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Abstract

The ultrafast migration of electrons and holes triggered by light-matter interactions is the elementary

step for a vast number of photoinduced processes in molecules and solid-state materials. The simu-

lation and mechanistic understanding of such charge migration scenarios are the central objectives

of ultrafast science. In order to enable the time- and space-resolved analysis and visualization of this

correlated many-electron dynamics in molecular systems, this dissertation first presents the capabilities

and applications of the open-source post-processing toolbox detCI@ORBKIT. This program provides

a library of transition moments and expectation values of one-electron operators including, e.g., the

electron density and the electronic flux density. These analysis tools provide mechanistic insights

into electron migration processes by revealing both the time-dependent probability distribution of the

electrons and their spatially-resolved instantaneous flow. In order to offer an additional analysis tool for

solid-state materials, a novel wave function analysis technique is developed enabling the characterization

of their excitonic properties.

In the second part of this dissertation, the established methodological framework is applied to various

light-induced charge migration scenarios in three different types of molecular systems. First, the

ultrafast electron migration in localized electronic superposition states is investigated for the hydrogen

molecular ion and for the benzene molecule. While the former study yields analytical expressions

and fundamental spatio-temporal symmetry properties for the electron density and the electronic flux

density, the latter investigation provides a quantum mechanical verification of the arrows used to

express the mechanism of electronic motion in Lewis structures.

The second application focuses on the simulation of photoinduced charge injection processes in

different dye-sensitized solar cells. For their dynamical simulation, a single active electron approach

proves its suitability as an appropriate and low-cost method. Apart from the mechanistic insights into

the electron dynamics in such systems, the findings add knowledge to the role of many-body effects

during charge migration.

In the last application, the charge carrier confinement in the presence of dissipation is examined for

a model quantum dot during laser-controlled correlated electron dynamics. For this purpose, the study

introduces new microscopic perturbative expressions for energy relaxation and pure dephasing rates

and defines a robust and effective pathway to trap a charge carrier in the quantum dot.

In conclusion, the contributions of this dissertation are twofold. First, it provides novel, insightful

analysis and imaging tools for the examination of ultrafast correlated electron dynamics. Second, it

thereby contributes to the mechanistic understanding of various charge migration processes.
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Kurzzusammenfassung

Ultraschnelle Ladungsmigrationsprozesse spielen eine elementare Rolle für eine Vielzahl photoindu-

zierter Prozesse in Molekülen und Festkörpersystemen. Die Simulation dieser Ladungswanderungen

sowie deren mechanistische Aufklärung gehören zu den Hauptzielen der Forschung zu ultraschnellen

Phänomenen. Um eine zeit- und ortsaufgelöste Analyse und Visualisierung dieser korrelierten Elek-

tronendynamiken zu ermöglichen, wird in der vorliegenden Dissertation das Open-Source Programm

detCI@ORBKIT präsentiert. Dieses Programm ist in der Lage eine Reihe von Übergangsmomen-

ten und Erwartungswerten von Ein-Elektronen-Operatoren zu berechnen, beispielsweise die Elektro-

nendichte und die elektronische Flussdichte. Diese Größen sind ideal geeignet den Mechanismus von

Ladungswanderungen aufzuklären, da sie sowohl die Aufenthaltswahrscheinlichkeit der Elektronen als

auch deren ortsaufgelösten Elektronenfluss abbilden können. Um zusätzlich ein Analysewerkzeug für

Festkörpermaterialien anzubieten, wird eine neue Methode zur Charakterisierung ihrer exzitonischen

Eigenschaften eingeführt.

Diese Analysewerkzeuge werden zur Untersuchung unterschiedlicher Ladungsmigrationsprozesse in

drei verschiedenen Arten von molekularen Systemen angewendet. Die erste Anwendung fokussiert

sich auf den ultraschnellen Elektronentransfer in lokalisierten Superpositionszuständen im moleku-

laren Wasserstoffion und im Benzolmolekül. Während in der ersten Studie analytische Ausdrücke und

fundamentale Symmetrieeigenschaften der Elektronendichte und der elektronischen Flussdichte formu-

liert werden, liefert die zweite Studie eine quantenmechanische Überprüfung der Pfeil-Mechanismen,

die zur Darstellung von Elektronenbewegung verwendet werden.

Der Schwerpunkt der zweiten Anwendung liegt auf photoinduzierten Ladungsinjektionen in verschie-

denen Farbstoff-sensibilisierten Solarzellen. Deren dynamische Simulation wird durch einen Einteilchen-

ansatz beschrieben, welcher sich als rechnerisch günstige und qualitativ valide Methode herausstellt.

Neben Details zum Mechanismus der Elektronendynamik in solchen Systemen liefert diese Studie tiefe

Einblicke zur Rolle von Mehrelektroneneffekten.

Die letzte Untersuchung befasst sich mit der räumlichen Einschränkung von Ladungsträgern in ei-

nem Quantenpunkt. Zur Simulation der dissipativen Elektronendynamik werden störungstheoretische

Ausdrücke für die Raten der Energierelaxation und der reinen Dephasierung hergeleitet. Darüber hi-

naus wird ein robuster Anregungspfad zur effektiven räumlichen Einschränkung von Ladungsträgern

im Quantenpunkt definiert.

Zusammenfassend stellt diese Dissertation neuartige und aufschlussreiche Analyse- und Visualisie-

rungswerkzeuge zur Untersuchung ultraschneller Elektronendynamiken bereit und trägt damit zum

mechanistischen Verständnis verschiedener Ladungsmigrationsprozesse bei.
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Chapter 1

Introduction

Charge transfer at the molecular level plays a fundamental role in many physical and chemical processes

in nature.[1–5]Over the last decades, significant theoretical and experimental efforts have been devoted

to this field of research due to its importance to both basic research and applications in molecular

electronics.[6,7] While charge transfer phenomena are traditionally assumed to be driven by nuclear

motion, another purely electronic and extremely fast process is typically involved at the same time. This

phenomenon, known as charge migration, was theoretically predicted by Cederbaum and coworkers.[8]

It describes the periodic spatial redistribution of electronic charges in molecular or solid-state systems

taking place on a timescale ranging from few femtoseconds down to hundreds attoseconds. In particular,

it is expected that this ultrafast electronic motion is mediated by many-electron effects, i.e., electronic

coherences and relaxations in an electronic superposition state induced by light-matter interactions.[8–14]

Charge migration is seen to be the elementary dynamical step in many photoinduced charge trans-

fer processes such as photochemical reactions in biological relevant systems[11,15–19], charge injection

in solar cells[20,21], or charge transfer exciton formation and separation in molecular systems and

nanoclusters[22,23]. Its experimental observation requires an extremely high temporal resolution in

order to follow and eventually control the ultrafast charge flow on their natural time scale. Following

the advent of femtochemistry by the seminal experiments of Zewail and colleagues,[24,25] the recent

advances in laser technologies offer the prospect for its direct monitoring on an attosecond temporal

scale. Starting from the first experimental evidence of charge migration[26–28] to its indirect monitoring

using attosecond laser pulses[29–39], it meanwhile became feasible to induce, directly probe, and control

the attosecond charge migration in molecular cationic systems.[40,41] While in these experiments, the

ultrafast charge oscillation is triggered by photoionization, electronic superposition states can also be

prepared in neutral molecules.[42,43]
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Chapter 1 Introduction

As charge migration processes bear an immense potential to gain a profound understanding of a

variety of chemical reactions and processes, many theoretical studies of ultrafast electron dynamics

in molecular systems have been conducted over the last decades.[8,9,40,44–61] A remaining theoretical

challenge is the time- and space-resolved analysis and visualization of charge migration processes to

unravel their mechanistic characteristics. A necessary step towards this aim is the development of a

computational framework for the post-processing of many-electron wave functions. That forms the

basis for the calculation of the crucial quantum chemical quantities for the visual representation of

the ultrafast electronic motion. While the time-dependent electron density is the most widespread

quantity for this purpose, a potential insightful quantity is the electronic flux density or electronic

current density.[62,63] It supplements the information about the probability distribution of the electrons

with their instantaneous flow. Thus, it yields at a first glance a very intuitive and microscopic picture

of the electronic mechanism during charge migration.[AP1] In addition to a suitable set of analysis tools,

such a computational framework needs to meet two requirements. First, general applicability of the

program is necessary to enable the post-processing of a broad diversity of many-electron wave functions

from various quantum chemistry programs. Second, the framework requires an easily expandable and

comprehensible modular architecture. While several post-processing tools in modern computational

chemistry exist, none of these programs meet all requirements.[64–68]

To fill this gap, this dissertation introduces the open-source framework detCI@ORBKIT (cf. Pa-

per TK1 and Paper TK2), which extends the functionalities of the recently published modular

Python toolbox ORBKIT[AP2]. The new detCI@ORBKIT program is in general capable to de-

termine the expectation values of any one-electron operator from multi-determinantal configuration

interaction wave functions. The corresponding computational study (cf. Paper TK1) presents the

applicability of the implemented one-electron quantities for the mechanistic enlightenment of a variety

of charge migration processes. As nanostructured systems are often the focus of such charge migration

studies, theoretical approaches are needed that are capable of dealing with ultrafast electron dynamics

induced by strong laser fields in large systems. Approaches that require a satisfactory level of ap-

proximation and an affordable computational effort remain scarce. For this purpose, a hybrid density

functional theory/configuration interaction methodology is developed in Paper TK2.

Another challenge regarding the increasing size of a quantum system is the examination of the

charge transfer character for extended and condensed systems. While the optical spectra of such

systems can be calculated with routinely applied methods like the linear response time-dependent

density functional theory within the random-phase approximation, the excitonic nature of a specific

transition cannot be determined on their basis. For molecular systems, the formalism associated with
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the natural transition orbitals[69] offers a direct, graphical procedure for the interpretation of electronic

excitations. As the transfer of the underlying concept to solids is desirable, Paper TK3 proposes

an equivalent perturbative ansatz yielding the excitonic properties for a specific optical transition in

extended systems.

Apart from the technical and methodological prerequisites for the study of charge migration pro-

cesses, the next logical step is the examination of this process in small molecules. In light of its

simplicity and the extensive research on its properties[52,53,70–78], the hydrogen molecular ion H+
2 is

considered as a benchmark system being highly amenable for a theoretical treatment. While previous

studies report on the simulation of attosecond charge migration in a superposition state of H+
2
[52,53,73],

a first hypothetical conjecture of this process was already anticipated by Eyring, Walter, and Kimball

(EWK) in their quantum chemistry textbook published in 1944.[79] Their simple analytical descrip-

tion for the electronic wave function of H+
2 allows for the analytical derivation of the crucial dynamical

quantities, i.e., the electron density and the electronic flux density. While the former is already given in

their textbook, the latter in combination with a few other quantities is presented within Paper SM1.

Besides, their model predicted the charge oscillation between the two protons starting with the elec-

tron localized on one of the hydrogen atoms. In order to supplement their description with mechanistic

details on the charge migration, Paper SM1 investigates the pathway of the migrating electron and

focuses on the pivotal symmetry properties of the dynamical quantities.

A more complex molecule serving as a benchmark system for the fundamental research of both charge

migration and charge transfer phenomena is the benzene molecule. In particular, it has been exten-

sively used as the prototype for aromatic compounds in order to develop and describe the concepts

of chemical bonding and aromaticity.[80,81] Previous research has specifically focused on the simula-

tion of the oscillating electron dynamics between the two symmetrically equivalent Kekulé structures

of benzene.[82,83] In these well-known structures, the six delocalized π-electrons in an oriented[84–90]

benzene molecule are localized on alternating carbon-carbon bonds. A widespread model for their

simplified representation are Lewis structures. Within this picture, the chemical reaction, i.e., double

bond breaking and formation, leading to the oscillation between the two Kekulé localization patterns

is usually indicated by curved arrows.[91] They generally symbolize the electronic motion of one or two

valence electrons. An open question regarding this simple model concerns the validity of its mechanistic

and quantitative statements in comparison to realistic dynamical simulations.

The two scenarios studied in the literature to initiate the electron dynamics between the Kekulé

structures are the stimulation of the vibrational motion along the Kekulé mode[81,82] and the electronic

excitation to a non-aromatic superposition state[83]. While the former is an example for a charge trans-
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Chapter 1 Introduction

fer process mediated by nuclear motion, the latter is a charge migration phenomenon. The first attempt

to verify the simple Lewis structure model was conducted by Schild and colleagues[82] using the charge

transfer scenario. In contradiction to the six valence electrons indicated by the mechanistic arrows,

they found a significantly smaller fraction of electrons being transferred during the vibrational dynam-

ics. In addition, the examination of the mechanism revealed that the electrons rearrange according to

the nuclear motion. These findings have been likewise corroborated in several studies on similar rear-

rangement reactions.[92–95] In order to obtain a corresponding quantitative and qualitative description

for the charge migration scenario, Ulusoy and Nest prepared a non-aromatic electronic superposition

state of the electronic ground and first excited state in the benzene molecule using a sequence of laser

pulses.[83] While they proposed a pincer-type motion for the Rabi-type charge oscillation between the

Kekulé structures on the attosecond time scale, their study lacks a quantitative analysis. The analyses

of Paper SM2 aim to fill this void. The necessary methodology for this task is transferred from

previous studies on concerted electronic and nuclear fluxes during coherent tunneling.[95] On its basis,

it is not only supposed to quantify the number of electrons migrating during the electron dynamics,

but also to validate the charge migration mechanism proposed in Ref. [83]. Furthermore, the mecha-

nistic characterization for the charge migration in another electronic superposition state is targeted

(cf. Paper SM3). This superposition of the ground and second excited state generates negative and

positive partial charges on alternating carbon atoms, and the associated dynamical mechanism has not

been explored yet.

Besides the basic research on small molecules, the study of electron migration processes in nano-

structured systems is relevant for their potential application in molecular electronics. For instance, the

research on electron injection processes as a key step of the solar energy conversion can contribute to the

efficiency improvement of solar cells.[96] An environmentally friendly and cost-effective representative

for photovoltaic devices are Dye-Sensitized Solar Cells (DSSC). These so-called Grätzel cells[97–103] are

potential alternatives to conventional silicon-based solar cells in order to satisfy the steadily increasing

global energy needs. In DSSC devices, a nanostructured mesoporous film of a semiconductor, usually

titanium dioxide TiO2, is functionalized with a transition-metal or organic dye molecule enabling the

absorption of visible light. This photoexcitation induces an interfacial electron injection from the dye

into the conduction band of the semiconductor substrate. Subsequently, the electron migrates to the

anode of the solar cell, while the oxidized dye is regenerated by the redox pair in the surrounding

electrolyte. The redox pair is in turn restored at the cathode of the photovoltaic system. The key

step for this conversion of solar energy into electrical energy is the electron-hole separation at the

dye/semiconductor interface, which follows immediately after the photoinduced electron injection. This
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process was experimentally observed to proceed on the femtosecond time scale.[104,105] Its efficiency and

thus the performance of the solar cell are strongly affected by the structural, optical, and electronic

properties of the DSSC. In this context, many theoretical aspects ranging from the energetic alignment

of the dye and the semiconductor to the dynamical simulation of the electron injection process have been

examined to understand the physics involved and to evaluate the efficiency of such a DSSC.[103,106–113]

A void in this field constitutes the time- and space-resolved imaging and analysis of the pho-

toinduced charge injection processes to gain mechanistic insights and the determination of many-

electron effects on the electron dynamics. A well-suited system for this purpose is the alizarin dye

attached to a TiO2 nanocrystallite, which has been investigated in great detail by experimentalists and

theoreticians.[104,105,114–124] Paper SC1 and Paper SC2 examine the photoinduced charge injection

process from the alizarin to a TiO2 nanocluster with a particular focus on the many-body interactions.

The mechanism of the electron flow is aimed to be specified using the time-dependent electronic flux

density for the first time in such DSSC systems. A remaining challenge is the comprehensive exami-

nation of the relation between the structural characteristics of the dye and the mechanistic features of

the charge injection process. For this research objective, the dyes under investigation require a similar

architecture. In Paper SC3, the effects of minor structural differences on the light absorption and

electron injection process are examined for the family of donor-acceptor π-conjugated dyes based on a

pyridinium core.

A further system being potentially relevant for the usage in future electronic devices are semiconduc-

tor nanocrystals, known as quantum dots. These zero-dimensional structures exhibit unique optical

and electronic properties, which considerably differ from those of their bulk counterparts.[125–127] One

of these special characteristics is their natural tendency to confine charge carriers in all three spatial di-

mensions. In this context, the most appealing attribute of these semiconductor heterostructures is the

tunability of their material properties by modifying their size and/or composition. This opens up the

possibility for their usage in a variety of light emitting/absorbing applications such as solar cells[128,129]

or quantum computers[130,131]. Consequently, a myriad of experimental and theoretical studies has been

conducted over the last decades focusing on their design, fabrication, and characterization.[132–137]

An open challenge of theoretical research is the microscopic examination of the size-dependent ex-

citonic properties of these quantum dots and the control of charge carrier confinement during light-

induced charge transfer dynamics. While quantum dots have been extensively studied by means of

large-scale methods, e.g., the pseudopotential method[133] or the effective-mass approximation[138], the

approximate nature of these approaches prohibits a microscopic description. A more precise picture of

the electronic structure and the transient electron dynamics on an atomistic level can be yielded using
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systematically improvable wave function-based methods. Although they are restricted to size-reduced

quantum dot models, they can serve as a benchmark for the more approximate methods and can take

into account electronic correlations properly.

A typical and experimentally well-studied example for a quantum dot is a self-assembled core-shell

Ge/Si nanocrystal.[132,134,136,137,139–143] In these type-II semiconductors, the large valence-band offset

(∼ 0.7 eV) generates a hole confinement in the Ge regions and an electron localization in the Si matrix.

Recently, it was shown that their crucial structural features and excitonic properties can be reproduced

by a configuration interaction formalism[144,145] for a size-reduced core-shell model system.[146] Based

on this, Paper QD1 attempts to simulate a laser-driven hole confinement in such a quantum dot

model in the presence of energy and phase relaxations.

This doctoral dissertation is organized as follows: Chapter 2 gives an overview of the theoretical

foundations and quantum chemical and dynamical methods applied in this thesis. The fundamental

equation of motion for molecular systems, the time-dependent Schrödinger equation, and the separation

of nuclear and electronic motion within the Born-Oppenheimer approximation are recapitulated in

Sections 2.1 and 2.2. Various wave function-based and density functional theory methods to determine

the molecular electronic structure for the ground state and excited states as well as the wave function

analysis are discussed in Section 2.3. Section 2.4 reviews the theoretical treatment of electron dynamics

for closed and open quantum systems and recalls an analytical expression for electric laser fields applied

to drive the molecular system out of equilibrium. The theory chapter is completed with a description on

the time- and space-resolved analysis of correlated many-electron dynamics (cf. Section 2.4). Chapter 3

summarizes and interrelates the results of the scientific publications. The contributions of each author

are outlined as an introductory remark to each publication, which are presented in Chapter 4. Finally,

Chapter 5 concludes with the main research contributions of the present thesis.
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Chapter 2

Theoretical Framework

The following chapter describes the conceptual framework and theoretical methodologies being nec-

essary to conduct the present research project. The main focus is on the presentation of electronic

structure methods on various levels of accuracy and efficiency, the theoretical treatment of electron

dynamics, and the analysis of the static and time-dependent electronic wave function.

