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Abstract
This dissertation introduces two new remote sensing retrieval methods for
snow and ice characteristics and phytoplankton properties. A synergistic us-
age might be a promising advanced application to investigate ice algae in
high latitudes. The retrievals exploit the discrimination power of emissivity
and phytoplankton absorption, scattering, and fluorescence due to specific
dependency of the properties on object and wavelength.
The cryospheric algorithm sorts three surface emissivities, which are con-

verted from remotely sensed thermal infra-red (TIR) brightness temperatures
from Advanced Along-Track Spectro-Radiometer (AATSR) 11 µm and 12 µm
bands in nadir and forward view, in a classification scheme. The scheme is
based on measurements of Hori et al. (2006) and discriminates between fine,
medium, coarse grained snow and suncrust and ice. Depending on the phys-
ical surface temperature wet areas are detected. Invalid pixels mostly occur
at topographically complex areas and due to collocation of the two views.
Scenes in Antarctica and Greenland exhibit classified pixels between 60 % to
90 %.
Phytoplankton is characterized with Total Algae Peak Integration Retrieval

(TAPIR) linking the local reflectance maximum in the chlorophyll-a fluores-
cence domain from 650 nm to 730 nm with the local chlorophyll-a absorption
maximum at 670 nm a670. Radiative transfer simulations show high sensit-
ivity on chlorophyll-a absorption, phytoplankton scattering and chlorophyll-
a fluorescence, which are combined in a670 in TAPIR. The peak’s shape,
magnitude and spectral location is mainly influenced from those properties
which are considered by a spectral peak integration in the retrieval. TAPIR
functions are retrieved for several hyper-spectral instruments such as Envir-
onmental Mapping and Analysis Program (EnMAP) and can be applied to
multi-spectral sensors, e.g. Ocean and Land Colour Imager (OLCI), with a
fitting function.
An application of both algorithms to Lake Erie at the Canadian/American

border reveals good performance of TAPIR for high algae concentrations but
insufficient results for low phytoplankton amount. A qualitative comparison
between classification of snow and ice with meteorological quantities show
good agreement. Therefore, the cryospheric algorithm qualifies for detection
of snow types and TAPIR for medium to high chlorophyll-a concentration
with promising potential to retrieve phytoplankton species and fluorescence.
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Kurzfassung
Diese Dissertation führt zwei neue Methoden zur fernerkundlichen Ableitung
einer Schnee/Eis-Charakterisierung und von Phytoplankton-Eigenschaften
ein. Eine synergetische Anwendung könnte eine vielversprechende weiterge-
hende Anwendung zur Erforschung von Eis-Algen in höheren Breiten sein.
Die Ableitungen schöpfen das Abgrenzungsvermögen von Emissivität und
Phytoplankton-Absorption, -Streuung und -Fluoreszenz durch die spezifische
Abhängigkeit von Objekt und Wellenlänge dieser Eigenschaften aus.
Der Kryosphären-Algorithmus sortiert drei Boden-Emissivitäten, welche aus

fernerkundeten thermalen infra-roten (TIR) Helligkeitstemperaturen in Nadir-
und Vorwärts-Blickrichtung in den 11 µm und 12 µm-Bändern von Advanced
Along-Track Spectro-Radiometer (AATSR) berechnet wurden, in ein Klas-
sifizierungsschema ein. Das Schema basiert auf Messungen von Hori et al.
(2006) und unterscheidet zwischen fein, mittel und grob gekörnten Schnee
sowie suncrust (Harsch) und Eis. Topographisch komplexe Regionen oder die
Kollokation der beiden Beobachtungsrichtungen können zu ungültigen Pixeln
führen. Szenen in der Antarktis und auf Grönland weisen zwischen 60 % und
90 % klassifizierte Pixel auf.
Phytoplankton wird mit dem Total Algae Peak Integration Retrieval (TA-

PIR) charakterisiert, welches das lokale Reflektanzmaximum im Bereich der
Chlorophyll-a-Fluoreszenz von 650 nm bis 730 nm mit der Chlorophyll-a-
Absorption bei 670 nm a670 in Zusammenhang bringt. Strahlungstransport-
Simulationen zeigen eine hohe Sensitivität auf Chlorophyll-a-Absorption,
Phytoplankton-Streuung und Chlorophyll-a-Fluoreszenz, welche in TAPIR mit
a670 zusammengefasst sind. Die Form, die Größe und die spektrale Position
des Reflektanzmaximums wird hauptsächlich durch jene Eigenschaften bee-
influsst, was in der Methode durch eine spektrale Integration des Maximums
berücksichtigt wird. Für hyperspektrale Instrumente wie das Environmental
Mapping and Analysis Program (EnMAP) werden TAPIR-Funktionen erstellt
und die Ableitung kann auch auf multispektrale Sensoren, z.B. den Ocean
and Land Colour Imager (OLCI), mit einer Annäherungsfunktion angewendet
werden.
Die Anwendung beider Algorithmen auf den Eriesee an der kanadisch-

amerikanischen Grenze zeigt eine gute Durchführbarkeit von TAPIR für hohe
Algenkonzentrationen aber unzureichende Ergebnisse für geringe Phytoplank-
tonmengen. Ein qualitativer Vergleich der Schnee- und Eisklassifizierung mit
meteorologischen Größen zeigt eine gute Übereinstimmung. Deshalb qualifi-
ziert sich der Kryosphärenalgorithmus für die Erkennung von Schneearten und
TAPIR für mittlere bis hohe Chlorophyll-a-Konzentrationen mit einem vielver-
sprechenden Potenzial Phytoplanktonspezies und Fluoreszenz abzuleiten.
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1
Introduction

Abstract Remote sensing enables us to obtain data on global scale in high
spatio-temporal resolution. In the frame of climate change, the
cryosphere is directly linked to global warming and observing waters
supports the understanding of their condition and the carbon cycle,
which includes carbon dioxide that is one of the major radiative
forcers. An observation at Greenland shows algae growing on the ice
sheet in small melt ponds or liquid water layers. The thesis’s scope
is the introduction of i) the investigation of the condition of snow
and ice covered surfaces and ii) the determination of phytoplankton
properties. A combination of both retrievals might be beneficial for
future research on ice algae.

Sections 1.1 and 1.2 and parts of section 1.3.3 are based on my contribution in Mascarenhas
and Keck (2018, subm., chapter 2). Section 1.3.2 is partly adopted from Keck et al. (2017).
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1 Using remote sensing for earth observation

1.1 On the applicability of remote sensing

Remote sensing is a technique of measuring properties of an object without having
physical contact. Animals and humans use remote sensing every day exploring the
environment with their eyes. Human eyes are sensible to the solar electro-magnetic
spectrum from 400 nm to 700 nm ranging from violet to red (visible spectrum (VIS)).
Observing clear “blue” water, most of the red and green part of solar light is absorbed
and blue radiation is back-scattered to the eyes. Water appears greenish or brownish
if it contains constituents, e.g. algae or dissolved or particular matter. Snow and ice
appear white due to a relatively high back-scattering in the entire VIS but would be
observed very darkly in spectra with longer wavelengths in the thermal infra-red (TIR)
due to high absorptive properties.
Generally, one of the most common questions in satellite remote sensing is “Why do

we spend so much effort in converting electro-magnetic signals sensed with expensive
and complex instruments which are far away in space”? Indeed, in situ and field meas-
urements directly offer properties of observed matter (e.g. algae content, temperature,
snow depth). Similar results from remote sensing require planning and operation of
expensive sensors and their platforms and sophisticated algorithms to retrieve physical
“products” (e.g. chlorophyll-a concentration, water vapour content, temperature, or
snow grain size) from the satellite sensor signals. Nevertheless, the advantages are a
relatively high and continuous spatial and temporal coverage of the entire globe.
For example, at Lake Erie at the border of Canada and the United States, large algae

blooms appear every summer that can vary quickly in spatial and temporal dimension
(Rowe et al., 2016). Harmful algae blooms (HABs) strongly influence the environment
and their degradation products are toxic to animals and humans. Satellite remote sensing
enables us to investigate such events without being at the location or taking in situ
samples. Analysing satellite sensor images, information about spatial extent, location,
and chlorophyll concentration can be retrieved alongside other parameters. These data
are useful for the development of climatologies and warnings. Even hardly reachable
areas such as polar regions are accessible via remote sensing (Bokhorst et al., 2016). For
example, Hori et al. (2007) present snow coverage for the Northern Hemisphere in 2003
(fig. 1.1), which cannot be produced with interpolation between rare field measurements
particularly in high latitudes.
Additionally, it is possible to detect a pattern’s temporal and spatial variability because

2



1 Using remote sensing for earth observation

Figure 1.1: False-colour RGB composite images from Global Imager (GLI) on-
board Advanced Earth Observing Satellite 2 (ADEOS-2) show 16-day average
snow coverage of the northern hemisphere from 7-22 April 2003 and 14-19
September 2003 (Hori et al., 2007).

satellites revisit the same geographic area every few days (e.g. polar-orbiting satellites
Terra and Aqua have a revisiting time of 1-2 days) or scan the area every few minutes
to hours (e.g. geostationary Meteosat Second Generation 10 (MSG-10) (EUMETSAT,
2017)). We are able to observe the atmosphere, earth’s surface, and waters with space-
borne remote sensing since more than 50 years on a daily to weekly base in a reasonable
spatial resolution ranging from a few meters to several kilometres covering the entire
Earth.

However, there is also remote sensing on earth conducted in the field (e.g. on ships
or at Aerosol Robotic Network (AERONET) stations) or in the air with instruments
mounted on planes. This thesis focuses on space-borne remote sensing and radiative
transfer modelling at top of the atmosphere (TOA).

1.2 Principle of space-borne remote sensing measurements

Sensors that measuring signals from Earth’s atmosphere, waters and land surfaces are
mounted on satellite platforms. Each satellite circulates in a specific orbit around the
earth loaded with power supplies, navigation tools, and support systems for the instru-
ments. Generally, the most common satellite orbits are geostationary or polar-orbiting
which leads to differences in spatio-temporal resolutions. Geostationary satellites con-
tinuously monitor specified geographical locations above the earth’s surface in a height
of approximately 36 000 km (e.g. EUMETSAT, 2017). Therefore, they cannot cover the
entire globe but television and communication satellites usually operate in this orbit due

3



Chapter 1 Introduction

to the stable position. For example, Geostationary Ocean Color Imager (GOCI) on-board
Communication Ocean and Meteorological Satellite 1 (COMS-1) captures images over
Korean waters eight times a day (Ryu et al., 2012) or Spinning Enhanced Visible and
Infrared Imager (SEVIRI) mounted on MSG-10 scans Europe and the North Atlantic
Ocean every 15 min (EUMETSAT, 2017).

Polar-orbiting satellites circle around the globe in approximately 100 min at a height
of about 700 km to 800 km (ESA, 2006, Xiong et al., 2013). Their sensors are capable
to cover the entire surface of the earth. The time to receive a full coverage depends
on the sensor’s swath (the scanning line or area on the ground) and can last from 2 to
several days. The sensor Moderate Resolution Imaging Spectrometer (MODIS) on-board
platforms Aqua and Terra has a revisiting time of less than 3 days due to its large swath
of 2330 km (Xiong et al., 2013). Polar-orbiting satellites are usually sun-synchronous:
They cross the equator at the same local time (LT). Aqua passes the equator from South
to North (ascending node) at 1:30 p.m. LT and Terra has an equator-crossing time of
10:30 a.m. LT in a descending node (Xiong et al., 2013).
There are two main measurement techniques for passive sensors. MODIS on-board

Aqua and Terra is a whiskbroom scanner which oscillates across the satellite flight
direction. Subsequently, it scans a part of the swath area from one side to the other
and backwards while the satellite continues moving (Xiong et al., 2013). A sensor
with a pushbroom measuring technique scans along the entire swath width at once and
the scanning line is pushed forward with the satellite flight direction and movement.
Medium Resolution Imaging Spectrometer (MERIS) on-board Environmental Satellite
(ENVISAT) or its successor Ocean and Land Colour Imager (OLCI) on-board Sentinel-3
(S3) are prominent examples (ESA, 2006, 2017).
Most instruments for earth observation have a near-nadir viewing geometry with a

measurement sensor directly looking downwards (e.g. MERIS in chapter 3 section 2.2).
An off-nadir measurement with a viewing zenith angle greater than 0° from the nor-
mal axis between satellite and surface increases the path between the location of the
upwelling radiation and the sensor. The signal either increases by diffuse scattering in
the atmosphere or attenuates due to more opportunities for absorption and scattering
by molecules and particles. This measurement principle provides advanced geometry
dependent analysis (e.g. in chapter 3 sections 2.1 and 3 using Advanced Along-Track
Spectral Radiometer (AATSR)).
Sensors in space usually possess multiple measuring bands or channels to detect a

certain spectral interval of light and its intensity. Mainly, a channel is defined by its
central wavelength and the band width described by an individual response function. The
response function defines how much of an infinitesimal wavelength interval contributes
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1 Using remote sensing for earth observation

to the finally measured signal at this band. For instance, MODIS band 1 ranges from
620 nm to 670 nm detecting photons within this wavelength interval (Xiong et al., 2013).
The spectral distribution of sensor channels due to features of the atmosphere and the
water are discussed in chapter 2 section 2.4.

However, an enhancement of the spectral abilities reduces the spatial and temporal
resolution due to a cost function of scientific gain, technical opportunities, and, of course,
financial costs (Hestir et al., 2015). For example, launching in 2020, Hyperspectral Im-
ager (HSI) on-board satellite Environmental Mapping and Analysis Program (EnMAP)
will exhibit about 90 narrow channels every 6.5 nm within the visible and near infrared
spectrum from 420 nm to 1000 nm (and additional bands in the short-wave infra-red
(SWIR)). It provides a high spatial resolution with 30 m per pixel but the swath width is
only 30 km increasing the revisiting time to more than 30 days1a. A high spectral resol-
ution of measurement bands supports science and observation of features which exhibit
a narrow spectral extension or shift spectrally (e.g. observing the phytoplankton peak
in chapter 4). Additionally, the satellite and the sensor must be able to communicate
with the ground-based operating centre and also transfer the measured data. There-
fore, technical possibilities and scientific objectives constrain the design of a space-borne
sensor.

1.3 On the significance of remote sensing

Space-borne remote sensing provides data about meteorological, geo-chemical, and bio-
logical quantities in a rather high temporal and spatial resolution depending on sensor
and variable (Thies and Bendix, 2011, Hestir et al., 2015). These measurements are
already standard input for climate models (e.g. Seiz et al., 2011, Yang et al., 2013,
Hawcroft et al., 2017, Santer et al., 2017), reanalysis datasets (cf. Dee et al., 2016)
and weather prediction models (e.g. Kumar et al., 2014, Li et al., 2015). They are also
used to validate climate and weather model output (e.g. Bani Shahabadi et al., 2016,
Enriquez-Alonso et al., 2016). Global Climate Observation System (GCOS) defined 50
essential climate variabless (ECVs) including parameters for ocean colour, glaciers, sea
and lake states, snow cover, albedo, and photosynthetical active radation (PAR) which
are relevant for climate. Analyses and predictions are significantly based on the re-
trieval of those ECVs from satellite observations (Yang et al., 2013). Even in a rather
“raw” format, satellite observations are used for daily weather forecast and presentation.
For example, multiple maps per day of SEVIRI on-board Meteosat Second Generation
(MSG) (Schmetz et al., 2002) support the daily weather report illustrating the shift of air
1aEnMAP Hyperspectral Imager, Sensor, http://www.enmap.org/?q=sensor, accessed 2018-02-01
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Chapter 1 Introduction

Figure 1.2: Meteosat-10 RGB image of Europe for the 21st of February 2018
provided by the satellite image viewer from the German national weather service
(Deutscher Wetterdienst (DWD) at https://www.dwd.de/DE/leistungen/
satellit_betrachter/sat-viewer/sat-viewer_node.html). The image
is updated every three hours and the series mainly shows the location of clouds
which supports the estimation of the variation of air masses.

masses, clouds, and temperatures. Figure 1.2 shows a current MSG-10 Red-Green-Blue
(RGB) image which supports an overview of the actual state of atmospheric conditions
at the North Atlantic Ocean and Europe.
In the eighties, using Total Ozone Mapping Spectrometer (TOMS) on-board Nimbus-

7, verification and medial presentation of the “Ozone Hole”, actually being a negative
anomaly to the average, led to extensive governmental regulations1b banning the usage
of anthropogenic Chlorofluorocarbons (CFCs). CFCs were widely used because they are
non-toxic to humans and environment but are involved in depletion of atmospheric ozone
which absorbs a major part of solar ultra-violet (UV). Without ozone, UV light reaches
the surface harming humans, animals, and environment and heats the surface support-
ing global warming. This example shows the impact of radiation on global warming and
climate change. Therefore, in order to reduce anthropogenic global warming, it is neces-
sary to assess sensitivity and uncertainty of radiative forcing of terrestrial components
in the frame of the Earth’s energy budget.

1bThe Montreal Protocol On Substances That Deplete The Ozone Layer, URL http://ozone.unep.
org/en/treaties-and-decisions/montreal-protocol-substances-deplete-ozone-layer,
accessed 2018-02-01
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1 Using remote sensing for earth observation

1.3.1 Energy budget and radiative forcing

The climate and the atmospheric circulations are mainly driven by solar irradiance heating
the ground and the air masses. In general, the solar shortwave radiation (cf. chapter 2
section 2.1) is partly absorbed and partly reflected by atmospheric components or the
surface (fig. 1.3). The Earth and the atmosphere emit radiation in the long-wave spectral
range (cf. chapter 2 section 2.1) which contributes to warming. Due to the natural
greenhouse effect, incoming and outgoing radiation are balanced and the Earth’s surface
has an average temperature of approximately 14 ◦C. The temperature would average to
−19 ◦C without globally averaged albedo of 0.3 (Treut et al., 2007, p. 97). Perturbing
the equilibrium by changing the proportions of the components in the atmosphere (e.g.
additional carbon dioxide (CO2)) or reducing highly reflective areas (e.g. ice sheets),
the coupled earth-atmosphere systems heats up.
The anthropogenic greenhouse effect already led to global average warming of 0.8 K

since the end of the 19th century (e.g. Jones and Kennedy, 2017). The warming trend
increases and the global average temperature will be risen by approximately 2 K in
2100 compared to the pre-industrial time (e.g. Zickfeld et al., 2017). Butterbach-Bahl
and Wolf (2017) stated that “It has become evident that only reducing greenhouse
gas emissions from the industrial, transport and energy sectors will not achieve the
1.5 ◦C target by 2100”. The major radiative drivers are greenhouse gases (fig. 1.4)
absorbing long-wave radiation. Clouds and surfaces covered with snow and ice have a
high short-wave albedo (Petty, 2006, p. 102) and are thus negative radiative forcers.
For instance, an increase of the global CO2 or a reduction of the ice sheets support the
global warming (IPCC, 2013). Ingesting CO2 from the atmosphere, the ocean acidifies
and ocean circulations transport the CO2 to deeper layers where it can be stored for
thousands of years (Rhein et al., 2013). Additionally, vegetation on land and algae
(phytoplankton) in waters decarbonate the atmosphere by the process of photosynthesis.
Unfortunately, the 5th Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) from 2013 (IPCC, 2013), which is often cited and base of many policy
agreements, hardly mentions phytoplankton as carbon sink. However, it is necessary
to understand the physiology and spatio-temporal behaviour of phytoplankton (Hestir
et al., 2015) and its role to the global changes in climate. This thesis contributes studies
about the cryosphere in chapter 3 and phytoplankton in coastal and inland waters in
chapter 4 which are both motivated in the following.
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Chapter 1 Introduction

Figure 1.3: Earth’s radiative energy budget (picture adopted from Trenberth
et al. (2009)). Increasing the amount of absorbers for long-wave radiation (e.g.
greenhouse gases) leads to warming of the atmosphere.

Figure 1.4: Radiative forcing (picture adopted from Myhre et al. (2013)). CO2
plays a major role in absorbing long-wave radiation and heating the atmosphere
and the surface albedo decreases when snow and ice surfaces are impured. Both
increasing CO2 and lower surface albedo support global warming.

8



1 Using remote sensing for earth observation

1.3.2 Observing the cryosphere

The cryosphere, comprising snow, river and lake ice, sea ice, glaciers, ice shelves
and ice sheets, and frozen ground, plays a major role in the Earth’s climate sys-
tem through its impact on the surface energy budget, the water cycle, primary
productivity, surface gas exchange and sea level. The cryosphere is thus a funda-
mental control on the physical, biological and social environment over a large part
of the Earth’s surface. Given that all of its components are inherently sensitive to
temperature change over a wide range of time scales, the cryosphere is a natural
integrator of climate variability and provides some of the most visible signatures of
climate change.
— Vaughan et al. (2013) in the 5th IPCC report (2013)

According to Vaughan et al. (2013, p. 320), total ice loss of both ice sheets, Antarctica
and Greenland, for 1991-2011 amounts in average 4260 Gt (11.6 mm increase of the
global sea level). Reduced ice sheets cause lower surface albedo and increasing solar
ground absorption supports melting processes. The continuous increasing loss of ice mass
demands the understanding of the process’ origins and consequences for environment
and humankind.
In order to improve global climate models, the analysis of past melt events and the

prediction of future melting is a current research topic. For instance, Bennartz et al.
(2013) and Neff et al. (2014) investigated a prominent melting in 2012 on the Greenland
ice sheet caused by clouds. Beginning and duration of melt events and the magnitude
of ice loss are important issues to understand and model the cryosphere. The potential
of rapid ice sheet variations within a few weeks and their impact on global climate
require sufficient spatial and temporal observation and analysis. For example, Wang
et al. (2018) present the number of days of snow coverage retrieved from a fusion
of remote sensing instruments MODIS, Advanced Microwave Scanning Radiometer -
Earth Observing System (AMSR-E), Landsat Thematic Mapper (TM), and Indian Micro-
Satellite (IMS) in fig. 1.5a. Hori et al. (2007) analysed a range of cryospheric parameters
including coverage, snow depth, snow grain size, and others, with GLI on-board ADEOS-
2. In fig. 1.5b, they show the day of the melt-onset. Both studies provide insight into the
high variability and current condition of the cryosphere which is necessary for modelling
and investigating climate.
In order to determine the feedback of climate change and cryosphere on each other,

the state of snow, which may include age, consistency, impurities, depth, and spatial
and temporal extent, has to be analysed. Knowledge about the actual state of snow
and meteorological-climatological quantities may support the prediction of sea level rise,
melting of glaciers and ice sheets, and also avalanches for which can be warned and
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Figure 1.5: Days of snow coverage for the northern hemisphere from 2000 to
2015 (left picture from Wang et al. (2018)). On the right, Hori et al. (2007)
show the day of melt onset in 2003.

prepared (Bokhorst et al., 2016). Therefore, in chapter 3, I introduce a remote sensing
retrieval that characterizes actual state properties of snow and ice.

1.3.3 Observing oceanic, coastal and fresh waters

Both anthropogenic climate change and anthropogenic ocean acidification are
caused by increasing carbon dioxide (CO2) concentrations in the atmosphere. Rising
levels of CO2, along with other greenhouse gases, indirectly alter the climate system
by trapping heat as it is reflected back from the Earth’s surface. Anthropogenic
ocean acidification is a direct consequence of rising CO2 concentrations as seawater
currently absorbs about 30% of the anthropogenic CO2 from the atmosphere.
— Rhein et al. (2013) in the 5th IPCC report (2013)

According to fig. 1.4, CO2 is one of the major radiative forcing agents for global
warming. In order to find methods for CO2 depletion, the carbon discharge and con-
sumption mechanisms of the total Earth system, including biosphere, hydrosphere, and
atmosphere, has to be analysed (cf. fig. 1.6). The “slow carbon cycle” describes the
interaction between carbon-containing rocks and sediments with oceans, rivers, and the
atmosphere due to volcanic eruption and erosion. Related to relatively short time spans,
the “rapid carbon cycle” includes carbon consuming lifeforms such as phytoplankton
which discharge carbon to the environment during decomposition (Ciais et al., 2013).

10



1 Using remote sensing for earth observation

Figure 1.6: Scheme of the carbon cycle in the marine ecosystem in which phyto-
plankton plays a significant and central role (picture adopted from U.S. DOE
(2008, p. 81)

In return for oxygen, vegetation requires carbon, water, and light for photosynthesis
producing photo-chemical energy (Krause and Weis, 1991). Therefore, land plants and
phytoplankton are sinks for CO2 (e.g. Merico et al., 2006, Moreira and Pires, 2016, León
et al., 2018) but there are still large uncertainties related to the interactions between
the marine carbon cycle and phytoplankton (Carr et al., 2006, Tagliabue et al., 2011).
During the process of photosynthesis, algae produce oxygen which once established an
atmosphere with 21 % oxygen fraction favouring current life forms. Today, 50 % of the
global oxygen production originates from algae (Chapman, 2013). Consuming carbon,
phototrophical organisms are responsible for primary production describing the growth of
biomass. Measuring primary production, the portion of depleted carbon can be estimated
(e.g. Carr et al., 2006). Field (1998) reported that 46.8 % of total net primary production
is performed in marine ecosystems. A change in phytoplankton population does not only
impact the carbon cycle but also the food chain. Many fishes and aquatic mammals
consume algae and tracking phytoplankton supports fisheries, the transportation industry
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and tourism industry identifying regions of high fish content (Moreira and Pires, 2016)
which they can either systematically avoid or locate. Additionally, some phytoplankton
species produce large algae blooms which may be toxic and referred to as HABs (e.g.
Heisler et al., 2008). In order to warn against the toxicity, governmental institutes are
interested in identifying and tracking HABs using remote sensing (Schaeffer et al., 2015).
The imagery from space provides observation of the capacity of freshwater reservoirs.

For example, the people in Cape Town, South Africa, currently suffer from severe drought
and fresh water supply is strongly restricted since the beginning of 2018 due to a de-
crease of the largest reservoir, the Theewaterskloof Dam, to around 13 % of its average
capacity1c. Remote sensing supports the observation of waters with respect to evapor-
ation, quality, consumption, condition and constituents. Therefore, multiple scientific
algorithms can be applied to retrieve physical quantities such as temperature and salinity
or water constituents such as algae. Further water constituents such as coloured dis-
solved organic matter (cdom) modify the received optical signal (chapter 2 section 2.3),
which complicates phytoplankton retrievals in coastal or inland waters, for instance. In
chapter 4, I introduce a technique to obtain optical phytoplankton properties as a proxy
for phytoplankton concentration in optically complex waters.

1.4 Algae on ice – an observation

1.4.1 The “dark bands” at western Greenland

During an expedition on the Greenland ice sheet in 1970, Adolf E. Nordenskiöld wondered
about small holes (around millimetres to tens of centimetres in diameter (Cook et al.,
2016)) in the snow filled with water and contaminated with a “grey powder”. The grey
powder also colours the ambient snow cover greyish and accumulates to little granules
to which he refers to as cryoconites (Yallop et al., 2012). After Nordenskiöld’s return,
Sven Berggren analysed the “powder” and found mainly algae which is referred to as ice
algae. Nordenskiöld (1872) noticed that the light absorption had been increased at sites
with greyish snow and noted that the darkening may be the “most dangerous enemy to
the mass of ice”. Indeed, the surface albedo of snow and ice play a role in the process
of melting (Box et al., 2012). “Dark bands” have been observed with satellite remote
sensing (e.g Tedesco et al., 2011) illustrated in fig. 1.7. They occur in summer when
the insolation increases surface temperatures and the snow and ice start to melt.

For a long time, the colour has been solely related to dust impurities but recently
the darkening is linked to the presence of algae (e.g. Takeuchi et al., 2003). Neverthe-
1cA. Voiland, 2018-01-30, https://earthobservatory.nasa.gov/IOTD/view.php?id=91649, ac-

cessed 2018-02-09
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Figure 1.7: Images a) – c) are photographs of ice algae of the western Greenland
ice sheet from 2010-08-05 at point T7 of panel d) which is a MODIS/Terra RGB
image from 2010-08-17 (picture adopted from Yallop et al. (2012))
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less, Yallop et al. (2012) claim that “the role played by the photosynthetic organisms
[. . . ] on the [Greenland ice sheet] has largely been ignored since the early pioneering
work”. Recently, the interest in the “dark bands” increased and the algae on the western
Greenland ice sheet are investigated (e.g. Uetake et al., 2010, Lutz et al., 2016, Anesio
et al., 2017, Williamson et al., 2018). The impact of algae on surface albedo is topic
of latest research (e.g. Box et al., 2012, Benning et al., 2014, Lutz et al., 2016, Stibal
et al., 2017, Tedstone et al., 2017). In the frame of global warming, the ice sheets and
their albedo are linked to the global energy budget driven by solar irradiance. In order
to investigate the Greenland ice sheet and point to its importance, the project Dark
Snow (https://www.darksnow.org) provides and distributes analyses to the public
and supports expeditions and research projects.

1.4.2 On the knowledge of ice algae and ice albedo

According to Yallop et al. (2012) and Williamson et al. (2018), dark snow and ice re-
gions can appear due to snow and ice algae occurring during summer melting periods.
The algae grow within the upper few centimetres of a snow pack inside a liquid layer.
There is less knowledge about ice algae than snow algae with respect to distribution,
taxonomy, biochemical structure, growth rate, carbon fixation, nutrient consumption,
and others (Anesio et al., 2017). Anesio et al. (2017) reported that both organic and
inorganic impurities “provide nutrients for the growth of snow (mainly dominated by
Chlamydomonadales) and ice algae (mainly dominated by Zygnematales) and hetero-
trophic bacteria”. In spite of the differentiation of algae habitats in snow or ice in
literature, I will refer to both as ice algae for abbreviation reasons.

At the beginning of the melting season, it is assumed that phytoplankton migrates
to the surface for blooming. This behaviour has not been scientifically published yet
due to lacking knowledge of the process (cf. Anesio et al., 2017). Stibal et al. (2017)
reported a mean doubling of the algae population in western Greenland of around 5
days if no precipitation disturbs the growth. In western Greenland, in situ samples of ice
algae are only found in melting zones and the chlorophyll-a concentration ranged from
(1.43±0.51) mg m−3 to (21.08±0.95) mg m−3 in 2016 (Stibal et al., 2017, Williamson
et al., 2018). Due to their large abundance, ice algae are strong carbon fixers and are
transported in the ocean during melt water run-offs.
The bio-reduction of ice albedo (“darkening”) is assumed to be driven by high pack-

aging of ice algae and their specific pigment absorption properties (Yallop et al., 2012).
Analysing albedo of the Greenland ice sheet with MODIS measurements from 2000 to
2012, Box et al. (2012) reported an average reduction of 0.056±0.007 for the entire sheet
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Figure 1.8: Example reflectance of snow, bare ice, and algae growing on ice
measured at western Greenland from June to August 2014 (picture adopted from
Stibal et al. (2017)).

and 0.091±0.021 for ablation areas in the months June to August. Snow accumulation
increases the albedo but due to the overall albedo reduction the surface temperatures
have generally increased in average and may lead to increased melting processes (Box
et al., 2012).

