divΣt v2 dHn

Thm. B.7
= −

∫
Σt

〈v2,HΣt〉 dHn

since ∂Σt = ∅, and where HΣt is the mean curvature vector to Σt. Hence, the gradient of

A exists with respect to 〈 · , · 〉I and can be written as

∇A(φ(t)) =

{
0 on Mt

−HΣt on Σt

(2.5)

for all t ∈ (−1, 1). We now derive both gradient flows separately.
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Volume preserving gradient flow. We are looking for the steepest descent flow for

the surface area A which at the same time keeps the enclosed volume V fixed. For given

σ > 0, consider the level-set

Sσ(V ) := {F ∈ I |V (F ) = σ} .

To maintain the initial volume during the flow, we need to move tangentially to the set

Sσ(V ) with σ = V (φ(0)). Since the surface area shall be decreasing, we have to move in

opposite direction to the tangential gradient with respect to 〈 · , · 〉I which is given by

−∇> = ∇⊥ −∇ ,

where ∇⊥ is the normal part of the gradient. We calculate

〈∇V (F ), V (F )〉I =
1

2
∇〈V (F ), V (F )〉I =

1

2
∇σ2 = 0

to see that the gradient of the level-set function is perpendicular to the level-set. It follows

that ∇V/‖∇V ‖ defines a unit normal to Sσ(V ) and 〈∇A,∇V/‖∇V ‖〉I is the length of the

normal part of ∇A. We thus obtain

−∇>A(φ(t)) =

〈
∇A(φ(t)),

∇V (φ(t))

‖∇V (φ(t))‖

〉
I

∇V (φ(t))

‖∇V (φ(t))‖ − ∇A(φ(t))

=
〈∇A(φ(t)),∇V (φ(t))〉I
〈∇V (φ(t)),∇V (φ(t))〉I

∇V (φ(t))−∇A(φ(t)) . (2.6)

The identity (A.16) for the mean curvature yields

〈∇A(φ(t)),∇V (φ(t))〉I
(2.1)
=

∫
Mt

〈(∇A)1(φ(t)), (∇V )1(φ(t))〉 dHn+1

+

∫
Σt

〈(∇A)2(φ(t)), (∇V )2(φ(t))〉 dHn

(2.4),(2.5)
=

∫
Mt

〈0,−HMt〉 dHn+1 +

∫
Σt

〈−HΣt ,νΣt〉 dHn

(A.16)
=

∫
Σt

divΣt νΣt dHn (2.7)

and we calculate

〈∇V (φ(t)),∇V (φ(t))〉I
(2.1)
=

∫
Mt

‖(∇V )1(φ(t))‖2 dHn+1 +

∫
Σt

‖(∇V )2(φ(t))‖2 dHn

(2.4)
=

∫
Mt

‖HMt‖2 dHn+1 +

∫
Σt

‖νΣt‖2 dHn

=

∫
Mt

‖HMt‖2 dHn+1 +

∫
Σt

dHn > 0 . (2.8)

The identities (2.4), (2.5), (2.7), and (2.8) applied to (2.6) then imply the gradient flow

for the area functional with respect to 〈 · , · 〉I , up to tangential diffeomorphisms, namely,

−∇>A(t) =

{
−h(t)HMt on Mt

h(t)νΣt + HΣt on Σt
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for t ∈ (−1, 1), where

h(t) :=

∫
Σt

divΣt νΣt dHn∫
Mt
‖HMt‖2 dHn+1 +

∫
Σt
dHn .

If we choose m = 1 so that Σt are closed n-dimensional hypersurfaces in Rn+1 and HMt =

HRn+1 = 0 for all t ∈ (−1, 1), we obtain the (enclosed) volume preserving and (surface)

area decreasing gradient flow

−∇>A(t) = h(t)νΣt + HΣt = (h(t)−HΣt)νΣt , (2.9)

where νΣt is the outward unit normal to Σt, HΣt is the mean curvature and

h(t) =

∫
Σt
HΣt dHn∫
Σt
dHn .

Area preserving gradient flow. Next, we are seeking the steepest descent flow for the

enclosed volume V which at the same time keeps the surface area A fixed. To maintain

the initial surface area, we have to move tangentially to the level-set

Sσ(A) := {F ∈ I |A(F ) = σ}

for σ = A(φ(0)). Since the enclosed volume shall be increasing, we move in the direction

of the tangential gradient with respect to 〈 · , · 〉I which is given by

∇> = ∇−∇⊥ .

Here, ∇A/‖∇A‖ is a normal to Sσ(A) and 〈∇V,∇A/‖∇A‖〉I is the length of the perpen-

dicular part of ∇V . This implies

∇>V (φ(t)) = ∇V (φ(t))−
〈
∇V (φ(t)),

∇A(φ(t))

‖∇A(φ(t))‖

〉
I

∇A(φ(t))

‖∇A(φ(t))‖

= ∇V (φ(t))− 〈∇V (φ(t)),∇A(φ(t))〉I
〈∇A(φ(t)),∇A(φ(t))〉I

∇A(φ(t)) (2.10)

and we calculate

〈∇A(φ(t)),∇A(φ(t))〉I
(2.1)
=

∫
Mt

‖(∇A)1(φ(t))‖2 dHn+1 +

∫
Σt

‖(∇A)2(φ(t))‖2 dHn

(2.5)
=

∫
Mt

02 dHn+1 +

∫
Σt

‖HΣt‖2 dHn

=

∫
Σt

‖HΣt‖2 dHn > 0 . (2.11)

This time, we apply the identities (2.4), (2.5), (2.7), and (2.11) to (2.10) in order to deduce

the gradient flow on Mt with respect to 〈 · , · 〉I up to tangential diffeomorphisms, namely,

∇>V (t) =

{
−HMt on Mt

νΣt + h(t)HΣt on Σt
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for t ∈ (−1, 1), where

h(t) :=

∫
Σt

divΣt νΣt dHn∫
Σt
‖HΣt‖2 dHn

.

If we choose m = 1 so that Σt are closed n-dimensional hypersurfaces in Rn+1 for all

t ∈ (−1, 1), then we find the (surface) area preserving and (enclosed) volume increasing

gradient flow

∇>V (t) = h(t)HΣt + νΣt = (1− h(t)HΣt)νΣt , (2.12)

where

h(t) =

∫
Σt
HΣt dHn∫

Σt
H2

Σt
dHn .

2.2 Constrained mean curvature flows

Let Σ0 be a smooth, embedded, n-dimensional hypersurface in Rn+1 without boundary.

Let the embedding F0 : Σn → Rn+1 be a smooth parametrisation of Σ0. The initial

value problem for the (enclosed) volume preserving mean curvature flow (VPMCF) and

the (surface) area preserving mean curvature flow (APMCF) for hypersurfaces in Rn+1

can be defined as follows.

Definition 2.1 (The volume and the area preserving mean curvature flow in Rn+1). Let

Σ0 ⊂ Rn+1 be given as above. We seek a one parameter family of maps F : Σn× [0, T )→
Rn+1 satisfying F (p, 0) = F0(p) for all p ∈ Σn and the evolution equation

∂F

∂t
(p, t) =

(
h(t)−H(p, t)

)
ν(p, t) (2.13)

for all p ∈ Σn and t ∈ (0, T ), where H is the mean curvature of Σt := F (Σn, t), ν the

outer unit normal, and h : [0, T )→ R is given by either

hvp(t) :=

∫
Σt
H dHn∫

Σt
dHn

for the VPMCF or by

hap(t) :=

∫
Σt
H2 dHn∫

Σt
H dHn

for the APMCF. Additionally, we assume that h(0) > 0.

In this thesis we will be mainly concerned with planar curves that is the case n = 1.

Remark 2.2. (i) For the VPMCF, the evolution equation (2.13) follows directly from

the gradient flow (2.9). For the APMCF, the evolution equation that we deduce

from the gradient flow (2.12) is

∂F

∂t
(p, t) =

(
1− 1

hap(t)
H(p, t)

)
ν(p, t) . (2.14)
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Note that Pihan works with this speed in his thesis [Pih98]. To find the speed (2.13)

for the APMCF, we introduce a new time parameter

τ :=

∫ t

0

1

hap(σ)
dσ

and define the embedding F̄ : Σn× [0, T/hap(T ))→ R2 by

F̄ ( · , τ) := F ( · , t) .

Moreover,
∂

∂τ
= hap(t)

∂

∂t

and, since the spatial derivatives are not affected by the transformation, H̄( · , τ) =

H( · , t), ν̄( · , τ) = ν( · , t), and h̄ap(τ) = hap(t) which implies

∂F̄

∂τ
(p, τ) = hap(t)

∂F

∂t
(p, t)

(2.14)
= hap(t)

(
1− 1

hap(t)
H(p, t)

)
ν(p, t)

=
(
h̄ap(τ)− H̄(p, τ)

)
ν̄(p, τ) .

(ii) Note that (2.13) is a quasilinear parabolic equation since

−H(p, t)ν(p, t) = H(p, t)
(A.17)

= ∆ΣtF (p, t) .

(iii) Static solutions to (2.13) are spheres. On SnR, H ≡ 1/R so that hvp = hap = 1/R.

Theorem 2.3 (Short time existence, Huisken [Hui87, p. 36] for the VPMCF, Pihan [Pih98,

Theorems 4.3 and Corollary 4.4] for the APMCF). For α ∈ (0, 1) and k ≥ 3, let Σ0 be

an embedded, closed, n-dimensional Ck,α-hypersurface in Rn+1, parametrised by a Ck,α-

embedding F0 : Σn → R2. Then there exists a time T = T (‖F0‖C3,α) > 0 such that

the initial value problem (2.13) has a unique solution F ∈ Ck,α;bk/2c,α/2(Σn × (0, T )). In

particular, if Σ0 is smooth so is Σt for all t ∈ (0, T ).

Remark 2.4. The proof in [Pih98] establishes short time existence for the speed (2.14).

As shown in Remark 2.2(i), the flows (2.13) and (2.14) can be transformed into each other

by varying the speed. Hence, short time existence for one flow implies short time existence

for the other.

2.3 Constrained curve flows

Constrained curve flows arise in the special case n = 1 of the constrained mean curvature

flow from Section 2.2. Let Σ0 be a smooth, embedded, closed curve in R2, parametrised

by the smooth embedding F0 : S1 → R2. (Refer to Appendix A.1 for an introduction on

curves.) The initial value problem for the (enclosed) area preserving curve shortening flow

(APCSF) and the length preserving curve flow (LPCF) for curves in R2 can be defined as

follows.
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Definition 2.5 (The area preserving curve shortening and the length preserving curve

flow for curves in R2). Let Σ0 ⊂ R2 be given as above. We seek a one parameter family

of maps F : S1× [0, T )→ R2 satisfying the initial condition F (p, 0) = F0(p) for all p ∈ S1

and the evolution equation

∂F

∂t
(p, t) =

(
h(t)− κ(p, t)

)
ν(p, t) (2.15)

for all p ∈ S1 and t ∈ (0, T ). Here, κ is the curvature, ν is the outer unit normal to

Σt := F (S1, t), and the global term h : [0, T )→ R is given by either

hap(t) :=

∫
Σt
κ dH1∫

Σt
dH1

for the APCSF or by

hlp(t) :=

∫
Σt
κ2 dH1∫

Σt
κ dH1

for the LPCF.

Remark 2.6. (i) The total curvature of an embedded closed curve is∫
Σt

κ dH1 = 2π

(see Theorem A.2). Thus, the global terms are given by

hap(t) =
2π

Lt
and hlp(t) =

1

2π

∫
Σt

κ2 dH1 ,

where Lt := L(Σt) is the length of Σt.

(ii) Static solutions to (2.13) are circles. On S1
R, κ ≡ 1/R so that hap = hlp = 1/R.
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Evolution equations and first

consequences

For fixed t ∈ [0, T ), we can parametrise Σt by arc length via the arc length parameter

s( · , t) (see Section A.1 for details). Set Rt := Lt/(2π). Then s(S1, t) = S1
Rt

. The arc

length parametrisation

F̃ ( · , t) : S1
Rt → R2

is given by

F̃ (s, t) = F (p, t)

for s = s(p, t) ∈ S1
Rt

, p ∈ S1 and t ∈ [0, T ). The evolution equation (2.15) applied to the

arc length parametrisation reads

∂F̃

∂t
(s, t) =

∂2F̃

∂s2
(s, t) + h(t)ν̃(s, t) (3.1)

for all s ∈ S1
Rt

, where ν̃(s, t) = ν̃(s(p, t), t) = ν(p, t) and we used the identity (A.9) for

the curvature vector. The global term h is still given by either

hap(t) =
2π

Lt
or hlp(t) =

1

2π

∫
S1
Rt

κ̃2 dst ,

where κ̃(s, t) = κ̃(s(p, t), t) = κ(p, t), and dst := ds(p, t) = v(p, t)dp. Whenever we will

calculate via the arc length parametrisation, we will do so at a fixed time.

Remark 3.1. The total time derivative of the arc length parametrisation is given by

dF̃

dt
(s(p, t), t) =

∂F̃

∂s
(s, t)

∂s

∂t
(p, t) +

∂F̃

∂t
(s, t)

for s = s(p, t) ∈ S1
Rt

, p ∈ S1 and t ∈ (0, T ). Since ∂
∂s F̃ is tangential to Σt,(

dF̃

dt

)⊥
:=

〈
dF̃

dt
, ν̃

〉
ν̃ =

∂F̃

∂t
.

We only use the partial time derivative in (3.1) and omit the tangential movement since

the image Σt ⊂ R2, t ∈ (0, T ), is the same for both motions. Therefore, we will below

omit the “∼” above geometric quantities related to F̃ if these depend on s rather than p.
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The following evolution equations can also be found in [Pih98, Proposition 5.7 and

Lemma 6.12] for the LPCF.

Lemma 3.2 (Evolution equations for geometric quantities). Let F : S1× (0, T ) → R2 be

a solution of (2.15). Then

∂v

∂t
= κ(h− κ)v (3.2)

∂

∂t

∂

∂s
=

∂

∂s

∂

∂t
− κ(h− κ)

∂

∂s
(3.3)

∂τ

∂t
= −∂κ

∂s
ν (3.4)

∂ν

∂t
=
∂κ

∂s
τ , (3.5)

where v is the length element and τ is the unit tangent vector to Σt in direction of the arc

length parametrisation.

Proof of Lemma 3.2. We use the evolution equation (2.15) for the embedding, the defini-

tions (A.3) and (A.4) for ∂
∂s and τ , and the identity (A.7) for κ to calculate at s = s(p, t)

∂v

∂t

(A.1)
=

∂

∂t

∥∥∥∥∂F∂p
∥∥∥∥ =

∂

∂t

〈
∂F

∂p
,
∂F

∂p

〉1/2

=
1

v

〈
∂

∂t

∂F

∂p
,
∂F

∂p

〉
=

1

v

〈
∂

∂p

∂F

∂t
,
∂F

∂p

〉
(2.15)

=
1

v

〈
∂

∂p

(
(h− κ)ν

)
,
∂F

∂p

〉
=

1

v
(h− κ)

〈
∂ν

∂p
,
∂F

∂p

〉
=

1

v
v2(h− κ)

〈
1

v

∂ν

∂p
,

1

v

∂F

∂p

〉
(A.3),(A.4)

= v(h− κ)

〈
∂ν

∂s
, τ

〉
(A.7)
= v(h− κ)κ .

Next, we again use the definition (A.3) of ∂
∂s and the evolution equation (3.2) of v,

∂

∂t

∂

∂s

(A.3)
=

∂

∂t

(
1

v

∂

∂p

)
=

1

v

∂

∂t

(
∂

∂p

)
+
∂

∂t

(
1

v

)
∂

∂p

(3.2)
=

1

v

∂

∂p

∂

∂t
− 1

v2
κ(h− κ)v

∂

∂p

(A.3)
=

∂

∂s

∂

∂t
− κ(h− κ)

∂

∂s
.

To show (3.4), we apply the definition (A.4) of the vector τ , the evolution equations (3.3)

and (2.15) for ∂
∂s and F respectively, and the Frenet–Serret equation, Lemma A.1, to

obtain

∂τ

∂t

(A.4)
=

∂

∂t

∂F̃

∂s

(3.3)
=

∂

∂s

∂F̃

∂t
− κ(h− κ)

∂F̃

∂s
(2.15)

=
∂

∂s
((h− κ)ν)− κ(h− κ)τ

Lem. A.1
= −ν ∂κ

∂s
+ (h− κ)

∂ν

∂s
− (h− κ)

∂ν

∂s
= −∂κ

∂s
ν .
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For (3.5), we observe that

0 =
∂0

∂t
=

∂

∂t
〈ν, τ 〉 =

〈
∂ν

∂t
, τ

〉
+

〈
ν,
∂τ

∂t

〉
,

so that (3.4) implies 〈
∂ν

∂t
, τ

〉
= −

〈
ν,
∂τ

∂t

〉
(3.4)
=

∂κ

∂s

which together with
〈
∂
∂tν,ν

〉
= 0 yields

∂ν

∂t
=

〈
∂ν

∂t
, τ

〉
τ =

∂κ

∂s
τ .

For t ∈ [0, T ), let

L(t) :=

∫
Σt

dH1 =

∫
S1
Rt

dst =

∫
S1

v dp (3.6)

be the length of the curve Σt, and

A(t) :=

∫
Ωt

dH2 (3.7)

be the enclosed area of Σt where Ωt ⊂ R2 with ∂Ωt = Σt.

Lemma 3.3 (Evolution equations for L and A). Let F : S1× (0, T ) → R2 be a solution

of (2.15). Then

dL

dt
= 2πh−

∫
S1
Rt

κ2 dst (3.8)

and

dA

dt
= hL− 2π . (3.9)

for all t ∈ (0, T ).

Proof. The evolution equation (3.2) of the length element and Theorem A.2 for the total

curvature yield

dL

dt

(3.6)
=

d

dt

(∫
S1

v dp

)
=

∫
S1

∂v

∂t
dp

(3.2)
=

∫
S1

κ(h− κ)v dp

= h

∫
S1
Rt

κ dst −
∫
S1
Rt

κ2 dst
Thm. A.2

= 2πh−
∫
S1
Rt

κ2 dst .

The first variation of the area formula, Theorem B.6, the divergence theorem, Theo-

rem B.7, the evolution equation (2.15) of the embedding, and again Theorem A.2 imply

dA

dt

(3.7)
=

d

dt

∫
Ωt

dH2 Thm. B.6
=

∫
Ωt

divΩt

(
∂F

∂t

)
dH2

Thm. B.7
=

∫
Σt

〈
∂F

∂t
,ν

〉
dH1 (2.15)

=

∫
Σt

(h− κ) 〈ν,ν〉 dH1

=

∫
Σt

(h− κ) dH1 = h

∫
Σt

dH1 −
∫

Σt

κ dH1 Thm. A.2
= hL− 2π .
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Lemma 3.4 (Isoperimetric inequality). For an embedded closed curve Σ in the plane,

L2 ≥ 4πA

with equality if and only if Σ is a circle.

Corollary 3.5 (L and A under the APCSF). Under the APCSF, for t ∈ [0, T ), the

enclosed area At ≡ A0 is constant and the length of the curve Lt is strictly decreasing

unless Σt is a circle of radius
√
A0/π. Consequently,

L0 ≥ Lt ≥ 2
√
πA0

for all t ∈ (0, T ) with equalities if and only if Σt is a circle.

Proof. Recall that hap = 2π/L. We use the evolution equation (3.9) for the enclosed

volume of the curve and conclude that d
dtA = 0 which implies At = A0 for all t ∈ [0, T ).

The evolution equation (3.8) for the length of the curve, Cauchy–Schwarz (B.3), and

Theorem A.2 for the total curvature yield

dL

dt

(3.8),(B.3)

≤ 4π2

L
− 1

L

(∫
Σt

κ dH1

)2
Thm. A.2

=
4π2

L
− (2π)2

L
= 0

with equality if and only if the curvature is constant on Σt. The isoperimetric inequality,

Lemma 3.4, leads to the lower bound L2
t ≥ 4πAt = 4πA0, with equality only on the circle.

If Σt is a circle, the radius is thus given by Lt/(2π) =
√
A0/π.

Corollary 3.6 (L and A under the LPCF). Under the LPCF, for t ∈ [0, T ), the length

of the curve Lt ≡ L0 is constant and the enclosed area At is strictly increasing unless Σt

is a circle of radius L0/(2π). Consequently,

A0 ≤ At ≤ L2
0/(4π)

for all t ∈ (0, T ) with equalities if and only if Σt is a circle.

Proof. Recall that hlp =
∫
S1
Rt

κ2 dst/2π. The evolution equation (3.8) for the length of the

curve then immediately implies that d
dtL = 0 and Lt = L0 for all t ∈ [0, T ). By the evo-

lution equation (3.9) for the enclosed volume of the curve and by Cauchy–Schwarz (B.3),

we obtain
dA

dt
≥ 2π2

2πL
L− 2π = 0

with equality if and only if the curvature is constant on Σt. This holds for embedded

curves if and only if Σt is a circle of radius Lt/2π = L0/2π. Furthermore, the isoperimetric

inequality, Lemma 3.4, leads to the upper bound 4πAt ≤ L2
t = L2

0 with equality only on

the circle.

Remark 3.7. Since, by Corollary 3.6, for the LPCF the length of the curve is indeed not

changing, we can parametrise by arc length via the arc length parameter s : S1×[0, T )→ R
with s(S1, t) = S1

Rt
≡ S1

R0
for all t ∈ [0, T ). The arc length parametrisation F̃ : S1

R0
×

(0, T )→ R2 evolves according to (3.1) and

hlp(t) =
1

2π

∫
S1
R0

κ2 dst .
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Lemma 3.8. Let F : S1× [0, T )→ R2 be a solution of (2.15) with initial curve Σ0. Then,

hap(t) ≤ |κ|max(t) and hlp(t) ≤ min

{
|κ|max(t)

2π

∫
S1
R0

|κ| dst,
L(Σ0)

2π
κ2

max(t)

}

for all t ∈ [0, T ).

Proof. For all t ∈ [0, T ), we can estimate the global terms by

hap =
1

L

∫
S1
Rt

κ dst ≤ |κ|max
1

L

∫
S1
Rt

dst = |κ|max .

and

hlp =
1

2π

∫
S1
R0

κ2 dst ≤
|κ|max

2π

∫
S1
R0

|κ| dst .

Lemma 3.9 (Evolution and bounds for hap). Let F : S1× [0, T ) → R2 be a solution

of (2.15) with initial curve Σ0. Then hap is strictly increasing on [0, T ) unless Σt is a

circle of radius
√
A0/π. Consequently,

0 <
2π

L0
= hap(0) ≤ hap(t) ≤

√
π

A0
(3.10)

for all t ∈ (0, T ) with equalities if and only if Σt is a circle.

Proof. Recall that hap = 2π/L and apply Corollary 3.5.

Lemma 3.10 (Lower bound for hlp). Let F : S1× [0, T )→ R2 be a solution of (2.15) with

initial curve Σ0. Then

0 <
2π

L0
≤ hlp(t) (3.11)

for all t ∈ (0, T ) with equality in the middle inequality if and only if Σt is a circle.

Proof for Lemma 3.10. Cauchy–Schwarz (B.3) and Theorem A.2 for the total curvature

yield

hlp =
1

2π

∫
S1
R0

κ2 dst
(B.3)

≥ 1

2πL0

(∫
S1
R0

κ dst

)2
Thm. A.2

=
(2π)2

2πL0
=

2π

L0

with equality if and only if Σt is a circle.

Lemma 3.11. Let F : S1× [0, T )→ R2 be a solution of (2.15) with initial curve Σ0. Then

v(p, t) = exp

(∫ t

0
κ(h− κ)(p, τ) dτ

)
v(p, 0)

for every (p, t) ∈ S1×(0, T ). Hence, the curve Σt is regular for all t ∈ [0, T ) (see Section A.1

for a definition).

Proof. The claim follows directly from the evolution equation (3.2) of the length element

and Lemma B.1.
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Corollary 3.12. Let F : S1× [0, T ) → R2 be a solution of (2.15) with initial curve Σ0

and let t0 ∈ [0, T ). Then the operator ∂2

∂s2
is uniformly elliptic on Σt for all t ∈ [0, t0].

Proof. For (p, t) ∈ S1× [0, T ) and s = s(p, t) ∈ S1
Rt

,

∂2

∂s2
=

1

v

∂

∂p

(
1

v

∂

∂p

)
=

1

v2

∂2

∂p2
− 1

v4

〈
∂F

∂p
,
∂2F

∂p2

〉
∂

∂p
.

Since F ∈ C∞(S1× [0, T )), ∂
∂pF , ∂2

∂p2F and |κ|max are bounded on [0, t0]. Lemma 3.11

yields that 1/v is bounded on [0, t0] so that the operator ∂2

∂s2
is elliptic on [0, t0].

Next, we show that the solution stays in a bounded region during the time of existence

if T <∞. We thank Theodora Bourni for the idea to the proof of the following Lemma.

Lemma 3.13 (Boundedness on finite time intervals). Let F : S1×[0, T )→ R2 be a solution

of (2.15) with initial curve Σ0. Let T < ∞ and suppose that sup[0,T ) h < ∞. Then there

exists a constant c = c
(
|κ|max(0), sup[0,T ) h

)
<∞ such that

‖F (p, t)− F (p, 0)‖ ≤ 2ct

for all p ∈ S1 and t ∈ [0, T ).

Proof. Set

c := max

{
|κ|max(0), sup

[0,T )
h

}
and let v ∈ R2, ‖v‖ = 1, be arbitrary. We use the evolution equation (3.1) and the

identity (A.9) of the curvature vector to calculate(
∂

∂t
− ∂2

∂s2

)(
〈F (p, t)− F (p, 0),v〉+ 2ct

)
(3.1),(A.9)

= h(t)〈ν(p, t),v〉 − κ(p, 0) 〈ν(p, 0),v〉+ 2c

≥ − sup
[0,T )

h− |κ|max(0) + 2c ≥ 0

and (
∂

∂t
− ∂2

∂s2

)(
〈F (p, t)− F (p, 0),v〉 − 2ct

)
= h(t)〈ν(p, t),v〉 − κ(p, 0) 〈ν(p, 0),v〉 − 2c

≤ sup
[0,T )

h+ |κ|max(0)− 2c ≤ 0

for s ∈ S1
Rt

and t ∈ (0, T ). The weak maximum principle, Theorem B.16, yields

−2ct ≤ 〈F (p, t)− F (p, 0),v〉 ≤ 2ct

for all p ∈ S1 and t ∈ [0, T ). For fixed p ∈ S1 and t ∈ (0, T ), choose v = F (p, t) −
F (p, 0)/‖F (p, t)− F (p, 0)‖ to obtain

‖F (p, t)− F (p, 0)‖ ≤ 2ct .



Chapter 4

Estimates on curvature derivatives

In this chapter we bound the derivatives of the curvature for smooth solutions of (2.15)

like in [Pih98, Section 6.3]. His methods work for both flows. In [Gag86] very little detail

is given. We also show that if the maximal existence time T is finite, the maximum of the

curvature has to blow up when time approaches T .

Lemma 4.1 (Evolution equations for the curvature). Let F : S1× (0, T ) → R2 be a

solution of (2.15). Then(
∂

∂t
− ∂2

∂s2

)
κ = (κ− h)κ2 (4.1)(

∂

∂t
− ∂2

∂s2

)
∂nκ

∂sn
=
(
(n+ 3)κ− (n+ 2)h

)
κ
∂nκ

∂sn
+ Pn−1 (4.2)

for all t ∈ (0, T ) and n ∈ N, where

Pn = Pn

(
h, κ,

∂κ

∂s
, . . . ,

∂nκ

∂sn

)
(4.3)

is a polynomial in all its entries and P0 ≡ 0.

Remark 4.2. The evolution equation (4.1) of the curvature consists of a diffusion term
∂2

∂s2
κ and a reaction term (κ − h)κ2. For the classical CSF (1.1), the reaction term is κ3

which causes the curvature to blow up in finite time. For the constrained curve flow, this

behaviour is weakened by the global term for points with positive curvature and amplified

for points with negative curvature.

Proof. We follow the lines of [Pih98, Proposition 5.7 and Lemma 6.13]. For (4.1), we use

the definition (A.6) of κ, the evolution equations (3.3), (3.4) and (3.5) for ∂
∂s , τ and ν

respectively, the fact that
〈
∂
∂sτ , τ

〉
= 0, as well as the Frenet–Serret equation, Lemma A.1,

to obtain

∂κ

∂t

(A.6)
= − ∂

∂t

〈
ν,
∂τ

∂s

〉
= −

〈
∂ν

∂t
,
∂τ

∂s

〉
−
〈
ν,

∂

∂t

∂τ

∂s

〉
(3.5),(3.3)

= −
〈
∂κ

∂s
τ ,
∂τ

∂s

〉
−
〈
ν,

∂

∂s

∂τ

∂t
− κ(h− κ)

∂τ

∂s

〉
Lem. A.1

=
(3.4)

−
〈
ν,

∂

∂s

(
−∂κ
∂s

ν

)〉
+ κ(h− κ)

〈
ν,
∂τ

∂s

〉
(A.6)
=

∂2κ

∂s2
− κ2(h− κ) .
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We prove (4.2) by induction over n. The rule (3.3) for interchanging the spatial and time

derivative and the evolution equations (4.1) for the curvature yield

∂

∂t

∂κ

∂s

(3.3)
=

∂

∂s

∂κ

∂t
− (h− κ)κ

∂κ

∂s
(4.1)
=

∂

∂s

(
∂2κ

∂s2
− (h− κ)κ2

)
− (h− κ)κ

∂κ

∂s

=
∂3κ

∂s3
− 2hκ

∂κ

∂s
+ 3κ2∂κ

∂s
− (h− κ)κ

∂κ

∂s

=
∂3κ

∂s3
+ (4κ− 3h)κ

∂κ

∂s
.

For the induction step, we assume (4.2) to hold for all i ∈ {1, . . . , n} for a fixed but

arbitrary n ∈ N. We abbreviate

κ′ :=
∂κ

∂s
and κ(n) :=

∂nκ

∂sn

and again use (3.3) to calculate

∂

∂t
κ(n+1) (3.3)

=
∂

∂s

∂

∂t
κ(n) − (h− κ)κ

∂

∂s
κ(n)

(4.2)
=

∂

∂s

(
∂2κ(n)

∂s2
+
(
(n+ 3)κ− (n+ 2)h

)
κκ(n) + Pn−1

)
+ (κ− h)κκ(n+1)

=
∂3κ(n)

∂s3
+ (n+ 3)2κκ′κ(n) − (n+ 2)hκ′κ(n)

+
(
(n+ 3)κ− (n+ 2)h

)
κκ(n+1) +

∂Pn−1

∂s
+ (κ− h)κκ(n+1)

=
∂2κ(n+1)

∂s2
+
(
(n+ 4)κ− (n+ 3)h

)
κκ(n+1) + Pn .

Corollary 4.3 (Pihan [Pih98, Proposition 5.8], see also [Hui87, Theorem 1.3]). Let F :

S1× [0, T ) → R2 be a solution of (2.15) and let κ ≥ 0 on Σ0. Then κ > 0 on Σt for all

t ∈ (0, T ).

Proof. Assume that there exists a point (p0, t0) ∈ S1× (0, T ) with κ(p0, t0) = 0. We

estimate

|(h− κ)κ|
Lem. 3.8
≤ c(Σ0)|κ|3max <∞

on S1× [0, T ). Hence, we can apply the strong maximum principle, Theorem B.17(iii),

with respect to the evolution equation (4.1) of κ and obtain that κ ≡ 0 on S1× [0, t0].

Since Σt is closed for t ∈ [0, t0], this is a contradiction.

Corollary 4.4. Let F : S1× (0, T )→ R2 be a solution of (2.15). Then(
∂

∂t
− ∂2

∂s2

)
κ2 = −2

(
∂κ

∂s

)2

+ 2(κ− h)κ3 (4.4)(
∂

∂t
− ∂2

∂s2

)(
∂nκ

∂sn

)2

= −2

(
∂n+1κ

∂sn+1

)2

+ 2
(
(n+ 3)κ− (n+ 2)h

)
κ

(
∂nκ

∂sn

)2

+ 2
∂nκ

∂sn
Pn−1 (4.5)

for all t ∈ (0, T ) and n ∈ N, where Pn−1 is defined in (4.3).
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Proof. We follow the lines of [Pih98, Corollary 6.14]. The evolution equation (4.1) of the

curvature implies
∂κ2

∂t
= 2κ

∂2κ

∂s2
+ 2(κ− h)κ3 .

Furthermore,
∂2κ2

∂s2
=

∂

∂s

(
2κ
∂κ

∂s

)
= 2κ

∂2κ

∂s2
+ 2

(
∂κ

∂s

)2

.

Subtracting the above two equalities yields (4.4). To prove (4.5), we again abbreviate

κ(n) := ∂n

∂snκ. By the evolution equation (4.2),

∂

∂t

(
κ(n)

)2
= 2κ(n)∂

2κ(n)

∂s2
+ 2
(
(n+ 3)κ− (n+ 2)h

)
κ
(
κ(n)

)2
+ 2κ(n)Pn−1

and again

∂2

∂s2

(
κ(n)

)2
=

∂

∂s

(
2κ(n)∂κ

(n)

∂s

)
= 2κ(n)∂

2κ(n)

∂s2
+ 2

(
∂κ(n)

∂s

)2

.

Subtracting the above two equalities yields the claim.

Proposition 4.5 (Bounds on curvature derivatives). Let F : S1×[0, T )→ R2 be a solution

of (2.15) with initial curve Σ0. Let n ∈ N and, for l ∈ {0, . . . , n − 1}, Cl be a constant

such that

sup
t∈[0,T )

∣∣∣∣∂lκ∂sl
∣∣∣∣
max

(t) ≤ Cl .

Then there exists a constant Cn = Cn
(
n,C0, . . . , Cn−1,

∣∣ ∂n
∂snκ

∣∣
max

(0)
)

such that

sup
t∈[0,T )

∣∣∣∣∂nκ∂sn

∣∣∣∣
max

≤ Cn .

Proof. We prove the claim by induction over n in a similar fashion to [Pih98, Proposi-

tion 6.15]. Assume that there exists a constant C0 so that |κ|max ≤ C0 on [0, T ). We

abbreviate κ′ := ∂
∂sκ and κ(n) := ∂n

∂snκ. Let Λ = Λ(C0) be a positive constant to be

chosen later. The evolution equations (4.4) and (4.5), and the estimate h ≤ c(C0) from

Lemma 3.8 imply(
∂

∂t
− ∂2

∂s2

)(
(κ′)2 + Λκ2

) (4.4),(4.5)
= −2

(
∂κ′

∂s

)2

+ 2(4κ− 3h)κ
(
κ′
)2

− 2Λ

(
∂κ

∂s

)2

+ 2Λ(κ− h)κ3

Lem. 3.8
≤ 2

(
(4κ− 3h)κ− Λ

)(
κ′
)2

+ c1(C0) . (4.6)

We estimate

(4κ− 3h)κ ≤ λ(C0)

and set

Λ(C0) := λ+
1

2
.
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Then, (4κ− 3h)κ− Λ ≤ −1/2 and(
∂

∂t
− ∂2

∂s2

)(
(κ′)2 + Λκ2

) (4.6)

≤ −(κ′)2 + c1 = −(κ′)2 − Λκ2 + Λκ2 + c1

≤ −
(
(κ′)2 + Λκ2

)
+ c2(C0) .

Assume, that
(
(κ′)2 + Λκ2

)
reaches a value

K > max
{(

(κ′)2 + Λκ2
)

max
(0), c2

}
for the first time. Then, at that time

0 ≤
(
∂

∂t
− ∂2

∂s2

)(
(κ′)2 + Λκ2

)
≤ −K + c2 < 0

which is a contradiction. Hence,(
(κ′)2 + Λκ2

)
max

(t) ≤ max
{(

(κ′)2 + Λκ2
)

max
(0), c2

}
and thus

|κ′|max(t) ≤ C1(C0, |κ′|max(0))

for all t ∈ [0, T ). The induction step is done in the same manner. We assume for arbitrary

but fixed n ∈ N that there exist constants Cl for l ∈ {0, . . . , n− 1} so that

sup
t∈[0,T )

∣∣∣∣∂lκ∂sl
∣∣∣∣
max

(t) ≤ Cl .

Let Λ be again a positive constant to be chosen later. We use Young’s inequality (B.1) to

estimate 2κ(n+1)Pn ≤ 2(κ(n+1))2 + 2(Pn)2 and the evolution equation (4.5) to obtain(
∂

∂t
− ∂2

∂s2

)((
κ(n+1)

)2
+ Λ

(
κ(n)

)2
)

= −2

(
∂κ(n+1)

∂s

)2

+ 2
(
(n+ 4)κ− (n+ 3)h

)
κ
(
κ(n+1)

)2
+ 2κ(n+1)Pn

− 2Λ

(
∂κ(n)

∂s

)2

+ 2Λ
(
(n+ 2)κ− (n+ 1)h

)
κ
(
κ(n)

)2
+ 2Λκ(n)Pn−1

≤ 2
((

(n+ 4)κ− (n+ 3)h
)
κ+ 1− Λ

)(
κ(n+1)

)2
+ c3(Λ)Pn . (4.7)

We estimate (
(n+ 4)κ− (n+ 3)h

)
κ ≤ λ(n,C0)

and choose

Λ(n,C0) := λ+
3

2
.

Then (
(n+ 4)κ− (n+ 3)h

)
κ+ 1− Λ ≤ −1

2
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and from (4.7) it follows that(
∂

∂t
− ∂2

∂s2

)((
κ(n+1)

)2
+ Λ

(
κ(n)

)2
)
≤ −

(
κ(n+1)

)2
+ c3(C0)Pn

≤ −
((

κ(n+1)
)2

+ Λ
(
κ(n)

)2
)

+ c4 ,

where c4 = c4(n,C0, . . . , Cn). Like before, we assume that
(
κ(n+1)

)2
+ Λ

(
κ(n)

)2
, reaches a

value

K > max

{((
κ(n+1)

)2
+ Λ

(
κ(n)

)2
)

max

(0), c4

}
for the first time. Then, at that time,

0 ≤
(
∂

∂t
− ∂2

∂s2

)((
κ(n+1)

)2
+ Λ

(
κ(n)

)2
)
≤ −K + c4 < 0

which is a contradiction. Hence,((
κ(n+1)

)2
+ Λ

(
κ(n)

)2
)

max

(t) ≤ max

{((
κ(n+1)

)2
+ Λ

(
κ(n)

)2
)

max

(0), c4

}
and thus ∣∣κ(n+1)

∣∣
max

(t) ≤ c
(
C0, . . . , Cn,

∣∣κ(n+1)
∣∣
max

(0)
)

=: Cn+1

for all t ∈ [0, T ).

Lemma 4.6. Let F : S1× (0, T )→ R2 be a solution of (2.15). Then,(
∂m

∂tm
− ∂2m

∂s2m

)
∂nκ

∂sn
= P1

∂n+2m−2κ

∂sn+2m−2
+ Pn+2m−3 (4.8)

for all t ∈ (0, T ) and n,m ∈ N, where Pn is defined in (4.3).

Proof. We prove the claim by induction over m. The evolution equation (4.2) yields the

claim for m = 1. We assume that (4.8) holds for some m ≥ 2 and use again (4.2) to obtain

∂m+1

∂tm+1
κ(n) =

∂

∂t

(
κ(n+2) + P1κ

(n+2m−2) + Pn+2m−3

)
(4.2)
= κ(n+2m+2) +

(
(n+ 2m+ 3)κ− (n+ 2m+ 2)h

)
κκ(n+2m) + Pn+2m−1

+ P1κ
(n+2m−1) + Pn+2m−2

= κ(n+2(m+1)) + P1κ
(n+2(m+1)−2) + Pn+2(m+1)−3 .