2.1 The Time-Dependent Schrödinger Equation

In a non-relativistic treatment, the time evolution of a molecular quantum system is governed by the

time-dependent Schrödinger equation[147]

ı~
∂

∂t
Φtot (q,Q, t) = Ĥtot (r,R, t) Φtot (q,Q, t) (2.1)

with the reduced Planck constant ~ and the imaginary unit ı. The molecular quantum system is

completely described by the total molecular wave function Φtot (q,Q, t) which depends on time t and

the electronic and nuclear coordinates, q and Q. These comprise the set of spatial and spin coordinates

of the Nel electrons, q =
{
r,θ

}
≡
{
~ri, θi

}Nel

i=1, and Nnuc nuclei, Q =
{
R,Θ

}
≡
{
~RA,ΘA

}Nnuc

A=1 . It

should be noted that the nuclear spin dependence is neglected in the current treatment and that the

total non-relativistic Hamiltonian Ĥtot (r,R, t) in Eq. (2.1) makes no reference to the nuclear and

electronic spin coordinates. Ĥtot (r,R, t) is composed of the time-independent molecular Hamiltonian

Ĥmol (r,R) and the time-dependent interaction Hamiltonian Ĥint (r,R, t)

Ĥtot (r,R, t) = Ĥmol (r,R) + Ĥint (r,R, t) . (2.2)

7
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The latter describes, for example, the interaction of the molecular system with an external electric

field, which can be defined by means of the semiclassical dipole approximation[148]

Ĥint (r,R, t) = −µ̂ (r,R) · ~F (t) . (2.3)

Here, µ̂ (r,R) is the molecular dipole operator, and ~F (t) stands for the electric field operator, whose ex-

plicit form is defined in Sec. (2.4.3). The expression for the field-free molecular Hamiltonian Ĥmol (r,R),

which describes the interaction of Nel electrons and Nnuc nuclei within the molecular framework, is

given by

Ĥmol (r,R) = −
Nel∑
i=1

~2

2me
∇2
~ri︸ ︷︷ ︸

T̂el(r)

−
Nnuc∑
A=1

~2

2MA
∇2
~RA︸ ︷︷ ︸

T̂nuc(R)

−
Nel∑
i=1

Nnuc∑
A=1

ZAe
2

4πε0
∣∣∣~ri − ~RA

∣∣∣︸ ︷︷ ︸
V̂el−nuc(r,R)

+
Nel∑
i=1

Nel∑
j>i

e2

4πε0 |~ri − ~rj |︸ ︷︷ ︸
V̂el−el(r)

+
Nnuc∑
A=1

Nnuc∑
B>A

ZAZBe
2

4πε0
∣∣∣~RA − ~RB

∣∣∣︸ ︷︷ ︸
V̂nuc−nuc(R)

, (2.4)

where the mass MA and the atomic number ZA belong to the Ath nucleus, and ∇2
~ri

and ∇2
~RA

are the

Laplace operators with respect to the Cartesian coordinates of electron i and nucleus A. Furthermore,

me and e are the rest mass and charge of the electron, and ε0 stands for the permittivity of vacuum.

In Eq. (2.4), the first and second term correspond to the kinetic energy operator of the electrons

T̂el (r) and nuclei T̂nuc (R), respectively. The last three operators can be assigned to intra-molecular

Coulomb interactions consisting of the Coulomb attraction between electrons and nuclei V̂el−nuc (r,R),

the Coulomb repulsion between the electrons V̂el−el (r), and the Coulomb repulsion between the nuclei

V̂nuc−nuc (R).[149,150]

The solution of the time-dependent Schrödinger equation, Eq. (2.1), is a highly demanding many-

body problem which is numerically exactly accessible only for small molecular systems, such as the

hydrogen molecular ion (H+
2 ). Hence, basic simplifications and approximations have to be invoked for

the numerical characterization of more sophisticated molecular systems.

2.2 The Born-Oppenheimer Approximation

The central simplification in quantum chemistry is the separation between electronic and nuclear mo-

tion, which is based on the significant difference in mass between the nuclei and the electrons and thus,

on their different velocities. Following this assumption, the nuclei are considered as frozen in space
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2.2 The Born-Oppenheimer Approximation

from the perspective of the electrons, while, from the perspective of the nuclei, the electrons react

instantaneously to the nuclear motion.[149–151]Within this clamped nuclei approximation, an electronic

Hamiltonian Ĥel (r;R) can be defined from the molecular Hamiltonian Ĥmol (r,R) (cf. Eq. (2.4))

Ĥel (r;R) = T̂el (r) + V̂el−nuc (r;R) + V̂el−el (r) + V̂nuc−nuc (R) , (2.5)

where the nuclear kinetic energy operator T̂nuc (R) is set to zero, and the internuclear repulsion term

V̂nuc−nuc (R) becomes constant. It should be noted that any additive constant only affects the eigen-

value of an operator. In Eq. (2.5), Ĥel (r;R) is an operator in the electronic space which depends

only parametrically on the nuclear coordinates R. This dependency is indicated by a semicolon.[149,150]

For each fixed nuclear configuration R, the electronic eigenvalue problem is governed by the time-

independent electronic Schrödinger equation

Ĥel (r;R) Ψλ (q;R) = Eλ (R) Ψλ (q;R) , (2.6)

whose solution provides the stationary electronic eigenfunctions Ψλ (q;R) of the electronic state λ and

the associated electronic eigenvalues Eλ (R). These expectation values are commonly denoted as the

potential energy surface.[149,150] According to the Hermitian properties of the electronic Hamiltonian

Ĥel (r;R), the orthonormality condition

∫
dqΨ†λ (q;R) Ψν (q;R) ≡ 〈Ψλ|Ψν〉 = δλν (2.7)

applies for the set of electronic eigenfunctions {Ψλ (q;R)} forming a complete basis in the electronic

space r at every value of R

∑
λ

Ψ†λ (q′;R) Ψλ (q;R) = δ (q − q′) . (2.8)

Here, Eq. (2.7) introduces the Kronecker delta δλν and the Dirac notation of the inner product of two

wave functions 〈Ψλ|Ψν〉, which symbolizes the integration over the whole set of electronic coordinates

q.[149,150]

Returning to the description of the coupled electron-nuclear dynamics by the time-dependent Schrö-

dinger equation, Eq. (2.1), an exact solution for the total molecular wave function Φtot (q,R, t) can

now be defined as

Φtot (q,R, t) =
∑
λ

Ψλ (q;R)χλ (R, t) (2.9)

9
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which is realized by an expansion in the complete set of electronic eigenfunctions {Ψλ (q;R)}. This

expansion is known as the Born-Huang expansion and constitutes no approximation given that the

summation is not truncated.[152] In Eq. (2.9), χλ (R, t) act as time-dependent expansion coefficients

being a function of the nuclear coordinates. These are usually referred to as the nuclear wave functions.

A coupled equation of motion for these expansion coefficients can be easily obtained by inserting the

Born-Huang ansatz into the time-dependent Schrödinger equation (cf. Eq. (2.1)), multiplying from the

left by Ψ†λ (q;R), and integrating over the electronic coordinates

ı~
∂

∂t
χλ (R, t) =

[
T̂nuc (R) + Eλ (R) +

∑
ν

Λλν (R) + Ĥint (R, t)
]
χλ (R, t) . (2.10)

In this formula, the dynamical interactions between the electronic and nuclear motion are characterized

by the non-adiabatic coupling terms Λλν(R), which are expressed by

Λλν(R) = −
Nnuc∑
A

~2

2MA

[
2
〈
Ψλ

∣∣~∇~RA

∣∣Ψν

〉
︸ ︷︷ ︸

~Λ(1)
λν

(R)

· ~∇~RA
+
〈
Ψλ

∣∣∇2
~RA

∣∣Ψν

〉
︸ ︷︷ ︸

Λ(2)
λν

(R)

]
.

(2.11)

Two elements for the non-adiabatic couplings are to be found in Eq. (2.11), i.e., a vectorial term
~Λ(1)
λν (R) of the first order and a scalar term Λ(2)

λν (R) of the second order.[153,154] The neglect of these

coupling elements leads to the Born-Oppenheimer approximation[151] which can be safely applied for a

great number of molecular systems. However, it loses its validity in the case of energetically close lying

electronic states.

Despite the simplifications arising from a non-relativistic Hamiltonian and the Born-Oppenheimer

approximation, the solution of the time-independent electronic problem, Eq. (2.6), can only be achieved

by approximate electronic structure methods.

2.3 Molecular Electronic Structure Theory

The two main classes of electronic structure models to find approximate solutions for the non-relativistic

time-independent electronic Schrödinger equation, Eq. (2.6), are the wave function-based methods and

the density functional theory. Both comprise methodologies to determine the electronic eigenfunctions

and eigenvalues for the electronic ground state (λ = 0) as well as for excited electronic states. The

associated standard methods as well as the underlying basic concepts, which are shared within each

class and partly between both classes, are introduced in the following section. Their description in the

ensuing section mainly follows Refs. [149], [150], [155], and [156].
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2.3 Molecular Electronic Structure Theory

2.3.1 The Hartree-Fock Method

The Hartree-Fock model constitutes the simplest wave function-based method in the electronic struc-

ture theory and belongs to the mean-field approaches.[157–159] In addition, it often serves as a favorable

starting point for more sophisticated methods (cf. Sec. 2.3.2).

Within the mean-field approximation, each electron moves independently in the averaged potential

of the remaining electrons and the potential created by the nuclei. Accordingly, the many-electron wave

function can be expressed as a simple product of all one-electron wave functions (Hartree Product)

ΨHP (q;R) = ψ1(~q1;R)ψ2(~q2;R) . . . ψNel(~qNel ;R). (2.12)

Each one-electron wave function ψa(~qi;R) corresponds to an orthonormal spin orbital a occupied by

an electron i

ψa(~qi;R) = ϕa(~ri;R)σ(θi) (2.13)

and is defined as the product of a spatial molecular orbital ϕa(~ri;R) and a spin function σ(θi). The

latter is either a spin up (α) or a spin down (β) function for fermions. In order to properly treat this

ansatz, the many-electron wave function must be antisymmetric with respect to the interchange of the

coordinates q of any two electrons[160,161]

Ψ (~q1, . . . , ~qi, . . . , ~qj . . . , ~qNel ;R) = −Ψ (~q1, . . . , ~qj , . . . , ~qi . . . , ~qNel ;R) . (2.14)

This antisymmetry requirement can be fulfilled by Slater determinants[162]

ΨSD(q;R) = 1√
Nel!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψa(~q1;R) ψa(~q2;R) . . . ψa(~qNel ;R)

ψb(~q1;R) ψb(~q2;R) . . . ψb(~qNel ;R)
...

...
. . .

...

ψNel(~q1;R) ψNel(~q2;R) . . . ψNel(~qNel ;R)

∣∣∣∣∣∣∣∣∣∣∣∣∣
≡
∣∣ψaψb . . . ψNel

〉
,

(2.15)

which express the many-electron wave function as antisymmetrized products of spin orbitals. Here,

the pre-determinant factor 1√
Nel!

ensures the normalization of the wave function. In the Hartree-

Fock approximation, a single Slater determinant is used to model the total electronic wave function

ΨHF
0 (q;R) of the ground state in the time-independent electronic Schrödinger equation, Eq. (2.6). In

order to obtain the optimal Slater determinant, the variational principle is applied to determine the

associated spin orbitals. This theorem states that the ground state energy E0(R) for any trial function
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∣∣Ψ̃〉 constitutes an upper bound to the exact expectation value of the electronic Hamiltonian[149]

〈
Ψ̃
∣∣∣Ĥel(r;R)

∣∣∣Ψ̃〉〈
Ψ̃
∣∣Ψ̃〉 ≥ E0(R). (2.16)

This means that an optimal set of orthonormal spin orbitals is sought yielding the minimum ground

state energy.

Following the single Slater determinant wave function ansatz, a set of effective one-electron eigenvalue

equations, the Hartree-Fock equations, can be derived

f̂(~ri;R)ψHF
a (~qi;R) = εHF

a (R)ψHF
a (~qi;R). (2.17)

In this formula, εHF
a (R) represents the orbital energy of the ath spin orbital, and f̂(~ri;R) denotes the

effective Hamiltonian of this one-electron eigenvalue equation

f̂(~ri;R) = − ~2

2me
∇2
~ri
−
Nnuc∑
A

ZAe
2

4πε0
∣∣~ri − ~RA

∣∣ + v̂HF
eff (~ri;R) (2.18)

which is designated as the Fock operator. The first term of Eq. (2.18) signifies the electronic kinetic

energy operator, and the second term stands for the electron-nuclear potential energy operator. Recall-

ing the mean-field approximation, the last term v̂HF
eff (~ri;R) describes the potential experienced by one

electron due to the presence of all other electrons.[149] It is composed of the classical Coulomb potential

energy operator Ĵb(~ri;R) and the non-classical exchange potential energy operator K̂b(~ri;R)

v̂HF
eff (~ri;R) =

Nel∑
b

(
Ĵb(~ri;R)− K̂b(~ri;R)

)
. (2.19)

These two components acting on a spin orbital ψHF
a (~qi;R) are defined as

Ĵb(~ri;R)ψHF
a (~qi;R) =

[∫
d~qj

(
ψHF
b (~qj ;R)

)† e2

4πε0
∣∣~ri − ~rj∣∣ψHF

b (~qj ;R)
]
ψHF
a (~qi;R) (2.20)

and

K̂b(~ri;R)ψHF
a (~qi;R) =

[∫
d~qj

(
ψHF
b (~qj ;R)

)† e2

4πε0
∣∣~ri − ~rj∣∣ψHF

a (~qj ;R)
]
ψHF
b (~qi;R). (2.21)

In order to make the Hartree-Fock equations (cf. Eq. (2.17)) numerically solvable, Roothaan and

Hall independently introduced an expansion of the spatial molecular orbitals into a set of known

basis functions.[163,164] This MO-LCAO ansatz (Molecular Orbitals as Linear Combination of Atomic
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Orbitals) expresses the spatial molecular orbitals as a linear combination of a finite set of atomic

orbitals

ϕa(~ri;R) =
Nnuc∑
A

nAO(A)∑
kA

Ca,kA(R)φkA(~ri − ~RA), (2.22)

where Ca,kA(R) is the kAth molecular orbital coefficient of MO a, and
{
φkA(~ri − ~RA)

}
denote the

nAO(A) atomic orbitals centered at atom A. The application of this MO-LCAO ansatz leads to the

Hartree-Fock-Roothaan-Hall matrix eigenvalue equation[163,164]

FC = SCε (2.23)

with the Fock matrix Fkk′ =
〈
φk
∣∣f̂(~ri;R)

∣∣φk′〉 expressed in the AO basis and the AO overlap matrix

Skk′ =
〈
φk
∣∣φk′〉. Furthermore, the diagonal MO energy matrix ε contains the orbital energies εaa = εa,

and the matrix C comprises the molecular orbital expansion coefficients. In the sense of the variational

method, the solution of this non-linear generalized eigenvalue equation yields the MO coefficients C

that produce the lowest possible ground state energy within the single Slater determinant ansatz for a

specific basis set. The Nel lowest spin orbitals, i.e., the occupied spin orbitals, contribute to this total

molecular energy. The remaining orbitals are referred to as unoccupied or virtual spin orbitals.[149]

The major deficit of the Hartree-Fock method stems from the description of the molecular wave

function with a single Slater determinant. Hence, electron interactions are solely treated in an average

fashion. In consequence, the energy from Hartree-Fock calculations is always greater than the lowest

possible ground state energy in a given basis. The difference between the Hartree-Fock energy and

the exact energy is defined as the correlation energy. In order to properly include electron correlation

effects, many post-Hartree-Fock methods have been developed to approach the exact ground state and

to access excited electronic states.

2.3.2 The Configuration Interaction Method

The most straightforward extension to the Hartree-Fock ansatz is the Configuration Interaction (CI)

method.[149,150,156] In this framework, the exact electronic wave function of an Nel-electron system for

an electronic state λ is expressed as a linear combination of all possible Slater determinants for a given

set of spin orbitals ∣∣ΨCI
λ

〉
=
∑
p

Dp,λ

∣∣Ψp

〉
. (2.24)

Here,
∣∣Ψp

〉
denote the orthonormal Slater determinants formed from the complete basis of spin orbitals,

and Dp,λ are the linear expansion coefficients. The latter are determined by variational optimization
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solving the secular equation

HD = DE, (2.25)

where D is the coefficient matrix, the diagonal energy matrix E comprises the electronic energies ECI
λ ,

and the elements of the Hamiltonian matrix H are defined as

Hpq =
〈

Ψp

∣∣∣Ĥel(r;R)
∣∣∣Ψq

〉
. (2.26)

Since these matrix elements Hpq can be expressed in terms of one- and two-electron integrals, the

Slater-Condon rules can be employed to reduce the number of non-zero elements.[165–167] The only

non-vanishing matrix elements exist between two Slater determinants, which are identical or differ by

one or two spin orbitals.

In general, the different Slater determinants are constructed by excitations of spin orbitals from a

single reference
∣∣Ψ0
〉
, usually the Hartree-Fock determinant. That means that n electrons have been

promoted from occupied {a, b, . . . } to virtual {r, s, . . . } spin orbitals in the reference determinant to

form singly, doubly, etc., excited determinants
∣∣Ψrs...

ab...

〉
. Accordingly, the CI electronic wave function

can be reformulated as

∣∣ΨCI
λ

〉
= D0,λ

∣∣Ψ0
〉

+
(

1
1!

)2∑
ar

Dr
a,λ

∣∣Ψr
a

〉
+
(

1
2!

)2 ∑
abrs

Drs
ab,λ

∣∣Ψrs
ab

〉
+ . . . . (2.27)

Alternatively to the description in the basis of Slater determinants, Configuration State Functions

(CSF) can be used to expand the CI wave function (cf. Eq. (2.24)). These CSFs are symmetry-

adapted linear combinations of Slater determinants and eigenfunctions of the spin angular momentum

operator. Taking advantage of the spin symmetry or molecular symmetry, this ansatz reduces the

number of non-zero CI matrix elements (cf. Eq. (2.25)).[149]

The CI wave function expansion (cf. Eq. (2.27)) including all possible Slater determinants is known

as the Full CI ansatz and corresponds to the exact solution of the time-independent Schrödinger equa-

tion (cf. Eq. (2.6)) within the limit of the given one-electron basis set and the Born-Oppenheimer

approximation. However, as the number of determinants grows factorially with the number of elec-

trons and basis functions, the computational expense for this exact ansatz is only tractable for very

small systems. In order to reduce the number of excited determinants, two main strategies have been

developed. The first is based on the truncation of the CI expansion (cf. Eq. (2.27)) to a certain level

of excitation, for example, singly (S) or doubly (D) excited determinants with respect to the reference.

This leads to the two commonly used variants, the CIS and CISD scheme.[168]While the doubly excited

determinants mainly contribute to the correction of the ground state energy, the singly excited deter-
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minants do not affect the ground state according to the Brillouin theorem.[149] The second strategy

restricts the number of active electrons in a specified number of active orbitals, i.e., the active space.

Both strategies are combined in the Restricted Active Space CI (RASCI) scheme.[169] An unfavorable

consequence of these truncation strategies is the loss of size consistency and size extensivity.

Up to this point, the CI wave function is expanded on the basis of a single Hartree-Fock determinant

which is assumed to provide a physically meaningful description of the electronic structure. This

ansatz is no longer an adequate description for conical intersections or bond forming or breaking

situations. In such cases, the Multi-Configuration Self-Consistent Field (MCSCF) method[170] is used

to generate a qualitatively correct description. Within this method, the orbital coefficients and the CI

coefficients are simultaneously optimized for a certain set of active orbitals, while the orbitals outside

the active space remain unchanged. The MCSCF approach can be performed for a single state or

in a state-averaged fashion to receive a set of orbitals that optimally characterize the selected states.

Including all determinants generated by allocating the active electrons to the selected active space leads

to the popular Complete Active Space Self-Consistent Field (CASSCF) approach.[171–173] In order to

truncate this ansatz and thus to avoid a large number of unnecessary highly excited configurations,

the CASSCF method can be additionally restricted to a certain excitation rank (RASSCF).[150,169]

In these MCSCF approaches, the different treatment of the active and inactive orbitals results in an

imbalanced description of the configuration space. This drawback can be compensated with the Multi-

Reference CI (MRCI) ansatz[174,175], which is generally based on the usual CI wave function expansion

(cf. Eq. (2.27)) but with an MCSCF wave function as reference.

