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1 Introduction 

1.1 Intestinal absorption 

From the patient’s point of view, the oral administration of a drug is the most convenient route 

of administration and also shows the highest acceptance and compliance [1-3]. The majority 

of drugs is absorbed across the small intestine as the presence of villi and microvilli 

increases the absorptive surface area by manifold [4]. Therefore, the epithelial tissue and the 

physiological aspects of the gastrointestinal tract are of great significance for the absorption 

of orally administered drugs. Subsequently, this thesis is going to elucidate the factors 

influencing intestinal drug absorption and how to predict the fraction of dose absorbed in 

humans at an early stage of the drug development process. 

 

1.2 Anatomy and physiology of the gastrointestinal tract  

In order to grasp the process of drug absorption, it is important to understand the complex 

anatomy and physiology of the gastrointestinal tract (GIT) and consequently the route of the 

drug through the body. 

 

1.2.1 Oral cavity 

The oral cavity forms the entrance to the gastrointestinal tract. It is lined with a mucous 

membrane in which numerous glands (minor salivary glands) are embedded. Together with 

the three pairs of salivary glands (parotid, submandibular and sublingual)  ending in the oral 

cavity but being located outside, they produce the saliva that is needed to aid the digestion 

process. Saliva mostly consists of water; the rest being electrolytes, enzymes and mucin. In 

addition, antimicrobial components like lysozyme and immunoglobulin A (IgA) are present to 

protect from bacteria and viruses. The human mouth produces 1.0 - 1.5 litres of saliva per 

day [5]. The pH of the saliva in the pre-prandial state revolves around 6.0, after stimulation it 

rises to a pH of about 7.0 - 7.5 [6]. As soon as the saliva reaches the stomach, its enzymes 

are inactivated due to the acidic gastric fluids (low pH). The advantage of buccally absorbed 

(through the membrane of the cheek inside the oral cavity) compounds is the avoidance of 

the intestinal and hepatic first-pass effect and the enzymatic degradation within the 

gastrointestinal tract. Only a few compounds have the properties to use this route of 

absorption like the well-known glyceroltrinitrate with its vaso-dilating properties [7]. The major 

absorption mechanism for buccally absorbed substances is passive diffusion [8, 9] but also 

carrier-mediated diffusion and active transport have been reported [10]. More the charge of 
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the molecules rather than the size of the compound seems to be a discrimination factor for 

buccal absorption [11]. Dosage forms that enable buccal absorption are for example 

chewable capsules that release their liquid content containing the drug into the oral cavity or 

wafers being placed buccally or sublingually [12, 13].  

 

1.2.2 Oesphagus 

The oesophagus connects the oral cavity with the stomach. The human’s oesophagus is a 

25 cm long muscular tube lined with the same mucous producing epithelial cells as in the 

oral cavity. It is designed to form a predominantly flexible and well lubricated route to 

transport a food bolus to the stomach by contraction of the skeletal and smooth muscle layer 

(peristaltic). Once the peristaltic wave reaches the end of the oesophagus the lower 

oesophageal sphincter is opened and the food bolus can enter the stomach. There are no 

enzymatic processes involved in the passage of the oesophagus and it is not a site of drug 

absorption [14].  

 

1.2.3 Stomach 

The stomach follows distally to the oesophagus. It is an organ with a pronounced 

organisation of three muscle layers unique in the gastrointestinal tract. This structure allows 

the stomach to contract in various ways in order to adjust to its filling state and to churn the 

stomach’s content with the gastric acid (chyme). Also it helps to emulsify the incorporated 

fats in order to facilitate the degradation. Eventually, those muscle layers enable the 

emptying of the chyme into the duodenum of the small intestine. The stomach can be divided 

into four areas. The part where the oesophagus joins the stomach is the cardia; it is followed 

by the fundus and the corpus which form the main part of the stomach. The area leading 

towards the duodenum is named the pyloric antrum.  

The already started digestive process in the oral cavity is continuing in the stomach due to 

the presence of gastric acid. About 2.0 - 3.0 litres are secreted daily in the stomach from 

glands in the gastric mucosa. The epithelium of the fundus and corpus area is folded into 

creases and creates deep pits in which the three types of glands are located that produce the 

components of the gastric acid. The parietal cells are triggered by food intake or even 

expected food intake and produce mainly hydrochloric acid (HCl) which can lower the gastric 

pH down to 1.0. HCl denaturizes the three-dimensional structure of proteins in the chyme 

and prepares it for the following degradation processes. In addition, HCl acts as a 
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disinfecting agent for possible microorganisms that were incorporated with the food. Besides 

that, the parietal cells also produce the intrinsic factor (IF) which allows the absorption of 

vitamin B12 in the small intestine. The chief cells produce pepsinogen, which is activated by 

acidic pH into the proteolytic pepsin. The purpose of pepsin is to further break down proteins 

to smaller polypeptides. The chief cells also secrete a small amount of gastric lipase, a fat 

degrading enzyme. The third type of gland cells in the stomach are the neck cells, their 

produced mucous is meant to cover the inner surface of the stomach to create a protective 

film in order to keep the stomach from digesting itself by the aggressive hydrochloric acid 

and pepsin. This circumstance requires the secretion of mucin all over the gastric surface; 

therefore neck cells are also present in the cardia area and the pyloric antrum.  

Similar to the oral cavity and the oesophagus, absorption of xenobiotics in the stomach is 

negligible for most substances compared to the small intestine. However, the gastric 

emptying time is a physiological factor influencing the delivery of the drug to the major sites 

of absorption. The gastric transit time of a drug depends on the drug dosage form, prandial 

state and to some extent on the size and density of the particles administered [15, 16]. For 

drinking solutions in fasted subjects, a gastric transit half-life (50 % of formulation emptied 

through the pyloric sphincter) of 0.1 to 0.4 hours is reported [17]. Gastric transit times 

(100 % of formulation emptied through the pyloric sphincter) for pellets and Tablets are up to 

2 hours in fasted subjects and increase in the non-fasted state up to 11 hours depending on 

the meal [18].  

 

1.2.4 Small intestine 

The small intestine (SI) of a healthy human has a total length of about 3.0 – 4.0 m and an 

average diameter of 2.5 cm. It is divided into three structural sections. The duodenum is the 

first part and follows the pylorus of the stomach. It is with 25 cm the shortest section of the SI 

but plays and important role in the digestion process, as the bile duct and the pancreatic duct 

disembogue into this section. Bile (produced by liver and gallbladder) and secreted juice from 

the pancreas aid in the digestion and absorption of fats, proteins and carbohydrates. Distally, 

the SI continues with the jejunum (2/5th of total length) and smoothly goes over into the ileum 

(3/5th of total length). The unique construction of the luminal mucosa which causes an 

enormous increase of absorptive surface area enables the SI to achieve an absorption 

performance multiple times higher than its actual tube length would permit (Fig. 1-1). This 

increase in surface area is managed in three steps. First the mucosa is clinched into circular 

folds (plicae circulares) along the duodenum and the jejunum (Fig. 1-1 A). In the next step 

each fold is lined with finger-like projections and deep pits referred to as villi and crypts. The 



 
 

 

 4 

villi accommodate the mature enterocytes which are the absorptive cells of the 

gastrointestinal tract. The crypt area on the other hand is responsible for processes including 

mucous production and generating of new enterocytes (Fig. 1-1 B). Subsequently, each 

enterocyte is lined with additional projections (microvilli) which create the so called brush 

border membrane. Altogether the absorptive surface area is increased to approximately 

200 m2. Compounds absorbed at the apical side of the enterocytes and exiting on the 

basolateral side are directly entering the blood capillary and lymphatic system of the small 

intestine and are transported through the mesenteric vein and the hepatic portal vein directly 

into the liver. As regards pH values, as a crucial factor to drug absorption, it gradually 

changes along the gastrointestinal tract. Whereas the duodenum is still slightly acidic from 

the stomach with a pH of 6.0 it changes towards neutral further along the gastrointestinal 

tract to pH 7.0 - 7.5 in the ileum region. The small intestinal transit time is about 

3.0 - 4.0 hours and unlike the stomach, not effected by prandial state or size and density of 

the dosage form [18]. Particles not absorbed in the small intestine are transported onwards 

into the colon via peristaltic waves.  

 

 
 

 
 

Fig. 1-1: Schematic overview of architecture of the small intestine and the mucosa. (A) 
Section of the small intestine showing the circular folds (plicae circulares) and the layers of the 
intestinal wall. (B) Section of the intestinal mucosa showing villi, lacteal vessels and crypts [19, 
20].  
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1.2.5 Large intestine 

Colon, rectum and the caecum form the large intestine. In man, the caecum plays a 

secondary role and is reduced to the appendix of the caecum, whereas in other species (e.g. 

rodents) it is of higher importance. In this case, the caecum is housing fermenting bacteria, 

which aid in cellulose digestion in herbivores [21].The main task of the large intestine is the 

reabsorption of water and electrolytes. The indigestible content of this section is mixed with 

mucous and condensed along the 1.5 m long large intestine to about 13-18 mL and is 

excreted by the distal end of the colon (rectum) [22]. From the histological point of view, the 

epithelium of the large intestine differs from that of the small intestine. Plicae circulares in 

addition to villi are absent. In contrast, the crypts are markedly deeper and mainly intended to 

produce mucous. The epithelial cells towards the inner lumen have the previously mentioned 

microvilli structure and aid the reabsorption process. An important physiological difference is 

the presence of bacteria (e.g. E. coli), forming the so called gut flora or microbiome. 

Indigestible food particles are degraded further due to fermentation and decomposition 

processes of the microorganisms. The pH in the large intestine varies between pH 5.5 and 

pH 7.0. Also, the transit time is highly variable and ranges from 8.0 to 72 hours [23].  

 

 

1.3 Factors influencing intestinal absorption 

A multitude of physiological, physicochemical and drug formulation factors influence the rate 

and extent of oral drug absorption of xenobiotics. In Chapter 1.2 some of the anatomical and 

physiological parameters have been discussed; hence this section will focus on 

physicochemical drug properties (Chapter 1.3.1), formulation factors (Chapter 1.3.2) and the 

mechanisms of absorption (Chapter 1.3.3). 

1.3.1 Physicochemical factors 

1.3.1.1 Aqueous solubility 

Solubility is one of the key parameters that are mandatory for compounds to interact with the 

absorptive intestinal membrane. Generally, aqueous solubility is the maximum amount of 

compound that will dissolve in pure water at a specific temperature and pH [24-26]. As the 

intestinal pH varies along the GI tract, not only the solubility of a compound at different pH 

values is of interest, but also the pKa value of the drug. The effect of gastrointestinal pH on 
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the absorption process is very complex as it influences the ionization of weak bases and 

acids as well as the drug dissolution from solid dosage forms. Most drugs are either weak 

acids or weak bases, and normally only the non-ionized fraction i.e. the most lipophilic form 

crosses biological membranes, except where transport carriers are involved [27]. Weak basic 

drugs tend to have a slower dissolution rate at higher pH, whereas weak acidic drugs 

dissolve faster at higher pH. Therefore meals that elevate gastric pH can decrease the 

dissolution of a weak base and increase the dissolution of weak acids.  As high solubility is 

beneficial for drug dissolution in aqueous media, the same compounds often exhibit low 

permeability due to their high polarity and poor lipophilicity [28]. Usually, the solubility is 

tested by the shake-flask method, using a standard buffer solution of fixed corresponding pH 

[29].  

In order to elucidate the dissolution of a compound a method using dissolution media that 

mimic the gastrointestinal in vivo conditions is applied. There are three commonly used buffer 

solutions: simulated gastric fluid with and without pepsin (SGF/SGFsp), fasted state 

simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluid (FeSSIF) to imitate 

the intestinal surroundings [30-32]. Dissolution tests in these media are especially valuable to 

assess dissolution of oral solid dosage forms [31-33].  

 

1.3.1.2 Lipid solubility  

The most important physicochemical prerequisite for a solubilised drug that is absorbed by 

passive transcellular transport is the ability to partition into the highly lipophilic bilayer 

membrane. The vast majority of orally administered drugs are absorbed via this transport 

route [34]. The ability to diffuse through lipids has been found to be highly correlated with the 

capability of a compound to partition between water and the organic solvent octanol. This 

ability is expressed by the log Po/w (logarithm of the partition coefficient between an octanol 

and a water phase) value. As a rough guideline, a passively transcellular diffusing compound 

should have a log Po/w between 0.0 – 5.0 in order to qualify for epithelial permeation [35]. This 

relationship is also illustrated in Fig. 1-2 in which the influence of the log Po/w on the 

measured effective jejunal permeability (Peff) in man is displayed for a wide range of 

compounds (for details see Appendix Tab. 7-1). In order to be well absorbed, a compound 

needs to exhibit an effective permeability (Peff) value > 1.5E-04 cm/s [36]. Fig. 1-2 

demonstrates that passively transcellular well absorbed drugs show a log Po/w greater than 

zero. Well absorbed substances with a negative log Po/w require a different route of 

absorption, usually by employing a transmembrane active transporter, to overcome the low 

lipid solubility of the drug. Chapter 1.3.3 will elucidate the different mechanisms of intestinal 
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absorption.  

 

1.3.2 Drug formulation factors 

The role of the drug formulation in the delivery of drug to the site of action should also be 

mentioned. For solid oral dosage forms, a rapid disintegration is important to have a rapid 

absorption; therefore a low disintegration time is favourable. Additionally, dissolution time 

(solubilisation of solid drug substance) is an important factor which can influence the rate and 

extent of absorption since the drug must be in solution in order to be absorbed from the 

gastrointestinal tract. Based on these two factors the following order of decreased rate of 

absorption can be expected: solution > suspension > capsule > tablet > coated tablet. 

Disintegration and dissolution can also be influence by formulation manufacturing variables 

like applied granulation method and compression force. Finally, the use of pharmaceutical 

 
 
Fig. 1-2: Relationship between logarithm of the partition coefficient between an octanol and a 
water phase (log Po/w) and human in vivo permeability expressed as Peff (effective permeability) for 
a wide range of compounds (data acquired from literature, for details see Tab. 7-1) Transport 
routes: passive transcellular (●), active (■), passive paracellular through tight junctions (●), other 
data points combine routes of transport according to colour, whereas the outline symbolises the 
less dominant pathway. 
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excipients (e.g. binder, granulating agents, disintegrates and lubricants) can impact the 

in vivo performance of the dosage form [37].  

1.3.3 Permeation of biological membranes 

To traverse a cellular barrier like the gastrointestinal mucosa, a molecule has to pass lipid 

membranes. Mainly, a distinction is made between paracellular and transcellular transport, 

whereas the latter is divided into passive diffusional transfer and carrier mediated transport. 

1.3.3.1 Transcellular transport 

1.3.3.1.1 Passive transcellular transport 

In order for a molecule to enter the cell it is required to cross the semipermeable biological 

membrane that separates the intracellular from the extracellular compartment. It consists of a 

double layer of phospholipids with integral transmembrane proteins. The solute can either 

passage directly through the lipid bilayer (passive diffusion) or it can diffuse through aqueous 

pores (aquaporins) formed by the transmembrane transport proteins (facilitated diffusion). 

For both diffusional transfer mechanisms no energy input is required as the transport is 

solely triggered by a concentration or electrochemical gradient. Once complete extracellular 

solubility of the substance is achieved, the main factor that determines the rate of passive 

diffusion through the biological membrane is the solubility of the molecule in lipids. As 

described above the partition coefficient (log P) gives a good estimation of the drug’s lipid 

solubility. Usually non-polar molecules (equal sharing of electrons between atoms) permeate 

effortlessly through biological membranes as they are easily soluble in other non-polar 

solvents like lipids. However, many drugs are weak acids or bases and their ionization varies 

with pH. For these compounds, only the uncharged species (the protonated form for a weak 

acid and the unprotonated form for a weak base) can diffuse across lipid membranes [38]. 

The marked difference between passive and facilitated diffusion lies in the avoidance of 

passing directly through the lipid membrane, by diffusing through channel proteins. In order 

for a molecule to pass through those aqueous channels it has to be hydrophilic, as well as 

relatively small in size, because the diameter of an aquaporin is only about 0.4 nm (most 

drug molecules usually exceed 1 nm in diameter) [38]. Although channel proteins play a 

minor role for drug absorption they are vitally important for the water supply of the cell. 

Aquaporins are impermeable for charged species, especially protons, to obtain the existing 

proton gradient which is crucial, as it aids active transport processes across the membrane 

[39].  
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1.3.3.1.2 Active transcellular transport 

There are three types of ATP-coupled carrier-mediated transporters involved in the transfer of 

solute across the epithelial membrane (Tab. 1-1). The simplest version is the carrier protein 

transporting one molecule from one side to the other side of the cell membrane. The 

molecules, or also ions, are transported against their concentration gradient. This primary 

active transport is referred to as uniport. The other two active transporters are cotransporters 

which are only indirectly coupled to ATP. They are classified as secondary active transporters 

and use the electrochemical potential difference created by ATP-coupled ion-pumps to either 

transport two molecules into the same direction (symport) or into opposite directions 

(antiport). For both cases, only one molecule is transported against its concentration 

gradient, as the other follows from high to low concentration.  

 

Tab. 1-1: List of intestinal transporters that play a role in drug absorption [40]. 

Transporter Type Structure Known substrates Comment 

PEPT1 symporter 
H

+
/peptide 

cotransporter 
di- and tripeptides, β-lactam 
antibiotics, bestatin 

target for improving 
intestinal absorption of 
poorly absorbed drugs 
 

OATP antiporter 

Na
+
-

independent 
organic anion 
transporter 

organic anions e.g. 
esterone-3-sulfate, 
dehydroepiandrosterone 
sulfate, taurocholic acid, 
pravastatin, fexofenadine 

exhibits pH-sensitive 
transport activity 

OCTN2 
uni-, sym- 
and 
antiporter 

organic ion 
transporter 

e.g. carnitine 
suggested link to 
Crohn’s disease 

MATE antiporter 
H+/organic 
cation antiporter 

e.g. cimetidine, cephalexin 
pH-dependent 
transport properties 

Pgp uniporter 
ABC cassette 
binding 
transporter 

broad substrate specificity, 
tendencies towards lipophilic 
cationic compounds, long 
list of substrates and 
inhibitors 

suggested cooperation 
with CYP3A4, 
multidrug resistance 
 

MRP2 uniporter 
organic anion 
transporter 

e.g. glutathiones, 
glucoinides 

located at the proximal 
small intestine 

MRP3 uniporter 
ABC cassette 
binding 
transporter 

e.g. glucuronosyls and 
sulphated conjugates 

expressed at 
basolateral membrane 
of enterocytes, 
enterohepatic 
recirculation, 

BCRP uniporter 
half-ABC 
cassette binding 
transporter 

transporting diverse range of 
substrates 

mediates efflux of the 
antibiotic nitrofurantoin 



 
 

 

 10 

1.3.3.1.3 Transcytosis 

Despite its minor influence on drug absorption for small molecule entities, the process of 

transcytosis should be included in the chapter of transcellular transport for sake of 

completeness. Molecules are transported across the interior of the cell via vesicles. This 

mechanism can for instance be triggered by binding to a membrane receptor on the surface 

of the cell, followed by the incorporation of the molecule by forming a vesicle and transport 

through the interior of the cell. Finally, the vesicle merges with the membrane on the other 

side of the cell and the unchanged content of the vesicle is released. The route of 

transcytosis is useful for proteohormones and antibodies including monoclonal antibodies 

and antibody conjugates [41, 42].  

 

1.3.3.2 Paracellular transport 

The absorptive intestinal epithelium is formed by a single layer of enterocytes. The 

neighbouring cells are bonded laterally via strands of transmembranal proteins (e.g. claudins, 

occludins), that have a cell-cell connecting extracellular domain. Those intercellular junctions 

(tight junctions) maintain the polarity of the cells as well as creating a diffusion barrier. Tight 

junctions are the gate to the paracellular pathway as they form small pores that allow only 

certain molecules to pass from the apical to the basolateral side and vice versa. The 

diameter of a tight junction formed space is 3.0-10 Å and therefore limits the passage of most 

molecules [43]. Only small (molecular weight < 200 Da), polar and hydrophilic substances 

are able to use the paracellular route (e.g. water, mannitol, creatinine). There is strong 

evidence that the density of tight junctions and the number of strands between adjacent cells 

varies along the GI tract [44]. There are also quantitative differences along the epithelia cells 

themselves between villus and crypt tight junctions. Furthermore, the structure of villus 

absorptive cell tight junctions is modulated by the prandial state [45]. The primary driving 

force for the paracellular transport is the presence of a concentration gradient, but 

hydrostatic pressure can also play a role. In addition to the passage restriction described 

above, it should also be kept in mind that the surface area of the brush border membrane 

lined enterocytes is > 1000-fold larger than the paracellular surface area [46].  

 

1.3.3.3 Quantitative permeability measures 

Two types of parameters are usually determined to describe permeability of a drug: the 

apparent permeability (Papp) and the effective permeability (Peff). Both are experimentally 
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determined, whereas the Papp is used for in vitro experiments and the Peff for in situ / in vivo 

experiments. The Papp is expressed as cm/s and calculated by the following equation:  

 

𝑃𝑎𝑝𝑝 [𝑐𝑚/𝑠] =  
1

(𝐴[𝑐𝑚2]×𝐶0[µ𝑚𝑜𝑙/𝑚𝐿])
× (

𝑑𝑄

𝑑𝑡
) [µ𝑚𝑜𝑙/𝑠]  Equation 1 

 

where  

A = exposed tissue area 

C0 = initial drug concentration at donor side 

dQ/dt = amount of drug transported per time 

 

 

The Peff is also expressed in cm/s and calculated as follows: 

 

𝑃𝑒𝑓𝑓[𝑐𝑚/𝑠] =
𝑉[𝑚𝐿/𝑠]×(𝐶𝑖𝑛−𝐶𝑜𝑢𝑡)[µ𝑚𝑜𝑙/𝑚𝐿]

2𝜋×𝑅[𝑐𝑚]×𝐿[𝑐𝑚]×𝐶𝑜𝑢𝑡[µ𝑚𝑜𝑙/𝑚𝐿]
  Equation 2 

 

 

where 

V = volumic flow rate 

Cin = concentration of drug at the entry of the intestinal segment 

Cout = concentration of drug at the exit of the intestinal segment 

R = radius of the segment 

L = length of the intestinal segment 

 

 

The accuracy of measurements naturally depends upon the precision of dQ/dt (Equation 1) 

or Cout (Equation 2). Moreover, C0 (Equation 1) and Cin (Equation 2) are limited by the 

solubility of the drug, the analytical sensitivity, and the effects of high drug concentrations on 

epithelial integrity [47].  

A Papp value can be converted into a Peff value by means of regression analysis. In order to 

do so, Papp values for known compounds covering low and high permeabilities retrieved from 

a standard in-house permeability assay or absorption model (e.g. Caco-2 cells, Ussing 

chamber) can be related with Peff values for these compounds reported in literature [48-53].  

Via the calculated regression equation, Papp values for unknown research and development 

compounds can be converted into a Peff value. For Papp values from Caco-2 cells, regression 
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analysis should be done for every assay type and laboratory as they can vary due to 

differences e.g. in cell culturing [54-56].  

 

 

 

1.4 Physiologically based in silico simulation of intestinal absorption 

 
The constant increase of high-throughput screening (HTS) techniques to identify new drug 

candidates leads to a higher demand on assessing pharmacokinetic (PK) properties for 

those compounds. These properties are usually determined using in vivo animal studies. In 

order to optimise the use of such in vivo testing, there has been a growing interest in 

predicting the PK behaviour of potential drug candidates [57, 58]. The appealing idea of 

predicting the rate and extent of human intestinal absorption only from physicochemical 

properties and data from simple in vitro tests in combination with anatomical and 

physiological data led to physiologically based in silico absorption models. A variety of 

commercially available databases and software systems provide promising tools for lead 

optimisation and compound selection [58]. Examples include Intellipharm® PK (Intellipharm, 

LCC, Niantic, CT, USA), PK-Sim® (Bayer Technology Services, Leverkusen, Germany), 

SimCyp® (Certara USA Inc. Princeton, NJ, USA) and Gastroplus™ (Simulations Plus Inc., 

Lancaster, CA, USA). 
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1.5 Aims  

The main aim of this thesis was to challenge the common approaches used to investigate the 

extent of intestinal drug absorption in the pharmaceutical drug development. This task was 

divided into two parts. 

 

Part I:  

a) A literature review was performed to compare absorption models that are commonly used 

to predict in vivo oral drug absorption. 

b) As an experimental part, the Ussing chamber absorption model using rat jejunum was 

implemented and evaluated by: 

 performing bidirectional permeability studies for reference compounds comprising 

transcellular, paracellular and active transcellular absorption mechanisms 

 investigating the influence of non-specific binding and tissue preparation techniques 

and 

 assessing the quality of the experiments to assess reliability of the produced 

permeability data. 

 

Part II: 

A commercially available physiologically based in silico modelling software was challenged in 

order to assess its predictive performance through simulation of absorption. This was 

evaluated via a retrospective data analysis by: 

 assessing the ability to correctly predict experimentally observed fraction absorbed 

(fa) and rate constant of absorption (ka) 

 evaluating the influence of input parameters and 

 comparing predictability for common laboratory species and man. 
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2 Materials and Methods 

2.1 Literature review of absorption models 

The literature research on models prediction intestinal absorption for xenobiotics was 

performed electronically by using the MEDLINE database via the search engine PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed). Suitable keywords (Tab. 2-1) retrieved review articles 

to get acquainted with the subject which led to an in-depth search through original articles. A 

great range of commonly used models to estimate intestinal absorption in man were 

reviewed. Starting from in vitro methods with artificial membranes and few biological 

components to isolated epithelial cells and finally in vivo absorption studies in humans were 

assessed. Their strengths and weaknesses were illustrated from the viewpoint of preclinical 

drug development.  

 

 

2.2 Ussing chamber experiments 

2.2.1 System specifications 

The specifications of the equipment and materials used for the Ussing chamber permeability 

investigations are described in this chapter and listed in Tab. 2-2 to Tab. 2-5. 

 

2.2.1.1 Equipment 

The technical devices used for the Ussing chamber experiments are listed in Tab. 2-2. 

Tab. 2-1: List of keywords used for literature research on absorption models used to predict 
intestinal absorption of xenobiotics in humans. 

Primary keywords Secondary keywords Modifier keywords 

Absorption model Drug Prediction 

Intestinal absorption Xenobiotics In vitro 

Intestinal permeability Human In silico 

 Pharmaceutical development In vivo 

 Fraction absorbed Preclinical 
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2.2.1.2 Chemicals 

The chemicals used for the Ussing chamber experiments are listed in Tab. 2-3.  

 

 

 

 

Tab. 2-2: List of equipment used for Ussing chamber experiments. 

Equipment Supplier 

Ussing chamber system Dipl. Ing. K. Mussler (DE) 

Water bath (5 litre volume) Julabo (DE) 

Thermometer (digital) Hanna (DE) 

TriCarb
®
 liquid scintillation analyser 2100 TR / 2910 TR Perkin Elmer (DE) 

 

Tab. 2-3: List of chemicals used for Ussing chamber experiments. 

Chemicals Product number Supplier 

Krebs-Ringer hydrogen carbonate buffer, 
containing 1800 mg/L glucose 

K4002 Sigma-Aldrich (DE) 

D-(+)-glucose G7528 Sigma-Aldrich (DE) 

D-mannitol M9546 Sigma-Aldrich (DE) 

Potassium chloride P5405 Sigma-Aldrich (DE) 

Magnesium chloride M4880 Sigma-Aldrich (DE) 

Sodium dihydrogen phosphate S3139 Sigma-Aldrich (DE) 

Sodium hydrogen carbonate S5761 Sigma-Aldrich (DE) 

Sodium hydrogen phosphate 71639 Sigma-Aldrich (DE) 

Sodium chloride S5886 Sigma-Aldrich (DE) 

[ring-
3
H]-terbutaline, in ethanol Lot#135-076-000 ViTrax Co. (USA) 

[N-Methyl-
3
H]-verapamil hydrochloride, in 

ethanol 
Lot#3615952 PerkinElmer (USA) 

D-[1-
14

C]-mannitol, in ethanol Lot#3570098 PerkinElmer (USA) 

L-(-)-[4-
3
H]-propranolol, in ethanol Lot#3615695 PerkinElmer (USA) 

Soluene
®
 350 6003038 Perkin Elmer (DE) 

Ultima Gold™ 6013326 Perkin Elmer (DE) 

Forene
®
 - Abbot AG (DE) 

Ethanol - Sigma-Aldrich (DE) 

[
14

C]-fexofenadine - 
kindly granted by Sanofi Aventis 

(DE) 

 
 



  Materials and Methods 
 

   17 

2.2.1.3 Chamber system 

All experiments were performed using the vertical Ussing chamber (Fig. 2-1 A-D), that is 

characterised by its reduced buffer solution volume (< 5 mL) and compact structure 

compared to the classic Ussing chamber [59]. Each Ussing chamber consists of two 

half-cells that contain an open reservoir for buffer solution and inlets for electrodes and gas 

tubes (Fig. 2-1 C and D). The half-cells were united with its reservoirs only separated by the 

mounted tissue which exposed a tissue area of K = 0.86 cm2. Both half-cells were joined 

together through pins and held steady by a high spring-tension retaining ring (Fig. 2-1 D). A 

fitted rubber ring sealed the site of connection to insure leak-free operation and to prevent 

edge damage. The supply of carbogen through the gas tubes fulfilled several purposes: First 

of all, it provided oxygen to the mucosal tissue and it also stabilised the pH of the buffer 

solution. Secondly, it works as a gas lift, which guaranteed a constant circulation of the 

solution in the reservoirs and reduced the forming of an unstirred water layer. An Ussing 

chamber system consists of six Ussing chambers that are placed in a heating block with is 

temperature controlled by an external water bath (Fig. 2-1 A and B). The buffer solution on 

each side of the chamber was kept constant at 37°C (Chapter 2.2.1.4). To assure the 

maximum use of each sacrificed animal, two Ussing chamber systems were operated 

simultaneously for every experiment (Fig. 2-1 A). 
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Fig. 2-1: Ussing chamber system. (A) Complete set-up with 2x six chambers connected to a water 
bath, to carbogen gas supply and interfaces for the clamp system. (B) Six chambers in heating block 
with connected electrodes and gas tubes. (C) Close-up of the chambers (D) Schematic drawing of a 
single chamber.  
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2.2.1.4 Buffer solution 

Two kinds of Krebs-Ringer hydrogen carbonate buffer solutions (KRB) were used for all 

experiments. The KRB buffer containing glucose (1 mM) was used on the serosal side to 

nourish the tissue. As the presence of glucose triggers a Na+-influx into the cells, and 

therefore a change of the membrane potential on the mucosal side, which influences the 

electrical measurements (Chapter 2.2.1.5), mannitol (1 mM) was used as an osmolaric 

substitute on the mucosal buffer side. The exact composition is shown in Tab. 2-4. The KRB 

solution was adjusted to a pH of 7.4 using hydrochloric acid or sodium hydrogen carbonate 

and was continuously gassed with carbogen. 

 

 

2.2.1.5 Electrical components 

Every Ussing chamber contained four connecting tubes for two silver/silver-chloride 

(Ag/AgCl) electrode pairs. One pair ended in close proximity to the mounted tissue to 

determine the potential difference (dP) between the mucosal and serosal side (Fig. 2-1 C). 

