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Overview

This thesis consists of three chapters/papers. The �rst two are related to the

literature on herd behavior in �nancial markets. The third chapter is on trade

classi�cation, a method to classify trades into the orders of liquidity demanders

and providers, which is a necessary �rst step in many studies on �nancial and

�nancial economics topics, including studies on herd behavior.

Herd behavior by investors can be a signi�cant threat to the functioning of

�nancial markets. The distorting e�ects of herding range from informational in-

e�ciency to increased stock price volatility, or even bubbles and crashes. Con-

sequently, there exists one the one hand a large theoretical literature that shows

analytically how herding arises even in rational markets, and a large empirical

literature on the other that tests for the presence of herd behavior in �nancial

markets. It has been noted, however, that these two strands of the herding lit-

erature are largely disconnected. While herd models do not provide empirical

testable hypotheses, empirical works do not rigorously tie their proposed measures

to the theoretical concept of herding. This thesis, particularly the �rst and second

chapter, contributes towards closing the gap between the theoretical and empirical

herding literature.

The third chapter, while contributing to the empirical herding literature as well,

is a more general contribution to the empirical toolkit of �nancial economists by

proposing a new algorithm to classify transaction data into the orders of liquidity

demanders and suppliers.

Knowing the trade direction of the liquidity demanding, impatient side of a

trade is key to many �nancial market research topics. Measures of informed trad-

ing, price e�ciency and market quality all depend on the trade direction of the

liquidity demander. To link this topic to the previous chapters, herding models,

for example, assume that the information about an asset's value is conveyed by

the impatient trader and that subsequent traders, therefore, try to learn from the

action of the impatient side of the transaction.
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Yet, information on the trade direction of the impatient side of a trade is

generally not available and the established methods to classify transactions into

the orders of liquidity demanders and suppliers face certain di�culties in today's

data environments due to the increased frequency of order submissions on �nancial

exchanges. Hence, I propose a new algorithm that overcomes these di�culties and

show its superiority over the established algorithms.

Chapter 1: The Impact of Information Risk and Market Stress on Herd-

ing in Financial Markets

Theoretical work on herd behavior is not only used to motivate many empirical

studies on herding, but also to inform to what extent the results obtained from

proxies of herd behavior are in fact compatible with the predictions of herding

theory. The theoretical predictions, however, are not rigorously derived from the

model, but instead loosely inferred. In fact, herding models are highly complex

and non-linear and, thus, do not allow for a straightforward derivation of the e�ect

of parameter changes on the frequency with which herding occurs, even for a single

asset, let alone for an aggregate over a heterogeneous set of assets.

The �rst chapter of the thesis derives empirically test-able predictions on the

e�ect of changes in information risk and market stress on herding intensity by

simulating the herding model of Park and Sabourian (2011). Information risk, the

probability to encounter an informed trader as the opposite party of a trade, is a

key parameter in herding models and has well-known empirical proxies. Market

stress, on the other hand, is a keyword in the empirical literature that is often

attached to herding and, at the same time, can be naturally translated into the

herding model.

To re�ect the typical empirical situation in which herding would be measured

and aggregated over a sample of heterogeneous assets, the model is simulated

for various parameter combinations. We �nd that average buy and sell herding

intensity increases with information risk. For market stress we �nd an asymmetric

e�ect on buy and sell herding: Interestingly, buy herding is more pronounced in

times of high market stress than the one of sell herding.

Chapter 2: How to Measure Herding in Financial Markets

Empirical measures of herding are usually measures of some form of correlated

trading and, thus, do not fully re�ect the theoretical notion of herding. In particu-

lar, while the theoretical literature makes a clear distinction between the deliberate

imitation of the trading decisions of others (�true� herding) and trading simply on

the same type of information (�spurious� herding), the empirical literature does
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not. Not explicitly accounting for spurious herding is a common criticism of em-

pirical herding measures.

In this project, we propose a new, theory-founded herding measure that sepa-

rates from the observed co-ordination of traders the unintended component that

is due to traders holding the same prior beliefs, i.e. spurious herding. We show

by means of simulations that the new measure accurately signals herding and con-

trarian behavior (the counter-part of herding where traders act against the crowd)

in transaction data, while the most prominent measure of investor co-ordination,

the measure proposed by Lakonishok, Shleifer, and Vishny (1992), severely fails

to do so.

Chapter 3: Inferring Trade Directions in Fast Markets

Established methods to classify transactions into the orders of liquidity demanders

and suppliers face certain di�culties in today's data environments. These method

classify trades according to the proximity of the transaction price to the best

bid and o�er that were in e�ect at the time of the trade. Due to today's high

frequency of order submissions and cancellations, however, it is not clear which

bid and o�er was indeed in e�ect at the time of the trade. The wrong choice of bid

and o�er quote reduces the accuracy of the classi�cation, which, in turn, impacts

the analysis based on the classi�cation leading to erroneous inference and wrong

conclusions.

In this paper, I propose a new algorithm that overcomes these di�culties. The

most important innovation of the proposed algorithm is the use of prices and vol-

ume changes to make an informed search for the correct correspondence between a

trade and its quotes. Using a dataset of stock market transactions that contains the

information on the liquidity demanding and supplying side, I test the ability of the

new algorithm and the alternatives commonly applied in the literature to uncover

that information. Moreover, I impose various de�ciencies on the data to simulate

the characteristic problems of usual data records. Testing the di�erent methods

in these environments I �nd that the new algorithm clearly outperforms the es-

tablished methods with misclassi�cation rates being reduced by up to half. The

increase in classi�cation accuracy also translates into considerable improvements

in the estimation of statistics of informed trading and market quality, namely the

order imbalance, price impact, the e�ective and realized spread.
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Zusammenfassung

Die vorliegende Arbeit besteht aus drei Kapiteln. Die ersten beiden Kapitel stehen

im starken Bezug zur Literatur über Herdenverhalten. Das dritte behandelt das

Thema der sogenannten �trade classi�cation�, einer Methode um Finanzmarkt-

transaktionen den jeweiligen liquiditätbereitstellenden und -nehmenden Ordern

zuzuordnen. Diese Zuordnung ist ein notwendiger erster Schritt in vielen Studien

über �nanzwissenschaftliche oder �nanz-ökonomische Themen.

Herdenverhalten von Investoren kann eine signi�kante Bedrohung für das Funk-

tionieren von Finanzmärkten darstellen. Die disruptiven E�ekte reichen von Preis-

ine�zienz, im Sinne der Funktion der Informationsaggregation durch Preise, bis

hin zu erhöhter Preisvolatilität und gar Preisblasen und -einstürze. Konsequenter-

weise existiert auf der einen Seite eine ausgiebige, theoretische Literatur, die zeigt,

dass Herdenverhalten selbst in komplett rationalen Märkten entstehen kann, und

eine empirische Literatur, auf der anderen Seite, die auf Herdenverhalten auf Fi-

nanzmärkten testet.

Diese beiden Stränge der Literatur stehen jedoch in einem entkoppelten Ver-

hältnis. Während theoretische Modelle wenige, empirisch überprüfbare Hypothe-

sen bereit hält, sind empirische Messmethoden gleichermaÿen nicht streng an das

theoretische Konzept von Herdenverhalten gebunden. Die vorliegende Arbeit, ins-

besondere die ersten beiden Kapitel, trägt zum Zusammenbringen der theoreti-

schen und empirischen Literatur über Herdenverhalten bei.

Das dritte Kapitel, wenn gleich es ebenfalls zu der empirischen Literatur über

Herdenverhalten beiträgt, ist ein mehr allgemeiner Beitrag zum empirischen Hand-

werkszeug von Ökonomen. Im dritten Kapitel schlage ich einen neuen Algorithmus

zum Klassi�zieren von Transaktionsdaten in die jeweiligen Order von Bereitstellern

und Nehmern von Liquidität vor. Der Liquiditätsbegri� bezieht sich dabei auf die

Möglichkeit beispielsweise Aktien zu groÿen Mengen kaufen oder verkaufen zu

können, ohne einen starken Ein�uss auf den Preis der Aktie auszuüben.

Die Kenntnis der Handelsrichtung, also ob Käufer oder Verkäufer, des Liqui-

ditätsnehmers ist grundlegend für viele Studien zu �nanzwissenschaftlichen und
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ökonomischen Themen, wie beispielsweise informiertes Handeln auf Finanzmärkten

hin zu �Insider-Trading�, Preise�zienz und Marktqualität. Um dieses Kapitel mit

den vorangegangenen zu verknüpfen, in Modellen zu Herdenverhalten, beispielswei-

se, wird generell angenommen, dass Informationen über den fundamentalen Wert

eines Assets durch die Handlung (Kaufen oder Verkaufen) des Liquiditätsnehmers

transportiert wird, sodass aufeinander folgende Händler versuchen, von den Hand-

lungen der vorangegangenen Liquiditätsnehmern etwas über den fundamentalen

Wert des Assets zu lernen.

Jedoch, eine Zuordnung von Transaktionen zu der Seite des Liquiditätsnehmers

und -bereitstellers sind üblicherweise nicht von vorneherein in den Daten gegeben

und etablierte Methoden, um diese Information aus den Daten zu �ltern, sind

heutzutage durch die erhöhte Aktivität an Finanzmärkten mit gewissen Schwie-

rigkeiten konfrontiert, welche deren Klassi�zierungsgüte beein�usst. Daher schlage

ich einen neuen Algorithmus vor, der diese Schwierigkeiten überwindet und zeige

seine Überlegenheit gegenüber den etablierten Methoden auf.

Kapitel 1: The Impact of Information Risk and Market Stress on Her-

ding in Financial Markets

Theoretische Arbeiten zu Herdenverhalten werden nicht nur genutzt, um empiri-

sche Arbeiten zu motivieren, sonder auch, um diese zu informieren zu welchem

Ausmaÿ die Ergebnisse von empirischen Proxies von Herdenverhalten tatsächlich

mit den Vorhersagen der theoretischen Literatur übereinstimmen. Die theoreti-

schen Vorhersagen, jedoch, sind dabei nicht strikt aus einem bestimmten Modell

hergeleitet, sonder entstammen eher groben Interpretationen. In der Tat sind Mo-

delle von Herdenverhalten in der Regel nicht linear und so komplex, dass sie keine

analytische Herleitung von bestimmten E�ekten von Parameteränderungen auf das

Herdenverhalten zulassen.

Das erste Kapitel dieser Arbeit leitet empirisch überprüfbare Hypothesen über

den E�ekt von Änderungen in �information risk� und �market stress� auf die Inten-

sität von Herdenverhalten mittels Simulationen des Modells von Park and Sabouri-

an (2011) her. Information risk bezeichnet das Risiko, eine Transaktion mit einem

besser informiertem Gegenüber durchzuführen. Es ist ein elementarer Parameter

in Modellen zu Herdenverhalten und hat wohl-bekannte empirische Proxies. Mar-

ket stress bezeichnet Phasen von negativen ökonomischen Aussichten und erhöhter

Unsicherheit. Market stress ist ein Schlüsselwort in der empirischen Literatur zu

Herdenverhalten und hat gleichzeitig eine natürliche Übersetzung in theoretische

Modelle.

Um die typische empirische Situation zu re�ektieren, bei welcher Herdenverhal-
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ten über ein heterogenes Set von Aktien oder Ähnlichem gemessen und aggregiert

werden würde, simulieren wir das Modell für eine groÿe Anzahl an Parameterkom-

binationen. Wir �nden das Herdenverhalten auf der Käufer, sowie auf der Verkäu-

ferseite mit erhöhtem information risk zu nimmt. Der E�ekt von market stress ist

asymmetrisch für das Herdenverhalten von Käufern und Verkäufern: Interessan-

terweise ist der positive E�ekt auf das Herdenverhalten von Käufern ausgeprägter

als der für Verkäufer.

Kapitel 2: How to Measure Herding in Financial Markets

Empirische Maÿe von Herdenverhalten sind typischer Weise ein Form von Mes-

sung korrelierten Verhaltens der Marktteilnehmer. Als solche re�ektieren sie nicht

in Gänze das theoretische Konzept von Herdenverhalten. Insbesondere, während

die theoretische Literatur eine Unterscheidung tri�t zwischen der absichtlichen Imi-

tation des Entscheidungen anderer (�wahres� Herdenverhalten) und dem gleichge-

richteten Verhalten welches lediglich aus, beispielsweise, korrelierten Informationen

zwischen Markteilnehmern herrührt (sogenanntes �suprious� Herdenverhalten), tut

dies die empirische Literatur nicht. Dies ist eine häu�ge Kritik an der empirischen

Literatur.

In diesem Kaptiel schlagen wir ein neues, Theorie-fundiertes Maÿ für Her-

denverhalten vor, welches für die Koordinierung von Investoren aufgrund dessen

gleichgerichteter Informationen kontrolliert. Wir zeigen mittels Simulationen, dass

unser neues Maÿ präzise Herdenverhalten und sogenanntes �contrarian� Verhalten,

welches den Gegensatz zu Herdenverhalten darstellt, also das Handeln entgegen

der Herde, anzeigt. Das prominenteste Maÿ für Herdenverhalten von Lakonishok,

Shleifer, and Vishny (1992) hingegen verfehlt diese Aufgabe.

Kapitel 3: Inferring Trade Directions in Fast Markets

Etablierte Methoden zum Zuordnen von Transaktionen in die Order der Liquidi-

tätsnehmer und -bereitsteller sind heutzutage mit gewissen Schwierigkeiten kon-

frontiert. Diese Methoden klassi�zieren Transaktionen auf Basis der Nähe des

Transaktionspreises zu den gegebenen Kauf- und Verkaufkursen zur Zeit der Trans-

aktion. Aufgrund der hohen Frequenz mit der Kauf- und Verkauforder heute in den

Markt gestellt werden, ist es jedoch schwer zu bestimmen welcher Verkauf- und

Kaufkurs tatsächlich zur Zeit der Transaktion bestand hatte. Eine falsche Zuord-

nung der Transaktion zu den Kursen reduziert die Güte der Klassi�zierungsmetho-

den und, in der Konsequenz, beein�usst die auf ihnen basierte Analyse mit dem

Risiko von fehlerhaften Schlussfolgerungen.

In diesem schlage ich eine neue Methode vor, die diese Schwierigkeiten über-
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windet. Dabei ist die entscheidende Innovation das hinzuziehen von Preis- und

Volumen-Informationen, um eine informierte Zuordnung der Transaktionen zu

den jeweiligen Kursen tre�en zu können. Ich nutze einen Datensatz von Akti-

enmarkttransaktionen, welcher die Informationen über die Liquiditätsnehmer und

-bereitsteller bereits enthält, um die Güte des neuen Algorithmus sowie der eta-

blierten Methoden zu bestimmen. Ich �nde, dass der neue Algorithmus die eta-

blierten Methoden deutlich übertri�t: Die Fehlklassi�zierungsrate wird mit un-

ter halbiert. Dieser Vorsprung in der Güte der Klassi�zierung von Transaktionen

übersetzt sich auÿerdem in verbesserte Messungen von informiertem Handeln und

Marktqualität.
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Paper 1

The Impact of Information Risk and Market

Stress on Herding in Financial Markets*

1.1 Introduction

Herd behavior by investors can be a signi�cant threat to the functioning of �nancial

markets. The distorting e�ects of herding range from informational ine�ciency to

increased stock price volatility, or even bubbles and crashes as demonstrated in

many theoretical works (see, e.g., Lux, 1995; Avery and Zemsky, 1998; Lee, 1998;

Park and Sabourian, 2011).

Theoretical work on herd behavior, however, is not only used to motivate em-

pirical studies on herding, but also to inform to what extent the results obtained

from empirical measures are in fact compatible with the predictions of herding the-

ory. This is done because empirical measures of herding are typically only proxies

of the type of herding that is discussed in the theoretical literature (see Chapter 2

of this thesis). Hence, theoretical predictions are used to inform empirical results

on which type of herding is detected (Wermers, 1999; Sias, 2004; Patterson and

Sharma, 2010).1 Yet, theoretical predictions are not rigorously derived from a

particular model, but instead loosely inferred. In fact, herding models are highly

complex and non-linear and, thus, do not allow for a straightforward derivation of

the e�ect of parameter changes on the frequency with which herding occurs, even

for a single asset, let alone for an aggregate over a heterogeneous set of assets as

it is usually the objective in empirical applications.

Therefore, in this paper we show how theory-based predictions can be derived

from a particular herding model by means of numerical simulations. Speci�cally,

*This paper was written in collaboration with my co-author Christopher Boortz. The results
in combination with an empirical analysis are also presented in Boortz, Kremer, Jurkatis, and
Nautz (2014)

1The type of herding may refer to spurious versus intentional (Bikhchandani and Sharma,
2001), or to the cause of herding, e.g., investigative herding versus herding due to information
externalities (Froot et al., 1992; Bikhchandani et al., 1992).
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we focus on the e�ect of information risk, i.e. the probability to trade with a

counter-party who holds private information, and market stress, de�ned as situ-

ations where investors are both pessimistic and uncertain about a stock's value,

on herding intensity over a cross-section of heterogeneous stocks. We focus on

information risk as it is a key parameter in �nancial market herding models and,

at the same time, has well-known and established empirical proxies (e.g. Easley

et al., 2002). Similarly, market stress is central to the empirical literature, while

it has, as we will show, a natural translation into a herding model.

Building on Glosten and Milgrom (1985) and Easley and O'Hara (1987), the

literature on information risk deals with estimating the information content of

trades (see, e.g., Hasbrouck, 1991; Easley et al., 1996b, 1997). The e�ects of in-

formation risk on herding intensity, however, are rarely considered.2 While the

probability of informed trading is a key parameter in �nancial market herd models

(Avery and Zemsky, 1998; Park and Sabourian, 2011), to date these models have

not been exploited to discover the impact of information risk on herding intensity.

This is surprising, since the e�ects of information risk on herding intensity are

far from obvious. On the one hand, an increase in information risk increases the

average information content of an observed trade. As a consequence, traders up-

date their beliefs more quickly and those investors that are susceptible to herding

are more easily swayed to follow the crowd. On the other hand, increased infor-

mation risk ampli�es the market maker's adverse selection problem. Given the

higher probability of trading at an informational disadvantage, the market maker

quotes larger bid-ask spreads which tends to prevent potential herders from trad-

ing. Understanding which of these counteracting e�ects dominates could facilitate

the detection of herds.

The impact of market stress on herd behavior has not been analyzed by the the-

oretical herding literature, either. Typically, herd models focus on the reverse re-

lationship. For example, Park and Sabourian (2011) demonstrate that price paths

tend to be more volatile in the presence of herd behavior. Agent based models pro-

posed by, for example, Lux (1998) and Eguiluz and Zimmermann (2000) show that

herd behavior contributes to fat tails and excess volatility in asset returns. While

the models of, e.g., Avery and Zemsky (1998) and Park and Sabourian (2011) show

that uncertainty of some speci�c form has to exist for herding to be possible, their

models do not imply that more uncertainty actually leads to more herding. If such

a relationship exists, it threatens to create vicious cycles of economic downturns

and high volatility regimes due to herding and market stress reinforcing each other.

2An exception is Zhou and Lai (2009) who provide evidence that herding is positively related
to information risk measured by probability of informed trading (PIN).
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The prevalent unidirectional focus of the theoretical literature is particularly

puzzling in light of the mixed evidence regarding the impact of market stress on

herding intensity. Chiang and Zheng (2010) and Christie and Huang (1995) �nd

that herding increases during times of market stress, whereas Kremer and Nautz

(2013a,b) �nd that herding in the German stock market slightly decreased during

the recent �nancial crisis, which is similar to the results of Hwang and Salmon

(2004) for herding intensity during the Asian and the Russian crisis in the 1990s.

We base our theoretical analysis on the �nancial market herd model of Park

and Sabourian (2011), which can be viewed as a generalization of the seminal

work of Avery and Zemsky (1998).3 One important extension is the broader set

of di�erent information structures that allows a di�erentiated discussion of how

information externalities may contribute to herd behavior under various market

conditions including scenarios of high and low market stress. Relating investor

herding to the shape of the information structure Park and Sabourian (2011)

identify more explicitly those situations in which the potential for herding is high.

Consequently, the Park and Sabourian (2011) framework is more appropriate for

�nding and explaining high degrees of herding. In fact, experimental evidence

suggests that the Avery and Zemsky (1998) framework allows for only little or no

herd behavior (Cipriani and Guarino, 2009).4 In contrast, experiments based on

the Park and Sabourian (2011) model �nd that herding in �nancial markets can

be substantial (Park and Sgroi, 2012, 2016).

In Park and Sabourian (2011), herding is triggered by information externalities

that an investment decision by one agent imposes on subsequent agents' expecta-

tions about the asset value, similarly to the early observational learning literature

(e.g. Bikhchandani et al., 1992; Banerjee, 1992).5 Therefore, this model is a natural

3Similar to the bulk of the theoretical literature, both models de�ne herd behavior as a switch
in an agent's opinion toward that of the crowd, see Brunnermeier (2001). As herders make their
decision irrespective of their private information, herd behavior is informationally ine�cient and
thus has the potential to distort prices and destabilize markets.

4Avery and Zemsky (1998) includes di�erent model setups. The most basic setup extends the
traditional herd model of Bikhchandani et al. (1992) by a price mechanism that prevents herd
behavior. Prominent experimental tests of the Avery and Zemsky (1998) framework, Drehmann
et al. (2005) and Cipriani and Guarino (2005), focus on this setup and con�rm the theoretical
prediction of no herding. Cipriani and Guarino (2009), on the other hand, focus on one of the
more complex setups in which herd behavior is predicted, but again �nd only little evidence of
it.

5Alternative drivers for herd behavior include reputational concerns as well as investigative
herding. Reputational herd models modify the agents' objective functions such that their de-
cisions are a�ected by positive externalities from a good reputation (see, e.g., Scharfstein and
Stein, 1990; Graham, 1999; Dasgupta et al., 2011). Investigative herd models examine conditions
under which investors may choose to base their decisions on the same information resulting in
correlated trading behavior (see, e.g., Froot et al., 1992; Hirshleifer et al., 1994). For a survey of
the early herding literature see Devenow and Welch (1996). For an in-depth discussion of how
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candidate for investigating the impact of information risk on herding intensity.6

The history dependence of trading decisions in �nancial market herd models

drastically impedes the derivation of analytical results on herding intensity. This

may explain why these models have not yet been exploited to make empirically

testable predictions on the impact of information risk and market stress. Moreover,

standard empirical herding measures, including the ones proposed by Lakonishok

et al. (1992) and Sias (2004), examine herding intensity on an aggregate level.

Consequently, empirical testability of our theory-guided hypotheses requires that

we analyze herding intensity aggregated over investor groups, time periods, and

heterogeneous stocks. This further complicates the derivation of analytical results.

We circumvent these problems by simulating the Park and Sabourian (2011)

model for more than 13,000 di�erent parameterizations that broadly cover the

theoretical parameter space, generating about 2.6 billion trades for analysis. We

obtain two testable hypotheses on the model-based measure of aggregate herd-

ing intensity. First, an increase in information risk should result in a symmetric

increase of buy and sell herding intensity. Second, high market stress should be

found to have an asymmetric e�ect on herding intensity: while buy herding is

predicted to surge during crisis periods, the simulation results suggest that sell

herding intensity increases only moderately.

The remainder of this paper is structured as follows. In Section 1.2 we review

the model of Park and Sabourian (2011). In Section 1.3 we de�ne information

risk as well as market stress and provide an initial qualitative assessment of their

e�ect on herding intensity. Section 1.4 formalizes the concept of aggregate herding

intensity. It subsequently introduces the simulation setup and derives testable

hypotheses regarding the role of information risk and market stress for aggregate

herding intensity. Section 1.5 summarizes the results.

1.2 A Model of Investor Herding

This section reviews the herding model of Park and Sabourian (2011) and high-

lights conceptual additions and modi�cations that are relevant to our application.

Moreover, it formalizes the notion of herding intensity.

the herding literature ties into the observational learning literature see Vives (1996).
6Other �nancial market herd models such as Lee (1998), Chari and Kehoe (2004), and

Cipriani and Guarino (2008), investigate how investor herding is related to transaction costs,
endogenous timing of trading decisions, and informational spillovers between di�erent assets,
respectively.
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1.2.1 The Model Setup

Park and Sabourian (2011) consider a sequential trading model à la Glosten and

Milgrom (1985), consisting of a single asset, both informed and noise traders, and a

market maker. The model assumes rational expectations and common knowledge

of its structure.

The Asset: There is a single risky asset with unknown fundamental value V ∈
{V1, V2, V3}, where V1 < V2 < V3. Without loss of generality, let V1 = 0, V2 = 1 and

V3 = 2. The prior distribution 0 < P (V = Vj) < 1 for j = 1, 2, 3 determines the

degree of public uncertainty about the asset's true value, Var(V ), before trading

has started. The asset is traded over T consecutive points in time.

The Traders: Traders arrive in the market one at a time in a random exogenous

order and decide to buy, sell or not to trade one unit of the asset at the quoted bid

and ask prices. Traders are either informed traders or noise traders. The fraction

of informed traders is denoted by µ. Informed traders base their decision to buy,

sell or not to trade on their expectations regarding the asset's true value.

Publicly available information consists of the history of trades Ht := {(a1, p1),

..., (at−1, pt−1)}, where ai is the action of a trader in period i and pi the price at

which the trader's action is executed, and the risky asset's prior distribution P (V ).

In addition to public information, informed traders base their asset valuation

on a private signal S ∈ {S1, S2, S3} regarding the true value of the asset. They

buy (sell) one unit of the asset if their expected value of the asset E[V | S,Ht]

is strictly greater (smaller) than the ask (bid) price quoted by the market maker.

Otherwise, informed traders choose not to trade. In contrast to informed traders,

noise traders trade randomly, that is, they decide to buy, sell or not to trade with

equal probability of 1/3. pt denotes the price at which the asset is traded in period

t.

The Private Signal: The distribution of the private signals S1, S2, S3 is con-

ditional on the true value of the asset. Denote the conditional signal matrix by

P (S = Si | V = Vj) = (pij)i,j=1,2,3. For each column j, the matrix is leftstochastic,

i.e.
∑3

i=1 p
ij = 1. For each row i,

∑3
j=1 p

ij is the likelihood that an informed trader

receives the signal Si. An informed trader's behavior is critically dependent on the

shape of her private signal. Speci�cally, Park and Sabourian (2011) de�ne a signal

Si to be

� monotonically decreasing i� pi1 > pi2 > pi3,
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� monotonically increasing i� pi1 < pi2 < pi3,

� U-shaped i� pi1 > pi2 and pi2 < pi3.

Traders with monotone signals are con�dent about the asset's true value and rarely

change their trading decision. That is, an optimistic trader with an increasing

signal will only buy or hold, whereas a pessimistic trader with a decreasing signal

will only sell or hold.

In contrast, traders with U-shaped signals face a high degree of uncertainty

and may decide to buy, sell or hold. U-shaped traders are more easily swayed to

change their initial trading decision as they observe trade historiesHt with a strong

accumulation of traders on one side of the market. In fact, Park and Sabourian

(2011) show that a U-shaped signal is a necessary condition for herding.