Corollary 4.7. Let F : S1× [0, T )→ R2 be a solution of (2.15) with initial curve Σ0. Let

n ∈ N, m ∈ N ∪ {0} and

sup
t∈[0,T )

|κ|max(t) ≤ C0 .

Then there exist constants Cn,m = Cn,m
(
n,m,Σ0, C0

)
such that

sup
t∈[0,T )

∣∣∣∣ ∂m∂tm ∂nκ

∂sn

∣∣∣∣
max

(t) ≤ Cn,m .
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Proof. The case m = 0 and n = 1 is Proposition 4.5, where

C1 = C1

(
C0,

∣∣∣∣∂κ∂s
∣∣∣∣
max

(0)

)
= C1(Σ0, C0) .

For m = 0 and n = 2, Proposition 4.5 yields

sup
t∈[0,T )

∣∣∣∣∂2κ

∂s2

∣∣∣∣
max

(t) ≤ C2

with

C2 = C2

(
C0, C1,

∣∣∣∣∂2κ

∂s2

∣∣∣∣
max

(0)

)
= C2(Σ0, C0) .

For arbitrary m,n ∈ N, Lemma 4.6 and again Proposition 4.5 imply(
∂m

∂tm
∂nκ

∂sn

)2
Lem. 4.6

=

(
∂n+2mκ

∂sn+2m
+ P1

∂n+2m−2κ

∂sn+2m−2
+ Pn+2m−3

)2
Lem. 4.5
≤ Cn+2m =: Cn,m ,

where

Cn,m = Cn,m

(
n,m,C0, . . . , Cn+2m−1,

∣∣∣∣∂n+2mκ

∂sn+2m

∣∣∣∣
max

(0)

)
= Cn,m(n,m,Σ0, C0) .

Corollary 4.8. Let F : S1× [0, T )→ R2 be a solution of (2.15) with initial curve Σ0. Let

n ∈ N, m ∈ N ∪ {0} and

sup
t∈[0,T )

|κ|max(t) ≤ C0 .

Then there exist constants C̄n,m = C̄n,m(n,m, T,Σ0, C0) such that

sup
t∈[0,T )

∣∣∣∣ ∂m∂tm ∂nκ

∂pn

∣∣∣∣
max

(t) ≤ C̄n,m .

Proof. Lemmata 3.8 and 3.11 implies

0 < c1(T,Σ0, C0) ≤ v(p, t) ≤ c2(T,Σ0, C0) (4.9)

for all (p, t) ∈ S1× [0, T ). By identity (A.3) for the arc length differentiation and Propo-

sition 4.5, ∣∣∣∣∂κ∂p (p, t)

∣∣∣∣ (A.3)
=

∣∣∣∣v(p, t)
∂κ

∂s
(s(p, t), t)

∣∣∣∣ Prop. 4.5
≤

(4.9)
C̄1(T,Σ0, C0)

for all (p, t) ∈ S1× [0, T ). Furthermore, we estimate∣∣∣∣v∂v∂s (p, t)

∣∣∣∣ =

∣∣∣∣∂v∂p (p, t)

∣∣∣∣ = v−1

∣∣∣∣〈∂F∂p , ∂2F

∂p2

〉∣∣∣∣ (A.8)

≤ v2|κ|
(4.9)

≤ c(T,Σ0, C0)

so that, for n ∈ N, by Proposition 4.5 and an induction argument over n,∣∣∣∣∂nκ∂pn

∣∣∣∣ =

∣∣∣∣(v ∂∂s
)n
κ

∣∣∣∣ Prop. 4.5
≤ C̄n(n, T,Σ0, C0, C1, . . . , Cn) = C̄n(n, T,Σ0, C0) . (4.10)

For n,m ∈ N ∪ {0}, we use Lemma 4.6 and (4.10) to obtain∣∣∣∣ ∂m∂tm ∂nκ

∂pn

∣∣∣∣ Lem. 4.6
= |Pn+2m|

(4.10)

≤ C̄n+2m =: C̄n,m(n,m, T,Σ0, C0) .
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Proposition 4.9. Let F : S1× [0, T ) → R2 be a solution of (2.15) with initial curve Σ0,

where T is the maximal time of existence. If T <∞, then |κ|max →∞ for t→ T .

Proof. We follow the lines of [Hui84, Theorem 8.1] and show the claim by contradiction.

Assume that there exists a constant C0 <∞ with sup[0,T ) |κ|max ≤ C0. By Lemma 3.8,

sup
[0,T )

h ≤ c(Σ0, C0) . (4.11)

Let (tk)k∈N be a sequence in [0, T ) with tk ↗ T for k → ∞. Then, for all p ∈ S1 and

k < l, by the evolution equation (2.15) and (4.11),

‖F (p, tl)− F (p, tk)‖ ≤
∫ tl

tk

∥∥∥∥∂F∂t
∥∥∥∥ dt (2.15)

=

∫ tl

tk

|h− κ| dt
(4.11)

≤ 2C0(tl − tk) .

Hence, (F ( · , tk))k∈N is a uniform Cauchy sequence of smooth functions on S1 which,

by Theorem B.13, has a continuous limit FT : S1 → R2. By standard real analysis FT is

independent of the chosen sequence. By Corollary 4.8, for all n,m ∈ N∪{0}, i ∈ {0, . . . , n}
and j ∈ {0, . . . ,m}, there exist constants Ci,j = Ci,j(i, j, T,Σ0, C0), so that, for all p ∈ S1

and k < l, ∥∥∥∥ ∂m∂tm ∂nF

∂pn
(p, tl)−

∂m

∂tm
∂nF

∂pn
(p, tk)

∥∥∥∥ ≤ ∫ tl

tk

∥∥∥∥ ∂m+1

∂tm+1

∂nF

∂pn

∥∥∥∥ dt
(2.15)

=

∫ tl

tk

∥∥∥∥ ∂m∂tm ∂n

∂pn
((h− κ)ν)

∥∥∥∥ dt Cor. 4.8
≤ cn,m(tl − tk) ,

where cn,m = cn,m(n,m,C0, C1, . . . , Ci,j , . . . , Cn,m) = cn,m(n,m, T,Σ0, C0). Thus, for all

m,n ∈ N ∪ {0},
(
∂m

∂tm
∂n

∂pnF ( · , tk)
)
k∈N is a uniform Cauchy sequence of smooth functions

on S1 which has a continuous limit Fn,mT : S1 → R2. Since the convergences are uniform,

Theorem B.14 yields that FT ∈ C∞(S1) with

∂m

∂tm
∂nFT
∂pn

= Fn,mT

for every n,m ∈ N ∪ {0}. Furthermore, F ( · , t) → FT ( · ) smoothly for t ↗ T . The short

time existence, Theorem 2.3, applied to the initial smooth curve ΣT yields that there

exists a time

T̄ = T̄ (‖FT ‖C3,α) > T

and a smooth solution F̄ : S1× (T, T̄ )→ R2 of (2.15) with F̄ ( · , t)→ FT ( · ) smoothly for

t↘ T . Hence, we have found a smooth extension of F to [0, T̄ ). This is a contradiction.



Chapter 5

Angles and local total curvature

In this chapter, we exploit the relationship between angles of tangent vectors and local

total curvatures and prove a strong maximum principle for the latter.

Define ϑ : S1 × [0, T ) → [0, 2π) to be the angle between the x1-axis and the tangent

vector, such that

ϑ(p, t) =

{
arccos(〈e1, τ p〉) if 〈e2, τ p〉 ≥ 0

2π − arccos(〈e1, τ p〉) if 〈e2, τ p〉 ≤ 0 .

Since ν = (τ 2,−τ 1),

cos(ϑ) = 〈e1, τ 〉 = −〈e2,ν〉 and sin(ϑ) = 〈e2, τ 〉 = 〈e1,ν〉 . (5.1)

For a fixed time t ∈ [0, T ), we can define the angle ϑ̃ via the arc length parameter by

ϑ̃ : S1
Rt
→ R. As explained in Remark 3.1, we can omit the “∼” for simplicity.

Lemma 5.1 (Derivatives of ϑ, [GH86, Lemma 3.1.5]). Let F : S1× (0, T ) → R2 be a

solution of (2.15). Then

∂ϑ

∂s
= κ and

∂ϑ

∂t
=
∂κ

∂s
. (5.2)

Proof. By (5.1), we can write τ = (cos(ϑ), sin(ϑ)) and ν = (sin(ϑ),− cos(ϑ)). We differ-

entiate the tangent vector
∂τ

∂s
=
∂τ

∂ϑ

∂ϑ

∂s
= −ν ∂ϑ

∂s

and combine the above calculation with the Frenet–Serret equation, Lemma A.1. Differ-

entiating in time yields
∂τ

∂t
=
∂τ

∂ϑ

∂ϑ

∂t
= −ν ∂ϑ

∂t
.

The claim follows from the evolution equation (3.4) of τ .

According to the definition of the total curvature, we define the local total curvature

θ : S1× S1× [0, T )→ R by

θ(p, q.t) :=

∫ q

p
κ(r, t) v(r, t)dr , (5.3)
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q
p

θ(p, q)

θ(q, p)τp

τq

τp

τq

=⇒

Figure 5.1: θ(p, q) = 2π − θ(p, q).

where we integrate in direction of the parametrisation with outward unit normal (A.5),

that is, for p, q ∈ [0, 2π),

θ(p, q.t) =


∫ q

p
κ vdr if p ≤ q∫ 2π

p
κ vdr +

∫ q

0
κ vdr if q < p .

(5.4)

By Theorem A.2, for p, q ∈ [0, 2π), p < q,

2π
Thm. A.2

=

∫
S1

κ vdr =

∫ p

0
κ vdr +

∫ q

p
κ vdr +

∫ 2π

q
κ vdr

(5.4)
= θ(p, q, t) + θ(q, p, t) (5.5)

(see Figure 5.1). Furthermore,

θ(p, q, t) =

∫ q

p
κ(r, t)v(r, t) dr

Lem. 5.1
=

∫ q

p

1

vr

∂ϑ

∂r
vdr = ϑ(q, t)− ϑ(p, t) + 2πω , (5.6)

where ω(p, q, t) ∈ Z is the local winding number. Hence, θ is the angle between the tangent

vectors at two points F (p, t) and F (q, t) modulo the local winding number (see Figure 5.2).

If Σt is embedded and convex, then

0 ≤ θ(p, q, t) =

∫ q

p
κ vdr ≤

∫
S1

κ vdr
Thm. A.2

= 2π (5.7)

for all p, q ∈ S1.

τq

τr

τq

τr

θ(q, r)θ(p, q)

τq

τp
τp

−→

Figure 5.2: θ(p, q) > 0 and θ(q, r) < 0.
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Lemma 5.2. Let Σ = F (S1) be an embedded, closed curve in the plane. Then

sup
S1×S1

θ = 2π − min
S1×S1

θ .

Proof. If Σ is convex, the claim follows directly from (5.7). If Σ is non-convex, then

minS1×S1 θ < 0 and maxS1×S1 θ > 2π. Let the maximum of θ be attained at p0, q0 ∈ S1,

that is,

max
S1×S1

θ = θ(p0, q0)
(5.5)
= 2π − θ(q0, p0) . (5.8)

Then, for all p, q ∈ S1, p 6= q,

2π − θ(q0, p0)
(5.8)
= θ(p0, q0) ≥ θ(q, p) (5.5)

= 2π − θ(p, q) .

Consequently,

θ(q0, p0) ≤ θ(p, q)
for all p, q ∈ S1, p 6= q, which implies

min
S1×S1

θ = θ(q0, p0)
(5.8)
= 2π − max

S1×S1
θ .

Theorem 5.3. Let F : S1× (0, T )→ R2 be a solution of (2.15). Then(
∂

∂t
−∆Σt

)
θ(p, q, t) = 0

for all p, q ∈ S1 and t ∈ (0, T ). Moreover, all spatial and time derivatives of θ are smooth

in S1× S1× [0, T ).

Proof. We differentiate at p, q ∈ S1,

τ p(θ)
(5.3)
=

1

vp

∂

∂p

∫ q

p
κv dr = −κp and τ q(θ)

(5.3)
=

1

vq

∂

∂q

∫ q

p
κv dr = κq . (5.9)

According to the two-point differentiation (A.10), for a, b ∈ R,

(aτ p ⊕ bτ q)2(θ) = a2τ 2
p(θ) + b2τ 2

q(θ)

and

∆Σtθ = τ 2
p(θ) + τ 2

q(θ)
(5.9)
= τ q(κq)− τ p(κp) . (5.10)

The evolution equations (3.2) and (4.1) of the length element and the curvature and

integration by parts imply

∂θ

∂t

(5.3)
=

∂

∂t

∫ q

p
κ vdr

(3.2)
=

∫ s(q,t)

s(p,t)

∂κ

∂t
dst +

∫ q

p
κ
∂v

∂t
dr

(4.1)
=

∫ s(q,t)

s(p,t)

(
∂2κ

∂s2
− (h− κ)κ2

)
dst +

∫ q

p
κ(h− κ)κ vdr

= τ q(κq)− τ p(κp) . (5.11)
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Subtracting (5.10) from (5.11) yields the claim. Moreover, since

τnp (κp) =
∂nκ

∂sn
(s(p, t), t) ,

we obtain for n,m ∈ N,

(aτ p ⊕ bτ q)nθ(p, q, t)
(5.9)
= bn

∂n−1κ

∂sn−1
(s(q, t), t)− an∂

n−1κ

∂sn−1
(s(p, t), t)

as well as
∂mθ

∂tm
(p, q, t)

(5.11)
=

∂m−1

∂tm−1

∂κ

∂s
(s(q, t), t)− ∂m−1

∂tm−1

∂κ

∂s
(s(p, t), t)

and for n ≥ 2

∂m

∂tm
(aτ p ⊕ b τ q)nθ(p, q, t) = bn

∂m

∂tm
∂n−1κ

∂sn−1
(s(q, t), t)− an ∂

m

∂tm
∂n−1κ

∂sn−1
(s(p, t), t) .

Since F is closed and smooth, all spatial and time derivatives of θ are smooth in S1× S1×
[0, T ).

For t ∈ [0, T ), define

θmin(t) := min
(p,q)∈S1×S1

θ(p, q, t) and θmax(t) := max
(p,q)∈S1×S1

θ(p, q, t) .

Corollary 5.4 (Maximum principles for θ). Let F : S1× (0, T ) → R2 be an embedded

solution of (2.15).

(i) (Weak maximum principle). For all t ∈ [0, T ) and for all p, q ∈ S1 there holds

θmin(0) ≤ θ(p, q, t) ≤ θsup(0) .

(ii) (Strong maximum principle). Let t0 ∈ (0, T ) such that for some p0, q0 ∈ S1, p0 6= q0,

(a) θ(p0, q0, t0) = supS1×S1×[0,T ) θ, or

(b) θ(p0, q0, t0) = infS1×S1×[0,T ) θ.

Then,

(a) θ ≡ maxS1×S1×[0,t0] θ in S1× S1× [0, t0], or

(b) θ ≡ minS1×S1×[0,t0] θ in S1× S1× [0, t0].

(iii) Suppose θmin(0) < 0, then θmin(0) < θ(p, q, t) for all p, q ∈ S1 and t ∈ (0, T ).

Remark 5.5. A similar result for the angle ϑ was attained in [Gra87, Lemma 1.9].

Proof of Corollary 5.4. By the definition (5.4) of θ, for fixed p ∈ S1 and t ∈ [0, T ),

lim
q↘p

θ(p, q, t)
(5.4)
= lim

q↘p

∫ q

p
κ vdr = 0

and

lim
q↗p

θ(p, q, t)
(5.4)
= lim

q↗p

∫ q

0
κ vdr +

∫ 2π

p
κ vdr =

∫
S1

κ vdr = 2π .
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Hence, θ is discontinuous along the diagonal {p = q} ⊂ S1× S1. The set

S := S1× S1 \ {p = q}

is an oriented cylinder. The closure S̄ has two boundaries

(∂S)− =
{

(p, p)
∣∣ p ∈ S1

}
and (∂S)+ =

{(
lim
r↗p

r, p

) ∣∣∣∣ p ∈ S1

}
,

where

θ ≡ 0 on (∂S)− × [0, T ) and θ ≡ 2π on (∂S)+ × [0, T ) .

However, by Theorem 5.3 and the continuity of the integral, θ is smooth in S × [0, T ).

Claims (i) and (ii) are immediate consequences of the weak and strong maximum principle,

Theorems B.16 and B.17, and the evolution equation of θ, Theorem 5.3, applied to S ×
[0, T ). For claim (iii), we first state that by (i),

θmin(0) ≤ θ(p, q, t) ≤ θsup(0)

for all t ∈ [0, T ) and for all p, q ∈ S1. Suppose that there exists a time t0 ∈ (0, T ) and

(p0, q0) ∈ S with

θ(p0, q0, t0) = θmin(0) < 0 .

Then (ii) yields

θ ≡ min
S1×S1×[0,t0]

θ = θmin(0) < 0

in S1× S1× [0, t0]. But θ(p, p, t) = 0 for all p ∈ S1 and for all t ∈ [0, T ) which is a

contradiction.

We need the following result from Angenent.

Proposition 5.6 (Zero sets of solutions of parabolic equations, Angenent [Ang88, Theo-

rems A–D]). Let u : S × (0, t0)→ R be a classical solution of

∂u

∂t
= a(p, t)

∂2u

∂p2
+ b(p, t)

∂u

∂p
+ c(p, t)u

with either

(i) S = [0, 1] and u is bounded with either Dirichlet, Neumann or periodic boundary

conditions, or

(ii) S = R and |u(p, t)| ≤ A exp(Bp2) for some A,B <∞.

Assume that the coefficients satisfy

a , a−1 ,
∂

∂t
a ,

∂

∂p
a ,

∂2

∂p2
a , b ,

∂

∂t
b ,

∂

∂p
b and c ∈ L∞

on S × (0, t0). Then, for any t ∈ (0, t0), the set of zeros of u( · , t)

z(t) := {p ∈ S |u(p, t) = 0}

is finite for S = [0, 1] and discrete for S = R. In addition, if for some p1 ∈ S and

t1 ∈ (0, t0), u(p1, t1) has a multiple zero (i.e., if u and ∂
∂pu vanish simultaneously), then,
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(i) for S = [0, 1], #z(t) strictly decreases for t ∈ (t1, t0), and

(ii) for S = R, there exits a neighbourhood U = [p1 − ε, p1 + ε]× [t1 − δ, t1 + δ] such that

• u(p1 ± ε, t) 6= 0 for |t− t1| ≤ δ
• u( · , t+ δ) has at most one zero on the interval [p1 − ε, p1 + ε]

• u( · , t− δ) has at least two zeros on the interval [p1 − ε, p1 + ε].

Corollary 5.7 (Zero set of the curvature). Let S ∈ {S1,R}. Let F : S×(0, T )→ R2 be an

embedded solution of (2.15) for S = S1 or of CSF for S = R with κ 6≡ 0. Let t0 ∈ (0, T ).

Then, for any t ∈ (0, t0), the set

z(t) = {p ∈ S | κ(p, t) = 0}

is finite for S = S1 and discrete for S = R. In addition, if at some point (p1, t1) ∈ S×(0, t0)

we have κ(p1, t1) = 0 and ∂
∂sκ(p1, t1) = 0, then

(i) for S = S1, #z(t) strictly decreases for t ∈ (t1, t0), and

(ii) for S = R, there exits a neighbourhood U = [p1 − ε, p1 + ε]× [t1 − δ, t1 + δ] such that

• κ(p1 ± ε, t) 6= 0 for |t− t1| ≤ δ
• κ( · , t+ δ) has at most one zero on the interval [p1 − ε, p1 + ε]

• κ( · , t− δ) has at least two zeros on the interval [p1 − ε, p1 + ε].

Remark 5.8. A similar version of this statement for CSF can be found in [Gra87,

Lemma 1.9], see also [Man11, Proposition 4.3.1].

Proof of Corollary 5.7. The curvature suffices the evolution equation

∂κ

∂t

(4.1)
=

∂2κ

∂s2
+ (κ− h)κ2 (A.3)

=
1

v

∂

∂p

(
1

v

∂κ

∂p

)
+ (κ− h)κ2

=
1

v2

∂2κ

∂p2
− 1

v4

〈
∂F

∂p
,
∂2F

∂p2

〉
∂κ

∂p
+ (κ− h)κ2

with h = 0 for CSF. Define the coefficients

a :=
1

v2
, b := − 1

v4

〈
∂F

∂p
,
∂2F

∂p2

〉
and c := (κ− h)κ

and let t0 ∈ (0, T ). Lemma 3.11 about the regularity of the curve can also be applied to

S = R, that is, the length element v is bounded from above and from below away from

zero on [0, t0]. Furthermore, also v−1 is bounded on [0, t0]. By Corollary 4.7, all derivatives

of κ are bounded in (0, t0). Thus, the derivatives

∂

∂t
a ,

∂

∂p
a ,

∂2

∂p2
a ,

∂

∂t
b and

∂

∂p
b

are bounded on [0, t0] and we can apply Proposition 5.6 to κ : S × (0, t0)→ R.



43

Corollary 5.9. Let F : S1× [0, T ) → R2 be a solution of (2.15) with initial curve Σ0.

Then,
d

dt

∫
Σt

|κ| dH1 = −2
∑

{s∈s(S1, t) |κ(s,t)=0}

∣∣∣∣∂κ∂s (s, t)

∣∣∣∣
for t ∈ (0, T ). Consequently, there exists a scaling invariant constant Ch = Ch(Σ0) ≥ 1

such that

h(t) ≤ Ch|κ|max(t)

for all t ∈ [0, T ), where Ch = 1 for the APCSF for all embedded curves and for the LPCF

in case the curve is convex. Moreover,

exp

(
−c(Ch)

∫ t

0
κ2

max(τ) dτ

)
v(p, 0) ≤ v(p, t) ≤ exp

(
c(Ch)

∫ t

0
κ2

max(τ) dτ

)
v(p, 0)

for every (p, t) ∈ S1× (0, T ).

Proof. We follow the lines of [Alt91, Theorem 5.14]. A similar proof can be found

in [Man11, Proposition 4.3.2]. For t ∈ (0, T ), the integral
∫
S1
Rt

|κ| dst is positive and

finite. Let

St :=
{
S ⊂ S1

Rt

∣∣κ(s, t) > 0 for all s ∈ S or κ(s, t) < 0 for all s ∈ S
}

be the family of open intervals S in S1
Rt

where κ 6= 0. By Corollary 5.7, St = S1
Rt

. For

S ∈ St, we define [sS1 , s
S
2 ] := S and sign(S) := sign(κ(s, t)) for s ∈ S. Then κ(sSi , t) = 0

for i = 1, 2 and, for consecutive segments S1, S2 and S3,

sS1
2 = sS2

1 and sS2
2 = sS3

1 . (5.12)

Furthermore, we observe that either

sign(S) > 0 ,
∂κ

∂s
(sS1 , t) ≥ 0 and

∂κ

∂s
(sS2 , t) ≤ 0

or

sign(S) < 0 ,
∂κ

∂s
(sS1 , t) ≤ 0 and

∂κ

∂s
(sS2 , t) ≥ 0

so that in both cases

sign(S)

(
∂κ

∂s
(sS2 , t)−

∂κ

∂s
(sS1 , t)

)
= −

∣∣∣∣∂κ∂s (sS1 , t)

∣∣∣∣− ∣∣∣∣∂κ∂s (sS2 , t)

∣∣∣∣ . (5.13)
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Hence,

d

dt

∫
Σt

|κ| dH1 =
d

dt

(∑
S∈St

∫
F̃ (S,t)

sign(κ)κ dH1

)
(3.2),(4.1)

=
∑
S∈St

∫ sS2

sS1

sign(S)

[(
∂2κ

∂s2
− (h− κ)κ2

)
+ κ(h− κ)κ

]
dst

=
∑
S∈St

sign(S)

∫ sS2

sS1

∂2κ

∂s2
dst

=
∑
S∈St

sign(S)

(
∂κ

∂s
(sS2 , t)−

∂κ

∂s
(sS1 , t)

)
(5.12),(5.13)

= −2
∑

{s∈s(S1, t) |κ(s,t)=0}

∣∣∣∣∂κ∂s (s, t)

∣∣∣∣ ≤ 0

for t ∈ (0, T ). Thus,
∫

Σt
|κ| dH1 is decreasing in time on [0, T ). By (5.6), the integral is the

sum over the absolute value of the angles between inflection points, it is scaling invariant.

The conclusions about the local terms and the length element follow directly from

Lemmata 3.8 and 3.11.



Chapter 6

Preservation of embeddedness

In this chapter, we show that under the initial condition θmin(0) ≥ −π the curves Σt stay

embedded for t ∈ [0, T ).

The extrinsic distance function d : S1× S1× [0, T )→ R is given by

d(p, q, t) := ‖F (q, t)− F (p, t)‖ .

We define the vector w :
(
S1× S1× [0, T )

)
\ {d = 0} → R2 by

w(p, q, t) :=
F (q, t)− F (p, t)

d(p, q, t)

(see Figure 6.1 for an illustration).

Lemma 6.1. Let Σ = F (S1) be a curve in the plane and p, q ∈ S1 with d(p, q) 6= 0. If

〈w, τ q − τ p〉 = 0, then 〈w, τ q + τ p〉2 = ‖τ q + τ p‖2.

Proof. For unit tangent vectors, we have

〈τ p + τ q, τ q − τ p〉 = ‖τ p‖2 − ‖τ q‖2 = 0 .

Thus, w and τ p + τ q are both perpendicular to τ q − τ p and are therefore parallel, that

is, ](w, τ q + τ p) = 0. Using ‖w‖ = 1, we calculate

〈w, τ q + τ p〉2 = ‖w‖2‖τ q + τ p‖2 arccos2(](w, τ q + τ p)) = ‖τ q + τ p‖2 .

F (p, t)F (q, t)
w(p, q, t)

Figure 6.1: The vector w.
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Lemma 6.2 (Spatial derivatives of d). Let p, q ∈ S1, d(p, q) 6= 0, a, b ∈ R and ξ(p, q) :=

aτ p ⊕ bτ q. Then

ξ(d) = 〈w, bτ q − aτ p〉 (6.1)

and

ξ2(d) = −1

d
〈w, bτ q − aτ p〉2 +

1

d
‖bτ q − aτ p‖2 +

〈
w, b2κq − a2κp

〉
, (6.2)

where κ = −κν is the curvature vector.

Proof. The definition (A.10) of the two-point differentiation implies

ξ(d) = ξ(‖F (q, t)− F (p, t)‖)

=
1

d
〈F (q, t)− F (p, t), (aτ p ⊕ bτ q)(F (q, t)− F (p, t))〉

(A.10)
=

1

d
〈F (q, t)− F (p, t), bτ q(F (q, t))− aτ p(F (p, t))〉

= 〈w, bτ q − aτ p〉 .

Next, we calculate

∇τ qτ p =
1

v(q, t)

∂

∂q

(
1

v(p, t)

∂F

∂p
(p, t)

)
= 0 (6.3)

and use (6.1) and the Frenet–Serret equation, Lemma A.1, to differentiate twice:

ξ2(d) = ξ(ξ(d))
(6.1)
= ξ

(
1

d
〈F (q, t)− F (p, t), bτ q − aτ p〉

)
(6.1),(6.3)

= − 1

d3
〈F (q, t)− F (p, t), bτ q − aτ p〉2 +

1

d
‖bτ q − aτ p‖2

+
1

d

〈
F (q, t)− F (p, t), b2∇τ qτ q − a2∇τpτ p

〉
Lem. A.1

= −1

d
〈w, bτ q − aτ p〉2 +

1

d
‖bτ q − aτ p‖2 +

〈
w, b2κq − a2κp

〉
.

Corollary 6.3. For p, q ∈ S1 with d(p, q) 6= 0,

(τ p ⊕ 0)(d) = −〈w, τ p〉 and (0⊕ τ q)(d) = 〈w, τ q〉

as well as

(τ p 	 τ q)
2(d) = −1

d
〈w, τ q + τ p〉2 +

1

d
‖τ q + τ p‖2 + 〈w,κq − κp〉 .

Lemma 6.4 (Evolution equation for d). Let F : S1× (0, T )→ R2 be a solution of (2.15).

Then

∂d

∂t
= 〈w,κq − κp〉+ h 〈w,νq − νp〉 (6.4)

for p, q ∈ S1 and t ∈ (0, T ) with d(p, q, t) 6= 0.
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τq
τp

τr

Figure 6.2: See Remark 6.6(iii).

Proof. The evolution equation (2.15) for the embedding yields

∂d

∂t
=

∂

∂t
‖F (q, t)− F (p, t)‖

=
1

d

〈
F (q, t)− F (p, t),

∂F

∂t
(q, t)− ∂F

∂t
(p, t)

〉
(2.15)

= 〈w, (h− κq)νq + (h− κp)νp〉
= h 〈w,νq − νp〉+ 〈w,κq − κp〉 .

Theorem 6.5 (Preservation of embeddedness). Let Σ0 be a smooth, embedded curve sat-

isfying θmin ≥ −π, and let F : S1× [0, T ) → R2 be a solution of (2.15) with initial curve

Σ0. Then Σt = F (S1, t) is embedded for all t ∈ (0, T ).

Remark 6.6. (i) Lemma 5.2 yields that minS1×S1 θ ≥ −π implies maxS1×S1 θ ≤ 3π.

(ii) Counterexample 6.7 shows that in order for embeddedness to be preserved it is crucial

to assume that the initial local total curvature lies in the interval [−π, 3π].

(iii) In Figure 6.2 the angles are all between −π and 3π, for example,

θ(p, q) = −π , θ(q, p) = 3π , θ(q, r) = 2π , θ(r, q) = 0 , θ(r, p) = π .

Proof of Theorem 6.5. Let

ε ∈
(

0,
4π

L0

)
(6.5)
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and define dε : S1× S1× [0, T )→ R by

dε(p, q, t) := d(p, q, t)− εt .

Since Σ0 is embedded, dε(p, q, 0) = d(p, q, 0) > 0 for all p, q ∈ S1, p 6= q. Assume that the

curve Σt touches itself for the first time at time t0 ∈ (0, T ) and points p0, q0 ∈ S1, p0 6= q0.

Since

dε(p0, q0, t0) = −εt0 < 0

and dε is in C0(S1×S1× [0, t0)), there exists a time t1 ∈ (0, t0) and points p, q ∈ S1, p 6= q,

with

dε(p, q, t1) = 0

for the first time. Then

∂dε
∂t
≤ 0 , ξ(dε) = 0 and ξ2(dε) ≥ 0 (6.6)

at (p, q, t1) and for all ξ ∈ TF (p,t1)Σt ⊕ TF (q,t1)Σt. Furthermore,

d(p, q, t1) = εt1 > 0 (6.7)

and

∂d

∂t |t=t1
(p, q, t) =

∂dε
∂t |t=t1

(p, q, t) + ε
(6.6),(6.5)

<
4π

L0
. (6.8)

By (6.6), (6.7) and ξ(dε) = ξ(d) for all ξ ∈ TF (p,t1)Σt ⊕ TF (q,t1)Σt, Corollary 6.3 yields

0 = −〈w, τ p〉 and 0 = 〈w, τ q〉 (6.9)

at (p, q, t1) so that τ p = ±τ q. Assume that τ p = τ q. Since Σt1 is embedded, the curve

has to cross the connecting line between F (p, t1) and F (q, t1), that is, there exists a point

p < r < q with

dε(p, r, t1) = d(p, r, t1)− εt1 < d(p, q, t1)− εt1 = dε(p, q, t1) = 0

This is a contradiction. Hence, τ p = −τ q. By (5.1),

cos(ϑp) = − cos(ϑq) and sin(ϑp) = − sin(ϑq)

so that ϑq − ϑp = ±π and

θ(p, q, t1)
(5.6)
= 2πk ± π (6.10)

for k ∈ Z. By Remark 6.6, θ ∈ [−π, 3π] initially and, by Corollary 5.4(iii),

θmin(t) > θmin(0) ≥ −π

for all t ∈ (0, T ). Lemma 5.2 yields

θmax(t) < 3π
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for all t ∈ (0, T ). Thus, (6.10) implies that θ(p, q, t1) = π and since Σt is embedded for all

t ∈ [0, t1],

−νp = νq = w . (6.11)

By (6.7), (6.9) and Lemma 6.1,

〈w, τ p + τ q〉2 = ‖τ p + τ q‖2 (6.12)

and, by Corollary 6.3, (6.6) and ξ2(dε) = ξ2(d),

0
Cor. 6.3,(6.6)

≤ −1

d
〈w, τ p + τ q〉2 +

1

d
‖τ p + τ q‖2 + 〈w,κq − κp〉

(6.12)
= 〈w,κq − κp〉 (6.13)

at (p, q, t1). However, the evolution equation (6.4) of the distance and the bounds (3.10)

and (3.11) for the global terms yield

∂d

∂t |t=t1
(p, q, t)

(6.4)
= h 〈w,νq − νp〉+ 〈w,κq − κp〉

(6.11),(6.13)

≥ 2h
(3.10),(3.11)

≥ 4π

L0
,

which contradicts (6.8).

The next example shows, why the condition θmin(0) ≥ −π is sharp.

Counterexample 6.7. Gage [Gag86, p. 53] suggested the following counterexample. Pi-

han [Pih98, Section 5.4] gave an incomplete proof for its validity which we will fix here. If

we allow local total curvature smaller than −π, then there exist counterexamples for any

given minimum

θmin(0) < −π .

For the curve in Figure 6.3, θmin = θ(p1, p2) ∈ (−2π,−π). We will construct a solution

of (2.15) with embedded initial curve Σ0 that intersects itself in finite time. Fix K0 > 0.

Let S be the set of all smooth, embedded, closed curves in R2 that satisfy θmin < −π,

‖F0‖C3,α(S1) ≤ K0 (6.14)

and

L(Σ) = L0 ≥ 8πK0 , (6.15)

where L0 is chosen big enough so that curves like in Figure 6.3 are in S. By the short

time existence, Theorem 2.3, there exists a time T = T (K0) so that

‖F‖C3,α;1bα/2c(S1×[0,T/2]) ≤ K1(K0) .

In particular, ∣∣∣∣∂F 1

∂t
(p, t)− ∂F 1

∂t
(p, 0)

∣∣∣∣ ≤ K1t
α/2 , (6.16)
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τq

τp

τp2
τp1

−νq −νp

Figure 6.3: See Counterexamples 6.7

where F 1 := 〈F, e1〉, and, by (2.15) and (6.16),

−K1t
α/2 ≤ (h(t)− κ(p, t))ν1(p, t)− (h(0)− κ(p, 0))ν1(p, 0) ≤ K1t

α/2 (6.17)

for all p ∈ S1 and for all t ∈ [0, T/2], where ν1 := 〈ν, e1〉. Set

t1 = t1(K0) := min

{
T

2
,

(
π

L0K1

)−α/2}
. (6.18)

Then (6.17) holds for t ∈ [0, t1]. Let Σ ∈ S be a curve like in Figure 6.3, which is symmetric

about the x2-axis. Let p, q ∈ S1 be located as in the picture so that

ν(p, 0) = −ν(q, 0) = −e1 and κ(p, 0) = κ(q, 0) = 0 . (6.19)

We use the lower bounds (3.10) and (3.11) for the global term to estimate

∂F 1

∂t
(p, t)

(2.15)
= (h(t)− κ(p, t))ν1(p, t)

(6.17)

≤ (h(0)− κ(p, 0))ν1(p, 0) +K1t
α/2
1

(3.10),(3.11)

≤
(6.18),(6.19)

− 2π

L(Σ0)
+

π

L0

(6.15)
= − π

L0
(6.20)

and likewise

∂F 1

∂t
(q, t)

(2.15)
= (h(t)− κ(q, t))ν1(q, t)

(6.17)

≥ (h(0)− κ(q, 0))ν1(q, 0)−K1t
α/2
1

(3.10),(3.11)

≥
(6.18),(6.19)

2π

L(Σ0)
− π

L0

(6.15)
=

π

L0
(6.21)
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for t ∈ [0, t1]. We can smoothly deform a curve like in Figure 6.3 to achieve arbitrarily

small distance between F (p, 0) and F (q, 0) without exceeding the upper bound (6.14) or

changing the length (6.15). Hence, we can choose an embedded initial curve Σ0 with

F 1(p, 0) = −F 1(q, 0) =
πt1
2L0

. (6.22)

Then,

F 1(p, t1) = F 1(p, 0) +

∫ t1

0

∂F 1

∂t
(p, t) dt

(6.20),(6.22)

≤ πt1
2L0
− πt1
L0

< 0

and

F 1(q, t1) = F 1(q, 0) +

∫ t1

0

∂F 1

∂t
(q, t) dt

(6.21),(6.22)

≥ − πt1
2L0

+
πt1
L0

> 0

so that the curve has crossed itself by the time t1.



Chapter 7

A non-collapsing estimate

In this chapter we will adapt the methods from Huisken [Hui95] to obtain estimates that

imply a certain non-collapsing behaviour of the evolving curves. The main tool used in

this chapter is a comparison between the behaviour of the extrinsic and intrinsic distance

function. First, we continue to calculate various spatial and time derivatives of the distance

functions. The expressions for the spatial derivatives can all be found in [Hui95].

7.1 Interior distance functions

The intrinsic distance function l : S1× S1× [0, T )→ R is given by

l(p, q, t) :=

∫ q

p
v(r, t) dr .

Remark 7.1. Notice that for an embedded closed curve F (S1), l(p, q) = L − l(q, p) and

d/l > 0, where we set (d/l)(p, p) ≡ 1 for p ∈ S1. The curve segment F ([p, q]) is a

straight line if and only if d ≡ l on [p, q] × [p, q]. Otherwise, there exist p0, q0 ∈ S1 with

d(p0, q0) < l(p0, q0), implying min[p,q]×[p,q](d/l) < 1. The infimum of the ratio d/l thus

measures how close a curve is to being a line.

Let F (S1) be a circle of radius R. Then, for all p, q ∈ S1, there exists an angle

β(p, q) ∈ (0, π] with

l(p, q) = β(p, q)R ,

where R := L/(2π). By the geometric definition of the sine function,

sin

(
β

2

)
=
d/2

R
and β =

l

R

(see Figure 7.1 for an illustration) so that

d = 2R sin

(
l

2R

)
=
L

π
sin

(
πl

L

)
.

This motivates the definition of the function ψ : S1× S1× [0, T )→ R with

ψ(p, q, t) :=
Lt
π

sin

(
πl(p, q, t)

Lt

)
, (7.1)
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l/2

d/2

β/2

R

F (q)

F (p)

Figure 7.1: Motivation for the function ψ

where Lt < ∞. We set (d/ψ)(p, p, t) ≡ 1 for p ∈ S1 and t ∈ [0, T ), then (d/ψ)( · , · , t) ∈
C0(S1× S1).

Lemma 7.2 (Sine and Cosine). For α, β ∈ R,

sin(α± β) = sin(α) cos(β)± cos(α) sin(β) (7.2)

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β) . (7.3)

Remark 7.3. Since sin(π − α) = sin(α),

sin

(
πl(p, q, t)

Lt

)
= sin

(
π(Lt − l(q, p, t))

Lt

)
= sin

(
πl(q, p, t)

Lt

)
so that

ψ(p, q, t) = ψ(q, p, t) .