The measurements were automatically corrected for fluid resistance (Rf) and the difference 

of the electrodes potential (dPe), also known as offset. These values were determined prior 

to tissue mounting. The second pair of Ag/AgCl-electrodes was located furthest away from 

the epithelial membrane and was used to apply an electric current. Each electrode pair was 

connected to a multichannel computer-controlled voltage-current clamp system (Fig. 2-1 A). 

Monitoring the electrophysical parameters of the tissue is a common method to obtain 

information about the viability and integrity of the tissue in the Ussing chambers [60, 61]. In 

general, the potential difference (dP) reflects the voltage gradient generated by the intestinal 

tissue, the transepithelial resistance (Rt) reflects the tissue integrity and the short-circuit 

Tab. 2-4: Components of the Krebs-Ringer hydrogen carbonate buffer solution (KRB). 

Components Concentration [g/L] Concentration [mM] 

D-glucose (serosa side) or D-mannitol (mucosa side) 1.80 10.0 

Magnesium chloride 0.0468 0.500 

Potassium chloride 0.340 4.60 

Sodium chloride 7.00 120 

Sodium dihydrogen phosphate 0.100 0.700 

Sodium hydrogen phosphate 0.180 1.50 

Sodium hydrogen carbonate 1.26 15.0 
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current (Isc) gives information about the ionic fluxes across the epithelium [60]. To avoid the 

bias of a chemical and hydrostatic gradient, identical volumes and ion concentrations of the 

KRB solutions were used on both sides of the tissue (Chapter 2.2.1.4). Experiments were 

performed under open circuit conditions (i.e. no external current was applied). 

2.2.1.6 Animals 

All animal studies were approved by authorities including the Regional Office for Health and 

Social Affairs (LAGeSo) for the state and city of Berlin and were performed in accordance 

with the ethical guidelines of Bayer Pharma AG. For all experiments, excised jejunum from 

adult male Wistar rats (HsdCpb:WU; Harlan, Netherlands) was used. The body weight of the 

animals ranged from 200–320 g on day of sacrifice. The rats were kept under 12:12 hour 

light-dark-cycle conditions and received water and chow ad libitum. 

2.2.1.7 Reference compounds 

To successfully establish the Ussing chamber technique in the laboratory, a range of well 

described reference compounds (Tab. 2-5) was chosen from literature and used to evaluate 

the system [36, 60, 62-69]. In the choice of reference compounds, care was taken to cover 

all routes of absorption (passive paracellular, active and passive transcellular). 

 14C-mannitol permeates paracellularly through the tight junction located on the apical 

side of the tissue and therefore does not enter the enterocytes. It was used for all 

experiments (except for the fexofenadine studies) as a marker to determine the 

amount of extracellular water in the excised tissue and to monitor the tissue integrity 

during the permeability experiment (Chapter 2.2.2.4). 14C-mannitol is small (MW 182) 

and highly hydrophilic molecule with a log P value of - 3.9.  

 3H-terbutaline is a small (MW 225), slightly hydrophilic compound with a log P value 

of 1.4, which also permeates paracellularly through the tight junctions.  

 3H-propranolol and 3H-verapamil were used as transcellular reference compounds as 

they are absorbed through the enterocytes. Consequently, both compounds are 

lipophilic with a log P of 3.0 and 4.7, respectively. Due to their hydrophobicity, these 

compounds are prone to non-specific binding. In addition, verapamil is also a 

substrate as well as an inhibitor of the P-glycoprotein [70-72]. This characteristic 

would allow for mechanistic investigations concerning the involvement of Pgp in the 

intestinal permeability of development compounds. 

 14C-fexofenadine was included as a reference compound for active transcellular 

transport. Fexofenadine is substrate to the organic anion-transporting polypeptide 
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(OATP) which is present in human and rat small intestine [73-75]. Therefore, 

fexofenadine is a suitable reference compound for active transport in Ussing chamber 

experiments using rat jejunum. In the fexofenadine studies 3H-terbutaline was used 

as a substitute for 14C-mannitol, as fexofenadine and mannitol contained the same 

radiolabel, which restricts distinguishing between reference and tissue integrity 

marker compound.  

 

 

 

It should be mentioned that all samples taken during permeability experiments contain two 

radiolabeled reference compounds: One compound for permeability investigations and one 

tissue integrity marker compound. In order to distinguish between them, during 

measurement, it is essential that they have different radiolabels. The compound 

combinations used for permeability studies are listed in Tab. 2-6. Regardless of their primary 

function (permeability investigation or tissue integrity marker) they are all also referred to as 

reference compound. 

 

 

Tab. 2-5: Properties of reference compounds used to experimentally establish the Ussing chamber 
system. 

Reference 
compound 

Mannitol Terbutaline Propranolol Verapamil Fexofenadine 

MW [g/mol] 182.2 225.3 259.3 454.6 501.7 

Log Po/w -3.9 1.4 3.0 4.7 5.6 

Solubility in water 
[mg/mL] 

216 213 0.07 0.0045 0.0027 

Radiolabel 
14

C 
3
H 

3
H 

3
H 

14
C 

Specific activity 
[MBq/µmol] 

1.89 925 899 2549 1.95 

Permeability 
properties 

passive 
paracellular 

passive 
paracellular 

passive 
transcellular 

passive 
transcellular 

active 
transcellular 

Comment 
tissue 

integrity 
marker 

tissue 
integrity 
marker 

- 
substrate 

and inhibitor 
of Pgp 

substrate of 
OATP 

transporter 
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2.2.2 Experimental settings and procedures 

After introducing the components and specifications of the Ussing chamber system 

(Chapter 2.2.1) this chapter will give details about the experimental settings and procedures 

used during the permeability investigations. 

2.2.2.1 Sampling scheme 

During the permeability studies the sampling scheme was the same for all reference 

compounds and as followed: After the tissue was mounted onto the Ussing chamber and 

submerged in blank KRB solution, samples of 250 µL were taken from each chamber 

reservoir prior to the start of an experiment. The samples were measured via liquid 

scintillation counting (LSC) (Chapter 2.2.2.3) to determine baseline radioactivity in the Ussing 

chamber equipment. This is mandatory to monitor contamination of the Ussing chamber with 

radiolabeled compound from previous experiments which can bias subsequent samples from 

the experiment. Start concentrations of the reference compounds on donor and receiver side 

were determined prior to the start of the experiment: For the receiver side, a 250 µL sample 

was drawn from the receiver reservoir as described above (baseline determination). In order 

to insure homogeneity of the donor side concentration of the radiolabeled reference 

compounds, a glass vial was prepared for every donor reservoir containing 4 mL KRB and 

the intended donor start concentration of the reference compounds. Vials were well mixed 

and a 250 µL sample was taken to determine the donor start concentrations. To start an 

experiment the blank KRB buffer in the donor reservoir was completely withdrawn with a 

syringe and immediately replaced by the volume left in the glass vial containing the 

radiolabeled compounds.  

Tab. 2-6: List of reference compound combinations and their respective functions used during 
Ussing chamber permeability investigations. 

Reference compounds 

Function: permeability investigation Function: tissue integrity marker 

3
H-propranolol 

14
C-mannitol 

3
H-verapamil 

14
C-mannitol 

3
H-terbutaline 

14
C-mannitol 

14
C-fexofenadine 

3
H-terbutaline 
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To study the permeability of the reference compounds over time, a sampling scheme was 

selected that was applied to all studies. Sampling time points were: 5, 10, 20, 40, 60, 90, 120 

and 150 minutes (Tab. 2-7). The sampling volume of 250 µL was replaced by blank KRB 

buffer after each sampling time point. The dilution factor for the reference compounds was 

considered during evaluation. At the end of each experiment (at 150 min) the tissue was 

dismounted from each chamber and each tissue sample was prepared as described in 

Chapter 2.2.2.2. 

 

 

2.2.2.2 Sample preparation for measurement of radioactivity 

Two kinds of samples were prepared for measurement of radioactivity via liquid scintillation 

counting (LSC) (Chapter 2.2.2.3). For aqueous samples, the entire sampling volume was 

thoroughly mixed with 5 mL of the scintillation cocktail Ultima Gold™ (Perkin Elmer, 

Germany), to obtain a homogeneous measuring sample. For determining radioactivity in 

tissue, samples were prepared as shown in Fig. 2-2. Briefly, tissue specimens were removed 

from the Ussing chamber after the permeability experiment and transferred to previously 

weighed glass vials. Vials were weighed again, to determine the net tissue weight which was 

used to determine the amount of reference compound in tissue (Chapter 2.2.4.3). 

Subsequently, the tissue sample was solubilised in 3 mL of a strong organic base 

(Soluene®350, Perkin Elmer, Germany) for at least 24 hours. Homogenous samples of 1 mL 

were taken from the dissolved tissue and well mixed with 15 mL of Ultima Gold™. Two 

aliquots per tissue were prepared and measured as described in the following chapter. 

 

 

 

 

 

Tab. 2-7: Sampling scheme for the reference compounds on donor and receiver side of the Ussing 
chamber including tissue sample for all time points. 

Time point [min] Start 5 10 20 40 60 90 120 150 

Donor side x - - - - - - - x 

Receiver side x x x x x x x x x 

Tissue - - - - - - - - x 
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2.2.2.3 Measurement of radioactivity 

Measurements of radioactivity were performed via a previously validated and routinely 

controlled liquid scintillation counting (LSC) method [76]. The count conditions applied to the 

radioactivity measurements within this thesis are listed in Tab. 2-8 and were in line with the 

locally applied validation document and the existing standard operating procedures. LSC is a 

standard laboratory method to quantify the radioactivity of low energy organic isotopes, 

mainly used for water soluble β-emitters. The sensitive LSC detection method requires 

specific cocktails to absorb the emitted energy from the isotopes in order to convert them into 

detectable light pulses. To accomplish these two actions, absorption and re-emission, the 

cocktails contain two alkaline components, an aromatic solvent (e.g. toluene) and a 

scintillator (fluorescing agent). The solvent carries out the energy absorption, and dissolved 

in the solvent, molecules of the fluorescing agent convert the absorbed energy into light. For 

 

Fig. 2-2: Flow chart of tissue sample preparation for measurement of radioactivity via liquid 
scintillation counting (LSC). 
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all experiments, the scintillation cocktail Ultima Gold™ was used. The emitted light pulses 

were registered in the counter. It detected the number of pulses per minute as well as the 

intensity of each light pulse which corresponded to the emitted energy of the isotope. Counts 

of pulses were collected into channels with a predefined energy spectrum (Tab. 2-8). This 

allowed distinguishing between low energy 3H-isotpes and medium energy emitting 

14C-isotopes which were used simultaneously in the same measuring sample. This technique 

is referred to as dual-isotope measuring and was applied to all permeability experiments. To 

correct the measurement for naturally occurring "background" radiation, a sample of blank 

KRB or Soluene®350 was freshly prepared and mixed with the appropriated volume of Ultima 

Gold™ (Chapter 2.2.2.2). Prior to every measuring set, the counts per minute (CPM) 

measured in the blank sample were determined and automatically subtracted from all 

following samples in the set. Measuring time was 10 minutes for each blank and 5 minutes 

for each sample containing radioactivity. Correcting for background radiation and counting 

efficiency (previously determined chemical and colour quench) allows determining the 

disintegrations per minute (dpm) in the sample [76]. The by the TriCarb® liquid scintillation 

analyser automatically calculated dpm values were used for data evaluation (Chapter 2.2.4).  

 

 

2.2.2.4 Tissue viability 

Tissue viability during the experiments was monitored by measuring the electrical resistance 

of the mucosal tissue (Rt) (Chapter 2.2.1.5). Also, the appearance of 14C-mannitol on the 

receiver side was monitored during data evaluation and used to assess tissue integrity 

(Chapter 2.2.1.7). An over proportional increase of 14C-mannitol on the receiver side was 

considered as an indicator for tissue damage. In addition, glucose (final concentration 

Tab. 2-8: Count conditions for dual-isotope liquid scintillation counting using the TriCarb
®
 liquid 

scintillation analyser.  

Isotope Region settings 
Minimum 

acceptable 
efficiency 

Quench sets 
(Indicator tSIE/AEC) 

Lower limit of 
quantitation 

(LLOQ) 
[dpm] 

Upper limit of 
detection 
(ULOD) 
[dpm] 

3
H 

Region A: 
Lower limit=0 keV           

Upper limit=12 keV 
60% Low energy 5 1 000 000 

14
C 

Region B: 
Lower limit=12 keV 

Upper limit= 156 keV 
95% Mid energy 10 1 000 000 

tSIE/AEC= transformed spectral index of the external standard with automated efficiency control 
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50 mM) was added to the mucosal chamber reservoir at the conclusion of the experiment to 

test the functional viability of the tissue as it is transported by the SLGT1 transporter. SLGT1 

is the intestinal epithelium sodium-glucose symporter that channels Na+ ions and glucose 

into the epithelial cells by using the energy from a downhill sodium gradient to transport 

glucose across the apical membrane against an uphill glucose gradient [77, 78].  

2.2.3 Experimental studies 

Two types of experiments were performed using the Ussing chamber system: Experimental 

studies without tissue in order to determine the extent of non-specific binding of the reference 

compounds to the Ussing chamber material and permeability studies using intestinal tissue 

from rats. 

 

2.2.3.1 Non-specific binding studies 

In order to determine if the reference compounds bind non-specifically to the Ussing 

chamber, binding studies have been conducted for every used compound. Especially for 

highly lipophilic compounds, non-specific binding can alter the results to a significant degree, 

particularly at low concentrations. The setup and conditions for these pre-studies were 

chosen to be as close as possible to the actual experimental settings of the permeability 

experiment (Chapter 2.2.3.2.2). For each reference compound, two concentrations have 

been tested to mimic the expected donor and receiver concentration at t=0 and t=150 

minutes, respectively, as the non-specific binding might be time-dependent due to saturation 

processes. The donor test concentration was about 6.0 nM and the receiver test 

concentration was approximately 0.1 mM.  

Briefly, for non-specific-binding studies, the Ussing chamber system was set up omitting the 

tissue mounting step (Chapter 2.2.3.2.1) and the chambers (n=3 per compound) were filled 

with 8 mL of buffer containing radiolabeled reference compound. Samples of 80 µL were 

taken at the same time points mentioned in the sampling scheme (Tab. 2-7) and prepared 

and measured as described in Chapters 2.2.2.2 and 2.2.2.3. 

In order to determine the total recovery, two washing steps with ethanol were implemented 

after the non-specific binding experiment. After the last sample was taken (time point 

150 min), the remaining buffer solution containing radiolabeled compound was discarded; 

every chamber was filled with 8 mL of ethanol (a suitable solvent for the compounds, that 

would not damage the material of the acrylic glass chambers) and was allowed to stand for 

10 min. Afterwards, three aliquots of 750 µL were taken from each chamber and prepared 
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and measured as described before (Chapters 2.2.2.2 and 2.2.2.3). The ethanol washing step 

was repeated once more. The compound in the taken samples and the compound extracted 

from the chambers in the washing steps were added up and compared to the initial 

concentration administered in the non-specific binding experiment and the total recovery for 

every compound was calculated (Chapter 2.2.4). 

 

2.2.3.2 Permeability studies 

In order to perform the permeability studies using the Ussing chamber system, rat jejunum 

tissue had to be prepared prior to start of the permeability experiment. 

 

2.2.3.2.1 Tissue preparation 

Two types of tissue preparations techniques were applied: For each reference compound, 

full-thickness tissue (mucosa including connected muscle layers and serosa) experiments 

and stripped tissue (serosal layer removed) experiments were performed. Immediately prior 

to each experiment, rats were sacrificed by an overdose of isofluran (Forene®) and the 

abdominal cavity was opened. Blood was withdrawn from the vena cava and the small 

intestine was removed distally from the pyloric sphincter to proximal of the caecum. Then the 

lumen was rinsed with ice cold Krebs-Ringer hydrogen carbonate buffer solution (KRB) to 

remove intestinal debris. Subsequently, the small intestine was transferred into ice-cold KRB 

containing glucose (1 mM) and was continuously gassed with carbogen (95 % O2 / 5 % CO2) 

for 15 min. After temperature adjustment the first 10 cm of the proximal small intestine was 

discarded and 12 cm long segments were carefully pushed over a plastic rod (Ø 6 mm). 

Jejunum sections of approximately 3 cm were separated by circular incision using a scalpel. 

In case of experiments with stripped tissue the serous membrane of the full-thickness tissue 

was removed by blunt dissection with forceps prior to sectioning off the segments. All 

separated segments were opened with a longitudinal cut along the mesenteric border and 

mounted onto the tissue pins in the half-cells of the Ussing chamber. Immediately afterwards, 

the chambers were assembled and the reservoirs were filled with the appropriate buffer 

solutions to quickly submerge the tissue.  
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2.2.3.2.2 Procedure of the permeability experiment 

The microprocessor controlled interface for the clamp system (Chapter 2.2.1.5) and the 

heating blocks (Chapter 2.2.1.3) were started at least 15 min prior to electrical 

measurements. At the same time, two types of Krebs-Ringer hydrogen carbonate buffer 

solutions containing mannitol or glucose, respectively, were tempered and equilibrated with 

carbogen (Chapter 2.2.1.4). The Ussing chambers were filled with blank mannitol KRB buffer 

and all electrodes were inserted and connected to the interfaces. Also the gas tubes were 

connected and the carbogen flow was introduced (Chapter 2.2.1.3). The clamp software 

(Clamp, Dipl. Ing. K. Mussler, Aachen, Germany) was started and solution resistance (Rf) 

and inherent potential difference of the electrodes (dPe) were determined and if necessary 

adjusted for factors influencing dPe determination. This could include removal of air bubbles 

in contact with the electrode, clearing off possible corrosion or swapping out damaged 

electrodes for new ones. When the lowest inherent potential difference of each electrode pair 

was reached (as close as possible to 0 mV), two buffer solutions containing radiolabeled 

reference compounds were prepared for each permeability experiment, using mannitol KRB 

and glucose KRB, respectively. Next, the animal was sacrificed and the small intestine 

removed and handled as described in Chapter 2.2.3.2.1. After taking the chambers apart, the 

tissue was mounted, the chamber reassembled and the sides were filled with the appropriate 

blank buffer solution (mannitol KRB on mucosal side and glucose KRB on serosal side). The 

tissue was immediately exposed to carbogen. Chambers 1-6 were used to investigate 

mucosal to serosal transport (m-s) and chambers 7-12 were used for serosal to mucosal 

transport (s-m). To avoid regional differences of absorption the tissue was mounted 

alternately (mounting sequence: chamber 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6, and 12) and the 

electrical measurements were started (Chapter 2.2.1.5). To start the permeability experiment, 

the blank buffer was replaced by the appropriate buffer containing radiolabeled reference 

compounds on the donor side and samples were taken according to the sampling scheme 

mentioned before (Tab. 2-7). The electrophysiological parameters were recorded for at least 

150 min. At the end of the permeability study, the tissue viability test using glucose was 

performed (Chapter 2.2.2.4). Subsequently, the buffer solution was discarded and the 

chambers disassembled to remove the tissue. The tissue was transferred into a tared glass 

vial, weighed and solubilised with Soluene®350 as described in Chapter 2.2.2.2. After 

preparation, all samples were measured via LSC (Chapter 2.2.2.3).  
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2.2.4 Data evaluation  

2.2.4.1 Calculation of non-specific binding 

For every compound, the arithmetic mean was calculated from the 3 samples taken in the 

non-specific binding (NSB) experiments for every time point (Chapter 2.2.3.1). Then a 

recovery ratio (Rectx) was calculated (Equation 3) for each sampling time point which was 

then used to correct the measured samples from the permeability experiments for the 

non-specific binding (Equation 4).  

 

𝑅𝑒𝑐𝑡𝑥 =
𝐶𝑡𝑥[𝑑𝑝𝑚 µ𝐿⁄ ]

𝐶𝑡0[𝑑𝑝𝑚 µ𝐿⁄ ]
                     Equation 3 

 

Ctx = concentration at time point x 

Ct0 = initial concentration 

dpm = disintegrations per minute 

 

In order to perform a mass balance of the compound in the NSB experiments, all measured 

concentrations of the taken samples and the compound recovered in the washing steps 

(Chapter 2.2.3.1) were extrapolated to the total volume of each chamber (8 mL). The 

amounts were added up and compared to the initial amount of compound administered to 

each chamber. The percentage deviation between initial amount of compound and recovered 

amount of compound was considered the NSB. 

 

2.2.4.2 Calculation of apparent permeability 

The apparent permeability (Papp) for the permeability studies (Chapter 2.2.3.2) was calculated 

in the following steps: 

Firstly, for every receiver chamber, the concentration of compound in the sample at each time 

point was corrected for the recovery ratio (Equation 3) of the previously determined 

respective non-specific binding at the same time point (Equation 4).  

 

𝐶𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑[𝑑𝑝𝑚 µ𝐿⁄ ] =
𝐶𝑅[𝑑𝑝𝑚 µ𝐿⁄ ]

𝑅𝑒𝑐𝑡𝑥
          Equation 4 

 

CRcorrected = concentration in receiver chamber corrected for non-specific binding 

CR = concentration in receiver chamber  
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Rectx = recovery ratio of compound at time point x 

 

In a second step, the concentration of compound was corrected to the amount of compound 

in the receiver chamber volume of 4 mL for each time point. Divided by the specific activity of 

the radiolabeled compound (Tab. 2-5), the total amount per receiver chamber was calculated 

(Equation 5). 

 

𝐴𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑[µ𝑚𝑜𝑙] =
𝐶𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑[𝑑𝑝𝑚 µ𝐿⁄ ]

𝑠𝑝𝑒𝑐.𝑎𝑐𝑡𝑖𝑣.[𝑑𝑝𝑚 µ𝑚𝑜𝑙⁄ ] 
× 4000          Equation 5 

  

ARcorrected = amount in receiver chamber corrected for non-specific binding 

spec. activ. = specific activity of the radiolabeled compound 

 

In the next step, the cumulated corrected amounts of compound in the receiver chamber 

were plotted against time for each chamber (example Fig. 3-2). The linear slope (m) 

determined by linear regression represents the increase of permeated drug on the receiver 

side per time and therefore, the flux rate. Due to a lag time of establishing a flux rate 

constant across the intestinal membrane, only the slope from the linear part of the curve 

(i.e. time interval 60-120 min) was evaluated (Tab. 3-6). In combination with the exposed 

tissue area (Ussing chamber equipment specific constant value), a transport flux in 

[µmol/cm2/s] was calculated (Equation 6).   

 

𝐹𝑙𝑢𝑥[µ𝑚𝑜𝑙 𝑐𝑚2⁄ /𝑠] =
𝑚[µ𝑚𝑜𝑙 𝑚𝑖𝑛⁄ ]/𝐾[𝑐𝑚2]

60 [s/min]
             Equation 6 

 

m = linear slope  

K = exposed tissue area for each chamber (0.86 cm2) 

 

In a final step, the Papp was calculated as a ratio of flux and reference compound 

concentration at the end of the experiment on the donor side (Equation 7). 

 

𝑃𝑎𝑝𝑝[𝑐𝑚 𝑠⁄ ] =
𝐹𝑙𝑢𝑥[µ𝑚𝑜𝑙 𝑐𝑚2⁄ /𝑠)]

𝐶𝐷𝑒𝑛𝑑[µ𝑚𝑜𝑙 𝑚𝐿⁄ ]
         Equation 7 

 

CDend = concentration of compound on donor side at the end of the experiment 
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2.2.4.3  Calculation of amount of compound in tissue 

In order to determine the absorption mechanisms of the reference compounds (transcellular 

or paracellular), the amount of compound from permeability studies in the enterocytes was 

calculated with the help of the tissue integrity marker compound as a known paracellularly 

permeating compound (Tab. 2-5) and therefore also an extracellular marker. 

2.2.4.3.1 Calculation of enterocyte mass in tissue 

The mass of enterocytes contributing to the overall mounted tissue weight was calculated 

using the following relationship: 

 

𝑀 𝑒𝑛𝑡𝑒𝑟𝑜𝑐𝑦𝑡𝑒𝑠[𝑔] = 𝑀𝑤𝑒𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 [𝑔] − 𝑀𝐸𝐶𝐹[𝑔]            Equation 8 

 

MECF = mass of extracellular fluid 

Menterocytes = mass of enterocytes 

Mwet tissue = mass of wet tissue 

 

In order to calculate the mass of enterocytes in the tissue and subsequently the amount of 

compound in the enterocytes, the volume or mass of the extracellular fluid had to be 

determined.  

 

2.2.4.3.2 Calculation of extracellular fluid mass using an extracellular marker 

The amount of extracellular fluid adhering to the mounted tissue after the experiment was 

calculated using the tissue integrity marker compound as an extracellular marker. The 

following relationship was applied: 

 

𝑉𝐸𝐶𝐹[𝑚𝐿] =
𝑀𝐸𝐶𝐹+𝐼𝐶𝐹[𝑑𝑝𝑚]

𝐶𝐸𝐶𝐹[𝑑𝑝𝑚/𝑚𝐿]
            Equation 9 

 

VECF = volume of extracellular fluid  

MECF+ICF = mass of extracellular marker compound in extracellular fluid and intracellular fluid 

CECF = concentration of extracellular marker in extracellular fluid 

 

whereas 

𝑀𝐸𝐶𝐹+𝐼𝐶𝐹[𝑑𝑝𝑚] = 𝑀𝑤𝑒𝑡 𝑡𝑖𝑠𝑠𝑢𝑒[𝑑𝑝𝑚]      Equation 10 
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Mwet tissue = mass of extracellular marker compound in wet tissue 

 

Further assumptions were made to calculate the volume of extracellular fluid: 

 

𝑀𝐼𝐶𝐹[𝑑𝑝𝑚] = 0          Equation 11 

 

for the extracellular marker 14C-mannitol (or 3H-terbutaline for the fexofenadine experiments) 

and  

 

𝐶𝐸𝐶𝐹[𝑑𝑝𝑚/𝑚𝐿] ≙ 𝐶𝑑𝑜𝑛𝑜𝑟𝑒𝑛𝑑[𝑑𝑝𝑚/𝑚𝐿]        Equation 12 

 

Cdonorend = concentration of extracellular marker compound in the donor side of the chamber 

by the end of the experiment 

 

The measured concentration of extracellular marker in the extracellular fluid adhering to the 

tissue should be equivalent to the concentration of extracellular marker in the buffer solution 

on the donor side of the chamber by the end of the experiment when the tissue was 

removed.  

The calculated VECF was then converted into mass (MECF) using the density of water 

(𝜌 =  1𝑔/𝑚𝐿). 

 

2.2.4.3.3 Calculation of intracellular concentration of compound 

The calculated mass of the extracellular fluid was subtracted from the total wet tissue mass 

to obtain the mere enterocyte mass as described in Equation 8. 

To determine the amount of compound in the enterocytes, the extracellular marker 

compound adhering to the tissue had to be deducted. It was again assumed, that the 

concentration of the compound in the extracellular fluid was equal to the concentration on the 

donor side by end of the experiment. 

 

𝑀𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝐸𝐶𝐹 [𝑑𝑝𝑚] =  𝐶𝑑𝑜𝑛𝑜𝑟𝑒𝑛𝑑 [𝑑𝑝𝑚 𝑚𝐿⁄ ] × 𝑀𝐸𝐶𝐹[𝑚𝐿]                 Equation 13 

 

Mcompound ECF = mass of extracellular marker compound 

Cdonorend = concentration of compound on the donor side by the end of the experiment 
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MECF = mass of extracellular fluid 

 

By subtracting the extracellular compound from the quantity in the wet tissue, the total 

amount of compound located in the enterocytes was calculated according to Equation 14.  

 

𝑀𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝐼𝐶𝐹[𝑑𝑝𝑚] = 𝑀𝑤𝑒𝑡 𝑡𝑖𝑠𝑠𝑢𝑒[𝑑𝑝𝑚] − 𝑀𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝐸𝐶𝐹[𝑑𝑝𝑚]                Equation 14 

 

Mcompound ICF = mass of intracellular compound 

Mwet tissue = mass of compound in wet tissue 

 

 

In order to illustrate to what degree the compound was absorbed into the enterocytes, a 

relationship between the concentration of compound in the cells (compound per gram 

enterocytes) and concentration of compound on the donor side of the chamber was 

established. 

 

𝐶𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝐼𝐶𝐹[𝑑𝑝𝑚/𝑔] =
𝑀𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝐼𝐶𝐹[𝑑𝑝𝑚 ]

𝑀𝑒𝑛𝑡𝑒𝑟𝑜𝑐𝑦𝑡𝑒𝑠[𝑔]
         Equation 15 

 

CcompoundICF = concentration of compound in enterocytes 

 

For comparison of different compounds the ratio of intracellular and extracellular compound 

concentration can be calculated. 

 

𝑟𝑎𝑡𝑖𝑜 =
𝐶𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝐼𝐶𝐹 [𝑑𝑝𝑚/𝑚𝐿]

𝐶𝑑𝑜𝑛𝑜𝑟𝑒𝑛𝑑𝑒𝑛𝑑 [𝑑𝑝𝑚/𝑚𝐿]
      Equation 16 

 

2.2.4.4 Calculation of mass balance 

All the above calculated values were also used to perform a mass balance, in order to 

describe the recovery of the compound from in the permeability experiments. 

 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑡𝑜𝑡[%] =
((𝑀𝑑𝑜𝑛𝑜𝑟𝑒𝑛𝑑[𝑑𝑝𝑚]+𝑀𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑡𝑜𝑡[𝑑𝑝𝑚]+𝑀𝑤𝑒𝑡 𝑡𝑖𝑠𝑠𝑢𝑒[𝑑𝑝𝑚])× 100)

𝑀𝑑𝑜𝑛𝑜𝑟𝑠𝑡𝑎𝑟𝑡[𝑑𝑝𝑚]
  

Equation 17 

 

 

Recoverytot = total recovery of compound 
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Mdonor end = mass of compound on donor side by end of experiment 

Mreceiver tot = total mass of c-ompound on the receiver side by end of experiment 

Mwet tissue = mass of extra- and intracellular compound in wet tissue 

Mdonor start = mass of compound on donor side by start of experiment 

2.2.4.5 Statistics 

For the Ussing chamber experiments, the results are gives as mean ± standard deviation 

(SD) with the respective coefficients of variation (CV). Calculations were performed in Excel 

2007 software (Microsoft Inc., Redmond, WA, USA).  

Test statistics were performed using R version 2.13.1 (open source). The Shapiro-Wilk 

normality test [79] for small data sets was used to test for normal distribution of the 

calculated Papp data. The α-level was set to 0.05 for the null hypothesis (population is 

normally distributed). Subsequently, the two sample t-test was performed for statistical 

comparison whether the average difference between two test groups (full-thickness 

tissue / stripped tissue and mucosal-serosal / serosal-mucosal) was significant for each 

compound or due to random chance. The α-level for the null hypothesis (groups show 

difference by random chance) was set to 0.05. With p-value < 0.05 the null hypothesis was 

rejected and the difference between the two tested groups was considered statistically 

significant.  
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2.3 Simulation of intestinal absorption using GastroPlus™ 

Background information and details on the physiologically based software GastroPlus™ and 

the process on how the predictive performance regarding intestinal absorption was assessed 

are given in this chapter.  