Park and Sabourian (2011) also introduce hill-shaped signals which are neces-

sary for contrarian behavior. Since contrarian behavior is self-defeating, its desta-

bilizing e�ects are limited and thus only of secondary importance for �nancial

markets. Consequently, we exclude hill-shaped signals from our analysis.

In the following, we assume that S1 is monotone decreasing, S2 is U-shaped

and S3 is monotone increasing. The conditional private signal distribution P (S |
V ) determines the degree of information asymmetry between market maker and

informed traders. The less noisy the signal, the higher the informational advantage

of the informed traders.

The Market Maker: Trading takes place in interaction with a market maker

who quotes a bid and an ask price. The market maker has access only to public

information and is subject to perfect competition such that he makes zero-expected

pro�t. Accordingly, he sets the ask (bid) price equal to his expected value of

the asset given a buy (sell) order and the public information. Formally, he sets

askt = E[V |Ht ∪ {at = buy}] and bidt = E[V |Ht ∪ {at = sell}].

1.2.2 Herding Intensity

Park and Sabourian (2011) describe herding as a �history-induced switch of opinion

in the direction of the crowd� (p. 985). Thus, only informed traders can herd. More

precisely, a herding trade is de�ned as follows:

De�nition 1.1 (Herding).

Let bt (st) be the number of buys (sells) observed until period t. An informed trader

with signal S buy herds in t at history Ht if the following three conditions hold:
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(BH1) E[V |S] < E[V ], i.e. an informed trader with signal S does not buy

initially and is more pessimistic regarding the asset's true value than is

the market maker.

(BH2) E[V |S,Ht] > askt, i.e. an informed trader with signal S buys in t.

(BH3) bt > st, i.e. the history of trades contains more buys than sells: the

crowd buys.

Analogously, an informed trader with signal S sell herds in period t at history Ht

if and only if (SH1) E[V |S] > E[V ], (SH2) E[V |S,Ht] < bidt, and (SH3) bt < st

hold simultaneously.

Note that (BH1) and (SH1) imply that either buy or sell herding is possible

for a given model parameterization. Our de�nition of herding is less restrictive

than the one used in Park and Sabourian (2011), who, for example, de�ne buy

herding as an extreme switch from selling initially to buying. In our de�nition, buy

herding also includes switches from holding to buying, provided that the trader

leans toward selling initially (see (BH1) and (BH2) in De�nition 1.1).7 From

an empirical perspective, including switches from holding to selling or buying is

important as these actions may drive ampli�ed stock price movements.

(BH3) and (SH3) also di�er slightly from Park and Sabourian (2011) where,

for example, buy herding requires E[V |Ht] > E[V ]. This condition is based on

the idea that prices rise when there are more buys than sells. However, this only

holds if the prior distribution of the risky asset P (V ) is symmetric around the

middle state V2, i.e. P (V1) = P (V3).8 For asymmetric P (V ) it is possible that

even though a history Ht contains more buys than sells, the price of the asset goes

down (i.e. E[V |Ht] < E[V ]). From an empirical perspective, asymmetric prior

distributions P (V ) should not be ruled out. Therefore, we modify the herding

de�nition to ensure that a herder always follows the crowd.

The above de�nition enables us to decide whether or not a particular trade by

a single investor at a speci�c point in time is a herd trade. In contrast, empirical

herding measures are based on a number of trades by di�erent investors observed

over a certain time interval, see, e.g., Lakonishok et al. (1992) and Sias (2004).

Since we aim to derive theory-based predictions on herd behavior that can be

tested empirically, we need to aggregate herding in the model over time as well

7According to Park and Sabourian (2011), such an extension of the herding de�nition is
theoretically legitimate. They focus on the stricter version to be consistent with earlier theoretical
work on herding.

8Note that Park and Sabourian (2011) assume symmetry of the risky asset's prior distribution
throughout their paper (see Park and Sabourian, 2011, p. 980).
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as over investors. We aggregate over time by considering all relevant trades from

t = 1, . . . , T . We aggregate over investors by calculating herding intensity for the

whole group of informed traders. Therefore, we de�ne herding intensity (HI) as

the share of herding trades in the total number of informed trades.

De�nition 1.2 (Herding Intensity).

Let binT and sinT be the number of buys and sells of informed traders observed until

period T , i.e. during the entire time interval under consideration. Let bhT and shT
denote the corresponding number of buy and sell herding trades. Then,

Buy herding intensity (BHI) =:
bhT

binT + sinT

Sell herding intensity (SHI) =:
shT

binT + sinT

Standard empirical herding measures including those of Lakonishok et al. (1992)

and Sias (2004) are calculated using only buys and sells. To be consistent with

empirical herding measures, we exclude holds when calculating the number of

informed trades in the de�nition of theoretical herding intensity.

1.3 Translation of Information Risk and Market

Stress into the Model

This section shows how the concepts of information risk and market stress are

translated into the Park and Sabourian (2011) model. It also provides a qualitative

assessment how each concept impacts herding intensity.

1.3.1 Information Risk

In Easley et al. (1996a), information risk is the probability that a trade is executed

by an informed trader. Hence, information risk coincides with the parameter µ,

the fraction of informed traders, in the Park and Sabourian (2011) model.

From a theoretical perspective, the e�ect of changes in µ on herding intensity is

ambiguous. On the one hand, herding may increase with information risk because

a higher µ implies that there are more potential herders (U-shaped traders) in the

market. Due to the self-enforcing nature of herd behavior a higher µ contributes

to longer-lasting herds and, hence, stronger herding intensity. Moreover, a higher

fraction of informed traders implies that the average information content of a

single trade increases. As a consequence, informed traders update their beliefs
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more quickly and those traders that are susceptible to herd behavior are more

easily swayed to change from buying to selling and vice versa.

On the other hand, a rise in µ may also reduce herding intensity. Since the

average information content per trade increases in µ, herds tend to break up more

quickly as traders stop herding after observing few trades on the opposite side of

the market. Higher information risk further ampli�es the market maker's adverse

selection problem. Given the higher probability of trading at an informational

disadvantage, the market maker quotes larger bid-ask spreads in order to avoid

losses. The larger spread, in turn, requires potential herders to observe much

stronger accumulation of traders on one side of the market before they alter their

trading decision.

1.3.2 Market Stress

Times of high market stress and crisis periods are typically understood as situations

where investors are confronted with a deteriorating economic outlook and increased

uncertainty about stock values, compare e.g. Schwert (2011).

A negative economic outlook in the Park and Sabourian (2011) model is cap-

tured by low expectations regarding the asset's true value E[V ]. A low E[V ] not

only describes a deteriorated outlook by the public but also a high degree of pes-

simism among informed traders. First, lower public expectations E[V ] result in

lower private expectations E[V |S] for all informed traders. Second, there tend to

be more decreasing signals (pessimists) among informed traders as well as fewer

increasing signals (optimists) for low E[V ] than for high E[V ].

Uncertainty in the Park and Sabourian (2011) can be sorted into two types:

public uncertainty and informed trader uncertainty. Public uncertainty is given

by the variance of the risky asset Var(V ). Informed trader uncertainty (IU) is

measured by the probabilities that informed traders receive a U-shaped signal con-

ditional on Vj, j = 1, 2, 3: IU :=
∑3

j=1 p
2j. The higher IU, the more traders there

are in the market with U-shaped signals and, hence, the higher the uncertainty

among informed traders.9 In light of the recent �nancial crisis, we are particularly

interested in comparing herding intensity in times of high market stress with the

herding intensity predicted for more optimistic periods.

The overall e�ect of market stress on herding intensity is not obvious and

9Note that an increase in Var(V ) may reduce the number of U-shaped traders in the market.
This e�ect is not necessarily o�set by an increase in IU. One could circumvent this issue by
additionally imposing that the total probability that an informed trader receives a U-shaped
signal P (S2) =

∑3
j=1 p

2jP (V = Vj) must also be high in times of market stress. Since this does
not a�ect the results of our simulation, we choose not to complicate the model by adding this
characteristic to the uncertainty de�nition.
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crucially depends on model parameterization. Particularly, buy and sell herding

intensity may react di�erently to changes in market stress. Consider, for example,

an increase in market stress due to a decrease in E[V ]. More speci�cally, assume

a shift of probability mass from V3 to lower values.

First, if, for a given model parameterization, buy herding is possible (and hence

sell herding is impossible), a marginal reduction in P (V3) would result in a decrease

in buy herding intensity, whereas sell herding intensity would remain constant at

0. Similarly, if sell herding is possible for a given model parameterization (and buy

herding impossible), a marginal reduction in P (V3) would result in an increase in

sell herding intensity while buy herding intensity would remain una�ected. This

converse e�ect on buy and sell herding intensity is due to the fact that a reduction

in P (V3) diminishes the probability of buy-dominated trade histories and increases

the probability of sell-dominated histories. Hence, potential sell (buy) herders are

more (less) likely to be confronted with a trade history that sways them into

herding.

Second, if the U-shaped signal is positively biased, i.e. P (S2|V1) < P (S2|V3),

a reduction of P (V3) diminishes the number of U-shaped traders in the market

and, hence, tends to decrease buy as well as sell herding intensity. Finally, for a

whole range of model parameterizations, a lower E[V ] may even contribute to an

increase in buy herding intensity and a decrease in sell herding intensity. Since

a lower E[V ] implies that more informed traders are initially inclined to sell, the

number of potential sell herders declines. Correspondingly, buy herding becomes

more likely.

These complex and partly counteracting e�ects in conjunction with the history-

dependent updating of beliefs lead to a low analytical tractability of herding in-

tensity in the Park and Sabourian (2011) model.10 This particularly applies to

the empirically relevant case where herding intensity is considered as an average

over a set of stocks with heterogeneous characteristics. In the following, therefore,

empirically testable predictions about the e�ects of information risk and market

stress on average herding intensity are derived by simulating the model over a

broad set of model parameterizations.

10The Appendix to this paper makes this point very explicit.
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1.4 Simulation of the Herd Model for a Heteroge-

neous Stock Index

1.4.1 Average Herding Intensity

Empirical studies on herd behavior typically derive results for herding intensity as

an average for a large set of stocks and over certain time intervals. The stocks under

consideration are likely to di�er in their characteristics implying that each stock

is described by a distinct parameterization for the fraction of informed traders,

the prior distribution of the asset, and the distribution of the private signals. In

accordance with the empirical literature, we are particularly interested in herding

intensity de�ned as an average over a broad range of model parameterizations that

re�ects the heterogeneity in stock market indices. Speci�cally, we de�ne average

herding intensity as follows:

De�nition 1.3 (Average Herding Intensity).

For a given set of model parameterizations I and length T of the trading period,

average buy herding intensity is de�ned as

BHI =

∑
i∈I wiBHIi∑

i∈I wi
,

where BHIi stands for the buy herding intensity obtained for model parameteriza-

tion i and the weights wi = binT,i + sinT,i correspond to the number of informed trades

observed for that parameterization.

The de�nition for average sell herding intensity SHI follows analogously.

Weights wi ensure that average herding intensity is not biased upward by sim-

ulation outcomes with a low number of informed trades.11

1.4.2 The Simulation Setup

We choose µ, the fraction of informed traders, from

M = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
11Consider, for example, a situation where we observe a herding intensity of 0.5 as 2 out of 4

informed trades are herd trades. Now assume that for another simulation the herding intensity
is 0, as 0 out of 16 informed trades are herd trades. In this case, the unweighted average of
simulated herding intensities would be 0.25, which overestimates herding intensity as only 2 out
of overall 20 trades were herd trades.
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That is, we simulate the model for |M| = 9 di�erent levels of information risk.12

The prior distribution of the risky asset P (V ) is chosen from

P = {P (V ) ∈ {0.1, 0.2, . . . , 0.9}3 :
3∑
i=1

P (Vi) = 1}.

Since we impose that V takes each value V1 = 0, V2 = 1, V3 = 2 with positive prob-

ability, P (Vi) cannot be 0.9, which gives us |P| = 36 di�erent prior distributions.

The conditional signal distribution P (S|V ) = (pij)i,j=1,2,3 has to be chosen from

the space of leftstochastic 3-by-3 matrices. As before, we discretize this space by

imposing a grid ranging from 0.1 to 0.9. All elements of P (S|V ) are positive, that

is, all signals are noisy in the sense that an informed trader cannot with certainty

rule out any of the three possible states for V . Following Park and Sabourian

(2011), there are always optimists (p31 < p32 < p33), pessimists (p11 > p12 > p13),

and U-shaped traders (p21 > p22, p22 < p23) in the market. Finally, informed

traders tend to be well-informed, that is, if the bad state V = V1 comes true, most

of the informed traders are pessimistic and only few are optimistic (p11 > p21 > p31)

and vice versa for V = V3 (p13 < p23 < p33). This implies that the set of simulated

signal structures (C) can be summarized as follows:

C = {P (S|V ) = (pij)i,j=1,2,3 leftstochastic : pij ∈ {0.1, 0.2, . . . , 0.9},

p11 > p21 > p31, p13 < p23 < p33,

p11 > p12 > p13, p31 < p32 < p33, p21 > p22, p22 < p23},

which leads to |C| = 41 di�erent signal structures used in the simulation.

Considering all combinations, one obtains the simulation set Ω :=M×P ×C,
where |Ω| = 9 · 36 · 41 = 13, 284. Each element ω = (µ, P (V ), P (S|V )) ∈ Ω

describes the characteristics of a speci�c stock.Park and Sabourian (2011) derive

upper bounds for µ that have to hold in order for herding to be possible. One

can check that these upper bounds are never binding for ω ∈ Ω, i.e. in each of the

following simulations, either sell or buy herding is possible (see Park and Sabourian

(2011), pp. 991-992, 1011-1012). Each stock is traded over T = 100 points of time.

For each stock, the simulation is repeated 2, 000 times, which produces more than

2.6 billion simulated trades for analysis.

12In the German stock market, for example, the share of institutional trading (which might be
considered as a proxy for informed trading) for the sample period studied in Kremer and Nautz
(2013a) ranges from 0.2 to 0.7.
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Figure 1.1: Information risk and herding intensity

(a) Sell Herding (b) Buy Herding

Notes: SHI and BHI are plotted against information risk. On the ordinate we plot average
herding intensity. Information risk µ is plotted along the horizontal. Average herding intensity
is calculated as the weighted cross-sectional average for the simulated SHI and BHI of stocks
contained in {µ} × P × C. The weights correspond to the observed number of informed trades.
The boxplots show the variation across 2,000 simulations of average herding intensity for a �xed
level of information risk µ.

1.4.3 Simulation Results: Information Risk and Average

Herding Intensity

To discover the impact of information risk on average herding intensity, we �x

µ ∈M and calculate average herding intensity as the cross-sectional average over

all parameterizations in {µ} × P × C, where |{µ} × P × C| = 1 · 36 · 41 = 1, 476.

Figure 1.1 shows the comparative statics for average sell and buy herding inten-

sity with respect to changes in information risk µ. The simulation results clearly

indicate that SHI and BHI symmetrically increase with information risk. The

boxplots demonstrate that the simulation results are very stable. The variation

of average herding intensity for a given level of information risk is relatively low,

whereas its increase is rather steep as µ goes up.13 Only as µ approaches 1 do

SHI and BHI level out and exhibit higher variations.

The model simulation shows that the increasing e�ects of a rise in information

risk on herding intensity dominate the decreasing e�ects. Only as the share of

informed traders surpasses 80%, does the adverse selection problem of the market

maker begin to impair market liquidity severely enough that trading among the

potential herders breaks down. The ambiguity of their signal prevents them from

paying the high premiums now demanded by the market maker via large bid-ask

13This particularly applies to the empirically relevant range of µ ∈ [0.2, 0.7] studied in Kremer
and Nautz (2013a).
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Table 1.1: The e�ects of market stress on average herding intensity

SHI BHI

Low market stress 0.0351
(0.0029)

0.0306
(0.0020)

High market stress 0.0382
(0.0023)

0.0635
(0.0038)

Notes: This table reports the simulated average sell (SHI) and buy herding intensity (BHI)
for stocks under high market stress and stocks under low market stress. Standard deviations
are in parentheses. Welch's t-test reveals that SHI as well as BHI increase signi�cantly during
times of high market stress for usual signi�cance levels. Out of the 13,284 simulated stocks, 1,368
classify as high market stress and 1,008 as low market stress. Average herding intensities are
calculated as the weighted cross-sectional averages of the simulated SHI and BHI for stocks in
each respective class. The �gures in the table are the weighted average and the weighted standard
deviation of 2,000 iid simulated outcomes of SHI and BHI under high and low market stress,
respectively. For all calculations, the weights correspond to the observed number of informed
trades.

spreads. We summarize the simulation-based insight from Figure 1.1 as follows:

Hypothesis 1.1 (Information Risk and Herding Intensity).

Average sell and buy herding intensity increase in information risk.

1.4.4 Simulation Results: Market Stress and Average Herd-

ing Intensity

For the analysis of the e�ects of market stress we de�ne two distinct classes of

stocks and compare the average herding intensity of each. The �rst class comprises

of all stocks that have high market stress characteristics, the second class includes

all stocks that show low market stress characteristics. In line with the de�nition

of market stress developed in Section 1.3.2, a simulated stock ω ∈ Ω is subject to

high market stress if it exhibits both, above-average uncertainty and below average

E[V ]. Correspondingly, low market stress stocks are de�ned by below-average

uncertainty and above-average E[V ]. The averages are the respective medians of

the simulated model parameterizations.14 We compare the cross-sectional average

SHI and BHI over all high market stress stocks with the SHI and BHI obtained

for all low market stress stocks.

The simulation results for the impact of market stress on average sell and buy

herding intensity are shown in Table 1.1. As expected, both sell and buy herding

14Speci�cally, we obtain the median degree of pessimism (public uncertainty) by calculating
E[V ] (Var(V )) for each of the 36 simulated prior distributions P (V ) ∈ P and then determine
their median. Correspondingly, we calculate the median informed uncertainty over the set of
simulated signal structures C.
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Table 1.2: The e�ects of uncertainty on average herding intensity

SHI BHI

Low uncertainty 0.0373
(0.0018)

0.0340
(0.0016)

High uncertainty 0.0557
(0.0022)

0.0555
(0.0022)

Notes: This table reports the simulated SHI and BHI for stocks with high and low uncertainty
respectively. Standard deviations are in parentheses. Welch's t-test reveals that SHI as well
as BHI increase signi�cantly during times of high uncertainty for usual signi�cance levels. Out
of the 13,284 simulated stocks, 3,078 exhibit high and, 2,268 low, uncertainty. Average herding
intensities are calculated as the weighted cross-sectional averages of the simulated SHI and
BHI for stocks in each respective class. The �gures in the table are the weighted average and
the weighted standard deviation of 2,000 iid simulated outcomes of SHI and BHI under high
and low uncertainty, respectively. For all calculations, the weights correspond to the observed
number of informed trades.

are more pronounced during times of high market stress. Interestingly, however,

the rise in buy herding intensity is greater than that of sell herding intensity. This

puzzling asymmetry can be explained by disentangling the e�ects of an increase

in uncertainty and pessimism.

Table 1.2 shows that SHI and BHI symmetrically increase with uncertainty.

High public uncertainty is associated with lower prior probabilities for the middle

state of the risky asset. Since informed traders receiving U-shaped signals discount

the probability for the middle state anyway, high public uncertainty ampli�es their

tendency to form strong beliefs that only the extreme states of the risky asset can

be true. As they rule out one of the extreme states based on the observed trading

history, they quickly alter their trading decisions toward that of the crowd. This

e�ect is intensi�ed if private uncertainty is also high since such leads to a larger

share of U-shaped traders. Since this argument applies equally to sell and buy

herding, the increasing e�ect of uncertainty on herding intensity is symmetric.

In contrast, Table 1.3 reveals that a reduction in E[V ] a�ects SHI and BHI

in opposite ways. While increased pessimism contributes to buy herding, it signif-

icantly reduces sell herding. This result is driven by the fact that during times of

grim economic outlook, most informed traders sell anyway. Herd behavior, how-

ever, requires a trader to alter her initial trading decision. For sell herding to

be possible, for instance, the trader has to be initially inclined to buy the asset.

Only informed traders receiving U-shaped signals with strong biases toward the

high state of the risky asset (i.e. p21 << p23) may still be inclined to buy initially

for low E[V ]. As E[V ] drops, so does the number of simulated signal structures

in C that exhibit a su�ciently strong positive bias of the U-shaped trader for sell
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Table 1.3: The e�ects of economic outlook on average herding intensity

SHI BHI

High E[V ] 0.0502
(0.0010)

0.0357
(0.0010)

Low E[V ] 0.0370
(0.0016)

0.0504
(0.0016)

Notes: This table reports the simulated SHI and BHI for stocks where traders show high and
low degrees of pessimism respectively. Standard deviations are in parentheses. Welch's t-test
reveals a highly asymmetric e�ect for sell and buy herding. Indeed, SHI decreases as pessimism
increases while BHI increases with the degree of pessimism. The results are signi�cant at all
usual signi�cance levels. Out of the 13,284 simulated stocks, 5,904 stocks exhibit high and low
degrees of pessimism. Average herding intensities are calculated as the weighted cross-sectional
averages of the simulated SHI and BHI for stocks in each respective class. The �gures in
the table are the weighted average and the weighted standard deviation of 2,000 iid simulated
outcomes of SHI and BHI under high and low uncertainty, respectively. For all calculations,
the weights correspond to the observed number of informed trades.

herding to be possible. By the same line of reasoning, BHI increases with low

E[V ].

We emphasize that the results in Table 1.3 do not contradict strong accumu-

lations of traders on the sell side during times of deteriorated economic outlook.

The Park and Sabourian (2011) model predicts that such a consensus in trade

behavior is not driven by a switch in traders' opinion toward that of the crowd

but results from a high share of equally pessimistic traders all acting on similar

information. Such correlation of trade behavior is called spurious or unintentional

herding in the literature, compare e.g. Kremer and Nautz (2013a) and Hirshleifer

and Hong Teoh (2003).

The simulation shows that the positive e�ect of increased uncertainty on sell

herding dominates the negative e�ect of increased pessimism. This leads to an

overall slight increase in SHI during times of high market stress. In contrast, the

complementary e�ect of uncertainty and pessimism on buy herding results in a

surge of BHI during times of high market stress. We consolidate these simulation

results in the following

Hypothesis 1.2 (Market Stress and Herding Intensity).

In times of high market stress, the increase in buy herding is more pronounced

than that of sell herding.
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1.5 Conclusion

Predictions from herding models are often used to inform to what extent the results

obtained from empirical measures are in fact consistent with a particular theory

of herding and whether the empirical �ndings are more in line with intentional

rather than spurious herding. This is done because empirical measures of herding

are typically only proxies of the particular type of herding the researcher is inter-

ested in. The theoretical predictions, however, are not rigorously derived from a

particular model, but instead only loosely inferred. This is problematic, because

herding models are, in fact, highly complex and non-linear such that even seem-

ingly simple prediction cannot be easily derived by just �eyeballing� the respective

model.

In this paper, therefore, we show how theory-based predictions can be derived

from a particular herding model by means of numerical simulations focusing on

the e�ects of information risk and market stress on herding intensity for a hetero-

geneous set of assets. The model predicts that both buy and sell herding increase

symmetrically with information risk. The e�ects of market stress on herding inten-

sity are more complicated. We show that buy and sell herding both increase with

market stress, however, they do so in an asymmetric fashion. Interestingly, the

model-implied hypothesis is that the increase of buy herding is more pronounced in

times of high market stress than the one of sell herding. This is because the model-

based measure of aggregate herding intensity only detects intentional herding as

opposed to unintentional one. Traders may very well accumulate on the sell side

of a market during downturns. Such coordination of traders, however, tends to be

unintentional since they all follow their own private information that advises them

to sell and, hence, is not re�ected in the aggregate herding intensity. Conversely,

the shortage of good news during crisis periods causes investors to be particularly

susceptible to signals that the market rebounds. A temporary increase in stock

prices due to trader accumulation on the buy-side of the market is such a signal.

Consequently, investors are prone to intentionally follow others into buying stocks.

While an empirical counterpart to the simulation exercise is not part of this

thesis, in Boortz, Kremer, Jurkatis, and Nautz (2014) we present how such simula-

tion results may be used explicitly to inform empirical herding measures. Chapter

2 of this thesis, however, cautions that further steps on the empirical measurement

part may be needed to fully gain from a combination of such predictions derived

from a herding model and an empirical proxy of herding.
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Appendix 1

1.A Demonstrating the need of numerical simula-

tions

Financial market herd models including the model of Park and Sabourian (2011)

are not designed to provide closed-form solutions for expected herding intensity.

In this Appendix, we use two examples to demonstrate why numerical simulations

are required for obtaining model-based results regarding the impact of information

risk and market stress on herding intensity.

1.A.1 The History Dependence of Herding Intensity

Even for a given parameterization model complexity prevents deriving a closed-

form analytical formula for herding intensity. The herding de�nition depends

on the market maker's quotes, askt and bidt, as well as the informed traders'

expectations regarding the asset's true value E[V | S,Ht]. These quantities, in

turn, depend on the whole history of trades until t. In fact, not only the number

of observed buys, sells and holds but also their order a�ects expectations and

quotes at time t. As a consequence, even for a given model parameterization, each

history path would need to be analyzed separately to derive results on expected

herding intensity.15

Let us illustrate this issue with a concrete numerical example. Assume the

conditional signal matrix P (S | V ) to be

15Given the sheer number of possible trading histories alone, an analytical derivation of SHI
and BHI is not feasible even for relatively small T . For any length T of the history HT , there
are 3T di�erent history paths.
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P (S | V ) V1 = 0 V2 = 1 V3 = 2

S1 0.6 0.5 0.1

S2 0.3 0.1 0.4

S3 0.1 0.4 0.5

The distribution of the risky asset is P (V ) = [0.3 0.4 0.3]. Multiplying P (S |
V ) · P (V ) yields the unconditional probabilities P (S) = [0.41 0.25 0.34] that a

trader receives a signal S given that she is informed. Finally, the share of informed

traders is set to be µ = 0.5. Only informed traders receiving the U-shaped signal

S2 can herd. Given that E[V ] = 1 < 1.12 = E[V | S2], the U-shaped trader can

engage in sell herding only if she is inclined to buy initially.

We discuss two distinct trading histories consisting of 100 trades and the ex-

act same number of buys and sells. The only di�erence is the order in which

the trades are observed. Let H100
1 = {25 buys, 50 sells, 25 buys} and H100

2 =

{25 sells, 50 buys, 25 sells}. Figure 1.A1 shows how a U-shaped trader would

decide to trade at every time t = 1, ..., 100 for the respective trading histories.

Note that the number of trades for which S2 sell herds di�ers for the two

histories. Under H100
1 , S2 potentially sell herds between periods 51 and 85, i.e.

35 times.16 Under H100
2 , S2 potentially sell herds only 30 times. The share of U-

shaped traders among the population of all traders is µP (S2) = 0.5 · 0.25 = 0.125.