Melting processes, in turn, produce habitats for ice algae which additionally decrease
albedo. Stibal et al. (2017) state that the albedo reduction due to algae is larger than
for impurities and retrieve a net albedo reduction of 0.038±0.0035 in western Greenland
in 2014. Figure 1.8 shows example in situ reflectance measurements over snow, bare
ice, and ice algae growing on ice. The second panel exhibits specific absorption features
of chlorophyll-a in the blue VIS and near 678 nm. In the frame of global warming and
climate change, the large impact of algae on snow and ice albedo leads to the imperative
of continuous research on this topic. In particular, since remote sensing techniques
and algorithms continuously improve and measurements can be provided in even hardly
reachable areas such as the polar region, outreaching investigations are possible.
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2 Thesis scope and outline

This thesis addresses both cryospheric and phytoplankton properties retrieved by remote
sensing techniques exploiting radiometric properties which are specifically dependent on
the observed matter, spectrum, and viewing geometry.

Chapter 1 already motivated the advantages of remote sensing and the role of sensors
in space for global scientific applications with respect to climate change and global
warming. Algae on ice and snow have a particular influence on the albedo of ice sheets
and are assumed to contribute to melting processes. Both algae and albedo, play a
significant role in climate change with respect to decarbonisation and global warming.

A characterization method of the snow and ice covered surface might support the
determination of required environmental conditions for ice algae. The characterization
relates the retrieved radiometric surface conditions in the TIR to the wetness and the
snow grain size. Avoiding optical influence such as cdom, the reflectance of the red
visible spectrum is linked to phytoplankton absorption which is a proxy for phytoplankton
content. Both retrievals are based on properties which are specific for the observed object
(snow/ice or phytoplankton chlorophyll-a), the wavelength interval (TIR or VIS), and
the viewing geometry (nadir/off-nadir or isotropic): TIR emissivity and VIS chlorophyll-a
extinction and fluorescence.

Chapter 2 gives an overview of fundamental radiometric quantities and concepts in
preparation for the retrievals. Section 1 provides a brief insight into the radiative transfer
theory and modelling. Section 2 shortly introduces the radiation in the atmosphere and
in waters and commonly used optical quantities. VIS and TIR are selected due to
favourable radiometric conditions of the atmosphere and the observed objects.

Chapter 3 presents a retrieval for cryospheric characterization. Section 1 introduces
the research in cryospheric remote sensing and the knowledge on the actual state of the
ice and snow cover. Section 2 presents the measurement data from AATSR and MERIS
and the scene selection and preparation. The deviation of the characterization of snow
and ice is based on remotely sensed emissivity retrieved from brightness temperature in
the TIR from two viewing angles (section 3). In section 4, the retrieval is applied to
26 AATSR scenes in northern mid-latitudes, Greenland, and Antarctica. The discussion
and conclusions follow in sections 5 and 6.
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Chapter 4 introduces the Total Algae Peak Integration Retrieval (TAPIR) using the
phytoplankton reflectance peak in the fluorescence domain from 650 nm to 730 nm and
chlorophyll-a absorption at 670 nm. Section 1 introduces phytoplankton property re-
trievals from space. Section 2 gives an overview of Matrix Operator Model (MOMO)
simulations along with a model sensitivity study. Additionally, a first validation effort for
to the modelled peak and the implemented process of fluorescence is conducted. The
proposed technique is motivated and described in section 3. Total Algae Peak Integra-
tion Retrieval (TAPIR) performance due to sensitivity and uncertainty is presented in
section 4 followed by an initial validation assessment with measured in situ data in the
North Sea and Indonesian waters in section 5. The retrieval is discussed in section 6
and conclusions are given in section 7.

Chapter 5 presents the application of both retrievals to S3 scenes of Lake Erie at the
American and Canadian Border, which is known for extreme HABs in summer and a
frozen surface in winter which is introduced in section 1. Therefore, scenes from a large
bloom in September 2017 and a partly frozen lake in February 2018 are chosen and
analysed in section 2. The findings are discussed in section 3.

Chapter 6 recapitulates the thesis with a concluding summary and a brief outlook.

The dissertation includes parts from my contributions in Keck (2014), Keck et al. (2017), Keck et al.
(2018), and Mascarenhas and Keck (2018). The affected sections or subsections are indicated at the
beginning of each chapter.
“Adopted” parts are included with only minor changes due to syntactic adaption or careful updating.
Sections that are “based on” publications underwent major changes. They only follow the main concept
or particular paragraphs have been added to the original text.
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2
Fundamentals

Abstract This chapter introduces physical quantities, relations, and con-
cepts which are relevant to the studies of the thesis. Atmospheric
radiation and spectral features in the visible spectrum (VIS) and
thermal infra-red (TIR) are described. Section 1 gives a brief over-
view of the radiative transfer theory and modelling. Section 2 char-
acterizes optical properties and quantities of atmospheric compon-
ents and aquatic constituents. The quantities TIR emissivity, VIS
phytoplankton inherent optical properties (IOPs), and chlorophyll-
a fluorescence near 683 nm are emphasized due to their particular
dependence on solely the viewing geometry, spectrum, and matter.

Sections 2.1 and 2.2 are partly based on Keck (2014, Master’s thesis, chapter 2). Sections 2.3.5
and 2.4 are partly based on my contribution in Mascarenhas and Keck (2018, subm., chapter 2).
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1 Radiative transfer

1.1 Radiative transfer theory

1.1.1 The radiative transfer equation RTE

In order to analyse the radiometric signals measured at top of the atmosphere (TOA)
from satellite sensors it is required to understand the interaction of light with the atmo-
sphere. Radiance or radiant intensity L is the strength of a radiation field and is depend-
ent on both solid angle and wavelength (Petty, 2006) in units [W m−2 nm−1 sr−1] or
[W m−2 µm−1 sr−1]. Crossing a semitransparent medium such as atmosphere and water,
the intensity of the directional radiation L changes due to the interaction of particles
and molecules by absorption, scattering, and emission of photons. Thus, the deviation
of radiation along a certain path ~s(s; θ,φ) due to extinction, emission and scattering is
a follows:

dL = −cL ds + εB(T ) ds + dLscat(2.1)

The first two terms extinguish radiation along the path, where c is the extinction
coefficient as sum of the scattering and absorption coefficients, a and b, and B is the
black body radiation (cf. section 2.2.2). The last term describes light that is scattered
into the direction of the incident light beam with a phase function P constraining the
scattering direction Ψ in all solid angles Ω.

dLscat(Ω) =
b

4π

∫
Ω
P(Ψ, Ω)L(Ω) dΩ(2.2)

Assuming a plan-parallel layered atmosphere in a spherical coordinate system, the
equation can be rewritten using ds = 1/µ dz as vertical coordinate and the single scat-
tering albedo ω0 = b/c.

µ

c

dL(Ω)

dz
= −L(Ω) + (1− ω0)B +

b

4π

∫
Ω
P(Ψ, Ω)L(Ω) dΩ ds(2.3)

The solid angle Ω combines µ = cos θ with θ as zenith angle and φ as azimuth angle.
According to Chandrasekhar (1960), Petty (2006), and others, the general form of the
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radiative transfer equation (RTE) with the source term J is as follows:

− µ

c(λ, z)

dL(λ, z ,µ,φ)

dz
= L(λ, z ,µ,φ)− J(λ, z ,µ,φ)(2.4)

1.1.2 Fluorescence

According to Gordon (1979), phytoplankton absorbs radiative energy from visible spec-
trum (VIS) which excites chlorophyll molecules that emit photons near 685 nm during
the process of fluorescence (see 2.3.2.3). Therefore, a mathematical source function
JF for the process requires a description of the excitation A and a function G for the
spectral distribution of the emission. The ratio between absorbed and emitted photons
is the fluorescence efficiency factor η which scales the excitation:

A(z , θ) =

∫
ΛE

λa(λ, z)H(λ, z , θ) dλ(2.5)

H(λ, z , θ) =

∫ 2π

0

∫ π

0
L(λ, z , θ,φ) dφ dθ(2.6)

G (λ,λF ,σF ) =
1√

2πσ2
exp {−(λ−λF )2/2σ2

F}(2.7)

Assuming isotropy (factor 4π), the function G distributes emitted fluorescence radiation
with a Gaussian function around λF with a standard deviation σF . The wavelength λF
and the spectral width σF are set to 683 nm and 10.6 nm for calculations. The excitation
A is the integral over available radiation (the scalar irradiance H) and chl-a absorption
in the interval from ΛE = [395, 685] nm. Using A and G , the process of fluorescence in
the fluorescence domain from 650 nm to 730 nm is expressed with the source function
JF :

JF (λ, z , θ) =
1

c(λ, z)

η(z)

λF

1

4π
∗ G (λ,λF ,σF ) ∗ A(a, z , θ)(2.8)

The source function is dependent on vertical depth, wavelength within the fluorescence
domain and sun zenith angle.

1.2 Radiative transfer modelling

The general RTE provides no analytical solution except for specific cases. However,
numerical solutions approximate the RTE and can become very complex which may
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consume much time and computational capacity. For instance, Plass and Kattawar
(1969) used a Monte Carlo method to estimate the probability of photon interactions
and Chandrasekhar (1960) proposed the discretization of the integrated RTE with the
Discrete Ordinate Radiative Transfer Model (DISORT). There is a range of radiative
transfer models (RTMs) available and the models Radiative Transfer for TIROS Op-
erational Vertical Sounder (RTTOV) and Matrix Operator Model (MOMO) are shortly
introduced in chapter 3 section 3.2 and chapter 4 section 2, respectively. In general, a
RTM approximates the RTE for constrained variables and parameterizations (e.g. for a
determined wavelength interval where specific assumptions are applicable to simplify the
computation). They simulate the transmission of radiation through several atmospheric
layers optionally considering clouds, aerosols, gas compositions, and the surface. The
output of the models is usually a radiometric quantity such as radiance at TOA and
bottom of the atmosphere (BOA).

1.3 Retrieving parameters

Knowing the input parameters of a RTM, the simulation results are used to retrieve
geophysical, meteorological, or biological quantities from remote sensing measurements.
Thus, algorithms invert and optimize the comparison of simulation and measurement
which finally leads to the required quantity. The inversion is based on the concept that
the retrieved radiative signal carries information about atmosphere, surface, and waters
after the transit. Therefore, a forward model F is created, ~y = F (~x), where ~y is the
measurement vector defined by the simulations and ~x is the state vector containing the
input parameters. Inverting F to ~x = F−1(~y) enables us to retrieve properties from
satellite measurements (cf. chapter 3 section 3.2). The optimization can become rather
complex. In chapter 3 section 3.3 a relatively simple optimization method, Newton’s
Iteration, is applied.
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2.1 Solar and terrestrial radiation

Remote sensing techniques investigate physical variables, for instance water vapour con-
tent, aerosols, amount of water constituents, indirectly by measuring radiometric quant-
ities without physical contact. Thus, Earth observation is based on the understanding
of the interaction of the radiation with the atmosphere, water bodies, and the land
surface. Each atmospheric component (e.g. aerosols), each water constituent (e.g.
phytoplankton), the soil condition (e.g. a snow covered surface or desert), and the “air”
and the water themselves possess specific object dependent spectral signatures caused
by their optical properties and scaled with their amount. Every physical body emits radi-
ation depending on its physical temperature. The incident solar spectrum almost follows
Planck’s Law (see section 2.2.2) for a sun temperature of about 6000 K approximately
ranging from 200 nm to 4000 nm with a maximum in the green visible spectrum near
550 nm illustrated in fig. 2.1a. Assuming an average temperature of 15 ◦C (288 K), the
Earth emits radiation in longer wavelengths from 3 µm to 70 µm. The solar or short-wave
radiation covers the spectral regimes of ultra-violet (UV), VIS, and near infra-red (NIR)
and the terrestrial or long-wave radiation mainly embraces NIR and thermal infra-red
(TIR). Figure 2.1a shows an overlap of both solar and terrestrial radiation regimes near
3.5 µm. However, analysing spectral features in the VIS, the signals are not interfered
from terrestrial radiation. Vice versa, signals in the TIR are not affected from solar
radiation.
Earth-observing space-borne sensors measure radiation that transit the atmosphere. In

some spectral intervals, the upwelling radiation reaches the TOA nearly unaffected. For
instance, in the TIR regime from 8 µm to 14 µm and in the VIS, the atmosphere is nearly
transparent for radiation (fig. 2.1b). In the UV and most parts of the TIR beyond 14 µm,
the radiation is nearly completely extinguished and cannot reach any TOA sensors. The
atmosphere extinguishes the radiation mainly due to strong absorption of water vapour
(top panel in fig. 2.1c and section 2.4.1). Further gaseous absorbers are ozone and
oxygen which highly absorb in the UV and partly in the VIS or carbon dioxide (CO2)
and NOx which absorb in TIR.
The thesis focuses on two spectral regimes: A spectral TIR region around 11 µm to

12 µm (see section 2.4.4 and chapter 3), which is mainly influenced from water vapour
absorption, and the VIS (see section 2.4.3 and chapter 4), which is partly interfered
from Rayleigh scattering, water vapour, ozone, and oxygen absorption. Analysing the
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Figure 2.1: The panels2.1 show a) Normalized blackbody intensity for solar and
terrestrial radiation, b) total light extinction due to atmospheric components,
and c) spectral extinction of the major contributing atmospheric components.
2.1 R.A. Rohde (2007), Radiation Transmitted by the Atmosphere, https://com

mons.wikimedia.org/wiki/File:Atmospheric_Transmission.png,
CC BY-SA 3.0, modified, accessed 2018-01-24
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2 Radiation in the atmosphere and in waters

TIR part, the TOA signals originate from the observed matter, which is snow and
ice brightness temperature and emissivity in chapter 3. The investigation of the VIS
combines both the solar backscattering influenced from atmosphere and water condition
and object dependent emission, which is chlorophyll-a fluorescence and scattering in the
red visible part in chapter 4.

2.2 Radiometric quantities

2.2.1 Reflectance and irradiance

Integrating the hemispherical radiance field L, the quantity irradiance E in [W m−2 nm−1]
is retrieved.

E (λ) =

∫
L(λ, Ω) · Ω dΩ

isotrop.
= πL(λ)(2.9)

In remote sensing terms and in this thesis, the reflectance R is the ratio between upwelling
radiance Lu and downwelling irradiance Ed . Using reflectance for analyses, measurements
at different locations and dates are comparable due to decoupling from actual intensity
of in- and out-going light.

R(λ, θ) =
Lu(λ, θ,φ)

Ed(λ, θ)
(2.10)

However, R is still dependent on sun zenith angle θ and may be disturbed from reflection
on the surface. Analysing upwelling radiation from waters directly above the surface, the
remote sensing reflectance RRS is applied. It reduces upwelling radiance Lu by diffuse
solar radiation Lr reflected on the surface to retrieve water-leaving radiance Lw :

RRS(λ, θ) =
Lu(λ, θ,φ)− ρ ∗ Lr (λ, θ,φ)

Ed(λ, θ)
(2.11)

The factor ρ is the fraction of direct reflection of diffuse light according to Fresnel
equations and is often used with a value around 0.028 although it is dependent on
windspeed (and induced waves), viewing angle, wavelength, and sky condition (Mobley,
1999).

2.2.2 Brightness temperature

A black body is the theoretical concept of an object which perfectly absorbs incident
radiation and totally emits absorbed energy within a spectral interval depending on
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Figure 2.2: Concept of a blackbody and a natural body (greybody), respectively
(picture adopted from Keck (2014)).

Table 2.1: Constants for Planck’s Law according to Petty (2006).

property symbol quantity unit
speed of light cs 2.998·108 m s−1

Planck constant h 6.626·10−34 J s
Boltzmann constant kB 1.381·10−23 J K−1

the object’s temperature T (fig. 2.2). Considering the Second Thermodynamic Law,
Kirchhoff’s Law describes the equality of absorptivity and emissivity of a blackbody in
a thermal equilibrium dependent on wavelength and solid angle with a(λ, Ω) = ε(λ, Ω).
Planck’s Law in eq. (2.12) expresses the spectral distribution and intensity of emitted
radiation illustrated in fig. 2.3. The constants cs , h, and kB are listed in table 2.1.

B(λ,T ) =
2hc2

s

λ5 ·
(

exp
{

hcs
kBλ·T

}
− 1

) = ε−1L(λ)(2.12)

Assuming emissivity of 1, the physical temperature of a blackbody equals the brightness
temperature. A natural body emits radiation incompletely (greybody, fig. 2.2). The
spectral intensity L(λ) is expressed with Planck’s Law B(λ) reduced by the emission rate
ε in eq. (2.12). Therefore, the temperature of a greybody is higher than the brightness
temperature. BT is retrieved by inverting Planck’s Law in eq. (2.13). It is dependent
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Figure 2.3: Planck’s Law for terrestrial temperatures.

on wavelength, emissivity, and physical temperature and varies with polarization and
incident angle (Bohren and Clothiaux, 2006).

BT (λ,T ) = B−1(λ,T ; ε) =
hcs
kBλ

· 1

ln
[
1 + 1

ε ·
(

exp
{

hcs
kBλ·T

}
− 1

)](2.13)

Absorbed energy is emitted in a specific infinitesimal wavelength interval dependent on
thermodynamic temperature of the object. Therefore, the temperature can be obtained
by measuring emitted intensity L if wavelength and emissivity are known. Vice versa,
knowing the temperature, emissivity can be calculated.

2.2.3 Emissivity

The emission rate or emissivity ε is monochromatically defined as ratio between black-
body radiation and actual (greybody) radiation. The rate ranges from 0 to 1.

ε(λ) ≡ L(λ)

B(λ,T )
(2.14)

Figure 2.4a shows the relation of brightness temperature and emissivity for various
wavelengths at the temperature T = 300 K. The brightness temperature approxim-
ately increases linearly for long wavelengths (e.g. 100 µm).
For snow and ice covered surfaces, a minimum emissivity of 0.6 can be assumed
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Figure 2.4: Relation of brightness temperatures of several wavelengths with
emissivity for a physical temperature of 300 K (panel a). The relation is linear
for 11 µm and 12 µm and emissivities >0.7 (panel b).

for >10 µm. For emissivities greater than 0.7, the slope can still be assumed to be
linear (fig. 2.4b) for wavelengths 11 µm and 12 µm, which are used in the study in
chapter 3. The variation of brightness temperature and the variation of emissivity are
directly proportional. The deviation of brightness temperature with respect to emissivity
can be obtained analytically with eq. (2.15).

χ(λ,T ) =
dBT (λ,T )

dε

=
hcs
kBλ

exp
{

hcs
kBλ·T

}
− 1

ln
[
1 + 1

ε ·
(

exp
{

hcs
kBλ·T

}
− 1

)]2
ε
(
ε+ exp

{
hcs

kBλ·T

}
− 1

)(2.15)

A brightness temperature variation of 1 K results in an average emissivity variation of
approximately 0.013 K−1 for T from 250 K to 280 K and the wavelengths 11 µm and
12 µm. Analogously, an emissivity variation of 0.01 for emissivities >0.7 results in an
approximate average temperature variation of (0.52±0.09) K for 11 µm and 12 µm.

28



2 Radiation in the atmosphere and in waters

2.3 Optically active constituents in the water

2.3.1 The colour of waters

In ocean remote sensing the term “Ocean Colour” has been established due to different
colours of waters constrained by their constituents in the visible spectrum (fig. 2.5).
However, observing not only oceans but also lakes, rivers, and coastal waters I prefer
the term “water colour”.

Natural water bodies are a composition of water with constituents. Waters can contain
organic or inorganic matter in a dissolved or particulate condition. Each constituent
exhibits matter and wavelength dependent properties which are known as inherent optical
properties (IOPs). IOPs of water and all water optically active constituents (OACs)
constrain the upwelling radiation.
In this thesis, IOPs of phytoplankton (section 2.3.2), coloured dissolved organic mat-

ter (cdom) (section 2.3.3), water (section 2.4.1), and some supplemental constituents
(section 2.3.4) are considered. Figure 2.6 displays IOPs of phytoplankton, cdom, and
water which sum up to the total extinction

ctot = atot + btot = aw + bw + acdom + aph + bph(2.16)

where a and b are absorption and scattering, respectively. Cdom scattering is negligible
and is not considered.

2.3.2 Phytoplankton

In remote sensing, the terms phytoplankton, algae, and phyla are often equally used and
describe drifting microscopic organisms performing photosynthesis in the water.

2.3.2.1 Photosynthesis and chlorophyll-a Photosynthesis is performed in sub-cellu-
lar chloroplasts which are filled with the pigment chlorophyll absorbing light in the VIS.
In short, a fraction of absorbed light energy supports the chemical conversion of carbon
dioxide and water to carbohydrates and oxygen. The oxygen is released and phytoplank-
ton uses “sugar” as photochemical energy source for biochemical activities (Krause and
Weis, 1991). Unused absorbed photons are partly released as heat dissipation or during
the process of fluorescence in longer wavelengths which is described in 2.3.2.3 (fig. 2.8a).
Primarily, phytoplankton chloroplasts contain the pigment chlorophyll-a which colours
algae green. In the presence of alternative pigments (e.g. chlorophyll-b or carotenoids)
the colour can become more brownish or reddish due to individual spectral absorptive
properties.
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Figure 2.5: Colours of natural waters induced by water optically active constitu-
ents (OACs). a)2.5a The Yellow River in Zhongshan (Lanzhou, China) appears
brown due to high cdom absorption. b)2.5b The sediments in the Rhine River
at the Ruinaulta gorge (Grisons, Switzerland) brightens the water due to high
backscattering. c)2.5c In Lake Erie (Canada/USA), an algae bloom colours the
water green. d)2.5d Clear water appears blue (Blue Hole lake of Santa Rosa,
Mexico).
2.5a von Dobschütz, S. (2009), https://commons.wikimedia.org/wiki/File:

Zhongshan-Br%C3%BCcke-01.JPG , CC BY-SA 3.0, clipped, accessed 2018-
01-30

2.5b Biovit (2007), https://commons.wikimedia.org/wiki/File:Rhine.jpg ,
CC BY-SA 3.0, clipped, accessed 2018-01-30

2.5c NOAA GLERL (2009), https://www.flickr.com/photos/noaa_glerl/4076
018686/in/photostream/, CC BY-SA 2.0, clipped, accessed 2018-01-30

2.5d Autopilot (2000), https://commons.wikimedia.org/wiki/File:Blue_Hole
_-_New_Mexico.jpg, CC BY-SA 3.0, clipped, accessed 2018-01-30

Figure 2.6: Spectral IOPs for water and water constituents. Water scattering is
very low and negligible in VIS. Cdom is assumed to be a pure absorber. The higher
chlorophyll-a concentration and chlorophyll-a absorption, respectively, the less
important is the influence of water absorption in the total extinction coefficients
ctotal in the red VIS and short NIR.
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Mostly, phytoplankton remote sensing retrievals use chlorophyll-a concentration as
proxy for phytoplankton amount because chlorophyll-a is the optical relevant part of
the phytoplankton cell. However, chlorophyll-a concentration is previously retrieved
with empirical bio-optical models (BOMs) (see section 2.3.5) which are either based
on reflectance ratios (e.g. Ocean Colour quartic algorithm (OC4)) or chlorophyll-a
absorption at a specific wavelength (e.g. Bricaud et al., 1998) and often do not consider
the influence of phytoplankton cell walls which may increase scattering.
Additionally, there is an overlap in the terms of TSM, chl-a, total chl-a (Tchl-a), and

actual phytoplankton amount measured in situ. Investigating phytoplankton, one has
to be careful about the actual measured quantity. TSM usually combines total partic-
ulate matter larger than a certain particle size mainly including also non-phytoplankton
content. The difference between Tchl-a and chl-a mostly occurs due to different in
situ measuring methods using chemical bleaching or spectroscopy which may include
additional pigments (e.g. phaeopigments).

2.3.2.2 Phytoplankton extinction Phytoplankton extinction cph is the sum of chlo-
rophyll-a absorption aph and phytoplankton scattering bph (fig. 2.6). Scattering occurs
due to the phytoplankton pigments and cell walls and decreases spectrally with longer
wavelengths (dashed green lines in (fig. 2.6)). Light is mainly scattered forward in the
direction of the incident beam and only a small fraction with a backscattering to total
scattering ratio of bph,b/bph(650 nm) = 0.0138±0.0083 (Loisel et al., 2007) is scattered
in the upwelling direction.
A phase function describes scattering of light in the ambient field. Based on meas-

urements of Petzold (1972), a phase function is found which is often used to describe
scattering of phytoplankton. Using a backscattering ratio, Petzold’s phase function can
be expressed with the Fournier-Forand equation (Fournier and Forand, 1994, Fournier
and Jonasz, 1999) in eq. (2.17) which is shown in fig. 2.7.

FF (ψ) =
1

4π(1− δ)2δν

[
ν (1− δ)− (1− δν)(2.17)

+ [δ(1− δν)− ν(1− δ)] sin−2
(
ψ

2

)]
+

1− δν180

16π(δ180 − 1)δν180

(3 cos2 ψ − 1)

with ν =
3− µ

2
and δ =

4

3(n − 1)2
sin2

(
ψ

2

)
Mobley et al. (2002) proposed a method generating FF solely based on backscattering
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Figure 2.7: Phytoplankton phase function FF analytically retrieved with the
equation from Fournier and Jonasz (1999) in eq. (2.17) for a backscattering
ratio of 0.019 83 and phase functions calculated from measured volume scattering
functions from Petzold (1972). Panel b) shows phase functions from a) for
scattering angles on a logarithmic scale.

.

ratio. The backscattering ratio of the averaged Petzold’s phase function is given with
0.019 86. Aas (1996) reported a refractive index for algae from 1.146 to 1.167 dependent
on phytoplankton species and water volume fraction within cells. Therefore, in eq. (2.17),
coefficients of refractive index n and Junge slope µ are used with 1.150 for phytoplankton
and 3.423 04 for particle distribution, respectively. Figure 2.7 shows the phase function
for phytoplankton with a ratio of 0.019 86.

Phytoplankton absorbs light mainly in chlorophyll-a pigments and exhibits two local
maxima in the VIS near 440 nm and 670 nm (solid green lines in fig. 2.6). The location
and spectral width and strength of the maxima is dependent on phytoplankton amount
and health, ratio of chlorophyll-a to other pigments, environmental conditions, and, for
analyses, measurement technique. Due to relative low absorptive properties in the green
visible range, light is reflected and most plants and algae appear green (fig. 2.8d).
In land remote sensing, vegetation is often quantified with the “red edge”, a strong

increase in reflectance due to absent phytoplankton absorption beyond 700 nm compared
to VIS. However, water absorption rapidly increases at 700 nm inhibiting phytoplankton
observations with “red edge” retrievals.

2.3.2.3 Chlorophyll-a fluorescence The energy carried by a photon exaggerates a
chlorophyll-a molecule, which has absorbed light, and its orbital electrons are raised
from ground state (S0) to a higher energy level (S1) (fig. 2.8c). The energized electron
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(a) The fate of absorbed photons: Photosyn-
thesis, dissipation, and fluorescence.

(b) Wang et al. (2017) retrieved the pure
fluorescence signal peaking near 683 nm with
polarization techniques.2.8b

(c) Energy level transition during the process
of fluorescence.2.8c

(d) Gower et al. (1999) simulated and meas-
ured reflectance with an apparent fluores-
cence peak near 683 nm due to high chl-a and
low reflectance in the red VIS due to water
absorption.2.8d

Figure 2.8: The process and effects of fluorescence
2.8b Wang et al. (2017), p. 1006
2.8c Jacobkhed (2012), https://commons.wikimedia.org/wiki/File:Jablonski_Diagram_of

_Fluorescence_Only.png, accessed 2018-02-11
2.8d Gower et al. (1999), p. 1783
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remains only a short time in the higher electronic state due to an unfavourable energy
equilibrium. The electron decays to ground state and releases excess energy by emission
of a photon (Krause and Weis, 1991). The process of emitting the photon is called
fluorescence. Chlorophyll-a absorbs mainly in the blue and yellow-red part of the VIS
and fluorescence appears near 683 nm in the red (Pedrós et al., 2008). The photon
emitted during the fluorescence process carries lower energy than the absorbed light
and therefore appears “redder” (Stokes Shift) because the exaggerated electron only
relaxes to the second vibrational state of the ground state (S0V2) retaining some energy
(fig. 2.8c).
The strength of fluorescence varies with i) amount of chlorophyll-a (fig. 2.8b), ii)

efficiency or quantum yield, and iii) available light. The efficiency factor, which is the
ratio between absorbed photons to emitted photons, varies from 0.3 % to 1.0 % for
phytoplankton (Fischer and Kronfeld, 1990, Gilerson et al., 2007). Combining chl-a
amount, available light, and fluorescence efficiency, the excitation for the fluorescence
process can be calculated. Gordon (1979) describes the excitation as an integral of
absorbed energy by phytoplankton over the visible spectrum ranging from 390 nm to
685 nm with scalar irradiance and chl-a absorption. The excitation is weighted with
the efficiency and distributed with a Gaussian function centred at λF = 683 nm with a
standard deviation of σF = 10.6 nm. The fluorescence source function JF (A) is given
section 1.1.2 in eq. (2.8).
Measuring water-leaving reflectance, emitted radiation due to fluorescence appears as

positive anomaly near 683 nm (figs. 2.8b and 2.8d). However, increasing concentration,
chlorophyll-a absorption also increases and emitted fluorescence is partly reabsorbed.
The effective peak appears to be shifted towards longer wavelengths. Mostly, fluores-
cence is quantified with the Fluorescence Line Height (FLH) technique (Fischer and
Kronfeld, 1990, Gilerson et al., 2007, Gower, 2016), a three-wavelength method obtain-
ing the reflectance difference between fluorescence signal near 685 nm and a baseline
usually constrained by reflectance near 660 nm and 710 nm (Neville and Gower, 1977,
Fischer and Kronfeld, 1990). However, the effective phytoplankton peak can shift to-
wards longer wavelengths particularly for high chl-a and the technique may underestimate
phytoplankton properties. In 1977, Neville and Gower discussed the peak’s origin near
685 nm and assumed “[. . . ] that fluorescence is the mechanism that is producing the
observed peak. From an operational point of view it matters little which process [fluores-
cence or scattering] is dominant, since the resulting peak from each will be proportional
to the chlorophyll concentration.” In subsequent literature, authors mostly refer solely
to the peak as (effective) fluorescence peak. In chapter 4 section 1.2, the interaction of
phytoplankton scattering, absorption, and chlorophyll-a fluorescence is discussed.
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(a) Odén (1919) (b) Babin et al. (2003)

Figure 2.9: The spectral absorption of cdom exponentially decays with longer
wavelengths. Mathematically, the strength of the decay depends on the slope
factor described in section 2.3.5.