Hence, we will later assume that l ≤ Lt/2. For embedded closed curves, we have d/ψ > 0.

On a circle d ≡ ψ and thus d/ψ ≡ 1. If a closed curve Σt is not a circle, then there exist

p, q ∈ S1 so that d(p, q, t) < ψ(p, q, t) and thus minS1×S1(d/ψ) < 1. The minimum of the

ratio d/ψ is thus a measurement of how close the curve is to being a circle.

Lemma 7.4 (Spatial derivatives of l). Let p, q ∈ S1, a, b ∈ R and ξ := aτ p ⊕ bτ q. Then

ξ(l) = b− a and ξ2(l) = 0 . (7.4)

Proof. By definitions (A.4) and (A.10) of the tangent vector and the two-point differenti-

ation,

ξ(l) = (aτ p ⊕ bτ q)
(∫ q

p
v dr

)
=

(
a

v

∂

∂p
+
b

v

∂

∂q

)(∫ q

p
v dr

)
= b− a

and it follows that ξ2(l) = 0.
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Lemma 7.5 (Evolution equation for l). Let F : S1× (0, T )→ R2 be a solution of (2.15).

Then

∂l

∂t
= h

∫ q

p
κ vdr −

∫ q

p
κ2 vdr . (7.5)

Proof. The evolution equation (3.2) for the length element yields

∂l

∂t
=

∂

∂t

∫ q

p
vdr =

∫ q

p

∂v

∂t
dr =

∫ q

p
κ(h− κ) vdr .

Lemma 7.6 (Spatial derivatives of ψ). Let p, q ∈ S1, a, b ∈ R and ξ := aτ p ⊕ bτ q. Then

ξ(ψ) = cos

(
πl

L

)
(b− a) and ξ2(ψ) = −π

L
sin

(
πl

L

)
(b− a)2 . (7.6)

Proof. The spatial derivatives (7.4) of l imply

ξ(ψ) = cos

(
πl

L

)
ξ(l) = cos

(
πl

L

)
(b− a)

and

ξ2(ψ) = ξ

(
cos

(
πl

L

)
(b− a)

)
= −π

L
sin

(
πl

L

)
(b− a) ξ(l)

= −π
L

sin

(
πl

L

)
(b− a)2 .

Lemma 7.7 (Evolution equation for ψ). Let F : S1× (0, T )→ R2 be a solution of (2.15).

Then

∂ψ

∂t
= cos

(
πl

L

)(
h

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)
+

1

π

(
2πh−

∫
S1

κ2 vdr

){
sin

(
πl

L

)
− πl

L
cos

(
πl

L

)}
. (7.7)

Proof. The evolution equations (3.8) and (7.5) for L and l imply

∂ψ

∂t
=

∂

∂t

(
L

π
sin

(
πl

L

))
=

1

π

dL

dt
sin

(
πl

L

)
+
L

π
cos

(
πl

L

)(
π

L

∂l

∂t
− πl

L2

dL

dt

)
(3.8),(7.5)

=
1

π

(
2πh−

∫
S1

κ2 vdr

)
sin

(
πl

L

)
+ cos

(
πl

L

){(
h

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)

− l

L

(
2πh−

∫
S1

κ2 vdr

)}

= cos

(
πl

L

)(
h

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)
+

1

π

(
2πh−

∫
S1

κ2 vdr

){
sin

(
πl

L

)
− πl

L
cos

(
πl

L

)}
,

where we only rearranged terms in the last line.
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Figure 7.2: The upper graph is sin(x)/x, the lower one is cos(x).

Lemma 7.8. For x ∈ [−π, π],

sin(x) ≥ x cos(x)

with equality if and only if x = 0 (see Figure 7.2 for an illustration).

Proof. For x ∈ (−π/2, 0) ∪ (0, π/2), we calculate,

d

dx

(
sin(x)

cos(x)

)
= 1 +

sin2(x)

cos2(x)
=

1

cos2(x)
> 1 .

Hence, | sin(x)/cos(x)| ≥ |x| for x ∈ (−π/2, 0) ∪ (0, π/2). On (−π,−π/2) ∪ (π/2, π),

sin(x)/x > 0 and cos(x) ≤ 0. For x = 0, we have that sin(x)/x = 1 = cos(x). For x = ±π,

sin(x)/x = 0 and cos(x) < 0.

Corollary 7.9. Under the APCSF the function ψ evolves according to

∂ψ

∂t
= cos

(
πl

L

)(
2π

L

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)
+

1

π

(
(2π)2

L
−
∫
S1

κ2 vdr

){
sin

(
πl

L

)
− πl

L
cos

(
πl

L

)}
(7.8)

≤ cos

(
πl

L

)(
2π

L

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)
, (7.9)

with equality in (7.9) if and only if either Σt is a circle, or l = 0.

Proof. Since l ∈ [0, L], we have πl/L ∈ [0, π], and Lemma 7.8 implies

sin

(
πl

L

)
− πl

L
cos

(
πl

L

)
≥ 0

with equality if and only if l = 0. By Cauchy–Schwarz (B.3),

(2π)2

L
−
∫
S1

κ2 vdr ≤ (2π)2

L
− (2π)2

L
= 0

with equality if and only if Σt is a circle. Hence, (7.9) equals (7.8) if and only if l = 0 or

Σt is a circle.

Corollary 7.10. Under the LPCF the function ψ evolves according to

∂ψ

∂t
= cos

(
πl

L

)(
h

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)
. (7.10)
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Proof. For the LPCF, the global term is given by h =
∫
S1 κ

2 vdr/(2π), so that the second

term in the evolution equation (7.7) of ψ is zero and we are left with (7.10).

Next, we calculate the derivatives of the ratio d/ψ.

Lemma 7.11 (Spatial derivatives of d/ψ). Let p, q ∈ S1, d(p, q) 6= 0, a, b ∈ R and

ξ := aτ p ⊕ bτ q. Then

ξ

(
d

ψ

)
=

1

ψ
〈w, bτ q − aτ p〉 −

d

ψ2
cos

(
πl

L

)
(b− a)

and

ξ2

(
d

ψ

)
= − 1

dψ
〈w, bτ q − aτ p〉2 +

1

dψ
‖bτ q − aτ p‖2

− 1

ψ

〈
w, b2κqνq − a2κpνp

〉
− 2(b− a)

ψ2
〈w, bτ q − aτ p〉 cos

(
πl

L

)
+

d

ψ2

π

L
sin

(
πl

L

)
(b− a)2 + 2

d

ψ3
cos2

(
πl

L

)
(b− a)2 .

Proof. The spatial derivatives (6.1) and (7.6) of d and ψ imply

ξ

(
d

ψ

)
=

1

ψ
ξ(d)− d

ψ2
ξ(ψ) =

1

ψ
〈w, bτ q − aτ p〉 −

d

ψ2
cos

(
πl

L

)
(b− a) .

By also applying the second spatial derivative (6.2) and (7.6) of d and ψ, we obtain

ξ2

(
d

ψ

)
= ξ

(
1

ψ
ξ(d)− d

ψ2
ξ(ψ)

)
=

1

ψ
ξ2(d)− 1

ψ2
〈 ξ(d), ξ(ψ) 〉 − d

ψ2
ξ2(ψ)− 1

ψ2
〈 ξ(ψ), ξ(d) 〉+ 2

d

ψ3
‖ξ(ψ)‖2

=
1

ψ

(
−1

d
〈w, bτ q − aτ p〉2 +

1

d
‖bτ q − aτ p‖2 −

〈
w, b2κqνq − a2κpνp

〉)
− 2

ψ2
〈w, bτ q − aτ p〉 cos

(
πl

L

)
(b− a) +

d

ψ2

π

L
sin

(
πl

L

)
(b− a)2

+ 2
d

ψ3
cos2

(
πl

L

)
(b− a)2 .

Corollary 7.12. For p, q ∈ S1 with d(p, q) 6= 0,

(τ p ⊕ 0)

(
d

ψ

)
= − 1

ψ
〈w, τ p〉+

d

ψ2
cos

(
πl

L

)
(7.11)

(0⊕ τ q)

(
d

ψ

)
=

1

ψ
〈w, τ q〉 −

d

ψ2
cos

(
πl

L

)
(7.12)

as well as

(τ p ⊕ τ q)
2

(
d

ψ

)
= − 1

dψ
〈w, τ q − τ p〉2 +

1

dψ
‖τ q − τ p‖2

+
1

ψ
〈w,κq − κp〉 (7.13)
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and

(τ p 	 τ q)
2

(
d

ψ

)
= − 1

dψ
〈w, τ q + τ p〉2 +

1

dψ
‖τ q + τ p‖2

+
1

ψ
〈w,κq − κp〉 −

4

ψ2
〈w, τ q + τ p〉 cos

(
πl

L

)
+ 4

d

ψ2

π

L
sin

(
πl

L

)
+ 8

d

ψ3
cos2

(
πl

L

)
. (7.14)

Lemma 7.13 (Evolution equation for d/ψ). Let F : S1× (0, T ) → R2 be a solution

of (2.15). Then

∂

∂t

(
d

ψ

)
=

1

ψ

(
〈w,κq − κp〉+ h 〈w,νq − νp〉

)
− d

ψ2
cos

(
πl

L

)(
h

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)
+

d

πψ2

(∫
S1

κ2 vdr − 2πh

){
sin

(
πl

L

)
− πl

L
cos

(
πl

L

)}
.

for p, q ∈ S1 and t ∈ (0, T ) with d(p, q, t) 6= 0.

Proof. The identity follows directly from the evolution equations (6.4) and (7.7) of the

distance functions d and ψ.

Corollary 7.14. Under the APCSF the ratio d/ψ evolves according to

∂

∂t

(
d

ψ

)
=

1

ψ

(
〈w,κq − κp〉+

2π

L
〈w,νq − νp〉

)
− d

ψ2
cos

(
πl

L

)(
2π

L

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)
+

d

πψ2

(∫
S1

κ2 vdr − (2π)2

L

){
sin

(
πl

L

)
− πl

L
cos

(
πl

L

)}
(7.15)

≥ 1

ψ

(
〈w,κq − κp〉+

2π

L
〈w,νq − νp〉

)
− d

ψ2
cos

(
πl

L

)(
2π

L

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)
, (7.16)

for p, q ∈ S1 and t ∈ (0, T ) with d(p, q, t) 6= 0, where the third term in (7.15) vanishes if

and only if either Σt is a circle or l = 0, such that in particular equality holds in (7.16).

Proof. For the APCSF, we have that h = 2π/L. We use the estimate (7.9) for the evolution

of ψ to estimate (7.15) from below.

Corollary 7.15. Under the LPCF the ratio d/ψ evolves according to

∂

∂t

(
d

ψ

)
=

1

ψ

(
〈w,κq − κp〉+ h 〈w,νq − νp〉

)
− d

ψ2
cos

(
πl

L

)(
h

∫ q

p
κ vdr −

∫ q

p
κ2 vdr

)
. (7.17)

for p, q ∈ S1 and t ∈ (0, T ) with d(p, q, t) 6= 0.
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Proof. The claim follows from Lemma 7.13 since for the LPCF∫
S1

κ2 vdr − 2πh = 0 .

7.2 Behaviour at a minimum of the ratio of the distance

functions

In this section we prove that, under the initial condition θmin(0) ≥ −π, the ratio d/ψ is

bounded from below uniformly in time. We start with a lemma which hold for general

closed, embedded, planar curves.

Lemma 7.16. For α ∈ R, 1 + cos(α) = 2 cos2(α/2).

Proof. By (7.3),

1 + cos(α)
(7.3)
= 1 + cos2(α/2)− sin2(α/2) = cos2(α/2) + cos2(α/2) = 2 cos2(α/2) .

Lemma 7.17. For p, q ∈ S1,

‖τ p + τ q‖2 = 4 cos2

(
θ(p, q)

2

)
.

Proof. We abbreviate θ := θ(p, q) and use the identity (5.6), that is, θ = ϑq − ϑp + 2πω.

The representation (5.1) of τ and the subtraction rule (7.3) for the cosine function imply

〈τ p, τ q〉
(5.1)
=
〈(

cos(ϑp), sin(ϑp)
)
,
(
cos(ϑq), sin(ϑq)

)〉
= cos(ϑp) cos(ϑq) + sin(ϑp) sin(ϑq)

(7.3)
= cos(ϑq − ϑp)

(5.6)
= cos(θ) .

Lemma 7.16 yields

‖τ p + τ q‖2 = 〈τ p, τ p〉+ 〈τ q, τ q〉+ 2 〈τ p, τ q〉 = 2 + 2 cos(θ)
Lem. 7.16

= 4 cos2

(
θ

2

)
.

Lemma 7.18. Let θ(p, q) ∈ (0, π] and 〈w, τ p〉 = 〈w, τ q〉 = cos(θ(p, q)/2) for a vector

w ∈ R2. Then either

(i) 〈w,νp〉 = −〈w,νq〉 = − sin(θ(p, q)/2), or

(ii) 〈w,νp〉 = −〈w,νq〉 = 1.

Proof. The angle θ := θ(p, q) is invariant under rotations in the plane, thus we may assume

w = e1. Since θ/2 ∈ (0, π/2], the definition (5.1) of ϑ and the assumptions yield

cos(ϑp)
(5.1)
= 〈e1, τ p〉 = cos

(
θ

2

)
≥ 0

and

cos(ϑq)
(5.1)
= 〈e1, τ q〉 = cos

(
θ

2

)
≥ 0 .
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Hence,

ϑp, ϑq ∈
{
θ

2
, 2π − θ

2

}
and ϑq − ϑp + 2πω

(5.6)
= θ ∈ (0, π] , (7.18)

where ω ∈ Z.

Case (a): Assume that

ϑp = ϑq =
θ

2
or ϑp = ϑq = 2π − θ

2
.

From (7.18) follows that 2πω ∈ (0, π] which is impossible for ω ∈ Z.

Case (b): Assume that

ϑp = 2π − θ

2
and ϑq =

θ

2
.

Then

〈e1,νp〉
(5.1)
= sin(ϑp) = sin

(
−θ

2
+ 2πk

)
= − sin

(
θ

2

)
and

〈e1,νq〉
(5.1)
= sin(ϑq) = sin

(
θ

2
+ 2πl

)
= sin

(
θ

2

)
as claimed.

Case (c): Assume that

ϑp =
θ

2
and ϑq = 2π − θ

2
.

From (7.18) follows that

−θ + 2πω = θ ∈ (0, π] ,

so that

πω = θ ∈ (0, π]

which yields θ = π and ω = 1. Hence,

ϑp =
π

2
and ϑq = −3π

2

so that

〈e1,νp〉
(5.1)
= sin(ϑp) = sin

(π
2

)
= 1

and

〈e1,νq〉
(5.1)
= sin(ϑq) = sin

(
3π

2

)
= −1

as claimed.

We thank Theodora Bourni for ideas used in the proof of the next Lemma.
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Lemma 7.19 (Global spatial minima of d/ψ). Let Σ = F (S1) be an embedded, closed

curve in the plane. Let p, q ∈ S1, p 6= q, such that Σ crosses the connecting line between

F (p) and F (q). Then (d/ψ)(p, q) cannot be a global spatial minimum for the function d/ψ.

Proof. Let Σ = F (S1) be an embedded, closed curve in R2 so that it crosses the connecting

line between F (p) and F (q) (see Figure 7.3 for illustrations). That is, there exists an r ∈ S1,

r 6= p, q, with

F (r) = F (p) + w(p, q)‖F (r)− F (p)‖ .
Set

d := d(p, q) , d1 := d(p, r) and d2 := d(r, q) .

Then

d = d1 + d2 . (7.19)

Furthermore, set

l := l(p, q) , l1 := l(p, r) and l2 := l(r, q) .

Since l1, l2 ∈ (0, L),

sin

(
πl1
L

)
> 0 and sin

(
πl2
L

)
> 0 (7.20)

as well as

cos

(
πl1
L

)
< 1 and cos

(
πl2
L

)
< 1 . (7.21)

This and the addition rule (7.2) for the sine function implies

sin

(
π(l1 + l2)

L

)
= sin

(
πl1
L

)
cos

(
πl2
L

)
+ sin

(
πl2
L

)
cos

(
πl1
L

)
(7.20),(7.21)

< sin

(
πl1
L

)
+ sin

(
πl2
L

)
. (7.22)

F (q)
w

F (p)
F (r)

0 = s(p) < s(r) < s(q).

F (p)

w

F (r)

F (q)

0 = s(p) < s(q) < s(r).

Figure 7.3: F (r) lies on the connecting line between F (p) and F (q).
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Set

ψ := ψ(p, q) , ψ1 := ψ(p, r) and ψ2 := ψ(r, q)

and assume that d/ψ attains its global minimum at (p, q). Then

d

ψ
≤ d1

ψ1
and

d

ψ
≤ d2

ψ2
. (7.23)

We parametrise Σ by arc length, so that s(p) = 0. Then either 0 = s(p) < s(r) < s(q) or

0 = s(p) < s(q) < s(r) (see Figure 7.3).

(a) Assume that 0 = s(p) < s(r) < s(q). Then l = l1 + l2 and the definition (7.1) of ψ

and (7.22) imply

π

L
ψ

(7.1)
= sin

(
πl

L

)
(7.22)
< sin

(
πl1
L

)
+ sin

(
πl2
L

)
(7.1)
=

π

L
ψ1 +

π

L
ψ2 . (7.24)

(b) Assume 0 = s(p) < s(q) < s(r). Then l = L − (l1 + l2) so that the subtraction

rule (7.2) for the sine function and (7.22) yield

π

L
ψ

(7.1)
= sin

(
πl

L

)
= sin

(
πL

L
− π(l1 + l2)

L

)
(7.2)
= sin(π) cos

(
π(l1 + l2)

L

)
− cos(π) sin

(
π(l1 + l2)

L

)
= sin

(
π(l1 + l2)

L

)
(7.22)
< sin

(
πl1
L

)
+ sin

(
πl2
L

)
(7.1)
=

π

L
ψ1 +

π

L
ψ2 . (7.25)

Hence, in both cases,

ψ
(7.24),(7.25)

< ψ1 + ψ2 (7.26)

which together with (7.19) and (7.23) yields

d1

ψ1

(7.23)

≥ d

ψ

(7.19),(7.26)
>

d1 + d2

ψ1 + ψ2
and

d2

ψ2

(7.23)

≥ d

ψ

(7.19),(7.26)
>

d1 + d2

ψ1 + ψ2

so that

d1(ψ1 + ψ2) > (d1 + d2)ψ1 and d2(ψ1 + ψ2) > (d1 + d2)ψ2 .

Adding both inequalities implies

(d1 + d2)(ψ1 + ψ2) > (d1 + d2)(ψ1 + ψ2)

which is a contradiction. Thus, d/ψ cannot have a global minimum at (p, q).
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Now we can prove a similar result to [Hui95, Theorem 2.3].

Proposition 7.20 (Behaviour at a minimum of d/ψ). Let Σ0 be a smooth, embedded

curve satisfying θmin ≥ −π. Let F : S1× [0, T ) → R2 be a solution of (2.15) with initial

curve Σ0 and let t0 ∈ (0, T ). Suppose that d/ψ attains a local spatial minimum at (p, q)

at time t0. Then the following holds:

(i) if θ(p, q, t0) ∈ (0, π] and 〈w,νp〉 = −〈w,νq〉 = − sin(θ/2), then

∂

∂t |t=t0

(
d

ψ

)
(p, q, t) > 0 ,

or

(ii) if θ ∈ (π, 2π) ∪ (2π, 3π) or θ = π and 〈w,νp〉 = −〈w,νq〉 = 1, then (d/ψ)(p, q, t0)

cannot be a global spatial minimum, that is,

d

ψ
(p, q, t0) > min

S1×S1

d

ψ
( · , · , t0) ;

(iii) if θ(p, q, t0) ∈ (−π, 0), then (d/ψ)(p, q, t0) is bounded below by a positive constant

C∗ = C∗(Σ0) ≤ min
S1×S1

d

ψ
( · , · , 0) ;

(iv) if θ(p, q, t0) ∈ {0, 2π}, then

(a) for the APCFS,
∂

∂t |t=t0

(
d

ψ

)
(p, q, t) > 0 ,

(b) for the LPCF, (d/ψ)(p, q, t0) cannot be a global spatial minimum, that is,

d

ψ
(p, q, t0) > min

S1×S1

d

ψ
( · , · , t0) .

Theorem 7.21 (Lower bound on d/ψ). Let Σ0 be a smooth, embedded curve satisfying

θmin ≥ −π. Let F : S1× [0, T )→ R2 be a solution of (2.15) with initial curve Σ0. Then

d

ψ
(p, q, t) ≥ C∗ > 0

for all p, q ∈ S1 and all t ∈ [0, T ) and where C∗ = C∗(Σ0) > 0 is the constant from

Proposition 7.20.

Proof. Assume that d/ψ falls below C∗ and attains γ ∈ (0, C∗) for the first time at time

t1 ∈ (0, T ) and points p, q ∈ S1, p 6= q, so that

C∗ > γ =
d

ψ
(p, q, t1) = min

S1×S1

d

ψ
( · , · , t1) (7.27)

is a global minimum and

∂

∂t |t=t1

(
d

ψ

)
(p, q, t) ≤ 0 . (7.28)
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Recall that in Proposition 7.20(ii) and (iv)(b) the minimum is not a global minimum.

Hence, for the APCSF, Proposition 7.20(i) and (iv) contradict (7.28), and Proposi-

tion 7.20(ii) and (iii) contradict (7.27). On the other hand, for the LPCF, Proposi-

tion 7.20(i) contradicts (7.28), and Proposition 7.20(ii)–(iv) contradict (7.27).

Proof of Proposition 7.20. Let Σ0 be an embedded closed curve in R2 satisfying the initial

condition θ(p, q, 0) ≥ −π for all p, q ∈ S1. By Theorem 6.5, Σt is embedded for all t ∈ [0, T ).

Remark 6.6 implies that θ(p, q, 0) ∈ [−π, 3π] for all p, q ∈ S1. From the maximum principle

for θ, Corollary 5.4, it follows that

θ(p, q, t) ∈ (−π, 3π) (7.29)

for all p, q ∈ S1 and t ∈ (0, T ).

Fix t0 ∈ [0, T ). If Σt0 is a circle, then Remark 2.6(ii) implies that Σt is a circle for all

t ≥ t0. Furthermore, Remark 7.3 yields that d/ψ ≡ 1 on S1× S1 for all t ≥ t0.

From now on assume that t0 ∈ (0, T ) and that Σt0 is not a circle. As stated in

Remark 7.3, minS1×S1(d/ψ) < 1 at t0. Let p, q ∈ S1, p 6= q, be points where the spatial

minimum of d/ψ at t0 is attained and assume w.l.o.g. that s(p, t0) < s(q, t0). Again by

Remark 7.3, we can assume that l(p, q, t0) ≤ Lt0/2. We have

0 <
d

ψ
(p, q, t0) < 1 ,

and for all ξ ∈ TF (p,t0)Σt0

⊕
TF (q,t0)Σt0 ,

ξ

(
d

ψ

)
(p, q, t0) = 0 (7.30)

as well as

ξ2

(
d

ψ

)
(p, q, t0) ≥ 0 . (7.31)

In the following, we abbreviate the distance functions

d := d(p, q, t0) , l := l(p, q, t0) , ψ := ψ(p, q, t0) and Lt0 := L ,

the unit tangent and normal vectors

τ p := τ (p, t0) , τ q := τ (q, t0) , νp := ν(p, t0) and νq := ν(q, t0) ,

the curvature and the curvature vectors

κp := κ(p, t0) , κq := κ(q, t0) , κp := κ(p, t0) and κq := κ(q, t0) ,

and the length element, the local total curvature as well as the vector w

v := v(r, t0) , θ := θ(p, q, t0) and w := w(p, q, t0) =
F (q, t0)− F (p, t0)

d(p, q, t0)
.
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The first spatial derivative of d/ψ in the direction of the vector ξ = τ p⊕0 is given by (7.11).

Combined with (7.30) this yields

0
(7.30)

= (τ p ⊕ 0)

(
d

ψ

)
(7.11)

= − 1

ψ
〈w, τ p〉+

d

ψ2
cos

(
πl

L

)
,

so that at (p, t0),

〈w, τ p〉 =
d

ψ
cos

(
πl

L

)
≥ 0 . (7.32)

The left hand side is non-negative since d/ψ > 0 and l ≤ L/2. Equality holds if and only

if l = L/2. For the vector ξ = 0⊕ τ q we refer to (7.12) to obtain

0
(7.30)

= (0⊕ τ q)

(
d

ψ

)
(7.12)

=
1

ψ
〈w, τ q〉 −

d

ψ2
cos

(
πl

L

)
,

so that at (q, t0) we also have

〈w, τ q〉 =
d

ψ
cos

(
πl

L

)
≥ 0 . (7.33)

We now consider the two cases τ p 6= τ q and τ p = τ q.

Case 1: Assume that τ p 6= τ q.Subtracting (7.32) from (7.33) yields 〈w, τ q − τ p〉 = 0.

By Lemmata 6.1 and 7.17,

〈w, τ q + τ p〉2 Lem. 6.1
= ‖τ q + τ p‖2 Lem. 7.17

= 4 cos2

(
θ

2

)
. (7.34)

On the other hand, adding (7.32) and (7.33) yields

〈w, τ q + τ p〉 = 2
d

ψ
cos

(
πl

L

)
, (7.35)

so that, by (7.34), (7.35) and d/ψ < 1,∣∣∣∣cos

(
θ

2

)∣∣∣∣ =
d

ψ
cos

(
πl

L

)
< cos

(
πl

L

)
. (7.36)

From (7.29) it follows that

θ ∈ (−π, 0) ∪ (0, 2π) ∪ (2π, 3π) .

For θ = π, Lemma 7.18 provides that either

〈w,νp〉 = −〈w,νq〉 = − sin

(
θ

2

)
or 〈w,νp〉 = −〈w,νq〉 = 1 .

We now look at the different intervals separately.

(a)Assume that θ ∈ (0, π] and

〈w,νp〉 = −〈w,νq〉 = − sin

(
θ

2

)
(7.37)
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w

τp

τq

θ/2

θ/2

νp

νq

θ = π.

w

τp

τq

θ/2

θ/2
νp

νq

θ < π.

Figure 7.4: Case 1(a), θ ∈ (0, π] and 〈w,νp〉 = −〈w,νq〉 = − sin(θ/2).

(see Figure 7.4 for an illustration). Since πl/L ∈ (0, π/2] and the cosine function is axially

symmetric and monotonically decreasing on (0, π/2], (7.36) implies

θ >
2πl

L
. (7.38)

Furthermore,

〈w,κq − κp〉 = −κq 〈w,νq〉+ κp 〈w,νp〉
(7.37)

= −(κp + κq) sin

(
θ

2

)
. (7.39)

We differentiate d/ψ at (p, q, t0) twice with respect to the vector ξ = τ p 	 τ q (see (7.14))

and calculate using the definition (7.1) of ψ,

0
(7.31)

≤ (τ p 	 τ q)
2

(
d

ψ

)
(7.14)

= − 1

dψ
〈w, τ q + τ p〉2 +

1

dψ
‖τ q + τ p‖2 +

1

ψ
〈w,κq − κp〉

− 4

ψ2
〈w, τ q + τ p〉 cos

(
πl

L

)
+

4d

ψ2

π

L
sin

(
πl

L

)
+ 8

d

ψ3
cos2

(
πl

L

)
(7.1),(7.34)

=
(7.35)

− 1

dψ
‖τ q + τ p‖2 +

1

dψ
‖τ q + τ p‖2 +

1

ψ
〈w,κq − κp〉

− 8
d

ψ3
cos2

(
πl

L

)
+

4π2d

L2ψ2
ψ + 8

d

ψ3
cos2

(
πl

L

)
(7.39)

= − 1

ψ
(κp + κq) sin

(
θ

2

)
+

4π2d

L2ψ
.

We abbreviate κ := (κp + κq)/2 and obtain

2κ sin

(
θ

2

)
≤ 4π2

L2
d . (7.40)
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Since the sine function is positive and monotonically increasing on (0, π/2], we conclude

with d/ψ < 1 that

d < ψ
(7.1)
=

L

π
sin

(
πl

L

)
(7.38)
<

L

π
sin

(
θ

2

)
,

so that (7.40) implies

2κ sin

(
θ

2

)
(7.40)

≤ 4π2

L2
d <

4π2

L2

L

π
sin

(
θ

2

)
=

4π

L
sin

(
θ

2

)
.

Since sin(θ/2) > 0 for θ ∈ (0, π], we can divide by it to achieve

κ <
2π

L
.

Since hap = 2π/L (see (3.10)) and hlp ≥ 2π/L0 = 2π/L (see (3.11)), we have h ≥ 2π/L > κ

for both flows and

h− κ > h− 2π

L
≥ 0 . (7.41)

Furthermore, the inequality

sin

(
θ

2

)
>
θ

2
cos

(
θ

2

)
(7.42)

holds for all θ ∈ (0, π] (see Lemma 7.8), and we obtain

(h− κ) sin

(
θ

2

)
(7.41),(7.42)

>
θ

2
cos

(
θ

2

)(
h− 2π

L

)
. (7.43)

Cauchy–Schwarz (B.3) and the definition (5.3) of θ imply∫ q

p
κ2 vdr

(B.3)

≥ 1

l

(∫ q

p
κ vdr

)2
(5.3)
=

θ2

l
. (7.44)

We use the definition (5.3) of θ to estimate the evolution equations (7.16) and (7.17) of

d/ψ for both flows

∂

∂t |t=t0

(
d

ψ

)
(7.16),(7.17)

≥ 1

ψ

(
h 〈w,νq − νp〉+ 〈w,κq − κp〉

)
+

d

ψ2
cos

(
πl

L

)(∫ q

p
κ2 vdr − h

∫ q

p
κ vdr

)
(5.3),(7.36),(7.37)

≥
(7.39),(7.44)

1

ψ

(
(2h− 2κ) sin

(
θ

2

)
+ cos

(
θ

2

)(
θ2

l
− hθ

))
(7.45)

with equality in the first line for the LPCF and strict inequality for the APCSF (see

Corollary 7.14), since Σt0 is not a circle. By (7.38),

θ2

l
>
θ

l

2πl

L
=

2πθ

L
,

so that
θ2

l
− hθ > θ

(
2π

L
− h
)
.
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τp

τq

w = νp

νq S
F (p, t0)F (q, t0)

Figure 7.5: Case 1(b). Σt0 is crossing the connecting line between F (p, t0) and F (q, t0).

We can therefore estimate (7.45) further to deduce

∂

∂t |t=t0

(
d

ψ

)
≥ 1

ψ

(
2 (h− κ) sin

(
θ

2

)
− θ cos

(
θ

2

)(
h− 2π

L

))
. (7.46)

By (7.43), the left-hand side of (7.46) is strictly positive, and

∂

∂t |t=t0

(
d

ψ

)
> 0

for θ ∈ (0, π] as claimed.

(b)Assume that θ ∈ (π, 2π) ∪ (2π, 3π) or θ = π and 〈w,νp〉 = −〈w,νq〉 = 1 (see

Figure 7.5 for an illustration). Define the straight line segment

S := {x ∈ R2 |x = (1− λ)F (p, t0) + λF (q, t0) for λ ∈ [0, 1]}

through F (p, t0) and F (q, t0). By (7.32) and (7.33), 〈w, τ q〉 = 〈w, τ p〉 ∈ [0, 1). Since Σt0

is closed and Ft0 is continuous, Σt0 has to cross S between F (p, t0) and F (q, t0) at least

once. Lemma 7.19 implies that the ratio d/ψ cannot have a global minimum at (p, q, t0)

(it could still, however, attain a local minimum a this point). Hence,

d

ψ
> min

S1×S1

d

ψ
( · , · , t0) .

By the compactness of S1× S1, the global minimum of (d/ψ)( · , · , t0) exists at a point

(p0, q0) which was treated in Case 1(a) and will be further treated in Case 1(c) and 2.

(c) Assume that θ ∈ (−π, 0) (see Figure 7.6 for an illustration). By the short time

existence, Theorem 2.3, F ∈ C∞
(
S1× [0, T )

)
with T = T (‖F ( · , 0)‖C3,α) > 0. Theorem 6.5

and Lemma 7.13 imply that

d

ψ
∈ C∞

(
(S1× S1 \ {p̄ = q̄})× [0, T )

)
∩ C0

(
S1× S1× [0, T )

)
. (7.47)
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w

τp

τq

θ/2

θ/2

Figure 7.6: Case 1(c), θ ∈ (−π, 0).

Since (d/ψ)(p̄, p̄, t) = 1 for all p̄ ∈ S1 and t ∈ [0, T ) and minS1×S1 d/ψ( · , · , 0) < 1, there

exists ε > 0 so that for |p̄− q̄| < ε mod (2π),

d

ψ
(p̄, q̄, t) >

3

4
min
S1×S1

d

ψ
( · , · , 0)

for all t ∈ [0, T/2]. We define the set

A :=

{
(p̄, q̄, t) ∈ S1× S1×

[
0,
T

2

] ∣∣∣∣ dψ (p̄, q̄, t) >
3

4
min
S1×S1

d

ψ
( · , · , 0)

}
(7.48)

with {p = q} × [0, T/2] ⊂ A, and the closed complement

B :=

(
S1× S1×

[
0,
T

2

])
\A , (7.49)

where S1× S1× {0} * B. By (7.47),

Λ(‖F ( · , 0)‖C3,α) := max
B

∣∣∣∣ ∂∂t
(
d

ψ

)∣∣∣∣ <∞ . (7.50)

For (p̄, q̄, t) ∈ B, let

τ0 := min{τ ∈ (0, t] | (p̄, q̄, τ) ∈ B} .
Then, by the definition (7.49) of B,

d

ψ
(p̄, q̄, τ0)

(7.49)
=

3

4
min
S1×S1

d

ψ
( · , · , 0)

so that ∣∣∣∣ dψ (p̄, q̄, t)− 3

4
min
S1×S1

d

ψ
( · , · , 0)

∣∣∣∣ =

∣∣∣∣ dψ (p̄, q̄, t)− d

ψ
(p̄, q̄, τ0)

∣∣∣∣
≤
∫ t

τ0

∣∣∣∣ ∂∂t
(
d

ψ

)
(p̄, q̄, τ)

∣∣∣∣ dτ ≤ Λ(t− τ0) ≤ Λt . (7.51)
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We choose

t1 = t1(Σ0)
(7.50)
:= min

{
1

4Λ
min
S1×S1

d

ψ
( · , · , 0),

T

2

}
∈
(

0,
T

2

]
(7.52)

and distinguish between three different cases.

(i) Assume that t0 ∈ [0, t1] and (p, q, t0) ∈ A. Then

d

ψ
≡ d

ψ
(p, q, t0)

(7.48)

≥ 3

4
min
S1×S1

d

ψ
( · , · , 0) (7.53)

by definition of the set A.

(ii) Assume that t0 ∈ [0, t1] and (p, q, t0) ∈ B. Then

d

ψ
≡ d

ψ
(p, q, t0)

(7.51)

≥ −Λt0 +
3

4
min
S1×S1

d

ψ
( · , · , 0)

≥ −Λt1 +
3

4
min
S1×S1

d

ψ
( · , · , 0)

(7.52)

≥ 1

2
min
S1×S1

d

ψ
( · , · , 0) (7.54)

is a lower bound.

(iii) Assume that t0 ∈ (t1, T ). Corollary 5.4(iii) applied with the initial time t1 yields

−π
(7.29)
< θmin(t1) < θmin(t0) < 0

so that the monotone behaviour of the cosine on (−π, 0) implies

cos

(
θmin(t0)

2

)
> cos

(
θmin(t1)

2

)
> 0 . (7.55)

From 0 < l ≤ L/2 it follows that 1 > cos(πl/L) ≥ 0 so that again the monotone behaviour

of the cosine on (−π, 0),

d

ψ
>
d

ψ
cos

(
πl

L

)
(7.36)

= cos

(
θ

2

)
≥ cos

(
θmin(t0)

2

)
(7.55)

≥ cos

(
θmin(t1)

2

)
. (7.56)

We deduce that, for θ ∈ (−π, 0) at (p, q, t0),

d

ψ

(7.53),(7.54)

≥
(7.56)

min

{
1

2
min
S1×S1

d

ψ
( · , · , 0), cos

(
θmin(t1)

2

)}
=: C∗(Σ0) > 0

as claimed.

Case 2: Assume that τ p = τ q. By the definition (5.1), ϑp = ϑq + 2πk for some k ∈ Z
so that θ = 2kπ (see (5.6)). By (7.29), θ can only be zero or 2π (see Figure 7.7 for an

illustration). We now look at both flows separately.
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F (p, t)

F (q, t)

τq

τpw

θ = 0.

w

τq
F (q, t0)

F (p, t0)

τp

θ = 2π.

Figure 7.7: Case 2.

(a) For the APCSF, it follows from τ p = τ q and embeddedness of Σt0 that νp = νq
which implies

〈w,νq − νp〉 = 0 . (7.57)

The identity (7.13) for the second derivative of d/ψ along ξ = τ p ⊕ τ q and (7.31) yield

0
(7.31)

≤ (τ p ⊕ τ q)
2

(
d

ψ

)
(7.13)

=
1

ψ
〈w,κq − κp〉 . (7.58)

By (7.57), (7.58), the definition (5.3) of θ, and hap = 2π/L, the evolution equation (7.15)

for d/ψ reduces to

∂

∂t |t=t0

(
d

ψ

)
≥ d

ψ2
cos

(
πl

L

)(∫ q

p
κ2 vdr − 2πθ

L

)
+

d

πψ2

(∫
S1

κ2 vdr − (2π)2

L

){
sin

(
πl

L

)
− πl

L
cos

(
πl

L

)}
. (7.59)

We now examine different lengths separately.

(i) Assume that l = L/2. Then cos(πl/L) = 0 and sin(πl/L) = 1, so that (7.59) yields

∂

∂t |t=t0

(
d

ψ

)
(7.59)

≥ d

πψ2

(∫
S1

κ2 vdr − (2π)2

L

)
> 0

since, by assumption, Σt0 is not a circle.

(ii) Assume that l < L/2. Since Σt0 is not a circle, Corollary 7.14 implies that

the second term on the right-hand side of (7.59) is positive. Moreover, cos(πl/L) >
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cos(π/2) = 0, as the cosine function is strictly decreasing on the interval [0, π/2]. This

and (7.44) reduce (7.59) to

∂

∂t |t=t0

(
d

ψ

)
>

d

ψ2
cos

(
πl

L

)
θ

(
θ

l
− 2π

L

)
.

For θ = 0, the right-hand side is zero. For θ = 2π, we conclude from l < L, that

θ/l = 2π/l > 2π/L, and thus
θ

l
− 2π

L
> 0

which also leads to ∂
∂t |t=t0

(d/ψ) > 0.

Hence, in both cases,
∂

∂t |t=t0

(
d

ψ

)
> 0

for the APCSF and θ ∈ {0, 2π} as claimed.

(b) For the LPCF, the evolution equation (7.17) of d/ψ cannot be estimated as in

the case of the APCSF. Thus, we argument like in Case 1(a)(ii). Since l ∈ (0, L/2] and

d/ψ ∈ (0, 1), and by (7.32) and (7.33), we obtain

〈w, τ q〉 , 〈w, τ p〉
(7.32),(7.33)

=
d

ψ
cos

(
πl

L

)
∈ [0, 1) .