Consequently, we expect to observe a total number of shT,1 = 0.125 · 35 = 4.375

herding sells under H100
1 . Correspondingly, under H100

2 , we only have shT,2 = 0.125 ·
30 = 3.75 expected herd sells.

Moreover, since µ = 0.5 and T = 100, we expect that both histories contain

50 informed trades. For an arbitrary history, calculation of the expected number

of informed trades is much less straight forward since there is the possibility that

informed traders hold and we hence have fewer informed trades than 50. Since

H100
1 and H100

2 do not contain any holds, however, this is not an issue here.

According to De�nition 1.2, the sell herding intensity is SHI = shT/(b
in
T +

sinT ). Plugging in the expected values for numerator and denominator that we just

calculated, we obtain an expected sell herding intensity SHI1 = 4.375/50 = 0.0875

under H100
1 and SHI2 = 3.75/50 = 0.075 under H100

2 .17

16Note that S2 does in fact start herding only in period 51, although she would already have
decided to sell in period 44. This is because the complete history does not contain more sells
than buys until period 51, which we demand in order to ensure that S2 actually follows the
majority in the market.

17Note that since numerator and denominator are clearly correlated, we have that E[XY ] 6=
E[X]
E[Y ] . A Taylor approximation of order 1, however, yields that the expectation of a ratio can be

consistently estimated by the ratio of the expectations. As a consequence, all equations should
be understood as approximations. An exact calculation of expected herding intensity would be
even more complicated.
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Figure 1.A1: Trading decisions of U-shaped trader for µ = 0.5

(a) H100
1 = {25 buys, 50 sells, 25 buys}

(b) H100
2 = {25 sells, 50 buys, 25 sells}

Finally note that the probability of observing these histories P (H100
i ) is also

di�erent for i = 1, 2, since the probability of observing a certain trade (i.e., buy

or sell) in t depends on the trading decisions of the informed traders at t. This

means that in order to calculate an overall expected herding intensity for the model

parameterization above, we would need to analyze SHI and P (H100) for all 3100

possible history paths separately, a task well beyond our current computational

capacity. Even if we were able to calculate that number, we still would not have a

formula that tells us how SHI would react to changes in certain model parameters

such as µ. Indeed, one can illustrate the many counteracting e�ects of a change

in µ that result in quite di�erent outcomes for speci�c trading histories and thus

also prevent the derivation of analytical comparative static results.
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Figure 1.A2: Trading decisions of U-shaped trader for µ = 0.6

(a) H100
1 = {25 buys, 50 sells, 25 buys}

(b) H100
2 = {25 sells, 50 buys, 25 sells}

1.A.2 The Impact of a Change in µ on Herding Intensity:

An Analytical Approach

Let us now assume that µ = 0.6 and see how SHI changes for H100
i , for i = 1, 2.

Figure (1.A2) shows that the increase in µ causes the number of potential sell

herd trades to drop from 35 to 28 and from 30 to 27 for H100
1 and H100

2 respectively.

Given that now µP (S2) = 0.15, we expect SHI1 = 0.07 and SHI2 = 0.0675 for

the respective histories. In other words, an increase in µ causes a drop in SHI for

the above two trading histories.

The e�ects that drive this result are higher bid-ask-spreads quoted by the

market maker in conjunction with a higher average information content of each

single trade. Both e�ects contribute towards a stronger preference of S2 of holding

the asset. In particular, the sell herds are broken much faster than before: While
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Table 1.A1: Probabilities of selected histories

µ = 0.5 Number of herd trades P (H·) (P (H1) + P (H2))/P (H3)

H100
1 35 7.62 · 10−38

H100
2 30 3.75 · 10−38 6.72 · 10−7

H100
3 97 1.69 · 10−31

µ = 0.6

H100
1 28 4.15 · 10−36

H100
2 27 1.95 · 10−36 7.02 · 10−8

H100
3 97 8.69 · 10−29

Notes: This table reports the probabilities of three di�erent histories for the previously speci�ed
model parameterizations with µ = 0.5 and µ = 0.6 respectively. It also compares the probability
ratio of observing histories H1 or H2 with observing history H3 for each scenario. H1 and H2

are as before, H3 is a history consisting of 100 sells.

for µ = 0.5, the sell herding U-shaped traders had to observe 9-10 consecutive

buys before switching back into holding the asset, the observation of merely 5

consecutive buys already triggers this switch in trading behavior of S2 when µ =

0.6.

The results in Section 1.4, however, suggest that SHI increases with µ. The

reason for this is yet another e�ect of a change in µ. An increase in µ alters the

probability with which a certain history is observed. Indeed, an increase in µ

shifts probability mass from histories with low or decreasing herding intensity to

histories with persistently high herding.

This e�ect is documented in Table 1.A1. Consider the previously introduced

histories H100
1 and H100

2 . Also consider history H100
3 consisting of 100 sells. Under

H3, S2 sell herds from t = 4 until t = 100 resulting in 97 potential herd sells

regardless of µ. Yet, the probabilities for each of the histories changes as µ changes.

More speci�cally, the probability to observe H1 or H2 relative to the probability

to observe H3 decreases.

This can be attributed to the self-enforcing nature of herd behavior. Once

investors start herding, it is on average more likely that they keep herding than

that their herd is broken.

We emphasize that this is not a complete comparative static analysis. For that

we would have to consider all 3100 di�erent histories. As outlined before, this is

beyond current computational capabilities. Also note that the discussed examples

are only for a single stock. The calculations further complicate if one aims at

calculating average herding intensities for a heterogeneous stock market as we do

in Section 1.4.
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Paper 2

How to Measure Herding in Financial Mar-

kets*

2.1 Introduction

Investor herding describes the behavior of individual investors that follow the de-

cision of the majority although they hold private information that advises them to

act di�erently (Brunnermeier, 2001, p. 148). There is strong consensus in the lit-

erature that herding has the potential to cause informational ine�ciencies, distort

prices and ultimately destabilize �nancial markets altogether.

Consequently, empirical studies have been putting great e�orts into detecting

herd behavior by assessing whether groups of investors coordinate and to gauge the

e�ect of their coordination on asset prices (for an overview see e.g. Bikhchandani

and Sharma, 2001). The empirical literature on investor coordination has been

strongly in�uenced by the seminal work of Lakonishok, Shleifer, and Vishny (1992).

Their well-known LSV measure has long become a benchmark to test for the

presence of investor coordination, see e.g. Wermers (1999), Dorn et al. (2008),

Barber et al. (2009) and Brown et al. (2014).

This paper shows, however, that the LSV measure captures a very speci�c

empirical notion of investor coordination that neglects an important aspect of the

theoretical de�nition provided above. Consequently, the LSV measure fails to

provide an empirical link of investor behavior to the aforementioned ine�ciencies.

We provide a new measure by adjusting the LSV measure in accord with general

implications from the market microstructure literature on herd behavior. Using

simulated trade data we quantify the di�erences between the two approaches. We

show that our measure accurately distinguishes between the di�erent types of in-

vestor coordination, i.e. herding, contrarianism and independent trading, whereas

*This paper was written in collaboration with my co-author Christopher Boortz. Note that
there have been some signi�cant changes, especially in the simulation section, when compared
to the presentation in Boortz (2016, chap. 3).
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the LSV measure generally fails to do so if the trade data do not ful�ll the rather

restrictive assumptions associated with its approach.1

The LSV measure uses transaction data of a subset of investors to measure their

tendency to buy and sell stocks in crowds. To do so, it assesses the deviation of the

subgroup's observed buy propensity in each stock from its average buy propensity

across all stocks.

The fundamental criticism of this approach is that it does not account for the

information set of investors (Bikhchandani and Sharma, 2001; Cipriani and Guar-

ino, 2014). Under the null hypothesis of independent trading the LSV measure

assumes that the probability to observe a buy is equal to the average buy propen-

sity for all stocks. Coordination detected by the LSV measure can thus arise simply

because traders hold similar information sets that incline them to buy one stock

and sell another. Such coordination is dubbed spurious herding, as opposed to

intentional herding. Hence the LSV measure is commonly viewed as a necessary

but not su�cient signal of herd behavior.

We show, however, that the consequences are more severe. Not only is the LSV

measure a biased measure of the true deviation from independent trading, but it

also fails to correlate with intentional investor coordination.

Our adjustment to the LSV approach is a response to the fundamental criti-

cism. While we adhere to the comparison of buy propensities under actual and

independent trading, we allow the buy propensities under independent trading to

be stock-speci�c to account for the event that traders hold similar information sets

that recommend them to buy or sell the same stocks.

With this relaxing assumption the estimation of the independent buy propen-

sities becomes an empirical challenge, which we show can be dealt with by the

following two assumptions. We argue in line with microstructure models that the

�rst few trades after the start of trading are carried out independently conditional

on traders' information sets.2 Secondly, we assume that the buy propensities under

independent trading come from a common distribution. We show that this distri-

bution can be accurately estimated from the few independent trades even in small

cross-sections. This estimated distribution then provides the proper benchmark of

independent trading to compare the observed buy propensities with.

Due to these adjustments our measure brings the empirical approach to de-

tecting herding (and contrarianism) closer to its theoretical counter-part from the

1Contrarianism can be seen as the counter-part of herding. Instead of following the crowd,
contrarians act against it although they have information that tells them to trade in the same
direction as the majority of the traders, (see e.g. Park and Sabourian, 2011).

2See, for example, Proposition 7 in Avery and Zemsky (1998).
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observational learning literature (Bikhchandani et al., 1992; Avery and Zemsky,

1998; Park and Sabourian, 2011) in two respects. First, as we obtain the buy

propensities under independent trading from the early trades and compare it to

the subsequent trading behavior we capture the notion of switching behavior that

underlies herding and contrarianism (see Park and Sabourian, 2011). Second, as

we account for the distribution of information under the independent benchmark,

we stress that herding and contrariansm involve a change against the behavior

based only on private information.

Other modi�cations of the LSV measure have been proposed in the literature

to improve its performance. Frey et al. (2014) modify the LSV measure by taking

the squared instead of the absolute di�erence between the observed buy propen-

sities and the average one. Wylie (2005) corrects the LSV measure to account

for possible biases that can arise from short-selling constraints. Yet, since both

maintain the assumption of a constant buy propensity across all stocks under the

null our arguments apply to their approaches as well.3

Another measure related to LSV is the one proposed by Sias (2004). Like

Lakonishok et al. (1992), Sias (2004) uses the buy propensity of investors as the

underlying statistic. Yet, the Sias measure assesses whether buy propensities are

persistently high or low over time by measuring the correlation of buy propensities

between adjacent time periods for a �xed cross-section of stocks. Though we will

not compare our approach to the one of Sias (2004) directly, our arguments are

valid for his measure as well. By assessing the correlation of buy propensities,

the cross-sectional averages of the buy propensities constitute a part of the Sias

measure and, therefore, our arguments in favor of an approach that accounts for

the idiosyncrasy of these propensities apply here as well.

The disconnect of empirical measures on coordinated trading with the theoret-

ical literature has also been noted by Devenow and Welch (1996) and Cipriani and

Guarino (2014). To provide a rigorous measurement in line with the theoretical

de�nition of herding, the latter �t the parameters of a speci�c model of herd be-

havior to the data. Though we attempt to bring the empirical literature closer to

the theoretical idea of herding and contrariansm, we do not go as far as estimating

a speci�c model of herding.4 Our measure is not designed to explain why investors

3Statistically put, the assumption of equal buy propensities under independent trading stems
from the fact that the LSV measure tests whether the observed number of buys are more (or
less) dispersed than suggested by a binomial distribution. Consequently, our arguments generally
apply to any test on binomial dispersion (e.g. Cochran (1954), Tarone (1979)) that is applied
for the purpose of �nding deviations from independent trading.

4Note that the model of Cipriani and Guarino (2014) does not allow their agents to engage
in contrarian behavior and, thus, rules out the empirical possibility of contrariansm. In contrast,
due to our more general empirical approach our measure allows us to distinguish between herding,
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coordinate, but to provide a rather model-independent statistical tool that signals

when herding or contrarianism is present in the data and to provide an indirect

assessment of traders' observational learning strategies.5

The rest of the paper is organized as follows. Section 2.2 brie�y reviews models

of observational learning that set the scene for the type of investor coordination

that we want to measure. Section 2.3 presents the measure of investor coordination

proposed by Lakonishok et al. (1992) and pinpoints its shortcomings to be applied

as a measure of the type of herding and contrarianism that we are interested in.

It follows the introduction of our new measure that derives from two adjustments

of the LSV measure. Section 2.4 provides an evaluation of our new measure and

LSV by means of simulations and con�rms both the ability of our measure to

detect herding and contrarian behavior and our criticism of the LSV measure to

not achieve the same. Finally, Section 2.5 concludes with a few remarks on how

to best apply our measure to the data.

2.2 Models of Observational Learning, Contrarian

and Herd Behavior

We rely on a particular class of models that is rooted in the observational learning

literature to de�ne the speci�c terms of dependent trading that we want to mea-

sure. We will, therefore, brie�y introduce the general model framework to help

us understand why existing measures of coordinated trading may not be suited to

measure the particular type of herding and contrariansm that is discussed in this

literature and how we may be able to adjust these measures accordingly to achieve

that goal.

The literature on herding has been sparked by the seminal works of Banerjee

(1992), Bikhchandani et al. (1992) and Welch (1992) where agents learn an un-

known value from the observed decisions of others and a private signal. Particularly

the model of Bikhchandani et al. (1992) has found numerous implementations in

experimental studies (see Weizsäcker, 2010, for a meta-study) and has been ad-

vanced by a Glosten and Milgrom (1985) type trading mechanism to extend the

contrarianism and independent trading.
5For a better understanding of potential drivers for investor coordination, we refer the reader

to the rich theoretical herding literature. The seminal works of Bikhchandani et al. (1992)
and Banerjee (1992) demonstrate that herding is triggered by information externalities that a
decision by one agent imposes on the decisions of the subsequent agents. Reputational concerns
of �nancial decision makers are identi�ed as cause of herd behavior by, e.g., Scharfstein and
Stein (1990), Graham (1999) and Dasgupta et al. (2011). So-called investigative herding has
been discussed by Froot et al. (1992) and Hirshleifer et al. (1994).
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observational learning literature to a �nancial market context where prices ag-

gregate information (see, e.g., Avery and Zemsky, 1998; Cipriani and Guarino,

2014; Park and Sabourian, 2011). The general setup of these types of models is as

follows.

Traders trade an asset of unknown fundamental value with a market maker.

Traders' decisions to buy or sell the asset is based on their private information on

the asset's value and the actions and prices they observe before they trade. The

market maker who posts competitive bid and ask quotes learns the asset's value

from the order �ow as well, but is not endowed with private information.

Three scenarios are possible. (1) Prices update with each incoming trade at a

similar rate as traders update their valuation of the asset when they learn from a

new trade. In this case, traders always follow their private signal such that each

signal gets incorporated into the price. (2) Prices update too sluggishly relative to

the rate at which traders update their valuation into the direction of the preceding

trades. In this case, traders may engage in herd behavior de�ned as a state where

traders buy (sell) irrespective of their signal when the majority of traders bought

(sold) the asset. (3) Prices update too quickly relative to the rate at which traders

update their valuation into the direction of the preceding trades. In this case,

traders may engage in contrarian behavior where traders buy (sell) irrespective of

their signal when the minority of traders bought (sold) the asset.6

The importance of the de�nitions of herding and contrarian behavior in these

models is that they go beyond a mere reference to the action of the majority

or minority of traders. By linking the investor behavior to actions that involve

private information the literature stresses the potential of temporary states of

informational ine�ciency caused by herding or contrarianism.

Implementing an equivalent empirical de�nition is inherently di�cult due to

private information being unobservable, which is why empirical measures typically

equate herd behavior with the action of a crowd. We will argue, however, that

we can make use of the predictions of these trading models to bring the empirical

approach closer to the above de�nitions of herding and contrariansm. If neither

herding nor contrarian behavior arises and if there are no fundamental changes to

the information sets of investors, the fraction of buyers and sellers are stationary

variables. Under herd behavior, on the other hand, the probability of extreme

numbers of buys or sells increases relative to a state without herding due to its self-

6Park and Sabourian (2011) show in an import contribution that the existence of herding,
as well as contrarian behavior, depends on the shape of traders' signals. Private information
that weights the likelihood of extreme outcomes more than that of moderate ones encourages
herd behavior, while private information that favors moderate outcomes encourages contrarian
behavior. Their theoretical predictions have been con�rmed experimentally by Park and Sgroi
(2012, 2016).
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reinforcing e�ect, whereas under contrarian behavior the probability of extreme

numbers of buys and sells decreases due to the self-defeating feature of contrarian

behavior.

2.3 Measuring Investor Coordination

2.3.1 LSV � A Measure of Crowd Behavior

The most prominent measure of investor coordination that is based on transaction

data is the LSV measure of Lakonishok et al. (1992). The measure is computed for

a subset of investors and selection of stocks over any desired time-horizon, which,

for our purpose, we set to a day. For each stock, the LSV measure is given by

LSVi = |bri − p| − AFLSV
i , (2.1)

where bri = Bi/Ti is the buy-ratio in stock i = 1, . . . , I, i.e. the number of buys

over the number of trades of the set of investors in stock i, and p is the expected

proportion of traders buying estimated by p̂ =
∑

iBi/
∑

i Ti. AF
LSV
i is an adjust-

ment factor given by

AFLSV
i := Eζk |

k

Ti
− p| =

Ti∑
k=0

ζ(k|Ti, p)|
k

Ti
− p| (2.2)

where ζ(k|·) is the binomial distribution.7

Hence, LSV measures investor coordination by the deviation of buy-ratios from

the average one. The adjustment factor accounts for the random deviation of the

buy-ratios that we would expect even if investors do not coordinate. The design

of the adjustment factor, thereby, essentially entails the view that the number of

buys under independent trading is binomially distributed with the same success

probability p for each stock.

The empirical de�nition of herding o�ered by the LSV measure is, thus, one

of crowd behavior. If a subgroup of investors buys one stock 60% of the time

and another one 40% of the time, they tend to buy and sell the same stocks and

the LSV measure would accordingly indicate that 10% of the traders engaged in

herd behavior (ignoring the adjustment factor for the sake of simplicity). As such,

however, the LSV measure does not account for the coordination of investors that

7A closed form solution for the expectation is given by 1
Ti
Eζk |k − pTi| = 1

Ti
2(1 −

p)Ti−bTipcpbTipc+1(bTipc+ 1)
(

Ti

bTipc+1

)
(see Diaconis and Zabell, 1991).
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we would expect if traders base their decisions on information that they acquired

for di�erent stocks and which is likely to be correlated across investors.

Yet, accounting for the information that investors have prior to the trading

process is an integral part of the herding de�nition provided above. Only by

benchmarking the actual trading behavior against the behavior that would result

from trading solely on private information, the de�nition explicitly links herding

behavior to informational ine�ciencies.

Trading behavior that leads to price ine�ciencies can, of course, also arise from

trading that is based solely on private information.8 However, by not controlling

for either source of the observed coordination, private information or information

inferred from the trading process, it is not possible to link the empirically measured

coordination to one of the sources and, hence, to point to the root of a potentially

destabilizing behavior.

Finally, note that the empirical notion of investor coordination o�ered by LSV

does not leave room for the counter-part of herding, contrarian behavior. To best

see this, consider the case where we have extremely high trading activity such that

the adjustment factor goes to zero.9 Then, the minimum attained by the LSV

measure is zero, while any deviation from the average buy-ratio is interpreted as

herding.

If, on the other hand, we would account for coordination due to private in-

formation, we can distinguish between herding and contrarianism in line with the

theoretical notion. Taking up the above example again, had we known that ini-

tially 70% of traders intended to buy one asset and to sell the other one, the �nal

coordination of 60% of traders buying the former and selling the latter, is rather

in line with contrarian tendencies instead of herd behavior.

2.3.2 A New Measure that Accounts for Investors' Stock-

Speci�c Information

Based on the previous discussion, we propose an inconspicuous but profound mod-

i�cation to the LSV measure by allowing the expected proportion of traders buying

to be stock-speci�c:

L̃SV i = |bri − p̃i| − AF L̃SV
i (2.3)

8See, for example, Froot et al. (1992) for a model of herding on information and Enke and
Zimmermann (2018) for an experimental account of neglecting correlation between sources of
information.

9The mean absolute deviation of a binomially distributed random variable is upper bounded
by its standard deviation (Blyth, 1980). It follows that AFLSVi = Eζk |k − pTi|/Ti ≤√
p(1− p)/Ti, which goes to zero for Ti →∞.
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where AF L̃SV
i is modi�ed accordingly.

This modi�cation bears an empirical challenge as the stock-speci�c buy-ratio

under independent trading is not observable. A second adjustment to the LSV

measure, however, makes our measure operational and allows us to distinguish be-

tween herding and contrarianism. The adjustment follows from two assumptions,

the �rst of which de�nes the range of data that we can use to estimate the inde-

pendent buy-ratios and the second one allows us to use that data in a meaningful

fashion.

Assumption 2.1. The �rst few τi ∈ N trades in any stock i on a particular day

are carried out independently.10

In a non-trivial sense Assumption 2.1 is always true. Starting with the �rst

trade, no other trade could have been observed that could have in�uenced the

decision of the �rst trader.11 Moreover, market microstructure theory tells us

that at the outset of the trading process deviations from independent trading are

less likely to occur (see Proposition 7 in Avery and Zemsky, 1998), which is also

intuitive. For a trader to change her opinion, there has to be a su�cient amount

of information that she can infer from preceding trades. This is unlikely to be the

case if only a few trades have been executed.

Statistically put, this means that given the number of trades in stock i, Ti,

there exists a τi, 1 ≤ τi ≤ Ti, such that the number of buys in stock i until τi is

Bτi
i |p̃i ∼ Bino(τi, p̃i). An estimator of p̃i would thus be given by Bτi/τi. However,

τi should be chosen as low as possible. If based on small τi, estimators such as

Bτi/τi are too noisy to conduct meaningful inference on them. Hence, we add the

following assumption.

Assumption 2.2. On each day, the buy-ratios under independent trading p̃i are

drawn from a common distribution. More speci�cally, we assume p̃i
iid∼ Beta(α, β).

This assumption is equivalent to the number of buys under independent trading

being iid beta-binomially distributed, i.e. Bτi
i

iid∼ Beta-Bino(τi, α, β). The impor-

tance of assuming a common distribution for the independent buy-ratios is that we

can now utilize the size of the cross-section to obtain a proper benchmark of the

trading behavior that we would expect under independent trading. We will later

show numerically that the distribution of independent buy-ratios can be estimated

10Be reminded that independence here means independence conditional on the private infor-
mation set of the traders.

11The �rst trade is always the one that the researcher de�nes to be the �rst trade. Anything
observable that happened before that trade will enter the information sets of the traders and,
thus, be part of their priors.
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accurately, even though it is based on only a small amount of data considering the

individual stock.

The particular choice of the Beta distribution for the probability of a buy under

independent trading is not strictly necessary for the de�nition of our measure of

dependent trading. Any distribution that can be consistently estimated will work

(subject to small sample performance). The Beta distribution, however, presents

itself as a natural candidate. In Bayesian inference on a Bernoulli distributed

random variable, for example, the Beta distribution is often chosen as a prior over

the success probability due to its conjugacy property (Bishop, 2009, p. 71) and

the Beta-Binomial distribution and its generalization the Dirichlet-Multinomial

distribution if often chosen to model overdispersion in count data, similarly to our

application, (e.g. Neerchal and Morel, 1998). More importantly, however, we �nd

empirical support for our assumption which is presented in the Appendix and in

more detail in Boortz (2016).

Using these assumptions we can now add our second modi�cation to the LSV

measure by which we obtain our new measure for investor coordination, the ex-

pected deviation from independent trading, de�ned by

Hi = Efp |bri − p| − AFi

=

∫ 1

0

f(p|α, β)|bri − p| dp− AFi
(2.4)

where f(·|α, β) is the Beta density. AFi is an adjustment factor to center Hi over

zero if in fact all trades were carried out under independent trading. It is given by

AFi = EfpEgk |
k

Ti
− p|

=

∫ 1

0

f(p|α, β)

Ti∑
k=0

g(k|Ti, α, β)| k
Ti
− p| dp

=

∫ 1

0

f(p|α, β)

∫ 1

0

f(p̃|α, β)

Ti∑
k=0

ζ(k|Ti, p̃)|
k

Ti
− p| dp̃ dp,

(2.5)

where g(k|·) is the Beta-Binomial density. Note that AFi corrects for two sources
of randomness. First, as for the LSV measure, we observe only a �nite number

of trades. That is, even if each single trade has been drawn from a Bernoulli

distribution with the success probability equal to the independent buy-ratio, there

is a positive change that the observed buy-ratio is not equal to the independent

one. In addition, the true independent buy-ratio p̃ is itself a random variable and

will, therefore, deviate from most hypothesized p ∈ (0, 1).
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2.3.3 Estimating Hi

To estimate Hi we need to estimate α and β. According to our assumptions we can

obtain these estimates from a maximum-likelihood estimation of the Beta-Binomial

distribution on the data {Bτi
i , τi}Ii=1. Since the maximum-likelihood estimator of

the Beta-Binomial distribution is consistent (see Garren, 2004, p. 240) and because

Hi is a composition of continuous functions in α and β, the continuous mapping

theorem implies that Hi is consistently estimated as well.12

Finally, to put our method into action requires a choice of τi. Pointing to the

precise moment when traders start to go against their private information amounts

to uncovering the latent private information itself. In line with Assumption 2.1,

however, a conservatively small choice of τi, but large enough for the Beta-Binomial

estimation to make any sense should su�ce.13 By means of simulation, we �nd

that τi = 10 is already large enough even for relatively small cross-sections to

provide good estimates. Details are presented below.

2.3.4 Interpretation of H and a Comparison to LSV

The LSV measure is typically interpreted at the cross-sectional level as it is ba-

sically a test on binomial over-dispersion of the cross-sectional buy-ratios. If the

buy-ratios are more dispersed than suggested by the Binomial distribution, the

result is interpreted as a sign of herd behavior. As we argued before, binomial

over-dispersion, however, can arise simply because traders use similar information

to make their trading decisions, and a measure of binomial over-dispersion does

not leave room for detecting contrarian behavior.

Similarly, given our distributional assumptions, our approach measures beta-

binomial over- or under-dispersion and should be interpreted at the cross-sectional

level as well. In fact, our approach can be seen as a generalization of the LSV

approach that collapses to LSV if the assumptions underlying its approach are

ful�lled, but provides generally very di�erent results if the assumptions of LSV

12Note that a similar consistency result can be derived if one does not want to restrict oneself
to a particular family of distributions for the independent buy-ratios and uses kernel density
estimation instead. A multitude of consistency results is available for kernel density estimators,
see e.g. Parzen (1958), Silverman (1978) and Epanechnikov (2006).