2.3.3 Coloured dissolved organic matter

Coloured dissolved organic matter (cdom) is a humin acid that is completely dissolved
in water colouring it yellowish to brownish. Therefore, cdom is previously called yellow
substance or gelbstoff in literature (Jerlov, 1953, Otto, 1967, Bricaud et al., 1981,
Fischer and Kronfeld, 1990). It has firstly been investigated spectrally from Odén (1919)
who analysed dissolved Ackererde (field soil) and reported an exponential decrease of
absorption coefficient in the VIS (fig. 2.9). Otto (1967) summarized remote sensing
results from Kalle (1937, 1949, 1961) investigating cdom in waters spectrally. Cdom is
assumed to be a pure absorber and highly minimizes the penetration depth of light in
the blue visible range. The spectral decay of absorption can be expressed by exponential
functions (see section 2.3.5) Cdom can limit the growth of phytoplankton due to light
availability. However, it is also a supply for nutrients in the aquatic food web and has a
fluorescent component in the UV to blue VIS (Fellman et al., 2010).

2.3.4 Supplemental quantities and constituents

Alongside phytoplankton and cdom, supplemental quantities influence the ambient light
field within and above waters but play a minor role in this thesis. Temperature, wind, and
salinity control the physical condition of water bodies. Organic and inorganic particles
occur due to biological degradation products (e.g. detritus), erosion, deposition of
atmospheric particles washed out by precipitation, and river run-offs.
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2.3.4.1 Temperature, wind, and salinity The angle between incident or water-
leaving radiation with the water surface changes with refractive index influenced by
temperature and salinity. Wind-induced waves constrain surface roughness which plays
a role in the orientation of the planar water surface. A tilted surface allows different
incident angles than a plan-parallel surface which is an important factor for the am-
bient light field constrained by incident and viewing geometry. Additionally, upwelling
or wind-induced water bubbles and wind-induced white caps highly reflect visible light
appearing white and hardly contain information about the water body constitution.
Surface roughness firstly has been investigated by Cox and Munk (1954, 1956), who

provide equations describing average slopes of waves and roughness with respect to
windspeed and refractive index. Liu et al. (2013) analysed the influence of different
windspeeds on IOPs retrieved from reflectance measurements. Although, there is a
variation, this thesis does not investigate the sensitivity to windspeed.

2.3.4.2 Inorganic particles Inorganic particles, e.g. mineral sediments, can brighten
water-leaving radiation. Binding et al. (2005) show an increase in the entire visible BOA
reflectance with increasing sediment load. For sediment concentrations from 10 g m−3

to 15 g m−3 the reflectance near 550 nm increases by up to 13 %. Meland et al. (2010)
retrieved phase functions for mineral dust aerosols (quartz) in the VIS which can com-
pared to sediments in water. Phase functions range from 10−1 sr−1 in backscattering
direction to 0.5·10−1 sr−1 in forward scattering direction. Compared to the phytoplank-
ton phase function obtained from Petzold (1972) in fig. 2.7, the phase function appears
with a rather similar slope with a large forward scattering peak and and a lower backscat-
tering but the range spans three magnitudes instead of six magnitudes. The scattering
behaviour changes with particle size, shape, and density (Binding et al., 2005).
Additionally, in shallow waters, the ground, which is usually sand or rocks, may gleam

through the water and influences measured remote sensing signals. Conducting transfer
simulations in this thesis, the ground is assumed to be “black” and, therefore, does not
influence radiation although this effect mainly occurs to coastal and inland waters.

2.3.4.3 Organic particles Dead vegetation particles and degradation products, de-
tritus or tripton, colours the water brownish. In combination with phytoplankton, they
are often referred to as TSM (cf. section 2.3.2) which may also incorporate inorganic
particles due to filtering measurement methods. The spectral absorption decreases ex-
ponentially and the spectral decay than for cdom. Additionally, organic particles can
originate from land erosion and agriculture products may washed in rivers, lakes, and
coastal waters.
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2.3.5 Bio-optical models

A bio-optical model (BOM) links optical measurements and biological parameters with
a mathematical expression. Mostly, relations are empirically found by correlating an IOP
or reflectance measurement with a simultaneously measured biogeochemical variable.
Exemplary, several chlorophyll-a concentration algorithms are based on bio-optical mod-
els (BOMs). BG is the relation between a “green” and “blue” measurement band in the
VIS providing a qualitative estimate of the relative presence of phytoplankton in case-1
waters (Morel and Prieur, 1977). According to O’Reilly et al. (2000), Ocean Colour
quartic algorithm for MERIS (OC4E ) is an empirical relation between the maximum
reflectance blue-green ratio and chlorophyll-a measurements.

BG(OC4E) = max

{
R([443, 490, 510] nm)

R(560 nm)

}
(2.18)

log10 chl-a(OC4E) = 0.3255− 2.7677 ∗ (log10 BG) + 2.4409 ∗ (log10 BG)2(2.19)
− 1.1288 ∗ (log10 BG)3 − 0.4990 ∗ (log10 BG)4

There is a wide range of “OC” algorithms depending on used instrument and degree of
the polynomial. BOMs also can describe the spectral slope of IOPs:

cdom(λ) = cdom(λ0) exp {−S(λ− λ0)}(2.20)
aph(λ) = A(λ) ∗ chl-a1−B(λ)(2.21)

Equations (2.20) and (2.21) are commonly used models to describe cdom and phyto-
plankton absorption (e.g. Gilerson et al., 2008, Brewin et al., 2011, McKee et al., 2014).
Usually, slope factor S ranges from 0.005 nm−1 to 0.031 nm−1 (e.g. Bricaud et al., 2012,
Brewin et al., 2015, Chen et al., 2017) and is highly dependent on the reference λ0 which
is set to an available blue wavelength around 440 nm.
Bricaud et al. (1995, 1998) found eq. (2.21) empirically with spectral dependent

coefficients A [m3 mg−1] and B [dl] in open oceans. Therefore, the model is mainly
valid for case-1 waters and based on knowledge of chl-a, which has to be estimated or
measured beforehand, to retrieve the spectral shape of aph(λ). Figure 2.10 demonstrates
correlations of in situ measurement data from chl-a and absorption coefficient at 440 nm

(a440) which are highly dependent on the collection site. Therefore, it may be valuable
to retrieve optical properties such as absorption coefficients from optical remote sensing
measurements at first and afterwards apply a regional dependent bio-optical model. In
chapter 4, I introduce an approach to retrieve absorption solely from optical reflectance
measurements. A BOM for chl-a can be applied afterwards.
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Figure 2.10: Bio-optical models for phytoplankton for various oceanic regions
from various data sets merged by Nechad et al. (2015) in a) and Valente et al.
(2016) in b). Panel c) shows HydroLight simulation input conducted by Nechad
et al. (2015).
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Alongside relations between optical properties and biogeochemical constituents and
the spectral expression of IOPs, BOMs can also relate different IOPs to each other.
For instance, degradation products of phytoplankton exhibit optical properties similar
to cdom and the amount increases with increasing chl-a (e.g. Bricaud et al., 2012,
Dall’Olmo et al., 2017). Thus, there is a natural correlation of both absorption coef-
ficients. Based on data of the North Sea merged from Nechad et al. (2015), a case-1
BOM relating cdom and phytoplankton a440 yields for 440 nm

cdom(440 nm, a440) = 0.24 ∗ a4400.43 = g(a440).(2.22)

In chapter 4, eqs. (2.20) and (2.22) are used with with shape factor S = 0.02 nm−1.

2.4 Remote sensing observations in VIS and TIR

In previous sections, properties of optically active constituents and radiometric quantities
has been outlined. The properties of observed matter and atmosphere mainly constrain
the spectral “window” of observation with space-borne remote sensing. Major limiting
factors are strongly absorbing atmospheric water vapour (section 2.4.1) and natural
and technical restrictions and obstacles (section 2.4.2). Therefore, exploiting spectral
features of water, atmosphere, and object of interest, the visible spectrum is the domain
for phytoplankton observations (section 2.4.3) and the thermal-infrared spectrum is used
for cryospheric characterizations (section 2.4.4).

2.4.1 Water and atmospheric water vapour

Water vapour plays an important role in weather, climate, and atmospheric circulation.
Figure 2.1b shows strong radiation extinctions in NIR and TIR which mainly occurs
due to atmospheric water vapour (top panel in fig. 2.1c and fig. 2.11). There are
two big “windows” with weaker water vapour absorption: The VIS and the TIR from
approximately 8 µm to 14 µm (fig. 2.11). However, measurements are still sensitive to
water vapour and signals usually have to be corrected for at least water vapour. The
application of water vapour products (e.g. Lindstrot et al., 2014) supports the “cleaning”
of TOA signals for further retrievals. Water vapour absorption coefficients are rather
well known and the challenge is to obtain the actual amount of water vapour per pixel.
In contrast to the atmosphere, where the total water vapour amount of a unit column

rarely exceeds a few centimetres, the water column of lakes and oceans range from
metres to kilometres. Water colour algorithms use measurements in the VIS because
the upwelling signal at longer wavelengths (NIR/TIR) becomes very small due to water
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absorption. Figure 2.6 illustrate increasing water absorption beyond 600 nm and strong
increase beyond 700 nm (Pope and Fry, 1997). The observed water depth is limited by
penetration depth which is constrained by at least water absorption. The depth reduces
with additional absorbing constituents (e.g. cdom). For example, in clear waters, blue
light reaches approximately 70 m but red light penetrates only a few meters (Gordon
and McCluney, 1975). This limits water colour algorithms to the VIS.

2.4.2 Obstacles

Both solar and terrestrial radiation can be measured with remote sensing techniques.
Passive remote sensing instruments measure electrical counts within the VIS at certain
measurement channels. After downlinking measured data, counts are usually converted
to physical quantities radiance L or reflectance R (cf. section 2.2), that are used for
scientific analyses. However, in the TIR, direct physical quantities such as brightness
temperature (cf. section 2.2) are obtained. The measurements change with spectrum,
viewing geometry, intensity and polarization’s degree. However, the influence of polariz-
ation is not incorporated in the studies of this thesis and model and measurement data
are assumed to be unpolarized.
Dependent on the scientific mission of the satellite, the sensor band are specified by

spectral distribution (central wavelength and number of bands) and spectral width. For
example, Medium Resolution Imaging Spectrometer (MERIS) and Ocean and Land Col-
our Imager (OLCI) are multi-spectral sensors in the VIS designed for water observation
and obtaining the “fluorescence peak”. Nevertheless, the fluorescence band has been
shifted from 685 nm to 681.25 nm due to oxygen absorption (O2B, cf. section 2.4.3).
Due to the shift, the actual peak of phytoplankton is difficult to estimate because the
closest bands are located near 673 nm and 708 nm (cf. chapter 4 section 4.3).

Among others, major natural obstacles in remote sensing of surfaces and water bodies
are clouds, sunglint, and interfering atmosphere. For example, in the microwave regime,
clouds are transparent and sensors can measure underlying surface (e.g. Wentz, 2000).
Usually, microwave instruments are used for detection of sea surface temperature, surface
height, and snow water equivalent and grain size retrievals (e.g. Gentemann et al.,
2010, Foster et al., 2005, Buckingham et al., 2014, Brucker et al., 2010). For optical
measurements, certain algorithms (“cloud masks”) exclude pixels with expected cloud
coverage (e.g. Istomina et al., 2010, Vermote et al., 2014, Hollstein et al., 2015, Marks
et al., 2016, Stengel et al., 2017). Sunglint occurs at smooth and highly reflective
surfaces if solar light is directly reflected into the sensor. The bright reflection can over-
saturate a sensor’s measurement capability and also contains very low or no information
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about the observed object which can be avoided by changing viewing geometry.
Finally measured TOA radiation had to transit the atmosphere, which changes the

upwelling signal due to optical properties of aerosols, clouds, and atmospheric gases (e.g.
water vapour). The influence of the atmosphere on the TOA-signal can be estimated by
modelling and supplemental measurements. Using estimations, the signal can be cor-
rected for atmospheric contribution (“Atmospheric Correction”). Inaccurate estimations
can cause large uncertainties due to insufficiently described atmospheric conditions of a
high variability of the components composition (e.g. water vapour content), clouds and
aerosols.

2.4.3 Observing phytoplankton in the VIS

In the visible spectrum (VIS), the atmosphere exhibits three major agents for extinction:

• atmospheric water vapour absorption
• atmospheric ozone and oxygen absorption
• Rayleigh scattering

Absorption bands of water vapour start around 600 nm and become rather continuous
beyond 750 nm (fig. 2.11) which requires a proper water vapour correction for water
remote sensing using the red VIS.
Atmospheric oxygen has two absorption bands in the VIS near 688 nm (O2B-band)

and near 765 nm (O2A-band) (fig. 2.11). The O2B band has influence on chlorophyll-a
fluorescence near 683 nm whereas the O2A-band is located beyond 750 nm where water
is already strongly absorbing. Thus, the design of multi-spectral optical instruments
avoids measurement bands near 688 nm and, for instance, the MERIS band intended for
fluorescence retrievals was adjusted to 681.25 nm. Ozone accumulates in approximately
50 km height and absorbs almost the entire UV. From around 500 nm to 700 nm, ozone
exhibits an absorption continuum bi-peaking near 575 nm and 603 nm (Chappuis bands).

Rayleigh scattering describes scattering at particles which are small compared to in-
cident wavelengths. In the VIS, particles have to be smaller than 1 nm, which applies for
air molecules, to perform Rayleigh scattering. The scattering mainly influences water
observation in the blue VIS (cf. fig. 2.1c).
Figure 2.11 shows that observing terrestrial waters with radiometric measurements is

prohibited outside the VIS due to strong absorption of water vapour and other gases in
the UV, NIR, and TIR. Commonly, phytoplankton is investigated in the blue and green
VIS due to strong absorption of chlorophyll-a near 440 nm and high reflectance near
550 nm (fig. 2.6) using, for instance, blue-green ratios. However, using the range from
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Figure 2.11: Atmospheric transmission of the atmosphere (bottom panel) and
major atmospheric absorbers (picture from Petty (2006), modified). Coloured
boxes indicate spectra for the cryospheric study in chapter 3 (red) and the phyto-
plankton study in chapter 4 (green).

42



2 Radiation in the atmosphere and in waters

670 nm to 740 nm for phytoplankton observation, the strong impact of cdom absorption
in the blue VIS is avoided (cf. fig. 2.6).
Additionally, for increasing chl-a, the influence of water absorption in the red becomes

weaker comparing fig. 2.6a and fig. 2.6b. Therefore, the red VIS domain provides
sufficient properties obtaining phytoplankton in optically complex waters such as coasts
or lakes for medium to high chl-a. On top, chlorophyll-a fluorescence near 683 nm can
be exploited which is specific for only phytoplankton and vegetation.

2.4.4 Observing snow and ice in the TIR

Snow and ice appear “black” in the thermal infra-red (TIR) due to high absorption
and “white” in the VIS due to high albedo (Stroeve et al., 1997). If radiation is only
reflected at the surface it usually contains little or no information about matter and
therefore it is unfavourable to observe snow in the VIS. In the TIR, radiation solely
originates from terrestrial and atmospheric objects because solar radiation is negligible
small (see fig. 2.1a). In contrast to the entire TIR and NIR, fig. 2.11 shows that
from 10.5 µm to 12.5 µm only water vapour absorbs radiation. Other greenhouse gases
such as CO2 or methane do not interfere in this spectral interval. Thus, measured
TOA signals solely originate from observed snow and ice cover and are influenced by
atmospheric water vapour which has to be considered. Measuring the “temperature” of
emitted radiation, emissivity can be calculated. The exploitation of emissivity favours
the solitude observation of snow and ice due to the dependency on the object and
wavelength.
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3
Remotely retrieved cryospheric properties

Abstract This study provides a method determining characteristics of
snow and ice by converting top of atmosphere brightness tem-
perature to surface emissivity which depends on wavelength and
observation angle with respect to snow and ice properties. Ad-
vanced Along-Track Spectral Radiometer (AATSR) on-board Envir-
onmental Satellite (ENVISAT) features dual-view thermal infra-red
measured brightness temperature. Using bands 11 µm and 12 µm
in nadir and forward (55°) view and a total column water vapour
(TCWV ) product from Medium Resolution Imaging Spectrometer
(MERIS), four measurements per pixel are obtained. Three surface
emissivities ε(λ, θ) per pixel are retrieved from simulated surface
temperatures related to 11 µm/nadir view values. Using angular
and spectral field measurements of snow grain size and emissiv-
ity above snow and ice from Hori et al. (2006, 2007), emissivity
“classes” are defined: fine, medium, coarse, suncrust, and ice. Re-
maining pixels are either indistinct between classes, unclassified, or
invalid. Temperatures above the freezing point label pixels as wet.
The portion of classification in Greenland, Antarctica, and the sea
ice of the Hudson Bay is high for 26 AATSR scene in 2007 and
2008. Steep and heterogeneous topography may cause invalid and
unclassified pixels in Eurasia. Close to coasts, snow temperatures
are generally higher and a large number of wet pixels is retrieved.

The chapter is adopted from Keck et al. (2017).
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1.1 On the determination of snow and ice

Since space-borne remote sensing is available, the cryosphere community focused on ana-
lysing snow grain size and reflectivity (Wiscombe and Warren, 1980, Aoki et al., 2007)
and snow mass equivalent sensed with micro-wave sensors (Chang et al., 1982, Foster
et al., 2005, Clifford, 2010). Using reflectance from Advanced Very High Resolution Ra-
diometer (AVHRR) on-board Television Infrared Observation Satellite Next-generation
(TIROS-N), Dozier et al. (1981) showed an opportunity to retrieve snow grain size in
the near infra-red (NIR) spectral range. Dozier and Warren (1982) related spectral and
angular dependent emissivity to thermal infra-red (TIR) brightness temperature of snow
covered surfaces. A alternative viewing angle can cause a brightness temperature differ-
ence of up to 3 K from 8 µm to 14 µm. However, emissivity variations were insensitive
to snow grain size.
Dozier and Marks (1987) developed a snow classification using Landsat Thematic

Mapper (TM) reflectance relations. They distinguished between clean new snow, older
snow, and vegetation-snow mixtures relying on snow grain size and single scattering.
However, they never verified their results with in situ measurements. Based on Mie
theory and Discrete Ordinate Radiative Transfer Model (DISORT) (Stamnes et al.,
1988), new snow grain size algorithms were developed. Nolin and Dozier (1993) found
good agreement with ground measurements for Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) nadir NIR observations. Fily (1997) used Landsat NIR reflectance
spectra and gained diverging results for TM4 (good agreement to ground measurements)
and TM5/7 (too large remotely sensed snow grain size). Applying Multiple Endmem-
ber Snow-Covered Area and Grain size (MEMSCAG) to AVIRIS data and using snow
grain size microscopic measurements (ranging from 10 µm to 1100 µm) from Mammoth
Mountain, USA, in 1994, 1996, and 1998, Painter et al. (2003) found an Root Mean
Square Error (RMSE) of 48 µm for the modelled snow grain size. Using Mosaic over
Antarctica (MOA), Scambos et al. (2007) combined 260 Moderate Resolution Imaging
Spectrometer (MODIS) scenes in 2003 and 2004 to obtain temporally averaged snow
grain sizes applying a normalized radiance ratio of bands 1 and 2. They retrieved fine
snow (grain size between 100 µm and 400 µm) in inner Antarctica and coarser snow
grains (from 400 µm up to more than 1000 µm) at coasts where they expected melting
zones. Aoki et al. (2007) obtained snow parameters by MODIS and Global Imager (GLI)
aboard Advanced Earth Observing Satellite 2 (ADEOS-2) using NIR reflectance for snow
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grain size and TIR brightness temperatures for snow temperature validated with emissiv-
ity and snow grain size field measurements in Eastern Hokkaido, Japan, and Barrow,
Alaska, USA (also see Hori et al. (2006)). They found snow grain sizes within 10 µm to
1000 µm. Lyapustin et al. (2009) used visible spectrum (VIS)/NIR/short-wave infra-red
(SWIR) MODIS normalized radiance band ratios in Greenland in 2004 to investigate
snow grain sizes up to 50 µm to 1000 µm on land and up to 2000 µm at coasts. Their
retrieval results qualitatively agreed well with measurements from Aoki et al. (2007).
Conducting laboratory measurements, Salisbury et al. (1994) investigated a discrep-

ancy of angular and spectral emissivity for ice and various snow types depending on
snow grain size. Hori et al. (2006) measured in situ angular and spectral snow emissivity
with a TIR spectrometer and the snow grain size by microscope. The measurement
sites are located in Eastern Hokkaido, Japan, in 2002 and 2004, and Barrow, Alaska,
USA, in 2003.The spectral emissivity slope peaks at 10.85 µm with 0.99 for almost all
investigated observation angles and snow grain sizes. In the interval from 8 µm to 14 µm,
significant emissivity differences appear for longer wavelengths: emissivity decreases with
increasing snow grain size and observation angle. Subsequently, Aoki et al. (2007), Hori
et al. (2007), and Stamnes et al. (2007) showed several retrievals and results of remotely
sensed snow parameters (snow grain size, snow temperature, a possible vertical structure
of the upper snow layer) using the visible and the near infrared spectral range of the
sensors GLI aboard ADEOS-2 and MODIS aboard Terra. Hori et al. (2007) compared
snow grain size and snow surface temperature to determine the start of the melting
period in the northern hemisphere, which is erroneous for non-flat and thin snow covers.
Hori et al. (2013) developed a snow emissivity model based on a black-body component
and a fraction of the apparent specular emissivity. Unfortunately, the model was not able
to fully reproduce the field measurements of Hori et al. (2006) although the spectral
emissivity shape resembles the measurements. However, the emissivity model can be
applied to snow and ice classification (Hori et al., 2013).

1.2 Scope and content of the study

A novel model for snow and ice characteristics is provided using multi-view emissivities
within 8 µm to 14 µm. The technique is generic and can be applied to any multi-view
sensor with TIR channels. In this study, the dual-view TIR channels of AATSR are
exploited. Section 2 describes instruments and used data sets. In section 3, the ground
emissivity from brightness temperature measurements are deduced and the retrieval of
snow and ice properties is explained. The results are presented and discussed in sections 4
and 5 followed by the conclusion in section 6.
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The platform Environmental Satellite (ENVISAT) operated from 1 March 2002 until 12
April 2012 800 km above ground in a sun-synchronous polar orbit with an equator cross-
ing time of 10:00 a.m. local time in a descending node (ESA, 2006, 2007). This study
includes data from instruments Advanced Along-Track Spectral Radiometer (AATSR)
described in section 2.1 and Medium Resolution Imaging Spectrometer (MERIS) (sec-
tion 2.2) avoiding time lapses due to the same host platform. In section 2.3 selected
AATSR scenes are introduced which are prepared to ensure only to use snow or ice
covered pixels (section 2.4).

2.1 AATSR

AATSR features a dual-view (nadir view in an angle between 0° to 21° and forward
view at 55°), seven channels in the visible and thermal spectral range and a swath
width of about 500 km (ESA, 2007). The spatial resolution is 1 km in nadir view and
2 km in forward view. AATSR measures the top of atmosphere brightness temperature
directly due to a calibration on an intern black-body plate (ESA, 2007). Four measured
brightness temperatures BTTOA

meas (λ,ϑ) are obtained per pixel using both viewing angles
ϑ and two TIR channels λ with central wavelengths at 10.85 µm (hereinafter simplified
to 11 µm) and 12 µm.

2.2 MERIS

MERIS provides five push-broom imaging spectrometers in 15 programmable channels
in a spectral range between 390 nm and 1040 nm with a spatial resolution of 300 m (full
resolution) or 1 km (reduced) along a swath width of 1150 km. Usually, a combination
of AATSR’s 11 µm and 12 µm measurements can be applied to atmospheric correction.
In order to use the TIR channel information content, a proper radiative transfer requires
the input of water vapour measurements. Lindstrot et al. (2012, 2014) developed a
TCWV product from MERIS using band 15 at 900 nm where water vapour is strongly
absorbing. The product is provided in a 0.05° spatial resolution over land from 2003 to
2008 and can be accessed via www.globvapour.info. Lindstrot et al. (2012) state a
high accuracy and precision of the MERIS TCWV retrieval compared to ground meas-
urements. Lindstrot et al. (2014) validated the product with GUAN radiosonde data
and report a weak wet bias of 0.74 mm and a standard deviation of 4.4 mm.
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2 Instruments and data

Figure 3.1: Location of 26 selected AATSR scenes in (a) Antarctica (1-3), Green-
land (4-11) and Hudson-Bay (24-26), (c) Chukotka/East-Siberia (21) and Alaska
(22-23), and (d) Eurasia (12-20). For detailed scene information see table 3.1.

2.3 Scene selection

The AATSR scenes are almost cloud-free and most of the pixels are snow/ice covered.
Most of the scenes are located in Greenland because scenes in Eurasia and North America
are often overcast. Additionally, during winter time, proper scenes in higher latitudes are
limited due to the low sun zenith angle. In fig. 3.1 and table 3.1, 26 AATSR scenes in
2007 and 2008 are introduced. There are 11 scenes above the ice sheets of Antarctica
(scene 1-3) and Greenland (4-11). Scenes 12-26 are located in Europe (12-16), Asia
(17-21) and North America (22-26). Scenes 16, 18, 22, and 24-26 contain sea ice.
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Table 3.1: Overview of the selected AATSR scenes with numbers referring to
fig. 3.1. The column available pixels lists the portion of pixels which are clear-sky
and snow/ice-covered due to the masks described in section 2.4. The last two
columns contain spatial median averaged surface temperatures obtained from
RTTOV and MERIS total column water vapour.

# region date # pixel Ts [K] TCWV [mm]
1 East-Central-Antarctica-1 2008-01-01 371 953 239.76 0.09
2 East-Central-Antarctica-2 2008-01-05 175 250 238.30 0.16
3 West-Central-Antarctica 2008-01-05 68 604 250.73 0.72
4 South-Greenland 2007-07-15 30 604 269.79 1.89
5 West-Coast-Greenland 2008-07-05 80 095 272.41 3.92
6 North-East-Coast-Greenland 2007-07-28 95 801 272.36 5.31
7 North-West-Greenland 2007-07-12 106 672 269.41 3.49
8 North-Greenland 2008-07-05 267 660 271.90 3.79
9 North-Coast-Greenland 2007-06-18 266 177 272.89 5.90
10 Central-Greenland 2007-04-11 83 804 233.42 0.05
11 North-East-Greenland 2008-07-05 209 782 273.46 5.32
12 Scandinavia 2007-03-21 136 019 268.80 3.03
13 Baltic-Sea 2007-03-23 32 277 271.90 4.63
14 South-Scandinavia 2007-03-21 66 921 268.84 2.13
15 Alps 2007-03-12 16 586 271.42 1.81
16 White-Sea 2007-03-25 23 006 271.70 6.95
17 Lake-Zaysan 2008-01-02 41 410 253.11 0.97
18 Barents-Sea 2007-07-01 27 217 273.08 6.89
19 Central-Siberia 2007-03-21 147 405 256.90 1.33
20 Khatanga-Gulf 2007-03-12 166 692 242.16 1.58
21 Chukotka 2007-03-09 424 259 246.84 0.89
22 Bristol-Bay 2007-03-12 128 290 265.22 2.16
23 South-Alaska 2007-02-19 155 405 251.26 0.69
24 West-Hudson-Bay 2007-03-18 232 197 247.72 0.50
25 Central-Hudson-Bay-1 2007-03-19 210 050 248.38 0.60
26 Central-Hudson-Bay-2 2007-03-22 203 614 253.96 0.99
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Figure 3.2: RGB view of North-Greenland (scene 8) in panel a) and with masks
for clouds (red), water (blue) and bare land (green) in panel b) produced with
the software Sentinel Application Platform (SNAP).

2.4 Scene preparation

A proper discrimination of clouds and snow covered surfaces is complex. Therefore, the
software SNAP (free download via http://step.esa.int/main/toolboxes/snap/) is
used to identify cloudy structures. Each scene excludes clouds with individually prepared
cloud mask combining the MERIS Red-Green-Blue (RGB) view, an AATSR brightness
temperature ratio and the Normalised Difference Cloud Index (NDCI). Using the Red-
Green-Blue (RGB) view, clouds are identified by structure and shadows. Cirrus clouds
are detected applying the nadir view ratio (BT (11 µm)−BT (12 µm))/BT (11 µm) which
is based on a higher absorption coefficient of ice for 12 µm than for 11 µm (Chylek et al.,
2006). Pepe et al. (2005) introduce the NDCI as a ratio of the AATSR bands 5 and 6
at 3.7 µm and 11 µm considering a reflectance drop at 3.7 µm above snow and ice and
a remaining high reflectance above clouds. Ratios greater than 0.026 classify a cloud.
Their cloud detection accuracy is about 96 % even for topographic complex areas.
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Additionally, a water mask for lakes, open water at coasts and rivers is applied using
the AATSR reflectance at 868 nm lower than 0.1 considering water bodies absorb most of
the solar signal beyond 750 nm. Analogously, the AATSR reflectance at 550 nm exhibits
lower reflectivity for land and vegetation than for snow. The land mask excludes pixels
that have a 550 nm reflectance lower than 0.3. For instance, case 8 is situated in North-
Greenland and its RGB image shows mostly snow and ice covered areas in fig. 3.2a.
However, areas with clouds, water and bare land are apparent which are excluded from
following computations with the above-described masks. The masks are coloured in red,
blue, and green for clouds, water, and bare land in fig. 3.2b.
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3.1 Physical background and remote sensing

In this study, emissivity is used to characterize snow and ice covered surfaces. Emissivity
is the relating factor between theoretical black-body radiance and measured radiance at
a given temperature (cf. chapter 2 section 2.2.3). Emissivity directly links to bright-
ness temperature and depends on the object’s material, the observation angle, and the
considered wavelength. These properties particularly justify the usage of emissivity to
describe and classify an object. In section 3.4, emissivity is computed by a relation of
retrieved surface temperatures. Space-borne land surface temperature products require
pre-determined emissivity spectra and land cover types (e.g. MODIS LST : Snyder et al.
(1998), Wan and Zhang (1999), Hori et al. (2006)). Thus, a given surface temperature
product is not used. According to Hori et al. (2006), the interval from 8 µm to 14 µm

provides “a fundamental surface property for determining snow surface temperature from
space”. Within the AATSR channels 11 µm and 12 µm, emissivity exhibits particular fea-
tures (Hori et al., 2006, 2013): In nadir view, emissivity is 0.99 at 10.85 µm for almost
all snow grain sizes and ice (see fig. 3.3); hereafter denoted as ε∗ =ε(λ=11 µm,ϑ=0°).
Furthermore, emissivity decreases with increasing grain size for 12 µm.
The 11 µm and 12 µm channel information is usually used for atmospheric water vapour

estimation. Using MERIS TCWV and vertical water vapour profiles (see section 3.2),
the channels’ information content is enabled in both forward and nadir viewing angle
for the emissivity calculation. Influence of solar radiation and potential snow impurities
are negligible for AATSR TIR measurements (Aoki et al., 2007). Wavelengths in the
thermal infrared spectrum exhibit a small penetration depth (Tanikawa et al., 2002) that
avoid distracting signals observing the snow surface.
Four top of the atmosphere (TOA) brightness temperatures for both viewing angles

and the bands 11 µm and 12 µm per pixel are the initial data base. The model Radi-
ative Transfer for TIROS Operational Vertical Sounder (RTTOV) which accounts for
atmospheric water vapour (see sections 3.2 and 3.3) retrieves appropriate surface tem-
peratures per brightness temperature. Subsequently, the physical relationship between
temperature and emissivity (see section 3.4) is exploited to obtain the surface emissiv-
ities per pixel, wavelength and observation angle. The classification methodology is
demonstrated in section 3.5.
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Figure 3.3: Measured nadir emissivity above snow with various grain sizes con-
ducted by Hori et al. (2006). Emissivity changes with increasing snow grain size
and increasing wavelength. Independent from snow grain size, the emissivity is
approximately 0.99 for almost all measurements at 10.85 µm.