Define the straight line segment

S := {x ∈ R2 |x = (1− λ)F (p, t0) + λF (q, t0) for λ ∈ [0, 1]}

through F (p, t0) and F (q, t0). Since τ p = τ q and 〈w, τ q〉 , 〈w, τ p〉 ∈ [0, 1), both vectors

point to the same side of S. Since Σt0 is closed and Ft0 is continuous, Σt0 has to cross S

between F (p, t0) and F (q, t0) at least once (see Figure 7.8 for an illustration). Lemma 7.19

implies that the ratio d/ψ cannot have a global minimum at (p, q, t0) (it could still, however,

attain a local minimum a this point). Hence,

d

ψ
> min

S1×S1

d

ψ
( · , · , t0) .

By the compactness of S1× S1, the global minimum of (d/ψ)( · , · , t0) exists at a point

(p0, q0) with τ p0 6= τ q0 which was treated in Case 1(a)(i) and (b).
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F (p, t)

F (q, t)

τq

τp
w

S

θ = 0.

F (p, t0)

τp
w

F (q, t0)
τq

S

θ = 2π.

Figure 7.8: Case 2(b), Σt0 is crossing the connecting line between F (p, t0) and F (q, t0).



Chapter 8

A monotonicity formula

In this chapter, we consider smooth, embedded, n-dimensional hypersurfaces in Rn+1

without boundary. For solutions F : Σn × (0, T ) → Rn+1 to the problem (2.13), we

derive a monotonicity formula analogue to the one in [Hui90] for MCF. For the APMCF

with boundary the formula has already been introduced in [MB14, MB15]. The same

proof holds for the VPMCF. (Refer to Appendix A.2 for an introduction to differentiable

hypersurfaces of Rn+1.)

Definition 8.1. For x0 ∈ Rn and t0 ∈ R, define the backward heat kernel Φ(x0,t0) :

Rn × (−∞, t0)→ R by

Φ(x0,t0)(x, t) :=
1

(4π(t0 − t))n/2
exp

(
−‖x− x0‖2

4(t0 − t)

)
. (8.1)

Lemma 8.2. Let x, x0, y0 ∈ Rn, t0, τ0 ∈ R, t ∈ (−∞, t0), λ > 0 and τ0 > λ2(t− t0). Then

Φ(y0,τ0)

(
λ(x− x0), λ2(t− t0)

)
=

1

λn
Φ(x0+y0/λ,t0+τ0/λ2)(x, t) .

Proof. For y = λ(x− x0), we calculate

‖y − y0‖2 = ‖λ(x− x0)− y0‖2 = λ2
∥∥∥x− (x0 +

y0

λ

)∥∥∥2

and for τ = λ2(t− t0),

τ0 − τ = τ0 − λ2(t− t0) = λ2
(( τ0

λ2
+ t0

)
− t
)
.

Then, by the definition (8.1) of the backward heat kernel,

Φ(y0,τ0)(y, τ) =
1

(4π(τ0 − τ))n/2
exp

(
−‖y − y0‖2

4(τ0 − τ)

)
=

λ−n

(4π((τ0/λ2 + t0)− t)))n/2 exp

(
−‖x− (x0 + y0/λ)‖2

4((τ0/λ2 + t0)− t)

)
=

1

λn
Φ(x0+y0/λ,t0+τ0/λ2)(x, t) .
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For a solution F : Σn × [0, T ) → Rn+1 to the problem (2.13) with initial surface Σ0,

define the auxiliary function f : [0, T )→ R by

f(t) := exp

(
−1

2

∫ t

0
h2(σ)dσ

)
(8.2)

(see [Ath03, Proposition 3.2] or [MB15, Proposition 4.9]).

Lemma 8.3. We have f(t) ∈ (0, 1] for all t ∈ [0, T ). Furthermore, if sup[0,T ) h <∞, then

there exists a constant c = c(sup[0,T ) h) > 0 such that f ≥ c on [0, T ).

Proof. This follows directly from the definition (8.2) of f .

Lemma 8.4. Let F : Σn × (0, T )→ Rn+1 be a solution of (2.13). Then

df

dt
= −1

2
h2f and

d

dt

∫
Σt

dHn =

∫
Σt

(h−H)H dHn .

Proof. We differentiate

df

dt
=

d

dt
exp

(
−1

2

∫ t

0
h2(σ)dσ

)
= −1

2
h2 exp

(
−1

2

∫ t

0
h2(σ)dσ

)
= −1

2
h2f

and

∂
√
g

∂t
=

∂

∂t

√
det(gij) =

g√
g
gij
〈
∂F

∂pi
,
∂

∂pj

∂F

∂t

〉
=
√
ggij

〈
∂F

∂pi
,
∂

∂pj
((h−H)ν)

〉
=
√
g(h−H)gij

〈
∂F

∂pi
,
∂ν

∂pj

〉
=
√
g(h−H)H

so that

d

dt

∫
Σt

dHn =

∫
Σn

∂

∂t

√
g(p, t)dp =

∫
Σn

(h−H)H
√
g(p, t)dp =

∫
Σt

(h−H)H dHn .

In the following, we set H(x, t) = H(p, t) and ν(x, t) = ν(p, t) for x = F (p, t).

Theorem 8.5 (Monotonicity formula, [Hui90, Theorem 3.1], see also [MB15, Proposi-

tion 4.9]). Let F : Σn × (0, T )→ Rn+1 be a solution of (2.13). Then

d

dt

(
f

∫
Σt

Φ(x0,t0) dHn
)

= −f
2

∫
Σt

(∥∥∥∥(H − h)ν − (x− x0)⊥

2(t0 − t)

∥∥∥∥2

+

∥∥∥∥H +
(x− x0)⊥

2(t0 − t)

∥∥∥∥2
)

Φ(x0,t0) dHn

for t0 ∈ (0, T ] and t ∈ (0, t0), where (x − x0)⊥ := 〈x− x0,ν〉ν is the normal part of the

vector x− x0.
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Proof. Since x = x(t) with ∂
∂tx(t) = (h−H)ν, we derive

d

dt
Φ(x0,t0) =

(n/2)4π

(4π(t0 − t))n/2+1
exp

(
−‖x− x0‖2

4(t0 − t)

)
+

1

(4π(t0 − t))n/2
exp

(
−‖x− x0‖2

4(t0 − t)

)
×
(
−2 〈x− x0, (h−H)ν〉

4(t0 − t)
− ‖x− x0‖2

4(t0 − t)2

)
=

1

2

(
n

(t0 − t)
− (h−H)

〈x− x0,ν〉
(t0 − t)

− ‖x− x0‖2
2(t0 − t)2

)
Φ(x0,t0) (8.3)

so that

d

dt

(
f

∫
Σt

Φ(x0,t0) dHn
)

Lem. 8.4
=

(8.3)
−f

2

∫
Σt

h2Φ(x0,t0) dHn + f

∫
Σt

(h−H)H Φ(x0,t0) dHn

+
f

2

∫
Σt

(
n

(t0 − t)
− (h−H)

〈x− x0,ν〉
(t0 − t)

− ‖x− x0‖2
2(t0 − t)2

)
Φ(x0,t0) dHn .

Rearranging terms yields

d

dt

(
f

∫
Σt

Φ(x0,t0) dHn
)

= f

∫
Σt

(
−h

2

2
+ h

(
H − 〈x− x0,ν〉

2(t0 − t)

))
Φ(x0,t0) dHn − f

∫
Σt

H2 Φ(x0,t0) dHn

+ f

∫
Σt

(
n

2(t0 − t)
+H

〈x− x0,ν〉
2(t0 − t)

− ‖x− x0‖2
4(t0 − t)2

)
Φ(x0,t0) dHn . (8.4)

We apply the divergence theorem, Theorem B.7, to the vector v = (x − x0)Φ(x0,t0) and

obtain ∫
Σt

〈x− x0, Hν〉Φ(x0,t0) dHn =

∫
Σt

divΣt

(
(x− x0) Φ(x0,t0)

)
dHn , (8.5)

where

divΣt

(
(x− x0) Φ(x0,t0)

)
= divΣt(x− x0) Φ(x0,t0) +

〈
(x− x0),∇ΣtΦ(x0,t0)

〉
.

For x ∈ Σt, (A.13) yields

divΣt x = divΣn F (p, t)
(A.13)

= n

and (A.12) implies for a unit tangent frame {τ i}i∈N of Σt,

∇ΣtΦ(x0,t0)
(A.12)

= − 1

(4π(t0 − t))n/2
exp

(
−‖x− x0‖2

4(t0 − t)

) n∑
i=1

2 〈x− x0, τ i(x)〉
4(t0 − t)

τ i

= −Φ(x0,t0)

n∑
i=1

〈x− x0, τ i〉
2(t0 − t)

τ i . (8.6)
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By combining the last four identities, we conclude∫
Σt

〈x− x0, Hν〉
2(t0 − t)

Φ(x0,t0) dHn

=

∫
Σt

(
n

2(t0 − t)
−

n∑
i=1

〈x− x0, τ i〉2
4(t0 − t)2

)
Φ(x0,t0) dHn

so that the last integral at the right-hand side of (8.4) becomes∫
Σt

(
n

2(t0 − t)
+H

〈x− x0,ν〉
2(t0 − t)

− ‖x− x0‖2
4(t0 − t)2

)
Φ(x0,t0) dHn

=

∫
Σt

(
2H
〈x− x0,ν〉
2(t0 − t)

+
n∑
i=1

〈x− x0, τ i〉2
4(t0 − t)2

− ‖x− x0‖2
4(t0 − t)2

)
Φ(x0,t0) dHn . (8.7)

Next, we observe that

−‖x− x0‖2 +
n∑
i=1

〈x− x0, τ i〉2 = −〈x− x0,ν〉2 ,

and

−H2 +H
〈x− x0,ν〉

(t0 − t)
− 〈x− x0,ν〉2

4(t0 − t)2
= −

∣∣∣∣H − 〈x− x0,ν〉
2(t0 − t)

∣∣∣∣2 ,
so that (8.4) reduces to

d

dt

(
f

∫
Σt

Φ(x0,t0) dHn
)

= −f
2

∫
Σt

h2Φ(x0,t0) dHn + f

∫
Σt

h

(
H − 〈x− x0,ν〉

2(t0 − t)

)
Φ(x0,t0) dHn

− f
∫

Σt

∣∣∣∣H − 〈x− x0,ν〉
2(t0 − t)

∣∣∣∣2 Φ(x0,t0) dHn .

Following [MB14, p. 11], we observe that

−h
2

2
+ ha− a2 = −1

2
a2 − 1

2
(h− a)2

so that, for a = H − 〈x− x0,ν〉 /(2(t0 − t)),

d

dt

(
f

∫
Σt

Φ(x0,t0) dHn
)

= −f
2

∫
Σt

(∣∣∣∣H − 〈x− x0,ν〉
2(t0 − t)

∣∣∣∣2 +

∣∣∣∣(h−H) +
〈x− x0,ν〉
2(t0 − t)

∣∣∣∣2
)

Φ(x0,t0) dHn .

As a last step we calculate∣∣∣∣H − 〈x− x0,ν〉
2(t0 − t)

∣∣∣∣2 =

∥∥∥∥Hν − 〈x− x0,ν〉ν
2(t0 − t)

∥∥∥∥2

=

∥∥∥∥H +
(x− x0)⊥

2(t0 − t)

∥∥∥∥2

,

where (x− x0)⊥ := 〈x− x0,ν〉ν is the normal part of the vector x− x0.
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Theorem 8.6 (Weighted monotonicity formula, [Eck04, Theorem 4.13]). Let F : Σn ×
(0, T )→ Rn+1 be a solution of (2.13) and ϕ : Rn+1 × (0, T )→ R in C2;1. Then

d

dt

(
f

∫
Σt

ϕΦ(x0,t0) dHn
)

= −f
2

∫
Σt

(∥∥∥∥H +
(x− x0)⊥

2(t0 − t)

∥∥∥∥2

+

∥∥∥∥(h−H)ν +
(x− x0)⊥

2(t0 − t)

∥∥∥∥2
)
ϕΦ(x0,t0) dHn

+
f

2

∫
Σt

(
∂

∂t
−∆Σt

)
ϕΦ(x0,t0) dHn

for t0 ∈ (0, T ] and t ∈ (0, t0).

Proof. The proof is like the one for Theorem 8.5 with one additional step. When applying

the divergence theorem, Theorem B.7, in (8.5), we now use the vector v = (x−x0)ϕΦ(x0,t0)

instead and deduce∫
Σt

〈x− x0, Hν〉ϕΦ(x0,t0) dHn =

∫
Σt

divΣt

(
(x− x0)ϕΦ(x0,t0)

)
dHn ,

where

divΣt

(
(x− x0)ϕΦ(x0,t0)

)
= nϕΦ(x0,t0) + ϕ

〈
(x− x0),∇ΣtΦ(x0,t0)

〉
+
〈
(x− x0),∇Σtϕ

〉
Φ(x0,t0) .

Since ∇Σtϕ = τ i(ϕ)τ i we can utilise the gradient of Φ(x0,t0) (see (8.6)) again to find〈
(x− x0),∇Σtϕ

〉
2(t0 − t)

Φ(x0,t0) = −
〈
∇ΣtΦ(x0,t0),∇Σtϕ

〉
so that integration by parts (B.4) yields the extra term∫

Σt

〈
(x− x0),∇Σtϕ

〉
2(t0 − t)

Φ(x0,t0) dHn =

∫
Σt

∆ΣtϕΦ(x0,t0) dHn .

The minus sign comes from the operation in (8.7).



Chapter 9

Singularity analysis

In Proposition 4.9 we have shown that the curvature blows up if T <∞. In this chapter, we

assume T <∞ and investigate curvature blow-ups for embedded constrained curve flows

with θmin(0) ≥ −π. We adapt the techniques from CSF to show that for the APCSF, the

curvature does not blow up in finite time and conclude T =∞. For the LPCF, we exclude

collapsed curvature blow ups. Proposition 4.9 motivates the following definition.

Definition 9.1 (Singularity, blow-up sequence). We say that a solution F : S1× [0, T )→
R2 of (2.15) develops a singularity at T ≤ ∞ if

|κ|max(t)→∞

for t↗ T . A sequence (pk, tk)k∈N in S1× [0, T ) with

|κ(pk, tk)| = |κ|max(tk)→∞

is called blow-up sequence.

Lemma 9.2 (Singular point for the APCSF). Let F : S1× [0, T )→ R2 be a solution of the

APCSF with T <∞. Then there exists a point x0 ∈ R2 and a blow-up sequence (pk, tk)k∈N
with

F (pk, tk)→ x0

for k →∞ so that the solution (Σt)t∈[0,T ) has no smooth extension beyond time T in any

neighbourhood of x0. The point x0 is called a singular or blow-up point of the flow at

time T .

Proof. For the APCSF, Corollary 3.5 and Lemma 3.9 imply that the length of the curve

Lt and the global term hap are bounded for all t ∈ [0, T ). Hence, Lemma 3.13 yields

that there exists a radius R = R(Σ0, T ) > 0 so that Σt ⊂ BR(0) for all t ∈ [0, T ). By

Proposition 4.9,

|κ|max(t)→∞
for t ↗ T . Let (pk, tk)k∈N be a blow-up sequence. Since (F (pk, tk))k∈N is a bounded

sequence in BR(0), there exists a point x0 ∈ R2 and a subsequence with

F (pk, tk)→ x0

for k →∞.
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Lemma 9.3 (Hamilton’s trick [Ham86, Lemma 3.5]). Let f : [a, b]× (0, T )→ R be in C1.

Then fmax(t) := maxp∈[a,b] f(p, t) is locally Lipschitz for t ∈ (0, T ) and at a differentiable

time,
dfmax

dt
(t) ≤ sup

{
∂f

∂t
(p, t)

∣∣∣∣ p ∈ [a, b] with f(p, t) = fmax(t)

}
.

Lemma 9.4. Let f : [a, b]→ R be Lipschitz. Then f ′ exists almost everywhere, is bounded

and

f(b)− f(a) =

∫ b

a
f ′ dt .

Lemma 9.5 (Lower blow-up rate for the curvature). Let F : S1× [0, T )→ R2 be a solution

of (2.15) with initial curve Σ0 and T <∞. Then

|κ|max(t) ≥ 1√
2(Ch + 1)(T − t)

.

for all t ∈ [0, T ), where the constant Ch is defined in Corollary 5.9.

Proof. We follow the lines of [Hui90, Lemma 1.2]. By Proposition 4.9, |κ|max(t)→∞ for

t→ T . For t ∈ (0, T ), let s ∈ S1
Rt

so that κ2(s, t) = κ2
max(t). Then

∂2κ2

∂s2
(s, t) ≤ 0 .

By the evolution equation (4.4) of curvature and Corollary 5.9,

∂κ2

∂t

(4.4)
=

∂2κ2

∂s2
+ 2(κ− h)κ3

Cor. 5.9
≤ 2(Ch + 1)κ4 (9.1)

at (s, t). Since κ2
max is Lipschitz, by Rademacher’s theorem, Theorem B.5, d

dtκ
2
max exists

for almost every t ∈ (0, T ). By Hamilton’s trick, Lemma 9.3,

dκ2
max

dt
(t)

Lem. 9.3
≤ max

{
∂κ2

∂t
(p, t)

∣∣∣∣ p ∈ S1 with κ2(p, t) = κ2
max

}
(9.1)

≤ max
{

2(Ch + 1)κ4(p, t)
∣∣∣ p ∈ S1 with κ2(p, t) = κ2

max

}
= 2(Ch + 1)κ4

max(t) (9.2)

for almost every t ∈ (0, T ). Assume that there exists a time t0 ∈ [0, T ) where κ2
max = 0.

Then Σt0 is a line segment in R2 which contradicts that Σt is closed for all t ∈ [0, T ).

Hence, κ2
max(t) > 0 for all t ∈ [0, T ) and κ−2

max is Lipschitz as well. Rademacher’s theorem,

Theorem B.5, implies that d
dtκ
−2
max(t) exists for almost every t ∈ (0, T ). Thus,

dκ−2
max

dt
= −κ−4

max

dκ2
max

dt

(9.2)

≥ −2(Ch + 1) (9.3)

for almost every t ∈ (0, T ). Since κ−2
max is Lipschitz, we can apply Lemma 9.4 and inte-

grate (9.3) over an interval [t, tk] ⊂ [0, T ) to obtain

1

κ2
max(tk)

− 1

κ2
max(t)

≥ −2(Ch + 1)(tk − t) . (9.4)
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Let t ∈ [0, T ) and (tk)k∈N be a sequence with tk ∈ (t, T ) for all k ∈ N, tk ↗ T and

κ2
max(tk)→∞ for k →∞. Taking the limit k →∞ in (9.4) yields

1

κ2
max(t)

≤ 2(Ch + 1)(T − t)

for all t ∈ [0, T ).

Like for MCF, we distinguish between singularities with controlled curvature growth

and those without.

Definition 9.6 (Type-I and type-II singularities). Let F : S1× (0, T )→ R2 be a solution

of (2.15) with T < ∞. We say that a singularity is of type I, if there exists a constant

C0 > 1 so that

|κ|max(t) ≤ C0√
2(Ch + 1)(T − t)

(9.5)

for all t ∈ [0, T ), where the constant Ch is defined in Corollary 5.9, and of type II, if such

a constant does not exist, that is,

lim sup
t→T

|κ|max(t)
√
T − t =∞ . (9.6)

9.1 Rescaling

We want to rescale the curves Σt near a singular point as t → T < ∞. The following

rescaling technique for type-I singularities was introduced in [HS99, Remark 4.6]. We will

use for type-I singularities of the APCSF, since, by Lemma 9.2 the existence of a singular

point x0 ∈ R2 is guaranteed.

Definition 9.7 (Type-I rescaling for the APCSF). Let (pk, tk)k∈N be a blow-up sequence

in S1× [0, T ) with tk ↗ T for k →∞ and

κ2(pk, tk) = max
p∈S1

κ2(p, tk) = max
S1×[0,tk]

κ2(p, t)

for each k ∈ N. Furthermore, we assume that there exists a singular point x0 ∈ R2 so that

F (pk, tk)→ x0

for k →∞. We set

λ2
k := κ2(pk, tk) and αk := −λ2

kT

and define the rescaled embeddings Fk : S1× [αk, 0)→ R2 by

Fk(p, τ) := λk

[
F

(
p, T +

τ

λ2
k

)
− x0

]
. (9.7)

The next parabolic rescaling we will use to cover type-I singularities of the LPCF.
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Definition 9.8 (Type-I rescaling for the LPCF). Let (pk, tk)k∈N be a blow-up sequence

in S1× [0, T ) with tk ↗ T for k →∞ and

κ2(pk, tk) = max
p∈S1

κ2(p, tk) = max
S1×[0,tk]

κ2(p, t)

for each k ∈ N. We set

λ2
k := κ2(pk, tk) and αk := −λ2

kT

and define the rescaled embeddings Fk : S1× [αk, 0)→ R2 by

Fk(p, τ) := λk

[
F

(
p, T +

τ

λ2
k

)
− F (pk, tk)

]
. (9.8)

The following rescaling technique for type-II singularities was introduced in [Ham95a,

Proof of Theorem 16.4] for Ricci flow, and applied to type-II singularities of MCF in [HS99,

p. 11]. We will use it for type-II singularities of both flows.

Definition 9.9 (Type-II rescaling). Let (pk, tk)k∈N be a sequence in S1× [0, T −1/k] with

κ2(pk, tk)

(
T − 1

k
− tk

)
= max

(p,t)∈S1×[0,T−1/k]

[
κ2(p, t)

(
T − 1

k
− t
)]

for each k ∈ N. We set

λ2
k := κ2(pk, tk) , αk := −λ2

ktk and Tk := λ2
k

(
T − 1

k
− tk

)
.

and define the rescaled embeddings Fk : S1× [αk, Tk]→ R2 by

Fk(p, τ) := λk

[
F

(
p, tk +

τ

λ2
k

)
− F (pk, tk)

]
. (9.9)

To treat all rescaling techniques at once, we define

t̄k :=

{
T

tk
, Jk :=

{
[αk, 0)

[αk, Tk]
and xk :=

{
x0 (type-I)

F (pk, tk) (type-II).
(9.10)

Then (9.7), (9.8) and (9.9) combine to the rescaled embedding Fk : S1× Jk → R2 with

Fk(p, τ) := λk

[
F

(
p, t̄k +

τ

λ2
k

)
− xk

]
. (9.11)

For every k ∈ N and τ ∈ Jk, we can parametrise the rescaled curve Σk
τ := Fk(S1, τ) by arc

length (see Section A.1 for further details). In the following, set

t = t̄k +
τ

λ2
k

. (9.12)

For p ∈ S1, the rescaled length element is given by

vk(p, τ) :=

∥∥∥∥∂Fk∂p (p, τ)

∥∥∥∥ = λk

∥∥∥∥∂F∂p (p, t)

∥∥∥∥ = λkv(p, t) (9.13)



82 9 Singularity analysis

and the rescaled arc length parameter by

sk(p, τ) := σk(p, τ)

∫ p

pk

vk(q, τ) dq = σk(p, τ)

∫ p

pk

λkv(q, τ) dq

= σk(p, τ)λk[s(p, t)− s(pk, t)] ,

where we define

σk(p, τ) :=


1 , if

∫ p

pk

vk(q, τ) dq ≤ L(Σk
τ )

2

−1 , if

∫ p

pk

vk(q, τ) dq >
L(Σk

τ )

2
.

Then we have for all k ∈ N and for all τ ∈ Jk,

sk(pk, τ) = 0 (9.14)

and

sk(S1, τ) =

[
−L(Σk

τ )

2
,
L(Σk

τ )

2

]
= S1

L(Σkτ )/(2π) , (9.15)

where we identified −L(Σk
τ )/2 and L(Σk

τ )/2 in the last equality. For k ∈ N and τ ∈ Jk, we

can parametrise the curve Σk
τ by arc length via the parametrisation F̃k( · , τ) : sk(S1, τ)→

R2 with

F̃k(s, τ) := Fk
(
s−1
k (s, τ), τ

)
and F̃k(sk(p, τ), τ) = Fk(p, τ) . (9.16)

The unit tangent vector is invariant under rescaling

τ k(p, τ)
(A.4)
:=

1

vk(p, τ)

∂Fk
∂p

(p, τ)
(9.13)

=
λk
λk

1

v(p, t)

∂F

∂p
(p, t)

(A.4)
= τ (p, t)

where still t = t̄k + τ/λ2
k, as well as the the unit outer normal

νk(p, τ) := (τ 2
k(p, τ),−τ 1

k(p, τ)) .

The rescaled curvature is given by

κk(p, τ)
(A.6)
= −

〈
1

vk

∂τ k
∂p

,νk

〉
(p, τ)

(9.13)
= − 1

λk

〈
1

v

∂τ

∂p
,ν

〉
(p, t)

(A.6)
=

1

λk
κ(p, t) . (9.17)

We use the scaling behaviours (9.13) and (9.17) of the length element and the curvature

to calculate the rescaled global term

hap,k(τ) :=

∫
Σkτ
κk dH1∫

Σkτ
dH1

(9.13),(9.17)
=

λk
λ2
k

∫
Σt
κ dH1∫

Σt
dH1

=
1

λk
hap(t) (9.18)
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for the APCSF and

hlp,k(τ) :=

∫
Σkτ
κ2
k dH1∫

Σkτ
κk dH1

(9.13),(9.17)
=

λ2
k

λ3
k

∫
Σt
κ2 dH1∫

Σt
κ dH1

=
1

λk
hlp(t) (9.19)

for the LPCF. From (9.12) follows

∂

∂τ
=

1

λ2
k

∂

∂t
and dτ = λ2

kdt ,

thus differentiation of the rescaled embedding (9.11) yields

∂Fk
∂τ

(p, τ) =
∂

∂τ
(λk [F (p, t)− xk]) =

λk
λ2
k

∂F

∂t
(p, t)

=
1

λk
(h(t)− κ(p, t))ν(p, t) = (hk(τ)− κk(p, τ))νk(p, τ) . (9.20)

For each k ∈ N, the rescaled evolution equation (9.20) is again a constrained curve flow.

Like for the original embedding, the evolution equation (9.20) holds also for the arc length

parametrisation (see (3.1)). To show convergence of the rescalings, we need to introduce

yet another parametrisation. We follow the idea of [MB15, Proposition 7.1.10]. Define the

intervals

Ik :=


[
−
√
πAkαk ,

√
πAkαk

]
Cor. 3.5⊂

[
−L

k
τ

2
,
Lkτ
2

]
(9.15)

= sk(S1, τ) for APCSF[
−L

k
αk

2
,
Lkαk

2

]
Cor. 3.6

=

[
−L

k
τ

2
,
Lkτ
2

]
(9.15)

= sk(S1, τ) for LPCF,

(9.21)

for all τ ∈ Jk, where Lkτ := L(Σk
τ ) and Akτ := A(Σk

τ ). For k ∈ N, let τ0 ∈ Jk. By (9.21),

Ik ⊂ sk
(
S1, τ0

)
so that s−1

k (Ik, τ0) ⊂ S1 is well-defined. Define the embeddings Fk,τ0 :

Ik × Jk → R2 by

Fk,τ0(s, τ) := Fk
(
s−1
k (s, τ0), τ

)
. (9.22)

Then, for each k ∈ N,

Fk,τ0( · , τ0) = Fk
(
s−1
k ( · , τ0), τ0

) (9.16)
= F̃k( · , τ0) : Ik → R2 (9.23)

is an arc length parametrisation and

Fk,τ0(0, τ)
(9.22)

= Fk
(
s−1
k (0, τ0), τ

) (9.14)
= Fk(pk, τ) (9.24)

for all τ ∈ Jk. Furthermore, Fk,τ0 satisfies again the evolution equation (9.20) and

|κk,τ0 |max(τ) = max
p∈Ik
|κk,τ0(p, τ)|

(9.21)

≤ max
p∈S1
|κk(p, τ)| = |κk|max(τ) (9.25)

for all τ ∈ Jk.
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Lemma 9.10 (Properties of the type-I rescaling). Let F : S1× (0, T )→ R2 be a solution

of (2.15) with T <∞. For the type-I rescalings 9.7 and 9.8 in case of a type-I singularity,

λk →∞ and αk → −∞ (9.26)

for k →∞. Let τ0 ∈ R and k0 ∈ N such that τ0 ∈ Jk for all k ≥ k0, then

Fk,τ0(0, τk) ∈ B3C2
0
(0) and κ2

k,τ0(0, τk) = 1 ,

where

τk := −λ2
k(T − tk) ∈

[
− C2

0

2(Ch + 1)
,− 1

2(Ch + 1)

]
for all k ≥ k0. Moreover, for δ > 0,

max
Ik×[αk,−δ2]

|κk,τ0 | ≤
C0

δ
and max

[αk,−δ2]
hk ≤

ChC0

δ

for all k ≥ k0.

Proof. First, we consider the type-I rescaling 9.7 for the APCSF. We follow in parts [MB14,

Lemma 7.1.8 and Proposition 7.1.10]. By Lemma 9.2, there exists a singular point x0 ∈ R2

and with corresponding blow-up sequence (pk, tk)k∈N in S1× [0, T ). By the definition (9.5)

of a type-I singularity and Corollary 5.9, we calculate for p ∈ S1 and tk, tl ∈ [0, T ),

‖F (p, tl)− F (p, tk)‖ ≤
∫ tl

tk

∥∥∥∥∂F∂t (p, t)

∥∥∥∥ dt (2.15)

≤
∫ tl

tk

|h(t)− κ(p, t)| dt

Cor. 5.9
≤ 2

∫ tl

tk

|κ|max(t) dt
(9.5)

≤ 2

∫ tl

tk

C0√
4(T − t)

dt

= C0

[
−
√

4(T − tl) +
√

4(T − tk)
]
≤ C0

√
4(T − tk) . (9.27)

Since the sequence (pk)k∈N is bounded, there exist a point p0 ∈ S1 and a subsequence with

pk → p0 (9.28)

for k →∞. We employ (9.27) for p = pl, and obtain

‖F (pl, tl)− F (pl, tk)‖ ≤ C0

√
4(T − tk) (9.29)

for all k, l ∈ N. By Definition 9.7, we can choose l0 = l0(k) large enough so that, for fixed

k ∈ N,

‖F (pl, tl)− x0‖ ≤ C0

√
4(T − tk) (9.30)

for all l ≥ l0. Estimates (9.29) and (9.30) imply

‖F (pl, tk)− x0‖ ≤ ‖F (pl, tk)− F (pl, tl)‖+ ‖F (pl, tl)− x0‖
(9.29),(9.30)

≤ 3C0

√
4(T − tk) (9.31)
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for fixed k ∈ N and for all l ≥ l0(k). For given ε > 0, choose k0 = k0(ε) large enough, so

that

3C0

√
4(T − tk) <

ε

2
.

for all k ≥ k0. Then (9.31) yields

‖F (pl, tk)− x0‖ <
ε

2
(9.32)

for all k ≥ k0(ε) and l ≥ l0(k). By the convergence (9.28) and the continuity of the

embedding F in its spatial argument, we can further choose l0 large enough, so that also

‖F (p0, tk)− F (pl, tk)‖ <
ε

2
(9.33)

for l ≥ l0. Hence,

‖F (p0, tk)− x0‖ ≤ ‖F (p0, tk)− F (pl0 , tk)‖+ ‖F (pl0 , tk)− x0‖
(9.32),(9.33)

<
ε

2
+
ε

2
= ε

for all k ≥ k0(ε). Since ε > 0 was chosen arbitrarily, we obtain

F (p0, tk)→ x0 (9.34)

for k →∞. Definition 9.7 and the type-I condition (9.5) yield

λk
Def. 9.7

= |κ(pk, tk)|
(9.5)

≤ C0√
4(T − tk)

(9.35)

and the estimate (9.27) implies

‖F (p0, tl)− F (p0, tk)‖
(9.27)

≤ 2C0

√
4(T − tk)

(9.35)

≤ 2C2
0

λk
.

We send l→∞ in the above inequality and obtain with (9.34),

λk‖x0 − F (p0, tk)‖ ≤ 2C2
0 (9.36)

for all k ∈ N. The definition (9.7) of the rescaled embedding provides, for τk := λ2
k(tk−T ),

‖Fk(p0, τk)‖
(9.7)
= λk

∥∥∥∥F(p0, T +
τk
λ2
k

)
− x0

∥∥∥∥ (9.36)

≤ 2C2
0 (9.37)

for all k ∈ N. By the convergence (9.28), for given δ > 0, there exists k1 ∈ N so that

|pk − p0| < δ for all k ≥ k0. By the continuity of the rescaled embedding, for given ε > 0,

there exists δ > 0 so that, for |pk − p0| < δ, we have

‖Fk(pk, τk)− Fk(p0, τk)‖ < ε . (9.38)

Hence, for given ε > 0, there exists k1 ∈ N so that

‖Fk,τ0(0, τk)‖
(9.24)

= ‖Fk(pk, τk)‖ ≤ ‖Fk(pk, τk)− Fk(p0, τk)‖+ ‖Fk(p0, τk)‖
(9.37),(9.38)

< ε+ 2C2
0

for all k ≥ k1. Choosing ε = C2
0 yields Fk,τ0(0, τk) ∈ B3C2

0
(0) for all k ≥ k1.



86 9 Singularity analysis

For the type-I rescaling 9.8 for the LPCF, we immediately obtain, for τk := λ2
k(tk−T ),

Fk,τ0(0, τk)
(9.24)

= Fk(pk, τk)
(9.8)
= λ2

k

[
F

(
pk, T +

τk
λ2
k

)
− F (pk, tk)

]
= 0

for all k ≥ k1.

We follow the lines of [MB15, Corollary 4.8], to bound the sequence(
τk = −λ2

k(T − tk)
)
k∈N . (9.39)

We estimate

αk
Defs. 9.7,9.8

= −λ2
kT < −λ2

kT + λ2
ktk

(9.39)
= τk < 0

for all k ∈ N. The rescaling behaviour (9.17) of the curvature yields

κ2
k,τ0(0, τk)

(9.24)
= κ2

k(pk, τk)
(9.17)

=
1

λ2
k

κ2

(
pk, T +

τk
λ2
k

)
(9.39)

=
1

λ2
k

κ2(pk, tk)
Defs. 9.7,9.8

= 1 .

Using Definition 9.7 and 9.8 and the lower blow-up rate from Lemma 9.5, we estimate

τk
(9.39)

= −λ2
k(T − tk)

Defs. 9.7,9.8
= −κ2(pk, tk)(T − tk)

Lem. 9.5
≤ − (T − tk)

2(Ch + 1)(T − tk)
= − 1

2(Ch + 1)

and, by the type-I assumption (9.5),

τk
(9.39)

= −λ2
k(T − tk)

Defs. 9.7,9.8
= −κ2(pk, tk)(T − tk)

(9.5)

≥ − C2
0 (T − tk)

2(Ch + 1)(T − tk)
= − C2

0

2(Ch + 1)

for all k ∈ N.

For the curvature estimate for both rescalings, let δ > 0, k ∈ N, τ ∈ [αk,−δ2] and

p ∈ S1. Then, the type-I condition (9.5) rescales to

|κk(p, τ)| (9.7),(9.8)
=

1

λk

∣∣∣∣κ(p, T +
τ

λ2
k

)∣∣∣∣ (9.5)

≤ 1

λk

C0√
−2(Ch + 1)τ/λ2

k

≤ C0√−τ . (9.40)

Hence,

max
Ik×[αk,−δ2]

|κk,τ0 |
(9.25)

≤ max
S1×[αk,−δ2]

|κk|
(9.40)

≤ C0

δ

and

max
[αk,−δ2]

hk
Cor. 5.9
≤ Ch max

[αk,−δ2]
|κk|max

(9.40)

≤ ChC0

δ

for each k ∈ N.
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Lemma 9.11 (Properties of the type-II rescaling, Huisken-Sinestrari [HS99, Lemma 4.3]).

Let F : S1× (0, T )→ R2 be a solution of (2.15) with T <∞. For the type-II rescaling 9.9

in case of a type-II singularity,

λk →∞ , αk → −∞ and Tk →∞ (9.41)

for k →∞. Let τ0 ∈ R and k0 ∈ N such that τ0 ∈ Jk for all k ≥ k0, then

Fk,τ0(0, 0) = 0 and κ2
k,τ0(0, 0) = 1

for every k ≥ k0 and for any ε > 0 and any T̄ > 0, there exists a k1 ≥ k0 such that

max
Ik×[αk,T̄ ]

κ2
k,τ0 < 1 + ε and max

[αk,T̄ ]
hk < Ch

√
1 + ε

for all k ≥ k1.

Proof. We follow the lines of [HS99, Lemma 4.3]. Let τ0 ∈ R and k0 ∈ N so that τ0 ∈ Jk
for all k ≥ k0. By definition,

Fk,τ0(0, 0)
(9.22)

= Fk(pk, 0)
(9.9)
= 0

and

κ2
k,τ0(0, 0)

(9.24)
= κ2

k(pk, 0)
(9.17)

=
1

λ2
k

κ2(pk, tk)
Def. 9.9

= 1 .

for every k ≥ k0. Let M > 0 be arbitrary. By the definition (9.6) of a type-II singularity,

there exist t̄ ∈ [0, T ) and p̄ ∈ S1 so that

κ2(p̄, t̄)(T − t̄) > 2M .

We fix t̄ and choose k1 ≥ k0, so that t̄ < T − 1/k and κ2(p̄, t̄)/k < M for all k ≥ k1. Then

κ2(p̄, t̄)

(
T − 1

k
− t̄
)

= κ2(p̄, t̄)(T − t̄)− 1

k
κ2(p̄, t̄) > M

and Definition 9.9 yields

Tk
Def. 9.9

= κ2(pk, tk)

(
T − 1

k
− tk

)
Def. 9.9
≥ κ2(p̄, t̄)

(
T − 1

k
− t̄
)
> M .

Since M was chosen arbitrarily, it follows that Tk →∞ and thus also λk = κ2(pk, tk)→∞
for k → ∞. Since tk ↗ T , we conclude that αk = −λ2

ktk → −∞ for k → ∞. For the

curvature estimate, it again follows from Definition 9.9 that

κ2(p, t)

(
T − 1

k
− t
)

Def. 9.9
≤ κ2(pk, tk)

(
T − 1

k
− tk

)
Def. 9.9

= Tk (9.42)

for all p ∈ S1, t ∈ [0, T − 1/k] and k ∈ N. Let ε > 0 and T̄ > 0 be given. Since Tk → ∞,

there exists again k1 ∈ N so that, for all k ≥ k1, T̄ < Tk and

0 <
T̄

Tk − T̄
< ε . (9.43)
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For τ ∈ [αk, T̄ ], it is t := tk + τ/λ2
k ∈ [0, T − 1/k), and we can use the scaling behaviour

of the curvature and (9.42) to estimate

κ2
k(p, τ)

(9.17)
=

1

λ2
k

κ2

(
p, tk +

τ

λ2
k

)
(9.42)

≤ T − 1/k − tk
T − 1/k − (tk + τ/λ2

k)

=
Tk

Tk − τ
≤ Tk
Tk − T̄

= 1 +
T̄

Tk − T̄
(9.43)
< 1 + ε (9.44)

for all p ∈ S1 and k ≥ k1. Hence,

max
Ik×[αk,T̄ ]

κ2
k,τ0

(9.25)

≤ max
S1×[αk,T̄ ]

κ2
k

(9.44)
< 1 + ε

and

max
[αk,T̄ ]

hk
Cor. 5.9
≤ Ch max

[αk,T̄ ]
|κk|max

(9.44)
< Ch

√
1 + ε

for all k ≥ max{k0, k1}.

Define

T∞ :=

{
0 for the type-I rescaling

∞ for the type-II rescaling.