All these CI variants can provide very accurate descriptions of the electronic structure for the ground

state and the excited states. However, the number of relevant configurations for a proper characteri-

zation can readily become unmanageable large. This makes them only tractable for moderately sized

molecular systems.

2.3.3 The Density Functional Theory

Density Functional Theory (DFT) represents an alternative approach to the wave function-based elec-

tronic structure methods for solving the time-independent Schrödinger equation (cf. Eq. (2.6)) of an

Nel-electron system.[150,155,176–179]While the post-Hartree-Fock methods presented above are based on

4Nel dimensional (three spatial and one spin coordinate for each electron) wave functions, DFT de-

termines the electronic structure of an Nel-electron system by means of the ground state one-electron

density. The latter is defined as the absolute square of the electronic wave function integrated over all

15



Chapter 2 Theoretical Framework

electronic coordinates except one and additionally integrated over the remaining spin coordinate

ρ0(~r;R) = Nel

∫
dθ
∫

d~q2 . . .

∫
d~qNel

∣∣Ψ0(~r, θ, ~r2, θ2, . . . , ~rNel , θNel ;R)
∣∣2. (2.28)

Here, the indices of the remaining spatial coordinate ~r, which is also denoted as the observation point,

and the spin coordinate are omitted in consequence of the indistinguishability of the electrons. In

Eq. (2.28), the electron density is normalized to the electron number

∫
d~rρ0(~r;R) = Nel (2.29)

and has the interpretation that ρ0(~r;R)d~r specifies the probability of finding any of the Nel electrons

in the volume element d~r irrespective of its spin. Thus, it depends solely on three spatial coordinates,

independently of the system size. This drastic reduction of the dimensionality in comparison to the

wave function-based methods results in a favorable computational scaling.

The theoretical basis for the DFT method relies on the two Hohenberg-Kohn theorems.[180] The first

theorem, known as the existence theorem, proves that the exact electronic energy of a non-degenerate

ground state is completely characterized by the one-electron ground state density. Hence, there exists

a functional E0
[
ρ0
]
, which uniquely connects the exact ground state energy with the corresponding

exact electron density. The second theorem states that this functional depending on any trial electron

density ρ̃0(~r;R) satisfies the variational principle

E0 ≤ E0
[
ρ̃0
]
, (2.30)

i.e., the ground state energy is minimized by the exact ground state electron density. Unfortunately,

the exact mathematical form of this universal functional and thus the exact ground state energy are

not known.

The first seminal concept to practically realize DFT was introduced by Kohn and Sham.[181] They

suggested a mapping of the true system consisting of Nel interacting electrons onto an equivalent

reference system of non-interacting electrons moving in an effective potential. This fictitious system

is exactly described by a single Slater determinant (cf. Eq. (2.15)), which is formed by a set of one-

electron basis functions, the Kohn-Sham (KS) orbitals
{
ψKS
a (~r, θ;R)

}
. These can be constructed in

analogy to the MO-LCAO ansatz (cf. Eq. (2.22)). The associated non-interacting one-electron density

reads

ρKS
0 (~r;R) =

Nel∑
a

∫
dθ
∣∣ψKS
a (~r, θ;R)

∣∣2 != ρ0(~r;R) (2.31)
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and is identical to the electron density of the real interacting system ρ0(~r;R). In the framework of this

Kohn-Sham DFT ansatz, an expression for the ground state energy as a functional of the one-electron

density can be formulated

E0
[
ρKS

0
]

= TKS
S
[
ρKS

0
]

+ Vel-nuc
[
ρKS

0
]

+ J
[
ρKS

0
]

+ EXC
[
ρKS

0
]

+ Vnuc-nuc, (2.32)

where the functional for the nuclear-nuclear repulsion Vnuc-nuc remains constant according to the Born-

Oppenheimer approximation. In Eq. (2.32), the first term is the functional for the exact kinetic energy

of the non-interacting system, which can be expressed in terms of the Kohn-Sham orbitals

TKS
S
[
ρKS

0
]

= − ~2

2me

Nel∑
a

〈
ψKS
a

∣∣∇2
~r

∣∣ψKS
a

〉
. (2.33)

The second and third term signify the functionals for the electron-nuclei interaction Vel-nuc
[
ρKS

0
]

Vel-nuc
[
ρKS

0
]

= −
Nnuc∑
A

∫
d~r ZAe

2

4πε0
∣∣~r − ~RA

∣∣ρKS
0 (~r;R) (2.34)

and for the Coulomb repulsion J
[
ρKS

0
]

J
[
ρKS

0
]

= 1
2

∫∫
d~r d~r ′ e2

4πε0
∣∣~r − ~r ′∣∣ρKS

0 (~r;R)ρKS
0 (~r ′;R). (2.35)

The latter is also referred to as the Hartree term and describes the self-interaction of the electron cloud.

The remaining functional in Eq. (2.32) stands for the exchange-correlation energy functional EXC
[
ρKS

0
]
,

which is the only unknown quantity within the Kohn-Sham DFT approach.[177,179] It includes the

lacking contributions for the kinetic correlation energy and for the electronic exchange and correlation

energy

EXC
[
ρKS

0
]

=
(
T
[
ρKS

0
]
− TKS

S
[
ρKS

0
])

+
(
Vel-el

[
ρKS

0
]
− J

[
ρKS

0
])
. (2.36)

The practical calculation of the electron density is accomplished by applying the variational principle,

whose validity is assured by the second Hohenberg-Kohn theorem. Here, the electronic energy is

minimized by varying the orthonormal Kohn-Sham orbitals
∣∣ψKS
a

〉
which build the electron density (cf.

Eq (2.31)). These one-electron functions and the respective orbital energies εKS
a (R) are variationally

obtained by solving the single-particle Kohn-Sham equations

(
− ~2

2me
∇2
~r + v̂KS

eff (~r;R)
) ∣∣ψKS

a

〉
= εKS

a (R)
∣∣ψKS
a

〉
. (2.37)
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As stated above, the electrons are subject to the effective potential, which is defined as[155,176]

v̂KS
eff (~r;R) = −

Nnuc∑
A

ZAe
2

4πε0
∣∣~r − ~RA

∣∣ +
∫

d~r ′ e
2ρKS

0 (~r ′;R)
4πε0

∣∣~r − ~r ′∣∣ + v̂XC(~r;R). (2.38)

The last term, the exchange-correlation potential v̂XC(~r;R), is given by the derivative of the exchange-

correlation functional EXC with respect to the electron density ρKS
0 (~r;R)

v̂XC(~r;R) =
δEXC

[
ρKS

0
]

δρKS
0 (~r;R)

. (2.39)

Apart from this exchange-correlation potential, the Kohn-Sham equations closely resemble the Hartree-

Fock equations (cf. Eq. (2.17)), i.e., reducing the Nel-electron problem to Nel one-electron problems.

However, it is important to emphasize that the Hartree-Fock method is an approximation by definition.

The underlying ansatz expressing the electronic wave function by a single Slater determinant causes

a deficient description of electronic correlations. In contrast, the Kohn-Sham equations are formally

exact under the condition that the exact expression of EXC is known.[150,177,179] Unfortunately, an

analytical form is not accessible from the Hohenberg-Kohn theorems. Thus, approximate expressions

for EXC are indispensable for the practical implementation of DFT, and their development turns out

to be the main challenge in modern DFT. A plethora of non-empirical and semi-empirical density

functionals with different levels of accuracy has emerged in the last three decades.[179] The major

difficulty concerning this functional development is that the density functionals are not systematically

improvable. However, a hierarchy of approximations for EXC, called the Jacob’s ladder[182], exists to

rank the quality of the functionals.

The simplest approximation occupying the first rung of the ladder is the Local Density Approximation

(LDA) which forms the basis for most approximate functionals. The central idea of LDA is the

assumption that the inhomogeneous electron density can be locally treated as a homogeneous electron

gas. This is a reasonable approximation for a slowly varying electron density. The associated exchange-

correlation functional can be written as

ELDA
XC

[
ρKS

0
]

=
∫

d~r ρKS
0 (~r;R)εLDA

XC
[
ρKS

0
]

(2.40)

with εLDA
XC as the exchange-correlation energy of the homogeneous electron gas. This quantity can be

divided into an exchange and a correlation contribution

εLDA
XC

[
ρKS

0
]

= εLDA
X

[
ρKS

0
]

+ εLDA
C

[
ρKS

0
]
, (2.41)
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where the exchange term is analytically solvable,[183–185] and the correlation term is derived from highly

accurate quantum Monte-Carlo simulations.[186–189]These functionals tend to perform surprisingly well,

especially, in describing extended homogeneous systems, such as metal solids. However, they yield

highly inaccurate results for most molecular systems, since they usually have highly inhomogeneous

density distributions.[177,179] In order to take care of this inhomogeneity, the functional form depending

solely on the information of the density ρKS
0 (~r;R) at a particular point can be supplemented by the

information about the gradient ~∇ρKS
0 (~r;R) of the density. This is taken into account in the Generalized

Gradient Approximation (GGA) functionals, whose general form is given by

EGGA
XC

[
ρKS

0
]

=
∫

d~r ρKS
0 (~r;R)εGGA

XC
[
ρKS

0 , ~∇ρKS
0
]
. (2.42)

Different flavors of these gradient-corrected correlation-energy functionals have been introduced in

prior research. The most popular examples are PW91[190] and PBE[191] functionals. In order to fur-

ther improve the flexibility of the GGA functionals, the Laplacian of the density ∇2ρKS
0 (~r;R) or the

kinetic energy density can be incorporated as an additional ingredient. This leads to the meta-GGA

functionals.[177,179]

Apart from improving the systematic error of the LDA by adding physically meaningful compo-

nents, both, GGA and meta-GGA functionals, struggle in properly characterizing long-range dynamic

correlations, strong correlations, and the self-interaction of the electrons.[179] A possible solution for

the latter is to include a fraction of the exact exchange functional KHF[{ψKS
a }

]
, which is determined

within the Hartree-Fock formalism using Kohn-Sham orbitals. These functionals are referred to as

hybrid functionals[192] and have the general form

Ehybrid
XC

[
ρKS

0
]

= $
(
KHF[{ψKS

a }
]
− ELDA/GGA

X
[
ρKS

0 , ~∇ρKS
0
])

+ E
LDA/GGA
XC

[
ρKS

0
]
. (2.43)

The B3LYP[193,194] and PBE0[195] functional are the two most popular and widely used global hybrid

functionals yielding remarkably reliable results for a broad range of chemical and physical ground state

properties. Although the computational cost of density functionals increases climbing up the Jacob’s

ladder, DFT is much less expensive compared to the wave function-based methods. This renders DFT

more suitable for the characterization of large quantum systems.

A weakness of all functional approximations presented above is the inadequate description of long-

range electron correlations, known as dispersion. A way to account for those is the semi-empirical

dispersion correction by Grimme (DFT-D)[196–198], which employs damped, pairwise potentials as an
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additive term to the functionals. The corresponding attractive energy term is defined as

EDFT−D
disp =

Nnuc∑
A=1

Nnuc∑
B>A

∑
v=6,8,...

hv
GAB,v∣∣∣~RA − ~RB

∣∣∣v fdamp
v (RAB), (2.44)

where fdamp
v (RAB) is the empirical damping function, GAB,v signifies an atom-dependent parameter,

and hv denotes a functional-depending scaling factor.

2.3.4 The Time-Dependent Density Functional Theory

The most widely used extension of the ground state density functional theory is the Linear Response

Time-Dependent DFT (LR-TDDFT), which allows for the calculation of excited state properties, such

as transition energies, oscillator strengths, or photoabsorption spectra. The following presentation of

the TDDFT method is mainly based on the Refs. [199–204].

In analogy to ordinary DFT, the basic idea of TDDFT relies on solving the time-dependent Schrö-

dinger equation (cf. Eq. (2.1)) for an Nel-electron system in terms of the time-dependent electron

density, i.e., the derivation of a time-dependent variant of the KS equations (cf. Eq. (2.37)). The theory

is based on two fundamental theorems, the Runge-Gross theorem[205] and the van Leeuwen theorem[206].

The former can be seen as the time-dependent analogue of the Hohenberg-Kohn theorem[180]. For the

time evolution of a many-body system from a fixed initial state, it proves that there exists a one-to-one

correspondence between the time-dependent one-electron density and the time-dependent potential.

This implies that the potential and all quantum mechanical observables can be written as a functional

depending on the time-dependent electron density and the initial state. Accordingly, the important

question arises whether the exact time-dependent electron density of the fully interacting system can

be reproduced by an auxiliary non-interacting system, which is subject to a time-dependent effective

potential. This is justified by the van Leeuwen theorem (non-interacting v-representability). Hence, the

corresponding time-dependent KS electron density can be constructed in terms of the time-dependent

KS (TDKS) orbitals

ρTDKS(~r, t;R) =
Nel∑
a

∫
dθ
∣∣ψTDKS
a (~r, θ, t;R)

∣∣2. (2.45)

As a result from the existence of a unique effective singe-particle potential v̂TDKS
eff (~r, t;R) yielding this

density, the time-dependent Kohn-Sham equations for the fictitious system of non-interacting electrons

can be formulated

ı~
∂

∂t

∣∣ψTDKS
a

〉
=
(
− ~2

2me
∇2
~r + v̂TDKS

eff (~r, t;R)
) ∣∣ψTDKS

a

〉
(2.46)
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with the time-dependent effective potential

v̂TDKS
eff (~r, t;R) = v̂ext(~r, t;R) +

∫
d~r ′ e

2ρTDKS(~r ′, t;R)
4πε0

∣∣~r − ~r ′∣∣ + v̂XC(~r, t;R). (2.47)

Here, v̂ext(~r, t;R) is the time-dependent external potential, and v̂XC(~r, t;R) denotes the exchange-

correlation potential, which is history-dependent. In correspondence with ground state DFT, this

time-dependent Kohn-Sham formalism is in principle an exact description. Nevertheless, some approxi-

mations have to be introduced to simplify the functional form of the unknown exchange-correlation

potential v̂XC(~r, t;R). In order to reduce its functional dependence, it is assumed that the quantum

system starts initially from a non-degenerate ground state

ψTDKS
a (~r, θ, t = t0;R) = ψKS

a (~r, θ;R). (2.48)

This neglects the initial-state dependence of v̂XC(~r, t;R). However, it still depends on the density

at every point in space and at all previous times. The basic approximation to bypass this history

dependence is the adiabatic approximation

v̂XC
[
ρTDKS](~r, t;R) = v̂XC

[
ρTDKS(t)

]
(~r;R), (2.49)

where v̂XC(~r, t;R) is specified by means of the static exchange-correlation functional at the time-

dependent instantaneous density. This local time-dependence of v̂XC(~r, t;R) is justified for a slowly

varying density, where the system remains in its instantaneous ground state.

The Linear Response Time-Dependent Density Functional Theory

The complete solution of the time-dependent KS equations tends to be a computationally highly

demanding task and is often not required, for instance, to extract the excitation spectrum of a quantum

system. For small perturbations causing solely a small deviation of the system from its initial state,

the linear response theory can be used to access a first-order perturbative solution to the TDKS

equations.[199–204] In general response theory, this weak perturbation is generated by an external stimu-

lus v̂(~r, t;R), e.g., a weak electric field,

v̂ext(~r, t;R) = v̂0(~r;R) + ϑ(t− t0)v̂(~r, t;R)

= −
Nnuc∑
A

ZAe
2

4πε0
∣∣~r − ~RA

∣∣ + ϑ(t− t0)v̂(~r, t;R)
(2.50)

which is turned on at time t0 by a Heaviside step function ϑ(t − t0). Here, v̂0(~r;R) is the external
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potential of the unperturbed system in its ground state. The response of the system due to the

perturbation v̂(~r, t;R) is represented by the time-dependent density response, which can be expressed

as a functional Taylor series[207]

ρ(~r, t;R)− ρ0(~r;R) = ρ(1)(~r, t;R) + ρ(2)(~r, t;R) + ρ(3)(~r, t;R) + . . . , (2.51)

where the superscripts in parenthesis denote the order of the expansion, and ρ0(~r;R) is the unperturbed

ground state density of the interacting system. In the linear response regime, the first term on the

right side of Eq. (2.51), ρ(1)(~r, t;R), is sufficient to describe the density response to small changes in

the external potential v̂ext(~r, t;R)

ρ(1)(~r, t;R) =
∫∫

dt′ d~r ′ χ(~r, t, ~r ′, t′;R) v̂(~r ′, t′;R) (2.52)

with the density-density response function of the fully interacting system defined as

χ(~r, t, ~r ′, t′;R) = δρ[v̂ext](~r, t;R)
δ v̂ext(~r ′, t′;R)

∣∣∣∣
v̂0(~r;R)

. (2.53)

Exploiting the KS formalism, the linear density response function can be expressed in terms of the

non-interacting system subject to the linear variation of the effective KS potential

ρ(1)(~r, t;R) =
∫∫

dt′ d~r ′ χeff(~r, t, ~r ′, t′;R) v̂(1)TDKS
eff (~r ′, t′;R). (2.54)

The associated linearized effective potential v̂(1)TDKS
eff (~r ′, t′;R) includes contributions for the external

perturbation, the Hartree potential, and the exchange-correlation potential

v̂
(1)TDKS
eff (~r ′, t′;R) = v̂(~r ′, t′;R) +

∫∫
dt′′d~r ′′ e

2δ(t′ − t′′)ρ(1)(~r ′′, t′′;R)
4πε0

∣∣~r ′ − ~r ′′∣∣ + v̂
(1)
XC(~r ′, t′;R). (2.55)

An expression for v̂(1)
XC(~r ′, t′;R) can be obtained by applying the chain-rule for functional derivatives

v̂
(1)
XC(~r ′, t′;R) =

∫∫
dt′′ d~r ′′ f̂XC(~r ′, t′, ~r ′′, t′′;R) ρ(1)(~r ′′, t′′;R). (2.56)

Eq. (2.56) introduces the time-dependent exchange-correlation kernel

f̂XC(~r ′, t′, ~r ′′, t′′;R) = δ v̂
(1)
XC[ρ](~r ′, t′;R)
δρ(~r ′′, t′′;R)

∣∣∣∣∣
ρ0(~r ′;R)

, (2.57)

which is the functional derivative of the exchange-correlation potential with respect to the density. The
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exchange-correlation kernel also becomes time-independent by virtue of the adiabatic approximation.

As the time-dependent density response for the interacting and for the non-interacting system have

to be identical, equating the corresponding equations, Eq. (2.52) and Eq. (2.54), and inserting the

expression for the linearized effective potential v̂(1)TDKS
eff (~r ′, t′;R) (cf. Eq. (2.55)) yields

∫∫
dt′ d~r ′ χ(~r, t, ~r ′, t′;R) v̂(~r ′, t′;R) =

∫∫
dt′ d~r ′ χeff(~r, t, ~r ′, t′;R) v̂(1)TDKS

eff (~r ′, t′;R)

+
∫∫

dt′ d~r ′ χeff(~r, t, ~r ′, t′;R) ·
∫∫

dt′′ d~r ′′
[
e2δ(t′ − t′′)

4πε0
∣∣~r ′ − ~r ′′∣∣ + f̂XC(~r ′, t′, ~r ′′, t′′;R)

]

·
∫∫

dt′′′ d~r ′′′ χeff(~r ′′, t′′, ~r ′′′, t′′′;R) v̂(1)TDKS
eff (~r ′′′, t′′′;R).