3.2 Forward model

Radiometric TOA measurements contain information of the surface and the atmosphere.
Forward modelling simulates TOA measurements for given parameters (e.g. surface
temperature and water vapour) which can be accessed for particular TOA measurements
by an inversion. Thus, a forward model y = F (x) may express the TOA brightness
temperature. The measurement vector is defined as y = BTTOA

sim with x as state vector
containing surface and atmospheric information and F describes the physical model.
The radiative transport model RTTOV (Eyre, 1991) is notable for fast and accurate

simulation of the TOA brightness temperature and radiance for a range of space-borne
TIR and micro-wave radiometers. In this study, RTTOV version 11 runs in a clear-sky
mode, with default aerosol mixtures and a fixed ground emissivity of 0.99 (for more
information see Hocking et al. (2013)). RTTOV requires vertical atmospheric profiles
of pressure, temperature and water vapour.
McClatchey et al. (1972) combined aerosol and transmission models with ground and

radiosonde measurements and created vertical atmosphere models for several latitudes
and seasons (mid-latitude summer/winter, arctic summer/winter, and US standard)
which contain a set of vertical distributions of pressure, temperature and atmospheric
gases (e.g. water vapour, ozone, COx, NOx). The standard profiles are modified for
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Figure 3.4: Vertical profiles of temperature and water vapour for five standard
regions and seasons after McClatchey et al. (1972) indicated by coloured solid
lines. Table 3.2 lists surface temperature and total water vapour column of these
standard atmospheres. Dashed lines indicate modified profiles for arctic winter
(blue) and mid-latitude winter (light green) for a given surface temperature (left)
and a given total water vapour content (right).

certain surface temperatures and total water vapour columns to obtain a set of vertical
atmospheric profiles (see fig. 3.4). Depending on the state vector x (surface temperature
Ts , total water vapour column TCWV , viewing zenith angle ϑ, AATSR channel λ and
vertical profile model atm) a 5D look-up table (LUT) of BTTOA

sim for a fixed ground
emissivity of ε = 0.99 is generated.

BTTOA
sim = F (Ts ,TCWV,ϑ,λ, atm; ε)(3.1)

Comparing the median MERIS TCWV per scene (see table 3.1) and the TCWV of the
standard models (see table 3.2) deciding upon one of the standard atmospheric models
atm. Using MERIS TCWV the usage of the AATSR TIR channels for atmospheric
correction is avoided and their information is available for the emissivity retrieval. Most
scenes are close to the profile subarctic winter except scenes 16 and 18. These scenes
have a median TCWV of around 7 mm and are classified as mid-latitudes in winter.
Successively, the dimensions of the LUT are reduced by interpolation for the known

variables TCWV , ϑ, and λ. Eventually, the only depending variable is the surface
temperature Ts which is retrieved in the next step by optimization.
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Table 3.2: Surface temperatures and total column water vapour of the vertical
standard profiles after McClatchey et al. (1972) are listed (see solid lines in
fig. 3.4). The calculation of TCWV considers atmospheric normal conditions
(T =273.15 K, p=1013 hPa) and the air layer thickness per level.

region Ts [K] TCWV [mm]
mid-latitude (summer) 295.2 29.80
mid-latitude (winter) 272.2 8.10
subarctic (summer) 287.2 21.22
subarctic (winter) 257.2 4.11
US-standard 288.2 15.47

3.3 Optimization

The surface temperature is obtained optimizing BTTOA
sim (Ts ,TCWV,ϑ,λ, atm) = F (Ts)

with Newton’s Iteration. The first guess of the surface temperature is assumed with
Ts,n = BTTOA

meas + 2 K.

G (Ts,n) = G [BT (Ts,n)] = BTTOA
meas − F (Ts,n)(3.2)

g(Ts,n) =
dG (Ts,n)

dTs
= −F (T2)− F (T1)

T2 − T1
(3.3)

Ts,n+1 = Ts,n −
G (Ts,n)

g(Ts,n)
(3.4)

Ts,n+1 is accepted if |G (Ts,n)| < 0.1 K and |G/g| ≤ 0.01 else Ts,n+1 is set to Ts,n and
further iterations occur. The number of iterations is limited to ten. T1 and T2 are the
nearest neighbours of Ts,n in the LUT. The methodology of sections 3.2 and 3.3 is con-
ducted for all four measured brightness temperatures per pixel receiving corresponding
surface temperatures for 11 µm/nadir, 11 µm/forward, 12 µm/nadir, and 12 µm/forward
(hereafter abbreviated 11n, 11f, 12n, and 12f) which are based on an emissivity of 0.99.
In general, the retrieved surface temperatures in the 11 µm channel are higher than for

12 µm and forward view temperatures are lower than in nadir view listed in the statistics
in table 3.3. The median difference between 11n and 12f temperatures can exceed 1 K

in certain scenes.

3.4 Emissivity

The following three assumptions are the base of the emissivity computations:

ε∗ =: ε(λ∗ =11 µm,ϑ∗ =0°) = 0.99(3.5)
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χ =:
dBT (λ∗,ϑ∗)

dε = f ( λ∗,Ts
∗, ε∗)(3.6)

∆Ts

∆ε
=

Ts
∗ − Ts(λ,ϑ)

∆ε(λ,ϑ)
(3.7)

The superscript ‘*’ indicates variables with setting λ= 11 µm in nadir view (11n). Hori
et al. (2006, 2007, 2013) found an emissivity of 0.99 for this setting for almost all snow
grain sizes shown in fig. 3.3. Therefore, the radiative transfer model runs with a reference
emissivity of 0.99. Equation (3.5) sets the 11n emissivity to ε(11n) = 0.99 for all scenes
and pixels. Referring to the first assumption with ε∗ = 0.99, the analytical derivative
χ is computed with eq. (3.6) (see details in eq. (2.15)) for 11n per pixel assuming
the retrieved Ts(11n) = Ts

∗ matches the physical surface temperature. Furthermore,
the difference between two retrieved surface temperatures of one pixel corresponds to
the emissivity difference (eq. (3.7)). Combining χ from eq. (3.6) with ∆Ts/∆ε from
eq. (3.7) assuming ε∗ =0.99, three emissivities with corresponding surface temperatures
in relation to the 11n surface temperature Ts

∗ are calculated:

∆ε(λ,ϑ) =
Ts

∗ − Ts(λ,ϑ)

χ
(3.8)

ε(λ,ϑ) = ε∗ −∆ε(λ,ϑ)(3.9)

Hence, 11f, 12n, and 12f emissivities per pixel with eq. (3.9) are obtained. In general,
an increasing viewing angle and an increasing wavelength within 11 µm to 14 µm cause
lower emissivities (see table 3.3). A temperature difference of 1 K results in an averaged
emissivity variation of 0.020 within the temperature interval from 230 K to 280 K.

Table 3.3: The table lists statistics for the 12n, 12f, and 11f temperat-
ure/emissivity residuals relying on the 11n values. Increasing viewing angle and
increasing wavelength cause lower temperatures and emissivities, respectively.

Ts(11, 0)− Ts(λ,ϑ) [K] ε(11, 0)− ε(λ,ϑ) [dl]
# setting median mean std median mean std

1
f11 0.0269 0.1076 0.8507 0.0006 0.0023 0.0192
n12 0.5472 0.5760 0.7231 0.0124 0.0130 0.0163
f12 0.7956 0.8471 0.8800 0.0181 0.0190 0.0197

2
f11 0.0389 0.1231 0.7959 0.0009 0.0027 0.0182
n12 0.6424 0.6122 0.7544 0.0148 0.0140 0.0172
f12 0.9782 0.9793 0.8710 0.0225 0.0224 0.0197
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Table 3.3: continued

Ts(11, 0)− Ts(λ,ϑ) [K] ε(11, 0)− ε(λ,ϑ) [dl]
# setting median mean std median mean std

3
f11 0.2054 0.2160 0.5806 0.0043 0.0045 0.0121
n12 0.6691 0.6569 0.3319 0.0139 0.0136 0.0069
f12 1.0693 1.0368 0.7061 0.0222 0.0215 0.0147

4
f11 0.5182 0.9959 2.2376 0.0093 0.0179 0.0404
n12 0.8172 0.7646 0.4206 0.0147 0.0138 0.0076
f12 1.6763 2.1206 2.3056 0.0301 0.0382 0.0416

5
f11 0.5483 0.6873 2.7137 0.0097 0.0119 0.0495
n12 0.8383 0.7729 1.6373 0.0149 0.0136 0.0298
f12 1.6673 1.7674 2.8060 0.0296 0.0310 0.0511

6
f11 0.1614 0.2396 1.8891 0.0029 0.0041 0.0334
n12 0.6252 0.5444 1.3055 0.0112 0.0097 0.0233
f12 0.9709 0.9011 1.9972 0.0174 0.0161 0.0354

7
f11 0.3835 0.3251 0.4305 0.0069 0.0058 0.0078
n12 0.6454 0.5874 0.5165 0.0116 0.0106 0.0093
f12 1.2851 1.3347 0.4794 0.0230 0.0240 0.0086

8
f11 0.3843 0.3289 0.6992 0.0069 0.0058 0.0122
n12 0.8082 0.6679 0.6647 0.0144 0.0119 0.0117
f12 1.4867 1.3099 0.9453 0.0265 0.0233 0.0167

9
f11 0.2924 0.2774 0.8096 0.0052 0.0049 0.0141
n12 0.6297 0.6195 0.7321 0.0112 0.0111 0.0129
f12 1.1094 1.1164 0.9372 0.0197 0.0200 0.0166

10
f11 0.1107 0.1153 0.3250 0.0026 0.0028 0.0077
n12 0.3168 0.3115 0.3693 0.0076 0.0074 0.0086
f12 0.5847 0.5948 0.3256 0.0140 0.0142 0.0077

11
f11 0.0387 -0.0287 0.8751 0.0007 -0.0005 0.0152
n12 0.3892 0.1652 0.8832 0.0069 0.0030 0.0155
f12 0.6620 0.2446 1.4561 0.0117 0.0045 0.0255

12
f11 -0.2246 -0.0970 2.0718 -0.0041 -0.0019 0.0379
n12 0.3549 0.2618 1.0960 0.0065 0.0047 0.0204
f12 0.2391 0.4303 2.0967 0.0043 0.0077 0.0383
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Table 3.3: continued

Ts(11, 0)− Ts(λ,ϑ) [K] ε(11, 0)− ε(λ,ϑ) [dl]
# setting median mean std median mean std

13
f11 0.0228 -0.2482 1.2657 0.0004 -0.0044 0.0226
n12 0.2142 0.0722 1.0394 0.0038 0.0012 0.0186
f12 0.2869 0.0971 1.3312 0.0051 0.0017 0.0237

14
f11 0.2811 0.2514 3.0690 0.0051 0.0041 0.0556
n12 0.4459 0.3841 1.8669 0.0082 0.0068 0.0336
f12 0.8828 0.8816 3.1048 0.0160 0.0156 0.0561

15
f11 0.7945 0.7980 5.6796 0.0142 0.0125 0.1012
n12 0.4038 0.3170 4.9973 0.0072 0.0042 0.0892
f12 1.0441 1.0519 5.6971 0.0185 0.0171 0.1014

16
f11 0.3609 0.3781 0.8104 0.0064 0.0067 0.0144
n12 0.3577 0.3197 0.4617 0.0064 0.0057 0.0082
f12 0.7938 0.8751 0.8444 0.0141 0.0155 0.0150

17
f11 0.3953 0.5169 2.4054 0.0081 0.0099 0.0481
n12 0.1596 0.2624 1.1906 0.0032 0.0051 0.0234
f12 0.5632 0.7171 2.4279 0.0115 0.0138 0.0486

18
f11 0.2041 0.2202 0.4155 0.0036 0.0039 0.0072
n12 0.2888 0.2317 0.3638 0.0051 0.0041 0.0064
f12 0.4207 0.4356 0.5632 0.0074 0.0076 0.0098

19
f11 0.0580 0.1999 2.1010 0.0011 0.0037 0.0421
n12 0.3334 0.3461 0.9487 0.0066 0.0068 0.0189
f12 0.4722 0.5806 2.1228 0.0093 0.0112 0.0425

20
f11 0.0149 0.0613 1.5737 0.0003 0.0011 0.0336
n12 0.1304 0.2097 0.8441 0.0029 0.0045 0.0179
f12 0.1120 0.1106 1.6351 0.0025 0.0021 0.0350

21
f11 0.3028 0.6136 2.3556 0.0065 0.0122 0.0480
n12 0.4291 0.5389 1.1286 0.0092 0.0111 0.0228
f12 0.8127 1.1731 2.3451 0.0175 0.0239 0.0474

22
f11 0.6824 0.6722 1.3687 0.0128 0.0125 0.0255
n12 0.9679 0.9194 0.5475 0.0180 0.0171 0.0103
f12 1.9890 2.0037 1.3831 0.0372 0.0373 0.0255
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Table 3.3: continued

Ts(11, 0)− Ts(λ,ϑ) [K] ε(11, 0)− ε(λ,ϑ) [dl]
# setting median mean std median mean std

23
f11 -0.0298 0.3495 3.1780 -0.0006 0.0061 0.0646
n12 0.2343 0.2781 1.3207 0.0049 0.0056 0.0269
f12 0.2280 0.6030 3.1952 0.0047 0.0113 0.0649

24
f11 0.4539 0.5265 1.3767 0.0098 0.0111 0.0289
n12 0.5665 0.5656 1.0821 0.0121 0.0121 0.0231
f12 1.2047 1.1772 1.4793 0.0259 0.0250 0.0313

25
f11 0.4338 0.4861 0.5488 0.0092 0.0102 0.0114
n12 0.5641 0.5744 0.2357 0.0119 0.0122 0.0049
f12 1.1615 1.1948 0.5442 0.0246 0.0253 0.0113

26
f11 0.4200 0.4620 0.7427 0.0085 0.0093 0.0147
n12 0.5974 0.6020 0.3132 0.0121 0.0122 0.0062
f12 1.1928 1.2020 0.7658 0.0242 0.0243 0.0151

Table 3.4: The table demonstrates the evaluation of the portion of valid, invalid,
classified and indistinct pixels in relation to available pixels for the scenes. Apply-
ing an emissivity uncertainty of 0.005 and a distance weighting method enhances
the classification with more valid and classified pixels.

# uncert. dist. valid invalid class. indist.
[dl] – [%] [%] [%] [%]

1
0.000 no 78.092 21.908 14.237 0.000
0.005 no 87.747 12.253 46.957 28.024
0.005 yes 87.747 12.253 67.373 7.608

2
0.000 no 74.078 25.922 22.277 0.041
0.005 no 82.886 17.114 37.272 30.185
0.005 yes 82.886 17.114 58.075 9.383

3
0.000 no 82.830 17.170 10.730 0.080
0.005 no 90.369 9.631 40.356 26.898
0.005 yes 90.369 9.631 59.619 7.635

4
0.000 no 81.761 18.239 7.352 0.029
0.005 no 85.162 14.838 42.390 19.638
0.005 yes 85.162 14.838 53.601 8.427
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Table 3.4: continued

# uncert. dist. valid invalid class. indist.
[dl] – [%] [%] [%] [%]

5
0.000 no 82.823 13.720 2.071 0.012
0.005 no 84.575 11.968 50.951 8.741
0.005 yes 84.575 11.968 55.392 4.300

6
0.000 no 58.511 34.624 9.867 0.032
0.005 no 67.144 25.990 28.943 18.559
0.005 yes 67.144 25.990 42.313 5.190

7
0.000 no 88.827 11.028 3.982 0.112
0.005 no 91.678 8.177 42.358 19.917
0.005 yes 91.678 8.177 52.892 9.383

8
0.000 no 84.218 9.682 9.705 0.001
0.005 no 87.467 6.434 46.942 28.163
0.005 yes 87.467 6.434 62.036 13.069

9
0.000 no 86.413 8.566 7.222 0.024
0.005 no 88.364 6.616 42.425 22.476
0.005 yes 88.364 6.616 56.405 8.496

10
0.000 no 93.621 6.379 0.195 0.000
0.005 no 96.987 3.013 55.505 9.698
0.005 yes 96.987 3.013 62.036 3.166

11
0.000 no 53.488 13.460 7.291 0.001
0.005 no 56.035 10.913 26.958 22.399
0.005 yes 56.035 10.913 42.246 7.111

12
0.000 no 31.913 62.191 0.237 0.001
0.005 no 40.787 53.318 12.947 1.175
0.005 yes 40.787 53.318 13.850 0.272

13
0.000 no 41.488 44.081 0.226 0.012
0.005 no 49.949 35.620 9.530 0.871
0.005 yes 49.949 35.620 10.057 0.344

14
0.000 no 24.566 57.199 0.350 0.000
0.005 no 30.552 51.213 7.939 1.466
0.005 yes 30.552 51.213 9.090 0.315
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Table 3.4: continued

# uncert. dist. valid invalid class. indist.
[dl] – [%] [%] [%] [%]

15
0.000 no 1.670 67.171 0.060 0.000
0.005 no 2.484 66.357 0.434 0.078
0.005 yes 2.484 66.357 0.500 0.012

16
0.000 no 80.605 19.169 0.191 0.000
0.005 no 87.321 12.453 19.686 2.060
0.005 yes 87.321 12.453 21.390 0.356

17
0.000 no 30.954 69.046 0.053 0.000
0.005 no 45.576 54.424 5.477 0.401
0.005 yes 45.576 54.424 5.786 0.092

18
0.000 no 56.895 41.129 0.154 0.000
0.005 no 80.802 17.221 24.591 1.958
0.005 yes 80.802 17.221 26.256 0.294

19
0.000 no 36.359 63.641 0.128 0.000
0.005 no 45.830 54.170 12.357 1.034
0.005 yes 45.830 54.170 13.190 0.201

20
0.000 no 32.996 67.004 0.032 0.000
0.005 no 48.103 51.897 8.263 0.194
0.005 yes 48.103 51.897 8.418 0.039

21
0.000 no 54.796 45.204 0.967 0.007
0.005 no 62.614 37.386 21.203 4.106
0.005 yes 62.614 37.386 24.441 0.867

22
0.000 no 75.276 24.724 10.508 0.142
0.005 no 80.881 19.119 24.377 16.326
0.005 yes 80.881 19.119 35.511 5.192

23
0.000 no 23.497 76.498 0.149 0.005
0.005 no 30.755 69.240 5.798 0.501
0.005 yes 30.755 69.240 6.184 0.115

24
0.000 no 83.759 16.241 3.438 0.000
0.005 no 87.568 12.432 32.135 12.967
0.005 yes 87.568 12.432 41.485 3.617
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Table 3.4: continued

# uncert. dist. valid invalid class. indist.
[dl] – [%] [%] [%] [%]

25
0.000 no 94.529 5.471 1.099 0.000
0.005 no 96.607 3.393 38.219 12.921
0.005 yes 96.607 3.393 48.135 3.004

26
0.000 no 91.475 8.525 2.075 0.000
0.005 no 94.283 5.717 40.389 12.565
0.005 yes 94.283 5.717 49.758 3.196

3.5 Characterization method

The characterization for snow and ice covered areas is based on remotely sensed emissiv-
ity. It incorporates spectral and angular dependent emissivity analyses and snow types
classified by grain size which are evolved from Hori et al. (2006), Aoki et al. (2007),
Hori et al. (2007), Stamnes et al. (2007), and Hori et al. (2013). Hori et al. (2006)
measured the snow grain size during field studies in Japan and examined five “classes”:
fine, medium, and coarse grained snow, suncrust, and ice. Separately, they measured the
angular spectral emissivity of each classified snow or ice sample within 8 µm to 14 µm us-
ing thermal infrared spectrometers. Figure 3.5 illustrates the emissivity ranges per class
(blue and green bars) separated for the three emissivities ε(12n), ε(12f), and ε(11f).

The method of Hori et al. (2006) results in overlaps and some gaps between classes’
emissivity ranges denoted with uppercase letters and Greek symbols in fig. 3.5. For in-
stance, the 12n-emissivity prohibits a pixel’s classification within ε(12n) = (0.945, 0.960)

(gap “C”) because Hori et al. (2006) did not define a class for this interval. Analogously,
the overlap “η” of suncrust, coarse, and medium within ε(12n) = [0.970, 0.975] may
lead to an ambiguous decision. Hence, depending on the three emissivities, a pixel is
either

1. valid and
a) classified (fine, medium, coarse, suncrust, ice), or
b) indistinct, or
c) unclassified

or
2. invalid
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Figure 3.5: The classification scheme illustrates the emissivity ranges of the pre-
defined classes fine, medium, coarse, suncrust and ice (blue and green bars) per
emissivity ε(12f ), ε(11f ), ε(12n) after Hori et al. (2006). Additionally, upper-
case letters and Greek symbols label the gaps between these ranges and overlaps,
respectively. Class wet is not shown because it is only dependent on surface tem-
perature. The thin bars show the emissivity ranges after applying the emissivity
uncertainty factor of 0.005.

In the following descriptions, all pixels and percentage values are related to the prepared
scenes with pixels that are only snow or ice covered.

1) A pixel is potentially classifiable (valid) if each of its three emissivities sits within
the corresponding lower ice boundary and the upper fine boundary, respectively. There-
fore, a pixel’s validity is determined by [0.875, 0.955, 0.940] < [ε(12f), ε(11f), ε(12n)]
≤ [0.985, 1.000, 0.990], which fig. 3.5 displays as thick bars. In order to cover measure-
ment and approximation uncertainties, an emissivity uncertainty of ±0.005 is applied to
the classes’ boundaries (thin bars in fig. 3.5). Hence, the pixel’s validity ranges from
[0.870, 0.950, 0.935]< [ε(12f), ε(11f), ε(12n)]≤ [0.990, 1.000, 0.995]. Additionally, sur-
face temperature Ts(11n) equals snow temperature requiring to be lower than 274 K.
1a) A valid pixel is definitely classified if the three emissivities belong to the same

class which corresponds to the same colour code of the bars in fig. 3.5. Applying the
uncertainty factor of 0.005 highly enhances the number of classified pixels listed in
table 3.4.
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1b) A valid pixel becomes indistinct if at least one of its emissivities belongs to more
than one class (see Greek letters in fig. 3.5). The effect of the classes overlaps increases
by applying the uncertainty to the boundaries (see table 3.4). Therefore, a two-step
re-classification is performed:

i) re-location: If a pixel changes from classified to indistinct after applying the un-
certainty the pixel is re-located to its previous class.

ii) distance weighting: The most proper class for all three emissivities is estimated
with a distance weighting with eq. (3.10).

ε = w1 · ε1 + w2 · ε2 with w1 + w2 = 1(3.10)

wi =
|ε− εj |
|ε1 − ε2|

for i , j = 1, 2 and i 6= j(3.11)

The pixel’s emissivity ε is described with the weighted upper and lower emissivity
boundaries ε1 and ε2 of the two nearest classes. The lower weighting factors w

decides upon the proper class. A pixel remains indistinct if the weighting factors
are within wi ,j = [0.45, 0.55]

1c) A valid pixel remains unclassified if the emissivities belong to different classes or
at least one does not fit in any class’ emissivity range due to the gaps shown in fig. 3.5.
2) A pixel is invalid if at least one of the three emissivities is out of the classification

ranges described in (1) or its snow temperature Ts(11n) is above 274 K which is labelled
with wet.
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4.1 Exemplary case study

In case 8 (North-Greenland), 87.5% of available snow or ice pixels are valid (table 3.4).
The term “available pixels” refers to the prepared scenes after excluding clouds, water,
and bare land with the masks described in section 2.4. Figure 3.6a illustrates the relation
listed in items (1a) - (1c) in section 3.5. Valid pixels (brown dotted) are either classified
(brown checked), indistinct (yellow) or unclassified (red). Classified pixels split up in
one of the five classes evolved from Hori et al. (2006) displayed in blueish and greenish
colours. In scene 8, 62.0% of the available pixels are classified and mainly classes coarse
and suncrust (dark blue and dark green in fig. 3.6a) are retrieved. About 13.1% of
the pixels are indistinct and 12.4% remain unclassified. Referring to table 3.4, the
application of the uncertainty factor enhances the number of valid and classified pixels
from 84.2% to 87.5% and 9.7% to 46.9%, respectively. Conducting the re-classification
described in item (1b), the number of classified pixels again increases from 46.9% to
the final amount of 62.0%.
Pixels are flagged invalid if one or more of the three pixel emissivities exceed the

minimum or maximum boundaries of ice and fine. Figure 3.6b shows them in purple,
grey, and white bars depending on the number of emissivities per pixel that do not fit
the classification scheme. Fortunately, in scene 8, only 6.4% of all available pixels are
invalid due to the emissivities which fig. 3.6b shows as black checked bar. Pixels are also
invalid if the snow temperature Ts(11n) is greater than 274 K. Figure 3.6b displays the
portion of wet pixels, which is 6.1% for scene 8, in orange. Wet pixels may incorporate
either valid or invalid emissivity values. The total amount of invalid pixels is the sum
of wet pixels and the invalid pixels due to emissivity (shown as black dotted bar). In
scene 8, 12.5% of the available pixels are invalid.

Figure 3.7 represents the spatial distribution of the available pixels of scene 8 in
North Greenland with mainly retrieved classes coarse, suncrust, and medium. The most
indistinct pixels are found at the transition from suncrust to medium grained snow
corresponding to the overlaps of the emissivity ranges of suncrust and medium displayed
in fig. 3.5. Wet pixels are located close to the coasts where higher temperatures than in
the central region are expected and also obtained. Unclassified and invalid pixels mostly
sit at complex topographic areas. For instance, a line of unclassified pixels lies at the
steep western coast of Greenland.
In order to analyse the reasons for invalidity, invalid pixels are sorted due to
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Figure 3.6: The figure shows nested portions of valid pixels (brown dotted) in
the left panel and invalid pixels (black dotted) in the right panel, respectively, for
case 8 (North-Greenland). Valid pixels are either indistinct (yellow), unclassified
(red) or classified (brown checked) after the classes evolved from Hori et al.
(2006) (blueish and greenish colours). Pixels become invalid either due to high
temperatures (wet pixels: orange) or the emissivities are out of range (black
checked). These emissivities are separated due to the number of the pixel’s
emissivities that account for invalidity (purple, grey, and white bars).

i) the accountable invalid emissivities per pixel, and
ii) the actual emissivity value that induces invalidity.

i) Corresponding to fig. 3.6b, the background bar colour in fig. 3.8 indicates the
accountable emissivities which are out of range. Pinkish and greyish bars show invalidity
due to one and two emissivities per pixel, respectively. The black bars show the portion
of pixels with all three emissivities appear to be out of the classification scheme and
contribute to invalidity. For instance, the last two grey bars labelled with “f12 & f11”
show the number of pixels that are invalid due to both forward view emissivities. The
first pink bar accounts for the number of pixels that are invalid because ε(n12) exceeds
the permitted emissivity boundaries.
ii) A bar’s pattern indicates the reason for the emissivity’s invalidity: Either the

emissivity sits below the permitted lower ice boundary (orange pattern) or above the
upper fine boundary. Figure 3.8 displays emissivities between the higher fine boundary
and 1 with a red pattern. The emissivity ε(11f) cannot have a red pattern because the
upper fine boundary is 1.0 (see fig. 3.5). The emissivity is non-physical (blue pattern)
for values exceeding 1. For instance, the last two grey bars mainly show invalidity due to
emissivities larger than 1 due to computational and uncertainty issues. Some f12 values
are still physical but larger than the allowed upper fine boundary (left light grey bar).
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Figure 3.7: Valid and invalid pixels are shown for scene 8 (North-Greenland).
Missing values occur due to nadir/forward view co-registration, and masked
clouds, water, and bare land corresponding to fig. 3.2. The bottom panel il-
lustrates the portion of occurrence of each class (blueish and greenish colours),
indistinct (yellow), unclassified (red), and wet pixels (orange) corresponding to
fig. 3.6. Black pixels account for invalidity caused by emissivities out of range
(see black checked bar in fig. 3.6b). The colours of the top panel correspond to
the label colours of the histogram.

68



4 Characterization of snow and ice scenes

Figure 3.8: The split bars illustrate details of invalid pixels corresponding to the
right panel of fig. 3.6. On the one hand, the invalidity due to the responsible
emissivity is shown (background colour). On the other hand, the pattern of the
bars indicate the reason for invalidity: The emissivity value is below the lower ice
boundary (orange) or the upper fine boundary. The latter one splits in bigger than
fine and below an emissivity of 1.0 (red) and an nonphysical emissivity greater
than 1.0 (blue). The emissivity boundaries for ice and fine differ for f11, f12,
and n12 (see fig. 3.5).