Lemma 9.12. Let F : S1× [0, T ) → R2 be an embedded solution of (2.15) with initial

curve Σ0 and T < ∞. Let τ ∈ (−∞, T∞) and M, ε > 0. Then, there exists k0 ∈ N such

that for all k ≥ k0,

L(Σk
τ ) > M , A(Σk

τ ) > M

and

hk(τ) < ε

for the APCSF and for the LPCF if sup[0,T ) hlp < ∞. Moreover, let τ0 ∈ (−∞, T∞) and

let I ⊂ R be bounded and J ⊂ (−∞, T∞) be compact and k0 ∈ N so that I ⊂ Ik, τ0 ∈ Jk
and J ⊂ Jk. Then there exist c1 = c1(Σ0, τ0, τ) and c2 = c2(Σ0, τ0, τ) such that

c1|I| ≤ L(Fk,τ0(I, τ)) ≤ c2|I|

for all τ ∈ Jk and k ≥ k0, and there exists R = R(Σ0, C0, τ0, |I|, |J |) such that

Fk,τ0(I, τ) ⊂ BR(0)

for all τ ∈ J and k ≥ k0.

Proof. Let τ ∈ (−∞, T∞). Let k0 ∈ N so that τ ∈ Jk for all k ≥ k0. By the scaling

behaviour (9.13) of the length element, the behaviour of the length of the curve (see

Corollaries 3.5 and 3.6) and the behaviours (9.26) and (9.41) of λk,

L(Σk
τ ) =

∫
Σkτ

dH1 (9.13)
= λk

∫
Σ
t̄k+τ/λ2

k

dH1

= λkL
(

Σt̄k+τ/λ2
k

) Cors. 3.5,3.6
≥ λkL(Σ0)

(9.26),(9.41)−→ ∞
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for k →∞. For k ≥ k0, let Ωk
τ ⊂ R2 be the domain with Σk

τ = ∂Ωk
τ . Then

A(Σk
τ ) =

∫
Ωkτ

dH2 (9.11)
= λk

∫
Ω
t̄k+τ/λ2

k

dH2

= λkA(Σt̄k+τ/λ2
k
)

Cors. 3.5,3.6
≥ λkA(Σ0)

(9.26),(9.41)−→ ∞

for k →∞. The scaling behaviour (9.18) and the bound (3.10) for hap yield

hap,k(τ)
(9.18)

=
1

λk
hap

(
t̄k +

τ

λ2
k

)
(3.10)

≤
√
π

λk
√
A0
→ 0

for k →∞. Likewise, if sup[0,T ) hlp = c <∞, the scaling behaviour (9.19) for hlp implies

hlp,k(τ)
(9.19)

=
1

λk
hlp

(
t̄k +

τ

λ2
k

)
≤ c

λk
→ 0

for k → ∞. Let τ0 ∈ (−∞, T∞) and I ⊂ R be a bounded interval. Then there exists

k0 ∈ N so that I ⊂ Ik for all k ≥ k0. Corollary 5.9 and Lemmata 9.10 and 9.11 yield for

p ∈ I and for τ ∈ (τ0, T∞),

1

c(Σ0, τ0, τ)
vk,τ0(p, τ0)

Lems. 9.10,9.11
≤ exp

(
−c(Σ0)

∫ τ

τ0

(
κ2
k,τ0

)
max

(σ) dσ

)
vk,τ0(p, τ0)

Cor. 5.9
≤ vk,τ0(p, τ)

Cor. 5.9
≤ exp

(
c(Σ0)

∫ τ

τ0

(
κ2
k,τ0

)
max

(σ) dσ

)
vk,τ0(p, τ0)

Lems. 9.10,9.11
≤ c(Σ0, τ0, τ)vk,τ0(p, τ0)

and for τ ∈ (−∞, τ0),

c(Σ0, τ0, τ)vk,τ0(p, τ)
Lems. 9.10,9.11

≤ exp

(
−c(Σ0)

∫ τ0

τ

(
κ2
k,τ0

)
max

(σ) dσ

)
vk,τ0(p, τ)

Cor. 5.9
≤ vk,τ0(p, τ0)

Cor. 5.9
≤ exp

(
c(Σ0)

∫ τ0

τ

(
κ2
k,τ0

)
max

(σ) dσ

)
vk,τ0(p, τ)

Lems. 9.10,9.11
≤ 1

c(Σ0, τ0, τ)
vk,τ0(p, τ)

for all k ≥ k0. By (9.23), Fk,τ0( · , τ0) is an arclength parametrisation so that vk,τ0( · , τ0) ≡ 1

and in both above cases,

0 < c1(Σ0, τ0, τ) ≤ vk,τ0(p, τ) ≤ c2(Σ0, τ0, τ) <∞

for all p ∈ I, τ ∈ Jk and k ≥ k0. (In fact, the constants only depend on τ in case of a

type-II singularity and for τ ∈ (τ0,∞).) Moreover,

c1(Σ0, τ0, τ)|I| ≤ L(Fk,τ0(I, τ)) =

∫
I
vk,τ0(p, τ) dp ≤ c2(Σ0, τ0, τ)|I|
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for all τ ∈ Jk and k ≥ k0. Let J ⊂ (−∞, T∞) be compact and k1 ≥ k0 so that J ⊂ Jk for

all k ≥ k1. By the above estimate,

c1(Σ0, τ0, J)|I| ≤ L(Fk,τ0(I, τ)) ≤ c2(Σ0, τ0, J)|I| (9.45)

for all τ ∈ J and k ≥ k1. By Lemmata 9.10 and 9.11,

Fk,τ0(0, τk)
Lem. 9.10∈ B3C0(0) or Fk,τ0(0, 0)

Lem. 9.11
= 0 (9.46)

where τk ∈ [−C2
0/4, 1/4], and by Lemma 3.13,

‖Fk,τ0(0, τk)− Fk,τ0(0, τ)‖ ≤ 2R|τk − τ | or ‖Fk,τ0(0, 0)− Fk,τ0(0, τ)‖ ≤ 2R|τ |

with R = R
(
Σ0, sup[αk,τ2] hk

)
. In view of the upper bound on hk from Lemmata 9.10

and 9.11, and utilising (9.45) and (9.46), we can choose R = R(Σ0, C0, τ0, I, J) > 0 to

obtain

Fk,τ0(I, τ) ⊂ BR(0)

for all τ ∈ J and k ≥ k1.

9.2 Convergence

In this section we show that the sequence (9.22) of rescaled embeddings converges locally

in the domain of definition and the ambient space, smoothly along a subsequence to a

maximal, embedded, convex or concave, smooth, ancient solutions.

For k ∈ N, we define the intervals

Jk := [αk, Tk]

{
⊂ Jk ⊂ (−∞, 0) for the type-I rescaling

= Jk ⊂ R for the type-II rescaling,
(9.47)

where, for the type-I rescaling, (Tk)k∈N is a sequence with

αk < Tk ↗ 0 (9.48)

for k →∞. For the type-II rescaling, (Tk)k∈N is defined as in Definition 9.9.

Theorem 9.13 (Convergence of the rescaling). Let F : S1× [0, T ) → R2 be a smooth,

embedded solution of (2.15) with initial curve Σ0 and T < ∞. Let τ0 ∈ (−∞, T∞) and

k0 ∈ N such that τ0 ∈ Jk for all k ≥ k0. Then, for the rescaling (9.11), the sequence of

embeddings (
Fk,τ0 : Ik × Jk → R2

)
k≥k0

(see (9.22)) converges for k →∞ along a subsequence, uniformly and smoothly on compact

subsets I × J ⊂ R × (−∞, T∞) with 0 ∈ I to a maximal, smooth, ancient limit solution

F∞,τ0 : R× (−∞, T∞)→ R2 which satisfies

∂F∞,τ0
∂τ

(p, τ) =
(
h∞(τ)− κ∞,τ0(p, τ)

)
ν∞,τ0(p, τ) , (9.49)
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where

hap,∞(τ) = 0 and hlp,∞(τ) ≥ 0

for τ ∈ (−∞, T∞). Moreover, F∞,τ0( · , τ0) is an arc length parametrisation and L(Σ∞,τ0τ ) =

∞ for all τ ∈ (−∞, T∞). For the type-I rescaling in case of a type-I singularity, T∞ = 0

and there exists a time τ∞ ∈ [−C2
0/4,−1/4] such that

F∞,τ0(0, τ∞) ∈ B3C0(0) and |κ∞,τ0(0, τ∞)| = 1

as well as

sup
R×(−∞,−δ2]

|κ∞,τ0 | ≤
C0

δ
and sup

(−∞,−δ2]

hlp,∞ ≤
ChC0

δ

for all δ < 0. For the type-II rescaling in case of a type-II singularity, T∞ =∞ as well as

F∞,τ0(0, 0) = 0 , sup
R×R
|κ∞,τ0 | = |κ∞,τ0(0, 0)| = 1 and sup

R
hlp,∞ ≤ Ch .

Remark 9.14. For the APCSF, the limit solution satisfies CSF, that is,

∂F∞,τ0
∂τ

(p, τ) = −κ∞,τ0(p, τ)ν∞,τ0(p, τ)

for (p, τ) ∈ R× (−∞, T∞).

Proof of Theorem 9.13. The proof follows similar lines to those of [Eck04, Remark 4.22 (2)]

and [MB15, Proposition 4.7]. Let (pk, tk)k∈N be a sequence in S1× [0, T ) according to

Definition 9.7, 9.8 or 9.9. By Lemma 9.12, L(Σk
αk

)→∞ and A(Σk
αk

)→∞ for k →∞, so

that we can find a subsequence (pk, tk)k∈N with

Ik ⊂ Ik+1 and Ik → (−∞,∞) (9.50)

for all k ∈ N and for k →∞ (see the definition (9.21) of Ik). By the behaviours of αk and

Tk (see (9.26) and (9.48) for a type-I singularity and (9.41) for a type-II singularity), we

can find a subsubsequence (pk, tk)k∈N so that

Jk ⊂ Jk+1 and Jk → (−∞, T∞) (9.51)

for all k ∈ N and for k → ∞ (see the definition (9.47) of Jk). Let τ0 ∈ (−∞, T∞),

0 ∈ I ⊂ R and J ⊂ (−∞, T∞), I and J intervals, and k0 ∈ N so that τ0 ∈ Jk, I ⊂ Ik and

J ⊂ Jk for all k ≥ k0. We have that the first spatial derivative∥∥∥∥∥∂F̃k,τ0∂s

∥∥∥∥∥ = ‖τ k,τ0‖ = 1

and, by Lemmata 9.10 and 9.11,

max
(p,τ)∈I×J

|κk,τ0(p, τ)|
Lems. 9.10,9.11

≤ c

for all k ≥ k0, where c = c(C0, Tk0) for the type-I rescalings. With the above uniform bound

for the curvature, we can apply Corollary 4.7 and have bounded derivatives ∂m

∂tm
∂n

∂snκk,τ0
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of the curvature on I×J for all n,m ∈ N∪{0} and k ≥ k0 as well, where the bounds only

depend on n and Σ0, and also C0 and Tk0 for the type-I rescalings. Thus, all derivatives

of the curvature are uniformly bounded on I × J . By Lemma 9.12, there exists R =

R(Σ0, C0, τ0, I, J) > 0 so that

Fk,τ0(I, τ) ⊂ BR(0)

for all τ ∈ J and k ≥ k0. For every n,m ∈ N ∪ {0} and k ≥ k0, the functions

F
(n,m)
k,τ0

:=
∂m

∂tm
∂n

∂sn
F̃k,τ0

are bounded and equicontinuous in k by the fundamental theorem of calculus. For each

n,m ∈ N ∪ {0}, the Arzelà–Ascoli theorem, Theorem B.12, yields that sequence(
F

(n,m)
k,τ0

: I × J → R2
)
k≥k0

has a uniformly converging subsequence for each n,m ∈ N∪{0}. Theorem B.14 employed

to the functions F
(n,m)
k,τ0

for every n,m ∈ N∪{0} implies that
(
Fk,τ0

)
k≥k0

converges smoothly

in space and time to the smooth limit

F∞,τ0 : I × J → R2 .

We pick sequences (Il)l∈N and (Jl)l∈N, with

0 ∈ Il ⊂ Il+1 ⊂ R and Jl ⊂ Jl+1 ⊂ (−∞, T∞)

for all l ∈ N and

Il → R and Jl → (−∞, T∞) (9.52)

for l→∞. By (9.50) and (9.51), we can repeat the above argument for every l ∈ N. The

sequence (
F

(n,m)
k,τ0

: Il × Jl → R2
)
k≥kl

coincides with
(
F

(n,m)
k,τ0

)
k≥kl−1

on Il−1×Jl−1. By the same argument as above, the sequence(
Fk,τ0

)
k≥kl

has a subsequence that converges smoothly in space and time to the smooth

limit

F∞,τ0,l : Il × Jl → R2

which equals F∞,τ0,l−1 on Il−1 × Jl−1. Hence, the diagonal subsequence(
Fk,τ0 : Il × Jl → R2

)
k≥kl

converges for k, l→∞ smoothly in space and time to the smooth limit flow

F∞,τ0 : R× (−∞, T∞)→ R2

which equals F∞,τ0,l on Il × Jl for every l ∈ N. In the above step we have applied

the limit behaviours (9.52) of Il and Jl, and where T∞ = 0 for the type-I rescalings

(see (9.48)) and T∞ =∞ for the type-II rescaling (see (9.41)). Since Fk,τ0( · , τ0) is an arc
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length parametrisation for every k ∈ N, F∞,τ0( · , τ0) is as well by the smooth convergence.

Lemma 9.12 yields for bounded intervals I ⊂ R that

c1(Σ0, τ0, τ)|I| ≤ L(F∞,τ0(I, τ)) ≤ c2(Σ0, τ0, τ)|I|

for all τ ∈ (−∞, T∞), which implies L(Σ∞,τ0τ ) = L(F∞,τ0(R, τ)) =∞.

For a type-I singularity, by Lemma 9.10, the sequence (τk)k∈N is bounded and has a

convergent subsequence with

τk → τ∞ ∈
[
− C2

0

2(Ch + 1)
,− 1

2(Ch + 1)

]
so that

κ2
∞,τ0(0, τ∞) = 1 , F∞,τ0(0, τ∞) ∈ B3C0(0) and sup

R×(−∞,−δ2]

|κ∞,τ0 | ≤
C0

δ

for all δ < 0. For a type-II singularity, Lemma 9.11 implies that

F∞,τ0(0, 0) = 0 and κ2
∞,τ0(0, 0) = 1 (9.53)

and that for any ε > 0 and any T̄ > 0,

sup
R×(−∞,T̄ ]

κ2
∞,τ0 ≤ 1 + ε .

Sending T̄ →∞ and ε→ 0 yields

sup
R×R

κ2
∞,τ0 ≤ 1

(9.53)
= κ2

∞,τ0(0, 0) .

The evolution equation (9.49) for the APCSF follows from the behaviour of the global

term hap,k for k → ∞ (see Lemma 9.12). For the LPCF, by Lemmata 3.10, 9.10, 9.11

and 9.12,

0
Lems. 3.10,9.12

≤ hlp,∞(τ)

Lems. 9.10,9.11
≤


ChC0

δ
for τ ∈ (−∞,−δ2] ⊂ (−∞, 0) for the type-I rescaling

Ch for τ ∈ R for the type-II rescaling.

9.3 Limit flow

In this section, we study the limit flows obtained in Theorem 9.13 and show in particular,

that each curve is strictly convex or concave.

Lemma 9.15 (Preservation of strict convexity/concavity of the limit flow). Let F : R ×
[0, T ) → R2 be a solution of (9.49) and let κ > (<) 0 on Σ0. Then κ > (<) 0 on Σt for

all t ∈ (0, T ).
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Proof. Assume that there exists a point (p0, t0) ∈ R×(0, T ) with κ(p0, t0) = 0. We proceed

as in Corollary 4.3 on the interval I := (p0 − 1, p0 + 1) ⊂ R. We estimate

|(h− κ)κ|
Cor. 5.9
≤ (Ch + 1)κ2

max <∞

on I × [0, T ) and employ the strong maximum principle, Theorem B.17, with respect

to the evolution equation (4.1) of κ. It follows that κ ≡ 0 on I × [0, t0], which is a

contradiction.

Proposition 9.16 (Convexity/Concavity of the limit flows). Let F : S1×(0, T )→ R2 be a

smooth, embedded solution of (2.15) with T <∞. Each limit flow F∞,τ0 : R×(−∞, T∞)→
R2, as obtained in Theorem 9.13, is either strictly convex or strictly concave.

Proof of Proposition 9.16. We follow the lines of [Alt91, Theorems 5.14 and 7.7]. A similar

proof can be found in [Man11, Proposition 4.3.2]. Corollary 5.9 implies

d

dt

∫
Σt

|κ| dH1 = −2
∑

{s∈s(S1, t) |κ(s,t)=0}

∣∣∣∣∂κ∂s (s, t)

∣∣∣∣ ≤ 0 (9.54)

for t ∈ (0, T ). Thus, the integral
∫

Σt
|κ| dH1 is decreasing in time on (0, T ). We deduce∫

Σt

|κ| dH1 → C <∞ (9.55)

for t→ T . Let t1, t2 ∈ (0, T ). Integrating (9.54) yields∫
Σt2

|κ| dH1 −
∫

Σt1

|κ| dH1 = −2

∫ t2

t1

∑
{s∈s(S1, t) |κ(s,t)=0}

∣∣∣∣∂κ∂s (s, t)

∣∣∣∣ dt . (9.56)

We rescale according to (9.11). Let τ1, τ2 ∈ R with τ1 < τ2 and k0 ∈ N so that [τ1, τ2] ⊂ Jk
for all k ≥ k0 (see (9.47) for the definition of Jk). Then

lim
k→∞

t̄k +
τi
λ2
k

= T (9.57)

for all k ≥ k0 and for i = 1, 2 (see (9.10) for the definition of t̄k). Since the integral∫
Σt

|κ| dH1 =
∑
S∈St

∣∣∣∣∣
∫
F̃ (S,t)

κ dH1

∣∣∣∣∣ =
∑
S∈St

|θ(sS1 , sS2 , t)|

is the sum over the absolute value of the angles between inflection points, it is scaling

invariant and (9.56) also holds for the rescaled flow, that is,

2

∫ τ2

τ1

∑
{s∈sk(S1,τ) |κk(s,τ)=0}

∣∣∣∣∂κk∂s (s, τ)

∣∣∣∣ dτ
(9.56)

=

∫
Σkτ1

|κk| dH1 −
∫

Σkτ2

|κk| dH1

(9.11)
=

∫
Σ
tk+τ1/λ

2
k

|κ| dH1 −
∫

Σ
tk+τ2/λ

2
k

|κ| dH1 (9.58)
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for all k ≥ k0. Taking the limit k →∞ in (9.58) yields

0 ≤ 2 lim
k→∞

∫ τ2

τ1

∑
{s∈sk(S1,τ) |κk(s,τ)=0}

∣∣∣∣∂κk∂s (s, τ)

∣∣∣∣ dτ


(9.58)
= lim

k→∞

∫
Σ
tk+τ1/λ

2
k

|κ| dH1 −
∫

Σ
tk+τ2/λ

2
k

|κ| dH1


(9.55),(9.57)

= C − C = 0 . (9.59)

Let 0 ∈ I ⊂ R be a bounded interval, τ0 ∈ (−∞, T∞) and k1 ≥ k0 so that I ⊂ Ik and

τ0 ∈ Jk for all k ≥ k1. By Lemma 9.12,

c1(Σ0, τ0, τ1, τ2)|I| ≤ L(Fk,τ0(I, τ)) ≤ c2(Σ0, τ0, τ1, τ2)|I| (9.60)

for all τ ∈ [τ1, τ2]. By Theorem 9.13, there exists a subsequence (pk, tk)k≥k1 so that the

embeddings (Fk,τ0 : Ik×Jk → R2)k≥k1 converge smoothly on I×[τ1, τ2] along a subsequence

to a smooth flow F∞,τ0 : R× (−∞, T∞)→ R2. Observe that

Ī :=

[
−c1|I|

2
,
c1|I|

2

]
(9.60)
⊂

[
−L
(
Fk,τ0(I, τ)

)
2

,
L
(
Fk,τ0(I, τ)

)
2

]
(9.15)

= sk,τ0(I, τ)

(9.22)
=

[
−L

(
Fk
(
s−1
k (I, τ0), τ

))
2

,
L
(
Fk
(
s−1
k (I, τ0), τ

))
2

]
(9.15)
⊂ sk(S1, τ) (9.61)

for all k ≥ k1. Fatou’s lemma, Lemma B.9, (9.59) and (9.61) yield

0 ≤
∫ τ2

τ1

∑
{s∈Ī |κ∞,τ0 (s,τ)=0}

∣∣∣∣∂κ∞,τ0∂s
(s, τ)

∣∣∣∣ dτ
Thm. 9.13

=

∫ τ2

τ1

lim inf
k→∞

 ∑
{s∈Ī |κk,τ0 (s,τ)=0}

∣∣∣∣∂κk,τ0∂s
(s, τ)

∣∣∣∣
 dτ

Lem. B.9
≤ lim inf

k→∞

∫ τ2

τ1

∑
{s∈Ī |κk,τ0 (s,τ)=0}

∣∣∣∣∂κk,τ0∂s
(s, τ)

∣∣∣∣ dτ
(9.61)

≤ lim inf
k→∞

∫ τ2

τ1

∑
{s∈sk(S1,τ) |κk(s,τ)=0}

∣∣∣∣∂κk∂s (s, τ)

∣∣∣∣ dτ (9.59)
= 0 .

Since I ⊂ R was chosen arbitrarily,∫ τ2

τ1

∑
{s∈R |κ∞,τ0 (s,τ)=0}

∣∣∣∣∂κ∞,τ0∂s
(s, τ)

∣∣∣∣ dτ = 0 .

We send τ1 → −∞ and τ2 → T∞ and obtain, for almost every τ ∈ (−∞, T∞),∑
{s∈R |κ∞,τ0 (s,τ)=0}

∣∣∣∣∂κ∞,τ0∂s
(s, τ)

∣∣∣∣ = 0 . (9.62)
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Thus, for almost every τ ∈ (−∞, T∞), ∂
∂sκ∞,τ0(s, τ) = 0 whenever κ∞,τ0(s, τ) = 0. Fix

τ3 ∈ (−∞, T∞), where (9.62) holds. Since F∞,τ0 satisfies (9.49) with κ∞,τ0 6≡ 0, we can

apply Corollary 5.7 to obtain that there exists no points s ∈ R with κ∞,τ0(s, τ) = 0 for

τ ∈ (τ3, T∞). By Lemma 9.15, strict positivity or negativity of the curvature is preserved

under (9.49), so that κ∞,τ0 > 0 or κ∞,τ0 < 0 on Σ∞,τ0τ for every τ ∈ (τ3, T∞). Now we can

send τ3 → −∞ so that, for every time τ ∈ (−∞, T∞), the curve Σ∞,τ0τ is strictly convex

or concave.

9.4 Type-I singularities for the APCSF

In this section, we only consider the APCSF. We assume that a singularity develops in

finite time and is of type I, that is, it satisfies condition (9.5). This setting has already been

exploited in a similar fashion in [MB14, Chapter 7]. We refer also to [Whi97, Section 11]

for a characterisation of singularities for almost Brakke flows with bounded global terms,

using a monotonicity formula and a result of [Ilm95].

Proposition 9.17 (Structure equation for homothetically shrinking solutions of CSF,

see [Eck04, p. 13] or [Man11, Proposition 1.4.1]). Let S ∈ {S1,R}. If an initial curve

F0 : S → R2 satisfies

κ(p) = λ 〈F0(p)− x0,ν0(p)〉

at every point p ∈ Σ for some constant λ > 0 and x0 ∈ R2, then it generates a homotheti-

cally shrinking solution of CSF.

Proposition 9.18 (Shape of the limit flow for type-I singularities for the APCSF). Let

F : S1× [0, T ) → R2 be a smooth, embedded solution of the APCSF with initial curve Σ0

and T < ∞. For the type-I rescaling in case of a type-I singularity, each limit F∞,τ0 :

R× (−∞, 0)→ R2, as obtained in Theorem 9.13, is a homothetically shrinking solution of

CSF. Moreover, for all τ < 0 and R > 0, there exists a constant C = C(Σ0, T,R, τ) such

that H1(Σ∞,τ0τ ∩BR(0)) ≤ C.

Proof. Let x0 ∈ R2 be arbitrary. For t ∈ [0, T ), define the monotonicity quantity

Θ(x0,T )(t) := f(t)

∫
Σt

Φ(x0,T )(x, t) dH1 . (9.63)

The monotonicity formula, Theorem 8.5, yields

d

dt
Θ(x0,T )(t) ≤ 0 (9.64)

for t ∈ (0, T ). Hence, the monotonicity quantity is monotonically decreasing and strictly

positive, so that the limit

lim
t→T

Θ(x0,T )(t)

exists and for any sequence (tk)k∈N with tk ↗ T for k →∞,

lim
t→T

Θ(x0,T )(t) = lim
k→∞

Θ(x0,T )(tk) . (9.65)
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Since the global term hap is bounded by (3.10), we can apply Lemma 8.3 to conclude that

f ∈ [c, 1] (9.66)

on [0, T ) with c = c(Σ0, T ) > 0 and

lim
k→∞

f(tk) = lim
t→T

f(t) =: c0

(9.66)
∈ [c, 1] . (9.67)

Since the right-hand side of (9.67) is independent of the chosen sequence, the left-hand

side is. For k ∈ N, y = λk(x− x0) ∈ R2 and τ = λ2
k(t− T ) ∈ [αk, 0), Lemma 8.2 rescales

the backward heat kernel according to

Φ(0,0)(y, τ) =
1

λk
Φ(x0+0/λk,T+0/λ2

k)(x, t) =
1

λk
Φ(x0,T )(x, t) . (9.68)

The auxiliary function is scaling invariant, that is,

fk(τ) := exp

(
−1

2

∫ τ

αk

h2
k(σ) dσ

)
= exp

(
−1

2

∫ T+τ/λ2
k

0
h2(ρ) dρ

)
= f

(
T +

τ

λ2
k

)
(9.66)
∈ [c, 1] , (9.69)

where we substituted σ = T + ρ/λ2
k and dσ = λ2

k dρ. Let τ ∈ (−∞, 0) and k0 ∈ N so that

τ ∈ [αk, 0) for k ≥ k0. For the sequence(
tk := T +

τ

λ2
k

)
k∈N

,

we obtain

c0
(9.67)

= lim
k→∞

f(tk) = lim
k→∞

f

(
T +

τ

λ2
k

)
(9.69)

= lim
k→∞

fk(τ)

Since the left-hand side is independent of τ , the right-hand side is and

c0 = lim
k→∞

f(tk) = lim
k→∞

fk(τ) = f∞(τ) (9.70)

for any sequence (tk)k∈N and any τ ∈ (−∞, 0). Let (λk)k∈N be a sequence of positive

real numbers with λk → ∞ for k → ∞. We rescale the flow according to the type-I

rescaling (9.7) with respect to the sequence (λk)k∈N and consider the rescaled curves Σk
τ

for τ ∈ [αk, 0). We observe that we receive a factor of λk from the scaling behaviour (9.13)

of the length element, and a factor of 1/λk from the scaling behaviour (9.68) of the

backward heat kernel, and no scaling factor from the auxiliary function by the scaling

invariance (9.69). Hence, the monotonicity quantity translates, for tk := T + τ/λ2
k, by

Θ(x0,T )(tk)
(9.63)

= f(tk)

∫
Σtk

Φ(x0,T )(x, tk) dH1

= fk(τ)

∫
Σkτ

Φ(0,0)(y, τ) dH1 =: Θk
(0,0)(τ) . (9.71)
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Lemma 9.2 implies that there exists a singular point x0 ∈ R2 and a blow-up sequence

(pk, tk)k∈N with

F (pk, tk)→ x0 and |κ(pk, tk)| = |κ|max(tk)→∞

for k → ∞. Let τ0 ∈ (−∞, 0) and k0 ∈ N so that τ0 ∈ [αk, 0) for k ≥ k0. We rescale

according to Definition 9.7 with respect to x0 and (pk, tk)k∈N and consider the rescaled

embeddings Fk,τ0 : Ik × [αk, 0) → R2 (see (9.22)). Let 0 ∈ I ⊂ R be a bounded interval,

[τ1, τ2] ⊂ (−∞, 0) and k1 ≥ k0 so that I ⊂ Ik and [τ1, τ2] ⊂ [αk, 0) for all k ≥ k1. Since

κk,τ0 = κk on Fk,τ0(I, τ),

Fk,τ0(I, τ) ⊂ Fk(S1, τ) = Σk
τ (9.72)

and the embeddings Fk suffice (2.15) (see (9.20)), we can apply the monotonicity for-

mula 8.5 and estimate similar to [Bak10, Proposition 6.6] or [Coo11, Proposition 5.8],∫ τ2

τ1

fk
2

∫
Fk,τ0 (I,τ)

(∥∥∥∥(κk,τ0 − hk)νk,τ0 +
y⊥

−2τ

∥∥∥∥2

+

∥∥∥∥κk,τ0 +
y⊥

−2τ

∥∥∥∥2
)

Φ(0,0) dH1dτ

(9.72)

≤
∫ τ2

τ1

fk
2

∫
Σkτ

(∥∥∥∥(κk − hk)νk +
y⊥

−2τ

∥∥∥∥2

+

∥∥∥∥κk +
y⊥

−2τ

∥∥∥∥2
)

Φ(0,0) dH1dτ

Thm. 8.5
= Θk

(0,0)(τ1)−Θk
(0,0)(τ2)

(9.71)
= Θ(x0,T )

(
T +

τ1

λ2
k

)
−Θ(x0,T )

(
T +

τ2

λ2
k

)
(9.73)

for all k ≥ k1. Since

T +
τi
λ2
k

→ T

for k → ∞ and i = 1, 2, and by the existence of the limit (9.65), the right-hand side

of (9.73) converges to 0 for k →∞. By Theorem 9.13, the sequence (Fk,τ0)k∈N converges

smoothly on I × [τ1, τ2] to a smooth flow F∞,τ0 : R × (−∞, 0) → R2. For τ ∈ [τ1, τ2],

Lemma 9.12 and Fatou’s lemma, Lemma B.9, imply

lim inf
k→∞

∫
Fk,τ0 (I,τ)

(∥∥∥∥(κk,τ0 − hk)νk,τ0 +
y⊥

−2τ

∥∥∥∥2

+

∥∥∥∥κk,τ0 +
y⊥

−2τ

∥∥∥∥2
)

Φ(0,0) dH1

= lim inf
k→∞

∫
I

(∥∥∥∥(κk,τ0 − hk)νk,τ0 +
y⊥

−2τ

∥∥∥∥2

+

∥∥∥∥κk,τ0 +
y⊥

−2τ

∥∥∥∥2
)

Φ(0,0)vk,τ0dp

Lem. B.9
≥

∫
I

lim inf
k→∞

[(∥∥∥∥(κk,τ0 − hk)νk,τ0 +
y⊥

−2τ

∥∥∥∥2

+

∥∥∥∥κk,τ0 +
y⊥

−2τ

∥∥∥∥2
)

Φ(0,0)vk,τ0

]
dp

Lem. 9.12
=

Thm. 9.13
2

∫
I

∥∥∥∥κ∞,τ0 +
y⊥

−2τ

∥∥∥∥2

Φ(0,0)v∞,τ0 dp

= 2

∫
F∞,τ0 (I,τ)

∥∥∥∥κ∞,τ0 +
y⊥

−2τ

∥∥∥∥2

Φ(0,0) dH1 ≥ 0 . (9.74)

Thus, (9.70), (9.73) for k →∞ and (9.74) yield

0 ≤
∫ τ2

τ1

c0

∫
F∞,τ0 (I,τ)

∥∥∥∥κ∞,τ0 +
y⊥

−2τ

∥∥∥∥2

Φ(0,0) dH1dτ ≤ 0 .
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Since I ⊂ R was chosen arbitrarily, we deduce∫ τ2

τ1

∫
Σ
∞,τ0
τ

∥∥∥∥κ∞,τ0 +
y⊥

−2τ

∥∥∥∥2

Φ(0,0) dH1dτ = 0 .

Hence, for almost every τ ∈ [τ1, τ2] and for almost every y ∈ Σ∞,τ0τ ,∥∥∥∥κ∞,τ0(y, τ) +
y⊥

−2τ

∥∥∥∥2

= 0 .

By Theorem 9.13, F∞,τ0 is smooth in space and time, so the above equation holds for

every τ ∈ [τ1, τ2] and every y ∈ Σ∞,τ0τ . By Proposition 9.17, the limit curve Σ∞,τ0τ is a

homothetically shrinking solution on the interval (τ1, 0). Sending τ1 → −∞ yields the

claim for all negative times.

For the area estimate, let again be I ⊂ R a bounded interval, R > 0 and τ ∈ (−∞, 0).

Then there exists again k1 ≥ k0 so that I ⊂ Ik, τ ∈ [αk, 0) and

T − τ

λ2
k

≥ T

2
(9.75)

for all k ≥ k1. By (9.64), the monotonicity quantity is decreasing in time and we can

estimate with the definition (8.1) of the backward heat kernel and the behaviour of the

length of the curve (see Corollary 3.5),∫
Fk,τ0 (I,τ)

Φ(0,0)(y, τ) dH1
(9.72)

≤
∫

Σkτ

Φ(0,0)(y, τ) dH1

(9.66),(9.69)

≤
(9.71)

1

c

∫
Σ
T−τ/λ2

k

Φ(x0,T )

(
x, T − τ

λ2
k

)
dH1

(9.64),(9.75)

≤ 1

c

∫
ΣT/2

Φ(x0,T )

(
x,
T

2

)
dH1

(8.1)
=

1

c
√

4π(T − T/2)

∫
ΣT/2

exp

(
− ‖x− x0‖2

4(T − T/2)

)
dH1

≤
LT/2

c
√

2πT

Cor. 3.5
≤ L0

c
√

2πT
=: C(Σ0, T ) . (9.76)

Like before, Theorem 9.13 and Fatou’s lemma, Lemma B.9, imply

C
(9.76)

≥ lim inf
k→∞

∫
Fk,τ0 (I,τ)

Φ(0,0) dH1 = lim inf
k→∞

∫
I

Φ(0,0)vk,τ0 dp

Lem. B.9
≥

∫
I

lim inf
k→∞

(
Φ(0,0)vk,τ0

)
dp

Thm. 9.13
=

∫
I

Φ(0,0)v∞,τ0 dp

=

∫
F∞,τ0 (I,τ)

Φ(0,0) dH1 (9.77)
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and the definition (8.1) of the backward heat kernel yields

C
(9.77)

≥
∫
F∞,τ0 (I,τ)∩BR(0)

Φ(0,0)(y, τ) dH1

(8.1)
=

1√
−4πτ

∫
F∞,τ0 (I,τ)∩BR(0)

exp

(
−‖y‖

2

−4τ

)
dH1

≥ 1√
−4πτ

∫
F∞,τ0 (I,τ)∩BR(0)

exp

(
− R2

−4τ

)
dH1

=
1√
−4πτ

exp

(
− R2

−4τ

)
H1(F∞,τ0(I, τ) ∩BR(0)) .

Since I ⊂ R was chosen arbitrarily,

H1(Σ∞,τ0τ ∩BR(0)) ≤ C
√
−4πτ exp

(
R2

−4τ

)
≤ C(Σ0, T,R, τ)

holds for all τ ∈ (−∞, 0).

Theorem 9.19 (Homothetically shrinking solutions of CSF, Abresch–Langer [AL86, The-

orem A] see also [Hal12, Theorem 5.1] and [Man11, Proposition 3.4.1]). Let S ∈ {R/Z,R}
and let F : S → R2 be a unit speed curve representing a homothetic solution of the curve

shortening flow. If S = R/Z, then F (R/Z) is

(i) an m-covered circle, or

(ii) a member of the family of Abresch–Langer curves.

If S = R, then F (R) is

(iii) a line R× {0}, or

(iv) a curve whose image is dense in an annulus of R2.

Theorem 9.20 (Nonexistence of type-I singularities for the APCSF). Let F : S1×(0, T )→
R2 be a smooth, embedded solution of the APCSF with T <∞. Then a type-I singularity

cannot form at T .

Proof. We follow the lines of [MB15, Proposition 4.12]. Assume, that a type-I singularity

occurs at time T . Lemma 9.2 implies that there exists a singular point x0 ∈ R2 and a cor-

responding blow-up sequence (pk, tk)k∈N. We rescale according to the type-I rescaling 9.7

with respect to x0 and (pk, tk)k∈N. For τ0 ∈ (−∞, 0), Theorem 9.13 yields that the rescaled

embedding Fk,τ0 : Ik × Jk → R2 (see (9.22)) converge on compact subsets in the domain

of definition and the ambient space to a curve shortening flow F∞,τ0 : R × (∞, 0) → R2

with

1. L(Σ∞,τ0τ ) =∞ for all τ ∈ (−∞, 0), and

2. κ∞,τ0 6≡ 0 on R× (−∞, 0).

By Theorem 9.18, F∞,τ0 is
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3. a homothetically shrinking solution, and

4. H1(Σ∞,τ0τ ∩BR(0)) ≤ C(Σ0, T,R, τ) for all τ < 0 and R > 0.

Property 3 implies that Σ∞,τ0τ , τ ∈ (−∞, 0), is one of the four types of homothetically

shrinking solutions listed in Theorem 9.19. But property 1 contradicts (i) and (ii), prop-

erty 2 contradicts (iii), and property 4 contradicts (iv). Thus, the singularity could not

have been of type I.

9.5 Collapsed singularities

We say that a singularity is collapsed, if infp,q∈R(d∞,τ0/l∞,τ0)(p, q, τ) = 0 for every time

τ ∈ (−∞, T∞). In this section, we rule out collapsed singularities.

Theorem 9.21 (Non-existence of collapsed singularities). Let Σ0 be a smooth, embedded

curve satisfying θmin ≥ −π, and let F : S1× [0, T ) → R2 be a solution of (2.15) with

initial curve Σ0 and T < ∞. Then every limit flow F∞,τ0 : R × (−∞, T∞) → R2, as

obtained in Theorem 9.13, satisfies infp,q∈R(d∞,τ0/l∞,τ0)(p, q, τ) ≥ C∗, where C∗ is given

in Theorem 7.21, at any time τ ∈ (−∞, T∞). Hence, the singularity cannot be collapsed.

Proof. We follow the idea of [Hui95, Theorem 2.4]. By Proposition 4.9, the curvature

blows up for time approaching T < ∞. We rescale according to (9.11) and consider the

rescaled embedding Fk : S1× Jk → R2. For k ∈ N, p, q ∈ S1 and τ ∈ Jk, we obtain

dk(p, q, τ) = λkd

(
p, q, t̄k +

τ

λ2
k

)
lk(p, q, τ) = λkl

(
p, q, t̄k +

τ

λ2
k

)
L(Σk

τ ) = λkL(Σt̄k+τ/λ2
k
)

and, by definition (7.1) of ψ,

ψk(p, q, τ) = λkψ

(
p, q, t̄k +

τ

λ2
k

)
.