(2.58)

This relation holds independently for any arbitrary perturbation in the linear regime, since the density

response function is an intrinsic ground state property. Thus, the connection between the interacting

and non-interacting response function can be expressed by

χ(~r, ~r ′, ω;R) = χeff(~r, ~r ′, ω;R) +
∫∫

d~r ′′ d~r ′′′ χ(~r, ~r ′′, ω;R)

·

[
e2

4πε0
∣∣~r ′′ − ~r ′′′∣∣ + f̂XC(~r ′′, ~r ′′′, ω;R)

]
χeff(~r ′′′, ~r ′, ω;R)

(2.59)

which is a Dyson-type equation in the frequency space ω obtained from a Fourier transformation. This

equation represents the formally correct expression for the density response of the fully interacting

system. Incidentally, the neglect of the exchange-correlation kernel f̂XC leads to the random-phase

approximation (RPA).[208,209] In Eq. (2.59), the frequency-dependent Kohn-Sham density-density re-

sponse function can be formulated in terms of the static unperturbed Kohn-Sham orbitals

χeff(~r, ~r ′, ω;R) = lim
η→0+

∑
ar

[
ρKS
ra (~r;R)ρKS

ar (~r ′;R)
ω − ωKS

ar + ıη
− ρKS

ar (~r;R)ρKS
ra (~r ′;R)

ω + ωKS
ar + ıη

]
. (2.60)

Here, the summation runs over the occupied {a, b, . . . } and unoccupied orbitals {r, s, . . . }, whose

transition density is defined as

ρKS
ar (~r;R) =

∫
dθ
(
ψKS
r (~r, θ;R)

)†
ψKS
a (~r, θ;R), (2.61)

and their respective transition frequency is given by

ωKS
ar (R) = [εKS

r (R)− εKS
a (R)]/~. (2.62)

From Eq. (2.60), it is apparent that there exist poles Ω for frequencies ω that match the Kohn-Sham
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transition frequencies ωKS
ar (R). These resonant transitions correspond to the excitation energies of the

system’s electronically excited states, which, in principle, can be exactly calculated in the linear regime

by means of a non-Hermitian eigenvalue equation. This is known as the Casida equation[210]

 A B

B? A?


 Xλ

Yλ

 = Ωλ

 1 0

0 −1


 Xλ

Yλ

 . (2.63)

Here, the matrix elements A and B are defined as

Ara,bs(ω;R) = ωKS
ar (R) δabδrs +Bar,bs(ω;R),

Bar,bs(ω;R) =
∫∫

d~r d~r ′ ρKS
ra (~r;R)

[
e2

4πε0
∣∣~r − ~r ′∣∣ + f̂XC(~r, ~r ′, ω;R)

]
ρKS
bs (~r ′;R),

(2.64)

andXλ and Yλ are the response vectors for the excitation from an occupied orbital a to a virtual orbital

r and for the de-excitation from a virtual orbital r to an occupied orbital a. A practically solvable

formulation for the Casida equation emerges under the condition of real-valued Kohn-Sham orbitals and

a frequency-independent exchange-correlation kernel. Its solution does not only provide the excitation

energies but also the associated oscillator strengths. The elimination of the de-excitation processes

can be achieved by setting the off-diagonal elements B to zero. This is known as the Tamm-Dancoff

approximation (TDA)[211]

AXλ = ΩλXλ (2.65)

and coincides with the configuration interaction singles (CIS) formalism. Consequently, a CIS-type

wave function can be uniquely defined for each excited state within the TDA approach.

2.3.5 Solvation Models

Within the electronic structure methods presented so far, the molecular properties are characterized

for the isolated system in the gas phase. However, environmental effects, such as the influence of a

solvent, can cause changes in energy, stability, or molecular structure. To evaluate solvent effects, two

main approaches are applied: the supermolecule approach explicitly treating the individual solvent

molecules, which interact with the system, and the dielectric continuum solvation model describing the

solvent as a continuous entity. As computational cost of the former model can grow prohibitively high,

the second model is most commonly used in current computational chemistry and presented in the

following section.[150,212,213] Within its framework, the solvent is considered as a uniform polarizable

medium characterized by its macroscopic properties, i.e., the dielectric constant, and the solute occupies

an appropriately shaped cavity in this continuous medium. The free energy, which emerges from the
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introduction of the solute in the solvent and their interaction, is known as the solvation energy. It can

be divided into three essential components: the energy required to create the cavity, the dispersion

interaction energy between the solute and the solvent, and the electrostatic energy resulting from the

polarization of the solvent by the electric charge distribution of the solute. Obviously, the size and shape

of the cavity, which should ideally match the molecular charge distribution, are fundamental parameters

to evaluate the solvation energy. Both parameters define the Solvent Accessible Surface (SAS), which

is usually constructed by interlocking spheres centered on different nuclei. These overlapping spheres

have scaled van der Waals atomic radii, and their surface, the SAS, is often additionally smoothed for

a more adequate description. This concept of molecular-shaped cavities is employed in the popular

Polarizable Continuum Model (PCM)[214] and the COnductor-like Screening MOdel (COSMO)[215–219].

Both methods can be applied to quantum chemical calculations of various electronic structure methods.

2.3.6 Basis Set

Within the aforementioned molecular electronic structure methods, the molecular electronic wave func-

tion is expressed in terms of Slater determinants, which are formed by antisymmetric products of

molecular orbitals. According to the MO-LCAO ansatz (cf. Eq. (2.22)), these spatial molecular or-

bitals are constructed by linear combinations of a finite set of real-valued basis functions, the atomic

orbitals. This set of functions is referred to as the basis set.[149] For molecular systems, the most widely

used functional form for the atomic basis functions is the atom-centered Gaussian-type orbital.[220] In

Cartesian coordinates, a primitive Cartesian Gaussian function is given by

φGTO
υ,lxlylz (~r) = Nxlxylyzlz exp

(
−υr 2) , (2.66)

where N stands for the normalization constant, x, y, and z are the Cartesian coordinates, υ labels

the orbital exponent, and r =
√
x2 + y2 + z2 denotes the radius of the function. The sum of the

exponents lx, ly, and lz determines the type of the orbital. These primitive Gaussian functions are very

convenient from a computational viewpoint, since analytical solutions for their integrals are available,

and the product of any number of Gaussian functions can be simplified by employing the Gaussian

product rule. Both vastly accelerate the evaluation of numerous expectation values. This is the reason

for the r2-dependence in the exponential, although a r-dependence provides a better description of the

atomic orbitals. Two issues arise from this r2-dependence: A zero slope at the nucleus instead of a

cusp and a too rapid decay for larger values of r that cause a poor representation of the radial shape of

the electronic wave function.[149] In order to compensate for this behavior, the atomic basis functions

are modeled by linear combinations of numerous primitive Gaussian functions yielding the contracted
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Gaussian type functions

φcGTO
kA (~r − ~RA) =

Nbasis∑
f

cfφ
GTO
υf ,lxlylz

(~r − ~RA). (2.67)

Here, cf are the contraction coefficients, and Nbasis defines the length of the contraction.[150]

2.3.7 Wave Function Analysis

The electronic structure of a molecular system is fully characterized by its electronic wave function,

which is obtained from the solution of the time-independent electronic Schrödinger equation. In order

to derive further molecular properties besides the electronic energy, the molecular wave function has to

be analyzed by exploiting its functional form or decomposing the associated electron density. A variety

of available analysis tools exists that range from projection operators based on the electron density or

on the molecular orbitals to various wave function transformation techniques. (For a comprehensive

overview of wave function analysis methods, see Refs. [149, 150].)

Population Analysis

The population analysis is the study of the electronic charge distribution within a molecular system by

assigning a partial charge to each atom in the molecule. As the partial atomic charges are no observable

molecular properties, no unique definition is available. The two most common methods for defining

partial charges are based on the partitioning of the wave function in terms of the basis functions and

on the decomposition of the electron density into atomic domains. (For an overview, see Ref. [150].)

The simplest scheme for assigning charges based on the atomic basis functions is the Mulliken

population analysis.[221–224] Within its framework, the number of electrons associated to a specific

atom is determined by its atomic orbital contribution to the molecular wave function. Since this type

of scheme strongly depends on the basis set and does not necessarily converge with increasing basis set

size, it is advantageous to employ atomic charge determination methods based on the numerical analysis

of the one-electron density as a function of space. Its general form in terms of a multi-determinantal,

many-electron wave function for the electronic state λ reads

ρλ(~r;R) = Nel

∫
dθ
∫

d~q2 . . .

∫
d~qNel

∣∣Ψλ(~r, θ, ~r2, θ2, . . . , ~rNel , θNel ;R)
∣∣2. (2.68)

An example for this type of population analysis is the Hirshfeld method.[225] It partitions the one-

electron density according to a weighting function WHirshfeld
A , which is defined as the ratio of the

ground state electron density ρA,0(~r;R) for the isolated atom A to a fictitious promolecular density
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constructed as the sum over the spherically-averaged ρA,0(~r;R)

ρpro(~r;R) =
Nnuc∑
A

ρA,0(~r;R). (2.69)

The resulting atomic charge is then determined by subtraction of the integral of the density associated

with atom A from the corresponding nuclear charge ZA

QHirshfeld
A,λ = ZA −

∫
d~r WHirshfeld

A ρλ(~r;R) = ZA −
∫

d~r ρA,0(~r;R)
ρpro(~r;R) ρλ(~r;R). (2.70)

An alternative approach for dividing the real-space electron density into atomic contributions is the

Voronoi Deformation Density (VDD) method.[226] The underlying concept relies on a Voronoi parti-

tioning that divides the space into atomic domains known as Voronoi Cells (VC). These cells are

defined as the region in space closer to the selected atom A than to the remaining atoms. In order to

properly account for the electron density change due chemical bonding, the VDD formalism uses the

deformation density, which is the difference between the electron density ρλ(~r;R) and the promolecular

density ρpro(~r;R)

ρdef
λ (~r;R) = ρλ(~r;R)− ρpro(~r;R). (2.71)

Accordingly, the VDD atomic charge is obtained by the spatial integration of ρdef
λ (~r;R) over the Voronoi

cells
QVDD
A,λ =

∫
VC of A

d~rρdef
λ (~r) . (2.72)

An ambiguity for both methods can arise from the atomic densities especially when choosing between

the neutral or cationic/anionic species of an atom in a molecular system.

Natural Transition Orbitals

The characterization of electronically excited states, which are exclusively or predominantly described

by single excitations from a single-determinant reference, can be facilitated by constructing Natu-

ral Transition Orbitals (NTO).[69] The benefit of the NTO analysis relies on transforming the multi-

determinantal wave function of such an excited state into a compact representation in which the excited

state is expressed as correlated pairs of particle and hole functions. The central quantity containing the

amplitudes for the single excitation from an occupied to a virtual orbital with respect to the reference

is the one-electron transition density matrix between this reference Ψref and the excited state Ψλ. An
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element of this matrix is defined as

Tra,λ =
〈
Ψλ

∣∣â†râa∣∣Ψref
〉
. (2.73)

Here, â†r is the creation operator of molecular orbital ϕr, and âa denotes the annihilation operator

of molecular orbital ϕa. Such an excitation matrix can be obtained from single-reference electronic

structure methods, such as CIS, TDA or LR-TDDFT, with the single-determinant ground state Ψ0 as

reference Ψref . Within the CIS scheme, Tλ contains the CI expansion coefficients Dr
a,λ (cf. Eq. (2.27)),

while it is directly related to the response vector Xλ (cf. Eq. (2.63) and Eq. (2.65)) for the TDA and

the LR-TDDFT method. In order to define the NTOs, a single value decomposition of Tλ is applied

Tλ = Vλdiag (ζ1,λ, ζ2,λ, . . . )WT
λ

(2.74)

yielding two unitary matrices Vλ and Wλ, which contain the eigenvectors of the hole and particle

functions. Consequently, the hole NTOs can be constructed from Vλ,

ϕ h
`,λ(~r;R) =

Nocc∑
a

Va,`,λϕa(~r;R), (2.75)

and the particle NTOs can be built up using Wλ

ϕ el
`,λ(~r;R) =

Nvirt∑
r

Wr,`,λϕr(~r;R), (2.76)

where ϕa(~r;R) and ϕr(~r;R) are the occupied and virtual orbitals from the reference. In Eq. (2.74), the

squared eigenvalues ζ`,λ correspond to the weighting factors for the particle-hole transitions. Accord-

ingly, the normalized hole and particle densities can be formulated as weighted sums over the squared

NTOs
ρ h
λ (~r;R) =

∑
`

∣∣ζ`,λϕ h
`,λ(~r;R)

∣∣2
ρ el
λ (~r;R) =

∑
`

∣∣ζ`,λϕ el
`,λ(~r;R)

∣∣2. (2.77)

Typically only a small fraction of the particle and hole functions is required to express the multi-

determinantal wave function of an excited state. Thus, its representation as NTOs is a practical and

straightforward analysis technique to characterize the excitonic properties of a molecular systems.[227]
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2.4 Electron Dynamics

In general, the theoretical treatment of electron dynamics can be classified according to the two different

types of molecular systems: the closed and the open quantum system. The term closed quantum system

refers to systems, which are not subject to the influence of environmental forces. This includes isolated

molecular systems, which are described by a time-independent Hamiltonian and whose time evolution

is coherent. This situation can be completely modeled by the time-dependent Schrödinger equation (cf.

Eq. (2.1)), where the system remains in a pure state described by a single molecular wave function.

As this isolated system is an oversimplification, physically realistic quantum systems are treated as

open quantum systems, which are in contact with a surrounding environment. Its general concept

relies on the separation of the total system into an open molecular subsystem S and a subsystem

representing the environment or bath B. The combined total system (S + B) is again assumed to

be a closed system. The interaction between the relevant subsystem S and its environment B, which

strongly depends on the type of bath and on its coupling strength to S, can lead to dissipation and

dephasing phenomena. As a consequence, it is not possible to describe the molecular subsystem S by a

single quantum state. Instead, an incoherent statistical ensemble of pure states, called a mixed state,

is used for its representation. In the ensuing section, the equation of motion for open quantum systems

is derived, mainly following Refs. [1], [228], [229], and [230].

2.4.1 Time Evolution in Open Quantum Systems

The most general description of the time evolution for open quantum systems is given in the framework

of the reduced density matrix formalism.[229]Here, the density operator %̂(t) is employed to characterize

the dynamics of a quantum system. In general, it is defined as the time-dependent mixture of pure

states
∣∣Φn(t)

〉
weighted by the probability coefficients Pn(t)

%̂(t) =
∑
n

Pn(t)
∣∣Φn(t)

〉〈
Φn(t)

∣∣ (2.78)

with
∑
n Pn(t) = 1 for a closed system. For a pure state, this expression reduces to

%̂(t) =
∣∣Φ(t)

〉〈
Φ(t)

∣∣. (2.79)

Throughout this section, the coordinate dependence for all quantities is omitted for sake of simplicity.

In accordance to the general definition of the density operator (cf. Eq. (2.78)), the expectation value of

any arbitrary operator Ô for a mixed state can be obtained by summing over the respective eigenvalues
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for the pure states in the statistical mixture

〈
Ô
〉

=
∑
n

Pn(t)
〈

Φn(t)
∣∣∣Ô∣∣∣Φn(t)

〉
. (2.80)

This can be simplified by using the trace formula

〈
Ô
〉

= Tr
{
Ô %̂(t)

}
. (2.81)

In practical applications, the density operator is usually expressed in its matrix form %(t) by using a

time-independent, orthonormal basis
{∣∣Ψκ

〉}
. For a mixed state, the elements of this matrix are given

by

%κι(t) = 〈Ψκ|%̂(t)|Ψι〉 =
∑
n

Pn(t)d?κ,n(t)dι,n(t) (2.82)

and for a pure state by

%κι(t) = 〈Ψκ|%̂(t)|Ψι〉 = d?κ(t)dι(t). (2.83)

Here, the expansion coefficients dκ,n(t) are obtained from

dκ,n(t) = 〈Ψκ|Φn(t)〉 . (2.84)

The density matrix %(t) is hermitian, i.e., it satisfies the condition %κι(t) = %?ικ(t). Its diagonal elements

can be interpreted as the probability of finding the system in basis state
∣∣Ψκ

〉
at time t, and are thus

referred to as populations. As these populations are positive numbers, i.e.,

%κκ(t) ≥ 0, (2.85)

it follows that the density operator %̂(t) is a semi-definite operator. The off-diagonal terms of %(t)

represent the interferences between different basis state functions and are termed coherences. Both

terms depend on the choice of the selected basis set
{∣∣Ψκ

〉}
.

In order to derive an equation of motion for the density operator, the solution of the time-dependent

Schrödinger equation is formulated by means of a unitary time evolution operator

∣∣Φn(t)
〉

= Û(t, t0)
∣∣Φn(t0)

〉
. (2.86)
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In analogy, the time evolution for the density operator can be written as

%̂(t) =
∑
n

Pn(t) Û(t, t0)
∣∣Φn(t0)

〉〈
Φn(t0)

∣∣ Û†(t, t0) = Û(t, t0)%̂(t0) Û†(t, t0). (2.87)

The time derivative of the above equation directly results in the equation of motion for the density

operator
∂

∂t
%̂(t) = − ı

~

[
Ĥtot(t), %̂(t)

]
(2.88)

which is known as the Liouville-von Neumann equation. This equation is often written in an alternative

formulation
∂

∂t
%̂(t) = −ıL%̂(t) (2.89)

with L as the Liouville superoperator or Liouvillian. It should be noted that the solution of the

Liouville-von-Neumann equation yields the same time evolution for a closed system as the solution of

the time-dependent Schrödinger equation.

Considering a closed total system, which consists of a subsystem S coupled to a usually macroscopic

bath B, the associated total Hamiltonian has the general form

Ĥtot(t) = ĤS + ĤB + ĤSB(t). (2.90)

Here, ĤS and ĤB are the time-independent Hamiltonians describing the subsystem S and the environ-

ment B, and ĤSB(t) expresses the interaction between the two. Under the assumption that ĤSB(t) = 0

for t ≤ t0, the initial density operator at t = t0 for the combined system (S + B) can be described by

the following tensor product

%̂(t0) = %̂S(t0)⊗ %̂B(t0). (2.91)

In order to incorporate a time-dependent external stimulus to the situation in Eq. (2.90), the interaction

Hamiltonian Ĥint (cf. Eq. (2.2)) can be added to ĤS neglecting its influence on ĤB and ĤSB.

2.4.2 The Liouville-von Neumann Equation in Lindblad Form

The unitary time evolution (cf. Eq. (2.87)) of the combined system is generally too intricate to solve

in practice due to the huge number of environmental degrees of freedom. The common strategy to cir-

cumvent this issue is to trace over the degrees of freedom of the bath which leads to the reduced density

operator. The associated equation of motion, the so-called quantum master equation, is non-unitary

and can be derived by invoking several approximations. (For a complete derivation, see Ref. [228].) Its

starting point is the Liouville-von Neumann equation for the total density operator in its interaction
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picture form
∂

∂t
%̂I(t) = − ı

~

[
ĤSB,I(t), %̂I(t)

]
(2.92)

with the subscript “I” indicating the interaction frame. The interaction picture for an arbitrary operator

Ô(t) is defined as

ÔI(t) = eı(ĤS+ĤB)t/~ Ô(t) e−ı(ĤS+ĤB)t/~. (2.93)

Eq. 2.92 can be transformed in its integral form

%̂I(t) = %̂I(t0)− ı

~

t∫
t0

dt′
[
ĤSB,I(t′), %̂I(t′)

]
. (2.94)

Inserting this integral into Eq. (2.92) and taking the partial trace over the bath leads to

∂

∂t
%̂S,I(t) = − 1

~2

t∫
0

dt′ TrB

{[
ĤSB,I(t),

[
ĤSB,I(t′), %̂I(t′)

]]}
. (2.95)

Here, it is assumed that the initial correlation between the system and the bath at t0 = 0 is zero

TrB

{[
ĤSB,I(t), %̂I(t0)

]}
= 0. (2.96)

In order to simplify Eq. (2.95), the Born approximation is applied that assumes a weak coupling

between the reduced system S and the bath B and neglects the effect of this coupling on the bath.