 

2.3.1 Advanced compartmental absorption and transit model 

GastroPlus™ (Simulations Plus Inc., Lancaster, CA, USA) is a collection of mathematical 

models and correlations and is primarily used to simulate intestinal absorption of orally 

administered drugs and to investigate the effect of physiochemical, physiological and 

formulation factors on gastrointestinal absorption in man and laboratory animal species [80]. 

This software already contains physiological and anatomical characteristics of the 

gastrointestinal tract for both human and common laboratory animals. Its mathematical 

model derives from the compartmental absorption and transit (CAT) model introduced by Yu 

et al. in 1996 [81]. Their dynamic CAT model was able to predict the fraction of dose 

absorbed and the absorption rate constant as it considered the temporal variable deriving 

from the transit flow of the drug. The gastrointestinal tract is divided in various compartments 

allowing specifications of regional pH, volume of fluids and permeability. For the CAT model a 

couple of assumptions were made, e.g. that absorption from the stomach and the colon is 

insignificant compared to the small intestine and that instantaneous dissolution of the drug 

would occur [82]. These restrictions led to an improvement of the model to the advanced 

compartmental absorption and transit (ACAT) model that is implemented in the GastroPlus™ 

software. The ACAT model allows the software to account for low dissolution rates, pH 

dependent solubility and additionally it can predict the fraction absorbed from controlled 

release formulations as the colon is considered as an absorptive compartment. Further 

improved features like implementing carrier-mediated transport or gut wall metabolism are 

available but require additional in vitro input data. Briefly, the ACAT model consists of nine 

compartments, one for stomach, one for colon and seven compartments for the small 

intestine. Each is segmented into four subcompartments representing compartments for 

unreleased, undissolved and dissolved drug and drug in enterocytes (Fehler! Verweisquelle 

konnte nicht gefunden werden.). Precipitation of dissolved compound into undissolved 

compound can also be accounted for. The ‘unreleased’ compartment refers to drug 

presented as a solid oral dosage form including capsules, tablets and modified release 

formulations. Once released, the drug can either dissolve into a solution or stay undissolved 

as small particles transiting along the gastrointestinal tract until dissolved and able to enter 

the epithelial cells or leave the gastrointestinal tract and body via excretion. Drug permeating 
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the intestinal membrane and entering the enterocytes is considered absorbed. If required, 

gastric absorption can also be accounted for depending on compound properties [83]. 

Additional stages of the drug fate like different forms of metabolism, entering of the central 

compartment and clearance following the process of absorption are not further addressed 

here.  

 

 

2.3.2 Input parameters 

For a successful simulation of fraction of dose absorbed and absorption rate constant, some 

essential input parameters must be provided (Tab. 2-9). For each compound, the log Po/w 

value, the pH depending solubility and molecular weight was added into the compound tab of 

the software together with the corresponding formulation, dose and drug specific human 

effective permeability (Peff) (Chapter 1.3.3.3). In the physiology tab, the respective species 

(e.g. rat, Beagle dog, human) was selected from the physiology drop-down menu and the 

appropriate body weight inserted. In addition the appropriate prandial state (fasted or fed) 

was considered. 

The absorption scale factor (ASF) model can be used to scale the effective permeability to 

account for variations in surface-to-volume ratios of the gastrointestinal tract segments, pH 

effects, and other absorption-rate-determining effects that differ from one compartment to 

another [80]. The ASF model was set to “optimized log D model” for all simulations. It 

 

Fig. 2-3: Schematic description of the advanced compartmental absorption and transit (ACAT) 
model used in GastroPlus™. Bold arrows represent movement of compound along the 
gastrointestinal tract and dashed arrows represent interchange between subcompartments 
corresponding to state of compound (unreleased, released, undissolved, dissolved or absorbed) 
(modified from Agoram 2001 [84]). 



  Materials and Methods 
 

   37 

accounts for the change of pH in the gastrointestinal tract and its effect on the charge of the 

drug molecule and its therefore altered effective permeability [68, 80].  

Apart from the Peff value, all physicochemical input properties are standardly available in 

early drug development. The parameter of human effective permeability is usually 

determined in vivo using an intestinal perfusion technique [85]. The Peff is typically not 

available for new pharmaceutical compounds; therefore GastroPlus™ contains a 

permeability converter. It has known human Peff values for a variety of compounds and allows 

linear regression prediction of Peff values from own in-house Caco-2 cell Papp values for these 

development compounds. Via the slope of the regression line conversion of Papp values for 

new development compounds into Peff values is possible. Therefore, permeability data from 

routinely performed Caco-2 cell assays was used to obtain the drug specific Peff for the eight 

selected development compounds (Chapter 2.3.3).  

For simulations in different species the obtained human Peff is again transferred to a species 

specific Peff value. If available for the respective species, this is automatically converted when 

selecting the species of interest in the physiology selector.  

 

 

2.3.3 Compounds 

Eight compounds (C1-C8) were selected for simulations from pharmaceutical research and 

development at Bayer Pharma AG, Berlin, Germany. The selected compounds covered a 

broad range of physicochemical properties. The molecular weights ranged between 330 and 

690 g/mol and the calculated Peff between 1.3E-04 and 4.2E-04 cm/s. All compounds were 

lipophilic with a log Po/w ranging from 1.3 to 6.0. The aqueous solubility ranged from 0.001 

mg/mL to 0.2 mg/mL. Tab. 2-10 shows the physicochemical properties of the compounds 

used for the simulations. 

Tab. 2-9: List of input parameters to simulate fraction absorbed in GastroPlus™. 

Physicochemical Physiological Dosage 

Molecular weight Species Dosage form 

Log Po/w / Log Dph Body weight Dose 

Solubility / pKa Prandial state Dose volume 

Peff   
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2.3.4 Software 

GastroPlus™ version 6.0.0 (Simulations Plus Inc., Lancaster, CA, USA) installed on a 

terminal server was used for all simulations.  

 

2.3.5 Simulation procedure 

A retrospective data evaluation was performed to assess the ability of the applied software to 

predict intestinal absorption for eight selected compounds (C1-C8) with the minimum amount 

of input data required. The input information derived from standard studies carried out during 

the pharmaceutical research and development process, such as: 

 

 Physicochemical characterisation 

 In vitro determination of solubility, dissolution and permeability and 

 Preclinical and clinical pharmacokinetic studies. 

  

Two parameters that describe intestinal absorption were focused on; fraction absorbed (fa) 

and the absorption rate constant (ka). Fig. 2-4 gives on overview of the workflow for the 

simulations of both PK parameters. In order to evaluate the accuracy of the simulations, the 

predicted results were compared to the results of the experimentally performed preclinical 

and clinical in vivo studies (Tab. 7-16 to Tab. 7-23 in columns ‘obs’). The in vivo parameter for 

fraction absorbed ((fa)obs) was investigated after oral and intravenous administration of 

radiolabeled compound by measuring concentrations of radioactivity in plasma and 

calculating the oral-to-intravenous ratio of the dose-normalised area under the 

concentration-time curve (AUC). The in vivo parameter for the absorption rate constant 

((ka)obs) derived from compartmental analysis of in vivo pharmacokinetic studies.  

Tab. 2-10: Properties of compounds used for simulations in GastroPlus™. 

Compound MW [g/mol] Log Po/w Solubility [mg/mL] Peff [cm/s] 

C1 530 3.7 0.014 at pH 6.8 2.7E-04 

C2 370 3.1 0.013 at pH 6.8 3.0E-04 

C3 440 1.3 0.008 at pH 6.8 1.6E-04 

C4 620 4.2 0.002 at pH 6.9 3.0E-04 

C5 470 4.0 0.020 at pH 4.5 3.8E-04 

C6 690 5.9 0.001 at pH 7.0 3.0E-04 

C7 330 2.3 0.200 at pH 7.4 1.3E-04 

C8 350 2.0 0.017 at pH 6.5 4.2E-04 
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2.3.5.1 Simulation of fraction absorbed 

Fraction absorbed portrays the amount of substance absorbed relative to the dose 

administered. In order to predict fa, the input parameters shown in Tab. 2-9 were entered into 

the software corresponding to the in vivo data. The values for molecular weight, log Po/w or 

log D, Peff, dose and dose volume were entered directly into the compound tab. The 

corresponding dosage formulation was selected in the drop down menu. For the solubility 

data of the compound, a support file (*.spd) was created, where the solubility measured at 

several pH values was entered. In the physiology tab the required species was selected and 

in the pharmacokinetic tab the appropriate body weight was entered. The length of time for 

each simulation was adjusted to the corresponding experimental in vivo data available and 

the simulation was executed. When dosing a modified or controlled-release formulation, an 

additional support file was created (*.crd), which contained the in vitro dissolution data. The 

simulation output was the fraction of dose absorbed (fa)pred in percent (Fig. 2-4).   

 

 

2.3.5.2 Simulation of absorption rate constant  

The absorption rate constant (ka) describes the transfer rate of drug absorption i.e. the 

fraction of drug absorbed per unit time. Drug can theoretically be completely absorbed over 

the entire length of the small and large intestine. That process can be slow, due to a long 

 

Fig. 2-4: Simulation workflow using GastroPlus™ and PKPlus™ to determine fraction absorbed 
(fa)pred and the absorption rate constant (ka)pred and (ka)obs. 
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transit time, and would exhibit a low absorption rate constant in this case. Alternatively, a 

highly permeable substance that is completely absorbed in the upper part of the intestine 

(e.g. duodenum) would be characterised by a high ka, as it takes markedly less time to 

transfer from the intestinal lumen to the systemic circulation. As shown in Fig. 2-4, further 

steps have to be considered when simulating the absorption rate constant (ka) compared to 

the simple procedure of predicting fa. In order to determine ka, oral plasma concentration-time 

profiles need to be simulated for every compound, species, dose and formulation. An 

enhanced input was required to simulate these oral plasma profiles ((Cp)pred). In a first step, 

in addition to the input parameters described in Chapter 2.3.2, species-specific 

pharmacokinetic parameters of clearance (CL) and volume of distribution (Vd) had to be 

calculated. They were obtained by performing a compartmental analysis using the 

corresponding intravenous (i.v.) plasma concentration-time data in the GastroPlus™ add-on 

module PKPlus™ for each species. A best fitting model was suggested by PKPlus™ referring 

to the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) [86, 

87]. The suggested model was accepted and the calculated PK parameters were exported 

into the pharmacokinetic tab of the GastroPlus™ main module. With the help of this 

additional input information, oral concentration-time profiles were predicted for every 

compound, species, dosage and formulation, where i.v. plasma profiles were available. 

Subsequently, the simulated oral plasma profiles and the experimentally observed in vivo oral 

plasma profiles were compared. In a next step, the simulated and the in vivo observed p.o. 

plasma profiles were loaded into PKPlus™ and a compartmental analysis was performed to 

retrieve values for the parameter (ka)pred and (ka)obs (Fig. 2-4). For all analyses, the fitting of 

the model was done using the default Hooke-Jeeves pattern search method in PKPlus™ 

[88]. To further characterize the oral plasma profiles, the parameter Tmax (time point of 

maximum concentration) was obtained directly from the predicted and observed oral plasma 

data. 

 

2.3.5.3 Parameter sensitivity analysis 

To evaluate the influence of input parameters (e.g. solubility, permeability) and model 

parameters (e.g. stomach pH, gastrointestinal transit time) on the fraction absorbed, a 

parameter sensitivity analysis (PSA) was performed. The PSA is an additional simulation 

mode in GastroPlus™. For all physiochemical, physiological and dosage related parameters 

(e.g. gastrointestinal pH, dose, solubility, Peff) a value range from the default value can be 

selected and within this range the fraction absorbed is simulated. This simulation mode gives 

information about the sensitivity of fa to the change of certain parameters and therefore an 
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insight which input and model parameters influence the fraction absorbed for the compound 

of interest. For the performed PSA simulations, the upper and lower limit of the parameters 

value range where set as a factor of 10 from the default value in GastroPlus™. Within these 

limits, the fraction absorbed was simulated for a series of 10 data points. Sensitive 

parameters were identified and used for interpretation and discussion when comparing 

predicted and observed fa (Chapter 3.3.1.3).  

 

2.3.5.4 Evaluation and statistics 

Evaluation and descriptive statistics for the PK parameters of the simulations were performed 

using Excel 2007 software (Microsoft Inc., Redmond, WA, USA). Simulation results of fa and 

ka were evaluated graphically by plotting the observed data from clinical and preclinical 

reports against the predicted data from the performed simulations. The line of unity was used 

as a visual tool to evaluate the accuracy of the predictions. In addition, the coefficient of 

determination (R2) was calculated as a measure of the goodness of fit for the predictions. To 

further evaluate the goodness of the predictions of each of the two PK parameters, the route 

mean square error (rmse) was calculated as followed: 

 

 𝑟𝑚𝑠𝑒 = √
1

𝑁
∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2                                 Equation 18 

 

rmse =route means square error 

N = number of simulated scenarios (i.e. for each set of compound, formulation, dose, 

species) 

predicted = PK parameter obtained from simulation 

observed = PK parameter determined in preclinical or clinical in vivo study 

 

The dimensionless rmse value gives a measure of the differences between predicted and 

observed parameter and allows comparing the goodness of prediction for different groups or 

categories [89, 90]. In order to give an overall assessment of the predictions for fraction 

absorbed and absorption rate constant, the percentage within 2-, 2.5- and 3-fold error of the 

experimental data was calculated for each group.  Generally, a deviation factor of 2 (i.e. 

2-fold error) from the in vivo data is widely accepted when simulations are assessed [89, 90]. 

This recommendation is also applied to the simulations results in this thesis. 
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For a better description of the deviation the mean prediction error (mpe) for each of the two 

PK parameters was calculated.  

𝑚𝑝𝑒 =
1

𝑁
∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)         Equation 19 

 

mpe = mean prediction error 

N = number of simulated scenarios (i.e. for each set of compound, formulation, dose, 

species) 

predicted = PK parameter obtained from simulation 

observed = PK parameter determined in preclinical or clinical study 

 

 

 The mean prediction error can be artificially small, as individual data points that have very 

large positive and negative errors can cancel each other out. In order to prevent that, the 

absolute value of error (mae) was also calculated. 

 

𝑚𝑎𝑒 = |
1

𝑁
∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)|        Equation 20 

 

mae = mean absolute error 

N = number of simulated scenarios (i.e. for each set of compound, formulation, dose, 

species) 

predicted = PK parameter obtained from simulation 

observed = PK parameter determined in preclinical or clinical study 
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3 Results 

3.1 Literature review of absorption models 

In order to estimate the oral absorption of a new compound in drug development, a multitude 

of absorption models has been established, ranging from methods to simply determine the 

ability to cross through a lipid bilayer to predicting the extent and rate of intestinal absorption 

in humans. The key words displayed in Tab. 2-1 guided the literature research and key 

experiments and models spanning from in vitro, ex vivo, in situ, in vivo to in silico were 

reviewed. In the following chapter absorption models applicable to the drug development 

process and their strengths and limitations are portrayed.   

 

3.1.1 In vitro investigations and models 

In the first part, in vitro absorption models utilizing artificial membranes or biological cell 

cultures were assessed in their ability to estimation human intestinal absorption. 

 

3.1.1.1 Non-cell based models 

There is a variety of in vitro non-cell based assays to assess the ability of a molecule to 

diffuse through a biological membrane. They range from studying the octanol/water 

distribution, to determining the membrane affinity of a molecule by binding to egg yolk protein 

coated particles (e.g. Transil™ beads) and to the usage of artificial or isolated membranes 

[91, 92]. All of these models are used for high-throughput screening. The most frequently 

applied methods using isolated membrane vesicles or artificial membranes are explained 

here in more detail.  

 

3.1.1.1.1 Parallel artificial membrane permeability assay 

Briefly, the artificial membrane consists of a hydrophobic filter with associated lipids in an 

organic solvent and is set up in a 96-well plate format [93]. A sandwich plate system is 

created which separates each well by the filter membrane and physiological pH adjusted 

aqueous buffer is added. The drug solution is applied to the top well and the rate of 

appearance in the bottom well gives information about the permeation abilities of the 

compound. As regards mechanisms of permeation, only passive transcellular diffusion is 

covered by this method. Optimisation of the system can be achieved with different lipid 
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compositions and with the use of a hydrophilic filter in order to reduce permeation time [17] 

[94]. The influence of different pH levels and the effect of cosolvents on the parallel artificial 

membrane permeability assay (PAMPA) should be closely investigated when using this 

method, as they can alter the results [17] [95]. 

 

3.1.1.1.2 Brush border membrane vesicles and basolateral membrane vesicles 

For the study of intestinal absorption, isolated enterocyte membranes easily form into 

vesicles when manipulated appropriately [96]. Vesicles can either be from the apical side 

(BBMV) or from the basolateral side of the cell (BLMV), depending on the method employed. 

The vesicles present the brush border membrane to the outside, in the same manner as 

enterocytes would in vivo, therefore they can be used for permeability studies [97]. Vesicles 

are suspended in a physiological buffer and shortly incubated with the test compound. This 

model allows studying the passive transcellular uptake into the vesicles, as intracellular 

metabolism to provide energy for ATP-dependent active transport is missing. Also the 

transport along the paracellular pathway is excluded [54].  

 

3.1.1.2 Cell based models 

With the intention to predict intestinal drug absorption it would be desirable to have a primary 

culture of enterocytes as an in vitro assay. Unfortunately, attempts have failed due to very 

poor viability and the fact that cultured enterocytes do not easily differentiate into a polarized 

monolayer with an apical and a basolateral surface [98]. Varieties of other cell based 

methods were developed to overcome this deficiency and are discussed here in more 

detail [99].  

 

3.1.1.2.1 Isolated enterocytes 

For this rapid method, intestinal epithelial cells (e.g. from rat) are removed from their 

connected tissues either by mechanical force or via enzymatic reactions and are 

subsequently dispensed in a bathing solution which contains the test compound. Due to the 

preparation process, the cells lose their functional polarity but retain their metabolic and 

transport capabilities [100] [101]. Therefore, uptake studies consider active as well as 

passive transcellular processes, but they cannot distinguish between apical or basolateral 

transport. The uptake of drug in different regions of the mucosa can be studied by applying 
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the mechanical vibration method for cell isolation [102]. The first fraction will predominantly 

contain villus cells, whereas the second fraction will consist mainly of crypt cells [103]. The 

generally short viability of the isolated epithelial cells is compensated by the very short 

incubation time this method requires [104] [105].  

 

3.1.1.2.2 Caco-2 cells 

The most extensively used in vitro assay to predict intestinal drug absorption is the human 

colonic adenocarcinoma derived Caco-2 cell line [106]. When cultured under specific 

conditions on a semipermeable filter, they differentiate into a polarized (apical and 

basolateral surface) monolayer and exhibit morphological and biochemical features of 

intestinal cells (e.g. tight junctions, microvilli, intestinal enzymes, active transporter). The 

polarized cell layer enables bidirectional transport experiments, from apical to basolateral 

side and vice versa. Briefly, the test compound is added to the donor side of the monolayer 

and the appearance on the receiver side is measured. To ensure monolayer integrity 

(i.e. intact tight junctions), the transepithelial electrical resistance (TEER) is measured. An 

alternative method is to monitor the permeability of an exclusively paracellular absorbed 

hydrophilic marker compound (e.g. mannitol). The ability to culture in multiwell format, and 

the relatively small quantities of compound required, make Caco-2 cells a valuable 

experimental screening model. Typically, new compounds are compared to high, medium 

and low permeability markers with known human absorption. The relation of human fraction 

absorbed and the permeability coefficient determined in the Caco-2 assay for a range of 

compounds shows a sigmoidal relationship [107, 108]. Generally, compounds that underlie a 

passive transcellular transport mechanism are adequately predicted, but there are known 

discrepancies when paracellular diffusion is considered [109]. Permeation of small 

hydrophilic uncharged compounds is usually underestimated due to “tighter” tight junctions in 

Caco-2 cells (4.5 Å) than those in the human small intestine (7-15 Å) [110] [111]. Even 

though Caco-2 cells express important uptake transporters such as peptide transporters 

(PepT1), organic cation and anion transporters (OCT, OATPs), the level of expression is 

lower than in vivo. The fact that the Caco-2 cell line derives from a colon carcinoma may 

cause the underestimation of paracellular and active transport, as tight junctions are small in 

the large intestine (~4 Å) and the expression levels of influx transporters decrease distally 

from the duodenum along the gastrointestinal tract. The carcinogenic nature of the cell line 

also accounts for the over-expression of the efflux transporter Pgp, which again can lead to 

an underestimation of drug permeability. However, the presence of influx and efflux 

transporters allows studying of drug-drug interactions as transporters can be targeted by 
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inhibitors or competitive substrates in order to evaluate the sensitivity of the test compound 

to potential transporter saturation processes.  

Despite the many advantages of Caco-2 cells, they comprise some challenges: Inter- and 

intra-laboratory heterogeneity of the Caco-2 cells is a recognized limitation as well as the 

sensitivity to culture conditions and culture time [54] [55] [56]. Although this absorption model 

expresses small intestinal enzymes (e.g. glutathione S-transferase, sulfotransferases) and 

some cytochrome P450 isoenzymes, it lacks in the drug metabolizing enzyme cytochrome 

P450 3A4, which plays a major role in the metabolism of xenobiotics [112].  

Furthermore, as with most in vitro experimental methods, loss of compound can occur due to 

non-specific binding to plastic or filter material. Performing a mass balance might be useful 

under these circumstances. Also the addition of serum proteins (e.g. bovine serum albumin) 

can lead to a reduction of this undesirable effect [113].  

 

3.1.1.2.3 Other cell culture models 

There is a range of other commonly used cell lines to predict oral absorption (Tab. 3-1). 

Some derive from improvement and refining processes of Caco-2 cells, others origin from 

different species and have slightly different characteristics as regards culture time, enzymatic 

composition and transport features.  
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3.1.1.3 Excised tissue models 

These ex vivo methods use tissue parts removed from laboratory animals or humans, 

preserving the architectural in vivo integrity of the absorptive tissue. The permeability 

processes are studied under in vitro conditions.  

 

3.1.1.3.1 Everted gut sac 

The everted gut sac technique is a method that uses excised intestinal segments from rats 

[114]. After sacrifice of the animal, the segment is quickly removed and rinsed with a 

physiological buffer solution to remove intestinal debris. The tissue piece is everted, filled 

with oxygenated buffer and tied into a sac that presents the luminal mucosa on the outside. 

Tab. 3-1: Cell culture permeability assays to predict intestinal permeability [92] [107] [26] [85] [108]. 

Cell culture  Origin Comment 

   

Caco-2 Human colon carcinoma Exhibits active transporters and metabolizing enzymes 
but not CYP3A4 

TC7 Human colon carcinoma Caco-2 subclone, 
expresses CYP3A4, 
grows faster than Caco-2 cells 

HT29 Human colon carcinoma Subclone (HT29-MTX) expresses mucus producing cells 

LS180 Human colon carcinoma Microvilli expressing cells 

T84 Human colon carcinoma Expresses Pgp 

MDCK Dog kidney epithelia Short culture times, 
suitable for transfections with complementary DNA to 
express certain transporters 

LLC-PK1 Pig kidney epithelia Suitable for transfection 

2/4/A1 Rat duodenal epithelia Transepithelial electrical resistance (TEER) is similar to 
human small intestine 
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The sacs is then submerged into culture medium containing the drug of interest and 

accumulation in the inner compartment of the sac is measured. This method is fast, 

inexpensive and enables studying different regions of the small intestine [112]. In addition, 

the everted gut sac method allows studying potential active influx and efflux processes 

involved in the intestinal absorption when adding specific transport inhibitors to the culture 

medium. Disadvantages lie in the short life-time of the model (approx. 2 hours) and that the 

test compound has to cross additional cell layers (e.g. muscle layers) besides the mucosa 

that are not involved in the in vivo process of absorption [115].  

 

3.1.1.3.2 Ussing chamber 

Originally developed by Ussing and Zerahn (1951), the Ussing chamber technique since then 

has been refined and adapted to different subjects of interest, e.g. by Grass and Sweetana 

(1988) for the study of gastrointestinal permeability [59, 116]. In principle, a section of 

excised intestinal tissue is mounted between two buffer filled chambers and the compound of 

interest is added to the donor side. The disappearance of the drug from the donor side and 

the appearance on the receiver side is measured as a function of time. Electrodes positioned 

on both sides of the tissue can measure the potential difference and the current flow across 

the tissue resulting from the inorganic ion flow across the epithelium [27]. The calculated 

epithelial resistance is a measure for the tissue integrity. In order to prolong viability of the 

isolated epithelium, the buffer solution is continuously gassed with an O2:CO2 (95:5) mixture. 

Several advantages make the Ussing chamber technique a valuable method. It allows 

bidirectional permeability studies, as the test compound can either be added to the mucosal 

side (apical membrane of the enterocytes) or the serosal side (basolateral membrane of the 

enterocytes). The route of absorption (paracellular, transcellular passive and active transport) 

for a drug can be determined by analysing the tissue after the experiment and by measuring 

flux differences in bidirectional studies. Furthermore, it provides a high degree of freedom in 

choice of species and region of excised tissue and recent models with small buffer volume 

require only small amounts of test compound. The limitations this model encounters are 

mainly due to the nature of removing a section of tissue from an intact organ. Excised pieces 

of tissue lack the mesenteric blood flow and the permeability measured in the experiment 

includes mucosa and underlying tissue layers (submucosa, circular muscle layer, longitudinal 

muscle layer and serosa), that are not involved in the absorption process in vivo (Fig. 1-1). 

Efforts to reduce these artificial layers can be undertaken by removing the serosal layer. This 

process is referred to as “stripping”. Even after stripping, the additional layers will only be 

partially removed. In addition, this procedure requires skill and practice. Another issue is 
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maintaining viability of the tissue. Factors like composition and temperature of the buffer 

solution play an important role and continuous oxygenation immediately after excising the 

tissue is mandatory. In order to monitor viability throughout the experiment, paracellular 

permeating marker substances can be applied. A disproportional increase of the marker in 

the receiver side can indicate leakage of the tissue and therefore reduced integrity. As this 

marker only judges the physical viability of the tissue, it is recommended to also check for 

functional viability. This is achieved by adding e.g. glucose by the end of the experiment, as 

active transport triggers a change in ion flow across the epithelium and results in a visible 

change in the potential difference monitored by the electrodes. Despite certain drawbacks, 

this method allows studying various aspects of the absorption process including the possible 

involvement of efflux and influx transporters. 

 

3.1.2 In situ models 

A range of approaches to determined intestinal absorption in situ (in the natural position in 

the body) are comprehensively discussed by Luo et. al (2013) [117]. As the in situ intestinal 

perfusion method in the rat is widely accepted to determine intestinal permeability this 

chapter focuses on this particular model [118]. 

 

3.1.2.1 Rat intestinal perfusion 

This in situ technique uses isolated intestinal segments in anesthetised rats that are 

cannulated on both sides (“open loop”). The luminal content is removed and the rinsed 

segment is exposed to a perfusion solution. Most commonly, the single-pass perfusion 

method is used, in which the solution has a constant concentration of test compound [119], 

but there are also experimental set-ups with recirculating perfusion [120]. To determine the 

permeability, the disappearance of the compound from the perfusion solution is measured. 

The advantage of this method is that despite surgical manipulation and anaesthesia, the 

mesenteric blood flow and the innervation of the intestine is still intact, although caution has 

to be taken which anaesthetic is used [121]. Compared to experiments in whole animals, this 

in situ technique also allows studying the process of absorption independently of 

enterohepatic recirculation. Studies have shown a good correlation between effective 

permeability values determined in rat and human jejunum as well as a good predictability of 

human fraction absorbed from rat intestinal perfusion experiments [119, 122]. However, as 

only the disappearance of the drug is measured, no information about intestinal efflux and 
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possible compound accumulation in the enterocytes is provided. Neither does this method 

elucidate the mechanism of intestinal uptake (passive paracellular and transcellular or active 

transport). When determining the rate of absorption, it should be kept in mind, that the 

experimental perfusion flow rate exhibits an influence, as it is effecting the thickness of the 

unstirred water layer lining the luminal mucosa which can be a rate limiting factor for rapidly 

absorbed compounds [123-125]. Overall, the rat intestinal perfusion model requires more 

sophisticated surgical procedures and is therefore more suitable in the late preclinical drug 

development setting.  

 

3.1.3 In vivo models 

In this part, in vivo models studying intestinal absorption are reviewed. This includes 

pharmacokinetic studies in conscious animal as well as the “gold standard” method 

(Loc-I-Gut®) for human absorption [126] . 

 

3.1.3.1 Studies in animals 

Drug absorption studies in conscious animals (e.g. rat, dog, minipig and monkey) are 

commonly used in the preclinical drug development process. Unlike in vitro models, these in 

vivo models enable testing of dosage forms (non-rodents) as well as the influence of the 

prandial state on the degree of intestinal absorption. In addition, intact animals give a 

complete set of all biological and physiological factors influencing oral drug absorption in the 

same manner as they are present in man. These factors are similar among mammals, but 

vary of course across species and, depending on the physicochemical properties of the test 

compound, have a more or less crucial effect on drug absorption. The use of radiolabeled 

(e.g. 14C or 3H) compound can enhance the information coming from an in vivo animal 

studies [127]. A good assessment of intestinal absorption can be estimated based on the 

p.o.- to- i.v. ratio of the values corresponding to the AUC of radioactivity in plasma.  

As much as the complex interplay of anatomical and physiological properties gives a holistic 

picture of drug absorption, it also creates a so called “black box”, where only the input and 

the output are known, but no information on the absorption mechanism is provided. In 

addition to the ethical controversy, animal studies are also labour-intensive as they require 

suitable animal care and experienced experimental skills. Furthermore, larger quantities of 

compound are needed compared to in vitro methods which add to the cost-intensive nature 

of these studies.  
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3.1.3.2 Human intestinal perfusion 

To evaluate the in vivo intestinal permeability (Peff) of the proximal human jejunum the 

Loc-I-Gut® method was developed [85]. Loc-I-Gut® is an in vivo single-pass perfusion 

technique used in conscious man and has been applied for various compounds [109, 119, 

128]. Briefly, a multichannel tube is orally inserted and two balloons attached to the tube are 

inflated to isolate an approximately 10 cm long segment in the jejunum. The sealed off 

segment is then exposed to the perfusion solution containing the test compound of interest. 

The disappearance of the compound from the lumen is measured by sample taking through 

corresponding channel tubes. To ensure that the isolated segment is not leaking during the 

experiment, a non-absorbable marker (e.g. PEG4000) is added to the perfusion solution and 

the recovery is determined. As only the disappearance of the drug is measured in the 

Loc-I-Gut® experiments, this method cannot distinguish between absorbed and secreted 

compound.  While this technique shows a good correlation between the measured Peff and 

the extent of fraction absorption in man, it can only be used with known non-toxic compounds 

when applied to humans [36]. It is therefore not applicable in the development process of 

new drugs. However, the already collected jejunal Peff data for a variety of compounds 

provides a good foundation to validate other absorption models (e.g. Caco-2 cells, Ussing 

chamber).  

 

3.1.4 In silico models 

Beyond in vitro, ex vivo, in situ, and in vivo absorption models there have been mathematical 

models developed to predict in vivo absorption. 