Hence, the ratio d/ψ is scaling invariant and Theorem 7.21 implies

min
S1×S1×Jk

dk
ψk

(9.10)

≥ min
S1×S1×[0,T )

d

ψ

Thm. 7.21
≥ C∗ (9.78)

for all k ∈ N. Let τ0 ∈ (−∞, T∞) and k0 ∈ N so that τ0 ∈ Jk for k ≥ k0. We consider the

embeddings Fk,τ0 : Ik × Jk → R2 (see (9.22)). Since

Fk,τ0(Ik, τ)
(9.22)

= Fk
(
s−1
k (Ik, τ0), τ

)
⊂ Fk

(
S1, τ

)
= Σk

τ

for all τ ∈ Jk and k ≥ k0, we obtain

min
Ik×Ik×Jk

dk,τ0
ψk,τ0

≥ min
S1×S1×Jk

dk
ψk

(9.78)

≥ C∗ (9.79)
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for all k ≥ k0, where

ψk,τ0(p, q, t)
(7.1)
=

L(Σk
τ )

π
sin

(
πlk,τ0(p, q, t)

L(Σk
τ )

)
. (9.80)

Let [p, q] ⊂ R and τ ∈ (−∞, T∞). Then there exists k1 ≥ k0 so that [p, q] ⊂ Ik and

τ ∈ Jk for all k ≥ k1. For k1 ≤ k ≤ ∞, Fk,τ0( · , τ0) is an arc length parametrisation (see

also (9.23) and Theorem 9.13), that is,

lk,τ0(p, q, τ0)
(9.22)

= lk
(
s−1
k (p, τ0), s−1

k (q, τ0), τ0

)
=

∫ s−1
k (q,τ0)

s−1
k (p,τ0)

vk(r, τ0) dr

=

∫ s−1
k (q,τ0)

0
vk(r, τ0) dr −

∫ s−1
k (p,τ0)

0
vk(r, τ0) dr

(A.2)
= sk

(
s−1
k (q, τ0), τ0

)
− sk

(
s−1
k (p, τ0), τ0

)
= q − p .

Lemma 9.12 implies

lk,τ0(p, q, τ) ≤ c2(Σ0, τ0, τ)|q − p|

for k ≥ k1 and
πlk,τ0(p, q, τ)

L(Σk
τ )

→ 0

for k →∞. Since sin(x)/x→ 1 for x→ 0,

ψk,τ0
lk,τ0

(p, q, τ)
(9.80)

=
L(Σk

τ )

πlk,τ0(p, q, τ)
sin

(
πlk,τ0(p, q, τ)

L(Σk
τ )

)
→ 1 (9.81)

for k → ∞. By Theorem 9.13, the embeddings (Fk,τ0)k≥k2 converge uniformly and

smoothly along a subsequence on [p, q]× {τ} to a smooth flow F∞,τ0 . In particular,

lk,τ0(p, q, τ)→ l∞,τ0(p, q, τ) and dk,τ0(p, q, τ)→ d∞,τ0(p, q, τ) (9.82)

for k →∞. Hence

C∗
(9.79)

≤ dk,τ0
ψk,τ0

(p, q, τ) =
dk,τ0
lk,τ0

(p, q, τ)
lk,τ0
ψk,τ0

(p, q, τ)
(9.82),(9.81)−→ d∞,τ0

l∞,τ0
(p, q, τ) .

for k →∞. Since p, q ∈ R and τ ∈ (−∞, T∞) were chosen arbitrarily, the claim follows.

9.6 Type-II singularities for the APCSF

In this section, we only consider the APCSF. We assume that a singularity develops in finite

time and that it is of type II, that is, it satisfies property (9.6). We know from Section 9.2

that the limit flow of the rescaling is an eternal solution of CSF (that is, it exists for all

τ ∈ R) which curvature is never zero. Hence, we can proceed as in [Hui95, Theorem 2.4].

Theorem 9.22 (Hamilton [Ham95b, Main Theorem B]). Any strictly convex eternal so-

lution of MCF where the mean curvature assumes its maximum value at a fixed point in

space time, must be a translating solution of MCF.
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Figure 9.1: The rotated grim reaper x = − log(cos(y)) for y ∈ (−π/2, π/2).

Proposition 9.23 (Structure equation for translating solution of CSF, see [Man11, Propo-

sition 1.4.2]). If F : R× (0, T )→ R2 is a translating solution of CSF, then there exists a

vector v ∈ R2 such that

κ(p, τ) = 〈v,ν(p, τ)〉 (9.83)

for every point p ∈ R and every τ ∈ (0, T ).

The following name was introduced by Calabi (see also [Gra87, p. 298]).

Definition 9.24 (Grim reaper). We call the graph of the function u( · , τ) : (−π/2, π/2)→
R, where τ ∈ R and

u(σ, τ) := τ − log(cos(σ))

the grim reaper (see Figure 9.1 for an illustration).

Lemma 9.25 (Characterisation of translating solutions of the CSF, see [Man11, p. 15]).

A curve Σ = F (R), parametrised by arc length, that satisfies κ(s) = 〈v,ν(s)〉 for some

vector v ∈ R2 and for all s ∈ R, is the grim reaper for a fixed τ ∈ R.

Remark 9.26. The above statement has also been proved in [Alt91, Proof of Theo-

rem 8.16].

Proposition 9.27 (Shape of the limit flow for type-II singularities of the APCSF). Let

F : S1× (0, T ) → R2 be a smooth, embedded solution of the APCSF with T < ∞. For

the type-II rescaling in case of a type-II singularity, each limit F∞,τ0 : R × R → R2, as

obtained in Theorem 9.13, is the grim reaper up to rotation.

Proof. Theorem 9.13 yields that the limit flow satisfies

sup
R×R
|κ∞,τ0 | = |κ∞,τ0(0, 0)| = 1 .

By Proposition 9.16 it consists of strictly convex or concave curves Σ∞,τ0τ for τ ∈ R.

If κ∞,τ0 < 0, we change the direction of parametrisation so that κ∞,τ0 > 0. Since the

curvature attains its maximum at the point (0, 0) ∈ R×R, Theorem 9.22 yields that F∞,τ0
is a translating solution. By Proposition 9.23, Σ∞,τ0τ satisfies the structure equation (9.83)

for each τ ∈ R. Lemma 9.25 implies that Σ∞,τ0τ is the grim reaper for every τ ∈ R.
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Corollary 9.28 (Non-existence of type-II singularities for the APCSF). Let Σ0 be a

smooth, embedded curve satisfying θmin ≥ −π, and let F : S1× [0, T ) → R2 be a solution

of the APCSF with initial curve Σ0 and T < ∞. Then a type-II singularity cannot form

at T .

Proof. By Proposition 9.27, any blow-up limit curve Σ∞,τ0τ , τ ∈ R, is given (up to rotation)

by the grim reaper. The grim reaper is asymptotic to two parallel lines of distance π. Let

τ ∈ R. We can find a sequence of points (pj , qj)j∈N in R× R with

d∞,τ0(pj , qj , τ) ≤ π

for all j ∈ N and

l∞,τ0(pj , qj , τ)→∞

for j →∞. Hence,

inf
R×R

d∞,τ0
l∞,τ0

( · , · , τ) = 0 .

Theorem 9.21 excludes these kinds of singularities.

9.7 T =∞ for the APCSF

Theorem 9.29. Let Σ0 be a smooth embedded, closed curve satisfying θmin ≥ −π. Then

there exists a unique embedded solution F : S1× [0,∞) → R2 to the APCSF with initial

curve Σ0 and F ∈ C∞(S1× (0,∞)).

Proof. By the short time existence, Theorem 2.3, there exists a unique solution F ∈
C∞(S1× (0, T )) to the initial value problem (2.15) with T ≤ ∞. By the bound (3.10) for

hap and Lemma 3.13, the curves stays in a bounded region on [0, T ). Theorem 6.5 implies

that the curves remain embedded on (0, T ). Assume that T <∞. By Theorem 9.20 and

Corollary 9.28 neither a type-I nor a type-II singularity can form in the interval [0, T )

so that curvature stays bounded on [0, T ] by a constant C(Σ0, T ). Like in the proof of

Proposition 4.9, we can extend the flow beyond T and repeat the above argument. Hence,

for every time T ′ <∞, there exists a constant C(Σ0, T
′) <∞ so that

|κ|max(t) ≤ C

for all t ∈ [0, T ′). Applying again Proposition 4.9 yields that the short time solution can

be extended to a smooth solution on (0,∞).



Chapter 10

Convexity in finite time

In this chapter, we show that a smooth, embedded solution F : S1× (0,∞)→ R2 of (2.15)

becomes convex in finite time. Like in [MB15, Section 7], we use the following Gagliardo–

Nirenberg interpolation inequality.

Theorem 10.1 (Gagliardo–Nirenberg interpolation inequality, [Nir59, pp. 125], see also

[Aub98, Theorem. 3.70]). Let f ∈ C∞(S1). Let q, r ∈ R with 1 ≤ q, r ≤ ∞ and j,m ∈
N ∪ {0} with 0 ≤ j < m. Let µ > 0 and σ ∈ [j/m, 1] with

1

p
:= j + σ

(
1

r
−m

)
+

(1− σ)

q
> 0

so that p is non-negative. Then there exist constants c1 = c1(m, j, p, q, r, σ) and c2 =

c2(m, j, p, q, r, σ, µ) such that(∫
S1

∣∣∣∣djfdxj
∣∣∣∣p dx)1/p

≤ c1

(∫
S1

∣∣∣∣dmfdxm

∣∣∣∣r dx)σ/r (∫
S1

|f |q dx
)(1−σ)/q

+ c2

(∫
S1

|f |µ dx
)1/µ

. (10.1)

If r = 1/(m − j) 6= 1, then (10.1) is not valid for σ = 1. If
∫
S1 f dx = 0, then the last

integral term in (10.1) can be omitted.

Corollary 10.2. Let f ∈ C∞(S1). Let p > 2 and σ ∈ [0, 1) with

σ =
1

2
− 1

p
.

Then there exist constants c1 = c1(p, σ) and c2 = c2(p, σ) such that

(∫
S1

|f |p dx
)1/p

≤ c1

(∫
S1

(
df

dx

)2

dx

)σ/2(∫
S1

f2 dx

)(1−σ)/2

+ c2

(∫
S1

f2 dx

)1/2

. (10.2)

If
∫
S1 f dx = 0, then the last integral term in (10.2) can be omitted.
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Proof. We chose j = 0, m = 1 and q = 2 in Theorem 10.1.

Lemma 10.3. Let f ∈ C∞((0,∞))∩L1((0,∞)) with f ≥ 0 and d
dtf ≤ c(1+f)3 for c ≥ 0.

Then f(t)→ 0 for t→∞.

Proof. We follow the lines of the proof of [MB15, Corollary 7.5]. Assume that there exists

δ > 0 and a sequence (tk)k∈N with tk →∞ for k →∞ and

f(tk) ≥ δ (10.3)

for all k ∈ N. The assumption on f yields

− d

dt
(1 + f)−2 = 2(1 + f)−3df

dt
≤ c .

Fix k ∈ N. We integrate from t ∈ (0, tk) to tk and obtain

−(1 + f(tk))
−2 + (1 + f(t))−2 ≤ c(tk − t) .

The assumption (10.3) implies

(1 + f(t))−2 ≤ c(tk − t) + (1 + δ)−2

so that

(1 + f(t))2 ≥ 1

c(tk − t) + (1 + δ)−2
=

(1 + δ)2

c(tk − t)(1 + δ)2 + 1

for t ∈ (0, tk). Choose ε > 0 so that

cε ≤ δ

(1 + δ)2(2 + δ)
.

Then

2
(
δ − cε(1 + δ)2

)
= 2δ − 2cε(1 + δ)2 ≥ δ + δcε(1 + δ)2 = δ

(
1 + cε(1 + δ)2

)
and, for all t ∈ (tk − ε, tk),

f(t) >
1 + δ

(cε(1 + δ)2 + 1)1/2
− 1 ≥ 1 + δ

cε(1 + δ)2 + 1
− 1 =

δ − cε(1 + δ)2

cε(1 + δ)2 + 1
≥ δ

2
. (10.4)

Since δ and ε are independent of k, inequality (10.4) holds on (tk − ε, tk) for every k ∈ N,

so that ∫ ∞
0

f dt =∞ .

This contradicts f ∈ L1((0,∞)).

Lemma 10.4. Let F : S1× [0,∞)→ R2 be a smooth, embedded solution of the LPCF with

initial curve Σ0. Then∫
S1
Rt

(hlp − κ) dst → 0 and hlp →
2π

L0

for t→∞, and there exists constants c = c(Σ0) such that

sup
[0,∞)

dh

dt
≤ c and

∫ ∞
0

∫
S1
Rt

(h− κ) dst dt ≤ c .
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Proof. By Remark 3.7, hlp =
∫
S1
R0

κ2 dst/(2π) and by Cauchy–Schwarz (B.3),

dA

dt

(3.9)
=

∫
S1
R0

(h− κ) dst
(B.3)

≥ 0

for t ∈ (0,∞), with equality only on the circle. We integrate from ε > 0 to τ < ∞ and

use the isoperimetric inequality, Lemma 3.4,

L2
0

4π

Cor. 3.6≡ L2
τ

4π

Lem. 3.4
≥ Aτ > Aτ −Aε =

∫ τ

ε

∫
S1
R0

(h− κ) dst dt ≥ 0 .

Sending ε→ 0 and τ →∞ yields

L2
0

4π
≥
∫ ∞

0

∫
S1
R0

(h− κ) dst dt ≥ 0 . (10.5)

We deduce with Corollary 10.2 for p = 4 and σ = 1/4 and Young’s inequality (B.1) for

p = 4/3 and q = 4 as well as for p = q = 2,

∫
S1
R0

κ4 dst
Cor. 10.2
≤

c(∫
S1
R0

(
∂κ

∂s

)2

dst

)1/8(∫
S1
R0

κ2 dst

)3/8

+ c

(∫
S1
R0

κ2 dst

)1/2
4

(B.1)

≤ 1

2π

∫
S1
R0

(
∂κ

∂s

)2

dst + c

(∫
S1
R0

κ2 dst

)3

+ c

(∫
S1
R0

κ2 dst

)2

(10.6)

for a constant c > 0. Again, by Corollary 10.2 for p = 3 and σ = 1/6,

∫
S1
R0

κ3 dst ≤

c(∫
S1
R0

(
∂κ

∂p

)2

dst

)1/12(∫
S1
R0

κ2 dst

)5/12

+ c

(∫
S1
R0

κ2 dst

)1/2
3

(10.7)

so that with Young’s inequality (B.1) for p = 3/2 and q = 3 as well as for p = 4 and

q = 4/3, ∫
S1
R0

κ3 dst

∫
S1
R0

κ2 dst

(10.7),(B.1)

≤ c

(∫
S1
R0

(
∂κ

∂s

)2

dst

)1/4(∫
S1
R0

κ2 dst

)9/4

+ c

(∫
S1
R0

κ2 dst

)5/2

(B.1)

≤ 1

2π

∫
S1
R0

(
∂κ

∂s

)2

dst + c

(∫
S1
R0

κ2 dst

)3

+ c

(∫
S1
R0

κ2 dst

)5/2

. (10.8)

We use the evolution equations (3.2) and (4.1) for the length element and for the curvature,
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Remark 3.7 and integration by parts (B.4) to calculate

dh

dt

Rem. 3.7
=

1

2π

d

dt

(∫
S1
R0

κ2 dst

)
=

1

2π

(∫
S1
R0

∂κ2

∂t
dst +

∫
S1

κ2∂v

∂t
dp

)
(3.2),(4.1)

=
1

π

∫
S1
R0

(
κ
∂2κ

∂s2
− (h− κ)κ3

)
dst +

1

2π

∫
S1

κ3(h− κ) v dp

(B.4)
= − 1

π

∫
S1
R0

(
∂κ

∂s

)2

dst −
1

4π2

∫
S1
R0

κ3 dst

∫
S1
R0

κ2 dst +
1

2π

∫
S1
R0

κ4 dst

(10.6),(10.8)

≤ c

(∫
S1
R0

κ2 dst

)3

+ c

(∫
S1
R0

κ2 dst

)5/2

+ c

(∫
S1
R0

κ2 dst

)2

≤ c(h3 + h5/2 + h2) (10.9)

for all t ∈ (0,∞). With Young’s inequality, we estimate

hα ≤ h3 + 1 ≤ (h+ 1)3

for α ∈ {2, 5/2} and conclude

d

dt

∫
S1
R0

(h− κ) dst = L0
dh

dt

(10.9)

≤ c(h+ 1)3 =
c

L3
0

(
L0h− 2π + 2π + L0

)3
≤ c

(∫
S1
R0

(h− κ) dst + 1

)3

for all t ∈ (0,∞). With (10.5) we can apply Lemma 10.3 to the non-negative function

f(t) :=

∫
S1
R0

(h− κ) dst

to obtain ∫
S1
R0

(h− κ) dst → 0 and therefore h→ 2π

L0

for t→∞. Together with (10.9) this yields that sup[0,∞)
d
dth is bounded from above.

Lemma 10.5. Let F : S1× (0,∞)→ R2 be a smooth, embedded solution of (2.15). Then

there exists a constant c > 0 such that

d

dt

∫
S1
Rt

(h− κ)2 dst ≤ −
∫
S1
Rt

(
∂κ

∂s

)2

dst + 2Λ
dh

dt

∫
S1
Rt

(h− κ) dst

+ c

(∫
S1
Rt

(h− κ)2 dst

)3

+ c

(∫
S1
Rt

(h− κ)2 dst

)5/3

+ Λc

(∫
S1
Rt

(h− κ)2 dst

)2

+ Λc

(∫
S1
Rt

(h− κ)2 dst

)3/2

for all t ∈ (0,∞), where Λ = 0 for the APCSF and Λ = 1 for the LPCF.
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Proof. We follow the lines of [MB15, Lemmata 7.3 and 7.4]. Write

κ = h− (h− κ) .

Then

(h− κ)3κ = h(h− κ)3 − (h− κ)4 (10.10)

and

(h− κ)2κ2 = (h− κ)2
(
h2 − 2h(h− κ) + (h− κ)2

)
= h2(h− κ)2 − 2h(h− κ)3 + (h− κ)4 . (10.11)

The evolution equations (3.2) and (4.1) for the length element and for the curvature, and

integration by parts (B.4) yield

d

dt

∫
S1
Rt

(h− κ)2 dst

(3.2)
=

∫
S1
Rt

(h− κ)3κ dst + 2

∫
S1
Rt

(h− κ)

(
dh

dt
− ∂κ

∂t

)
dst

(4.1)
=

∫
S1
Rt

(h− κ)3κ dst + 2
dh

dt

∫
S1
Rt

(h− κ) dst + 2

∫
S1
Rt

(h− κ)

(
−∂

2κ

∂s2
+ (h− κ)κ2

)
dst

(B.4)
=

∫
S1
Rt

(h− κ)3κ dst + 2
dh

dt

∫
S1
Rt

(h− κ) dst − 2

∫
S1
Rt

(
∂κ

∂s

)2

dst + 2

∫
S1
Rt

(h− κ)2κ2 dst

(10.10)
=

(10.11)
h

∫
S1
Rt

(h− κ)3 dst −
∫
S1
Rt

(h− κ)4 dst

+ 2
dh

dt

∫
S1
Rt

(h− κ) dst − 2

∫
S1
Rt

(
∂κ

∂s

)2

dst

+ 2h2

∫
S1
Rt

(h− κ)2 dst − 4h

∫
S1
Rt

(h− κ)3 dst + 2

∫
S1
Rt

(h− κ)4 dst

= −2

∫
S1
Rt

(
∂κ

∂s

)2

dst + 2
dh

dt

∫
S1
Rt

(h− κ) dst +

∫
S1
Rt

(h− κ)4 dst

− 3h

∫
S1
Rt

(h− κ)3 dst + 2h2

∫
S1
Rt

(h− κ)2 dst . (10.12)

For the APCSF, by definition of the global term,∫
S1
Rt

(h− κ) dst = Lth−
∫
S1
Rt

κ dst = Lt
2π

Lt
− 2π = 0 . (10.13)

Like in [MB15, Corollary 7.4], we use Corollary 10.2 with p = 4 and σ = 1/4 and Young’s
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inequality (B.1) with p = 4/3 and q = 4 as well as for p = q = 2, to estimate∫
S1
Rt

(h− κ)4 dst

Cor. 10.2
≤

(B.1)

c(∫
S1
Rt

(
∂κ

∂s

)2

dst

)1/8(∫
S1
Rt

(h− κ)2 dst

)3/8

+ Λc

(∫
S1
Rt

(h− κ)2 dst

)1/2
4

(B.1)

≤ 1

2

∫
S1
Rt

(
∂κ

∂s

)2

dst + c

(∫
S1
Rt

(h− κ)2 dst

)3

+ Λc

(∫
S1
Rt

(h− κ)2 dst

)2

, (10.14)

where we defined

Λ :=

{
0 for the APCSF

1 for the LPCF

in view of (10.13) and the last sentence in Corollary 10.2. Again by Corollary 10.2 with

p = 3 and σ = 1/6 and Young’s inequality (B.1) for p = 3/2 und q = 3 as well as for p = 4

and q = 4/3, we obtain∫
S1
Rt

(h− κ)3 dst

Cor. 10.2
≤

(B.1)

c(∫
S1
Rt

(
∂κ

∂s

)2

dst

)1/12(∫
S1
Rt

(h− κ)2 dst

)5/12

+ Λc

(∫
S1
Rt

(h− κ)2 dst

)1/2
3

(B.1)

≤ 1

2

∫
S1
Rt

(
∂κ

∂s

)2

dst + c

(∫
S1
Rt

(h− κ)2 dst

)5/3

+ Λc

(∫
S1
Rt

(h− κ)2 dst

)3/2

. (10.15)

Altogether, with the bounds on the global terms (see Lemma 10.4 for the LPCF),

d

dt

∫
S1
Rt

(h− κ)2 dst

(10.12),(10.13)

≤
(10.14),(10.15)

−
∫
S1
Rt

(
∂κ

∂s

)2

dst + 2Λ
dh

dt

∫
S1
Rt

(h− κ) dst

+ c

(∫
S1
Rt

(h− κ)2 dst

)3

+ c

(∫
S1
Rt

(h− κ)2 dst

)5/3

+ Λc

(∫
S1
Rt

(h− κ)2 dst

)2

+ Λc

(∫
S1
Rt

(h− κ)2 dst

)3/2

.

Lemma 10.6. Let F : S1× [0,∞) → R2 be a smooth, embedded solution of (2.15) with

initial curve Σ0. Then ∫
S1
Rt

(h− κ)2 dst → 0

for t→∞ and ∫ ∞
0

∫
S1
Rt

(h− κ)2 dst dt <∞ .
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Proof. We treat both flows separately.

For the APCSF, h = 2π/Lt so that∫
S1
Rt

hκ dst =
2π

Lt

∫
S1
Rt

κ dst =
Lt(2π)2

L2
t

=

∫
S1
Rt

h2 dst .

Like in [Hui87, p. 47], the evolution equation (3.8) for the length of the curve yields

dL

dt

(3.8)
=

∫
S1
Rt

(
hκ− κ2

)
dst =

∫
S1
Rt

(
−hκ+ 2hκ− κ2

)
dst

=

∫
S1
Rt

(
−h2 + 2hκ− κ2

)
dst = −

∫
S1
Rt

(h− κ)2 dst

for all t ∈ (0,∞). We integrate from ε > 0 to τ <∞ and deduce that

L0

Cor. 3.5
≥ Lε ≥ Lε − Lτ =

∫ τ

ε

∫
S1
Rt

(h− κ)2 dst dt ≥ 0 .

Send ε→ 0 and τ →∞ yields

L0 ≥
∫ ∞

0

∫
S1
Rt

(h− κ)2 dst dt ≥ 0 . (10.16)

Lemma 10.5 and Young’s inequality (B.1) imply

d

dt

∫
S1
Rt

(h− κ)2 dst
Lem. 10.5
≤ c

(∫
S1
Rt

(h− κ)2 dst

)3

+ c

(∫
S1
Rt

(h− κ)2 dst

)5/3

(B.1)

≤ c

(
1 +

∫
S1
Rt

(h− κ)2 dst

)3

,

where c = c(Σ0). Like in [MB15, Corollary 7.5], we define

f(t) :=

∫
S1
Rt

(h− κ)2 dst ≥ 0

so that, with the bound (10.16), Lemma 10.3 yields the claim for the APCSF.

For the LPCF, we calculate with Remark 3.7,∫
S1
R0

(h− κ)2 dst =

∫
S1
R0

(h2 − 2hκ+ κ2) dst = L0h
2 − 4πh+ 2πh

= L0h
2 − 2πh = h(L0h− 2π)

= h

∫
S1
R0

(h− κ) dst
(3.9)
= h

dAt
dt

(10.17)

for all t ∈ (0,∞). Lemma 10.4 yields∫
S1
R0

(h− κ)2 dst
(10.17)

= L0h
2 − 2πh

Lem. 10.4−→ 2π2

L0
− 2π2

L0
= 0
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for t→∞. Since

0
(3.11)
< h

Lem. 10.4
< ∞ ,

dAt
dt

Cor. 3.6
≥ 0 and A0 ≤ At

Cor. 3.6
≤ L2

0

4π

for all t ∈ (0,∞), we also obtain∫ ∞
0

∫
S1
Rt

(h− κ)2 dst dt
(10.17)

=

∫ ∞
0

h
dAt
dt

dt ≤ sup
[0,∞)

h

[
L0

2π
−A0

]
<∞ .

Lemma 10.7. Let F : S1× [0,∞) → R2 be a smooth, embedded solution of (2.15) with

initial curve Σ0. Then ∫ ∞
0

∫
S1
Rt

(
∂κ

∂s

)2

dst dt <∞ .

Proof. For the APCSF, ∫
S1
Rt

(h− κ) dst = 0 (10.18)

for all t ∈ [0,∞). For the LPCF, by Cauchy–Schwarz,∫
S1
Rt

(h− κ) dst ≥ 0

so that Lemma 10.4 yields∫ ∞
0

dh

dt

∫
S1
Rt

(h− κ) dst dt ≤ sup
[0,∞)

dh

dt

∫ ∞
0

∫
S1
Rt

(h− κ) dst dt
Lem. 10.4
≤ c (10.19)

where c = c(Σ0). For both flows, Lemma 10.6 implies that there exists a time t0 ≥ 0 so

that ∫
S1
Rt

(h− κ)2 dst < 1

for all t > t0, and thus (∫
S1
Rt

(h− κ)2 dst

)p
≤
∫
S1
Rt

(h− κ)2 dst (10.20)

for all p ≥ 1. From Lemmata 10.5 and 10.6, we obtain∫ ∞
t0

∫
S1
Rt

(
∂κ

∂s

)2

dst dt

Lem. 10.5
≤ −

∫ ∞
t0

d

dt

∫
S1
Rt

(h− κ)2 dst dt+ 2Λ

∫ ∞
t0

dh

dt

∫
S1
Rt

(h− κ) dst dt

+ c

∫ ∞
t0

(∫
S1
Rt

(h− κ)2 dst

)3

dt+ c

∫ ∞
t0

(∫
S1
Rt

(h− κ)2 dst

)5/3

dt

+ Λc

∫ ∞
t0

(∫
S1
Rt

(h− κ)2 dst

)3/2

dt+ Λc

∫ ∞
t0

(∫
S1
Rt

(h− κ)2 dst

)2

dt

Lem. 10.6,(10.18)

≤
(10.19),(10.20)

−
∫
S1
Rt0

(h− κ)2 dst dt+ cΛ + c

∫ ∞
t0

∫
S1
Rt

(h− κ)2 dst dt
Lem. 10.6
< ∞ .
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Since Σt is smooth for t ∈ [0, t0],∫ t0

0

∫
S1
Rt

(
∂κ

∂s

)2

dst dt <∞

as well.

For the next result, we need the following theorem.

Theorem 10.8 (See [GT83, Theorem 7.26(ii)]). Let Ω ⊂ Rn be open. For

0 ≤ m < k − n

p
< m+ 1 and α = k − n

p
−m

the space W k,p(Ω) is continuously embedded in Cm,α(Ω̄), and compactly embedded in

Cm,β(Ω̄) for any β < α.

Theorem 10.9 (Convexity in finite time). Let F : S1×[0,∞)→ R2 be a smooth, embedded

solution of (2.15) with initial curve Σ0. Then there exists a time T0 ≥ 0 such that Σt is

strictly convex for t > T0.

Proof. Lemma 10.7 implies that there exists a sequence (tk)k∈N with tk →∞ for k →∞
so that ∫

S1
Rtk

(
∂κ

∂s

)2

dstk → 0 (10.21)

for k →∞. Hence, there exists k0 ∈ N so that for all k ≥ k0∫
S1
Rtk

(
∂κ

∂s

)2

dstk < 1 . (10.22)

We employ Theorem 10.8 for n = 1, m = 0, p = 2 and β = 0 to obtain that W 1,2(S1)

is compactly embedded in C0(S1). Furthermore, C0(S1) ⊂ L2(S1), and ‖f‖L2(S1) ≤√
2π‖f‖C0(S1) for every f ∈ C0(S1). Hence, C0(S1) is continuously embedded in L2(S1)

and

W 1,2(S1) ↪→
compact

C0(S1) ↪→
continuous

L2(S1) .

Let f ∈W 1,2(S1). By Ehrling’s lemma, Theorem B.15, for all ε > 0 there exists a constant

C(ε) > 0 so that

‖f‖C0(S1) ≤ ε‖f‖W 1,2(S1) + C(ε)‖f‖L2(S1) . (10.23)

Lemma 10.6 and (10.21) yield

h(tk)− κ(·, tk) ∈W 1,2
(
S1
Rtk

)
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for each k ∈ N. Hence, we can use (10.23) to estimate

max
s∈S1

Rtk

∣∣h(tk)− κ(s, tk)
∣∣

(10.23)

≤ ε

∫
S1
Rtk

(
∂κ

∂s

)2

dstk

1/2

+ ε

∫
S1
Rtk

(h− κ)2 dstk

1/2

+ C(ε)

∫
S1
Rtk

(h− κ)2 dstk

1/2

(10.22)

≤ ε+ C(ε)

∫
S1
Rtk

(h− κ)2 dstk

1/2

(10.24)

for all k ≥ k0. Choose

ε = ε(Σ0) =
π

2L0

to deduce

max
s∈S1

Rtk

∣∣h(tk)− κ(s, tk)
∣∣ (10.24)

≤ π

2L0
+ C(Σ0)

∫
S1
Rtk

(h− κ)2 dstk

1/2

. (10.25)

Lemma 10.6 implies that there exists k1 ≥ k0 so that for all k ≥ k1∫
S1
Rtk

(h− κ)2 dstk <

(
π

2C(Σ0)L0

)2

.

Thus,

max
s∈S1

Rtk1

∣∣h(tk1)− κ(s, tk1)
∣∣ (10.25)

≤ π

L0

Since h ≥ 2π/L0 > 0 (see (3.10) and (3.11)), we conclude that κ > 0 on S1 at tk1 . From

Corollary 4.3 it follows that κ > 0 for all t > tk1 . Hence, the claim holds for T0 = tk1 .



Chapter 11

Longtime behaviour

In the previous chapters we proved that if Σ0 is a smooth, embedded, closed curve sat-

isfying θmin ≥ −π, then unique short time solution of the APCSF can be extended to a

smooth embedded solution (Σt)t∈[0,∞) which becomes convex at finite time T0 < ∞. For

the LPCF, we showed that an immortal solution (Σt)t∈[0,∞) becomes convex at finite time

T0 < ∞. In this chapter we derive global higher derivative estimates for the curvature

of convex curves and show that convex solutions (Σt)t∈[T0,∞) converge exponentially and

smoothly in time to a round circle. This was already shown in [Gag86] for the APCSF and

in [Pih98] for the LPCF. We repeat and extend the arguments here for the sake of com-

pleteness. We mostly follow the lines of [GH86, Section 5] for rescaled convex CSF, [Gag86]

for convex APCSF, and [Pih98, Chapter 7] for convex LPCF. Note that Pihan considered

the speed 1− h−1
lp κ (compare Remark 2.2(i)), so his calculations are somewhat different.

11.1 Uniform C0-convergence

In this section, we show that convex initial curves evolving under (2.15) converge to a

circle in C0.

Lemma 11.1 (Isoperimetric inequality, [Gag83]). For a closed, convex C2-curve in the

plane, ∫
S1
R

κ2 ds ≥ πL

A

with equality if and only if the curve is a circle.

Lemma 11.2 ([Gag86, Corollary 2.4] and [Pih98, Lemma 7.7]). Let ΣT0 be a smooth,

embedded, convex curve of area AT0 = πR2
0 for the APCSF and length LT0 = 2πR0 for

the LPCF. Let F : S1× [T0,∞)→ R2 be a solution of (2.15) with initial curve ΣT0. Then

there exists a constant D = D(ΣT0) > 0, such that(
L2

A
− 4π

)
≤ D exp

(
− 2t

R2
0

)
for all t ≥ T0.
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Proof. For the APCSF, we follow the lines of [Gag86, Corollary 2.4] and use the evolution

equation (3.8) for the length of the curve, the fact that the area is constant in time (see

Corollary 3.5), hap = 2π/L, and the isoperimetric inequality, Lemma 11.1, to estimate

d

dt

(
L2

A
− 4π

)
=

2L

A

dL

dt

(3.8)
=

2L

A

(
(2π)2

L
−
∫

Σt

κ2 dH1

)
Lem. 11.1
≤ 2L

A

(
4π2

L
− πL

A

)
=

2π

A

(
4π − L2

A

)
for τ > T0. By Lemma B.1,(

L2
t

At
− 4π

)
≤ exp

(
− 2π

AT0

t

)(
L2
T0

AT0

− 4π

)
= D(ΣT0) exp

(
− 2t

R2
0

)
where we used AT0 ≡ At for all t ≥ T0.

For the LPCF, we follow the lines of [Pih98, Lemma 7.7] and employ the evolution

equation (3.9) for the area, the fact that the length is constant in time (see Corollary 3.6),

hlp =
∫

Σt
κ2 dst/(2π), and the isoperimetric inequalities, Lemmata 3.4 and 11.1, to esti-

mate

d

dt

(
L2

A
− 4π

)
= −L

2

A2

dA

dt

(3.9)
= −L

2

A2

(
L

2π

∫
Σt

κ2 dH1 − 2π

)
Lem. 11.1
≤ − L2

2A2

(
L

π

πL

A
− 4π

)
Lem. 3.4
≤ −4π2

L2

(
L2

A
− 4π

)
for τ > T0. Again by Lemma B.1,(

L2
t

At
− 4π

)
≤ exp

(
−4π2

L2
T0

t

)(
L2
T0

AT0

− 4π

)
= D(ΣT0) exp

(
− 2t

R2
0

)
where we used LT0 ≡ Lt for all t ≥ T0.

Proposition 11.3 (Bonnesen isoperimetric inequality, [Oss79, Theorem 4 (21)]). For an

embedded, closed curve Σ in the plane,

L2

A
− 4π ≥ π2

A
(rcirc − rin)2 ≥ 0 ,

where rcirc and rin are the circumscribed and inscribed radius of Σ.

Corollary 11.4 ([Pih98, Corollary7.8]). Let ΣT0 be a smooth, embedded, convex curve

of area AT0 = πR2
0 for the APCSF and length LT0 = 2πR0 for the LPCF. Let F : S1×

[T0,∞)→ R2 be a solution of (2.15) with initial curve ΣT0. Then there exists a constant

D = D(ΣT0) > 0 such that

π2

At
(rcirc(t)− rin(t))2 ≤ D exp

(
− 2t

R2
0

)
for all t ≥ T0.
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Proof. The claim follows directly from Lemma 11.2 and Proposition 11.3.

Proposition 11.5 (C0-convergence of convex curves, [Pih98, Proposition 7.9]). Let ΣT0

be a smooth, embedded, convex curve of area AT0 = πR2
0 for the APCSF and length

LT0 = 2πR0 for the LPCF. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with initial

curve ΣT0. Then Σt = F (S1, t) converges in C0 to a circle of radius R0 for t→∞.

Proof. We can then apply Corollary 11.4 for t ≥ T0 to conclude that the inscribed and

circumscribed radius converge towards each other, that is,

rcirc(t)− rin(t)→ 0 (11.1)

for t→∞. For embedded, closed, convex curves, we can estimate

rin =

√
A(Brin)

π
≤
√
A

π
,

where A(Brin) is the area of the inscribed ball, and

L

2π
≤ L(Brcirc)

2π
= rcirc ,

where L(Brcirc) is the length of the circumscribed circle. The above two inequalities and

the isoperimetric inequality, Lemma 3.4, imply

rin(t) ≤
√
At
π

Lem. 3.4
≤ Lt

2π
≤ rcirc(t)

for all t ≥ T0 and the convergence (11.1) yields

Lt
2π
−
√
At
π
→ 0

for t→∞. For the APCSF, the enclosed area is constant so that

Lt
2π
→
√
A0

π
= R0 ,

for the LPCF, the length is constant so that√
At
π
→ L0

2π
= R0

for t→∞. For a circle of radius R,

R =
L

2π
=

√
A

π
.

Hence, Σt converges to a circle of radius R0 for t→∞.
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11.2 Uniform C2-convergence

In this section, we again assume that ΣT0 is convex. By Corollary 4.3, Σt is strictly convex

for all t > T0. Like introduced in Chapter 5, let ϑ : S1× [T0,∞) → [0, 2π) be the angle

between the x1-axis and the tangential vector at the point F (p, t). Since Σt is strictly

convex on (T0,∞), ϑ( · , t) is injective for each t ∈ (T0,∞). We want to use ϑ as spatial

coordinate and define τ to be a new time variable so that τ = t as well as

dτ

dt
= 1 and

∂ϑ

∂τ
= 0 . (11.2)

For a C1-function f : S1 → R, we then have,

∂f

∂s
=
∂f

∂ϑ

∂ϑ

∂s

Lem. 5.1
=

∂f

∂ϑ
κ .

Hence, the spatial derivatives transforms according to

1

v

∂

∂p
=

∂

∂s
= κ

∂

∂ϑ
. (11.3)

In the following sections, we use the coordinates (ϑ, τ) on S1× (T0,∞).

Lemma 11.6 ([GH86, Lemma 4.1.3] and [Pih98, Lemma 6.12]). Let F : S1×(T0,∞)→ R2

be a smooth, strictly convex solution of (2.15). Then

∂κ

∂τ
= κ2 ∂

2κ

∂ϑ2
− (h− κ)κ2 . (11.4)

Proof. The proof can be found in [GH86, Lemma 4.1.3] for CSF and [Pih98, Lemma 6.12].

For κ = κ(ϑ, τ), by the evolution equation (5.2) of the angle and the transformation (11.3)

of the derivatives,
∂ϑ

∂t

(5.2)
=

∂κ

∂s

(11.3)
= κ

∂κ

∂ϑ

so that, by (11.2),

∂κ

∂t
=
∂κ

∂ϑ

∂ϑ

∂t
+
∂κ

∂τ

∂τ

∂t

(11.2)
= κ

(
∂κ

∂ϑ

)2

+
∂κ

∂τ
.

Furthermore,
∂2κ

∂s2

(11.3)
= κ

∂

∂ϑ

(
κ
∂κ

∂ϑ

)
= κ

(
∂κ

∂ϑ

)2

+ κ2 ∂
2κ

∂ϑ2
.

Subtracting the last two equations and using the evolution equation (4.1) of the curvature

with respect to t yields

∂κ

∂τ
− κ2 ∂

2κ

∂ϑ2
=
∂κ

∂t
− ∂2κ

∂s2

(4.1)
= −(h− κ)κ2 .