This is justified for a macroscopic environment in its thermal equilibrium, whose excitations caused by

the reduced system are not resolved within the time scale of S. Following these assumptions, the total

density matrix can be expressed as the tensor product ignoring any time evolution of the environment

density operator

%̂I(t) ≈ %̂S,I(t)⊗ %̂B,I. (2.97)

It can be used to rewrite Eq. (2.95) to

∂

∂t
%̂S,I(t) = − 1

~2

t∫
0

dt′ TrB

{[
ĤSB,I(t),

[
ĤSB,I(t′), %̂S,I(t′)⊗ %̂B,I

]]}
. (2.98)

A further simplification on this equation can be achieved by the Markov approximation, which trans-

forms the equation of motion for the density matrix into a time-local expression by replacing %̂S,I(t′)

by %̂S,I(t) inside the integral. That means that the time evolution of the density matrix solely depends
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on its current state and that memory effects are neglected. This step yields the following equation

∂

∂t
%̂S,I(t) = − 1

~2

t∫
0

dt′ TrB

{[
ĤSB,I(t),

[
ĤSB,I(t′), %̂S,I(t)⊗ %̂B,I

]]}
. (2.99)

However, this equation still depends on the choice of the initial preparation at time t = 0. In order

to eliminate this explicit dependence, the variable t is substituted by t− t′, and the upper limit of the

integral is replaced by infinity. This gives a Markovian master equation

∂

∂t
%̂S(t) = − 1

~2

∞∫
0

dt′ TrB

{[
ĤSB(t),

[
ĤSB(t− t′), %̂S(t)⊗ %̂B

]]}
, (2.100)

which is usually referred to as the Redfield master equation[229,231]. To ensure the validity of the

complete Markov approximation, it is additionally assumed that the relaxation time τR of the reduced

system S significantly exceeds the bath correlation time τB. As a consequence, these quickly decaying

bath correlations are not resolved on a coarse-grained time axis, and thus the bath memory is neglected.

The two approximations just applied are usually summarized as the Born-Markov approximation.

Despite yielding a master equation which is local in time and omits memory effects for the dynamics of

S, it does not guarantee complete positivity and thus does not preserve the probabilistic interpretation

of the density operator.[232,233]This attribute can be enforced by performing the secular approximation,

which averages over the rapidly oscillating terms in the master equation. To start with its derivation,

the interaction Hamiltonian ĤSB is expressed as a tensor product in the Schrödinger picture

ĤSB =
∑
α

Âα ⊗ B̂α, (2.101)

where Âα and B̂α are Hermitian operators acting on the system and on the bath, respectively. The

prerequisite for the secular approximation is the decomposition of the interaction Hamiltonian HSB

into eigenoperators of the system Hamiltonian HS. For this purpose, the Âα operator is projected on

subspaces with a fixed frequency ω = (ε′ − ε)/~

Âα(ω) =
∑

ω=(ε′−ε)/~

P̂ (ε)ÂαP̂ (ε′) (2.102)

with ε as the eigenvalues of the system Hamiltonian HS and P̂ as the associated projectors. This
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definition implies that Âα(ω) satisfies the commutation relation

[
ĤS, Âα(ω)

]
= −ωÂα(ω)[

ĤS, Â
†
α(ω)

]
= +ωÂ†α(ω).

(2.103)

As the completeness relation holds for the eigenvectors of HS, Âα can be recovered by summing over

all frequencies ∑
ω

Âα(ω) =
∑
ω

Â†α(ω) = Âα. (2.104)

This allows to rewrite the interaction Hamiltonian as

ĤSB(t) =
∑
α,ω

Âα(ω)⊗ B̂α =
∑
α,ω

Â†α(ω)⊗ B̂†α. (2.105)

By employing the expression of Âα(ω) in the interaction picture

eıĤSt/~Âα(ω)e−ıĤSt/~ = e−ıωtÂα(ω), (2.106)

HSB can likewise be written in its interaction frame

ĤSB,I(t) =
∑
α,ω

e−ıωtÂα(ω)⊗ B̂α(t) =
∑
α,ω

e+ıωtÂ†α(ω)⊗ B̂†α(t). (2.107)

Here, the operator for the bath in the interaction picture is defined as

B̂α(t) = eıĤBt/~B̂αe
−ıĤBt/~. (2.108)

Inserting Eq. (2.107) into the Markovian master equation (cf. Eq. (2.100)) leads to

∂

∂t
%̂S,I(t) =

∑
ωω′

∑
αβ

eı(ω
′−ω)t Ξαβ(ω)

(
Âβ(ω)%̂S,I(t)Â†α(ω′)− Â†α(ω′)Âβ(ω)%̂S,I(t)

)
+ h.c., (2.109)

where “h.c.” signifies the Hermitian conjugate expression. In Eq. (2.109), the one-sided Fourier trans-

form for the bath correlation function is used

Ξαβ(ω) = 1
~2

∞∫
0

dt′ e+ıωt′
〈
B̂†α(t)B̂β(t− t′)

〉

= 1
~2

∞∫
0

dt′ e+ıωt′
〈
B̂†α(t′)B̂β(0)

〉
,

(2.110)
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where the bath correlation function
〈
B̂†α(t)B̂β(t− t′)

〉
= TrB

{[
B̂†α(t)B̂β(t− t′)%̂B,I

]}
becomes sta-

tionary, since %̂B,I is an eigenstate of the bath Hamiltonian ĤB. This in turn means that Ξαβ(ω) does

not depend on time. The general condition of the secular approximation builds upon the consideration

that the characteristic timescale of a system τS, given by |ω′ − ω|−1, is small compared to the relaxa-

tion time of the system τR, i.e., τR � τS. Consequently, all terms for which ω′ 6= ω holds can safely

be neglected, since these terms oscillate fast in comparison to τR. This is known as the strict secular

approximation. Hence, the subsequent master equation emerges

∂

∂t
%̂S,I(t) =

∑
ω

∑
αβ

Ξαβ(ω)
(
Âβ(ω)%̂S,I(t)Â†α(ω)− Â†α(ω)Âβ(ω)%̂S,I(t)

)
+ h.c., (2.111)

which can be cast into a simple general form

∂

∂t
%̂S,I(t) = − ı

~

[
ĤLS, %̂S,I(t)

]
+ LD%̂S,I(t). (2.112)

Here, ĤLS is the Lamb shift Hamiltonian

ĤLS =
∑
ω

∑
αβ

Sαβ(ω)Â†α(ω)Âβ(ω), (2.113)

which commutes with the system Hamiltonian, and thus renormalizes the energy levels of the unper-

turbed system. The coefficients Sαβ(ω) in Eq. (2.113) arise from the decomposition of the Fourier

transforms of the reservoir correlation functions Ξαβ(ω) into its real and imaginary part

Ξαβ(ω) = 1
2ξαβ(ω) + ıSαβ(ω) (2.114)

with

Sαβ(ω) = 1
2ı

(
Ξαβ(ω)− Ξ†βα(ω)

)
(2.115)

and

ξαβ(ω) = Ξαβ(ω) + Ξ†βα(ω). (2.116)

On this basis, an expression for the dissipative Liouvillian or dissipator in Eq. (2.112) can be written

LD%̂S,I(t) = 1
2
∑
ω

∑
αβ

ξαβ(ω)
{[
Âβ(ω), %̂S,I(t)Â†α(ω)

]
+
[
Âβ(ω)%̂S,I(t), Â†α(ω)

]}
. (2.117)
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The master equation of Eq. (2.112) can be easily transformed to the Liouville-von Neumann equation

in Lindblad form[234]

∂

∂t
%̂S(t) = − ı

~

[
ĤS(t), %̂S(t)

]
+ LD%̂S(t) (2.118)

by transforming it to its Schrödinger picture, i.e., adding the system Hamiltonian ĤS, neglecting the

Lamb shift Hamiltonian ĤLS, and diagonalizing the matrices ξαβ(ω). The first term on the right-

hand side of Eq. (2.118) accounts for the unitary time evolution of the density operator of the system

which is often expressed in terms of the time-independent electronic eigenstates derived from electronic

structure calculations

%̂S(t) =
∑
λν

Pλν(t)
∣∣Ψλ

〉〈
Ψν

∣∣ (2.119)

with Pλν(t) as expansion coefficients. The second term in Eq. (2.118), i.e., the dissipative Liouvillian,

describes the interaction between the system and the bath. An expression for the latter in the Lindblad

representation reads

LD%̂S(t) = 1
2
∑
d

{[
Ĉd%̂S(t), Ĉ†d

]
+
[
Ĉd, %̂S(t)Ĉ†d

]}
, (2.120)

which likewise ensures the semipositivity of the reduced density operator. In Eq. (2.120), Ĉd is a

Lindblad operator representing the nature and strength of a dissipative channel d. These operators

enable the investigation of energy relaxation and/or dephasing phenomena. A convenient definition for

Ĉd to describe energy relaxations are raising/lowering operators given by

Ĉd →
√

~Γν→λ
∣∣Ψλ

〉〈
Ψν

∣∣. (2.121)

The associated dissipation rates Γν→λ can be calculated perturbatively using Fermi’s Golden Rule

formula[235,236]

Γν→λ = 2π
~
∑
mm′

∣∣∣〈Ψλ,Υm

∣∣∣ĤSB

∣∣∣Ψν ,Υm′

〉∣∣∣2 ςm (1− ςm′) δ (εm′ − εm − ~ωνλ) , (2.122)

where Ψλ and Ψν denote the electronic states of the system, and Υm and Υm′ are the initial and final

bath states with energies εm and εm′ and the thermal distribution function ςm and ςm′ .

2.4.3 The Electric Field

An intuitive strategy to drive the molecular subsystem S out of equilibrium rests on the application

of external laser pulses inducing transitions between electronic states. There exist different formula-
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tions for modeling these electric fields.[236] The most straightforward expression for a laser field is the

analytical form of a π-pulse promoting a selective transition between two states Ψλ and Ψν
[237]

~F (t) = ~F0s(t) cos(ωλνt), (2.123)

where ~F (t) is the time-dependent electric field with the components Fx (t), Fy (t), and Fz (t) that inter-

act with the molecular dipole operator µ̂ within the semiclassical dipole approximation (cf. Eq. (2.3)).[148]

Furthermore, ωλν refers to the carrier frequency of the laser field resonant with the respective transition

energy, and ~F0 signifies the amplitude of the laser field. s(t) specifies the temporal envelope function

with a sin2 type shape

s(t) =


sin2

(
πt
th

)
0

if 0 ≤ t ≤ th

else
(2.124)

with th as the pulse length. A complete population inversion for the state-to-state transition can be

accomplished in an idealized isolated two-level system, if the π-pulse condition is fulfilled

∣∣∣~µλν ~F0

∣∣∣ ∫ th

0
dts(t) = π~. (2.125)

Here, ~µλν is the transition dipole moment comprising the components µλν,x, µλν,y, and µλν,z, and ~F0

is the pulse amplitude, which reads

F0,x = 2π~
th |µλν,x|

(2.126)

for a x-linearized laser field. Eq. (2.125) results from the (two-state) rotating wave approximation

and can be approximately applied for multi-level systems.[238,239] A series of interlevel transitions in a

multi-level system can be achieved by a superposition of linearly polarized laser fields

~Fg(t) =


~F0,g sin2

(
π(t−tg)
th,g

)
cos(ωgt)

0

if tg ≤ t ≤ tg + th,g

else
, (2.127)

where tg and th,g are the starting time and the pulse length of the gth laser pulse, respectively.

2.4.4 Analysis of Electron Dynamics

The time- and space-resolved analysis of ultrafast electron migration processes in molecular systems is

the cornerstone to obtain a complete picture of its intrinsic mechanism. The commonly used quantity

for the characterization of such a correlated electron dynamics is the time-dependent one-electron
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density[62,63,240]

ρ(~r, t) =
∑
λν

∫
dR
(
χ†ν(R, t)χλ(R, t)

)
ρλν(~r;R) (2.128)

with χλ(R, t) as the nuclear wave function and ρλν(~r;R) as the time-independent electronic transition

density

ρλν(~r;R) =
∫

dθ
∫

d~q2 . . .

∫
d~qNelΨλ(q;R) Ψν(q;R). (2.129)

Throughout this section, the general ansatz for a multi-determinantal, many-electron wave function

(cf. Eq. (2.24)) is used to define an electronic state. The time-dependent one-electron density can

be intuitively interpreted as a conserved probability fluid of electrons. The complementary quantity

revealing the mechanistic details of the spatially resolved instantaneous flow of electrons is the time-

dependent electronic flux density (cf. Paper AP1)

~j(~r, t) =
∑
λν

∫
dR
(
χ†ν(R, t)χλ(R, t)

)
~jλν(~r;R) (2.130)

with the time-independent electronic transition flux density between state λ and state ν

~jλν(~r;R) = − ı~
2me

∫
dθ
∫

d~q2 . . .

∫
d~qNel

(
Ψν(q;R)~∇~r Ψλ(q;R)−Ψλ(q;R)~∇~r Ψν(q;R)

)
. (2.131)

Within the clamped nuclei approximation, the electronic flux density ~jλλ(~r;R) for two identical states,

known as the adiabatic electronic flux density, vanishes as the electronic states are real-valued. A few

theoretical approaches exist trying to bypass this unphysical phenomenon.[241–248]

The central conservation relation between the time-dependent electron density ρ(~r, t) and the elec-

tronic flux density ~j(~r, t) is the electronic continuity equation[147]

∂

∂t
ρ(~r, t) = −~∇~r ·~j(~r, t). (2.132)

The left-hand side of this equation, the time-derivative of the electron density, is designated as the

electron flow, while on the right-hand side it is described as the divergence of the electronic flux

density.

A derived quantity from the electron density often used to supplement the analysis of a charge

migration process is the difference density. It specifies the variation of the electron density within a

certain time interval [0, t] from a given initial condition and is defined by integrating the electron flow

over time[249,250]

∆ρ(~r, t) =
∫ t

t0

dt′ ∂ρ(~r, t′)
∂t′

= ρ(~r, t)− ρ(~r, t0). (2.133)
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2.4 Electron Dynamics

In analogy to the time-independent population analysis (cf. Sec. (2.3.7)), a projector formalism

acting on the different real-space scalar fields can be applied to yield quantitative information about

the instantaneous and total contributions of a molecular fragment during the charge migration. Ac-

cordingly, the number of electrons assigned to a certain atom/fragment or volume V at any given time

can be defined as

NV (t) =
∫

d~r P̂V ρ(~r, t). (2.134)

Here, the projector operator P̂V can be based either on the spatial decomposition of the electron

density in specific volume elements as in the Voronoi formalism or on the partitioning by means of

the atomic orbital contributions to the electron density as in the Mulliken scheme. Two additional

quantities arising from this projector formalism are the time-dependent net electronic yield

YV (t) =
∫

d~r P̂V ∆ρ(~r, t) = NV (t)−NV (t0) (2.135)

and the time-dependent net electronic flow

FV (t) =
∫

d~r P̂V
∂

∂t
ρ(~r, t). (2.136)

Both reveal the quantitative change of the number of electrons and the flow of electrons within a certain

time interval assigned to a specific molecular fragment, respectively.[249,250]

An interesting property of the transition electronic current density is its direct relation to the tran-

sition electric dipole moment µv
λν(R) in velocity gauge and thus to the absorption intensity of an

electronic transition. Accordingly, the general form for the electronic contribution to µv
λν(R) can be

written as

µv
λν(R) = −e

∫
d~r ~jλν(~r;R) (2.137)

with e as the elementary charge. Alternatively, an expression for the transition electric dipole moment

in length gauge can be formulated in terms of the time-independent electronic transition density

µr
λν(R) = −e

∫
d~r ~r · ~ρλν(~r;R). (2.138)

Both forms of µλν(R) are directly related via[251]

(
µv
λν(R)

)r = ı~
(Eν(R)− Eλ(R))µ

v
λν(R) (2.139)

which has to be identical to the expression in Eq. (2.138) in the limit of an exact wave function. This
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relation can be useful to estimate the quality of an electronic structure calculation concerning the level

of theory and the underlying basis set.
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Chapter 3

Results

This chapter provides a brief summary of the central findings from the scientific publications produced

in the framework of this thesis. A detailed description of the entire results as well as the methodologies,

which have been both applied and specifically developed for the study purposes, can be found in the

respective papers presented in Chapter 4. These studies are thematically divided into four groups: The

first group (TK) presents novel and routinely used tools for the analysis and imaging of electronic ex-

citations and many-electron dynamics which are implemented in an open-source framework. The latter

three groups investigate different scenarios for charge migration processes in three diverse molecular

systems including various small molecules (SM), dye-sensitized solar cells (SC), and a semiconductor

quantum dot (QD).

The Paper TK1 and Paper TK2 demonstrate the capabilities and applications of the open-source

framework detCI@ORBKIT, which is a Python post-processing toolbox for multi-determinantal wave

functions and builds upon the functionalities of ORBKIT[AP2]. The latter was developed by the author

and a colleague and is listed as an additional publication (cf. Paper AP2). The main objective for

the development of the detCI@ORBKIT program was to provide a suitable toolset for the time-

and space-resolved study and visualization of correlated many-electron dynamics. For this purpose, it

evaluates transition moments and expectations values of various one-electron operators for explicitly

time-dependent electronic wavepackets that are expressed as linear combinations of multi-determinantal

wave functions. The necessary data to reconstruct these multi-determinantal wave functions are directly

extracted from the output of Configuration Interaction (CI) calculations at various levels of theory.

The electron density, the electronic flux density, and several derived quantities and observables are

among these one-electron properties. In general, the modular design of detCI@ORBKIT enables to

straightforwardly implement any type of one-electron quantity. In Paper TK1, the capabilities of the
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proposed set of analysis tools to unravel the mechanistic features of ultrafast charge migration processes

are substantiated for a few benchmark systems. In particular, the combination of derived quantities

from the electron density, such as the electronic flow, complemented by the electronic flux density reveal

extensive dynamical details about the motion and flow of the electrons during the investigated charge

migration scenarios. The convergence of these tools with respect to different levels of CI calculations and

the basis set size exhibit a high robustness concerning the qualitative statements gained on their basis.

In addition, the derived quantities from the electron density show a rapid quantitative convergence.
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Figure 3.1: Selection of the analysis tools implemented in the detCI@ORBKIT framework including (a)
the electron density ρ(~r, t) (in units of 1/a3

0), (b) the difference density ∆ρ(~r, t) (in units of 1/a0
3), (c) the

electronic flux density ~j(~r, t) (in units of Eh/~a2
0), and (d) the electronic flow ∂

∂t
ρ(~r, t) (in units of Eh/~a3

0).
These are displayed for representative time steps during the first half period of the charge migration process in
a superposition state of the trihydrogen cation H+

3 . The superposition state is prepared by the ground state
1 1A

′
1 and degenerate excited state 1 1E

′
, the molecule is sketched as a gray stick model, and the analysis

quantities are determined with the Full CI method using a cc-pVTZ basis set. A reference arrow for ~j(~r, t) is
shown at the right side of panel (c). This figure is created on the basis of the data calculated for Paper TK1
and Paper TK2.

As the computational expense of high-level wave function-based correlation methods scales poorly

with increasing system size, their application is solely feasible for small molecular systems. To circum-
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vent this issue, Paper TK2 introduce a non-variational hybrid density functional theory/CI scheme.

In the scope of this novel procedure, the multi-determinantal wave functions are constructed from

Linear Response Time-Dependent Density Functional Theory (LR-TDDFT) calculations as pseudo CI

singles eigenvectors. While the method benefits from the improved energetic description at virtually

the same costs as a CI singles calculation, it maintains the simple electron-hole picture to characterize

the transient many-electron dynamics. In order to confirm the applicability of this hybrid TDDFT/CIS

scheme, it is benchmarked against different CI variants for the ultrafast charge migration process in the

lithium hydride molecule. The mechanistic characteristics of the electron dynamics obtained from the

hybrid scheme coincide semi-quantitatively with the results from the higher-level electronic structure

methods. That means that the electronic flux density maps for the different methods agree qualita-

tively, while quantitative differences between the methods exist in the low electron density regions.

Supplementary to this, the scalability of the hybrid approach is demonstrated by the charge migration

in a moderately sized organic dye induced by a broadband laser excitation. In this context, a strategy

to further speed-up the hybrid method is tested. That truncates the pseudo-CI basis to a few domi-

nant configurations according to their contribution to the respective electronic state. Even for tight

truncation criteria, the analysis tools, especially, the electronic flux density, reveal a robust predictive

behavior for the major mechanistic features of the electron dynamics.