13The precise meaning of �small�, hereby, depends on the empirical context regarding, e.g.
sampling frequency and the de�nition of a trade. One may be interested in counting each
transaction as a single trade, others may be interested in aggregating single transactions into
the orders that induced them, or even aggregating transactions of single traders into their net-
positions over a certain time interval. Those choices a�ect the amount of data available at any
point after the start of trading and, thus, after information starts to accumulate in the market.
Note that these choice may not only a�ect the proper choice of τi, but also the proper choice for
the distribution of the independent buy-ratios.
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are to restrictive.14

Importantly, our modi�cations to the LSV measure allow for profoundly dif-

ferent interpretations that are more in line with our understanding of herding and

contrarian behavior. The dispersion under the null-hypothesis is estimated from

the early independent trades and provides the benchmark for what dispersion

should be expected if trading continued independently and under similar informa-

tion sets as the early trades. Overly dispersed buy-ratios compared to the bench-

mark distribution (H > 0) are interpreted as herd behavior, while under-dispersed

buy-ratios as contrarian behavior (H < 0).

These interpretations follow from general implications of these types of behav-

ior. Under herd behavior the opinions of traders are updated more quickly in the

direction of the trades of their predecessors than is the price, hence increasing

the proportion of buyers if there were more buyers than sellers and increasing the

proportion of sellers if there were more sellers than buyers. That is, we would

expect the buy-ratios to become on average more extreme under herding than

under independent trading. In contrast, under contrarian behavior opinions are

updated more sluggishly in the direction of preceding trades than is the price. This

sluggishness then leads to a decrease in the proportion of buyers if the majority

of traders bought the stock, and to an decrease of the proportion of sellers if the

majority of traders sold the stock. Hence, we would expect the buy-ratios to be on

average less extreme under contrarian behavior than under independent trading.

As the LSV measure uses all trades of the respective trading day to estimate

the expected buy-ratio under independent trading, the observed buy-ratios are

always dispersed around the center of the hypothesized Binomial distribution.15

An equivalent observation does not hold for our measure. Because we use only the

�rst few trades of a day for the estimation of the distribution of the independent

buy-ratios, the observed buy-ratios computed from all trades over the day may

not be dispersed around the center of the estimated Beta distribution.

For example, we might have estimated a Beta distribution that is centered

over 0.5 (i.e. α ≈ β), yet the observed buy-ratios have all increased to a higher

value, say, 0.8. Or conversely, we might have estimated a Beta distribution that is

centered over 0.8, but the observed buy-ratios cluster around 0.5. In both cases we

would probably �nd an average H greater than zero, but these examples do not

readily �t into the above description of herd behavior. While one might interpret

the former example as an extreme case of market-wide buy-herding and the latter

14A formal proof this claim is provided in the Appendix.
15Note that this implies that the LSV measure assumes that positive and negative deviations

from independent trading have to cancel each other out, otherwise the estimated independent
buy-ratio is biased towards the direction, buying or selling, of the dependent trades.
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as a case of contrarian behavior, we would caution to follow such interpretations.

Instead, we would recommend to treat such examples as special cases. Such shifts

in the distribution of buy-ratios suggest the occurrence of an external event that

changed the general information structure. While it is interesting in its own right

to analyze such cases in order to study the reaction of traders' behavior to changes

in the overall environment, they say probably little about the general information

updating procedure of traders.

2.4 Estimation Performance of Ĥ and LSV

2.4.1 Estimation Accuracy

To evaluate the estimation accuracy of our new measure and to provide a quanti-

tative comparison to the LSV measure we make use of Monte Carlo simulations.

Note that we do not need to simulate a fully-�edged market microstructure model

with decision rules and a price mechanism. Instead we can simply make use of the

general concept of herding and contrarian behavior, namely that the former leads

to an increase and the latter to a decrease in the probability of observing the same

action as the one in the past. Doing so not only greatly reduces the simulation

complexity compared to simulating a herding model such as the one of Park and

Sabourian (2011), but also provides us with more control over the degree of the

deviation from the independent trading benchmark.

To generate the trade data we use Friedman's urn model (Friedman, 1949),

which bears a close analogy to the concepts of herding and contrarian behavior.

Imagine an urn that contains St silver balls and Bt blue balls at time t. One ball

is drawn at random and then replaced, while h balls of the same color as the one

that was drawn and c balls of the opposite color are added to the urn.

For h, c = 0, the fraction pt ≡ Bt/(Bt + St) remains constant for all t and

the number of blue balls drawn after t trials follows a Binomial distribution, i.e.

Bt ∼ Bino(t, p). This setup matches our independent trading scenario where Bt

and St are the number of buys and sells after t trades. A single urn represents a

single stock and the stock-speci�c probability to observe a buy, p, is drawn from a

Beta distribution. Hence, the number of buys follows a Beta-Binomial distribution.

For h > 0 and c = 0, the fraction of blue balls increases when a blue ball

is drawn and the fraction of silver balls increases when a silver ball is drawn.

This matches our concept of herd behavior where the probability to observe a

particular action, buy or sell, increases with the number of the same actions in the

past. Freedman (1965) shows that pt converges almost surely to a limiting random
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variable which has a Beta distribution with parameters B0/h, S0/h, where B0 and

S0 are the initial number of blue and silver balls, respectively. In our simulation,

B0 and S0 will be determined by the distribution of the independent buy-ratios.

Hence, with the number of buys, Bt, in each stock being governed by a Beta-

Binomial distribution with an additional Beta prior on the initial condition, we

see over-dispersion in Bt compared to the Beta-Binomial distribution.

For c > 0 and h = 0, on the other hand, the fraction of blue balls decreases

when a blue ball is drawn matching our idea of contrarian behavior. Freedman

(1965) shows that pt converges almost surely to 1
2
. That is, no matter what the

initial probability to observe a buy, in the limit this probability converges to 0.5

leading to under-dispersion in the number of buys after t trades compared to the

independent trading setup.

The precise simulation setup is as follows. We choose two di�erent sizes for the

cross-section, I ∈ I = {30, 500}, and two di�erent numbers of total trades in each

stock, T ∈ T = {100, 1000}. We draw the stock-speci�c probabilities of observing

a buy when there is independent trading from a Beta distribution with parameters

(α, β) ∈ P = {(5, 5), (30, 30)}. With α = β we ensure that the Beta distribution

is centered over 0.5 following our idea of having a very heterogeneous set of stocks

without a particularly strong market trend of buying or selling. The larger α and

β the less dispersed the Beta distribution.

We let the trades evolve independently for τ = 10 trades, after which trades

are drawn according to Friedman's urn model. Friedman's urn model requires that

we set initial B0 and S0. These are set to pT and (1 − p)T , respectively, where
p is the probability to observe a buy if traders trade independently. Hence, the

probability to observe a buy under dependent trading (t > τ) evolves according to

pt = (pT+h
∑t

j=0 1{aj=buy}+c
∑t

j=0 1{aj=sell})/(T+t(h+c)), where aj is the action,

buy or sell, at time j. For simulating herd behavior we set c = 0 and h = nk for

n ∈ N = {1, 2, . . . , 9} and k ∈ K = {1, 10, 100}. To simulate contrarian behavior

we set h = 0 and c = nk, where n ∈ N = { 1
29
} and k ∈ K = {0, 1, . . . , 29}. c

in the contrarian trading setup is chosen to be rather small compared to h in the

herding setup, because pt converges quickly towards 1
2
for larger c. Each setup in

I × T ×N ×K is repeated 5000 times for both herding and contrarian behavior.

For each repetition we compute the cross-sectional mean of H, its estimator, Ĥ,

and the cross-sectional LSV .

Figure 2.1 and 2.2 present the results. On the left axis, the �gures display

the means across the 5000 repetitions. On the right axis, the �gures show the

root-mean-squared error of the cross-sectional means Ĥ and LSV across the 5000

simulations using H as the target value.
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Figure 2.1: Estimation accuracy � herding

Notes: We simulate trade data by using Friedman's urn model. The �rst τ = 10 trades evolve
as under independent trading where the probability to observe a buy, p, is drawn from a Beta
distribution with parameters (α, β) ∈ {(5, 5), (10, 10)}. For t > τ , the probability to observe a
buy evolves according to pt = (pT + h

∑t
j=0 1{aj=buy})/(T + th), where aj is the action, buy or

sell, at time j and h = nk for n ∈ N = {1, 2, . . . , 9} and k ∈ K = {1, 10, 100}. Each setup in
I × T × N × K is repeated 5000 times and for each repetition we compute the cross-sectional
mean of H, its estimator, Ĥ, and the cross-sectional LSV . The root-mean-squared error uses
the true cross-sectional H as target value.

We see that the LSV measure shows a considerable upward bias across the

board increasing slightly for stronger herd behavior and decreasing slightly for

stronger contrarian behavior. Naturally, the performance of the LSV measure im-
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Figure 2.2: Estimation accuracy � contrarian behavior

Notes: We simulate trade data by using Friedman's urn model. The �rst τ = 10 trades evolve
as under independent trading where the probability to observe a buy, p, is drawn from a Beta
distribution with parameters (α, β) ∈ {(5, 5), (10, 10)}. For t > τ , the probability to observe a
buy evolves according to pt = (pT + c

∑t
j=0 1{aj=sell})/(T + tc), where aj is the action, buy

or sell, at time j and c = nk for n ∈ N = { 1
29} and k ∈ K = {0, 1, . . . , 29}. Each setup in

I × T × N × K is repeated 5000 times and for each repetition we compute the cross-sectional
mean of H, its estimator, Ĥ, and the cross-sectional LSV . The root-mean-squared error uses
the true cross-sectional H as target value.

proves as the Beta-Binomial distribution moves towards the Binomial distribution,

i.e. increasing α and β.

Our measure shows only a small bias (slightly upwards for α, β = 5 and slightly
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downwards for α, β = 30), even for cross-sections as small as 30 stocks. Even

though the bias worsens for larger α and β, our measure consistently outperforms

the LSV. For already moderately sized cross-sections, the estimated measure is

almost indistinguishable from the true one.

The total number of trades does not have a decisive e�ect on the accuracy of

our measure, since its accuracy is determined �rst and foremost by the few early

independent trades. The total number of trades, however, has an e�ect on the

accuracy of the LSV measure due to its e�ect on the adjustment factor. Since

the adjustment factor decreases with increasing number of trades, the upward bias

increases for more intensively traded sets of stocks.

The overall impression obtained from Figure 2.1 and 2.2 suggests that while

biased the LSV measure at least favorably correlates with H. This is indeed the

case for the stark simulation setup presented here. The severity of the bias in

the LSV measure, however, becomes more apparent in a more �exible simulation

setup, in particular, when the degree of herding or contrarian behavior correlates

with the dispersion in the independent buy-ratios.

2.4.2 Correlation between Ĥ, LSV and H

Herding and contrarian behavior are usually viewed as events that relate to the

overall trading environment. For example, herding models emphasize the role of

uncertainty for the existence of herding and contrarian behavior and it is, there-

fore, often hypothesized that �greater uncertainty� leads to increased herding. In

this section, we, therefore, want to analyze the performance of our measure and

that of the LSV measure in terms of their correlation with the true (expected) de-

viation from independent trading when the overall level of herding and contrarian

behavior depends on the simulation setup. The dependence is chosen in order to

demonstrate the potential severity of the bias in the LSV measure for what might

be seen as a minimum requirement of a measure of coordinated trading, namely

that it correlates with the degree of the deviation from independent trading.

We simulate 250 trading days for a cross-section of 200 stocks. For each stock-

day the number of trades is drawn uniformly from T = {50, 51, . . . , 500}. The

independent buy-ratios are drawn from a Beta distribution with the parameters

α, β being drawn each day from a Uniform distribution on [2, 30]. Again, we set

α = β to have an expected independent buy-ratio of 1
2
. On each day, trading

evolves according to the independent buy-ratios with probability 0.5. If a trading

day is a�ected by dependent trading, the �rst τ = 10 trades are conducted as

under independent trading, after which trades are generated by the Friedman urn
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Figure 2.3: Correlation with H

Notes: We simulate 250 trading days for a cross-section of 200 stocks. For each stock-day the
number of trades is drawn uniformly from T = {50, 101, . . . , 500}. The independent buy-ratios
are drawn from a Beta distribution with α ∼ U[2, 30] and α = β. With probability 0.5 the day
evolves under independent trading. If a trading day is a�ected by dependent trading, with equal
change of herding or contrarianism, the �rst τ = 10 trades are conducted as under independent
trading, after which trades are generated by the Friedman urn model. In case of a herding
day we set h = 10(α − 2)/(30 − 2) and c = 0, whereas for a contrarian day we set h = 0 and
c = 1− (α − 2)/(30− 2). This �gure plots the histograms of the correlation between the cross-
sectional average of LSV and H, as well as of Ĥ and H for 500 simulations. The vertical red
line indicates the mean correlation.

model with equal chance that the day will be governed by herding or contrarian

behavior.

The parameters h and c of the Friedman urn model governing the deviation

from independent trading will depend on the dispersion of information. The degree

of herding will negatively correlate with the dispersion of the Beta distribution,

capturing the idea that less precise information on the part of traders regarding

the value of an asset (i.e. buy-ratios under independent trading close to 0.5) are

associated with a stronger tendency to engage in herd behavior. The degree of

contrarian behavior, on the other hand, positively correlates with the dispersion
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of the Beta distribution.16 More precisely, in case of a herding day we set h =

10(α − 2)/(30 − 2) and c = 0, whereas in case of a contrarian day we set h = 0

and c = 1− (α− 2)/(30− 2).

For each of the 250 trading days we compute the cross-sectional average of

LSV , Ĥ and H. We then compute the correlation between the daily measures of

LSV and H, as well as between those of Ĥ and H. This is repeated 500 times.

Figure 2.3 plots the histograms of these 500 correlations.

The �gure shows that the correlation between LSV and the true measure of

dependent trading is generally weak. The mean correlation across the 500 simula-

tions is 0.38. That is, high LSV measures are only a weak indication of increased

herd behavior. The correlation between Ĥ and H, on the other hand, is expectedly

strong with a mean correlation of 0.85. A perfect correlation is hampered by the

estimation uncertainty of α, β for �nite samples.

2.5 Conclusion

We propose a new measure of herding and contrarian behavior to provide an

empirical account of these terms as they are discussed especially in the market

microstructure literature. This literature makes the link of coordinated behavior

to potential �nancial market ine�ciencies explicit by benchmarking the trading

behavior that is subject to informational externalities of preceding trades against

a counter-factual environment where traders would not have observed the trades

of others. An empirical approach to this de�nition of investor coordination is,

therefore, particularly worthwhile.

We build on the classical measure of investor coordination proposed by Lakon-

ishok, Shleifer, and Vishny (1992) and adjust it in accord with general implication

from the market microstructure literature. We show that our measure of buy-ratio

dispersion accurately signals deviations from independent trading in the directions

of herding (H > 0) and contrarian behavior (H < 0). Contrasting the performance

of our measure to that of LSV, we �nd that the LSV measure provides very di�er-

ent results and should not be applied for measuring coordinated investor behavior

of the type de�ned in the microstructure literature.

Since we do not provide an empirical application of our measure in this paper,

a few remarks in that direction are in order. In principal, our measure can be

16Note that this is, in a sense, anyway the case, because contrarian behavior is bounded the
closer to zero the less dispersed the Beta distribution. If we would let c correlate positively with
(α, β), the correlation between LSV and H would be strongly negative, because it is determined
by the lower bound of H and the behavior of the LSV bias in relation to α and β.
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applied following the various applications of the LSV measure as long as one has

an appropriate sample from which one can estimate the distribution of independent

buy-ratios. Given, however, our focus on a di�erent type of investor coordination

than the one that underlies the LSV measure, we would recommend that the

empirical application should di�er from the typical example of the LSV approach

(e.g. Wermers, 1999; Brown et al., 2014) as well.17

Our measure derives from the observational learning literature to capture the

systematic impact, if any, of preceding traders on the trading decisions of subse-

quent traders. To that end, our measure is best applied at high frequency (e.g.

daily), as in the simulated examples provided above, using the transactions of the

active side of the complete order �ow.18 Ideally, the data would allow to iden-

tify the parties behind a transaction to mitigate e�ects of order-splitting on the

measurement. An application of our measure following these suggestions is left for

future research. We present, however, a �rst application that goes into a similar

direction in Boortz (2016, chap. 4).

17The typical example is one of low-frequent transaction data of a speci�c investor group (e.g.
quarterly equity holdings of mutual funds).

18That is, all trades that drive the price. These are typically assumed to be market orders
or marketable limit orders, which are the counter-part of what is usually modeled as a market-
maker.
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Appendix 2

2.A Empirical Evidence on the Distribution of In-

dependent Buy-Ratios

A �rst empirical application of our measure in collaboration with co-author Puriya

Abbassi is presented in Boortz (2016, chap. 4). We will borrow some of our results

presented there to underline the validity of our assumption on the Beta-Binomial

distribution for the early independent buys.

We apply our measure to transaction data of Prime Standard stocks traded on

XETRA during 2008.19,20 The data allow us to distinguish between transactions

conducted by trading institutions (i.e. institutions permitted to trade directly on

any German exchange) for their own account and for their customers. Accordingly,

we apply our measure to both groups separately. We use for both groups their

market- and marketable limit-orders only, obtained by trade classi�cation (see

chap. 3), since non-marketable limit-orders enter the order book before they are

executed and, thus, cannot be in�uenced by the trades of others that were executed

in the mean time.

Because we are able to identify the trading institution behind each transac-

tion, we summarize the trades for their own accounts into net-positions. For the

customer trades, on the other hand, we count each trade individually. While one

might debate the sensibility of one approach versus the other, it is important to

note that our evidence on the validity of the Beta-Binomial distribution is robust

to these choices.
19Prime Standard is a class of stocks that have to ful�ll certain liquidity requirements and

transparency standards set up by Deutsche Börse. For example, to be listed in the Prime
Standard, companies have to submit quarterly reports in addition to half-year and year-end
reports. The Prime Standard contains the most prominent German indices such as DAX, MDAX
or TecDAX.

20XETRA is an electronic trading system that allows investors from all over the world to trade
all stocks listed on the Frankfurt Stock Exchange from 9.00h to 17.30h CET. It is the largest
stock exchange in Germany accounting for a market share of > 90%.
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(a) Customer trades (b) Institutional trades

Figure 2.A1: P-values from Pearson's Goodness-of-Fit test

Notes: This �gure shows histograms of the p-values from Pearson's GoF tests. The test is applied
to 252 estimated Beta-Binomial distributions. Each test tests whether the observed distribution
of the number of buys from the �rst 10 trades �ts to what we should expect under the estimated
distribution.

For each of the 252 trading days in 2008 we take the �rst 10 trades (individual

transactions or net-positions depending on the investor group) in each stock to

estimate the Beta-Binomial distribution in order to uncover the distribution of

the expected independent buy-ratios over the cross-section. To test the validity of

our distributional assumption we apply to each estimated distribution the Pearson

Goodness-of-Fit test (GoF) with the usual rule of thumb for the minimum number

of observations in each bin. If all 252 test-statistics were drawn from the null

hypothesis of beta-binomial distributed buys, the p-vales from the GoF tests would

be uniformly distributed.

Figure 2.A1 shows histograms for the p-values from the GoF tests for both

investor groups. A Kolmogorov-Smirnov test cannot reject the null that the 252 p-

values of each group are uniformly distributed. The p-values from the Kolmogorov-

Smirnov tests are 0.28 for the group of customer trades and 0.31 for the group of

proprietary trades. This provides strong support for our assumption that the

early buys follow a Beta-Binomial distribution. Testing the �t of the Binomial

distribution, on the other hand, generally rejects the binomial distribution as an

appropriate description of the data. More than 95% of the 252 tests from each

group reject the null at a signi�cance level of 0.05.
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2.B H � A Generalization of LSV

PROPOSITION 2.1. If the expected buy-ratios under independent trading are

the same for all stocks and deviations under dependent trading cancel each other

out over the considered cross-section of stocks, then our approach and the LSV

approach asymptotically render the same degree of dependent trading, i.e.:

If p̃i ≡ p∗ ∀i and
∑I

i=1 εi = 0 where εi = bri − p̃i, then plim
I→∞

Ĥi = plim
I→∞

L̂SV i,

where L̂SV i is the estimated LSV measure.

Proof. If p̃i ≡ p∗ ∀i, then in distributional terms, we have p̃i ∼ δp∗ iid, where

δ· is the dirac-measure. Noting that lim
α,β→∞

Beta(α, β) = δ· and re-invoking the

consistency of the maximum-likelihood estimator, we infer that α̂, β̂ →
I→∞

∞, and

lim
I→∞

α̂

α̂ + β̂
= lim

I→∞

∑I
i=1B

τi
i∑I

i=1 τi
= p∗.

As a consequence, we have that fp(α̂, β̂) →
I→∞

δp∗ and, hence,

plim
I→∞

Ĥi = Ef̂p |bri − p| − ÂF i

= |bri − p∗| −
Ti∑
k=0

(
Ti
k

)
(p∗)k(1− p∗)Ti−k| k

Ti
− p∗|. (2.6)

Noting that
∑I

i=1 εi = 0 impliest plim
I→∞

∑
iBi∑
i Ti

= p∗, we conclude that the last line

of Equation (2.6) equals plim
I→∞

L̂SV i, which is the desired result.

Proposition 2.1 states that our measure is equal to the LSV measure if the LSV

assumptions hold. The reverse of the statement is also true for most of the cases:

If the LSV assumptions do not hold, our measure H is generally very di�erent

from the LSV measure.21

Two additional remarks are in order. First, the result of Proposition 2.1 gen-

eralizes to any distributional assumption for the p̃i, as long as we can estimate the

21One could, however, construct unlikely scenarios, where the reverse is not true. To see this,
consider some Ti and α, β < ∞. Hi attains it's minimum if bri = Median(p̃i). This minimum
is less than minus the adjustment factor of the LSV measure, i.e. < −AFi. Now note that
LSVi = −AFi if for any c ∈ (0; 1), the observed buy ratios are bri ≡ c for all i. Moreover,
∃bri ∈ (0; 1) such that Hi > 0. Since Hi is also continuous in bri, the intermediate value theorem
implies that ∃c∗ ∈ (0; 1) such that Hi = −AFi if bri = c∗ and, thus, Hi = LSVi even though the
conditions of Proposition 2.1 are not met.
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distribution consistently. Second, Proposition 2.1 also holds for the cross-sectional

averages of Ĥi and L̂SV i.

2.C Beta Distribution Fact Pack

This section provides some facts about the Beta distribution. For full details see

Gupta and Nadarajah (2004).

The Beta distribution is a continuous distribution with support [0; 1]. It is,

thus, well-suited to model the realization of buy-ratios. The Beta distribution has

two parameters α > 0 and β > 0 that determine the shape of it's density. The

Beta density is given by pα−1(1− p)β−1/
∫ 1

0
uα−1(1− u)β−1du.

The expected value of the Beta distribution is given by α/(α + β). The

variance is equal to (αβ)/[(α + β)2(α + β + 1)] and the skewness is given by

2(β − α)
√
α + β + 1/[(α + β + 2)

√
αβ].

Figure 2.C1 illustrates how di�erent parameters α, β a�ect the distributional

shape. The larger α, β, the less disperse the distribution and vice versa. For

α = β, the distribution is symmetric around its mean 0.5. For α = β = 1, the

Beta distribution is identical with the Uniform distribution on [0; 1].

The cyan dashed graph (α = 3, β = 5) shows a right skewed distribution, while

the purple dotted-dashed line (α = 3, β = 0.5) shows a strongly left skewed Beta

distribution. If both parameters are less than 1, the density becomes u-shaped.

Finally note, that if the success probability of a binomially distributed random

variable X is beta distributed, then X is beta-binomially distributed.

Figure 2.C1: Di�erent beta densities
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Paper 3

Inferring Trade Directions in Fast Markets

3.1 Introduction

The separation of securities market transactions into the orders of the liquidity

demanding and supplying side is central to many �nancial research topics. For

each buyer there is a corresponding seller and vice versa. Yet, only one side of the

transaction holds the relevant information to which the price adjusts on its path to

its e�cient level. Typically, it is assumed that the liquidity demanding, impatient

party of the trade is the informed side.1 Market microstructure models, including

their experimental counter parts, are designed such that traders learn from the

trade direction of preceding liquidity demanders (Glosten and Milgrom, 1985; Park

and Sabourian, 2011; Park and Sgroi, 2012). The imbalance of buyer- and seller-

initiated trades is thus a prominent indicator of informed trading (Hasbrouck,

1991; Easley et al., 1996b; Cipriani and Guarino, 2014; Hu, 2014; Bernile et al.,

2016). Furthermore, market quality is measured by the costs that the liquidity

demanders incur relative to the e�cient price, or by the price changes subsequent

to their trades (Huang and Stoll, 1996). The sign of these measures is determined

by the trade direction of the liquidity demander.

Information on the trade direction of the liquidity demander, however, is not

readily available in common data sets. Instead, one has to rely on so called trade

classi�cation algorithms to infer the trade direction from the data. The radical

changes of �nancial markets over the past 15 years, however, pose profound dif-

�culties for the established methods. These methods base their classi�cation on

the proximity of the transaction price to the quotes in e�ect at the time of the

trade.2 Knowing the actual quotes, however, is di�cult with today's high order

1Today, this assumption is more controversial than it used to be (see e.g. O'Hara, 2015;
Easley et al., 2016). I discuss this topic in more detail in Section 3.9.

2This is true for the well-known algorithms of Lee and Ready (1991), Ellis et al. (2000) and
Chakrabarty et al. (2007), but also for the less popular methods of Rosenthal (2012) and Blais
and Protter (2012). The classi�cation algorithm of Easley et al. (2012, 2016) is an exception.
Their algorithm is, however, not directly comparable to the ones presented in this paper. I
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submission and cancellation rates (Easley et al., 2016). Choosing the wrong quotes

leads to erroneous classi�cations, which, in turn, can compromise the conclusions

regarding the information content of trades, price e�ciency or market quality.

In this paper, I propose a new method to classify transactions into the orders

of liquidity demanders and suppliers and show that it outperforms the traditional

alternatives, particularly under the conditions of fast markets that make trade

classi�cation so di�cult for the established methods.

The established methods classify trades by �rst matching trades to their cor-

responding quotes based on the timing of the two. This is problematic for at least

two reasons. First, with the increased frequency of order submissions and cancel-

lations, the data often shows several quote changes occurring at the same time as

the trade. It is then not clear which quote to select for the decision rule of the

algorithm, and the wrong choice impedes its accuracy. For example, the Monthly

Trade and Quote data (MTAQ3), which provides intraday trade and quote data

from the consolidated tape of NYSE, AMEX, Nasdaq NMS and more listed stocks,

is timestamped to seconds.4 I �nd a median of 17 quote changes at the time of

trades recorded at a precision of seconds, even for the data from Nasdaq alone.5,6

The high market fragmentation characteristic of today's equity markets, however,

makes it more than ever necessary to study data from the consolidated tape to

obtain a fair view of the entire market (Holden and Jacobsen, 2014).

The MTAQ remains a popular database for research in equities (Hu, 2014;

Bernile et al., 2016; Chordia et al., 2017, 2016). The Daily Trade and Quote

data (DTAQ), however, which is timestamped to the millisecond, provides a now

common alternative.7 Still, with order submission and cancellation rates taking

place at microseconds or faster even data timestamped to milliseconds will not be

su�ciently precise (O'Hara, 2015).