 

3.1.4.1 Physiologically based in silico absorption models  

A wide range of software tools using physiologically base PK models to predict intestinal 

absorption are commercially available by now. The main difference between these absorption 

models is the underlying mathematical model. Intellipharm® PK is based on a mixing tank 

model which describes the intestine as one or more tanks that are well mixed and have a 

uniform concentration of dissolved and solid drug [129, 130]. PK-Sim® (until version 4.2) on 

the other hand, handles the gastrointestinal tract as a single tube with changing properties 

along the length of the tube. It should be mentioned that the input parameter of intestinal 

permeability coefficient (Peff) is not required from in vitro tests, as PK-Sim® offers calculating 

it from the compound’s lipophilicity and molecular weight [131]. Another approach is the use 
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of the compartmental absorption and transit (CAT) model, which divides the gastrointestinal 

tract into seven compartments which represent the small intestinal absorption best [82]. 

Later, absorption compartments for stomach and colon where added. This advanced 

compartmental absorption and transit (ACAT) model is the basis for Gastroplus™. This 

software allows simulating the rate, extent and location of intestinal absorption in man but 

also in other common laboratory species. In addition the software is able to simulate 

absorption of several dosage forms (e.g. solution, suspension and tablet). Gastroplus™ 

requires, besides physicochemical properties, a Peff value of the compound as an input 

parameter but offers a converter function for in vitro and in situ derived permeability data. In 

order to simulate plasma concentration-time profiles the mentioned absorption models can 

either be coupled with classic compartmental models (Intellipharm® PK, Gastroplus™) or 

have underlying detailed physiological and anatomical information about all organs and 

tissues that are exposed to the absorbed compound (PK-Sim® and Gastroplus™ with add-on 

module). The ability of these in silico models to predict human fraction absorbed (fa) and the 

absorption rate constant (ka) has been evaluated in some studies [131-134]. It should be kept 

in mind that the accuracy of the prediction is highly dependent upon the quality of the input 

data from literature or generated in experiments. 

 

3.1.5 Overview of absorption models 

After the comprehensive discussion of the most relevant absorption models an overview 

summarising the strengths and limitations of the discussed model is given in Tab. 3-2.  

 

 

 

 

 

 

 

 

 



 

 
 

Tab. 3-2: Overview of reviewed absorption models, their composition and assessment of their strengths and limitations. 

           Properties  

Model 
Type Composition 

Transport / 

Diffusion type 
Direction 

System 

requirements 
Strengths Limitations 

        

PAMPA in vitro 
 

Lipophilic artificial 
membrane 

Passive Unidirectional Multiwell system + 
membranes 

HTS method 
Easy and inexpensive 

Dependent on lipid 
composition and pH 

No physiological components 

BBMV / BLMV in vitro 
 

Isolated cell 
components 

Passive transcellular Bidirectional Animal / human 
enterocytes 

Fast method 
Mechanistic uptake studies 

possible 
 

Only small part of absorption 
process can be studied 

Non-specific binding 

Isolated 
intestinal cells 

in vitro 
 

Isolated enterocytes Passive transcellular 
Active transport 

Unidirectional Animal / human 
enterocytes 

Fast method 
Study of different intestinal 

regions 

Loss of polarity 
Limited viability of cells 

Caco-2 cells in vitro 
 

Cell culture system Passive transcellular 
Passive paracellular 

Active transport 

Bidirectional Multiwell system + 
cell culture 

HTS method 
Polarized cell culture 
Expression of transporters 

Lack of some CYPs (e.g. 3A4) 
Unstirred water layer 
Static model 

Everted gut sac in vitro 
(ex vivo) 

Isolated intestinal 
segment 

Passive transcellular 
Passive paracellular 

Active transport 

Bidirectional Animal tissue e.g. rat Easy and inexpensive 
Study of different intestinal 

regions 
Inhibitor for transporter study 

Limited tissue viability 
Presence of additional layers 

not relevant for absorption 
process 

Ussing chamber in vitro 
(ex vivo) 

Isolated 
intestinal tissue 

Passive transcellular 
Passive paracellular 

Active transport 

Bidirectional Animal tissue e.g. rat, 
human + chambers 

Study of different intestinal 
regions in different species 

Inhibitor for transporter study 

Limited tissue viability 
Presence of additional layers 

not relevant for absorption 
process 

Rat intestinal 
perfusion 

in situ Isolated organ in 
anaesthetised animal 

Passive transcellular 
Passive paracellular 

Active transport 

Unidirectional Animal + perfusion 
equipment 

Close to in vivo situation 
Only physiological layers 

involved in absorption 
process 

Mesenteric blood flow present 

Only disappearance of drug 
can be measured 

Sophisticated surgical 
procedure needed 

Animal study 
 

in vivo Conscious animals Passive transcellular 
Passive paracellular 

Active transport 

Unidirectional Animal + radiolabeled 
compound 

Holistic model 
Influence of formulation and 

prandial state can be studied 
 

Labour and cost intensive 
Late stage of drug 

development 
“Black box” 

Loc-I-Gut
®
 in vivo Conscious human Passive transcellular 

Passive paracellular 
Active transport 

Unidirectional Clinical study + 
perfusion equipment 

Absorption in target species 
 

Only disappearance of drug 
can be measured 

Only for safe compounds with 
known toxicological profile 

Physiologically 
based in silico 
absorption 
model 

in silico Mathematical model Passive transcellular 
Passive paracellular 

Active transport 

Unidirectional Computer + software Early assessment of 
development potential 

Identification of sensitive 
parameter influencing 
absorption 

High dependence on extent 
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3.2 Permeability investigations using the Ussing chamber  

3.2.1 Preparatory investigations 

Prior to the start of the actual permeability studies, initial experiments to investigate the 

non-specific binding (NSB) of the reference compounds to the Ussing chamber material were 

performed. Based on these results, time dependent recovery ratios (Rectx) were calculated 

for correction of apparent permeability in the permeability studies.  

 

3.2.1.1 Non-specific binding  

The non-specific binding to the acrylic glass of the Ussing chamber was determined for every 

reference compound as described in Chapter 2.2.3.1. Results are displayed in Tab. 3-3, Tab. 

3-4, Tab. 3-5 and in Fig. 3-1 A+B. For the high concentration (expected donor side 

concentration Tab. 3-5), the non-specific binding for mannitol, terbutaline and fexofenadine 

was low, ranging up to 3.4 % (Fig. 3-1 A). Propranolol was gradually bound to the Ussing 

chamber material over time with a maximum of 6.5 % after 120 min. For these compounds 

the intra-compound variability per time point was low with a CV not exceeding 3.26 % (Tab. 

3-3). Verapamil showed the highest non-specific binding of all tested compounds (77.5 %). 

From the start of the experiment to the first sampling time point after 5 minutes, 70.7 % of 

verapamil was bound to the material of the chamber. NSB increased to a maximum of 

77.5 % by the end of the experiment (Fig. 3-1 A). Intra-compound variability increased over 

time up to a coefficient of variation of 16 % for the last two time points (Tab. 3-3).  

For the low concentration (expected receiver side concentration Tab. 3-5), results for 

terbutaline, fexofenadine and propranolol suggest low non-specific binding with a maximum 

binding of 9.1 % (Fig. 3-1 B). Mannitol showed moderate NSB with a higher intra-compound 

variability of up to 23.6 % (Tab. 3-4). The average binding of mannitol to the acrylic glass was 

17.3 %. As seen in the results from the high test concentration, verapamil was extensively 

bound to the Ussing chamber material. Non-specific binding ranged from 73.6 to 83.3 %, 

mostly increasing over time of the experiment (Fig. 3-1 B). Variability per time point for 

verapamil was markedly increased with a coefficient of variation reaching 42.1% for the last 

time point as shown in Tab. 3-4. 
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3.2.1.2 Recovery ratio for correction of non-specific binding 

In order to correct the permeability results for non-specific binding as described in 

Chapter 2.2.4.2, a recovery ratio for every time point (Rectx) was calculated (Tab. 3-3 and 

Tab. 3-4) according to Equation 3. In the high concentration group, the recovery ratios for 

fexofenadine, propranolol and mannitol were close to 1.0 (no correction for non-specific 

binding required) ranging between 0.935 and 1.0 (Tab. 3-3). For terbutaline, the Rectx was 

1.0 for all time points. The recovery ratio was lowest for verapamil, as the compound showed 

the highest non-specific binding (Fig. 3-1) which ranged between 0.225 and 0.293 (Tab. 3-3).  

  

Fig. 3-1: Non-specific binding to Ussing chamber without tissue. Non-specific binding [%] (as (1-Rectx) with 

Rectx being the quotient of the concentration at time point x and the initial compound concentration) over time [min] 
presented as mean ± standard deviation (n=3). A: Non-specific binding in high concentration experiment (expected 
donor side concentration). B: Non-specific binding in low concentration experiment (expected receiver side 
concentration). Verapamil (─ •• ─ ••), Propranolol (─ ─), Mannitol (──), Terbutaline (•••••), Fexofenadine (──). 
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Tab. 3-3: Non-specific binding to Ussing chamber without tissue for the high concentration 
(expected donor side concentration). Results of the non-specific binding experiment are presented as 
the amount of compound per total sample volume for each time point (Ctx) in disintegrations per 
minute [dpm] as mean ± standard deviation for each compound with the respective coefficient of 
variation [%]. Further, the calculated recovery ratio (Rectx) for each time point is shown (n= 3). 

 

  Verapamil   Fexofenadine 

Time [min] Ctx [dpm]  Rectx  Ctx [dpm]  Rectx 

  mean ± SD CV [%] ratio   mean ± SD CV [%] ratio 

0 4391 ± 21.4 0.49 -  30732 ± 287 0.934 - 

5 1287 ± 40.4 3.14 0.293  30240 ± 128 0.422 0.984 

10 1276 ± 120 9.42 0.291  30788 ± 578 1.88 1.00 

20 1238 ± 33.0 2.67 0.282  30796 ± 46.0 0.148 1.00 

40 1116 ± 91.3 8.18 0.254  30593 ± 466 1.52 0.995 

60 1074 ± 115 10.7 0.245  31135 ± 290 0.930 1.01 

90 1033 ± 116 11.2 0.235  30708 ± 182 0.591 0.999 

120 1013 ± 166 16.4 0.231  30372 ± 170 0.559 0.988 

150 988 ± 159 16.1 0.225   30813 ± 841 2.73 1.00 

 

 

  Propranolol   Mannitol 

Time [min] Ctx [dpm]  Rectx  Ctx [dpm]  Rectx 

  mean ± SD CV [%] ratio   mean ± SD CV [%] ratio 

0 6918 ± 39.3 0.568 -  752 ± 22.1 2.94 - 

5 6849 ± 138 2.02 0.990  756 ± 10.6 1.40 1.01 

10 6737 ± 96.3 1.43 0.974  740 ± 18.2 2.46 0.984 

20 6600 ± 194 2.94 0.954  745 ± 4.58 0.615 0.991 

40 6602 ± 215 3.26 0.954  726 ± 10.3 1.41 0.965 

60 6512 ± 173 2.66 0.941  741 ± 11.7 1.58 0.985 

90 6472 ± 146 2.26 0.935  747 ± 22.0 2.94 0.993 

120 6470 ± 194 3.01 0.935  749 ± 14.0 1.87 0.996 

150 6481 ± 130 2.00 0.937   741 ± 1.5 0.206 0.985 

 
 

  Terbutaline 

Time [min] Ctx [dpm]  Rectx 

  mean   SD CV [%] ratio 

0 8341 ± 26.4 0.316 - 

5 8362 ± 177 2.11 1.00 

10 8418 ± 83.0 0.985 1.01 

20 8369 ± 40.9 0.488 1.00 

40 8374 ± 60.9 0.727 1.00 

60 8432 ± 73.9 0.876 1.01 

90 8304 ± 23.5 0.282 1.00 

120 8442 ± 35.7 0.423 1.01 

150 8419 ± 69.8 0.829 1.01 
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Tab. 3-4: Non-specific binding to Ussing chambers for the low concentration (expected receiver side 
concentration). Results of the non-specific binding experiment are presented as the amount of 
compound per total sample volume for each time point (Ctx) in disintegrations per minute [dpm] as 
mean ± standard deviation for each compound with the respective coefficient of variation [%]. Further, 
the calculated recovery ratio (Rectx) for each time point is shown (n= 3; Mannitol n= 2). 

 

  Verapamil   Fexofenadine 

Time [min] Ctx [dpm]  Rectx  Ctx [dpm]  Rectx 

  mean ± SD CV [%] ratio   mean ± SD CV [%] ratio 

0 86 ± 4.58 5.33 -  3103 ± 54.2 1.75 - 

5 23 ± 3.79 16.7 0.267  3089 ± 30.5 0.988 0.995 

10 18 ± 4.93 26.9 0.209  3093 ± 8.19 0.265 1.00 

20 19 ± 8.02 41.5 0.221  3066 ± 18.0 0.587 0.988 

40 17 ± 0.577 3.33 0.198  3157 ± 13.6 0.430 1.02 

60 19 ± 3.21 16.6 0.221  3054 ± 41.3 1.35 0.984 

90 16 ± 5.69 34.8 0.186  3047 ± 11.4 0.373 0.982 

120 15 ± 2.31 15.1 0.174  2997 ± 65.8 2.20 0.966 

150 14 ± 6.03 42.1 0.163   3049 ± 33.1 1.09 0.983 

 
 

  Propranolol   Mannitol 

Time [min] Ctx [dpm]  Rectx  Ctx [dpm]  Rectx 

  mean ± SD CV [%] ratio   mean ± SD CV [%] ratio 

0 136 ± 4.58 3.37 -  14.5 ± 2.12 14.6 - 

5 138 ± 4.73 3.43 1.01  12.0 ± 1.41 11.8 0.828 

10 133 ± 3.06 2.30 0.978  10.5 ± 0.707 6.73 0.724 

20 126 ± 7.02 5.60 0.926  11.5 ± 0.707 6.15 0.793 

40 135 ± 11.1 8.17 0.993  12.0 ± 1.41 11.8 0.828 

60 133 ± 1.00 0.80 0.978  12.0 ± 2.83 23.6 0.828 

90 134 ± 8.74 6.50 0.985  11.5 ± 2.12 18.4 0.793 

120 124 ± 5.29 4.30 0.912  11.0 ± 1.41 12.9 0.759 

150 124 ± 3.79 3.10 0.912   15.0 ± 1.41 9.43 1.03 

 
 

  Terbutaline 

Time [min] Ctx [dpm]  Rectx 

  mean   SD CV [%] ratio 

0 167 ± 4.62 2.76 - 

5 165 ± 5.51 3.33 0.988 

10 171 ± 9.87 5.78 1.02 

20 173 ± 8.89 5.14 1.04 

40 167 ± 5.51 3.29 1.00 

60 168 ± 14.3 8.53 1.01 

90 171 ± 12.6 7.37 1.02 

120 175 ± 7.00 4.00 1.05 

150 175 ± 6.11 3.50 1.05 
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Tab. 3-4 shows the results for the low concentration NSB experiments. The compounds 

fexofenadine, terbutaline and propranolol showed similar Rectx compared to the high 

concentration group. Ratios were close to 1.0, ranging between 0.912 and 1.5. For the 

compound mannitol the Rectx were between 0.724 (at time point 10 min) and 1.03 (time point 

150 min). Recovery ratios were slightly lower than in the high concentrations group. It should 

be noted that for mannitol in the low concentration group the measurements were close to 

the lower limit of quantitation (Tab. 2-8). The compound verapamil exhibited the lowest ratios 

within the low concentration group ranging from 0.163 to 0.267. These recovery ratios were 

also the lowest for all non-specific binding experiments and 28 % lower than for the high 

concentration of verapamil.  

 
 

3.2.1.3 Mass balance of non-specific binding experiments 

A mass balance for the NSB studies was performed to evaluate the overall total recovery of 

each compound in the Ussing chamber experiment. The recovery of compound for the taken 

samples and the remaining buffer was between 90.4 and 103 % for the compounds 

propranolol, fexofenadine, terbutaline and mannitol in the high and low test concentration 

(Tab. 3-5). For verapamil, the recovery of taken samples and remaining buffer was much 

lower for both concentrations, with 22.5 % for the expected donor side concentration (high) 

and 16.8 % for the expected receiver side concentration (low). The recovery of compound 

from both washing steps with the solvent ethanol (Chapter 2.2.3.1) was summed up for every 

compound. The recovery in the ethanol washing steps for the high concentration ranged 

between 2.2 and 8.5 % (Tab. 3-5). The variation of recovery in the low concentration was 

higher with percentages between 0.613 for mannitol and 17.9 for propranolol. The values for 

total recovery comprise the taken samples and the remaining buffer as well as the recovery 

from the washing steps. Recovery was complete (≥ 100 %) for the compounds propranolol, 

fexofenadine, terbutaline and mannitol in both concentration groups with very low fractions 

(≤ 3.3 %) from the ethanol washing steps for fexofenadine and mannitol (Tab. 3-5). The 

cumulative recovery of verapamil was substantially smaller compared to the other 

compounds, with a total recovery of 28.6 % for the high concentration and 30.3 % for the low 

concentration; hence overall non-specific binding of verapamil was 71.4 and 69.7 % for the 

high and low concentration group, respectively. 
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3.2.2 Permeability studies 

3.2.2.1 Non-specific binding corrected apparent permeability 

All experiments were carried out with rat jejunal tissue mounted onto the Ussing chambers 

as described in Chapter 2.2.3.2. Fig. 3-2 gives an example on how the amount of compound 

in the receiver chamber corrected for non-specific binding (ARcorrected) over time was used 

for linear regression and subsequently for determination of the slope (m) used for flux 

calculation according to Equation 6. The example shows the data from the propranolol 

experiment using stripped tissue investigating the permeability from the mucosal to the 

serosal side. Mean regression parameter and their corresponding coefficient of determination 

(R2) for this example and all other permeability investigations are given in Tab. 3-6. For all 

compounds the time interval used for calculation of the slope was 60-120 minutes as they all 

exhibited a linear flux in this time interval expressed by a high R2 (≥ 0.846) with a low 

coefficient of variation. 

Tab. 3-5: Total recovery of compound from non-specific binding experiments. Results for recovery 
presented in percent for each compound for the high (n= 3) and low (n= 3; mannitol n= 2) test 
concentrations.   

Reference 
compound 

Test  
concentration* 

  Recovery [%] 

       
in buffer after 

150 min 
in both ethanol 
washing steps 

Total  

Verapamil 
high 6 mM  22.5 6.04 28.6 

low 0.1 mM  16.8 13.4 30.3 

Propranolol 
high 6 mM  92.9 8.50 101 

low 0.1 mM  90.4 17.9 108 

Fexofenadine 
high 45 µM  99.2 3.20 102 

low 4.5 µM  97.3 3.31 101 

Terbutaline 
high 6 mM  99.9 3.21 103 

low 0.1 mM  103 8.80 112 

Mannitol 
high 1.2 µM  97.7 2.22 100 

low 0.2 nM   101 0.613 101 

 
* Differences in suitable test concentration result from the radioactive label of the compound. 
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Subsequently, the apparent permeability (Papp) was calculated according to Equation 7. All 

parameters used for Papp calculation for all investigations are listed in the Appendix (Tab. 7-2 

to Tab. 7-15). 

In Tab. 3-7 the overall results of the permeability studies for five compounds, two types of 

tissue preparation techniques (full-thickness and stripped tissue) and two settings of 

permeability directions (mucosal to serosal and serosal to mucosal), are displayed. 

Verapamil showed the highest permeability with a Papp of 6.75E-05 cm/s for stripped tissue 

for the serosal to mucosal direction (Tab. 3-7). The lowest permeability was exhibited by 

fexofenadine with a Papp of 1.09E-06 cm/s for full-thickness tissue for the mucosal to serosal 

direction with a CV of 59.0 %.  

 

 

Fig. 3-2: Amount of compound in receiver chamber corrected for non-specific binding (ARcorrected) 
over time [min] for permeability studies from mucosal to serosal side using stripped tissue for the 
example propranolol (n=6). Data points from 60-120 minutes were used for linear regression and 
calculation of the slope for all compounds. Mean values of coefficient of determination and of the slope 
for all experiments are given in Tab. 3-6. 
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Tab. 3-6: Linear regression parameters. Slope (m) and coefficient of determination (R
2
) of linear 

part of cumulative corrected amounts of compound in receiver chamber versus time profile for 
permeability experiments. Parameters are presented as mean ± standard deviation and coefficient of 
variation for each compound, permeability direction (mucosal-serosal / serosal-mucosal) and tissue 
preparation (full-thickness / stripped). In addition the number of chambers included into the 
calculations per experiment (n) is given.  

Reference Permeability Tissue m* [µmol/min] R
2
 n 

compound direction preparation mean ± SD CV [%] mean ± SD 
CV 
[%] 

 

Verapamil m-s full-thickness 2.83E-10 ± 7.53E-11 26.6 0.982 ± 0.030 3.08 6 

 m-s stripped 2.83E-10 ± 9.83E-11 34.7 0.963 ± 0.054 5.59 6 

 s-m full-thickness 1.18E-10 ± 5.56E-11 47.3 0.940 ± 0.069 7.37 4 

 s-m stripped 3.00E-10 ± 6.32E-11 21.1 0.963 ± 0.034 3.52 6 

            

Propranolol m-s full-thickness 1.42E-10 ± 1.08E-10 75.9 0.875 ± 0.209 23.9 5 

 m-s stripped 8.33E-10 ± 6.59E-10 79.1 0.972 ± 0.018 1.87 6 

 s-m full-thickness 1.12E-10 ± 8.41E-11 75.1 0.846 ± 0.135 15.9 5 

 s-m stripped 6.50E-10 ± 3.56E-10 54.8 0.976 ± 0.031 3.21 6 

            

Fexofenadine m-s full-thickness 1.68E-07 ± 9.86E-08 58.7 0.964 ± 0.024 2.47 5 

 m-s stripped 2.20E-07 ± 1.30E-07 59.3 0.989 ± 0.012 1.21 5 

 s-m full-thickness 1.93E-07 ± 1.34E-07 69.1 0.969 ± 0.028 2.93 6 

 s-m stripped 1.75E-07 ± 9.57E-08 54.7 0.965 ± 0.066 6.80 4 

            

Terbutaline m-s full-thickness 1.33E-09 ± 5.16E-10 38.7 0.991 ± 0.010 1.01 6 

 m-s stripped 1.00E-09 ± 0.00E+00 0.00 0.993 ± 0.008 0.776 5 

 s-m full-thickness 1.17E-09 ± 4.08E-10 35.0 0.997 ± 0.003 0.257 6 

 s-m stripped 1.17E-09 ± 4.08E-10 35.0 0.989 ± 0.011 1.07 6 

            

Mannitol m-s full-thickness 3.41E-04 ± 1.37E-04 40.2 0.920 ± 0.107 11.7 17 

 m-s stripped 4.35E-04 ± 2.18E-04 50.0 0.948 ± 0.084 8.85 17 

 s-m full-thickness 2.99E-08 ± 1.38E-08 46.4 0.885 ± 0.135 15.2 15 

  s-m stripped 4.82E-08 ± 2.51E-08 52.0 0.918 ± 0.094 10.2 17 

 
*Time interval used for linear regression= 60-120 minutes 
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For verapamil, the non-specific binding correction had a substantial influence on the 

calculated final Papp for the permeability studies (Fig. 3-3 and Tab. 3-8). For example in the 

study group of stripped intestinal tissue, verapamil exhibited an experimental Papp from 

mucosal to serosal side of 9.73E-06 cm/s, which was increased by a factor of 6.1 up to 

5.92E-05 cm/s by including the NSB (Tab. 3-8). Therefore, verapamil exhibited the highest 

final permeability of all tested compounds in the m-s group with a coefficient of variation of 

37.2 %. For the same study group propranolol and mannitol were corrected by a factor of 1.3 

and 1.4 to a Papp of 1.53E-05 cm/s and 1.73E-05 cm/s, respectively (Tab. 3-8 and Fig. 3-3). 

For fexofenadine and terbutaline correction was applied but did not show any effect on the 

apparent permeability as non-specific binding was marginal (Tab. 3-4). Fexofenadine thus 

Tab. 3-7: Calculated apparent permeability (Papp) for the performed permeability experiments 
corrected for non-specific binding.  Results are presented as mean ± standard deviation for each 
compound, permeability direction (mucosal-serosal / serosal-mucosal) and tissue preparation (full-
thickness/ stripped). Further, the respective coefficient of variation in percent is shown and the number 
of chambers included into the calculations per experiment (n).  

Reference Permeability  Tissue Papp [cm/s] n 

compound direction  preparation mean ± SD CV [%]  

Verapamil m-s  full-thickness 6.15E-05 ± 2.58E-05 41.9 6 

 m-s  stripped 5.92E-05 ± 2.20E-05 37.2 6 

 s-m  full-thickness 2.43E-05 ± 1.16E-05 47.6 4 

 s-m  stripped 6.75E-05 ± 1.40E-05 20.8 6 

         

Propranolol m-s  full-thickness 2.85E-06 ± 2.15E-06 75.3 5 

 m-s  stripped 1.53E-05 ± 1.22E-05 79.3 6 

 s-m  full-thickness 2.14E-06 ± 1.59E-06 74.5 5 

 s-m  stripped 1.17E-05 ± 6.55E-06 55.9 6 

         

Fexofenadine m-s  full-thickness 1.09E-06 ± 6.41E-07 59.0 5 

 m-s  stripped 1.47E-06 ± 8.75E-07 59.7 5 

 s-m  full-thickness 1.24E-06 ± 8.62E-07 69.7 6 

 s-m  stripped 1.16E-06 ± 6.46E-07 55.6 4 

         

Terbutaline m-s  full-thickness 2.70E-05 ± 1.05E-05 38.8 6 

 m-s  stripped 2.03E-05 ± 2.40E-07 1.18 5 

 s-m  full-thickness 2.34E-05 ± 7.52E-06 32.1 6 

 s-m  stripped 2.37E-05 ± 8.37E-06 35.2 6 

         

Mannitol m-s  full-thickness 1.42E-05 ± 5.96E-06 42.0 17 

 m-s  stripped 1.73E-05 ± 7.19E-06 41.6 17 

 s-m  full-thickness 9.20E-06 ± 4.33E-06 47.1 15 

  s-m  stripped 1.15E-05 ± 5.33E-06 46.4 17 
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retained the lowest Papp value in this study group of 1.47E-06 cm/s with a coefficient of 

variation of 59.7 % (Tab. 3-7). Permeability of terbutaline remained at 2.03E-05 cm/s with a 

coefficient of variation of 1.18 %.  

 

 

 

 

 

 

Tab. 3-8: Calculated non-specific binding correction factor as a ratio of mean corrected apparent rat 
jejunal permeability and mean experimental apparent rat jejunal permeability (centimetre per second) 
from permeability studies using stripped and full-thickness tissue preparation technique in mucosal to 
serosal permeability direction. 

Reference Tissue Papp [cm/s] Correction 

compound preparation experimental corrected for NSB factor 

  

mean mean 

 Verapamil stripped 9.73E-06 5.92E-05 6.09 

 
full-thickness 9.39E-06 6.15E-05 6.55 

Propranolol stripped 1.23E-05 1.53E-05 1.25 

 
full-thickness 2.77E-06 2.85E-06 1.03 

Fexofenadine  stripped 1.47E-06 1.47E-06 1.00 

 
full-thickness 1.07E-06 1.09E-06 1.01 

Terbutaline  stripped 2.03E-05 2.03E-05 1.00 

 
full-thickness 2.70E-05 2.70E-05 1.00 

Mannitol  stripped 1.26E-05 1.73E-05 1.37 

 
full-thickness 1.03E-05 1.42E-05 1.38 
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Although the influence of the NSB is only displayed for the group of stripped tissue for the 

mucosal to serosal direction in Fig. 3-3, it was present in all study groups, as correction of 

the experimental Papp was performed using the respective recovery ratios shown in Tab. 3-4.  

 

3.2.2.2 Comparing mucosal to serosal and serosal to mucosal direction 

For all reference compounds permeability studies were performed in a bidirectional manner. 

Therefore, the radiolabeled reference compounds were applied to the mucosal side and 

permeability to the serosal side was examined or vice versa. By this method, the transport 

characteristics of the respective compound can be evaluated as compounds undergoing 

active efflux or influx processes should exhibit different transepithelial fluxes in m-s or s-m 

direction. Results for the study group of stripped tissue are shown in Fig. 3-4. Here, 

 

Fig. 3-3: Apparent rat jejunal permeability (Papp) from mucosal to serosal side determined in 
permeability studies using stripped tissue in the Ussing chamber. Total bar represents non-specific 
binding corrected permeability for each compound presented as mean ± standard deviation. White 
bar ( ) represents the non-specific binding, black bar (■) represents uncorrected experimental 
permeability. Mannitol (n= 17), verapamil and propranolol (n= 6), terbutaline and fexofenadine (n= 5). 
Data is given in Tab. 3-8. 
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verapamil showed tendencies to higher permeability in s-m direction compared to mucosal to 

serosal direction accounting for known active efflux, but could not be proven statistically 

significant with a p-value ≤  0.05. In contrast to all other tested compounds, mannitol 

demonstrated a significantly (p-value = 0.012) higher m-s flux than s-m flux with an apparent 

permeability of 1.73E-05 cm/s and 1.15E-05 cm/s, respectively (Tab. 3-7). The compound 

fexofenadine, which is known to undergo active intestinal influx and efflux, showed no 

significant differences in permeability when comparing both flux directions.  

 

 

 

In Fig. 3-5 the bidirectional permeability data is shown for the full-thickness tissue study 

group. Except for fexofenadine, all tested substances demonstrate a higher mucosal to 

serosal flux compared to the s-m flux. This difference has been demonstrated statistically 

significant for verapamil and mannitol. Fexofenadine exhibited hardly any difference between 

m-s and s-m permeability with a Papp of 1.09E-06 cm/s and 1.24E-05 cm/s, respectively. On 

 

Fig. 3-4: Apparent rat jejunal permeability (Papp) corrected for non-specific binding from 
permeability studies using stripped tissue in the Ussing chamber presented as mean ± standard 
deviation. White bars ( ) represent the permeability from mucosal to serosal side; black bars (■) 
represent the permeability from serosal to mucosal side for each compound. Mannitol (n= 17); 
terbutaline, propranolol and verapamil (n= 6), fexofenadine (n= 4), *= statistical significance p ≤ 0.05.  
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the contrary, the permeability for mucosal to serosal direction in verapamil was 2.6 times 

higher than the s-m flux.  

 

 

 

 

3.2.2.3 Comparing stripped tissue and full-thickness tissue 

The influence of two tissue preparation techniques on the transepithelial permeability was 

examined. On the one hand, rat jejunum with all its layers (full-thickness tissue) was used; on 

the other hand the tissue was stripped from its serosal layer (Chapter 2.2.3.2.1). Fig. 3-6 

compares the corrected apparent m-s fluxes for stripped and full-thickness tissue. Only for 

propranolol the removal of the serosal layer enhanced the Papp compared to the experiments 

with full-thickness tissue (p-value ≤ 0.05). The permeability of propranolol for the mucosal to 

 

Fig. 3-5: Apparent rat jejunal permeability (Papp) corrected for non-specific binding from 
permeability studies using full-thickness tissue in the Ussing chamber presented as mean ± standard 
deviation. White bars ( ) represent the permeability from mucosal to serosal side; black bars (■) 
represent the permeability from serosal to mucosal side for each compound. Mannitol (n=15), 
terbutaline and fexofenadine (n=6), propranolol (n=5), verapamil (n=4), * = statistical significance 
p ≤ 0.05. 
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serosal route was higher in stripped tissue (1.53E-05 cm/s) in contrast to the full-thickness 

tissue group (2.85E-06 cm/s) by a factor of 5.2.  