An overview of the most insightful analysis tools available within the detCI@ORBKIT framework

is depicted in Fig. 3.1. They are exemplary shown for the charge migration in a superposition state of

the trihydrogen cation which is also used as a benchmark system in both detCI@ORBKIT papers,

Paper TK1 and Paper TK2. As a final remark, it should be noted that the functionalities of

the detCI@ORBKIT framework as well as the underlying post-processing program ORBKIT are

extensively exploited throughout the remaining publications.

In many photoinduced processes, the excitonic character of an optical transition plays a fundamental

role, particularly, the spatial extent and intrinsic structure of an exciton as well as the electron-

hole separation are of interest to understand such processes. While experimental optical spectra for

extended and finite-sized systems can be satisfactorily reproduced by LR-TDDFT calculations within

the Random-Phase Approximation (LR-TDDFT-RPA), the information about the excitonic nature of

an optical transition cannot be obtained. To fill this void, Paper TK3 extends the concept of Natural

Transition Orbitals (NTO)[69] to semi-infinite periodic systems. This unitary orbital transformation

technique uses the one-particle transition density matrix to provide a compact representation of many-

body electronic wave functions as pairs of particle and hole functions (cf. Sec. 2.3.7). The novel

approach approximates this transition density matrix with the transition dipole matrix, whose choice is

43



Chapter 3 Results

justified by first-order time-dependent perturbation theory. The obtained set of correlated particle-hole

orbitals is termed Dipole-Induced Transition Orbitals (DITO). On the basis of the LR-TDDFT-RPA

kernel, the DITOs are compared to the NTOs for a specific metal-to-ligand transfer in a typical metal

complex. Both reveal the qualitatively identical picture for the physics of the studied optical excitation.

A comparison between the NTOs and DITOs for a specific metal-to-ligand charge transfer band in this

benchmark system is illustrated in Fig. 3.2 with the associated difference density as a reference. The

suitability of the DITOs to characterize extended systems is presented for a model dye-sensitized solar

cell composed of a MoS2 surface with different coverages of phenol molecules. The analysis of the

spatial distributions of the particle-hole functions for a low- and a high-energy optical band exhibits

a clear distinction regarding their charge transfer nature. In particular, the findings indicate a charge

transfer character for the low-energy band and a charge separated character for the high-energy band.

Figure 3.2: Comparison of particle (blue) and hole (gray) densities obtained from (a) NTOs and (b)
(rotationally averaged) DITOs for the lowest-lying Metal-to-Ligand Charge Transfer transition (MLCT) in
[Re(bpy)(CO)3(4-Etpy)]+. The ball-and-stick model of the molecule represents the rhenium, carbon, hydro-
gen, oxygen, and nitrogen atoms as cyan, dark gray, light gray, red, and blue beads. As a reference, the
difference density (c) between the ground state and the excited states belonging to the MLCT excitation is
depicted revealing regions of density depletion (gray) and concentration (blue). All quantities are in units of
1/a3

0 with an isosurface value of 10−3a−3
0 . These depictions are adapted from the Paper TK3.

In general, the set of analysis tools collected in the Papers TK1–TK3 allows for the quantitative

and qualitative mechanistic description of intricate many-electron dynamics. Starting with small molec-

ular systems, Papers SM1–SM3 focus on the investigation of ultrafast charge migration processes in

different electronic superposition states of the hydrogen molecular ion and the benzene molecule. The

Paper SM1 applies a time-dependent analysis of the electron density, electronic flux density, and ax-

ial electronic flux to the hydrogen molecular ion in a coherent superposition state between the ground

state (σg) and an excited state (σu) (cf. Figs. 3.4(a) and (c)). Both are represented in a minimal

basis set at a frozen nuclear geometry. This state combination results in a spatial localization of the

electron on one of the protons (cf. Fig. 3.4(c)). Its ultrafast time evolution shows a periodic oscillation
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of the electron density between the two protons with a period, τ = 551 as, inversely proportional to the

energy difference between the states. Based on the model of the electronically excited hydrogen molec-

ular ion from Eyring, Walter, and Kimball[79], analytical expressions are derived for many dynamical

properties including the electron density, the electronic yield, and the electronic flux density. Building

upon these, fundamental symmetry relations for the electron density and electronic flux density are

established revealing an abundance of spatial-temporal features. Among these, two fundamental find-

ings are deduced from these relations. First, the electronic flux density unveils a unidirectional charge

migration mechanism. Second, the electronic flux density on the internuclear axis reaches its maximum

in time and space, where the electron density has a local minimum. As the hydrogen molecular ion is

a one-electron system, another novel observation arises stating that the electron migration can occur

without the influence of electron correlation.

In analogy, Paper SM2 and Paper SM3 elucidate the mechanism of two different charge migration

processes in the benzene molecule by means of a qualitative and quantitative analysis of the time-

dependent electron density. These studies were motivated by previous theoretical work from Ulusoy

and Nest on the control of the aromaticity in benzene.[83] They demonstrated that two different non-

aromatic electronic superposition states can be selectively prepared using a train of linearly polarized

laser pulses which were designed by optimal control theory. These superposition states were generated

by equally populating, on the one hand, the ground state S0(11A1g) and the first excited state S1(11B2u)

and, on the other hand, the ground state S0(11A1g) and the second excited state S2(11B1u). As a

criterion to measure their aromaticity, the bond order and Mulliken charges were determined for the

respective target states. The results revealed that the aromaticity of the molecule can be switched off by

a partial electron density localization on alternating carbon-carbon bonds for the target state, S0 +S1

(cf. Fig 3.3(a)), and on alternating carbon atoms for the target state, S0 + S2 (cf. Fig 3.3(b)). While

the former resembles the Kekulé structure of benzene with an alternating bond pattern of single and

double bonds, the second initiates a localization of negative and positive partial charges on alternating

carbon atoms. Both scenarios lead to an oscillating charge migration between the two symmetrically

equivalent localization patterns on an attosecond time scale (cf. Fig. 3.3). Their underlying mechanism

was hypothesized as a pincer-type motion.

In order to corroborate these findings and to supplement them with the mechanistic and quantitative

details of the electron motion, an expression for the angular electronic flux during the charge migration

processes is developed for excited ring-shaped molecules. The underlying theory is transferred from

previous work on concerted electronic and nuclear fluxes during coherent tunneling.[252] It employs the

continuity equation and invokes suitable boundary conditions in order to convert the time-dependent
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electron density to the angular electronic flux. This quantity allows to determine the angular direction

of the electron flow and the number of migrating electrons during the charge migration in a ring-shaped

system. In order to reconstruct the two superposition states investigated by Ulusoy and Nest, the

electronic eigenstates were determined by a state-averaged CASSCF(6,6) calculation. The associated

excitation energies were additionally improved by a MRCI singles and doubles calculation. The latter

reveal the periods of τ = 830 as and τ = 590 as for the charge migration in the S0 + S1 and in

the S0 + S2 superposition state, respectively. The time-resolved analysis of the angular electronic

fluxes for both states unravels the mechanistic features of the electron motion which are depicted

in Figs. 3.3(a) and (b). Both scenarios show a multidirectional pincer-type motion of the electrons

migrating periodically from the regions of electron density concentration to regions of electron density

deficiency on an attosecond timescale. These sources and sinks of the electron fluxes are located on

the carbon-carbon bonds (S0 + S1) or on the carbon atoms (S0 + S2), respectively. Thus, the original

conjecture of Ulusoy and Nest concerning the charge migration mechanism is proven unequivocally.

Supplementary to this, the maximum number of electrons flowing concertedly during these processes

is quantified to Nel = 6× 0.12 = 0.72 for state S0 + S1 and Nel = 6× 0.2 = 1.2 for state S0 + S2. This

corresponds to the quantification of the arrows representing the electronic motion in Lewis structures

as depicted in Fig. 3.3.

Figure 3.3: Schematic depiction of the charge migration mechanism during the first half period in the
benzene molecule starting from two different superposition states: (a) S0(11A1g) + S1(11B2u) and (b)
S0(11A1g) + S2(11B1u). Top row: Sequence of Lewis-type structures depicted at representative time steps
of the charge migration, starting from a non-aromatic superposition state (t = 0) via a transition state with
equally distributed electron density (t = τ/4) to the symmetry equivalent non-aromatic superposition state
(t = τ/2). The red arrows indicate the angular direction of the electron flow revealing a multidirectional,
pincer-type mechanism. Each arrow represents the migration of (a) 0.1 and (b) 0.2 electrons. Bottom row:
Corresponding snapshots of the time-dependent electron density ρ(~r, t) disclosing the electron localization pat-
terns. These depictions are adapted from the Paper SM2 and Paper SM3.

In order to give access to a more transparent formalism to the angular electronic fluxes, the calcula-

tions in Paper SM2 were restricted to the dominant Slater determinants. This allows to reduce the

complete wave function expansion to a few molecular orbital contributions facilitating the interpreta-

tion of the electronic fluxes. The outcomes obtained from this simplification demonstrate a robustness
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with respect to the qualitative features of the electron motion as well as the quantification of the elec-

tron flow. Admittedly, the small variance in the magnitude of the flux can be ascribed to the omitted

renormalization of the approximate wave functions.
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Figure 3.4: Comparison of the analysis tools applied in the Papers SM1–SM3 to examine the mechanism
of ultrafast charge migration processes in molecular systems. (a) Axial electronic flux as a function of time and
(c) time evolution of the electron density and electronic flux density at representative time steps during one
period of the charge migration process for the hydrogen molecular ion in the superposition state σg + σu. (b)
Angular electronic flux as a function of time and (d) time evolution of the electron density and electronic flux
density at representative time steps during one period of the charge migration process for the benzene molecule
prepared in its superposition state S0(11A1g) + S1(11B2u). One reference vector for the flux density of each
molecular system is located at the ordinate with the length of 3.0 · 10−2 Eh/~a2

0 for the hydrogen molecular
ion (c) and with the length of 2.5 · 10−3 Eh/~a2

0 for the benzene molecule (d). These figures are adapted and
created on the basis of Paper SM1 and Paper SM3.

To summarize the analysis tools applied in the Papers SM1–SM3, Fig. 3.4 compares the ax-

ial/angular electronic flux and the combination of the time-dependent electron density with the as-

sociated electronic flux density for the hydrogen molecular ion and the benzene molecule. While the

47



Chapter 3 Results

latter offers an intuitive picture of the instantaneous flow of electrons, the former is a powerful tool

for the quantitative investigation of ultrafast electron dynamics. However, convenient boundary con-

ditions based on the system’s symmetry have to be invoked for the determination of the axial/angular

electronic fluxes.

In order to demonstrate the applicability of these analysis tools for more extended systems, the

Papers SC1–SC3 investigate photoinduced electron injection processes in different Dye-Sensitized

Solar Cell (DSSC) models at the interface of an organic dye anchored to a TiO2 nanoparticle. The

general objectives of these studies comprised the modeling of a realistic DSSC and the simulation and

time- and space-resolved examination of the electron migration from the dye into the TiO2-cluster.

To accomplish the first goal, the following protocol was pursued in the three publications: First, the

dye was attached via an anchoring group to a finite TiO2 nanocrystallite mimicking either a colloidal

nanoparticle or a thin film of titania. The geometry of this model system was optimized by means of

a DFT calculation at a convenient level of theory. Second, the absorption spectra of the DSSC models

were determined within the LR-TDDFT framework. Third, the electronic and optical properties of

the model systems were verified by the comparison to experimental data, i.e., the energetic alignment

and hybridization between the dye and the substrate and the optical absorption spectra. This ensured

that the finite cluster models mimic the fundamental characteristics of a realistic solar cell.

As the prototypical DSSCs are constructed as finite cluster models to enable the analysis of the

electron injection on an atomistic level, a fundamental component of the electron dynamical simulation

is a complex absorbing potential. This suppresses artificial recurrences in the electron dynamics and

reflections at the edges of the TiO2 cluster. In the series of studies (Papers SC1–SC3), a projector

formalism is developed affecting the boundary atoms of the TiO2 cluster to simulate the contact with an

infinite substrate. While the formulation of the absorbing potential in the Paper SC1 and Paper SC2

relies on a user-defined scaling factor to reproduce the experimental injection rates, a parameter-free

expression is established in Paper SC3. The typical experimental injection time amounts to 6 fs for

a colloidal TiO2 substrate[104] and 60 fs for a thin film[105] and is considered as an intrinsic property of

the TiO2 cluster, independently of the dye.

The first application of the analysis and imaging tools, e.g., electronic flux density, electron density,

electronic yield, and electronic flow, to unravel charge migration processes in complex molecular systems

is presented in the Paper SC1. Here, it is exemplary shown for the alizarin dye attached to a colloidal

(TiO2)15 cluster (cf. Fig. 3.5(a)). In order to facilitate the interpretation of the introduced analysis

tools, an explicitly time-dependent single active electron approach is used to simulate the ultrafast

photoinduced electron transfer from the dye into the cluster. Within this ansatz, an active electron
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of an occupied Kohn-Sham orbital located on the dye is excited with a δ-pulse to the complete set of

energetically accessible molecular orbitals. A qualitative analysis of these orbitals indicates that after

an intrachromophore excitation, the electron injection is mediated by orbitals, which are localized on

the substrate or delocalized over the entire DSSC. The usage of this ansatz is substantiated by the

observation that the optical excitations of the DSSC are dominated by transitions from the selected

active Kohn-Sham orbital.

As the formulation of the electronic flux from the Paper SM2 and Paper SM3 strictly requires to

include a suitable symmetry condition of the molecular system, an alternative definition is derived on

the basis of a projector formalism using a Voronoi partitioning. This enables to assign the quantitative

contribution of the electron flow to a specific molecular fragment by following the time evolution of

the integrated electronic flux and electronic yield. Thereby, the effect of coherences on the electron

dynamics is investigated revealing that electron density located on the molecular fragments simply

decays exponentially in the incoherent propagation. In contrast, the coherent dynamics exhibits a

symmetric and synchronous Rabi oscillation between the two carbonyl groups (cf. Fig. 3.5(c)).

Due to the to some extent arbitrary definition of this projector formalism, electronic flux density

maps are calculated to provide a more universal picture for the mechanistic features of the ultrafast

charge migration. In detail, it is discovered that the charge injection is heavily affected by the carbonyl

groups, while the aromatic rings solely act as mediators for the electron transfer between the carbonyl

groups.

The main focus of the Paper SC2 is to explore the effects of the dye-substrate binding mode and

of many-electron correlations on the ultrafast electron migration promoted by a laser excitation. For

the first study objective, two stoichiometric alizarin-TiO2 complexes are constructed with two different

dissociative anchoring motifs, i.e., the monodentate and the bidentate binding mode. The finite-sized

TiO2 cluster is modelled as a thin film carved out of the bulk anatase. To account for many-body

effects in these DSSC models during electron migration, the single active electron approach from

Paper SC1 is compared to a time-dependent many-electron CI ansatz. The latter is based on the

hybrid TDDFT/CIS scheme presented in Paper TK2. The validity of the one-electron ansatz is in

turn corroborated by the prevailing contribution of the active orbital to the optically excitable states

obtained from the TDDFT calculation.

Once again, the mechanistic pathway for the migrating electrons from the dye into the substrate

is clarified using the previously introduced analysis tools in combination with the Voronoi projector

technique. Independently of the binding mode in the DSSC complex and of the description of the

electron dynamics, the space- and time-resolved evaluation of the electronic yields, electronic fluxes,

49



Chapter 3 Results

and electronic flux densities reveal similar charge transfer characteristics. They unveil an alternating

electron flow from the dye to the TiO2-cluster via the bonds of the anchoring groups. Comparing the

two binding modes, it is observed that the electron injection process in the bidentate system proceeds

one order of magnitude faster than in the monodentate complex. The methodological comparison of

the one-electron and many-electron approach show a similar phenomenological behavior concerning

the electronic structure and the overall electron dynamics. This indicates that many-body effects have

only a marginal impact on the investigated DSSC models.

Thus, it is concluded that the single active electron approach is qualified for the description of

electron migration processes in these type of systems. However, the many-body wave function ansatz

shows more intricate mechanistic details of the charge migration. In addition, this ansatz opens up

the possibility to shed light on the electron-electron and hole-hole contributions during the charge

migration. For this purpose, a new decomposition technique for the electronic flux density is proposed

revealing their spatial distribution and time evolution. While the electron-electron component is mainly

localized on the TiO2-substrate, the hole-hole component is mainly distributed on the dye. Both show

a slower fluctuation compared to the complete electronic flux density.

In the last paper (SC3) of this series, a comparative examination is conducted for three different

donor-acceptor π-conjugated dyes attached to a colloidal TiO2-cluster. A special emphasis is put

on the characterization of their potential performance and photon-to-current efficiency from a static

point of view. The donor-π-acceptor-type dyes consist of an expanded π-conjugated molecular skeleton

containing a pyridinium ring as electron acceptor, an amino group as electron donor, and a carboxylate

group as anchoring group to the substrate (exemplary, cf. Fig. 3.5(b)). The three photosensitizers under

investigation mainly differ by the extent of their condensed π-conjugated scaffold and by the type of

their amino group.

In order to specify their achievable photovoltaic output from a static perspective, parameter-free

expressions are established for the crucial properties determining their photon-to-current conversion

efficiency, i.e., the state-resolved injection time and current. Their validity to yield quantitative correct

statements is confirmed by the comparison to typical experimental values. On the basis of their analysis

for the three DSSC complexes, it is deduced that the extent of the condensed π-conjugated system is

the decisive structural feature for their photovoltaic efficiency. Additionally, this feature also influences

the sunlight harvesting properties of the dyes. This observation is a consequence of the location of the

absorption maxima in the simulated optical absorption spectra.

To supplement these findings with the dynamical aspects of a realistic ultrafast electron migration

process, a broadband laser excitation of the optical band in each model system is simulated in real time
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Figure 3.5: Time- and space-resolved analysis of different charge migration processes in two DSSC models
by means of the projector formalism based on a Voronoi partitioning scheme. Ball-and-stick models for the
optimized molecular structures of the selected dye-TiO2 complexes investigated in (a) Paper SC1 and (b)
Paper SC3. The dark gray, light gray, blue, red, and cyan beads represent carbon, hydrogen, nitrogen,
oxygen, and titanium, respectively. Time evolution of the electronic yields YV (t) during the different charge
migration dynamics from the dye into the TiO2 semiconductor for the DSSC complexes in (c) Paper SC1 and
(d) Paper SC3. The electronic yields are determined for different characteristic molecular fragments. These
are defined as boxes in the ball-and-stick models which are colored as the curves in the charts. The dynamical
simulations were carried out using the single active electron approach initiated by a δ-pulse for the system in
Paper SC1 and a broadband laser excitation for the DSSC model in Paper SC3. The figures are adapted
from Paper SC1 and Paper SC3.

by means of the single active electron approach. The adequacy of this approach is again confirmed by

the molecular orbital transition contributions to the excited states. In analogy to the previous studies,

the time-dependent one-electron density and the electronic yields partitioned for selected molecular

fragments are used to elucidate the mechanistic course of the migrating electron. A fluctuation of

electron density between the electron donor and electron acceptor group with a contemporaneous

injection into the TiO2-substrate is observed for the three DSSC models (exemplary, cf. Fig. 3.5(d)).

In accordance with the static investigation, the performance of the dyes is slightly enhanced by the

size of the π-system.

In order to emphasize the usefulness of the projector formalism based on the Voronoi partitioning

scheme, Fig. 3.5 shows the analysis of the charge migration in two selected DSSC model systems

from Paper SC1 and Paper SC3. It corroborates the suitability of the formalism to yield an time-

and space-resolved evaluation of ultrafast electron dynamics with additional information about the

contributions of specific molecular fragment during the dynamical process.