In general, in scene 8, very little pixels exhibit too low values. Mostly, high emissivities
cause invalidity and a big portion is nonphysical due to values greater than 1. The 12 µm

emissivities (rose and purple bars) contribute the most to the total amount of invalid
pixels. Additionally, fig. 3.6b demonstrates that mainly a single emissivity (purple bar)
accounts for invalidity.

4.2 Characterization of all scenes

Figure 3.9 shows the portion of classified (blue and green bars), remaining potentially
classifiable (unclassified in red and indistinct in yellow), invalid (black) and wet (orange)
pixels for all scenes.
Greenland scenes 4-11 mainly exhibit classes coarse, medium and suncrust. More

than the half of the valid pixels can be classified referring to table 3.4. According
to Lyapustin et al. (2009) who retrieved snow grain sizes up to 1000 µm in Greenland
and the corresponding snow grain sizes of the classes medium and coarse (300 µm to
1000 µm), the retrieved classes are reasonable. On contrary to Eurasian and Antarctic
scenes, some suncrust and a few wet pixels occur due to temperatures close to the
freezing point causing an alternating melting and freezing of the top-layer snow. In
fig. 3.7, Greenland’s suncrust is located at the centre of the ice sheet and wet pixels lie
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Figure 3.9: Portions of classified (blueish and greenish), unclassified and indis-
tinct (red and yellow), wet (orange), and invalid (black) pixels for all selected
AATSR scenes.

close to coasts. Remaining Greenland scenes display similar situations (not shown).
The Eurasian scenes 12-21 show less valid pixels (from 30% to 87% except for the

Alps with 2.5%) and the number of classified pixels ranges from 5.5% to 26.3% due
to a large number of wet and invalid pixels. On the one hand, the European scenes
12-15 show an increased number of wet pixels due to average temperatures around
the freezing point (table 3.1) and the location close to coasts. On the other hand, in
contrast to Greenland’s centre, the complex heterogeneous topography of Scandinavia
and the Alps could increase the number of invalid and unclassified pixels. For instance,
in scene 14 (South-Scandinavia, not shown), many invalid pixels occur in tight valleys
and unclassified pixels appear on top of mountains which can be caused by a non-flat
surface. This effect appears also for scene 8 in fig. 3.7 close to the coast where the
topography is steep and heterogeneous.

The Asian cases 16-21 have 46% to 87% valid pixels with a classification of less than
26%. Mainly fine and medium appear. A large amount of unclassified pixels may occur
due to an unexpected reflectivity of sea ice (e.g. the White Sea or also partly the Hudson
Bay scenes) and frozen rivers (e.g. Kathanga Gulf) which are supposed to be classified
as ice or suncrust.
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The American scenes 22-26 exhibit large areas of sea ice except for case 23 in Alaska
which is mountainous. Approximately 40% of all pixels are classified and the same
amount remains unclassified. The classification ranges from medium to suncrust and
less than 19% are invalid. The little number of invalid pixels may correspond to the flat
topography due to sea ice.
In Antarctica (scenes 1-3) around 80% pixels are valid and approximately 60% of all

pixels have classes fine, medium, coarse or suncrust. Scambos et al. (2007) found snow
grain sizes within 100 µm to 150 µm in Eastern Antarctica (-80°N, 120°E) and 100 µm to
400 µm at East Antarctic Plateau that matches the snow classes of the Antarctic scenes
1-3. Although the average surface temperature is below 250 K, suncrust and in scene
2 ice occur. A textured surface is observed in RGB images where the classes suncrust
and ice appear.
Close to coasts or transitions from a cloudy to a clear sky, wet pixels (orange) may

denote melting processes or clouds that could not yet be identified by our cloud masking
method. However, no case exhibits ice (except scene 2 in Antarctica) and no Asian
scene show even suncrust. Complementary, scene 8 in North-Greenland shows a line
of unclassified pixels at the western coast in fig. 3.7 which could be ice or suncrust
compared to fig. 3.2. Possibly, the emissivity ranges for ice (see fig. 3.5) from Hori et al.
(2006) do not apply to the selected cases.
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In the following, four explanations are proposed for the occurrence of invalid and un-
classified pixels:

i) numerical inaccuracy
ii) technical issues
iii) discrepancy within retrieved surface temperatures
iv) insensitivity of ε(11f) for snow classification

i) In the retrieval, a 0.25 K inaccuracy in the brightness temperature induces an emissiv-
ity difference up to 0.005 (eq. (3.8) and table 3.3) which can lead to a shift in classes
or non-classification (see fig. 3.5). We use weighted means and Newton’s Iteration to
interpolate simulated brightness temperatures related to measurements for the emissiv-
ity retrieval. However, a computed surface temperature is accepted if the simulated
brightness temperature and the measured brightness temperature differ less than 0.1 K

according to the AATSR accuracy (Cardaci, 2013). Matricardi (2009) validated RTTOV
with the Infrared Atmospheric Sounding Interferometer (IASI) and retrieved an accur-
acy of approximately ±0.4 K for 12 µm and 11 µm. The spectral response functions
of AATSR have a bandwidth of 1.5 µm for channel 11 µm and 2 µm for 12 µm. In this
spectral range emissivity of snow, ice or water varies up to 10−3 (Wan and Zhang, 1999).
Therefore, we introduce an uncertainty factor in the emissivity classification scheme

accounting for the uncertainties of the emissivity retrieval, the AATSR brightness tem-
perature measurements, the RTTOV simulation, and the emissivity variation within
the AATSR bands, respectively. Assuming an emissivity uncertainty of 0.005 (∆Ts ≈
0.25 K) highly increases the number of classified pixels of most scenes (see table 3.4).
Applying a greater emissivity uncertainty (e.g. accounting for the AATSR uncertainty
obtained by Matricardi (2009)), the classification retrieval results in a large number of
indistinct pixels due to increased emissivity classification ranges leading to wider overlaps
of the classes (fig. 3.5). In order to avoid emissivity classification range overlaps, a more
continuous snow class emissivity database is required.
The lower limits of RTTOV are 0.1 mm TCWV and a surface temperature of 230 K.

Therefore, low temperatures and low total column water vapour contents (e.g.in Antarc-
tica) border these limits and can contribute to an increased uncertainty of the emissivity
computations. Hence, this inaccuracy may appear as invalid and unclassified pixels in
the Antarctic scenes.
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ii) The sensitivity of the classification method to observation angles is also a technical
obstacle because a plane ground surface is assumed. However, Antarctica and Greenland
have an elevated topography (Greenland: up to 4000 m (IPCC, 2013)) and steep coasts.
The Eurasian scenes are affected from mountains and valleys which may cause shadowing
effects. Additionally, a proper co-registration of AATSR forward and nadir view is difficult
at slopes. Cloud masking of AATSR above snow is still poor and erroneous (Istomina
et al., 2010). Therefore, we use a hand made cloud mask. Nevertheless, invalid and
unclassified pixels may occur due to still uncapped clouds and the almost neglected
topography.

iii) The retrieved emissivities in the AATSR settings are inconsistent within the pro-
posed characterization method. An increased difference between a surface temperature
and the 11n surface temperature increases the retrieved emissivity (see eq. (3.8)). For
example, in order to retrieve class fine for 12n (emissivity range 0.985–0.990), its surface
temperature demands an increase of up to 3 K compared to Ts(11n). Retrieving class
fine for 11f, Ts(11f) need to decrease 2 K to 4 K.

Krüger et al. (2011) and Lindstrot et al. (2012) stated the estimated surface tem-
perature effectively depends on the vertical temperature profile. Usually, temperature
profiles over cold surfaces show a near ground inversion which is not included in profiles
of McClatchey et al. (1972) (see fig. 3.4). Therefore, retrieved RTTOV surface temper-
atures could be increased artificially. On this account, emissivity values generally may
erroneously increase due to a missed lower surface temperature of an expected profile
with an inversion. Therefore, fig. 3.8 might show invalidity caused by emissivities that
are too large.
Additionally, the smaller the snow grain size, the more homogeneous is the brightness

temperature of a unit surface (Hori et al., 2013). Possibly, it is more difficult to classify
coarser snow by remote sensing because the signal from one pixel composed from rather
heterogeneous sub-pixels averages to a mismatching estimated emissivity. However, the
orientation of snow crystals, mixtures of various snow grain sizes in the top snow pack
and the variation of a snow surface during a day by cementation, alternate freezing and
melting complicates a characterization.
iv) The insensitivity of the forward 11 µm emissivity is most likely responsible for

complicating classification results. Considering available emissivity ranges for classes
fine to coarse including the uncertainty factor in fig. 3.5, the 11f emissivity merely has
access to a span of 0.020 for three classes whereas the emissivities of 12n and 12f can
use ranges of 0.030 and 0.045 widths, respectively. Hence, 11f shows more overlaps
than 12n and 12f. As exposed earlier, already small changes in emissivity and surface
temperature lead to class shifts.
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The insensitivity of ε(11f) agrees with findings of Hori et al. (2006, 2013). There
are unclassified pixels because the f11 emissivity values are lower than expected for the
corresponding f12 and n12 emissivities. Hence, 11 µm measurements seem to be solely
proper for identification of snow. On the other hand, channel 12 µm measurements
are useful for snow type classification. Apart from invalid and unclassified pixels, it
is possible to detect different snow classes evolved from measurements by Hori et al.
(2006). For all scenes, the classification results are reasonable with smooth transitions
(e.g. from medium to coarse at the Eastern part of scene 1) and wet areas only occur
close to coasts. However, they are not validated with field snow grain size measurements.
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The method characterizes snow and ice based on TIR multi-view emissivities. Con-
sidering the discrimination power of emissivity (dependency on wavelength, observation
angle, and matter), the brightness temperature measurements are used for the 11 µm and
12 µm AATSR channels in nadir and forward view. RTTOV serves as forward model and
the use of MERIS TCWV enables us to estimate the surface temperature in these bands.
Three emissivities are retrieved per pixel (ε(11f), ε(12n), ε(12f)) based on a relation of
estimated surface temperatures and an assumed emissivity of ε(11n)= 0.990 for all snow
grain sizes. The pixel emissivities are sorted in a classification scheme based on classes
evolved from field measurements from Hori et al. (2006). Their classes are mainly based
on snow grain sizes but also inherit information about age and environmental conditions
which cause snow property changes.
26 AATSR scenes in Greenland, Eurasia, North America, and Antarctica are invest-

igated. The number of potentially classifiable valid pixels is high for Greenland (56%-
97%), above sea ice of the Hudson-Bay and South-Alaska (80%-97%), and Antarctica
(85%-90%) and lower for Eurasia (31%-87%) due to temperatures above the freezing
point and a complex topographic structure. Greenland and in North America mainly
exhibit medium and coarse snow and Antarctica shows classes coarse to fine. Eurasian
scenes have a small classification portion containing mainly fine and medium snow. In
European scenes, many wet pixels occur.

The results are consistent with findings of Scambos et al. (2007) and Lyapustin et al.
(2009) (see section 1). However, spectral and angular field emissivity measurements
for snow classes in discrete non-overlapping snow grain size intervals may increase the
number of classified pixels and decrease the amount of unclassified and indistinct pixels.
Advanced handling of the dual-view co-registration and elevation slopes might support
an improved classification.
Generally, the proposed technique is generic. If a sensor provides a 11 µm channel for

the reference emissivity of 0.99 the method can be applied to more TIR channels within
8 µm to 14 µm. Using an hyper-spectral sensor, it might be possible only using several
nadir channels to avoid co-registration.

In order to improve and proceed snow classifications as introduced in this study,
AATSR and MERIS successors Sea and Land Spectral Radiometer (SLSTR) and Ocean
and Land Colour Imager (OLCI) on-board the Sentinel-3 series are very promising (cf.
chapter 5).
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Abstract Total Algae Peak Integration Retrieval (TAPIR) relates the
chlorophyll-a absorption coefficient at 670 nm (a670) to the reflect-
ance peak in the fluorescence domain from 650 nm to 730 nm. An
overview about phytoplankton retrievals and the relation between
the reflectance peak’s shape, location and magnitude and phyto-
plankton properties is presented. The algorithm development is
based on Matrix Operator Model (MOMO) simulations which reveal
the reflectance peak sensitivity on fluorescence and chlorophyll-a
absorption mainly influencing the peak’s shape and location and
phytoplankton scattering mainly affecting the magnitude. Depend-
ing on fluorescence efficiency and phytoplankton amount, the fluor-
escence portion of the total reflectance peak ranges within 3 % to
18 %. The optical phytoplankton properties can be related to a670 .
The two-step retrieval provides both hyper-spectral quantification
of phytoplankton fluorescence, scattering, and absorption and es-
timation of a670 from reflectance signals: Integrating the peak,
Total Algae Peak (TAP) accounts for variance in the peak’s mag-
nitude, shape, and central peak wavelength and linking TAP with
a670 , TAPIR functions are developed from which phytoplankton
properties can be retrieved by reflectance measurements. TAPIR is
sensitive on phytoplankton properties and aerosol optical thickness.
Water constituents such as cdom play a minor role. An uncertainty
assessment reveals uncertainties of about 30 % to 35 % for TAPIR
a670 greater than 0.5 m−1. In optically complex waters, first val-
idation efforts promise applicability of TAPIR for medium to high
chlorophyll-a concentration estimations in the presence of additional
water constituents.

Sections 1.1, 1.2, 2.1, 2.3.1, 3, 4.1, 4.2 and 5 to 7 are based on Keck et al. (2018).
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1.1 On the determination of remotely sensed phytoplankton

The space-borne observation of natural waters is mainly limited by three factors: Firstly,
strong water absorption restricts passive remote sensing to the visible spectrum (VIS)
mostly preventing application of available measurement bands in the near infra-red (NIR)
or beyond (see chapter 1 section 2.4).
Secondly, the top of the atmosphere (TOA) measurement is the sum of water-leaving

radiation and contribution of atmospheric constituents. Hence, TOA measurement con-
tain both atmospheric information (e.g. aerosols) and information about the water body.
Unfortunately, the atmospheric part of the TOA signal is rather large. Retrievals for wa-
ter constituents either require a proper atmospheric correction or evade the atmospheric
influence with sophisticated relations.
Thirdly, apart from atmospheric influence, retrieving a particular water constituent

can become ambiguous due to various possible optically active constituent (OAC) com-
positions for a specific TOA signal. inherent optical properties (IOPs) of water OACs
define the resulting water-leaving radiation. In optically complex waters (e.g. at coasts
or lakes), Reinart et al. (2004) and Zheng et al. (2015) exemplarily reported superpos-
ition of the effects of IOPs of a wide range of OACs (e.g. phytoplankton, coloured
dissolved organic matter (cdom), inorganic particles).
Bio-optical models (BOMs) relate IOPs to biogeochemical variables (e.g. Morel, 2001,

Bricaud et al., 1998, Loisel et al., 2001, Doerffer and Schiller, 2007, Le et al., 2009a,
Nechad et al., 2015, Valente et al., 2016). For instance, Bricaud et al. (1995) empiric-
ally found spectral coefficients for the relation between spectral chlorophyll absorption
and chlorophyll-a concentration which is a proxy for phytoplankton amount. Blue-green
ratios and polynomial Ocean Colour algorithms (e.g. Ocean Colour quartic algorithm
(OC4), Ocean Colour quartic algorithm for MERIS (OC4E ); cf. chapter 2 section 2.3.5)
for a wide range of space sensors (Gordon et al., 1988, Morel, 1988, O’Reilly et al., 2000)
retrieve chl-a in case-1 waters which contain mainly phytoplankton (Morel and Prieur,
1977). In optically complex waters (case-2) with constituents uncorrelated to phyto-
plankton, Huot et al. (2007) and Gower (2016) recently demonstrated the complicating
impact of mainly cdom on chl-a retrievals due to high cdom absorption at the required
bands for the blue-green ratio.
Jerlov (1953) and Doerffer and Fischer (1994) investigated the spectral absorption

from cdom in the visible spectrum from in situ measurements and satellite retrievals,
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respectively. Cdom absorption exponentially decreases from 400 nm to 800 nm (Odén,
1919) and becomes rather small in the interval from 630 nm to 730 nm which may
be beneficial for phytoplankton properties algorithms. Additionally, the phytoplankton
pigment chlorophyll-a exhibits the optical feature of the process of fluorescence that
releases radiation near 683 nm (Gordon, 1979, Fischer and Kronfeld, 1990, Schalles,
2006, Zhou et al., 2008). The amount of chl-a and the photosynthetic activity scale the
amount of emitted fluorescence (Pedrós et al., 2008).
Physically, fluorescence is the process of light emission transforming energy of a re-

leased electron of a relaxed chlorophyll-a molecule which was excited by solar radiation
(cf. chapter 2 section 2.3.2). Although, the phenomenon can occur for both living
and deceased phytoplankton cells, this study focuses on animated cells. Besides pho-
tosynthesis and heat dissipation, fluorescence is one of the major competitive fates of
absorbed VIS light (Maxwell and Johnson, 2000). Therefore, fluorescence does not only
indicate chlorophyll-a but also “living activity” of phytoplankton although Xing et al.
(2007) report less than 5 % of total absorbed light used for the fluorescence process. In
spite of a rather small fluorescence efficiency, which is the ratio between the number of
emitted fluorescent absorbed photons available for the fluorescence process, of 0.1 % to
1.0 % (Gordon, 1979, Fischer and Kronfeld, 1990, Maritorena et al., 2000, Gilerson et al.,
2007, Zhou et al., 2008), space-borne sensors are able to observe emitted fluorescence
in reflectance spectra (e.g. Neville and Gower, 1977, Behrenfeld et al., 2009, Hu and
Feng, 2016).

In the last four decades, sun-induced fluorescence in waters was investigated theoret-
ically (e.g. Gordon, 1979, Fischer and Kronfeld, 1990) and in situ (Roesler and Perry,
1995, Claustre et al., 1999, Zarco-Tejada et al., 2001). Using multi-spectral space-borne
measurements, for instance, from Moderate Resolution Imaging Spectrometer (MODIS)
on-board Aqua and Terra and Medium Resolution Imaging Spectrometer (MERIS) on-
board Environmental Satellite (ENVISAT), fluorescence can be obtained with Fluores-
cence Line Heights (FLHs) (Letelier, 1996, Gower et al., 1999, Meroni et al., 2009,
Palmer et al., 2015). Ocean and Land Colour Imager (OLCI) onboard Sentinel-3 (S3)
launched in February 2016 also provides bands for FLH algorithms. FLH estimates the
reflectance peak magnitude by the difference of measurements at a peak wavelength
(e.g. 681.25 nm for OLCI) and a baseline retrieved from two additional bands (Neville
and Gower, 1977, Fischer and Kronfeld, 1990, Gower et al., 1999). For high phyto-
plankton amount, the reflectance peak shifts towards longer wavelengths and Schalles
(2006) and Gilerson et al. (2007), exemplary, reported a redshift from 680 nm to 705 nm

for 0 mg m−3 to 30 mg m−3 chlorophyll-a concentration. Accounting for the redshift,
baseline algorithms such as Maximum Chlorophyll Index (MCI) and Maximum Peak
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Height (MPH), which use alternative measurement bands to FLH, are introduced (Gower
et al., 2005, Matthews et al., 2012). For example, the MPH algorithm uses available
multi-spectral measurement bands in the red VIS and NIR domain from 660 nm to
880 nm and, exemplarily for MERIS, selects the reference or signal band individually at
681 nm, 709 nm and 753 nm depending on the maximum reflectance (Matthews et al.,
2012, Matthews and Odermatt, 2015). A reflectance minimum near 681 nm occurs for
extreme algae concentrations such as harmful algae blooms (HABs) resulting in neg-
ative FLH. Wynne et al. (2008) and Stumpf et al. (2012) used negative FLH, which
equals positive Cyanobacterial Index (CI), to detect cyanobacteria blooms in the Great
Lakes, United States and Canada. However, multi-spectral imagers such as MODIS,
MERIS, and OLCI may not represent the actual phytoplankton peak near 690 nm due
to the spectral resolution with a few bands in the red VIS and NIR and the relatively
large measurement bands. Blondeau-Patissier et al. (2014) reviewed chl-a retrievals and
summarized that FLH works in coastal waters with concentrations up to 20 mg m−3 but
that a linear baseline leads to underestimations for higher concentrations due to water
absorption and chl-a distortion. Depending on the observed water body, the comparison
between in situ chl-a and chlorophyll-a concentration derived from FLH, MCI, and MPH
still shows high variations (Matthews and Odermatt, 2015).
Hyper-spectral simulations promise improved estimations of fluorescence and phyto-

plankton properties with hyper-spectral sensors (Gilerson et al., 2007, Blondeau-Patissier
et al., 2014). Besides Hyperspectral Imager for the Coastal Ocean (HICO) mounted on
International Space Station (ISS) and Compact High Resolution Imaging Spectrometer
(CHRIS) on-board satellite Project for On-Board Autonomy 1 (PROBA-1), Earth Ob-
serving satellite 1 (EO-1) carried hyper-spectral sensor Hyperion with 220 bands in the
VIS and NIR from November 2000 to January 2017. Recently, Sentinel-5 Precursor
(S5p) carrying Tropospheric Monitoring Instrument (TROPOMI) was launched in Octo-
ber 2017. Hyper-spectral Precursor and Application Mission (PRISMA), Environmental
Mapping and Analysis Program (EnMAP), Hyperspectral Infrared Imager (HyspIRI),
and Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) launching in 2018, 2019, 2022,
and 2022, respectively, are promising future space missions for application of advanced
fluorescence and phytoplankton algorithms. For instance, Hyperspectral Imager (HSI)
on-board EnMAP provides 65 bands with a full width at half-maximum (FWHM) from
6 nm to 9 nm within the range from 420 nm to 800 nm (Guanter et al., 2015).
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1.2 On the phytoplankton peak in the fluorescence domain

In the chlorophyll-a fluorescence domain from 650 nm to 750 nm, the reflectance of clear
water decreases towards longer wavelengths (cf. fig. 2.8d) due to water absorption. The
phytoplankton pigment chlorophyll-a absorbs light within the total visible spectrum with
two local absorption maxima near 440 nm and 670 nm and phytoplankton scattering
spectrally decreases with longer wavelengths in the VIS but is still apparent in the
fluorescence domain. Total absorption from water and chlorophyll-a exhibits a local
minimum near 690 nm (cf. fig. 2.6). Therefore, waters containing phytoplankton reveal
a reflectance peak near 690 nm (see fig. 4.1a).

Figure 4.1 shows details of bottom of the atmosphere (BOA) reflectance in the fluor-
escence domain produced from radiative transfer simulations which are introduced in
section 2. The concentration of phytoplankton and chlorophyll-a absorption are re-
lated and the figure expresses an increase in phytoplankton amount with chlorophyll-a
absorption at 440 nm. The relation between the quantities is highly individual and de-
pends mainly on phytoplankton species and environmental conditions. Analogously, the
magnitude of phytoplankton scattering depends on the amount of phytoplankton. For
increasing chlorophyll-a, simulated reflectance increases within the fluorescence interval
(fig. 4.1a) due to increased phytoplankton scattering and an increased available en-
ergy for the process of fluorescence. The black solid and grey dashed lines represent
the reflectance with and without considering the process of fluorescence, respectively.
The major fraction of the phytoplankton peak originates from phytoplankton scattering
and a smaller portion (the difference between the solid and dashed lines) is contributed
from the process of fluorescence emitting photons near 683 nm (Pedrós et al., 2008, cf.
chapter 2 section 2.3.2.3).
The local reflectance maximum R(λP) at the maximum peak wavelength λP shifts

towards longer wavelengths for a higher amount of phytoplankton (fig. 4.1b). Partic-
ularly for low to medium chlorophyll-a absorption, the fluorescence plays a role in the
location of the maximum peak comparing the solid black and grey dashed line in panel
b). Neglecting the emission from the process of fluorescence, the peak magnitude is
underestimated and the maximum peak location is overestimated.
Figure 4.1c reveals the relative shape of the effective reflectance peak for increasing

phytoplankton amount. The peak’s magnitude enlarges due to increased phytoplankton
scattering and fluorescence but its slope narrows due to

i) phytoplankton absorption near 670 nm, and
ii) water absorption.

i) The local chlorophyll-a absorption exhibits a local maximum near 670 nm which is
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Figure 4.1: The figure shows details of simulated BOA reflectance, introduced
in section 2, with and without considering fluorescence (black solid and grey
dashed lines, respectively) for different chl-a absorption coefficients (indicated
with coloured symbols) within the fluorescence domain from 650 nm to 730 nm.
a) Effective phytoplankton peak, b) shift of maximum reflectance R(λP) towards
longer wavelengths (redshift), and c) shape and amplitude of the phytoplankton
peak relative to peak wavelength λP and local maximum R(λP). Symbols in
panels a), b) and c) correspond to the legend in panel b) and line colours (grey
and black) correspond to the legend in panel a).

responsible for re-absorption of phytoplankton scattering and emitted fluorescence. The
absorption maximum spectrally expands for increased phytoplankton amount. Therefore,
the maximum of the effective reflectance peak appears to be shifted towards longer
wavelengths and the slope of the peak’s left edge raises.
ii) The peak becomes spectrally broader for higher amount of phytoplankton induced

by higher phytoplankton scattering and increased fluorescence emission. Hence, the
reflectance peak reaches in the interval beyond 700 nm where water absorption rapidly
increases (cf. fig. 2.6). Water partly re-absorbs phytoplankton scattering and fluores-
cence and the the peak’s right edge becomes steeper (Ahn and Shanmugam, 2007).
Hence, those two independent mechanisms non-uniformly influence the peak resulting

in different peak shapes illustrated in fig. 4.1c. For an increasing phytoplankton amount
constraining fluorescence, scattering, and absorption, the peak exhibits

i) an increased magnitude,
ii) a shift towards longer wavelengths,
iii) an increased spectral width, and
iv) a narrowed slope.
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Due to highly variable peak characteristics, baseline retrievals may underestimate actual
phytoplankton properties. CI and MPH exploit the redshift and relate the reflectance
difference between baseline and signal band to cyanobacteria. However, the baseline
is different for each reflectance spectrum which may lead to uncertainties and NIR
bands are also affected from adjacency effects (e.g. scattering sediments) influencing
the baseline slope (Gower et al., 1999). Often, the peak in the fluorescence domain is
solely attributed to fluorescence (e.g. Fischer and Kronfeld, 1990, Gower et al., 1999,
Gilerson et al., 2007, Blondeau-Patissier et al., 2014) which might be likely for low
phytoplankton concentrations with low phytoplankton scattering (Gilerson et al., 2007).
Reviewing several baseline algorithms, Blondeau-Patissier et al. (2014, sec. 3.3.5) noted
that FLH cannot be used for high phytoplankton amounts. The penetration depth of
water in the red visible and near infra-red spectrum is limited to a few meters due
to water absorption (Gordon and McCluney, 1975). Therefore, all retrievals based on
reflectance in the fluorescence domain are limited to the upper water layer. The effect
of slightly lowered phytoplankton on the reflectance peak has to be investigated and
early initial attempts are conducted in section 2.2.3. However, in order to capture the
peak’s variability induced by phytoplankton properties, the reflectance peak is spectrally
integrated in this study (see section 3).

1.3 On the relation of the peak and chla-a absorption at 670 nm

The reflectance peak in the fluorescence domain is controlled from phytoplankton scat-
tering and chlorophyll-a fluorescence, which both influence magnitude, and chlorophyll-a
and water absorption, which both are responsible for radiation depletion. Thus, the
peak contains information about phytoplankton absorption, scattering, and fluorescence
which are additionally dependent on each other. The properties are directly related to the
amount of phytoplankton (Gilerson et al., 2007) and the relation may vary with phyto-
plankton species and their condition (health, productivity) and environmental conditions
such as light availability and nutrient supply. Besides environmental and physiological
conditions, chlorophyll-a fluorescence is directly related to chlorophyll-a absorption (see
chapter 2 sections 1.1.2 and 2.3.2) because a fraction of absorbed photons are used in the
process of fluorescence. The scattering and backscattering coefficient are also depend-
ent on phytoplankton amount and algae condition. Therefore, phytoplankton scattering
can be set in relation to chlorophyll-a absorption dependent on chlorophyll-a concen-
tration: The more phytoplankton the more absorption and scattering. Phytoplankton
scattering spectrally decays (see chapter 2 section 2.3.2) and single scattering albedo
links chlorophyll-a absorption and phytoplankton scattering. Depending on the state
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of algae, absorption and scattering change proportionally for a changing phytoplankton
amount.
Chlorophyll-a exhibits two local absorption maxima near 440 nm and 670 nm, respect-

ively. As outlined in previous sections, the latter one plays an important role in depletion
of the phytoplankton reflectance peak and the redshift and, therefore, is directly linked
to shape, size, and location of the peak. Assuming a dependency of the absorption
magnitude near 670 nm and the size of the phytoplankton peak, which is mainly pro-
duced by phytoplankton scattering, chlorophyll-a absorption at 670 nm and scattering
in the fluorescence domain can be linked. Referring to Porcar-Castell et al. (2014),
red photons absorbed near 670 nm are mainly involved in the process of fluorescence.
Therefore, in the fluorescence domain, the magnitude of fluorescence and phytoplankton
scattering are related to chlorophyll-a absorption at 670 nm a670 which additionally has
a direct impact on the reflectance peak by re-absorption. Thus, both reflectance peak
and a670 contain information about phytoplankton absorption, scattering, fluorescence,
and amount and may be set in relation. Additionally, there is a dependence on vertical
phytoplankton location which plays a minor role in the thesis but exhibits a dominant
impact on the magnitude of the peak (cf. section 2.2.3).