Second, when trade and quote data is collected by di�erent sources, there is a

potential for lagging timestamps in one data set relative to the other. Consider

comment on that in more detail in Section 3.9.
3�MTAQ is the most popular intraday database for academic research in U.S. equities.�

(Holden and Jacobsen, 2014, p. 1748)
4The same is true for other internationally used databases, e.g. the equity transaction data

of the German Financial Supervisory Authority studied in Kremer and Nautz (2013a), which
contain all trades conducted on German exchanges.

5Angel et al. (2015) record an average of almost 700 quote changes per minute (i.e. more
than 11 per second) for all stocks in the TAQ dataset at the peak in 2012. This number includes
infrequently traded stocks and intra-day periods of low tra�c. The number can be expected to
be much higher if one would only count the seconds at which trades occurred.

6Low timestamp precisions is not exclusive for equity data. Bernile et al. (2016) classify
futures transaction data that is timestamped to the second.

7From August 2015 onwards DTAQ data is timestamped to microseconds, from October 2016
onwards to nanoseconds for Nasdaq.
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again the trade and quote data from the Consolidated Tape Association. While

quotes are collected via the Consolidated Quotation System in Brooklyn, trades

are collected via the Consolidated Tape System located in lower Manhattan. As

the timestamp is added after the processing of the data at the respective data

center, with additional data error checking, there is room for misalignment between

trades and their respective quote changes. Although, since they were �rst noted by

Lee and Ready (1991), technical advances have decreased the potential for such

misalignments, there is still disagreement by how much quote times should be

lagged in the MTAQ.8,9 As the degree of misalignment is typically unknown and

probably varying over time and across security, there is again a risk of using the

wrong quotes in the classi�cation procedure by simply matching trades and quotes

by their timing, especially with many quote changes occurring over the time delay.

The algorithm proposed in this paper takes a new approach to the issues of

imprecise and misaligned timestamps that deviates from the previous methods in

two fundamental ways. Instead of selecting a single pair of ask and bid quotes

before the actual classi�cation step, it matches the transaction to its correspond-

ing quote at the same time as it is classi�ed. The idea is that a trade executed

against the ask must leave its footprint on the ask-side, while a trade against the

bid must leave its footprint on the bid-side. Finding these footprints is equiva-

lent to simultaneously �nding the quote corresponding to a trade and classifying

it. Second, the algorithm uses more than the information contained in prices in

classifying a trade. The algorithm considers all quotes that are potential candi-

dates for a match based on their timing and then reduces the potential candidates

based on price and volume information. The �rst step circumvents the problem

of not knowing the actual trade-quote correspondence and the second one allows

for many unambiguous assignments despite the potentially high number of quotes

considered.

To evaluate the new algorithm against the alternatives routinely applied in the

literature, the Lee and Ready (1991) (LR), the Ellis et al. (2000) (EMO) and the

Chakrabarty et al. (2007) (CLNV) algorithm, I use data from Nasdaq's electronic

8Chakrabarty et al. (2012) recommend to lag quotes by 1 second, Henker and Wang (2006)
recommend to use the last quote from the second before the trade, Piwowar and Wei (2006)
and Vergote (2005) �nd optimal delay times for quotes between 1 and 2 seconds, Peterson and
Sirri (2003) and Bessembinder (2003) recommend a 0 lag for quotes, though they consider only
5 seconds intervals ranging from 0 to 30 seconds. Reviewing all published papers between 2006
and 2011 in the Journal of Finance, Journal of Financial Economics and the Review of Financial
Studies, Holden and Jacobsen (2014) �nd that in 28 articles using the MTAQ data 7 used
the prior-second rule, 3 the same-second rule, 5 the �ve-second rule and rest did not provide
information on the timing-rule used to match quotes and trades.

9I also �nd some indirect evidence that the misalignment problem is not fully amended even
in the DTAQ data. I elaborate on this issue in Section 3.5.
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limit order book. The data contain all transactions against standing (visible or

hidden) limit orders as well as the development of the best bid and ask prices

(including the depths at the quotes) for the three month May to July 2011 with

a total of over 134 million transactions. The important feature of this data set is

that it contains the trade direction of the executed standing order in the limit order

book. Hence, the liquidity supplying and demanding side for each transaction is

known, which allows us to evaluate the ability of the algorithms to recover this

information from the trade and quote data.

The Nasdaq data, of course, do not contain the same number of trades and

quote changes as, for example, the consolidated tape and possibly other high-

frequency databases.10 This is, however, not a problem per se as we are interested

in the e�ect of high order submission and cancellation rates relative to the data

timestamp precision. To simulate this problem I simply truncate the timestamp

precision at frequencies ranging from nanoseconds to seconds. This corresponds

to a median number of quote changes during the time of trades ranging from

1 to 17. To analyze the problem of lagging transaction timestamps (relative to

the timestamps of the quote changes), on the other hand, I add exponentially

distributed noise to the original trade times.

The results provide a clear message: the new algorithm outperforms the tra-

ditional trade classi�cation algorithms. First, at every considered timestamp pre-

cision the new algorithm does not perform worse than the others and it o�ers

considerable improvement in classi�cation accuracy at lower timestamp precisions.

For example, for the data with a median of 17 quote changes during the time of

a trade (i.e. timestamped to the second) the new algorithm correctly classi�es the

trade initiator for 95% of the trading volume, whereas the best competitor, the

EMO algorithm, classi�es 90% of the trading volume correctly.

Second, the ability of the new algorithm to provide accurate classi�cations

at low timestamp precisions provides a simple and e�ective way to counteract

the adverse e�ects of delayed trade times. Applying the algorithm to the data

timestamped at seconds still yields 94% correctly classi�ed volume for an average

delay of up to one centisecond. The traditional algorithms, on the other hand,

achieve an accuracy of only around 89% correctly classi�ed volume under the

same setup.

Third, the improved accuracy of the new algorithm translates into considerable

improvements in the estimation of the dollar e�ective spread, the dollar price

impact, the dollar realized spread and order imbalances�common measures where

10For example, Angel et al. (2011) report that Nasdaq's market share in Nasdaq-listed stocks
decreased from 53% in April 2005 to around 30% in April 2009.
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knowledge of the trade direction of the liquidity demander is key. For example,

with a median of 17 quote changes at the time of a trade, the average deviation

of the daily estimate of the realized spread from the true value is 0.9� per share

compared to 1.41� for the best competitor. With each stock-day split into 10 equal

volume bins, the average deviation of the estimated order imbalance around the

true one is only 6.3%-points compared to 10.1%-points of the best competitor.

The main results are derived under the assumption that each transaction

against a visible order is re�ected in the order book by a corresponding change in

volume at the respective quote. Moreover, trades and quotes are assumed to be in

correct order. These assumptions may not hold in other data sets. In particular,

due to the di�erent latencies of the exchanges to the consolidated tape, trades

and quotes from the consolidated tape can be out of order over short intervals.

Changes in the data structure, however, a�ect the information content of volume

that the algorithm can use in the classi�cation procedure.

Therefore, I relax one-by-one the initial assumptions on the data structure, and

present the appropriate adjustments to the new algorithm. The empirical exercises

are carried out equivalently to the main section. The general conclusion does not

change. Although the algorithm o�ers less improvement the less information we

can draw from the data, it generally outperforms the competitors. Even under

the minimum of data structure, the new algorithm improves the mean classi�ca-

tion accuracy by 3 percentage points for the data timestamped at seconds. In

particular, the improvement in the estimation of the liquidity measures and order

imbalance remains robust.

The remainder of the paper is structured as follows. Section 3.2 introduces the

established algorithms of Lee and Ready (1991), Ellis et al. (2000) and Chakrabarty

et al. (2007), followed by Section 3.3, which introduces the new algorithm proposed

in this paper. Section 3.4 presents the data used to evaluate the algorithms. Sec-

tion 3.5 presents the main results. The results from the estimation of measures

of liquidity and order imbalances are presented in Section 3.6. To get more in-

sight into the determinants of misclassi�cation by the new algorithm, Section 3.7

presents the results from a logistic regression of the event of a correct classi�cation

on a number of covariates. Section 3.8 presents robustness check against varying

assumption on the data structure. Finally, Section 3.9 discusses the relation of the

order imbalance constructed from the classi�cation results with informed trading,

and Section 3.10 concludes.
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3.2 The LR, EMO and CLNV Algorithm

3.2.1 The Decision Rules

The LR algorithm (Lee and Ready, 1991) is the most popular choice to classify

trade data into the orders of the liquidity demanding and supplying sides. It

compares the transaction price to the mid-point of the ask and bid quote at the

time the trade took place. If the transaction price is greater (smaller) than the

mid-point the liquidity demanding side is the buyer (seller), i.e. the trade is buyer

(seller) initiated. If the transaction price is equal to the mid-point, the trade

initiator is assigned according to the tick-test. That is, if the transaction price is

greater (smaller) than the last price that is not equal to the current transaction

price, the trade was buyer (seller) initiated.

The algorithm can be rationalized by the market structure where marketable

buy-orders trade against the standing o�er at the ask, and marketable sell-orders

against the standing bid. There is also, however, an underlying economic motiva-

tion. The liquidity demanding party requires immediate execution of the order.

This impatience comes at a price, the �immediacy premium� (Asquith et al., 2010),

which should put the transaction price above the mid-point for an impatient buyer

and below for an impatient seller. From the view of the uninformed patiently pro-

viding liquidity, the bid-ask spread compensates for the risk of trading against the

informed.

The most notable alternatives to the LR algorithm are the algorithms proposed

by Ellis, Michaely, and O'Hara (2000) and Chakrabarty, Li, Nguyen, and Van Ness

(2007). The EMO algorithm classi�es a trade as buyer (seller) initiated if the

transaction price is equal to the ask (bid) price. For all trades o� the quotes

the tick-test is used. The CLNV algorithm assigns the liquidity demander to the

buying (selling) side if the transaction price is equal to the ask (bid) or up to

30% of the spread below (above) the ask (bid). For all trades above (below) the

ask (bid) or within a 40% range of the spread around the mid-point the tick-test

is used. Table 3.B1 in the Appendix summarizes the classi�cation algorithms in

terms of pseudo codes.

3.2.2 Quote-Matching Rules

The LR, EMO and CLNV algorithms require assigning one bid and ask quote to

each trade in order to classify it. In an ideal data environment where at the time

of the trade we record only one quote change, we know that the quotes in e�ect

at the time of the trade are the last ones recorded before the time of the trade.
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With several quote changes occurring at the same time as the trade, however, it is

not clear which quotes to select for the classi�cation procedure. For example, with

one trade and three quote changes recorded at the same millisecond, the quotes

corresponding to the trade could be the last quotes from before the millisecond or

one of the �rst two recorded at the millisecond.

The convention in such a case is to take the last ask and bid price from before

the time of the trade.11 An alternative, recently suggested by Holden and Jacobsen

(2014), advises transforming the data �rst to correspond to the ideal environment.

This is achieved by interpolating the recorded times according to the number of

trades or quotes during that time. For example, for trades recorded at seconds,

the interpolated time t is computed by

t = s+
2i− 1

2I
, i = 1, . . . , I

where s is the recorded time, and I is the number of trades at time s. The

algorithms then use the last ask and bid price from before the time of the trade

according to the interpolated time.

Another reason that the assignment of trades to quotes is di�cult, is a mis-

alignment between the timing of trades and their corresponding quote change. In

particular, for the trade and quote data from the consolidated tape of NYSE and

AMEX listed stocks, it was found that quote changes were recorded ahead of the

trades that triggered them (Lee and Ready, 1991). The delay was caused by a

di�erent use of �oor reporters and an electronic display book in reporting trades

and quotes (see Lee and Ready, 1991, p. 737 and Vergote, 2005). With changes

in the reporting procedure and the full reliance on an automated electronic pro-

cedure the potential for a reporting delay in trade times diminished. However,

Vergote (2005) �nds that even after the abolishment of the �oor reporters and

a full reliance on the automated Display Book quotes seem to lead trades by 2

seconds. With a geographic separation of the processing stations of the quote and

trade data and timestamps that re�ect the end of the processing of the data at

the respective processing station, both of which applies to the Consolidated Tape

11Another suggestion is to take the �rst ask and bid price at the time of the trade. For two
reasons, however, I do not recommend such a matching-rule. First, if there is only one quote
change recorded at the time of the trade, the quotes corresponding to the trade are the ones
recorded before the time of the trade. The quotes recorded at the time of the trade are new quotes
that resulted from the trade. Second, the mid-point needed for the LR and CLNV algorithms
can be invalid using the �rst bid and ask quote if the order book data is not symmetrically
constructed in the sense that for each ask entry there is also a bid entry and vice versa. For
example, if the ask price is updated before the bid price, the correct mid-point would be the
average of the �rst ask at the time of the trade and the last bid from before the time of the trade,
but not the average of the �rst ask and �rst bid.
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Association (see Holden and Jacobsen, 2014, p. 1753) which provides the MTAQ

and DTAQ data, there remains a potential for misaligned timestamps.

The common procedure to account for the misalignment, is to lag the time of

quotes by the amount of the suspected delay in the reporting of the trades and

then to match each trade with the last quote from before the time of the trade.

The delay is usually inferred from indirect evidence, e.g., by choosing the timing-

rule that minimizes the occurrence of trades o� the quotes (Bessembinder, 2003;

Piwowar and Wei, 2006), or by observing the frequency of quote revisions around

isolated trades (Lee and Ready, 1991; Henker and Wang, 2006).12 For trade and

quote data from the nineties the typical choice is to lag quotes by 5-seconds. For

data from more recent periods there is considerable disagreement about how much

to lag quotes (Chakrabarty et al., 2012; Henker and Wang, 2006; Piwowar and

Wei, 2006; Peterson and Sirri, 2003; Bessembinder, 2003 and see footnote 27 in

Holden and Jacobsen, 2014).

3.3 The Full-Information Classi�cation Algorithm

Selecting a single ask and bid quote to be used in classifying a transaction is likely

to induce errors in the classi�cation results under the described data de�ciencies.

The algorithm proposed here aims to reduce the number of erroneous classi�ca-

tions by allowing for more than one ask and bid quote to be considered in the

classi�cation of a trade. When there are, for example, three ask prices that could

have been in e�ect at the time of the trade, either because of imprecise times-

tamps or because they are all in the potential range of the reporting delay, we may

want to consider all three of them and use the full information provided by the

transaction price and volume to derive the classi�cation.

To understand how we can use price and volume information to determine the

trade-quote correspondence we need to make some assumptions about the data

structure.

Data Structure 1.

(i) Each transaction against a visible order leads to a corresponding reduction

in volume available at the respective quote.

(ii) Trades and quotes are reported in the correct order.

At �rst glance, assumption (i) seems probably harmless. We would certainly

expect the order book to display that kind of information when a market order
12More involved solutions to the timing problem consist of parametric estimations of the

optimal delay time (Vergote, 2005; Rosenthal, 2012).
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trades against a single limit order. Consider, however, a market order that is too

large to be �lled by a single limit order. The assumption then states that the order

book displays the successive steps in the completion of the market order. That is,

if a market buy order for 100 shares trades against two limit orders for 50 shares

each, the order book will �rst show a reduction of 50 shares at the bid and then

another reduction of the same size, even though these changes happen basically

instantaneously. Though this degree of detail is provided in the data set that I use

here, we may not expect the same of every other data set.

Assumption (ii) is certainly harmless when we use data from a single exchange.

For the data from the consolidated tape, however, due to the di�erent latencies

of the exchanges to the tape, trades and quotes can be out of order over short

intervals of time.

I will later relax the assumptions made here and discuss the adjustments to

the Full-Information algorithm. For now, assumptions (i) and (ii) mean that we

can use the exact transaction volume to determine whether a trade could have

been executed at a particular quote. That is, if, from among the available bid

quotes that could have been in e�ect at the time of the trade, we cannot �nd

any quote that matches the transaction price and where the decrease in volume

matches the transaction volume, we can con�dently ascertain that the transaction

did not execute against the bid. If, on the other hand, we �nd such a quote among

the candidate asks, we would conclude that the trade executed against at the ask

side and is, thus, buyer-initiated.

Having established a rough idea of the algorithm, let me now describe the exact

procedure. For that, I will introduce some additional notation for the transaction

and ask data. The notation for the bid data follows analogously to that of the ask.

Notation

� Transaction index: i ∈ {1, . . . , I}

� Transaction price and volume: pi and vi

� Recorded transaction time: si

� Ask quote index: j ∈ Ja = {1, . . . , Ja}

� Ask price and volume: aj and vaj
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� Change in volume at the j-th ask to the next:

∆vaj =


vaj − vaj+1 if aj = aj+1

vaj if aj < aj+1

−1 otherwise,

Explanation: If the ask price increases from j to j+1 (aj < aj+1), then all of

the volume at that the j-th ask must have disappeared (either because of a

trade or because the order was canceled), and hence ∆vaj = vaj .
13 If the ask

price decreases from j to j + 1 (aj > aj+1), then a new sell order must have

been submitted with a better limit price than that of the j-th quote. So a

trade cannot have taken place at the j-th quote. This is indicated by −1.

� Recorded time of an ask: saj . This indicates the time from which point on

the j-th ask price and volume determine the best visible ask.

� The collection of ask quote indices with the same timestamp s: N a
s = {j ∈

Ja : saj = s}.

� Interpolated time of an ask: taj = saj +naj/(|N a
s |+ 1) with naj ∈ {1, . . . , |N a

s |}

� Auxiliary variable: la. This will be used to approximate the ask quote at the

time of an execution against a hidden order

� Trade direction of the liquidity demanding party: oi (1 for buy, -1 for sell)

The algorithm works as follows (see Figure 3.1 for a graphic representation):

Step 1 � Quote Selection and Matching: Starting with the �rst trade i = 1,

we collect all ask and bid quotes against which the trade could have been

executed only by considering the timing, i.e. for the ask

Ca = max{j ∈ Ja : saj < si} ∪ (N a
si
\maxN a

si
).

These are the last quotes from before the time of the trade and all but the

last quote at the time of the trade. We initialize the variable la = ak with

k = min Ca. Analogously, we obtain Cb and lb for the bid.

Using transaction price and volume, search for the �rst match among the

selected ask and bid quotes:

α = min{j ∈ Ca : p = aj and v = ∆vaj }.

Analogously we obtain the �rst match among the bid quotes denoted β.
13For the bid quote, the second case reads �if bj > bj+1�.
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Step 2 � Unique Match: If we �nd a match among the ask quotes, but not

for the bid quotes the trade has been executed on the ask and the liquidity

demander is the buyer. Go back to Step 1 and proceed with the next trade.

If the next trade is recorded at the same time as the current one we use the

same collection of ask and bid quotes and update la to aα. (If we �nd that

there is no match among the ask quotes, but at least one among the bids,

all updates are made analogously.)

Step 3 � Earliest Match: If we �nd a match among both the ask and bid

quotes, we classify the trade according to which quote seems to be a�ected

�rst. That is, if taα < tbβ, then the liquidity demander is the buyer. We go

back to Step 1 and proceed with the next trade. Again, if the next trade is

recorded at the same time, we update la to aα and use the same collection of

ask and bid quotes, except that we omit the α-ask from further comparisons

by subtracting from ∆vaα the size of the transaction vi. If taα > tbβ, then the

liquidity demander is the seller and updates are made accordingly.

Step 4 � Hidden Order: If we cannot �nd a match among the ask and bid

quotes, we are likely to face a trade against a hidden order. These are

classi�ed according to their position in the spread similar to Chakrabarty

et al. (2007). If pi > 0.7la + 0.3lb and la > lb the trade is buyer-initiated. If

pi < 0.3la + 0.7lb and la > lb the trade is seller-initiated. Go back to Step 1

and proceed with the next trade.

Step 5 � Tick-test: Any trade that could not be classi�ed in Step 2 to Step 4

is classi�ed by the tick-test.

Remarks The idea of using the interpolated time in Step 3 to classify trades

that match with both an ask and bid quote is as follows. Observing ask and bid

quotes to equal each other within the same, say, second of a trade, may be due to

the price impact of the trade. That is, quotes are updated in the direction of the

trade initiator. This should be re�ected in a relatively early interpolated time of the

corresponding quote for the following reasons. First, in case of a buyer-initiated

trade we may expect more activity on the ask side because of the information

contained in the trade that leads to the price impact. Traders will either submit

buy orders to take advantage of stale limit orders or cancel their stale limit orders

in response to the trade. Either way, |Na
s | will be relatively large. Second, in case

of a buyer-initiated trade, the trade executed �rst on the ask and then bid quotes

were updated subsequently upwards. That is, α will be relatively small while β

relatively large. In total, this means that taα will be smaller than tbβ.



Figure 3.1: The Full-Information classi�cation algorithm

Notes: This Figure shows the process of the Full-Information algorithm to classify a trade. The variables are de�ned in the Notation list. In Step 1 we
collect all ask and bid quotes against which the trade could have executed considering only the timing of the trade and the quotes. Starting with the �rst ask
and bid quote, respectively, from these collections we search for an exact match of the quote and its volume change with the transaction price and volume. If
a match could be found, we set an indicator variable to True and memorize the index of the respective quote. In Step 2, if only the ask/bid side matches the
trade, we classify it as buyer-/seller-initiated and assign the respective quote to the auxiliary variable la/lb, which is used to construct the spread in case of
hidden order executions. In Step 3, if both sides match the trade, it is classi�ed according to the interpolated time of the matched quotes. The corresponding
quote is then omitted from further proceedings by subtracting the transaction volume from the volume change at the quote. In Step 4 the trade is classi�ed
by the position of the price within the spread, which is approximated by the auxiliary variables. Trades not classi�ed in any of these steps are classi�ed by
the tick-test.
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To avoid further con�icts between ask and bid quotes with the price and volume

characteristics, the quote to which the trade is matched is omitted from assign-

ments of subsequent trades. This assumes that a quote can only be hit once, which

means that we eliminated the counter-party to each trade. The counter-party is

easily identi�ed by the neighboring trade with the same price and volume, but

opposite trade direction. Alternatively, if the counter-party is not omitted from

the data for the classi�cation process, we drop the corresponding quote after it

has been assigned twice to a trade.

The spread in Step 4 is constructed from the auxiliary variables la and lb.

They serve to approximate the ask and bid valid at the time of the execution

of the hidden order. They are initialized to the �rst ask and bid valid during

the time of the trade. If we are able to classify a trade involving a visible order,

the corresponding auxiliary variable is updated. In that way, we obtain a better

approximation of the spread at the time of the hidden order execution due to the

correct order of the trades.

I follow the design of the traditional algorithms and use the tick-test to classify

the most ambiguous cases. This can be motivated by the �nding of Perlin et al.

(2014) who show that the misclassi�cation rate of the tick-test is upper-bounded

by 50% so that for large enough samples one is not worse o� than by using a coin

�ip, but may have a chance to do better.

3.4 Data

The evaluation of the algorithms is based on equity trading in Nasdaq's elec-

tronic limit order book. The sample is constructed from Nasdaq's TotalView-

ITCH data.14 The trade data contain all transactions against visible and hidden

limit orders with information on the price and volume of the transaction. The

order book data contain the development of the order book. That is, whenever a

visible limit order that a�ects the best quotes is submitted, canceled (partially or

completely) or executed, the order book contains an entry of the best bid or ask

indicating the new price and volume available. Changes regarding hidden orders

are not displayed in the order book.

The data covers the continuous trading phase from 9:30 am to 4 pm for all

trading days during the 3 month period May to July 2011. I selected the 30 largest

14The reconstruction from the TotalView-ITCH data is done by the software LOBSTER,
which in turn produces the order book data and messages �les containing the information on the
events causing the changes in the order book. A detailed description of how I obtain the trade
and quote data from these �les is given in the Appendix.



62 Paper 3

Figure 3.2: Distribution of the number of quote changes at di�erent frequencies

Notes: For each time where at least one trade takes place, I count the number of quote changes
with the same timestamp. This �gure shows the distribution of these counts in terms of boxplots
for di�erent timestamp precisions. For example, 50% of the milliseconds with at least one trade
also display 3 or more quote changes.

Figure 3.3: Distribution of the number of quote changes at seconds and the
frequency of crossing quotes

Notes: At each second where at least one trade takes place, I count the number of quote changes
with the same timestamp. The blue line shows the cumulative frequency of these counts. For
example, 68% of the seconds with at least one trade experience 31 quote changes or less. The
green line displays the fraction of cases where one of the bids is at least as high as one of the
asks for a given number of quote changes at the second of the trade.
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stocks (by market capitalization) in 2015 from the 11 Nasdaq industry sectors.15

Following Chakrabarty et al. (2015), I drop stock-days with an end-of-day price of

less than one dollar or with less than 10 trades, which leaves me with a total of

19842 stock-days. A list with all ticker names studied in this paper is provided in

Table 3.B2 in the Appendix. Table 3.A1 in the Appendix provides some summary

statistics.

The quotation frequency, i.e. the number of quote changes at a given time of a

trade at a given timestamp precision, is important for the main analysis, but not

the timestamp precision per se. Figure 3.2, therefore, plots the distribution of the

number of quote changes at the times of trades for di�erent timestamp precisions:

the original precision of nanoseconds (10−9 of a second), as well as 10−4 to 100 of

a second.

At a precision of 10−4 or less, most of the trade times have only a small number

of quote changes with the same timestamp allowing us to match trades to their

quotes based only on the timing of the two. With decreasing timestamp precision,

however, the frequency of high numbers of quote changes at trade times increases

quickly. At a precision of seconds, the median number of quote changes with the

same timestamp as that of a trade is 17. With 17 quote changes occurring at the

same time as a trade, we cannot deduce, just from the timing of the two, which

quote belongs to which trade.

Figure 3.2 omits extreme values for illustrative purposes. Figure 3.3, therefore,

gives a closer account of the distribution of the number of quote changes at the

time of trades for the data timestamped to the second. We can see that a number

of quote changes as high as 100 or more over an interval of one second occur more

than 5% of the time. The �gure also displays the fraction of cases where, during

the second of a trade with a given number of quote changes, one of the bid quotes

is at least as high as one of the ask quotes. We see that for the median number of

quote changes at a given trade time, in 38% of the cases one of the bid quotes is

at least as high as one of the asks. In all these cases, the wrong choice of a quote

can easily lead to a wrong classi�cation of the trade.

15These sectors are: Basic Industries, Finance, Capital Goods, Healthcare, Consumer
Durables, Consumer Non-Durables, Public Utilities, Consumer Services, Technology, Energy,
Transportation, Miscellaneous.
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3.5 Results

3.5.1 Classi�cation Accuracy at Di�erent Timestamp Pre-

cisions

I analyze the improvements we can achieve over the traditional algorithms by

applying them and the Full-Information algorithm (FI) to the data with varying

timestamp precisions. The traditional algorithms are used in combination with

the quote matching rule of using the last quotes from before the time of the trade

(denoted by LR, EMO and CLNV), and using the interpolated time of trades

and quotes (denoted by LRi, EMOi and CLNVi). The timestamp precisions are

chosen to be of 10−i for i = 0, 1, 2, 3, 4 of a second, as well as the original data

precision of nanoseconds (10−9 of a second). These precisions correspond to a

median (average) number of quote changes at the time of trades of 1 (1.73), 1

(1.95), 3 (5.3), 5 (10.97), 9 (17.9) and 17 (31.19) going from nanosecond to second

precision. I evaluate the quality of the algorithms on the basis of correctly classi�ed

trading volume.