 

 

 

As regards the study group serosal to mucosal side (Fig. 3-7), the difference in permeability 

of the two tissue preparation groups was not significant for the compounds mannitol, 

terbutaline and fexofenadine (p ≥ 0.05). For propranolol the apparent permeability in stripped 

tissue (1.17E-05 cm/s) was demonstrated slightly higher (p-value= 0.011) in comparison to 

the full-thickness tissue (2.14E-06 cm/s). The serosal to mucosal permeability for verapamil 

was significantly higher in the stripped tissue study group with a p-value of 0.001. The 

apparent permeability was 6.75E-05 cm/s and therefore 2.8 times higher than with 

full-thickness tissue (2.43E-05 cm/s).  

 

 

Fig. 3-6: Apparent rat jejunal permeability (Papp) corrected for non-specific binding from mucosal to 
serosal side determined in permeability studies using the Ussing chamber presented as mean ± 
standard deviation. White bars ( ) represent the permeability across stripped tissue; black bars (■) 
represent the permeability across full-thickness tissue for each compound. Mannitol (n=17), verapamil, 
propranolol stripped, terbutaline full-thickness (n=6), fexofenadine, terbutaline stripped, propranolol 
full-thickness (n=5). *= statistical significance p ≤ 0.05. 
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3.2.2.4 Comparing transcellular and paracellular route 

The selection of reference compounds covered the main permeability routes for intestinal 

absorption (Tab. 2-5). Small hydrophilic molecules like mannitol and terbutaline pass the 

membrane paracellularly via tight junctions; thus do not enter the epithelial cells. Propranolol, 

verapamil and fexofenadine cross the mucosal membrane on the transcellular route as they 

are lipophilic and larger in size. By using mannitol, as a reference substance for not entering 

the enterocytes (extracellular marker), extra- and intracellular cell space could be 

differentiated and the amount of compound in the cells was calculated for all remaining 

substances in this study (Chapter 2.2.4.3).  

 

Fig. 3-7: Apparent rat jejunal permeability (Papp) corrected for non-specific binding from serosal to 
mucosal side determined in permeability studies using the Ussing chamber presented as mean ± 
standard deviation. White bars ( ) represent the permeability across stripped tissue; black bars (■) 
represent the permeability across full-thickness tissue for each compound. Mannitol stripped tissue 
(n=17), mannitol full-thickness tissue (n=15), terbutaline, fexofenadine full-thickness tissue, 
propranolol stripped tissue and verapamil stripped tissue (n=6), propranolol full-thickness tissue (n=5), 
verapamil full-thickness tissue and fexofenadine stripped tissue (n=4), *= statistical significance p ≤ 
0.05, **= statistical significance p ≤ 0.01. 
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Fig. 3-8 displays the ratio of concentration of compound in the jejunal enterocytes per gram 

cells (CcompoundICF) and the concentration of compound on the donor side of the chamber 

by the end of the experiment (Cdonorend) in the stripped tissue study group calculated 

according to Equation 16. Data points located below the dashed line (i.e. ratio < 1) indicate, 

that more compound was found extracellularly than intracellularly. This was the case for the 

passively paracellular diffusing terbutaline. On the other hand, the intracellular concentration 

of verapamil, propranolol and fexofenadine was higher compared to the extracellular 

concentration on the mucosal side. Fig. 3-8 also distinguishes between fluxes from m-s side 

and s-m side. Propranolol exhibited the highest intra- to extracellular ratio with 7.15 ± 1.22 for 

the m-s group and a slightly lower ratio in s-m direction (4.98 ± 0.850). Hence, more 

compound is located intracellularly than extracellularly as expected for a passively 

transcellular permeating substance. More verapamil was found intracellularly than 

extracellularly for all permeability experiments. The ratio for the m-s direction of 5.27 ± 1.32 

 

Fig. 3-8: Ratios of intra- and extracellular compound concentration. Compound per gram jejunal 
cells (CcompoundICF) in relation to compound concentration on donor side of chamber by end of 
experiment (Cdonorend) presented as mean ± standard deviation (n=6). Study group stripped tissue 
divided into mucosal to serosal and serosal to mucosal permeability experiments. Fexofenadine (■), 

propranolol (▲), terbutaline (●), verapamil (x). The dashed line (–∙–∙) represents equal intracellular and 

extracellular concentration (Ratio=1).  
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was significantly higher (p ≤ 0.01) than the ratio for the serosal to mucosal direction 

(2.10 ± 0.290). As mentioned above, terbutaline is a paracellularly diffusing substance that 

does not enter the enterocytes. As anticipated, terbutaline exhibited in all permeability 

experiments an intra- to extracellular ratio smaller than 1, ranging from 0.155 to 0.278 

indicating a 5-fold higher extracellular to intracellular concentration on average. Therefore, 

more substance was located outside of the intestinal cells compared to inside. Fexofenadine 

showed significant differences in intra- to extracellular ratios (p ≤ 0.01) when considering 

bidirectional experiments. The m-s direction displayed a ratio of 1.71 ± 0.615, where the s-m 

direction only showed a ratio of 0.161 ± 0.0494. More of the actively transported compound 

fexofenadine was found inside the cells when considering the mucosal to serosal direction 

compared to only a tenth of the substance in the serosal to mucosal experiments. It should 

be noted, that fexofenadine also undergoes active efflux when permeating through the 

enterocytes.  

 

 

Fig. 3-9: Ratios of intra- and extracellular compound concentration. Compound per gram jejunal 
cells (CcompoundICF) in relation to compound concentration on donor side of chamber by end of 
experiment (Cdonorend) presented as mean ± standard deviation (n=6). Study group full-thickness 
tissue divided into mucosal to serosal and serosal to mucosal permeability experiments. 

Fexofenadine (■), propranolol (▲), terbutaline (●), verapamil (x). The dashed line (–∙–∙) represents 
equal intracellular and extracellular concentration (Ratio=1). 
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Fig. 3-9 displays the same intra- to extracellular ratio as described for Fig. 3-8, but for all 

experiments conducted with full-thickness tissue. Basically, the intracellular to extracellular 

distribution of the compounds was the same as mentioned above, with verapamil and 

fexofenadine showing significantly more compound intracellularly for the m-s experiments 

compared to the serosal to mucosal studies with a p-value ≤ 0.01. As for the stripped tissue 

experiments, fexofenadine showed a ratio larger than 1 for the m-s studies and a ratio 

smaller than 1 for the s-m fluxes. Propranolol exhibited the highest accumulation in the 

enterocytes, with an intra- to extracellular ratio of 4.36 ± 0.318 for m-s fluxes and a ratio of 

3.98 ± 0.279 for the s-m experiments. For all studies, more terbutaline was found 

extracellularly than intracellularly with ratios below 0.17. 

 

 

3.2.2.5 Mass balance of experiments 

Tab. 3-9 shows the results from the performed mass balance as described in 

Chapter 2.2.4.4. For the compounds terbutaline and mannitol, the values for non-specific 

binding (NSB) were negative. This is an artefact resulting from the data in the NSB studies, 

which displayed a recovery in the taken samples and remaining buffer >100 % (Tab. 3-5). 

This can be due to variability in measurement. Mannitol, fexofenadine and propranolol each 

had a total recovery of 88 %, 90 % and 89 %, respectively. Terbutaline followed with a total 

recovery of 84 %. Total recovery for verapamil was calculated to be 116 %, exceeding a 

complete recovery. When calculating only the amount of verapamil on the donor side, the 

receiver side and amount found in the tissue, recovery totals in 35 %. This is an increase of 

recovery compared to the NSB studies performed without mounted tissue (Tab. 3-5). 

Bringing in additional material with binding potential, such as tissue, can lower the initial NSB 

in the experiment, but it should also be kept in mind that non-specific binding was already 

prone to variability in the NSB studies (Chapter 3.2.1.1). Variability of total recovery within 

each compound was low for the study group stripped m-s (Tab. 3-9). Coefficient of variation 

(CV) for total recovery ranged from 1 % to 4 % for terbutaline, verapamil, fexofenadine and 

propranolol. Whereas for these compounds only one animal was used per experiment, the 

results for mannitol are averaged from three independent experiments. Due to the additional 

inter-animal variability, the CV was slightly higher for mannitol (8 %). 
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As regards recovery in tissue, the values comprise amount of compound in the intestinal 

cells, but also compound in the interstitium and adhering to the excised tissue as it is 

presumably the case for mannitol and terbutaline, as they are known to cross the intestinal 

membrane through tight junctions without entering the enterocytes. Therefore, the two 

compounds showed a low recovery in the tissue with only 2 % compared to all other 

compounds that are known to enter the enterocytes. 

 

3.2.3 Electrical measurements 

In order to monitor the viability of the excised tissue, electrical measurements were carried 

out as described in Chapters 2.2.1.5 and 2.2.2.4. 

3.2.3.1 Transepithelial resistance 

One important parameter to evaluate the condition of the excised tissue is the transepithelial 

resistance (Rt) measured with the clamp-system (Chapter 2.2.1.5). It is an indicator for the 

integrity of the tissue. Disruption or perforation of the tissue during the preparation process 

influences its integrity and therefore alters Rt and most likely the permeability data collected 

from the experiments. Tab. 3-10 gives information about the transepithelial resistance of 

stripped and full-thickness tissue before the start of the permeability experiments. The Rt for 

full-thickness tissue was 66.1 ± 13.5 Ω/cm2 and was significantly higher (p < 0.05) compared 

Tab. 3-9: Mass balance for permeability experiments from mucosal to serosal side using stripped 
tissue in the Ussing chamber. Recovery of compound after 150 minutes of experiment from donor side, 
receiver side and from tissue and the previously determined non-specific binding is shown; the sum is 
representing the total recovery for each compound. Data is presented in percent as mean ± standard 
deviation. For total recovery the coefficient of variation [%] is given. (n= 6; mannitol n= 18). 

Reference 
compound 

Recovery [%] 

 Donor Receiver Tissue NSB Total 

 mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD CV [%] 

Verapamil 29.4 ± 0.852 0.49 ± 0.094 5.48 ± 0.600 80.3 ± 6.26 116 ± 0.97 0.840 

Propranolol 66.7 ± 2.34 1.42 ± 0.986 12.9 ± 2.68 7.67 ± 3.00 88.7 ± 3.53 3.98 

Terbutaline 80.2 ± 1.30 4.71 ± 0.736 2.10 ± 0.100 -2.70 ± 3.75 84.3 ± 0.8 0.922 

Fexofenadine 83.1 ± 2.87 0.32 ± 0.196 5.95 ± 0.46 0.750 ± 1.85 90.1 ± 2.96 3.31 

Mannitol 85.0 ± 6.46 1.84 ± 0.636 1.88 ± 0.6 -0.700 ± 4.41 88.0 ± 6.99 7.94 
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to the transepithelial resistance of stripped tissue with Rt being 59.6 ± 15.8 Ω/cm2. As 

anticipated, the extra layer of the serosa seems to contribute to the overall transepithelial 

resistance of the excised rat jejunum. 

 

 

 

  

Tab. 3-10: Results for transepithelial resistance (Rt) measurement from the Ussing chamber 
experiments comparing full-thickness and stripped tissue. Electrical resistance of excised tissue by start 
of experiment is shown as mean ± standard deviation and coefficient of variation [%]. Full-thickness 
tissue n= 41, stripped tissue n= 47. 

Tissue preparation technique 
Rt 

[Ω/cm
2
] 

 

 mean ± SD CV [%] 

Full-thickness tissue 66.1 ± 13.5 20.5 

Stripped tissue 59.6 ± 15.8 26.6 
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3.3 Simulation of intestinal absorption using GastroPlus™ 

A retrospective data evaluation was performed, to assess the ability of the applied physiology 

base in silico tool, to predict intestinal absorption for eight selected compounds (C1 - C8) with 

the minimum amount of input data required. Two PK parameters that describe intestinal 

absorption were focused on; fraction absorbed (fa) and the absorption rate constant (ka). For 

the assessment of the success of the simulations, a deviation factor of two (i.e. 2-fold error) 

from the in vivo results was accepted [89, 90].  

 

3.3.1 Fraction absorbed 

Fraction absorbed (fa) was simulated for eight compounds, based on the setting of the 

performed in vivo studies (Appendix 7.2). This included different species, formulations and 

doses. Evaluation was performed for all simulations and categorised by different properties 

(e.g. species, physicochemical properties). The data was plotted as a correlation plot 

comparing predicted versus observed fraction absorbed. It should be noted, that for all 

graphs, the bold black line is the line of unity and no the regression line. However, the actual 

coefficient of determination (R2) for the regression line is presented in the graph. The two 

dashed lines, forming a ‘scissor shape’, define the area of accepted deviation. Briefly, data 

points between the bold and the dashed line are within a deviation factor of two and the 

simulation results were considered acceptable [89, 90]. This kind of display was chosen to 

visually facilitate the evaluation. Each data point represents the predicted and observed fa 

(determined within the in vivo study) for a certain compound, certain species, with a certain 

formulation and dose. If for example one compound was administered in the same species 

with the same formulation but in a different dose, two data points will represent those results. 

For fraction absorbed, 35 simulation scenarios were performed. 
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Fig. 3-10 shows the overall results for all fa simulations. For 77.1 % of all simulated 

scenarios, the prediction was within 2-fold error of the in vivo data (Tab. 3-11). Therefore, the 

majority of data was within the accepted deviation; however the coefficient of determination 

was low, with 0.151, indicating a very poor correlation between simulated and observed 

fraction absorbed. Of the 35 simulations, three exhibited a high predicted fa with 100 %, 89 % 

and 79 % for in vivo experiments with moderate to low fa of 41 %, 21 % and 23 %, 

respectively. Five additional predictions were underestimated as they exhibited low to 

moderate fraction absorbed ranging from 8 % to 33 % in comparison to the in vivo 

determined moderate fa of 45 % to 69 %. For observed fraction absorbed > 80 % the 

predicted fa was variable ranging from 51 % to 100 % but still within the accepted limits.  

 

Fig. 3-10: Predicted fraction absorbed using GastroPlus™ versus observed fraction absorbed 
determined in in vivo studies in percent (data points comprise all compounds, species, formulations 

and doses). Fraction absorbed of compound (◊), line of unity (▬) and 2-fold error (- - -), n= 35. In 

addition the coefficient of determination (R
2
) is shown. 
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When categorizing fraction absorbed, < 30 % is considered low, ≥ 30 % to ≤ 70 % is 

moderate and > 70 % is referred to as high absorption. If Fig. 3-10 is divided into those three 

categories, the predictions for low in vivo fa could not be matched (0 % within 3-fold error) 

and were highly overpredicted in the simulations, falsely suggesting high absorption. For 

moderate observed fa, in silico results varied into both directions, with tendencies to 

underprediction. Of all three groups, predictions for high observed fraction absorbed were 

best, as 100 % of the data points were within a 2-fold error (Tab. 3-11). This implies, that the 

higher the in vivo fa, the better the prediction.  

 

3.3.1.1 Fraction absorbed categorised by species 

Fig. 3-11 shows fa data categorised by all species that were simulated. As rat is a standard 

species for pharmacokinetic studies, it represent the species with the most simulations 

(n=12). The coefficient of determination (R2) for observed versus predicted fa in the species 

rat was 0.433. Based on the line of unity, the predictions for rat showed tendencies for an 

underprediction of fa compared to in vivo with two simulations (16.7 %) outside the 2-fold 

error. For these two data points, the in vivo fraction absorbed was underpredicted by a factor 

of 2.4 and 5.8, respectively. The opposite observation was made for the species dog, with a 

tendency to overestimate the absorption in vivo. 60 % of the predictions for human fa were 

close to the line of unity. One data point was close to the dashed line, but still within the 

acceptance criteria, and three simulations (30 %) were below the lower dashed line and 

therefore outside the accepted deviation. It should be mentioned, that those four data points 

belong to the same compound (Appendix Tab. 7-22). Hence, the poor fit might result from a 

compound specific feature rather than referring to the actual predictability of the in silico tool 

for this particular species. 

 

 

Tab. 3-11: Quality parameters for in silico prediction of in vivo fraction absorbed. 

Compound category rmse 
% within 2-fold 

error 
% within 2.5-fold 

error 
% within 3-fold 

error 

Low in vivo fa (< 30 %) 62.5 0.00 0.00 0.00 

Moderate in vivo fa (≥30 - ≤ 70%) 30.0 62.5 81.3 87.5 

High in vivo fa (> 70 %) 20.2 100 N.A. N.A. 

All compounds (n=35) 28.9 77.1 85.7 91.4 

N.A. = not applicable 
rmse = root mean square error 
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Regarding the goodness of the predictions, mouse showed the best accuracy of predictions 

with a route mean square error of 18.1 followed by human, rat monkey and dog, with 25.7, 

26.3, 33.4 and 37.8, respectively (Tab. 3-12). Due to the low number of simulations (n=3) for 

monkey and mouse, a generalisation of the ability to predict fa for these species should be 

avoided. 

 

 

 
 
 
R2= 0.433 rat 
R2= 0.280 dog 
R2= 0.570 human 
R2= 0.367 monkey 
R2= 0.611 mouse 
 

 

Fig. 3-11: Fraction absorbed categorised by species. Predicted fraction absorbed using 
GastroPlus™ versus observed fraction absorbed determined in in vivo studies in percent (data points 
comprise all compounds, species, formulations and doses). In addition the coefficient of determination 
(R

2
) is shown per species. Rat n=12 (▲), dog n=7 (●), human n=10 (◊), monkey n=3 (□), mouse n=3 

(x), line of unity (▬) and 2-fold error (- - -). 
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3.3.1.2 Fraction absorbed categorised by effective permeability and solubility 

Two of the major properties that determine the in vivo intestinal drug absorption are the 

ability to permeate a lipid membrane and the solubility. As described in Chapter 2.3.2 the 

in silico tool requires the input parameter solubility and effective permeability (Peff). The 

impact of both variables on the overall fraction absorbed is illustrated in Fig. 3-12.  

Fig. 3-12 A displays fa (for all simulations) categorised by effective permeability, whereas Peff 

is divided into two categories. A Peff value in the critical range of 0.5E-04 to 1.5E-04 cm/s can 

be responsible for incomplete absorption. Exceeding a Peff of 1.5E-04 cm/s, usually enables 

the substance to be completely absorbed [36]. For the low effective permeability 

(Peff ≤ 1.5E-04 cm/s) compounds, 33.3 % of the predictions were within 2-fold error of the 

in vivo data, whereas for the high permeability compounds (Peff >1.5E-04 cm/s), 86.2 % of the 

predictions were within the acceptable deviation. 

In Fig. 3-12 B fa is categorised for compound solubility. Three categories for solubility were 

formed. The highest solubility category was > 0.1 mg/mL and the lowest solubility category 

was ≤ 0.01 mg/mL. 

Compounds that feature a relatively good solubility (> 0.01 mg/mL), but poor permeability 

(Peff  ≤ 1.5E-04), exhibited low to moderate in vivo fraction absorbed (< 70 %) in the 

performed simulations.  

 

Tab. 3-12: Quality parameter for in silico prediction of in vivo fraction absorbed categorised by 
species. 

Species category rmse 
% within 2-fold 

error 
% within 2.5-fold 

error 
% within 3-fold 

error 

fa in rat (n= 12) 26.3 83.3 91.6 91.6 

fa in dog (n= 7) 37.8 71.4 85.7 85.7 

fa in human (n= 10) 25.7 70.0 80.0 100 

fa in monkey (n= 3) 33.4 66.7 66.7 66.7 

fa in mouse (n= 3) 18.1 100 N.A N.A 

All compounds (n= 35) 28.9 77.1 85.7 91.4 

N.A. = not applicable 
rmse = root mean square error 
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For eight data points that were plotted outside the 2-fold error limit, six showed evidence of 

either restricted permeability (Peff ≤ 1.5 cm/s) or low solubility (≤ 0.01 mg/mL). For the two 

remaining simulations, fraction absorbed was highly overpredicted despite displaying high 

effective permeability (> 1.5E-04 cm/s) and reasonable solubility (> 0.01 mg/mL). When 

combining all available information for these particular simulations, it could be concluded, 

that those data points belonged to a single compound (C5) and were simulated in the species 

dog with the same formulation (suspension) at two different dose of 20 mg/kg and 

200 mg/kg, respectively (Tab. 7-20). As the physicochemical properties of C5 theoretically 

permit complete absorption, further evaluations (via parameter sensitivity analysis) were 

conducted, in order to elucidate the poor in vivo – in silico correlation (Chapter 3.3.1.3). 

Tab. 3-13 and Tab. 3-14 display the quality parameter for the fraction absorbed predictions 

categorised for Peff and solubility. Predictions were best for compounds with a high effective 

permeability (> 1.5E-04 cm/s) and low solubility (≤ 0.01 mg/mL) indicated by the lowest rmse 

of 26.1 and 23.4, respectively. Predictions with lower accuracy were observed for 

compounds with a low permeability or a high solubility with the highest rmse of 39.6 for both 

categories. As mentioned before, the difference of number of observations / predictions (n) 

per category should be considered when interpreting the data.  

 

 
 

Fig. 3-12: Fraction absorbed categorised by effective permeability (A) and solubility (B). Predicted 
fraction absorbed using GastroPlus™ versus observed fraction absorbed determined in in vivo studies 
in percent (data points comprise all compounds, species, formulations and doses). Line of unity (▬) 
and 2-fold error (- - -) n= 35. 
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In the course of analysing simulation results for fa, further categorisation parameters have 

been investigate, e.g. molecular weight, Log Po/w and formulation (Fig. 7-1 to Fig. 7-4), with 

the limitation that data points for some categories with a parameter referred to only one 

compound. Based on this finding, no further calculation of quality parameters was performed. 

 

 

3.3.1.3 Parameter sensitivity analysis  

To further evaluate the findings described in Chapter 3.3.1.2, a parameter sensitivity analysis 

(PSA) of fa was performed for all physicochemical properties of the compound C5 as well as 

for the dog specific anatomical and physiological features. A detailed process description of 

this particular simulation type is given in Chapter 2.3.5.3. Tab. 3-15 lists the parameters that 

were tested using the parameter sensitivity analysis. The most noticeable parameter 

influencing the fraction absorbed in this PSA simulation was identified as the stomach pH of 

the dog.  

 

Tab. 3-13: Quality parameters for in silico prediction of in vivo fraction absorbed categorised by 
effective permeability. 

Permeability category rmse 
% within 2-fold 

error 
% within 2.5-fold 

error 
% within 3-fold 

error 

fa for Peff ≤ 1.5E-04 cm/s (n= 6) 39.6 33.3 50.0 83.3 

fa for Peff > 1.5E-04 cm/s (n= 29) 26.1 86.2 93.1 93.1 

All compounds (n= 35) 28.9 77.1 85.7 91.4 

N.A. = not applicable 
rmse = root mean square error 

 

Tab. 3-14: Quality parameters for in silico prediction of in vivo fraction absorbed categorised by 
solubility. 

Solubility category rmse 
% within 2-fold 

error 
% within 2.5-fold 

error 
% within 3-fold 

error 

fa for solubility ≤ 0.01 mg/mL (n= 8) 23.4 75.0 87.5 87.5 

fa for solubility > 0.01 - ≤ 0.1 mg/mL (n= 21) 27.1 90.5 95.2 95.2 

fa for solubility > 0.1 mg/mL (n= 6) 39.6 33.3 50.0 83.3 

All compounds (n= 35) 28.9 77.1 85.7 91.4 

N.A. = not applicable 
rmse = root mean square error 
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In Fig. 3-13, the change of fraction absorbed for various gastrointestinal pH values is shown. 

In order to display stomach, small and large intestinal pH versus fa in one chart, an illustration 

that displays the change from the default pH value of the physiological input parameter was 

chosen. Briefly, the x-axis displays the ratio of the changed pH value and the respective 

default value. The default pH (e.g. 1.5) of a particular part of the gastrointestinal tract (GIT) 

leads therefore to a ratio of 1. According to this, a ratio of 2 means that a 2-fold higher pH 

value (i.e. 3) was used as input parameter for this simulation compared to the default value 

of pH 1.5. The particular fa for this pH can then be read off the y-axis. This illustration allows 

displaying all parts of the GIT with different pH value in one chart. The default values in 

GastroPlus™ for dog stomach, duodenum, jejunum, and colon were pH 3.0, 6.2, 6.2 and 6.5, 

respectively. The investigated pH range within the parameter sensitivity analysis was pH 0.5 

to pH 8.0 or all parts of the gastrointestinal tract.  

 

 

Tab. 3-15: List of parameters that were investigated by running a parameter sensitivity analysis using 
GastroPlus™. 

Physiological parameter Physicochemical parameter Formulation parameter 

Gastrointestinal residence / transit time [h] Peff [cm/s] Dose [mg] 

Gastrointestinal pH Solubility [mg/mL] Particle radius [µm] 

Intestinal length [cm] Log Po/w Particle density [g/mL] 

Intestinal radius [cm]   
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Predicted fraction absorbed showed a high dependence on the stomach pH of the dog (Fig. 

3-13). A slight shift from the default value (pH 3.0) to a less acidic pH (4.3) markedly 

decreased fa from 89.0 % to only 56.8 %. In case the stomach pH reaches 5.9, the absorbed 

fraction would exhibit only 11.5 %. The outcome of this PSA suggests that with a stomach 

pH > 3.0, fa can be as low as seen in the in vivo experiments, with a fraction absorbed of 

20.8 % (Tab. 7-20). For the intestinal segments duodenum, jejunum and colon, a shift from 

the default pH to a less acidic pH showed no effect on fraction absorbed. Only a slight 

decrease of fa could be observed for a change from a non-physiologically low pH of 0.5 to a 

less acidic pH of 4.3 in those parts of the GIT. Fraction absorbed in the segments duodenum 

(98 %), jejunum (100 %) and colon (100 %) at pH 0.5 decreased to a fa of 89 % at their 

respective default pH values. 

 

 

 

Fig. 3-13: Parameter sensitivity analysis for compound C5. Effect of gastrointestinal pH value on the 
predicted fraction absorbed in dog (dose of 200 mg/kg). Gastrointestinal tract is divided into: stomach 
(-♦-), duodenum (-□-), jejunum (-Δ-) and colon (-○-). 
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3.3.2 Absorption rate constant 

Based on the available in vivo studies (Tab. 7-16 to Tab. 7-23), 105 simulations of plasma 

concentration-time profiles for the orally administered compounds C1 to C8 could be 

performed as described in Chapter 2.3.5.2. Of the performed simulation only 89 simulations 

were included into the evaluation. Reasons for exclusion were unavailable plasma 

concentration-time profiles after intravenous dosing (n= 10), which are mandatory to obtain 

the pharmacokinetic parameters clearance and volume of distribution to enable the software 

to simulate oral plasma concentration-time profiles (Fig. 2-4). Moreover, six simulations were 

excluded with insufficient number of data points to perform a successful compartmental 

analysis for the observed or predicted oral plasma concentration-time profiles. The 

absorption rate constants from the observed (range: 0.07 - 7.73 1/h) and predicted 

(range: 0.03 - 5.08 1/h) oral plasma concentration-time profiles are displayed in Fig. 3-14. 

The data is displayed as described in Chapter 3.3.1. As before, a deviation factor of two was 

the acceptance boundary. Fig. 3-14 illustrates the deviation of the predicted ka from the in 

vivo ka. The evaluated data exhibited a broad distribution based on the line of unity, with the 

majority of data points (61%) falling outside of the accepted range. The coefficient of 

determination (R2) was very low, with 0.0004. For a better description of the deviation, the 

mean prediction error (mpe) was calculated and suggested an underprediction of ka with a 

negative mpe of -0.52. A mean prediction error can be artificially small, as individual data 

points that have very large positive and negative errors can cancel each other out. In order to 

prevent that, the absolute value of error (mae) can be calculated. For the data shown in Fig. 

3-14, the average absolute prediction error is 1.17. Hence, on average the ka from the 

predicted oral plasma concentration-time profile differed from the in vivo plasma 

concentration-time profile derived ka by 1.17 1/h.  
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In consideration of the underprediction of ka (mpe= -0.52), further evaluations were 

performed to understand the reason for these findings. Therefore, the in vivo ka was 

categorised for its respective time point of maximum concentration (Tmax), in order to identify 

if the goodness of the prediction varies between rapidly and slowly absorbed compounds. 

Fig. 3-15 displays the residuals for the simulated absorption rate constants (the value for 

predicted ka is subtracted from the actual in vivo ka). The residuals are plotted in four 

categories: rapidly absorbed compounds with a Tmax < 2 h, moderately and slowly absorbed 

compounds with a Tmax of ≥ 2 - < 4 h and ≥ 4 - < 8 h, respectively. A fourth category was 

added due to the simulations for extended release formulations that exhibited a late time 

point of maximum plasma concentration (≥ 8 h). Residuals on the positive side of the y-axis 

imply a higher ka for the predicted oral plasma profile compared to the ka from the in vivo 

plasma concentration-time profile. The residuals on the negative side entail a lower predicted 

rate constant of absorption compared to that seen in the observed in vivo data. 

 

Fig. 3-14: Absorption rate constant derived from in vivo data (observed) versus absorption rate 
constant deriving from in silico simulations (predicted) using GastroPlus™ (data points comprise all 
compounds, species, formulations and doses) expressed as inverse time. Absorption rate constant (◊), 
line of unity (▬), 2-fold error (- - -), n= 89. In addition the coefficient of determination (R

2
) is shown. 
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The category for rapidly absorbed compounds (Tmax < 2 h) contains simulations from all 

eight compounds including the species rat, dog, mouse, monkey and human. This category 

also includes predictions for several formulations namely solutions, micro-crystalline 

suspensions, immediate as well as modified release tablets (Appendix 7.2). In this category, 

ka is underpredicted with a negative mean prediction error of -1.27, indicating that absorption 

occurs slower than predicted. In contrast, the categories Tmax ≥ 2 - < 4 h (7 compounds), 

Tmax ≥ 4 - < 8 h (5 compounds) and Tmax ≥ 8 h (2 compounds) exhibit smaller deviations for 

the predicted ka, with an mpe of 0.35, -0.05 and 0.80, respectively (Tab. 3-16).  

 

Fig. 3-15: Residuals of the absorption rate constant derived from in silico simulations ((ka)pred) using 
GastroPlus™ and absorption rate constant deriving from in vivo data ((ka)obs) categorised by the in 
vivo time point of maximum plasma concentration; n= 89.  
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Tab. 3-16: Residual values (resid) of the absorption rate constant derived from in silico simulations 
(pred) using GastroPlus™ and absorption rate constant deriving from in vivo data (obs) categorised by 
the in vivo time point of maximum plasma concentration, n= 89. 