1.4 Scope and content of the study

This chapter investigates the reflectance peak in the fluorescence domain from 650 nm

to 730 nm and a phytoplankton properties retrieval is introduced considering the high
variability of the peak. The Total Algae Peak Integration Retrieval (TAPIR) accounts
for the spectral shape, size, and location of the peak which are effects of phytoplankton
properties chlorophyll-a absorption, phytoplankton scattering, and fluorescence. The
parameter a670 plays a major role for the reflectance peak appearance and is related
not solely to absorption but also contains information about phytoplankton scattering
and fluorescence. Therefore, TAPIR links a670 and the spectral peak integral to retrieve
phytoplankton properties from remotely sensed radiometric measurements.
The retrieval development is based on simulations with the radiative transfer model

(RTM) MOMO which is introduced in section 2.1. The sensitivity on implemented fluores-
cence, phytoplankton parameterization, layer thickness and signal depth are investigated
in section 2.2. A first initial effort comparing MOMO simulations with hyper-spectral in
situ measurements are conducted in section 2.3. Section 3 describes the peak integ-
ration routine and the method of linking a670 with the peak area. In section 4, the
algorithm’s sensitivity on several parameters such as cdom or aot are analysed and an
uncertainty propagation for TAPIR retrieved a670 is presented. TAPIR functions and
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a670 uncertainties for TROPOMI, EnMAP, and HICO are shown. TAPIR can be applied
on multi-spectral instruments such as OLCI with a polynomial fitting function. A BOM
is applied on a670 to retrieve chl-a and a first initial validation effort is conducted with
in situ measurements (section 5). The study is discussed in section 6 and followed by
conclusions and outlook in section 7.
TAPIR exploits the presumably available hyper-spectral TOA measurements and es-

timates the phytoplankton amount. The application of TAPIR for TOA or surface
measurements supports a direct estimation of chl-a with an individual bio-optical model
adjusted for regional conditions. The comparison of highly resolved simulations and the-
oretical EnMAP measurements shows a sufficient reproduction of the peak near 683 nm.
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2.1 MOMO simulation

The Matrix Operator Model MOMO is an advanced radiative transfer code for multiple
applications in coupled atmosphere-water-systems (Fischer and Grassl, 1984, Fell and
Fischer, 2001, Hollstein and Fischer, 2012). It includes an individual selection of number
and thickness of layers, viewing and sun geometry, atmospheric conditions, and state of
the water body parameterized by IOPs from water constituents.
In this study, simulations include a water body with 200 layers, each 10 cm thick,

and 8 atmospheric layers up to 50 km of diverse geometrical thickness. The simulations
are cloud-free and are based on standard atmospheres from McClatchey et al. (1972)
including temperature, pressure, water vapour profiles. Aerosols are controlled with aer-
osol optical thickness aot and located in about 2 km height. Water is assumed to be
homogeneous with an equal distribution of constituents (phytoplankton and cdom) in
each layer. The chlorophyll-a extinction coefficient and the corresponding single scatter-
ing albedo control the amount and spectral signature of phytoplankton. A normalized
chlorophyll-a absorption spectrum is scaled at 440 nm to retrieve the absorption spectrum
aph(λ) for different phytoplankton amounts (fig. 4.2a). The single scattering albedo ω0

at 440 nm is set to 0.68 (J. Fischer, pers. communication, 2017) to calculate spectral
phytoplankton scattering bph(λ) with

bph(λ) = a440 ω0

1− ω0

λ

440 nm
.(4.1)

Therefore, an increase in a440 increases aph(λ) and bph(λ) proportionally. A varied ω0

(fig. 4.2b) only changes phytoplankton extinction due to changed bph and unaffected
aph. Phytoplankton scattering is constrained by a phase function measured from Petzold
(1972) which can be mathematically expressed with the Fournier-Forand function in
eq. (2.17) (chapter 2 section 2.3.2) and exhibits a backscattering ratio of 0.01986. MOMO
models emitted phytoplankton fluorescence near 683 nm with an excitation based on
photosynthetically active radiation (PAR) from 395 nm to 685 nm, fluorescence efficiency
and phytoplankton absorption as outlined in chapter 2 section 1.1.2.
Table 4.1 summarizes parameters used in simulations from 390 nm to 790 nm (λ) for

various phytoplankton concentrations. Chlorophyll-a absorption at 440 nm a440 ranges
from 0.1 m−1 to 10.0 m−1 referring to high a440 measurements in China (Le et al.,
2009b) and laboratory measurements (Mitchell, 1990). There are three normalized
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Table 4.1: Overview of parameters varied in MOMO simulations. Bold values refer
to the reference simulation.

parameter range unit
a440 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 5.0, 6.5, 8.5 and 10.0 m−1

aph(λ) Doerffer, NechadMIN, NechadMAX (fig. 4.2a) m−1

aot 0.0, 0.2, and 0.4 —
b 0.0, 1.0, 5.0, and 10.0 m−1

cdom g(a440), 0.0, 1.5, and 3.0 m−1

η 0.003, 0.01, and 0.03 —
λ 390 to 790 (with ∆λ=1 nm) nm
ω0 0.68, 0.75, and 0.82 (fig. 4.2b) —
s 0, and 35 PSU
atm arct. winter, mid.-lat. summer, and tropical —
θ 0, 25, 50, and 68 °
T 4.5, and 25 ◦C

absorption spectra aph with low, medium, and high absorption maxima and three vari-
ations of single scattering albedo ω0 based on particle IOPs measurements from Babin
et al. (2003) (see fig. 4.2). The spectra NechadMIN and NechadMax are averaged
from normalized HydroLight absorption spectra (Nechad et al., 2015) for a670 ranges
from 0.2 m−1 to 0.3 m−1 and 0.7 m−1 to 0.8 m−1, respectively. They vary in magnitude
and width of the local absorption maximum at 670 nm and spectral shape (e.g in the
blue visible range in fig. 4.2a). Additionally, the fluorescence efficiency η is varied from
0.003 (Fischer and Kronfeld, 1990) to 0.01 and 0.03 (Gilerson et al., 2007). The cdom
absorption coefficient at 440 nm is coupled with a440 based on a collection of in situ
measurements from Nechad et al. (2015) (see section 2.3.1).

cdom(a440, 440 nm) = 0.24 ∗ a4400.43 = g(a440)(2.22)

Spectral cdom absorption decreases exponentially towards longer wavelengths with a
slope factor of 0.02 nm−1 (see chapter 2 section 2.3.5). However, a set of simulations
include independent cdom absorption coefficients at 440 nm with 0.0 m−1, 1.5 m−1 and
3.0 m−1. Additionally, simulations exhibit variations of white water scatterer b with
backscattering ratio of 0.001, salinity s, and surface temperature T . In the atmosphere,
the selection of the standard atmosphere atm and aerosol optical thickness aot are
varied. The sun zenith angle θ ranges within 0° and 89° and four angles between 0° and
68° are used for investigation.
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Figure 4.2: Variation of a) phytoplankton absorption spectrum (normalized to
aph(440 nm)) and b) corresponding single scattering albedo for ω0(440 nm)=0.68
(reference) and 0.82 (grey). Black solid lines illustrate reference spectra and
dashed lines variations collected from HydroLight simulations by Nechad et al.
(2015).

Each simulation considers the above-mentioned parameters for the VIS/NIR and
chlorophyll-a absorption scaling factors a440 from table 4.1. Compared to a “refer-
ence” simulation with “reference” parameter values (bold in table 4.1), each simulation
solely varies one of the parameters and other parameters remain to the “reference” set-
up. The nadir reflectance R = Lu/Ed is calculated from simulated upwelling radiance
Lu and downwelling irradiance Ed .

2.2 Sensitivity

In the following, MOMO sensitivity is analysed due to the implementation of the process of
fluorescence (section 2.2.1), variation of phytoplankton IOPs (section 2.2.2), influence of
water layer thickness, and dependency on depth and signal depth of phytoplankton (sec-
tion 2.2.3). Water-leaving reflectance (BOA) with reference parameters from table 4.1
is used avoiding a second interaction with the atmosphere. In this section, the term
fluorescence F refers to the difference between two MOMO simulations with (peak; black
solid lines in fig. 4.3a) and without (pure; grey dashed lines) implemented fluorescence
(fig. 4.3d):

F (λ) := ∆R(λ) = R(λ, peak)− R(λ, pure)(4.2)
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Figure 4.3: The rows refer to reflectance R and fluorescence F above water
(BOA) for different phytoplankton amounts. The first column shows spectra for
a440 of 0.1 m−1, 2.0 m−1 and 6.5 m−1. The second column presents the integral
from 650 nm to 730 nm of the reflectance peak in b) and fluorescence in e) for all
simulated a440. Panel c) shows the fraction of fluorescence integrals from e) and
reflectance integrals from b) dependent on total excitation in the water body.
Panel f) illustrates the linear relationship between excitation and fluorescence
integral.

2.2.1 Fluorescence

The spectral fluorescence peaks near 683 nm (fig. 4.3d), which is expected for fluores-
cence (Pepe et al., 2005), and is about 1 magnitude lower than reflectance near 683 nm

in fig. 4.3a. In order to compare simulations with and without implemented fluores-
cence, reflectance and fluorescence retrieved with eq. (4.2) are integrated from 650 nm

to 730 nm:

RA =

∫ 730 nm

650 nm
R(λ) dλ(4.3)

FA =

∫ 730 nm

650 nm
F (λ) dλ(4.4)

Fluorescence contributes to the total phytoplankton peak: The comparison of RAs from
simulations with (peak) and without (pure) fluorescence reveal that the spectrum is
slightly raised (figs. 4.3a and 4.3b). Total amount of fluorescence FA extracted from
reflectance with eq. (4.2) increases with increasing a440 (fig. 4.3e). Fluorescence con-
tributes between 3 % to 6 % to the effective reflectance peak ranges (fig. 4.3c) comparing
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the integrals RA and FA from reflectance (panel b)) and fluorescence (panel e)) in the
interval from 650 nm to 730 nm. However, the fraction decreases with increasing total
excitation because absorption of chlorophyll-a near 670 nm increases and the effect-
ive reflectance peak approaches the domain of high water absorption. Gilerson et al.
(2007) found fractions of lower than 3 % for simulations with high non-algae particles
and fractions from 5 % to 30 % for chlorophyll-a concentrations up to 100 mg m−3 and
an assumed efficiency factor of 0.01. Using an efficiency factor of 0.01 in MOMO, the
portion of fluorescence in the reflectance peak is between 10 % to 18 %. The higher
the total excitation of a homogeneous water body the higher is the resulting emission
of fluorescence above the surface (fig. 4.3f). The relation is linear: The more excitation
is available the more fluorescence is emitted (fig. 4.3f). However, the relation between
fluorescence and phytoplankton amount is non-linear (fig. 4.3e).
In order to investigate the influence of chlorophyll-a absorption and phytoplankton

scattering on fluorescence, three experimental simulations with fluorescence were con-
ducted:

i) ω0 = NaN: clear water (no phytoplankton absorption or scattering),
ii) ω0 = 0: only chlorophyll-a absorption, and
iii) ω0 = 1: only phytoplankton scattering.

The calculation of spectral bph and aph refers to section 2.1 with a defined single scat-
tering albedo at 440 nm of 0.68. The above-mentioned ω0 indicate whether the ex-
perimental simulations permit either phytoplankton scattering (ω0 = 1) or absorption
(ω0 = 0) or neither of these (ω0 = NaN). The excitation is calculated with con-
sidered absorption coefficients although the experiments ω0 = NaN and ω0 = 1 prohibit
chlorophyll-a absorption. Omitting either absorption, scattering, or both, the effects on
the reflectance and the fluorescence are highly different and are shown in fig. 4.4 ex-
emplarily for two phytoplankton amounts (a440 : 2.0 m−1 and 6.5 m−1). Experimental
simulations are shown with dashed lines and reference simulations with reference para-
meterization (table 4.1) are indicated with solid lines.
i) Assuming clear water (ω0 = NaN), the fluorescence implementation produces large

peaks at 683 nm without redshift due to missing re-absorption of phytoplankton near
670 nm (figs. 4.4a and 4.4d). The reflectance is generally lower in the fluorescence
domain due to missing phytoplankton scattering. Fluorescence is directly proportional
to the scaling absorption factor a440 used in excitation calculation and 10 times larger
than the reference fluorescence signal (fig. 4.4d).
ii) Waters that contain only absorbing phytoplankton (ω0 = 0) have a similar re-

flectance spectrum from 650 nm to 740 nm to clear waters (figs. 4.4a and 4.4b) but
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Figure 4.4: Experimental MOMO simulations for the analysis of the implemen-
ted process of fluorescence. The rows show BOA reflectance and the fluores-
cence signal after eq. (4.2), respectively, for a440 of 2.0 m−1 and 6.5 m−1 (blue
and orange). The columns show the response of fluorescence for clear water
(ω0 = NaN), only-absorbing phytoplankton (ω0 = 0), and only-scattering phyto-
plankton (ω0 = 1) compared to the reference simulation (solid lines).

the fluorescence peak is smaller due to chlorophyll-a absorption which is strong near
670 nm and not negligible up to 700 nm. The fluorescence signal reduces by a mag-
nitude from 10−3 sr−1 to 10−4 sr−1 and the difference between low and high a440 be-
comes smaller (figs. 4.4d and 4.4e). The fluorescence peaks are slightly shifted towards
longer wavelengths for higher a440 and the signal from experimental only-absorbing
phytoplankton (dashed) is slightly larger than the signal from reference MOMO simulation
(fig. 4.4e).
iii) In contrast to clear water and waters with only-absorbing algae, simulations with

pure-scattering phytoplankton (ω0 = 1) raise the reflectance spectrum significantly
(fig. 4.4c). The experimental reflectance spectra exhibit no significant phytoplankton
peak. However, the fluorescence signal is doubled for high chlorophyll-a (dashed orange).
It is in a similar magnitude for lower phytoplankton amount (blue dashed) compared to
fluorescence signals from waters with only-absorbing algae (figs. 4.4e and 4.4f). The
fluorescence signals of only-scattering phytoplankton exhibit no redshift (fig. 4.4f)
In conclusion, the fluorescence portion of total reflectance is proportional to excit-

ation constrained by total extinction of each water layer. According to literature and
simulations, fluorescence is emitted near 683 nm and ranges in magnitudes of 10−4 sr
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to 10−3 sr. The total reflectance peak mainly originates from phytoplankton scattering
whereas phytoplankton absorption constrains the redshift. Both phytoplankton IOPs
contribute to a reduction of the fluorescence due to re-absorption and scattering in dir-
ections other than backwards. Nevertheless, fluorescence increases the effective phyto-
plankton reflectance peak and contributes up to 6 %.

2.2.2 Phytoplankton IOPs

In this section, the influence of assumed

i) fluorescence efficiency η,
ii) normalized chlorophyll-a absorption spectra aph, and
iii) relative phytoplankton scattering strength constrained by ω0 (eq. (4.1))

are investigated for two phytoplankton amounts (a440 : 2.0 m−1 and 6.5 m−1 indicated
with solid and dashed lines in fig. 4.5). The rows show reflectance R, fluorescence
F according to eq. (4.2), and the redshift as maximum peak wavelength λF for vari-
ous phytoplankton amounts a440 . Red lines refer to the reference MOMO set-up from
table 4.1, and grey and black lines to simulations with varied efficiency η (first column),
absorption spectrum aph (second column), and single scattering albedo ω0 at 440 nm or
relative strength of phytoplankton scattering, respectively, (third column).
i) Increasing the efficiency factor from 0.003 to 0.01 and 0.03, the reflectance in-

creases in the fluorescence domain (fig. 4.5a) and the fluorescence portion increases by
that factor (fig. 4.5d). The maximum of the effective reflectance phytoplankton peak
shifts towards shorter wavelengths (fig. 4.5g) which may be referred to as “blueshift”
analogously to the redshift.
ii) Changing the normalized absorption spectrum (cf. fig. 4.2a), the reflectance spectra

highly vary spectrally (fig. 4.5b) due to stronger (grey) or weaker (black) normalized ab-
sorption spectra. Stronger absorption spectra cause lower reflectance but slightly higher
fluorescence (fig. 4.5e) due to larger amount of absorbed photons for equal conditions
in light availability and water. The absorption band near 670 nm is significantly broader
for “NechadMAX” (grey) than for “Doerffer” and “NechadMIN” (cf. fig. 4.2a) which
results in lower reflectance (fig. 4.5b) and increased redshift (fig. 4.5h). A reciprocal
mechanism can be observed for weaker normalized absorption spectra (second column
in fig. 4.5).
iii) Changing the ratio between chlorophyll-a absorption and phytoplankton scattering,

the spectral absorption coefficients do not change but scattering coefficients increase or
decrease, respectively. An increase in the scattering portion magnifies the reflectance
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Figure 4.5: Variation of phytoplankton IOPs in MOMO for two phytoplankton
amounts (a440: 2.0 m−1 and 6.5 m−1 with solid lines/blue bullet and dashed
lines/orange square). The line colours correspond to the legends in the second
row per column. The rows show BOA reflectance R, fluorescence F , and the
redshift, respectively, above water. The columns show variations of η, aph, and
ω0 (grey and black lines). Red lines refer to reference simulation using bold
parameter values from table 4.1.

spectrum (fig. 4.5c) but hardly spectrally shift features (fig. 4.5i). The fluorescence
portion decreases for increasing ω0 due to less available photons that can be absorbed
(fig. 4.5f).
Thus, the phytoplankton reflectance peak is constrained by phytoplankton amount

controlling chlorophyll-a concentration and absorption, phytoplankton scattering, and
the fluorescence. Phytoplankton scattering and chlorophyll-a fluorescence contribute
to the peak’s magnitude whereas chlorophyll-a absorption reduces reflectance and is
important for the fluorescence portion. The redshift mainly occurs due to increased
chlorophyll-a absorption- Increased fluorescence due to an increased efficiency factor ant-
agonizes by a “blue shift”. Phytoplankton scattering mainly controls the effective size of
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the peak. Therefore, the effective peak conglomerates a bunch of information combining
chlorophyll-a absorption, phytoplankton scattering, and fluorescence efficiency. They are
dependent on phytoplankton species, health, and concentration.

2.2.3 Depth dependency and water layer thickness

In this section layer dependent characteristics for an homogeneous water body are ana-
lysed:

i) decay of excitation and fluorescence with depth,
ii) geometric layer thickness, and
iii) signal response of phytoplankton in deeper layers covered with clear water.

i) Figure 4.6 displays correspondence between water depth, chlorophyll-a excitation,
and fluorescence expressed with FA (eq. (4.4)) from simulations with implemented fluor-
escence (peak simulations). Fluorescence and excitation decrease with depths as expec-
ted (figs. 4.6a and 4.6b) due to less available light in deeper layers. They both decrease
exponentially according to Beer’s Law of light extinction. However, both excitation and
fluorescence decrease faster with depth for higher a440 . Below a few decimetres (approx.
50 cm), excitation for high a440 is a magnitude lower than for low a440 (fig. 4.6a) due
to high total absorption of chlorophyll-a and water. Similar conditions can be found for
FA in fig. 4.6b, which hardly may detectable below 3 m (fig. 4.6b) according to the max-
imum light penetration depth of 3 m for clear water in the red visible spectrum (Gordon
and McCluney, 1975). Apart from phytoplankton amount, similar excitation constrain
similar fluorescence portions (fig. 4.6c). The difference between FAs of a440 of 2.0 m

(blue) and 6.5 m (orange) in fig. 4.6c occurs due to slightly higher excitation induced by
higher a440 in the excitation calculation (chapter 2 section 1.1.2).
ii) Due to maximum water penetration depth of a few meters in the red visible spec-

trum, high sensitivity of excitation on layer position and MOMO computations starting at
the centre of each layer, simulations for fluorescence must include vertically high resolved
water layers at least in the upper 5 m. Using thicker layers, e.g. a layer thickness of 1 m,
leads to an underestimation of reflectance and fluorescence constrained by an underes-
timated excitation due to strong absorption per layer reducing available light. Figure 4.7
shows an relative error of about 2 % for the VIS comparing reflectance simulations above
water with geometrically thick (1 m) and thin (0.1 m) layers. In the fluorescence domain
the error approaches more than 15 % and cannot be neglected.
iii) In order to analyse the signal from deep layered phytoplankton, a homogeneous

water body containing phytoplankton and cdom is assumed as outlined in section 2.1.
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Figure 4.6: Excitation and FA from eq. (4.4) dependent on depth in a) and
b), respectively, and dependent on each other in c) for the upper 3 m. Panel
a) represents the excitation decay with depth for all modelled phytoplankton
concentrations a440 (cf. table 4.1 and fig. 4.1b). Panels b) and c) show the
decay of FA with depth and excitation for 2.0 m−1 and 6.5 m−1 (blue and orange)
exemplarily. Black outlined symbols indicate the depth in intervals of 1 m.

Then, phytoplankton is lowered to deeper layers preserving the original phytoplankton
extinction coefficient which results in a homogeneous water body with phytoplankton
and cdom covered with clear water. The start of the phytoplankton concentration is
simulated at 0.0 m, 0.5 m, 1.0 m, 2.0 m, 3.0 m and 4.0 m depth (fig. 4.8) and simulations
beginning at 0 m (yellow) equal original reference simulation (black) referring to table 4.1
without clear water cover layer. Figure 4.8 shows water-leaving reflectance (directly
above water surface) which strongly decreases if phytoplankton is not located at top of
the water body. For a440 of 1.0 m−1 and 2.0 m−1, reflectance near 683 nm approximately
halves (figs. 4.8a and 4.8b) and for 6.5 m−1 reflectance reduces to a third (fig. 4.8c)
when the same amount of phytoplankton in the water body is covered by 1 m clear water.
The effect is also observed for fluorescence: The higher the phytoplankton amount
the stronger reduces the reflectance peak for deeper layered phytoplankton (figs. 4.8d
to 4.8f). The fluorescence is hardly detectable for phytoplankton located lower than 2 m

and the phytoplankton peak is also nearly unapparent.
On the one hand, fig. 4.9a shows that a maximum peak reflectance is not found for

phytoplankton located lower than 2 m (no purple and blue lines apparent). On the other
hand, lowering phytoplankton to deeper layers causes a blueshift of several nanometres
which additionally complicates the discrimination with respect to phytoplankton amount
or depth. The contribution of fluorescence to the phytoplankton peak also strongly de-
creases and is stronger for higher phytoplankton amount (fig. 4.9b). The blueshift might
be attributed to water absorption and the fluorescence fraction reduction due to both

95



Chapter 4 Remotely retrieved phytoplankton properties

Figure 4.7: Relative error using 1 m-layers in reflectance simulations instead of
geometrically thinner layers of 0.1 m. The effect mainly impacts the fluorescence
domain and is about 15 % for optically medium to thick waters.

water and chlorophyll-a absorption. Both processes highly reduce the water-leaving sig-
nal in the fluorescence domain which cannot be increased by phytoplankton scattering
because it might be too deep in the water. Comparing reflectance areas RA (eq. (4.3))
from reference simulations without clear water cover and simulations with lowered phyto-
plankton by 1 m, RA reduces by 35 % to 58 % for considered phytoplankton amounts of
1.0 m−1 to 6.5 m−1 (salmon line in fig. 4.9c). Again, reflectance spectra corresponding
to higher chlorophyll-a concentration are more depleted which might be attributed to
the phytoplankton absorption. Therefore, using the fluorescence domain from 630 nm

to 750 nm phytoplankton observations using the phytoplankton peak might only be
possible if phytoplankton is located in the upper two meters. According to fig. 4.6b,
which presents the depth dependency of FA and RA for homogeneous distributed phyto-
plankton in the entire water body, the reflectance peak for higher chlorophyll-a amount
(a440=6.5 m−1; dashed orange line) is lower than for lower chlorophyll-a concentrations
(blue dashed line) below a depth of approximately 60 cm. In conclusion, the detection
of phytoplankton might only be possible if algae is apparent in the upper 2 m according
to fig. 4.9 and a proper discrimination of phytoplankton amount only in the upper 1 m

according to fig. 4.6b.

2.3 Initial validation efforts

The modelled phytoplankton peak varies in shape, magnitude and spectral location.
Phytoplankton and additional water constituents have nonlinear influence on total re-
flectance which makes it difficult to compare simulation and measurements due to un-
known constituents measurements or various possible constituents’ parameterization.

96



2 Radiative transfer simulation with MOMO

Figure 4.8: Reduction of reflectance (first row) and fluorescence (second row) for
phytoplankton located below 0 m to 4 m depth (colours) and covered with clear
water for three phytoplankton amounts (columns; a440: 1.0 m−1, 2.0 m−1 and
6.5 m−1). Black lines refer to reference simulation of a homogeneous water body
after section 2.1. In the top row, solid lines refer to simulations with fluorescence
(peak) and dashed lines show reflectance without fluorescence (pure).

Figure 4.9: Panel a) shows the maximum peak wavelength (redshift) for phyto-
plankton covered by clear water and phytoplankton located deeper than 2 m do
not exhibit a reflectance peak. The fraction of fluorescence reduces with lower
located phytoplankton (panel b) and hardly contributes to the peak if algae are
located lower than 2 m. The reflectance peak reduces strongly if a clear water
layer above phytoplankton exceeds 1 m shown in panel c).
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2.3.1 Measurement dataset

For first validation efforts in this section and in section 5, datasets collected by Nechad
et al. (2015) are used. The entire data set from Nechad et al. (2015) contains a wide
range of measurement sites but many only provide multi-spectral measurements not
covering the fluorescence domain. Additionally, some sites provide either biogeochemical
quantities or reflectance or they are measured at different dates. Therefore, hyper-
spectral and chlorophyll-a concentration measurements from the North Sea (NoS) and
Indonesian Waters (InW) are used. Besides various IOPs and apparent optical properties
(AOPs), each set contains spectral phytoplankton absorption coefficients aph(λ) and
reflectance. In the following, the BOA phytoplankton peak in the range from 650 nm to
730 nm is qualitatively compared to in situ hyper-spectral reflectance in NoS and InW.

2.3.2 Qualitative comparison

In general, reference MOMO spectra (based on bold parameters in table 4.1) are rather
dark and even simulations with additional white scatterers (b = 10 m−1) only slightly
brightens the reflectance. Simulations for phytoplankton in deeper layers are even darker
(cf. section 2.2.3). However, the simulated phytoplankton peak is located in a series of
measurements shown in fig. 4.10a for Indonesian waters (InW) and fig. 4.10b for North
Sea (NoS) and fits the magnitude of some measurements. Figures 4.10c and 4.10d show
MOMO BOA reference reflectance (coloured) and in situ measurement reflectance (grey)
with a correlation greater than 0.95, which apply to simulations with low to medium a440
up to 1.5 m−1. “Brightening” simulation spectra with an increase of white scatterers,
the number of matching measurement spectra due to correlation increases but still refer
only to the lowest a440 simulations.
According to Fischer and Kronfeld (1990), applying FLH with a baseline constrained

at 645 nm and 670 nm and signal wavelength at 685 nm, the MOMO BOA radiance peak
height ranges from 10−4 W m−2 sr nm to 2.8·10−3 W m−2 sr nm for a440 of 0.1 m−1 to
10.1 m−1. Fischer and Kronfeld (1990) reported an FLH up to 1.2·10−3 W m−2 sr nm for
100 mg m−3. Gilerson et al. (2007) retrieved similar results with a function relating chl-a
to fluorescence and HydroLight simulations for coastal waters. Gitelson (1992) reported
redshifts of the peak that strongly vary in the relation to chl-a. The redshift ranges from
684 nm to 715 nm for chl-a up to 100 mg m−3 which fits MOMO redshift excellently (see
figs. 4.5g to 4.5i). Gilerson et al. (2007) and Schalles (2006) reported similar results.
It is difficult to split pure fluorescence from reflectance measurements which is inter-

actively produced by a combination of phytoplankton absorption and scattering and the
process of fluorescence as outlined in previous sections. Simulating reflectance and fluor-
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Figure 4.10: Validation of the MOMO phytoplankton peak comparing in situ meas-
urements at Indonesian waters (InW) in a) and c) and at the North Sea (NoS) in
b) and d) in grey. The coloured lines are simulations for different phytoplankton
amounts. The panels c) and d) show measurements and simulations that exhibit
correlation coefficients greater than 0.95 which applies to simulations for low to
medium a440.

escence with MOMO, the “pure” fluorescence signal is easily retrieved from eq. (4.2). Wang
et al. (2017) presented fluorescence signals retrieved from a polarization measurement
technique and obtained signals near 683 nm in units of radiance (W m−2 sr nm). Their
fluorescence measurement ranged from around 10−5 W m−2 sr nm to 10−4 W m−2 sr nm

for chl-a from 7 mg m−3 to 225 mg m−3 displayed in fig. 2.8b of chapter 2. MOMO reflect-
ance fluorescence magnitude displayed in figs. 4.3d and 4.5d to 4.5f and MOMO fluores-
cence in in radiance units (not shown) range in the same magnitude from 5·10−5 sr−1

to 5·10−4 sr−1 and 5·10−5 W m−2 sr nm to 5·10−4 W m−2 sr nm.
In conclusion, MOMO reveals strong extinction coefficients simulating relatively dark

reflectance spectra. The simulated phytoplankton peak near 690 nm is strongly depend-
ent on phytoplankton scattering and exhibits a magnitude as expected from literature.
Magnitude and position of the peak related to fluorescence and the fluorescence portion
are also in accordance to literature. Applying hyper-spectral in situ measurements with
extreme phytoplankton amounts would likely match simulations for high algae content.
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3.1 Total Algae Peak

In order to obtain phytoplankton properties, reflectance in the fluorescence domain from
650 nm to 730 nm is used. Reflectance offsets, e.g. by non-algal scattering, can be
reduced by using reflectance residuals. Accounting for the local chlorophyll-a absorption
maximum, the reflectance minimum near 670 nm R(λ1) at λ1 within 665 nm to 680 nm

is selected (see eq. (4.5)). The phytoplankton peak’s magnitude, shape, and location
is considered by integrating residual reflectance within the integration limits λ1 and
λ2. The lower integration limit λ1 hardly spectrally shifts for increasing chlorophyll-a
concentration and λ2 is defined by the equality of R(λ1) equals R(λ2) (eq. (4.6)). In
eq. (4.7), the integrated reflectance area is defined as TAP (shaded area in fig. 4.11).

λ1 = argmin {R(λ)} with λ = [665, 680] nm(4.5)
λ2 = argmin {abs [R(λ)− R(λ1)]} with λ ≥ 680 nm(4.6)

TAP =

∫ λ2

λ1

[R(λ)− R(λ1)] dλ(4.7)

Baseline slopes of baseline retrievals such as FLH highly depend on the peak’s shape
and the surrounding spectrum leading to high variability in the difference between signal
wavelength and baseline. The TAP baseline, indicated with LW in fig. 4.11, is computed
without slope (eqs. (4.5) and (4.6)) and is only dependent on one free parameter λ1 and
the baseline’s spectral length highly varies. Thus, TAP accounts for changing spectral
shape and size of the peak for various phytoplankton amounts. However, TAP is not
solely correlated to fluorescence but also to phytoplankton scattering and chlorophyll-a
absorption as outlined in section 1.2.
Additionally, using interpolation on given simulated wavelengths or sensor bands, i) the

accuracy of λ2 and also TAP is increased, and ii) the number of sensor channels becomes
less important.