Figure 3.4 presents the sum of correctly classi�ed trading volume over total

trading volume of the entire sample for each algorithm and each of the timestamp

precisions. Table 3.C1 in the Appendix provides the corresponding numbers, along

with the means and standard deviations across the sample.

The results show that the FI algorithm dominates the others. At the original

timestamp precision of nanoseconds all of the algorithms correctly classify around

98% of trading volume. Approaching the timestamp precision of seconds, however,

the performance of the traditional algorithms falls o� more quickly than that of

the FI algorithm. At the precision of seconds the traditional algorithms correctly

classify around 90% of trading volume (around 73% when using the interpolated

time), in contrast to 95% correctly classi�ed volume by the FI algorithm. That is,

the FI algorithm reduces the number of misclassi�ed shares by half.

Table 3.C1 in the Appendix shows that the FI algorithm also dominates in

terms of the variation in classi�cation accuracy. While the standard deviation

of the stock-day classi�cation accuracy barely moves for the FI algorithm (from

2.09%-points at nanosecond to 2.4 at second precision), the standard deviation of

the traditional algorithms increases from the same level of around 2.1%-points to

more than 3.4.
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Figure 3.4: Classi�cation accuracy at di�erent timestamp precisions

Notes: This Figure depicts the fraction of correctly classi�ed trading volume by the FI algorithm
and the traditional algorithms using the last quotes from before the time of the trade (EMO,
CLNV and LR), and using the interpolated time of trades and quotes (EMOi, CLNVi and LRi).
The algorithms are applied to the data with reduced timestamp precisions (10−i of a second
for i = 0, . . . , 4), and using the original precision of nanoseconds (10−9 of a second). These
correspond to median number of quote changes at the time of trades ranging from 17 (for i = 0)
to 1 (for i = 9).

3.5.2 Comparison to Previous Studies

The traditional algorithms, using the common quote matching rule of taking the

last quote from before the time of the trade, perform better than documented

in most of the past studies. Traditionally, the classi�cation accuracies are in the

range of 75-90% (see e.g. Chakrabarty et al., 2007; Theissen, 2001; Finucane, 2000;

Ellis et al., 2000). The di�erences in classi�cation accuracies result, in large part,

from applications of the algorithms under di�erent market structures and di�erent

ways of identifying the trade initiator. For example, Ellis et al. (2000) study a

dealer-market and identify the trade initiator by the relationship of the parties

involved in the trade, e.g., in a customer-dealer trade the customer is the trade

initiator, because the dealer is supposed to cater to the demand of the customer. In

markets where dealers play a larger role, however, there is more room for individual

deviations from a standard procedure of matching orders, which are not captured
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by the algorithms, and dealers may not always trade passively to manage their

inventory.

In contrast to many other studies, the liquidity demanding and supplying par-

ties are unambiguously identi�ed in the present data set, and the results presented

here show that the traditional classi�cation algorithms are well suited to distin-

guish these parties in the environment of the simple and consistent mechanisms of

an electronic limit order book, as long as the number of quote changes at the time

of trades is not too high.

The study that is closest to the analysis in this paper is Chakrabarty et al.

(2015) who study the accuracy of the LR algorithm for transactions from Nas-

daq's ITCH data over the same time span. The comparison with their study is

interesting, because they use the same data source for the transactions, but the

quotes from the DTAQ. That is, a comparison of the classi�cation accuracy of the

LR algorithm can tell us something about the quality of the DTAQ quote data.

The classi�cation accuracy of the LR algorithm is 10 to 15%-points lower than

reported here, even though Chakrabarty et al. (2015) aggregate the classi�cation

results over time intervals such that opposite misclassi�cations cancel each other

out.16 Importantly, these results do not seem to be merely driven by possibly

asynchronous timing of the transactions from the ITCH data and the quotes from

the DTAQ. Chakrabarty et al. (2015) match the trades from the ITCH data to

the trades from the DTAQ data and repeat the classi�cation exercise solely for

the trade and quote data from the DTAQ, but the classi�cation accuracy remains

overall low. That is, the DTAQ data apparently still pose substantial problems

for accurate trade classi�cation by the traditional algorithms.

3.5.3 Explaining the Performance of the Interpolation Me-

thod

The results show that interpolating the trade and quote times to circumvent the

problem of imprecise timestamps is not a fruitful alternative to the traditional

quote matching approach. The idea behind the interpolation of trade and quote

time is that trades and quotes are equally distributed over a given interval, e.g. a

second. In that case, the best guess to when these trades and quote changes took

place would be to distribute them equally over the interval.

16See Panel A and B of Table 1 in Chakrabarty et al. (2015, p. 60). They aggregate the
classi�cation accuracy over di�erent time intervals, because they compare the accuracy of the
LR algorithm to that of the algorithm of Easley et al. (2016), which is not meant to classify single
trades and does not serve quite the same purpose as the traditional classi�cation algorithms. The
numbers best comparable to those presented here are in the �rst row of the �Time bars� columns.
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Conditioned on the event of a trade, however, this reasoning may not be valid.

Given the event of a trade, the reason to observe a quote change is the trade itself.

Moreover, a single trade may not only lead to a single quote change, but to several

quote changes in response to the information contained in the trade. That is,

the number of quote changes to the right of the quote change that was triggered

by the trade is likely to be greater than the number of quote changes to its left.

This implies that a trade is likely to be placed behind the quote change that was

triggered by the trade if we interpolate the times of trades and quotes according to

their number of occurrences. If we further conjecture that the price impact follows

the direction of the trade, misclassi�cation is often the result.

Figure 3.5 con�rms these considerations. The left panel shows how often a trade

triggered the �rst, second, third etc. quote change (y-axis) for a given number of

quote changes during the second of the trade (x-axis).17 For example, the �rst bar

shows that almost 1.5 million trades triggered the �rst quote change, whereas only

around 0.5 million were responsible for the second quote change in all cases where

we observe 2 quote changes during the second of the trade. We see that even at

seconds with a large number of quote changes, trades most often account for the

�rst or second quote change.

The right panel of Figure 3.5 shows the percentage of trades that are moved

behind their corresponding quote changes by the interpolation method. It shows

that in more than 70% of the seconds with a single trade, the trade is moved behind

the quote change that was triggered by that trade. Moreover, the panel shows that

the fraction of trades that triggered the �rst quote change out of all quote changes

during the same second remains large. Even for seconds with 10 quote changes, in

around 40% of the cases the �rst quote change was due to a trade, while the other

9 quote changes were due to other reasons. So the quote matching rule using the

interpolated times is relatively unsuccessful because it moves trades behind the

quotes that were triggered by the trade.

Interestingly, Holden and Jacobsen (2014) report that by interpolating trade

and quote times they increase the agreement of trade classi�cation from the MTAQ

data with the results obtained from the DTAQ data that are timestamped at higher

precision than the MTAQ. In light of the results presented here this has important

implications. Since the results show that by interpolating trade and quote times

transactions tend to be moved behind the quotes which they triggered, the result

of Holden and Jacobsen (2014) indicates that the problem of quotes being reported

ahead of their corresponding trades prevails even today in the more accurate DTAQ

17I used only those seconds with a single trade.
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Figure 3.5: Single trade seconds and quote changes

Notes: The LEFT panel presents the number of times a trade is executed on the �rst, second,
third, . . ., 10-th quote (y-axis) within seconds of 2, 3, . . ., 10 quote changes (x-axis). The RIGHT
panel shows the percentage of trades that are placed behind the quote change that was triggered
by the trade if trade and quote times are interpolated following Holden and Jacobsen (2014).
Only seconds containing a single trade are used.

data.18 This adds further doubt on the ability to readily use the DTAQ data

in combination with the traditional classi�cation algorithms to infer the trade

direction.

3.5.4 A Closer Look at the Classi�cation Accuracy at the

Individual Classi�cation Steps

The Full-Information algorithm classi�es trades at di�erent steps, depending on

the criteria that apply to the speci�c trade. The ambiguity of the classi�cation

18Without a closer look into the DTAQ data, which is currently not available to this author,
the assertion of a possible time delay of reported trades in the DTAQ must, of course, be viewed
with caution. It is quite possible that the increase in agreement in the classi�cation results
between the DTAQ and MTAQ by using the interpolation method reported in Holden and
Jacobsen (2014) is only due to chance.
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increases with each step in the algorithm and we would, thus, expect the accuracy

to di�er with the di�erent classi�cation criteria.

Therefore, to study the performance of the individual classi�cation steps, Table

3.1 presents the individual classi�cation accuracies. Panel A shows the percentage

of correctly classi�ed volume at the individual classi�cation step summed over

the entire sample, while Panel B shows the percentage of trading volume that is

classi�ed at the respective classi�cation step. The Table di�erentiates between

trades executed against visible (visible = YES) and hidden (visible = NO) orders.

The column �cl. step� refers to the classi�cation steps (2 to 5) at which the trade

initiator is assigned. �Cl. step 0� refers to cases where the trade direction of the

liquidity demander could not be derived.

Trades against visible orders are almost exclusively classi�ed during Step 2 or 3

of the classi�cation process. That is, any trade that executed against a visible order

must have at least one match among the quotes with the corresponding change

in volume. Matches between quotes and trades that actually executed against

hidden orders, on the other hand, are only accidental and occur rarely. With

decreasing timestamp precision the number of hidden orders classi�ed in Step 2 or

3 increases as the number of quotes that we consider during the classi�cation of a

trade increases. Overall, however, the number of hidden orders classi�ed in Step 2

and 3 remains relatively small. Trades involving hidden orders are predominantly

classi�ed in Step 4 or 5 of the algorithm, as they are supposed to.

The accuracy of the assignments of visible orders in Step 2 of the algorithm

is almost 100% at any timestamp precision. That is, an unambiguous match at

one side of the order book leads almost always to the correct classi�cation of the

trade. With decreasing timestamp precision, however, the number of unambiguous

assignments decreases and the algorithm refers to the interpolated times of the

matched quotes more often. Though the interpolated time is a suitable indicator

for the assignment with accuracies between 90 to 95% for timestamp precisions

between seconds and milliseconds, it does not provide the same certainty as a

classi�cation at the second step. In fact, the decrease in overall classi�cation

accuracy going from nanoseconds to seconds is largely driven by the substitution

of assignments between Step 2 and 3.

The classi�cation of trades involving hidden orders is inherently more di�cult

than for visible orders. At nanosecond precision, the number of misclassi�cations

can almost entirely be attributed to trades involving hidden orders. Even though

the position of the transaction price within the spread is informative as we can see

from the classi�cation accuracies of around 94% at Step 4, the economic reasoning

that is behind the decision rule employed at that step does not apply to all cases.
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Table 3.1: Accuracy of individual classi�cation criteria

timestamp precision: 10−i for i =
visible cl. step 0 1 2 3 4 9

Panel A: % correctly classi�ed volume

YES 0 � � � � � �
2 99.85 99.91 99.96 99.99 100.00 100.00
3 90.31 94.18 95.98 95.11 68.96 �
4 79.67 80.32 80.70 80.57 80.55 80.57
5 55.97 55.90 56.63 56.31 31.74 29.80

NO 0 � � � � � �
2 67.25 74.49 84.52 94.50 99.79 99.98
3 83.44 87.66 87.17 79.64 66.67 �
4 92.59 94.79 95.75 95.58 94.39 93.86
5 64.96 65.21 65.94 67.20 68.60 68.81

Panel B: % classi�ed volume

YES 0 0.00 0.00 0.00 0.00 0.00 0.00
2 61.79 71.44 81.20 88.55 90.42 90.42
3 28.55 18.93 9.19 1.86 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.07 0.05 0.03 0.01 0.00 0.00

NO 0 0.00 0.00 0.00 0.00 0.00 0.00
2 1.87 1.84 1.70 1.33 0.80 0.72
3 0.65 0.30 0.09 0.01 0.00 0.00
4 4.01 4.23 4.34 4.29 3.87 3.79
5 3.05 3.20 3.45 3.95 4.92 5.07

Notes: Panel A shows the classi�cation accuracy of the di�erent classi�cation criteria applied
by the FI algorithm. Panel B shows the percentage of trading volume that is classi�ed by the
respective criterion. The column �cl. step� refers to the step in the classi�cation process at which
the trade initiator is assigned (with 0 referring to cases which could not be classi�ed).

With decreasing timestamp precision the classi�cation accuracy of trades involving

hidden orders, however, does not change much. The informativeness and the

number of cases assigned by the position of the transaction price is almost the same

whether for data timestamped at nanoseconds or seconds. Most of the change in

hidden orders classi�cation accuracy is due to a shift from classi�cations by the

tick-test to assignments at Step 2 of the algorithm.
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3.5.5 Classi�cation Accuracy under Randomly Delayed

Timestamps

Similar to the problem of imprecise timestamps relative to quotation frequency,

the problem of delays in reported trades is not knowing the exact trade-quote cor-

respondence. Consider a trade timestamped at 9:45:50.9 and three quote changes

timestamped at 9:45:50.1, 9:45:50.3 and 9:45:50.5. Given the uncertainty revolving

around the degree of the report delay we may want to consider all three of them

instead of picking only one quote for the classi�cation procedure. In this particular

case, the Full-Information algorithm would allow us to do so by simply decreasing

the timestamp precision to that of seconds. The results from the previous section

show that we would lose little in terms of classi�cation accuracy if, in fact, a higher

timestamp precision would su�ce, but we would ensure that the results are not

driven by the noise in the timestamps.

To explore the e�ect of random delays in reported trade times on the clas-

si�cation performance of the traditional algorithms and the FI algorithm, I add

exponentially distributed noise to the original trade timestamp at nanosecond pre-

cision. That way the time of the trade will lag behind the reported time of its

corresponding quote change but to a varying degree from trade to trade.

The exponential distribution is given by F (x; β) = 1−exp{−x/β} for x ≥ 0 and

I choose β = 10−j for j = 1, . . . , 4.19 I also choose di�erent timestamp precisions

at which the algorithms are applied to the data. The precision s ranges from 10−4

of a second to 2.5 seconds. For example, if s = 10−3, the FI algorithm will consider

all quotes that are valid during the millisecond at which the trade is reported and

the traditional algorithms use the last quotes reported before the millisecond of

the trade.20

The Appendix presents a brief derivation of how we can expect the classi�ca-

tion accuracy to be a�ected by noisy timestamps. To give a quick idea, consider

applying the algorithms at a precision of seconds. The reduction in classi�cation

accuracy compared to the situation without noise is only determined by the num-

ber of trades that are shifted outside the second at which they actually occurred.

The average classi�cation accuracy of these trades will tend towards 0.5, while the

classi�cation accuracy is una�ected for those trades that remain in the same second

as they were in the absence of noise.21 Choosing the optimal timestamp precision

19The mean of the exponentially distributed variable is given by β and the q-th percentile by
− ln(1 − q)β. For example, if β = 1/103, we expect a delay in the reported trade time of one
millisecond and 99% of all trades to have a delay of less than 5 milliseconds.

20Note that I do not report the results of the traditional algorithms using the interpolated
time due to their relatively unsuccessful performance in the absence of noise.

21Since the FI algorithm makes use of the correct order of trades at least to some extent, the
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Figure 3.6: Classi�cation accuracy and noisy timestamps

Notes: This �gure shows the fraction of correctly classi�ed trading volume (y-axis) for the data
with delayed trade times. The trade time equals the actual time plus ε, with ε ∼ Exp(1/β) and
β ∈ {10−4, 10−3, 10−2, 10−1}. To counteract the e�ect of the noise on the classi�cation accuracy
the algorithms FI, EMO, CLNV and LR are applied to the data with reduced timestamp precision
(s) ranging from 10−4 of a second to 2.5 seconds presented on a log10-scale (x-axis).

is, thus, a trade-o� between a reduction in accuracy due to imprecise timestamps

on the one hand, and a reduction in accuracy due to trades being reported outside

their actual time interval at high timestamp precision on the other. Since the

classi�cation accuracy of the FI algorithm is greater-equal to the accuracy of the

traditional algorithms at any timestamp precision, we would expect that the FI

algorithm dominates the traditional algorithms under noise as well.

Figure 3.6 presents the numerical results. Note that the timestamp precision s

is presented on a log10-scale to obtain a better impression at high precisions.

As expected, we �nd that the FI algorithm dominates the others. It is only at

relatively high precision timestamps that the performance of the algorithms align,

trending towards an accuracy that is not di�erent from a random classi�cation of

the trade initiator. We observe, however, that the FI algorithm is better able to

classi�cation accuracy for those trades not shifted outside their actual time interval can still be
a�ected if the order of the trades changes due to the noise. I discuss this issue in more detail
below.
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pro�t from the decrease in timestamp precision. The classi�cation accuracy of the

FI algorithm keeps increasing with growing interval length, where the accuracy of

the other algorithms stagnates or falls o�.

Importantly, the FI algorithm o�ers high and robust accuracies across the

di�erent noise intensities, especially for the probably more relevant range (a)-(c).

For example, choosing a precision of a bit more than 0.5 of a second, the FI

algorithm achieves accuracies of 94-95% for β between 10−4 and 10−2. Even for

relatively strong noise of β = 0.1, the FI algorithm correctly classi�es more than

90% of trading volume if the timestamp precision is reduced below 1.9 of a second.

For any level of accuracy of the traditional algorithms under a given noise

intensity, we can �nd the same accuracy for the FI algorithm at lower timestamp

precision, which then o�ers robustness against higher levels of noise. That is, by

choosing the FI algorithm at decreased timestamp precision, one gains robustness

against unknown degrees of noise without forfeiting classi�cation accuracy against

the alternative algorithms if the noise intensity is, in fact, smaller than suspected.

3.6 Application to Measuring Liquidity and Order

Imbalances

3.6.1 Measuring Liquidity

To analyze how the plus in classi�cation accuracy translates into dollar values,

I apply the di�erent algorithms to the measurement of liquidity. The liquidity

measures I consider are the dollar e�ective spread, the dollar price impact and the

dollar realized spread. The estimation of these measures is a typical application

where the knowledge of the trade initiator plays a crucial role.

The e�ective spread is de�ned as

DESk = 2Dk(Pk −Mk)

where Pk is the price per share of the k-th trade, Mk is the spread mid-point

associated with the k-th trade and Dk is the direction of the trade initiator, that

is +1 in case of buyer-initiated trades and −1 in case of seller-initiated trades.

The e�ective spread measures the costs incurred by liquidity demanders relative

to the ideal environment where trades execute at the mid-point.

Opposite to the costs of liquidity demanders are the pro�ts of liquidity suppli-

ers. These gains are usually measured by the realized spread which subtracts the

price impact from the e�ective spread. If prices move in the direction of the trade,
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the price impact is detrimental to the liquidity provider's pro�ts.

The price impact given by

DPIk = 2Dk(Mk+∆ −Mk)

where Mk+∆ is the mid-point at ∆ units, here chosen to be 10 minutes, after the

k-th trade and the realized spread is, thus,

DRSk = DESk −DPIk
= 2Dk(Pk −Mk+∆).

For each stock-day I compute the volume weighted averages L =
∑

k VkLk/V

for Lk ∈ {DESk, DPIk, DRSk}. I compare the measures computed from the true

trade initiator label and the knowledge of which mid-point belongs to which trade,

with the measures computed using the estimated trade initiator label and the

associated mid-point provided by the algorithms.

Figure 3.7 shows the root-mean-square error and the estimated mean across

all stock-days measured in cents.22 The red line in the graphs for the mean (2nd,

4th and 6th column) indicates the mean measured from the true trade-initiator

label. The algorithms are applied to the data where the timestamp of trades is

not a�ected by noise (column (a)) and where it is delayed by exponential noise

with intensity β = 10−j with j = 2, 3 (columns (b) and (c)). The precision of

the timestamp is reduced to 10−i for i = 0, . . . , 3 (which corresponds to a median

number of quote changes per trade time of 17 to 3).

The results are again clearly in favor of the FI algorithm. The estimates based

on the FI algorithm generally provide the smallest root-mean-square error. The

improvements over the traditional algorithms are strongest for the dollar price

impact and the dollar realized spread at the timestamp precisions of seconds and

10-th of a second. For example, for the data timestamped at seconds, the average

deviation of the stock-day estimate of the realized spread is 0.9� for the FI algo-

rithm, while it is 1.41� for the best competitor, the EMO algorithm. Even at high

timestamp precision, the estimates of the traditional algorithms do not provide

the same precision as the ones of the FI algorithm at lower timestamp precision.

Also the overall sample means are generally estimated closer to the true ones

for the FI algorithm than for other algorithms. Only the EMO algorithm provides

very similar mean estimates. The EMO algorithm is, however, more strongly

a�ected at high timestamp precisions than the other algorithms.

22The root-mean-square error is given by RMSE(L, L̂) =
√∑

i,d(Li,d − L̂i,d)2/|I ×D|.
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Figure 3.7: Estimating liquidity

Notes: This Figure shows the sample averages and the root-mean-square error between the stock-
day estimates and the true values of the dollar e�ective spread (DES), the dollar price impact
(DPI) and the dollar realized spread (DRS) as de�ned in the text displayed in cents. The true
values are computed from the true trade-initiator label and the knowledge of the ask and bid in
place at the time of any given trade. The estimates are constructed from the classi�cation results
of the di�erent algorithms and the ask and bid quotes that they assume to be in e�ect at the
time of the trade. The algorithms are applied to the data with and without delayed trade times,
where the delay is given by ε ∼ Exp(1/β) with β = 10−3, 10−2, and with varying timestamp
precision ranging from seconds to milliseconds. These timestamp precisions correspond to a
median number of quote changes at the time of trades of 17 to 3.

The advantage of applying the FI algorithm at lower timestamp precision is

visible in columns (b) and (c), where trade times are a�ected by noise. The

performance of the algorithms deteriorates at high timestamp precision if trades

are reported with even mild delay, which translates into poor estimates of the

liquidity measures. In the absence of noise the estimates of the FI algorithm

at low timestamp precision, however, are barely di�erent from the ones at high

timestamp precision, but o�er strong robustness against the report delay.
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3.6.2 Order Imbalance

Another frequent application where the initiator label enters the analysis is the

estimation of the order imbalance. The order imbalance over a given interval is

de�ned as

OI =
|VB − VS|

V
,

where V = VB +VS is the total trading volume, VB is the volume of buyer initiated

trades and VS the volume of seller initiated trades. The order imbalance provides

the underlying statistic for measures such as the probability of informed trading

(PIN) (Easley et al., 1996b), or more directly for its volume synchronized version

(VPIN) (Easley et al., 2012). It is also the driving force behind estimations of

deviations from price e�ciency (Cipriani and Guarino, 2014). Often, the order

imbalance is itself the variable of interest (e.g. Chordia et al., 2002; Dorn et al.,

2008; Chordia et al., 2016).

The analysis follows the same procedure as the previous section. The order

imbalance is estimated from the classi�cation results of the di�erent algorithms

applied to the data at varying timestamp precisions (from seconds to milliseconds)

and for di�erent degrees of report delays in trade times.

The order imbalance is estimated as follows. Each stock-day is split into τ

bins of equal volume size. If necessary, the last trade in a bin is split between

the two successive bins to ensure equal volume. Thus, we have τ estimates of the

order imbalance for each stock-day and τ × 19842 order imbalance estimates in

total, with varying volume sizes across the stock-days. Within each volume bin,

the order imbalance is computed according to the above formula using the true

trade initiator label and the labels provided by the classi�cation algorithms.

The main variable of interest is again the root-mean-square error between the

vector of true order imbalances and their estimates provided by the algorithms.

Figure 3.8 presents the results. The red line in the columns 2, 4, and 6 indicates

the mean order imbalance computed from the true trade initiator label. The �rst

row presents the results where each stock-day is split into 10 equal volume bins

(τ = 10) and the second row for stock-days split into 100 equal volume bins

(τ = 100). The numbers are displayed as percentages.

The results mirror those for the estimation of the liquidity measures. The

root-mean-square errors of the estimates based on the classi�cations of the FI

algorithm are generally the smallest. Again, the largest improvements occur at

low timestamp precision. For the data split into 10 volume bins at each stock-day

the average deviation of the estimated order imbalance based on the FI algorithm
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Figure 3.8: Estimating order imbalance

Notes: This Figure shows the sample averages and the root-mean-square error between estimates
of the order imbalance and the true order imbalance displayed as percentages. The true values
are computed from the true trade-initiator labels and the estimates from the classi�cation results
of the di�erent algorithms. For the computation of the order imbalance each stock-day is split
into equally sized volume bins. The number of bins is chosen to be τ = 10, 100. The algorithms
are applied to the data with and without delayed trade times, where the delay is given by
ε ∼ Exp(1/β) with β = 10−3, 10−2, and with varying timestamp precision ranging from seconds
to milliseconds. These timestamp precisions correspond to a median number of quote changes
at the time of trades of 17 to 3.

is 6.34%-points, while that of the best competitor, the CLNV algorithm, is 10.1%-

points. It is only at high timestamp precision (millisecond) that the estimation

results of the traditional algorithms can compete with those of the FI algorithm at

low timestamp precision. However, only at low timestamp precision are the results

robust against moderate delays in reported trade times.

So again, we do not forfeit any estimation accuracy by using the FI algorithm

at low timestamp precision compared to applying the other algorithms at higher

timestamp precision, but we gain robustness against various degrees of noise.
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3.7 Determinants of Misclassi�cation

In an analysis that necessitates the estimation of the trade initiator, a variation of

the classi�cation accuracy in tandem with the variation of other variables entering

the analysis can impact the statistical inference and, in the worst case, compromise

the researcher's conclusions. For this reason, I analyse the determinants of misclas-

si�cation by the FI algorithm in more detail using a logistic regression following

Finucane (2000), Ellis et al. (2000) and Chakrabarty et al. (2007).

The previous studies focused on the LR algorithm (only Chakrabarty et al.

(2007) also analyzed the determinants of misclassi�cation for the EMO and the

CLNV algorithm) and found that the most important determinant for correct

classi�cation is the execution of a trade against the quotes. The in�uence of other

explanatory variables like trade size, spread, stock volume, �rm size and the speed

of trading does not always agree across the studies and is generally small in terms

of their marginal e�ects. Still, slow trading and larger spreads seem to help the

LR algorithm to infer the trade initiator.

3.7.1 Variable Selection

The logistic model is given by

P (yi = 1 | xi) = Λ(x′iβ)

where yi = 1 is the event of a correct classi�cation (and yi = 0 the event of a

misclassi�cation) and Λ(w) is the logistic distribution function, Λ(w) = 1/(1 +

exp{−w}. The explanatory variables, xi, for the regression exercise are chosen as

follows.