 

ka at Tmax <2 h ka at Tmax ≥ 2-< 4 h ka at Tmax ≥ 4-< 8 h ka at Tmax ≥ 8 h 

obs pred resid obs pred resid obs pre resid obs pred resid 

1.14 1.36 0.22 0.62 1.50 0.88 0.72 0.99 0.27 0.08 0.11 0.03 

1.81 1.02 -0.79 0.35 1.36 1.01 0.33 0.23 -0.10 0.07 0.11 0.04 

1.57 2.02 0.45 0.78 2.12 1.34 0.28 0.25 -0.03 0.09 0.11 0.02 

7.02 1.31 -5.71 0.48 0.08 -0.41 0.45 0.20 -0.24 0.11 0.11 0.00 

1.13 0.03 -1.10 1.24 3.27 2.03 0.68 0.20 -0.48 0.11 2.11 1.99 

0.44 0.59 0.15 0.21 0.40 0.19 0.81 0.19 -0.62 0.11 1.71 1.59 

0.80 0.05 -0.75 0.45 0.37 -0.08 0.20 0.11 -0.09 0.08 1.86 1.79 

1.07 0.07 -1.00 0.94 0.46 -0.48 0.35 0.13 -0.23 0.49 1.40 0.91 

1.27 1.22 -0.05 0.20 0.24 0.04 0.24 0.50 0.26 - - - 

0.87 2.02 1.15 0.90 0.23 -0.67 0.14 0.45 0.30 - - - 

1.04 3.04 2.00 0.63 0.23 -0.39 0.09 0.39 0.30 - - - 

0.33 5.08 4.75 0.28 0.39 0.11 0.79 0.65 -0.14 - - - 

0.96 0.59 -0.37 0.59 1.72 1.13 0.17 0.35 0.18 - - - 

0.79 0.41 -0.38 1.75 0.54 -1.20 - - - - - - 

1.00 0.49 -0.50 0.78 0.49 -0.29 - - - - - - 

0.82 0.49 -0.33 0.60 0.53 -0.08 - - - - - - 

0.78 0.18 -0.60 0.28 3.98 3.70 - - - - - - 

0.70 0.30 -0.40 0.61 0.54 -0.07 - - - - - - 

3.38 0.37 -3.01 0.63 0.35 -0.28 - - - - - - 

7.73 0.92 -6.81 0.58 0.60 0.02 - - - - - - 

3.85 0.88 -2.97 0.49 1.43 0.94 - - - - - - 

5.33 0.63 -4.70 - - - - - - - - - 

1.87 0.47 -1.40 - - - - - - - - - 

4.65 0.47 -4.18 - - - - - - - - - 

0.60 0.34 -0.26 - - - - - - - - - 

2.86 0.24 -2.62 - - - - - - - - - 

0.85 0.51 -0.34 - - - - - - - - - 

0.74 0.54 -0.20 - - - - - - - - - 

1.28 0.53 -0.76 - - - - - - - - - 

0.99 0.58 -0.42 - - - - - - - - - 

0.24 0.57 0.32 - - - - - - - - - 

5.60 0.72 -4.88 - - - - - - - - - 

2.15 0.77 -1.39 - - - - - - - - - 

1.04 0.60 -0.44 - - - - - - - - - 

2.96 0.60 -2.37 - - - - - - - - - 

2.48 0.60 -1.87 - - - - - - - - - 

3.23 0.60 -2.63 - - - - - - - - - 

2.25 0.71 -1.54 - - - - - - - - - 

5.78 0.74 -5.04 - - - - - - - - - 

0.48 0.68 0.20 - - - - - - - - - 

3.49 1.06 -2.43 - - - - - - - - - 

4.93 0.41 -4.52 - - - - - - - - - 

0.98 0.48 -0.49 - - - - - - - - - 

1.30 0.54 -0.76 - - - - - - - - - 

0.93 0.56 -0.37 - - - - - - - - - 

1.76 0.65 -1.11 - - - - - - - - - 

1.04 1.51 0.47 - - - - - - - - - 

Tmax = time point of maximum plasma concentration 
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The goodness of prediction was also assessed by calculating the rmse (Tab. 3-17). The best 

agreement was observed for experiments with an in vivo Tmax of ≥ 4 - < 8 h demonstrated by 

the lowest rmse of 0.29. Experiments with an in vivo Tmax of < 2 h showed the highest rmse 

of 2.43 of the performed simulations, which indicates a less accurate prediction. Overall, only 

39.3% of the simulations for the absorption rate constant were within the accepted 2-fold 

error (Tab. 3-17). 

 

 

 

Regarding predictability of ka in different species, the quality parameter for the in silico 

predictions showed that the highest accuracy was observed for the species dog (rmse= 0.90 

for n= 10) and the lowest accuracy for the species mouse, with a route mean square error of 

4.31 (0 % of the simulation results were within 2-fold error; n=4) (Tab. 3-18). Interestingly, the 

species human showed the second best accuracy of ka prediction with an rmse of 1.26 for a 

markedly higher number of simulations (n=50).  

 

 

 

Tab. 3-17: Quality parameter for in silico prediction of in vivo absorption rate constant categorised by 
the in vivo time point of maximum plasma concentration. 

Tmax category rmse 
% within 2-fold 

error 
% within 2.5-fold 

error 
% within 3-fold 

error 

Tmax  < 2 h (n= 47) 2.43 36.2 48.9 59.6 

Tmax  ≥ 2 - < 4 h (n= 21) 1.12 42.9 52.4 81.0 

Tmax  ≥ 4 - < 8 h (n= 13) 0.29 38.5 61.5 69.2 

Tmax  ≥ 8 h (n= 8) 1.15 50.0 50.0 62.5 

All compounds (n= 89) 1.88 39.3 51.7 66.3 

rmse = route mean square error 

Tmax = time point of maximum plasma concentration 

Tab. 3-18: Quality parameter for in silico prediction of in vivo absorption rate constant categorised by 
species. 

Species Category rmse 
% within 2-fold 

error 
% within 2.5-fold 

error 
% within 3-fold 

error 

ka in rat (n=12) 3.08 33.3 41.6 41.6 

ka in dog (n=10) 0.90 40.0 60.0 80.0 

ka in human (n=50) 1.26 48.0 64.0 70.0 

ka in monkey (n=8) 1.30 12.5 12.5 50.0 

ka in mouse (n=4) 4.31 0.00 0.00 25.0 

ka in rabbit (n=5) 2.30 40.0 40.0 40.0 

All compounds (n=89) 1.88 39.3 51.7 66.3 

rmse = root mean square error 
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4 Discussion 

4.1 Permeability investigations using the Ussing chamber  

Within the setting of early drug development, the vertical Ussing chamber system using rat 

jejunum tissue was successfully established in this thesis, in order to assess the intestinal 

permeability of drug development compounds. The system was validated using the five 

reference compounds mannitol, terbutaline, propranolol, verapamil and fexofenadine which 

are well described in the literature and cover all routes of absorption (passive paracellular, 

active and passive transcellular) (Tab. 2-5). For each reference compound, bidirectional 

permeability studies were performed using the stripped and full-thickness tissue preparation 

technique. The results of the permeability investigations are discussed within this chapter. 

 

4.1.1 Experimental set-up: influential factors  

The endeavour to simplify complex physiological processes using an in vitro method 

naturally contains disadvantages. When searching the literature for rat jejunal apparent 

permeability using the Ussing chamber, it strikes that for certain compounds (e.g. verapamil, 

terbutaline) results are highly variable when different sources are consulted (Tab. 4-1). 

Investigating and understanding those deviations is key to use the Ussing chamber as a 

powerful in vitro method to determine intestinal absorption. 

 

 

One possible reason for variability is non-specific binding (NSB). As with most in vitro 

methods, the Ussing chamber has challenges with possible non-specific binding to the 

material of the experimental equipment, if very lipophilic compounds are to be tested. It is 

therefore advisable to conduct some unspecific binding studies prior to the actual 

experiments or use solutions containing 1 % bovine serum albumin (BSA) to reduce non-

specific binding of compound to the plastic surface of the Ussing chamber [135]. As 

Tab. 4-1: Rat jejunal experimental apparent permeability from several literature sources for the 
compounds terbutaline and verapamil. 

Literature source Rat jejunal Papp [cm/s] mucosal to serosal direction 

 Terbutaline Verapamil 

Ungell 1998 [68] 3.40E-06 - 

Lennernas 1997 [128] 7.00E-06 - 

Watanabe 2004 [65] 11.8E-06 - 

Gotoh 2005 [64] 3.80E-06 16.0E-06 

Annaert 2000 [63] - 7.40E-06 
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presented in Fig. 3-3 the subject of non-specific binding can be crucial. For the highly 

lipophilic compound verapamil (log Po/w value 4.7), the NSB amounted to over 70 % within 

the first 5 minutes of the experiment (Fig. 3-1). This leads to a bias of the actual apparent 

permeability, by a factor of 6 for the stripped tissue preparation technique group (Tab. 3-8). 

To guarantee uniform treatment of permeability data for all compounds, the amount of 

substance reaching the receiver side was corrected for non-specific binding, even if binding 

was low or not detectable. Correcting for unspecific binding on the donor side was neglected, 

as bound compound is not available anymore for transport over the membrane and the 

actual concentration on the donor side by the end of the experiment was used to calculate 

the apparent permeability. The drawback of non-specific binding can therefore be overcome 

to a certain degree. Nevertheless, it should be kept in mind that especially with high NSB 

compounds; variability in the experiments is higher and may therefore bias the data 

(e.g. verapamil).  

The Ussing chamber is a method that uses the excised tissue technique. Besides the 

obvious challenges of working with living tissue that naturally contains variability and when 

excised undergoes degradation processes, it can also be treated differently before mounting 

onto the chambers. One strategy is to leave the isolated intestinal fragment intact with all its 

stratums from the luminal mucosa to the outer serous membrane. This approach adds 

artificial layers to the absorption pathway, as the absorbed compound has to not only cross 

the mucosa but also the underlying submucosa, the circular and longitudinal muscle layer 

and subsequently the serosa. Consequently, the term full-thickness tissue is used. The other 

strategy is to remove additional layers unnecessary for the process of absorption. This 

procedure is called stripping. Two stripping approaches are known and practiced. Either the 

mucosa is stripped off from all underlying layers [67] [136] or only the serous membrane is 

removed, leaving the muscularis externa intact [60] [68]. In this thesis, the second technique 

was used when stripping was performed. The idea of removing layers not involved in 

intestinal absorption when using the Ussing chambers seems like the clear way forward, but 

every further manipulation of excised living tissue exposes the organic material to additional 

stress which reduces its viability. Eventually, this can lead to an increase of variability when 

considering permeability. Hence, it is important to evaluate the assets and drawbacks of 

using stripped or full-thickness tissue. Chapter 3.2.2 discussed the apparent permeability for 

verapamil, propranolol, fexofenadine, terbutaline and mannitol comparing the fluxes for 

stripped and full-thickness tissue either for the mucosal to serosal direction (Fig. 3-6) or the 

serosal to mucosal direction (Fig. 3-7). The additional layer of the serosa not involved in the 

in vivo absorption process (compound that exits the enterocytes on the basolateral 

immediately enters the blood vessels) seemed to have no influence on the transepithelial 

permeability for mannitol, terbutaline, fexofenadine and verapamil when considering the 
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mucosal to serosal fluxes. The Papp for the only passively transcellular diffusing propranolol 

was slightly higher when the excised tissue was stripped. The main purpose of the serosa is 

to secret fluids via transudation to reduce friction caused by muscle movement and to isolate 

the organ in the abdominal cavity [6]. The anatomy of the serosa is very different from the 

mucosa and not designed for absorptive processes. Therefore, the permeability of a 

compound undergoing only passive diffusion through the intestinal mucosa tissue can be 

reduced when encountering a less permeable tissue layer like the serosa. When comparing 

stripped and full-thickness tissue for the serosal to mucosal permeability experiments, the 

serosa had a marked influence on the apparent permeability for propranolol, as well as for 

verapamil. Verapamil seemed to enter the intestinal cells from the serosal side with difficulty 

when the serosa was present (Fig. 3-7). When the tissue was stripped, lipophilic compounds 

like propranolol and verapamil passed the remaining stratums of the jejunum effortlessly and 

exhibited a higher Papp compared to the full-thickness experiments (Fig. 3-7). When 

considering the mucosal to serosal flux, the same was true for the compound propranolol, 

where the stripped tissue experiments showed a higher permeability compared to the full-

thickness experiments (Fig. 3-6). Surprisingly, these findings have not been seen in the 

mucosal to serosal verapamil experiments. Here, the Papp for stripped and full-thickness 

tissue was about equal for the stripped tissue experiments. A possible difference between the 

stripped and full-thickness study groups could be disguised by the high variability with a 

coefficient of variation of 37 % and 42 %, respectively (Tab. 3-7). For the hydrophilic and 

paracellular diffusing compounds terbutaline and mannitol, the presence of the serosa had 

no proven significant influence on the permeability. This might be due to their absorption 

mechanism. Small, hydrophilic compounds can permeate the intestinal barrier by bypassing 

the enterocytes as they are absorbed through the extracellular tight junctions present in 

epithelial cells in vertebrates [41]. Tight junctions laterally connect single cells of the 

epithelium and form a “tight” cell junction which is impermeable for most substances. Only 

water and small hydrophilic substances can use this pathway to cross the membrane. Tight 

junctions are present in all epithelial tissues which include the simple columnar epithelium of 

the gastrointestinal tract as well as the simple squamous epithelium found in the serosa. 

Therefore, it is highly likely that compounds that pass the intestinal mucosa by paracellular 

diffusion are also able to pass the serosal tissue layer in the same manner. All in all, the 

preparation technique of the intestinal tissue and the presence of the serous membrane can 

vary the permeability results for compounds that cross the intestinal epithelium via the 

transcellular pathway. In order to ensure equal experimental conditions and comparable 

permeability data for all kinds of compounds with different physicochemical and 

transepithelial transport properties, stripping of the epithelial tissue should be considered 

when performing Ussing chamber absorption studies.  
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To assess the quality of the Ussing chamber experiments and the validity of the ascertained 

data it is important to determine the experimental variability within the same compound. A 

simple but convincing way is to perform a mass balance evaluation. This approach was used 

for all compounds and the amount of radiolabeled compound on the donor and receiver side 

was determined as well as the amount of compound found in the tissue. Subsequently, the 

amount of substance non-specifically bound to the Ussing chamber equipment determined in 

the NSB studies was added. A good total recovery (> 84 %) for all compounds was observed 

with low variability within the compound, with a coefficient of variation ranging from 0.1 to 

7.9 % for the mucosal to serosal study groups (Tab. 3-9). The low variability indicates that the 

Ussing chamber experiments were consistent within each investigated compound.  

In consideration of varying results from Ussing chamber absorption studies for rat jejunum 

reported in literature, it would be desirable to have additional information to judge the validity 

of this data. First of all, potential non-specific binding should be evaluated and if applicable 

results should be corrected for it. Secondly, the tissue preparation technique should be 

mentioned to give an insight if permeability data from compounds with different 

physicochemical properties can be assessed in the same way. In addition to these two 

approaches, calculated total recovery and the determined experimental variability within each 

compound can give further information to assess the reliability of the permeability data 

ascertained with the Ussing chamber technique. 

 

4.1.2 Permeability studies 

To establish and validate the Ussing chamber as a model to predict intestinal absorption in 

the laboratory, bidirectional permeability studies for a variety of reference compounds were 

carried out using stripped rat jejunum. For the majority of compounds (propranolol, 

fexofenadine and mannitol; stripped) the m-s flux was slightly higher than the s-m flux (Fig. 

3-4). The surface structure (villi, microvilli) on the apical side of the intestine offers a larger 

absorptive surface area compared to the basolateral side and could contribute to a higher m-

s flux. For terbutaline, the Papp was slightly lower in the m-s direction but could not be proven 

statistically significant. For verapamil the lower m-s flux compared to the s-m flux was also 

not statistically significant but is consistent with the fact that the compound verapamil is 

substrate to the intestinal P-glycoprotein (Pgp) efflux transporter [137]. Drug compound that 

was diffusing through the enterocytes to the receiver side is actively transported back to the 

donor side by the Pgp transporter when entering the intestinal cells. While the gross-flux 

(compound entering the enterocytes) might still be higher compared to the s-m studies, the 

efflux reduces the net-flux (compound appearing on the receiver side). The same 
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phenomenon would be expected for the compound fexofenadine, as it is also substrate to the 

Pgp transporter. But in addition to the active efflux, this compound is also substrate to the 

active OATP influx transporter (Tab. 2-5), which is located on the apical side of the intestinal 

cells and also present in rat intestine [73]. Depending on the gene expression levels and 

possible saturation processes the active influx could potentially cancel out the effect of the 

Pgp efflux transporter and would result in a higher net-flux from the mucosal to the serosal 

side. One way of exploring the influence of these transporters would be to individually inhibit 

the active transporter of interest via known inhibitor compounds.  

 

4.1.3 Absorption mechanisms 

Predicting the extent of intestinal absorption is one aspect of using an absorption model. 

Another aspect is to learn and understand what the underlying mechanism of absorption for 

a compound is. As described in Chapter 1.3.3, three main mechanisms of absorption exist. In 

order to see if the known mechanism for the reference compounds could be confirmed, the 

extracellular and intracellular concentration of compound was calculated. The concentration 

of compound in the enterocytes was determined by weighing, measuring and subsequently 

calculating the concentration in the excised tissue. The calculated concentration was then 

compared to the concentration on the donor side by the end of the experiment. The ratio of 

the intra- and extracellular concentration gives information if the compound is transported 

transcellularly or paracellularly. Studying this ratio for m-s and s-m studies can also give 

information if the compound is actively transported into the cells. As the substance mannitol 

was used as an extracellular marker, ratios are only displayed for terbutaline, fexofenadine, 

verapamil and propranolol (Fig. 3-8 and Fig. 3-9). As expected, more terbutaline was found 

extracellularly than intracellularly, as it is a paracellularly transported drug. This was the case 

for stripped as well as for full-thickness tissue. Propranolol and verapamil were found 

predominantly in the enterocytes in correspondence to their known transcellular absorption 

mechanism. For both compounds the ratio was higher for the m-s fluxes compared to the 

s-m fluxes. This indicates that less compound entered the enterocytes when the serosal side 

was the donor side which could be explained by the contribution of the previously mentioned 

smaller absorptive surface area. For the actively transcellular transported fexofenadine, the 

mechanism of absorption could be clearly shown, as the m-s ratio indicated more compound 

in the enterocytes than located extracellularly. To the contrary, a higher concentration of drug 

was found extracellularly, when considering the s-m direction. This clearly shows that an 

active influx transporter is involved in the absorption, that is only located on the apical side of 

the membrane which enables fexofenadine to enter the enterocytes. Again, this result was 



 
 

 

 94 

found for stripped as well as for full-thickness tissue. The OATP transporter involved in the 

active transcellular uptake of fexofenadine can be inhibited by esterone-3-sulfate and the 

Pgp transporter by its well-known inhibitor ketoconazole [62]. This would allow studying the 

individual influence of the active transporters on the overall permeability. As an alternative, 

experiments with tissue from knock-out animals could be performed in order to assess the 

involvement of specific transporters to the overall permeability [138]. 

Based on the findings described above, the Ussing chamber can be a valuable method to 

elucidate the actual mechanism of absorption.  

 

 

 

In order to assess if this in vitro method has been successfully established and can be used 

to predict human intestinal absorption; a correlation of rat jejunum Papp values from Ussing 

chamber experiments to human permeability data determined by the Loc-I-Gut® perfusion 

technique (Chapter 3.1.3.2) was performed to validate the system. Fig. 4-1 A shows the 

correlation of human and rat permeability for 16 compounds with different physiochemical 

properties and absorption mechanisms found in literature (Tab. 7-1). When more than one 

source of literature was found, the mean permeability was calculated. Fig. 4-1 B shows the 

  

Fig. 4-1: Correlation of human jejunal permeability determined using the Loc-I-Gut
®
 technique 

and rat jejunal permeability from Ussing chamber experiments expressed in centimetre per second 
for 16 compounds (for data see Tab. 7-1). A: displays data solely from literature, 
whereas B: shows literature data and integrated data of the five compounds from own Ussing 
experiments (Tab. 3-7). In addition the coefficient of determination (R

2
) is shown for both data sets. 

Data itemize by their corresponding absorption mechanism: passive transcellular (●), active (■), 
passive paracellular through tight junctions (●), other data points combine routes of transport 
according to colour, whereas the outline symbolizes the less dominant pathway.   
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integrated data from the permeability experiments conducted within this thesis (Tab. 7-1 and 

Tab. 3-7). Rat Ussing chamber Papp values from literature were replaced by own data for 

mannitol, terbutaline, propranolol, verapamil and fexofenadine for stripped tissue from m-s 

direction. The coefficient of determination (R2) for solely literature data and for the correlation 

with integrated own data was 0.538 and 0.549, respectively. This finding suggests that the 

ascertained rat jejunal permeability data within this thesis is comparable to that previously 

determined, in various literature sources. This finding indicates a successful establishment 

and validation of the Ussing chamber absorption model. It can therefore be used in the 

pharmaceutical development process to assess the permeability of new compounds with 

unknown permeability properties.  
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4.2 Simulation of intestinal absorption using GastroPlus™ 

Physiologically based in silico absorption models can be used as a tool to predict the rate 

and extent of absorption for orally administered drugs. The objective of this study was to 

perform a retrospective data evaluation to assess the ability of GastroPlus™ to predict 

fraction absorbed and the absorption rate constant for eight selected compounds (Tab. 2-10). 

Simulation results from the in silico predictions were compared to the respective in vivo 

PK-parameters characterising intestinal absorption (i.e. fa and ka). The aim was to investigate 

the basic predictability of the software tool, therefore only the default settings were used for 

all simulations. The option to optimise input parameter, species physiology or validating the 

system with data from animal studies in order to improve the prediction of human absorption, 

was omitted. 

 

4.2.1 Fraction absorbed  

Performed simulaitons included compounds with low, moderated and high in vivo fraction 

absorbed (range: 20.8 % to complete absorption) (Tab. 7-16 to Tab. 7-23). The accuracy of 

predicting fa was generally successful (77.1 % within a 2-fold error), although for simulations 

with low in vivo absorption, prediction were not within a 3-fold error (Tab. 3-11). Nevertheless, 

only 6 % of all simulations classed among the low absorption group. Surprisingly, one 

compound in this class exhibited good in vitro permeability values and acceptable solubility 

(Fig. 3-12). Oral administration for this compound was performed in the species dog for two 

doses. It is well known that in vivo, dogs show a highly variable stomach pH when fasted, 

ranging from pH 3 to pH 5 [139]. GastroPlus™ offers the feature of a parameter sensitivity 

analysis (PSA) as described in Chapter 2.3.5.3. The performed PSA for the property stomach 

pH in the dog revealed that a slight change of pH from the default value (3.0) into a more 

basic pH (4.3) would decrease local solubility and therefore markedly the fraction absorbed 

by 64 %. Performing this parameter sensitivity analysis prior to the in vivo experiments purely 

from in vitro data could have raised awareness of encountering this problem. A possible 

solutions to avoid this effect would be to adjust the stomach pH of the dog by orally 

administering 0.1 mol/L HCl-KCl buffer in combination with an intravenous dose of 

omeprazole or pretreatment of the dogs with pentagastrin [140] [139]. Also classical 

conditioning of the dogs according to Pavlov, on the expectance of food and therefore 

secretion of gastrin, could be considered in order to lower the pH of the stomach before the 

start of the in vivo experiment. Simulation of the fraction absorbed also revealed species 

dependent differences in the accuracy of the in silico simulations. Whereas fa for the species 

rat was by trend underpredicted, the species dog was generally overpredicted. The reason 
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for this finding could be related to the input parameter of effective permeability (Peff).  

GastroPlus™ requires this permeability value as input in order to perform a simulation. As 

described before, this parameter is the in vivo derived human jejunal permeability coefficient. 

As this data is usually not available for compounds in the development process, the software 

offers a converter tool for different sources of permeability data. Data sets from in-house in 

vitro permeability tests (in this case Caco-2 cell assay) were entered for a given selection of 

compounds and GastroPlus™ calculated a regression function from implemented measured 

human Peff values from literature. The best fitting calculated regression (linear, non-linear or 

power equations) were then used to convert the measured in vitro Papp into an estimated 

human Peff. This value was entered into the input tab. As a next step, the human Peff has to 

be converted to a rat Peff by a second inbuilt converter where a converting factor is applied. 

For the species rat, the converting factor is taken from a publication by Kim et. al and is 

derived from rat single-pass perfusion experiments. The factor is described with 

0.25 x human Peff [49]. Consequently, the permeability in the species rat is rated to be four 

times lower than in human. For the species dog on the other hand, a higher permeability 

compared to man is assumed. The converting factor in GastroPlus™ was deduced from 

unpublished data that Gordon L. Amidon provided to Simulations Plus, Inc. (Tab. 4-2) [141]. 

Intestinal permeability for four compounds was measured using the Loc-I-Gut® technique in 

the dog and compared to human permeability measured with the same method. From that 

data, a converting factor of 3.3 was formed for dog intestinal permeability and implemented 

into the software.  

 

 

 

For some compounds, better absorption in dogs compared to man has previously been 

reported by Chiou et. al in a study comparing fraction of oral dose absorbed in dog and 

humans [142]. In 44 % of the 43 drugs evaluated, dog exhibited a higher fraction absorbed 

compared to man. In the remaining 56 %, fa was the same in both species (19 %), or lower in 

dog (37 %). As a possible explanation for a higher fa, a reported longer villi length in the small 

intestine was mentioned; this may result in a greater absorptive surface area. In addition, the 

Tab. 4-2: Effective intestinal permeability in human and dog determined by the Loc-I-Gut
®
 

technique for four compounds, expressed in centimetre per second used to establish the permeability 
conversion factor for the species dog used in GastroPlus™. 

Compound Human Peff [cm/s] Dog Peff [cm/s] 

Propranolol 2.7E-04 6.7E-04 

Atenolol 0.2E-04 0.8E-04 

Ranitidine 0.4E-04 2.0E-04 

L-Phenylalanine 5.1E-04 18.5E-04 
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same source reported higher bile salt concentrations in dog than in human, which could 

potentially modify the intestinal membrane structure and make it more permeable for drug 

transport [23, 142]. Also, a study examining possible species differences in paracellular 

absorption came to the conclusion that dogs might possess a higher number, and overall, 

larger tight junctions and the intestine would therefore be more leaky [44]. In contrast to that, 

intestinal villi lengths of 645-971 µm [16, 143] for dogs, opposed to 500-800 µm in man [45], 

are reported. It seems difficult to believe that marginally longer villi can outweigh a 

significantly shorter small intestinal transit time and therefore a shorter absorption window in 

the species dog [144]. Another argument against better absorption in dogs would be the 

absence of circular folds in the small intestine of the dog, which is again decreasing the 

absorptive surface area compared to that in man. While the higher absorption for 

paracellularly absorbed compounds like atenolol [145] and ranitidine [146] might be true, 

caution should be applied translating that effect to compounds with other transport 

mechanisms as the factor of surface area or expression levels of intestinal transporters also 

play a crucial role in the absorption process. Based on the results from the fraction absorbed 

prediction performed within this thesis, an adjustment of the converting factor for the species 

dog to about 2 might improve the predicted fa. For other species like monkey, mouse, rabbit 

etc. no converting factor is stored in GastroPlus™ mainly due to the lack of available and 

reliable data.  

To sum up, it should be kept in mind that several converting steps can introduce uncertainties 

in the input parameter required for simulations, as the obtained results are highly dependent 

on the quality of the input parameters. As the Peff value comprises all mechanisms of 

absorption including paracellular, transcellular and active influx and efflux transport, this input 

parameter could be optimised by using the Ussing chamber technique to determine the 

permeability of new compounds. In contrast to the Caco-2 cell model (Chapter 3.1.1.2.2.) in 

which permeability of paracellularly and actively transported substances can be distorted due 

to the origin of the cell line (i.e. colon carcinoma), the Ussing chamber using rat jejunum 

shows a better correlation of in vitro Papp and human Peff for all intestinal absorption 

mechanisms (Fig. 4-2). 
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4.2.2 Absorption rate constant 

Equally as important as the extent, is the rate of absorption. The PK parameter ka gives 

information on how fast an orally administered compound can reach the systemic circulation. 

Therefore, the predictability of ka with GastroPlus™ was assessed in 105 cases. In a first 

evaluation, the predicted and observed absorption rate constant was compared resulting in a 

poor predictability with only 39 % within a 2-fold error (Fig. 3-14 and Tab. 3-18). When 

visually evaluating the plot, a general underprediction of ka for the majority of simulations 

could be detected, meaning that the prediction suggest slower absorption than observed in 

the in vivo studies. After consulting all available information for the simulations, these findings 

could not be traced back to a specific compound, species or dosage form. As ka is directly 

influencing the time point for the compound to reach maximum concentration (Tmax) in the 

systemic circulation, ka was categorised by Tmax in order to further evaluate the predictability 

of the absorption rate constant. Four categories were formed, from fast absorbed cases 

(Tmax < 2h) to very slowly absorbed cases (Tmax ≥ 8h). Fig. 3-15 and Tab. 3-16 display the 

outcome of this categorisation. It could be concluded that the prediction of ka was very poor 

for cases were the compound was rapidly absorbed, with a Tmax shorter than 2 hours, 

  

Fig. 4-2: Correlation of human jejunal permeability determined using the Loc-I-Gut
®
 technique 

with permeability data from Caco-2 cells (A) or Ussing chamber experiments using rat jejunal 
tissue (B) expressed in centimetre per second (data: Tab. 7-1 and Tab. 3-7). Data itemize by their 
corresponding absorption mechanism: passive transcellular (●), active (■), passive paracellular 
through tight junctions (●), other data points combine routes of transport according to colour, 
whereas the outline symbolizes the less dominant pathway. In addition the coefficient of 
determination (R

2
) is shown for both data sets. 
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resulting in a major underprediction. Only 36 % of the predictions were within a 2-fold error. 

The best predictions were found for cases with slow absorption with a time point of maximum 

concentration between 4 and 8 hours. (Tab. 3-17).  

A possible explanation for the poor fit of ka for rapidly absorbed compounds could be the rate 

limiting step of solubility of the compound. Only solubilized drug can enter the enterocytes 

and eventually the systemic circulation of the body. Apart from one compound, the other 

compounds used for the simulations exhibited low solubility. In terms of biopharmaceutical 

classification, seven of eight compounds were BCS class II, while only one compound was 

BCS class I. BCS class II compounds are characterised by good permeability but poor 

solubility. The input parameter of solubility for GastroPlus™ was derived from in vitro pH 

depending buffer solubility experiments. In vivo, the solubility of a compound is supported by 

other factors aiding the solubilisation that are not present in vitro. In order to improve the 

predictability of ka, the input parameter solubility should be optimised. One way could be to 

determine the solubility of a drug in a different buffer system closer mimicking the situation 

in vivo using biorelevant media. Input parameters concluded from solubility experiments 

using FaSSIF (fasted state simulated small intestinal fluid) or FeSSIF (fed state simulated 

small intestinal fluid) could improve predictability of the absorption rate constant for rapidly 

absorbed compounds [147]. 

 

 

4.3 Perspective 

The need to gain better understanding of the processes involved in the rate and extent of 

absorption of orally administered drugs is omnipresent. One clear indication is that the 

Innovative Medicines Initiative (IMI) as Europe’s largest public-private initiative in the life 

science sector is governing a key initiative named OrBiTo (Oral Biopharmaceutics Tools) 

[148, 149]. This project will address crucial gaps in the knowledge of the gastrointestinal drug 

absorption and aims to deliver predictive biopharmaceutics tools for oral drug delivery. Four 

work packages (WP) investigating physicochemical (WP1), in vitro (WP2), in vivo (WP3) and 

in silico tools (WP4) will be applied to streamline and optimise the development of orally 

administered drug products. The goal is to transform the ability to predict the in vivo 

performance of oral drug products from a mostly empirical to a rational, model based 

approach using novel and validated in vitro, in silico and in vivo tools. This tellingly shows the 

complexity and the importance of investigating suitable models to predict intestinal 

absorption throughout the pharmaceutical drug development process. 
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5 Summary 

 

5.1 Abstract 

As oral administration of pharmaceutical drugs in patients is the preferred route, special 

interest is given to predict the ability of a new compound to be absorbed in man. During the 

last 60 years, a vast number of in vitro, in vivo and in silico absorption models have been 

developed in order to estimate human intestinal permeability and eventually the fraction of 

dose absorbed of a compound administered. These were comprehensively characterised 

and discussed with regards to their strengths and limitations in this thesis. Depending on the 

stage of the pharmaceutical development process different models can be suitable. 