The last study in this thesis, Paper QD1, deals with the laser-controlled charge carrier confine-

ment in a solid state quantum dot with a special focus on the enhancement of the charge trapping

efficiency. To this end, a model quantum dot is constructed as a nanometer-size Ge/Si core-shell

system maintaining the important structural and excitonic properties of experimentally observed self-
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Chapter 3 Results

assembled pyramidal Ge/Si quantum dots. In detail, a small dome-shaped Ge impurity is embedded

in a Si host matrix consisting of a few Si shells. The simulation of the electron dynamics in the

Ge/Si model quantum dot is achieved by means of a fully atomistic, correlated many-electron ansatz.

Specifically, the reduced density matrix variant of the time-dependent configuration interaction method

(ρ-TDCI)[253–257] for open systems is applied for the first time to a nanostructured solid state system.

It allows to incorporate the effects of energy relaxation and pure dephasing as couplings of the local

core-shell structure with vibrations of the surrounding Si environment. For this purpose, a perturba-

tive model for these nonadiabatic coupling rates is developed scaling with the inverse of the electronic

energy difference squared. Interestingly, the same scaling is found in the Fermi liquid theory for three-

dimensional metallic systems.[258]

Hole confinement in the Ge/Si nanocrystal is accomplished by state-selective laser excitations. In or-

der to evaluate the degree of charge confinement for a certain interlevel transition path, the associated

one-electron difference densities obtained from the correlated many-electron wave functions were ana-

lyzed from a static perspective. Two transition pathways, direct and indirect, are determined yielding

the highest hole confinement in the vicinity of the Ge nanocrystal. The dynamical simulation following

these two pathways reveal that the direct excitation mechanism is strongly affected by polarization

and other nonlinear field-molecule effects, while the indirect mechanism offers a more efficient and

robust way to confine a hole state in the Ge quantum dot and to create long-lived permanent dipoles

in such systems. In addition, it is observed that energy relaxation and pure dephasing induced by the

nonadiabatic couplings play a rather subordinate role in the electron dynamics.
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Chapter 4

Publications

The subsequent chapter presents the scientific publications which form the core of this dissertation.

These publications consist of published papers and papers to be submitted for publication. In order

to give a thematic classification of these studies, they are assigned to four different groups:

• TK An open-source toolkit for analyzing electronic excitations and many-electron dynamics

• SM Mechanistic analyses of charge migration processes in small molecules

• SC Ultrafast photoelectron migration in dye-sensitized solar cells

• QD Laser-driven electron dynamics of a Ge/Si core-shell quantum dot

The contributions of the individual authors to the conceptualization, execution, and preparation of

each publication are reported as introductory remarks in the following section.

53





Toolkit for Analyzing and Imaging Charge Migration

Paper TK1

An Open-Source Framework for Analyzing N-Electron Dynamics. I. Multideterminantal

Wave Functions

V. Pohl, G. Hermann, and J. C. Tremblay

J. Comput. Chem. 38, 1515–1527 (2017)

DOI: 10.1002/jcc.24792

URL: https://doi.org/10.1002/jcc.24792

Figure 4.1: Graphical Abstract. Reprint with permission from Pohl et al.[TK1] ( c©2017 Wiley Periodicals,
Inc.)

Author contributions

detCI@ORBKIT is a modular post-processing toolkit for multi-determinantal wave functions based on

the functionalities of ORBKIT (cf. Paper AP2). Vincent Pohl and I started to program the first

modules for this toolkit during the work for Paper AP1 which was supervised by Jhon Fredy Pérez

Torres. Throughout the dissertations of Vincent Pohl and myself, we further developed the program

in equal parts. A commonly usable version of the program was equally developed by Vincent Pohl

and myself as a result of the work for Paper SM3. The implemented general methodology to post-

process CI wave functions was derived in collaboration with Jean Christophe Tremblay. To benchmark

the methodology, Vincent Pohl performed Full CI and different CASSCF calculations for a number of

molecular test systems. For this purpose, he interfaced the respective quantum chemical programs,

PSI4[259] and MOLPRO[260]. The quantities, i.e., electronic flux density and electron density, to analyze

correlated many-electron dynamics in the test systems were calculated and illustrated by Vincent Pohl

and myself for the different CI methods. The manuscript was prepared by myself with input from Jean

Christophe Tremblay and Vincent Pohl.
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Toolkit for Analyzing and Imaging Charge Migration

Paper TK2

An Open-Source Framework for Analyzing N-Electron Dynamics. II. Hybrid Density

Functional Theory/Configuration Interaction Methodology

G. Hermann, V. Pohl, and J. C. Tremblay

J. Comput. Chem. 38, 2378–2387 (2017)

DOI: 10.1002/jcc.24896

URL: https://doi.org/10.1002/jcc.24896

Figure 4.2: Graphical Abstract. Reprint with permission from Hermann et al.[TK2] ( c©2017 Wiley Periodicals,
Inc.)

Author contributions

The hybrid DFT/CI methodology was initially developed and applied by Jean Christophe Tremblay and

myself in Paper SC2. I implemented this approach into the post-processing toolkit detCI@ORBKIT

and additionally created interfaces to a number of quantum chemical programs, i.e., TURBOMOLE[261]

and GAMESS (US)[262], providing an electronic structure characterization by means of LR-TDDFT. To

benchmark the hybrid approach, Vincent Pohl and I performed LR-TDDFT calculations in comparison

to different CI methods for selected model systems. The evaluation and visualization of the results

were accomplished by Vincent Pohl and myself. Jean Christophe Tremblay and I wrote the manuscript

with input from Vincent Pohl.
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Toolkit for Analyzing and Imaging Charge Migration

Paper TK3

Dipole-Induced Transition Orbitals - A Novel Tool for Investigating Optical Transitions

in Extended Systems and its Application to Dye-Sensitized MoS2

G. Hermann, L. E. Marsoner Steinkasserer, B. Paulus, and J. C. Tremblay

Manuscript in preparation

Figure 4.3: Graphical abstract, particularly created for this thesis on the basis of the figures from Paper TK3.

Author contributions

The initial proposal for the Dipole-Induced Transition Orbitals (DITO) was conceived by Lukas Eugen

Marsoner Steinkasserer and myself. Together with Jean Christophe Tremblay, we developed the un-

derlying theoretical framework. The implementation of the methodology in the open-source framework

detCI@ORBKIT[TK1] was conducted by myself. The suitability of the DITOs for the characterization

of electronic excitations was verified by myself by comparing them to natural transition orbitals for a

molecular metal complex. I likewise performed the necessary electronic structure calculation. For the

application of the DITOs to semi-infinite systems, Lukas Eugen Marsoner Steinkasserer and myself

characterized the electronic structure for different dye-sensitized MoS2 systems. The DITOs for differ-

ent optical transitions were calculated by myself. All coauthors discussed and interpreted the results.

The first draft of the manuscript was prepared by Lukas Eugen Marsoner Steinkasserer and myself.

The final version was revised by Jean Christophe Tremblay with contributions from all coauthors.
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Dipole-Induced Transition Orbitals — A Novel Tool for

Investigating Optical Transitions in Extended Systems and its

Application to Dye-Sensitized MoS2

Gunter Hermann,∗ Lukas Eugen Marsoner Steinkasserer,

Beate Paulus, and Jean Christophe Tremblay

Institut für Chemie und Biochemie, Freie Universität Berlin,

Takustraße 3, D-14195 Berlin, Germany

(Dated: July 19, 2018)

Abstract

Linear response time-dependent density functional theory within the random-phase approxima-

tion (LR-TDDFT-RPA) provides a quick and easy way to compute the optical spectra of extended

and finite-sized systems from first principles. While the method is nowadays routinely applied,

many important properties, such as the charge transfer character associated with a particular

transition, cannot be obtained from it. Inspired by the concept of natural transition orbitals [J.

Chem. Phys. 118, 4775 (2003)], we formulate a perturbative orbital transformation theory based

on the dipole induced transitions appearing in the LR-TDDFT-RPA kernel. This theory yields

correlated pairs of particle and hole functions retaining the character of the natural transition or-

bitals. In order to demonstrate the potency of this new transformation formalism, we investigate

the nature of excitations in dye-sensitized MoS2 for potential solar cell applications. By apply-

ing our method, it is possible to extract mechanistic insights from the transitions observed in the

optical spectrum, which are unattainable by conventional RPA calculations.

∗ gunter.hermann@zedat.fu-berlin.de
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I. INTRODUCTION

First principle calculations of optical properties have become an invaluable tool for ex-

perimental physicists and chemists to corroborate as well as to interpret their results. On

the other hand, the corresponding theoretical stream of research has seen a strong move

towards the usage of high-throughput calculations to systematically screen for new materi-

als with properties tailored towards specific applications[1–3]. Hence, both disciplines need

tools capable to capture all important features associated with specific optical excitations

in finite and periodic systems. While experimental spectra can often be reproduced with

good accuracy by the linear response time-dependent density functional theory within the

random-phase approximation (LR-TDDFT-RPA)[4–6], the excitonic nature of a particu-

lar transition and the spatial distribution of the corresponding particles and holes are not

retrievable.

To address this issue, Richard L. Martin introduced the concept of natural transition

orbitals (NTOs) as singular value vectors of the one-particle transition density matrix[7].

This formalism allows to characterize the nature of many-body electronic wave functions

in terms of correlated particle-hole pairs. The NTOs provide a direct, graphical way of

interpreting electronic excitations associated with specific spectral features and yield impor-

tant parameters for the quantitative characterization of charge transfer states. Given the

simplicity and the success of the method, an extension to semi-infinite periodic systems ap-

pears highly desirable. Unfortunately, the LR-TDDFT-RPA ansatz often used to study such

systems precludes a direct application of the NTO theory. To fill this void, we define here

a novel orbital transformation matrix motivated by the LR-TDDFT-RPA kernel and the

time-dependent perturbation theory. We propose the usage of the transition dipole matrix

as a measure to obtain what we term dipole-induced transition orbitals (DITOs). Although

approximate, this new set of correlated particle-hole orbitals is shown to capture the same

physics as the NTOs for optical excitations in isolated molecules. The underlying concept

of the DITOs is general and not limited to the case of LR-TDDFT-RPA, as presented here.

Generally, it can be further applied to any method, which allows for the calculation of the

transition dipole matrix.
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II. DIPOLE-INDUCED TRANSITION ORBITALS

Our derivation starts with the Bethe-Salpeter equation (BSE) for the electron-hole corre-

lation function L(12; 12′), in the form given by Strinati[8–10] and by Rohlfing and Louie[11],

L(12; 1′2′) = L0(12; 1′2′) +

∫
d(3456)L0(14; 1′3)K(35; 46)L0(62; 52′). (1)

Here, K(35; 46) corresponds to the electron-hole interaction kernel, and L0(12; 1′2′) denotes

the free electron-hole pairs. Each set of variables (1) contains a spatial, a spin, and a time

coordinate, (1) = {x1, t1}, with x1 = {r1, s1}. Although the electron-hole correlation func-

tion depends on four time variables, Eq. (1) can be simplified for optical transitions, which

are characterized by simultaneous creations/annihilations of holes and particles. Taking the

Fourier transform of the difference between the remaining two time variables finally yields

the particle-hole response function, L(x1,x2; x
′
1,x

′
2;ω). In the quasi-particle approximation,

the long-lived transitions describe electron-hole excitations, and the correlation function

takes the following form

L(x1,x
′
1; x2,x

′
2;ω) = i~

∑

λ

[
χ(λ)(x1,x

′
1)
(
χ(λ)(x′2,x2)

)∗

(E(λ) − E(0))− ~ω
− χ(λ)(x2,x

′
2)
(
χ(λ)(x′1,x1)

)∗

(E(λ) − E(0)) + ~ω

]
.

(2)

The poles of the correlation function are associated with excitation energies (E(λ) − E(0))

from a reference state λ = 0. The residuals of these poles define the particle-hole amplitudes

χ(λ)(x,x′) =
〈

Ψ(0)
∣∣∣ψ̂†(x)ψ̂(x′)

∣∣∣Ψ(λ)
〉
, (3)

which determine the character of these resonances. The general field operators ψ̂(x) and

ψ̂†(x) can be expanded in terms of single-particle and single-hole creation operators

ψ̂(x) =
∑

p,s

φp(r)âp,s ; ψ̂†(x) =
∑

p,s

φ∗p(r)â†p,s. (4)

Substituting in Eq. (3) reveals the connection between the particle and hole functions

χ(λ)(rH , rP ) =
∑

pq,ss′

φ∗p(rH)
〈
Ψ(0)

∣∣â†p,sâq,s′
∣∣Ψ(λ)

〉
φq(rP ) =

∑

pq

φ∗p(rH)T(λ)
pq φq(rP ) (5)

as well as with the transition density matrix T
(λ)
pq .

The original formulation of NTOs uses the transition density matrix in order to determine

unitary transformations linking the set of ground-state molecular orbitals (MOs) to the
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NTOs. In the case of a single determinantal reference state, we can restrict the set of hole

and particle creation operators to those defining the orbitals of the reference |Ψ0〉. The

many-body excited state wave function
∣∣Ψ(λ)

〉
is then expressed as a linear combination of

single-particle/single-hole excitations as

∣∣Ψ(λ)
〉

=
∑

pq

T(λ)
pq â

†
qâp
∣∣Ψ(0)

〉
, (6)

where p/q now runs only over occupied/unoccupied orbitals. To construct the NTOs, we

first take the singular value decomposition of the transition density matrix

T(λ) = U(λ)Σ(λ)
(
V(λ)

)∗
, (7)

where Σ(λ) = diag(σ
(λ)
1 , σ

(λ)
2 , . . . ) is the diagonal matrix of the singular values of the transi-

tion density matrix. Substituting in Eq. (5) and simplifying yields

χ(λ)(rH , rP ) =
∑

a

φ̃∗a(rH)σ(λ)
a φ̄a(rP ). (8)

The transformation matrices in Eq. (7) are used to uniquely define the two sets of particle

and hole orbitals as

φ̃a(rH) =
∑

p

U(λ)
pa φp(rH) ; φ̄a(rP ) =

∑

q

V(λ)
aq φq(rP ). (9)

The singular values σ
(λ)
a serve as weights for the correlated particle-hole orbitals, which can

be combined to yield an intuitive excitonic representation of the many-body excited state

wave function.

Our method follows a similar rational but aims to circumvent the usage of a transition

density matrix at the LR-TDDFT-RPA level of theory. To this end, we advocate using

the transition dipole matrix to define transformation matrices from the basis of Kohn-Sham

orbitals to the basis of correlated particle-hole orbitals. From the velocity gauge, the dipole

matrix along a specific orientation α, Dpq,α, is given by

Dpq,α =
∑

ss′

êα 〈ψp,s |∇α|ψq,s′〉
εp,s − εq,s′

, (10)

where ψp,s/ψq,s′ are single-particle wave functions, and êα is the unit-vector along the three

spatial direction, α ∈ {x, y, z}. The reason for choosing the transition dipole moment

matrices to construct the transition orbitals lies in its close connection to the imaginary part
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of the frequency-dependent dielectric function in the LR-TDDFT-RPA ansatz, (Iα [ε(ω)]).

In the optical limit and neglecting local field effects, the imaginary part of the frequency-

dependent dielectric function is given for a chosen direction (α) by

Iα [ε(ω)] =
4πη

Ω

∑

pq

∑

ss′

fq,s′ − fp,s
(ω − εp,s + εq,s′)

2 + η2

∣∣∣∣
êα 〈ψp,s |∇α|ψq,s′〉

εp,s − εq,s′

∣∣∣∣
2

. (11)

Here, η is a positive infinitesimal constant, and Ω is the volume of the unit cell. The transi-

tion dipole moment matrices contain the information about frequency-dependent intensity of

the imaginary part of the LR-TDDFT-RPA, frequency-dependent dielectric function, which

in turn is directly related to the optical absorption spectrum. The physics for the creation

of a particle-hole pair via an external field is thus fully included in the Dα matrices.

To analyze the character of the transitions using the new dipole-induced transition orbitals

(DITOs), the various contributions to the LR-TDDFT-RPA spectrum in Eq. (11) must first

be assigned to different bands. The subset of orbital transitions belonging to a specific band

are subsequently used to define rectangular dipole matrices for each band. For a given band

S in the spectrum with frequency ω(S), the density matrix associated with the dipole-induced

transition can then be approximated by first-order time-dependent perturbation theory as

T(S)
pq,α = Nα |Dpq,α|2 δ

(
εp − εq − ~ω(S)

)
(12)

with Nα as a normalization constant that ensures the particle/hole conservation. For practi-

cal applications, the delta distribution is replaced by a broadened Gaussian function obtained

by fitting the spectrum for the subset of orbitals within a band. By computing the singular

value decomposition of the resulting perturbative transition density matrix, we define two

sets of transformation matrices

T(S)
α = K(S)

α Σ(S)
α

(
L(S)
α

)∗
(13)

γ̃a,α(rH) =
∑

p

K(S)
pa,αφp(rH) (14)

γ̄a,α(rP ) =
∑

q

(
L(S)
aq,α

)∗
φq(rP ), (15)

where Σ
(S)
α = diag(σ

(S)
1,α , σ

(S)
2,α , . . . ). The transformed sets of particle and hole orbitals can be

used to approximate the transition density matrix as a weighed combination of DITOs, i.e.

χ(S)
α (rH , rP ) '

∑

a

γ̃∗a,α(rH)σ(S)
a,αγ̄a,α(rP ) (16)
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For extended systems, independent sets of DITOs along the three spatial directions α =

x, y, z can be distinguished experimentally. For molecular spectra in the gas phase, where

orientation plays no role, the density matrix elements in Eq. (12) are spherically averaged

by summing over all three Cartesian contributions.

III. RESULTS AND DISCUSSION

In light of the previously discussed analogy between our definition of DITOs and the

NTOs, we first compare the results obtained with both methods for a well-characterized

benchmark system. For this purpose, we choose the [Re(bpy)(CO)3(4-Etpy)]+ complex and

analyze the particle and hole densities for the lowest-lying metal-to-ligand charge transfer

(MLCT) absorption band as in Ref. 7. The electronic ground state structure for this metal

complex is calculated at the density functional theory level (DFT) using a Def2-SVP basis

set[12, 13] and the PBE0[14] functional. The corresponding orbitals serve as the computa-

tional basis for the DITOs and NTOs. In addition, the first low-lying excited eigenstates are

required for the determination of the NTOs and specified by means of a time-dependent DFT

(TDDFT) calculation in the linear response regime. As described above, the NTOs are cal-

culated on the basis of the one-electron transition density matrices between the ground state

and the excited states belonging to the MLCT absorption band. The DITOs are obtained

from the molecular orbital transition dipole moments averaged over the given peak. All quan-

tum chemistry calculations are performed using the Turbomole program package[15], and

both the NTOs and the DITOs are evaluated using the open source post-processing toolbox

ORBKIT[16].

The comparison of the MLCT character obtained from the NTOs and the DITOs is shown

in Fig. 1 for two orientations of the molecular complex. Despite marginal differences in the

depth of the nodal structures, all qualitative features concur perfectly. The plots further

demonstrate the power of both, the DITOs and the NTOs, to provide a quick and graphical

tool for interpreting optical transitions and analyzing the spatial distribution of particles

and holes. In sum, solely a small number of natural transition orbital pairs are usually

required to determine the excitonic nature of a specific transition. This is in stark contrast

to the respective characterization by means of many-body wave functions or fully-fledged

TDDFT, which can quickly become a cumbersome task. In particular for complex extended
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FIG. 1. Comparison of particle (blue) and hole (gray) densities between NTOs and (rotationally

averaged) DITOs for the lowest-lying transition in [Re(bpy)(CO)3(4-Etpy)]+. The isosurface value

of the densities is set to 0.001 a−30

.

systems, a spectral feature often corresponds to a large number of individual (state-to-state)

transitions. In order to further enhance the computational efficiency of the NTO formalism,

the DITOs are obtained solely on the basis of orbital transitions, which renders the scheme

numerically very advantageous. This comes at the expenses of accuracy losses in the optical

spectrum at the LR-TDDFT-RPA level of theory, but qualifies them for high-throughput

screening of optically active materials. In addition, its concept can be extended to semi-

infinite systems.