We define, for τ ≥ T0,

m(τ) :=

 max
σ∈[T0,τ ]

|κ|max(σ) for the APCSF

1 for the LPCF.
(11.5)
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Lemma 11.7 ([Gag86, Lemma 3.4 and Corollary 3.5] and [Pih98, Lemma 6.9]). Let ΣT0

be a smooth, embedded, convex curve. Let F : S1× [T0,∞) → R2 be a solution of (2.15)

with initial curve ΣT0. Then there exists a constant D0 = D0(ΣT0) > 0 such that∫
S1

(
∂κ

∂ϑ

)2

dϑ ≤
∫
S1

κ2 dϑ+D0m

for all τ > T0, where m is defined in (11.5).

Proof. For the APCSF, we follow [Gag86, Lemma 3.4 and Corollary 3.5]. By Corol-

lary 3.5, the length of the curve is decreasing so that ∂
∂τL ≤ 0 and we observe

0 <

∫
S1
Rt

κ2 dst =

∫
S1

κ dϑ ≤ 2πκmax . (11.6)

We use the evolution equation (11.4) of the curvature, the time-independency (11.2) of ϑ,

hap = 2π/L, and integration by parts (B.4) to estimate

d

dτ

∫
S1

(
κ2 −

(
∂κ

∂ϑ

)2

− 2hκ

)
dϑ

(11.2)
=

∫
S1

(
2κ
∂κ

∂τ
− 2

∂κ

∂ϑ

∂

∂τ

∂κ

∂ϑ
− 2h

∂κ

∂τ

)
dϑ+

2π

L2

∂L

∂τ

∫
S1
Rt

κ2 dst

(B.4)
=

∫
S1

2

(
κ+

∂2κ

∂2ϑ
− h
)
∂κ

∂τ
dϑ− 2π

L2

∣∣∣∣∂L∂τ
∣∣∣∣ ∫

S1
Rt

κ2 dst

(11.4)(11.6)

≥
∫
S1

2κ2

(
κ+

∂2κ

∂2ϑ
− h
)2

dϑ− 4π2κmax

L2

∣∣∣∣∂L∂τ
∣∣∣∣

≥ 4π2κmax

L2

∂L

∂τ
(11.7)

for all τ > T0. For τ0, τ ∈ (T0,∞), τ0 < τ , with the definition (11.5) of m, ∂
∂τL ≤ 0 and

Lτ ≥
√
AT0/(4π) (see Corollary 3.5),∫ τ

τ0

4π2κmax

L2

∂L

∂τ̄
dτ̄ ≥ 4π2 max

[T0,τ ]
κmax

∫ τ

T0

1

L2

∂L

∂τ̄
dτ

(11.5)
= −4π2m(τ)

(
1

Lτ
− 1

LT0

)
Cor. 3.5
≥ −4π2m(τ)

(√
4π

AT0

− 1

LT0

)
= −c(ΣT0)m(τ) . (11.8)

We integrate (11.7) from τ0 to τ and use (11.8) to obtain∫
S1

(
κ2(ϑ, τ)−

(
∂κ

∂ϑ
(ϑ, τ)

)2

− 2h(τ)κ(ϑ, τ)

)
dϑ

≥
∫
S1

(
κ2(ϑ, τ0)−

(
∂κ

∂ϑ
(ϑ, τ0)

)2

− 2h(τ0)κ(ϑ, τ0)

)
dϑ− c(ΣT0)m(τ)

≥ −c(ΣT0)m(τ) .



120 11 Longtime behaviour

Rearranging terms yields∫
S1

(
∂κ

∂ϑ

)2

dϑ ≤
∫
S1

κ2 dϑ− 2h

∫
S1

κ dϑ+ c(ΣT0)m

(11.6),(11.6)

≤
∫
S1

κ2 dϑ+ c(ΣT0)m.

For the LPCF, we follow [Pih98, Lemma 6.9]. We use the evolution equation (11.4) of

the curvature, hlp =
∫
S1 κ dϑ/(2π), and integration by parts (B.4) to calculate

d

dτ

[∫
S1

(
κ2 −

(
∂κ

∂ϑ

)2
)
dϑ− h2

]
(11.2)

=

∫
S1

(
2κ
∂κ

∂τ
− 2

∂κ

∂ϑ

∂

∂τ

∂κ

∂ϑ

)
dϑ− 2h

∫
S1

∂κ

∂τ
dϑ

(B.4)
=

∫
S1

2

(
κ+

∂2κ

∂2ϑ
− h
)
∂κ

∂τ
dϑ

(11.4)
=

∫
S1

2κ2

(
κ+

∂2κ

∂2ϑ
− h
)2

dϑ ≥ 0 (11.9)

for all τ > T0. For τ0, τ ∈ (T0,∞), τ0 < τ , we integrate (11.9) from τ0 to τ and conclude

with the convergence of the global term from Lemma 10.4,∫
S1

[
κ2(ϑ, τ)−

(
∂κ

∂ϑ
(ϑ, τ)

)2
]
dϑ− 2πh2(τ)

≥
∫
S1

[
κ2(ϑ, τ0)−

(
∂κ

∂ϑ
(ϑ, τ0)

)2
]
dϑ− 2πh2(τ0)

Lem. 10.4
≥ −c(ΣT0) .

Hence, ∫
S1

(
∂κ

∂ϑ

)2

dϑ ≤
∫
S1

κ2 dϑ+ c(ΣT0)

where we estimated −h2(τ) ≤ 0.

Let ΣT0 be a smooth curve of length LT0 . For τ ≥ T0, define

D∗(τ) = D∗(ΣT0 , τ)

:=



√
2π +

√
2πD0

LT0

for the APCSF in case m(τ) = κmax(τ)

√
2π +

√
D0 for the APCSF in case m(τ) ≤ κ2

max(τ)

√
2π + 2π

√
D0m(τ)

LT0

for the APCSF in case m(τ) > κ2
max(τ)

√
2π + 2π

√
D0

LT0

for the LPCF,

(11.10)

where m is defined in (11.5) and D0 in Lemma 11.7.
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Lemma 11.8 ([GH86, Paragraph 4.3.6] and [Pih98, Lemma 7.1]). Let ΣT0 be a smooth,

embedded, convex curve. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with initial

curve ΣT0. Let τ > T0, ϑ1, ϑ2 ∈ S1 and δ ∈ (0, π/2]. If |ϑ1 − ϑ2| < δ, then

|κ(ϑ1, τ)− κ(ϑ2, τ)| < D∗(τ)
√
δ κmax(τ) ,

where D∗ is defined in (11.10).

Proof. We follow the lines of [GH86, Paragraph 4.3.6] and [Pih98, Lemma 7.1]. Corollar-

ies 3.5 and 3.6 provide

κmax(τ) ≥ Lτ
2π

Cors. 3.5,3.6
≥ LT0

2π
. (11.11)

Let δ ∈ (0, π/2]. For |ϑ1 − ϑ2| < δ, Cauchy–Schwarz (B.3), Lemma 11.7 and
√
a+ b ≤√

a+
√
b imply

|κ(ϑ1, τ)− κ(ϑ2, τ)| ≤
∫ ϑ2

ϑ1

∣∣∣∣∂κ∂ϑ(ϑ, τ)

∣∣∣∣ dϑ
(B.3)

≤ |ϑ1 − ϑ2|1/2
(∫ ϑ2

ϑ1

(
∂κ

∂ϑ
(ϑ, τ)

)2

dϑ

)1/2

Lem. 11.7
≤

√
δ

(∫
S1

κ2(ϑ, τ) dϑ+D0m(τ)

)1/2

≤
√
δ
(
2πκ2

max(τ) +D0m(τ)
)1/2

≤
√
δ
(√

2πκmax(τ) +
√
D0m(τ)

)
≤
√
δκmax(τ)

(
√

2π +

√
D0m(τ)

κmax(τ)

)
, (11.12)

where we used κmax(τ) > 0 for τ > T0. For the APCSF, the definition (11.10) of D∗

yields, that in case m(τ) = κmax(τ),

√
2π +

√
D0κmax(τ)

κmax(τ)

(11.11)

≤
√

2π +

√
2πD0

LT0

(11.10)
= D∗

in case m(τ) ≤ κ2
max(τ),

√
2π +

√
D0m(τ)

κmax(τ)
≤
√

2π +
√
D0

(11.10)
= D∗

and in case m(τ) > κ2
max(τ),

√
2π +

√
D0m(τ)

κmax(τ)

(11.11)

≤
√

2π +
2π
√
D0m(τ)

LT0

(11.10)
= D∗(τ) .

For the LPCF, we deduce with m = 1,

√
2π +

√
D0

κmax(τ)

(11.11)

≤
√

2π +
2π
√
D0

LT0

(11.10)
= D∗ .

All together, this yields the claim

|κ(ϑ1, τ)− κ(ϑ2, τ)|
(11.12)

≤
√
δκmax(τ)D∗ .
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rin
1
M

ω

arc

ray

fat line

Σ

Figure 11.1: The arc of length ω with curvature greater than M .

Definition 11.9 (Generalised median curvature). For for τ > T0 and ω ∈ (0, π), define

the generalised median curvature

κ∗ω(τ) := sup
{
b
∣∣ |κ( · , τ)| > b on some interval of length ω

}
.

Lemma 11.10 (Gage–Hamilton [GH86, Lemma 5.1]). Let Σ ⊂ R2 be a, smooth, embedded,

closed, convex curve. Then

κ∗ωrin ≤
[
1−K(ω)

(
rcirc

rin
− 1

)]−1

,

where K : (0, π]→ [0,∞) is a positive decreasing function with K(ω)→∞ for ω ↘ 0 and

K(π) = 0.

Proof. We repeat the proof here for the sake of completeness. Fix M < κ∗ω. By Defini-

tion 11.9 of the generalised median curvature, the set S := {ϑ ∈ S1 |κ(ϑ) > M} contains

an interval of length at least ω. By changing the parametrisation we can assume that

(−ω/2, ω/2) ⊂ S. We construct a circular arc of curvature M and of angle ω which is

tangent to the curve Σ at ϑ = 0 (see Figure 11.1). Since Σ is convex, Σ must lie in the

region bounded by the arc and the rays tangent to the ends of the arc. Moreover, the con-

vexity assumption insures that Σ lies within the fat lines shown in Figure 11.1, while the

estimate κ(ϑ) > M on (−ω/2, ω/2) ensures that the fat lines lie within the cone formed

by the circular arc and the rays. Since the inscribed circle lies within the cone and the

circumscribed circle must encircle every point on the curve, we see that, for given M , ω

and rin, the smallest rcirc is obtained for the configuration shown in Figure 11.2. From

Figure 11.2 and trigonometry, we determine that |b| = 1/M ,

rin

|a|+ |d| = cos
(ω

2

)
=

1/M

|b|+ |d| =
1/M

1/M + |d| (11.13)

and

2rcirc ≥ rin + |a| . (11.14)
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rin

rcirc1
M

bd a

ω
2

Figure 11.2: Inscribed and circumscribed radius.

The identity (11.13) implies

|d| = 1

M

(
1

cos(ω/2)
− 1

)
as well as

|a| = rin

cos(ω/2)
− |d| = rin

cos(ω/2)
− 1

M

(
1

cos(ω/2)
− 1

)
. (11.15)

Hence, by (11.14) and (11.15),

rcirc

rin
− 1

(11.14)

≥ −1

2
+
|a|

2rin

(11.15)
= −1

2
+

1

2rin

[
rin

cos(ω/2)
− 1

M

(
1

cos(ω/2)
− 1

)]
=

1

2

(
1− 1

Mrin

)(
1

cos(ω/2)
− 1

)
.

Rearranging terms yields

Mrin ≤
1

1−K(ω)(rcirc/rin − 1)
,

where we defined

K(ω) := 2

(
1

cos(ω/2)
− 1

)−1

=
2 cos(ω/2)

1− cos(ω/2)
.

Since M can be chosen arbitrarily close to κ∗ω, this proves the lemma.
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Lemma 11.11 ([GH86, Corollary 5.2] and [Pih98, Lemma 7.11]). Let ΣT0 be a smooth,

embedded, convex curve. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with initial

curve ΣT0. Let ε ∈ (0, 1) and τ > T0. Then

κmax(τ)rin(τ) ≤
{

(1− ε)
[

1−K
((

ε

D∗(τ)

)2
)(

rcirc(τ)

rin(τ)
− 1

)]}−1

,

where K is defined in Lemma 11.10 and D∗ in (11.10).

Proof. The proof can be found in [GH86, Corollary 5.2] and in [Pih98, Lemma 7.11]. Let

ε ∈ (0, 1) and τ ∈ (T0,∞). Let ϑ0 ∈ S1 be a point with

κ(ϑ0, τ) = κmax(τ) . (11.16)

By definition (11.10), D∗ = D∗(ΣT0 , τ) >
√

2π. Set

δ :=
( ε

D∗

)2
<

1

2π
(11.17)

and let ϑ ∈ (ϑ0 − δ/2, ϑ0 + δ/2). Lemma 11.8 yields

0 < κmax(τ)− κ(ϑ, τ)
(11.16)

= |κ(ϑ0, τ)− κ(ϑ, τ)| Lem. 11.8
< D∗

√
δ κmax(τ) . (11.18)

By Definition 11.9 of the generalised curvature,

0 <
(

1−D∗
√
δ
)
κmax(τ)

(11.18)

≤ κ(ϑ, τ)
Def. 11.9
≤ κ∗δ(τ) . (11.19)

Since Στ is embedded, closed and convex for τ ∈ (T0,∞), Lemma 11.10 yields

0 <
(

1−D∗
√
δ
)
κmax(τ)rin(τ)

(11.19)

≤ κ∗δ(τ)rin(τ)

Lem. 11.10
≤

[
1−K(δ)

(
rcirc(τ)

rin(τ)
− 1

)]−1

.

The definition (11.17) of δ yields the claim.

Corollary 11.12 ( [GH86, Proposition 5.3] and [Pih98, Corollary 7.12]). Let ΣT0 be a

smooth, embedded, convex curve. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with

initial curve ΣT0. For every ε ∈ (0, 1), there exists a time τ0 ∈ (T0,∞) such that

κmax(τ)rin(τ) ≤ 1

(1− ε)2

for all τ ≥ τ0.

Proof. We extend ideas of [GH86, Proposition 5.3] and [Pih98, Corollary 7.12]. Corol-

lary 11.4 implies that, for every δ > 0, there exists a time τ0(δ) > T0 so that

rcirc(τ)− rin(τ) ≤
√
D(ΣT0)Aτ

π
exp

(
− τ

R2
0

)
≤ δ
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for all τ ≥ τ0, and thus

rcirc(τ)

rin(τ)
− 1 ≤ δ

rin(τ)
. (11.20)

Recall the definitions (11.5) and (11.10) of m and D∗. For the APCSF, we define

I1 := {τ ∈ [τ0,∞) | m(τ) = κmax(τ)}

and

I2 := {τ ∈ [τ0,∞) | m(τ) > κmax(τ)} .

Then m is monotone increasing on I1 and constant on every connected subinterval of I2.

We distinguish between three cases.

(i) Assume that sup[τ0,∞)m < ∞. Then D∗ = D∗(ΣT0 , sup[τ0,∞)m) is independent of

time.

(ii) Assume that sup[τ0,∞)m = ∞ and sup{τ ∈ I2} =: τ3 < ∞. Then [τ3,∞) ⊂ I1 and

D∗ = D∗(ΣT0 ,m(τ3)) is independent of time.

(iii) Assume that sup[τ0,∞)m = ∞ and sup{τ ∈ I2} = ∞. Assume there exists τ1 ∈
[τ0,∞) so that (τ1,∞) ⊂ I2, then m(τ) = m(τ1) < ∞ for all τ ∈ (τ1,∞). This

contradicts sup[τ0,∞)m = ∞. Hence, I2 consists of infinitely many disjoint open

intervals I2,k, k ∈ N. And, for all τ ∈ I1, D∗(τ) = D∗(ΣT0) is independent of time.

For the LPCF, D∗ = D∗(ΣT0) is independent of time by definition. Further recall that K,

as defined in Lemma 11.10, is a positive decreasing function that satisfies K(ω)→∞ for

ω ↘ 0 and K(π) = 0. Thus, for any τ ≥ τ0 for the LPCF and for the APCSF in cases (i)

and (ii), and for τ ∈ I1 in case (iii), D∗ is independent of time. By Proposition 11.5,

rin(τ) ≥ c(ΣT0) > 0 for all τ ≥ T0. Hence, for given ε ∈ (0, 1), we can choose δ > 0 and

τ0(δ) > T0 so that

δ

rin(τ)
≤ ε

K
(
(ε/D∗)2

) (11.21)

for all τ ≥ τ0. Combining (11.20) and (11.21) yields

rcirc(τ)

rin(τ)
− 1 ≤ ε

K
(
(ε/D∗)2

)
and

1− ε ≤ 1−K
(( ε

D∗

)2
)(

rcirc(τ)

rin(τ)
− 1

)
for all τ ≥ τ0. This and Lemma 11.11 imply

κmax(τ)rin(τ)
Lem. 11.11
≤

{
(1− ε)

[
1−K

(( ε

D∗

)2
)(

rcirc(τ)

rin(τ)
− 1

)]}−1

≤ 1

(1− ε)2
(11.22)
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for any τ ≥ τ0 for the LPF and for APCSF in cases (i) and (ii), and for τ ∈ I1 in case (iii).

In case (iii), define the sequence(
τk := sup{τ ∈ I2,k} ∈ I1

)
k∈N .

Then τk →∞ for k →∞. By Proposition 11.5, rin(τk) ≥ c(ΣT0) > 0 for all k ∈ N. Thus,

for given ε ∈ (0, 1) and for all k ∈ N,

m(τ) = m(τk) = κmax(τk)
(11.22)

≤ 1

c(1− ε)2
(11.23)

for all τ ∈ I2,k, since τk ∈ I1. Hence,

∞ (iii)
= sup

τ∈[τ0,∞)
m(τ) = sup

τ∈I1∪I2
m(τ)

(11.22),(11.23)

≤ 1

c(1− ε)2

which is a contradiction. So case (iii) could not have happened and we are in case (i)

or (ii).

Proposition 11.13 ([GH86, Theorem 5.4] and [Pih98, Proposition 7.13]). Let ΣT0 be a

smooth, embedded, convex curve. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with

initial curve ΣT0. Then κ( · , τ)rin(τ)→ 1 uniformly for τ →∞.

Proof. We follow the lines of [GH86, Theorem 5.4] and in [Pih98, Proposition 7.13]. Fix

ε0 ∈ (0, 1/2). Corollary 11.12 implies that there exists a time τ0 > T0 so that

κ(ϑ, τ)rin(τ) ≤ κmax(τ)rin(τ)
Cor. 11.12
≤ 1

1− ε0
(11.24)

for all ϑ ∈ S1 and for all τ ≥ τ0. Hence, the set of functions

F :=
{
κ( · , τ)rin(τ) : S1 → R

∣∣ τ ≥ τ0

}
is uniformly bounded. By definition (11.10), D∗ >

√
2π. Lemma 11.8 yields that, for all

δ ≤ π/2 and |ϑ1 − ϑ2| < δ,

|κ(ϑ1, τ)rin(τ)− κ(ϑ2, τ)rin(τ)| Lem. 11.8
< D∗

√
δ rin(τ)κmax(τ)

(11.24)

≤ D∗
√
δ

1− ε0

for τ ≥ τ0. Thus, F is equicontinuous and we can apply the Arzelà–Ascoli theorem,

Theorem B.12, to deduce that, for all sequences (τk)k∈N with τ0 ≤ τk → ∞ for k → ∞,

there exists a subsequence (τk)k∈N so that the sequence(
fk( · ) := κ( · , τk)rin(τk) ∈ F

)
k∈N (11.25)

converges uniformly to a continuous function f : S1 → R (which may depend on the

subsequence). By the preservation of strict convexity (see Corollary 4.3), and the lower

bound on rin (see Proposition 11.5), there exists a constant so that fk ≥ c > 0 on S1 for

all k ∈ N. We employ Corollary 11.12 again to conclude that, for every ε ∈ (0, 1), there

exists k0 ∈ N so that

fk(ϑ)
(11.25)

≤ κmax(τk)rin(τk)
Cor. 11.12
≤ 1

(1− ε)2
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for all ϑ ∈ S1 and for all k ≥ k0. We let ε→ 0 and obtain

c ≤ f(ϑ) ≤ 1

for all ϑ ∈ S1. Furthermore, the sequence
(
1/fk

)
k∈N is uniformly bounded between 1 and

1/c on S1 for every k ∈ N, and converges to

1

f
: S1 →

[
1 ,

1

c

]
.

Since S1 is compact, we can apply Fatou’s lemma, Lemma B.9, and obtain∫
S1

1

f(ϑ)
dϑ =

∫
S1

lim inf
k→∞

1

fk(ϑ)
dϑ

Lem. B.9
≤ lim inf

k→∞

∫
S1

1

fk(ϑ)
dϑ

(11.25)
= lim inf

k→∞

1

rin(τk)

∫
S1

1

κ(ϑ, τk)
dϑ

(11.3)
= lim inf

k→∞

1

rin(τk)

∫
s(S1,τk)

dsτk

= lim inf
k→∞

Lτk
rin(τk)

Prop. 11.5
= 2π ,

where we used in the last step that Lτk → 2πR0 and rin(τk) → R0 for k → ∞ (see

Proposition 11.5). Since f ≤ 1, the above estimate yields

1 ≥ 1

2π

∫
S1

1

f(ϑ)
dϑ ≥ min

S1

1

f
=

1

maxS1 f
≥ 1

so that f ≡ 1 on S1. It follows that every sequence (τk)k∈N has a subsequence so that fk →
1 uniformly on S1. Furthermore, every subsequence has a subsubsequence so that fk → 1

uniformly on S1. Hence, for all sequences (τk)k∈N with τ0 ≤ τk → ∞, κ( · , τk)rin(τk) → 1

uniformly for k →∞ and thus κ( · , τ)rin(τ)→ 1 uniformly for τ →∞.

Corollary 11.14 (C2-convergence of convex curves, [Pih98, Corollary 7.14]). Let ΣT0 be a

smooth, embedded, convex curve of area AT0 = πR2
0 for the APCSF and length LT0 = 2πR0

for the LPCF. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with initial curve ΣT0.

Then
κmax(τ)

κmin(τ)
→ 1 , κ(ϑ, τ)→ 1

R0
and h(τ)→ 1

R0

for every ϑ ∈ S1 and for τ →∞. Hence, the flow converges uniformly in C2 to a circle of

radius R0 which solves the corresponding isoperimetric problem.

Proof. By Proposition 11.5, Στ is strictly convex for τ ∈ (T0,∞). By Proposition 11.13,

κ(ϑ, τ)rin(τ)→ 1

for all ϑ ∈ S1 and for τ →∞. Hence, it also holds that

κmax(τ)rin(τ)→ 1 and κmin(τ)rin(τ)→ 1

for τ →∞ and the first claim follows. By Propositions 11.5, the curve converges to a circle

of radius R0. This yields the second claim. For the APCSF, hap = 2π/L, hence the third

claim, follows from Proposition 11.5. For the LPCF, the third claim is given by Lemma 10.4

and follows also from the above curvature convergence using 1/R0 ≤ hlp ≤ κmax (see (3.11)

and Corollary 5.9).
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Corollary 11.15 (Boundedness of curvature derivatives I). Let Σ0 be a smooth, embedded

curve of area A0 = πR2
0 for the APCSF and length L0 = 2πR0 for the LPCF. Let F :

S1× [0,∞) → R2 be a solution of (2.15) with initial curve Σ0. Then, for every n ∈ N,

there exists a constant Cn = Cn(n,Σ0) such that

max
S1
Rt

∣∣∣∣∂nκ∂sn

∣∣∣∣ ≤ Cn
for all t ≥ 0.

Proof. By Theorem 10.9, there exists a time T0 > 0 so that the curves are strictly con-

vex on (T0,∞). Proposition 4.9 implies that the curvature is bounded on (0, T0] and

Corollary 11.14 implies that the curvature is bounded on (T0,∞). Hence, we can apply

Corollary 4.7 with T = ∞ to find that, for all n ∈ N, the arc length derivatives are

bounded.

Corollary 11.16 (Boundedness of curvature derivatives II, [Pih98, Corollary 7.15]). Let

ΣT0 be a smooth, embedded, convex curve of area AT0 = πR2
0 for the APCSF and length

LT0 = 2πR0 for the LPCF. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with

initial curve ΣT0. Then, for all n ∈ N, there exists a constant C̄n = C̄n(n,ΣT0) and time

τ0 = τ0(Σ0) > T0 such that

max
S1

∣∣∣∣∂nκ∂ϑn

∣∣∣∣ ≤ C̄n
on [τ0,∞).

Proof. By Corollary 4.3, the curves are strictly convex on (T0,∞). By Corollary 11.14,

for every c0 ∈ (0, 1/R0) there exists τ0(c0) > T0 such that

κmin ≥ c0

on [τ0,∞). For c0 = 1/(2R0), the transformation (11.3) of the derivatives and Corol-

lary 11.15 imply∣∣∣∣∂κ∂ϑ(ϑ(s, t), τ(t))

∣∣∣∣ (11.3)
=

∣∣∣∣ 1

κ(s, t)

∂κ

∂s
(s, t)

∣∣∣∣ Cor. 11.15
≤ C1(Σ0)

c0
=: C̄1(Σ0)

for all t ∈ [τ0,∞), and, for n ≥ 2,

max
ϑ∈S1

∣∣∣∣∂nκ∂ϑn
(ϑ, τ)

∣∣∣∣ = max
S1
Rt

∣∣∣∣( 1

κ(s, t)

∂

∂s

)n
κ(s, t)

∣∣∣∣
≤ c(n, c0, C1, . . . , Cn) =: C̄n(n,Σ0) .

11.3 Uniform C∞-convergence

In this section, we show that, for convex solutions of (2.15), the derivatives of the curvature

with respect to ϑ converge to zero.
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Theorem 11.17 (C∞-convergence of convex curves, [Pih98, Proposition 7.17]). Let ΣT0

be a smooth, embedded, convex curve of area AT0 = πR2
0 for the APCSF and length

LT0 = 2πR0 for the LPCF. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with initial

curve ΣT0. Then, for all n ∈ N, ∂n

∂ϑnκ → 0 uniformly for τ → ∞. Hence, the curves

converge uniformly in C∞ to a circle of radius R0.

Proof. We follow the lines of [Pih98, Proposition 7.17]. Corollary 11.14 implies that the

curvature and the global terms are uniformly bounded by a constant C0 > 0 on [T0,∞).

We abbreviate in the following

κ′ :=
∂κ

∂ϑ
and κ(n) :=

∂nκ

∂ϑn
.

Corollary 11.16 implies that there exists a time τ0(Σ0) > T0 so that, for every n ∈ N,

ϑ1, ϑ2 ∈ S1, ε > 0 and τ ≥ τ0,∣∣∣κ(n)(ϑ1, τ)− κ(n)(ϑ2, τ)
∣∣∣ ≤ ∣∣∣∣∫ ϑ2

ϑ1

κ(n+1)(ϑ, τ) dϑ

∣∣∣∣ ≤ C̄n+1(n,Σ0)|ϑ1 − ϑ2|1/2.

Thus, κ(n) is uniformly continuous in space for each n ∈ N and fixed time. Let (τk)k∈N be

a sequence with τk →∞ for k →∞. Then, for fixed n ∈ N, the sequence(
κ(n)( · , τk) : S1 → R

)
k∈N

is bounded and equicontinuous. The Arzelà–Ascoli theorem, Theorem B.12, implies that,

for each n ∈ N, there exists a subsequence
(
κ(n)( · , τk)

)
k∈N that converges uniformly to a

continuous function fn : S1 → R which may depend on the subsequence. We proceed by

induction over n. For n = 0, we use Corollary 11.14 to conclude that the sequence(
κ( · , τk) : S1 → R

)
k∈N

converges pointwise to 1/R0 for k → ∞. Furthermore, as stated above, there exists a

subsequence (τk)k∈N so that (
κ′( · , τk) : S1 → R

)
k∈N

converges uniformly to a continuous function f1 : S1 → R which may depend on the

subsequence. Since the convergence is uniform, there exists k0 ∈ N so that∣∣κ′( · , τk)∣∣ ≤ 2f1 ∈ L1(S1) (11.26)

for all k ≥ k0. Fix ϑ0 ∈ S1. By (11.26) and the uniform convergence, we can apply the

dominated convergence theorem, Theorems B.10, and Theorem B.14 which allow us to

interchange the limit with the integral bounds and differentiation. Thus, for all ϑ ∈ S1,

f1(ϑ) =
∂

∂ϑ

∫ ϑ

ϑ0

f1(σ) dσ =
∂

∂ϑ

∫ ϑ

ϑ0

lim
k→∞

κ′(σ, τk) dσ

Thm. B.10
=

∂

∂ϑ
lim
k→∞

∫ ϑ

ϑ0

κ′(σ, τk) dσ
Thm. B.14

= lim
k→∞

∂

∂ϑ

∫ ϑ

ϑ0

κ′(σ, τk) dσ

= lim
k→∞

∂

∂ϑ
κ(ϑ, τk)

Thm. B.14
=

∂

∂ϑ
lim
k→∞

κ(ϑ, τk)
Cor. 11.14

=
∂

∂ϑ

1

R0
= 0 .
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By the same argument, every subsubsequence (κ′( · , τk))k∈N converges uniformly to 0.

Hence, κ′ converges uniformly to 0 as τ → ∞. For the induction step, we assume that

κ(n) → 0 uniformly for τ →∞. Again, since the convergences are uniform and there exists

k0 ∈ N so that ∣∣∣κ(n)( · , τk)
∣∣∣ ≤ 2fn ∈ L1(S1)

for all k ≥ k0, Theorems B.10 and B.14 allow us to interchange the limit with the integral

bounds and differentiation. Thus, for all ϑ ∈ S1,

fn+1(ϑ) =
∂

∂ϑ

∫ ϑ

ϑ0

fn+1(σ) dσ =
∂

∂ϑ

∫ ϑ

ϑ0

lim
k→∞

κ(n+1)(σ, τk) dσ

Thm. B.10
=

∂

∂ϑ
lim
k→∞

∫ ϑ

ϑ0

κ(n+1)(σ, τk) dσ
Thm. B.14

= lim
k→∞

∂

∂ϑ

∫ ϑ

ϑ0

κ(n+1)(σ, τk) dσ

= lim
k→∞

∂

∂ϑ
κ(n)(ϑ, τk)

Thm. B.14
=

∂

∂ϑ
lim
k→∞

κ(n)(ϑ, τk) =
∂

∂ϑ
0 = 0 .

The same argument as for n = 0 above yields that κ(n+1) converges uniformly to 0 as

τ →∞.

11.4 Exponential convergence

In this section, we show that, once the curve is convex, the curvature converges exponen-

tially to 1/R0 and all curvature derivatives converge exponentially to zero. In the end of

the section we state the main results of this thesis. In the following, let again be T0 ≥ 0

be the time where the curve is convex.

Lemma 11.18 (Wirtinger’s inequality, see e. g. [AE06, p. 91]). Let f : [a, b] → R be in

C1 with b− a ≤ π and f(a) = f(b) = 0. Then∫ b

a
f2 dϑ ≤ (b− a)2

π2

∫ b

a

(
df

dϑ

)2

dϑ .

Lemma 11.19 ([GH86, Lemma 5.7.9] and [Pih98, Lemma 7.23]). Let ΣT0 be a smooth,

embedded, convex curve of area AT0 = πR2
0 for the APCSF and length LT0 = 2πR0 for

the LPCF. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with initial curve ΣT0. Let

β ∈ (0, 1). Then there exists a time τ0 > T0 such that

4β

∫
S1

(
∂κ

∂ϑ

)2

dϑ ≤
∫
S1

(
∂2κ

∂ϑ2

)2

dϑ

for all τ ≥ τ0.

Proof. We follow the lines of [GH86, Lemma 5.7.9] and [Pih98, Lemma 7.23]. The system{
1,
√

2 cos(nϑ),
√

2 sin(nϑ)
}
n∈Z

(11.27)

forms an orthonormal basis of the periodic functions in the Hilbert space C2([0, 2π]) with

respect to the L2-inner product (see e. g. [HL99, p. 124]). By the transformation (11.3) of
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the derivatives, we have dst = dϑ/κ so that∫
S1

sin(ϑ)

κ
dϑ =

∫
S1
Rt

sin

(
s

Rt

)
dst = cos(2π)− cos(0) = 1− 1 = 0 (11.28)

and ∫
S1

cos(ϑ)

κ
dϑ =

∫
S1
Rt

cos

(
s

Rt

)
dst = sin(2π)− sin(0) = 0 . (11.29)

Integration by parts (B.4) yields

0
(11.28)

=

∫
S1

sin(ϑ)

κ
dϑ =

∫
S1

1

κ

∂ cos

∂ϑ
(ϑ) dϑ

(B.4)
= −

∫
S1

cos(ϑ)
∂

∂ϑ

(
1

κ

)
dϑ =

∫
S1

cos(ϑ)
1

κ2

∂κ

∂ϑ
dϑ

and

0
(11.29)

= −
∫
S1

cos(ϑ)

κ
dϑ =

∫
S1

1

κ

∂ sin

∂ϑ
(ϑ) dϑ

(B.4)
= −

∫
S1

sin(ϑ)
∂

∂ϑ

(
1

κ

)
dϑ =

∫
S1

sin(ϑ)
1

κ2

∂κ

∂ϑ
dϑ .

Additionally, we have

0 = −
∫
S1

∂

∂ϑ

(
1

κ

)
dϑ =

∫
S1

1

κ2

∂κ

∂ϑ
dϑ .

Hence, 1/κ2 ∂
∂ϑκ is orthogonal to the first five basis functions of the basis (11.27). Since

all the other basis functions are zero at at least four points in [0, 2π] with distance ≤ π/2,

there exists a number i0 ≥ 4 and points ϑi ∈ S1, i ∈ {1, . . . , i0}, so that(
1

κ2

∂κ

∂ϑ

)
(ϑi, τ) = 0

and

|ϑi − ϑi+1| ≤
π

2

for i ∈ {1, . . . , i0 − 1} and

|ϑi0 − (2π + ϑ1)| ≤ π

2
.

Since 1/κ2 ∂
∂ϑκ is periodic on [0, 2π], i0 is even. Define the intervals

Ii := [θi, θi+1]

for i ∈ {1, . . . , i0 − 1} and

Ii0 := [0, θ1] ∪ [θi0 , 2π] .

Then |Ii| ≤ π/2 for all i ∈ {1, . . . , i0}. We apply Wirtinger’s inequality, Lemma 11.18, to

the function 1/κ2 ∂
∂ϑκ on the intervals Ii, where we identify Ii0 = [θi0 , 2π+ θ1]. This yields∫

Ii

(
1

κ2

∂κ

∂ϑ

)2

dϑ ≤ 1

4

∫
Ii

[
∂

∂ϑ

(
1

κ2

∂κ

∂ϑ

)]2

dϑ
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for all i ∈ {1, . . . , i0} and thus∫
S1

(
1

κ2

∂κ

∂ϑ

)2

dϑ ≤ 1

4

∫
S1

[
∂

∂ϑ

(
1

κ2

∂κ

∂ϑ

)]2

dϑ . (11.30)

For ε > 0, Peter–Paul (B.2) implies

4

∫
S1

(
1

κ2

∂κ

∂ϑ

)2

dϑ
(11.30)

≤
∫
S1

[
∂

∂ϑ

(
1

κ2

∂κ

∂ϑ

)]2

dϑ

=

∫
S1

[
1

κ2

∂2κ

∂ϑ2
− 2

κ3

(
∂κ

∂ϑ

)2
]2

dϑ

=

∫
S1

[
1

κ4

(
∂2κ

∂ϑ2

)2

− 4

κ5

∂2κ

∂ϑ2

(
∂κ

∂ϑ

)2

+
4

κ6

(
∂κ

∂ϑ

)4
]
dϑ

(B.2)

≤
∫
S1

[
(1 + 4ε)

1

κ4

(
∂2κ

∂ϑ2

)2

+

(
4 +

1

ε

)
1

κ6

(
∂κ

∂ϑ

)4
]
dϑ . (11.31)

For arbitrary β ∈ (0, 1), it is possible to choose ε(β) > 0 small enough so that[
4

(1/R0 + ε)4
− ε2(4 + 1/ε)

(1/R0 − ε)4

]
(1/R0 − ε)4

1 + 4ε

=

[(
1/R0 − ε
1/R0 + ε

)4

− ε
(
ε+

1

4

)]
4

1 + 4ε
≥ 4β . (11.32)

By Corollary 11.14, we can choose τ0(β) > T0 large enough so that, for τ ≥ τ0,

1

R0
− ε ≤ κ ≤ 1

R0
+ ε (11.33)

and, by the uniform convergence in Theorem 11.17, for τ ≥ τ0,

max
S1

∣∣∣∣∂κ∂ϑ
∣∣∣∣ ≤ ε( 1

R0
− ε
)
. (11.34)

We use (11.31), (11.33) and (11.34) to estimate, for τ ≥ τ0,

4

(1/R0 + ε)4

∫
S1

(
∂κ

∂ϑ

)2

dϑ
(11.33)

≤ 4

∫
S1

(
1

κ2

∂κ

∂ϑ

)2

dϑ

(11.31)

≤
∫
S1

[
(1 + 4ε)

1

κ4

(
∂2κ

∂ϑ2

)2

+

(
4 +

1

ε

)
1

κ6

(
∂κ

∂ϑ

)4
]
dϑ

(11.33)

≤ 1 + 4ε

(1/R0 − ε)4

∫
S1

(
∂2κ

∂ϑ2

)2

dϑ+
4 + 1/ε

(1/R0 − ε)6

∫
S1

(
∂κ

∂ϑ

)4

dϑ

≤ 1 + 4ε

(1/R0 − ε)4

∫
S1

(
∂2κ

∂ϑ2

)2

dϑ+
4 + 1/ε

(1/R0 − ε)6
max
S1

(
∂κ

∂ϑ

)2 ∫
S1

(
∂κ

∂ϑ

)2

dϑ

(11.34)

≤ 1 + 4ε

(1/R0 − ε)4

∫
S1

(
∂2κ

∂ϑ2

)2

dϑ+
ε2(4 + 1/ε)

(1/R0 − ε)4

∫
S1

(
∂κ

∂ϑ

)2

dϑ .

Rearranging terms yields[
4

(1/R0 + ε)4 −
ε2(4 + 1/ε)

(1/R0 − ε)4

]
(1/R0 − ε)4

1 + 4ε

∫
S1

(
∂κ

∂ϑ

)2

dϑ ≤
∫
S1

(
∂2κ

∂ϑ2

)2

dϑ

for τ ≥ τ0, which, together with (11.32), proves the claim.
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Lemma 11.20 ([GH86, Lemma 5.7.10] and [Pih98, Lemma 7.24]). Let ΣT0 be a smooth,

embedded, convex curve of area AT0 = πR2
0 for the APCSF and length LT0 = 2πR0 for

the LPCF. Let F : S1× [T0,∞) → R2 be a solution of (2.15) with initial curve ΣT0. Let

β ∈ (0, 1). Then there exists a time τ0 > T0 and a constant D = D(ΣT0 ,Στ0 , τ0) > 0 such

that ∫
S1

(
∂κ

∂ϑ

)2

dϑ ≤ D exp

(
−2βτ

R2
0

)
for all τ ≥ τ0.

Proof. Analogous results can be found in [GH86, Lemma 5.7.10] and [Pih98, Lemma 7.24].