Furthermore, two common absorption models were challenged on their ability to investigate 

the extent of drug absorption. 

 

Firstly, the in vitro Ussing chamber technique using rat jejunal tissue was experimentally 

established and successfully validated using the reference compounds 14C-mannitol, 

3H-terbutaline, 3H-propranolol, 3H-verapamil and 14C-fexofenadine. Bidirectional permeability 

studies were conducted, determining the apparent permeability (Papp) of the compounds and 

the ability to display absorption mechanisms was investigated. Furthermore, reasons for 

variability found when comparing several reported permeability values in literature was 

examined, focusing on studying non-specific binding (NSB) of the compound to the 

experimental equipment. Also, the influence of two tissue preparation techniques (“stripped” 

or full-thickness tissue) was investigated.  

Results from the Ussing chamber experiments revealed that NSB can have a crucial 

influence on the Papp especially for lipophilic compounds. The tissue preparation technique 

showed a greater influence on the transcellularly absorbed compounds rather than the 

paracelullarly permeating ones. The route of absorption for each compound could be 

identified, showing paracellular absorption for mannitol and terbutaline, transcellular 

absorption for propranolol and verapamil and active uptake of fexofenadine. To ensure 

comparable results for all compounds, determination of NSB prior to permeability 

experiments should be mandatory and “stripping” of the rat jejunum is recommended. 

 

Secondly, the in silico physiologically based absorption software GastroPlus™ was 

challenged, on the ability to predict fraction absorbed (fa) and the absorption rate constant 

(ka) for eight compounds under development at Bayer Pharma AG, in a retrospective analysis 

with preclinical and clinical data, using the basic default settings of the software. The 

influence of the input parameters (physicochemical, physiological and formulation properties) 
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were investigated via parameter sensitivity analysis and predictability for different species 

was compared.  

Results from GastroPlus™ simulations showed good predictability of fa with 77 % within a 

2-fold error. The tendential overprediction of fa for the species dog, suggested lowering the 

species-specific Peff converting factor from 3.3 to about 2. The parameter sensitivity analysis 

for one compound (C5) suggested that an increase of stomach pH in the dog from 3.0 to 4.3 

could lead to a distinct decrease (by 64 %) in fraction absorbed. Adjusting the stomach pH 

prior to in vivo pharmacokinetic studies in the dogs should be considered for compounds with 

pH-dependent solubility to reduce variability. 

The general underprediction of ka for simulations with a fast absorption phase in vivo, 

recommends improvement of the solubility input data. The parameters permeability and 

solubility were identified as critical input properties. It was suggested, to use the Ussing 

chamber absorption model to generate a reliable permeability input parameter (Peff). 

Furthermore, the use of biorelevant buffer systems that mimic the in vivo situation should be 

used for solubility tests to improve predictability of the in silico tool. 

 

 

5.2 Zusammenfassung 

Die orale Administration ist die präferierte Applikationsroute für die Versorgung von Patienten 

mit pharmazeutischen Arzneimitteln. In der Arzneimittelentwicklung ist es von großem 

Interesse die intestinale Absorption von neuen Entwicklungssubstanzen im Menschen 

vorherzusagen. Während der vergangenen 60 Jahre wurden zahlreiche in vitro, in vivo und 

in silico Absorptionsmodelle entwickelt um die intestinal Absorption im Menschen 

abzuschätzen und die absorbierte Fraktion der Dosis im Menschen vorherzusagen. Die 

wichtigsten Absorptionsmodelle wurden ausführlich in dieser Dissertation charakterisiert und 

evaluiert und ihre Stärken und Limitationen diskutiert. Die Eignung der einzelnen 

Absorptionsmodelle ist stark abhängig von der Fragestellung und dem Zeitpunkt der 

Untersuchungen in der Arzneimittelentwicklung. Desweitern wurden zwei Absorptionsmodelle 

genauer untersucht um ihre Vorhersagbarkeit der intestinalen Absorption zu bewerten. 

 

Zunächst wurde die Ussingkammer Methode unter Einsatz von Rattenjejunum experimentell 

etabliert und unter Verwendung von bekannten Referenzsubstanzen für die Bestimmung der 

apparenten Permeabilität (Papp) in bidirektionalen Permeabilitätsexperimenten erfolgreich 

validiert. Die unterschiedlichen Absorptionsmechanismen der Referenzsubstanzen konnten 

klar dargestellt werden. 
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Zwei wichtige Einflüsse auf die Permeabilitätsexperimente wurden identifiziert: Zum einen 

die unspezifische Bindung an das Ussigkammer Material und die Präparationstechnik des 

Darmgewebes. Die unspezifische Bindung (NSB) kann im Falle von lipophilen Substanzen 

erheblich sein und sollte vor dem Durchführen von Permeabilitätsexperimenten für jede 

Substanz bestimmt werden. Dieser Wert kann dann als Korrekturfaktor für die Berechnung er 

Permeabilität mit einfließen. Desweitern ist es speziell für transzellulär absorbierte 

Substanzen empfehlenswert das Jejunum zu „strippen“ d.h. von zusätzliche 

Gewebeschichten wie der Tunica serosa zu befreien. 

  

Als zweites Absorptionsmodell wurde das Physiologie-basierte in silico Absorptionsmodel 

GastroPlus™ in einer retrospektiven Analyse eingesetzt, um die intestinale Absorption für 

acht Entwicklungssubstanzen der Bayer Pharma AG vorherzusagen. Die Parameter, 

absorbierte Fraktion der Dosis (fa) und Resorptionsgeschwindigkeitskonstante (ka), wurden 

zur Beurteilung der  Vorhersagbarkeit genutzt. Die mit den Standardeinstellungen 

vorhergesagten Parameter wurden anschließend mit den in vivo Parametern aus den 

präklinischen und klinischen Studien verglichen. Wichtige Faktoren die fa und ka 

beeinflussen, wurden mittels Parametersensitivitätsanalyse untersucht. 

 

Die Vorhersagbarkeit für fa war gut mit 77 % innerhalb der vorgegebenen Akzeptanzkriterien 

(d.h. zweifache Abweichung vom in vivo Wert). Es gab eine tendenzielle Überschätzung für 

die Spezies Hund, die suggeriert, dass der Spezieskonvertierungsfaktor abgepasst werden 

sollte. Die Parametersensitivitätsanalyse für Substanz C5 zeigte eine starke Abnahme der 

absorbierte Fraktion um 64 %, wenn der Magen pH von 3.0 auf 4.3 steigt. Eine einfache 

Methode um solche Einflussgrößen zu reduzieren ist z.B. die Vorbehandlung der Hunde vor 

der Administration der oralen Formulierung in PK Studien um den Magen pH zu stabilisieren.  

Der Parameter ka wurde für Substanzen mit einer niedrigen in vivo Absorptionsrate 

vornehmlich unterschätzt. Die Einflussgrößen Permeabilität und Löslichkeit wurden als 

sensitive Parameter identifiziert. Die Nutzung von biorelevante Medien zur Bestimmung der 

Löslichkeit, und mit der Ussingkammer Methode generierten Permeabilitätswerte, könnten 

besseres Inputparametern bieten, die die Vorhersagbarkeit der in silico Methode verbessern 

könnte. 
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7 Appendix 

7.1 Permeability investigations 

 

Tab. 7-1: Physicochemical properties and results for effective or apparent permeability for 
compounds reported in literature for different absorption models. In addition own results from Ussing 
chamber studies are included (Chapter 3.2.2).  

Compound MW [g/mol] Log Po/w 
Absorption 

mechanism* 
Ussing chamber 

(rat) 
Caco-2 cells 

Human 
perfusion (LOC-

I-GUT
®
) 

Source 

 [150, 151] [150, 151] [95] Papp [cm/s] Papp [cm/s] Peff [cm/s]  

Antipyrine 188 1.1 ● 3.46E-05 2.67E-04 4.29E-04 
[65, 68, 109, 128, 

152-156] 

Atenolol 266 1.3 ● 5.65E-06 5.50E-07 2.05E-05 
[64, 65, 68, 109, 128, 

153, 154] 

Carbamazepine 236 2.7 ● - 2.53E-05 4.30E-04 in house data,[157] 

Cephalexin 347 0.0 ■ - 2.70E-07 1.57E-04 [48, 158] 

Cimetidine 252 0.9 ● 3.20E-05 - 2.99E-05 [64, 159] 

Creatinine 113 -0.6 ● 7.87E-06 - 2.90E-05 [68, 128, 160] 

D-Glucose 180 -2.9 ■ 5.69E-05 2.50E-05 1.20E-03 
[43, 68, 109, 128, 

155, 160, 161] 

Enalaprilate 348 -0.8 ● / ■ 6.00E-06 - 2.90E-05 [128, 153] 

Fexofenadine 502 5.6 ■ 1.47E-06 - 1.10E-05 own results, [162] 

Furosemide 331 1.5 ● 6.06E-06 1.40E-07 5.00E-06 [65, 157, 158] 

Hydrochlorthiazide 297 -0.3 ● / ● - 9.20E-07 4.00E-06 [157, 158] 

Ketoprofen 254 3.6 ● - 9.30E-05 8.40E-04 [157, 158] 

L-Dopa 197 -2.2 ■ 3.60E-05 1.00E-06 2.26E-04 [109, 128, 152, 155] 

L-Leucine 131 -1.7 ■ 7.12E-05 5.10E-07 6.20E-04 [68, 109, 128, 155] 

Mannitol 182 -3.5 ● 1.73E-05 4.48E-07 3.00E-05 
in house data, own 

results 

Metoprolol 267 2.5 ● 3.13E-05 9.20E-05 1.06E-04 
[36, 65, 68, 109, 154, 

161] 

Naproxen 230 3.3 ● 3.76E-05 2.06E-04 9.15E-04 
[65, 109, 128, 157, 

158, 161] 

Propranolol 259 3.6 ● 1.53E-05 1.10E-04 3.73E-04 
[158], own results, 

[159, 163]  

Terbutaline 225 1.6 ● 2.03E-05 3.80E-07 3.00E-05 
[109], own results, 

[156] 

Verapamil 455 5.9 ● 5.92E-05 2.32E-05 5.15E-04 
in house data, own 
results, [70, 157] 

*Absorption mechanism: passive transcellular (●), active (■), passive paracellular through tight junctions (●) 
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Tab. 7-2: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound propranolol in mucosal to serosal and serosal to mucoal 
direction for stripped tissue.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 5.86E-10 1.47E-09 2.34E-09 0.00E+00 5.86E-10 8.79E-10 

 10 0.00E+00 9.12E-10 1.52E-09 3.34E-09 1.22E-09 6.08E-10 

 20 0.00E+00 1.92E-09 3.19E-10 2.87E-09 1.92E-09 3.83E-09 

 40 2.38E-09 2.98E-09 1.49E-09 1.76E-08 9.84E-09 1.19E-08 

 60 5.46E-09 5.76E-09 6.67E-09 3.49E-08 2.49E-08 2.12E-08 

 90 1.11E-08 1.29E-08 1.47E-08 7.48E-08 4.74E-08 5.11E-08 

 120 2.24E-08 2.54E-08 3.25E-08 1.30E-07 9.89E-08 9.04E-08 

 150 3.59E-08 3.10E-08 4.99E-08 1.78E-07 1.52E-07 1.26E-07 

 
       

        CDend [µmol/mL] 
 

9.94E-07 1.06E-06 1.09E-06 1.05E-06 1.03E-06 1.09E-06 

        
Flux [µmol/cm

2
/s] 

 
5.81E-12 5.81E-12 7.75E-12 3.88E-11 1.94E-11 1.94E-11 

        
Papp [cm/s] 

 
5.85E-06 5.48E-06 7.11E-06 3.69E-05 1.88E-05 1.78E-05 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.00E+00 1.47E-09 2.05E-09 0.00E+00 5.86E-10 8.79E-10 

 10 6.08E-10 0.00E+00 1.52E-09 5.17E-09 3.65E-09 5.17E-09 

 20 2.24E-09 2.24E-09 9.58E-10 5.11E-09 2.24E-09 3.83E-09 

 40 5.96E-09 4.17E-09 2.09E-09 1.40E-08 1.01E-08 5.37E-09 

 60 2.43E-09 4.25E-09 6.37E-09 2.64E-08 2.06E-08 1.76E-08 

 90 8.11E-09 1.23E-08 1.20E-08 6.82E-08 5.17E-08 3.99E-08 

 120 1.46E-08 2.70E-08 3.03E-08 1.16E-07 1.00E-07 7.39E-08 

 150 2.32E-08 3.72E-08 4.70E-08 1.73E-07 1.46E-07 9.56E-08 

 
       

        CDend [µmol/mL] 

 
1.08E-06 1.11E-06 1.10E-06 1.06E-06 1.07E-06 1.06E-06 

        Flux [µmol/cm
2
/s] 

 
3.88E-12 7.75E-12 7.75E-12 1.94E-11 1.94E-11 1.74E-11 

        Papp [cm/s] 
 3.60E-06 6.98E-06 7.06E-06 1.82E-05 1.80E-05 1.64E-05 
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Tab. 7-3: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound propranolol in mucosal to serosal and serosal to mucoal 
direction for full-thickness tissue.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

 10 3.04E-10 0.00E+00 0.00E+00 0.00E+00 6.08E-10 - 

 20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

 40 2.98E-10 1.49E-09 0.00E+00 0.00E+00 2.38E-09 - 

 60 6.07E-10 0.00E+00 1.52E-09 2.12E-09 2.43E-09 - 

 90 0.00E+00 2.40E-09 4.20E-09 5.11E-09 9.61E-09 - 

 120 2.28E-09 6.83E-09 6.18E-09 1.27E-08 2.34E-08 - 

 150 6.52E-09 1.04E-08 1.40E-08 1.66E-08 2.94E-08 - 

 
 

      

  
      

CDend [µmol/mL] 
 1.01E-06 9.79E-07 9.32E-07 9.44E-07 9.79E-07 - 

        

Flux [µmol/cm
2
/s] 

 5.81E-13 1.94E-12 1.55E-12 3.88E-12 5.81E-12 - 

        

Papp [cm/s] 
 5.76E-07 1.98E-06 1.66E-06 4.11E-06 5.94E-06 - 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.0E+00 0.0E+00 5.9E-10 2.9E-10 0.0E+00 - 

 10 0.0E+00 0.0E+00 3.0E-10 0.0E+00 6.1E-10 - 

 20 0.0E+00 0.0E+00 3.2E-10 9.6E-10 0.0E+00 - 

 40 0.0E+00 1.2E-09 0.0E+00 3.0E-10 - - 

 60 6.1E-10 1.2E-09 3.0E-10 1.2E-09 1.2E-09 - 

 90 1.2E-09 1.2E-09 4.8E-09 6.0E-10 4.2E-09 - 

 120 3.6E-09 2.6E-09 1.1E-08 6.8E-09 1.3E-08 - 

 150 4.9E-09 5.9E-09 2.0E-08 8.2E-09 1.5E-08 - 

 
 

      

  

      
CDend [µmol/mL] 

 

1.03E-06 9.20E-07 1.00E-06 1.02E-06 1.03E-06 - 

  

      
Flux [µmol/cm

2
/s] 

 

9.69E-13 3.88E-13 3.88E-12 1.74E-12 3.88E-12 - 

  

      
Papp [cm/s] 

 9.37E-07 4.21E-07 3.86E-06 1.72E-06 3.75E-06 - 

 



   
 

 

iv 
 

 

 

 

 

 

 

 

Tab. 7-4: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound verapamil in mucosal to serosal and serosal to mucoal 
direction for stripped tissue.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 - 0.00E+00 0.00E+00 0.00E+00 3.57E-09 0.00E+00 

 10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 20 0.00E+00 4.65E-10 0.00E+00 0.00E+00 4.65E-10 3.72E-09 

 40 0.00E+00 3.11E-09 0.00E+00 2.59E-09 6.75E-09 4.15E-09 

 60 2.79E-09 5.58E-09 4.19E-09 2.33E-09 6.51E-09 1.02E-08 

 90 - 1.32E-08 1.16E-08 1.21E-08 1.82E-08 2.15E-08 

 120 1.76E-08 1.70E-08 2.70E-08 1.99E-08 2.99E-08 2.35E-08 

 150 2.45E-08 2.95E-08 3.51E-08 4.52E-08 3.26E-08 3.83E-08 

 
       

        CDend [µmol/mL] 
 9.73E-08 9.41E-08 9.11E-08 9.48E-08 8.97E-08 9.35E-08 

  
      Flux [µmol/cm

2
/s] 

 3.88E-12 3.88E-12 7.75E-12 5.81E-12 7.75E-12 3.88E-12 

  
      Papp [cm/s] 

 3.98E-05 4.12E-05 8.51E-05 6.13E-05 8.64E-05 4.14E-05 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 7.94E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 10 3.43E-09 0.00E+00 1.96E-09 0.00E+00 0.00E+00 0.00E+00 

 20 9.31E-10 3.26E-09 3.26E-09 4.65E-09 0.00E+00 0.00E+00 

 40 5.19E-10 7.27E-09 3.11E-09 0.00E+00 5.19E-10 1.56E-09 

 60 3.72E-09 7.44E-09 5.12E-09 4.65E-09 5.12E-09 9.31E-10 

 90 9.91E-09 1.54E-08 1.43E-08 1.65E-08 2.04E-08 1.49E-08 

 120 2.11E-08 1.88E-08 2.41E-08 2.46E-08 2.82E-08 1.88E-08 

 150 2.76E-08 2.51E-08 2.95E-08 3.83E-08 4.02E-08 3.01E-08 

 
       

        CDend [µmol/mL] 

 
8.04E-08 8.95E-08 8.59E-08 8.16E-08 8.99E-08 9.02E-08 

        Flux [µmol/cm
2
/s] 

 
5.81E-12 3.88E-12 5.81E-12 5.81E-12 7.75E-12 5.81E-12 

        Papp [cm/s] 
 7.23E-05 4.33E-05 6.77E-05 7.13E-05 8.62E-05 6.44E-05 
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Tab. 7-5: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound verapamil in mucosal to serosal and serosal to mucoal 
direction for full-thickness tissue.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 10 0.00E+00 0.00E+00 2.94E-09 0.00E+00 0.00E+00 0.00E+00 

 20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 40 1.56E-09 3.63E-09 5.19E-10 2.59E-09 1.56E-09 5.19E-10 

 60 4.65E-09 9.31E-09 3.72E-09 5.12E-09 5.58E-09 5.12E-09 

 90 1.49E-08 1.54E-08 9.91E-09 9.36E-09 1.65E-08 9.36E-09 

 120 
 

2.05E-08 1.94E-08 2.23E-08 3.11E-08 1.47E-08 

 150 2.01E-08 2.89E-08 2.26E-08 2.70E-08 3.20E-08 2.51E-08 

 
       

        CDend [µmol/mL] 
 9.62E-08 9.93E-08 9.92E-08 9.74E-08 7.03E-08 9.46E-08 

  
      Flux [µmol/cm

2
/s] 

 5.81E-12 3.88E-12 5.81E-12 5.81E-12 7.75E-12 3.88E-12 

  
      Papp [cm/s] 

 6.04E-05 3.90E-05 5.86E-05 5.97E-05 1.10E-04 4.10E-05 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 

 10 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 

 20 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 

 40 0.00E+00 2.08E-09 - 0.00E+00 0.00E+00 - 

 60 9.31E-10 4.65E-09 - 1.40E-09 4.65E-09 - 

 90 3.30E-09 8.26E-09 - 8.26E-09 1.10E-08 - 

 120 6.45E-09 9.39E-09 - 9.39E-09 1.82E-08 - 

 150 1.32E-08 2.07E-08 - 1.88E-08 2.32E-08 - 

 
       

        CDend [µmol/mL] 

 
9.10E-08 9.57E-08 - 9.46E-08 9.34E-08 - 

        Flux [µmol/cm
2
/s] 

 
1.74E-12 1.55E-12 - 1.94E-12 3.88E-12 - 

        Papp [cm/s] 
 1.92E-05 1.62E-05 - 2.05E-05 4.15E-05 - 
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Tab. 7-6: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound fexofenadine in mucosal to serosal and serosal to 
mucoal direction for stripped tissue.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 0.00E+00 

 10 0.00E+00 0.00E+00 4.12E-07 - - 1.37E-07 

 20 3.88E-06 0.00E+00 8.31E-07 4.16E-07 - 6.93E-07 

 40 4.04E-06 1.21E-06 4.30E-06 2.42E-06 - 3.23E-06 

 60 5.29E-06 1.67E-06 4.17E-06 5.56E-06 - 8.48E-06 

 90 8.50E-06 6.27E-06 1.03E-05 1.52E-05 - 1.66E-05 

 120 
 

8.79E-06 1.49E-05 3.09E-05 - 2.58E-05 

 150 2.49E-05 1.80E-05 2.23E-05 5.74E-05 - 4.33E-05 

 
       

        CDend [µmol/mL] 
 2.94E-03 3.00E-03 2.91E-03 2.94E-03 - 2.82E-03 

  
      Flux [µmol/cm

2
/s] 

 1.94E-09 1.94E-09 3.88E-09 7.75E-09 - 5.81E-09 

  
      Papp [cm/s] 

 6.60E-07 6.45E-07 1.33E-06 2.64E-06 - 2.06E-06 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 - - 0.00E+00 0.00E+00 

 10 0.00E+00 0.00E+00 - - 0.00E+00 0.00E+00 

 20 0.00E+00 6.93E-07 - - 0.00E+00 0.00E+00 

 40 4.04E-07 9.42E-07 - - 9.42E-07 1.35E-07 

 60 1.95E-06 2.36E-06 - - 2.23E-06 1.81E-06 

 90 5.44E-06 3.48E-06 - - 1.10E-05 7.67E-06 

 120 9.92E-06 9.35E-06 - - 2.11E-05 1.35E-05 

 150 1.59E-05 1.83E-05 - - 3.41E-05 2.38E-05 

 
       

        CDend [µmol/mL] 

 
2.97E-03 2.99E-03 - - 2.91E-03 2.86E-03 

        Flux [µmol/cm
2
/s] 

 
1.94E-09 1.94E-09 - - 5.81E-09 3.88E-09 

        Papp [cm/s] 
 6.53E-07 6.49E-07 - - 1.99E-06 1.35E-06 
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Tab. 7-7: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound fexofenadine in mucosal to serosal and serosal to 
mucoal direction for full-thickness tissue.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 0.00E+00 

 10 7.14E-06 0.00E+00 1.37E-07 0.00E+00 - 0.00E+00 

 20 0.00E+00 0.00E+00 0.00E+00 2.77E-07 - 0.00E+00 

 40 2.69E-07 8.07E-07 0.00E+00 8.07E-07 - 2.69E-07 

 60 2.78E-07 1.25E-06 9.74E-07 3.62E-06 - 2.09E-06 

 90 1.25E-06 5.02E-06 3.35E-06 1.00E-05 - 6.13E-06 

 120 3.83E-06 1.20E-05 5.53E-06 2.32E-05 - 1.56E-05 

 150 7.80E-06 2.05E-05 1.10E-05 3.90E-05 - 2.91E-05 

 
       

        CDend [µmol/mL] 
 2.96E-03 2.96E-03 3.09E-03 3.00E-03 - 3.01E-03 

  
      Flux [µmol/cm

2
/s] 

 1.16E-09 3.88E-09 1.55E-09 5.81E-09 - 3.88E-09 

  
      Papp [cm/s] 

 3.92E-07 1.31E-06 5.02E-07 1.94E-06 - 1.29E-06 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 2.3E-06 0.0E+00 0.0E+00 0.0E+00 9.6E-07 0.0E+00 

 10 8.8E-06 0.0E+00 0.0E+00 0.0E+00 4.1E-07 0.0E+00 

 20 8.5E-06 0.0E+00 0.0E+00 0.0E+00 6.9E-07 0.0E+00 

 40 1.0E-05 0.0E+00 2.7E-07 6.7E-07 1.3E-06 5.4E-07 

 60 1.0E-05 5.6E-07 4.2E-07 3.6E-06 1.8E-06 3.1E-06 

 90 1.4E-05 1.5E-06 4.6E-06 8.9E-06 5.4E-06 1.4E-05 

 120 1.8E-05 4.1E-06 7.8E-06 2.3E-05 1.3E-05 2.9E-05 

 150 2.7E-05 8.9E-06 1.8E-05 4.2E-05 2.3E-05 4.8E-05 

 
       

        CDend [µmol/mL] 

 
2.97E-03 3.05E-03 3.10E-03 3.05E-03 3.06E-03 3.00E-03 

        Flux [µmol/cm
2
/s] 

 
1.94E-09 1.16E-09 1.94E-09 5.81E-09 3.88E-09 7.75E-09 

        Papp [cm/s] 
 6.52E-07 3.81E-07 6.26E-07 1.91E-06 1.27E-06 2.58E-06 
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Tab. 7-8: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound terbutaline in mucosal to serosal and serosal to mucoal 
direction for stripped tissue.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 5.54E-09 8.46E-09 7.59E-09 9.05E-09 - 7.88E-09 

 10 1.10E-08 1.27E-08 1.27E-08 1.39E-08 - 1.30E-08 

 20 2.20E-08 2.48E-08 2.68E-08 2.43E-08 - 2.29E-08 

 40 5.07E-08 5.02E-08 5.48E-08 6.11E-08 - 4.58E-08 

 60 7.88E-08 8.26E-08 8.86E-08 8.89E-08 - 7.60E-08 

 90 1.24E-07 1.19E-07 1.24E-07 1.35E-07 - 1.13E-07 

 120 1.52E-07 1.49E-07 1.67E-07 1.70E-07 - 1.59E-07 

 150 1.95E-07 1.90E-07 2.13E-07 2.08E-07 - 1.97E-07 

 
 

      

  
      

CDend [µmol/mL] 
 9.43E-07 9.71E-07 9.44E-07 9.53E-07 - 9.55E-07 

        

Flux [µmol/cm
2
/s] 

 1.94E-11 1.94E-11 1.94E-11 1.94E-11 - 1.94E-11 

        

Papp [cm/s] 
 2.05E-05 2.00E-05 2.05E-05 2.03E-05 - 2.03E-05 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 2.92E-09 5.54E-09 2.04E-09 2.04E-09 2.92E-09 1.75E-09 

 10 5.09E-09 7.91E-09 3.67E-09 3.67E-09 2.54E-09 5.65E-09 

 20 1.31E-08 1.09E-08 1.14E-08 8.37E-09 9.48E-09 1.12E-08 

 40 3.32E-08 4.06E-08 4.01E-08 2.59E-08 2.59E-08 4.27E-08 

 60 5.47E-08 6.82E-08 7.22E-08 4.55E-08 4.86E-08 7.25E-08 

 90 9.50E-08 1.07E-07 1.29E-07 7.83E-08 8.65E-08 1.29E-07 

 120 1.24E-07 1.44E-07 1.65E-07 1.11E-07 1.14E-07 1.60E-07 

 150 1.62E-07 1.73E-07 - 1.40E-07 1.52E-07 2.08E-07 

 
 

      

  
      

CDend [µmol/mL] 

 
9.74E-07 9.64E-07 9.50E-07 9.81E-07 9.03E-07 9.47E-07 

  
      

Flux [µmol/cm
2
/s] 

 
1.94E-11 1.94E-11 3.88E-11 1.94E-11 1.94E-11 1.94E-11 

  
      

Papp [cm/s] 
 1.99E-05 2.01E-05 4.08E-05 1.98E-05 2.15E-05 2.05E-05 
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Tab. 7-9: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound terbutaline in mucosal to serosal and serosal to mucoal 
direction for full-thickness tissue.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 6.13E-09 6.71E-09 2.63E-09 8.75E-09 7.59E-09 2.92E-09 

 10 1.47E-08 1.61E-08 1.30E-08 1.67E-08 2.60E-08 1.47E-08 

 20 2.29E-08 2.93E-08 2.40E-08 3.37E-08 3.90E-08 2.20E-08 

 40 4.87E-08 5.39E-08 5.30E-08 6.49E-08 8.82E-08 5.74E-08 

 60 8.06E-08 8.92E-08 8.69E-08 9.72E-08 1.20E-07 7.80E-08 

 90 1.19E-07 1.34E-07 1.31E-07 1.43E-07 1.71E-07 1.32E-07 

 120 1.51E-07 1.71E-07 1.62E-07 1.68E-07 2.11E-07 1.73E-07 

 150 1.81E-07 2.06E-07 2.01E-07 2.18E-07 2.72E-07 2.12E-07 

 
       

        CDend [µmol/mL] 
 9.55E-07 9.47E-07 9.63E-07 9.64E-07 9.49E-07 9.65E-07 

  
      Flux [µmol/cm

2
/s] 

 1.94E-11 1.94E-11 1.94E-11 1.94E-11 3.88E-11 3.88E-11 

  
      Papp [cm/s] 

 2.03E-05 2.05E-05 2.01E-05 2.01E-05 4.08E-05 4.02E-05 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 6.42E-09 4.67E-09 3.21E-09 1.46E-09 3.50E-09 4.08E-09 

 10 5.09E-09 5.09E-09 7.07E-09 5.65E-09 5.94E-09 6.50E-09 

 20 1.78E-08 1.51E-08 2.01E-08 1.62E-08 1.62E-08 1.76E-08 

 40 3.92E-08 4.70E-08 5.39E-08 5.19E-08 5.45E-08 6.52E-08 

 60 7.48E-08 7.22E-08 8.23E-08 8.57E-08 8.43E-08 9.78E-08 

 90 1.07E-07 1.18E-07 1.26E-07 1.32E-07 1.34E-07 1.52E-07 

 120 1.45E-07 1.60E-07 1.62E-07 1.74E-07 1.71E-07 1.93E-07 

 150 1.75E-07 1.84E-07 1.92E-07 2.12E-07 2.10E-07 2.33E-07 

 
       

        CDend [µmol/mL] 

 
9.68E-07 9.86E-07 8.66E-07 9.59E-07 9.88E-07 1.00E-06 

        Flux [µmol/cm
2
/s] 

 
1.94E-11 1.94E-11 1.94E-11 1.94E-11 1.94E-11 3.88E-11 

        Papp [cm/s] 
 2.00E-05 1.97E-05 2.24E-05 2.02E-05 1.96E-05 3.86E-05 
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Tab. 7-10: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound mannitol in mucosal to serosal and serosal to mucoal 
direction for stripped tissue from verapamil permeability studies.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 - 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 40 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.87E-03 

 60 0.00E+00 0.00E+00 0.00E+00 2.58E-03 1.29E-03 2.58E-03 

 90 4.04E-03 1.08E-02 1.21E-02 8.08E-03 1.35E-02 1.89E-02 

 120 8.45E-03 1.13E-02 1.13E-02 1.55E-02 2.68E-02 2.82E-02 

 150 1.76E-02 1.24E-02 2.17E-02 1.14E-02 3.10E-02 2.89E-02 

 
 