As an example for such a semi-infinite system and to further demonstrate the capabilities

of the DITOs, we investigate the excitonic properties of phenol-sensitized MoS2 to elucidate

the nature of specific electronic excitations in the optical spectrum. Over the past few years,

MoS2 has attracted much attention as an environmentally stable material possessing an

attractive optical gap.[17–28] Its advantageous properties qualifies it for many applications

including the construction of light-weight, ultra-thin solar-cells.

In light of the success of dye-sensitized solar cells (DSSC) employing TiO2 substrates[29–

35], it is reasonable to assume that the optical properties of MoS2 might be further enhanced
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by targeted functionalization.[36–40] In order to ascertain the performance of different po-

tential functionalizing groups, a detailed mechanistic understanding of the optical excitations

within such structures, i.e., the excitonic character and the degree of charge separation for

certain features in the optical spectrum, is indispensable. To obtain these information,

DITOs are ideally suited allowing a clear and physically meaningful visualization and eval-

uation of the optical excitations.

In the present study, the phenol molecules are chosen as sensitizers for the MoS2 sur-

face. These can be seen as analogues to the catechol dye, which is a typical chromophore

used in dye-sensitized solar cells.[41–44] Different degrees of phenol coverage are modeled

on a 6 × 6 MoS2 supercell. The respective structure relaxations are performed using the

GPAW program[45–50] and employing a LCAO representation for the pseudo wave func-

tions. All calculations are carried out with a double-ζ polarized basis set and a Γ-centered

2 × 2 Monkhorst-Pack grid to sample the primitive Brillouin zone. The libvdwxc[51] im-

plementation of the vdW-DF-CX functional[52–55] is employed throughout. The optimized

structures of the prototypical dye-sensitized MoS2 model systems are depicted in Fig. 2(a).

The associated optical absorption spectra are determined at the LR-TDDFT-RPA level of

theory, as implemented in ORBKIT[16]. The required orbitals are extracted from the re-

sults of periodic DFT calculations. These are performed with Turbomole[15] using the

LDA functional and a k-point sampling, which is limited to the Γ-point[56]. The results

for the optical absorption spectra of the MoS2 systems with a varying density of phenol-

functionalization are shown in Fig 2(b). To verify the validity of our implementation of

the LR-TDDFT-RPA formalism, we performed a comparative LR-TDDFT-RPA calculation

using GPAW[57, 58] with a 9× 9 Monkhorst-Pack grid and a numerical double-ζ polarized

basis set. The resulting spectrum is illustrated in Fig. 2(b) (dashed lines). The energetic

position of the bands satisfactorily coincides with the spectrum obtained on the basis of

the Turbomole calculation. The differences in the intensities of the optical features par-

tially result from the incomplete k-point sampling in our implementation. Nonetheless, the

spectrum is of sufficient quality for semi-quantitative analyses.

The examination of the excitonic nature of the phenol-sensitized MoS2-surface, is solely

focused on excitations caused by P-polarized light, since these proved to be most sensitive

towards functionalizations. In contrast, excitations due to S-polarized light are largely dom-

inated by MoS2-localized transitions and are only weakly affected by the sensitization with
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(a) (b)

FIG. 2. (a) Structures of phenol-sensitized MoS2-surface and (b) the associated optical RPA spectra

in comparison to the clean MoS2-surface.

the phenol molecules. From the optical spectra in Fig. 2(b), a very interesting trend can

be immediately identified stemming from the functionalization of the MoS2-surface. While

pristine MoS2 shows the onset of a large optical band at ≈ 2.5 eV with no discernible fea-

tures below that threshold, a second peak appears in the low-energy part of the spectrum

due to the sensitization with the phenol molecules. The peak becomes more prominent, as

the density of phenol groups is increased. Furthermore, a shoulder below the high-intensity

band and a few weaker peaks covering the 1.5 − 2.5 eV energy region also exhibit an im-

portant coverage dependency. This in itself represents a highly desirable feature, if the aim

is to increase the photovoltaic efficiency of a MoS2-based solar cell by extending the photo-

voltaic response range. This information is also crucial for optimizing the performance of

such a system by, e.g., chemically altering the phenol group. However, the spectrum itself

provides no information about the spatial distribution of the electronic excitations in the

low-energy/high-energy regions.

In order to gain more insights into the excitonic nature of the optical bands, we now

take advantage of the capabilities of the DITOs for the analysis of the LR-TDDFT-RPA

spectrum. As stated above, solely the molecular orbitals obtained at the DFT/LDA level

of theory using atom-centered Gaussian basis functions are required for the computation of

the DITOs. Their abilities to provide important visual and numerical data regarding optical

excitations are demonstrated for the phenol-sensitized MoS2 system at the highest coverage

(cf. Fig. 2). The associated particle and hole densities are computed and depicted in Fig. 3
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as blue and gray isosurfaces. Two bands are chosen to illustrate the marked change on

the character in the spectrum from the infrared (band labeled “A” at circa 1.2 eV) to the

visible regime (shoulder labeled “B” at circa 2.8 eV). By examining the particle (blue) and

hole (gray) densities shown in Fig. 3, it can be observed that there is indeed a pronounced

difference between low- and high-energy excitations. While the particle density lying within

the MoS2 surface is localized close to the phenol groups in the low-energy region A, it

becomes almost evenly distributed over the MoS2 layer in the high-energy region B. At the

same time, the hole density remains highly localized on the phenol groups in both cases.

From the visual inspection, the band A can be assigned to a charge transfer state, while the

band B has a stronger charge separated character. The latter is thus expected to be more

efficient for producing free charge carriers in the MoS2 substrate and, therefore, be more

useful for dye-sensitized solar cell applications.

FIG. 3. Particle (blue) and hole (red) densities calculated from DITOs for sensitized MoS2-surface

with four phenol molecules.

IV. CONCLUSIONS

In this work, we extend the concept of natural transition orbitals to provide a novel,

low-cost approach for analyzing spectra obtained from LR-TDDFT-RPA calculations. We
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demonstrate how the resulting data can be used to complement the spectral data by pro-

viding a better physical and visual understanding of optical transitions. This should be

particularly valuable as an analytical tool for complex, charge transfer transitions.

Our approach is in no way specific to LR-TDDFT-RPA and can easily be applied to

every method, which allows the computation of transition dipole moments. In addition,

these excitons could be used in subsequent BSE calculations to improve the quality of the

optical spectrum in extended systems.
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type ECP [61], while a POB double-ζ polarized basis set [62] was used for all other elements.

[57] L. N. Glanzmann, D. J. Mowbray, D. G. F. del Valle, F. Scotognella, G. Lanzani, and

A. Rubio, J. Phys. Chem. C 120, 1926 (2016).

[58] L. N. Glanzmann and D. J. Mowbray, J. Phys. Chem. C 120, 6336 (2016).

[59] D. Stalling, M. Westerhoff, and H.-C. Hege, in The Visualization Handbook (Elsevier, 2005)

pp. 749–767.
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Figure 4.4: Graphical Abstract. Reprint with permission from Diestler et al.[SM1] ( c©2016 American Chemical
Society)

Author contributions

Dennis J. Diestler first recognized that Eyring, Walter, and Kimball’s model of the electronically ex-

cited hydrogen-molecule ion H+
2 describes a charge migration process. He likewise derived analytical

expressions for key dynamical quantities, i.e., the electronic probability density, the electronic flux den-

sity, the electronic flux, and the electronic yield, to characterize the charge migration in H+
2 . Jörn Manz

discovered the related spatio-temporal symmetries. All static calculations, the dynamical simulation

of the charge migration, and their visualization were carried out by myself. All authors contributed to

the analysis of the charge migration process. The manuscript was prepared by Dennis J. Diestler with

essential input from Jörn Manz and myself.
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Figure 4.5: Graphical Abstract. Reprint with permission from Hermann et al.[SM2] ( c©2016 American Chem-
ical Society)

Author contributions

The research question and the methodological framework of this work were outlined by Jörn Manz

and Jhon Fredy Pérez-Torres. An initial characterization of the electronic structure of benzene and

a preliminary simulation of the charge migration were carried out by Jhon Fredy Pérez-Torres with

assistance of ChunMei Liu. For the final manuscript, Vincent Pohl determined the electronic structure

of benzene with a CASSCF calculation after consultation with Beate Paulus and Jean Christophe

Tremblay. The suggested methodology for the charge migration and its analysis tools were finally

implemented by Vincent Pohl and myself in equal parts. In addition, Vincent Pohl and I prepared

the figures for the publication with input from all other coauthors. All authors were involved in the

concluding discussion of the results and contributed to the final version of the manuscript, which was

mainly written by Jörn Manz.
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Figure 4.6: Graphical Abstract. Reprint with permission from Hermann et al.[SM3] ( c©2017 Elsevier B.V. All
rights reserved.)

Author contributions

This work is a follow-up study of Paper SM2 and was initially conceived by Jörn Manz. The CASSCF

calculations for the electronic structure characterization were conducted by Vincent Pohl with advices

from Beate Paulus and Jean Christophe Tremblay. The methodology of Paper SM2 was further

developed by Vincent Pohl and myself with considerable input from Jean Christophe Tremblay. This

more sophisticated methodology was implemented by Vincent Pohl and myself, in equal parts, into the

toolkit detCI@ORBKIT.[TK1] Vincent Pohl and I applied the new methodology for the charge migration

in a selected superposition state of benzene. The respective results based on the methodology from

Paper SM2 were generated by ChunMei Liu. The imaging of the collected data and the comparison

between both methodologies were prepared by Vincent Pohl and myself. Jörn Manz predominantly

wrote the first version of the manuscript and finalized it with contributions from all coauthors.
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Figure 4.7: Graphical abstract, particularly created for this thesis on the basis of the figures from Paper SC1.
( c©2015 by the authors; licensee MDPI, Basel, Switzerland.)

Author contributions

Tatiana Gomez and Ximena Zarate initialized the project and carried out the structure optimizations

and the optical spectra calculations for the dye-sensitized solar cell model. The single active electron

model for the electron dynamics and the electronic flux equations for its analysis and visualization

were derived by Jean Christophe Tremblay and Jhon Fredy Pérez-Torres. I implemented the model,

carried out the dynamical simulations, and created all figures. All authors contributed to the analysis

of the time-independent and time-dependent data. The manuscript was written by Jean Christophe

Tremblay with considerable input from all authors.
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Figure 4.8: Graphical abstract, particularly created for this thesis on the basis of the figures from Paper SC2.
( c©2016 AIP Publishing LLC.)

Author contributions

The initial idea of comparing the single active electron approach from Paper SC1 with a time-

dependent many-electron configuration interaction ansatz was proposed by Jean Christophe Tremblay

and myself. For this purpose, Jean Christophe Tremblay developed a hybrid DFT/CI approach with

assistance of myself. Johannes Dietschreit performed a preliminary characterization of the electronic

structure of the dye-sensitized solar cells. I carried out all final quantum chemical calculations, the

electron dynamics and prepared all figures to illustrate the data. The analysis of the findings and the

writing of the manuscript were carried out by myself in collaboration with Jean Christophe Tremblay.
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Figure 4.9: Graphical abstract, particularly created for this thesis on the basis of the figures from Paper SC3.

Author contributions

The conception for the project was formulated by myself. Felix Witte performed initial test calculations

to characterize the electronic structure of the solar cell model systems. Jean Christophe Tremblay and

myself extended the single active electron model from Paper SC1 and Paper SC2 for simulating the

electron migration by parameter-free expressions for the injection time and current. In the final version

of the paper, all electronic structure calculations, the dynamical simulations, and the visualization of

the results were performed by myself. Jean Christophe and I summarized the final results. The

manuscript was written by myself in collaboration with Jean Christophe Tremblay. Felix Witte helped

in proofreading the paper.
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Figure 4.10: Graphical Abstract. Reprint with permission from Hermann et al.[QD1] ( c©2016 American
Chemical Society)

Author contributions

The initial research question was proposed by Jean Christophe Tremblay, who also derived the ex-

pressions for the energy relaxation and dephasing rates with considerable input from myself. For the

static analysis, I extended the program detCI@ORBKIT by enabling the post-processing of CIS wave

functions and the extraction of the necessary data from the respective quantum chemical program,

GAMESS (US)[262]. The laser-driven many-electron dynamics as well as the visualization of the final

results were performed by myself. In collaboration with Jean Christophe Tremblay, I prepared the

manuscript.
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Chapter 5

Conclusions

The main contributions of the present thesis are threefold: First, a computational framework for

the post-processing of correlated many-electron wave functions was developed. Second, appropriate

quantities and tools for the analysis and visualization of ultrafast electron dynamics were introduced

and validated. Third, these analysis tools were applied to realistic charge migration processes in various

molecular systems. Thus, the thesis provides both methodological and theoretical contributions to

existing scholarly work on charge migration processes.

In modern quantum chemistry, several tools for post-processing many-electron wave function data

are available. They range from stand-alone programs to add-on tools implemented in standard quan-

tum chemistry software. As these tools often lack general applicability and ease of extensibility, the

open-source framework detCI@ORBKIT addresses these shortcomings and fulfills these requirements

(cf. Paper TK1 and Paper TK2). This toolbox is capable of reconstructing multi-determinantal

Configuration Interaction (CI) wave functions obtained at various levels of theory. The required data

are extracted from the output of various standard quantum chemical programs. Its extensibility is

facilitated by its highly modular and easily comprehensible Python architecture (cf. Paper AP2).

By exploiting the functionalities of detCI@ORBKIT, a set of quantum mechanical quantities is

gathered allowing the time- and space-resolved analysis and visualization of many-electron dynamics.

This set extends the standard investigation tools, i.e., the electron density, by the electronic flux and

electronic flux density (cf. Paper TK1 and Paper TK2). The validation of these tools by the ex-

ample of various charge migration processes in small molecules disclose that a complete mechanistic

enlightenment of the electron dynamics is only feasible by a combined examination of the electron den-

sity and electronic flux density. While the former reveals the probability distribution of the electrons,

the latter unveils the spatially-resolved instantaneous flow of electrons.
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In addition, the newly developed hybrid Time-Dependent Density Functional Theory (TDDFT)/CI

singles (CIS) procedure enables the application of these analysis tools to more extended systems (cf.

Paper TK2 and Paper SC2). Within this scheme, the multi-determinantal wave functions are

obtained from linear-response TDDFT calculations constructed as pseudo CI singles basis functions.

This combination of electronic structure methods results in a favorable scaling with respect to the

system size. In addition, this hybrid approach can be used for many-electron dynamics subject to

strong laser fields and ensures the Nel-representability of the one-electron density and electronic flux

density, contrary to real-time TDDFT and current DFT.

Furthermore, a universal and low-cost analysis strategy is devised to study the charge transfer

character of a quantum system associated with a certain feature in its optical spectra. It approximates

the concept of Natural Transition Orbitals (NTO)[69] by using the one-electron transition dipole matrix

instead of the one-electron transition density matrix in the underlying unitary orbital transformation.

By this means, pairs of particle and hole functions, i.e., the so-called Dipole-Induced Transition Orbitals

(DITO), can be obtained for a particular optical transition (cf. Paper TK3). This allows to apply

this novel approach also to 1D, 2D, and 3D periodic systems. While DITOs offer a straightforward,

graphical way for interpreting electronic excitations, the underlying methodology can be applied to

determine the expectation value of any one-electron operator.

The second part of this thesis focuses on the application of the introduced analysis tools to various

charge migration processes and on their simulation. While the first system of interest, i.e., the hydrogen

molecular ion (H+
2 ), represents a well-studied system, the scientific originality behind its investigation

(cf. Paper SM1) relies on the recognition that Eyring, Walter, and Kimball already predicted a

possible charge migration process for H+
2 in their theoretical textbook from 1944.[79] This was long

before the experimental observation of charge migration phenomena.[26–28,263] Based on their model,

analytical expressions and some fundamental symmetry relations are derived for the electron density,

the axial electronic flux, and the electronic flux density. Both the axial electronic flux and the electronic

flux density reveal an identical picture concerning the mechanistic details of the charge migration in

H+
2 . A remarkable outcome of this examination is that electron migration can appear without the

agency of electron coherences.

Moreover, the thesis’ findings add knowledge to the mechanistic understanding of various charge

migration processes in the benzene molecule. The related studies corroborate and extend the previous

work of Ulusoy and Nest.[83] Specifically, their working hypothesis of a pincer-type electronic motion

occurring for the two examined superposition states is confirmed (cf. Paper SM2 and Paper SM3).

In addition, the quantitative analysis of the angular electronic yields reveals the maximum number of
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electrons flowing during the investigated charge migration processes for the first time. The findings

are in stark contrast with the simple model, which describes the charge migration as the oscillation

between two Lewis-type structures.[264] While this model suggests a number of six migrating electrons

for the two monitored scenarios, the quantitative evaluation of the electronic yields give significantly

smaller numbers. This discrepancy is assigned to the delocalization of the electrons, i.e., the transition

between the two Lewis structures requires the reorganization of only a small fraction of the six electrons.

In conclusion, the present methodology, i.e., the time- and space-resolved analysis of the electronic

yields and electronic fluxes, facilitates the quantitative and qualitative description of charge migration

processes and can be applied to refine the associated Lewis structure-based model. However, convenient

boundary conditions have to be invoked for their determination.

Concerning the application of the introduced analysis tools to the charge migration in small molecules,

its suitability for more extended systems is firstly verified for finite nanostructured models of Dye-

Sensitized Solar Cells (DSSC). Generally, the findings add mechanistic insights to various charge

migration scenarios in these systems (cf. Papers SC1–SC3). In addition to the analysis of the

time-dependent electronic density and electronic flux density, a projector formalism using a Voronoi

partitioning is introduced to study the electron dynamics. This scheme enables the time- and space-

resolved evaluation of the electronic yield and electronic flux and thus the examination of the contribu-

tion of a certain molecular fragment during the charge migration. While the definition of the projectors

is arbitrary to some extent, no boundary conditions for the electronic yields and fluxes are required. In

addition to the mechanistic analysis, the thesis contributes to the modeling of different charge migration

scenarios in various DSSC models. As these models are finite-sized, the electron dynamics is subject to

a complex absorption potential to circumvent artificial reflection of the migrating electrons at the edges

of the semiconductor substrate. For this reason, a parameter-free expression is derived yielding the

same time scale as the experimental electron injection time (cf. Paper SC3). Furthermore, the thesis’

findings contribute to the understanding of electron correlation effects during the charge migration

in DSSCs. A comparison between a time-dependent many-electron configuration interaction ansatz

and a single active electron approach reveals the suitability of both approaches for the description

of electron migration processes in DSSCs (cf. Paper SC2). While the latter represents a low-cost

approach allowing the investigation of more extended systems, the many-body approach sheds light

on the electron-electron and hole-hole interactions during the charge migration. In sum, the studies

on the DSSC models provide a computationally inexpensive one-electron approach for the real time

simulation of charge migration processes and an appropriate set of tools for their analysis.

Finally, the investigation of the charge carrier confinement in a semiconductor quantum dot adds an
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additional application for the density-based analysis tools (cf. Paper QD1). By their usage, a state-

selective transition path for the laser-driven many-electron dynamics is defined for a Ge/Si core-shell

model quantum dot. It enables a robust and effective hole confinement and the creation of a long-

lived permanent dipole in the system. Furthermore, this work provides new microscopic perturbative

expressions for energy relaxation and pure dephasing rates. This enables to simulate the dynamical

coupling of the Ge/Si quantum dot with the vibrations of a surrounding Si environment. In sum, the

study simultaneously introduces novel computational methodologies for dissipative electron dynamics

and adds new insights to the nature of light-induced hole confinement in nanostructured solid state

systems.

To conclude, this dissertation significantly contributes to the development of a robust and versatile

set of tools to analyze and visualize many-electron dynamics, which are applied to a variety of charge

migration processes. The corresponding findings do not only provide a deep mechanistic understand-

ing of charge migration, but also highlight the relevance of ultrafast electron dynamics in molecular

electronics.
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