Section 3.5.4 reveals that hidden orders are particularly di�cult to classify. I

will, thus, include a dummy variable, labeled Hidden, that takes the value 1 if the

transaction involved a hidden order and 0 otherwise. Mid-point trades received a

lot of attention in previous studies due to the reliance of the LR algorithm on the

tick-test for such trades and their lack of a clear economic sign of the direction of

the trade initiator. I, therefore, include a variable that captures the distance of

the transaction price to the mid-point at the time of the trade constructed as Mid

= 1− 2|pt−mt|/(at− bt), where pt is the execution price, mt is the corresponding

mid-point and at, bt are the corresponding ask and bid quote, respectively. That

is, Mid takes the value 1 if the trade executed at the mid-point and decreases

towards 0 with the price approaching one of the quotes. Despite the di�culty of

classifying mid-point trades, what might be generally more important for accurate
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classi�cation is the proximity of buyer-initiated trades to the ask and that of seller-

initiated trades to the bid. Hence, I include the variable Q-Dist = |Dt−pt|/(at−bt)
where Dt = at if the trade is buyer-initiated and Dt = bt if the trade is seller-

initiated.

The consideration of the mentioned variables is motivated by the classi�cation

criteria of the FI algorithm, and the obvious di�culty of classifying trades that

deviate from the reasoning behind these criteria. To consider variables that could

interact with the classi�cation accuracy, though in a less obvious way, and play a

role in more general economic and �nancial analyses I choose the following. I in-

clude the squared return of each transaction de�ned as R2 = (log(pi)− log(pi−1))2,

where i is the i-th transaction, the size of each transaction in 100 shares (Size), the

absolute spread size at the time of a trade measured in dollars (Spread), the total

trading volume of the stock-day in 105 shares (Vol), the 5-minute realized variation

(see Liu et al., 2015) over each stock-day (RV), the distance of each transaction to

the previous trade in seconds (∆t-Trade), the distance of each transaction to the

last quote change in seconds (∆t-Q), the number trades during the second of each

trade (#Trades), the number of quote changes during the second of each trade

(#Q) and a dummy variable indicating whether a transaction was part of a trade

involving more than one counter party (MultiTrade). The latter is identi�ed by

observing more than one execution on the same side of the order book during the

same nanosecond.

The Appendix provides summary statistics of the explanatory variables, a bi-

variate correlation analysis, as well as a description of the �ltering of the data

before the actual estimation procedure. For numerical stability in the optimization

procedure and to allow for a better comparison of the marginal e�ects across the

variables, R2 to #Q (i.e. all variables not ranging in [0, 1]) are standardized to

have zero mean and unit variance.23

3.7.2 Estimation Results

Due to computational constraints, I did not use the full sample in the logistic re-

gression. Instead, I selected all observations where the FI algorithm misclassi�ed

the transaction (almost 7.6 million observations) and randomly selected (without

replacement) a sample of equal size from the observations where the FI algorithm

correctly classi�ed the trade. Maximum likelihood estimation of the logistic model

23Due to the large number of zeros in R2 (caused by many multi-party or successively placed,
small trades), zero-observations have been left out in the standardization procedure for R2. That
is, they did not enter the computation for the mean and variance. Otherwise one would divide
by near-zero and in�ate the non-zero observations.
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Table 3.2: Logistic regression result

No. Observations: 15190680
McFadden R-squ.: 0.2205
Log-Likelihood: -8.2072e+06
LL-Null: -1.0529e+07

marginal e�ects
β std err at the mean overall

const 3.1719 0.001
Hidden -2.3120 0.003 -0.2055 -0.1130
Mid 0.8656 0.008 0.0299 0.0423
Q-Dist -3.6268 0.015 -0.1254 -0.1773
R2 0.0479 0.001 0.0017 0.0023
Size 0.1714 0.001 0.0059 0.0084
Spread 0.3403 0.001 0.0118 0.0166
Vol 0.3388 0.001 0.0117 0.0166
RV -0.0912 0.001 -0.0032 -0.0045
∆t Trade 0.3880 0.001 0.0134 0.0190
∆t Q 0.2853 0.001 0.0099 0.0140
# Trades 0.2157 0.001 0.0075 0.0105
# Q -0.7683 0.001 -0.0266 -0.0376
MultiTrade 0.5896 0.001 0.0223 0.0307

Notes: This table shows the regression results of a maximum likelihood estimation of the model

P (yi = 1|xi) = Λ(x′iβ)

with yi = 1 being the event of a correct classi�cation by the FI algorithm applied to the data
timestamped to the second, and xi containing the explanatory variables described in Table 3.E1.
Λ(·) is the logistic distribution function. The variables R2 to #Q have been standardized. The
estimates are based on a sub-sample containing all observations where yi = 0 and a random
selection of equal size of observations where yi = 1. This yields consistent estimates except
for the coe�cient of the constant term, β0. To obtain a consistent β̂0 one simply subtracts
log((1−p)ȳ/p(1−ȳ)), where p is the frequency of yi = 1 in the full sample and ȳ the corresponding

frequency in the sub-sample. β̂0 in the Table is the bias corrected estimate. The marginal e�ects
are evaluated at the sample mean, as well as evaluated at each data point of the standardized
data and then averaged, i.e.:

at the mean:
∂P (y = 1|x̄)

∂xk
= Λ(x̄′iβ̂)(1− Λ(x̄′iβ̂))β̂k

overall:
∂P (y = 1|x)

∂xk
=
∑
i

Λ(x′iβ̂)(1− Λ(x′iβ̂))β̂k/N.

For the dummy variables the e�ects are computed analogously using

P (yi = 1|xik = 1, xi)− P (yi = 1|xik = 0, xi).
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still yields consistent estimates, except for the constant, which can be easily cor-

rected to obtain consistency (see e.g. Eq. (7) and Appendix B in King and Zeng,

2001).24 Table 3.2 presents the regression results. The FI algorithm is applied to

the data timestamped to the second.

We see that the single most important determinant for misclassi�cation is the

execution against a hidden order. On average, a trade that executes against a

hidden order as opposed to a visible order decreases the estimated probability of

a correct classi�cation by 11%-points. Once controlled for the impact of a hidden

order, the e�ect of the distance to the quotes or the proximity to the midpoint

seems less important. For example, moving 10% of the spread size away from the

quote against which we would expect the trade to execute decreases the estimated

probability of a correct classi�cation by approximately 1.8%-points on average.

The variables that may play a more decisive role in more general economic and

�nancial studies involving the estimation of the trade initiator, like total trading

volume, the realized variation or the speed of trading, do not strongly impact

the classi�cation accuracy. For example, a one standard deviation increase in the

realized variation decreases the estimated probability of correct classi�cation by

only about 0.45%-points. Among these variables, frequent quote changes during

the second of the trade (#Q) exhibit the strongest e�ect on the classi�cation

accuracy: a one standard deviation increase in the number of quote changes during

the second of the trade decreases its probability of being correctly classi�ed by

around 3.8%-points on average.25

3.8 Adjusting the FI Algorithm to Di�erent Data

Structures

So far, we assumed the same level of data granularity (summarized in Data Struc-

ture 1) that is provided by the reconstructed limit order book from the NASDAQ

TotalView-ITCH data. The advantage of the FI algorithm over the traditional

approaches feeds on the use of information o�ered from this granularity. In this

section, I will relax the assumptions in Data Structure 1 and present appropriate

adjustments to the algorithm. With less information at hand we cannot expect to

24The only requirement for consistency is that the conditional densities of the subsampled data
(x|y) matches the conditional density of the full sample (X|Y ), i.e. P (x | y = 1) = P (X | Y = 1)
and P (x | y = 0) = P (X | Y = 0). The latter is trivially satis�ed in my case as I select all
observations where yi = 0 and the former should be satis�ed by the random subsampling scheme.

25Note that despite the predictive content of the explanatory variables for the probability of
a correct classi�cation, this does not imply a predictive power of these variables for the trade
initiator label. The analysis only identi�es environments under which it is more di�cult to arrive
at the true initiator label, but it did not identify the direction of the misclassi�cation.
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achieve the same level of accuracy as presented above, but we may still be able to

obtain more accurate results than those provided by the traditional algorithms.

3.8.1 Relaxing Assumption (i) of Data Structure 1

Assumption (i) of 1 states that each transaction against a visible standing order

is re�ected by a corresponding decrease in volume at the respective quote. This

includes transactions that are part of an order too big to be �lled by a single

standing order. Even though the transactions between the parties involved are

carried out almost instantaneously in the order book, we assumed that the data

displays the successive steps in the execution according to its order precedence

rules.26 In this section, we assume instead that at the time of a trade the order

book displays the state of the order book after the completion of the order that

led to the trade.

Data Structure 2. Aggregated Quote Changes

(i) At the time of a trade, the order book displays the new state of the order book

after the completion of all transactions that were carried out due to the same

buy or sell order.

(ii) Trades and quotes are reported in the correct order.

The FI Algorithm under Data Structure 2

The change in the data structure means that we cannot use the strict equality

between the transaction volume and the change in volume at the quote to eliminate

potential matches. If an order for 100 shares trades against two limit orders for

50 shares each, posted at the same price, the trade data record two transactions

for 50 shares each, while the order book data shows a decrease in volume at the

respective quote by 100 shares.

Hence, we change the search for a match among the ask quotes in Step 2 of

the algorithm to

α = min{j ∈ Ja : pi = aj and vi ≤ ∆vaj },

and analogously for the bid.

26Order precedence rules determine the order in which standing orders are executed when a
marketable order enters the order book. Usually, the order o�ering the best price is executed �rst.
If several visible orders o�er the same price, the one that was submitted earliest is executed �rst
(visible orders are usually precedented over hidden orders at the same price, even if the hidden
order was submitted �rst), and so on.
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If we �nd a match at one or both sides of the order book, the algorithm proceeds

as before. If, however, we cannot �nd a match on either side of the order book,

we need to insert two additional steps before we can conclude that we apparently

face a transaction involving a hidden order, which would be classi�ed under Step

4.

Consider a market order for a number of shares greater than what is available

at the best quote. The trade data will show the corresponding transaction at the

next-best quote, but the order book data will not show any decrease in volume at

that quote. In the extreme case, where the market order is so large that it will go

through several levels of the order book, the order book data will not even show

the quotes against which the order executed on its way to the last quote.

To accommodate these cases the adjusted algorithm injects two additional

searches for a match at the ask or bid side before it proceeds with Step 4. The

�rst search (demonstrated for the ask) under Step 4a is conducted as

α̃ = min{j ∈ Ja : pi = aj and aj−1 < aj}.

In case we �nd a match on one or both sides of the order book we proceed as

prescribed by Step 2.27

The second additional search for a match among the quotes if we cannot �nd

one under Step 4a, is conducted under Step 4b (again demonstrated for the ask)

as

α̂ = min{j ∈ Ja : pi > aj and aj+1 < pi},

and analogously for the bid, proceeding exactly as under Step 4a if a match on

one or both sides can be found. If again neither a match at the ask side nor the

bid side can be found, we are likely facing a hidden order and the classi�cation is

derived under Step 4 as before.

Results for Varying Timestamp Precisions

The evaluation of the adjusted FI algorithm (FIDS2) is conducted as before. The

order book data, however, has been changed to re�ect the new data structure. That

is, all intermediate changes in the order book due to a trades that are executed

against more than one counter-party are neglected. The results are presented in

Appendix 3.F.

27Note that if we classify the transaction according to the interpolated time, we do not adjust
the volume at the matched quote, as there was no corresponding volume change to begin with.
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The conclusions from Section 3.5.1 do not change. The classi�cation accuracies

at relatively high timestamp precisions are not di�erent to the accuracies under

more granular data. The classi�cation accuracy su�ers a bit from the loss of

information in the order book data only for the data timestamped at seconds.

Still, the FIDS2 algorithm improves the classi�cation accuracy of the traditional

algorithms by more than 3%-points.28 The loss in classi�cation accuracy is due to

the inability to use the trading volume as an exact match to changes in the volume

at the quotes. This leads to more transactions that have to be classi�ed using the

interpolated time of quote changes.

Results for Noisy Timestamps

The results from the application of the FIDS2 algorithm to the data with delayed

transaction timestamps are presented in Figure 3.F1 in Appendix 3.F.29 Again,

the conclusions from the earlier exercise using the original data structure do not

change. At high timestamp precision the classi�cation accuracy of all algorithms

is strongly a�ected even by relatively moderate noise intensities. Decreasing the

timestamp precision, however, helps to counteract this adverse e�ect. Importantly,

the FIDS2 algorithm is more accurate than the traditional ones over the range of

timestamp precisions that show stable results over the di�erent noise intensities,

albeit slightly less accurate than the version for the original data structure.

Estimating Liquidity and Order Imbalances

The results for the estimation of various liquidity measures and the order imbal-

ance under the new data structure are presented in Figures 3.F2 and 3.F3 in the

Appendix. The conclusions regarding the improvements achieved by the FIDS2 al-

gorithm do not change. By and large, the estimates based on the FIDS2 algorithm

provide the smallest root-mean-square errors.30 That is, the FIDS2 algorithm pro-

vides the most precise estimates over the sample of stock-days. For example, for

the dollar realized spread under no noise and a timestamp precision of seconds,

the average deviation of the estimate based on the FIDS2 algorithm around the

true dollar realized spread is 1� per share, compared to that of the EMO estimate

28The results of the traditional algorithms are the same as the ones from the previous section,
as they are not a�ected by the new data structure.

29Due to the more granular data structure in the previous sections, we were basically treating
each transaction as a single trade. Each transaction was therefore shocked by a separate noise
realization. Here, since we count transactions that belong to the same marketable order as a
single trade, I shock transactions belonging to the same order by the same noise realization.

30Note that the measures computed from the true trade initiator label are also computed
under the new data structure. Therefore, the results for the true measures deviate slightly from
the ones presented earlier.
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of 1.5� per share. Importantly, applying the methods to the data timestamped at

seconds, or 10-th of a second, stabilizes the estimates against noise in the trade

times. At those timestamp precisions the improvement of the FIDS2 algorithm

in terms of the root-mean-square error is the greatest. The same applies to the

estimates of the order imbalance.

3.8.2 Relaxing Assumption (ii) of Data Structure 1 and 2:

Randomized Order of Trades

In certain datasets, trades may not follow the actual order in which they were

executed (e.g. Easley et al., 2016). That may be due to two reasons. First, the

legal framework may allow for some delay in reporting trades. Depending on

whether the timestamp of the data re�ects the time of the report or the time of

the actual trade and depending on the extent to which trading institutions exploit

their right of delayed reporting, trades may be out of order. Second, for data from

a consolidated tape, which timestamps trades when the corresponding data are

processed, trades are out of order due to di�erent latencies for sending information

from di�erent market places to the same data processor. These latencies can be

expected to be small, but large enough to a�ect trades that are executed over

small intervals.31

Nevertheless, we can expect that the FI algorithm will be little, if at all, a�ected

by trades being out of order. The correct order of trades plays a role for the FI

algorithm only if it uses the tick-test, which it rarely does.32

We already examined the consequences of trades being out of order in the

sections where we delayed the trade times by exponential noise (though we did

not mentioned it explicitly). When we add to each trade time an independently

distributed exponential variable, the order of trades can change. For example, for

two trades with the second trade following one millisecond after the �rst trade, the

probability that the �rst trade will be shifted behind the second one if both trades

31For example, the speed of light in a vacuum is roughly 300 ∗ 106 m/s. Sending data from
Chicago to New York (a distance of around 1300km) at the speed of light would thus take 4ms.
So even at this physically lower limit of transmission time the report delay of a Chicago trade is
4ms compared to a trade at the NYSE where the consolidated tape is located.

32To a lesser extent, the correct order of trades also plays a role if the algorithm uses the
interpolated time of quotes to classify a trade. If a trade is classi�ed using the interpolated time,
the volume at the quote that is matched to the trade is reduced by the size of the transaction.
This is done because two di�erent trades cannot cause the same quote change and to avoid that
this quote causes further con�icts between an assignment of trades to either the ask or the bid
side. If there are several trades with the same price and volume and these trades are out of order,
it is possible that the FI algorithm assigns these trades to the con�icting ask and bid quotes in
the exact opposite order in which they actually occurred. However, for statistics like the order
imbalance such errors are irrelevant.
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are a�ected by exponential noise with β = 1/103 is 0.1839.33 We saw from the

previous exercises under noisy trade times that the randomization of the order of

trades did not greatly in�uenced the accuracy of both versions of the FI algorithm

and did not greatly a�ect the performance against the traditional algorithms.

3.8.3 Relaxing Assumption (ii) of Data Structure 2: Ran-

domized Order of Trades and Quotes

The reasons for the possibility that trades could be out of order apply to the

recorded quotes, at least for a consolidated tape, just as well. If, indeed, quote

changes are out of order the decision criteria of the FI algorithm have to be ad-

justed. The de�nition of the change in volume used to �nd matches between

transactions and quotes is only meaningful if the order of the quotes is correct.

Since we assume here that the order of quotes is incorrect, we need to adjust the

search of trade-quote correspondences.

Data Structure 3. Aggregated Quote Changes and Random Trade and Quote

Order

(i) At the time of a trade the order book displays the new state of the order book

after the completion of all transactions that were carried out due to the same

buy or sell order.

(ii) Trades and quotes can be out of order.

The FI Algorithm under Data Structure 3

Instead of the change in volume we can now rely only on the absolute volume

displayed at the respective quote. For a transaction to be executed at a particular

quote the volume of the transaction cannot exceed that of the volume available at

the quote. Therefore, the search of a match between a transaction and a quote in

Step 2 is changed to (demonstrated for the ask)

α = min{j ∈ Ja : pi = aj and vi ≤ vaj },

33More formally, for two trades at time t1 and t2 with t2 = t1 + ∆ and ∆ ≥ 0 the probability
that the �rst trade is shifted behind the second one due to noise is given by

P (t1 + ε1 > t2 + ε2) =

∫ ∞
∆

f(ε1)F (ε1 −∆) dε1,

with εi ∈ R≥0 and εi
iid∼ F for some distribution function F with density f . For F being the

exponential distribution Exp(1/β) this is given by exp{−∆/β}/2.
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and analogously for the bid. From here, the adjusted algorithm proceeds as the

baseline version.34 If the classi�cation is derived under Step 3 the algorithm sub-

tracts the transaction volume from the volume available at the matched quote.

Step 4a and Step 4b from the previous adjustment to the algorithm do not apply

here because they rely on the correct order of the quotes.

Results for Varying Timestamp Precisions

Table 3.G1 in Appendix 3.G shows the results of the application of the FI algorithm

adjusted for the new data structure (FIDS3) for the same data as under Data

Structure 2 not being a�ected by noise in trade or quote times. Although the

order of trades and quotes will thus not be a�ected, the exercise demonstrates the

loss in classi�cation accuracy we have to incur for not being able to use the full

amount of information. We see that the algorithm, albeit precise at high timestamp

precisions, reacts with greater sensitivity to the reduction in timestamp precision

than the previous versions, as it is more di�cult to resolve situations where both

ask and bid quotes seem to provide a match to the transaction. However, the

FIDS3 algorithm still achieves a 1.6 to 3.0%-points improvement over the traditional

algorithms at a timestamp precision of seconds.

Results for Noisy Timestamps

To study the e�ect of random trade and quote order, I add exponential noise to

the timestamps of both trade and quote data. Note that in doing so, not only will

the order of trades and quotes change, but trades may now also be reported before

their corresponding quote change. We may view this section as an examination of

classi�cation accuracy under a minimum of data structure. All that we require is

that prices and volumes of trades and quotes are correctly recorded and that trades

are executed in a reasonable interval around their corresponding quote change.

Figure 3.G1 in Appendix 3.G shows that, contrary to the above setups, there

are regions of timestamp precisions and noise where the traditional algorithms

outperform the FIDS3 algorithm. At these regions of higher timestamp precision,

however, classi�cation accuracy is quite low for all the algorithms and not stable

across the di�erent degrees of noise. At the timestamp precisions that ensure that

the algorithms are not too strongly a�ected by noise, the FIDS3 algorithm again

outperforms the others.

34Note, however, that the auxiliary variables la and lb are not updated after a classi�cation.
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Estimating Liquidity and Order Imbalances

With respect to measuring liquidity and order imbalances, Figures 3.G2 and 3.G3

in Appendix 3.G show that despite the decrease in classi�cation accuracy due to the

changes in the data structure, the FIDS3 still achieves considerable improvements

in terms of the root-mean-square error.

3.9 Discussion

3.9.1 The Bulk Volume Classi�cation Algorithm, the Ag-

gressor Flag and Informed Trading

Sharing the motivation that high-frequency quoting and possible inaccuracies in

timestamps pose di�culties for established classi�cation algorithms to generate

reliable results, Easley et al. (2016, 2012) present an alternative classi�cation al-

gorithm (BVC).35 Their motivation, however, goes one step further questioning

the equality of liquidity demanders and informed traders in today's markets (one

reason for the frequent application of trade classi�cation algorithms), a claim sup-

ported by studies like Collin-Dufresne and Fos (2015). The BVC algorithm is,

therefore, proposed to discern the underlying information from trade data.

Even though this paper is not directly concerned with the topic of informed

trading, the claims by Easley et al. (2016), of course, a�ect the range of applica-

bility of the algorithm proposed here, because it falls into line with the traditional

approaches. Hence, I want to brie�y comment on this subject.

In market microstructure models, information usually refers to private signals

of traders regarding the liquidation value of an asset at some (terminal) point in

the future. Traders in possession of such information choose liquidity demanding

orders, while the uninformed side provides liquidity. This assumption about the

relation of order and trader types, informed or uninformed, is built into many

empirical applications. Yet, Collin-Dufresne and Fos (2015) show that traders

with private information frequently choose passive orders.

The concept of information in empirical studies is, however, far less uniformly

de�ned than its theoretical counterpart. The private information in Collin-Duf-

resne and Fos (2015), for example, refers to an investor's intention to increase her

stake in a publicly traded company up to some critical limit, at which point the

stake of that investor becomes public information. Until that point, the investor

35They classify buckets of trading volume into fractions of buyer- and seller-initiated trades
by multiplying trading volume by the density function of a t-distribution at the standardized
price change over the trading interval.
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can carefully time her transactions without revealing her intentions and her in-

�uence on the future of this company. Many recent studies, on the other hand,

show that the order imbalance constructed from the classi�cation results of the

traditional algorithms signals fundamental information for speci�c events where

time is crucial (Bernile et al., 2016; Chordia et al., 2017; Hu, 2014, 2017; Mu-

ravyev, 2016). In fact, Collin-Dufresne and Fos (2015) also show that investors

use liquidity demanding orders more frequently approaching the day when their

stake becomes public information.36

The BVC algorithm also has its own notion of what constitutes information.

The BVC algorithm classi�es trade data based on the price movement over an

interval preferably de�ned by trading volume instead of time. The normalized

price change over the interval is plugged into the probability density function

of a t-distribution which yields the fraction of buyer-initiated trades.37 Large

order imbalances from the BVC algorithm thus signal large, historically abnormal

price movements over a given amount of trading volume, which do not necessarily

have to be driven by liquidity demanding orders, but instead by, e.g., a �ight

of liquidity providing orders. Such order imbalances put certain types of high-

frequency traders under stress and, thus, certainly signal valuable information to

them or to regulators concerned with short-term market distortions, such as the

�ash crash of 2010. These price movements, however, can be of only temporary

pressure and completely unrelated to fundamental information.

We see that the appropriateness of using one classi�cation algorithm rather

than another to discern the direction and strength of information from the order

�ow cannot be discussed without reference to a speci�c concept of information that

may include investor preferences and strategies, the type of information event and

the half-life of the information. While one should not invariably equate informed

traders with liquidity demanders, it clearly depends on the de�nition of information

to decide whether one should do so for the speci�c context of the analysis.

3.9.2 The Speed of the Full-Information Algorithm

An important aspect of the FI algorithm is that it utilizes more information than

the traditional algorithms. This raises the question of computational feasibility. I

implemented the FI algorithm in Python using the Cython hybrid language for the

computational intense parts. On the entire data set consisting of 19842 stock-days

36Note that all studies mentioned in this paragraph use classical methods of trade classi�cation
and encounter some of the problems which are dealt with in this paper. Their analysis could
have thus pro�ted from the algorithm presented here.

37One minus the pdf of the t-distribution yields the fraction of seller-initiated trades, corre-
spondingly.
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with a total of 134,449,578 trades the classi�cation function needs 20.91 minutes

on an Intel Core i7 CPU with 3.6 GHz (not using the di�erent cores for parallel

computing which can easily be done) to sign all trades for the data timestamped

to a second, which is on average 9.3 microseconds for a single trade. The majority

of time is actually spent reading the data from a SQLite database: 0.34 seconds

for a stock-day of order book data and 0.1 seconds for a stock-day of transaction

data. That is, the use of the additional information to arrive at an improved

classi�cation accuracy does not come at any noteworthy computational costs.

3.10 Conclusion

This paper proposes a new trade classi�cation algorithm that improves the classi-

�cation of trades into the liquidity demanding and supplying side under the char-

acteristics of today's markets and data records. In particular, the high frequency

of quote submission and cancellation pose a problem for established classi�cation

algorithms. Under a median of 17 quote changes at the time of a trade, for ex-

ample, the new algorithm manages to reduce misclassi�cation rates by half. The

improvements in classi�cation rates translate into considerable improvements in

the estimation of transaction costs and order imbalances. The evidence presented

in this paper also raises some concern about using the DTAQ data in combina-

tion with the traditional classi�cation algorithms without worrying about data

quality.38

38Unfortunately, not having access to the DTAQ data I cannot address to which extent the
proposed algorithm is able to improve the classi�cation of trades from the consolidated tape.
To the extent that the DTAQ su�ers from the di�erent data de�ciencies analysed in this paper,
however, we saw that the improvement can be sizeable.
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Appendix 3

3.A Extracting Trade and Quote Data from LOB-

STER's Message Files

The software LOBSTER reconstructs from the original Nasdaq TotalView-ITCH

data feed the full limit order book, as well as a message �le containing information

on the events causing the changes in the order book.39

The gray shaded area in Figure 3.A1 provides an example of the design of LOB-

STER's message and order book �les. The k-th row of the message �le describes

the cause of the change in the order book from the (k − 1)-th row to the k-th

row. The events 1, 2 and 3 refer to the submission, partial cancellation and total

deletion of a limit order. The events 4 and 5 refer to the execution of a visible

and hidden limit order, respectively. The direction indicates whether a buy (+1)

or sell (-1) limit order is a�ected. If a hidden order is executed, the order book is

not visibly a�ected. In that case, to maintain a symmetric output, the LOBSTER

order book data displays the order book's state after the execution of the hidden

order.

As an example take the �rst row of the order book and message �le. We start

here with an empty order book indicated by negative quotes. At t1 the message

�le indicates a submission of a limit sell order for a price of 105 per share for a

total of 200 shares. In the same row, the order book displays its new state. The

bid side is still empty and the ask side is now displaying the price and volume of

the limit sell order.