      

  
      

CDend [µmol/mL] 
 4.01E-01 3.79E-01 4.00E-01 4.18E-01 4.07E-01 4.03E-01 

        

Flux [µmol/cm
2
/s] 

 1.94E-06 3.88E-06 3.88E-06 3.88E-06 7.75E-06 7.75E-06 

        

Papp [cm/s] 
 4.83E-06 1.02E-05 9.70E-06 9.27E-06 1.90E-05 1.92E-05 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 40 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 60 0.00E+00 0.00E+00 0.00E+00 5.12E-07 3.42E-07 0.00E+00 

 90 3.56E-07 8.91E-07 1.43E-06 - 1.60E-06 5.35E-07 

 120 1.30E-06 1.68E-06 1.86E-06 - 2.24E-06 1.49E-06 

 150 1.37E-06 1.91E-06 1.78E-06 - 2.32E-06 1.23E-06 

 
 

      

  
      

CDend [µmol/mL] 

 
5.36E-05 6.12E-05 5.18E-05 4.98E-05 5.77E-05 5.63E-05 

  
      

Flux [µmol/cm
2
/s] 

 
3.88E-10 5.81E-10 5.81E-10 - 5.81E-10 3.88E-10 

  
      

Papp [cm/s] 
 7.23E-06 9.51E-06 1.12E-05 - 1.01E-05 6.88E-06 
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Tab. 7-11: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound mannitol in mucosal to serosal and serosal to mucoal 
direction for stripped tissue from propranolol permeability studies.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 2.58E-03 0.00E+00 1.29E-03 0.00E+00 0.00E+00 1.29E-03 

 10 0.00E+00 1.82E-03 0.00E+00 3.64E-03 1.82E-03 1.82E-03 

 20 1.35E-03 0.00E+00 2.69E-03 4.04E-03 1.35E-03 4.04E-03 

 40 1.16E-02 6.45E-03 1.29E-02 1.03E-02 9.04E-03 9.04E-03 

 60 1.16E-02 1.55E-02 1.68E-02 1.68E-02 2.19E-02 2.19E-02 

 90 2.83E-02 3.50E-02 2.96E-02 4.45E-02 5.12E-02 3.77E-02 

 120 4.93E-02 4.08E-02 4.22E-02 6.48E-02 6.34E-02 7.32E-02 

 150 4.75E-02 4.65E-02 4.85E-02 6.40E-02 5.78E-02 6.30E-02 

 
 

      

  
      

CDend [µmol/mL] 
 5.45E-01 5.55E-01 5.49E-01 5.64E-01 5.37E-01 5.38E-01 

        

Flux [µmol/cm
2
/s] 

 1.16E-05 7.75E-06 7.75E-06 1.55E-05 1.36E-05 1.74E-05 

        

Papp [cm/s] 
 2.13E-05 1.40E-05 1.41E-05 2.75E-05 2.53E-05 3.24E-05 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.71E-07 0.00E+00 

 10 0.00E+00 0.00E+00 0.00E+00 7.23E-07 0.00E+00 0.00E+00 

 20 0.00E+00 0.00E+00 0.00E+00 3.56E-07 5.35E-07 1.78E-07 

 40 1.71E-07 3.42E-07 1.02E-06 1.37E-06 8.54E-07 1.71E-06 

 60 1.02E-06 2.22E-06 2.39E-06 3.93E-06 2.39E-06 1.54E-06 

 90 2.14E-06 2.85E-06 2.32E-06 5.35E-06 6.06E-06 3.56E-06 

 120 2.79E-06 5.22E-06 5.59E-06 1.04E-05 8.38E-06 6.15E-06 

 150 2.73E-06 5.33E-06 5.33E-06 9.56E-06 8.20E-06 6.28E-06 

 
 

      

  
      

CDend [µmol/mL] 

 
7.11E-05 7.39E-05 7.03E-05 7.27E-05 7.38E-05 7.20E-05 

  
      

Flux [µmol/cm
2
/s] 

 
3.88E-10 9.69E-10 9.69E-10 1.94E-10 1.94E-10 1.55E-09 

  
      

Papp [cm/s] 
 5.45E-06 1.31E-05 1.38E-05 2.67E-06 2.62E-06 2.15E-05 
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Tab. 7-12: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound mannitol in mucosal to serosal and serosal to mucoal 
direction for stripped tissue from terbutaline permeability studies.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 0.00E+00 1.29E-03 0.00E+00 0.00E+00 - 0.00E+00 

 10 0.00E+00 3.64E-03 0.00E+00 0.00E+00 - 1.82E-03 

 20 4.04E-03 5.39E-03 0.00E+00 5.39E-03 - 5.39E-03 

 40 1.16E-02 1.03E-02 9.04E-03 9.04E-03 - 3.87E-03 

 60 1.55E-02 1.42E-02 1.55E-02 1.94E-02 - 1.29E-02 

 90 2.96E-02 2.96E-02 3.50E-02 3.23E-02 - 3.23E-02 

 120 3.66E-02 4.08E-02 4.51E-02 3.94E-02 - 4.37E-02 

 150 3.82E-02 2.89E-02 3.20E-02 3.72E-02 - 4.03E-02 

 
 

      

  
      

CDend [µmol/mL] 
 4.78E-01 4.55E-01 4.55E-01 4.98E-01 4.81E-01 4.69E-01 

        

Flux [µmol/cm
2
/s] 

 7.75E-06 7.75E-06 9.69E-06 5.81E-06 - 9.69E-06 

        

Papp [cm/s] 
 1.62E-05 1.70E-05 2.13E-05 1.17E-05 - 2.06E-05 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 3.42E-07 1.02E-06 8.54E-07 

 10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.41E-07 2.41E-07 

 20 0.00E+00 1.78E-07 1.78E-07 7.13E-07 0.00E+00 0.00E+00 

 40 5.12E-07 1.54E-06 8.54E-07 6.83E-07 0.00E+00 1.02E-06 

 60 1.54E-06 2.22E-06 1.71E-06 1.02E-06 1.02E-06 1.71E-06 

 90 3.56E-06 1.96E-06 4.63E-06 2.14E-06 1.78E-06 3.03E-06 

 120  5.22E-06 5.59E-06 3.35E-06 4.28E-06 5.77E-06 

 150 4.10E-06 3.14E-06 - 3.69E-06 2.87E-06 4.51E-06 

 
 

      

  
      

CDend [µmol/mL] 

 
6.29E-05 6.37E-05 6.15E-05 6.25E-05 5.79E-05 6.19E-05 

  
      

Flux [µmol/cm
2
/s] 

 
9.69E-10 7.75E-10 1.16E-09 9.69E-10 7.75E-10 9.69E-10 

  
      

Papp [cm/s] 
 1.54E-05 1.22E-05 1.89E-05 1.55E-05 1.34E-05 1.57E-05 
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Tab. 7-13: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound mannitol in mucosal to serosal and serosal to mucoal 
direction for full-thickness tissue from verapamil permeability studies.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 - 1.29E-03 0.00E+00 0.00E+00 0.00E+00 1.29E-02 

 10 1.82E-03 0.00E+00 2.92E-02 0.00E+00 0.00E+00 0.00E+00 

 20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 40 2.58E-03 1.29E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 60 2.58E-03 1.29E-03 0.00E+00 1.29E-03 5.16E-03 5.16E-03 

 90 1.35E-02 1.48E-02 1.08E-02 1.48E-02 0.00E+00 1.21E-02 

 120 1.55E-02 2.39E-02 1.97E-02 1.69E-02 2.53E-02 2.25E-02 

 150 1.86E-02 3.20E-02 2.07E-02 2.48E-02 1.86E-02 2.17E-02 

 
 

      

  

      

CDend [µmol/mL] 
 4.10E-01 4.39E-01 4.37E-01 4.42E-01 4.34E-01 3.64E-01 

  
      

Flux [µmol/cm
2
/s] 

 3.88E-06 7.75E-06 5.81E-06 5.81E-06 5.81E-06 5.81E-06 

  
      

Papp [cm/s] 
 9.45E-06 1.77E-05 1.33E-05 1.31E-05 1.34E-05 1.60E-05 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 

 10 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 

 20 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 

 40 0.00E+00 0.00E+00 - 0.00E+00 3.42E-07 - 

 60 0.00E+00 3.42E-07 - 0.00E+00 8.54E-07 - 

 90 5.35E-07 1.25E-06 - 7.13E-07 8.91E-07 - 

 120 1.68E-06 - - 1.30E-06 1.30E-06 - 

 150 1.23E-06 9.56E-07 - 1.64E-06 2.32E-06 - 

 
 

      

  
      

CDend [µmol/mL] 

 
5.36E-05 5.79E-05 - 5.38E-05 6.03E-05 - 

  
      

Flux [µmol/cm
2
/s] 

 
5.81E-10 5.81E-10 - 3.88E-10 1.55E-10 - 

  
      

Papp [cm/s] 
 1.08E-05 1.00E-05 - 7.20E-06 2.57E-06 - 
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Tab. 7-14: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound mannitol in mucosal to serosal and serosal to mucoal 
direction for full-thickness tissue from propranolol permeability studies.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

 10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

 20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

 40 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

 60 1.29E-03 6.45E-03 2.58E-03 3.87E-03 0.00E+00 - 

 90 8.08E-03 8.08E-03 6.74E-03 9.43E-03 1.35E-02 - 

 120 1.41E-02 2.25E-02 2.11E-02 1.55E-02 1.69E-02 - 

 150 1.34E-02 2.38E-02 1.45E-02 1.55E-02 1.65E-02 - 

 
 

      

  

      

CDend [µmol/mL] 
 5.46E-01 5.39E-01 5.39E-01 5.38E-01 5.37E-01 - 

  
      

Flux [µmol/cm
2
/s] 

 3.88E-06 5.81E-06 5.81E-06 3.88E-06 5.81E-06 - 

  
      

Papp [cm/s] 
 7.10E-06 1.08E-05 1.08E-05 7.21E-06 1.08E-05 - 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

 10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

 20 0.00E+00 1.78E-07 0.00E+00 0.00E+00 0.00E+00 - 

 40 0.00E+00 0.00E+00 0.00E+00 0.00E+00  - 

 60 1.71E-07 3.42E-07 5.12E-07 3.42E-07 8.54E-07 - 

 90 1.07E-06 5.35E-07 1.25E-06 1.07E-06 8.91E-07 - 

 120 1.49E-06 1.30E-06 1.12E-06 2.05E-06 2.24E-06 - 

 150 0.00E+00 1.23E-06 1.50E-06 1.91E-06 2.19E-06 - 

 
 

      

  
      

CDend [µmol/mL] 

 
7.31E-05 7.00E-05 7.14E-05 7.08E-05 7.20E-05 - 

  
      

Flux [µmol/cm
2
/s] 

 
3.88E-10 3.88E-10 1.94E-10 5.81E-10 3.88E-10 - 

  
      

Papp [cm/s] 
 5.30E-06 5.54E-06 2.71E-06 8.22E-06 5.39E-06 - 
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Tab. 7-15: Parameter used for calculation of apparent permeability for each chamber of the Ussing 
chamber studies using reference compound mannitol in mucosal to serosal and serosal to mucoal 
direction for full-thickness tissue from terbutaline permeability studies.  

Permeability direction Time Chamber 

m-s [min] 1 2 3 4 5 6 

ARcorrected [µmol] 5 6.45E-03 1.29E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 10 1.82E-03 0.00E+00 0.00E+00 0.00E+00 1.82E-03 0.00E+00 

 20 5.39E-03 6.74E-03 0.00E+00 2.69E-03 0.00E+00 0.00E+00 

 40 9.04E-03 2.58E-03 9.04E-03 7.75E-03 6.45E-03 9.04E-03 

 60 1.42E-02 1.42E-02 7.75E-03 1.03E-02 1.16E-02 2.07E-02 

 90 2.69E-02 3.50E-02 1.75E-02 2.02E-02 2.29E-02 3.10E-02 

 120 4.37E-02 4.22E-02 2.82E-02 3.94E-02 5.35E-02 3.52E-02 

 150 3.10E-02 3.61E-02 3.51E-02 3.72E-02 3.61E-02 3.30E-02 

 
 

      

  

      

CDend [µmol/mL] 
 4.73E-01 4.68E-01 4.68E-01 4.80E-01 4.60E-01 4.83E-01 

  
      

Flux [µmol/cm
2
/s] 

 9.69E-06 9.69E-06 5.81E-06 9.69E-06 1.36E-05 3.88E-06 

  
      

Papp [cm/s] 
 2.05E-05 2.07E-05 1.24E-05 2.02E-05 2.95E-05 8.03E-06 

        

        

        Permeability direction Time Chamber 

s-m [min] 7 8 9 10 11 12 

ARcorrected [µmol] 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 20 0.00E+00 0.00E+00 5.35E-07 0.00E+00 0.00E+00 0.00E+00 

 40 1.54E-06 3.42E-07 1.02E-06 1.02E-06 1.37E-06 5.12E-07 

 60 6.83E-07 8.54E-07 1.02E-06 1.54E-06 1.88E-06 1.20E-06 

 90 2.67E-06 3.92E-06 1.43E-06 3.03E-06 1.96E-06 2.85E-06 

 120 3.91E-06 3.54E-06 2.79E-06 4.10E-06 4.84E-06 4.10E-06 

 150 3.69E-06 4.51E-06 5.19E-06 4.23E-06 5.19E-06 6.28E-06 

 
 

      

  
      

CDend [µmol/mL] 

 
6.37E-05 6.23E-05 5.68E-05 6.35E-05 6.53E-05 6.35E-05 

  
      

Flux [µmol/cm
2
/s] 

 
9.69E-10 7.75E-10 5.81E-10 7.75E-10 9.69E-10 9.69E-10 

  
      

Papp [cm/s] 
 1.52E-05 1.24E-05 1.02E-05 1.22E-05 1.48E-05 1.53E-05 
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Tab. 7-16: Observed (obs) and predicted (pred) pharmacokinetic parameters and in vivo study 
details for compound C1.  

Species Formulation Dose [mg]
‡
 fa in

 
[%] ka in [1/h] Tmax in [h] MRT in [h] t1/2 eff. in [h] 

   obs pred obs pred obs pred obs pred obs pred 

dog solution 3 80.2 100 0.99 0.58 1.50 0.88 6.85 4.57 4.75 3.17 

dog solution 10 90.8 100 0.24 0.57 1.50 1.00 5.16 4.58 3.58 3.18 

rat MCS 16.5 69.4 58.8 5.60 0.72 0.75 0.80 24.9 4.12 17.3 2.85 

rat solution 20 91.9 60.1 2.15 0.77 1.00 0.75 3.02 3.86 2.09 2.68 

rat MCS 100 72.7 38.5 0.28 3.98 2.00 0.75 8.19 3.65 5.68 2.53 

human solution 1 - 99.9 1.04 0.60 0.50 0.83 2.13 3.57 1.47 2.47 

human solution 2.5 - 99.9 2.96 0.60 0.50 0.83 4.06 3.40 2.81 2.36 

human solution 5 - 99.9 2.48 0.60 0.50 0.83 2.50 3.46 1.74 2.40 

human solution 10 - 99.9 3.23 0.60 0.38 0.83 4.09 3.57 2.84 2.47 

human solution 20 - 99.9 2.25 0.71 0.50 0.88 2.54 3.43 1.76 2.37 

human solution 40 - 99.9 5.78 0.74 0.25 1.20 1.97 3.51 1.37 2.43 

human solution 80 - 99.7 0.48 0.68 1.25 1.84 2.65 4.02 1.84 2.78 

human solution 120 - 91.0 3.49 1.06 1.00 2.08 2.93 4.85 2.03 3.36 

human solution 160 - 78.8 4.93 0.41 0.75 0.40 2.68 6.50 1.86 4.50 

human MR tab. 100 - 76.6 0.98 0.48 1.13 2.60 18.2 10.0 12.6 6.94 

human MR tab. 200 - 61.9 0.61 0.54 2.00 2.50 13.0 11.7 9.04 8.13 

human MR tab. 300 - 53.4 1.30 0.54 1.75 2.50 15.8 11.7 11.0 8.13 

human MR tab. 400 - 48.0 0.93 0.56 1.50 2.70 37.3 12.5 25.8 8.66 

human MR tab. 500 - 53.7 0.63 0.35 2.50 3.10 15.6 11.9 10.8 8.27 

human MR tab. 600 - 41.5 0.58 0.60 2.50 3.10 22.0 13.7 15.3 9.51 

human MR tab. 900 - 36.3 1.76 0.65 1.75 3.10 11.8 16.1 8.16 11.1 

human MR tab. 1200 - 33.3 0.49 1.43 3.50 3.10 13.7 18.8 9.46 13.1 

human MR tab. 1500 - 31.4 1.04 1.51 1.75 3.10 9.54 21.0 6.61 14.6 

human EC MR tab. 300 - 57.7 0.79 0.65 6.01 2.10 12.9 9.59 8.91 6.65 

human♦
 

EC MR tab. 300 - 71.5 0.17 0.35 6.01 2.93 9.13 8.44 6.33 5.85 

MCS = micro-crystalline suspension 

MR tab. = modified-release tablet 

EC MR tab.= enteric coated modified-release tablet 
‡ 

dose for animals in mg/kg
 

♦ non-fasting 
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Tab. 7-17: Observed (obs) and predicted (pred) pharmacokinetic parameters and in vivo study 
details for compound C2. 

Species Formulation Dose [mg]
‡
 fa in

 
[%] ka in [1/h] Tmax in [h] MRT in [h] t1/2 eff. in [h] 

   obs pred obs pred obs pred obs pred obs pred 

mouse MCS 3 - 99.4 7.73 0.92 0.50 1.23 2.30 5.21 1.6 3.61 

mouse MCS 5 86.3 98.9 - 0.74 - 1.36 - 9.24 - 6.40 

mouse MCS 10 - 96.6 - 0.57 - 1.76 - 5.91 - 4.10 

mouse MCS 30 - 79.9 - 1.01 - 1.84 - 6.84 - 4.74 

rat MCS 1 121 97.1 3.85 0.88 1.00 1.84 4.49 6.13 3.12 4.25 

rat MCS 4.8 153 69.1 - 0.96 - 2.08 - 7.51 - 5.20 

rat MCS 10 138 51.3 5.33 0.63 1.00 2.00 5.13 8.09 3.56 5.61 

rabbit MCS 0.5 - 66.2 1.87 0.47 1.50 2.10 6.75 5.46 4.68 3.79 

rabbit MCS 1 - 66.9 4.65 0.47 0.50 2.20 4.44 5.49 3.08 3.81 

rabbit MCS 5 95.0 77.4 0.60 0.34 1.50 4.36 7.11 6.39 4.93 4.43 

rabbit MCS 10 - 83.5 2.86 0.24 0.50 6.76 4.98 7.98 3.45 5.53 

rabbit MCS 100 - 50.8 0.20 0.11 4.00 12.5 11.4 15.8 7.91 10.9 

dog IR tab. 1 - 99.6 0.59 1.72 2.00 1.40 8.19 8.21 5.68 5.69 

dog EC tab. 1 - 99.8 1.75 0.54 2.00 1.74 37.2 8.43 25.8 5.84 

monkey MCS 1 89.6 98.8 0.85 0.51 1.50 1.92 9.97 22.0 6.91 15.2 

monkey MCS 10 - 77.8 0.35 0.13 6.00 2.88 14.0 18.3 9.69 12.7 

human EC tab. 1 - 99.7 0.24 0.50 5.00 2.16 27.1 46.7 18.8 32.3 

human EC tab. 2 - 99.7 0.78 0.49 2.00 2.24 16.8 46.7 11.7 32.4 

human IR tab. 2 - 94.1 0.74 0.54 1.00 2.16 20.9 44.3 14.5 30.7 

human IR tab. 3 - 94.2 0.60 0.53 2.00 2.16 69.9 44.4 48.4 30.8 

human MCS 3.13 100 97.8 1.28 0.53 1.00 2.08 101 46.2 69.8 32.0 

human EC tab. 5 - 99.7 0.14 0.45 4.00 2.48 27.3 47.0 18.9 32.6 

human EC tab. 10 - 99.6 0.09 0.39 5.00 2.80 29.9 47.6 20.8 33.0 

MCS = micro-crystalline suspension 

IR tab. = immediate-release Tablet 

EC tab.= enteric coated Tablet 

MR tab. = modified-release Tablet 
‡ 

dose for animals in mg/kg 
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Tab. 7-18: Observed (obs) and predicted (pred) pharmacokinetic parameters and in vivo study 
details for compound C3. 

Species Formulation Dose [mg]
‡
 fa in

 
[%] ka in [h

-1
] Tmax in [h] MRT in [h] t1/2 eff. in [h] 

   obs pred obs pred obs pred obs pred obs pred 

rat MCS 10 54.5 22.7 0.45 0.37 3.00 1.70 15.7 21.1 10.9 14.6 

rat MCS 30 - 19.5 3.38 0.37 0.75 1.40 21.5 20.2 14.9 14.0 

dog MCS 4 - 82.1 0.94 0.46 2.00 1.50 9.51 10.3 6.59 7.15 

dog MCS 5 41.3 78.0 - - - - - - - - 

monkey solution 10 - 47.5 0.11 2.11 8.00 0.90 31.2 18.7 21.6 12.9 

monkey MCS 10 - 42.8 0.11 1.71 8.00 0.90 37.2 19.1 25.8 13.2 

monkey IR tab. 10 - 42.8 0.08 1.86 8.00 0.90 33.1 19.1 23.0 13.2 

monkey NCS 7 - 49.5 0.49 1.40 8.00 0.90 28.4 18.4 19.7 12.8 

human IR tab. 15 - 71.1 0.28 0.25 4.00 3.92 8.60 10.0 5.96 6.92 

human IR tab. 25 - 56.5 0.20 0.24 2.00 4.48 13.7 10.1 9.52 6.99 

human IR tab. 35 - 47.7 0.90 0.23 2.00 4.80 52.4 10.1 36.3 7.03 

human IR tab. 45 - 41.9 0.63 0.23 2.00 4.96 12.3 10.3 8.52 7.11 

human IR tab. 90 - 29.9 0.28 0.39 2.00 5.20 8.71 10.1 6.04 6.97 

human IR tab. 180 - 22.4 0.45 0.20 4.00 4.56 11.2 9.95 7.75 6.89 

human IR tab. 270 - 26.4 0.68 0.20 4.00 1.68 13.0 9.29 9.04 6.44 

human IR tab. 360 - 23.2 0.81 0.19 4.00 1.60 11.9 9.47 8.27 6.56 

MCS = micro-crystalline suspension 

IR tab. = immediate-release tablet 

NCS = nano-crystalline suspension 
‡ 

dose for animals in mg/kg 

Tab. 7-19: Observed (obs) and predicted (pred) pharmacokinetic parameters and in vivo study 
details for compound C4. 

Species Formulation Dose [mg]
‡
 fa in

 
[%] ka in [h

-1
] Tmax in [h] MRT in [h] t1/2 eff. in [h] 

   obs pred obs pred obs pred obs pred obs pred 

dog solution 10 112 96.4 0.96 0.59 1.00 3.20 8.68 12.07 6.01 8.37 

rat MCS 13 49.5 47.3 0.33 0.23 4.00 1.22 8.11 6.16 5.62 4.27 

rat MCS 86 - 14.5 0.21 0.40 3.00 1.40 8.65 6.29 5.99 4.36 

human solution 10 - 99.5 0.79 0.41 1.50 3.30 14.8 22.5 10.3 15.6 

human solution 25 - 92.2 1.00 0.49 1.00 4.00 23.5 23.6 16.3 16.4 

human solution 50 - 70.4 0.82 0.49 1.00 4.56 24.5 25.3 17.0 17.5 

human solution 70 - 60.0 0.78 0.18 1.50 4.80 20.5 25.9 14.2 17.9 

human solution 90 - 52.9 0.70 0.30 1.50 5.04 21.2 26.3 14.7 18.3 

MCS = micro-crystalline suspension 
‡ 

dose for animals in mg/kg 
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Tab. 7-20: Observed (obs) and predicted (pred) pharmacokinetic parameters and in vivo study 
details for compound C5. 

Species Formulation Dose [mg]
‡
 fa in

 
[%] ka in [h

-1
] Tmax in [h] MRT in [h] t1/2 eff. in [h] 

   obs pred obs pred obs pred obs pred obs pred 

dog MCS 200 20.8 89.0 1.24 3.27 2.00 0.72 33.4 6.87 23.2 4.76 

dog MCS 20 40.7 99.8 1.27 1.22 0.75 0.72 2.56 4.49 1.78 3.11 

rat MCS 30 48.9 62.8 0.87 2.02 1.00 0.80 2.34 4.17 1.62 2.89 

mouse solution 30 - 99.9 1.04 3.04 0.75 0.32 2.03 1.22 1.40 0.85 

mouse solution 150 - 96.7 0.33 5.08 1.00 0.32 5.09 1.50 3.53 1.04 

human IR caps. 50 - 99.8 - - - - - - - - 

human IR caps. 150 - 94.4 - - - - - - - - 

human IR caps. 300 - 74.1 - - - - - - - - 

human IR caps. 500 - 57.0 - - - - - - - - 

human IR caps. 750 - 47.4 - - - - - - - - 

human IR caps. 1000 35.0 42.3 - - . - - - -  

human IR caps. 1200 - 39.6 - - - - - - - - 

human IR caps. 1250 - 39.3 - - - - - - - - 

human IR caps. 1500 - 36.8 - - - - - - - - 

human IR caps. 2000 - 33.9 - - - - - - - - 

MCS = micro-crystalline suspension 

IR caps. = immediate-release capsule 
‡ 

dose for animals in mg/kg 

Tab. 7-21: Observed (obs) and predicted (pred) pharmacokinetic parameters and in vivo study 
details for compound C6. 

Species Formulation Dose [mg]
‡
 fa in

 
[%] ka in [h

-1
] Tmax in [h] MRT in [h] t1/2 eff. in [h] 

   obs pred obs pred obs pred obs pred obs pred 

mouse MCS 10 65.0 42.4 1.13 0.03 1.50 16.5 28.5 76.2 19.8 52.8 

rat MCS 100 44.8 7.67 0.44 0.59 1.50 3.46 50.1 59.2 34.8 41.1 

dog suspension 20 30.0 32.4 0.80 0.05 1.00 21.4 49.5 38.0 34.3 26.4 

dog suspension 100 - 9.07 0.72 0.99 7.00 1.44 158 12.0 109 8.32 

human solution 6.25 59.7 69.1 0.78 2.12 2.00 1.46 184 35.2 127 24.4 

human solution 50 - 43.4 1.07 0.07 1.12 0.42 16.6 21.6 11.5 15.0 

human IR tab. 50 - 32.5 0.48 0.08 3.04 2.76 37.2 21.6 25.8 15.0 

MCS = micro-crystalline suspension 

IR tab. = immediate-release tablet 
‡ 

dose for animals in mg/kg 
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Tab. 7-22: Observed (obs) and predicted (pred) pharmacokinetic parameters and in vivo study 
details for compound C7. 

Species Formulation Dose [mg]
‡
 fa in

 
[%] ka in [h

-1
] Tmax in [h] MRT in [h] t1/2 eff. in [h] 

   obs pred obs pred obs pred obs pred obs pred 

human IR tab. 500 69.0 25.5 1.14 1.36 1.50 0.72 6.05 3.18 4.20 2.21 

human MR tab. 500 69.0 24.7 0.62 1.50 2.00 1.20 6.89 7.68 4.78 5.32 

human IR tab. 250 69.0 36.4 1.81 1.02 1.50 0.72 5.46 8.02 3.78 5.56 

human solution 250 69.0 33.2 1.57 2.02 0.50 0.50 5.46 7.86 3.78 5.45 

rat solution 5 45.0 51.3 7.02 1.31 0.33 0.99 3.32 4.47 2.30 3.10 

monkey solution 30 22.7 79.0 0.35 1.36 3.01 1.07 8.42 3.18 5.83 2.21 

IR tab. = immediate-release tablet 

MR tab. = modified-release tablet 
‡ 

dose for animals in mg/kg 

Tab. 7-23: Observed (obs) and predicted (pred) pharmacokinetic parameters and in vivo study 
details for compound C8. 

Species Formulation Dose [mg]
‡
 fa in

 
[%] ka in [h

-1
] Tmax in [h] MRT in [h] t1/ 2 eff. in [h] 

   obs pred obs pred obs pred obs pred obs pred 

rat solution 6 94.0 86.5 - - - - - - - - 

human MR caps. 30 90.0 91.0 0.08 0.11 10.0 10.6 21.7 14.1 15.1 9.74 

human♦ MR caps. 30 90.0 90.1 0.07 0.11 19.5 9.9 23.5 14.1 16.3 9.80 

human MR caps. 60 90.0 77.8 0.09 0.11 10.0 12.3 21.9 15.4 15.2 10.6 

human♦ MR caps. 60 90.0 76.0 0.11 0.11 10.0 11.9 20.6 15.6 14.3 10.8 

MR caps. = modified-release capsule 

♦ non-fasting 
‡ 

dose for animals in mg/kg 
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Fig. 7-1: Fraction absorbed categorised by compound C1-C8. Predicted fraction absorbed using 
GastroPlus™ versus observed fraction absorbed determined in in vivo studies in percent (data points 
comprise all species, formulations and doses). Line of unity (▬) and 2-fold error (- - -) n= 35. 
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Fig. 7-2: Fraction absorbed categorised by molecular weight. Predicted fraction absorbed using 
GastroPlus™ versus observed fraction absorbed determined in in vivo studies in percent (data points 
comprise all compounds, species, formulations and doses). Line of unity (▬) and 2-fold error (- - -) n= 
35 

  

Fig. 7-3: Fraction absorbed categorised by log P. Predicted fraction absorbed using GastroPlus™ 
versus observed fraction absorbed determined in in vivo studies in percent (data points comprise all 
compounds, species, formulations and doses). Line of unity (▬) and 2-fold error (- - -) n= 35 
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Fig. 7-4: Fraction absorbed categorised by formulation. Predicted fraction absorbed using 
GastroPlus™ versus observed fraction absorbed determined in in vivo studies in percent (data points 
comprise all compounds, species, formulations and doses). Line of unity (▬) and 2-fold error (- - -) 
n= 35 

 

 

Fig. 7-5: Absorption rate constant derived from in vivo data (observed) versus absorption rate 
constant deriving from in silico simulations (predicted) using GastroPlus™ categorised by compound 
(data points comprise all species, formulations and doses) expressed as inverse time. Absorption rate 
constant (◊), line of unity (▬), 2-fold error (- - -), n= 89.  
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Fig. 7-6: Absorption rate constant derived from in vivo data (observed) versus absorption rate 
constant deriving from in silico simulations (predicted) using GastroPlus™ categorised by molecular 
weight (data points comprise all compounds, species, formulations and doses) expressed as inverse 
time. Absorption rate constant (◊), line of unity (▬), 2-fold error (- - -), n= 89. 

 

Fig. 7-7: Absorption rate constant derived from in vivo data (observed) versus absorption rate 
constant deriving from in silico simulations (predicted) using GastroPlus™ categorised by log P (data 
points comprise all compounds, species, formulations and doses) expressed as inverse time. 
Absorption rate constant (◊), line of unity (▬), 2-fold error (- - -), n= 89. 
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