3.2 TAPIR functions

As outlined in section 1.2, the phytoplankton peak in the fluorescence domain is produced
by phytoplankton scattering and fluorescence and reduced by chlorophyll-a absorption
and water absorption. Therefore, the spectrally integrated peak TAP contains inform-
ation about those properties which are related to phytoplankton amount. Additionally,
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Figure 4.11: TAP for two simulated TOA reflectance spectra. The spectral
width of the baselines highly differs but λ1 hardly deviates from 678 nm.

the chlorophyll-a absorption at 670 nm directly influences the peak and is also related
to fluorescence and phytoplankton magnitude which has been introduced in section 1.3.
Thus, combining both variables, TAP and a670 , a retrieval is developed to obtain phyto-
plankton properties from TOA reflectance measurements in the fluorescence domain:

TAPIR : f (TAP, a670) = c0(TAP) ∗ a670c1(TAP) = TAP(4.8)

The coefficients c1,2 are dependent on sensor or model (e.g. MOMO simulations or En-
MAP) retrieved reflectance peak areas (TAPs). Using TOA MOMO simulations from
section 2.1, retrieved TAPs are linked with corresponding a670 and reference results
are shown as solid lines in fig. 4.12. Variations of TAP due to varied parameters p

(table 4.1) are illustrated with dashed lines. Symbols correspond to model input a440 .
According to eq. (4.8), a power function expresses reference TAPs of TOA reflectance
R = Lu/Ed with corresponding a670 .

TAPIRTOA
ref : TAP(a670) = 0.0100 ∗ a6701.6619 := fref(a670).(4.9)

The reference TAPIR function fref increases linearly for increasing a670 up to 0.2 sr−1 nm

in fig. 4.12 and for low a670 it is non-linear or zero. Further TAPIR functions and their
uncertainties are described in section 4.3. Although, following sections use TAPIR for
TOA applications, the concept can also applied to air-borne or in situ measurements.
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4.1 Sensitivity analysis

In order to estimate the sensitivity of TAPIR, fig. 4.13 shows deviations of fref with
variation of parameters. Jacobians Jp = Jij(p) are calculated for TAPIR functions fi
with varied parameters pj with eq. (4.10).

Jij =
∂fi (a670; pj)

∂pj
≈ fref(a670; pj ,ref)− fi (a670; pj ,var)

pj ,ref − pj ,var
(4.10)

∆p for parameter aph is computed with maximum absorption at 670 nm from normalized
absorption spectra (fig. 4.2a). Demonstrating the impact of reduced bands, a measure-
ment location, and standard atmospheres, ∆p = 1 applies for EnMAP, BOA, and atm.
Jacobians are non-zero for i = j and absolute Jacobians generally increase with increas-
ing phytoplankton amount. TAPIR is more sensitive to all of the considered parameters
for higher a670. The sensitivity analysis is grouped in four parts accounting for

i) water conditions,
ii) atmosphere conditions,
iii) phytoplankton parameterization, and
iv) external conditions.

i) In this study, water conditions vary with considered parameters cdom, white scatterer
b, surface temperature T and salinity s (figs. 4.12a to 4.12d). In contrast to the blue-
green ratio proxy estimating chl-a, the spectral range of fluorescence is nearly invariant
to cdom absorption (cf. section 2.3.3) and, therefore, negligible dependence on TAPs is
expected. In-water parameters have minor impact on TAPIR due to Jacobians less than
two orders of magnitude compared to reference TAPs (figs. 4.13a to 4.13d). TAPs are
hardly sensitive to cdom with Jacobians less than three orders of magnitude. However,
the impact of cdom is less than the influence of scatterer b even for high cdom absorption
at 440 nm of 3 m−1. “White” scatterers (e.g. sediments) brightens the total visible
reflectance spectrum and, therefore, slightly enlarge the peak due to higher available
fluorescence excitation and increased total scattering. An influence of salinity and surface
temperature can be neglected. Thus, TAPIR is applicable for all kind of waters including
case-1 and case-2, coastal and inland waters, and regions with high or low sea surface
temperature.
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Figure 4.12: Retrieved TAPs over a670 and their variants due to adjusted sim-
ulation parameters (table 4.1). Solid lines show TAPIR functions computed from
eq. (4.13) linking TAPs from reference simulations to a670.
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Figure 4.13: Jacobians of reference TAPIR function fref (eqs. (4.9) and (4.10))
calculated from simulations with reference parameters emphasized in table 4.1.
Note different ordinate scales and magnitudes representing sensitivity.
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ii) Figures 4.12e and 4.12f display the impact of varying standard atmosphere condi-
tions atm and aerosol optical thickness aot. A change in atmospheric vertical temper-
ature and pressure distribution results in low sensitivity on atmosphere structure with
Jacobians below 10−5 (fig. 4.13e). In fig. 4.13f, increasing aot diminishes TAPs linearly
with increasing a670 due to less available light for the fluorescence process and absorp-
tion of the upwelling signal in the atmosphere. The sensitivity on aot ranges in reference
TAPIR function magnitudes and, therefore, aot must be considered in the retrieval.
iii) MOMO parameterizes phytoplankton using a given normalized phytoplankton ab-

sorption spectrum scaled with spectral extinction coefficients and corresponding single
scattering albedo (see section 2). Figure 4.2 illustrates variations of chlorophyll-a ab-
sorption spectra aph(λ) normalized at 440 nm and corresponding single scattering albedo
ω0 for constant values of 0.68, 0.75 and 0.82 at 440 nm. In this study, varying ω0 solely
changes the ratio of phytoplankton scattering and absorption. The current absorp-
tion coefficient remains equal whereas phytoplankton scattering coefficient increases or
decreases, respectively. Thus, increasing ω0 induces increased extinction. TAPIR is
strongly sensitive to the underlying absorption spectrum (figs. 4.2a, 4.12g and 4.13g).
The lower the absorption spectrum beyond 550 nm the faster rises the TAPIR func-
tion slope with increasing a440 due to increased scattering (fig. 4.2b). An increase of
phytoplankton scattering due to either reduced absorption spectrum or increased single
scattering albedo (e.g. NechadMIN and ω0=0.75, respectively), can double retrieved
TAPs for high a670 (figs. 4.12g and 4.12h). Strong phytoplankton scattering (ω0=0.82)
increases TAPs by more than factor 3 (figs. 4.12h and 4.13h). Accounting for fluores-
cence efficiency η, figs. 4.12j and 4.13j reveal strong impact on retrieved TAPs mainly
depends on competitive impact of effective fluorescence peak shifting towards shorter
wavelength for increasing η and increasing redshift for increasing chlorophyll-a concen-
trations a670 . Therefore, the major TAPIR sensitivity originates from phytoplankton
IOPs and bio-physical condition.
iv) Measurement location (TOA or bottom of the atmosphere (BOA)), sun zenith

angle (θ), and number of available sensor bands are external conditions which can be
considered previously to the definition of TAPIR functions. Functions for BOA and
TOA in fig. 4.12j highly differ due to Rayleigh scattering and atmospheric interaction.
A changing θ slightly influences the TAPIR function slope (fig. 4.12k) but due to small
Jacobians in fig. 4.13k the impact of θ can be assumed to play a minor role. For En-
MAP applications, 1 nm-resolved MOMO simulations are convolved to 15 EnMAP bands
within 650 nm to 750 nm (fig. 4.11). Reduction to lower band resolution reduces TAPs
with increasing a670 because MOMO reflectance area is not entirely reproduced (figs. 4.11
and 4.12l). However, the sensitivity on reduced band number for EnMAP specifications
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ranges below two orders of magnitude of reference TAPs. Uncertainties concerning loca-
tion, radiometric resolution (EnMAP), or sun zenith angle can be avoided by developing
separate TAPIR functions.

In conclusion, TAPIR is mainly sensitive to a670 and phytoplankton optical properties
(single scattering albedo, underlying absorption spectrum, and efficiency), which sug-
gests the opportunity of distinguishing different phytoplankton species. Application of
various phytoplankton type dependent absorption spectra may result in variants in TA-
PIR due to slightly shifted absorption maxima and intensities. Aot influence cannot be
neglected due similar magnitudes of the TAPIR function and corresponding Jacobians.

4.2 Uncertainty assessment

TAPIR supports the estimation of phytoplankton property proxy a670 . Thus, the refer-
ence TOA TAPIR function from eq. (4.8) is inverted to f −1 and an uncertainty propaga-
tion for a670 is conducted. Assuming uncorrelated variables, eq. (4.11) computes un-
certainty σa. The deviation of f −1 depends on i = 3 variables x : Fitting coefficients c0

and c1 and TAP per a670 .

σ2
a =

∑(
∂f −1(xi)

∂xi
σxi

)2

(4.11)

Equation (4.11) determines ∂x f −1(x) analytically. Fitting simulated TOA TAPs to input
a670 in section 4.1, coefficients c0 and c1 are empirically retrieved and simultaneously
standard deviations σc0 and σc1 are obtained and listed in table 4.2.
Uncertainty σa additionally depends on accuracy of TAP computation with eq. (4.7).

TAP deviates with varied parameters from table 4.1 and the selection of integration
limits λ1 and λ2. Parameters θ, number of measurement bands (e.g. EnMAP), and
measurement location (e.g. surface (BOA)) are excluded because they can be considered
previously to TAPIR function development. TAP uncertainty σTAP for j parameters p

is computed with eq. (4.12) .

σ2
TAP =

∑(
∂TAP(pj)

∂pj
σpj

)2

≈
∑(

∆TAP(pj)

∆pj
σpj

)2

(4.12)

Summands of eq. (4.12) ∂pjTAP are numerically estimated. Therefore, the difference
between TAP(pj ,ref ) and TAP(pj ,var ) is calculated to retrieve the ∆TAP(pj). The values
of reference and variants of parameters, pref and pvar , are listed in table 4.3. Reference
value for cdom is dependent on a440 with g(a440) (see eq. (2.22) on pp. 39 and 87).
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Table 4.2: List of variables x and their σx used in uncertainty calculation in
eq. (4.11). Exemplarily, the table presents summands of eq. (4.11)

[
(m−1)2

]
for medium (◦) and high (�) a670 of 1.07 m−1 and 3.47 m−1 (corresponding to
2.0 m−1 and 6.5 m−1 a440 in MOMO). σTAP depends on a670. The variables c0

and c1 exhibit the units [sr−1 nm m] and [dl], respectively.

x σx
[
∂x f

−1(x(◦))σx
]2 [

∂x f
−1(x(�))σx

]2
c0 1.150·10−3 7.424·10−2 2.408·10−1

c1 7.499·10−2 3.267·10−3 1.948·10−1

TAP 5.765·10−3 3.325·10−1 —
TAP 3.799·10−2 — 1.006

Table 4.3: List of parameters p used in the uncertainty estimation in eq. (4.12).
The deviation’s denominator ∆p is computed with pvar and pref and use a reason-
able conservative σp from literature (column “ref.”) or assume it. Table 4.1 lists
their units. Exemplarily, the table presents summands of eq. (4.12)

[
(sr−1 nm)2

]
per parameter for medium (◦) and high (�) a670 of 1.07 m−1 and 3.47 m−1

(corresponding to 2.0 m−1 and 6.5 m−1 a440 in MOMO). σatm is set to 1 because
parameter atm contains vertical atmospheric profiles. Values of pref and pvar for
parameter aph are 670 nm coefficients of normalized absorption spectra “Doerf-
fer” and “NechadMIN”. Parameters λ1 and λ2 depend on selected reflectance
spectra and vary with a670. The deviation is estimated by small variations of
±1 nm and assume σλ of 1 nm.

p pref pvar σp ref. σ2
TAP(◦) σ2

TAP(�)

cdom g(a440) 0.000 0.050 [4.3a] 1.879·10−10 1.376·10−9

b 0.000 1.000 0.150 [4.3b] 1.198·10−8 1.174·10−7

T 4.500 25.000 1.500 [4.3c] 6.209·10−11 3.558·10−8

s 35.000 0.000 0.002 [4.3d] 7.360·10−18 1.119·10−16

atm midlat arcwin 1.000 — 1.703·10−12 2.904·10−11

aot 0.200 0.000 0.070 [4.3e] 7.353·10−7 1.393·10−5

aph 0.533 0.273 0.020 [4.3f] 5.320·10−6 4.985·10−4

ω0 0.680 0.750 0.050 — 2.705·10−5 9.225·10−4

η 0.003 0.010 0.005 — 8.132·10−8 7.815·10−6

λ1 λ1(a440) λ1 ± 1 nm 1.000 — 3.522·10−8 4.493·10−7

λ2 λ2(a440) λ2 ± 1 nm 1.000 — 1.237·10−9 9.267·10−9

4.3a
Lefering et al. (2017),

4.3b
Binding et al. (2005),

4.3c
Kennedy (2014),

4.3d
Le Menn (2011),

4.3e
Sayer

et al. (2013),
4.3f

McKee et al. (2013),
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Figure 4.14: Summands of eq. (4.12) (coloured lines with markers indicate para-
meter) and σ2

TAP (grey line) in panel a). Panel b) shows summands of eq. (4.11)
(coloured) and final σ2

a (grey). Squared uncertainties relate to values listed in
tables 4.2 and 4.3.

aph we extract the 670 nm absorption coefficient from the normalized spectra “Doerffer”
and “NechadMIN” (fig. 4.2a). The deviation ∆pj is the difference between parameter
pj ,ref and its variation pj ,var . ∆patm is set to 1 because parameter atm contains vertical
profiles. Parameter dependent uncertainties σx are conservatively chosen from literature
or assumed with reasonable values (see table 4.3).
Figure 4.14a illustrates σ2

TAP summands (black lines) from eq. (4.12) which expo-
nentially increase with increasing 670. Final σ2

TAP (thick grey line) mainly consist of
uncertainties due to ω0. The “spikes” near 2.0 m−1 appear due to logarithmic presenta-
tion and local minimum close to zero, which shifts or disappears using alternative pj ,var .
Analogous, fig. 4.14b shows σ2

a summands (black lines) from eq. (4.11) and final squared
uncertainty for a670 (grey) which mainly consists of TAP uncertainty. Therefore, a670
accuracy primarily depends on phytoplankton parameterization.
Generally, σ2

a increases exponentially with increasing a670 and ranges from approxim-
ately 10−4 m−2 to 101 m−2. a670 and σa range in the same magnitude and exemplary
σa of 0.34 m−1 and 1.05 m−1 for a670 of 1.07 m−1 and 3.47 m−1 is retrieved. Absorp-
tion coefficients a670 greater than 0.50 m−1 exhibit relative uncertainties from 30 % to
35 % and less than 50 % for the entire a670 range from 0.02 m−1 to 6.00 m−1.

4.3 Supplemental TAPIR functions

Functions and their uncertainties are provided for hyper-spectral sensors EnMAP, HICO
on board International Space Station (ISS) and TROPOMI mounted on Sentinel-5 (S5).
Additionally, a BOA function corresponding to reference simulations from table 4.1 for
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the surface is shown. Afterwards, the technique is slightly extended to apply TAPIR to
multi-spectral sensor OLCI.

TAPIRBOA : TAP(a670) = 0.0287 ∗ a6701.3307 := fBOA(a670)(4.13)
TAPIRTOA

EnMAP : TAP(a670) = 0.0083 ∗ a6701.7336 := fEnMAP(a670)(4.14)
TAPIRTOA

HICO : TAP(a670) = 0.0080 ∗ a6701.7599 := fHICO(a670)(4.15)
TAPIRTOA

TROPOMI : TAP(a670) = 0.0099 ∗ a6701.6642 := fTROPOMI(a670).(4.16)

The functions of TROPOMI, EnMAP and HICO are rather similar to TAPIRref due to
a sufficient capture of MOMO simulations with provided instrument bands (fig. 4.15a).
Retrieved a670 uncertainty σa only differs slightly from σa(MOMO) (fig. 4.15b) with ab-
solute difference maxima of 0.015 m−1, 0.032 m−1 and 0.001 m−1 for HICO, EnMAP,
and TROPOMI, respectively. As expected, TROPOMI reveals the lowest deviation from
MOMO due to high band resolution. Absolute uncertainties σa of all sensors for a670
of 1.07 nm−1 and 3.47 nm−1 are listed in table 4.4. The relative uncertainty ranges
within 30 % to 35 % for all of the considered hyper-spectral sensors for a670 greater
than 0.5 m−1. For BOA applications, a670 uncertainty ranges from 20 % to 25 %.
Actually, TAPIR is designed for hyper-spectral sensors due to necessary peak captur-

ing with sufficient measurement bands. However, pre-processing multi-spectral measure-
ments, TAPIR can be used for OLCI. Multi-spectral OLCI provides only 5 bands in the
red VIS/NIR (orange in fig. 4.15a and coloured dashed lines in fig. 4.16a). Compared
to MOMO simulations (grey), a fitted polynomial of degree 3 (“OLCIpoly”; coloured solid
lines in fig. 4.16a) does not reproduce the “original” spectral shape. However, using
only the relative shape of the polynomial peak, TAPs of OLCIpoly and MOMO are linearly
related for parameter variations from table 4.1 which is illustrated in fig. 4.16b. The
Root Mean Square Error (RMSE) is rather small with 0.01 sr−1 nm.

Using a polynomial, TAPIR can be applied to OLCI because a function substitutes
spectrally poor resolved measurement bands. TAP(OLCIpoly) does not represent actual
phytoplankton properties but can be re-calculated to TAP(OLCI) using the relation

Table 4.4: Uncertainty of supplemental sensors for a670 of 1.07 nm−1 and
3.47 nm−1. All quantities in [m−1]

a670 MOMO TROPOMI EnMAP HICO OLCI
1.07 0.341 0.341 0.337 0.355 0.379
3.47 1.052 1.052 1.057 1.064 1.100
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Figure 4.15: Spectral band arrangement of HICO, EnMAP, and TROPOMI
which all capture the MOMO simulation rather well in panel a) for a440 of 2.0 nm−1

and 6.5 nm−1, and the difference of the uncertainty σa compared to the one of
MOMO in panel b). OLCI (orange) only provides few bands and cannot represent
the hyper-spectral MOMO reflectance. However, using a polynomial, TAPIR can
be applied to OLCI with reasonable uncertainty (refer to text and fig. 4.16).

Figure 4.16: OLCI bands (dashed lines) and fitted plenum of third degree (solid)
compared to MOMO reflectance simulations (grey). Although, polynomial curves
based on the OLCI bands do not capture the “truth”, their TAPs are linearly
related to the TAPs of MOMO.
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between TAP(OLCIpoly) and TAP(MOMO):

TAP(OLCI ) := 0.5208 ∗ TAP(OLCIpoly) + 0.0068(4.17)

Fitting uncertainties are 0.0044 for c0 and 0.0008 sr−1 nm for c1. Using recalculated
TAPs of OLCI a TAPIR function can be found:

TAPIRTOA
OLCI : TAP(a670) = 0.0071 ∗ a6701.9084 := fOLCI(a670)(4.18)

OLCI uncertainties are slightly larger than retrieved σa for MOMO, EnMAP, HICO, and
TROPOMI listed in table 4.4. Relative uncertainties of about 30 % and 35 % are prom-
ising and could be improved with phytoplankton specific parameterization in the model
because phytoplankton properties majorly contribute to uncertainty. Additionally, poly-
nomial fitting permits application of multi-spectral sensors such as OLCI, MERIS, and
MODIS. The polynomial approach may also be applied to hyper-spectral sensors for
consistency reasons but this may introduce additional uncertainties.
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5 Initial algorithm validation efforts

This section presents early efforts for a qualitative algorithm validation and discusses
possible sources of uncertainties and inaccuracies. TAPIR likely promises valuable results
for higher chl-a in optically complex waters with additional OACs.

Hyper-spectral data from satellites are rare up to date. EnMAP’s launch is scheduled
for 2019 (Guanter et al., 2015) and first measurements from TROPOMI will be available
in April 2018 (R. Lindstrot, pers. communication, 2018-02-14). In order to retrieve
first preliminary insight in the performance of TAPIR and under the assumption that
the radiative transfer model MOMO simulated TOA and BOA reflectance consistently,
TAPIR BOA function fBOA (eq. (4.13)) is applied to in situ data. Two measurement
data sets merged from Nechad et al. (2015) already have been introduced in section 2.
Due to unavailable simultaneously measured chlorophyll-a absorption and reflectance,
concentration has been converted to a670 using the BOM at 670 nm from Bricaud
et al. (1995, p. 13 326; cf. eq. (2.21) in chapter 2):

aph(670 nm) = 0.0189 ∗ chl-a(1−0.149) = a670(4.19)

Retrieved a670 range within 0.015 m−1 to 0.50 m−1 for NoS and InW. According to
section 4, a670 is expected to have relatively high uncertainties in this value regime.
Nevertheless, TAPs are calculated for 92 InW and 48 NoS reflectance spectra and cor-
related to computed a670 (fig. 4.17a). Chl-a and additionally provided measurements
of total suspended matter (TSM) range within 0.8 mg m−3 to 47 mg m−3 and 0 g m−3

to 200 g m−3, respectively.
There are 24 of 92 and 20 of 48 zero TAPs of InW (grey squares) and NoS (black

triangles), respectively, due to an unapparent peak in reflectance spectra. Zero TAPs
occur for TSM and chl-a measurements within 0 g m−3 to 50 g m−3 and 0.8 mg m−3 to
10 mg m−3, respectively. A combination of low chl-a (<10 mg m−3) and the occurrence
of non-phytoplankton TSM may result in an unapparent peak. However, there are
measurements of similar conditions with an apparent peak and non-zero TAP.

Applying OC4 (O’Reilly et al., 2000) in fig. 4.17b, retrieved OC4 chl-a match up
with measured chl-a for less than 10 mg m−3 which borders the upper algorithm defin-
ition limit. OC4 chl-a remains stable near 10 mg m−3 for measured chl-a greater than
10 mg m−3.
In fig. 4.17c, InW and NoS TAPs are inverted with f −1

BOA = a670 to retrieve a670 which
is converted to chlorophyll-a concentration with the inverse of eq. (4.19). Chl-a retrieved
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Figure 4.17: TAPs of surface measurements at North Sea (NoS) and Indonesian
waters (InW) collected from Nechad et al. (2015) and functions TAPIRBOA and
TAPIRInW

BOA (eqs. (4.13) and (4.20)) in a). Panels b) and c) show performance
of OC4 and TAPIR retrievals on logarithmic scale. Vertical bars in panel c)
represent calculated TAPIR chl-a uncertainties for BOA applications. Red circle
markers with thin dashed error bars display chl-a(InW) estimated from empirical
TAPIRInW

BOA function (dashed line in panel a) and eq. (4.20)).

from TAPIR (triangles and squares with error bars in fig. 4.17c) is blurrier distributed
than OC4 chl-a for chl-a measurements below 10 mg m−3 but still exhibits a good
estimation. For larger chl-a, TAPIR overestimates chl-a with current TAPIRBOA from
eq. (4.13) but in contrast to OC4 , TAPIR is able to reproduce higher chl-a according to
the 1:1 line. The maximum a670 for this data set is less than 0.5 m−1 and section 4.2
shows higher uncertainties for absorption coefficients below 0.5 m−1. However, TAPIR
reproduces sufficient chl-a estimations for the North Sea (grey squares in fig. 4.17c).
15 TAP(InW) are remarkably raised compared to TAPs expected from the TAPIRBOA

function (black solid line, cf. eq. (4.13)) which eventually leads to higher a670 calculated
from the inverse from TAPIR (fig. 4.17c). A raised portion of non-phytoplankton TSM
>70 g m−3), a tight packaging of phytoplankton chloroplasts, and cell walls itself can
cause an increased scattering (cf. sections 4.1 and 4.2) which may increase the peak
magnitude. Therefore, an empirical TAPIR function (eq. (4.20)) based on TAPs in
Indonesian Waters (dashed black line in fig. 4.17a) is developed. The slope of the
function is raised compared to the BOA function.

TAPIRInW
BOA : TAP(a670) = 0.061 ∗ a6701.324(4.20)
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Applying the empirical TAPIRInW
BOA function from eq. (4.20), retrieved TAPIR chl-a (red

bullets with dashed error bars) in fig. 4.17c more closely approach the 1:1 line for meas-
ured chl-a greater than 10 mg m−3. The deviation from measured chl-a may occur due
to

i) phytoplankton parameterization,
ii) unavailable a670 measurements,
iii) chosen bio-optical model to convert a670 to chl-a,
iv) a670 value regime, and
v) chl-a measurements.

i) The TAPIR function in eq. (4.13) is developed with reference parameters for the
surface. Applying different phytoplankton parameterization (e.g. aph=NechadMIN)
considering increased scattering, may improve chl-a accuracy with TAPIR. Increasing
coefficients of TAPIRBOA function slightly, which is demonstrated with eq. (4.20), in
order to “simulate” increased scattering according to fig. 4.12, chl-a estimations for InW
approach the 1:1 line.
ii) In order to assign retrieved TAPs to a670 in fig. 4.17a, it was necessary to con-

vert measured chl-a to a670 applying a bio-optical model which likely adds additional
uncertainties. Therefore, there is an intrinsic dependency between measured chl-a and
TAPIRInW

BOA (red bullets).
iii) Using the bio-optical model from Bricaud et al. (1995), retrieved a670 are conver-

ted to chl-a in fig. 4.17c. Possibly, alternative BOMs perform differently for Indonesian
and North Sea waters and calculated chl-a rather match measurements.
iv) As outlined in previous sections, low a670 as in this section becomes inaccurate

with high uncertainties due to very small TAPs and quite small and sometimes negligible
reflectance peaks in the fluorescence domain.
v) Finally, chl-a is measured rather differently and at various depths. According to

Nechad et al. (2015), available chl-a measurements are averaged for upper 10 m in the
provided dataset. There is no information given about number and depth of measured
chl-a samples and, therefore, chl-a values may correspond to measurements below 3 m

which cannot be detected with TAPIR due to the maximum penetration depth (cf.
section 2.2.3).

114



6 Discussion

In an algae cell, the processes photosynthesis, dissipation, and fluorescence antagonist-
ically consume energy of absorbed photons. Nevertheless, fluorescence can also occur
in deceased phytoplankton but the aquatic community mainly focuses on living cells.
Thus, measuring fluorescence, chlorophyll-a amount and living activity could be estim-
ated (Maxwell and Johnson, 2000). Estimation and interpretation of fluorescence remain
still complex because an increase in fluorescence occurs either due to more chl-a or re-
duction of one or both of the other processes. Among others, the fluorescence process
depends on algae type, physiology, health, and environmental conditions. The study
focuses on increase of fluorescence due to increase of chl-a and a670 , respectively.

MOMO simulations reveal that the peak near 690 nm does not solely occur due to fluor-
escence but is mainly induced by phytoplankton scattering which has been mentioned
exemplary by Gilerson et al. (2008). In contrast to FLH retrievals often claiming results
of solely fluorescence (e.g Fischer and Kronfeld, 1990, Gilerson et al., 2007), investigat-
ing the reflectance peak within the fluorescence domain from 650 nm to 730 nm, both
fluorescence and algae scattering is obtained. Chlorophyll-a absorption influences and
scales both properties.

MOMO sufficiently reproduces the process of fluorescence and reflectance magnitude
matches literature with respect to the spectral interval from 650 nm to 730 nm (Fischer
and Kronfeld, 1990, Wang et al., 2017). However, the model validation only operates
for simulations of low phytoplankton absorption coefficients which correspond to lower
chlorophyll-a concentration. The validation of reflectance in a specific spectral range
is complex due to IOPs and reflectance dependencies on environmental conditions and
phytoplankton physiology which have to be considered in simulations accordingly to
the measurements. Rather dark simulated reflectance spectra are suggested with high
total absorption. It might be necessary to collect data in highly eutrophic waters to
compare reflectance measurements and phytoplankton properties with simulations of
high algae content. Although Wang et al. (2017) showed laboratory estimations of
fluorescence with a polarization technique, the pure fluorescence signal is hardly to
discriminate from reflectance measurements. The efficiency is still a high uncertainty
factor with an assumed range between 0.003 to 0.01 (Gilerson et al., 2007, Schalles,
2006) and its estimation is based on further assumptions such as relative reflectance
portion reflectance, spectral distribution, chlorophyll-a concentration, and phytoplankton
species (Gordon, 1979, Gower, 2016, Babin et al., 2003).

115



Chapter 4 Remotely retrieved phytoplankton properties

On the one hand, fluorescence depends on phytoplankton condition and properties
and on the other hand on available fluorescence excitation from the ambient light field
and fluorescence efficiency. According to Maxwell and Johnson (2000), fluorescence
efficiency magnitude is depending on two additional processes consuming energy of
absorbed photons: Heat dissipation and photosynthesis which both are not directly
obtained from remote sensing measurements. In order to obtain absolute fluorescence
portion or relative fraction of the reflectance measurement additional information such
as absolute relation between reflectance magnitude (cleared from additional influence
such as sediment scattering) to phytoplankton depth is required. MOMO simulations
reveal high dependency on the vertical location of phytoplankton. The presence of
aquatic and atmospheric constituents change the amount of light available for absorption
which directly changes available excitation amount for fluorescence. Assuming ideal
conditions (clear atmosphere, little water constituents), fluorescence can be smaller than
expected due to a low efficiency factor – maybe due to the physiological condition of
algae (Maxwell and Johnson, 2000) – or phytoplankton not located beneath the surface.
Quantifying fluorescence and also phytoplankton scattering with TAP, the selection

of the lower integration limit λ1 depends on available signal bands near 670 nm. λ1

constrains integration and can influence the final TAP due to the definition of the “re-
flectance constant” R(λ1), which reduces total reflectance, and upper integration limit
λ2. The impact of λ1 has to be considered but, usually, most of the sensors (e.g. En-
MAP) have lower radiometric resolution than MOMO which limits the choice of λ1 to 1
or 2 possible bands. Therefore, developing sensor specific TAPIR functions from sim-
ulations relativizes the relation between TAP and a440 among each other. Of course,
TAPIR requires a minimum number of bands for a proper integration whereas EnMAP
specifications promise sufficient results. The minimum number has to be investigated
for a pre-defined acceptance uncertainty. However, Lu et al. (2016) reported a band dis-
tribution in about 5 nm intervals is sufficient for water colour observations. Accounting
for sensors with fewer bands than EnMAP (e.g. Hyperion or OLCI with 10 and 5 bands
within 660 nm to 750 nm, respectively), the peak can be estimated with a fitting func-
tion. Unfortunately, absorption properties of phytoplankton and water highly influence
the peak’s shape which complicates the application of a unique function (e.g. Gauß).
However, applying a polynomial of degree 3 depending on individual measurements of
OLCI, the shape of the peak is not reproduced but the integral of the peak sufficiently
represents the relation between absorption and peak area. Therefore, retrieved uncer-
tainties of sensors EnMAP, HICO, TROPOMI, and even multi-spectral OLCI only slightly
differ from MOMO a670 uncertainties.