Below the gray shaded area in Figure 3.A1, it is illustrated how I extract the

trade and quote data from the order book and message �le. I construct the trade

data by extracting all visible and hidden executions of limit orders (events 4 and

5) from the message �le, with the respective information on the price and volume

39For more information on the TotalView-ITCH data feed and the order book reconstruction
by LOBSTER, see Hautsch and Huang (2012) and Huang and Polak (2011).
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Figure 3.A1: Data construction

Notes: Each row in the Message File describes the cause of the change in the order book from
the previous row to the next. Event types 1, 2 and 3 refer to the submission, partial cancellation
and total deletion of a limit order, events 4 and 5 to the execution of a visible and hidden limit
order, respectively. The direction 1 (-1) refers to a buy (sell) limit order.

of the transactions. As the direction in the message �le refers to the limit order,

the initiator is given by the opposite party to the trade. Note that I omit the

active counter-party to each trade from the trade data. In doing so, however, I do

not omit any relevant information as the counter-party simply mirrors the passive

trade with opposite trade direction. I remind the reader of that decision in the

main text at any point where it is relevant, and discuss the alternative of including

the counter-party to each trade.

The data for the ask side of the order book is constructed by extracting the

state of the order book at any point the ask side is a�ected by the submission,

cancellation, deletion or execution of a visible sell limit order (events 1, 2, 3, 4).

Any event that is related to a hidden order is omitted. The construction of the

bid side follows analogously.
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Table 3.A1: Summary statistics of Nasdaq's transaction and quote data

mean std min 25% median 75% max

T 6776.01 7647.55 17 1673 4397 9247.75 106407
V 1131.88 2347.50 1.37 165.53 467.49 1160.76 58115.01
V/T 129.02 87.20 44.65 95.50 108.31 129.33 3573.15
V ≥ 100 0.77 0.12 0.21 0.71 0.79 0.87 0.98
V = 100 0.62 0.12 0.19 0.55 0.63 0.70 0.92
P 59.01 54.25 4.48 32.07 48.22 69.96 623.37
#Q 104.10 102.26 1.16 28.62 70.39 150.38 908.74

Notes: This table provides summary statistics to the following variables computed for each
stock-day: T � Number of trades, V � Trading volume in 1000 shares, V/T Volume per trade
(stock-day average), V ≥ 100 � Percentage of trades with volume greater or equal to 100 shares,
V = 100 � Percentage of trades with trading volume equal to 100 shares, P � Price per share
(stock-day average), #Q � Number of quote changes in 1000.
Compared to Chakrabarty et al. (2015), who study ITCH-data from the same time span for a size
strati�ed sample of 300 stocks, my sample displays slightly higher trading activity measured by
the daily, cross-sectional average of the total number of shares traded. Also, trades in my sample
tend to be smaller and higher priced. However, the sample retains a great deal of variability
and as the purpose is to analyze trade classi�cation under the problem of imprecise timestamps,
a focus on slightly more frequently traded stocks seems only proper. The average number of
transactions on a stock-day is 6776, which is less than a trade per second. The average number
of quote changes, however, is substantially larger with 104,100 quote updates on a stock-day,
which is almost 4.5 quote updates per second. It is the large number of quote changes that
makes accurate trade classi�cation with imprecise timestamps challenging.
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3.B The Tick-Test, LR, EMO and CLNV Algorithm

Table 3.B1: Trade classi�cation algorithms

Variables: pi � transaction price of the ith trade; ai, bi � ask, bid price corresponding to the ith trade; oi � trade initiator

Tick-Test LR (Lee and Ready, 1991) EMO (Ellis et al., 2000) CLNV (Chakrabarty et al.,
2007)

for i = 1 : I do
if pi > pi−1 then

oi = buyer
else if pi < pi−1 then

oi = seller
else

oi = oi−1

for i = 0 : I do
mi = (ai + bi)/2
if pi > mi then

oi = buyer
else if pi < mi then

oi = seller
else

j = 0
while i− j > 0 do
j = j + 1
if pi > pi−j then
oi = buyer
break

else if pi < pi−j then
oi = seller
break

for i = 0 : I do
if pi = ai then
oi = buyer

else if pi = bi then
oi = seller

else

j = 0
while i− j > 0 do
j = j + 1
if pi > pi−j then
oi = buyer
break

else if pi < pi−j then
oi = seller
break

for i = 0 : I do
a = 0.7ai + 0.3bi
b = 0.3ai + 0.7bi
if a < pi ≤ ai then
oi = buyer

else if bi ≤ pi < b then
oi = seller

else

j = 0
while i− j > 0 do
j = j + 1
if pt > pi−j then
oi = buyer
break

else if pi < pi−j then
oi = seller
break
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Table 3.B2: Ticker names

AAPL AA ABB ABT ACE ACN ADBE ADM ADP
ADS AEP AGN AGU AIG AKAM ALK ALL AME
AMGN AMT AMX AMZN AN AON AOS APC APD
APH ASH ASR AVGO AVY AXP AYI AZN BAC
BAM BAX BA BBL BBT BCE BEAV BEN BHI
BHP BIDU BIIB BK BLK BLL BMS BMY BP
BRFS BR BTI BT BUD BX CAJ CAT CCK
CELG CF CHA CHL CHRW CHT CHU CLX CL
CMCSA CMCSK CME CMI CM CNI CNQ COF COP
COST CPA CPRT CP CRH CRM CSCO CSGP CSX
CTRP CTSH CUK CVS CVX C DAL DCM DD
DEO DE DHR DISH DIS DOW DTV DUK DVN
D EBAY ECL EL EMC EMR ENB ENR EOG
EPD ESRX ETE ETN EXC EXPD E FCX FDX
FIS FLT FMX F GD GE GG GILD GIS
GLW GMCR GM GOOG GPK GPN GPRO GSK GS
GT GWR HAL HD HMC HON HPQ HSY IBM
IBN IGT ILMN IMO INFY INTC IP IR ITW
JAH JBHT JBLU JCI JPM KAR KMB KMX KO
KR KSU K LBTYA LBTYK LEG LFL LLY LMT
LNKD LOW LO LUV LVS LYB MA MCD MCK
MELI MET MGA MHK MJN MMC MMM MON MOS
MO MPC MRK MSCI MSFT MS MT NCR NEE
NGG NKE NLSN NOC NSC NTES NTT NUE NVO
NVS ODFL ORCL OXY PAC PBR PCAR PCLN PCP
PEP PFE PG PHG PH PKG PKX PM PNC
POT PPG PRU PSA PTR PX QCOM RAI REGN
RIO RKT ROP RTN RYAAY SAP SAVE SBUX SCCO
SCHW SIAL SLB SNE SNP SNY SON SO SPB
SPG SRE STO STT STZ SU SWFT SYT SYY
TEF TEL TEVA TGT TJX TMO TM TOT TRP
TRV TSLA TSM TSS TS TTM TWC TWX TXN
T UAL UL UNH UNP UN UPS USB UTX
VALE VFC VLO VMW VRX VZ V WFC WHR
WIT WMB WMT WM WPZ WU XOM XRX YHOO
YUM Z

Notes: This table provides the ticker names of all stocks included in the sample. However, not
all of these stocks are analyzed over the whole range of the sample as some stock-days may not
have ful�lled the criteria mentioned in the data section (day-end price ≥ 1 $ and number of
trades ≥ 10), or due to an initial public o�ering during the sample period (e.g. Z).
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3.C Tables from the Results Section

Table 3.C1: Classi�cation accuracy at di�erent timestamp precisions

i 0 1 2 3 4 9
quote
changes

17 9 5 3 1 1

Panel A: total volume
FI 95.02 96.97 97.95 98.34 98.24 98.18

EMO 90.13 93.64 96.08 97.61 98.19 98.20
CLNV 90.14 93.63 96.08 97.61 98.17 98.19
LR 89.88 93.57 96.02 97.52 98.10 98.10

EMOi 72.98 76.67 82.74 91.66 97.49 98.20
CLNVi 73.36 76.99 82.98 91.80 97.52 98.19
LRi 71.84 75.85 82.16 91.28 97.33 98.10

Panel B: average volume
FI 94.52 96.47 97.38 97.71 97.53 97.44

(2.40) (1.91) (1.91) (2.04) (2.05) (2.09)

EMO 89.49 92.75 94.93 96.52 97.46 97.43
(3.41) (2.99) (2.86) (2.60) (2.06) (2.11)

CLNV 89.39 92.69 94.92 96.55 97.42 97.42
(3.40) (3.01) (2.85) (2.54) (2.07) (2.10)

LR 89.31 92.66 94.79 96.31 97.26 97.21
(3.55) (3.08) (3.00) (2.77) (2.26) (2.32)

EMOi 73.04 77.07 82.70 90.60 96.52 97.43
(7.51) (6.98) (5.65) (3.77) (2.53) (2.11)

CLNVi 74.38 78.21 83.57 91.10 96.61 97.42
(8.05) (7.35) (5.68) (3.40) (2.38) (2.10)

LRi 70.54 75.12 81.25 89.71 96.15 97.20
(6.81) (6.42) (5.54) (4.20) (2.90) (2.33)

Notes: This Table shows the percentage of correctly classi�ed trading volume by the FI algorithm
and the traditional algorithms using the last quotes from before the time of the trade (EMO,
CLNV and LR) and using the interpolated time of trades and quotes (EMOi, CLNVi and LRi).
The algorithms are applied to the data with reduced timestamp precisions (10−i of a second
for i = 0, . . . , 4) and using the original precision of nanoseconds (10−9 of a second). These
correspond to a median number of quote changes at the time of trades ranging from 17 (for
i = 0) to 1 (for i = 9). Panel A shows the percentage of correctly classi�ed volume summed
over the entire sample. Panel B shows the average of correctly classi�ed volume over the 19842
stock-days with the standard deviations in brackets.
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Table 3.C2: Quote changes caused by a trade

Number of Quotes
Quote change
due to trade 2 3 4 5 6 7 8 9 10

∑
1st 13.93 8.59 6.06 4.34 3.21 2.43 1.85 1.44 1.14 42.99
2nd 5.13 3.00 1.99 1.39 1.03 0.77 0.60 0.47 0.38 14.76
3rd 2.11 1.42 0.99 0.72 0.54 0.42 0.33 0.27 6.80
4th 1.12 0.81 0.61 0.46 0.35 0.27 0.22 3.84
5th 0.69 0.50 0.40 0.30 0.24 0.19 2.32
6th 0.44 0.34 0.28 0.22 0.18 1.45
7th 0.31 0.24 0.20 0.16 0.92
8th 0.22 0.18 0.15 0.55
9th 0.17 0.14 0.31
10th 0.13 0.13∑

19.06 13.70 10.60 8.21 6.50 5.25 4.27 3.53 2.95 74.07

Notes: This table shows the number of times a trade is executed on the �rst, second, third, . . .,
10-th quote within seconds of 2, 3, . . ., 10 quote changes. Only seconds with a single trade were
used for the computation. All numbers are presented in 105. For example, entry (1st, 2) means
that within seconds containing 2 quote updates and one trade (of which there are 1.9 million),
1.4 million of the �rst quote changes were due to a trade.
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3.D Approximation of the Reduction in Classi�ca-

tion Accuracy due to Noisy Timestamps

To get a feeling of how we can expect the results to be a�ected if the reported

time of trades is delayed by a random amount, we can calculate the reduction in

classi�cation accuracy under a few distributional assumption. The approximation

may also help the practitioner to choose the appropriate timestamp precision at

which to apply the classi�cation algorithm in her data set, if she has a rough idea

of the degree of noise.

Let the timestamp of a trade re�ect the actual trade time plus noise, ε ∈ R≥0,

which follows a distribution F (ε). Let the probability of a trade at some point

x over an interval of length s be determined by the density g(x), 0 ≤ x < s.

The fraction of trades that is placed outside the interval in which they actually

occurred is then given by
∫ s

0
g(x)(1− F (s− x)) dx.

For example, if trades are equally distributed over the interval s and the delay

in reported time follows the exponential distribution, ε ∼ Exp(1/β), the fraction

of trades placed to the right of the interval during which they actually occurred

is β(1 − exp{−s/β})/s. For an interval of the length of a second (s = 1) and an

average delay of one 10-th of a second (β = 0.1), that would mean that 10% of

trades are reported outside the second in which they occurred.

Denoting the classi�cation accuracy of all trades that lie in the correct interval

by A(s), the overall classi�cation accuracy is given by

A(s)

∫ s

0

g(x)F (s− x) dx+ 0.5

∫ s

0

g(x)(1− F (s− x)) dx

assuming that the average classi�cation accuracy of trades outside their actual

time interval is 0.5. That is, the reduction in the accuracy due to delayed report

times is given by ∫ s

0

g(x)(1− F (s− x)) dx (A(s)− 0.5).

For example, given the above classi�cation accuracy of 95% for data times-

tamped at seconds (s = 1, with a median of 17 quote changes at the time of

trades), we would expect the reduction in accuracy to be around 4.5%-points due

to noise of intensity β = 0.1. Note that the reduction in accuracy may exceed

the 4.5%-points if the classi�cation accuracy for trades not shifted outside their

interval is a�ected by the permutation of trades or if the accuracy of trades shifted

just behind the interval at which they actually occurred is less than 0.5.
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Given that at any timestamp precision s we found that in the absence of noise

A(s;FI) & A(s; j) for j = EMO, CLNV, LR, we would expect the FI algorithm to

dominate under noise as well.

3.E Data Construction for Logistic Regression

The data used in the regression analysis is �ltered as follows. Observations where

either an ask or bid price is not quoted at the time of the trade are dropped because

the spread is not de�ned in these cases. I also drop the �rst trade, because neither

R2 nor ∆t-Trade are de�ned for the �rst trade. If a trade is not preceded by at

least one quote change, it is also dropped from the sample. Due to several quote

changes happening at the same nanosecond it is possible that trades appear to

be executed at negative spreads. Though the number of these instances is small,

these observations are dropped. Due to several transactions taking place at the

same nanosecond, it is also possible that trades appear to be executed outside the

spread such that Q-Dist and Mid become negative. In these cases their values are

truncated to 0. Table 3.E1 presents summary statistics after this �ltering process,

which gives still over 134 million transactions to analyze.

To get a �rst idea of the in�uence of the explanatory variables on the event of

a correct classi�cation, as well as on possible cross-correlations among the regres-

sors, Figure 3.E1 depicts the correlation matrix of the explanatory variables and

the dependent variable (the event of a correct classi�cation by the FI algorithm

applied at a timestamp precision of seconds). We see that, indeed, the number of

misclassi�ed transactions is higher for hidden orders, trades close to the mid-point

and trades that execute away from the quote against which we would expect them

to execute in the absence of hidden orders. As only trades that execute against

a hidden order can be executed inside the spread, we see a strong, positive corre-

lation between Hidden and the distance to the mid-point (Mid) or the distance to

the quotes (Q-Dist).

In the regression analysis one could be worried that the coe�cient of the event

of a hidden order might overestimate the true e�ect of such an event as the place-

ment of hidden orders and the execution against those may be viewed as endoge-

nous decisions. In times of larger spreads, there is more room for placing hidden

orders inside the spread, and traders searching for cheap execution prices may

place successively small orders to �nd those hidden orders. The correlation matrix

suggests that such concerns can be neglected. In fact, the bivariate correlation

analysis suggests that other than the variables Hidden, Mid and Q-Dist there is

no strong, linear impact of the explanatory variables on the event of a correct
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Table 3.E1: Summary statistics of explanatory variables

mean std min 25% 50% 75% max

Hidden 0.09 0.29 0 0 0 0 1
Mid 0.05 0.22 0 0 0 0 1
Q-Dist 0.03 0.12 0 0 0 0 1
R2 ∗ 100 0 0.11 0 0 0 0 1213.55
Size 1.67 4.50 0.01 1 1 1 4310.75
Spread 0.02 0.04 0.01 0.01 0.01 0.02 9.08
Vol 31.30 46.96 0.01 7.71 15.25 34.17 581.15
RV∗100 0.03 0.73 0 0.01 0.02 0.03 75.31
∆t Trade 6.62 23.01 0 0.01 0.48 5.21 12764.04
∆t Q 0.50 2.26 0 0 0.01 0.20 1098.91
# Trades 13.38 20.92 1 3 7 16 1020
# Q 76.70 104.44 0 18 46 98 32983
MultiTrade 0.65 0.48 0 0 1 1 1

Notes: This table shows the summary statistics of the explanatory variables. Hidden refers
to a dummy variable taking the value 1 if the trade executed against a hidden order and 0
otherwise. Mid measures the distance of the execution price to the mid-quote, de�ned as 1 −
2|pt − mt|/(at − bt), where pt is the execution price, mt is the corresponding mid-point and
at, bt are the corresponding ask and bid quote, respectively. Q-Dist measures the distance of
the execution price to the quotes, de�ned as |Dt − pt|/(at − bt) where Dt = at if the trade is
buyer-initiated and Dt = bt if the trade is seller-initiated. R2 is the squared log-return of a
transaction. Size is the number of shares exchanged in the transaction divided by 100. Spread

is the absolute dollar spread at the time of the trade. Vol is the total trading volume of the
stock-day divided by 105. RV is the 5-minute realized variation over the stock-day. ∆t-Trade is
the number of seconds since the previous trade. ∆t-Q is the number of seconds since the last
quote change. #Trades is the number of transactions during the same second of the trade. #Q

is the number of quote changes during the second of the trade. MultiTrade is a dummy variable
taking the value 1 if the transaction is part of a trade involving more than one counter-party
and 0 otherwise.

classi�cation.

To insure that we do not encounter problems with a few extreme outliers in the

estimation procedure, I did not consider observations where one of the variables

from R2 to #Q exceeded their 99th-percentile. The summary statistics of this

restricted sample used in the regression analysis are presented in Table 3.E2.
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Figure 3.E1: Correlation matrix

Notes: This �gure shows the correlations between the explanatory variables of the regression
model, which are summarized in Table 3.E1, and the dependent binary variable of a correct/false
classi�cation of a trade by the FI algorithm, as well as the correlations between the explanatory
variables themselves depicted as a heat map.
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Table 3.E2: Summary statistics of explanatory variables for the restricted sample

mean std min 25% 50% 75% max

Hidden 0.09 0.28 0 0 0 0 1
Mid 0.05 0.21 0 0 0 0 1
Q-Dist 0.03 0.12 0 0 0 0 1
R2 ∗ 106 0.01 0.04 0 0 0 0 0.42
Size 1.38 1.46 0.01 1 1 1 13.99
Spread 0.02 0.02 0.01 0.01 0.01 0.01 0.15
Vol 27.52 34.51 0.01 7.83 15.12 31.78 233.70
RV*100 0.02 0.02 0 0.01 0.02 0.03 0.12
∆t Trade 4.98 10.46 0 0 0.45 4.83 81.36
∆t Q 0.34 0.89 0 0 0.01 0.18 7.75
#Trades 11.69 13.32 1 3 7 15 91
#Q 69.02 71.11 0 19 46 95 468
MultiTrade 0.65 0.48 0 0 1 1 1
N Obs.: 124254433

Notes: This table shows the summary statistics of the sample presented in Table 3.E1 restricted
to observations where the variables R2 to #Q do not exceed their 99th-percentile. This sample
provides the baseline for the logistic regression of the probability of a correct classi�cation of a
transaction by the FI algorithm.
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3.F The Full-Information Algorithm under Data

Structure 2

Figure 3.F1: Classi�cation accuracy under delayed trade times and Data Struc-
ture 2

Notes: This �gure shows the fraction of correctly classi�ed trading volume (y-axis) for the data
with delayed trade times under Data Structure 2. The trade time equals the actual trade time
plus ε, with ε ∼ Exp(1/β) and β ∈ {10−4, 10−3, 10−2, 10−1}. The classi�cation algorithms FIDS2,
EMO, CLNV and LR are apply to the data with reduced timestamp precision (s) ranging from
10−4 of a second to 2.5 seconds presented on log10-scale (x-axis).



104 Paper 3

Figure 3.F2: Estimating liquidity under Data Structure 2

Notes: This Figure shows the sample averages and the root-mean-square error between the
stock-day estimates and the true values of the dollar e�ective spread (DES), the dollar price
impact (DPI) and the dollar realized spread (DRS) for the FIDS2 algorithm and the traditional
algorithms under Data Structure 2. The algorithms are applied to the data with and without
delayed trade times, where the delay is given by ε ∼ Exp(1/β) with β = 10−3, 10−2, and with
varying timestamp precision ranging from seconds to milliseconds.
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Table 3.F1: Classi�cation accuracy of FIDS2

timestamp precision: 10−i of a second for i =
0 1 2 3 4 9

Panel A: overall correctly classi�ed volume (in %)

total 93.36 96.16 97.71 98.30 98.25 98.21
mean 93.42 95.93 97.18 97.65 97.54 97.45
std 2.64 2.02 1.96 2.06 2.05 2.09

Panel B: % correctly classi�ed volume in each classi�cation category

visible cl.
step

YES 0 � � � � � �
2 99.50 99.76 99.94 99.99 100.00 100.00
3 90.80 94.52 96.78 97.34 67.51 �
4a 94.79 98.34 99.72 99.98 100.00 100.00
4b 98.73 99.57 99.90 99.99 100.00 100.00
4 49.78 55.15 59.45 66.66 75.93 76.00
5 53.39 52.45 51.94 50.54 38.99 36.09

NO 0 � � � � � �
2 71.68 79.77 88.60 95.57 99.77 99.96
3 87.78 92.83 95.55 96.81 97.13 �
4a 81.82 88.50 91.88 95.52 99.88 100.00
4b 48.50 63.19 84.89 95.75 99.85 100.00
4 90.11 92.52 93.41 93.16 92.15 91.53
5 64.87 64.73 65.87 67.56 68.99 69.14

Panel C: % classi�ed volume in each classi�cation category

visible cl.
step

YES 0 0.00 0.00 0.00 0.00 0.00 0.00
2 46.52 59.06 72.95 85.69 89.49 89.49
3 43.48 30.85 16.84 3.94 0.00 0.00
4a 0.22 0.27 0.32 0.39 0.46 0.46
4b 0.12 0.19 0.29 0.40 0.46 0.46
4 0.01 0.01 0.01 0.00 0.00 0.00
5 0.07 0.04 0.03 0.01 0.00 0.00

NO 0 0.00 0.00 0.00 0.00 0.00 0.00
2 2.89 3.04 3.06 2.67 1.80 1.67
3 1.47 0.82 0.33 0.06 0.00 0.00
4a 0.53 0.29 0.07 0.02 0.00 0.00
4b 0.46 0.25 0.15 0.13 0.12 0.12
4 1.82 2.35 2.69 2.79 2.74 2.74
5 2.40 2.82 3.28 3.91 4.92 5.05

Notes: This Table shows the percentage of correctly classi�ed trading volume for the FI algorithm
adjusted to the Data Structure 2. �cl. step� refers to the accuracy at the corresponding step of
the classi�cation procedure.
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Figure 3.F3: Estimating order imbalance under Data Structure 2

Notes: This Figure shows the sample averages and the root-mean-square error between estimates
of the order imbalance and the true order imbalance displayed in percent for the data with
aggregated quote changes. For the computation of the order imbalance each stock-day is split
into equally sized volume bins. The number of bins is chosen to be τ = 10, 100. The algorithms
are applied to the data with and without delayed trade times, where the delay is given by
ε ∼ Exp(1/β) with β = 10−3, 10−2, and with varying timestamp precision ranging from seconds
to milliseconds.
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3.G The Full-Information Algorithm under Data

Structure 3

Table 3.G1: Classi�cation accuracy of FIDS3

timestamp precision: 10−i of a second for i =
0 1 2 3 4 9

Panel A: overall correctly classi�ed volume (in %)

total 91.73 94.84 96.82 97.92 98.22 98.21
mean 92.33 94.86 96.43 97.40 97.52 97.45
std 2.97 2.24 2.00 2.05 2.05 2.09

Panel B: % correctly classi�ed volume in each classi�cation category

visible cl.
step

YES 0 � � � � � �
2 99.70 99.81 99.93 99.99 100.00 100.00
3 89.36 94.14 97.24 98.88 98.15 �
4 98.30 99.15 99.60 99.82 99.90 99.90
5 51.77 50.85 48.37 42.03 41.39 38.94

NO 0 � � � � � �
2 67.64 66.03 71.96 83.44 97.17 99.81
3 89.87 93.29 93.49 84.18 89.45 �
4 83.29 89.46 92.33 93.00 92.50 91.95
5 64.53 64.39 65.42 67.27 68.95 69.14

Panel C: % classi�ed volume in each classi�cation category

visible cl.
step

YES 0 0.00 0.00 0.00 0.00 0.00 0.00
2 35.66 44.61 59.19 78.89 89.47 89.49
3 54.56 45.54 30.84 10.95 0.05 0.00
4 0.14 0.22 0.35 0.57 0.90 0.93
5 0.06 0.06 0.04 0.01 0.00 0.00

NO 0 0.00 0.00 0.00 0.00 0.00 0.00
2 2.78 3.13 3.39 3.04 1.87 1.68
3 2.43 1.58 0.69 0.12 0.00 0.00
4 1.95 2.11 2.34 2.65 2.84 2.85
5 2.41 2.76 3.16 3.77 4.87 5.05

Notes: This Table shows the percentage of correctly classi�ed trading volume for the FI algorithm
adjusted to the Data Structure 3. �cl. step� refers to the accuracy at the corresponding step of
the classi�cation procedure.
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Figure 3.G1: Classi�cation accuracy under random trade and quote times and
Data Structure 3

Notes: This �gure shows the fraction of correctly classi�ed trading volume (y-axis) for the
data with noisy quote and trade times (Data Structure 3). The recorded time of trades and
quotes equals the actual time plus ε, with ε ∼ Exp(1/β) and β ∈ {10−4, 10−3, 10−2, 10−1}.
The classi�cation algorithms FIDS3, EMO, CLNV and LR are apply to the data with reduced
timestamp precision (s) ranging from 10−4 of a second to 2.5 seconds presented on log10-scale
(x-axis).
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Figure 3.G2: Estimating liquidity under random trade and quote order

Notes: This Figure shows the sample averages and the root-mean-square error between the
stock-day estimates and the true values of the dollar e�ective spread (DES), the dollar price
impact (DPI) and the dollar realized spread (DRS) for the FIDS2 algorithm and the traditional
algorithms under the data structure with random trade and quote order (Data Structure 3). The
algorithms are applied to the data with and without noise. The noise is applied to both trade
and quote times, where the noise is given by ε ∼ Exp(1/β) with β = 10−3, 10−2. The timestamp
precision ranges from seconds to milliseconds.
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Figure 3.G3: Estimating order imbalance under random trade and quote order

Notes: This Figure shows the sample averages and the root-mean-square error between estimates
of the order imbalance and the true order imbalance displayed in percent for the data with random
trade and quote order. For the computation of the order imbalance each stock-day is split into
equally sized volume bins. The number of bins is chosen to be τ = 10, 100. The algorithms are
applied to the data with and without noise. The noise is applied to both trade and quote times,
where the noise is given by ε ∼ Exp(1/β) with β = 10−3, 10−2. The timestamp precision ranges
from seconds to milliseconds.
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