We use the evolution equation (11.4) of the curvature and integration by parts (B.4) to

calculate

∂

∂τ

∫
S1

(
∂κ

∂ϑ

)2

dϑ = 2

∫
S1

∂κ

∂ϑ

∂

∂ϑ

(
∂κ

∂τ

)
dϑ

(11.4)
= 2

∫
S1

∂κ

∂ϑ

∂

∂ϑ

(
κ2 ∂

2κ

∂ϑ2
− (h− κ)κ2

)
dϑ

= 2

∫
S1

∂κ

∂ϑ

[
∂

∂ϑ

(
κ2 ∂

2κ

∂ϑ2

)
− ∂

∂ϑ

(
hκ2 − κ3

)]
dϑ

(B.4)
= 2

∫
S1

[
−κ2

(
∂2κ

∂ϑ2

)2

−
(
2hκ− 3κ2

)(∂κ
∂ϑ

)2
]
dϑ . (11.35)

Let β ∈ (0, 1) be arbitrary. Choose

γ(β) ∈
(

1

4
, 1

)
and ε(γ, β) ∈

(
0 ,

1

6R0

)
so that

(4γ + 2) (1− εR0)2 − 3 (1 + εR0)2 ≥ β . (11.36)

Corollary 11.14, implies that there exists τ0(ε, γ, β) = τ0(β) > T0 so that, for all τ ≥ τ0,

1

R0
− ε ≤ κ ≤ 1

R0
+ ε (11.37)

as well as

1

R0
− ε ≤ h ≤ 1

R0
+ ε (11.38)

and, by Lemma 11.19, ∫
S1

(
∂2κ

∂ϑ2

)2

dϑ ≥ 4γ

∫
S1

(
∂κ

∂ϑ

)2

dϑ . (11.39)
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Hence,

∂

∂τ

∫
S1

(
∂κ

∂ϑ

)2

dϑ
(11.35)

= 2

∫
S1

[
−κ2

(
∂2κ

∂ϑ2

)2

− (2hκ− 3κ2)

(
∂κ

∂ϑ

)2
]
dϑ

(11.37),(11.38)

≤ −2

(
1

R0
− ε
)2 ∫

S1

(
∂2κ

∂ϑ2

)2

dϑ

− 2

[
2

(
1

R0
− ε
)2

− 3

(
1

R0
+ ε

)2
]∫

S1

(
∂κ

∂ϑ

)2

dϑ

(11.39)

≤ −8γ

(
1

R0
− ε
)2 ∫

S1

(
∂κ

∂ϑ

)2

dϑ

− 2

[
2

(
1

R0
− ε
)2

− 3

(
1

R0
+ ε

)2
]∫

S1

(
∂κ

∂ϑ

)2

dϑ

= − 2

R2
0

[
(4γ + 2) (1− εR0)2 − 3 (1 + εR0)2

] ∫
S1

(
∂κ

∂ϑ

)2

dϑ

(11.36)

≤ − 2β

R2
0

∫
S1

(
∂κ

∂ϑ

)2

dϑ

for all τ ≥ τ0. We apply Lemma B.1 to solve the above ODE inequality and estimate, for

all τ ≥ τ0, ∫
S1

(
∂κ

∂ϑ
(ϑ, τ)

)2

dϑ ≤ exp

(
− 2β

R2
0

(τ − τ0)

)∫
S1

(
∂κ

∂ϑ
(ϑ, τ0)

)2

dϑ .

Lemma 11.21 (See also [Pih98, Theorem 7.28]). Let ΣT0 be a smooth, embedded, convex

curve of area AT0 = πR2
0 for the APCSF and length LT0 = 2πR0 for the LPCF. Let

F : S1× [T0,∞) → R2 be a solution of (2.15) with initial curve ΣT0. Let β ∈ (0, 1) and

n ∈ N. Then there exists a time τ0 > T0 and a constant D̄n = D̄n(n,ΣT0 ,Στ0 , τ0) > 0

such that

max
ϑ∈S1

∣∣∣∣∂nκ∂ϑn
(ϑ, τ)

∣∣∣∣ ≤ D̄n exp

(
− βτ

(n+ 1)R2
0

)
for all τ ≥ τ0.

Proof. For n ∈ N ∪ {0}, Cn+1(S1) ⊂ Cn(S1) ⊂ L2(S1). Furthermore, every bounded se-

quence in Cn+1(S1) has a convergent subsequence in Cn(S1) and ‖f‖L2(S1) ≤
√

2π‖f‖Cn(S1)

for every f ∈ Cn(S1). Hence,

Cn+1(S1) ↪→
compact

Cn(S1) ↪→
continuous

L2(S1) .

Let f ∈ Cn+1(S1). Ehrling’s lemma, Theorem B.15, yields that, for all δ > 0, there exists

a constant C(δ) > 0 so that

‖f‖Cn(S1) ≤ δ‖f‖Cn+1(S1) + C(δ)‖f‖L2(S1) .

For δ = 1/2, we obtain

max
S1
|Dnf | ≤ max

S1
|Dn+1f |+ C‖f‖L2(S1) . (11.40)
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Let ε > 0 and define κε : [0, 2π/ε)× (T0,∞)→ R by

κε(ϑ, τ) := κ(εϑ, τ) .

Then

∂nκε
∂ϑn

(ϑ, τ) = εn
∂κ

∂ϑ
(εϑ, τ) (11.41)

for n ∈ N. Let β ∈ (0, 1). By Corollary 11.16 and Lemma 11.20, there exists a time

τ0(β,Σ0) > T0 and constants C̄n+1 = C̄n+1(n,ΣT0 ,Στ0) and D = D(ΣT0 ,Στ0 , τ0) so that

εn max
ϑ∈S1

∣∣∣∣∂nκ∂ϑn
(ϑ, τ)

∣∣∣∣ = εn max
ϑ∈[0,2π/ε)

∣∣∣∣∂nκ∂ϑn
(εϑ, τ)

∣∣∣∣ (11.41)
= max

ϑ∈[0,2π/ε)

∣∣∣∣∂nκε∂ϑn
(ϑ, τ)

∣∣∣∣
(11.40)

≤ max
ϑ∈[0,2π/ε)

∣∣∣∣∂n+1κε
∂ϑn+1

(ϑ, τ)

∣∣∣∣+ C

(∫ 2π/ε

0

(
∂κε
∂ϑ

(ϑ, τ)

)2

dϑ

)1/2

(11.41)
= εn+1 max

ϑ∈[0,2π/ε)

∣∣∣∣∂n+1κ

∂ϑn+1
(εϑ, τ)

∣∣∣∣+
Cε√
ε

(∫ 2π/ε

0

(
∂κ

∂ϑ
(εϑ, τ)

)2

dϑ

)1/2

= εn+1 max
ϑ∈S1

∣∣∣∣∂n+1κ

∂ϑn+1
(ϑ, τ)

∣∣∣∣+ C
√
ε

(∫
S1

(
∂κ

∂ϑ
(ϑ, τ)

)2

dϑ

)1/2

Cor. 11.16
≤

Lem. 11.20
εn+1C̄n+1 + C

√
ε
√
D exp

(
−βτ
R2

0

)
for all τ ≥ τ0. Thus,

max
ϑ∈S1

∣∣∣∣∂nκ∂ϑn
(ϑ, τ)

∣∣∣∣ ≤ D̄n

[
ε+ ε1/2−n exp

(
−βτ
R2

0

)]
, (11.42)

where D̄n = D̄n(n,ΣT0 ,Στ0 , τ0). We choose

ε = exp

(
− βτ

(n+ 1/2)R2
0

)
,

then

ε1/2−n exp

(
−βτ
R2

0

)
= exp

(
− (1/2− n)βτ

(n+ 1/2)R2
0

− βτ

R2
0

)
= exp

(
− βτ

(n+ 1/2)R2
0

)
and

max
ϑ∈S1

∣∣∣∣∂nκ∂ϑn
(ϑ, τ)

∣∣∣∣ (11.42)

≤ 2D̄n exp

(
− βτ

(n+ 1/2)R2
0

)
≤ 2D̄n exp

(
− βτ

(n+ 1)R2
0

)
for all τ ≥ τ0.

Corollary 11.22. Let Σ0 be a smooth, embedded curve of area A0 = πR2
0 for the APCSF

and length L0 = 2πR0 for the LPCF. Let F : S1× [0,∞) → R2 be a solution of (2.15)

with initial curve Σ0. Let β ∈ (0, 1) and m,n ∈ N ∪ {0}, m+ n > 0. Then there exists a

constant Dn,m > 0 such that

max
s∈S1

Rt

∣∣∣∣ ∂m∂tm ∂nκ

∂sn
(s, t)

∣∣∣∣ ≤ Dn,m exp

(
− βt

(n+ 2m+ 1)R2
0

)
for all t ≥ 0.
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Proof. By Lemma 4.6, we can express time derivatives of the curvature in terms of spatial

derivatives of the curvature. Hence, it suffices to show the claim for m = 0. By The-

orem 10.9, there exists a time T0 ≥ 0 so that Σt is strictly convex for t > T0. By the

transformation (11.3) of the derivatives, the boundedness of the curvature, t = τ , Corol-

lary 11.16 and Lemma 11.21 implies that, for β ∈ (0, 1), there exist a time τ0(β,Σ0) > T0

and constants C̄0, . . . , C̄n−2, D̄1, . . . , D̄n > 0 depending only on n, ΣT0 , Στ0 and τ0 so that

max
s∈S1

Rt

∣∣∣∣∂nκ∂sn
(s, t)

∣∣∣∣ = max
ϑ∈S1

∣∣∣∣(κ(ϑ, τ)
∂

∂ϑ

)n
κ(ϑ, τ)

∣∣∣∣
Lem. 11.21
≤ c(n, C̄0, . . . , C̄n−2, D̄1, . . . , D̄n) exp

(
− βt

(n+ 1)R2
0

)
for all τ = t ≥ τ0. On the other hand, Corollary 11.15 implies that

∣∣ ∂n
∂snκ

∣∣ is bounded on

[0, τ0] by a constant Cn(n,Σ0). Choosing Dn sufficiently large, yields the claim.

Remark 11.23. By repeating the proof of Lemma 11.20 for higher derivatives of the

curvature and using a Sobolev inequality, we can also achieve a better exponential decay

(see also [GH86, Lemmata 5.7.13–5.7.15] for a similar approach). More precisely, for

β ∈ (0, 1) and m,n ∈ N ∪ {0}, m + n > 0, there exists a time-independent constant

Dn,m > 0 so that

max
s∈S1

Rt

∣∣∣∣ ∂m∂tm ∂nκ

∂sn
(s, t)

∣∣∣∣ ≤ Dn,m exp

(
−2βt

R2
0

)
for all t ≥ 0.

We summarise our results in the following and two theorems. We call a solution

immortal if it exists for all positive times.

Theorem 11.24 (Exponential convergence for immortal solutions). Let Σ0 be a smooth,

embedded curve of area A0 = πR2
0 for the APCSF and length L0 = 2πR0 for the LPCF.

Let F : S1× [0,∞)→ R2 be a solution of (2.15) with initial curve Σ0. Then the evolving

surfaces Σt = F (S1, t) are contained in a uniformly bounded region of the plane for all

times. And, for all β ∈ (0, 1), there exists a time-independent constant C > 0 such that,

for all t ≥ 0,

(i) |κmax(t)− κmin(t)| ≤ C exp
(
− β
R2

0
t
)

,

(ii) |κ(p, t)− 1/R0| ≤ C exp
(
− β
R2

0
t
)

for all p ∈ S1,

(iii) |h(t)− 1/R0| ≤ C exp
(
− β
R2

0
t
)

, and

(iv)
∣∣∣ ∂n∂tm ∂n

∂pnκ(p, t)
∣∣∣ ≤ C exp

(
− β

(n+2m+1)R2
0
t
)

for all p ∈ S1 and all n,m ∈ N.

Hence, the solution converges smoothly and exponentially to a circle of radius R0.

Remark 11.25. Following Remark 11.23, we can obtain exponential decay of exp
(
− 2β
R2

0
t
)

in Theorem 11.24(i)–(iv).
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Proof of Theorem 11.24. Since, by assumption, the solution exists for all times, Propo-

sition 4.9 yields that the curvature is uniformly bounded on every finite time interval.

By Lemma 3.13, the curves stay in a bounded region on every finite time interval. The-

orem 6.5 implies that the curves remain embedded on (0,∞). By Theorem 10.9, there

exists a time T0 > 0 so that the curves are strictly convex on (T0,∞). For the first order

curvature convergence, we partially follow the lines of [Pih98, Proposition 7.27]. Fix t ≥ 0.

Let s1, s2 ∈ S1
Rt

be the points where the curvature attains its maximum and minimum.

By Corollary 11.22, there exists a time-independent constant D1 > 0 so that

|κmax(t)− κmin(t)| = |κ(s2, t)− κ(s1, t)| =
∣∣∣∣∫ s2

s1

∂κ

∂s
dst

∣∣∣∣
≤
∫
S1
Rt

∣∣∣∣∂κ∂s
∣∣∣∣ dst Cor. 11.22

≤ L0D1 exp

(
− βt
R2

0

)
,

where we used Lt ≤ L0 for both flows. This proves claim (i). For claim (ii), first consider

a fixed time t > T0, where Σt is strictly convex. We observe that for the APCSF,

κmin(t) ≤ 1

rcirc(t)
=

√
π

A(Brcirc(t))
≤
√

π

At
=

√
π

A0
=

1

R0

≤
√

π

A(Brin(t))
=

1

rin(t)
≤ κmax(t) .

For the LPCF,

κmin(t) ≤ 1

L0

∫
S1
R0

κ dst =
2π

L0
=

1

R0
≤ κmax(t) .

The intermediate value theorem yields for both flows that there exists a point s0 ∈ S1
Rt

with κ(s0, t) = 1/R0, and we can estimate, for s ∈ S1
Rt

,∣∣∣∣κ(s, t)− 1

R0

∣∣∣∣ = |κ(s, t)− κ(s0, t)| =
∣∣∣∣∫ s

s0

∂κ

∂s
dst

∣∣∣∣
≤
∫
S1
Rt

∣∣∣∣∂κ∂s
∣∣∣∣ dst Cor. 11.22

≤ L0D1 exp

(
− βt
R2

0

)
. (11.43)

The boundedness of the curvature on [0, T0] yields the claim for all t ≥ 0. For claim

(iii), we estimate for the APCSF with the upper bound (3.10) on the global term and

κmin ≤ π/Lt = hap,

0
(3.10)
<

√
π

A0
− hap(t) =

1

R0
− hap(t) ≤ 1

R0
− κmin(t)

(11.43)

≤ L0D1 exp

(
− βt
R2

0

)
(11.44)

and for the LPCF, by the lower bound (3.11) on the global term and Corollary 5.9,

0
(3.11)
< hlp(t)− 2π

L0
= hlp(t)− 1

R0

Cor. 5.9
≤ κmax(t)− 1

R0

(11.43)

≤ L0D1 exp

(
− βt
R2

0

)
(11.45)

for all t ≥ 0. For claim (iv), we use the evolution equation (3.2) of the length element and

the above inequalities to estimate for p ∈ S1, t ≥ 0 and β ∈ (0, 1),

∂v

∂t

(3.2)
= κ(h− κ)v ≤ |κ|

(∣∣∣∣h− 1

R0

∣∣∣∣+

∣∣∣∣ 1

R0
− κ
∣∣∣∣) v (11.43),(11.44)

≤
(11.45)

c exp

(
− βt
R2

0

)
v



138 11 Longtime behaviour

for a time-independent constant c = c(Σ0, D1) > 0. By Lemma B.1,

v(p, t)
Lem. B.1
≤ v(p, 0) exp

(
c

∫ t

0
exp

(
−βτ
R2

0

)
dτ

)
= c(Σ0) exp

(
−cR

2
0

β
exp

(
− βt
R2

0

)
+
c(Σ0)

β

)
≤ c(Σ0, D1, β) (11.46)

for every p ∈ S1 and t ≥ 0. By identity (A.3) for the arc length differentiation and

Corollary 11.22,∣∣∣∣∂κ∂p (p, t)

∣∣∣∣ (A.3)
=

∣∣∣∣v(p, t)
∂κ

∂s
(s(p, t), t)

∣∣∣∣ Cor. 11.22
≤ cD1 exp

(
− βt
R2

0

)
for every p ∈ S1 and t ≥ 0. We observe that∣∣∣∣v∂v∂s

∣∣∣∣ =

∣∣∣∣∂v∂p
∣∣∣∣ = v−1

∣∣∣∣〈∂F∂p , ∂2F

∂p2

〉∣∣∣∣ (A.8)

≤ v2|κ|
(11.43),(11.46)

≤ c(Σ0, D1, β) ,

so that we can estimate, for every m,n ∈ N ∪ {0}, m+ n > 0,∣∣∣∣ ∂m∂tm ∂nκ

∂pn

∣∣∣∣ (A.3)
=

∣∣∣∣ ∂m∂tm
(
v
∂

∂s

)n
κ

∣∣∣∣
Cor. 11.22
≤ c(n,m, β,Σ0, D1, . . . , Dn+2m) exp

(
− βt

(n+ 2m+ 1)R2
0

)
.

To show that the curves stay in a bounded region, we estimate

‖F (p, t)− F (p, 0)‖ ≤
∫ t

0
|κ(p, τ)− h(τ)| dτ

(11.43),(11.44)

≤
(11.45)

c

∫ t

0
exp

(
− β

R2
0

τ

)
dτ ≤ c

for all p ∈ S1 and t ∈ (0,∞), where c is independent of time.

Corollary 11.26 (Solutions to the APCSF). Let Σ0 be a smooth, embedded, closed curve

of area A0 = πR2
0, satisfying θmin ≥ −π. Then there exists a unique, smooth, embedded

solution F : S1× [0,∞)→ R2 to the APCSF with initial curve Σ0. Hence, Theorem 11.24

holds and the solution converges smoothly and exponentially in a bounded domain to a

circle of radius R0.

Proof. By Theorem 9.29, there exists a unique embedded solution F : S1× [0,∞) → R2

to the APCSF with initial curve Σ0 and F ∈ C∞(S1× (0,∞)). Hence, we can apply

Theorem 11.24.



Appendix A

Notation and geometric definitions

In this appendix we give short introductions to curves in R2 and hypersurfaces in Rn+m.

A.1 Curves in R2

Let I = [a, b] ⊆ R be an interval. A Ck-map, k ∈ N ∪ {∞},

F : I → R2

is called parametrised curve of class Ck in R2. A parametrised curve is called regular or

immersed if
dF

dp
(p) 6= 0

for all p ∈ I. A curve is the equivalence class [F ] of regular parameter transformations

with image

Σ := F (I) ⊂ R2 .

We say that a curve is embedded if the map F : I → F (I) is injective. The immersion or

embedding is called proper if for all compact subsets K ⊂ R2 the pre-image F−1(K ∩ Σ)

is compact. A Ck-curve is called closed if

dlF

dpl
(a) =

dlF

dpl
(b)

for all 0 ≤ l ≤ k. We can identify a and b so that the parametrisation is given by

F : S1
ρ → R2, where ρ = (b− a)/(2π). For F : S1

ρ → R2, we can define the parametrisation

F̄ : S1 → R2 by F̄ (p/ρ) := F (p). Hence, we can assume w. l. o. g. that ρ = 1 so that, for

arbitrary curves, the pre-image is given by

S ∈ {I = [0, 2π], S1,R} .

For a parametrisation F : I → R2 of a regular curve Σ, we define the length element

v : I → R of the curve by

v(p) :=

∥∥∥∥dFdp (p)

∥∥∥∥ . (A.1)
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The length of the curve is then given by

L := L(Σ) :=

∫
Σ
dH1 =

∫
I
v dp .

The arc length parameter s : I → [0, L] is defined as

s(p) :=

∫ p

0
v(r) dr , (A.2)

so that we also have

L =

∫ L

0
ds .

The intrinsic distance between two points is

l(p, q) :=

∫ q

p
v(r) dr .

Notice that

l(p, q) = s(q)− s(p) =

∫ s(q)

s(p)
ds =

∫ F (q)

F (p)
dH1 .

Differentiating (A.2) yields
ds

dp
(p) = v(p) .

Let f : [0, L]→ R with f : s 7→ f(s) be a C1-function. Then

df

dp
(s(p)) =

df

ds
(s(p))

ds

dp
(p) = v(p)

df

ds
(s(p))

so that

d

ds(p)
=

1

v(p)

d

dp
. (A.3)

For a C2-curve, s is differentiable and s′ is positive, thus the inverse function theorem,

Theorem B.4, yields that the inverse s−1 : [0, L]→ I exists. We define the anti-clockwise

arc length parametrisation F̃ := F ◦ s−1 : [0, L]→ R2 of Σ by

F̃ (q) = F
(
s−1(q)

)
for q ∈ [0, L] so that F = F̃ ◦ s and

F̃ (s(p)) = F (p)

for p ∈ I. If Σ is a closed curve parametrised by F : S1 → R2 the arc length parameter

is given by s : S1 → S1
L/(2π) and F̃ : S1

L/(2π) → R2 parametrises Σ by arc length (see

Figure A.1). If Σ is parametrised by F : R → R2 the arc length parameter is given by

s : R → R and F̃ : R → R2 parametrises Σ by arc length. Define the image of the arc

length parameter as

S̃ := s(S) = F̃−1(Σ) ∈
{

[0, L], S1
L/(2π), R

}
,
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F
S1

s

F̃

p

τp
∂
∂p

∂
∂sp

s(p)

F (p)

= F̃ (s(p))

Σ ⊂ R2

S1
L/(2π)

Figure A.1: The embeddings and the unit tangent vectors.

where S ∈ {I, S1,R}. Differentiating F̃ at s = s(p) yields∥∥∥∥dF̃ds (s)

∥∥∥∥ =
1

v(p)

∥∥∥∥dFdp (p)

∥∥∥∥ = 1 .

The unit tangent vector field τ to Σ at s = s(p) in direction of the arc length parametri-

sation is given by

τ p := τ (p) =
1

v(p)

dF

dp
(p) =

dF̃

ds
(s) = τ (s) . (A.4)

For the outward unit normal,

νp := ν(p) = (τ 2(p),−τ 1(p)) = ν(s) (A.5)

(see Figure A.2). The curvature κ : S̃ → R is defined as

κ(s) := −〈∇ττ ,ν〉 = −
〈
dτ

ds
,ν

〉
(A.6)

= 〈τ ,∇τν〉 =

〈
τ ,
dν

ds

〉
. (A.7)

Note that

κ
(A.4),(A.6)

= −
〈
d2F̃

ds2
,ν

〉
(A.3)
= −

〈
1

v

d

dp

(
1

v

dF

dp

)
,ν

〉
= − 1

v2

〈
d2F

dp2
,ν

〉
− 1

v

d

dp

(
1

v

)〈
dF

dp
,ν

〉
= − 1

v2

〈
d2F

dp2
,ν

〉
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τ

ν
F (p)

Σ

Figure A.2: The unit tangent vector and outward normal.

so that curvature κ : S → R is given by

κ(p) = − 1

v2

〈
d2F

dp2
,ν

〉
(A.8)

The curvature vector is defined as

κ := −κν .
Lemma A.1 (Frenet–Serret Equations). Let F̃ : S̃ → R2 be an arc length parametrisation

of a C2-curve Σ. Let τ = d
ds F̃ and ν = (τ 2,−τ 1). Then

dτ

ds
= −κν and

dν

ds
= κτ .

Proof. The vector fields τ and ν are both of unit length. Since
〈
d
dsτ , τ

〉
= 0, both d

dsτ

and ν are normal vectors and, by (A.6),

dτ

ds

(A.3)
=

d2F̃

ds2
=

〈
d2F̃

ds2
,ν

〉
ν

(A.6)
= −κν .

Since
〈
d
dsν,ν

〉
= 0, both d

dsν and τ are tangent vectors and, by (A.7),

dν

ds
=

〈
dν

ds
, τ

〉
τ

(A.7)
= κτ .

The first identity in Lemma A.1 can also be stated as

∆ΣF̃ =
d2F̃

ds2
= κ . (A.9)

Let f : S → R be in C2 and f̃ : S̃ → R so that f(p) = f̃(s(p)). The arc length

differentiation at s = s(p) is then given by

τ p(f) =
df̃

ds
.

For a function f : S × S → R in C2, the two-point arc length differentiation with respect

to a vector ξ(p,q) ∈ TF (p)Σ
⊕
TF (q)Σ, ξ(p,q) = aτ p ⊕ bτ q for p, q ∈ Σ and a, b ∈ R, is given

by

ξ(p,q)(f)(p, q) = (aτ p ⊕ bτ q) (f)(p, q) = aτ p(f)(p, q) + bτ q(f)(p, q) . (A.10)



A.2 Hypersurfaces in Rn+m 143

Theorem A.2 (Theorem on turning tangents, [Küh06, Theorem 2.28]). Let F : S1 → R2

an embedded C2-curve with outward pointing unit normal (A.5). Then the total curvature

of Σ is given by ∫
Σ
κ dH1 = 2π .

A.2 Hypersurfaces in Rn+m

Let Mn, n ≥ 1, be an abstract, smooth, compact, n-dimensional manifold without bound-

ary and F a smooth embedding with

F : Mn → Rn+m

for m ≥ 1. Set M := F (Mn). For all p ∈Mn and v,w ∈ TpMn, the embedding F induces

an isomorphism

dFp : TpM
n → TF (p)M ,

and the first fundamental form or metric Gp : TpM
n × TpMn → R with

Gp(v,w) := 〈dFp(v), dFp(w)〉 .

If {pi}1≤i≤n are coordinates for Mn at p, then the matrix entries of the metric are

gij(p) =

〈
dFp

(
∂

∂pi

)
, dFp

(
∂

∂pj

)〉
=

〈
∂F

∂pi
(p),

∂F

∂pj
(p)

〉
,

where 〈 · , · 〉 denotes the Euclidean inner product in Rn+m. We define by g the determinant

of the matrix (gij)ij and by (gij)ij its coordinate dependent inverse. The corresponding

Levi–Cevita connection ∇ := ∇M on M is given by

∇vw = dF−1
p

((
DdFp(v)dFp(w)

)>)
.

Here D is the standard connection in Rn+m, and > denotes the tangential component

with respect to M , that is the orthogonal projection onto dF (p)(TpM
n) = TF (p)M . The

connection can be evaluated in coordinates in terms of the Christoffel symbols Γkij defined

by

∇ ∂
∂pi

∂

∂pj
= Γkij

∂

∂pk
,

where Γkij is explicitly given by

Γkij =
1

2
gkl
(
∂gjl
∂pi

+
∂gil
∂pj
− ∂gij
∂pk

)
= gkl

〈
∂2F

∂pi∂pj
,
∂F

∂pl

〉
.

Here and in the following, we sum over repeated indices. Then,

Γkij
∂F

∂pk
=

〈
∂2F

∂pi∂pj
,
∂F

∂pl

〉
∂F

∂pl
. (A.11)
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For vectors v = λi ∂∂pi and w = µj ∂
∂pj

,

∇vw = λi
(
∂µk

∂pi
+ µjΓkij

)
∂

∂pk
.

For a 1-form ω = ωjdpj ,

∇vω = λi
(
∂ωk

∂pi
− ωjΓkij

)
dpk .

The tangential gradient, gradM or ∇, of a function f ∈ C1(M) is given by

G(gradM f,v) ≡ G(∇f,v) = df(v) = v(f)

for all v ∈ TM . In coordinates this reduces to

G

(
∇f, ∂

∂pi

)
=
∂f

∂pi

so that we obtain

∇f = gij
∂f

∂pi

∂

∂pj

and also

∇f = Df − 〈Df,νk〉νk = Dτ ifτ i = τ i(f)τ i (A.12)

for an orthonormal tangent frame {τ i}1≤i≤n for TF (p)M and an orthonormal normal frame

{νk}1≤k≤m for (TF (p)M)⊥. We write the i-th component

∇if := ∇τ if = 〈∇f, τ i〉 = 〈τ j(f)τ j , τ i〉 = τ j(f) 〈τ j , τ i〉 = τ i(f) .

We will use the abbreviation ∇i for both ∇ ∂
∂pi

and ∇τ i . The tangential divergence divM :

TpM → R of a tangent vector field v = λi ∂∂pi is given by

divM v =
∂λi

∂pi
+ Γiijλ

j

and also

divM v = divRn+m v − 〈Dνkv,νk〉 = 〈Dτ iv, τ i〉 .
For the embedding vector F , we therefore have

divM F = 〈Dτ iF, τ i〉 = 〈τ i, τ i〉 = n . (A.13)

For ω = df = ∂f
∂pi
dpi, we obtain the Hessian of the function f

(HessM f)(v,w) :=
(
∇2f

)
(v,w) = (∇vf)(w) = λiµj

(
∂2f

∂pi∂pj
− Γkij

∂f

∂pk

)
,

or in coordinates

∇i∇jf ≡ ∇ ∂
∂pi

∇ ∂
∂pj

f =

〈
∇ ∂
∂pi

∇f, ∂

∂pj

〉
= (HessM f)

(
∂

∂pi
,
∂

∂pj

)
.
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The Laplace–Beltrami operator ∆M of a function f ∈ C2(M) is defined as

∆Mf := divM (∇f) = gij∇i∇jf

and also given by

∆Mf =
1√
g

∂

∂pj

(√
ggij

∂

∂pj
f

)
.

We define the second fundamental form Ap : TpM × TpM →
(
TF (p)M

)⊥
by

Ap(v,w) = −
〈
DdFp(v)dFp(w),νk(p)

〉
νk(p)

=
〈
dFp(w), DdFp(v)νk(p)

〉
νk(p) .

In coordinates {pi}1≤i≤n,

Aij := Ap

(
∂

∂pi
,
∂

∂pj

)
=

〈
∂F

∂pi
,
∂νk
∂pj

〉
νk

= −
〈

∂2F

∂pi∂pj
,νk

〉
νk = − ∂2F

∂pi∂pj
+ Γkij

∂F

∂pk
.

The mean curvature vector H : M →
(
TF (p)M

)⊥
is the trace of the second fundamental

form

H := −gijAij = −gij
〈
∂F

∂pi
,
∂νk
∂pj

〉
νk = −div(νk)νk . (A.14)

Using (A.11) we can also calculate that

∆MF = gij
(

∂2F

∂pi∂pj
− Γkij

∂F

∂pk

)
(A.11)

= gij
〈

∂2F

∂pi∂pj
,νγ

〉
νγ

= −gij
〈
∂F

∂pi
,
∂νγ
∂pj

〉
νγ = H , (A.15)

where i, j, k = 1, . . . , n and γ = 1, . . . ,m.

For a submanifold Σ of M , the mean curvature vector is given by

HΣ(p) = −divΣ(νk(p))νk(p)− divΣ(νΣ(p))νΣ(p),

where νΣ is the unit co-normal of Σ. Since νΣ tangential to M ,

〈HΣ,νΣ〉 = −divΣ νΣ (A.16)

and on Σ, using (A.11) restricted to Σ,

∆ΣF|Σ
(A.15)

= gijΣ

(
∂2F|Σ
∂pi∂pj

− ΣΓkij
∂F|Σ
∂pl

)
(A.11)

= gijΣ

〈
∂2F|Σ
∂pi∂pj

,νγ

〉
νγ + gijΣ

〈
∂2F|Σ
∂pi∂pj

,νΣ

〉
νΣ

= −gijΣ
〈
∂F|Σ
∂pi

,
∂νγ
∂pj

〉
νγ − gijΣ

〈
∂F|Σ
∂pl

,
∂νΣ

∂pj

〉
νΣ = HΣ, (A.17)

where i, j, k = 1, . . . , n− 1 and γ = 1, . . . ,m.
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If m = 1, M has only one unit normal ν. In this case the second fundamental form of

M has the simpler form

A(v,w) = −〈Dvw,ν〉ν = h(v,w)ν .

The coefficients of the operator h : TM ×TM → R, with respect to an orthonormal frame

{τ i}1≤i≤n, are given by

hij = h(τ i, τ j) = 〈A(τ i, τ j),ν〉 = −
〈
Dτ iDτ jF,ν

〉
=
〈
Dτ jF,Dτ iν

〉
.

The norm of the second fundamental form is given by

‖A‖ = gikgljhklhij = hijhij ,

and the mean curvature vector is given by

H = −gijhijν = −Hν ,

where we define the mean curvature H of M as the trace of the second fundamental form.

With (A.14) we conclude that

H = div ν .



Appendix B

Useful theorems and equations

B.1 Background from analysis

Lemma B.1. Let f : [0, T ) → R be in C1 and α : [0, T ) → R be in C0 ∩ L1. Let
d
dtf(t) ≤ α(t)f(t). Then

f(t) ≤ exp

(∫ t

0
α(τ) dτ

)
f(0)

for all t ∈ [0, T ).

Proof. Set

g(t) := exp

(
−
∫ t

0
α(τ) dτ

)
.

Then d
dtg = −αg and

d

dt

(
gf
)

= g

(
df

dt
− αf

)
≤ 0 .

Integrating yields the claim.

Lemma B.2 (Young’s Inequality/Peter–Paul Inequality). For a, b ∈ R and 1/p+1/q = 1,

ab ≤ |a|
p

p
+
|b|q
q
, (B.1)

with equality if and only if |a|p = |b|q. For ε > 0,

ab ≤ ε|a|p
p

+
|b|q
εq/pq

. (B.2)

Lemma B.3 (Cauchy–Schwarz Inequality). For f, g : M → R in L2,∫
M
|fg| dHn ≤

(∫
M
f2 dHn

)1/2(∫
M
g2 dHn

)1/2

. (B.3)

Theorem B.4 (Inverse function theorem). Let f : R → R be in C1 and f ′(x) 6= 0 for

x ∈ R. Then the inverse f−1 exists at f(x) and
(
f−1

)′
(f(x)) = (f ′)−1 (x).

Theorem B.5 (Rademacher’s theorem, see [Fed69, Theorem 3.1.6]). Let U ⊂ Rn be open

and f : U → Rm be Lipschitz continuous. Then f is differentiable almost everywhere in

U.
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Theorem B.6 (First variation of the area formula, [Sim83, p. 51]). Let M ⊂ Rn+m be

a smooth, compact, n-dimensional manifold with boundary. Let U ⊂ Rn+m be a open

and bounded such that M ⊂ U . Let φ : U × (−1, 1) → U be a one-parameter family of

C2;1-diffeomorphisms. Set Mt := φ(M, t) and v(p) := ∂φ(p,t)
∂t |t=0

. Then

d

dt |t=0

Hn(Mt) =

∫
M

divM v dHn .

Theorem B.7 (Divergence theorem, [Sim83, p. 43], [DHTK10, p. 304], [Eck04, p. 116]).

Let M ⊂ Rn+m be a smooth, compact, n-dimensional manifold with boundary. Let v be a

C1-vector field on M . Then∫
M

divM v dHn = −
∫
M
〈v,HM 〉 dHn +

∫
∂M
〈v,ν∂M 〉 dHn−1 ,

where 〈 · , · 〉 is the Euclidean inner product.

Corollary B.8 (Integration by parts). Let M be a manifold with boundary ∂M , f, g :

M → R in W 2,2 ∩ C2. Then∫
M
f∆Mg dHn =

∫
∂M

f
〈
∇∂Mg,ν∂M

〉
dHn−1 −

∫
M

〈
∇Mf,∇Mg

〉
dHn . (B.4)

Lemma B.9 (Fatou’s lemma, [AE06, Theorem 3.7]). Let (Ω, σ, dµ) be a measure space

and let (fi : Ω → [0,∞))i∈N be a sequence of non-negative integrable functions such that

lim infi→∞
∫

Ω fi dµ <∞. Then∫
Ω

lim inf
i→∞

fi dµ ≤ lim inf
i→∞

∫
Ω
fi dµ .

Theorem B.10 (Lebesgue dominated convergence). Let I ⊆ R be an interval. Let (fi :

I → R)i∈N be a sequence of integrable functions with fi → f pointwise almost everywhere

on I and there exists an integrable function g : I → R with |fi| ≤ g almost everywhere in

I. Then f is integrable on I and

lim
i→∞

∫
I
fi dx =

∫
I
f dx .

Theorem B.11 (Arzelà–Ascoli, [AMR93, Theorem 1.5.11]). Let (M,dM ) and (N, dN )

be metric spaces, with M compact and N complete. A set F ⊂ C0(M,N) is relatively

compact if and only if it is equicontinuous and all the sets F(m) = {f(m) | f ∈ F} are

relatively compact in N .

Corollary B.12. Let K ⊂ Rn be compact and let (fi : K → Rm)i∈N be a sequence of

bounded and equicontinuous functions. Then (fi)i∈N has a uniformly convergent subse-

quence.

Theorem B.13 (C0-convergence of function sequences, [Rud76, Theorem 7.12]). Let I ⊂
R be an interval. Let (fi : I → R)i∈N be a sequence of C0-functions with fi → f uniformly

on I. Then f ∈ C0(I).



B.2 Parabolic maximum principles 149

Theorem B.14 (C1-convergence of function sequences, [Rud76, Theorem 7.17]). Let I ⊂
R be an interval. Let (fi : I → R)i∈N be a sequence of C1-functions such that the sequence

(fi(x0))i∈N converges for some point x0 ∈ I. If (f ′i : I → R)i∈N converges uniformly on I,

then fi → f ∈ C1(I) uniformly and limi→∞ f
′
i = f ′ on I.

Theorem B.15 (Ehrling’s lemma, [RR04, Theorem. 7.30]). Let (X, ‖ ·‖X), (Y, ‖ ·‖Y ) and

(Z, ‖ · ‖Z) be Banach spaces. Assume that X is compactly embedded in Y and that Y is

continuously embedded in Z, that is,

X ↪→
compact

Y ↪→
continuous

Z .

Then, for every ε > 0, there exists a constant C(ε) > 0 such that, for every f ∈ X,

‖f‖Y ≤ ε‖f‖X + C(ε)‖f‖Z .

B.2 Parabolic maximum principles

Let Ω ⊂ Rn be open and bounded. For t ∈ (0, T ], we define the parabolic cylinder

Qt := Ω× (0, t)

and the parabolic boundary

PQt := (Ω× {0}) ∪ (∂Ω× (0, t]) .

Let f : Ω̄× [0, T ]→ Rn+1 in C2;1(QT ) ∩ C0(QT ). We define the parabolic operator

L(f) :=
∂f

∂t
− aij∇i∇jf − bi∇if − cf ,

where aij , bi, c ∈ L∞ and where (aij)ij is uniformly elliptic, that is, there exists λ > 0 so

that λ‖ξ‖2 ≤ aijξiξj ≤ Λ‖ξ‖2 for all ξ ∈ Rn+1.

Theorem B.16 (Weak maximum principle, see [Fri64, Chapter 1.1 and 1.2]). Let Ω ⊂ Rn

be open and bounded. Let f ∈ C2;1(QT ) ∩ C0(QT ) be a solution of Lf ≤ 0 in QT .

(i) If c ≡ 0, then supQT f ≤ supPQT f .

(ii) If c ≥ 0 and f ≤ 0 on PQT , then supQT f ≤ supPQT f .

(iii) If c ∈ L∞ and supPQT f ≤ 0, then supQT f ≤ 0.

Theorem B.17 (Strong maximum principle, see [Fri64, Chapter 1.1 and 1.2]). Let Ω ⊂ Rn

be open, bounded and connected. Let f ∈ C2;1(QT ) ∩ C0(QT ) be a solution of Lf ≤ 0 in

QT . Let (p0, t0) ∈ QT \ PQT with f(p0, t0) = maxQT f and either

(i) c ≡ 0, or

(ii) c ≥ 0 and f(x0, t0) ≥ 0, or

(iii) c ∈ L∞ and f(x0, t0) = 0,

Then f is constant in Qt0.
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