Uncertainties retrieved in this study are about 30 % to 35 % of phytoplankton absorp-
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tion a670 . They are dependent on a670 itself and mainly phytoplankton IOPs. Consid-
ering alternative parameter values and parameter uncertainties σp, they likely change.
The assumption of σp particularly influences final a670 uncertainty σa. As outlined
beforehand, both reflectance and optical properties depend on phytoplankton species.
Chlorophyll-a absorption coefficients can be used to obtain chlorophyll-a concentration
(see chapter 2 section 2.3.5) but they are dependent on species and often environmental
conditions. Alternative assumed absorption spectra led to different TAPIR functions
which might be used for phytoplankton species discrimination.
Nevertheless, TAPIR provides advantages by “catching” the total effective reflectance

peak with its variable magnitude, location, and shape. In contrast to FLH, TAPIR func-
tions exhibit a monotonically increasing slope with increasing a670 obviating ambiguous
a670 for higher chlorophyll-a concentrations and assimilates to natural behaviour of the
effective peak by avoiding constant measurement bands. Unfortunately, the impact of
aot ranges in similar magnitudes of TAPIR TOA functions and may not be neglected.
Nevertheless, future studies may reveal a constant linear relation (fig. 4.13f) which can
support a simple correction of TAPIR results. Aot is less important for BOA applica-
tions.
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This study introduces Total Algae Peak Integration Retrieval (TAPIR) which links phyto-
plankton induced reflectance peak in the fluorescence domain 650 730nm to chlorophyll-
a absorption at 670 nm (a670). Firstly, the peak located near 683 nm induced by
chlorophyll-a fluorescence and phytoplankton scattering is quantified with an integra-
tion (TAP). Secondly, a TAPIR function is developed for top of the atmosphere (TOA)
simulated data depending on a670 . Afterwards, function’s inverse provides the possibil-
ity to retrieve a670 from reflectance data. Therefore, TAPIR and its functions support
relation to phytoplankton absorption, scattering, fluorescence, and concentration. The
algorithm development is based on RTM simulations with MOMO. MOMO properly repro-
duces the process of fluorescence and is valid for low absorption coefficients. Sensitivity
studies on various atmospheric and aquatic parameters reveal a major dependence on
phytoplankton parameterization (IOPs and fluorescence efficiency factor), some aerosol
influence, and little impact on water constituents. TAPIR applies to all kind of waters
relating to optical complexity, geographical location, measurement location, and water
constituents. The uncertainty of a670 from TOA signals is approximately 30 % to 35 %

(e.g. (1.07±0.34) m−1 and (3.47±1.05) m−1). The simulations for EnMAP specific
conditions are promising for an accurate fluorescence and chl-a retrieval and studies can
benefit from a high spatial resolution (30 m). Uncertainties for hyper-spectral sensors
such as HICO, TROPOMI, and EnMAP are similar to MOMO a670 uncertainties. Apply-
ing a polynomial of degree 3, TAPIR can be applied on multi-spectral sensors such as
OLCI which opens a wide generality and opportunity of the algorithm.
In order to retrieve phytoplankton properties (absorption coefficient, scattering coeffi-

cient, portion of fluorescence, efficiency factor, phytoplankton amount), TAPIR provides
a first step towards advanced retrievals. Due to the dependency on more than one
property future algorithms could include redshift/blueshift, absolute amplitude of the
maximum reflectance peak and possibly NIR measurement which might be raised due
to high phytoplankton scattering. Providing specific TAPIR functions for several ex-
ternal conditions (number of bands, θ, TOA/BOA), we can use these globally in inland
and coastal waters and open oceans due to insensitivity on salinity, temperature, and
pressure. The impact of strongly absorbing gases in the visible could have been under-
estimated. Therefore, water vapour, ozone, and oxygen should be considered sensitively
in future studies and simulations.
Sediments and cdom hardly influence TAPIR and it is applicable to optically complex
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waters. TAPIR mainly depends on phytoplankton IOPs producing the highest uncer-
tainties and largest sensitivities. Further investigations of phytoplankton type specific
measurements accounting for chlorophyll-a absorption spectra, scattering spectra, phase
function, and efficiency factor support phytoplankton parameterization in optical models.
This might be an opportunity for retrievals based on TAPIR to obtain phytoplankton
types or fluorescence exclusively. Additionally, Roesler et al. (1989) proposed an ap-
proach for cdom absorption retrieval near 440 nm based on phytoplankton absorption
and total absorption. The solitude optical approach of TAPIR could contribute a670
from reflectance spectra for phytoplankton. Reflectance is highly reduced by at least half
of the magnitude for already slightly deeper layered phytoplankton of 1 m. According to
the maximum penetration depth of red light of 3 m (Gordon and McCluney, 1975) and
assuming only phytoplankton containing waters, there might be potential to discriminate
the location of phytoplankton.
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5
Application

Abstract The algorithms for snow and ice classification from chapter 3 and
Total Algae Peak Integration Retrieval (TAPIR) from chapter 4 are
applied on two scenes of Lake Erie (USA/Canada) measured with
Ocean and Land Colour Imager (OLCI) and Sea and Land Surface
Temperature Radiometer (SLSTR) on-board Sentinel-3 (S3). Lake
Erie has been chosen because it can be observed with passive remote
sensing instruments the entire year due to its location in the mid-
latitudes in contrast to Greenland. The first scene shows an extreme
algae bloom and the second one a partly snow and ice covered
Lake Erie. The application of TAPIR reveals reliable results for
high chl-a (algae bloom scene) but for lower concentrations the
algorithm cannot detect the required phytoplankton peak if there
is any (lake ice scene). In comparison to meteorological data, the
snow and ice classification provides highly comprehensible results.
More than 80 % of the pixels are valid for classification and 50 %
are assigned to classes. The characterization reveals a negligible
portion of wet pixels that exclude the assumed required habitat for
ice algae which are confirmed by a range of chlorophyll-a algorithms
without retrieving any phytoplankton content.
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1 Observing Lake Erie

Lake Erie is the southernmost of the five Great Lakes located near the border of Canada
and the United States (fig. 5.1). In contrast to Greenland, Lake Erie can be observed
with remote sensing the entire year due to its location between 41°N and 43°N. The
northern-west Lake St Clair contributes the major inflow. Lake Erie majorly outflows in
the northern east located Lake Ontario connected by the famous Niagara Falls. Lake Erie
is relatively shallow with an average depth of about 19 m and reaches only about 7 m

deep (Lake Erie LaMP, 2008) in the western basin. The inland sea is an important fresh
water supply for adjacent cities and agricultural economy and provides natural habitat
for many animal and vegetation species such as salmon, zebra mussels, and algae.
The climate at the lake is typical humid continental with temperatures around the

freezing point in winter and warm summers with temperatures up to around 25 ◦C with
average precipitation around 75 mm to 100 mm per month. In winter, arctic dry air
masses warms over the Great Lakes and collects water vapour which freezes in the up-
per troposphere and falls as snow (Lake Erie LaMP, 2008). The so-called Lake Effect
causes heavy snow falls (“Snow Belt”) when cold air masses meet the lakes which are
warmer than surrounding land (Fuller and Shear, 1995). In autumn and winter, Lake Erie
is partly covered with sea ice that can become up to 0.6 m thick5a. A frozen Lake Erie
reduces the possibility of the Lake Effect due to a smaller temperature gradient between
air masses and lake surface. In summer, in combination with water temperatures that
can reach more than 25 ◦C (Rowe et al., 2016) and a huge nutrient inflow by rivers
loaded with agricultural sediments, Lake Erie suffers from extreme harmful algae blooms
(HABs) every year (Fuller and Shear, 1995, Vincent et al., 2004, Heisler et al., 2008,
Stumpf et al., 2012, Moore et al., 2014, Rowe et al., 2016). Extreme eutrophication
harms animals and environment due to toxic degradation products of algae and oxygen
depletion.

In the following, Lake Erie is analysed with the retrievals for snow/ice and phytoplank-
ton from chapter 3 and chapter 4 applying sensors OLCI and SLSTR from Sentinel-3A.
According to chapter 4 section 4.3, TAPIR can be applied to multi-spectral instru-
ments such as OLCI. For TAPIR, OLCI L1B top of the atmosphere (TOA) radiance and
solar flux measurements from the channels 8 to 12 are used to compute TOA reflect-

5aGLCFS ICE Products, https://www.glerl.noaa.gov/res/glcfs/glcfs-ice.php?lake=e&type=
N&hr=00,accessed2018-03-02
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1 Observing Lake Erie

Figure 5.1: Location of Lake Erie at the American-Canadian border. Green and
red tiles show location of S3 OLCI/SLSTR scenes in 2017-09-05 with an extreme
algae bloom and in 2018-02-12 with a partly frozen lake, respectively.

ance. OLCI and SLSTR heritage of Medium Resolution Imaging Spectrometer (MERIS)
and Advanced Along-Track Spectral Radiometer (AATSR) and can used for cryospheric
characterization. Investigating snow and ice cover, SLSTR brightness temperature meas-
urements in nadir and oblique view for central wavelengths 11 µm and 12 µm are applied
according to AATSR settings from chapter 3.
A clear-sky scene from 2017-09-15 at the western basin of Lake Erie is chosen (red

frame in fig. 5.1) presenting an extreme HAB (“Algae bloom” in section 2.1). At
2018-02-12, OLCI and SLSTR captured a completely clear-sky scene of frozen Lake
Erie (“Lake ice” in section 2.2) and partly snow-covered land (green frame in fig. 5.1).
TAPIR is applied to both scenes which have been masked with OLCI’s L1B mask for fresh
water avoiding invalid results over land masses. For the cryospheric characterization, the
“Lake ice” scene has been masked for non-cryospheric pixels with techniques described
in chapter 3 section 2.4.
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2 Case studies

2.1 Algae bloom

Figure 5.2a shows an OLCI RGB image for 2017-09-15 which already reveals an extreme
bloom. Chlorophyll-a concentration measurements provided by the Great Lakes Reaseach
Laboratory5b confirm the first guess with extreme surface concentrations of more than
500 mg m−3 and more than 100 mg m−3 in less than 1 m depth for the Western basin
at 2017-09-18. Extreme values correspond to a “green soup” shown in fig. 2.5c in
chapter 2 and due to high surface concentrations. Lower phytoplankton layers exhibit
lower concentrations (but still extreme) because they are cut off the necessary light.
Therefore, extreme a670 of more than 20 m−1 retrieved from TAPIR with OLCI

measurements may be reliable qualitatively (fig. 5.2b). The bloom has a mean a670
of (7.92±4.73) m−1 with minimum and maximum values of 0.28 m−1 and 26.11 m−1.
Zero values are excluded from the statistics. The spatial extend of the bloom is perfectly
matched and low phytoplankton concentrations (“blue” water in the RGB) could not be
assessed (dark grey area). Values below 0.4 m−1 are hardly covered by TAPIR method
due to TAPIR functions exhibiting extreme low values close to zero for low absorption
coefficients and quickly increasing slope for higher a670 (see chapter 4 section 4.1).
Applying commonly used chl-a algorithms, Fluorescence Line Height (FLH) and Max-

imum Chlorophyll Index (MCI), differences are retrieved in figs. 5.3a and 5.3b due to
different signal bands at 681.25 nm and 708 nm, respectively. FLH becomes strongly
negative and MCI positive because the observed phytoplankton peak shifted towards
longer wavelength due to the strong absorption feature near 670 nm for high concen-
trations. In figs. 5.3c and 5.3d, BG and Ocean Colour quartic algorithm for MERIS
(OC4E ) represent the spatial extend of the bloom but highly underestimate extreme
chl-a as expected due to limitation of the methodology to case-1 waters which contain
solely phytoplankton. Additionally, for high chlorophyll-a concentrations, BG is expec-
ted to be lower than 1 due to higher reflectance in green than in blue bands. There is
also non-algal content like sediments present in lake Erie perturbing MCI (Stumpf et al.,
2012) likely influencing results from baseline retrievals and BG .
However, combining Cyanobacterial Index (CI) which is the negative of FLH (Wynne

et al., 2008) in units of reflectance with a bio-optical model for Lake Erie after Stumpf

5bdatabase of measurement sites at the western basin of Lake Erie: https://www.glerl.noaa.gov/
res/HABs_and_Hypoxia/WLEMicrocystin.html, accessed 2018-02-22
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2 Case studies

Figure 5.2: Lake Erie, known for growing extensive HABs, shows an algae bloom
in the Western part in 2017-09-15 (panel a). Applying TAPIR for OLCI, the bloom
can be easily identified by extreme absorption coefficients.

et al. (2012), more appropriate chl-a quantities are retrieved in fig. 5.3e.

chl-a = 12570 ∗ CI + 10 = −12570 ∗ FLH + 10(5.1)

According to Stumpf et al. (2012), CI of 10−3 sr−1 refers to 1011 cells m−3 which
amounts to 23 mg m−3 in Lake Erie (Rowe et al., 2016). Therefore, in Lake Erie at
2017-09-15, maximum CI values of 8.5·10−3 sr−1 chlorophyll-a concentration yield about
23 mg m−3 ∗ 8.5 ≈ 200 mg m−3. The model from Stumpf et al. (2012) retrieves con-
centrations of (28.3±15.2) mg m−3 with minimum and maximum values of 10.0 mg m−3

and 120.0 mg m−3 for the current scene considering pixels with valid TAPIR a670 . Qual-
itatively, chl-a(CI) is still too low compared to in situ measurements mentioned above.
The scatter plot in fig. 5.3f compares a670 and CI chl-a and seems to reveal two re-

gimes. The upper “line” exhibits to have a larger peak area, which equals higher a670 ,
where FLH retrieves similar results and, therefore, similar CI chlorophyll-a concentra-
tions. This likely might be a first hint towards advantages using TAPIR integration
method due to improved estimation of the reflectance peak.
However, finding an appropriate bio-optical model (BOM) for Lake Erie based on

chlorophyll-a absorption coefficients at 670 nm, TAPIR may be a fast and possibly more
accurate method retrieving chl-a in addition to the existing Harmful Algae Tracker based
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Chapter 5 Application

Figure 5.3: Chlorophyll-a retrievals applied to Lake Erie from the scene at 2017-
09-15: a) FLH, b) MCI, c) BG, d) OC4E based on BG, and e) CI based on
FLH. Panel f) shows the correlation between concentrations retrieved from CI
and absorption coefficient retrieved from TAPIR, respectively.
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2 Case studies

Figure 5.4: OLCI RGB image from 2018-02-12 of a partly frozen and snow
covered Lake Erie.

on CI to be accessed via https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/
habTracker.html.

2.2 Lake ice

TAPIR is also applied to the second scene from 2018-02-12 where Lake Erie is partly
ice covered displayed in fig. 5.4. Unfortunately, shown in fig. 5.5, TAPIR does not
retrieve any a670 values except for 0 m−1 resulting from an unrecognized or unapparent
phytoplankton peak near 690 nm. However, even FLH and MCI algorithms do not show
any response for chlorophyll-a. In figs. 5.5a and 5.5b, FLH and MCI show slightly
positive and negative values, respectively, over ice and results close to zero for water
pixels. Small negative MCI and positive FLH indicate low to very low chl-a if a peak
near 680 nm is apparent that is not redshifted.
In figs. 5.5c and 5.5d, BG and chl-a from OC4E , which are designed for low chl-a,
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Chapter 5 Application

suggest no chl-a above ice. Results from OC4E around 2 mg m−3 (orange) occur due
to polynomial calculation with a logarithmic BG in eq. (2.19) close to zero (white and
light blue in fig. 5.5c). Above water surfaces, slightly positive BG (orange) and low
chl-a up to 1 mg m−3 is retrieved from OC4E . However, the results are rather similar
to very high chl-a in fig. 5.3d and OC4E is limitated to case-1 waters with negligible
additional constituents and possible adjacency effects such as sea ice. Analogously, CI
retrieves chl-a around 10 mg m−3 due to the offset of 10 mg m−3 in eq. (5.1) and FLHs
around 0 sr−1. The algorithm is designed for medium to high chl-a and is therefore not
valid for low chl-a as shown in fig. 5.5e which occur due to the slightly positive values
of the FLH above ice. TAPIR retrieves no a670 for water and absorption coefficients
up to around 8 m−1 above the ice surface (fig. 5.5f). A qualitative comparison between
Red-Green-Blue (RGB) and a670 reveals higher TAPIR results for brighter surfaces in
the VIS which suggest an influence of high reflectivity. At darker snow and ice areas,
TAPIR retrieves lower a670 around 1 m−1 to 2 m−1. In conclusion, either there is no
phytoplankton near or on the lake ice or none of the chl-a algorithms is able to detect
the algae due to adjacency effects or an extremely low concentration (see this-chapter
in section 3).

Characterization of snow and ice reveals large areas of fine and medium grained snow
and suncrust on land and Lake Erie is partly covered from suncrust and coarse grained
snow in fig. 5.6. Spare white areas occur due to the water-land-mask and there are
almost no wet or ice pixels apparent. Lake St Clair and Lake Hurton in the northern
west show shows medium grained snow and a comparison to the RGB indeed suggest a
snow cover due to the homogeneous bright surface (see this-chapter section 3).
The snow and ice characterization algorithm retrieved about 80 % valid and 50 %

classified pixels of all un-masked pixels (fig. 5.7a). Portions of fine, medium, coarse, and
unclassified pixels range within 10 % to 20 %. Figure 5.7b reveals most of invalid pixels
occur due to 1 or 2 retrieved emissivities per pixel (11 % and 8 %, respectively) which
exceed the classification scheme (cf. fig. 3.5 in chapter 3 section 3.5). Forward view
emissvities are mainly responsible for invalidity due to emissivities larger than the upper
limit of class fine or above the physical value of 1 (red and blue checked in fig. 5.8).

However, the total number of invalid pixels is rather low and mostly occurs at regions
exhibiting more complex topography (e.g. the northern west of the scene) where the
angular dependency may mismatch. There are less than 1 % pixels labelled wet because
temperatures are below freezing point for the entire scene. This may support the hy-
pothesis that there is no liquid water on ice and snow areas of Lake Erie apparent and
phytoplankton cannot grow in a completely frozen habitat.
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2 Case studies

Figure 5.5: Analogously to fig. 5.3 for panels a)-e) for the OLCI scene from
2018-02-12. Panel f) shows the results from TAPIR. The high values (orange)
in panels d) and e) result from particular calculation technique with offsets and
constants for input values of zero (cf. panels c) and a), respectively).
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Chapter 5 Application

Figure 5.6: Map of classified snow and ice pixels at Lake Erie from 2018-02-
12. The histogram provides portion of each class and invalid, indistinct, and
unclassified but valid pixels. Colours in the map correspond to histogram labels.
White areas in the map occur due to the water-land mask applied to the scene
beforehand and collocation interpolation between OLCI and SLSTR.
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2 Case studies

Figure 5.7: Histograms of classified and invalid pixels for the lake ice scene at
Lake Erie from 2018-02-12. Panel a) shows about 80 % valid pixels of all available
(un-masked) pixels with about 50 % pixels assigned to classes. Panel b) illustrates
the portion on invalid pixels due to the number of ε per pixel mismatching the
classification scheme. There is a negligible portion of wet pixels of less than 1 %.

Figure 5.8: A pixel becomes invalid if at least one out of the three retrieved
emissivities per pixel exceed the classification scheme (cf. fig. 3.5). For Lake Erie
scene from 2018-02-12, most of invalid pixels occur due to emissivities in forward
view (f12 in purple and f12&f11 in light grey) exceeding the upper classification
range (red and blue checked).
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3 Discussion and conclusions

Lake Erie at the American/Canadian border is an ideal testing site for remote sensing
retrievals of snow/ice and chl-a. The lake provides a frozen surface in winter and extreme
algae blooms in summer. Additionally, it can be observed the entire year with passive
remote sensing instruments due to its location in the mid-latitudes.
Applying TAPIR to an OLCI scene from 2017-09-15 at the western basin of Lake Erie,

large and extreme phytoplankton absorption coefficients at 670 nm of more than 20 m−1

are retrieved. The results correspond to chl-a retrieved from a BOM, which is particularly
designed for Lake Erie, which is based on negative FLH, qualitative comparison with an
OLCI RGB image, and in situ chl-a measurements. The lowest value retrieved with
TAPIR is about 0.3 m−1 mainly induced by TAPIR function slope approaching zero for
low a670 . Therefore, low phytoplankton content may not be detected from TAPIR.
The application of TAPIR to the second scene, which includes a partly snow and ice
covered Lake Erie, from 2018-02-12 affirms the assumption that TAPIR cannot retrieve
low chl-a. However, none of the applied phytoplankton identification algorithms (FLH,
MCI, CI, OC4E , TAPIR) retrieve reliable phytoplankton concentration or absorption
coefficients for the Lake Erie scene. Non-detection either occurs due to un-apparent
reflectance peak or negligible phytoplankton concentrations or used algorithms are not
able to detect chl-a.
The identification algorithm of snow and ice areas of the second scene reveals a negli-

gible number of wet pixels where a thin liquid water layer could provide required habitat
for phytoplankton. This leads to the assumption that no phytoplankton is apparent in
this scene. Possibly, phytoplankton migrated to deeper waters layers or below the lake
ice to exploit the slightly warmer temperature in contrast to surface layers.
In total, more than 80 % of the pixels, which are available for snow and ice classific-

ation, are valid and 50 % are assigned to classes. The characterization classifies areas
of fine and medium grained snow and suncrust above land surfaces and suncrust and
coarse snow above Lake Erie. According to meteorological measurements in fig. 5.9 at
Detroit, Toledo, Cleveland, and Erie (see maps in figs. 5.1 and 5.6), measured temper-
ature and snow depth time series for 5th February to 15th February 2018 match the
retrieved classification.
In Detroit, temperatures range below −5 ◦C and at the 9th February heavy snow

fall happened (increase of snow depth of 15 cm) which explains homogeneous white
area at Lake St Clair and Lake Hurton in the north western part of the scene. The
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3 Discussion and conclusions

Figure 5.9: Meteorological conditions around Lake Erie in February 2018 with
data from the National Weather Service Forcast Office operated by the National
Oceanic and Atmospheric Administration (NOAA) accessible via http://w2.
weather.gov/climate/ .

snow depth remains stable and decreases from 10th to 12th of February in fig. 5.9.
Similar conditions occurred for Toledo at the western coast of Lake Erie. Therefore,
the observed snow cover with SLSTR at 12th of February is already a few days old.
The classification scheme characterizes pixels in the western and north western part of
the scene with medium and suncrust which matches snow of an age of a few days.
In the northern part around Lake Hurton, fine snow is retrieved which may be caused
by newly fallen snow. Unfortunately, the national weather archive from Canada (http:
//climate.weather.gc.ca/index_e.html, accessed 2018-03-01) issues missing data
for the snow depth for the entire February 2018 for most of the stations between Lake
Erie and Lake Hurton.
The cities Cleveland and Erie are located at the southern coast of Lake Erie where

temperatures increased above the freezing point until the 11th of February and then
rapidly fell to less than −5 ◦C on the 12th. There has been a snow fall event at the
9th and 10th of February which contributed a few centimetres of snow. However,
temperatures above the freezing point on the 11th may induced a melting of the surface
snow which froze again on the 12th. The eastern part of the classified SLSTR scene
from the 12th shows suncrust and coarse grained snow which can be related to an older
and re-frozen snow cover due to the meteorological circumstances.
In conclusion, the quantitative comparison of the cryospheric classification with met-
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Chapter 5 Application

eorological data suggest proper and valid characterization of the snow and ice covered
surface. In order to avoid missing data due to topography and collocation, the classific-
ation algorithm could be refined for angular dependency.
The application of TAPIR suggests good results for high chl-a but it does not support

the retrieval for low concentrations from remote sensing instruments. Possibly, a proper
atmospheric correction for water vapour and oxygen (O2B band) may improve results
because simulated bottom of the atmosphere (BOA) reflectances exhibit a more apparent
peak for lower concentrations. Additionally, snow and ice surfaces are relatively bright
in the visible spectrum (VIS) which may influence signals near 690 nm and lead to false
overestimation of integrated phytoplankton area. Thus, TAPIR may not be applicable
to detect phytoplankton on snow and ice surfaces assuming bright surfaces and low algae
concentration.
An application to the Greenland ice sheet may be complicated because ice algae are

assumed to exhibit specific pigmentation and absorption features (Yallop et al., 2012)
which have to be considered. However, TAP calculation is rather fast and simple and,
therefore, TAPIR might be a good tracker for extreme events such as HABs.
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6
Conclusions

Abstract This last chapter recapitulates previous chapters and gives a con-
cluding summary and a brief outlook.
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Oceans, inland and coastal waters, ice sheets of Greenland and Antarctica, sea ice,
and glaciers are known to play an important role in global radiation and energy budget
and, therefore, for climate and climate variability. Snow and ice albedo significantly con-
tribute to reflection of shortwave radiation and waters and phytoplankton are important
participants in the global carbon cycle. Therefore, algae on ice, e.g. on the Green-
land ice sheet or lake ice, is current research objective and remote sensing retrievals
exploiting wavelength and object (snow/ice and and phytoplankton) specific properties
as introduced in this dissertation are supposed to contribute to future applications and
investigations.
The classification of snow and ice are based on conversion of thermal infra-red (TIR)

brightness temperatures of different viewing angles to surface emissivity. Emissivity
provides the advantage to be highly specific to object, wavelength, and viewing geo-
metry. The TIR domain around 11 µm to 12 µm is solely influenced by water vapour
and radiation originates from atmospheric and surface emission. Three retrieved emiss-
vities per pixel are sorted in a classification scheme based on measurements of Hori
et al. (2006). A valid pixel can either be classified with fine, medium, coarse grained
snow, suncrust, or ice, indistinct within classes, or unclassified due to mismatching of
at least one of the emissivities in the scheme. Invalid pixels occur due to emissivity
values exceeding classification intervals which might be caused by complex topography
or high reflection on sea ice. Wet pixels are classified for physical temperatures above
the freezing point. The algorithm is successfully applied to AATSR scenes in Greenland,
Antarctica, and North America in 2007 and 2008 and to a SLSTR scene of Lake Erie
in 2018. Major obstacles are complex topographic surfaces which influence the actual
viewing angle and, therefore, might introduce uncertainties, misclassification and invalid
pixels. The analysis of invalid pixels confirmed that mostly forward view emissivities
exceed the classification range or do not match with nadir view emissivity which might
be resulting from nadir/forward view collocation. Highly reflective areas are often un-
classified although the three pixel emissivities are in range. The effect occurs often at
edges of sea and lake ice and might correspond to melting snow and ice.
Ice algae live in a wet habitat, which is supposed to be detected with the cryospheric

characterization, and may quantified with Total Algae Peak Integration Retrieval (TA-
PIR) exploiting the reflectance peak in the red visible/near infra-red (NIR) domain from
650 nm to 730 nm. The peak originates from effects of optical phytoplankton proper-
ties (absorption, scattering, fluorescence) and additional water constituents play a minor
or negligible role. Chlorophyll-a fluorescence, chlorophyll-a absorption and phytoplank-
ton scattering are highly specific on algae species and amount. Using Matrix Operator
Model (MOMO) simulations, the influence of these properties are investigated and TAPIR
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is developed. The peak’s size mainly results from phytoplankton scattering and fluores-
cence and absorption is responsible for shape and location of the reflectance maximum.
TAPIR links the spectral integrated phytoplankton reflectance peak to the chlorophyll-a
absorption coefficient at 670 nm (a670) which inherits information about chlorophyll-a
absorption, phytoplankton scattering, chlorophyll-a fluorescence, and depth. The al-
gorithm is highly sensitive to phytoplankton properties and aerosol-optical thickness for
top of the atmosphere (TOA) applications and the uncertainty in retrieving a670 ranges
within 30 % to 35 %. The application to insitu measurements from North Sea and In-
donesian waters and two OLCI scenes of Lake Erie reveal that TAPIR can detect medium
to high concentrations of algae.
Lake Erie at the Canadian/American border exhibits extreme algae blooms during

summer and partly freezes in winter. Both introduced retrievals showed sufficient results
analysing OLCI and SLSTR scenes. In order to obtain ice algae in optically complex
environments, such as coastal waters or melt ponds in Greenland, which can be found
with the cryospheric algorithm, TAPIR might only be applied to scenes with medium to
high algae content.
The two retrievals for snow and ice classification and phytoplankton characterizations

are based on TIR emissivity and phytoplankton inherent optical properties (IOPs) in the
VIS. In the future, the cryospheric algorithm would benefit from a continuous classific-
ation scheme based on simultaneous measurements of ice crystals and their emissivity.
This would refine the classification scheme and omit classification gaps or overlaps and
the scheme possibly could be extended with alternative and additional classes. TIR
sensors providing different or more measurement bands within 8 µm to 14 µm or differ-
ent viewing angles are suggested to improve the classification. Instead of using two TIR
bands in two viewing modes as provided by SLSTR and AATSR, the algorithm could
be tested using multiple measurement bands in the TIR in nadir view (e.g. MODIS
bands 31-36). In this thesis, Radiative Transfer for TIROS Operational Vertical Sounder
(RTTOV) was used to generate a forward model for surface emissvities from TOA bright-
ness temperatures. Using alternative models such as full-range Matrix-Operator Model
FR-MOMO (Doppler et al., 2014) and advanced optimization methods such as optimal
estimation are supposed to confirm and refine results. Qualitatively and quantitatively,
the snow and ice classification require to be validated with in situ measurements and
remote sensing products from micro-wave measurement, for instance.
Analogously to the cryospheric algorithm, TAPIR requires to be compared to in situ

measurements of chlorophyll-a concentration and absorption. In April 2018, TROPOMI
measurements will be available which is a promising candidate for TAPIR applications
which can be extended with EnMAP measurements launching in 2019. Measurements
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from Sentinel-3 series carrying OLCI could extensively tested on applicability of TAPIR
which opens the field to multi-spectral sensors. Exploiting shape, location, and mag-
nitude of the reflectance peak in the fluorescence domain and the linkage to IOPs near
670 nm provides possible discrimination powers of phytoplankton species and amount.
The reflectance peak is dependent on magnitude of absorption, scattering, and fluores-
cence of phytoplankton and therefore specific coefficients can be tested to discriminate
between phytoplankton species with TAPIR. Additionally, it might be beneficial to use
hyper-spectral reflectance in the fluorescence domain to discriminate absorption and
scattering of phytoplankton near 670 and possibly obtain the fraction of fluorescence.
Therefore, magnitude and redshift/location of the reflectance peak could play a role.
After obtaining an absorption coefficient for phytoplankton in the red visible spectrum,
an algorithm could be developed to discriminate cdom and phytoplankton absorption or
amount in the blue based on the relation of maximum absorption of phytoplankton near
440 nm and 670 nm.

In order to investigate ice algae, it would be beneficial to apply a specific ice algae
parameterization to obtain results as accurate as possible. It is also supposed to be
required to analyse the ambient light field in melt ponds and highly reflective environ-
ments such as snow and ice which might have an impact on the measured reflectance
phytoplankton peak.
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